

RIC 2007 Fire Research-Integrating Research into Practical Applications

<u>"Ca</u>ble <u>R</u>esponse t<u>o Li</u>ve <u>Fire</u> (CAROLFIRE) Testing Program

> Steven P. Nowlen Sandia National Laboratories Tuesday March 13, 2007

CAROLFIRE Project Objectives

- Two areas of investigation:
 - Resolution of the 'Bin 2' circuit configurations:
 - Regulatory Issue Summary 2004-03, Rev 1 "Risk-informed Approach For Post-Fire Safe-Shutdown Circuit Inspections"
 - Documents findings from a February 2004 NRC facilitated workshop puts cable/circuit configurations in one of three bins:
 - Bin 1: Configurations that are most likely to fail (e.g., leading to spurious operation
 - Bin 2: Configurations that need more research
 - Bin 3: Configurations that are unlikely or least likely to fail (e.g., leading to spurious operation).
 - Fire Modeling Improvement
 - To reduce uncertainty associated with predictions of fire-induced cable damage

- The Bin 2 issues:
 - A. Spurious actuations caused by Inter-cable shorting for thermoset cables
 - B. Spurious actuations caused by Inter-cable shorting between thermoplastic and thermoset cables
 - C. Concurrent spurious actuations associated with failures impacting three or more cables
 - D. Multiple spurious operations in control circuits with properly sized control power transformers (CPTs)
 - E. Fire-induced hot shorts lasting more than 20 minutes
 - F. Consideration of spurious actuations for cold shutdown circuits
- CAROLFIRE's goal:
 - Assess Bin 2 items A-E through experiments
 - Make recommendations to NRR for resolution

Fire Model Improvement

- RES has separate efforts underway dealing with Verification and Validation of fire models
 - CAROLFIRE compliments these efforts
- Data needed to:
 - Support improved cable thermal response and electrical failure fire modeling tools
 - Reduce modeling uncertainties
- Collaborative partners at NIST and UMd are leading the modeling efforts
- SNL did the testing
 - Extensive efforts to gather data that correlates thermal response to electrical response
 - Range of exposure conditions from simple to complex
 - Range of cable products

The testing Approach

- Two Scales of testing are being pursued
 - Small-scale radiant heating experiments
 - Intermediate-scale open burn tests
- Testing a broad range of cable products

Cable types being tested represent wide range of NPP products

Cable Function/Service	Insulation & Jacket Materials (I/J)	Material Type ⁽²⁾	Cond. Size (AWG)	No. Cond.	Manufacturer	Notes ⁽³⁾
Power	XLPE/CSPE	TS/TS	8	3	Rockbestos	All XLPE cables were selected from the
Control	XLPE/CSPE		12	7	Surprenant	Firewall III® product line. All are nuclear
Instrumentation	XLPE/CSPE		16	2		qualified. The 16AWG, 2/C cable is
Instrumentation	XLPE/CSPE		18	12		shielded, others are un-shielded.
Control	Vita-Link®	TS/TS	14	7		A "fire-rated" cable based on silicone insulation that ceramifies when exposed to flames.
Control	XLPO/XLPO	TS/TS	12	7		Newer style 'low-smoke, zero halogen' formulation, IEEE-383 qualified.
Control	SR/Aramid Braid	TS/TS	12	7	First Capitol	Industrial grade cable from "sister company" to Rockbestos Surprenant
Control	Tefzel/Tefzel	TP/TP	12	7	Cable USA	Based on Tefzel-280 compound
Control	EPR/CSPE	TS/TS	12	7	General Cable	Industrial grade cable
Control	XLPE/PVC	TS/TP	12	7		Mixed type - thermoset insulated, thermoplastic jacketed
Control	PE/PVC	TP/TP	12	7		Industrial grade cables.
Power	PVC/PVC	TP/TP	8	3]	
Control	PVC/PVC		12	7]	
Instrumentation	PVC/PVC		16	2]	Industrial Grade cable, Shielded
Instrumentation	PVC/PVC		18	12		Industrial Grade cable, Unshielded

Additional Notes:

(1) - XLPE = Cross-linked polyethylene; CSPE = Chloro-sulfanated polyethylene (also known as Hypalon); XLPO = Cross-linked polyelefin;

SR = Silicone rubber; EPR = Ethylene-propylene rubber; PVC = Poly-vinyl chloride; PE = Polyethylene (non cross-linked).

(2) - TS = Thermoset; TP = Thermoplastic; shown as: (insulation type)/(jacket type).

(3) - All power and control cables are un-shielded.

Small Scale Tests

- *Penlight* heats target cables via greybody radiation from a heated shroud
- Well controlled, well instrumented tests
- Allows for many experiments in a short time
- Thermal response and failure for single cables and small cable bundles (up to six cables)
- Cable trays, air drops, conduits

Typical Penlight setup

Intermediate-Scale Tests

Layout of the intermediate-scale test structure. Structure was located within a larger test facility.

Intermediate-Scale Tests

- Less controlled, but a more realistic testing scale
- Hood is roughly the size of a typical ASTM E603 type room fire test facility (more open to allow for ready access)
- Propene (Propylene) burner fire source (200 kW typical)
- Cables in trays, conduits and air drop

Instrumentation

- Cable thermal response (surface and interior)
- Raceway surface temperature
- Exposure environment
- Cable electrical Response via two monitoring systems
 - The SNL Insulation Resistance Measurement System
 - Surrogate Circuit Diagnostic Units (circuit simulators)

Instrumentation (2)

Instrumentation (3)

- Intermediate-scale: control circuit simulators allow for testing of various circuit configurations
- Base configuration is the typical MOV control circuit
 - Same as that used in all previous testing by industry

Item A – Thermoset-to-Thermoset

- One solid case of inter-cable shorting as primary failure mode observed on IRMS
- Several cases where inter-cable shorting was secondary or tertiary failure mode on IRMS
- No spurious actuations on the SCDUs

Item B – Thermoset-to-Thermoplastic

- No cases of spurious actuation on SCDUs
- One case of a hot short from a TS to a TP cable
- No cases where intercable shorting was primary failure mode for both cables
- One case where intercable shorting was secondary mode for one cable, primary for second cable
- Several cases involving secondary/secondary or tertiary failures

Item C: Concurrent for three or more cables

- Every test program conducted to date has seen as many as four out of four simulated control circuits spuriously actuate, CAROLFIRE included
- CAROLFIRE did explore different exposure locations and conditions and this does impact timing significantly

Item D: Concurrent spurious actuations given properly sized CPT

- CAROLFIRE could not confirm NEI/EPRI results relative to CPTs
 - Testing of larger CPTs
 - No apparent affect on spurious actuations
 - No cases where voltage collapse was thought to have prevented spurious actuation
- What is meant by 'properly sized' is a key question
 - Relay coil pick-up current NOT in-rush
 - May be issue with interpreting manufacturer specs.

Item E: Hot shorts lasting more than 20 min.

- CAROLFIRE saw no hot shorts lasting greater than 7.6 minutes
- NEI/EPRI saw max duration of 11.3 minutes
- All data appears to indicate that once cable degradation begins, it will cascade through all modes within a relatively short time

Summary

- CAROLFIRE is addressing need areas
 - Resolution of deferred spurious actuation circuit configurations
 - Improving the fire modeling of cable response and failure
- Status:
 - All testing has been completed
 - Final reports in publication process:
 - Volume 1, on the Bin 2 items, has been submitted to NRC publication office for printing
 - Volume 2, on fire modeling improvement, draft currently under review

