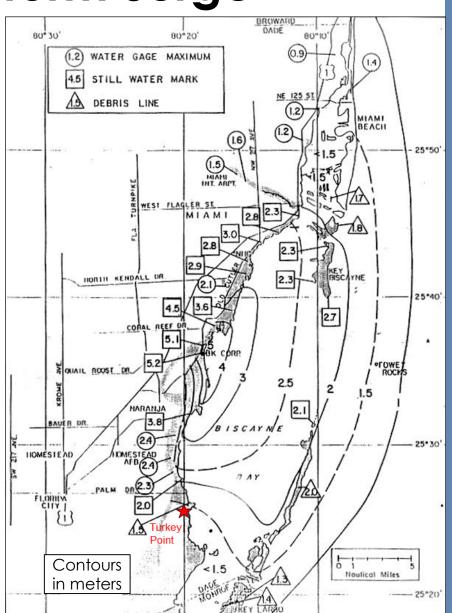


Combined License Application Mandatory Hearing Florida Power & Light Company Turkey Point Units 6 and 7

- Safety Panel
- December 12, 2017

Panelists

- Manny Comar Senior Project Manager, NRC
- Joseph Giacinto Lead Hydrologist, NRC
- Zachary Gran Health Physicist, NRC
- Ellen Smith Hydrologist, ORNL

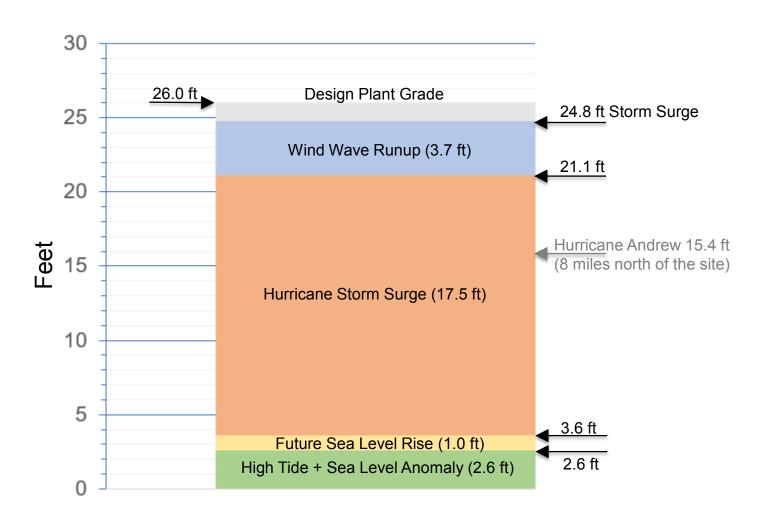

Safety Panel Topics

Storm Surge and Sea Level Rise

 Deep Well Injection for Liquid Radioactive Waste Disposal

Historical Storm Surge

- Hurricane Andrew made landfall 8 miles north of site in 1992.
- Category 5 storm
- Remains highest Florida storm surge on record:
 - 15.4 ft 8 miles
 north of site
 - 3-4 ft at the site


Storm Surge Components

- Used combination of Probable
 Maximum Hurricane parameters that results in highest storm surge
- Added 20 percent to predicted surge
- Additional conservative assumptions
 - Extreme high tide, sea level rise, wind and waves
- Estimated storm surge of 24.8 ft
- Design plant grade of 26.0 ft

Sea Level Rise in the Storm Surge Analysis

- NRC guidance was followed.
- NOAA-derived linear trend for Miami Beach data: 0.78 ft rise in 100 years
- Miami Beach gauge taken out of service in 1981—Key West gauge data from 1913 until 2016 show a consistent trend
- Analysis includes 1.0 ft rise to year 2100
- Sea level rise is observable and gradual.

Storm Surge Components

Staff Storm Surge Conclusions

- Estimated storm surge is beyond historical extremes.
- Multiple conservatisms appropriately account for uncertainty.
- The design basis flood level from storm surge is appropriately conservative.
- The design-basis flood level does not reach the design plant grade.

Deep Well Injection

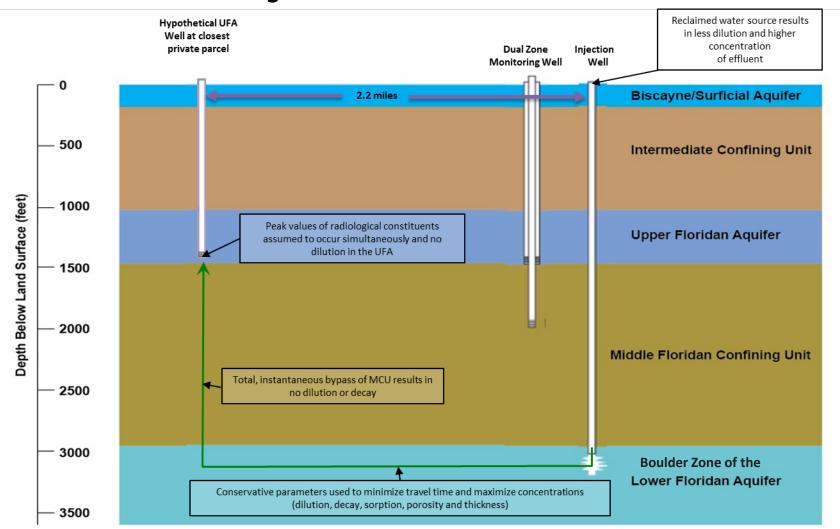
- FPL is proposing to use Deep Well Injection to dispose of liquid effluent releases.
- First use of such disposal by a nuclear power plant in the USA
- 10 CFR 20.2002 describes the methods for obtaining approval of proposed disposal procedures.

Background – Deep Well Injection

- Injection into the Boulder Zone of the Lower Floridan aquifer (approximately 3000 feet deep)
- The Boulder Zone of the Lower Floridan aquifer is separated from the Upper Floridan Aquifer by the approximately 1500 ft thick Middle Confining Unit (MCU) which will prevent upward migration.

Background – Deep Well Injection

- Approximately 180 FDEP Class I Underground Injection Control (UIC) wells from various industries permitted in Florida
- FPL proposes 12 Class I UIC wells and 6 dual-zone monitoring wells for Turkey Point Units 6 and 7.


Staff Analysis

- Staff typically approves 10 CFR 20.2002 requests that will result in a dose to a member of the public (including all exposure groups) that is no more than "a few millirem/year".
 - SECY-07-0060 and NUREG-1757,
 "Decommissioning Process for Materials Licensees"
 - Criteria in 10 CFR Part 50, App. I, used for suitable criteria for evaluating dose

Staff Analysis

- Independent dose analysis using the concentrations described by FPL. Staff Analysis considered:
 - H-3, Cs-134, Cs-137, and Sr-90
 - Nearest hypothetical receptor at 2.2 miles NW
 - Irrigated food pathways of vegetables, milk, meat, and drinking water as potential pathways for dose
 - Assumed full breach of the MCU

Injection Scenario

Staff's Conclusions

- Based on the conservative assumptions stated by staff, the releases were determined to be in compliance with:
 - 10 CFR Part 20 Appendix B
 - 10 CFR Part 50 Appendix I
 - 10 CFR 20.2002

Acronyms

- CFR Code of Federal Regulations
- Cs Cesium
- FDEP Florida Department of Environmental Protection
- FPL Florida Power & Light Company
- GDC General Design Criterion
- H-3 Tritium
- MCU Middle Confining Unit

Acronyms

- NOAA National Oceanographic and Atmospheric Administration
- ORNL Oak Ridge National Laboratory
- PMH Probable Maximum Hurricane
- Sr Strontium
- UFA Upper Floridan Aquifer
- UIC Underground Injection Control