Skip to main content

Alert

The NRC is shutdown due to the lapse in appropriations. Exempted activities to maintain critical health and safety activities and progress on critical activities, including activities outlined in Executive Order 14300, as described in the OMB Approved NRC Lapse Plan will continue.

Post-Test Analysis of PIPER-ONE PO-IC-2 Experiment by RELAP5/MOD3 Codes (NUREG/IA-0135, CAMP006)

On this page:

Download complete document

Publication Information

Date Published: November 1996

Prepared by:
R. Bovalini, F. D'Auria, G. M. Galassi, M. Mazzini

University of Pisa
Via Diotisalvi, 2
1–56126 Pisa
Italy

Prepared as part of:
The Agreement on Research Participation and Technical Exchange
under the International Thermal-Hydraulic Code Assessment
and Maintenance Program (CAMP)

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

Availability Notice

Abstract

RELAP5/MOD3.1 was applied to the PO-IC-2 experiment performed in PIPER-ONE facility, which has been modified to reproduce typical isolation condenser thermal-hydraulic conditions. RELAP5 is a well known code widely used at the University of Pisa during the past seven years. RELAP5/MOD3.1 was the latest version of the code made available by the Idaho National Engineering Laboratory at the time of the reported study. PIPER-ONE is an experimental facility simulating a General Electric BWR-6 with volume and height scaling ratios of 1/2200 and 1./1, respectively. In the frame of the present activity a once-through heat exchanger immersed in a pool of ambient temperature water, installed approximately 10 m above the core, was utilized to reproduce qualitatively the phenomenologies expected for the Isolation Condenser in the simplified BWR (SBWR). The PO-IC-2 experiment is the flood up of the PO-SD-8 and has been designed to solve some of the problems encountered in the analysis of the PO-SD-8 experiment. A very wide analysis is presented hereafter including the use of different code versions.

Page Last Reviewed/Updated Tuesday, March 09, 2021

Page Last Reviewed/Updated Tuesday, March 09, 2021