Molybdenum-99 Production and Its Impact on the Medical Community

Christopher J. Palestro, M.D.
ACMUI Nuclear Medicine Physician
April 14, 2015
Molybdenum-99 (99Mo)

Parent of technetium-99m

Technetium-99m

Modern nuclear medicine imaging workhorse

Worldwide

80% of 30 million diagnostic nuclear medicine procedures performed annually\(^1\)

United States

50,000 procedures daily\(^2\)
Technetium-99m (\(^{99}\text{mTc}\))

30 Million Procedures Annually\(^3\)

<table>
<thead>
<tr>
<th>Region</th>
<th>Number of Procedures Performed Annually</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>12-15 million (40-50%)</td>
</tr>
<tr>
<td>Europe</td>
<td>6-7 million (20-23%)</td>
</tr>
<tr>
<td>Asia/Pacific</td>
<td>6-8 million (20-27%)</td>
</tr>
<tr>
<td>Other world regions</td>
<td>0.5 million (2%)</td>
</tr>
</tbody>
</table>

(Russian Federation, China, Central Asian countries not included because of a lack of data)

*Estimated worldwide growth through 2020: 1%-2% annually\(^3\)
Global Molybdenum-99 Production & Consumption

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Production</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Union</td>
<td>45%</td>
<td>22%</td>
</tr>
<tr>
<td>Canada</td>
<td>40%</td>
<td>4%</td>
</tr>
<tr>
<td>South Africa</td>
<td>10%</td>
<td>-----</td>
</tr>
<tr>
<td>Australia</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Other</td>
<td>-----</td>
<td>12%</td>
</tr>
<tr>
<td>Russia</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Japan</td>
<td>0%</td>
<td>14%</td>
</tr>
<tr>
<td>USA</td>
<td>0%</td>
<td>46%</td>
</tr>
</tbody>
</table>

99Mo/99mTc Supply Chain

1. Nuclear Reactor
 Neutron bombardment of uranium target produces numerous daughter isotopes including 99Mo

2. Isotope production
 99Mo extraction & purification

3. 99Mo/99mTc Generator manufacture

4. 99Mo/99mTc Generator distribution
 Hospitals
 Radiopharmacies
99Mo/99mTc Supply Chain is Fragile

Entire worldwide production
< 10 sites (NONE in the United States)

Reactor Age

> 45 yrs. old: NRU in Canada, HFR, Osiris, & BR2 in Europe, & Safari in South Africa account for 95% of world 99Mo production

Decommissioning (2017-2020)
Extensive downtime (2008-2010)
NRU: 15 months
HFR: 13 months

Highly enriched uranium (HEU) availability
US to stop exporting HEU
\[^{99}\text{Mo/}^{99\text{m}}\text{Tc Supply Chain Interruption Consequences}\]

Potentially wreak havoc on patient care

Effects on diagnostic testing*
 Postponed/cancelled studies
 Alternative, less desirable radiopharmaceuticals
 Alternative, more expensive procedures

Effects on patient care
 Delays in diagnosis
 Delays in treatment

*United States 2008-2012: 16 million \rightarrow 14.5 million (-9%)\(^5\)
Coping with 99Mo/99mTc Supply Chain Interruptions (2008-2010)

Short Term Solutions

More frequent generator elution
Maximizes 99mTc activity extracted, improving yield

Revised examination schedules
Maximizes amount of 99mTc available
Provides greater access to patients in most need
Results in cancelled studies
Coping with 99Mo/99mTc Supply Chain Interruptions (2008-2010)

Short Term Solutions

Decrease administered activity
 Longer imaging times \rightarrow loss of image quality

Alternative radiopharmaceuticals

Nuclear cardiology (60% of 99mTc studies)
 Thallium-201
 Inferior image quality
 Increased patient radiation exposure
 Increased downstream testing6
 Increased cost6
Coping with 99Mo/99mTc Supply Chain Interruptions (2008-2010)

Short Term Solutions

Alternative radiopharmaceuticals

Nuclear cardiology (60% of 99mTc studies)
- Nitrogen-13, Rubidium-82
- Limited number of PET imaging systems vs. SPECT imaging systems

Bone scintigraphy (20% of 99mTc studies)
- Fluorine-18
- Limited number of PET imaging systems vs. SPECT imaging systems
- Not yet reimbursable
What is Needed?

Readily available consistent supply of 99Mo (99mTc) to facilitate performance of nuclear medicine procedures necessary for patient care
Long Term Solutions

Decentralize 99Mo production

Entire worldwide production < 10 sites (NONE in the US)

Develop reliable domestic 99Mo source
Long Term Solutions

Develop reliable domestic 99Mo source

Two companies currently active

NorthStar Medical Technologies (WI/ MO)
- Neutron capture technology
- Phase I groundbreaking: 2014
- Applied for FDA approval
- Operational: ? 2015

Shine Medical Technologies (WI)
- LEU technology
- ? up to 1/3 world’s 99Mo needs
- Construction approval pending
- Operational: ? end of 2017
- Major obstacle: Financial
References

1 Van Noorden R. Nature. 2033;504:202-204.
Acronyms

- **BR2** – Belgian Reactor 2
- **FDA** – US Food and Drug Administration
- **HEU** – highly enriched uranium
- **HFR** – High Flux Reactor
- **LEU** – low enriched uranium
- **^{99}Mo** – Molybdenum-99
- **NRU** – National Research Universal Reactor
- **^{99m}Tc** – Technetium-99m