

Protecting People and the Environment

Molybdenum-99 Production and Its Impact on the Medical Community

Christopher J. Palestro, M.D. ACMUI Nuclear Medicine Physician April 14, 2015

Molybdenum-99 (⁹⁹Mo)

Parent of technetium-99m **Technetium-99m** Modern nuclear medicine imaging workhorse Worldwide 80% of 30 million diagnostic nuclear medicine procedures performed annually¹ **United States** 50,000 procedures daily²

Technetium-99m (^{99m}Tc) 30 Million Procedures Annually³

Region	Number of Procedures Performed Annually
North America	12-15 million (40-50%)
Europe	6-7 million (20-23%)
Asia/Pacific	6-8 million (20-27%)
Other world regions	0.5 million (2%)

(Russian Federation, China, Central Asian countries not included because of a lack of data)

*Estimated worldwide growth through 2020: 1%-2% annually³

Global Molybdenum-99 Production & Consumption⁴

Country/Region	Production	Consumption
European Union	45%	22%
Canada	40%	4%
South Africa	10%	
Australia	2%	1%
Other		12%
Russia	1%	1%
Japan	0%	14%
USA	0%	46%

⁹⁹Mo/^{99m}Tc Supply Chain

1. Nuclear Reactor

Neutron bombardment of uranium target produces numerous daughter isotopes including ⁹⁹Mo

2. Isotope production

⁹⁹Mo extraction & purification

3. ⁹⁹Mo/^{99m}Tc Generator manufacture

4. ⁹⁹Mo/^{99m}Tc Generator distribution Hospitals Radiopharmacies

⁹⁹Mo/^{99m}Tc Supply Chain is Fragile

Entire worldwide production

< 10 sites (NONE in the United States)

Reactor Age

> 45 yrs. old: NRU in Canada, HFR, Osiris, & BR2 in Europe, & Safari in South Africa account for 95% of world ⁹⁹Mo production

> Decommissioning (2017-2020) Extensive downtime (2008-2010) NRU: 15 months HFR: 13 months

Highly enriched uranium (HEU) availability US to stop exporting HEU

⁹⁹Mo/^{99m}Tc Supply Chain Interruption Consequences

Potentially wreak havoc on patient care

Effects on diagnostic testing*

Postponed/cancelled studies

Alternative, less desirable radiopharmaceuticals

Alternative, more expensive procedures

Effects on patient care Delays in diagnosis Delays in treatment

*United States 2008-2012: 16 million \rightarrow 14.5 million (-9%)⁵

Coping with ⁹⁹Mo/^{99m}Tc Supply Chain Interruptions (2008-2010)

Short Term Solutions

More frequent generator elution Maximizes ^{99m}Tc activity extracted, improving yield

Revised examination schedules Maximizes amount of ^{99m}Tc available Provides greater access to patients in most need Results in cancelled studies

Coping with ⁹⁹Mo/^{99m}Tc Supply Chain Interruptions (2008-2010)

Short Term Solutions

Decrease administered activity

Longer imaging times \rightarrow loss of image quality

Alternative radiopharmaceuticals

Nuclear cardiology (60% of ^{99m}Tc studies)

Thallium-201

Inferior image quality Increased patient radiation exposure Increased downstream testing⁶ Increased cost⁶

Coping with ⁹⁹Mo/^{99m}Tc Supply Chain Interruptions (2008-2010)

Short Term Solutions

Alternative radiopharmaceuticals

Nuclear cardiology (60% of ^{99m}Tc studies) Nitrogen-13, Rubidium-82 Limited number of PET imaging systems vs. SPECT imaging systems

Bone scintigraphy (20% of ^{99m}Tc studies)

Fluorine-18

Limited number of PET imaging systems vs. SPECT imaging systems

Not yet reimbursable

What is Needed?

Readily available consistent supply of ⁹⁹Mo (^{99m}Tc) to facilitate performance of nuclear medicine procedures necessary for patient care

Long Term Solutions

Decentralize ⁹⁹Mo production Entire worldwide production < 10 sites (NONE in the US)

Develop reliable domestic ⁹⁹Mo source

Long Term Solutions

Develop reliable domestic ⁹⁹Mo source Two companies currently active

NorthStar Medical Technologies (WI/MO) Neutron capture technology Phase I groundbreaking: 2014 Applied for FDA approval Operational: ? 2015 Shine Medical Technologies (WI) LEU technology ? up to 1/3 world's ⁹⁹Mo needs Construction approval pending Operational: ? end of 2017 Major obstacle: Financial

References

- **1** Van Noorden R. Nature. 2033;504:202-204.
- **2** Cutler CS et al. J Nucl Med. 2014;55:1208–1213.
- **3** Report on Molybdenum-99 Production for Nuclear medicine 2010-2020 (APIES 2008)
- 4 Khlopkov A, et al. Ending HEU Use in Medical Isotope Production:Options for US – Russian Cooperation. NTI Report February 14, 2014.
- 5 IMV Market Report Dec. 26, 2013
- 6 Small GR, et al. Lessons from the Tc-99m shortage: implications of substituting TI-201 for Tc-99m single photon emission computed tomography. Circ Cardiovasc Imaging. 2013;6:683-691.

Acronyms

- **BR2** Belgian Reactor 2
- **FDA** US Food and Drug Administration
- **HEU** highly enriched uranium
- **HFR** High Flux Reactor
- **LEU** low enriched uranium
- ⁹⁹Mo Molybdenum-99
- NRU National Research Universal Reactor
- 99mTc Technetium-99m