

Briefing on SubsequentLicense Renewal

May 8, 2014

License Renewal Overview

John Lubinski, Director
Division of License Renewal
Office of Nuclear Reactor Regulation

Safety is Ensured During the First 40 Years

- Regulatory process ensures safety
- Licensing basis is continuously enhanced
- Aging management is key for ensuring safety

License Renewal Principles Maintain Safety

- With the exception of the detrimental effects of aging, the existing regulatory process is adequate for safe plant operations
- Each plant licensing basis must be maintained

Safety Continues to be Maintained Beyond 60 Years

- The principles of license renewal would continue to be effective to ensure safety
- Additional focus on the effectiveness of aging management programs

Proposed Regulatory Framework

Bo Pham, Chief
Subsequent License Renewal Branch
Division of License Renewal
Office of Nuclear Reactor Regulation

Enhance Aging Management Program Effectiveness

- Self-assessments
- Aging-related degradation
- Changes to subsequent license renewal activities

Timing of Subsequent License Renewal Applications

- Current subsequent license renewal application concurrent with entering its first period of extended operation
- Revised rule to require more operating experience

Other Rulemaking Considerations

- Licensing basis update
- Recordkeeping requirements
- Timely renewal requirements
- Add additional passive systems, structures, and components

Non-Concurrence: Staff Response

- Probabilistic risk assessments are not required to maintain plant safety
- Probabilistic risk assessments are not unique to license renewal
- Applicants can risk-inform aging management programs

Subsequent License Renewal Research

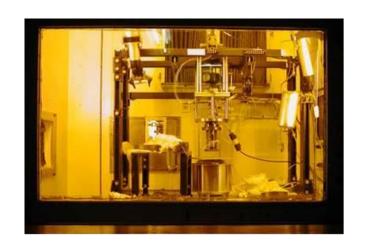
Dr. Mirela Gavrilas
Acting Deputy Director
Division of Engineering
Office of Nuclear Regulatory Research

Research Activities

- Current knowledge base
- Department of Energy and industry engagement
- Aging management program implementation

Expanded Material Degradation Assessment

- International experts participation
- Phenomena identification and ranking techniques
 - Safety-significant degradation
 - Susceptibility and knowledge level

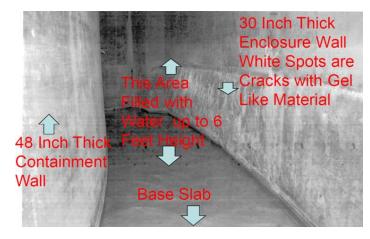

Piping and Core Internals – High Susceptibility Scenarios

- High knowledge
 - Primary water stress corrosion cracking
 - Corrosion in balance-ofplant piping
- Low knowledge
 - High fluence irradiation effects

Reactor Pressure Vessel – High or Intermediate Susceptibility Scenarios

- High knowledge
 - Neutron irradiation embrittlement
- Low knowledge
 - Environmentally-assisted fatigue

Electrical Cables – High Susceptibility Scenarios


- High knowledge
 - Thermal aging
 - Irradiation effects
- Low knowledge

Concrete Structures – High Susceptibility Scenarios

- High knowledge
 - Freeze-thaw damage
- Low knowledge
 - Long-term irradiation effects
 - Alkali-silica reaction

Summary

- Principles of license renewal are adequate for ensuring safety for subsequent license renewal
- Regulatory process is effective
- Technical reviews ensure effective aging management

Acronyms

- DOE: Department of Energy
- EMDA: Expanded Material Degradation Assessment
- EPRI: Electric Power Research Institute
- FSAR: Final Safety Analysis Report
- NIST: National Institute of Standards and Technology
- NFPA: National Fire Protection Association
- NRR: Office of Nuclear Reactor Regulation
- PMDA: Proactive Materials Degradation Assessment
- PRA: Probabilistic Risk Assessment
- SLR: Subsequent License Renewal