

NRC's Advanced Reactors Program "Enabling the Safe and Secure Use of Nuclear Materials"

- Commission Meeting
- April 24, 2018

Agenda

- NRC's Advanced Reactors Program –
 Fred Brown
- Licensing Readiness and Potential Policy Issues – John Monninger
- Analytical Codes, Tools, and Industrial Standards – Stephen Bajorek
- Fuel Cycle Considerations Brian Smith

NRC's Advanced Reactors Program

Fred Brown, Acting Director Office of New Reactors

Dynamic and Evolving Landscape

Assuring Readiness

- Developed the Vision and Strategy
- Executing the Implementation Action Plans
- Building capabilities
 - Incremental progress
 - Identifying key policy issues
 - Focused "Core" team concept

Potential Early Applications

- Individual developer's timelines
- Recognizing relative maturity
- Further transformation
 - Leveraging advancements from recent light water reactors licensing
 - Optimizing the regulatory structure

Licensing Readiness and Potential Policy Issues

John Monninger, Director
Division of Safety Systems, Risk
Assessment, and Advanced Reactors
Office of New Reactors

Making Progress in the Near-Term

Modernizing the Licensing Approach

- Flexible, staged, and predictable processes
- Advanced Reactors Design Criteria
- Developing a risk-informed, and performance-based approach
 - Identification of licensing-basis events
 - Probabilistic risk assessment approach
 - Classification of structures, systems, and components
 - Defense-in-depth

Pursuing Resolution of Policy Issues

- Emergency preparedness for small modular reactors and other nuclear technologies
- Consequence based physical security
- Functional containment performance criteria

Evaluating Other Potential Issues

- Engaging with stakeholders to identify and prioritize potential policy issues
 - Siting
 - Insurance
- Technology-specific policy issues

Analytical Codes, Tools, and Industrial Standards

Stephen M. Bajorek, Ph.D.
Senior Level Advisor for Thermal Hydraulics
Division of Systems Analysis
Office of Nuclear Regulatory Research

Progress in Technical Readiness

- Familiarization with advanced reactor technologies and technical issues
- Access and training with DOE analysis codes and evaluation of existing NRC code capabilities
- Identification of technical "gaps"
 - Code capabilities and limitations
 - Experimental data and code verification and validation
 - Industrial standards for materials

Methodical Approach to Selection of Codes

- Does a code contain the correct physics and modeling features?
- Is it more economical to develop an NRC code, or adopt use of a code developed elsewhere?
- If a non-NRC code is used, how does the NRC maintain its independence?
- Can a code be developed for application to more than one reactor design type?
- What applicable verification and validation exists for a particular code?

<u>Comprehensive Reactor Analysis</u> <u>B</u>undle (CRAB)

Resolving Technical Challenges

- Numerous advanced reactor designs
- Some (vital) data is non-existent
 - Molten salt thermophysical properties
 - High temperature material behavior
- DOE and NRC codes have been developed for different purposes
 - DOE: Normal operation, very high detail
 - NRC: Accident scenarios, peak power regions
- DOE codes designed for high performance computing systems

Leveraging Industrial Standards

- NRC Objectives
 - Obtain performance needs and identify issues for structural materials and component integrity
 - Support consensus standards
- Staff participation on Industrial Standards activities
 - ASME Section III, Division 5 High Temperature Materials
 - ANS Committees and Working Groups
 - ASME/ANS Joint Committee on Nuclear Risk Management

Path Forward

- Efforts in 2018 will be primarily generic and focus on identification of gaps in knowledge, data, and code modeling requirements
- DOE codes will continue to be tested and cooperative efforts expanded
- Support for Industrial Standards
 activities will continue with emphasis on
 high temperature materials

Fuel Cycle Considerations

Brian Smith, Deputy Director

Division of Fuel Cycle Safety, Safeguards, and
Environmental Review

Office of Nuclear Material Safety and
Safeguards

Engagement on Fuel Cycle Considerations

- Participant in meetings with developers, industry, and DOE
- Participant in advanced reactors training
- Reviewed draft NEI white paper on challenges for front end fuel cycle

Evaluation of Fuel Cycle Regulatory Framework

- Existing framework has sufficient flexibility for solid-fueled reactors using once through fuel cycle
 - May require new regulatory guidance for new design characteristics
- Potential for regulatory challenges for fluid-fueled reactors or reactors with closed fuel cycles

Engaging on Issues that Need to be Addressed by Industry

- Obtaining uranium enriched greater than 5% and subsequent fuel fabrication
- New transportation packages
- Criticality benchmark experiments

Proactively Identifying Regulatory Issues

- Material control and accounting requirements for Category II facilities
- Physical security requirements for Category II facilities
- Material control and accounting requirements for fluid-fueled reactors

Continue Active Participation

- Maintain involvement in advanced reactors activities
- Encourage industry development of fuel cycle technology and designs in parallel with reactors design
- Encourage industry development and implementation of regulatory engagement plan

Acronyms

- ANS American Nuclear Society
- ASME American Society of Mechanical Engineers
- BPVC Boiler and pressure vessel code
- DOE Department of Energy
- EP Emergency preparedness
- GAIN Gateway for Accelerated Innovation in Nuclear
- HTGR High temperature gas reactor
- LBE Licensing basis events
- LMFR Liquid metal fast reactor
- MOU Memorandum of Understanding
- MSR Molten salt reactor
- NEI Nuclear Energy Institute
- Non-LWR Non light-water-reactor
- ONT Other nuclear technologies
- ORNL Oak Ridge National Laboratory
- PRA Probabilistic Risk Assessment
- RIS NRC Regulatory Information Summary
- SMR Small modular reactor
- SSC Structures, systems, and components