June 6, 2007

FOR: The Commissioners

FROM: Luis A. Reyes
Executive Director for Operations

SUBJECT: STAFF ACTIONS TAKEN IN RESPONSE TO THE NATIONAL ACADEMY OF SCIENCES’ STUDY ON TRANSPORTATION OF HIGH-LEVEL WASTE AND SPENT NUCLEAR FUEL IN THE UNITED STATES

PURPOSE:
To inform the Commission of actions taken by staff in response to recommendations in the National Academy of Sciences’ (NAS) study on the transportation of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States.

SUMMARY:
There are three recommendations in the NAS transportation safety study that concern safety and security-related aspects of transportation package design. Staff believes that it has adequately addressed the recommendations on the use of full-scale package testing, and the need for additional studies and operating controls on shipments related to very long-duration, fully engulfing fires. Staff continues to work with stakeholders to communicate information on the security-related aspects of transportation package design, consistent with the Commission’s policy and guidance.

BACKGROUND:
In February 2006, the NAS published the results of a 3½-year study, titled Going the Distance, that examined the safety of transporting SNF and HLW in the United States. NAS initiated this study to address what it perceived to be a national need for an independent, objective, and

CONTACT: Earl P. Easton, NMSS/SFST
(301) 492-3307
The Commissioners

Authoritative analysis of SNF and HLW transport in the United States. The study was co-sponsored by the U.S. Nuclear Regulatory Commission (NRC), the U.S. Department of Energy (DOE), the U.S. Department of Transportation (DOT), the Electric Power Research Institute and the National Cooperative Highway Research Program.

The NAS study made several findings that dealt with the safety of spent fuel package-design standards, societal concerns with future shipping campaigns, and security. The principal findings on transportation safety and security were:

- The study could identify no fundamental technical barriers to the safe transport of SNF and HLW in the United States. Transport by highway (for small-quantity shipments), and by rail (for large-quantity shipments) is, from a technical viewpoint, a low-radiological-risk activity, with manageable safety, health, and environmental consequences, when conducted with strict adherence to existing regulations. However, there are a number of social and institutional challenges to the successful initial implementation of large-quantity shipping programs that will require resolution. The challenges of sustained implementation should not be underestimated.

- Malevolent acts against SNF and HLW shipments are a major technical and societal concern, especially since the September 11, 2001, terrorist attacks on United States. The NAS committee judges that some of its recommendations for improving transportation safety might also enhance transportation security. NRC is undertaking a series of security studies, but the NAS committee was unable to perform an in-depth technical examination of transportation security because of information constraints.

The study also made a number of specific recommendations for enhancing the safety of transportation package designs, and for addressing societal concerns (primarily focused on a potential large-scale shipping campaign, such as to Yucca Mountain), including perceived risk and security. NRC staff has participated in several meetings with DOE and DOT, two of the study’s co-sponsors, to discuss actions being undertaken by each agency to address the study’s recommendations. In general, DOE, as a potential shipper, is addressing recommendations related to shipping logistics (including physical protection measures during shipments), and societal and institutional concerns; DOT is addressing those concerned with carrier safety; and NRC (as discussed below) is addressing recommendations dealing primarily with the safety- and security-related aspects of transportation package design. This is consistent with NRC’s primary safety role, in potential Yucca Mountain shipments, of certifying the transportation casks, pursuant to the Nuclear Waste Policy Act.

DISCUSSION:

There are three recommendations, in the study, that concern safety and security-related aspects of transportation package design. These involve the use of full-scale package testing, the response of transportation packages in long-duration fires, and an independent examination of the security of SNF transportation before beginning a large-scale shipping campaign to a Federal repository or interim storage.
Use of Full-Scale Package Testing

The study endorsed the use of full-scale testing as one of a number of analytical tools that could be used to determine how transportation packages would perform under both regulatory and credible extra-regulatory conditions. The study recommended that, “... full-scale package testing should continue to be used as part of integrated analytical, computer simulation, scale model, and testing programs to validate package performance. Deliberate full-scale testing of packages to destruction should not be required as part of this integrated analysis or for compliance demonstrations.” (Emphasis Added) In addition, NAS has stated, in public meetings, that the study did not endorse full-scale testing as a prerequisite for approving individual package designs.

Staff believes that the recommendation supports NRC’s current practice of using a combination of analytical techniques, such as computer simulation, full or partial scale-model testing, and component testing for package approvals. The study’s recommendation is consistent with NRC’s current plans in the Package Performance Study (PPS) to perform a demonstration test involving a realistic rail impact and fire. The NAS study also supports NRC’s decision not to test a full-scale transportation package to destruction in the PPS. As stated in the NAS study, “Deliberate full-scale testing of packages to destruction through the application of forces that substantially exceed credible accident conditions would be marginally informative and is not justified given the considerable cost for package acquisitions that such testing would require.”

The staff has signed a cooperative agreement with the German Federal Institute for Materials Research and Testing (BAM) to obtain the full-scale and quarter scale transportation cask package drop test data for two casks. The staff is in the process of performing detailed independent structural simulations and finite element analyses of the drop scenarios and compare the results with the BAM drop test data. This will help establish the magnitude of uncertainty in finite element analysis, and may address the use of scaling methods in the structural analysis of spent nuclear fuel casks.

Staff has incorporated the study’s findings and recommendations, in its public outreach efforts, to help explain the Commission’s decision for not undertaking full-scale testing in the PPS, and to support the Commission’s decision on the selection of credible accident scenarios. The study’s discussions and finding that full-scale testing is only one of many useful technical tools for analyzing package performance has been useful in explaining the technical adequacy of NRC’s process for reviewing and, as appropriate, certifying shipping packages for SNF and HLW.

Transportation Package Performance in Very Long-Duration, Fully Engulfing Fires

The study concluded that current package performance standards in 10 CFR Part 71 are adequate to ensure package containment effectiveness over a wide range of transportation accidents, including most credible accident conditions. The study did question whether current package performance standards bound accidents involving very long-duration, fully engulfing fires. It recommended that NRC undertake additional analyses of very long-duration fire scenarios that would bound expected real-world accident conditions for representative package designs that are likely to be used in large shipping campaigns. The objective of these analyses would be to examine the need for regulatory or operational changes that could help prevent accidents that could lead to such a fire or to mitigate their consequences.
Since the study was published, the NRC staff has completed a number of actions that address this recommendation. First, staff has reviewed railroad accident data, from the Federal Railway Administration (FRA) database, covering a period of 30 years (1975-2005), to determine the frequency and severity of rail fires. Based on FRA data and accident reports compiled by the National Transportation Safety Board (NTSB), staff has concluded that the likelihood of a long-term fully engulfing rail fire is extremely low. In the nearly 21 billion miles of rail travel between 1975 and 2005, there have been eight accidents that staff believes could have the potential for a fully engulfing very long-duration fire. Of these eight accidents, seven involved the derailment of a single train and one occurred in a tunnel.

Based on the NTSB accident reports on the seven accidents that did not occur in a tunnel, staff believes that none of them would have actually resulted in a fully engulfing fire for a spent fuel package. This is based on mitigating factors present in all seven accidents. The mitigating factors include the expected location of a spent fuel package in the fire, the flammable material released, and emergency response. In each of the seven accidents, a spent fuel package would not have been positioned close enough to the burning flammable material to be fully engulfed. This is because of the DOT requirement for buffer cars, and is supported by accident diagrams of rail-car configurations taken from NTSB reports. In addition, many of the accidents involved flammable gases, such as propane, that resulted in localized pressure fires, and did not involve the pooling and migration of flammable liquids. These gaseous fires were intentionally allowed to burn for long periods (in some cases, for several days), as a safety measure, to empty ruptured tank cars and reduce the chance of explosion. Finally, emergency response times were fairly rapid in these seven accidents (most were responded to within 1 to 2 hours) and response efforts included cooling the tank cars, effectively minimizing fire intensity and duration. However, none of these mitigating factors was present in the Baltimore Tunnel fire accident - the one accident that occurred in a tunnel.

Second, staff has completed two studies on the performance of representative spent fuel casks in severe rail and highway tunnel fires: “Spent Fuel Transportation Package Response to the Baltimore Tunnel Fire Scenario,” NUREG/CR-6886 (published December 2006), and “Spent Fuel Transportation Package Response to the Caldecott Tunnel Fire Scenario,” NUREG/CR-6894 (published February 2007). The Baltimore Tunnel fire study analyzed the potential response of the HI-STAR 100, TN-68, and the NAC-LWT shipping-package designs in a severe rail-tunnel-fire environment, based on an accident that occurred in Baltimore, Maryland, in 2001. The HI-STAR 100 and TN-68 are NRC-certified rail casks, and the NAC-LWT is an NRC-certified truck cask, that has been shipped by rail. The Caldecott Tunnel fire study analyzed the potential response of the NAC-LWT truck cask, based on a severe highway tunnel fire that occurred in California in 1982. The studies indicated that the casks would not be expected to release any fission products from the spent fuel. Staff intends to send copies of the two studies to the NAS for distribution to the NAS study committee members. These studies are important because they address a severe type of fire (i.e., tunnel fire) that is potentially very long-duration and for which it may be difficult to take mitigating actions.

Third, staff has considered what operating controls could be implemented, for rail shipments, to prevent or mitigate the consequences of long-duration fires. One important operating control would be to prohibit a train carrying flammable gases or liquids from being in a tunnel at the same time as a train carrying spent fuel. In March 2006, NRC staff requested that the Association of American Railroads (AAR) consider revising AAR Circular No. OT-55, Recommended Railroad Operating Practices For Transportation of Hazardous Materials. As a
The Commissioners

result, the AAR issued AAR Circular No. OT-55, Revision I, in July 2006. It states that, “... when a train carrying SNF or HLRW meets another train carrying loaded tank cars of flammable gas, flammable liquids or combustible liquids in a single bore double track tunnel, one train shall stop outside the tunnel until the other train is completely through the tunnel.” NRC is also following FRA’s ongoing deliberations on requiring the use of dedicated trains for spent fuel shipments. It should be noted that DOE has already announced a policy for using dedicated trains as its preferred mode of transport. Staff believes that the prohibitions on the use of tunnels in OT-55, coupled with either an FRA requirement or DOE policy on using dedicated trains, will virtually eliminate the chances of rail accidents resulting in long-duration, fully engulfing fires, and that NRC does not need to take any further actions on rail operating practices.

Independent Assessment of Transportation Security

The study also recommended that, “... an independent examination of the security of spent fuel and high-level waste transportation, should be carried out prior to the commencement of large-quantity shipments to a federal repository or to interim storage.” This recommendation was not based on an identified deficiency in current security practices, but on an inability to access security information. The NAS committee was formed prior to September 11, 2001, and a majority of its members did not have the security clearances required to access important security-related information, particularly the security assessments being done on spent fuel transportation packages by the NRC and Sandia National Laboratories. It should also be noted that a recently completed assessment by the American Physical Society, Consolidated Interim Storage of Commercial Spent Fuel, (February 2007), endorsed the NAS recommendation for an independent examination of the security of spent fuel shipments.

Staff concludes that current security measures and standards put in place since September 11, 2001, are adequate for the protection of spent fuel and high level waste transportation even in the event of increased shipping campaigns. Physical protection measures for future shipments must match the threat in place at the time of shipment, and shipment tracking and monitoring technologies are constantly evolving. Shipments to Yucca Mountain would not begin, at the earliest, until 2017, based on current DOE estimates. In addition, whereas NRC would be responsible for overseeing the security requirements for commercial shipments to an interim storage facility, DOE would be responsible for implementing and overseeing the security requirements for Yucca Mountain shipments. Thus, a comprehensive independent security assessment that includes both shipments to Yucca Mountain and an interim storage facility would require substantial financial commitment and participation of both NRC and DOE.

Staff is considering the merits of releasing non-sensitive summaries of current spent fuel package security assessments in partial response to the NAS study recommendation. Spent fuel package designs, recently assessed in the Commission’s spent fuel package security assessments, could be used at Yucca Mountain or interim storage facilities. The NRC’s spent fuel package assessments adequately demonstrate that the stringent safety standards applied to the design of spent fuel packages provide substantial protection from reasonable threat scenarios. One of the key stakeholder groups, the Council of State Governments Midwestern Radioactive Materials Transportation Committee, has recently endorsed the NAS recommendation for an independent examination of the security of spent fuel shipments, and has specifically requested that NRC share some of the results of its spent fuel package security assessments with the States (see Enclosure, Letter from Chairman Klein to Robert Owen). In
response, staff has begun a dialogue, with representatives of the State Regional Transportation Groups (SRG’s), aimed at eventually sharing information from the NRC spent fuel package security assessments with State and local governments, to help them carry out their emergency response and law enforcement responsibilities more effectively. As part of the dialogue, the SRGs are compiling a list of what information (related to the spent fuel package security assessments) is needed, how and by whom such information would be used, and how shared information would be protected. Staff expects this process to be completed by the SRGs later this year. The staff will devise a plan to share the requested information with the States, consistent with the Commission’s policy and guidance. The SRGs have also informally expressed an interest in participating in, or conducting an independent examination or peer review of, NRC’s spent fuel package security assessments. However, it is premature to decide to perform an independent assessment which will be used to evaluate current standards and the applicability of these standards on a shipping campaign more than ten years in the future.

Information Sharing

In addition, the study also recommends that DOE, NRC, DOT and the Department of Homeland Security (DHS) should promptly complete the job of developing reasonable criteria for protecting sensitive information about spent fuel and HLW transportation, and commit to the open sharing of information not requiring protection.

NRC has worked jointly with DOE, DHS, and DOT to develop CG-RWT-1, the Joint DOE/NRC/DOT/DHS Classification and Sensitive Unclassified Information Guide for the Transportation of Radioactive Waste to Yucca Mountain. The classification guide was developed to identify the classified and sensitive unclassified aspects for the transport of spent nuclear fuel and high-level radioactive waste to Yucca Mountain. The guide, which will be published by DOE, is currently awaiting concurrence from DOT (NRC has already concurred).

The NRC has also developed guidance for the open sharing of non-sensitive information in its Supplement to the Communication Plan for Security Assessments of Materials and Research & Test Reactors, dated March 29, 2007 (ML070890305).

COORDINATION:

The Office of the General Counsel has reviewed this paper, and has no legal objection.

/RA/
Luis A. Reyes
Executive Director
for Operations

Enclosure:
Letter from Chairman Klein to Robert Owen, dated August 16, 2006
August 16, 2006

Mr. Robert Owen, Chair
CSG Midwestern Radioactive Materials Transportation Committee
701 East 22nd Street, Suite 110
Lombard, Illinois 60148

Dear Mr. Owen:

On behalf of the U.S. Nuclear Regulatory Commission (NRC), I am responding to your letter dated May 31, 2006, concerning your request that the NRC develop appropriate versions of its package security assessments and share this information with the State organizations involved in ensuring the safety and security of shipments. The Commission understands the importance of this information in enabling State and local governments to plan for the safety and security of spent fuel shipments, especially in their emergency response roles and responsibilities, and intends to ensure that they have the information they need to exercise these roles and responsibilities.

The NRC considers the assessments of spent fuel shipping package performance to be security-related information. Accordingly, the NRC, in providing security-related information to the States, needs to reach a proper balance between sharing and protecting security information. The Commission understands that the State regional groups are receptive to initiating a dialogue with the NRC on obtaining this information. The agency’s point of contact for this effort is Mr. Earl P. Easton, NRC’s Senior Level Advisor for Transportation. He will be contacting you and the three other State regional groups shortly to initiate discussions to determine what information would be relevant and appropriate to be shared and what controls would be applied to protect the transfer and possession of such information. The objective of establishing these controls is to ensure that personnel access is limited to those with a need to know the information and to prevent the loss or theft of the information.

I want to assure you that the Commission values the work of your Committee and desires to strengthen NRC’s partnership with the States in order to ensure the safe and secure transport of all radioactive material.

Sincerely,

/RA/

Dale E. Klein

cc: See attached list
cc:

Elgan Usrey, Chairman
Manager, Preparedness & Mitigation Division
Tennessee Emergency Management Agency
3041 Sidco Drive
Nashville, Tennessee 37204

Barbara Byron, Co-Chairman
Nuclear Waste Policy Advisor
California Energy Commission
1516 Ninth Street
Sacramento, California 95814

Joe Strolin, Co-Chairman
Administrator, Planning Division
Office of the Governor
Nevada Agency for Nuclear Projects
1761 E. College Parkway, Suite 118
Carson City, Nevada 89706

Edward L. Wilds, Jr., Chairman
Director, Division of Radiation
Department of Environmental Protection
79 Elm Street
Hartford, Connecticut 06106