
State of Reliability

Summary of Findings

Mark Lauby, Senior Vice President and Chief Reliability Officer FERC and NRC Joint Commission Meeting June 7, 2018

RELIABILITY | ACCOUNTABILITY

- State of Reliability report measures past performance, identifies emerging risks, and success of mitigation activities
 - First report completed in 2012; 2018 report expected to be published
 June 24
- Essential Reliability Services
- Distributed Energy Resource integration and NERC activities

Summary of 2017 Report

- Decreased instances of protection system misoperations
- Improved BPS resiliency to severe weather
- Decreased human error
- No Category 4 or 5 events in 2016
- Stability of frequency and voltage
- Maintained physical and cyber security under increasing threats

Overview of 2018 Report

- Previous trend findings continue with some new findings:
 - Improved BPS resiliency to severe weather
 - Two Category 5 events Hurricanes Harvey and Irma
 - Maintained physical and cyber security reliability under increasing threats
 - No loss of load
 - Decreased instances of protection system misoperations
 - 7.1 percent vs. 8.3 percent last year; has trended down over past five years
 - Decreased human error
 - Frequency and voltage remained stable
 - However, results varied by interconnection
 - Inverter disconnects during transmission disturbances present an emerging risk

Two Category 5 Events

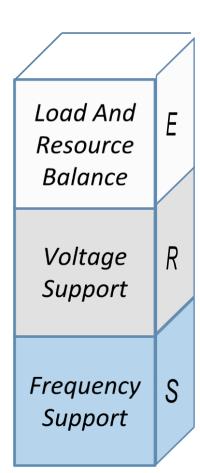
- Water and wind were key in Texas during Hurricane Harvey
 - 85 substations damaged
 - 225 transmission line outages
 - More than 850 transmission line structures downed/damaged
 - More than 6,000 distribution poles downed/damaged
- Hurricane Irma was the largest impact storm to ever hit Florida
 - 4.45 million customers out of service for Florida Power & Light
 - (Previous record was 3.24 million in 2005 during Hurricane Wilma)
 - Irma restoration took 10 days vs. 18 days during Wilma



Event Analysis Key Findings

- Drones hastened restoration following both Harvey and Irma with unexpected versatility
- Mutual Assistance agreements provided essential equipment and material for both Harvey and Irma restorations
- Florida and its utilities shortened Irma restoration time with strong, prior investment in system hardening

200 kV+ Outages by Cause Code



- Inverter disconnects during transmission disturbances present an emerging risk
 - NERC 1,200 MW Fault Induced Solar Photovoltaic Resource Interruption
 Disturbance Report, Southern California August, 16, 2016 Event
 - Use of instantaneous frequency measurements can erroneous tripping during transients generated by faults on the power system
 - Cease current injection for voltages > 1.1 per unit or < 0.9 per unit, and return to pre-disturbance levels at a slow ramp rate
 - Two industry alerts issued providing guidance to reduce or eliminate impacts from these characteristics. Reviewing Standards.
 - CAISO Market Notice Effective Trade Day (TD) 6/14/17
 - The California ISO temporarily increased daily procurement of operating reserves to mitigate reliability risk against potential loss of solar resources

Essential Reliability Services

- Retirements of conventional generation and the rapid addition of inverter-based resources altering the operating characteristics of the grid
- In 2014, framework developed with building blocks of a reliable system: "Essential Reliability Services"
- NERC supports efforts to understand contributions to reliability from all forms of generation
- Change in planning and operations needed to manage future Transmission & Distribution systems

Link to: <u>ERS Framework Report</u> Link to: <u>Reliability Assessments</u>

Report published in February 2017

DER Connection, Modeling, and Reliability Considerations

Working definition of DER:

 Any resource on the distribution system that produces electricity and is not otherwise included in the formal NERC definition of the Bulk Electric System.

Examples:

- Residential rooftop solar
- Microgrids
- Cogeneration projects
- Any other distribution resource

Accommodating Large Amounts of DER

• DERTF:

- 2018 Technical Brief: <u>DER Data Collection for Transmission System Entities</u>
- 2018 <u>DER Educational Video</u>

Load Modeling Task Force

- 2016 Report: <u>Dynamic Load Modeling Technical Reference Document</u>
- 2016 Reliability Guideline : <u>Modeling DER in Dynamic Load Models</u>
- 2017 Reliability Guideline : <u>Developing Load Model Composition Data</u>

Industry and Research Partnerships

- IEEE Standards Participation and <u>NERC IEEE Joint Task Force</u> (IEEE 1547)
- Argonne National Laboratory : <u>Impact of DERs on the Bulk Electric System</u>
 <u>- Combined Modeling of T&D Systems & Benchmark Case Studies</u>

Assessing BPS Impacts

- DER impacts on UFLS or under frequency load shedding (<u>PRC-006-3</u>) and under voltage load shedding or UVLS (<u>PRC-010-2</u>)
 - NERC Planning Committee: <u>Region Studies on DER Impacts to UFLS/UVLS Programs</u>
 - Unexpected loss of DER can contribute to frequency and voltage instability for high penetrations (e.g. NPCC study).
- <u>IEEE 1547-2018</u> implement and coordinate with System Operators reliability
 - Mod-032-1 : Data for Power System Modeling and Analysis
- In the future aggregate DER may be the most severe contingency. <u>TPL-001-4</u> requires study and planning for the potential impacts

Questions and Answers

