

ACRS Full Committee 549th Meeting February 7, 2008

Mark Henry Salley, P.E. Chief, Fire Research Branch MXS3@nrc.gov 301-415-2840

Agenda

- <u>Cable Response to Live Fire</u> (CAROLFIRE) Project is complete
 - Request a letter from ACRS

CAROLFIRE

- RIS 2004-03
- Three Volumes:
 - Volume 1 Circuit Interaction
 - Volume 2 Thermal Data
 - Volume 3 Fire Modeling Improvements
- Extensive Review:
 - Peer-reviewed
 - Public Comment
 - ACRS Quality Review
 - ACRS Subcommittee Review
 - Asking for ACRS Letter

Principle Presenters

- Mr. Gabe Taylor
 NRC/RES
- Dr. Kevin McGrattan

- National Institute Standards and Technology

Advisory Committee on Reactor Safeguards549th MeetingFebruary 7, 2008

CAROLFIRE Cable Response to Live Fire

Presented by: Gabe Taylor Office of Nuclear Regulatory Research Fire Research Branch

Office of Nuclear Regulatory Research

CAROLFIRE Objectives

• Resolution of 'Bin 2' circuit configuration

- Regulatory Issue Summary (RIS) 2004-03, Rev. 1, "Risk-informed Approach For Post-Fire Safe-Shutdown Circuit Inspection"
- Document places cable/circuit configurations in one of three bins:
 - Bin 1 : Circuit configurations that are most likely to fail
 - Bin 2 : Circuit configurations that need more research to determine failure characteristics
 - Bin 3 : Circuit configurations that are unlikely or least likely to fail
- Fire Model Improvement
 - To reduce uncertainty associated with predictions of fire-induced cable damage

- Item A Inter-cable shorting for Thermoset Cable
 Plausible, but less likely than intra-cable failure mode
- Item B Inter-cable shorting between Thermoplastic and Thermoset Cable
 - Plausible, but less likely than intra-cable failure mode
- Item C Configurations requiring failures of three or more cables
 - Plausible
 - i.e., How many failures should be considered?
 - No a priori limit; dependent on scenario; risk significance

Summary & CAROLFIRE Results of RIS 2004-03 'Bin 2' Items

- Item D Multiple spurious operations in control circuits with "properly sized" CPTs
 - Inconclusive, results do not coincide with NEI/EPRI results
- Item E Fire-Induced hot shorts lasting longer than 20 minutes
 - Unlikely
- Item F Spurious actuations for cold shutdown circuits (Item F was not investigated by CAROLFIRE)

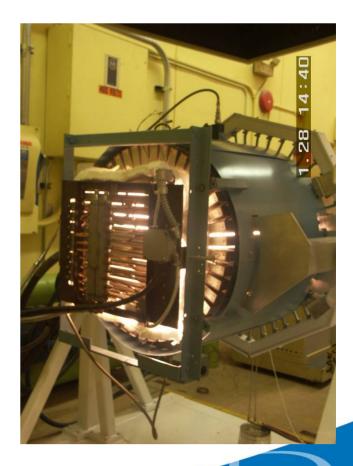
CAROLFIRE was a Collaborative Effort

- Office of Nuclear Reactor Regulation
- Office of Nuclear Regulatory Research
- Sandia National Laboratories
- National Institute of Standards and Technology
- University of Maryland

Peer Review

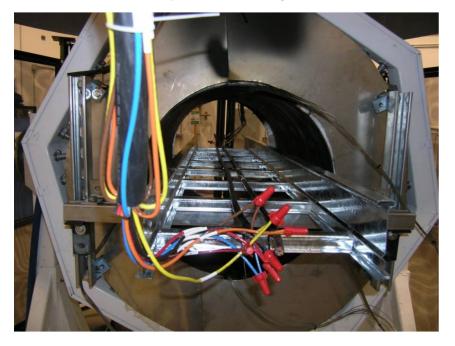
- CAROLFIRE Test Plan was developed by SNL and went through the RES peer review process
- All Collaborative partners participated in Peer Review
 - Nathan Siu (RES)
 - Dan Frumkin and Naeem Iqbal (NRR)
 - Anthony Hamins (NIST)
 - Mohammad Modarres (UMd)
 - Vern Nicolette (SNL)
- External expert and author of the EPRI report on the NEI/EPRI circuit tests of 2001
 - Dan Funk (EDAN Engineering)

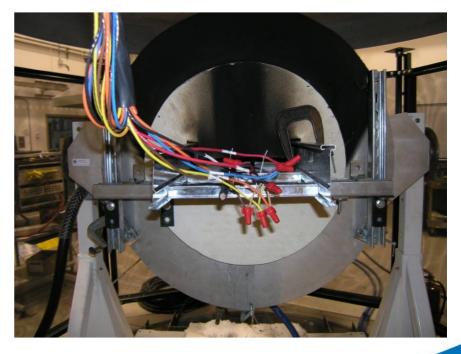
CAROLFIRE Testing Approach


- Two Scales of testing were pursued
 - Small-scale radiant heating experiments
 - Intermediate-scale open burn tests

Small Scale Tests

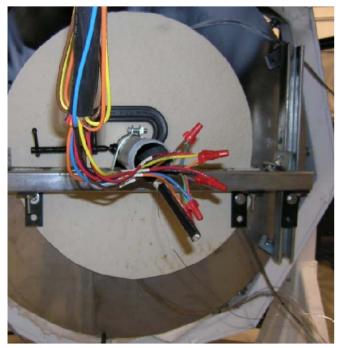
- Penlight heats target cables via grey-body radiation from a heated shroud
- Well controlled, well instrumented tests
- Allows for many experiments in a short time
- Single cables and small cable bundles (up to six cables)
- Cable trays, air drops, conduits




Typical Penlight Setup for CAROLFIRE

Open Tray

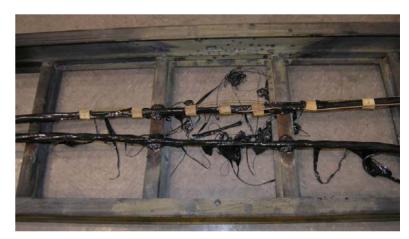
Closed Tray



Typical Penlight Setup for CAROLFIRE

Conduit

Air Drop

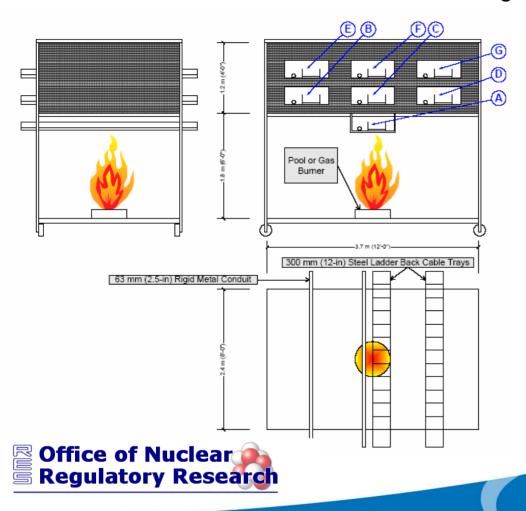


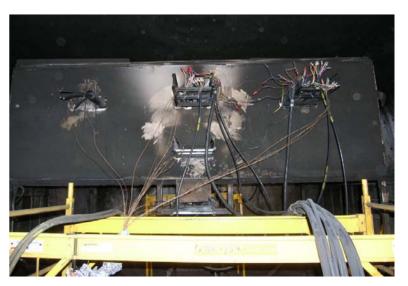
TS vs. TP Physical Failure Characteristics



Thermoplastic

Penlight did allow cables to burn and burning was common

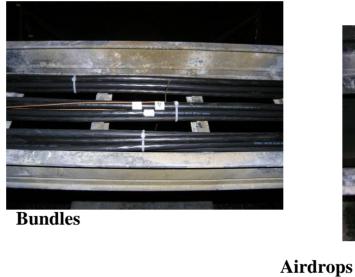

Thermoset



Intermediate-Scale Tests

Layout of the intermediate-scale test structure. Structure was located within a larger test facility.

Intermediate-Scale Tests


- Less controlled, but a more realistic testing scale
- Located in larger test facility
- Propene (Propylene) gas diffusion burner fire source (200 kW typical)
- Cables in trays, conduits and air drop

Typical Setups

Random fill trays

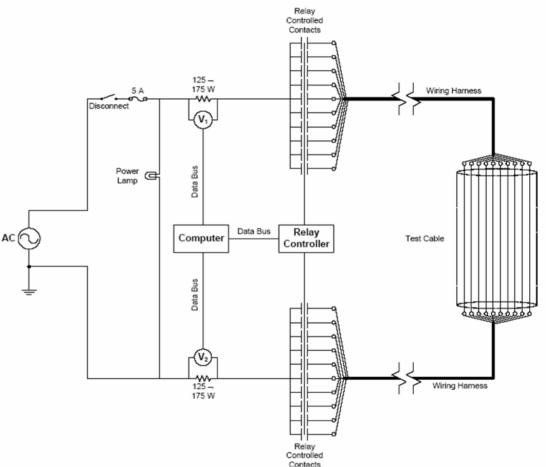
Cable Selection

- Testing a broad range of cable products
 - 15 cable products tested
 - 9 Control (8 were 12 AWG 7/C)
 - 4 Instrument (16 or 18 AWG, 2/C or 12/C)
 - 2 Power (8 AWG, 3/C)
 - CAROLFIRE excluded armored cables
 - Duke armored cable tests

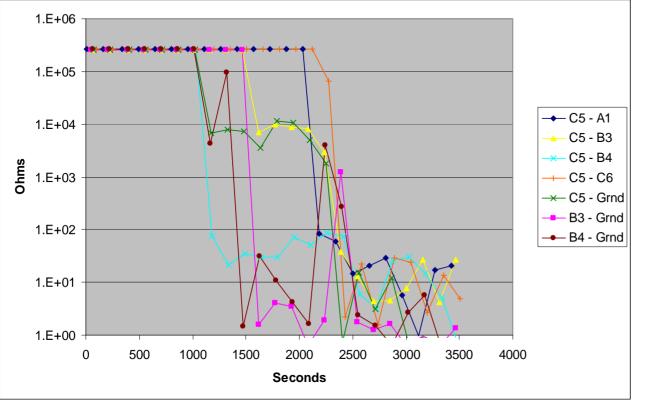
Photo of Tested Cables

A Lufkin 5 FT & ML MADE IN U.S.A. S P.R. APP'D Q 252 To 7 2 adapted as the last 11 12 13 15 14 10 9 8 2 5 6 3 Cable Item #s 1-15

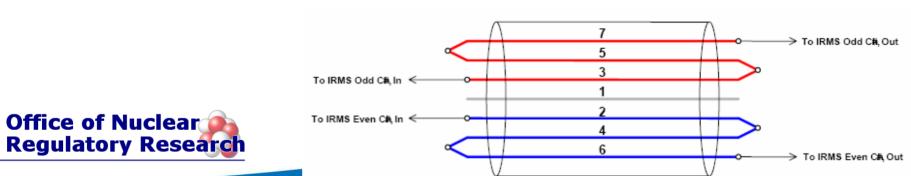
Electrical Instrumentation



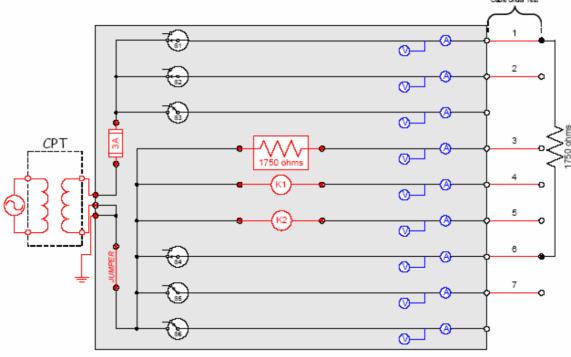
Insulation Resistance Monitoring System


- All tests SNL Insulation Resistance Measurement System (IRMS)
- Continuous measurement of cable degradation and functionality
- Very detailed look at conductor interactions
- Patented system developed and deployed originally during the NEI/EPRI tests (NUREG/CR-6776)

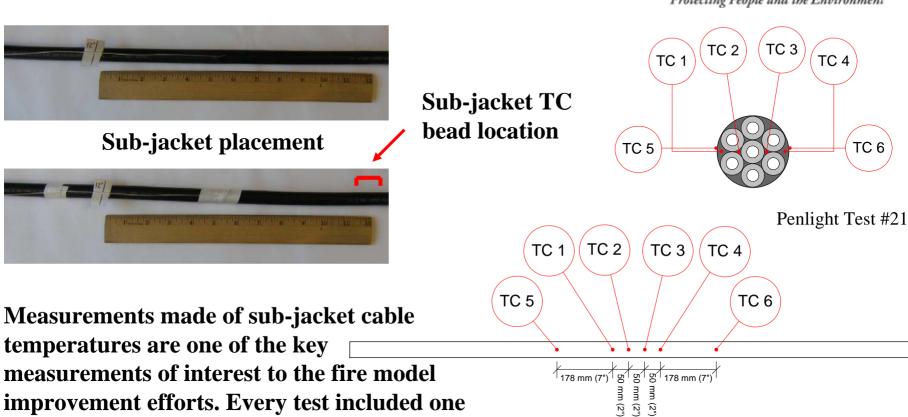
Office of Nuclear


Regulatory Research

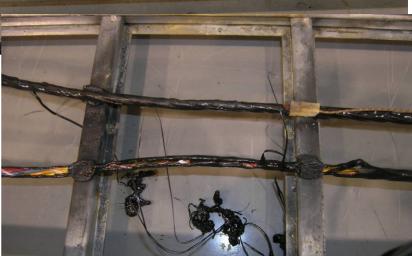
IRMS Results



Electrical Instrumentation


- Intermediate-scale only: control circuit simulators allow for testing of various circuit configurations
- Base configuration is the typical MOV control circuit
 - Same as that used in all previous testing by industry

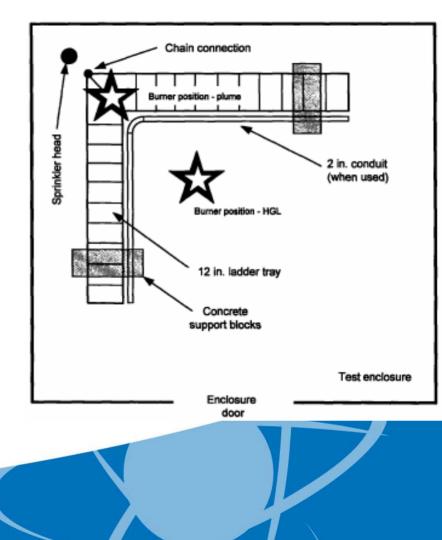
Thermal Instrumentation


improvement efforts. Every test included one or more such measurements.

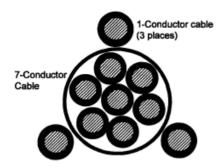
Raceway Temperatures

Conduit and cable tray surface temperatures are also important to fire modeling efforts.

Electrical & Thermal Data


- All tests were extensively documented in excel spreadsheets that includes:
 - Shorting Summary
 - Thermocouple Map
 - Plots of various electrical failure characteristics and temperatures
 - Processed and Raw Data
- All test data will be placed onto a CD and issued with the NUREG/CR
- Pictures and other related documents will also be included on a CD

NEI Test Compartment



CAROLFIRE to NEI/EPRI Comparison

- 18 tests
- EPRI Report 1003326
- •10'x10'x8'
- Varied several parameters
- Long times to failure for HGL
- MOV test Circuit
- SNL IRMS was used and results are reported in NUREG/CR-6776

Parameter

Raceway loading Raceway configuration Exposure Conditions Cables Bundling Arrangements Cable Combinations Cable Thermal Response CPT Size

Review of CAROLFIRE Research As It Relates to Bin 2 Items

- Item A Thermoset-to-Thermoset
 - Plausible
 - one solid case of TS-to-TS shorting as primary failure
 - Several cases of secondary or tertiary failure mode
- Item B Themoset-to-Themoplastic
 - Plausible
 - One case of hot short from a TS-to-TP cable

Conclusions on Bin 2 Items

- Item C Concurrent for three or more cable failures
 - i.e., How many failures should be considered?
 - Plausible
 - No a priori limit; dependent on scenario; risk significance
 - Every test program conducted to date has seen as many as four out of four simulated control circuits spuriously actuate, including CAROLFIRE
- Item D Concurrent spurious actuations given properly sized CPT
 - Inconclusive
 - Larger than intended CPT versus actuation device ratings were tested (What is meant by "properly sized")
 - No apparent affect on spurious actuations

- Item E Hot shorts lasting more than 20 minutes
 - Unlikely
 - Longest Hot Short
 - CAROLFIRE ~ 7.6 minutes
 - NEI/EPRI ~ 11.3 minutes
 - Duke armored cable tests showed similar results
 - All data appear to indicate that once cable degradation begins, it will cascade through all modes within a relatively short time

- Two sources of public comments:
 - Industry comments collected and submitted through NEI
 - ACRS comments
- Additional NRC staff comments

Key Public Comments

- The "cable physical characteristics" table was expanded to include quantitative copper/plastic ratios
- Thermal (heat transfer) properties -Unfortunately, are not available for the materials and could not be provided
- Added a summary table for Penlight results
- New plots overlaying cable thermal and electrical response
- New plots illustrating the temperature at failure

Examples of New Plots

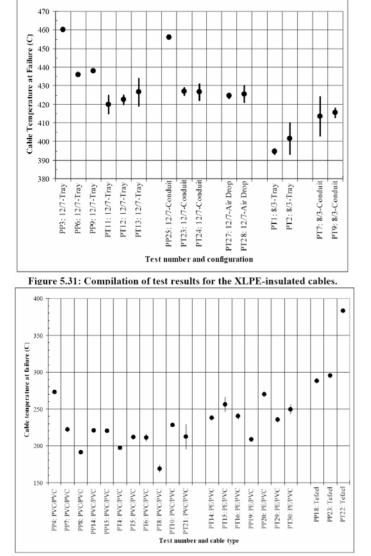
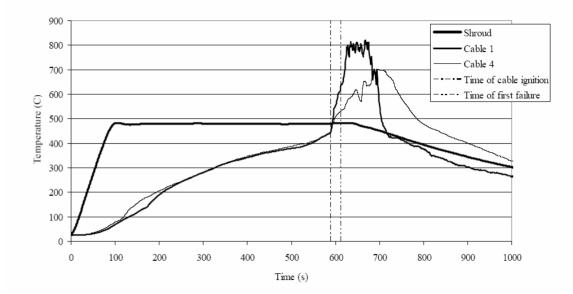



Figure 5.32: Compilation of the test results for the TP cable types.

<u>Summary</u>

- CAROLFIRE has contributed to two critical need areas
 - Data for resolution of RIS 2004-03
 - Improving the fire modeling of cable response and failure
- CAROLFIRE represents a valuable source of information that the fire protection community world-wide will likely be using for many years to come

BACKUP SLIDES

<u>Cable Response to Live Fire</u>

Cable types tested represent a wide range of NPP products

Protecting People and the Environment

Cable Function/Service	Insulation & Jacket Materials (I/J)	Material Type ⁽²⁾	Cond. Size (AWG)	No. Cond.	Manufacturer	Notes ⁽³⁾
Power	XLPE/CSPE	TS/TS	8	3	Rockbestos	All XLPE cables were selected from the
Control	XLPE/CSPE	1	12	7	Surprenant	Firewall III® product line. All are nuclear
Instrumentation	XLPE/CSPE	1	16	2		qualified. The 16AWG, 2/C cable is
Instrumentation	XLPE/CSPE	(18	12	1	shielded, others are un-shielded.
Control	Vita-Link®	TS/TS	14	7		A "fire-rated" cable based on silicone insulation that ceramifies when exposed to flames.
Control	XLPO/XLPO	TS/TS	12	7]	Newer style 'low-smoke, zero halogen' formulation, IEEE-383 qualified.
Control	SR/Aramid Braid	TS/TS	12	7	First Capitol	Industrial grade cable from "sister company" to Rockbestos Surprenant
Control	Tefzel/Tefzel	TP/TP	12	7	Cable USA	Based on Tefzel-280 compound
Control	EPR/CSPE	TS/TS	12	7	General Cable	Industrial grade cable
Control	XLPE/PVC	TS/TP	12	7]	Mixed type - thermoset insulated, thermoplastic jacketed
Control	PE/PVC	TP/TP	12	7	1	Industrial grade cables.
Power	PVC/PVC	TP/TP	8	3	1	
Control	PVC/PVC	1	12	7		
Instrumentation	PVC/PVC	1	16	2		Industrial Grade cable, Shielded
Instrumentation	PVC/PVC	1	18	12		Industrial Grade cable, Unshielded

Additional Notes:

(1) - XLPE = Cross-linked polyethylene; CSPE = Chloro-sulfanated polyethylene (also known as Hypalon); XLPO = Cross-linked polyelfin;

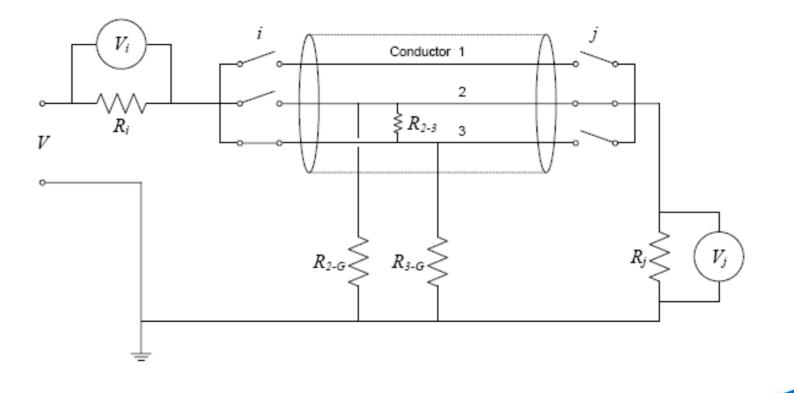
SR = Silicone rubber; EPR = Ethylene-propylene rubber; PVC = Poly-vinyl chloride; PE = Polyethylene (non cross-linked).

(2) - TS = Thermoset; TP = Thermoplastic; shown as: (insulation type)/(jacket type).

(3) - All power and control cables are un-shielded.

Instrumentation – Thermal & Electrical

Protecting People and the Environment


- Cable thermal response (surface and interior)
 - Direct measurement of the cable temperatures during the tests
 - Can be used to calculate fire-to-cable net heat transfer (i.e., every cable is in effect a target specific slug calorimeter)
- Raceway surface temperatures
 - Conduits and cable trays
- Exposure environment temperatures
 - Air and surface, additional slug calorimeters
- Cable electrical response via two monitoring systems
 - The SNL Insulation Resistance Measurement System (IRMS)
 - Surrogate Circuit Diagnostic Units (circuit simulators SCDU)

Electrical Instrumentation

Simplified View of Insulation Resistance Monitoring System

- Expansion of data analysis and reporting
 - Addressed within the limits of the project scope and funding
- Data plots have been revised to start (t=0) at fire/exposure time
 - Rather than starting when the monitoring systems were started.

- Interpretation of results for regulatory applications and positions
 - This NUREG/CR objective is to report the results of the testing and NRR has the lead role in determining the results regulatory applications

- Foreword was modified regarding the potential risk significance of spurious actuations
 - "under certain conditions" were added to clarify the risk hot short pose
- Clarification of "risk-relevant" and its intent as used in the report
 - Report clarifies that the intent was not to say "risksignificant" but rather, to identify factors or configurations that could have a bearing on a fire PRA circuit failure modes and effects

- Added a summary table for Penlight results
 - Electrical failure results
 - Correlates temperature response and sub-jacket temperature at time of failure (where possible)
- New plots overlaying cable thermal and electrical response
- New plots illustrating the temperature at failure

- Additional discussions have been added relative to the use of cables as thermal targets and the potential for analyzing these data to estimate net fire-to-cable heat transfer
 - Unfortunately, available scope did not allow SNL to actually perform the required calculations
- Additional discussions added relative to the "pulsing" behavior of the gas burner to clarify that this is an anticipated and expected behavior for a gas diffusion burner operating in the turbulent regime
- Some additional discussion of burner efficiency as an uncertainty factor have been added

