NUCLEAR FUEL PERFORMANCE INTRODUCTION / OVERVIEW

Joe Sheppard
President & CEO, STPNOC
Chairman, FRP Executive Committee

OUTLINE

- Materials Initiative Overview
- Fuel Reliability Program
- Fuel Performance Trends
- Industry Focus Areas
- Overall Impact and Assessment

ACRONYMS

AOA - Axial offset anomaly

APSR - Axial Power Shaping Rods

CNO - Chief Nuclear Officer

EPRI - Electric Power Research Institute

FMEA - Failure Modes and Effects Analysis

FRED - Fuel Reliability Data Base

FRP - Fuel Reliability Program

GWe - Gigawatt electric

MRP - PWR Materials Reliability Program

NDE - Nondestructive Examination

NEI - Nuclear Energy Institute

PCI - Pellet-Clad Interaction

SGMP - Steam Generator Management Program

MATERIALS INITIATIVE OVERVIEW

- In 2003, industry recognized need for united effort on materials issues
- CNOs endorsed NEI 03-08
- > \$59.5M industry-sponsored R&D
 - -\$10M for EPRI FRP

INITIATIVE (cont'd)

- Purpose is to provide
 - -Consistent management process
 - Materials issues prioritization
 - Proactive, integrated, coordinated approaches
 - -Implementation oversight

INITIATIVE (cont'd)

- NEI 03-08 committed licensees to
 - -Fund materials programs
 - Supply talent
 - -Act in united manner
- Management structure created

NEI 03-08 STRUCTURE

Nuclear Strategic Issues Advisory Committee (All CNOs)

Materials Executive Oversight Group (Selected CNOs)

Materials Technical Advisory Group (Issue Program Chairs, etc.)

Issue Programs (MRP, SGMP, etc.), Owners Groups
Fuel Reliability Program

ISSUE PROGRAMS

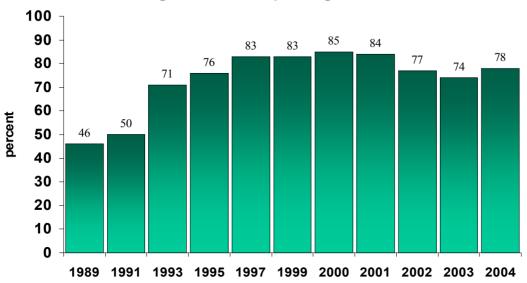
- BWR Vessel & Internals Program
- PWR Materials Reliability Program
- Steam Generator Management Program

PROGRAMS (cont'd)

- Fuel Reliability Program
- NSSS Owners Groups (materials programs)
- Chemistry, Corrosion, NDE

FUEL RELIABILITY PROGRAM

- 1998 Robust Fuel Program focused on fuel design and performance
- 2003 Fuel Reliability Program refocused on fuel reliability to support Materials Initiative
- Objective is highly reliable fuel with zero defects


FRP (cont'd)

- Four specific focus areas
 - Root cause investigations of failures
 - -BWR crud and water chemistry
 - PWR crud and water chemistry
 - Regulatory interface

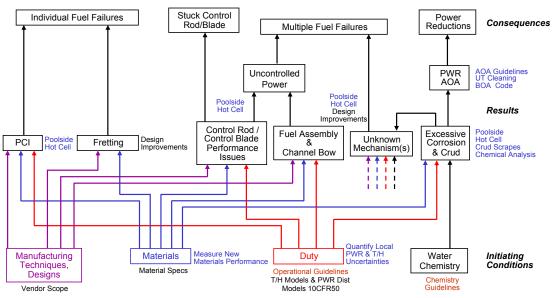
FUEL PERFORMANCE TRENDS

- Several US plants still experiencing fuel defects
- Number of assemblies with fuel defects declined in 2004
- Objective is highly reliable fuel with zero defects

Fuel Reliability
Percentage of Units Reporting Zero Defects

2004 FAILURE MECHANISMS

BWR	- PCI/suspect	7
	- Debris	3
	- Unknown/not inspected	5
PWR	- Fretting	22
	- Unknown/not inspected	13


FUEL RELIABILITY DATA BASE

- FRED now contains complete fuel performance and failure trends
- All US nuclear plants will have access to facilitate mandatory data entry
- International FRP members in Feb 2005
- Access for fuel vendors in 2005 Q1

INDUSTRY FOCUS AREAS

- Manufacturing techniques, design
- Materials
- Duty
- Water chemistry

FMEA

FRP Scope Partial FRP Scope

OVERALL IMPACT AND ASSESSMENT

- FRP and industry efforts are starting to have positive effect on overall reliability
- Most fuel defects represent a very small fraction of limits that could affect offsite doses

ASSESSMENT (cont'd)

- Licensees and vendors are taking aggressive action to correct issues
- Fuel defects cause operational issues and have economic consequences
- Overall objective is highly reliable fuel that operates defect free

FUEL RELIABILITY PROGRAM

Rosa Yang
Technical Executive - EPRI

INTRODUCTION

- EPRI provides technical expertise, project management for FRP
- EPRI focus is R&D to support FRP objectives

FUEL DEFECT INVESTIGATIONS

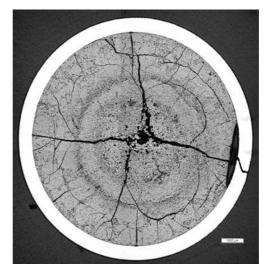
- Key aspects
 - Confirm performance margins
 - Support fuel defect root cause investigations
- Performed in cooperation with licensee and fuel vendor

INVESTIGATIONS (cont'd)

Focus on poolside inspections and hot cell examinations

 Plant performance results entered in FRED

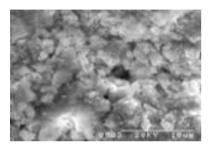
HOT CELL INVESTIGATIONS


 Most definitive, but most costly and time consuming

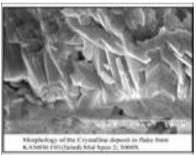
Can provide very illuminating results

BWR PCI FAILURE

Short Axial Crack


Metallographic Cross Section at Short Axial Crack

POOLSIDE EXAMINATIONS


 Faster; less expensive; can be performed more frequently than hot cell investigations

 EPRI developing better poolside techniques; early results are promising

CRUD CROSS SECTIONS

Steam chimney on water side

Crystals containing Si, Zn, Al on fuel side near failure

SUMMARY

- Only a brief snapshot of some EPRI activities
- Projects yielding results; performance improving
- Close licensee and vendor involvement has been critical to success

FUEL VENDOR'S PERSPECTIVE

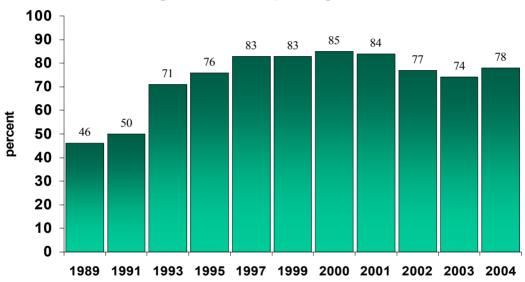
John Matheson Senior VP, Nuclear Fuel - AREVA

FUEL VENDOR'S PERSPECTIVE

Jack Fuller
CEO - Global Nuclear Fuels

FUEL VENDOR'S PERSPECTIVE

Mike Saunders
Senior VP, Nuclear Fuel - Westinghouse


LICENSEE'S PERSPECTIVE

Jim Malone
VP, Nuclear Fuels Exelon Generation Company, LLC

PROBLEM STATEMENT

We experienced an <u>unacceptable</u> number of fuel defects in Exelon units. Although Exelon performance is consistent with industry trends in the past three years, our goal is zero defects.

Fuel Reliability Percentage of Units Reporting Zero Defects

2004 FUEL FAILURE MODES

Braidwood – flaw assisted PCI

Dresden - foreign material or PCI

LaSalle - foreign material and flaw assisted PCI

Limerick - undetermined

FAILURE MODES (cont'd)

Quad Cities 1 - 2 PCI, 1 undetermined

Quad Cities 2 - PCI

Three Mile - likely PCI

ACTIONS TAKEN

- LaSalle 1&2 removed leaking fuel
- Placed previous fuel design in low duty locations
- Quad Cities 1 replaced 233 fuel assemblies susceptible to failure
- Instituted ramp rate controls

ACTIONS (cont'd)

- Performed hot cell investigation of LaSalle failures
- Employed conservative management of BWR defects
- Strengthened vendor oversight
- Increased involvement with industry

FUEL DEFECT IMPACTS

- Dose increases not significant
- No significant changes in radiation levels
 - -Surveillances continued on schedule
 - Maintenance conducted per template

IMPACTS (cont'd)

- Sites met or exceeded online corrective maintenance goals
- Utilized FRP results to support dose reduction efforts
 - -Zinc addition
 - Ultrasonic fuel cleaning

SUMMARY

- Fuel defects are unacceptable
- Actively managed defects and vigorously pursued root cause
- Dose increase not significant
- No delays or elimination of any surveillances or maintenance