

Fukushima Daiichi What have we learned?

Ken Canavan Director, Plant Technology

NRC Commission Briefing May 17, 2016

EPRI Fukushima Research and Development

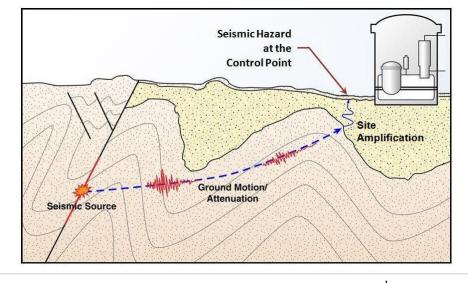
Immediate Response

- Water Treatment and Radiological Control
- Spent Fuel Pool Analyses

Short Term Actions

- Severe Accident Management
- Radiological Release Mitigation Strategies
- Flooding and Portable Mitigation Equipment
- Accelerated Seismic Research
- Long Term Understanding
 - Fukushima Technical Evaluation
 - Modular Accident Analysis Program (MAAP)
 - External Hazard Research
 - Other Accident Issues
 - Accident Tolerant Fuel

Accelerated and Long Term Seismic Research

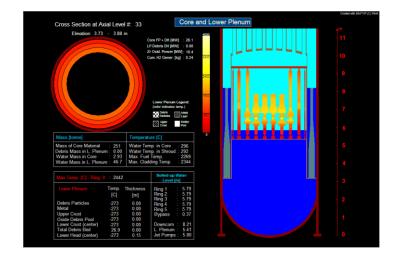


Seismic Risk Research

- Better understanding of seismic hazard
- Improved assessment of structural response
- Improved analysis of failure potential for structures and components ("fragility")
- Better modeling of impacts in risk assessments

Post-Fukushima Research

- Improved ground-motion models
- Extensive testing of components for sensitivity to high-frequency motion
- Evaluation of operating experience to inform seismic fragilities
- Probabilistic Risk Assessment (PRA) modeling of seismic effects and human reliability

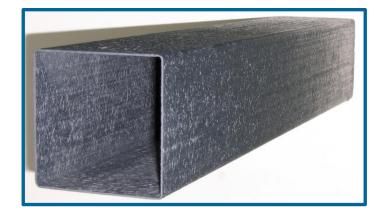

Fukushima Technical Evaluation

Objectives

- In-depth technical understanding of accident
- Sound basis for longer-term industry decisions
 - Enhanced analytical models for subsequent analyses
 - International benchmarking and gap analyses

Tasks underway

- Confirm and document event progression
- Compile and assess radiological transport and contamination data
- International benchmarking



Accident Tolerant Fuel

Question: what if there was no zirconium in the core?

- Lower hydrogen production
- Longer mitigation time
- Research task: evaluate the feasibility of concepts for fuel and core structures
 - Silicon Carbide BWR fuel channels
 - Molybdenum fuel cladding concepts
- EPRI's role: assist global collaboration to accelerate development

BWR Silicon Carbide Composite Channel

Molybdenum Alloy Fuel Cladding

Summary

- A significant body of research and development has been completed in response to Fukushima
- Key long term research and development activities
 - Severe accidents continue to learn from Fukushima to
 - Inform the global understanding of severe-accident management
 - Improve the ability to predict outcomes to aid in event response
 - External events continue developing methods for assessing external hazards to better understand and manage risks
 - Other areas continue to developed a better understanding of
 - Interactions for events affecting multiple units at a site
 - Accidents that persist and evolve over longer periods
 - Human response and reliability

Much has been learned and implemented: the global nuclear industry is safer as a result

Together...Shaping the Future of Electricity

