Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Briefing on Human Reliability Program Activities and Analyses: Public Meeting

Docket Number: (n/a)

Location: Rockville, Maryland

Date:

Thursday, May 29, 2014

Work Order No.: NRC-814

Pages 1-159

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	BRIEFING ON HUMAN RELIABILITY PROGRAM
5	ACTIVITIES AND ANALYSES
6	+ + + +
7	PUBLIC MEETING
8	+ + + +
9	THURSDAY
10	MAY 29, 2014
11	+ + + +
12	The Commission met in the Commissioners'
13	Conference Room, 1st Floor, One White Flint North,
14	Rockville, Maryland, at 9:00 a.m., Allison M.
15	Macfarlane, Chairman, presiding.
16	<u>PRESENT</u> :
17	ALLISON M. MACFARLANE, Chairman
18	GEORGE APOSTOLAKIS, Commissioner
19	WILLIAM D. MAGWOOD, IV, Commissioner
20	WILLIAM C. OSTENDORFF, Commissioner
21	KRISTINE L. SVINICKI, Commissioner
22	
23	
24	
25	
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 (202) 234-4433 (202) 234-4433

1	ALSO PRESENT:
2	ROCHELLE BAVOL, SECY
3	MARGARET M. DOANE, OGC
4	RICH CORREIA, RES
5	EDWIN S. LYMAN, UCS
6	SEAN PETERS, RES
7	MARY R. PRESLEY, EPRI
8	CLAIRE TAYLOR, HRP
9	JAMES VAUGHN, Nine Mile Point
10	MIKE WEBER, DEDMRT
11	SUNIL WEERAKKODY, NRR
12	JOHN WREATHALL, John Wreathall & Co., Inc.
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	NEAL R. GROSS

		3
1	AGENDA	
2	External Panel	4
3	Current State of HRA Research	6
4	International HRA Developments and	
5	Applications	14
6	Industry Use of HRA and Integrated Human	
7	Event Analysis System (IDHEAS)	
8	Development Activities	23
9	Experiences and Views on HRA and the	
10	Development of the IDHEAS Method	30
11	UCS Perspectives on HRA	38
12	NRC Staff Panel	84
13	The Role of HRA in the Risk-Informed	
14	Regulatory Framework	86
15	Regulatory Office Use of HRA	90
16	Staff Development of Consensus HRA Model	
17	(IDHEAS) Including HRA Methods	
18	Benchmarking and Data Programs	102
19	Adjourn	
20		
21		
22		
23		
24		
	NEAL R. GROSS	
	(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 (202) 23	34-4433

	4
1	PROCEEDINGS
2	9:03 a.m.
3	External Panel
4	CHAIRMAN MACFARLANE: Good Morning.
5	Hope everybody's good today. I'd like to welcome
6	staff, industry, members of the public who are here for
7	today's meeting on Human Reliability Analysis. That's
8	what we're going to be focusing on.
9	The NRC has been moving to increase the use
10	of risks insights in our regulatory framework, and
11	central to this effort has been use of probabilistic
12	risk assessments to drive quantitative measures of
13	risk, and among the items assessed in event sequences
14	is the reliability of operator actions.
15	So given the increasing influence of PRA
16	in the NRC's regulatory processes, I believe it's
17	important to fully understand the state of human
18	reliability analysis and the uncertainties associated
19	with this analysis.
20	So today we're going to have the
21	opportunity to look at the field of human reliability
22	analysis in general, and to discuss efforts to develop
23	the integrated decision tree human event analysis
24	system methodology. So today the Commission's going
25	to be briefed by two panels, an external panel and an
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	5
1	internal panel, NRC panel.
2	So first in the external panel, we're going
3	to hear from Mr. John Wreathall, president of John
4	Wreathall and Company; Dr. Claire Taylor, who is the
5	Senior Scientist at the Halden Reactor Project; Ms.
6	Mary Presley, the Project Manager/Technical Leader of
7	the Risk and Safety Management at the Electric Power
8	Research Institute; Mr. James Vaughn, the Operations
9	Shift Manager at Nine Mile Point nuclear power plant;
10	and Dr. Ed Lyman, who is a Senior Scientist, Global
11	Security Program at the Union of Concerned Scientists.
12	So I look forward to the presentations of
13	the panels. First, let me see if any of my colleagues
14	have any opening statements.
15	COMMISSIONER MAGWOOD: Just quickly,
16	Chairman. We had scheduled this briefing some months
17	ago and it was cancelled due to inclement weather, as
18	I recall, and both Dr. Taylor and Mary Presley both came
19	in. Of course, one came overseas and one came from the
20	across the country, and I appreciate that they are back
21	here again today.
22	Several of us did have an opportunity to
23	sit down with you when you were here before. So thank
24	you again for returning and making the special effort.
25	We really appreciate that. Thank you, Chairman.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	6
1	CHAIRMAN MACFARLANE: Anybody else?
2	COMMISSIONER APOSTOLAKIS: Well yeah.
3	It's just that impressive how popular the subject is.
4	It's popular with us.
5	CHAIRMAN MACFARLANE: Okay. Alright.
6	Well, on that note, we'll start off with Mr. John
7	Wreathall.
8	Current State of HRA Research
9	MR. WREATHALL: Thank you Madam Chairman,
10	Commissioners. It's a pleasure to be here. I did send
11	in a summary of my history. But there was a couple of
12	things, given the sort of change in emphasis from the
13	original meeting that I wanted to mention, that my
14	background and academic training is in engineering, not
15	in human factors.
16	So I come to this with degrees in Nuclear
17	Engineering and Systems Engineering, rather than the
18	field of psychology, even though that's the sandbox I
19	tend to play in quite a bit. As such, I have worked
20	in nuclear power plants in the UK, doing hand fuel
21	loading, all sorts of hands-on things in the plants
22	before I moved into the consulting world. So I do have
23	some body of knowledge and experience hands-on.
24	So if I can maybe start going through the
25	slides. I have three or four topics in general and
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	7
1	perhaps we'll give a little more emphasis, a little less
2	emphasis, given the members of this panel, who will
3	cover some of the same things.
4	On the next slide, I'm just highlighting
5	that right now, there is very limited development of
6	new HRA methods. In fact, this agency is probably the
7	leader right now in the development of HRA tools and
8	methods, not just for nuclear power plant operators in
9	the normal Level 1 PRA mode.
10	The IDHEAS method that's going to be
11	presented later and an associated method that I think
12	is referred to as the generic HRA method, are being
13	developed by your staff. There is the fire HRA
14	guidelines work.
15	There is the work going on to develop
16	methods for the Level 2/Level 3 PRA, and right now there
17	is a new reg in development that discusses human error
18	and human reliability in the field of the medical
19	applications.
20	I think that's not had a lot of visibility,
21	but it's an area that's yet another branch of HRA being
22	developed within the agency.
23	As far as overseas is concerned, there are
24	new methods being developed in South Korea related to
25	the use of computerized control rooms, and the next
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

slide, Slide 4. The French, Electricité de France has been building on its earlier work in the MERMOS technique, which is based on operator simulator trials, gaining insights from that, and building HRA methods, is being added to both for the new types of plants, which are not included in the current simulator spectrum, methods for designing as well as the PRA application. So pre-accident human error, HRA to optimize design, activities in the design phase and also Level 2, fire PRA, seismic and so on. So the French are doing a fairly large amount of effort too. But those are the main activities and new methods. What has been going on, Slide 5, is two fairlv large reviews within the HRA and PRA

communities, of methods that are already developed. The UK, as then was HSE, identified over 50 methods in use back in 2009, and the number has increased. So I see it is a time when there's a rationalization and refinement of methods, rather than further new methods being developed. These two reviews, contributing to that,

These two reviews, contributing to that, to give where the strengths, where the weaknesses are, how they might fit together in different ways, and particularly the Nordic/German/Swiss evaluation, the exam HRA is particularly aimed at putting together a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(202) 234-4433

9 set of methods that are particularly focused on the PRA 1 knowledge, insight and use, not just in creating 2 3 numbers. There are some backup slides on that if 4 it's an area of interest, but I don't intend to say more 5 than this right now in the slides, the front slides. 6 7 I think given the interest that's been expressed to this 8 panel about the development of the IDHEAS methods and the letter that was written by the ACRS, which has been 9 10 sent to us, I wanted to try and clarify what I see as 11 a discussion going on that I think is an underlying 12 issue. Slide 8 is the introduction to this. 13 That. 14 we talk in HRA terms in very loose terms about the word 15 "context," and using that as a shorthand way to describe 16 the situation, conditions and tools that the operators 17 will be using during accident conditions. 18 I think there is a growing separation of 19 context into two different parts. The plant context, 20 which is what is happening in the plant, what the 21 operators are facing, what the conditions could be, the 22 uncertainties associated with those conditions, which 23 is a large part of the uncertainty in HRA, coupled with 24 what the term "task context," which is what in the past

we've referred to as performance-shaping factors,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

performance-influencing factors and so on. 1 2 This is the tools and ammunition that the operators have to respond to the plant context. 3 So 4 plant context would include is the plant in a nominal condition, is it off normal, how far is the plant going 5 down the accident pathway. In other words, the story 6 7 of what's happened so far. 8 The task context then is the PSFs, the 9 training, the interface, the procedures that the 10 operators will be using to perform their response. 11 What I've seen in the development of the more recent 12 methods, there's a great deal of emphasis given to the 13 task context, but I'm seeing not so much emphasis 14 provided on the plant context. 15 I think that's an area that may want 16 further discussion, because we tend to take for granted 17 that we almost have a deterministic knowledge of what 18 the plant will be doing, and therefore we develop 19 procedures based on sequences of events, the timing and 20 so on, and yet under off-normal conditions, those 21 sequences could be different, and the procedures may 22 or may not be successful in capturing these alternative 23 ways. So I think that's an area that in the 24 25 discussion of methods, and I saw in the ACRS letter,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	11
1	is something that needs to be perhaps discussed.
2	On Slide 9, a little bit about the issue
3	of the operator inputs to the HRA methods and models.
4	I will say up front that as far as the IDHEAS method
5	goes, I have not been involved in its development, nor
6	as a reviewer. So I really don't know what the role
7	of operators has been in the development of that method.
8	Other methods that have been very highly
9	involved, the operators very highly, the ATHEANA method
10	that you may know about, the development about ten years
11	ago by the NRC, to capture human errors that can be
12	induced, particularly by these unusual or off-normal
13	plant conditions.
14	That relied heavily on operator input and
15	indeed from the Seabrook plant, a willingness to use
16	their simulator time to explore how the boundaries of
17	the operational conditions might affect the operators.
18	That was a critical part of the ATHEANA method. And
19	the French method, MERMOS is built around the use of
20	simulators and real plant operators working on those
21	simulators as a core basis for the knowledge of what
22	that method does.
23	Before I go into something that may be
24	considered a little academic about what HRA is doing,
25	I want to draw a distinction, and it's not in the slides.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	The idea came to me, as always, after you've sent the
2	slides off on the last possible day, a distinction
3	between HRA methods and HRA models, and I think it's
4	an important distinction.
5	The way I will do it is the models I refer
6	to as models, that part of the HRA process that provides
7	quantification. It's the means by which you take
8	information about the plant context or the task
9	context, and convert it into numbers. That is just
10	part of the method.
11	And in fact if I go to Slide 11 and perhaps
12	add some confusion by trying to draw some notional
13	boundaries, I had previously prepared something on the
14	world of macrocognition.
15	I think macrocognition can just be
16	accepted as the way in which we understand operational
17	processes, understanding where we are, developing the
18	plans to respond to it, assessing the risks of
19	alternative pathways and carrying those out. In very
20	simple terms, that's what I refer to as the
21	macrocognition.
22	Slide 11, please. So on the right-hand
23	side of this slide, you see a box that says "HRA Models,"
24	and has inputs from plant contexts, task contexts, the
25	PRA models and the description of the operator
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	activities. An HRA method describes how those
2	interrelate, so that the operators, what are they
3	doing, how do we identify that, is it from task
4	analysis, is it from other means, is it from the
5	simulator?
6	We combine that with the knowledge of the
7	plant context and the task context, and interact in fact
8	two ways between the HRA models and the PRA models. The
9	HRA quantification is just that box at the center of
10	this, the HRA model.
11	So when I look at a new source of
12	information on how HRA is being carried out, I'm trying
13	to understand what parts that method or model or
14	technique describes in terms of this picture, and from
15	what I've seen, the limited information I've seen on
16	the IDHEAS technique, it largely seems to be aimed at
17	the modeling part.
18	I haven't seen, in whatever literature
19	I've seen, understanding how the interactions with the
20	broader PRA and the broader plant context, fit
21	together. So that may be something we hear later. I
22	think those were the main points I wanted to cover. I
23	know there's a question and answer session, and my
24	colleagues have very short times.
25	So I hesitate to take up the full time. So
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	I think at that point I will finish now and pass the
2	baton on.
3	CHAIRMAN MACFARLANE: Thank you. Ms.
4	Taylor.
5	International HRA Developments and Applications
6	DR. TAYLOR: Thank you very much,
7	everybody, for the invite to be here and invite to come
8	back after the previous meeting was rescheduled. I'm
9	working with the Halden Reactor Project in Norway, but
10	the majority of my experience with HRA is actually from
11	the UK nuclear industry, where I worked for
12	approximately six years.
13	So that's what I'm going to focus on today
14	with my presentation, is actually my experience of
15	application of HRA in the nuclear industry. So on my
16	slides, if you go to Slide 3 please. So in my
17	experience of HRA, it's often performed as an input to
18	the safety case, which is related to a particular plant
19	or a particular activity.
20	We would perform HRA usually as part of the
21	probabilistic risk assessment or the PRA, or else
22	potentially also a direct input if there is a
23	deterministic safety case, which I've often been
24	involved in as well.
25	The safety case, for those who aren't
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

familiar with the concept, it basically is a collection of documents, and it provides substantiation for the new plant or the modification to the existing plant, or the change to an activity, and it demonstrates that this new thing can be performed or can be operated within the safety limits.

We document in the safety case how the risks can actually, or have been reduced to be a ALARP, as low as reasonably practicable, and we use a claims argument and evidence structure and defense-in-depth principles of prevention, protection and mitigation. So the HRA fits into this by looking at the

particular human error opportunities related to the new activity or the new plant, and we use the same structure then, the claims arguments in evidence, to actually provide substantiation that the operator errors are managed.

18 So we will usually -- and we, by we, I mean 19 the human factors team, we're usually engaged to 20 provide some evidence for this argument, and the HRA 21 that we would perform would be tailored, depending on 22 the needs of the safety case. We wouldn't perform the 23 same process every single time, but we would actually 24 choose how we're going to approach this at the 25 beginning.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

	16
1	And the depth and the formality of the HRA
2	that we would go through would depend on the level of
3	risk associated with the operator actions, as defined
4	by the PRA; the degree of novelty of the tasks and of
5	assessment of those tasks. So if those tasks have
6	previously been assessed in a HRA, then we would just
7	review the HRA and see if we need to do anything new.
8	Also based on the perceived complexity of
9	the task, and that's in our opinion as HRA and as human
10	factors experts.
11	Also, in terms of the opinion of the PRA
12	people, if they think that this is a particularly
13	complex task, then we would delve into it in more
14	detail, and also based on the input from the plant as
15	well. So if they think it's a particularly complex
16	task, then we would spend more time reviewing it.
17	The familiarity of the HRA analyst and the
18	plant and the tasks being assessed also play a role in
19	the depth and the formality of the HRA. In my
20	experience, I spent approximately five years working
21	with the fuel storage pond operators at Sizewell B
22	nuclear power plant.
23	So over time, I became very familiar with
24	how they did things. It meant that when I was doing
25	HRA, as time went on we would do the depth of the HRA
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	and the formality of the process would become less,
2	because we already had quite a body of knowledge that
3	we were building on.
4	Then also we would try always to apply
5	human factors, good practice as well, and that would
6	influence the degree to which our HRA would actually
7	be applied. On Slide 5, I've tried to it's very
8	difficult, but I've tried in a diagram, explain the
9	process that we would go through in the UK, and this
10	is fairly typical of the process that we applied at
11	British Energy and EDF Energy.
12	So just very quickly, the first sort of
13	collection of boxes at the top describes the
14	familiarization and the preliminary assessment that we
15	would always go through, regardless of what task we were
16	assessing and the novelty of that task.
17	So we would try to define the scenario. We
18	would review operating experience from INPO and WANO
19	in particular, and we would go through a process of data
20	collection, which I'll come back to in a moment, and
21	then some task analysis and human error analysis.
22	Then we would, depending on whether the PRA
23	requires or the safety case requires a human error
24	probability, we would either quantify or we would
25	qualitatively document our assessment. But the data
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	collection part I've outlined in red here, and this was
2	because of the theme of today's meeting, which is the
3	value of operator input.
4	This to me was always the most important
5	part of the HRA, with the data collection both at the
6	site and through entities with operators and subject
7	matter experts. So for every HRA that I've performed,
8	we would always, always try to go to the site, and I
9	think about 99 percent of the time we were able to.
10	A site visit would include not just a plant
11	walkdown of the area, but also observation where we
12	could do it, review documentation on the site as well,
13	but most importantly it was the interviews with the
14	subject matter experts. It was really essential for
15	us to get that operator input to our HRA, so that we
16	could accurately reflect how things are done at the
17	plant.
18	We wouldn't just assume that things are
19	always done according to the procedures. We would want
20	to see it as well, and it was really essential for us
21	to actually get that input, to make sure that we are
22	adequately reflecting the performance-shaping factors
23	and the way things are done.
24	So on Slide 6, I have a statement there,
25	which is that HRA should not be a desktop exercise, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	I really strongly believe in this. I think that in
2	order to do a good quality HRA, you have to go to the
3	plant or to the simulator, if the plant is not possible.
4	This is really essential.
5	A couple of projects that I'm involved in
6	at the moment at Halden. I'm involved talking to a lot
7	of HRA experts about their approach, and almost every
8	single one of them has said the same thing to me. You
9	have to go to the plant. You have to talk to the
10	operators. Otherwise, you're not really going to know
11	what you're going to model.
12	So it's really important to provide that
13	accurate information about how tasks are actually
14	performed, information about the presence and the
15	effects of performance-shaping factors, so to confirm
16	or to challenge any assumptions that I may have already
17	made.
18	Also we find that operators can provide
19	input at the end of the analysis as well. So a large
20	focus on the UK was on in the UK was on human error
21	reduction, using the information that we found during
22	the qualitative assessment, to actually try to drive
23	improvement at the plant.
24	So if we've seen that a particular task,
25	the reliability is not so good because of, for example,
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	20
1	procedures, badly-written procedures, we can use those
2	results to try and drive that improvement. But we need
3	that operator input, then, to find out well, what should
4	we do with the procedures, to actually make them better,
5	to try and improve the reliability.
6	We also used the operators towards the end
7	of the HRA, to check whether we think that the
8	calculated human error probability is reasonable,
9	based on their experience, and also then for developing
10	those recommendations for improvements.
11	On Slide 7, the benefits that I have found
12	of this approach is that this detailed qualitative
13	assessment really leads to better human error
14	reduction. We can identify better opportunities for
15	improvements at the plant, which was also our role as
16	human factors engineers.
17	It can also assist with prioritization of
18	recommendations. So if we found a number of areas that
19	could be improved, it might not always be possible to
20	make all of those improvements due to budget and time
21	restrictions and so on. So we could then look at the
22	HRA and see where the human error is dominated by a
23	particular performance-shaping factor or a particular
24	area for improvement, and we can try to use that HEP
25	then to prioritize where we're going to focus our
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	effort.
2	So that's my experience from the UK. On
3	Slide 8, I just note that the methods that we used in
4	the UK. While I was working there, we were using mostly
5	HEART and THERP, which are two fairly old methods at
6	this stage. But the UK is now also using NARA, which
7	is the Nuclear Action Reliability Analysis, and this
8	is a revision and an extension of the HEART method.
9	They've revised the definitions of their
10	generic task types and error-producing conditions.
11	They've also revised the nominal values for their human
12	error probabilities, and they've included things like
13	an extended time factor. So to look at events that
14	might occur over a 12 hour period and so on.
15	They also include human performance
16	limiting values, and this is where if our assessment
17	determined that actually the risk from human error was
18	very, very low, we would apply a human performance
19	limiting value because otherwise, it could mess up the
20	PRA. If you've got a, for example, 10 to the minus 10
21	in there. It also addresses the potential for a
22	double-counting, and also the consideration of
23	dependency.
24	If you move on to Slide 9, I'll talk a
25	little bit about our research in Norway. Basically,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	22
1	we were involved in a couple of projects here, including
2	Petro-HRA, which is looking at adopting the SPAR-H
3	method to the petroleum industry, and on Slide 10, we
4	are also involved in some ongoing HAMMLAB simulator
5	experiments.
6	Again, this is very important for us to get
7	that operator input. So we get a lot of crews from the
8	U.S. and from Sweden, who come and train and work in
9	our simulator for a week, and help us to actually run
10	experiments on looking at performance-shaping factors,
11	human machine interfaces and so on.
12	Then finally, just to wrap up on Slide 11,
13	some of the other work that we've been involved in is
14	the development of a HRA database, and this is something
15	that we're working quite closely with the NRC, and also
16	we have been involved in some of the review of the IDHEAS
17	method, and hoping to be involved in the future testing
18	of this method as well.
19	Now I've run over by almost a minute, so
20	I shall stop. Thank you very much.
21	CHAIRMAN MACFARLANE: Thank you. Ms.
22	Presley.
23	Industry Use of HRA and IDHEAS Development Activities
24	MS. PRESLEY: Thank you for inviting me.
25	My name is Mary Presley. I'm the project manager for
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	Human Reliability-Related Projects at the Electric
2	Power Research Institute. I want to talk a little bit
3	about our perspective on HRA use in industry and IDHEAS.
4	So if you can go to Slide 2. At EPRI, HRA
5	research is done in two contexts. We have the HRA users
6	group, and then we also have a broader research program
7	that addresses method development and does kind of more
8	indepth research. So the goal of the HRA users group
9	was to come to consensus on a method or set of methods,
10	and that can be consistently applied across industry.
11	Towards that aim, we provide we have a
12	recommended methodology, the EPRI HRA methodology. We
13	provide application guidelines. We have a knowledge
14	base that we maintain. We provide a software tool,
15	which is the HRA calculator to promote consistency, we
16	train, and then I think very importantly we provide a
17	space for users to come together through periodic user
18	group meetings, and share insights, share challenges
19	and come to best modeling practices to create that
20	culture of continuous learning in this analysis.
21	We also coordinate with the NRC and other
22	key stakeholders, the owners groups, other
23	international research organizations. Every U.S.
24	utility is a member of our group, and we have a rising
25	international membership. So we have that broader
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	24
1	we're starting to get that broader perspective into
2	what we do as well.
3	Then the broader research program looks at
4	more strategic efforts and method developments, and
5	this is it's under that broader research program that
6	we've been involved with the NRC on IDHEAS.
7	So if we can go to Slide 3, so the process
8	of HRA, it's to identify critical operator actions,
9	analyze them and then assign a probability, that can
10	then be put into a system model, a probabilistic system
11	model, a PRA, and understand how different accident
12	sequences rank in terms of risk.
13	Our existing methodology we believe is
14	it was developed in the late 80's and early 90's. It
15	started developing in the late 80's and early 90's,
16	based on a set of simulator experiments that we
17	performed, and we believe that this methodology is
18	fairly mature at this point, in that there's some
19	consensus that it's a reasonable approach.
20	We understand where it's applicable and
21	where it has limitations, and it's widely used with some
22	consistency. Through focused research efforts, we've
23	extended and augmented our existing methods for other,
24	more challenging contexts, for fire and flood for
25	fire and seismic. For example, we've also added a
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	methodology to deal with dependency analysis.
2	While these sets of methods aren't
3	necessarily as mature or not mature in the same way,
4	as we get more experience doing these evaluations,
5	we're bringing together the learning and refining our
6	modeling and analysis ability.
7	So there are still some ongoing issues and
8	gaps that plague our industry. I'm not going to go into
9	these in detail, but I have them in a backup slide if
10	there are questions, and IDHEAS addresses some but not
11	all of these. But I want to get to the point on the
12	use of risk insights, and this is by and far very clear
13	from talking to industry analysts, that this is the
14	point of HRA, is to understand what the risk insights
15	are.
16	I'm going to step back for a moment and talk
17	about how the cycle between operators training and HRA
18	analysts. So the methodology, while it's rooted in
19	simulator data from the 80's and 90's, it requires, as
20	the standard also requires, the analysts to go to the
21	operators and get data or get the data on operations.
22	This is most commonly done through
23	operator interviews. Occasionally for more
24	challenging items, they'll be a walk-through or a talk
25	or a simulator observation. But the analyst needs to
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	understand the as-operated. So through that process
2	alone, some insights come out that get fed back directly
3	to the training and operations.
4	Then once the analyst goes through the HRA
5	process and quantifies, a list of risk-significant
6	actions and a list of time-critical actions are
7	provided. That output from the PRA is then provided
8	back to the Operations and Training Department for
9	their use.
10	They don't just get a list. They also get
11	the why. The HRA tells them the why it's
12	risk-significant, so they can then figure out what to
13	do about it. So this is this use of risk insights
14	is what's driving interest from our members to update
15	existing models.
16	So if we can go to Slide 4 or yes, Slide
17	4. So EPRI got involved in this project, because we
18	wanted to take advantage of the work that the NRC was
19	doing, particularly to better understand the
20	psychological underpinnings of the HRA. Operations
21	have improved a lot in the last 20-30 years, and we
22	wanted to have that grounding in the cognitive
23	literature to show that in our method.
24	A more comprehensive understanding of
25	potential human failure mechanisms, and we also wanted
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

an updated approach to quantification. From what we've seen so far, we believe IDHEAS is a very positive step forward. It's addressed some of the weak points of existing methods. Particularly, it strengthened link, think. We'll double-check during the we testing, between а qualitative analysis and quantification.

8 It provides a more direct connection to the 9 cognitive basis that are relevant to how plants operate 10 today, and then it provides clear insight on the failure 11 mechanism and the shaping factors that inform that. I 12 think one of the big benefits is we've taken, you know, 13 we have the general shaping factor, but then we've 14 parsed that into very specific questions that operators can use or that analysts can use to get that information 15 16 from the operators, and better understand the context. So hopefully the risk insights then can be more 17 18 actionable, clearer.

So we do think IDHEAS is a very positive step forward. We have a few cautions as we proceed, but again I'm not going to go into that. I have a backup slide if there are questions. We do understand that there's a generic methodology being developed, but we have not been part of that development process, and I think we're going to work with Shawn to see a little

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

	28
1	bit more what that's about, and how that works.
2	Because we are continuing to extend our
3	existing methods to other applications. We're doing
4	research in, you know, flooding and other areas. So
5	it would be nice to come back and connect on the generic
6	methodology.
7	In terms of Slide 5, Path Forward, we'd
8	like to work with NRC to complete the method, finish
9	the quantification portion and do the testing, and the
10	testing is very important. We need to show that this
11	is a workable method, that it produces risk insights
12	and the level of effort is commensurate with the risk
13	insights it produces.
14	So we're going to work on the we are
15	working actually with the NRC on that. But we're not
16	waiting for the method to be complete before we start
17	trying to use the insights that we have. We have some
18	immediate applications of IDHEAS. In fact, we're
19	using it right now in our dependency analysis work, to
20	look at how failure mechanisms might propagate, and
21	better understand dependency.
22	Then eventually, we'd like to put IDHEAS
23	into our software tool and start training on it. Some
24	real thought needs to be put into how technology
25	transfer happens. That's one of the ongoing issues is
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

bringing the whole of industry on board and, you know,
we have new understandings, new knowledge. But
getting that disseminated and constant, I guess,
standard of analysis.

We need to think about how to 5 best IDHEAS, and do that technology 6 transition into 7 transfer. Then finally, we have to recognize that the 8 HRA technology will continue to evolve. It will need 9 to continue to evolve. Operations continues to 10 evolve. So having a link back either to quantitative 11 data-gathering even just qualitative or 12 data-gatherings of experiences and having a way to 13 reflect that in our methods and what we do, will be 14 important.

So that's another step that we need to think about, in terms of operationalizing IDHEAS. That's all I have. Thank you.

18 CHAIRMAN MACFARLANE: Okay, thank you19 very much. Mr. Vaughn.

Experiences and Views on HRA and IDHEAS

21 MR. VAUGHN: Thank you, Chairman. Good 22 morning. Jim Vaughn. I'm a plant shift manager. 23 First, thank you for the invite today. I appreciate 24 the opportunity to present an operator perspective on 25 HRA.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

15

16

17

20

	30
1	A little bit about my background. I
2	originally started my career coming out of college,
3	going through the Naval training program. So there I
4	qualified engineer of the watch, eventually a shift
5	supervisor there.
6	So I was honored with the task of
7	instructing and evaluating young sailors that became
8	the backbone of today's nuclear Navy. It also gave me
9	an understanding of the talent needed and where the
10	human error first shows up in the way we operate.
11	Following that, I came to Nine Mile Point
12	and licensed as a senior reactor operator in 2009, and
13	that provided me an opportunity to apply operating
14	experience to safely run a boiling water reactor. Also
15	developed further insights on human performance there,
16	as I have been deeply involved in causal analysis on
17	human performance events at Nine Mile Point, having
18	just completed a root cause analysis as well.
19	So a little about my HRA background. In
20	order to improve the fidelity of the human response
21	modeling at Nine Mile Point, the PRA group decided to
22	have an on shift senior reactor operator review our HRA
23	model.
24	So I was that SRO, and I gathered a bunch
25	of insights about how HRA is applied to our risk. I
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

also developed an appreciation for a lot of those insights, and how they could be used to improve operations, improve training and ensure we had an accurate model and prediction of human performance.

One of the opportunities I had was to support a tech spec amendment change by modeling a new operator action. I was also involved in PRA review of NFPA-805 model that's currently ongoing right now. Ι participated in the IDHEAS expert elicitation panel, which is one of the reasons I'm here today, and I was for also the SME Operations in а significance determination process involving a loss of shutdown coolant at Nine Mile Point experienced in 2013.

14 So from my experience on HRA, I reviewed 15 all the internal events at Nine Mile Point, and based 16 on that review, identified several opportunities of 17 going through there of identifying emergency operating 18 procedure enhancements on containment venting. We 19 identified some enhancements in our training program, 20 based on a review of those top operator actions. 21

22 changes to reduce human error probability, where there 23 were some opportunities for enhancement there. 24

I also processed some additional procedure

My overall perspective on HRA, having come through all this, as well as staying within Operations,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

25

(202) 234-4433

	32
1	is a strong alignment within Operations and PRA group
2	is necessary to make sure that our HRA model is accurate
3	and we're actually using it to its true value.
4	The true value really is what we can glean
5	from it to improve operations and mitigate errors.
6	It's important that we recognize a common sense
7	perspective of those who perform the task in the field
8	during transients or during similar training
9	scenarios, and as John had mentioned earlier, that
10	context that we're talking about, the operator context,
11	the plant context, is something that you can't just get
12	by looking at a procedure. So having strong tight
13	operations really is important, to make sure that we're
14	on the right path.
15	Most importantly, the exercise of steadily
16	applying HRA methods to key operator actions should
17	have the net effect of identifying and mitigating those
18	barriers. At the end of the day, we have not actually
19	been able to do anything with the methodology in terms
20	of improving performance, and it's questionable if
21	there's an advantage behind that.
22	So some of the things that HRA have to look
23	at are the procedures, the training, design
24	assumptions, work practices, operator proficiencies.
25	These are all areas that we evaluate for weakness.
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	These are also all the areas that we have to look at
2	improvement opportunities, so that we can improve the
3	margin we have to safe plant operation.
4	My experience with IDHEAS. So I
5	participated in the expert elicitation panel along with
6	two other Operations training instructors for various
7	plants through the industry. Those consisted of two
8	one week long workshops to review the IDHEAS concept.
9	We reviewed proposed crew failure modes,
10	the performance influencing factors, cognitive
11	mechanisms and the crew response trees. We also
12	discussed real world Operations experience for the
13	realistic application of those crew failure modes.
14	So being able to talk about what the crew
15	failure modes were, relating them back to events that
16	we've seen in the simulator, seen in the plant, where
17	human error occurs, was probably the most important
18	thing that came out of those workshops.
19	We also provided some weighting to the
20	performance influencing factors and estimated and
21	eliminated some of the branches of the crew response
22	trees that really would not be applicable or offer any
23	additional insights.
24	So overall, I think we have a very good
25	start on with the IDHEAS methodology. The
	NEAL R. GROSSCOURT REPORTERS AND TRANSCRIBERS1323 RHODE ISLAND AVE., N.W.(202) 234-4433WASHINGTON, D.C. 20005-3701(202) 234-4433

comparison of performance, the performance influence factors of IDHEAS versus THERP, SPAR-H and other existing methods indicates that we do have better model of HRA on the horizon.

A key advantage of IDHEAS is that it addresses the integrated crew response, compared to a focus on the individual error drivers. So one of the things I noticed when I was going through the HRA notebook here at Nine Mile Point was a lot of it was very particular to individual failures, and didn't really leverage how crews fail as a whole.

This is something I saw in IDHEAS method, which I think is a strong step forward in the right direction. Going forward, we need to keep a strong tie to Operations, to make sure that this really goes in the right direction we need it to, and Mary talked a lot about the testing going forward.

18 I couldn't agree more. A comparison of 19 our IDHEAS results to existing HRA models to actual 20 known performance really is the litmus test of whether 21 or not IDHEAS will drive improvement or just provide 22 another alternate methodology. So I'll be looking 23 forward to seeing how that testing will be implemented. 24 As an example, this question was brought 25 up by a Commissioner back in March, how would this apply

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

	35
1	to an operator action like let's say all ahead flank
2	cavitate, right? And I want to address that straight
3	on, right.
4	So I'm a not an HRA analyst, but I am
5	familiar with it. So I went through SPAR-H, I looked
6	at IDHEAS, and just for some ballpark numbers, from
7	SPAR-H I looked at.
8	It looks like we get about 25 in 100,000
9	times you'll have an error associated with nominal
10	training, versus 15 times out of 10,000 that you'll have
11	an error in low training. So what do those numbers
12	mean? Are those numbers right? What does that gut
13	feel really tell you for those of us who have seen that
14	evolution go, and recognize the challenges associated
15	with and the importance associated with it.
16	So that whole litmus test of does this
17	really make sense. I wanted to be able to compare
18	IDHEAS, but when I went through the draft, I wasn't able
19	to get enough information, because not all the numbers
20	were quantified yet to really be able to look at numbers
21	and see if it really feels correctly.
22	But so in a nutshell, we're still going in
23	that direction, and we hope that we get to a point where
24	we can look at that, and recognize that we have an
25	answer, which actually makes sense in the real world,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	36
1	and are we really able to use it and say hey, this error
2	rate is too high.
3	What can we do to improve it? What
4	training can we use, and let's use those real world
5	examples to feed back in for an iterative process so
6	at the end of the day, we have a tool that's worth using?
7	So let's see. So final thoughts is how are
8	we going to test the hypothesis, to make sure that this
9	method is reasonable, and the simulator data is very
10	good. So if you look at the specific scenarios that
11	we run in the simulator, run through IDHEAS concept in
12	multiple iterations and see what kind of numbers we get.
13	We should look at the simulated scenarios
14	for a given accident sequence and figure out where the
15	pinch points are. When I say "pinch points," I mean
16	those critical moments where maybe a fast-changing
17	parameter gets by an operator, or maybe a critical
18	decision is made and without all the proper data
19	analyzed an error is made.
20	So looking at those opportunities in the
21	simulator, looking at the method is really, going
22	forward, will be very important to us. Finally, one
23	other thought I had had on this earlier in the week was
24	having just finished up the root cause analysis back
25	at Nine Mile Point, I was there's a lot of data out
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	37
1	there that maybe isn't specific to the simulator on
2	human error, very low level issues.
3	But it's there if we look for it. Perhaps
4	there's a way to use that with an HRA going forward in
5	the future, that you could actually analyze where error
6	is likely across the plants on a low level, use the data
7	to identify if our methods are working, and ultimately
8	use that to create a refined HRA method. That's all
9	I have.
10	CHAIRMAN MACFARLANE: Great, thank you.
11	Dr. Lyman.
12	UCS Perspectives on HRA
13	DR. LYMAN: Good morning, and once again
14	I'd like to thank the Commission for inviting UCS to
15	present our views, although in light of certain recent
16	majority votes, I'm starting to wonder what the point
17	is or if our message is getting through.
18	But you know, I'll keep trying. So
19	anyway, our view on the subject of human reliability
20	analysis in a nutshell is that we think that the subject
21	is very important or even essential component in
22	nuclear safety research, and the importance is clearly
23	growing as there's increasing reliance on manual
24	mitigating actions to comply with post-Fukushima
25	requirements, and I think the staff briefing makes
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	clear how far ahead they're getting on crediting
2	quantitatively manual actions, which concerns us, that
3	they're getting ahead of the technology.
4	We think that the research should best be
5	aimed at trying to reduce operator errors and improving
6	human-machine interface, enhancing crisis response,
7	and the qualitative insights that these studies reveal
8	are the most useful. But as far as developing
9	quantitative human error probabilities and plugging
10	them into PRAs, we have significant concerns about
11	that.
12	Slide 3, please. Now if you look at
13	NUREG-1842, which was the best practices in HRA, it says
14	"Given the continuing importance of probabilistic risk
15	assessments and regulatory decision-making, it is
16	crucial that decision-makers have confidence in the PRA
17	results, including associated human reliability
18	analyses."
19	Then it says "Throughout the years, the HRA
20	community has focused more on how to estimate human
21	error probability, probably because this may be the
22	most difficult, intriguing aspect of HRA." Now as a
23	former scientist, I can see how this might be, you know,
24	appealing.
25	But we're not talking about an academic
	NEAL R. GROSS

(202) 234-4433

(202) 234-4433

exercise. We're talking about something that has real world safety implications, and they can lead to decisions that will have a real impact on people's lives. So I think you need to think hard about whether that academic inquisitiveness is really driving the subject in the right direction.

7 Slide 4, please. We think that aspects of 8 PRA that cannot be well-quantified, and I say that maybe 9 every aspect of PRA can't be, but the human error 10 probability seems to be a major weak point, and I think 11 that is going to damage the credibility of 12 risk-informed regulation as you go ahead, unless you 13 address this, because you do not want to build on a 14 rotten foundation, and that's what we're afraid you're 15 going to tend towards if you don't address these 16 fundamental issues of credibility.

17 Perhaps a better approach, rather than 18 trying to quantify human error is to just admit that 19 you can't quantify some aspects of a risk, and you're 20 going to have the reducible uncertainties, and maybe 21 a step function approach to human error is better than 22 trying to come up with the continuous estimates of 23 probabilities, the kind of step function that you've 24 seen in the mitigated versus unmitigated scenarios in 25 certain analyses like the spent fuel analysis.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

(202) 234-4433

39

	40
1	Slide 5, please. Now from the public
2	perspective, we don't see a lot of confidence even among
3	the experts in this field. So I found a statement in
4	a paper that says SPAR-H does not guarantee valid HEP
5	estimates, which is particularly striking because that
6	paper was written by the developers of SPAR-H.
7	Then we have ACRS Member Stetkar who said
8	he believes "there's a general consensus that THERP is
9	silly." Now those aren't the kinds of words that give
10	a lot of confidence to the public, who may not know too
11	much about the details.
12	Slide 6, and one thing I've always wondered
13	about is the use of expert elicitation, and I think the
14	continuing reliance or need for expert elicitation in
15	HRA and IDHEAS is one example, no offense to Mr. Vaughn.
16	But I think it's an admission that there's not enough
17	data to actually come up with credible HEP estimates
18	on the basis of statistics alone.
19	Now just I never really understood why if
20	you have a subject like human error, that you think that
21	bringing in additional human errors in the form of
22	experts, who of course are smart people, but of course
23	make as many mistakes and value judgments as anyone
24	else, that that's compounding the error rather than
25	trying to reduce it.
	NEAL R. GROSS

(202) 234-4433

	41
1	So I think the extending human reliability
2	analysis to the errors made by the experts conducting
3	the elicitation isn't the right way to go, and I think
4	IDHEAS actually is attempting to do that. So perhaps
5	that is a good way.
6	If you look at the U.S. empirical study,
7	that really is striking in the degree of variability
8	among different experts using the same tools, and the
9	fact that the experts don't even understand terms of
10	definition if you read that study.
11	Next slide, please. So if you just look
12	at some those findings, you find out that the HEP
13	estimates and again, this was done by trying to validate
14	a variety of models, each one used by different expert
15	teams, against operator performance in the simulator,
16	that the estimates themselves vary considerably from
17	one method to another, that they vary considerably
18	within the same method, at least in order of magnitude,
19	difference is typical, and that the data sets
20	themselves are being validated against huge errors,
21	because the data sets are very sparse.
22	So even within three orders of magnitude
23	between the 95th and 5th percentile, some of the guesses
24	or some of the results of these models couldn't even
25	find their way within that wide error. They were
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	outside of those error bars. So that's pretty bad.
2	And even when the quantitative agreement
3	is good, the study authors believe that maybe that's
4	just a coincidence, because if they look at the
5	underlying qualitative analysis, it didn't always
6	wasn't always consistent with their quantitative
7	estimates.
8	So Slide 8. So I think if you're going to
9	apply HRA more heavily in regulatory analysis, the
10	guidance is crucial. But if you go to NUREG-0800, you
11	find that reviewers are only instructed that they
12	should confirm that the modeling of human performance
13	is appropriate.
14	So here's another aspect of human
15	subjectivity; it's the third level, is that the
16	reviewer is going to have to review whether the experts
17	appropriately reviewed the human errors in the models.
18	That, I think, is taking things in the wrong direction.
19	So if you look at what guidance there is
20	to try to judge if the modeling of human performance
21	is appropriate, you find NUREG-1792, which then says
22	that the guidance that they have is not appropriate for
23	regulatory decision-making, and it doesn't even say
24	it's a standard, and it's not intended to provide the
25	defacto requirements.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	So what are the reviewers how are they
2	supposed to grapple with this complex subject, if they
3	don't even have good guidance?
4	Next slide, please. Slide 9. It just
5	drives the point home, is that NUREG-1842 itself says
6	even though it's the best practices report, it doesn't
7	provide it's not intended to provide any acceptance
8	criteria for determining acceptability of PRA
9	applications. So like I said, this is enhancing
10	subjectivity and confusion.
11	Final slide, No. 10. So in conclusion, we
12	think that it seems that large uncertainties persist
13	in the quantitative predictions, and even the state of
14	the art HRAs and the empirical studies have confirmed
15	this. I do see that IDHEAS is trying to learn lessons
16	from these results, but again it seems to be making some
17	of the same mistakes as its predecessors.
18	NRC doesn't have clear acceptance criteria
19	for HRA adequacy, so it's hard for us to see how you're
20	going to make the decisions to support regulatory
21	applications. Finally, it appears that the human
22	error probabilities are uncertainties can be
23	significant to the overall PRA uncertainty, and that's
24	another reason why we think enhanced defense-in-depth
25	is the only way to compensate for these uncertainties.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	So we weren't too happy with the
2	Commission's decision on enhancing defense-in-depth in
3	the context of NTTF Recommendation 1. So I will stop
4	there and be happy to take your questions.
5	CHAIRMAN MACFARLANE: Great, thank you.
6	Thank you all. Start with Commissioner Apostolakis.
7	COMMISSIONER APOSTOLAKIS: Thank you,
8	Chairman. Just a general observation first. One
9	problem that I have seen over the years with the methods
10	is that they are too elaborate, and we have to
11	appreciate the fact that when there is a major project
12	being developed, HRAs HRA may be just a small part
13	of it. We saw that with the expedited transfer of fuel
14	from the pools to the dry casts.
15	So the resources required to do a good job
16	and use one of the available models like ATHEANA are
17	not there. So people go back to simple tables like
18	SPAR-H and so on. I'm surprised that Stetkar did not
19	include SPAR-H in his statement on silliness.
20	So are we with ideas developing another
21	huge model that nobody will use? Do you have any
22	thoughts on that? Can we develop something simpler
23	from the elaborate model or if you don't have an answer,
24	that's fine. That has been the major problem so far.
25	Mary.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	MS. PRESLEY: I think that's one of the
2	things that testing needs to show. The nice part about
3	IDHEAS is that you build so the simulator or the yes,
4	simulation experiments show the importance of a
5	qualitative analysis. The nice part of IDHEAS is that
6	there's a structured way that you do your qualitative
7	analysis, and you only then evaluate the failure
8	mechanisms if they're applicable to the task.
9	So you don't have to go through 14 decision
10	trees for every single minute little task. If you
11	decompose it correctly, the workload, we think, will
12	be commensurate with the risk insights provided by
13	that's something we want to specifically test as part
14	of the testing.
15	COMMISSIONER APOSTOLAKIS: So that would
16	be a simpler way of doing it?
17	MS. PRESLEY: Right.
18	COMMISSIONER APOSTOLAKIS: Anyway, just
19	bear in mind the actual utilization of the model is
20	extremely important. If you develop something that,
21	I don't know, fits with current theories of human error
22	but is not practical, then we're not doing much.
23	Dr. Wreathall, on Slide 4, you have
24	something that caught my eye. You say oh, at the
25	very last. Flooding, seismic and multi-reactor
	NEAL R. GROSS

(202) 234-4433

	46
1	accidents. Are we showing the Slide 4? Yeah.
2	MR. WREATHALL: Yeah.
3	COMMISSIONER APOSTOLAKIS: So what is
4	unique about, you know, the HRA for multi-reactor
5	accidents? I mean the French are already doing it?
6	MR. WREATHALL: The French have a research
7	program on the way to do it. It's not yet a method
8	that's developed and applicable. I think there are
9	issues of resources when it comes to multi-reactor
10	accidents, particularly to do with staffing and sharing
11	of resources, that may turn into risk trade-offs, that
12	normally we think of an accident in a single unit.
13	You have the ability to bring all the
14	resources, given the time available to that. But if
15	you have distributed risks around the site, then you
16	may have to decide am I going to put more people into
17	one place because of something happening there than in
18	others? So it's pushing the, if you like, the PSFs out
19	to a further set of questions.
20	COMMISSIONER APOSTOLAKIS: Is it PSFs or
21	PAFs now? Performance-shaping factors. We'll come
22	to that in a second, then performance-influencing
23	factors. They're the same thing, aren't they?
24	MR. WREATHALL: They are basically the
25	same thing. Different people have just adopted,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	because they want to make a shade of difference between
2	one and another.
3	COMMISSIONER APOSTOLAKIS: Why don't we
4	go to your Slide 20?
5	MR. WREATHALL: Slide 20, yes.
6	COMMISSIONER APOSTOLAKIS: Can you show
7	it please? You say "Not all PSFs are strong
8	differentiators." Can you tell the Commission what,
9	quickly what the PSF is and what this slide shows?
10	MR. WREATHALL: Yes. This slide and the
11	following slide, which are meant to be taken as a pair
12	together, come from a study that James Reason and I did
13	oh now 20 years ago, that looked at about 13 events for
14	which AITs and IITs were written by the NRC.
15	FEMALE PARTICIPANT: What do they mean?
16	MR. WREATHALL: Augmented inspection team
17	reports and integrated inspection team reports.
18	Basically, an indepth analysis of something that was
19	a challenge at the plant. And these documented in some
20	considerable detail what happened at that plant.
21	So at that time, Reason and I looked at how
22	plants where people did very well versus people did not
23	do very well, judgment there. So for example, the
24	darker shades represent the plants for which people
25	were less successful in managing the event, and you'll
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	see that in 100 percent of the cases, procedures were
2	involved. The problems with procedures existed in 100
3	percent of the events for which problems occurred.
4	On the other hand, 60 percent of the cases
5	where plants performed very well and the operators
6	performed very well, there were problems with
7	procedures. Procedures were not essentially a
8	differentiating factor between good and bad
9	performance.
10	So the other PSFs we looked at in this
11	context were to do with training. Did training have
12	issues? Were there issues to do with the organization
13	of the staff at the plant and the man-machine interface,
14	HMI? And the point here was that yes, you see that the
15	plants that had problems had generally a more frequent
16	contribution from these particular PSFs.
17	On the other hand, cases where people were
18	very successful, they still will count handling
19	problems in their events, though it's a lower fraction.
20	So the point partly behind this was that just simply
21	using quality of procedures, quality of training as a
22	way to say this will lead to good, this will lead to
23	bad performance was not that clear. It's not that
24	simple.
25	COMMISSIONER APOSTOLAKIS: But the
	NEAL R. GROSS

(202) 234-4433

49 organization, it seems to be important, right? 1 2 MR. WREATHALL: Yes. I mean in each case, 3 each of them had a role to play. So in 90 percent of 4 the cases where the performance was less than -- what 5 we would judge as less than adequate, the organization of the staffing or whatever, administration was a 6 7 problem. But it was also a problem in 20 percent of 8 the cases where people did very well. 9 COMMISSIONER APOSTOLAKIS: Okay, okay. 10 Thank you. I have limited time, John. Mary, from the 11 way you spoke, I got the impression that EPRI is keeping 12 a distance from IDHEAS. Are you participating in the 13 development of IDHEAS, or are you just interested 14 observers? 15 MS. PRESLEY: No. We are active 16 participants in the development of IDHEAS, and we have 17 been -- I want to punt this back -- from the beginning 18 of the project? 19 MALE PARTICIPANT: Nearly the beginning. 20 MS. PRESLEY: Yes. 21 COMMISSIONER APOSTOLAKIS: Say that 22 again? 23 MS. PRESLEY: Since the beginning of the 24 project, we have been active participants. We've been 25 involved in the expert elicitation process, the method

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

development. We are all in. But this comes to the --1 2 I think maybe the reason that you have an impression that there's distance, there's the base research that 3 4 we do that does research into development of methods, 5 and then there's the user group piece, which is how the adopted by industry members, 6 method is and the 7 technology transfer that goes into that. 8 It's not -- we just want to -- we're not disavowing or distancing it from any perspective. 9 We 10 just want to show that just because you have a finished 11 method doesn't mean you turn around tomorrow and it's 12 implemented perfectly and across the board. That's the only point we wanted to make. 13 14 COMMISSIONER APOSTOLAKIS: I agree. Now 15 it looks like your backup slides are more interesting 16 than the main slides, both from John and you. So on Slide 9, you throw a bomb. 17 18 MS. PRESLEY: Oh boy. 19 COMMISSIONER APOSTOLAKIS: Barriers to 20 applying the method. Perception that there is not 21 consensus within NRC on acceptance of IDHEAS. Are we 22 having a civil war or what --23 This is -- maybe that MS. PRESLEY: No. 24 is too strongly worded. Maybe the right way to 25 describe that is we haven't heard a lot of champions

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

50

	51
1	within the NRC, outside of the method developers
2	themselves, saying yes, we're going to go use IDHEAS.
3	I think there is a lot of wait and see.
4	So that's in contrast too it shouldn't
5	be taken by itself the other bullet that says
6	basically utilities are very busy with PRA at the
7	moment. There's a lot going on. So to get a new method
8	adopted, there needs to be some driver, and if that
9	driver is not because the NRC's on board and using it,
10	then it becomes a lot harder if the NRC's not using it
11	on their end, to fully integrate that.
12	So those two bullets points are kind of
13	meant to be taken together. It's not a criticism of
14	the NRC.
15	COMMISSIONER APOSTOLAKIS: I think that's
16	related to my earlier comment, you know. We need
17	something simple that a user who's not an expert on HRA
18	can use, and the users at the NRC, NRR, NRO and so on
19	are not really experts on using an elaborate model. I
20	mean they want something they can use immediately.
21	Thank you very much.
22	CHAIRMAN MACFARLANE: Thank you.
23	Commissioner Magwood.
24	COMMISSIONER MAGWOOD: Thank you
25	Chairman, and thank all of you for coming and some of
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	52
1	you coming again to visit with us to talk. Well first,
2	let me sort of comment on Ed Lyman's comment earlier
3	that he made at the beginning. I would just encourage
4	you to always look at your participation on these panels
5	as something that I'll speak for myself that I
6	value, and I value your input.
7	I don't as you know, I don't often agree
8	with you on the outcomes, but what you add to the process
9	is always very valuable, and sometimes I do agree with
10	you. But when I don't, I don't. But you should also
11	know that many of the things that you and your
12	colleagues say feed very active conversations within
13	the agency. So it not wasted by any stretch.
14	So but I also have a question for you. You
15	know, this may be actually an area where we might have
16	more agreement than disagreement. I'm not I think
17	that as we hear the conversation about HRA, there
18	clearly is still a lot of questions and a lot of analysis
19	and a lot of research has to be done. Your view was
20	that it could be used to feed qualitative insights.
21	From what you've seen so far, can you give
22	an example where you think the agency should be using
23	HRA?
24	DR. LYMAN: Well, you know, I think it's
25	the kinds of things that we heard from Claire, you know,
	NEAL R. GROSS

(202) 234-4433

1 where you actually -- well, let's put it this way. The 2 parts that involve trying to use theoretical psychology 3 to come up with some universal way that people respond, 4 I am not too big on that.

But I think, you know, practical ways of analyzing the way people make mistakes and designing to try to reduce those mistakes, which I think there's no magic about that. But the validation aspects of these tools, I think, are crucially important, because if you don't see -- if you can't actually test your hypotheses in some close to real world fashion, then they're -- then it's hard to put any weight behind them.

I think that's a consistent theme we've been raising in the context of all the post-Fukushima actions, that you need to have validation that is as close to real conditions as you can in an artificial environment.

18 Well you know, in COMMISSIONER MAGWOOD: 19 a way your comment just sort of raises something that 20 I observed as I was listening to the panelists. Each 21 of you spoke of the application of HRA in somewhat 22 different terms, you know. I think I heard Mr. Vaughn 23 talk about improving Operations. I mean that's how you 24 view its use in your company.

I think Dr. Taylor mentioned improving --

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5

6

7

8

9

10

11

12

13

14

15

16

17

25

basically putting it in the context of improving human 1 2 effects, improving procedures, improving performance, and Mary, Dr. Apostolakis just calls you Mary, so I call 3 you Mary; I hang around him too much. You're the one 4 5 person that I liked integrating HRA analysis into PRA 6 models. 7 I wondered -- I just wanted to ask the 8 panel, this side of the panel, because I think Dr. 9 Lyman's views are clear. Is everyone in agreement that 10 we should be integrating HRA into larger PRA models, or should we look at HRA as a stand-alone tool unto 11 12 itself for specific applications? Sort of start with 13 Mr. Vaughn and work our way down. 14 MR. VAUGHN: I think there could be 15 advantages to integrating the PRA model. The major 16 advantage that I spoke to, though, is the exercise of 17 going through HRA and identifying weaknesses in 18 operator actions, things that are especially important 19 to us, that we're successful in gathering. 20 Those insights are -- should be the first 21 priority. Integration of the PRA model, improve 22 accuracy downstream as a whole could be a secondary 23 advantage. 24 COMMISSIONER MAGWOOD: Okav. Marv, do 25 you want to comment?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

54

	55
1	MS. PRESLEY: My inclination is to say
2	yes, because when you're making in terms of
3	integrated decision-making, when you're making a
4	decision, you're balancing different aspects, and the
5	mechanical systems are one part, and yes, maybe we have
6	better data on it than we do for human performance.
7	But human performance is such a big part
8	of how a plant runs. I don't think that you can
9	separate the two. I think it would be artificial to
10	separate the two and create more, I guess, maybe false
11	it will create a different impression that's not
12	true.
13	I do recognize that probability I mean
14	I've heard HRA called the dark science or the black
15	magic, right, and it's true. There's some squishiness
16	to the quantification part, because we don't have a lot
17	of hard data for these things.
18	But to be able to focus on the relative
19	rankings and the insights that they provide, we need
20	a tool that we can look at these things systematically,
21	and it's the only tool that we have.
22	So the next question is if we don't use
23	this, what do we use, and we have other aspects. Like
24	Claire mentioned the defense-in-depth and programs to
25	make sure that organizations are, you know, have a good
	NEAL R. GROSS

(202) 234-4433

	56
1	safety culture and other programs in place to shore up
2	the residual risk where we can. But we still need a
3	tool by which we can make decisions, and this is kind
4	of what we have. So I don't think the focus on numbers
5	should be a killer of PRA, or HRA and PRA.
6	COMMISSIONER MAGWOOD: I appreciate that.
7	Dr. Taylor.
8	DR. TAYLOR: Yeah. I think, you know,
9	from my perspective, as I said in the presentation, the
10	real strength of HRA is that it gives you a stick to
11	wield, to show how much human error can actually
12	dominate within a PRA.
13	So I think it really is important to
14	integrate the two and, you know, my experience prior
15	to that is that if you're going in and trying to assess
16	situations and assessing them as a human factors
17	expert, it's very difficult to get the attention from
18	the right people, to say to demonstrate how important
19	this is.
20	By putting it in the PRA, you can show,
21	using numbers, how much of an effect it has. The
22	numbers aren't perfect and, you know, the methods that
23	we use aren't perfect. They are human error
24	probabilities, they are estimates. But if you have a
25	good analysis behind them, you can have a good degree
	NEAL R. GROSS

(202) 234-4433

	57
1	of confidence in how much this error may dominate, and
2	therefore you can use that to drive the improvement.
3	So from that point of view, I think it is
4	incredibly important. Of course you also have the flip
5	side then, where you may see an issue that you think
6	is quite important, but actually it doesn't dominate
7	the PRA sequence. So therefore, how do you actually
8	get the resource and the budget and so on to drive those
9	improvements.
10	But I think that's the potential downside
11	of it. But I haven't seen that too often. I see that
12	usually it's quite a good way of actually, you know,
13	shining a spotlight on the human side of operations.
14	COMMISSIONER MAGWOOD: Thank you.
15	MR. WREATHALL: Yes. I think in part the
16	question comes to both HRA and PRA, and that is the
17	reason why it's being done. I somewhat simplistically
18	break out three different reasons why you might do PRA
19	and its human component. You simply want a probability
20	number. There is a quantification need; a number is
21	needed.
22	The second and perhaps more useful thing
23	is that from a human point of view, you're trying to
24	improve or optimize the design of the human interface,
25	or the procedures or the training. So it's not just
	NEAL R. GROSS

(202) 234-4433

	58
1	a number. It's a I need some knowledge about the
2	situation and what I'm gaining from it. Then the
3	third, which is the bigger question, and that is what
4	is the integrated plant safety that takes account of
5	the potential for human errors, and that really does
6	involve a complete combination of HRA, PRA, whereas the
7	optimization part for humans could be a narrower thing.
8	I think it connects very closely to Dr. Apostolakis'
9	first question about is there a simple method, is there
10	a much simpler way of doing this. It seems to me that
11	you can develop relatively simple methods that address
12	different issues.
13	But if we're looking for a single big HRA
14	box that will do all of these for many different
15	conditions in plants, we are going to finish up with
16	complicated models. The first step in the ATHEANA
17	method is what is the purpose of this analysis, and can
18	I select just a narrow set of tools and methods that
19	address that, that reason.
20	Whereas when we talk about a comprehensive
21	set of methods, they're really never to become complex,
22	because they're trying to answer many different
23	questions, not all of which are relevant to this
24	particular issue. So that's my response.
25	DR. LYMAN: Let me just clarify something.
	NEAL R. GROSS

(202) 234-4433

(202) 234-4433

	59
1	I think our main concern is the development of absolute
2	values, you know. You calculate a core damage
3	frequency or you compare it to the safety goals, and
4	if you're basing that on an absolute value without
5	quantifying certainty, that's the problem.
6	But what I'm hearing more is sure, if you
7	use that to study the relative importance of various
8	factors, then those uncertainties are, you know, cancel
9	out to some extent. So again it's the so I don't
10	think we have a problem with using it to study, you know,
11	the relative changes in risk as opposed to just putting,
12	plugging in these absolute values.
13	COMMISSIONER MAGWOOD: That's a good
14	comment. I think you'd find a lot of people agree with
15	that. All right, thank you. Thank you, Chairman.
16	CHAIRMAN MACFARLANE: Thank you.
17	Commissioner Ostendorff.
18	COMMISSIONER OSTENDORFF: Thank you,
19	Chairman. Thank you all for your presentations. I'm
20	going to make a couple of quick comments before I get
21	into questions. John, I appreciated very much your
22	kind of capturing the worldwide perspective on methods
23	being used. That was very helpful.
24	Claire and Mary, I appreciate your coming
25	back. I, like Commissioner Magwood, have benefitted
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	from meeting with you a few months back and I
2	appreciated your comments, in particular the
3	identification of complex tasks. The comments you
4	made was important from my experience. Mary's use of
5	risk insights, that terminology, and both of your
6	reliance upon interviews with operators, I think, was
7	right on the mark.
8	Jim, I appreciate your operator presence
9	here. It's really important. I know it's been echoed
10	by the people to your right and to your left. I think
11	your comments on the containment venting strategy is
12	a potential area to explore. I'll come back to that
13	later on, and your shift supervisory experience at Nine
14	Mile Point is very crucial.
15	Also as a former Navy guy, I appreciate the
16	ahead flank cavitate. In the 1990's, I think, I had
17	a chance to shoot a 480, Mark 48 Adcap torpedoes. You
18	know, as a commanding officer of a submarine or in
19	charge of commanding officer training for Atlantic
20	Fleet.
21	But a key part of that was torpedo evasion,
22	and so the head flank cavitate example you used was a
23	great example of what, I want to use your term,
24	integrated crew response, as to how to conduct an
25	operational event in less than one minute, that
ļ	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	61
1	involved coordination between the reactor operator,
2	throttleman and the engineering officer of the watch,
3	in a very dynamic environment. I've seen it hundreds
4	of times. I thought that was a great example.
5	Ed, I appreciated your comments. I want
6	to first agree with Commissioner Magwood's commentary
7	on how we value your participation, and but I also
8	appreciate the fact that you made a statement
9	expressing your concerns. I think that's important
10	for us to hear that, and I was not surprised by your
11	comment, but along with the rest of the Commission, I
12	know we all value the UCS role, and perhaps you do, as
13	Commissioner Magwood noted, have a greater influence
14	than perhaps you think you do.
15	I'm going to start out with the comment you
16	made on the HRA topic, and that was I agree with you
17	on the qualitative use of the HRA principles. I'm not
18	opposed to quantitative. Mary and Claire and I
19	discussed this in my office at some length a few months
20	ago.
21	But I think that certainly I think your
22	statement was that perhaps the HRA studies are most
23	useful in providing qualitative insights. I agree
24	with that, and I'm going to provide a contextual example
25	to frame a question for all of you in that area.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

62 So I go back to 1985, when I was an engineer 1 2 on John Marshall, a slow attack submarine out of 3 Norfolk. The Naval reactors program sent every 4 submarine its own, I think it was called a primary plant 5 response demonstrator. It was a box about that big (gesturing), that long, that high, and it was the first 6 7 simulator that I ever saw used in the Naval reactors 8 program. On submarines, you did all these actual 9 10 drills. You did SCRAMs, flooding, stream line rupture 11 casualties. All those things are actually done on the 12 plant, as opposed to simulators. But because of 13 concerns on the operator ability, and primarily the 14 reactor operator ability to recognize a primary coolant leak, and to discern the parameters, is this a slow 15 16 leak, which is X inches per minute, that still is 17 classified. 18 But X inches per minute pressurized level 19 drop from a fast leak, which has a greater number, and there's different sets of actions from both those kinds 20 21 of leaks. You're nodding your head. You know what I'm 22 talking about. 23 primarily to help provide better So

detection and recognition, Admiral McKee, when he was

operator awareness and to train the operators

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

(202) 234-4433

in

	63
1	head of Naval Reactors back in the early 80's, simply
2	you know, mandated we use these, and they were very
3	effective training tools.
4	It was really trying to look at the HRA
5	aspects of how hard it is to determine, when you're
6	watching this gauge, among 20 gauges in the maneuvering
7	room on the reactor plant control panel, this level
8	indication coming down to a certain rate would
9	determine what operator action you should be in, fast
10	or slow leak.
11	Another example, again I'm setting it up
12	for question here, was you know, as a result of the loss
13	of the USS Thresher back in the 1960's, the Naval
14	Reactors Program developed what's called a fast
15	recovery startup. The details of that procedure are
16	classified, but basically it was an emergency startup.
17	And as part of that emergency startup to
18	restore reactor power, to restore steam to the turbines
19	to be able to drive the submarine to the surface in the
20	event of a flooding casualty, you had reactor start
21	being conducted in a very short period of time, with
22	very high startup rates, with high heat-up rates.
23	So the integrated crew response piece that
24	Jim's mentioning required great coordination between
25	the Reactor Operator, the Throttleman and the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Engineering Officer of the Watch. So that was another example I thought was relevant to the use of identifying potential areas, with Dr. Lyman's comment on qualitative factors requiring a lot of training and reinforced training.

So those Navy nuc examples, I wanted to see if there are any operator plant examples from a training or procedural standpoint, that you've identified as needing work or areas of potential application. I know that Jim mentioned containment venting. I believe that Ed may have a -- I'm going to ask him a question about manual operator actions in Fukushima.

But I'm trying to understand what have you seen so far from your experience that indicate areas for improvement apply your HRA experience, to help focus on procedures or training? I'll start from the left and we'll go down the line there.

18 MR. WREATHALL: Thank you, yes. The 19 concern I have in trying to answer the question is I'm 20 going to try avoid answering the question, and still 21 trying to give you some useful answer.

This issue that I keep raising about plant context is very important, because it represents the potential divergence between what the designer assumes will happen in the plant at any given event, and what

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

really is going to happen, and the typical examples of plant context that affect that are failures in other ancillary equipment or something else going on in the plant, whereas the designer, when he's writing the procedures or developing the maneuvering room designs and so on, is assuming that this is the only thing that people focus on. So what I have seen in plants and what we found when we did the simulation trials with ATHEANA

is how much does the plant have to be away from that nominal designer's mind assumption about what's going on, before the repetitive training in fact is going to capture people into something where they really should be questioning it.

I haven't seen that much in the way of application of that concept into training. I mention in my bio that I'm working in a field called resilience engineering, which is sort of a parallel but somewhat different from PRA. Its purpose is to --

20 COMMISSIONER OSTENDORFF: I'm sorry. 21 I'm going to run out of time here. So I got your point. 22 Thank you, and we'll go down the line here. 23

MR. WREATHALL: Yeah.

24 COMMISSIONER OSTENDORFF: Sorry, thanks. 25 Claire.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

	66
1	DR. TAYLOR: I think in a nutshell the area
2	that still concerns me is more the issue of dependency
3	between events or between potential human errors, and
4	how we model that in HRA. That, I think, is one of the
5	areas, and we've discussed this before. I think that's
6	still one of the really big gray areas. So how one
7	event influences the next and the next, and causes the
8	error. I think that's the part that HRA needs to be
9	focusing on more.
10	COMMISSIONER OSTENDORFF: Okay, thank
11	you. Mary.
12	MS. PRESLEY: I think we've seen a lot of
13	improvements in fire. I think that's one of the big
14	success stories. I think when we get into some of the
15	other severe external events, we're going to have to
16	start looking at, I guess, decision-making and command
17	and control. Main control room abandonment is one of
18	the areas where command and control comes up.
19	But it comes up in all sorts of areas. But
20	that's one area. It's in my ongoing issues slide.
21	COMMISSIONER OSTENDORFF: Okay, thank
22	you. Jim.
23	MR. VAUGHN: A couple of things, that
24	going through our HRA notebook, we identified areas
25	where, for example, we have these things called
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

67 recovery steps. If you have a step following an action 1 2 that says "verify this parameter is good," you get 3 credit for that, to basically say hey, you have another opportunity here to catch something you previously 4 missed. 5 So going through the HRA notebook, I 6 7 identified various procedures where, you know, just 8 adding that step in here was something we could add on, 9 to help mitigate risk in an accident. Is the operator 10 just supposed to validate that anyway? By actually 11 putting a procedure when, you know, the stress levels 12 are high, is really one good way that we can use to 13 improve it. 14 And that's using, you know, CBTM, previous 15

HRA methods. But the idea is right now it's still early on. I don't know what the full scope of that would be in the end. But the idea that we could look at how crews could fail and how crews or pinch points associated with the crews and put in, you know, the equivalent to recovery steps there in the training process and our procedures and use that to improve, I think could offer a lot of advantage going forward, depending on how we implement this.

24COMMISSIONER OSTENDORFF:Thank you.25Ed.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

16

17

18

19

20

21

22

23

	68
1	DR. LYMAN: Well, I just just focus
2	again on, you know, these critical paths that you're
3	building into, you know, post-Fukushima response, and
4	the realism of some of them.
5	For instance, the flooding has come up and
6	I'm very interested in seeing how how those flex
7	strategies are going to be developed in a way that is
8	really credible enough that you can have confidence in
9	approving them, like having to move equipment in
10	advance of a rapid a rapidly advancing flood in
11	enough time. So you know, that's one separate aspect
12	which I think needs to be considered.
13	COMMISSIONER OSTENDORFF: Okay, thank
14	you. Thank you, Chairman.
15	CHAIRMAN MACFARLANE: Thank you. Well
16	thank you all for your presentations. I'm struggling
17	with how meaningful any of this is. So you know, I'm
18	struck by some of your statements. Ms. Presley said
19	if we don't do this, then what do we do to analyze? I've
20	heard that before, and Mr. Wreathall said we need a
21	number. Do we?
22	You know, if your number isn't meaningful,
23	then what value is it? And I'm worried that maybe this
24	distracts from actually more truly meaningful ways of
25	ensuring safety. So I think we really need to be very
	NEAL R. GROSS

(202) 234-4433

	69
1	mindful of the limitations of the methodologies that
2	we rely on.
3	I'm struck by two omissions from the
4	discussion that the four of you had for the most part.
5	Ed talked about this not explicitly but implicitly.
6	The first is a discussion of uncertainty. None of you
7	mentioned uncertainty. It seems to me that the
8	uncertainties are enormous here, and I'm interested in
9	how you quantify them.
10	You know, Mr. Vaughn talked about
11	something feels correct. I think that's fascinating
12	language. I think the language that people use to
13	describe you know, all the language you've been using
14	here is fascinating and worthy of a good social science
15	study, which one day I will conduct, but not today.
16	So I'm curious, very briefly, if you would
17	discuss just how you quantify uncertainty. Let me just
18	go down the line real quickly. Quickly, because then
19	I have another question. Actually, I have a whole lot
20	of questions.
21	MR. WREATHALL: Okay. I just want to be
22	clear that I wasn't saying we do need quantification.
23	I said it's one of the three reasons why people do
24	perform PRA and HRA. It may not be the most important
25	one, but people do use it for that.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	CHAIRMAN MACFARLANE: Right, yes.
2	MR. WREATHALL: And therefore related to
3	quantification, and its need or not, the uncertainty
4	to my mind, and I keep coming back to this same point.
5	It's in many ways the uncertainty about the
6	inputs that go into understanding the situation we're
7	going to analyze, work that is beyond the scope of this
8	discussion, is an area that I'm involved in, that is
9	actually trying to represent, as best we can, the
10	uncertainties in just defining what the situations will
11	be that operators face, and how that would play out in
12	not just numerical uncertainties, but in uncertainties
13	in the pathways they may take.
14	So I don't have a good answer to the
15	immediate quantification of uncertainty, but I don't
16	think that's the driving issue right now.
17	CHAIRMAN MACFARLANE: If you have a model,
18	the model is useless unless you understand the
19	uncertainty associated with the result. It is
20	useless, and if you have not quantified that
21	uncertainty, throw it away. You've wasted your time.
22	Go ahead.
23	DR. TAYLOR: The way that we've dealt with
24	uncertainty in the UK is it's incredibly difficult to
25	quantity. So the best that we could do is to document
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	our uncertainty very clearly, and try to quantify
2	anyway, and then review that uncertainty as time goes
3	by.
4	So if it's on a larger project, some of the
5	ones I was involved in were over five years, they would
6	constantly go back and review what we had documented,
7	to see do we know anything new now that changes that.
8	If not, when it comes to the end of our
9	analysis, the end of our safety case, it's documented.
10	So when that safety case gets reviewed again, at least
11	it should be clear to the next people coming in looking
12	at it what we based our analysis on.
13	CHAIRMAN MACFARLANE: The value of the
14	safety case.
15	DR. TAYLOR: Yeah. So that was the best
16	that we could do.
17	MS. PRESLEY: Very similar to what Claire
18	does, we document the source of uncertainty. We do put
19	an error factor on these numbers. There's a rule that
20	we use. But I think most importantly, I just blanked
21	out. Sorry. Give me a second.
22	CHAIRMAN MACFARLANE: That's okay. Mr.
23	Vaughn.
24	MR. VAUGHN: I shared a similar concern
25	when I was sitting the IDHEAS panel there, of saying
	NEAL R. GROSSCOURT REPORTERS AND TRANSCRIBERS1323 RHODE ISLAND AVE., N.W.(202) 234-4433WASHINGTON, D.C.20005-3701(202) 234-4433

	72
1	well, what's the uncertainty? How accurate is this
2	number? It was difficult for me at times, even on the
3	panel, was you know, thinking of anecdotes, thinking
4	of examples of how this fits in, and in one case where,
5	all right training is of the utmost importance.
6	No problem; we'll always address this; but
7	at other times, well maybe not and how do you really
8	quantify that, if you ask me is it 1 in 10,000 or 1 in
9	50,000 or 1 in 100,000.
10	Humans don't have that gut feel, so to
11	speak, to be able to really know if that really makes
12	sense. We have a very limited scope, especially when
13	we're talking about accident space. Now if you go look
14	at more every day kind of minimal errors, and expand
15	an HRMF to include every day minimal errors, I think
16	you have a much broader set you could actually pull
17	from, and get real uncertainty.
18	But when you're talking accident sequences
19	that never happened, even though they happened in the
20	simulator, it's not the real plant. It's not the same.
21	The operators are under a different kind of pressure,
22	and it's only a resemblance of what we're actually
23	trying to model.
24	CHAIRMAN MACFARLANE: Excellent segue to
25	my next question, which is on where you get your input
	NEAL R. GROSS

(202) 234-4433

	73
1	data. Now I understand from the discussion so far, a
2	lot of the input data or the vast majority of it comes
3	from simulators. Again, it's a simulation. It's not
4	reality, which is your point.
5	So why aren't you why aren't we talking
6	about reality? Okay, there are real accident
7	experiences, okay. We have TMI. We have Fukushima.
8	You could compare Daiichi to Daini responses. There
9	are other less significant accidents that you could
10	look at in the nuclear realm, and you can go beyond that.
11	I think there is a set of unfortunate data
12	out there that in the sense that it was bad news for
13	the people who experienced it, where you know, this good
14	data doesn't support the value of training. For
15	instance, the recent ferry accident in South Korea.
16	The Italian cruise liner accident last year, where you
17	had trained crews who basically fled, or the captain
18	anyway fled.
19	You have, you know, the Air France flight
20	from Brazil, where the pilots didn't believe their
21	instrumentation. You have, you know, the behavior of
22	soldiers in World War II, where a significant
23	percentage of them didn't actually did not use their
24	weapons they were trained to use them.
25	You know, there actually is a lot of actual
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	data out there that you could use and input. Do any
2	of you work with social scientists, sociologists,
3	etcetera, to collect data?
4	MR. WREATHALL: I have been working
5	particularly with James Reason in the UK, who has
6	developed handbooks of those kinds of data, both from
7	the most trivial level of error up to performance data,
8	railway systems, health care, and there are two HRA
9	methods. To a large degree NARA is based on the
10	digestion of those kinds of data, not just from the
11	nuclear, but from other fields, and there's a German
12	method called CAHR, that also is built on experience
13	data in the German plants.
14	So there are actually methods that are out
15	there that are using precisely that approach. The
16	problem is one, how does that those data connect to
17	the severe accident situations that the PRA is trying
18	to model, and we're back to the uncertainty issue then.
19	CHAIRMAN MACFARLANE: Right, and what Dr.
20	Taylor mentioned, which was these issues of dependency.
21	There's a social scientist named Charles Perrow who
22	described normal accidents, where you have these can't
23	imagine or unexpected situations, where you have
24	tightly coupled systems that produce these accidents,
25	and TMI, Three Mile Island was one of them that he used
	NEAL R. GROSS

(202) 234-4433

	75
1	as an example.
2	So how do you how can you actually test
3	these models? Have you tested any of them? I'm
4	talking about the validation and verification piece.
5	MR. WREATHALL: To a limited degree, and
6	I think we have to admit it is to a limited degree, and
7	again, in the ATHEANA method, we came up with a working
8	model. We took it to the Seabrook simulator and worked
9	with the trainers to see if indeed what we hypothesized
10	would happen.
11	CHAIRMAN MACFARLANE: But it's a
12	simulator.
13	MR. WREATHALL: Again, taking a plant to
14	core melt
15	CHAIRMAN MACFARLANE: No, I wouldn't do
16	that. But I think you can as a general rule, I
17	wouldn't do that. But I think that you could try to
18	apply the models to, you know, proto-accidents if you
19	want to call them, that are situations that develop in
20	plants, you know, which happened on occasion.
21	MS. PRESLEY: I mean we have looked at
22	retrospective analyses, if that's I mean that's one
23	way. It doesn't it can't test the quantification
24	part, because we don't have a denominator and a
25	numerator. So from that, I mean we do look at facts
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	and data out there. Those do inform our methods, but
2	only in a qualitative sense.
3	And then I was wondering if I could just
4	take a moment to address your question on uncertainty.
5	I think understanding how the HRA happens might help
6	alleviate some of the concerns with the uncertainty.
7	As Dr. Taylor mentioned, you quantify at different
8	levels, depending on you put more effort into it if
9	it's more important.
10	So a lot of the analysis starts with put
11	in a 1.0, and if the model tells you it's significant,
12	then you start looking at it in more detail, and you
13	do more work based on its risk significance, to
14	understand the story and the detail and the context.
15	CHAIRMAN MACFARLANE: Yes, but if the
16	model is incorrect to begin with, you're following, you
17	know, an incorrect trail?
18	MS. PRESLEY: Well, the model is right.
19	CHAIRMAN MACFARLANE: So you assume the
20	model is correct?
21	MS. PRESLEY: There is model uncertainty,
22	and we do look at that in PRA space. There's guidance
23	on how to look at uncertainty, model uncertainty and
24	parameter uncertainty.
25	CHAIRMAN MACFARLANE: Where does that
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	guidance come from, the Gods?
2	MS. PRESLEY: EPRI-26511 and NUREG-1855.
3	But it's how to look at key sensitivity studies.
4	Again, you have to go to the context of how you're using
5	the PRA. So you identify your key sources of
6	uncertainty and then you do sensitivity studies to
7	understand how that would influence your decision.
8	You don't just do a PRA just to do a PRA
9	and come up with a magical number. That's not and
10	I think you appreciate that. But you really have to
11	talk about the specifics of the decision that you're
12	making, and understanding uncertainty in that context.
13	CHAIRMAN MACFARLANE: Yes, I know.
14	MS. PRESLEY: So the fact that we can't put
15	data, you know, put large uncertainty bounds on the data
16	and put it in our model, maybe that's not the most useful
17	approach. So we break down the question of uncertainty
18	in different pieces, and then look at the pieces as we
19	can. That was in part was how Claire described it.
20	CHAIRMAN MACFARLANE: Okay. I'm way over
21	my time. Thank you. Commissioner Svinicki.
22	COMMISSIONER SVINICKI: Well thank you
23	all for your presentation. I'm not a practitioner of
24	HRA, so both from this discussion and in preparation
25	for this meeting I learned quite a bit, and I do agree
	NEAL R. GROSS

(202) 234-4433

	78
1	with a number of my colleagues and, as a matter of fact,
2	all of you as experts, that there are a lot of challenges
3	here.
4	But I don't see that as a reason, you know,
5	to give up. I think this is a very worthwhile area to
6	continue to try to advance the state of our knowledge.
7	I am maybe a little hung up on some of the same areas
8	that my colleagues are.
9	I do want to note, Chairman Macfarlane
10	didn't make reference to this, but maybe it was the
11	source of developing some of her questions, is the
12	Advisory Committee on Reactor Safeguards, in their
13	review of human reliability analysis models, spent a
14	quite a bit of their letter report on an integrated
15	assessment of uncertainty.
16	So it was something that the ACRS pointed
17	out as well. They said the topic of uncertainty is
18	afforded only cursory attention in the IDHEAS draft
19	report, and they go on to argue for greater reliance
20	on expert elicitation processes. I think that's one
21	of the strategies that they recommend to the NRC staff
22	to make heavier use of.
23	I also acknowledge some of the
24	difficulties when we look at modeling human behavior.
25	That seems like one of the very big challenges. But
	NEAL R. GROSS

(202) 234-4433

	79
1	I agree, as others have noted, is that at least I think
2	there are analogous sets of data.
3	It occurs to me, you know, that the U.S.
4	military puts groups of trainees through standardized
5	training and exercises, and there is, I think, some data
6	monitoring of performance of troops in the field.
7	So I don't know if that's a source of any
8	types of data. But it did appear to me, again as a
9	non-practitioner of HRA, that there's a lot of
10	discussion of human error. But in agreeing and
11	aligning myself, which I do with the point that any
12	model is going to have to be tested against real world
13	experience, it occurs to me that that needs to cut in
14	both directions.
15	So I became in my mind kind of hung up on
16	this question, which is if one and it's a non-nuclear
17	example, which was I think actually helpful sometimes
18	to use something that's not a severe nuclear accident.
19	But if an HRA practitioner used any of these models to
20	look at an airplane crashing into a high rise building
21	in New York City, and was trying to make assumptions
22	about the behavior of New York City firefighters and
23	first responders, would the result be that there would
24	be less more civilian deaths and less firefighter
25	loss of life in the buildings as they were collapsing?
	NEAL R. GROSS

(202) 234-4433

Because would the assumption be purely logical, that with their knowledge of structures and fires, they would realize when the building was about to collapse, and there would be no room in the models for a demonstration of human behavior that is extraordinary or heroic? Is there no way?

So it seems to me, you know, if a model is going to be compared to real world experience, real world experience tells us that in addition to some percentage of human errors, there are going to be some fraction of human beings whose conduct or behavior would be extraordinary and outside the norm.

13 It's not all human beings, but some 14 fraction, because we routinely find that in emergency 15 So do any of these models, can they situations. 16 accommodate at all the fact that in real world 17 situations, there would be some extraordinary conduct. 18 Frankly, I don't know how you would model 19 it, but I ask the question simply because I'm not familiar with what's embedded in these models. 20 Would 21 those New York City firefighters just be standing on 22 the sidewalk and watching the building collapse? Is

that what you assume?

MR. WREATHALL: There has been quite a bit of work done that I don't think is formally incorporated

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

23

24

25

	81
1	in HRA models, but humans as hero, and the fact that
2	people will take on the role of going way beyond what
3	you would expect a rational, normal person is, and you
4	uncover that by following them, understanding their
5	culture, and seeing how they've behaved in very similar
6	situations that perhaps weren't as catastrophic.
7	In my slides, I refer to the work of Gary
8	Klein, who is a psychologist who has done a tremendous
9	amount of work in understanding in military settings,
10	in firefighting settings, in rescue settings, how the
11	hero comes about. Now we haven't taken advantage of
12	that. It's certainly in the nuclear power plant PRA
13	formal settings, because we focus on the bad side, if
14	you like.
15	I think as we look to Level 2 and Level 3
16	type PRAs, where it's an area that heroic action may
17	play a role, we might want to consider how to add that.
18	But there's nothing in the modeling right now. But
19	there is the qualitative understanding of how people
20	can become heroes and take on those roles.
21	So it isn't something we've neglected.
22	It's something that in the scope of PRA and HRA in
23	nuclear plants we've had no need to push that far yet.
24	COMMISSIONER SVINICKI: Okay, thank you.
25	That's helpful. I don't have any other questions.
	NEAL R. GROSS

(202) 234-4433

(202) 234-4433

COMMISSIONER APOSTOLAKIS: 1 Just a comment 2 which is somewhat related to what Commissioner Svinicki 3 just said. There is another source of uncertainty, and 4 we do have data on those, where the operators came up with very clever ways of handling an accident that as 5 not in the procedures. 6 7 This is documented fact. I think it goes 8 back to the Brown's Ferry fire, as I remember, where 9 they used the firewater to cool the reactor. But 10 nobody was telling them to do that, and that is 11 completely ignored by these models. The fact that the 12 operators may do something smart is not there. So 13 that's another source of uncertainty which is a good

14 uncertainty, okay.

15

16

17

18

19

20

21

22

23

24

25

So and I get the sense that, you know, all these discussions of validation or whatever, the conclusion should not be to throw these models away. And again, even with quantification, you start thinking okay, I'm not going to quantify. The probability is 1 that they will make mistakes.

Well, we can't live without that. It's not 1. We know it's not 1. So the big question is how far down do you go, okay, and I'll leave it at that. Thank you.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

CHAIRMAN MACFARLANE: Okay. We will --

(202) 234-4433

	83
1	thank you again, panel. We will now take a five minute
2	break, and then we'll have the NRC panel.
3	(Whereupon, the proceedings in the
4	foregoing matter went off the record at 10:50 a.m. and
5	went back on the record at 10:56 a.m.)
6	CHAIRMAN MACFARLANE: Okay. Ready? All
7	right. Now we will have the NRC panel. I=m going to
8	turn it over to Mike Weber, our Acting Executive
9	Director for Operations.
10	MR. WEBER: Good morning, Chairman and
11	Commissioners. It=s a pleasure for the staff to appear
12	before you today. I would just add before we actually
13	get into our presentation, we very much appreciated the
14	presentation of the last panel. I think you had a
15	healthy, diverse set of views, but they were all very
16	well informed and I think that contributes to the work
17	before the agency.
18	We rely on people to accomplish safety and
19	security when it comes to the safe and secure use of
20	nuclear materials and facilities. So our analysis,
21	our understanding of the contributions that their
22	performance makes to safety and security is very
23	important to us.
24	I think the information before you makes
25	a compelling case. We=ve made a lot of progress over
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	84
1	the years in this area, and so we=re proud of the
2	progress that we have made. But we certainly recognize
3	there are many challenges that remain before us, and
4	we=ve got a very dedicated staff focused on, how do we
5	make progress on those challenges, and how can we
6	continue to use human reliability analysis as a tool
7	in our arsenal to contribute to safety and security.
8	For our group today, we=re going to have
9	Rich Correia. Rich is going to talk about the role of
10	human reliability analysis and our regulatory
11	framework. We have Dr. Sunil Weerakkody, who is going
12	to talk about, how do we actually use human reliability
13	analysis in regulating nuclear power plant safety.
14	And then Sean Peters is going to follow up with a more
15	detailed review of the method that we have developed
16	over the years, the scientific basis for that method,
17	and the steps forward as we proceed.
18	So with that, Rich?
19	MR. CORREIA: Thank you, Mike. Good
20	morning, Chairman, Commissioners.
21	Let=s go to Slide 3, Introduction to HRA.
22	Yes, thank you.
23	As you have heard before from the other
24	panelists, human reliability analysis addresses the
25	questions, what actions do humans need to take and how
	NEAL R. GROSS

(202) 234-4433

(202) 234-4433

	85
1	likely will they succeed or fail at performing those
2	actions?
3	The information from those questions
4	become an integral part of the probabilistic risk
5	analysis that is used to evaluate the consequences of
6	human errors and a contribution to public risk. Human
7	reliability analysis is important, as you=ve heard.
8	Human errors can be significant contributors to events
9	and actions, not only in the nuclear industry, in many
10	industries.
11	As part of our regulatory decision
12	processes, human reliability analysis can provide a
13	description of the human contributions to risk to the
14	public and, thus, can be used to identify ways to reduce
15	risk through orders, rules, guidance, and information.
16	Without human reliability analysis,
17	probabilistic risk analysis would lack insights into
18	the very large influences that human reliability has
19	on overall risk, which could result in focusing
20	resources on less risk-significant areas.
21	Probabilistic risk analysis treatment of human
22	reliability needs to be similar enough equipment
23	reliability that the probabilistic risk analyses can
24	produce balanced risk insights into what aspects of the
25	facility are risk-important.
	NEAL R. GROSS

(202) 234-4433

	86
1	Next slide, please.
2	Human reliability analysis is an important
3	part of our regulatory decisionmaking processes, such
4	as the bases for orders, rulemaking, oversight,
5	licensing, generic issues, events analysis, and
6	research products, such as the Level 3 PRA.
7	For example, a complicated event at the
8	Robinson Nuclear Plant in 2010 that involve equipment
9	malfunctions, two fires, and failures of operators to
10	diagnose plant conditions, and probably control the
11	plant, contributed significantly to plant risk. The
12	operators took actions to bring the plant to a safe and
13	stable condition, and the event did not adversely
14	affect the health and safety of the public.
15	Our human reliability analysis of the
16	event found that weaknesses in operator training,
17	emergency operating procedures, and command and
18	control in the control room were important contributors
19	to the overall change in plant risk for that event. For
20	that event, we gave the licensee seven findings ranging
21	from low to moderate safety significance to very low
22	safety significance.
23	The Robinson licensee took extensive
24	corrective actions to improve operator performance to
25	prevent similar events. These corrective actions were
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	made using human factors engineering principles to
2	improve procedures, training, control room management.
3	Dr. Sunil Weerakkody=s presentation will
4	include how the staff uses HRA to address the risk
5	significance of this event as part of the reactor
6	oversight process.
7	We also used information we also issued
8	an information notice about this event to alert other
9	licensees of the problems Robinson faced, so that they
10	could evaluate their own programs to avoid similar
11	events. Other examples of where we use human
12	reliability analysis was the consequence study of a
13	beyond design basis earthquake affecting a spent fuel
14	pool and the ongoing containment filtration strategies
15	and regulatory analysis.
16	Next slide, please.
17	The main focus of our briefing, as Mike
18	said, is on the results of the staff=s efforts to
19	develop human reliability analysis methods. We
20	recognize that HRA is a very challenging is very
21	challenging. And as a learning organization seeking
22	to continually improve our methods, we have made
23	significant progress.
24	The integrated decision tree human events
25	analysis system, or IDHEAS, is the HRA method that the
	NEAL R. GROSS

(202) 234-4433

staff developed for analysis of reactor internal events During the development, the staff had at power. feedback positive interactions and from ACRS, extensive collaboration with the staff and external 5 stakeholders, many of which were at the panel here previously, and I=d like to take this opportunity to 6 thank them for their voluntary efforts to help us develop the IDHEA methods. And they will likely 9 continue to do so.

10 This improved method uses best features 11 from other existing methods, has enhanced state-of-the-art 12 and was capabilities, built on 13 technical basis. The generic method is also under 14 be tailored for development and can various 15 You will applications, not just reactors at power. 16 hear more details about these methods in Sean Peters= 17 presentation.

18 Now I=ll turn to Sunil Weerakkody for his 19 presentation on the regulatory uses of HRA.

> DR. WEERAKKODY: Thank you, Rich.

Next slide, please.

22 My name is Sunil Weerakkody. I=m the 23 Chief of the PRA Operations Support and Human Factors Branch. I want to use the next 15 minutes to discuss 24 25 the importance of human reliability analysis in our

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

7

8

20

21

decisionmaking. I also want to make some remarks with respect to how some of the research that the Office of Research is conducting is very relevant and will be useful to us.

There are a number of areas in reactor regulation where we use human reliability analysis to make significant impacts on decisions, and I=m going to mention three examples. We use human reliability analysis to determine the significance of inspection findings as part of our reactor oversight process.

We use human reliability analysis to the risk-informed license amendment request. We may use human reliability analysis in the rulemaking process as part of the reg analysis. In addition to these applications, I want to point out a few areas where a licensee may use human reliability analysis and its insights to enhance plant operations.

Next slide, please.

I=m going to use the event actually to mention -- the event at H.B. Robinson Unit 2 to further elaborate how we use human reliability analysis in the risk-informed reactor oversight process. As Rich mentioned, the event at Robinson involved equipment failures, fires, failure of operators to diagnose problems at the plant. One performance deficiency

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

	90
1	that we have to analyze as part of our oversight process
2	is the operator failing to follow procedures and the
3	deficiencies in the command and control functions in
4	the control room.
5	We used an HRA method called SPAR-H, which
6	you heard frequently, to estimate the risk significance
7	of this deficiency. We selected contributing factors
8	we call them performance-shaping factors to
9	evaluate the appropriate increase in the failure
10	probabilities using the published guidance containing
11	the SPAR-H methodology.
12	We did sensitivity analysis as necessary.
13	Then, we applied expert judgment, as appropriate, to
14	increase some failure probabilities to reflect the
15	performance deficiency.
16	Let me elaborate a bit on that. During
17	this process, using the guidance in SPAR-H methodology,
18	we changed probabilities of some failure of some
19	operator actions by as high as an order of magnitude
20	from the nominal value. We selected these values using
21	expert judgment as appropriate. We determined that
22	the risk significance of this performance deficiency
23	is wide, though we call it low to moderate. Had we made
24	only minor adjustments to these failure probabilities,
25	the finding could have been green.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

One of the things I want to do here -- it=s not necessarily in my prepared remarks -- is in the previous speakers there was a lot of discussions with respect to some of the uncertainties with respect to the human error probability. I want to make sure that when we use SPAR-H, the numbers we calculate is the starting point for discussions. In other words, in this particular exercise, we don=t just plug in the numbers and run with it and make the regulatory decision.

When we do that initial calculation, it 11 12 tells us exactly what are the key areas that could 13 influence the answer. And, if necessary, we would --14 I would send some of my staff to talk to the operators, 15 talk to the licensees as necessary. So I think the 16 advantage of SPAR, in spite of some of the weaknesses 17 that you pointed out, which means it does not give a 18 guaranteed number, is it clearly helps me make that 19 high-quality regulatory decision by focusing my staff 20 to dig into the right areas. I just wanted to make that 21 point here.

And I just gave you one example of how we use human reliability analysis in reactor oversight. Human reliability analysis, as you already know and reiterated, is not an exact science. However, as

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

(202) 234-4433

91

92 demonstrated here, it provides a very powerful tool to 1 2 to make meaningful distinctions when we make us 3 important regulatory decisions such as the ones that 4 I just talked about. In fact, more often than not, 5 human reliability analysis becomes one of the critical inputs 6 7 to the decisions in the reactor oversight process. 8 That is because operator actions in some form are a part 9 of the response in many event sequences. 10 Next slide, please. 11 Now I=m going to take an example of an 12 action operator whose reliability may make а 13 significant change in the regulatory decisions 14 pertaining to risk-informed licensing action. For this discussion, I am picking a very timely topic. 15 I=m selecting the reliability assigned to control room 16 evacuation in fire PRAs. 17 18 As you all know, a number of licensees have 19 done fire PRAs, and some of them are already performing 20 fire PRAs. When they perform fire PRAs, one of the 21 things they need to look at is the sequence where the 22 operators may have to leave the control room or evacuate 23 the control room. 24 They may have to do it for two reasons. 25 One, there may be a fire starting in the control room,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

and the shutdown systems may have -- even though unlikely, may not have worked. Or there could be a scenario where a fire is in a different area of the plant impacting the operator=s ability to control the plant from the control room. In either case, the operators must leave -- evacuate the control room, but every plant has remote shutdown panels from which they can control the plant.

Now, the human error probability that we assign to this particular probability can be very critical in our decisionmaking. In fact, for some 805 submittals, this number was a factor in deciding whether the quantitative criteria in Reg Guide 1.174 was met. For those who may not already know, which would be very few, if at all, that=s the reg guide we use to make our risk-informed licensing action decisions.

18 The staff has significant challenges in 19 establishing an appropriate approach to address this 20 issue. After considering various relevant practical 21 and operational issues pertaining to this problem, and 22 giving due consideration to inputs that the licensees 23 provided to us, we have been able to establish guidance 24 on acceptable human reliability approach in this 25 critical area for at least some parts of this problem.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

	94
1	And we are working very hard to solve the remainder of
2	it.
3	Next slide, please.
4	This example is rulemaking. Another
5	example of importance to human reliability is the
6	potential rulemaking relating to containment
7	filtration strategies. To create the technical basis
8	for this potential rule, we have to quantify the safety
9	benefit of the filtered vents.
10	One critical input to this analysis is
11	human reliability analysis. More specifically, the
12	staff must use human reliability analysis to assign
13	values for human error probabilities to establish
14	mitigating strategies. Implementing most mitigating
15	strategies involve activities conducted by humans
16	outside of the control room. By the way, we also
17	sometimes refer to them as flex strategies.
18	To that end, the probability of human
19	errors, of actions performed by plant personnel outside
20	of the control room, will influence the results of this
21	analysis. Even though methods available to us to model
22	human actions outside of the control room have not
23	reached the same level of maturity as methods available
24	to model actions inside the control room, we have a
25	large number of tools and techniques to ensure
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

qualitatively that these actions are feasible and reliable.

Now, I have to make another important point here based on some of the remarks you heard earlier with respect to how we use qualitative and quantitative insights to make the best regulatory decisions. And I can do that because all our decisions are based on -- in addition to using risk-informed-type approaches, we use high quality inputs from what I call human factors engineering in combination with the numbers to make these decisions.

12 In that context, I would like to say with 13 respect to mitigating strategies we capture both the 14 principles of human factors engineering and the numbers from HRA to make the right decisions. For example, if 15 16 you look at Section 18 of the standard review plan, and 17 NUREG-0711, which is almost like my Bible on human 18 engineering, it clearly articulates factors the 19 fundamentals of human factors engineering that must be 20 considered in developing feasible and reliable manual 21 actions.

We have a plethora of other documents this agency has published to make sure that we can ensure safety and reliability and feasibility of these actions. For example, if you look at NUREG-1852, it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

(202) 234-4433

95

	96
1	delineates how we should assure reliability and
2	feasibility of operator actions during fires.
3	And someone I think mentioned the
4	flooding. If you look at the Appendix C of the Interim
5	Staff Guidance 12-05 it describes how we use
6	qualitative factors to make sure that the actions that
7	the licensee is relying on for external floods are
8	feasible and reliable.
9	Now, after we make sure that those are
10	feasible and reliable, at some point in time there is
11	a necessity to do the best quantification we can. So
12	we do that, too, because it is necessary for
13	decisionmaking.
14	But one of the things I want to emphasize
15	is I don=t jump to the number. I have a lot of guidance
16	out there to make sure that I do the right thing.
17	Numbers are not my master, it's my slave.
18	Okay. What we do is once we make sure that
19	the qualitative criteria are satisfied, we can then use
20	well-informed judgment to assign failure probabilities
21	for these operator actions. Due to relative lack of
22	maturity of our tools in this area, we may have to place
23	a heavy reliance on expert judgment in making sound
24	regulatory decisions. Another point I want to
25	emphasize is we can make good decisions today, but if
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	you have better models we can make them more efficiently
2	in a predictable manner.
3	In response to increases in future
4	regulatory challenges in this area, we have a need to
5	increase our efficiency, clarity, and predictability
6	by additional research to more accurately model these
7	types of human actions.
8	Next slide, please.
9	Licensees also use HRA in a large number
10	of applications. Actually, what I have to say here,
11	the key message is Mr. Vaughn delivered but I still
12	want to add one important point here. In addition to
13	using human reliability analysis in areas such as
14	licensees and oversight to engage the regulator,
15	licensees, on their own initiative, use HRA to improve
16	their plant safety.
17	They use it in design reviews. They use
18	it in procedure updates. And also they use it in things
19	like operator training, so that they can focus their
20	operators to train on the human actions that are most
21	risk-significant.
22	What happens is when a licensee does a PRA,
23	they take the subset of the operator actions can be
24	you know, that can be characterized as
25	risk-significant, and they share that with the training
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	people.
2	Now, most of you may not know, when they
3	train the operators, the training the operators of
4	the power plant, when you look at their training burden,
5	you kind of feel sorry for them because they spend like
6	20 percent time getting trained. So in the initial
7	qualifications, you can=t put in a lot. But based on
8	my communications with and my personal experience
9	by having worked as a licensee for 10 years, and recent
10	communications with the SRAs, what they do is they use
11	these insights into the requal where they have a lot
12	of flexibility.
13	So the reason I say that, it=s not mandated
14	by regulation, but I think there=s a powerful benefit
15	to human reliability analysis that the licensees
16	exploit, even though it=s not required by the
17	operators.
18	Next slide, please.
19	I=d like to conclude my presentation after
20	making remarks on the relevance of the work that the
21	Office of Research is performing in human reliability
22	analysis. There are two important aspects to good
23	human reliability analysis data and methods.
24	So let me first make the remarks on the
25	methods. When I look for methods to do my
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

99

quantifications for the operator actions inside the control room, I have a plethora of methods. So what I -- what could benefit me is something that would tell me the strengths and weaknesses of these different methods. Okay? And I think to that extent I want to be thankful to Sean Peters and Office of Research for developing IDHEAS.

Now, I saw in a previous slide there was statement that maybe the whole agency is а not supportive of that. It may be a perception issue. We are using SPAR-H. IDHEAS is being developed. Okay? When we use what we are safe -- something we are safe with, when IDHEAS is ready, then we will go to that.

With respect to modeling complex human actions, those conducted outside of the control room, the situation is different. Our needs pertain to developing enhanced guidance to assist reliability of human actions outside of the control room. To that extent, a generic human reliability analysis methods supporting diverse applications that the Office of Research plans to develop will benefit us. Sean will give you details on that.

Next slide, please.

24 With respect to data, again, I am going to 25 make two remarks; one with respect to data for inside

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

the control room, and then on the outside of the control room. We tested to -- inside the control room for decades both the industry, and the licensees have been collecting data.

1

2

3

4

5

6

7

8

9

10

11

12

Now, more data help us reduce uncertainties, enhance our clarity predictability. So that is useful to us. So because of that, I think we do appreciate the fact that Sean and his staff are working collaboratively with the plant to get more additional data from a simulator using a project called SACADA. I don=t know why he named that SACADA, but that is what he called it.

So, on the contrary, when it comes to -when it comes to collecting data for actions outside of the control room, that is an important area for us. That is, I think as Dr. Lyman pointed out, it is an area that we need to focus on getting more data on, and we have -- we got into communication with Office of Research to start that process.

And, in fact, what we are finding out is, as someone else said, one of the previous persons has said, there is data out there at the plants. The licensees have what they call job performance measures, all kinds of things happening. We have not -- we haven=t started collecting that data in a manner that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	we can use it, but we have begun that dialogue with the
2	Office of Research.
3	Now, that concludes my prepared remarks.
4	My pleasure to introduce Sean Peters, Branch Chief,
5	Human Factors and Reliability.
6	MR. PETERS: Okay. Thank you, Sunil.
7	And I=d like to also thank the Commission for giving
8	us this opportunity to present our HRA program. What
9	I=d like to tell you about is what our HRA program does.
10	Our program in the Office of Research is
11	for HRA, the purpose of that program is to build
12	state-of-the-art HRA methods for the agency to use. We
13	build good tools for our staff to use. Our needs are
14	identified by both the user, by mainly Dr. Sunil
15	Weerakkody=s group, and by SRM. Three SRMs have helped
16	guide our development activities over the last few
17	years, and the primary one I am going to talk to you
18	today about is the one listed first on this slide, which
19	is the one on HRA methods. And it=s SRM-M061020.
20	This SRM told the staff to or told the
21	ACRS to work with the staff and external stakeholders
22	to recommend a method or set of methods for the agency
23	to use. My staff supported this activity by engaging
24	and we saw this as an opportunity to as a
25	developmental opportunity. Where we saw inherent
	NEAL R. GROSS

(202) 234-4433

weaknesses in many of the methods, we saw this as a way to improve those weaknesses. So I=m going to talk to you on the next slide about the activities that we have undertaken to address this SRM.

So one of the activities we first undertook was an international benchmarking program where we took teams of international operators and ran them through simulated exercise at the Halden Reactor Project. We also simultaneously took teams of experts of HRA methodologies, and we used these experts to try to predict the performance of these crews at the South -at the international -- or at the Halden Reactor Project.

This experiment brought up two questions. Number one, how applicable are these results to the U.S. crews? These are international crews at an international simulator. And also, when we ran this, we didn=t get -- use multiple crews on -- or multiple analyst teams on one HRA method. We had -- basically each HRA team used one method.

21 So we saw a second benchmarking 22 opportunity where we went forth, in collaboration with 23 the South Texas Project Nuclear Operating Company and 24 ran similar exercises at their simulator facilities. 25 And we also took multiple teams using the same HRA

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

	103
1	method and we able to try to compare that
2	analyst-to-analyst variability using HRA methods.
3	So the findings of the benchmarking study
4	that the experienced teams, teams that were highly
5	experienced, generally provided reasonable results
6	with their HRA methodologies. We found that and
7	also, in addition to what we found in the best practices
8	of HRA documents that we put out earlier, that all
9	methods have particular strengths. They were all
10	built for particular purposes, and they have strengths
11	in some of those purposes.
12	But, then again, every method had a
13	limitation here or there. So the other thing that we
14	also found was that every method that we determined
15	could use better guidance in one area or another of
16	their methodology to help reduce some of that analyst
17	variability.
18	Next slide, please.
19	So given the information we already knew
20	by comparing HRA methods versus our best practices, and
21	by the preliminary results of the U.S. and
22	international benchmarking studies, we convened a
23	workshop of international human reliability experts.
24	And the findings of the workshop we
25	posed this SRM question to them. The finding of the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

workshop was that they didn=t see one single method that was really suitable for all the NRC applications. They also saw this analyst-to-analyst variability as probably the single biggest issue we should try to tackle in our research programs.

So the staff got together and we came to the decision that we would use this as an opportunity to build an integrated method for the agency to use. We have done HRA for roughly three to four decades. We have developed the methodologies over those timeframes. And we wanted to take the pieces that we knew worked well and retain those, and we also wanted to improve on the areas that we know weren=t working well, that the analysts pretty much had to work around throughout their methodologies. And we also wanted to maintain this focus on improving analyst-to-analyst variability.

Next slide, please.

So this is our third activity. It=s the integrated method development. Basically, the goal of this development was to develop a methodology and reduce the variability and support the diversity of applications throughout the NRC. We wanted to conform to the ASME ANS PRA standard and the HRA good practices that we have developed over the years.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

	105
1	We wanted to retain those strengths that
2	we developed and the methods over the 40 years, and we
3	wanted to enhance key capabilities and key limitations
4	in the state of practice, the ones that we could tackle.
5	There are some that may be more challenging than others.
6	And we also one key piece we wanted to
7	have is we wanted to have a state-of-the-art scientific
8	basis that was clearly linked to the methodology. And
9	we also wanted this to be generic and flexible enough
10	to support the diversity of applications at the NRC.
11	So next slide, please.
12	So what you=ll see here is our strategic
13	framework for method development. The top box here is
14	the structured cognitive basis framework. This is our
15	draft NUREG-2114 where we will be publishing it this
16	year. ACRS has reviewed this, this scientific basis
17	for human reliability, and the direct quote from the
18	ACRS was that it contains valuable information to
19	improve the understanding of the theoretical basis for
20	human cognitive performance, the causes for human
21	errors, and a structured framework to assess the
22	contributions to error in the context of an evolving
23	event scenario. It should be published, according to
24	the ACRS.
25	We are publishing that. We see it as a $$
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The next box down is our generic methodology for diverse applications. 6 I=m going to talk a little bit about that here in a little bit, but the final box is the IDHEAS method for internal at-power When the SRM was written back in 2006, the real events. issue at hand was that we had a plethora of methods for Level 1 internal events at power. And so this is where we started our work, but -- and we started working with 13 industry. Industry is a key co-developer in the EPRI group, is a key co-developer of this methodology with 15 us.

16 And we started down that path, but as you 17 guys know, in 2011, all of a sudden we started having 18 a more emphasized focus on events outside of the control 19 We don=t really have methods that were really room. 20 designed for ex-control room activities. So we had to 21 take this project a step back and realize, wait, we=re 22 starting to apply this into spaces like Level 2 and 23 Level 3 PRA analysis. We are applying HRA in areas 24 such as medical, as spent fuel storage and 25 transportation, and as far as long-term waste disposal.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

7

8

9

10

11

12

14

Research.

	107
1	So these types of areas were areas we need
2	to see we have a methodology that cannot just capture
3	this Level 1 at-power, highly proceduralized control
4	room actions, but we needed to have some framework to
5	address these other domains, and the ones that are going
6	to be more important to the agency in the future.
7	So we started this generic methodology
8	development in roughly that same timeframe. And the
9	IDHEAS method, the ACRS also reviewed that, they
10	identified some key enhancements, most of which we
11	agree with, and we are working on those enhancements
12	right now. And they also identified that they need a
13	full scope testing of this methodology.
14	This full scope testing was also
15	identified by our user offices and our users inside the
16	agency, that before we roll this out we want this full
17	scope testing. And this would be something that has
18	never been done with an HRA methodology, to run through
19	a full scope testing of it before use.
20	Next slide, please.
21	So we get the question, you know, how do
22	we account for experienced operators? And how do they
23	perform in these scenarios? Basically, each scenario
24	has particular tasks that must be performed. And each
25	of those tasks has certain demands, and those demands
	NEAL R. GROSS

(202) 234-4433

108 have associated performance-influencing factors. 1 And talked 2 quys have -- we=ve а lot about you 3 performance-influencing factors, and the previous 4 panelists. 5 We have like stress, we have distraction, we have fatigue, we have the design of the interfaces 6 7 or the system, we have the training, we have the 8 procedures. These things compile together to create 9 -- to basically -- they work against the cognitive 10 limits of the operators. The operators can only think 11 and cover so many details simultaneously. 12 Trained operators will handle these 13 details much better. Trained operators with the right 14 procedures will handle these details much better than 15 people that aren=t trained or maybe have lower quality 16 procedures, and this leads to successes or failures. When you exceed those cognitive limits of the crews, 17 18 you can lead to errors in that situation. 19 Next slide, please. 20 And so in the HRA process we go through --21 we evaluate those PRA scenarios. It=s a highly 22 structured process and which I personally like to 23 believe is more of like an expert judgment process.

And we look at the scenario. Say this scenario we have a loss of reactor coolant pump seal cooling. We know

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

the human action is that we have to trip the reactor coolant pumps to prevent seal damage and potential core damage down the path.

The reactor operators can either trip the reactor or they don=t. If they don=t, you can lead down a path towards failure. And if they do, you have a path towards success. And we tackle that particular scenario through both the qualitative analysis, which what I would say 90 percent of -- 99 percent of all HRA practitioners view as the most important piece of HRA is this qualitative analysis process, where you try to really understand the scenario and you try to identify those human failure events that are associated with the PRA, and you try to analyze the tasks that the operators have to perform.

And then you go down through the human failure quantification, where we identify, okay, now that we know the tasks you have to perform, how can they fail analvze at these tasks. We those performance-influencing factors that we get from that contextual information from the event, and then we go through this expert process of estimating the human 23 error probability associated with it.

want to just restate, most 24 As Ι HRA 25 practitioners view that last step, the analysis of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

	110
1	human error probability estimate, as the least
2	important of all the steps. We don=t gain the insights
3	necessary from the human error probability but from the
4	rest of the structure of the accident progression.
5	Next slide, please.
6	So our basis for our IDHEAS methodology is
7	that our humans, our teams, they perform their tasks
8	through these cognitive functions. As on our previous
9	example, we needed to trip the reactor coolant pumps,
10	and we have these various underlying cognitive
11	functions. We have detection, understanding,
12	decisionmaking, and action. So in this particular
13	example, when you detect an alarm is going off, when
14	you check those plant parameters and see what the actual
15	problem is, that sort of detection stage, we need to
16	understand what the plant is doing, and we need to make
17	the diagnosis steps of diagnosing that we lost that seal
18	cooling.
19	We also need to make the decision, oh,
20	great, we need to trip the reactor coolant pumps. And,
21	finally, we need to execute our procedures to actually
22	do that trip of the pumps.
23	Next slide, please.
24	And so what you=ll see on this slide is a
25	structure of how these particular cognitive functions
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	111
1	are laid out, I think explicitly linked in our IDHEAS
2	methodology. That we have that task, that human event,
3	which is the reactor coolant pump seal cooling loss.
4	We have to monitor the plant, diagnose that problem,
5	follow our procedures for taking care of that problem.
6	And we do that through these cognitive functions.
7	And potential failure modes for that is,
8	say, one, we did not attend to the alarm, say we didn=t
9	see it, or we didn=t understand the alarm or the data
10	that was presented by the plant. Or we delayed our
11	implementation because we had numerous competing
12	priorities that may have taken precedence over this
13	particular area.
14	And there are various
15	performance-influencing factors that can go into that,
16	and we can be distracted. May we have command and
17	control issues, we have alarm design, we have a
18	perceived urgency of other tasks that prioritize over
19	this one, or we even may have procedural or training
20	issues as we=ve seen in other events.
21	Next slide, please.
22	And so then we as a last step in the
23	process, we estimate our human error probabilities,
24	where these error probabilities vary based upon the
25	complexity and the combinations of the influencing
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	factors. And these failure scenarios were estimated
2	through a formal process, expert elicitation process,
3	using experts in operation, human reliability
4	analysis, PRA, and the cognitive sciences.
5	And what you=ll show and this is how the
6	IDHEAS methodology is set up that the more complex
7	tasks have a more likelihood for failure, just as we
8	have seen in real-world events. And a simpler task
9	with fewer negative performance-influencing factors
10	have a higher probability for success.
11	Next slide, please.
12	So the ACRS has looked at the IDHEAS
13	methodology and has reached the conclusion that there
14	are key elements that will reduce the interanalyst
15	variability. And these particular improvements that
16	we have made with the IDHEAS methodology include that
17	we have taken the bits and pieces of various HRA
18	methodologies and taken those strong pieces.
19	We provided guidance on every step of the
20	HRA process. Many methodologies don=t have guidance
21	on all steps or what I would say complete guidance on
22	all the steps. We have enhanced guidance on the
23	qualitative analysis and task analysis. We have seen
24	particularly where these areas being what we consider
25	the most important part of the HRA, these are areas that
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	113
1	we have enhanced that guidance.
2	We have an explicit model for the human
3	cognition, and we have linked that to the human failure
4	modes. And we have explicit guidance for
5	performance-influencing factors. The basis for those
6	performance-influencing factors linked back through
7	our scientific literature for human factors, and we
8	have questionnaires to help the analysts assess those
9	performance-influencing factors and the assessment of
10	the methodology.
11	And, finally, we estimated these human
12	error probabilities through expert panels as we don=t
13	have significant enough data to do it analytically yet.
14	Next slide, please.
15	So initial testing of this methodology,
16	three HRA analyst groups independently tested the
17	IDHEAS method. And I call this preliminary testing
18	because it was just a proof of concept of the
19	methodology. We found that the parts worked as
20	intended. There are key we believe key improvements
21	to the limits in the state of the practice. There is
22	good traceability, clear documentation.
23	We have what we consider, based upon our
24	three results take it for what it is that we have
25	some reasonable interanalyst variability. There is
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

114 more analysis effort up front. There are simplified 1 2 methods that don=t pay good homage to really 3 understanding the scenario, so there will be more 4 interanalyst -- or more analysis effort up front for 5 understanding that scenario and laying it out. But we believe it reduces deliberation on 6 7 the back end. This is what they have seen on the --8 when you have one analyst team create their model, say 9 the industry does, and we create our model, and then 10 you argue about those differences in the model, we 11 reduce that because we have the clear pass to run 12 through the methodology. And we also -- given that this is a 300-plus 13 14 page document, it is not as easy for the users to use 15 as they would like. So they desire clear user-friendly 16 implementation guidance, so we are working on 17 developing a user=s manual for the users to promote 18 that. 19 Next slide, please. 20 So we also -- given the context that we --21 we are also developing a generic methodology. Given 22 the fact that we have, you know, other areas, Level 2/3 23 PRA, reactor shutdown operations, external events, 24 fuels material byproduct applications of all interest 25 to the NRC, we have had to develop -- we have had to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	think in the larger context than just this Level 1
2	model. And so we have been we have begun developing
3	that. And this will allow us to tackle a broad spectrum
4	of human actions, including ones without detailed
5	procedures or ones performed by people outside of the
6	control room or non-trained operators.
7	We may have complicated decisionmaking,
8	which comes from the technical support center or
9	operational support center. We also have the
10	performance-influencing factors that we don=t
11	typically experience or use in a control room, like you
12	are in a high radiation field or you have floods or you
13	have fires. These kind of things aren=t typically
14	assumed in the current methodologies.
15	Next slide, please.
16	So the path forward. The cognitive basis
17	framework, we are publishing that this year. We are
18	using it in the NRC=s human factors and HRA engineering.
19	Our IDHEAS methodology, we are going to take that, make
20	many of the enhancements that the ACRS is recommending,
21	and we are going to be testing that for NRC applications
22	with our users and with industry. And we are
23	developing this generic methodology. We are currently
24	tailoring it for the containment filtration strategies
25	rulemaking and using some of the insights from that
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	116
1	methodology for that rulemaking effort.
2	And we are also working with NRR to help
3	guide us towards the other areas that we want to tailor
4	that generic methodology for, and we=ll be finalizing
5	our user=s guidance in the 2016 to 2017 timeframe.
6	Next slide, please.
7	So I wanted to just briefly talk about the
8	other activities that help inform this methodology, and
9	we have an expert judgment guidance SRM that told us
10	to develop the standardized expert judgment method for
11	the agency to use. We are heavily using that expert
12	judgment guidance insight in both the IDHEAS
13	methodology and in the Level 2 and 3 PRA that the staff
14	is performing. And we also have a very well-developed
15	HRA data program where we developed the SACADA
16	database, which Sunil referred to earlier, where we are
17	working with the South Texas Project Nuclear Operating
18	Company, collecting all of their live simulator
19	training data, and we are also collaborating with
20	international partners like Halden and other and a
21	couple of other countries to collect their data and
22	share data on the human performance and simulator
23	scenarios.
24	We are developing baseline human
25	performance data at our university partners. We have
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

-- the NRC or my group owns two pressurized water 1 reactor simulators, one that we have at the University 2 3 of Central Florida which helps us tackle some of the 4 questions about these performance-influencing factors, and we also team up with the Halden Reactor 5 6 Project to do what we consider hiqh fidelity 7 experiments with operational crews to test some of 8 those insights that we gained from University of 9 Central Florida. 10 So next slide, please. 11 So these data sources, these are -- this 12 is just a picture of the various data sources. The top 13 left is our team of human factors operations, cognitive 14 sciences, and HRA practitioners that helped develop the

SACADA database at the South Texas Project. The top right is our NRC-owned human performance test facility at the University of Central Florida. And the bottom picture is one you guys have probably seen a ton of times, which is the Halden Reactor Project, where we do all of these targeted human performance experiments.

And our concept with this data is that we will take the data that we have, and we will try to validate the HRA methods that we -- that our IDHEAS methodology used. So there are explicit linkages and very similar structure to the SACADA database to the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

15

16

17

18

19

20

	118
1	IDHEAS method-based sciences. And so our concept over
2	the next few years is to try to prove this concept of
3	using that data to back-inform the human error
4	probabilities and the IDHEAS methodology.
5	And I=d like to pass my presentation over
6	to Rich Correia for the conclusions.
7	MR. CORREIA: Thank you, Sean. In
8	closing, Commissioners, human reliability analysis is
9	used to support our regulatory activities. The staff
10	developed the IDHEAS method, as you have heard from
11	Sean, which was done in collaboration with EPRI and
12	other stakeholders. We are also developing a generic
13	method that can be used tailored for multiple
14	applications. These methods were developed using
15	state-of-the-art technical analysis and operating
16	experience.
17	Finally, as part of our human reliability
18	analysis program, we will seek to improve our methods,
19	and we continue to test them and collect and use more
20	human performance data.
21	This concludes our presentation. Thank
22	you for the opportunity.
23	MR. WEBER: I would just add in closing
24	that appreciate the close collaboration among the
25	offices, particularly the Office of Nuclear Regulatory
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	119
1	Research, the Office of Nuclear Reactor Regulation, and
2	the Office of New Reactors. While you didn=t hear a
3	presentation about the application of these methods in
4	other areas, we are also, as we are developing this
5	generic methodology, thinking about how would we apply
6	this to broader apply across the responsibilities of
7	the agency.
8	Thank you.
9	CHAIRMAN MACFARLANE: Great. Thanks
10	very much, guys.
11	Commissioner Apostolakis.
12	COMMISSIONER APOSTOLAKIS: Thank you.
13	First of all, I like what Mr. Weerakkody said about the
14	integrated approach. But you did start with a model
15	that has no justification, the SPAR-H, which brings me
16	to what I said earlier this morning.
17	You really have to develop
18	application-specific guidance, not as a side project
19	but a major effort should be there. Developing a
20	generic methodology is okay, but, for example, the
21	significance determination process, can you develop
22	guidance just for that, taking only what is appropriate
23	from the generic methodology and give step-by-step
24	guidance?
25	The flex methodology, we have asked the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

industry to tell us or to explore what can go wrong. I mean, transporting this heavy equipment under extreme conditions is not a straightforward manner. So having a generic methodology is good, but it would be better if you had specific guidance how the staff would evaluate the feasibility and reliability of these actions.

Sean, you mentioned that you are already doing something about the filter vent strategies, which is good. So I -- that=s what I have in mind. I mean, here is what you will do, and this is a simple model, but it is based on a more sophisticated model.

13 In my view, this is why ATHEANA did not 14 It was too elaborate. And speaking of catch on. 15 ATHEANA, have you guys explored why a model that was 16 advertised as a great model 10 years ago now we don=t 17 even talk about it? Are there any lessons learned 18 there other than it was too complex for the average 19 user? Where is ATHEANA now?

20 MR. PETERS: Where is -- okay. Т 21 completely agree with your statements about making 22 simplified methods model-specific. And on the 23 strategic framework slide, we show that the generic 24 methodology is just something to be all-encompassing, 25 that it=s a standard framework for HRA. So when we have

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

	121
1	these particular items like SDP, we know we need to
2	sub-select it to make it more useable. So I completely
3	agree with what you=re saying.
4	This is kind of the concept that we have
5	right now, that for each method, for each detailed use,
6	we will have this standard scientific framework and we
7	will then build simplified methods based upon that
8	standard scientific framework. So completely agree.
9	And we haven=t really done a lessons
10	learned with the ATHEANA methodology, but the feedback
11	we have constantly gotten was the difficulty of use,
12	the amount of effort and resources that are put into
13	that. It is not completely dead, however. It is a
14	piece of the fire HRA. It is a piece that some industry
15	participants are using to help understand that
16	qualitative analysis piece of the fire HRA.
17	And so from that standpoint, ATHEANA had
18	some very great pieces and qualitative analysis that
19	we are trying to capture into our IDHEAS methodology.
20	And even pieces that were recommended to us by the ACRS
21	to incorporate into our IDHEAS methodology. So I can=t
22	say that the IDHEA concept of ATHEANA is totally dead,
23	but it is living on not just in fire HRA but in our IDHEAS
24	methodology.
25	COMMISSIONER APOSTOLAKIS: So there are
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	still elements of ATHEANA that are useful to what you
2	are doing now, as it would be expected.
3	I remember a very interesting simulation
4	exercise at Halden where they had where finally they
5	are using U.S. troops I mean, crews, right? Because
6	a question the ACRS asked a long time ago, what are the
7	results of simulation exercises that use Swedish crews
8	and a Norwegian operator, what are they telling us about
9	American operators? Well, you took care of that.
10	But in one particular exercise, I remember
11	several crews responded to a particular accident
12	sequence in five to six seconds. And one crew took 11,
13	12 seconds. It was clearly an outlier. And I=ve been
14	wondering, what does that tell us? I mean, is that
15	something that is included in IDHEAS or in other models?
16	I know that we are using the time available
17	and time required in the fire analysis. Do we do that
18	in other applications as well? I mean, one crew was
19	completely off.
20	MR. PETERS: Sure.
21	COMMISSIONER APOSTOLAKIS: Doubled the
22	time to realize what is going on.
23	MR. PETERS: Yes. What I=ve seen and
24	I may get over my head very quickly, so I=ll rely on
25	Dr. Xing to correct anything that I say that=s
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The ACRS has recommended a slightly different approach in their letter last week, and we are looking at various alternatives at this moment. So I=m not going to say for definite we are keeping this time available versus time required methodology that is there, but that is one piece we=re looking into.

And how they=ve addressed that over time is -- what I remember is that if you have double the time that you really think it=s going to take, that from that point it=s a feasible action. If it=s less than double the time, it=s a non-feasible action, and that kind of two-step function of granularity may not necessarily be useful to the analyst as --

18 COMMISSIONER APOSTOLAKIS: But when you 19 are eliciting expert judgment to quantify, the experts 20 are not thinking in terms of time, are they?

21 MR. PETERS: They do assess the 22 feasibility of the action and the time required to do 23 those actions. It is one of the considerations in that 24 process.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

COMMISSIONER APOSTOLAKIS: As a final

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

25

	124
1	comment, I read the ACRS letter and it seems to me the
2	Committee was trying to compete with you in the number
3	of pages.
4	(Laughter.)
5	It was an incredibly long letter.
6	MR. WEBER: Very thorough.
7	COMMISSIONER APOSTOLAKIS: Sure. But it
8	was long. Thank you very much.
9	CHAIRMAN MACFARLANE: Commissioner
10	Magwood.
11	COMMISSIONER MAGWOOD: Thank you,
12	Chairman. The previous panel discussion with the
13	Commission, it sort of highlighted a variety of cases
14	where, you know, people can either do something very
15	positive and beyond procedures, or they can fail to
16	implement procedures for one reason or another.
17	So, and I wonder, in thinking about that,
18	and there was discussion about the uncertainty that
19	goes with this and the other panel discussed this, but
20	in thinking about it, you know, in a very crass way,
21	HRA is an attempt to reduce the individual to the same
22	type of functionality as a pump or a valve in a PRA.
23	And pumps and valves in PRA have
24	extraordinary behaviors, too. You know, there were
25	pumps that lasted far longer than they were supposed
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	to, and that is extraordinary and it=s a good thing when
2	it happens. But you don=t count on it, but so it=s
3	you have pumps that, for whatever reason, just fail very
4	quickly, and, I mean, there is no clear explanation for
5	why that particular pump failed. And that=s something
6	that you know, that to some crass way people are sort
7	of like that, too.
8	First, let me I have a followup on that,
9	but I don=t know if you want to comment on that. Is
10	that
11	MR. PETERS: Yes. I think my concept with
12	HRA is that we do try to model an average for, say,
13	someone that we consider the middle of the road, because
14	we are trying to get these probabilistic insights. So,
15	yes, you will for all these cases where you have a
16	heroic action, you have somebody running forth and
17	taking charge, you have another guy who is running the
18	other direction. And we have examples of that in
19	Fukushima, and we have examples in other major
20	catastrophes.
21	And so from that standpoint, those are hard
22	to capture when you=re doing a probabilistic
23	assessment. You=re trying to say, what are these
24	probabilities? So for us, for those insights, it=s
25	best gained when you are trying to do a like a
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

predictive HRA. You are doing something that is more 1 2 middle of the road or more average. But when you=re 3 doing a retrospective analysis, and you can actually see what people did, you can then take HRA and say, 4 5 AOkay. Now I have this many people running away, and this many people running into the fire. Now what are 6 7 the possibilities for success or failure based upon 8 that knowledge? So we can look at it both ways. 9 COMMISSIONER MAGWOOD: And I think that 10 I=m sort of conceptually -- and I recognize people 11 aren=t pumps and valves, but conceptually it=s very 12 similar to the way we -- that we analyze pumps and valves 13 and just -- so there are extraordinary things that 14 happen on both sides of that, and you try to take an 15 average. And that=s just the basis of the analysis. 16 And as long as you understand the limitations of that,

I think you mentioned that you anticipate a full scope test of IDHEAS at some point. Can you elaborate a bit more on what that means?

you can apply this as a tool.

21 MR. PETERS: Well, yes, I just read the --22 like a rough draft of the testing plan yesterday. And 23 I=d actually prefer the person who wrote the plan to 24 answer that question. So I=ll pass it to Dr. Xing.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

COMMISSIONER MAGWOOD: You=ve been trying

(202) 234-4433

17

18

19

20

25

(202) 234-4433

126

	127
1	to get her up here all day.
2	MR. PETERS: I=ve been trying to get her
3	up there forever, yes.
4	DR. XING: Hi, Commissioners, and ladies
5	and gentlemen. I am Jing Xing. I=m the technical
6	leader for developing the IDHEAS and this whole suite,
7	the project.
8	As far as the full scope, there really
9	isn=t a very scientific definition. So, but the
10	minimum criteria we would like for testing will be we
11	should prove the methods are working, and we should
12	demonstrate the delta between this method and our
13	current practice. And we should demonstrate it=s easy
14	to use for people, that's our testing goal.
15	And this testing goal we develop has the
16	basic requirements of what we need. For example, we
17	need to get our users fully involved for what they
18	expect for testing. Then, to determine the scope. So
19	for the large at a high level, the scope for the
20	testing scope, we should test this method. To cover
21	to use the I would say a good enough number of
22	testing teams, because we want tests, variety of the
23	analysts, the test it=s between the analyst team.
24	And we want to use the scenario that covers from easy
25	to difficulty, and also cover our current application
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	128
1	that we should include in SDP scenarios, and the
2	challenges used in simulators.
3	So, and also, we need to develop for the
4	user acceptable testing criteria. Testing for what?
5	So we want to test its accuracy. Maybe for some rare
6	event you can never be able to reach the accuracy. So
7	what is a good enough criteria?
8	Those are the things that in our testing
9	plan. And it=s not an ideal package, but I would say
10	it=s as Sean said, this is it=s the most
11	comprehensive testing for the HRA methods that have
12	developed so far.
13	MR. WEBER: Okay. It sounds like we are
14	still developing it. And we=ll, I=m sure, work with
15	Research and NRR to ensure that as the test plan is
16	formulated that it is responsive to our regulatory
17	needs.
18	MR. PETERS: Literally, this is a
19	one-week-old process at the moment. So
20	COMMISSIONER MAGWOOD: I understand.
21	Thank you.
22	I think Commissioner Apostolakis
23	mentioned, just in passing, how you are applying HRA
24	in the to the in the significance determination
25	process. Is there clear guidance on how to do that?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	129
1	Is that something that the staff is using routinely now?
2	DR. WEERAKKODY: Yes. Let me answer
3	this. What we have done is, especially with
4	significance determination process, we have to
5	recognize it is a process where we have made timely
6	decisionmaking, but we had to make good decisions.
7	So what we have done is we have created
8	another guidance, what we call we call it fast
9	guidance, risk assessment. I can=t remember SNP
10	stands for. But what we do there is we identify some
11	critical areas in HRA that might be what I call pinch
12	points. So there is a separate guidance for that.
13	COMMISSIONER MAGWOOD: Okay.
14	DR. WEERAKKODY: Yes.
15	COMMISSIONER MAGWOOD: Let=s see, I think
16	that=s the end of my questions. A couple of quick
17	comments. First, I just wanted to thank the staff for
18	working so hard to collaborate. We have a lot of
19	partners here who are engaged in this work, and it=s
20	very satisfying to see that we have not been insular
21	in this. We have reached out quite broadly to a wide
22	range, and I think that has been very productive and
23	very beneficial.
24	I also wanted to gratuitously recall one
25	of my old professors, which who would be very amused
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	by this conversation. He was actually a philosopher,
2	and his specialty was many papers he wrote over many
3	decades about how the human mind can know what the right
4	thing to do is but yet still do the wrong thing. And
5	to some degree, we are kind of having that conversation,
6	not in the philosophical sense, but in a real sense.
7	So I wish he were here to sort of sit and
8	listen to this conversation. I=m sure he would opine
9	about this.
10	Finally, I wanted to end with a question
11	or a clarification from Commissioner Ostendorff. I
12	believe I heard him make use the phrase Ashoot a
13	torpedo.@ And I was always under the impression that
14	one launched a torpedo.
15	(Laughter.)
16	And I was hoping that as I hand the
17	microphone over to Commissioner Ostendorff that he
18	could provide some clarification on that terminology.
19	Thank you, Chairman.
20	CHAIRMAN MACFARLANE: Thank you.
21	Commissioner Ostendorff, maybe you can
22	provide some clarification.
23	COMMISSIONER OSTENDORFF: This is a very
24	sensitive issue.
25	(Laughter.)
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	The correct the equipment used on a
2	torpedo on a submarine to launch a torpedo is called
3	the Launch Delivery System. But for the cowboys, for
4	the people in the club, shooting a torpedo is typically
5	the terminology used on the boat. But thank you for
6	paying attention.
7	(Laughter.)
8	Thank you all for your presentations. I
9	particularly appreciate that Sunil and Sean used
10	specific examples, which I found very, very helpful.
11	But I=m going to kind of bore down on one of the examples
12	of Sunil here, because I want to make sure that I
13	understand where you=re headed.
14	I=m looking at your Slide 9 on containment
15	filtration strategies. And a couple of comments that
16	I understand we should look at, first, the need
17	and I agree there is personnel actions outside of the
18	control room that come into play here. Do I
19	understand, though, that you are trying to assign a
20	numerical probability of success of those operator
21	actions outside the control room from the standpoint
22	of the rulemaking or filtration strategies?
23	DR. WEERAKKODY: Yes, Commissioner.
24	Yes.
25	COMMISSIONER OSTENDORFF: Okay. That
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	causes me some concern perhaps, because I=ve heard
2	I think I heard both you and Sean say that there is no
3	generally accepted method.
4	DR. WEERAKKODY: If I may elaborate, I
5	think
6	COMMISSIONER OSTENDORFF: Please do,
7	because I want to get
8	DR. WEERAKKODY: Yes. I gave you a short
9	answer. She said yes/no answer. But to kind of get
10	the context, you have to understand the process you go
11	through. First off, we ask large number of questions.
12	We will be asking large number of questions from the
13	licensee about their procedures and the guidance and
14	the training, whether they=ll work during the
15	environmental conditions that will be present during
16	the accident. So there=s that qualitative piece.
17	We look at that as a first step to make sure
18	that we have good actions that are feasible. Okay. So
19	that=s the first thing we would cross.
20	Now, the second step is, at some point in
21	time when you try to do the cost-benefit analysis, you
22	the next step is you assign some screening numbers.
23	Now, when I say Ascreening numbers,@ you might say for
24	activities outside of the control room there=s a 30
25	there=s a 70 percent chance of success.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	133
1	Now, I may not have a very, very scientific
2	basis for that, but we have a lot of experience with
3	respect to looking at different procedures and coming
4	up with a reasonable screening number. For example,
5	we know it=s not going to be one in a hundred, because
6	it=s done in outside of the control room by people
7	and there=s a lot of challenges.
8	Now, after we do the screening analysis,
9	that can highlight some of the key things that we need
10	to fully explore. Now, my knowledge with respect to
11	how we would go from there to doing the actual
12	cost-benefit analysis stopped because my
13	COMMISSIONER OSTENDORFF: Whoa, whoa,
14	whoa, whoa, whoa, whoa. Where do you get the
15	cost-benefit analysis? I thought we were talking
16	about human the probability of human action humans
17	performing acquired operator actions.
18	DR. WEERAKKODY: But to do the
19	cost-benefit analysis, you have to come up with, what
20	is the safety benefit of this particular proposed
21	change?
22	DR. UHLE: Sunil, can I help out a bit?
23	DR. WEERAKKODY: Yes, please.
24	DR. UHLE: Hi. My name is Jennifer
25	COMMISSIONER OSTENDORFF: I want to
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	I=ve got limited time. Jennifer, I=m fine with you
2	being there. I want to focus, though, on my key
3	I=m not interested in the cost-benefit analysis. I
4	want to understand, though, how you are quantitatively
5	assessing the ability of an operator outside the
6	control room to perform actions associated with
7	containment venting or filtering. That=s what
8	DR. UHLE: Okay.
9	COMMISSIONER OSTENDORFF: I=ve got
10	limited time here.
11	DR. UHLE: Again, with our limited
12	analyses or methods that have been benchmarked for
13	complex scenarios outside of the control room, we
14	really look at human factor insights. So, for
15	instance, where is the equipment? Is it easily
16	retrievable? What would be the operating conditions?
17	COMMISSIONER OSTENDORFF: Those are your
18	Part 1, which I agree with.
19	DR. UHLE: Okay.
20	COMMISSIONER OSTENDORFF: I=m fine with
21	I=m concerned about Part 2.
22	DR. UHLE: Okay. And so we have, you
23	know, this this I would say qualitative view. When
24	we go to do the technical basis for the rulemaking, we
25	have to understand the benefit, the safety benefit of
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	this action. So we are arranging the values, we are
2	doing sensitivity studies. If it turns out that the
3	technical basis highly depends on these numbers, then
4	we=ll be diving in deeper and perhaps well, we are
5	going to plants to see these actions taking
6	COMMISSIONER OSTENDORFF: I=m sorry, but
7	I=ve got limited time. I don=t think you=re answering
8	my question. I think the question I=m getting to is
9	I understood Sunil as saying that you=re going to assign
10	some quantitative number
11	DR. WEERAKKODY: Yes.
12	COMMISSIONER OSTENDORFF: to the
13	likelihood of a particular operator action being
14	completed outside of the control room as part of the
15	containment filtering strategies procedures for a
16	particular plant.
17	DR. WEERAKKODY: Correct. Yes.
18	COMMISSIONER OSTENDORFF: Isn=t that
19	that=s what concerns me.
20	DR. UHLE: Right. But we=re using
21	we=re doing that in a range of values. We recognize
22	it=s not a precise value, so we=re doing several
23	sensitivity studies. And, for instance, from the
24	human factors approach, if it=s highly likely, okay,
25	maybe that=s 70 percent. If it=s you know, if it=s
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	moderately likely, maybe that=s 50. If it=s not if
2	it=s very unlikely, then maybe that
3	COMMISSIONER OSTENDORFF: Okay.
4	DR. UHLE: is 10 percent.
5	COMMISSIONER OSTENDORFF: That concerns
6	me, just as an individual Commissioner. I=m not I=m
7	just telling you that I=m trying to understand because
8	other comments that you made and Sean made about the
9	lack of you know, lack of agreed-upon methodologies,
10	when you=re trying to quantify something that we
11	perhaps don=t necessarily have agreed-upon consensus
12	tools yet, can be quantified.
13	DR. WEERAKKODY: Can I say something?
14	DR. UHLE: Sure.
15	DR. WEERAKKODY: Yes. I think the part
16	that we did not mention is
17	COMMISSIONER OSTENDORFF: Thank you,
18	Jennifer.
19	DR. WEERAKKODY: again, if you are
20	looking for, yes, here is an absolute number, it=s
21	scientifically 100 percent correct, we are not there,
22	but we deal with the sensitivities. But what we do look
23	at is close look at the operating procedures, some of
24	the other procedures they look at that that they will
25	be using. And we have lot of experience, Commissioner,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	137
1	in terms of assigning consensus-type numbers to similar
2	kinds of situations, number of other applications. So
3	
4	COMMISSIONER OSTENDORFF: Okay. So I=m
5	going to make a comment here, and then I=m going to ask
6	you to respond to it, because, again, I=m watching the
7	clock here. I know this has already been a long
8	meeting. But I=ve got to tell you, you know, the
9	Chairman raised comments about uncertainty earlier.
10	Commissioner Svinicki raised which I agree with.
11	Commissioner Svinicki raised comments about
12	extraordinary actions by people under difficult
13	circumstances.
14	I fought fires on submarines before, and
15	I would laugh at anybody trying to model the ability
16	of somebody numerically to successfully fight a fire.
17	I=ve done it before, and I would I=m sorry, I think
18	the credibility factor there is really key to me.
19	Commissioner Magwood made a comment,
20	previous questions about concerns on equating pumps and
21	valves with people, which I agree with, that so, you
22	know, I go back to Jim from the previous panel talking
23	about integrated crew response, where there=s backup
24	of other people, if somebody makes a mistake, where is
25	somebody else going to weigh in to back them up? Those
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	are things that are very difficult to assign a number
2	to, yet those are real operator actions and real
3	responses.
4	So I=m a little bit skeptical of what I saw
5	on the note page for this slide, because I=m hearing
6	some inconsistent things from our staff about, well,
7	no, we don=t necessarily have good models to agree to,
8	yet you=re going to try to use these on a rulemaking
9	that is very important to the Commission in the near
10	term.
11	DR. WEERAKKODY: If I
12	COMMISSIONER OSTENDORFF: I=ll stop
13	there. So, please, I=ve said a lot.
14	DR. WEERAKKODY: May I say, I think I
15	don=t want to leave a concern with you, because I think
16	one of the things we did not mention is I=m not going
17	to argue with, you know, how uncertainty, you know, the
18	numbers there, but every regulatory decision we make
19	gets risk-informed. In other words, this whatever
20	the number we come up with is, one of the four criteria
21	we look at, whether it is this or SDP, we are looking
22	at things like defense in depth, safety margin, so when
23	we make a proposal on anything, or we make a decision,
24	we do give a hard look at those
25	COMMISSIONER OSTENDORFF: Yes, but you=re
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

-- I=m talking specifically about the operator action piece and your statement that somewhat alarms me. And I highlight that because this rulemaking is before -you know, is something that is very important to the Commission. I certainly agree with your first step. Are these actions feasible? Can they be done? Can you observe these in a simulator in the plant? And so I think I completely agree with that Part 1.

9 But that Part 2 piece of trying to assign 10 a number, man, I will tell you from experience in the 11 military and in the nuclear plant operations military, 12 also through some family experience in combat recently, 13 that the military doesn=t try to assign a .63 percent 14 that this soldier is going to shoot that insurgent 15 without having to get backup from this person over 16 That=s just -- you train and practice and you there. 17 identify those errors, and you try to reduce those 18 errors to as low a level as possible through training 19 and repetition. But trying to have a regulatory basis 20 rely upon numbers the way I=m hearing you talking about 21 it -- and, Doctor Uhle, I have a little bit of maybe 22 some healthy skepticism at this point. So I will leave 23 it at that.

Thank you. Thank you, Chairman.

CHAIRMAN MACFARLANE: Amen.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

24

25

	140
1	All right. First, I=ll start off with a
2	question, and then I=ll continue on that line of
3	interrogation. Do regulators in other countries use
4	human reliability analysis? And, if so, which
5	countries, and how do they do it? How do they use it?
6	And you can take that for the record if you want.
7	MR. PETERS: Yes. I mean, there are
8	regulators that use human reliability analysis for
9	their regulatory decisionmaking. The ones I know of
10	are, as Claire had mentioned, that they were using it
11	in the United Kingdom. They use it in France.
12	CHAIRMAN MACFARLANE: How do they use it
13	in France?
14	MR. PETERS: Well, this is an area beyond
15	my knowledge. I=d like to pass it to one of our
16	international experts to talk about that.
17	CHAIRMAN MACFARLANE: All right. I don=t
18	want to spend too much time on this, but just real brief.
19	DR. TAYLOR: That=s okay, because I don=t
20	have a lot to say about it.
21	(Laughter.)
22	CHAIRMAN MACFARLANE: Okay.
23	DR. TAYLOR: My experience is only from
24	the UK. The UK ONR, the Office for Nuclear Regulation,
25	they to the best of my knowledge, they don=t actually
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	do their own HRA, but they very they review the HRA
2	provided by the licensees in great detail. And they
3	also have the possibility to comment on that and ask
4	for additional analysis where they see fit.
5	CHAIRMAN MACFARLANE: Okay.
6	DR. TAYLOR: So that=s how they use it. I
7	don=t have any insight into how they use it to actually
8	make regulatory decisions, just in terms of their
9	review of safety cases.
10	CHAIRMAN MACFARLANE: All right. Well,
11	that=s helpful. It would be helpful to know how it=s
12	used in other countries. You knew that question was
13	coming.
14	Okay. Back to the filtration rulemaking.
15	So how are you characterizing and calculating the
16	uncertainties?
17	DR. WEERAKKODY: I want to be make a
18	distinction between when you say uncertainties, you
19	know, there is a big parameter concerning it. In other
20	words, we have tools if I wanted to say mean is .1 and
21	then I want to throw in a distribution and calculate
22	that. But in this particular case, Chairman, I think
23	what we would rely more on is in the sensitivity. In
24	other words, we would say, okay, for this operator
25	action, my screening value is 30 percent or .3.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	Then, I might say, well, what if I am wrong?
2	You know, let me try and get the 4.5. How would the
3	decision be impacted with that number? So that=s how
4	we would deal with the potential answer using that
5	number, using sensitivities for this particular case.
6	And then, of course, when it comes to the
7	older edition, we rely on the other factors of
8	risk-informed decisions, what does this do to defense
9	in depth, safety margin, and so on and so forth.
10	CHAIRMAN MACFARLANE: And so for this
11	analysis, where are you getting your input data from?
12	DR. WEERAKKODY: Again, I think you are
13	let me answer it in a general way. I think that=s a
14	general question for every HRA in terms of
15	CHAIRMAN MACFARLANE: Yes, sure it is.
16	DR. WEERAKKODY: Simulators.
17	CHAIRMAN MACFARLANE: Ah.
18	DR. WEERAKKODY: Okay?
19	CHAIRMAN MACFARLANE: Okay. That goes to
20	the next question, and, you know, Sean, you showed your
21	data sources. Your data sources are all simulators,
22	which are models. And models are not data. They are
23	models of they are models of reality. They are not
24	reality. So this goes back to what Commissioner
25	Ostendorff was saying where you actual experience
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	is very different, you know, from a simulator.
2	So if you are informing your models with
3	model results, what does that mean? Is that
4	meaningful?
5	MR. PETERS: This is not the only source
6	of data that we have. It goes into the SACADA database.
7	We are actually modeling actual events that have taken
8	place. So the H.B. Robinson event that Sunil was using
9	earlier, this is one of the first pieces that we=re
10	putting into the SACADA database.
11	We have also been working for 10 years
12	prior to this modeling all of the augmented inspection
13	team and IIT events that have come through the agency
14	through our previous database that we had, the HERA
15	database. So we have all of those events already
16	modeled in our previous database, and we are actively
17	moving those models on the SACADA database.
18	So we have actual events that we=re putting
19	into that. And when we=re looking at the psychological
20	underpinnings of our IDHEAS methodology, we have actual
21	scientific data on the various performance shaping
22	factors like fatigue. So you run these people through
23	events, and they experience fatigue, how they perform
24	or how they don=t. And so we have lots of data when
25	it comes down to these individual factors that we=ve
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	144
1	identified through psychological testing.
2	DR. WEERAKKODY: Thank you, Sean.
3	MR. PETERS: Yes.
4	CHAIRMAN MACFARLANE: I think this is
5	where you you know, yes, you have discrete data
6	points on fatigue or, I don=t know, confusion or
7	whatever, but this is where the interactions of these
8	different situations are incredibly important. And I
9	think we all know from our own experiences in life that
10	trying to really make predictions about how we might
11	behave, or how others we know well might behave, it=s
12	really difficult.
13	MR. PETERS: It is difficult, and some
14	predictions are much easier than others, like, say, you
15	have a stop sign. Hey, 99 percent of the time people
16	are going to stop at a stop sign, or at least do that
17	roll through. That other one percent, well, that=s a
18	whole different can of worms.
19	CHAIRMAN MACFARLANE: Maybe for you. So
20	let me ask another question. In the previous panel,
21	there was a lot of discussion about this, too, the use
22	of expert judgment. Okay? So you use expert
23	judgment. You mentioned who some of your experts are
24	or vaguely, general categories.
25	How do you evaluate the quality of this
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

145 judgment? 1 expert How do you characterize the 2 uncertainties associated with this expert judgment? Isn=t expert judgment simply opinion dressed up in 3 4 pretty clothes? Well, 5 MR. WEBER: Chairman, the Commission has tasked the 6 staff with developing 7 guidance on how to use expert judgment. So, Sean, 8 that=s in your group. 9 MR. PETERS: Yes. And Jing is our lead, 10 and she would like to -- she is chomping at the bit to 11 answer this question. 12 Okay. I have been also the DR. XING: technical lead for developing the guidance for expert 13 14 elicitation, expert judgment. So we developed our initial work package to recommend the agency to use 15 16 based on -- or start the process as it has been exercised 17 many times, the SSHAC process. And we exercised that 18 process in our IDHEAS expert panel. 19 So it=s a structured scientific process, 20 and the very first step of the process is to establish 21 good data and knowledge base. In that process, we try 22 to collect all kind of data, not just from simulator, but, as you two already mentioned, from other domains 23 24 -- aviation and the manufacturing industry. 25 And, fortunately, IDHEAS, because it=s

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

based on this cumulative basis we developed, 1 it naturally has a way -- allow us to judge how we can use 2 those data in the other domain, whether like compared 3 to the Air France accident you just mentioned. So we 4 5 know people are still doing the same kind of work, a combination decisionmaking. And what factors are 6 7 different, how that would impact a similar situation 8 in nuclear power plant. 9 And also, the expert judgment process, 10 tried to maximally fully elicit those uncertainty 11 factors around every topic with -- see, we are judging 12 not just the probability of this failure, but we have 13 the different group of people think about from 14 cumulative or social science aspect what factor will 15 come in, other factors can make this fail, what are the 16 individual performance differences. 17 And also, from the operator side, provide 18 us knowledge as far as operation, we have all kind of 19 mitigation strategies. So we take all of this into consideration. 20 21 CHAIRMAN MACFARLANE: Right. 22 DR. XING: And build a distribution of 23 probability. 24 CHAIRMAN MACFARLANE: I just worry that we 25 have actually qualitative information, which is fine.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

146

I=m fine with qualitative information. 1 I think we 2 should examine a lot of these factors. But we 3 shouldn=t then all of a sudden pretend that it is quantitative, just assign a number to it and then use 4 it in a calculation that produces a number that=s really 5 meaningless because it was qualitative to begin with. 6 7 So that=s a concern. 8 One more quick question for Sean. You 9 talked about experienced operators. Do you always 10 assume an experienced operator? What is an 11 experienced -- what=s the definition of an experienced 12 operator? I=m not sure of a formal 13 MR. PETERS: 14 definition of an experienced operator, obviously 15 somebody who has been doing it for a number of years. 16 For our expertise, or for our experience, we found that 17 people that are really in operations training have the 18 most insights into human performance, because they get 19 to see a litany of crews run through experiment after 20 experiment. And they will see the relative level of 21 failures of those particular crews. 22 So basically, the people that have been 23 doing it for numerous years, in their particular 24 context --25 Experience CHAIRMAN MACFARLANE: is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

147

(202) 234-4433

	148
1	valuable. Certainly, I want to go to a surgeon who has
2	done a lot of the same surgery and not one who is new
3	at it. But, still, I there=s still, you know, that
4	qualitative element there.
5	MR. PETERS: Oh, yes. There is.
6	CHAIRMAN MACFARLANE: Okay. I will stop
7	and turn it over to Commissioner Svinicki.
8	COMMISSIONER SVINICKI: I=m kind of
9	smiling to myself, because as I prepared for this
10	meeting I thought might be the least enthusiastic
11	person about HRA. But I=m beginning to feel like one
12	of the greatest defenders of HRA, or maybe I=m just a
13	contrarian, so I=m becoming a defender of HRA.
14	You know, the reason I asked my question
15	about looking only towards human error and not towards
16	human superior performance is I made the point that,
17	you know, any methodology we=re using we should want
18	to have the ability to compare that against real-world
19	results. If you say, well, as Commissioner Magwood
20	I=m sorry, but I thought I heard you say, if a pump runs
21	longer, that=s great, but you can=t count on it. But
22	I think, you know, I don=t want to count on everyone
23	being superhuman, but on the one hand it=s not
24	real-world results if no one is superhuman.
25	So I=m just trying to, in my ignorance, get
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

some sense, and I think the answer I got was that, at least for nuclear power applications, there is no balancing of factors on the positive side. So it was just -- I just wanted an awareness of what some of the limitations of the model are.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

But, you know, the record will reflect that on complex rulemaking packages my vote is frequently the last to come in, and I know that might be a source of frustration at times. But one of the causes of that is spending time with the reg analysis, the tech analysis, and other things that aren=t, you know, in the strictest sense things that the Commission is voting on, but they are the underlying analytical work that was done that takes -- and that=s why the rule language the staff proposes, it looks like it looks.

16 Also, for cost-benefit -- and I=m a rather 17 substantial proponent of cost-benefit, and I think 18 regulation should have a benefit that justifies their 19 So when I look at the staff=s analysis, I see cost. 20 that you have to use all kinds of subject matter 21 experts, expert elicitation, and I want to compliment 22 Commissioner Apostolakis. This hasn=t been 23 acknowledged today, but one of his early focus areas 24 when he came on this Commission -- it might have been 25 his first COM -- was on expert elicitation and having

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

some sort of extremely scrutable and consistent approach to its use. And at the time that he wrote that COM, I=m not even sure that I had a good appreciation for why that was so significant in terms of the regulatory actions that we do or don=t take as an agency.

1

2

3

4

5

6

7

8

9

10

11

12

25

But, you know, having had more time now to appreciate that a very disciplined approach to that either makes for maybe greater, you know, public understanding of some of the decisions we make, or why we don=t take regulatory actions for certain other items that don=t make it through the process.

13 So I watched the animation and how many, 14 you know, managers wanted to come to the microphone when I think you felt like maybe what was being laid out was 15 16 fundamental lack of appreciation some on the 17 Commission=s part for the fact that at the end of the 18 day -- I=m sorry to have to admit this -- but regulation 19 is not so much an experimental science as it is a 20 theoretical science. I=m sorry, but I just believe 21 that to be the case, specifically where it=s nuclear 22 and, as the previous gentleman said somewhat flippantly 23 I quess, but said, you know, AI=m not going to have a 24 core melt.@

And some of this on this table are also

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

keenly aware that in the United States our experimental capability and infrastructure to do actual nuclear experience -- experiments with nuclear materials has actually contracted rather significantly over the last 20 years. So, you know, it=s simply where we find ourselves, but I -- what matters to me in making these regulatory decisions is that scrutability.

Can people, whether they=re our critics or our supporters, can they look in here and see the basis upon which we supported an analysis that ultimately led to some sort of recommendation for the staff to the Commission, and so that our critics can look at that and say, you know, AI think it was either flawed or inadequate.@ And so that others can say, ANo, I think it had a lot of rigor and was well done.@

16 But I just want to have some sort of 17 disciplined approach. And so the convert I guess that 18 you=re slowly creating here to HRA is that for all its 19 limitations and inadequacies -- and I feel you have been 20 very candid about where it=s limited -- that we at least 21 are trying to have a tool -- as Commissioner Apostolakis 22 has said, it needs to be useable enough and all of the 23 things that tools fall victim to, sometimes being 24 overcomplicated, but -- and if we don=t begin and try 25 to use it, frankly, it is our critics who will help us

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

	152
1	make it better, because they will be the ones that come
2	to us and say, AThis isn=t right.@
3	And so getting to maybe an actual question,
4	the ACRS in addition to Commissioner Apostolakis
5	saying the ACRS=s letter was too long, which I=m not
6	sure I agree or disagree with that they used wording
7	in here that I have never I don=t think I have ever
8	encountered wording this strong, but they said that
9	Chapter 7 notes this is on the topic of uncertainty
10	AChapter 7 notes that parametric uncertainty in
11	human error probability should be estimated by assuming
12	a log normal probability distribution and applying
13	guidance from NUREG-1278. This is astonishing.@
14	That=s what they say.
15	I don=t think I have ever heard them use
16	the word Aastonishing.@
17	(Laughter.)
18	So, but clearly it gets to the topic that
19	has been explored by a number of members of the
20	Commission, which is having some sort of scrutable,
21	high fidelity, if we can have it, approach to these
22	uncertainties. I know that the staff has not yet
23	responded to this ACRS letter, but do you have any
24	initial defenses that you offer to using a log normal
25	probability distribution? It seems rather a crude
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	instrument to me.
2	MR. PETERS: No, I=m not going to defend
3	that case. This was a draft. We have a recommendation
4	from the ACRS that we are taking very seriously, and
5	we are looking back into getting our team. This is a
6	collaborative team that we didn=t really tackle that
7	aspect and just incorporated a current state of
8	practice over into this IDHEAS methodology.
9	But given that ACRS has a strong
10	recommendation, obviously a strong recommendation to
11	make enhancements to that area, we are working with our
12	industry counterparts to come up with a strategy to
13	solve that issue.
14	COMMISSIONER SVINICKI: Okay. So you are
15	taking that feedback under
16	MR. PETERS: Yes, we are.
17	COMMISSIONER SVINICKI: strong
18	advisement. Okay. Thank you.
19	And then, again, I just want to say that
20	it may seem perilous, and probably is in some instances,
21	to have to assign a number to human, you know, responses
22	and conduct. In any circumstance I have tried to argue
23	for approaching that in a very balanced way.
24	And I agree with a number of my colleagues
25	who said, you know, the worst kind of ignorance is
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

sometimes overconfidence that you are able to put 1 something to too many decimal points. But that being 2 3 said, in order to make regulatory decisions, it has been my experience -- I=m in my seventh year now on this 4 5 Commission, but, you know, even if it=s just a tech analysis that assigns high, medium, and low, you know, 6 7 what? That=s kind of a number. I mean, it=s a very 8 crude number. 9 What I appreciated about Sunil=s response 10 was sensitivity analysis, so I often balance where I 11 don=t feel that the staff has presented something or 12 they are not -- they can=t assign a high confidence value to something, often that is complemented by 13 14 sensitivity analysis. And I think that=s the right 15 thing to do there. 16 I don=t -- I=m not sure what else to do, 17 but it allows me -- you know, being the decisionmaker, 18 which is a specific burden on this side of the table, 19 it allows me at least to say, AHow should I weight 20 If this area is both highly uncertain and these?@ 21 highly -- of high impact to an outcome, well, then I 22 weight that one way. But if it=s highly uncertain and 23 much less significant, then you=ve given me the tools 24 or you=ve given me the information that at least allows 25 me to be as informed as I can be.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

154

(202) 234-4433

	155
1	So I don=t think I have any more questions.
2	Would any of you like to react to anything I=ve said?
3	DR. WEERAKKODY: I just want to say thank
4	you, Commissioner, especially when you said you got
5	excited about human reliability analysis. I think
6	(Laughter.)
7	COMMISSIONER SVINICKI: Were you hoping
8	to generate at least one advocate or something like
9	that?
10	DR. WEERAKKODY: I was joking, but I was
11	serious. I really believe, you know, one strength of
12	this agency I have been here for 15 years is
13	looking far. And to that extent, the fact that the
14	Office of Research is developing these tools, which
15	even me we may look at skeptically today, is going
16	to be very useful to us in years to come. So
17	MR. WEBER: I would only add, I mean, to
18	your comment that we use all tools available at our
19	disposal to support the regulatory decisions that we
20	have to make is spot on. And we hire the best people
21	we can, so that when we furnish a recommendation to you
22	it=s as well thought through and defensible as we can
23	possibly make it.
24	COMMISSIONER SVINICKI: Okay. Well, I
25	appreciate that. Keep swinging for the fences, Sunil.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	That=s great.
2	CHAIRMAN MACFARLANE: Okay. Any further
3	comment from the Commission?
4	COMMISSIONER APOSTOLAKIS: Well, just a
5	quick comment. I share my colleagues= concerns about
6	simulation, but I think and I have always expressed
7	those views, even before I joined the Commission but
8	I must say the Halden people are doing simulator
9	exercises that are really very impressive. And they
10	do sensitivity analysis on the simulation.
11	For example, they may give the operators
12	an accident scenario. Then, they hide some
13	information, and let=s see how they operate. Then,
14	they do something else. They try to mislead them. So
15	if you look at the totality of this thing, you really
16	learn a lot. Okay? Given the simulation I mean,
17	it=s simulation, we can=t avoid that I=d like to make
18	a comment on the draft report on IDHEAS.
19	You submitted the executive summary.
20	With all due respect, that=s not an executive summary.
21	I tried to understand what the report says. All it
22	tells me is Chapter 3 does this, Chapter 5 does that.
23	That=s not an executive summary.
24	And another thing that puzzled me was to
25	see 40, 50 pages of tables of contents, and I didn=t
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	know what to do with them. I mean, giving me the table
2	of figures, I don=t know. I mean, you have figures,
3	good. So this is friendly advice how what not to
4	do in the future, please. So thank you.
5	CHAIRMAN MACFARLANE: Anybody else?
6	Further comments? No?
7	Okay. Well, thank you very much for the
8	presentations and the lively discussion. Thanks to
9	the previous panel as well. I think we are all better
10	informed about human reliability analysis.
11	And with that, we will adjourn.
12	(Whereupon, at 12:24 p.m., the proceedings
13	in the foregoing matter were adjourned.)
ļ	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 (202) 234-4433 (202) 234-4433