Official Transcript of Proceedings		
Ν	UCLEAR REGULATORY COMMISSION	
Title:	Advisory Committee on Reacto Thermal Hydraulic Phenomena	r Safeguards Subcommittee
Docket Number:	(not applicable)	
	(,	
Location:	Rockville, Maryland	
Date:	Tuesday, May 15, 2007	
Work Order No.:	NRC-1577	Pages 1-455

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	+ + + +
6	MEETING OF THE
7	SUBCOMMITTEE ON THERMAL HYDRAULIC PHENOMENA
8	+ + + +
9	TUESDAY,
10	MAY 15, 2007
11	+ + + +
12	The meeting was convened in Room OlG16,
13	11555 Rockville Pike, Rockville, Maryland, at 8:30
14	a.m., GRAHAM B. WALLIS, Acting Chair, presiding.
15	MEMBERS PRESENT:
16	GRAHAM B. WALLIS, Acting Chair
17	SANJOY BANERJEE, Vice Chair
18	SAID ABDEL-KHALIK
19	THOMAS S. KRESS
20	
21	
22	
23	
24	
25	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON. D.C. 20005-3701 (202) 234-4433

		2
1	ACRS STAFF PRESENT:	
2	ZENA ABDULLAHI Designated Federal Official	
3	NRR STAFF PRESENT:	
4	ERVIN L. GEIGER	
5	PAUL KLEIN	
6	JOHN LEHNING	
7	SHANLAI LU	
8	MICHAEL SCOTT	
9	ROBERT L. TREGONING	
10	STEVEN UNIKEWICZ	
11	ALSO PRESENT:	
12	JOHN BUTLER Nuclear Energy Institute	
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
	NEAL R. GROSS	
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-44	33

1I-N-D-E-X2AGENDA ITEMPAGE3Introduction44G. Wallis151. Overview/Introduction86M. Scott172.a. Chemical Effects - WCAP 16530 Status418PWROG11410Klein114113. RES Chemical Effects Peer Review Status15612Geiger/Tregoning13134.a. Downstream Effects20014- WCAP 16406-P Status28315- Fuel Evaluation WCAP Status28316PWROG283175. Plant Resolution Overview28318Adjourn141914142014142114142214142314142415152515162616162716162816162917162017162117162217162317162417162518162618162719192819192919192019192119192219192319192419			3
2AGENDA ITEMPAGE3Introduction44G. Wallis44G. Wallis851. Overview/Introduction86M. Scott172.a. Chemical Effects - WCAP 16530 Status418PWROG11410Klein114113. RES Chemical Effects Peer Review Status15612Geiger/Tregoning13134.a. Downstream Effects20014- WCAP 16406-P Status28315S. Plant Resolution Overview28316PWROG117S. Plant Resolution Overview28318Adjourn11911201121112211231124112511	1	I-N-D-E-X	
3Introduction44G. Wallis51. Overview/Introduction86M. Scott72.a. Chemical Effects - WCAP 16530 Status418FWROG92.b. Chemical Effects - NRR Staff Perspective11410Klein113. RES Chemical Effects Peer Review Status15612Geiger/Tregoning134.a. Downstream Effects20014- WCAP 16406-P Status20115- Fuel Evaluation WCAP Status28316FWROG283175. Plant Resolution Overview28318Adjourn20119	2	AGENDA ITEM	PAGE
4G. Wallis51. Overview/Introduction86M. Scott72.a. Chemical Effects - WCAP 16530 Status418FWROG92.b. Chemical Effects - NRR Staff Perspective11410Klein11113. RES Chemical Effects Peer Review Status15612Geiger/Tregoning13134.a. Downstream Effects20014- WCAP 16406-P Status20115- Fuel Evaluation WCAP Status28316PWROG283175. Plant Resolution Overview28318Adjourn19201121112211231124112511	3	Introduction	4
5 1. Overview/Introduction 8 6 M. Scott 7 2.a. Chemical Effects - WCAP 16530 Status 41 8 PWROG 9 2.b. Chemical Effects - NRR Staff Perspective 114 10 Klein 11 3. RES Chemical Effects Peer Review Status 156 12 Geiger/Tregoning 13 4.a. Downstream Effects 200 14 - WCAP 16406-P Status 15 15 - Fuel Evaluation WCAP Status 283 16 PWROG 283 17 5. Plant Resolution Overview 283 18 Adjourn 19	4	G. Wallis	
6M. Scott72.a. Chemical Effects - WCAP 16530 Status418PWROG92.b. Chemical Effects - NRR Staff Perspective11410Klein113. RES Chemical Effects Peer Review Status15612Geiger/Tregoning134.a. Downstream Effects20014- WCAP 16406-P Status15615- Fuel Evaluation WCAP Status28316PWROG283175. Plant Resolution Overview28318Adjourn1192012111221123112411	5	1. Overview/Introduction	8
7 2.a. Chemical Effects - WCAP 16530 Status 41 8 FWROG 9 2.b. Chemical Effects - NRR Staff Perspective 114 10 Klein 114 11 3. RES Chemical Effects Peer Review Status 156 12 Geiger/Tregoning 13 13 4.a. Downstream Effects 200 14 - WCAP 16406-P Status 156 15 - Fuel Evaluation WCAP Status 283 16 FWROG 283 17 5. Plant Resolution Overview 283 18 Adjourn 29 20	6	M. Scott	
8 PWROG 9 2.b. Chemical Effects - NRR Staff Perspective 114 10 Klein 11 3. RES Chemical Effects Peer Review Status 156 12 Geiger/Tregoning 13 4.a. Downstream Effects 200 14 - WCAP 16406-P Status 15 - Fuel Evaluation WCAP Status 16 PWROG 17 5. Plant Resolution Overview 283 18 Adjourn 19	7	2.a. Chemical Effects - WCAP 16530 Status	41
92.b. Chemical Effects - NRR Staff Perspective11410Klein11113. RES Chemical Effects Peer Review Status15612Geiger/Tregoning200134.a. Downstream Effects20014- WCAP 16406-P Status20015- Fuel Evaluation WCAP Status28316PWROG28318Adjourn283192021212223232425	8	PWROG	
10Klein113. RES Chemical Effects Peer Review Status15612Geiger/Tregoning1134.a. Downstream Effects20014- WCAP 16406-P Status20015- Fuel Evaluation WCAP Status28316PWROG283175. Plant Resolution Overview28318Adjourn283202122232425	9	2.b. Chemical Effects - NRR Staff Perspective	114
113. RES Chemical Effects Peer Review Status15612Geiger/Tregoning1134.a. Downstream Effects20014- WCAP 16406-P Status20015- Fuel Evaluation WCAP Status28316PWROG283175. Plant Resolution Overview28318Adjourn283202122232425	10	Klein	
12Geiger/Tregoning134.a. Downstream Effects20014- WCAP 16406-P Status20015- Fuel Evaluation WCAP Status20016PWROG283175. Plant Resolution Overview28318Adjourn200202122232425	11	3. RES Chemical Effects Peer Review Status	156
134.a. Downstream Effects20014- WCAP 16406-P Status15- Fuel Evaluation WCAP Status16PWROG175. Plant Resolution Overview28318Adjourn19-20-21222324-25-	12	Geiger/Tregoning	
 14 - WCAP 16406-P Status 15 - Fuel Evaluation WCAP Status 16 PWROG 17 5. Plant Resolution Overview 283 18 Adjourn 19 20 21 22 23 24 25 	13	4.a. Downstream Effects	200
 Fuel Evaluation WCAP Status PWROG 5. Plant Resolution Overview 283 Adjourn Adjourn 20 21 22 23 24 25 	14	- WCAP 16406-P Status	
 PWROG 5. Plant Resolution Overview 283 Adjourn Adjourn 20 21 22 23 24 25 	15	- Fuel Evaluation WCAP Status	
17 5. Plant Resolution Overview 283 18 Adjourn 19 20	16	PWROG	
18 Adjourn 19 - 20 - 21 - 22 - 23 - 24 - 25 -	17	5. Plant Resolution Overview	283
19 20 21 22 23 24 25	18	Adjourn	
20 21 22 23 24 25	19		
21 22 23 24 25	20		
22 23 24 25	21		
23 24 25	22		
24 25	23		
25	24		
	25		

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	INTRODUCTION
3	CHAIRMAN WALLIS: The meeting will now
4	come to order. This is a meeting of the Advisory
5	Committee on Reactor Safeguards Subcommittee on
6	Thermal-Hydraulic Phenomena.
7	I am Graham Wallis. I am acting as the
8	chairman of the Subcommittee for today. Subcommittee
9	members in attendance are Tom Kress, Said
10	Abdel-Khalik, and we expect Dr. Sanjoy Banerjee
11	momentarily.
12	The purpose of this meeting today is to
13	discuss the progress being made by the NRC staff and
14	the licensees in the resolution of generic safety
15	issue 191, PWR sump performance. Representatives of
16	the Nuclear Energy Institute, PWR owners' group, and
17	several vendors of PWR sump screens will present the
18	results of their GSI-191 implementation activities,
19	including program plans to design new screens for PWR
20	sumps to address chemical interactions of coolant and
21	debris within a containment during a loss of coolant
22	accident and to address the impact of debris on
23	components downstream of the sump screens.
24	The NRC staff will also discuss the
25	plant-specific audits conducted in support of the

(202) 234-4433

	5
1	implementation of GSI-191. Several PWR licensees will
2	present their plant-specific GSI-191 resolution
3	program activities and status.
4	The Subcommittee will hear presentations
5	by and hold discussions with representatives of NEI,
6	the PWR owners' group, the screen vendors, the NRC
7	staff, and other interested persons regarding these
8	matters.
9	The Subcommittee will gather information,
10	analyze relevant issues and facts, and formally
11	propose positions and actions as appropriate for
12	deliberation by the full Committee. Zena Abdullahi is
13	the designated federal official for this meeting.
14	The rules for participation in today's
15	meeting have been announced as part of the notice of
16	this meeting previously published in the Federal
17	Register on May 2nd, 2007.
18	Portions of this meeting may be closed to
19	discuss proprietary information. Notice of closure of
20	these portions has been provided in the draft agenda
21	posted on the NRC Web site.
22	A transcript of the meeting is being kept
23	and will be made available as stated in the Federal
24	Register notice. It is requested that speakers first
25	identify themselves and speak with sufficient clarity
	1

(202) 234-4433

	6
1	and volume so that they can be readily heard.
2	Now, I understand that for two days, we
3	are going to hear almost entirely from the industry.
4	The staff has a short presentation that Mike Scott
5	will commence soon at the beginning, and then it has
6	one at the end. I notice in my introduction I made a
7	statement about the staff discussing plant-specific
8	orders.
9	MR. SCOTT: There are actually four staff
10	presentations. I don't know how that
11	CHAIRMAN WALLIS: Are they going to fit in
12	between? I see. I guess I missed some. They're
13	going to fit in after each one of the industry ones.
14	We're going to have staff comments.
15	MR. SCOTT: Right. Well, after the
16	chemical effects, WCAP discussion,
17	CHAIRMAN WALLIS: Right.
18	MR. SCOTT: we will have a staff
19	presentation and after the downstream effects, the
20	same thing and
21	CHAIRMAN WALLIS: Are they going to
22	discuss the audits after we hear from each plant or
23	not?
24	MR. SCOTT: I believe the audits are last
25	thing to do.

(202) 234-4433

	7
1	CHAIRMAN WALLIS: That's it. That's the
2	very end. Okay. All right. I just hope that we hear
3	enough from the staff. That's why I sort of
4	interjected that.
5	MR. SCOTT: And you will hear from the
6	staff today. I have to put one caveat in there, Dr.
7	Wallis, and that is that the industry presentations
8	are quite lengthy. And while we have seen them, we
9	have not integrated a review of them. So whatever
10	reaction we have to those today will undoubtedly be
11	caveated.
12	CHAIRMAN WALLIS: Yes. But I would like
13	if you have any new audits we have seen some
14	audits, some of which seem to be quite old. If you
15	have any new information about audits, I think we
16	would be very happy to hear them.
17	MR. SCOTT: Okay. We do have some new
18	information. As a matter of fact, two of the audit
19	reports have just been made or I guess one of them has
20	just been made public and another one is in the
21	process of being made public. I think we sent those
22	to you through Zena but only in the last few days.
23	MS. ABDULLAHI: Yes. The ones that you
24	sent us, I did provide it to the members.
25	MR. SCOTT: Right.

(202) 234-4433

	8
1	CHAIRMAN WALLIS: But that was very
2	recently.
3	MS. ABDULLAHI: The other one
4	CHAIRMAN WALLIS: That was the very recent
5	ones.
6	MR. SCOTT: But you have got to remember
7	that when you talk in terms of these audit reports,
8	recency is those are recently approved. The audit
9	visits actually occurred last year. It takes quite a
10	bit of time.
11	CHAIRMAN WALLIS: That's why they're so
12	old. It took you a year to approve the document.
13	MR. SCOTT: No, it doesn't take a year,
14	but it does take several months.
15	CHAIRMAN WALLIS: Okay.
16	MR. SCOTT: And so that is why they appear
17	to be a bit dated to you.
18	CHAIRMAN WALLIS: That is often a bit of
19	a mystery for me. While I don't want to introduce on
20	your presentation, Mike, please go ahead and tell us
21	what you have prepared. Then we'll get on with the
22	meeting.
23	1. OVERVIEW/INTRODUCTION
24	MR. SCOTT: Okay. Great. I'm Mike Scott,
25	Chief of Safety Issues Resolution Branch in NRR. And,

(202) 234-4433

	9
1	as several times before when I have appeared before
2	you, I am the lead in NRR for resolution of GSI-191.
3	And I am pleased to have the opportunity to talk to
4	you today and to present the presentation that I think
5	you will find least interesting of all the ones that
6	we are going to talk about today. So we'll move
7	through it hopefully fairly quickly.
8	I would just like to give you an overview
9	of where we are going with this thing and just kind of
10	keep you up to date on our progress and then just sort
11	of set the stage for the rest of the presentations.
12	Slide 2, please. The purpose of it is to
13	provide you an update and discuss the path forward as
14	before.
15	Slide 3. Our current focus, the staff
16	still after all, we have gone back and forth with
17	trying to get this issue resolved. We still expect
18	consistent with generic letter 04-02, that the
19	licensees will address GSI-191 by the end of this
20	year.
21	CHAIRMAN WALLIS: Mike, the approach seems
22	to be to build it and then show that it works.
23	MR. SCOTT: I hadn't exactly heard it put
24	that way, but that's not far off.
25	CHAIRMAN WALLIS: Usually the inverse way
	1

(202) 234-4433

	10
1	of usually designing things.
2	MR. SCOTT: As you know, when we talked
3	about this thing the better part of a year ago, the
4	staff put a lot of emphasis on making the strainers
5	larger. And the industry bought into that approach.
6	And they have been out doing that.
7	So at this point let's see. We're in
8	Spring '07. I would estimate that probably half of
9	the PWRs have actually massively enlarged their
10	strainers. And they did so with the knowledge that
11	there were unanswered questions and that additional
12	changes might be needed. And we are absolutely still
13	in that mode.
14	We expect, however, that the licensees by
15	the end of this year will provide a demonstration that
16	adequate long-term core cooling is maintained in the
17	presence of the expected plant-specific degree
18	loading. That, of course, is what is reflected in
19	generic letter 04-02. That is the mission here, so to
20	speak. And that hasn't changed.
21	However, as you will hear today and
22	tomorrow, the chemical effects testing is just now
23	starting and will go on into the fall and probably
24	until late fall for some of the plants. So it is
25	possible that some of the plants who are late in the
	1

(202) 234-4433

	11
1	queue, so to speak, to get their chemical effects
2	testing done may seek additional time to finish their
3	corrective actions. We have not been formally
4	approached by any particular plant yet, but that may
5	happen in the future.
6	CHAIRMAN WALLIS: I think the ACRS has
7	been urging you for some time to get this done so that
8	we didn't get surprises after everything has been
9	installed.
10	MR. SCOTT: Get what done?
11	CHAIRMAN WALLIS: I guess to get the
12	chemical effects being sorted out.
13	MR. SCOTT: Sure.
14	CHAIRMAN WALLIS: Right.
15	MR. SCOTT: And we are very eager to do
16	that. What is going on now, as you will hear, is the
17	finalization of the review of the chemical effects
18	topical report, which is important for the chemical
19	effects testing, and the vendors, of which you may
20	recall there are about five, are off building their
21	test rigs, to include chemical effects testing.
22	Because there are a limited number of vendors, that
23	means that there weren't any one test facility that is
24	going to see tests for multiple licensees. And so
25	they have to queue up. And that is in large part why
I	1

(202) 234-4433

	12
1	this is going to stretch out into the
2	CHAIRMAN WALLIS: Is the ANL work
3	continuing for the NRC, the work at Argonne on
4	chemical effects? Is that continuing or is that
5	finished?
6	MR. SCOTT: That work is finished, I
7	believe. Is Rob Tregoning or Erv Geiger here?
8	Finished, we are told. We are going to talk to you
9	today about the possibility of some additional work
10	that might be done.
11	Slide 4. We have granted 15
12	plant-requested extensions for completion of one or
13	more corrective actions. Those requests and our
14	response to them are on the PWR sump Web site.
15	Most of them are out in the Spring 2008.
16	Those were for plants that did their refueling outages
17	where they installed most of their modifications back
18	in Fall '06 but had one or more items that needed to
19	be done for various reasons in the next refueling
20	outage. So we have a number of plants who have asked
21	for three, four-month extensions.
22	One plant, Diablo Canyon, sought and
23	received an extension into Spring 2009. They had a
24	situation where they had certain difficult-to-access
25	insulation on their steam generators that were fibrous
	1

(202) 234-4433

	13
1	insulation. And it did not make sense for them given
2	that they are going to replace their steam generators
3	in 2009 to replace the insulation in '07 and then turn
4	around and replace it again in '09.
5	And they made a strong argument as to why
6	it was safe to not replace them now, that particular
7	piece of insulation. So they got a longer extension.
8	We believe we will likely get more
9	requests, for one reason or another, as we go through
10	the rest of 2007.
11	CHAIRMAN WALLIS: I hope you don't get 69.
12	MR. SCOTT: I hope we don't get 69 also.
13	Slide 5. Current staff activities. As
14	you know, we are doing audits of a sample of licensees
15	and strainer vendors. And you will hear more about
16	that in Leon Whitney's presentation later.
17	This is kind of misleading. We are not
18	actually out auditing the strainer vendor. We are
19	going to licensees, each of whom has a strainer
20	vendor. And we believe that the issues identified at
21	a particular licensee that has a particular strainer
22	vendor are likely to be somewhat common with other
23	licensees who have the same strainer vendor. And so
24	we are attempting to get a representative or a
25	reasonable sample of each of the vendors by auditing

(202) 234-4433

	14
1	their customers.
2	We are continuing to meet with the
3	industry. We are meeting essentially every other
4	month with the industry to discuss remaining technical
5	issues. That is with NEI and the licensees. And a
6	number of other technical discussions are going on,
7	for example, in the review of the topical reports. We
8	are having weekly phone calls typically to try to
9	resolve open technical issues dealing with those
10	topical reports.
11	And we are finalizing the review of two
12	topical reports and about to get into the review of a
13	third. And you will hear about that today as well.
14	And we are also just now getting into
15	reviewing the vendor protocols for integrated head
16	loss testing. We received a couple of them in-house
17	and have begun to provide comments back to those
18	vendors to try to make sure that staff comments and
19	concerns, if any, on the chemical effects testing, the
20	integrated head loss testing that includes chemical
21	effects, is done satisfactorily the first time such
22	that there is no need for yet another round of
23	testing.
24	CHAIRMAN WALLIS: The major question that
25	we raised in our letters, the ACRS letters, was how

(202) 234-4433

(202) 234-4433

	15
1	are you going to take these results from integrated
2	head loss testing and apply them to a plant? And now
3	you say you're getting into the question of reviewing
4	the protocol. Those seems to be a very important
5	item.
6	MR. SCOTT: It is. We view it as
7	important. We are attempting to get all of the
8	protocols in-house to look at. It's a process that
9	takes some time. Yes.
10	Slide 6. Near-term plans. We plan to
11	continue the audits. We plan to do the last audit in
12	January 2008, as you will hear from Leon Whitney. We
13	are continuing to work to address the remaining
14	technical issues. And we will talk about that today.
15	We are beginning now the development of
16	safety evaluations for the chemical effects topical
17	report and the downstream X vessel topical report.
18	And we are beginning development of
19	additional review guidance that we're going to need to
20	support closure of generic letter 04-02. That draft
21	review guidance should be available in the fall.
22	Slide 7. We are working with the industry
23	to develop a content guide for the level of detail
24	needed for the generic letter submittals. Their goal
25	is to know exactly what we expect them to provide us

(202) 234-4433

	16
1	so that they get it right the first time. We have the
2	same goal.
3	And so we are going back and forth in
4	public meetings discussing potential content for these
5	generic letter submittals, which we expect to receive
6	for most plants, again by the end of this year.
7	CHAIRMAN WALLIS: So it's interesting,
8	again, to look at the time line. I mean, they build
9	the strainer. And then they do some tests which may
10	have some problems. And now you're developing a
11	content guide for what they need to submit. I would
12	think the sooner you could have done that, the better
13	so that they know what to work towards.
14	MR. SCOTT: I would argue that they know
15	what to work towards, regardless of what we actually
16	tell them to send in to us by mail on $12/31$.
17	CHAIRMAN WALLIS: We would hope so.
18	MR. SCOTT: Because what they're going to
19	send in is a small fraction of what they are actually
20	going to do. We are not going to ask for each and
21	every one of their references to come in here on
22	12/31/07.
23	So I guess my view is that our time line
24	for developing this content guide at this point is
25	timely because I don't think many of them start
	1

(202) 234-4433

	17
1	CHAIRMAN WALLIS: This is a dynamic
2	process. But what you ask for depends on what you
3	have seen in your orders to some extent. You've got
4	to know what questions to ask by what you have
5	observed.
6	MR. SCOTT: I would say that it's a little
7	more accurate to say that the licensees will learn
8	from the audit reports if they look at them, which we
9	are encouraging them to do, what the issues are that
10	need to be addressed in their resolution of GSI-191,
11	not necessarily what needs to be sent in to us on
12	12-31-07, although they're related, clearly.
13	What we are expecting on 12-31-07 is the
14	conclusions that lead the licensee to believe that it
15	has resolved the issue and a basis at one level of
16	detail for what that conclusion in. In other words
17	CHAIRMAN WALLIS: Okay. Now, which of
18	these things and at which time in your process do you
19	want to interact with us?
20	MR. SCOTT: That's coming. That's coming.
21	It's the last slide.
22	CHAIRMAN WALLIS: Okay. Okay.
23	MR. SCOTT: I'm coming there.
24	CHAIRMAN WALLIS: So since we're on slide
25	7, do you want us to look at this content guide?
	1

(202) 234-4433

	18
1	MR. SCOTT: I honestly don't. You're
2	welcome to. I don't think it would interest you
3	particularly. It's process more than it is technical
4	information. And typically I believe you all aren't
5	all that interested. And I'm happy to provide you a
6	copy of what we have done.
7	CHAIRMAN WALLIS: We are very interested
8	in the technical information.
9	MR. SCOTT: Right. And that won't
10	CHAIRMAN WALLIS: That won't be somewhere
11	else?
12	MR. SCOTT: Well, again, it is a request
13	to send in technical information. If you are
14	interested in it, I would be happy to provide you a
15	copy.
16	PARTICIPANT: I guess we might be
17	interested in what sort of technical information.
18	MR. SCOTT: Okay. Well, we will get you
19	a copy. We anticipate discussing that in our more
20	final form with the industry in June. And at that
21	point, we will have something that we can be a little
22	more confident of. And we will send you a copy. And
23	that will be available to you before we next meet.
24	The other thing we are doing right now is
25	soliciting remaining staff technical questions and
	1

(202) 234-4433

Í	19
1	considering how to resolve each one. From a
2	management perspective, we are very interested in
3	having all of the technical questions out on the table
4	now and not out on the table in Spring 2008, when the
5	licensees send their responses in.
6	So we are asking the staff based on what
7	the staff knows now to identify what issues the staff
8	members involved with this issue believe have not been
9	adequately addressed.
10	From each of those items, we have a
11	working group that is considering what is to be done
12	with them and a recommendation for how to proceed.
13	And you can see in the sub-bullets on slide 7, if
14	there is considered to be a technical basis for the
15	concern, that it might be an industry action that is
16	called for. It might be NRC-sponsored research. And
17	it is possible for some of these items that we can
18	justify no action for them at all.
19	That is going to be documented. And it,
20	too, will be discussed with the industry in June. So
21	you all might want to be represented at that meeting.
22	You might hear some interesting things. And we will
23	get you a copy of our documentation that supports
24	that.
25	PARTICIPANT: When is that meeting?
	1

(202) 234-4433

	20
1	MR. SCOTT: I believe June 18th, John.
2	MR. LEHNING: I believe so.
3	MR. SCOTT: June 18th. One day, all day
4	I believe is the way it is going to turn out.
5	Slide 8. Challenges. And this won't be
6	a revelation to the Committee. Many plants have not
7	yet successfully completed chemical effects testing.
8	Issues continue to arise as we go through the process.
9	As before, there is a tremendous variance among the
10	licensees in the level of the concern of the issue and
11	what the solution to it is.
12	You have some very low-fiber plants, who
13	largely consider themselves to be done now. And you
14	have other plants that are still struggling to show
15	success given their plant-specific debris loading and
16	chemical loading.
17	As you know, we have been directed by the
18	Commission to resolve the issue holistically; that is,
19	to consider various options and proposals that will
20	support resolution of the issue. And it will allow us
21	to reach reasonable assurance in the presence of the
22	complexities and uncertainties that are of major
23	CHAIRMAN WALLIS: Now, what does
24	"reasonable assurance" mean?
25	MR. SCOTT: Reasonable assurance is

(202) 234-4433

	21
1	defined as I mean, I don't have a definition, but
2	
3	CHAIRMAN WALLIS: Well, let me ask you if
4	you mean something like this. You will make an
5	assessment of the bulkage of the strainer and of the
6	core if it happens, and you will calculate the
7	temperatures at various places, flow rates, and so on,
8	and see if there is any damage to the fuel. Is that
9	the kind of thing that is expected to be done?
10	MR. SCOTT: The regulation that is
11	applicable here is 10 CFR 50.46(b)(5). I mean, it is
12	of the nature that you are talking about. Now, we are
13	not going to do those calculations. The licensees
14	are. And we are going to review.
15	CHAIRMAN WALLIS: You will expect them to
16	do those calculations?
17	MR. SCOTT: They are expected to show that
18	for their plant-specific debris loading and transport,
19	that adequate core cooling is maintained using either
20	the methodologies that are provided in our SE that we
21	issued in 2004 or our review of the topical reports
22	that are ongoing now and various things.
23	If they choose to use those methodologies,
24	then all they need to show is that they are correctly
25	applied. If they choose to do those methodologies,

(202) 234-4433

Í	22
1	then they have to justify their deviation. That is
2	how we get to reasonable assurance.
3	CHAIRMAN WALLIS: So we are talking about
4	temperatures in the core that could be high, I mean,
5	up to 1,500-2,000 degrees or something?
6	MR. SCOTT: You may be aware that there is
7	a topical report coming in from the PWR owners' group
8	on May 31st.
9	And is Moe here? Is that still on
10	schedule?
11	MR. DINGLER: That's correct.
12	MR. SCOTT: Still on schedule, 11:59 p.m.,
13	May 31st we're going to get
14	CHAIRMAN WALLIS: Are you going to tell us
15	what happens when debris meets a surface which is at
16	2,000 degrees Fahrenheit?
17	MR. DINGLER: That's correct.
18	CHAIRMAN WALLIS: You are going to tell
19	us? Okay. Thank you.
20	PARTICIPANT: Are we going to review this
21	report?
22	MR. SCOTT: Yes, we are. And we are going
23	to write an SE on it.
24	PARTICIPANT: (Inaudible.)
25	MR. SCOTT: Say it again?
I	1

(202) 234-4433

	23
1	PARTICIPANT: You are going to write an
2	SE?
3	MR. SCOTT: We are going to write an SE,
4	yes. And it will be a quite accelerated development
5	if you consider how long it usually takes to develop
6	the topical report review. We're going to be quite
7	busy.
8	PARTICIPANT: And we can see the SE and
9	the report?
10	MR. SCOTT: Yes. You can see the report
11	as soon as they turn it in, of course, which is now
12	just two weeks away. And the SE obviously is a few
13	months away. And so then we will have the answer to
14	those kinds of questions.
15	CHAIRMAN WALLIS: Well, this SER is not
16	very good. Don't blame us if we hold you up.
17	MR. SCOTT: Of course not.
18	CHAIRMAN WALLIS: Thank you.
19	PARTICIPANT: Is there sort of a critical
20	path to resolving this?
21	MR. SCOTT: I would say that the biggest
22	challenge that we have right now is well, there are
23	actually two things. One is the fact that the
24	chemical effects, as you know, continue to have a
25	number of unknowns. And the testing has happened yet.
	•

(202) 234-4433

	24
1	And we don't know what that testing is all going to
2	show.
3	It is quite possible that as licensees do
4	that testing, they will find that they still need to
5	make additional modifications. And that could slow
6	the process down.
7	The other thing that we have to do is an
8	expeditious but, yet, quality job of reviewing the
9	in-core topical report, which we don't yet have
10	in-house.
11	So those are the two things that I think
12	are toughest out there. We believe we have the path
13	forward on downstream effects X vessel. And we are
14	close to finishing the review of the topical report on
15	that, as you will hear.
16	The head loss testing and the various
17	aspects of that, exclusive of chemical effects, we
18	believe we have got a handle on. And the industry
19	does, too. But it is a busy rest of 2007 to get all
20	of that stuff done.
21	Let's see here. Next to last bullet.
22	Some complex issues still being resolved. Of course,
23	that's true. That has the potential to slow us down
24	as well. And there is a possible need for additional
25	confirmatory NRC-sponsored research.
	1

(202) 234-4433

	25
1	Now, as you know, we have been saying to
2	you all for several meetings that we had that in mind.
3	And we are going through a process now, a process that
4	I mentioned to you a couple of minutes ago about
5	dealing with staff issues as well as the process of
6	dealing with the chemical effects peer review panel
7	results that you will hear about later today.
8	Those processes may well lead us to the
9	decision that some confirmatory research is needed.
10	So we will be able to report that to you the next time
11	we meet with you.
12	PARTICIPANT: Are you going to talk to us
13	at all about your responses to the peer review panel
14	this round or
15	MR. SCOTT: Yes. Well, what you are going
16	to hear are some sample responses, yes. I am kind of
17	stealing Rob Tregoning's thunder here. Rob will be
18	speaking to you. Rob and Erv Geiger will be speaking
19	to you about the status of that effort. And the
20	working group that is dealing with it has met several
21	times.
22	I believe they have gone through their
23	first round of meetings. And they're sort of taking
24	a cut at the list. But it is not ready fully yet.
25	But you will get an idea of what our thought process
	1

(202) 234-4433

	26
1	is from that presentation later today.
2	Slide 9. This is sort of off the topic of
3	GSI-191, but I wanted to simply mention it to you
4	because we are thinking about it and you all may have
5	had some thoughts about it as well.
6	If you go back to the treatment of the BWR
7	strainer clogging issues back in the 1990s and you
8	compare it with the treatment of the PWR sump clogging
9	treatment in the 2000s, then you will find some
10	differences.
11	We did that. We went back and developed
12	sort of a draft white paper that says for these
13	various issues, for example, X vessel downstream
14	effects and chemical effects and so on, here is the
15	difference in treatment between the BWRs and the PWRs.
16	And there are a number of potentially significant
17	differences in the treatment.
18	Now, how does that play out as for whether
19	one is right and one is wrong or one is better and one
20	is not so good is not entirely clear. They have
21	evolved to where they are for various reasons, one
22	being the difference in time that the issue is
23	resolved, another being the reactor configurations are
24	different, the core configurations are different, and
25	so on and so on.
	1

(202) 234-4433

	27
1	But there are differences. And so we have
2	sort of catalogued those, and we are internally
3	discussing, as you can see on the last bullet here,
4	how to proceed with that.
5	What we would like to do is get out of the
6	mode that the industry and the agency have been in for
7	the last 20 years of addressing one, then the other,
8	and then back to the first and back to the second and
9	so on. We would like to reach regulatory stability on
10	this issue. And we are trying to figure out the best
11	process for doing that.
12	And the other point, of course, that comes
13	up is new reactors. And the sump strainer guidance
14	for new reactors is not necessarily going to be clear
15	for those new reactors. You can't say, "Well, AP1000
16	is a PWR. So I'll just invoke the PWR guidance
17	because the strainers have different purposes in those
18	new reactors in some cases." In some cases, maybe
19	they don't.
20	So there are various loose ends here, if
21	you will, that we are going to consider how to clear
22	up, whether it makes sense to let the disparities
23	continue or whether we need to address them in some
24	manner.
25	So this is just letting you know that we

(202) 234-4433

	28
1	are thinking about this. And we will undoubtedly be
2	talking to you about it at some time in the future.
3	Slide 10.
4	MEMBER BANERJEE: What sort of approaching
5	are you taking to say if somebody comes and says, "We
6	don't need any buffer"?
7	MR. SCOTT: Well, nobody has done that
8	yet. So I guess the easy answer to your question is
9	no approach at all.
10	There has been research that we have been
11	advised of that occurred in France that appeared to
12	indicate that a buffer might not be needed for some
13	period of time following a LOCA. Now, it didn't say
14	never needed. It said for some period of time.
15	We believe that additional work is needed
16	before we reach a conclusion based on that research.
17	MEMBER KRESS: (Inaudible.)
18	MR. SCOTT: Yes, it is.
19	MEMBER KRESS: (Inaudible.) indicate that
20	the buffer wasn't very useful at all.
21	MR. SCOTT: It was not a player in the
22	iodine issue, at least for that period of time.
23	MEMBER KRESS: (Inaudible.)
24	MR. SCOTT: Right. There are other issues
25	that come up in the absence of the buffer, however.

```
(202) 234-4433
```

	29
1	PARTICIPANT: Corrosion or something?
2	MR. SCOTT: Potentially, yes. So all I'm
3	saying is we're looking at that, but it's not ready
4	for reaching any regulatory conclusions in our view.
5	PARTICIPANT: Is that an area you think
6	more research could be done? (Inaudible.)
7	MR. SCOTT: It is certainly an area where
8	more research could be useful. We are not considering
9	it in the same light because it is not part of the
10	current solution set for GSI-191.
11	MEMBER KRESS: Would that completely
12	address the chemical effects issue?
13	MR. SCOTT: Well, I would say that it
14	would have an impact, but, again, there might be other
15	things going on by the absence of it. I think I would
16	be reluctant to say that it would resolve chemical
17	effects and we're done. It would certainly change a
18	lot of the issues, but you know how these things are.
19	You make a change. And then some new unexpected
20	PARTICIPANT: (Inaudible.)
21	MR. SCOTT: Yes.
22	CHAIRMAN WALLIS: Especially on the sump
23	issue.
24	MR. SCOTT: Right, particularly on the
25	sump issue. So we certainly are not declaring victory

(202) 234-4433

	30
1	or contemplating declaring victory based on that
2	research at this point. But it's interesting.
3	PARTICIPANT: (Inaudible.) deposition.
4	You know, the peer review committee brought this up
5	(Inaudible.) deposition on the fuel (Inaudible.).
6	MR. SCOTT: I'm not going to be able to
7	speak to that. Do we have somebody here from the
8	staff who would like to answer that question? Let's
9	see. Rob or Paul Klein or somebody? Paul, do you
10	want to jump on that one?
11	MR. KLEIN: Paul Klein, NRR.
12	No, not really, Mike.
13	(Laughter.)
14	MR. SCOTT: I teed it up for him.
15	PARTICIPANT: This is not a loaded
16	question. I'm just asking it out of curiosity.
17	MR. KLEIN: Yes. There may be changes
18	related to quite different pH's. I'm not sure that
19	we're in a position to discuss that today. But based
20	on some of the experience from overseas testing as
21	well, we would expect there might be a different set
22	of problems associated with lack of buffer in the
23	pool, such as zinc corrosion that's not currently an
24	issue.
25	So though removing the buffer may be
	1

(202) 234-4433

	31
1	attractive overall, there are a number of technical
2	questions that would still need to be addressed.
3	CHAIRMAN WALLIS: Let me go back now.
4	Most plants or many plants have already installed
5	strainers I understand.
6	PARTICIPANT: I would say around half at
7	this point, yes.
8	CHAIRMAN WALLIS: And presumably for the
9	others since they are aiming to finish by the end of
10	the year, the strainers have been built.
11	PARTICIPANT: Or are being built
12	currently, yes.
13	CHAIRMAN WALLIS: Very close to
14	completion.
15	PARTICIPANT: Right. They will be built
16	just in time for the fall.
17	CHAIRMAN WALLIS: So one of the few things
18	you can change later is the chemistry. And you have
19	already got these strainers installed. And then you
20	decide that you've got a problem. One of the things
21	you could change relatively easily might be the
22	chemistry.
23	PARTICIPANT: The chemistry could be
24	changed. Additional fibrous insulation could be
25	removed. There are various options out there.
	1

(202) 234-4433

	32
1	CHAIRMAN WALLIS: You don't want to go in
2	and rebuild the strainer.
3	MR. SCOTT: Well, you know, in a lot of
4	cases, these strainers are very, very large. In some
5	cases, they are all that will fit.
6	CHAIRMAN WALLIS: Right.
7	MR. SCOTT: So, you know, clearly that's
8	not a success path. And I don't believe any of our
9	licensees have got significant amounts of spare
10	strainers on hand they have paid to be built just in
11	case they need to add even more. I could be wrong,
12	but I doubt that many of them have done that.
13	CHAIRMAN WALLIS: At one point the
14	question was raised about maybe having to take some
15	out because there will be too much bypass or too big
16	a strainer.
17	MR. SCOTT: I had not heard of that being
18	a consideration.
19	CHAIRMAN WALLIS: This was raised by the
20	industry. Absolutely.
21	MR. SCOTT: Okay. Well, maybe John Butler
22	can update us on anything that he knows on that.
23	CHAIRMAN WALLIS: That viewpoint has
24	changed.
25	MR. SCOTT: Could be. Could be. In any

(202) 234-4433

	33
1	event, there are a lot of possible approaches to deal
2	with these potentially not good results. One thing
3	and you will hear about this today is that the
4	industry is, so to speak, sharpening their pencil on
5	some of the conservatisms in the analyses.
6	And so that may be something that the ones
7	who are most affected by high fiber loadings might
8	plan to do because we do know that a number of the
9	for example, the chemical effects topical report is
10	quite conservative. So there are various options.
11	I agree with what you were implying, that
12	I doubt that they are going to go back and make
13	significant changes to their already changed
14	strainers.
15	Slide 10. This is my last slide. You had
16	asked about plans for meeting with you all. The
17	question always comes up, are we looking for a letter?
18	For this meeting, we don't have any particular need
19	for a letter at this point.
20	Of course, if you are interested in
21	sharing your views on our progress, we are always glad
22	to hear those. We don't have a particular regulatory
23	requirement at this point that calls for a letter.
24	We know that the Commission believes that
25	you all need to stay thoroughly involved in this
	1

(202) 234-4433

	34
1	issue. So however you wish to play that is fine with
2	us.
3	PARTICIPANT: I think we were planning to
4	address this in the July meeting.
5	CHAIRMAN WALLIS: You are going to present
6	to the full Committee in July. That's true?
7	MR. SCOTT: That's fine. That's fine. I
8	assume. I didn't know. Three's no meeting in June,
9	I guess.
10	PARTICIPANT: There is. Graham is going
11	to be on holiday.
12	MR. SCOTT: He wouldn't want to miss this.
13	Okay. Okay. Absolutely. Okay. Well, then that's
14	fine. I didn't have that down here. I considered
15	that to be part and parcel of this meeting.
16	In any event, we planned to come back to
17	talk to you in the fall. There was going to be a lot
18	of new information in the fall, for example.
19	CHAIRMAN WALLIS: A letter might help if
20	it indicated to you what we would be looking for in
21	the fall.
22	MR. SCOTT: That's fine.
23	CHAIRMAN WALLIS: It would be helpful of
24	some things that we needed to bring to your attention
25	that we're really going to look for.
	1

(202) 234-4433

	35
1	MR. SCOTT: Of course.
2	CHAIRMAN WALLIS: Then we might want to
3	put it on paper.
4	MR. SCOTT: That's fine. That's fine. In
5	any event, we would anticipate in the fall that we
6	will be able to talk to you about the in-vessel
7	topical report. Depending on when in the fall we
8	actually brief you, we might be close to done with the
9	review of that document.
10	Just for your information, we target
11	trying to be at least at a draft SER in about the end
12	of September.
13	CHAIRMAN WALLIS: When would this be? I
14	think we're going to have a meeting in Germany in
15	October or something on this.
16	MR. SCOTT: We're willing to go to Germany
17	to meet with you, no problem.
18	CHAIRMAN WALLIS: So are you going to
19	present before that meeting so we can go over there
20	and tell them what you are doing?
21	MR. SCOTT: Well, you don't meet in
22	August, right?
23	PARTICIPANT: We have enough meetings in
24	August.
25	MR. SCOTT: The full committee doesn't
	1
	36
----	--
1	meet in August.
2	CHAIRMAN WALLIS: Yes.
3	MR. SCOTT: If we come in in August and
4	talk about in-vessel, I think it may be a little bit
5	premature.
6	CHAIRMAN WALLIS: How about September?
7	Well, you can work it out with Zena.
8	MR. SCOTT: Okay.
9	MS. ABDULLAHI: Yes. We will work it out
10	later.
11	MR. SCOTT: That's fine. Anyhow, we will
12	talk to you about that. We will plan to present to
13	you the results of the review that I was mentioning to
14	you about the remaining technical questions. That
15	would be the peer review comments and the staff
16	technical questions. We will talk to you about those.
17	We hope to be able to persuade the
18	industry to talk to you about results of integrated
19	head loss and chemical effects testing, some of which,
20	a significant amount of which, should be available by
21	the fall. That would be for them to do. And
22	hopefully they would be willing to do that.
23	CHAIRMAN WALLIS: Now, is this all going
24	to be proprietary or is it going to be open, this
25	MR. SCOTT: I would say well, let's

(202) 234-4433

	37
1	see. The in-vessel is proprietary, right? No?
2	MR. DINGLER: (Inaudible.)
3	MR. SCOTT: Okay. So the in-vessel
4	topical report is a proprietary document. I guess Moe
5	Dingler was saying maybe we could have an open meeting
6	about it. But it is a proprietary document.
7	CHAIRMAN WALLIS: The results of
8	integrated head loss chemical effects, is all of that
9	going to be proprietary?
10	MR. SCOTT: I doubt it because that is
11	licensee testing. They're sponsoring it. You know,
12	they need to share it with us. And their licensing
13	basis will be public record.
14	CHAIRMAN WALLIS: This will be in the
15	public document room and somebody else other than us
16	can look at it and reach conclusions?
17	MR. SCOTT: That would be my conclusion
18	regarding not so much the topical report but the
19	testing results and so on, yes.
20	CHAIRMAN WALLIS: So that they have to
21	stand up not only to ACRS questioning and staff
22	questioning but the public view as well?
23	MR. SCOTT: Well, as is always true for
24	licensees' compliance, that is true.
25	CHAIRMAN WALLIS: Well, that is important.

(202) 234-4433

	38
1	MR. SCOTT: Yes, that's correct.
2	CHAIRMAN WALLIS: You don't want somebody
3	else to look at them and raise some question that we
4	forgot to raise.
5	MR. SCOTT: No, absolutely not. The other
6	thing so we would plan to talk to you about that in
7	the fall. And there would probably be some other
8	things. And maybe if there is something, in
9	particular, you have an interest in, we can talk to
10	you about it at that time.
11	And then in the spring, we will be talking
12	to you hopefully about our initial reviews of the
13	generic letter responses and the final audit results
14	because, as I said the last
15	CHAIRMAN WALLIS: (Inaudible.) where
16	somebody said GSI-191 is over and done with, finished,
17	buried?
18	MR. SCOTT: Yes. There are two.
19	Actually, it's more or less parallel processes we go
20	through here. We've got one to close out the generic
21	letter and the other to close out the generic safety
22	issue.
23	And I've got an integrated schedule that
24	shows that stuff happening. And it's out in the
25	summer and early fall of next year because what

(202) 234-4433

	39
1	happens is we finish up our last audit in January.
2	And we're planning to do a non-trivial review of the
3	generic letter responses. So that's going to take
4	some time.
5	Again, what we're wrestling with is what
6	is the right level of detail of the information to be
7	provided in the generic letter responses. But
8	whatever it is, it's going to be enough that the staff
9	is going to need to spend some resources reviewing it.
10	So we see that playing out in the spring
11	and the summer. The regions will be doing inspections
12	of the installations that the licensees have made to
13	verify on each plant that the licensee has put in what
14	they committed to put in in their solutions and their
15	corrective actions.
16	So we take the audit results. We take the
17	generic letter responses. We take the inspection
18	results. We integrate all of that. And that turns
19	into internal documentation that hopefully will
20	support closure of the issue and closure of the
21	generic letter.
22	CHAIRMAN WALLIS: And who signs off on it?
23	MR. SCOTT: The generic letter is closed
24	out inside NRR. And I honestly don't remember. It's
25	a memo from somebody to somebody. And I'm sure that
	1

(202) 234-4433

	40
1	Mr. Dyer (Phonetic.) will have his final say in it.
2	Whether he actually signs off on it I don't recall.
3	The generic safety issue process involves
4	additional consideration of review in the generic
5	issues program and research, but it's a similar
6	process. And, like I say, all that plays out next
7	summer and fall the way it is currently looking.
8	CHAIRMAN WALLIS: Do we have to comment?
9	Are we required to comment on the closure issue?
10	MR. SCOTT: You're not required to comment
11	on the generic letter process. I believe there is a
12	spot in the GSI process for you all to comment. And
13	we will certainly seek your comments.
14	That concludes my prepared remarks.
15	CHAIRMAN WALLIS: Recall a time when we
16	write a letter which says GSI-191 should be closed or
17	should not be closed.
18	MR. SCOTT: I believe that time will come.
19	And I believe that time will be the middle of next
20	year.
21	If you all have no other questions, I
22	believe we have the PWR owners' group on chemical
23	effects.
24	CHAIRMAN WALLIS: Yes. We would like to
25	move along to that. Thank you, Mike, very much.
	1

(202) 234-4433

	41
1	MR. SCOTT: Thank you.
2	CHAIRMAN WALLIS: We took a little longer,
3	but I think it was worthwhile. Thank you.
4	MR. SCOTT: Thank you.
5	CHAIRMAN WALLIS: We are doing WCAP. Do
6	we have some slides?
7	MR. REID: You should have them in your
8	CHAIRMAN WALLIS: In the book?
9	MR. REID: first handout called
10	"Chemical."
11	CHAIRMAN WALLIS: We're all ears.
12	2.A. CHEMICAL EFFECTS - WCAP 16530 STATUS
13	MR. REID: Very good. I'm Rick Reid with
14	Westinghouse. Today I am going to discuss the
15	pressurized water reactor owners' group chemical model
16	that was presented in WCAP 16530.
17	Next slide. By way of introduction, the
18	issue is chemical interactions between sump materials
19	and chemical additives to the sump by post-LOCA. And
20	the key interaction we are interested in is generation
21	of precipitates that may cause head loss to the sump
22	strainers.
23	The approach we have taken
24	CHAIRMAN WALLIS: Excuse me. These
25	precipitates also if they go through would go to the

(202) 234-4433

	42
1	core perhaps.
2	MR. REID: That would be correct, yes.
3	And the approach we have taken to a resolution is
4	first using the NRC-sponsored IECT program results and
5	follow-on testing sponsored by the PWROG to identify
6	the key interactions and to elucidate the factors that
7	control these interactions.
8	Next slide. Okay. The background here
9	is, as I mentioned, the IECT program chemical effects
10	kind of bled into the design of the test program that
11	we did. We wanted to augment the information that was
12	generated during that program.
13	For integrated testing, we used typical
14	plant materials, typical loadings, and some
15	chemistries, the five tests, long-term tests, 30 days
16	integrated with the materials in the solutions in the
17	test rate. We used a static temperature of 140
18	degrees to represent the kind of long-term equilibrium
19	conditions in the sump.
20	Next slide.
21	PARTICIPANT: How did you choose these
22	slides that (Inaudible.)?
23	MR. REID: I believe that IECT program was
24	the NRC-sponsored test.
25	PARTICIPANT: Right.

	43
1	MR. REID: And I believe those are
2	selected to kind of bound the plants in terms of sump
3	chemistry primarily and then sump materials but
4	primarily sump chemistry, so different buffering
5	agents and pH values based on
6	CHAIRMAN WALLIS: Material. They have
7	these plates at various materials.
8	PARTICIPANT: You are talking about the
9	IECT?
10	CHAIRMAN WALLIS: IECT.
11	MR. REID: Yes, that's correct, IECT
12	program.
13	PARTICIPANT: Okay. Okay.
14	MR. REID: That's correct.
15	PARTICIPANT: Okay.
16	MR. REID: Okay? And the research I
17	discuss IECT is that it was very important into the
18	development of this chemical model. We obviously
19	didn't ignore the results of that testing.
20	The PWR program, we did want to augment
21	the IECT program results to understand in more detail
22	some of the important interactions. So we did
23	bench-scale testing of individual materials over a
24	range of temperatures from 195 to 265 degrees
25	Fahrenheit and a range of pH values from 4.1 to a

(202) 234-4433

	44
1	maximum of 12.
2	And we tested 11 different materials by
3	classifications of materials. And we did
4	precipitation tests at 80 degrees Fahrenheit to
5	determine what precipitates would form.
6	The ultimate goal was to develop a generic
7	chemical model to predict the quantity and types of
8	precipitates that would be generated under varying
9	plant conditions.
10	This work included a design of a
11	particulate generator so that licensees and vendors
12	could develop chemical surrogates they could use in
13	chemical-type testing of the strainers.
14	MEMBER BANERJEE: When you mean the
15	generic chemical model, this is sort of an empirical
16	model or is it based on thermodynamics?
17	MR. REID: There are some thermodynamic
18	inputs into the model, but the model was based on the
19	results of bench-scale testing, where we used measured
20	dissolution rates of the materials under various
21	conditions as generic and in the sense that it will
22	cover the range of pH values, buffering agents, and
23	temperature values that would be experienced in some
24	post-LOCA in all 69 plants.
25	MEMBER BANERJEE: So is somebody going to

(202) 234-4433

	45
1	tell us about this model or
2	MR. REID: Yes, I will. Yes, I will.
3	CHAIRMAN WALLIS: Now, this WCAP, I
4	thought I reviewed a draft of this about a year ago.
5	Is this the same thing or is this a new one? It's a
6	different document?
7	MR. REID: No, sir. It's the same one.
8	CHAIRMAN WALLIS: The same?
9	MR. REID: Yes.
10	CHAIRMAN WALLIS: Has it changed since
11	then? A long time ago I think I saw it drop.
12	PARTICIPANT: The only change is RAIs and
13	stuff we have had from the staff.
14	CHAIRMAN WALLIS: So it hasn't changed
15	substantially since then?
16	PARTICIPANT: Not to my knowledge, no.
17	MR. REID: As I mentioned, the result of
18	the test and the chemical model were
19	CHAIRMAN WALLIS: Excuse me. Then it's
20	now formally published, is it, or is it still
21	MR. REID: We're in the last round of
22	RAIS.
23	CHAIRMAN WALLIS: So it doesn't exist yet
24	as a document officially?
25	PARTICIPANT: It's officially submitted to
	1

(202) 234-4433

	46
1	the NRC. And I think they got it posted on ADAMS.
2	(Inaudible.)
3	PARTICIPANT: (Inaudible.)
4	MR. REID: The testing parameters in the
5	bench-scale testing, as I mentioned, the high
6	temperature we tested was 265 degrees Fahrenheit, low
7	temperature 190 degrees for dissolution testing,
8	precipitation testing 80 degrees Fahrenheit. The pH
9	range was from 4.1 to 12. And the containment
10	materials, we used a selection of representative
11	materials based on plant survey responses.
12	Next slide. This slide is a little bit
13	(Inaudible.) obviously that the this is the
14	classification of the materials. We surveyed the
15	materials, looked at their basic chemical constituents
16	to classify the materials into 11 classifications.
17	And they're given in this slide here.
18	Now, this is merely a picture of the
19	materials that we tested.
20	Next slide.
21	CHAIRMAN WALLIS: When you said,
22	"Representative material: None," that means that you
23	did not test that material? Is that what it means?
24	PARTICIPANT: Slide 7.
25	CHAIRMAN WALLIS: And you have listed

(202) 234-4433

	47
1	materials in slide 7.
2	MR. REID: That is
3	CHAIRMAN WALLIS: But there are none on
4	the that means you did not include any of those
5	materials in your tests?
6	MR. REID: That is correct. Based on
7	previous information included in the IECT program
8	results, we determined that these materials would not
9	be of significant contribution to the chemical
10	species.
11	CHAIRMAN WALLIS: So if there were
12	significant oil leaks somewhere, that wouldn't have
13	been tested by you if there were a significant oil
14	leak somewhere in the containment?
15	MR. REID: That is correct in the
16	CHAIRMAN WALLIS: It might contribute
17	something, but you didn't test oils that
18	MR. REID: That is correct.
19	MEMBER BANERJEE: What about that
20	(Inaudible.) that lies around? I read somewhere that
21	(Inaudible.).
22	CHAIRMAN WALLIS: Blue jean fragments and
23	things, blue jean fibers.
24	PARTICIPANT: (Inaudible.) in one of these
25	reports.

(202) 234-4433

	48
1	PARTICIPANT: Yes. Those materials
2	weren't specifically characterized and tested in a
3	test program. But, for example, materials such as
4	sand we tested a variety of different silicates
5	material that could be represented by those materials.
6	PARTICIPANT: Perhaps some subset of the
7	debris (Inaudible.)
8	PARTICIPANT: Yes. I believe a subset of
9	that debris would be covered by some of the materials
10	that we did test, but we did not specifically
11	PARTICIPANT: (Inaudible.) and things like
12	that that seem prevalent.
13	PARTICIPANT: That's correct.
14	PARTICIPANT: Yes. Did that have any
15	effect?
16	PARTICIPANT: Well, I believe it would
17	certainly have an effect on physical head loss. The
18	contribution to the overall chemical effects, I
19	believe it would be minor compared to the other
20	containment
21	CHAIRMAN WALLIS: Well, I think in the
22	sort of specifications for the screen, usually the
23	plant has something about this, whatever they call it,
24	residual debris or something like that.
25	PARTICIPANT: Yes. (Inaudible.) Latent
	1

(202) 234-4433

	49
1	debris.
2	CHAIRMAN WALLIS: Latent.
3	PARTICIPANT: We have all estimated it
4	CHAIRMAN WALLIS: Right.
5	PARTICIPANT: so many pounds, 100
6	pounds, 200 pounds, whatever. And we have to make
7	sure our containments are clean to maintain that
8	margin or whatever we have in there. So periodically
9	most utilities are now doing better cleanliness in the
10	containments to maintain that.
11	PARTICIPANT: And so these 100-odd pounds
12	which (Inaudible.) you don't expect they would have
13	any chemical effects?
14	MR. REID: Well, I would believe that the
15	chemical effects of those materials would be minor
16	compared to the effects of the containment materials,
17	particularly insulation materials. Clearly any of the
18	
19	PARTICIPANT: Why is that?
20	MR. REID: Well, any of the inorganic
21	material the organic material we wouldn't expect to
22	dissolve and create species that would create
23	precipitates. And that's the concern for chemical
24	effects.
25	And the contribution of dirt, sand

(202) 234-4433

	50
1	PARTICIPANT: You don't think the chemical
2	would make (Inaudible.) things like that?
3	MR. REID: I do not believe so, no.
4	PARTICIPANT: You also keep in mind some
5	of the latent debris is a particle that is the
6	fiberglass stuff coming out of the insulation, stuff
7	like that. And there is some PC cost that we do for
8	protective clothing. And that is part of it.
9	But if my memory proves me right, most of
10	it is the plant debris, the fiberglass, and stuff,
11	insulation type that has already tested is coming out
12	in that and the dirt and the stuff like that. So it's
13	mostly that type of stuff more than the other clothing
14	type and stuff like that.
15	MR. REID: Okay. This next slide shows
16	the rig that was used for dissolution testing. We
17	inserted the materials in these vessels under various
18	chemistry conditions and temperature conditions and
19	then analyzed the resulting solution for dissolved
20	species and for precipitation.
21	What we saw was that cal sil and metallic
22	aluminum provided the largest potential for material
23	release into solution.
24	PARTICIPANT: Were these dirt?
25	MR. REID: Yes, they were. They were

(202) 234-4433

	51
1	actually shaken. There was a shaker in that assembly.
2	So they were constantly
3	PARTICIPANT: (Inaudible.)
4	MR. REID: They were constantly shaking
5	during
6	PARTICIPANT: And that was (Inaudible.).
7	MR. REID: No. There was some head space.
8	They were mostly (Inaudible.) but there was some head
9	space.
10	CHAIRMAN WALLIS: What is MinK made out
11	of?
12	MR. REID: MinK is a silicate measure.
13	CHAIRMAN WALLIS: So it is a source of
14	silicon, then, isn't it?
15	MR. REID: That is correct.
16	CHAIRMAN WALLIS: And it is very fine
17	particles presumably. It is one of the problems, I
18	believe, with certain filters and screens.
19	MR. REID: Yes.
20	CHAIRMAN WALLIS: Because it's fine
21	particles? Is that it?
22	PARTICIPANT: That's correct.
23	CHAIRMAN WALLIS: But is this not a
24	chemical effects problem it has? It is essentially a
25	physical effect?

(202) 234-4433

	52
1	MR. REID: That is a physical effect. The
2	chemical effect comes into the fact that some of that
3	material does dissolve and is released in the
4	solution.
5	CHAIRMAN WALLIS: So MinK also dissolves
6	to some extent?
7	MR. REID: That's correct.
8	MEMBER KRESS: (Inaudible.)
9	MR. REID: That is correct. We did all of
10	these tests from 195 in part 190 in 265 degrees
11	Fahrenheit and over the range of pH. And they were
12	done in
13	MEMBER KRESS: Would you get an
14	(Inaudible.)?
15	MR. REID: In most cases, we did.
16	MEMBER KRESS: Which indicated it wasn't
17	mass (Inaudible.).
18	MR. REID: That's correct.
19	PARTICIPANT: What was the liquid?
20	MR. REID: The liquid was a 4,400 ppm
21	boron solution as boric acid with the pH adjusted
22	using sodium hydroxide.
23	PARTICIPANT: And what is that typical of?
24	MR. REID: That is typical of the starting
25	conditions of the bounding plant for boron

(202) 234-4433

	53
1	concentration.
2	CHAIRMAN WALLIS: That's in the sump.
3	MR. REID: That's correct.
4	CHAIRMAN WALLIS: While the material is
5	dripping down from the containment, presumably the
6	environment is acidic. It's all boric acid.
7	MR. REID: That's correct. And the
8	chemical model can take that
9	CHAIRMAN WALLIS: Takes that into account?
10	MR. REID: Yes.
11	CHAIRMAN WALLIS: So you did test with a
12	low pH, then?
13	MR. REID: That is correct, yes.
14	CHAIRMAN WALLIS: With no hydroxide at
15	all.
16	PARTICIPANT: You went from 4.1 to
17	MR. REID: Correct.
18	CHAIRMAN WALLIS: The dissolution rates
19	were much higher for
20	MR. REID: It depends on the material.
21	Actually, for example, for aluminum in the fiberglass
22	materials, dissolution is higher at higher pH. For
23	calcium, it is higher at lower pH.
24	Yes. I believe that is in here.
25	PARTICIPANT: I mean, I see the range of
	1

(202) 234-4433

	54
1	variables.
2	MR. REID: Actually, I'm sorry. We do not
3	have a test matrix.
4	PARTICIPANT: So tell me how many tests
5	because this is multidimensional. You have got many
6	variables in this program.
7	MR. REID: That's correct. For each
8	material, we did the minimum of six test runs, so to
9	range at two temperatures and three pH values.
10	CHAIRMAN WALLIS: And the raw data are in
11	this report?
12	MR. REID: Yes, they are.
13	MEMBER KRESS: I was wondering about
14	dissolutions rate. Reading ahead, when you get to
15	total mass, the time involved in getting the total
16	mass, was it some representative time of a LOCA event
17	or what was the time
18	MR. REID: In this case the time for most
19	of these tests was short. It was 90 seconds. And the
20	basis for that was that the dissolution behavior is
21	fastest initially in
22	MEMBER KRESS: (Inaudible.)
23	MR. REID: That's correct.
24	MEMBER KRESS: Getting a maximum rate?
25	MR. REID: Yes. We wanted to get

(202) 234-4433

	55
1	instantaneous dissolution rates (Inaudible.).
2	MEMBER BANERJEE: I'm still trying to
3	understand how from two temperatures you were able to
4	(Inaudible.) behavior.
5	CHAIRMAN WALLIS: Well, you can
6	(Inaudible.) erraneous behavior pretty easily.
7	PARTICIPANT: That's for sure.
8	CHAIRMAN WALLIS: Whether you can conclude
9	that it was erraneous is a different question.
10	MEMBER KRESS: Yes.
11	PARTICIPANT: Well, erroneous.
12	MEMBER BANERJEE: The problem is that
13	typically chemical reactions double in rate every ten
14	degrees.
15	MR. REID: That's correct. Yes. That's
16	a good that's right.
17	MEMBER BANERJEE: So you did one test at
18	whatever the rate was, 190, and the other at 265. So
19	your rate would have been this is Fahrenheit. So if
20	I translate it into Celsius, divide by 1.8, that would
21	be 75 divided by 1.8. Let's say the
22	MEMBER BANERJEE: Do you expect your
23	reaction rate to be up by at least a factor of eight
24	percent?
25	MR. REID: For a majority of the
	1

(202) 234-4433

	56
1	materials.
2	MEMBER BANERJEE: Yes. Is that true?
3	MR. REID: I believe that was largely
4	true. And then we also did look at the results of the
5	IECT program, which were running 140 degrees
6	Fahrenheit, as a check to our results to see how they
7	matched up.
8	MEMBER BANERJEE: They should be another
9	factor of 8 lower than your 190.
10	MR. REID: That's correct.
11	CHAIRMAN WALLIS: Well, were they measured
12	in rates or were they measured in something closer to
13	an equilibrium? I don't know enough about the test.
14	MR. REID: We're really measuring rate
15	because they were short-term tests. In IECT? Not
16	really. They were not measuring rates, but what we
17	did was once we had the chemical model developed, we
18	put in the inputs for the conditions for IECT and
19	compared the results.
20	MEMBER KRESS: In a very circular argument
21	(Inaudible.), your model probably had the (Inaudible.)
22	factor in there. Then you go back and do it. I mean
23	
24	MR. REID: No. It didn't assume erraneous
25	behavior.
	1

(202) 234-4433

	57
1	MEMBER BANERJEE: Then how did you predict
2	what the reaction rate would be?
3	MR. REID: We didn't predict what the
4	reaction rates would be. What we predicted was the
5	material release of the function of pH and
6	temperature.
7	MEMBER BANERJEE: Perhaps we should see
8	the model, but it seems to me that the model would
9	have to have some way of predicting that. But whether
10	it was (Inaudible.) reaction-dominant, I would like to
11	understand whether the model is (Inaudible.) or
12	reaction-dominated. If reaction-dominated, it has to
13	have some sort of kinetic model, right?
14	MR. REID: No. We did not assume a time
15	dependence for the reaction.
16	MEMBER BANERJEE: Well, you had better
17	(Inaudible.). But let's put this off.
18	CHAIRMAN WALLIS: Yes. I would like to
19	know about your presentation. Are these 62 slides
20	part of the presentation you are going to cover in the
21	next half-hour or so. Is that
22	MR. REID: Well, the intention was to have
23	the detail in here.
24	CHAIRMAN WALLIS: I think once we start
25	asking these questions, we're not going to get
	1

(202) 234-4433

	58
1	through. But it's important that we ask questions,
2	too. So we may be here until 6:00 o'clock or
3	something like that tonight or maybe if Dr. Banerjee
4	starts getting drowsy, we can go on quicker.
5	(Laughter.)
6	PARTICIPANT: That will be (Inaudible.).
7	CHAIRMAN WALLIS: Okay. Let's move on.
8	PARTICIPANT: Can I just ask a question
9	here? You indicate that these data on page 10 are for
10	90-second tests. And the aim is to get instantaneous
11	values.
12	MR. REID: That's correct.
13	PARTICIPANT: Looking at the picture on
14	page 9, how are these experiments done to terminate
15	the reaction after 90 seconds?
16	MR. REID: We simply timed the 90 seconds.
17	That's how long we ran the test. And then we
18	transferred the solution from the vessels, out of
19	vessels for analysis.
20	PARTICIPANT: And you can essentially
21	instantaneously transfer the solution out of the
22	vessel?
23	MR. REID: That's correct, yes.
24	PARTICIPANT: Okay. Thank you.
25	PARTICIPANT: How did you measure the
I	I

(202) 234-4433

	59
1	amounts on the rock? (Inaudible.)
2	MR. REID: We did both, but the primary
3	measure was the quantity of dissolved material in
4	solutions.
5	PARTICIPANT: You had a solution and
6	analyzed
7	MR. REID: That's correct.
8	MEMBER BANERJEE: I was hoping that you
9	would come to the model somewhere on this slide, but
10	what I see is that there is no map anywhere except
11	words. Do you have a model which is written down in
12	something that's programmed?
13	MR. REID: Yes. If we
14	MEMBER BANERJEE: Unless I'm missing it?
15	MR. REID: No.
16	MEMBER BANERJEE: It's a lot of words.
17	MR. REID: See, if we move way on into the
18	presentation, if we go to slide 47, for example, there
19	is the type of equation that we have.
20	MEMBER BANERJEE: I can't read those.
21	What is RR?
22	MR. REID: This is the release. That is
23	the release rate for the given material. In this
24	specific example, it's aluminum release.
25	MEMBER BANERJEE: This looks like a curve
	1

(202) 234-4433

	60
1	fit.
2	MR. REID: It is a curve fit. That is
3	correct. There is no time
4	MEMBER BANERJEE: There is no model for
5	CHAIRMAN WALLIS: But it's got sudden
6	significant figures on the
7	MEMBER BANERJEE: How many data points was
8	this specifically?
9	MR. REID: That would have been fitted to
10	six data points.
11	(End of Tape Side A.)
12	(Beginning of Tape Side B.)
13	MR. REID: (Tape begins in mid-sentence.)
14	the temperatures and pH value.
15	PARTICIPANT: That would be significant to
16	know.
17	MEMBER BANERJEE: Each of these data
18	points (Inaudible.).
19	MR. REID: That is correct.
20	MEMBER BANERJEE: So if you have
21	temperature and pH
22	MR. REID: It's a variable. That's
23	correct.
24	MEMBER BANERJEE: So you have one of these
25	for each material?

	61
1	MR. REID: That's correct.
2	MEMBER BANERJEE: How do you pick the form
3	of the
4	MR. REID: The form of the relationship
5	was chosen to give the best fit to the data.
6	MEMBER BANERJEE: For different materials,
7	there are different forms of data?
8	MR. REID: That is correct.
9	CHAIRMAN WALLIS: So there is no
10	theoretical basis for the form of the equation?
11	MR. REID: That is correct. The
12	theoretical basis is we did (Inaudible.) pH and
13	temperature-dependent and specifically did not include
14	time dependence.
15	PARTICIPANT: If I were to ask you to put
16	an error bar on any of these graphs, how would you go
17	about doing that?
18	MR. REID: To do that, we would look at
19	in many cases, we did do duplicate rods. So we would
20	use that data to put the error bars on there.
21	PARTICIPANT: Do you have any of that
22	information here?
23	MR. REID: Not in this presentation.
24	PARTICIPANT: In the report?
25	MR. REID: Where that information is
	I contraction of the second

(202) 234-4433

	62
1	available, it is in the report, a discussion of
2	CHAIRMAN WALLIS: I would think that there
3	is a fair amount of scatter in the results with these
4	sorts of plants.
5	MR. REID: We did see some scatter, but in
6	comparison to IECT results and other NRC-sponsored
7	testing, we get good agreement with the predictions.
8	MEMBER BANERJEE: Will these be carefully
9	
10	PARTICIPANT: What's the (Inaudible.) if
11	I may ask?
12	MR. REID: Pardon?
13	PARTICIPANT: What prediction?
14	MR. REID: The prediction from our
15	chemical models. We put the specific temperature
16	PARTICIPANT: Your model is an empirical
17	fit.
18	MR. REID: The empirical fit to the
19	release rate is part of the model. And there are
20	other pieces to the model. We take time sets for
21	temperature, pH condition, calculate release rate over
22	each time step, and then also include effects such as
23	common ion effects so that dissolution of materials
24	will flow down as the quantity of dissolved species
25	build up in solution.
	1

(202) 234-4433

	63
1	CHAIRMAN WALLIS: What is the criterion
2	for acceptance for these models in terms of screen
3	blockage? I mean, are you looking at best estimate
4	value or something with some sort of statistical
5	confidence or what? Are there some requirements?
6	Does the staff have any idea what it is
7	going to require for sort of confidence in their
8	results here? And that would tell you how much you
9	need to do in terms of looking at uncertainty and so
10	on. Is the staff going to cross that bridge when it
11	gets to it?
12	And if you start asking for 95 percent
13	confidence or something, you are going to have to have
14	an enormous number of tests. You can't set an
15	afterthought and say, "We are going to ask for 95
16	percent confidence" if the experimental basis isn't
17	there.
18	MEMBER BANERJEE: These tests are
19	relatively (Inaudible.).
20	PARTICIPANT: All plants (Inaudible.) are.
21	We can discuss that maybe in some more detail in the
22	next presentation that follows, but we will not be
23	asking for a 95 percent confidence. I think we
24	recognize there will be a fair amount of scatter in
25	any type of test, such as these.
	1

(202) 234-4433

	64
1	The overall objective is to ensure that
2	the model and how the licensees implement it predicts
3	a conservative amount of precipitation and that when
4	integrated head loss testing is performed, chemical
5	effects are handled in a conservative manner.
6	CHAIRMAN WALLIS: Well, if you have got an
7	equation, like LOG(RR) equals all this stuff, is that
8	a conservative equation? It looks to me like the
9	curve fits three or four data points.
10	PARTICIPANT: In the following
11	presentation, we will get into more detail about some
12	of the conservatisms we think are in the model.
13	CHAIRMAN WALLIS: Okay.
14	MEMBER BANERJEE: So this is just a
15	dissolution model?
16	PARTICIPANT: It is
17	MEMBER BANERJEE: That equation?
18	MR. REID: That's correct. It is an
19	instantaneous dissolution model that has been used to
20	calculate dissolution rates of the materials over
21	time. And the time factor is included by calculating
22	the release rate as time step (Inaudible.) time step.
23	MEMBER BANERJEE: This is instantaneous.
24	MR. REID: That is correct.
25	CHAIRMAN WALLIS: The sump is active for
	1

(202) 234-4433

	65
1	hours.
2	MR. REID: That is correct. That's why
3	the equation is a part of the model. And, as I
4	mentioned, they are calculated at time steps.
5	CHAIRMAN WALLIS: There is stuff in the
6	sump. And when various chemicals start to get formed,
7	they change the reaction rate of the other chemicals.
8	MR. REID: That's correct.
9	CHAIRMAN WALLIS: I'm not sure how these
10	ideal tests are you just have one liquid dissolved
11	in one solid here, how that is translated to what
12	happens in a sump when you have many constituents
13	interacting.
14	MR. REID: That is correct. And I do have
15	a discussion of those interactions and how those were
16	handled in the chemical modeling.
17	CHAIRMAN WALLIS: Because I think at
18	Argonne, there were some inhibitions of certain
19	dissolutions of materials
20	MR. REID: That's correct.
21	CHAIRMAN WALLIS: when some other
22	material was there.
23	MR. REID: That's correct.
24	MEMBER BANERJEE: (Inaudible.) describe
25	the chemical model?

	66
1	MR. REID: Yes. This describes the
2	details of the chemical model.
3	MEMBER BANERJEE: Do you have all of the
4	equations there?
5	MR. REID: All of the equations are in the
6	report. And how those equations are applied are in
7	the report. And discussion of the types of
8	interactions that you mentioned and how those were
9	handled in the chemical model are in the report.
10	MEMBER BANERJEE: So tell me in broad
11	terms the dissolution (Inaudible.).
12	MR. REID: That's correct.
13	MEMBER BANERJEE: More common than
14	(Inaudible.). So this loads up the solution
15	(Inaudible.).
16	MR. REID: That's correct. And then we
17	did precipitation testing and used results of that
18	testing, results of IECT, and the results of literary
19	interpretation that were available to determine the
20	types of precipitates that were
21	MEMBER BANERJEE: But that was based on
22	taking the solution now and doing something to make it
23	(Inaudible.).
24	MR. REID: That's correct. Part of the
25	test program was after these solutions were generated

(202) 234-4433

	67
1	from the individual materials to combine those
2	materials to determine what was precipitates. We used
3	that information, as I mentioned, with other available
4	information to assign the type of precipitates that
5	would generate.
6	So as the model predicts the quantity of
7	materials and solution and then predicts the quantity
8	of precipitates that would be generated. For example,
9	if you have aluminum and silicon in solution, the
10	model is going to predict you are going to get sodium
11	aluminum silicate precipitate.
12	MEMBER BANERJEE: Well, let's get this
13	clear in my head anyway. You have got an
14	instantaneous dissolution model, which you run in a
15	transient calculation, right?
16	MR. REID: Correct.
17	MEMBER BANERJEE: And, therefore, you
18	determine the concentrations in the fluid?
19	MR. REID: That's correct.
20	MEMBER BANERJEE: Then you apply some
21	empirical precipitation model
22	MR. REID: That's correct.
23	MEMBER BANERJEE: and see what comes
24	out?
25	MR. REID: That's correct.

	68
1	MEMBER BANERJEE: And there are basically
2	two empirical fits. Precipitation is an empirical
3	fit, and this is an empirical fit.
4	MR. REID: That's correct.
5	MEMBER BANERJEE: And how many data
6	points? Because all these different materials are
7	there, for the dissolution, you are using six data
8	points?
9	MR. REID: That's correct.
10	MEMBER BANERJEE: And what about for the
11	precipitation?
12	MR. REID: For the precipitation, we
13	looked at results of IECT, as I mentioned, and other
14	literature information on both the thermodynamic
15	evaluations and some kinetic information that is
16	available to determine the types of materials that
17	would expect to be precipitate if you had various
18	species in solution.
19	MEMBER BANERJEE: Well, are you going to
20	discuss that model?
21	MR. REID: Yes.
22	MEMBER BANERJEE: Okay.
23	CHAIRMAN WALLIS: Well, while we are still
24	looking at slide 10, you have a gram of some sort of
25	aluminum dissolved at pH of 12 and 90 seconds. Is
	1

(202) 234-4433

	69
1	that what it says?
2	MR. REID: That's correct.
3	CHAIRMAN WALLIS: So if I run it for an
4	hour and a half, which is 60 times as much or
5	something like that, will I get 60 grams?
6	MR. REID: We did run some of these tests
7	for longer periods. And we did look at literature
8	value for aluminum release measured at different time
9	scales.
10	And the answer to your question is at high
11	pH and high temperature, you will likely get something
12	approaching 60 seconds. So there is no
13	CHAIRMAN WALLIS: So this is what you
14	recommend, then, and use them. And this is going to
15	lead to equations for use in a sump.
16	MR. REID: That's correct.
17	CHAIRMAN WALLIS: And then you are going
18	to extrapolate the 90-second tests to as long as the
19	sump has a condition something like that?
20	MR. REID: That is correct, and that is
21	one of the
22	CHAIRMAN WALLIS: It keeps on dissolving
23	aluminum all that time?
24	PARTICIPANT: That is one of the
25	conservatisms in the model and the

(202) 234-4433

	70
1	MR. KLEIN: Paul Klein from NRR.
2	I would like to offer one clarification.
3	These are up to 90-minute tests, not 90-second tests.
4	CHAIRMAN WALLIS: I thought you said 90
5	seconds.
6	MR. KLEIN: I think he might have
7	misspoke.
8	CHAIRMAN WALLIS: A 90-minute test?
9	MR. REID: You're correct. I apologize.
10	CHAIRMAN WALLIS: That makes a big
11	difference. So you're scheduled to speak here for 45
12	hours, right?
13	(Laughter.)
14	CHAIRMAN WALLIS: Okay. We had better
15	move on.
16	MR. KLEIN: So we're clear, it's 90
17	minutes now.
18	MR. REID: Ninety minutes. I apologize.
19	CHAIRMAN WALLIS: Okay. Changes
20	everything.
21	MR. REID: Okay. So, as we mentioned,
22	this does show the release dependence on pH and, as
23	mentioned for aluminum, the higher release for pH.
24	And calcium silicate, for example, is higher release
25	at lower pH.
	1

(202) 234-4433

71 1 Precipitation test. We performed precipitation tests, both by adding select chemical 2 3 solutions together and adding buffering agents to determine phosphate precipitation. 4 5 Should Ι qo on? These are the 6 precipitation test results, determine the types of 7 precipitates that we found in this testing. Then we 8 did characterization of the precipitates to determine 9 the types of precipitates that we have and then the 10 settling rate and filtration properties of the 11 precipitates. The next slide is a photograph of the 12 precipitation settling rate determinations. 13 In these 14 tests, we transferred these solutions directly from 15 the vessels very quickly into a water bath maintained 16 at 80 degrees Fahrenheit and then observed over a 17 24-hour period for the formation and settling of that 18 precipitate. 19 CHAIRMAN WALLIS: Now, the effect of 20 precipitate on the screen is very dependent on the 21 structure of the precipitate, which depends very much 22 on how it is made presumably. 23 That is true up to a point, but MR. REID: 24 some of the testing that we did forming precipitates under a limited number of conditions we did see some 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	72
1	small dependence on the short-term tests on the
2	filtration properties.
3	CHAIRMAN WALLIS: Going back to the
4	Argonne experiment, I mean, Argonne got some
5	high-pressure drop on their screen with material which
6	couldn't even be seen.
7	MR. REID: Yes. And that is consistent
8	with our test results that
9	CHAIRMAN WALLIS: Would you have recorded
10	a precipitate of that type and in these tests,
11	something which couldn't even be seen but, yet, was
12	capable of blocking a screen?
13	MR. REID: Well, even in the cases where
14	we didn't necessarily see a visible precipitate, we
15	still passed these through filters for filtration
16	testing.
17	MEMBER BANERJEE: (Inaudible.)
18	MR. REID: Generally not.
19	MEMBER BANERJEE: I want (Inaudible.) not
20	really (Inaudible.).
21	CHAIRMAN WALLIS: What did they call it?
22	MEMBER BANERJEE: I don't remember.
23	(Inaudible.)
24	MR. REID: Well, generally without
25	detailed characterization, we term the precipitates

	73
1	amorous or highly hydrated but not necessarily
2	MEMBER BANERJEE: (Inaudible.)
3	MR. REID: Pardon?
4	MEMBER BANERJEE: (Inaudible.)
5	MR. REID: No. In most cases these are
6	they settled or appeared to be amorphous or highly
7	hydrated. And they settled very slowly and, even at
8	very low concentrations, caused immeasurable head loss
9	over a filter. These pictures that you see here are
10	after 24-hour settling.
11	Next slide.
12	CHAIRMAN WALLIS: I don't see anything.
13	That white stuff at the bottom?
14	PARTICIPANT: (Inaudible.)
15	CHAIRMAN WALLIS: Okay.
16	PARTICIPANT: The white stuff at the
17	bottom.
18	CHAIRMAN WALLIS: Yes.
19	MEMBER BANERJEE: (Inaudible.) that you
20	basically took the dissolved material that you had
21	from your other step forward and then put something
22	through it at some (Inaudible.).
23	MR. REID: In some cases. In some cases,
24	we simply transferred the solution into a cooled bath
25	to see just from that solution whether a precipitate
	1

(202) 234-4433

	74
1	formed.
2	MEMBER BANERJEE: Just by changing the
3	temperature?
4	MR. REID: Just by changing the
5	temperature. That is correct. And in other cases, we
6	did combine solutions from the different tests to see
7	if a precipitate formed. And in the last of the
8	cases, we added (Inaudible.) phosphate to determine
9	whether a phosphate precipitate formed.
10	Summary from the bench testing, what we
11	saw was the elements with the largest contribution was
12	calcium aluminum and sorthon. This is consistent with
13	expectations in IECT programs.
14	The key precipitates that we determined to
15	be formed were sodium aluminum silicates, aluminum
16	oxyhydroxide, and calcium phosphate for plants that
17	use PSP buffers.
18	So the chemical model development, the
19	inputs to the model are the temperature and pH
20	profiles over the 30-day or longer emission time
21	MEMBER BANERJEE: Why do you call it a
22	model? I mean, a model has some time. This is just
23	two sets of empirical fits, no science that I can see
24	unless I'm missing something.
25	MR. REID: Well, I believe the science and
	1

(202) 234-4433

	75
1	the reason we call it models, we do have some test
2	data that was used to generate dissolution over a
3	range of pH and temperature values.
4	MEMBER BANERJEE: I think you dignify this
5	with more than it is, really. Basically it's two
6	empirical sets in a little time set calculation. From
7	what I understand, that is all you are doing unless I
8	am getting something wrong. I don't see any science
9	in it.
10	CHAIRMAN WALLIS: Well, it's not really a
11	model. It's predictive tool, isn't it? I mean, they
12	are going to use this in order to make predictions.
13	MEMBER BANERJEE: I could have used the
14	neural network and put all this stuff in and whatever,
15	I mean, the same thing.
16	CHAIRMAN WALLIS: The purpose is to
17	develop something for use, right, isn't it? It's a
18	empirical tool for use in predicting what happens in
19	the sump.
20	MEMBER BANERJEE: Right.
21	MR. REID: That's correct.
22	MEMBER BANERJEE: It's different from
23	taking into account some science and how ions
24	interact. And then there is thermodynamics and things
25	going on. It gives some basis in equilibrium
	1

(202) 234-4433

	76
1	thermodynamics of what
2	MR. REID: Well, we did use that
3	information, where available, from previous studies;
4	for example, Oak Ridge studies on the thermodynamic
5	behavior of
6	MEMBER BANERJEE: But is that in a
7	so-called model or did you just wave your hands up?
8	MR. REID: I don't believe we waved our
9	hands. I believe we considered information from a
10	variety of sources.
11	MEMBER BANERJEE: How is it in your model?
12	How is it put into your model, this information?
13	MR. REID: That specifically is included
14	in the model and the identification of the
15	precipitates that were formed.
16	MEMBER BANERJEE: But you have identified
17	the precipitates. It is an empirical fit. You are
18	just saying aluminum oxyhydride is given by this
19	empirical fit. Isn't that where your model I
20	haven't seen your model in this
21	MR. REID: No. That's the
22	MEMBER BANERJEE: You haven't told us what
23	your model is yet.
24	MR. REID: No. The function in the model
25	or predictive tool if you would rather call it that is
	1

(202) 234-4433

	77
1	once we had determined the materials that are in
2	solutions, then we have to have a way to determine how
3	they will combine to produce precipitates.
4	And part of the input to that is one of
5	our test results that determines what precipitates
6	form and previous thermodynamic studies and kinetic
7	studies to determine the types of precipitates that
8	would form under the specific chemistry and
9	temperature conditions.
10	MEMBER BANERJEE: So is there a module
11	there which runs from equilibrium thermodynamics and
12	says, "Oh, yes. Okay. This is going to form now"?
13	Is there something like that there?
14	MR. REID: That is not included. The
15	specific calculation is not included in the model.
16	The results from those from previous calculations are
17	included in the model by virtue of the fact that we're
18	saying if we have aluminum and silicate in solution,
19	we are going to get 30 aluminum silicate under these
20	conditions.
21	PARTICIPANT: Then how do you predict the
22	rate of precipitation? I thought that was coming out
23	of your
24	PARTICIPANT: We do not. In the original
25	chemical model, we do not calculate a rate of
	1

(202) 234-4433

	78
1	precipitate formation. We assume that 100 percent of
2	the materials that are dissolved are available. And
3	they immediately form a precipitate.
4	PARTICIPANT: Well, the model that you're
5	talking about, since we look at the amount that has
6	been dissolved
7	PARTICIPANT: That's correct.
8	PARTICIPANT: and from that determine
9	that some species would interact when temperatures
10	change below
11	PARTICIPANT: No. They all come in and
12	out of solution at any temperature and pH condition
13	(Inaudible.).
14	PARTICIPANT: All of it comes out.
15	PARTICIPANT: All of it comes out.
16	CHAIRMAN WALLIS: What is the bridge from
17	this to this, the sump question? Are you going to
18	specify surrogates for use in the large-scale testing?
19	Is that what the purpose of all of this work is?
20	PARTICIPANT: That is correct, that we
21	want to develop a tool to predict the quantity of
22	precipitates that would be generated under
23	plant-specific conditions. And then that quantity of
24	material would be added in the sump screen.
25	CHAIRMAN WALLIS: And then the sump screen
	1

(202) 234-4433

	79
1	testing is no attempt to duplicate your chemical test
2	on a large scale?
3	PARTICIPANT: That's correct.
4	CHAIRMAN WALLIS: So the assumption is
5	made that your tests are good enough to specify what
6	they have to throw into the large-scale tests as a
7	precipitate?
8	PARTICIPANT: That's correct.
9	PARTICIPANT: Is there any validation of
10	that on a large scale?
11	PARTICIPANT: I would say the validation
12	once again is on a large scale or larger scale
13	comparison to the IECT program results. As I
14	mentioned, we did use results of that 30-day
15	integrated test and apply our chemical tool to predict
16	the behavior that we would have expected during the
17	IECT test.
18	PARTICIPANT: Oxidizing test. Was there
19	any new test? I mean, you could always (Inaudible.)
20	empirical model, always. You may not want to. It may
21	happen just by hindsight. Were there any new tests
22	done to validate this model on a large scale?
23	PARTICIPANT: Large-scale integrated
24	testing? No.
25	PARTICIPANT: Nothing has been done. So
	1

(202) 234-4433

	80
1	you are adding this surrogate that is on a little
2	(Inaudible.) experiment? It's a leap of faith to me.
3	PARTICIPANT: I guess it's a leap of faith
4	effectively to consider that there are a number of
5	conservative functions that went in to development of
6	the model.
7	PARTICIPANT: Right, right.
8	PARTICIPANT: And that was done because
9	there is a deal of uncertainty.
10	PARTICIPANT: If there is so much
11	conservatism, why not just do one large scale or two
12	or three just to make sure that this is truly
13	conservative and happens also in the large scale?
14	These surrogates, I presume what people are doing,
15	they are just dumping this stuff in and hoping for the
16	best. How do we know that that is really what happens
17	in a real test?
18	PARTICIPANT: Well, certainly and I
19	can't speak in detail to hose this model is used by
20	the end users, but for my understanding, most vendors
21	as a first approach would calculate the material that
22	is predicted to be generated over 30 days and dump
23	that material in.
24	But they also have the option to say that
25	we're going to predict we have this quantity of
l	I

(202) 234-4433

	81
1	material after a week, this quantity of material after
2	another week. And neither of that entered the test.
3	The model doesn't preclude
4	PARTICIPANT: I understand more or less
5	what is happening. It seems that it is pretty
6	imprudent to review this on the basis of the tiny
7	little test if this is really what happens in an
8	integrated system.
9	PARTICIPANT: I would agree in principle
10	that the body of knowledge from this work was the only
11	body of knowledge we had.
12	PARTICIPANT: There is much more. I mean,
13	there is the IECT test. What else is there?
14	PARTICIPANT: No. I think the comparison
15	to the IECT test, IECT test is important.
16	PARTICIPANT: Yes, sure. But it is a very
17	limited body of knowledge. And it seems enormous
18	scale-up, I mean, to go from there to you know, we
19	are talking of real reactor systems that actually
20	PARTICIPANT: And that's why I believe the
21	NRR certainly
22	PARTICIPANT: (Inaudible.) that you should
23	do some large-scale tests to assure that at least
24	these surrogates really work.
25	CHAIRMAN WALLIS: We'll find out when they
	1

(202) 234-4433

82
don't.
PARTICIPANT: Or we'll find out when they
don't. Yes.
CHAIRMAN WALLIS: Well, I think the
testing that has been done with the surrogate
material, I think that certainly does show that it
causes head loss. The question is, are the quantities
of the materials right? And our belief by the
conservatism and the conservatism approach we took
(Inaudible.) tool is that we are conservatively
predicting the quantity of material. So
PARTICIPANT: I think they are even
cross-references. It is not only that you are doing
this stuff, but where it comes out that matters. If
it comes out in the fuel, in the (Inaudible.) effect,
that's a very different situation that coming
(Inaudible.). Who knows where it is going to come
out.
PARTICIPANT: I guess the question is how
we are using the model from a there are other
reports (Inaudible.) how you do the head loss testing,
how we evaluated it on the fuel. And that is not part
of this program. That's the question.
PARTICIPANT: My question is, has this
model been validated on a larger scale? That is

(202) 234-4433

	83
1	really my
2	PARTICIPANT: The answer is we didn't feel
3	it was needed at this time.
4	PARTICIPANT: You didn't feel it was
5	needed. What was the basis of that?
6	PARTICIPANT: The basis of that was the
7	conservative assumptions that went into settlement of
8	the model.
9	PARTICIPANT: Yes, but how do we know they
10	were conservative?
11	PARTICIPANT: I think the comparisons to
12	existing data that we can run this model along the
13	tool on that would predict material release and
14	subsequent precipitation will show in all cases where
15	we have done that evaluation that we get conservative
16	results.
17	PARTICIPANT: You have never done a
18	larger-scale experiment. You build newer systems that
19	(Inaudible.). You haven't actually mixed all of these
20	things together. How do you know it is conservative?
21	I really
22	PARTICIPANT: I guess I'll go again to the
23	comparison of the IECT, which was a larger-scale
24	integrated test, higher quantity.
25	Pardon?
	1

(202) 234-4433

	84
1	PARTICIPANT: If you want a dissolution
2	test, I mean, it was a completely different thing.
3	There was no rate case (Inaudible.).
4	PARTICIPANT: That's correct, but we can
5	
6	PARTICIPANT: Rate doesn't process here,
7	right?
8	PARTICIPANT: But this tool does not
9	consider rate.
10	PARTICIPANT: I thought you said you were
11	time stepping.
12	PARTICIPANT: There are time steps that
13	the model the dissolution rate, for example,
14	doesn't have that time dependence.
15	MEMBER KRESS: I would like to return to
16	that. The 90 minutes for those dissolution tests, you
17	don't get a rate out of that? You end up getting a
18	total amount?
19	PARTICIPANT: We could have gotten a rate
20	out of that, but we did not because we didn't do it
21	MEMBER KRESS: What is the saturation
22	effect?
23	PARTICIPANT: No. We assumed that that
24	dissolution rate would go forever.
25	CHAIRMAN WALLIS: They are only measuring

(202) 234-4433

	85
1	rate. They think that they are only measuring rate.
2	There are no equilibrium limits or anything, as I
3	understand it.
4	PARTICIPANT: That is correct.
5	PARTICIPANT: (Inaudible.) will continue
6	forever.
7	PARTICIPANT: That's correct. That is one
8	of the conservative assumptions in the model.
9	PARTICIPANT: (Inaudible.)
10	CHAIRMAN WALLIS: I suspect the staff is
11	asking all the questions we are asking.
12	My plan is to let you go to 10:30, which
13	means we are going to be behind by half an hour or 45
14	minutes or something, but this seems to be an
15	important part of the day's work. And then we'll just
16	try to catch up later, but we're probably going to be
17	running late today.
18	PARTICIPANT: If the staff is asking these
19	questions and we are just repeating ourselves, then
20	we should know that.
21	CHAIRMAN WALLIS: Well, the staff is going
22	to come on and reassure us after the break.
23	PARTICIPANT: Can you reassure us now that
24	you are asking all of these questions?
25	PARTICIPANT: (Inaudible.) after the

(202) 234-4433

	86
1	break.
2	(Laugther.)
3	CHAIRMAN WALLIS: By the way, there is no
4	court reporter here. Everything you say is being
5	taped. So what do we do? We sell the tapes to the
6	public or what do we do? Do we have to make a
7	transcript?
8	PARTICIPANT: Yes (Inaudible.).
9	CHAIRMAN WALLIS: It will be provided into
10	a transcript? And hopefully it will make some sense,
11	then, when it is written down?
12	PARTICIPANT: (Inaudible.) reminder is for
13	the members not to (Inaudible.).
14	PARTICIPANT: (Inaudible.) identify.
15	PARTICIPANT: (Inaudible.)
16	CHAIRMAN WALLIS: Yes. Okay. So let's
17	press on here because we actually have a lot more
18	material.
19	PARTICIPANT: And some data, too.
20	CHAIRMAN WALLIS: Yes, but you are going
21	to finish by 10:30.
22	MR. REID: Okay. Very good. Okay. So we
23	consider the chemical effects model to be an
24	integrated test model development tool. I don't
25	object to that designation either.

(202) 234-4433

	87
1	So the factors that we considered are we
2	did use available thermodynamics and kinetics
3	information. We did consider common ion effects.
4	That's an option in the model. Loss of dissolved
5	species to precipitation, we did consider that.
6	Effect of other dissolved species on material release
7	rates, inhibition and catalysis we did consider.
8	CHAIRMAN WALLIS: Did it work? Was there
9	significant inhibition and catalysis?
10	MR. REID: Well, what we determined was
11	that there was not significant catalysis to be
12	concerned with with a species that we determined
13	(Inaudible.). Inhibition, there are some significant
14	inhibitions. And they were not included in the
15	original model. We have taken a look at those
16	subsequently. And I will discuss that if we have
17	time.
18	We did consider system homogeneity as a
19	potential factor, dynamic versus static changes in
20	solution chemistry we considered and dynamic versus
21	static changes in temperature and then, finally,
22	potential effects of oxygen.
23	CHAIRMAN WALLIS: Now, BWR gets coded with
24	
25	MR. REID: That's correct.

(202) 234-4433

	88
1	CHAIRMAN WALLIS: It sounds to be like a
2	catalyst, a catalytic surface.
3	MEMBER BANERJEE: Chemical industry would
4	be when finally decided.
5	CHAIRMAN WALLIS: You don't put them in
6	the PWRs. I'm just thinking of since we're talking
7	about catalysis.
8	MEMBER BANERJEE: Did any chemical
9	engineer work on this?
10	MR. REID: Yes. I'm a chemist. And we
11	had chemical engineers working on this as well. The
12	primary developers and primary performers of this work
13	were chemists, but we did have chemical engineers
14	involved in the development and in the program.
15	MEMBER BANERJEE: At Westinghouse?
16	MR. REID: At Westinghouse.
17	MEMBER BANERJEE: Where are they?
18	PARTICIPANT: I was going to ask you if
19	you have run any experiments where you added two of
20	these materials or even all 11 simultaneously in one
21	reaction chamber.
22	MR. REID: Not in this test, we did not.
23	PARTICIPANT: So, in essence, the data
24	that you have assumes that no other material exists?
25	MR. REID: No. These data were generated
	1

(202) 234-4433

	89
1	to determine individual material release rates that
2	were not affected by the presence of other material.
3	And then we did an evaluation of the potential
4	interactions.
5	The interaction of materials after
6	dissolution was determined by adding solution together
7	to determine where precipitates were formed, but as
8	far as material, the effects of dissolution rate on
9	individual material as influenced by the presence of
10	another material, we did that evaluation based on the
11	literature data and IECT program results.
12	PARTICIPANT: And the result of that
13	evaluation is what?
14	MR. REID: Well, we determined that we
15	could not identify any cases where one material would
16	enhance the dissolution of another material, but there
17	were cases where presence of one material would
18	inhibit the release of another material.
19	For example, silicate-containing material
20	would be expected to inhibit the dissolution of
21	aluminum metal.
22	PARTICIPANT: And you decided that there
23	is no need to do confirmatory experiments? Then these
24	are fairly simple
25	MR. REID: In the original model, we did
	1

(202) 234-4433

	90
1	not elect to take credit for silicate inhibition due
2	to some of the difficulties that could be inherent in
3	applying that inhibition. We have subsequently looked
4	at that in another program, but we did not choose to
5	do that in the original program.
6	PARTICIPANT: Thank you.
7	MR. REID: Okay. These next couple of
8	slides
9	CHAIRMAN WALLIS: What are the effects of
10	oxygen on the bottom here?
11	MR. REID: That's correct. We did look at
12	that.
13	CHAIRMAN WALLIS: CO ₂ as well?
14	MR. REID: Yes. We did subsequently
15	consider the effect of CO_2 .
16	CHAIRMAN WALLIS: Formation of carbonates?
17	MR. REID: That's correct. And the bottom
18	line, what we determined is the predictive quantities
19	of materials that may combine with CO_2 to product
20	carbonate, if we assume that those react, instead, to
21	produce, for example, hydroxides, the hydroxides cause
22	higher head loss. So it's worth it to have hydroxides
23	in the carbonate.
24	MEMBER BANERJEE: Now, the peer review
25	committee made some points about effect, directly or
	l

(202) 234-4433

	91
1	indirectly, from the radiation field, did you check
2	any those in response to comments?
3	MR. REID: We did take a look at those
4	comments. And briefly what we determined was that the
5	radiation effect on these particular materials at the
6	radiation levels that we would expect to be present in
7	the sump would not be significant.
8	And the basis for that is a lot of these
9	materials; for example, the silicate materials, are
10	present on the course. We have some idea about
11	behavior, dissolution behavior, of these materials in
12	a radiation.
13	MEMBER BANERJEE: And what about they
14	pointed out things like hydrolysis products
15	(Inaudible.) all these other things that
16	MR. REID: Yes. We considered hydrolysis
17	products. And we took a look at the quantities, for
18	example, of peroxide and hydrogen that would be
19	generated and determined that those quantities would
20	be less for example, that there's less hydrogen,
21	for example, from radiolysis than there would be from
22	corrosion of aluminum material. And there is less
23	peroxide and subsequently oxygen from solution in
24	radiolysis than there would be simply from the
25	containment atmosphere.
	1

(202) 234-4433

	92
1	That is, there's PPM, low PPM, levels of
2	hydrogen and peroxide and oxygen generated from
3	radiolysis.
4	MEMBER BANERJEE: If I remember, you know,
5	you went through the pere review in not that much
6	detail, but (Inaudible.) McDonald has some
7	equilibrium, thermodynamics calculations with some
8	fairly significant effects of radiolysis products. Am
9	I wrong or is my memory serving me wrong? Maybe you
10	can
11	MR. REID: I didn't see that data.
12	MEMBER BANERJEE: It's not data. It was
13	(Inaudible.).
14	PARTICIPANT: No. You're correct. I
15	think he had done some calculations that estimated the
16	amount of nitric acid that could be formed and
17	indicated by the amount formed, it could change the pH
18	substantially, thereby affecting chemical effects.
19	Licensees do account for that when they
20	calculate the total amount of buffer that is added to
21	the system. The amount of nitric acid that might be
22	formed after an accident is included so that you don't
23	get wide pH changes, as he calculated.
24	MEMBER BANERJEE: Oh, I see. Okay. Thank
25	you.
	l

(202) 234-4433

	93
1	CHAIRMAN WALLIS: So you are going to tell
2	us you have got hundreds of kilograms of material
3	dissolved
4	MR. REID: That is correct.
5	CHAIRMAN WALLIS: in some form?
6	MR. REID: That is correct. And I think
7	that is a demonstration of the conservative nature of
8	the predictive pool. That is, we are based on the
9	assumptions we make, particularly lifetime-dependent
10	and the media formation of precipitates, irrespective
11	of temperature and pH conditions. As considered in
12	the original model, we do predict under many
13	circumstances large quantities of materials that that
14	would
15	CHAIRMAN WALLIS: I don't have the
16	numbers, but Argonne got a huge increase in head loss
17	with very small amounts of some of these chemicals.
18	MR. REID: That's correct.
19	CHAIRMAN WALLIS: I don't remember the
20	numbers.
21	PARTICIPANT: That's correct on a vertical
22	head loss test.
23	CHAIRMAN WALLIS: A very large amount of
24	stuff.
25	PARTICIPANT: That's correct.

	94
1	CHAIRMAN WALLIS: Enough to affect a very
2	large screen.
3	PARTICIPANT: And that's why Mike Scott
4	said that licensees are now
5	CHAIRMAN WALLIS: They don't like it.
6	PARTICIPANT: They don't like it. As a
7	licensee, I don't like it. It's the data that's
8	presented. We're looking at Rick can get into some of
9	the conservatisms. And this one gentleman over here
10	asked the question about interaction with silica and
11	aluminum reduces the corrosion rate, some of that. We
12	have looked at that.
13	Other plants are looking at reducing the
14	fiber, that we can reduce the amount of generation of
15	byproducts, of chemicals, and that. So we are looking
16	at all of the available toolboxes that we have or
17	tools that we have to reduce some of this amount of
18	generation. And that's
19	CHAIRMAN WALLIS: Will we hear later on
20	about broad-scale tests where typical amounts of these
21	materials were thrown in
22	PARTICIPANT: I think
23	CHAIRMAN WALLIS: corresponding to
24	these numbers here or
25	PARTICIPANT: In the afternoon today and

	95
1	into tomorrow, there are four utilities that are going
2	to speak of how we are working with this chemical and
3	how we are reducing some of the area to make sure we
4	pass.
5	And that is what Mike Scott said, that the
6	chemical effects and we are working with the
7	vendors, and you will hear from the vendors of how
8	they're working to refine to come up with a way to do
9	a head loss test with the chemicals.
10	CHAIRMAN WALLIS: I think what we heard
11	last time we met with the staff, I think it was
12	maybe some industry folks were there was that some
13	of the large-scale tests where they tried to duplicate
14	these amounts of stuff were just unacceptable. The
15	screen got so blocked that it was unacceptable. Is
16	that the case?
17	PARTICIPANT: In some areas where you have
18	some of the latest tests is if you have open sump
19	screen, it will pass through. If you have high
20	approach velocities, the fiber and the chemicals will
21	compact together and cause you high head loss.
22	So it's a combination of if you have
23	low-approach velocities, you have a lot of fiber, and
24	how that interacts is going on, and how each vendor,
25	each utility is taking us very plant-specific at this
	1

(202) 234-4433

	96
1	time how to reduce it.
2	CHAIRMAN WALLIS: If you are conservative
3	and assume a thin bed effect and all of that and all
4	of this stuff, I think things don't look very good for
5	some screens.
6	PARTICIPANT: That is correct. Some of
7	the screen geometries, you will hear this afternoon
8	and tomorrow that with the new complex dimensions,
9	thin bed may not form. So you have some
10	availabilities in some of that, too.
11	CHAIRMAN WALLIS: But we will hear about
12	all of that later on?
13	PARTICIPANT: Yes, later on.
14	CHAIRMAN WALLIS: Okay.
15	PARTICIPANT: That is in the individual
16	utilities' presentations. And if you do vertical head
17	loss testing against the integrated test, you will
18	have some results and stuff different in that.
19	CHAIRMAN WALLIS: What did you say, 600
20	kilograms of pretty fluffy stuff, isn't it? I mean,
21	it's not
22	PARTICIPANT: That's correct.
23	MR. REID: That's correct.
24	CHAIRMAN WALLIS: So in terms of volume,
25	if it were not compressed, how many truckloads would
I	•

(202) 234-4433

	97
1	it be?
2	PARTICIPANT: That one I can't do in
3	chemical, but I can tell you that on my
4	CHAIRMAN WALLIS: The measure of stuff is
5	how many pickup
6	PARTICIPANT: I can give you for Wolf
7	Creek the fiber in tomorrow's presentation. I do have
8	that in fiber.
9	CHAIRMAN WALLIS: I think 600 kilograms of
10	very fluffy stuff is pretty big volume
11	MR. REID: It is.
12	CHAIRMAN WALLIS: in terms of a pickup
13	load. Okay.
14	MR. REID: Okay. Move on?
15	CHAIRMAN WALLIS: Yes. Yes, we've got to
16	move on. You are going to be cut off at 10:30. Tell
17	us what is important in all of this.
18	MR. REID: Okay.
19	CHAIRMAN WALLIS: We could spend the whole
20	day, I think, on your presentation.
21	MR. REID: Okay. I think this one is
22	somewhat warranted. So we will discuss this, the
23	particulate generator testing. Part of this program,
24	we did develop what we call a particulate generator.
25	That is, we developed chemical recipes for making
	1

(202) 234-4433

	98
1	surrogate materials that the vendors could use in
2	testing and then set up a rig to develop these
3	precipitates and then tested the resulting
4	precipitates for the prototypicality in representing
5	the behavior of the precipitates we generated during
6	our bench-scale testing.
7	PARTICIPANT: Dr. Wallis?
8	CHAIRMAN WALLIS: Has the staff blessed
9	these precipitates and said they are okay to be used?
10	MR. REID: That is part of the SE. And I
11	guess we will let Paul chime in, but I believe they
12	have.
13	CHAIRMAN WALLIS: They have blessed them?
14	MR. KLEIN: They were in the RAI process
15	right now.
16	MEMBER BANERJEE: You're hoping that
17	PARTICIPANT: That's correct.
18	MR. REID: Yes.
19	CHAIRMAN WALLIS: Well, let's see how we
20	can evaluate whether their blessing is appropriate or
21	not without much more study. I'm not sure how much
22	time we have. We can't devote the rest of our lives
23	to understanding the chemistry of sumps.
24	MEMBER BANERJEE: I think it might be
25	useful, at least for me, to review this report in

(202) 234-4433

(202) 234-4433

	99
1	detail.
2	CHAIRMAN WALLIS: I am just thinking, do
3	we have to have a Subcommittee meeting on this report
4	by itself?
5	MEMBER BANERJEE: Right. And then just
6	ask questions about things (Inaudible.). And I think
7	it has to be does it have to be done on the
8	Subcommittee meeting? I don't know the protocol.
9	CHAIRMAN WALLIS: See, maybe rather than
10	writing a letter now, we may say we want to write a
11	letter after we have reviewed hits report.
12	MEMBER BANERJEE: I guess this is an
13	important aspect of the strategy because this allows
14	utilities to use surrogate materials to look at
15	chemical effects.
16	MR. REID: That's correct. And that
17	approach I believe institute generation of these
18	types of precipitates would be very difficult going
19	from the high-temperature, varying pH conditions, and
20	so forth. That would be a very difficult task.
21	And so the generation of precipitates is
22	important. And we do want those surrogate materials
23	to behave, both in terms of settling rate (Inaudible.)
24	characteristics as closely as possible to the real
25	materials. And we did testing to convince ourselves

(202) 234-4433

	100
1	that that was indeed the case. These materials, even
2	at small concentrations, can cause high head loss.
3	And they do settle relatively slowly, certainly over
4	days, rather than minutes.
5	MR. SCOTT: Mike Scott, NRR. If I might
6	interject here?
7	If you all are planning or thinking about
8	doing a detailed review on this report, I would only
9	ask that you do so in the very near future because the
10	staff's reviews is nearing the end on this. So time
11	is of the essence. Thank you.
12	MEMBER BANERJEE: Maybe you have done all
13	the review that needs to be done, Mike. I mean, we
14	haven't seen your (Inaudible.) or whatever, RAIs, or
15	whatever they are.
16	MR. SCOTT: And it's not done yet. Paul
17	will, of course, talk to you about the progress on
18	that. We're not at the endpoint. My only point is we
19	are nearing that endpoint in more ways than one.
20	CHAIRMAN WALLIS: You don't review things
21	until you have don ether SE. And then your SE covers
22	all the points that we are interested in. We say it
23	is fine. We don't try to do your work for you. Had
24	you done your work, then
25	MR. SCOTT: Doggone it.
	1

(202) 234-4433

	101
1	CHAIRMAN WALLIS: (Inaudible.) whole
2	thing. That is what we usually do.
3	MR. SCOTT: Okay. Well, the only trick is
4	that let's see. Paul Klein, when is our expected
5	completion of our SE?
6	MR. KLEIN: September 11th.
7	MR. SCOTT: September 11th, 2007. So then
8	you're out in the fall. It's just very compressed
9	here. So I would just ask that
10	CHAIRMAN WALLIS: Then we can write a
11	letter saying your SE was brilliant and covered all of
12	the important issues.
13	MR. SCOTT: That would be a very excellent
14	letter for you to write, yes. Thank you.
15	(Laughter.)
16	MEMBER BANERJEE: We could look at the
17	report in advance and
18	CHAIRMAN WALLIS: Do we have a CD of this
19	report, Zena?
20	MS. ABDULLAHI: I think so.
21	CHAIRMAN WALLIS: I think it would be
22	appropriate because I looked at something. I think it
23	was about a year ago. It seems an awful long time
24	ago. I looked at some preliminary version of that.
25	MR. SCOTT: Well, what you have now is you
	1

(202) 234-4433

	102
1	have the RAIs and shortly or we have RAI responses,
2	too. Right? So
3	CHAIRMAN WALLIS: That is a struggle to
4	work through all of that.
5	MR. SCOTT: Yes, but I
6	CHAIRMAN WALLIS: I would like to review
7	the final thing.
8	MEMBER BANERJEE: (Inaudible.) the paper?
9	I mean, can't we just look at the report and fined the
10	17 pages there
11	CHAIRMAN WALLIS: This is the final thing?
12	MEMBER BANERJEE: that you have
13	something in it?
14	PARTICIPANT: The problem is that unless
15	they revise the report and you aren't planning to
16	revise it, are you? So the RAIs and the RAI responses
17	make up, really, the staff's comments and questions
18	and things like that. And without reviewing that, I
19	don't think you have the full picture.
20	CHAIRMAN WALLIS: The report has to stand
21	on its own, doesn't it?
22	MR. SCOTT: Well, as I assume they will do
23	this, they will publish the report with the RAIs and
24	the RAI responses.
25	CHAIRMAN WALLIS: So the utility has to
	1

(202) 234-4433

	103
1	read all of the RAI responses in order to understand
2	the report?
3	PARTICIPANT: It depends on the RAIs.
4	CHAIRMAN WALLIS: That doesn't sound very
5	good.
6	MEMBER BANERJEE: It's not going to be
7	integrated as part of the report?
8	PARTICIPANT: Some of the RAIs are
9	clarification questions that may not need to be
10	reported. Some may be some wording changes that we're
11	looking at and see how that incorporates into the
12	WCAP.
13	MEMBER BANERJEE: How thick is the report?
14	PARTICIPANT: I can't remember.
15	PARTICIPANT: A hundred and eighty-three
16	pages, I hear.
17	MEMBER BANERJEE: How much of that is
18	data?
19	MR. REID: See, the bulk of that is the
20	data and the test plan, bulk of this
21	MEMBER BANERJEE: So you've got raw data
22	there?
23	MR. REID: That's correct. All of the raw
24	data that was generated is included in the report.
25	MEMBER BANERJEE: That would be good.

(202) 234-4433

	104
1	PARTICIPANT: We can provide
2	MEMBER BANERJEE: Raw data always works.
3	PARTICIPANT: Okay. I guess
4	PARTICIPANT: I guess, Dr. Wallis and for
5	the members, we are going to jump ahead to theirs. We
6	have done some additional work, as Rick said, to look
7	some of the inhibitions of the chemicals. So we are
8	going to let just Rick speak from them, not
9	necessarily their slides in there, but to go ahead and
10	say what we did. Those are more slides toward the
11	end, 40 in that.
12	CHAIRMAN WALLIS: Okay. Look at the
13	settling test. It says something about the one-hour
14	settled volume. This presumably is in some standard
15	tube or something?
16	PARTICIPANT: That's correct. Yes. We
17	wanted
18	CHAIRMAN WALLIS: And you say how big the
19	tube has to be and all of that is all specified?
20	PARTICIPANT: Yes, it is.
21	CHAIRMAN WALLIS: Okay. Thank you.
22	MEMBER BANERJEE: So the turbulence
23	actually slows down the
24	PARTICIPANT: That's correct.
25	CHAIRMAN WALLIS:

(202) 234-4433

	105
1	CHAIRMAN WALLIS: The sump is not
2	completely standard? There is flow going on, isn't
3	there? There is stuff cascading down from above and
4	
5	PARTICIPANT: That's correct. So what we
6	wanted to show was that the surrogate material, even
7	under quiescent conditions, would not settle for
8	okay.
9	I will discuss briefly as Moe
10	mentioned, the slides start at 36, but we won't look
11	at the slides in detail. What we did following the
12	original model development, we did do some additional
13	testing to look at some of the conservative
14	assumptions that were in the original model. And
15	particularly we looked at the effect of silicate
16	inhibition because we know that that certainly is a
17	potentially big effect.
18	And what we saw there was based on
19	corrosion rates once we got to about 75 ppm silicon is
20	the corrosion rate for aluminum based on metal loss
21	went down by a factor of at least 11 based on
22	dissolution release of aluminum into solution went by
23	a factor of around 100 less.
24	So silicate inhibition certainly is a
25	large effect. So that is a tool that can be available

(202) 234-4433

	106
1	to select plants, particularly high-fiber plants, for
2	reducing the amount of aluminum that comes into
3	solution from aluminum metal, which is one of the
4	largest sources of precipitate.
5	MEMBER BANERJEE: Is it a solution effect
6	or is it a passivating effect? What sort of
7	PARTICIPANT: It would be a passivating
8	effect from the formation of aluminum silicate on the
9	surfaces. Another effect we looked at was differences
10	in corrosion rates of aluminum alloys. And our
11	original testing, we followed the IECT program and
12	used commercially pure aluminum as the aluminum metal
13	source for our test.
14	And recognizing that there is a variety of
15	aluminum alloys in use in plants, we recognize that
16	these could have lower release rates than commercially
17	pure aluminum.
18	What we determined in our test is that the
19	difference between aluminum alloys wasn't appreciable
20	for the alloys that we tested. At most, we got about
21	a factor of maybe 20 percent reduction in the amount
22	of aluminum release based on different alloys.
23	The next thing we looked at was phosphate
24	inhibition of aluminum corrosion. We have to
25	recognize the effect by the same

(202) 234-4433

	107
1	CHAIRMAN WALLIS: What if the aluminum
2	gets leached out of this alloy? What happens to the
3	rest of the material?
4	PARTICIPANT: You would have some surface
5	enrichment of the alloy materials, but the alloys are
6	predominantly aluminum.
7	CHAIRMAN WALLIS: Does it go into solution
8	or does it make a matrix or something?
9	PARTICIPANT: For the most part, we would
10	detect selective dissolution of aluminum from the
11	alloys.
12	CHAIRMAN WALLIS: You did the test?
13	PARTICIPANT: We did the test, but we only
14	looked at aluminum. And, as I said
15	CHAIRMAN WALLIS: You only looked at
16	aluminum.
17	PARTICIPANT: As I said, what we really
18	determined was that the mass loss of aluminum, of the
19	aluminum coupons, was not that difference from
20	commercial to pure aluminum. That is the effect that
21	offers negligible benefits.
22	MEMBER BANERJEE: So aluminum is always
23	present if you're talking about surface effect? In
24	reality, the aluminum is always present so that
25	(Inaudible.) surface or not?
	1

(202) 234-4433
	108
1	PARTICIPANT: Yes. The exposed aluminum
2	metal, yes, that is the expectation that that surface
3	would be available for formation of aluminum silicate.
4	MEMBER BANERJEE: That is typical
5	(Inaudible.) aluminum should be in the past or
6	PARTICIPANT: Yes. For the aluminum
7	metal, that was we only applied this for aluminum
8	metal. There are other sources of aluminum. For
9	example, insulation materials do have aluminum
10	silicate. And concrete has an aluminum component.
11	We did not consider inhibition of aluminum
12	from those sources, only from aluminum metal.
13	MEMBER BANERJEE: Only like large
14	(Inaudible.) structures, not a very porous substance.
15	PARTICIPANT: Correct, yes.
16	PARTICIPANT: In the cases where you
17	calculate hundreds of kilograms of dissolved, does
18	that represent what fraction of the total inventory
19	are we talking about? Percent? Tenth of a percent?
20	PARTICIPANT: In most cases, we have thick
21	metal. It is a fraction of the material available.
22	But the model does
23	PARTICIPANT: Just give me an order of
24	magnitude when you say, "fraction."
25	PARTICIPANT: I apologize. I don't have
	1

(202) 234-4433

	109
1	a number right off the top of my head. For aluminum
2	metal, I would have to guess, but I would say less
3	than five percent. But materials like insulation,
4	particularly calcium silicate, essentially all of that
5	material is predicted to dissolve.
6	CHAIRMAN WALLIS: It depends on the plant.
7	There is only one plant, I think, that has a huge
8	amount of aluminum.
9	PARTICIPANT: That's correct.
10	CHAIRMAN WALLIS: It depends very much on
11	the plant site.
12	PARTICIPANT: But it's a circus
13	phenomenon.
14	PARTICIPANT: That's correct.
15	PARTICIPANT: So it depends on how thick
16	that material is. And I want to get an idea of
17	whether we're talking about a tenth of a percent of
18	the total or
19	CHAIRMAN WALLIS: Can you climb the ladder
20	after it has been in the sump for a while? I mean,
21	does it dissolve completely or just a tiny little bit
22	of it?
23	PARTICIPANT: I can't answer that question
24	immediately.
25	PARTICIPANT: Based on the mass lost from
	1

(202) 234-4433

	110
1	the IECT and that, there wasn't that much loss. It
2	was very proportionate based on the IECT and the
3	integrated in some of the stuff we did or Westinghouse
4	did that the structure
5	CHAIRMAN WALLIS: How does it get in the
6	sump anyway? Isn't it up above somewhere? Is it
7	actually in the
8	PARTICIPANT: Most of the corrosion
9	PARTICIPANT: It depends. It's
10	plant-specific. Some may have aluminum scaffolding
11	they want to remove from the flood area. So plants
12	are looking about removing their aluminum. Some may
13	have some junction boxes and that they're looking at.
14	Again, it's very plant-specific of where
15	that aluminum is. And I can't speak for those plants
16	at this point.
17	PARTICIPANT: (Inaudible.) some of the
18	aluminum was (Inaudible.).
19	PARTICIPANT: Correct.
20	PARTICIPANT: And that's what would be
21	inhibited by (Inaudible.).
22	PARTICIPANT: The material in the spray
23	would also be inhibited provided there are suspicions
24	of silicon in the spray. And the basis for saying
25	that is silicate is used to form conversion codings on
	1

(202) 234-4433

	111
1	metal species and spray applications of conversion
2	codings, such as silicates and phosphates, is an
3	industry practice.
4	CHAIRMAN WALLIS: So we are going to stop
5	at 10:30. I don't know what you are going to do to
6	get through here.
7	MR. REID: I believe I am just about done.
8	I wanted to talk about
9	CHAIRMAN WALLIS: Emphasize anything in
10	particular?
11	MR. REID: I did. Phosphate inhibition I
12	will mention quickly. We did take a look at phosphate
13	inhibition of aluminum corrosion. Then we found a
14	positive effect there.
15	And then, lastly, we are looking at
16	solubility behavior of these precipitates because, as
17	we mentioned, the original model conservatively
18	assumes that if the species are available in solution,
19	they will immediately form a precipitate, irrespective
20	of temperature and pH conditions. And we recognize
21	that that is not he true physical case.
22	We did want to examine solubility behavior
23	of these species as a function of temperature and pH.
24	And what we found in that testing was that sodium
25	aluminum silicate does seem to precipitate,
1	•

(202) 234-4433

	112
1	essentially irrespective of temperature and pH under
2	equilibrium conditions, aluminum oxyhydroxide. There
3	is a solubility limit.
4	So you can have some aluminum in solution
5	and not precipitate aluminum oxyhydroxide at higher
6	temperatures. And then, finally, calcium phosphate,
7	which is our other key precipitate, seems to
8	precipitate essentially immediately, irrespective of
9	temperature and pH conditions.
10	CHAIRMAN WALLIS: I think what we might be
11	very interested in when all of this is summed up is
12	what exactly you recommend as the recipes for use by
13	the plants. We won't get to that today, but I guess
14	that's what I'm really interested in. And what is the
15	basis for those recipes?
16	PARTICIPANT: And that will be in the
17	WCAP.
18	MEMBER BANERJEE: I guess the bottom line
19	here is that whatever you suggest (Inaudible.). To me
20	I still feel a little bit uncomfortable with, one, I
21	understand that you cannot easily do large-scale tests
22	where you have typical pH tests, things like that.
23	You can't do it routinely.
24	But it would be nice if one test were done
25	to show that (Inaudible.). You are doing little tests

(202) 234-4433

	113
1	in this case, lots of surprises. Chemical reactors
2	(Inaudible.) tiny little experiments (Inaudible.)
3	later, but there is a scaling effect there.
4	So how do we know (Inaudible.) similar
5	effects (Inaudible.)? Something unexpected
6	(Inaudible.) come out where you expect it to. They
7	come out always in the worst part,
8	MR. REID: Right.
9	MEMBER BANERJEE: something like that.
10	MR. REID: Right. Well, in brief answer
11	to that, again I'll say that, yes, we did look at all
12	available data from all previous and related testing,
13	open literature, data, and we did consider potential
14	interactions. And we used our best engineering
15	judgment.
16	CHAIRMAN WALLIS: Okay. Are we ready to
17	take a break now? Do you have a final word for us?
18	I'm going to take a break. You're going to be around
19	for the rest of the day and tomorrow so we can get
20	back to you?
21	MR. REID: At least the rest of the day.
22	Yes, sir.
23	CHAIRMAN WALLIS: If there's something
24	that you needed to tell us that you didn't get to say,
25	then maybe there will be an opportunity later. I
	1

(202) 234-4433

	114
1	don't want to miss anything important. Okay?
2	We will take a break for 15 minutes. And
3	then I think the reporting will begin. So will you be
4	ready to go after the break? Yes. Okay. Then we
5	will be on the court reporting. We will take a break
6	until quarter to 11:00.
7	(Whereupon, the foregoing matter went off
8	the record at 10:34 a.m. and went back on
9	the record at 10:50 a.m.)
10	CHAIRMAN WALLIS: We're looking forward to
11	the next presentation by Paul Klein from NRC, who will
12	also address the matter of chemical effects. Please
13	go ahead.
14	MR. KLEIN: Thank you and good morning.
15	2.B. CHEMICAL EFFECTS - NRR STAFF PERSPECTIVE
16	MR. KLEIN: I'm Paul Klein from the Office
17	of Nuclear Reactor Regulation.
18	And if I could have slide 2? Thank you.
19	The primary objective of this presentation is to
20	provide the NRC staff perspective regarding the
21	chemical effects methodology that is contained in
22	WCAP-16530. It was discussed during the last
23	presentation. I also felt it was important to
24	describe the NRC's regulatory path forward in the
25	chemical effects area.
	I contraction of the second

(202) 234-4433

115 1 Slide 3, please. By way of status, I think that the Subcommittee should understand the 2 staff review of WCAP-16530 is still work in progress. 3 I will not be providing conclusions Therefore, 4 5 concerning the NRC staff evaluation of the WCAP at this point. However, I think we can offer some 6 7 opinions that will provide insight into some of the 8 staff thoughts. This has been a concern 9 CHAIRMAN WALLIS: 10 of mine all along is we always seem to have work in 11 progress. And what I want to avoid is you having a schedule where you suddenly give us a lot of stuff and 12 we review it and we give you our input, which delays 13 14 things. We don't want that to happen. 15 If all this stuff keeps being in progress, 16 it is very difficult for us to input to it. You heard in the last 17 MR. KLEIN: presentation our scheduled delivery date for an SE on 18 19 the WCAP. And we intend to meet that. 20 CHAIRMAN WALLIS: But if we have really 21 strong questions about it, then I think you need to 22 know pretty soon. 23 MR. KLEIN: And I think we can discuss 24 that during this presentation. Just to give you some idea of the WCAP, the topics contained in it are 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	broad. And the staff receives some assistance in the
2	technical evaluation of the WCAP. And I want to
3	acknowledge that we have had input provided by both
4	Argonne National Lab and a member of the chemical
5	effects peer review panel.
6	In addition to some of the technical
7	assistance we received thus far in evaluating the
8	WCAP, we also requested a couple of different sets of
9	tests be performed in order for us to help evaluate
10	some of the WCAP tests that were done and some of the
11	assumptions that were made. And we will discuss those
12	in more detail in a few slides.
13	But, in particular, we asked ANL to
14	evaluate preparation of the WCAP surrogate and also to
15	evaluate its head loss performance relative to some of
16	the precipitate that they tested in their earlier head
17	loss program.
18	MEMBER BANERJEE: We heard that, didn't
19	we?
20	MR. KLEIN: Yes. The Subcommittee did
21	hear in February a summary of that head loss test.
22	And then an additional thing, we had requested some
23	additional supplementary leaching tests performed at
24	Southwest Research Institute. And we will go into
25	those in a little more detail as well.
	1

(202) 234-4433

	117
1	CHAIRMAN WALLIS: What wasn't clear to me,
2	I mean, sort of the ANL stuff, was what is it that you
3	folks are going to accept as being appropriate for
4	design and evaluation of these screens. And we didn't
5	really get to that point at all.
6	MR. KLEIN: We can discuss that now or in
7	a couple of slides.
8	CHAIRMAN WALLIS: When it is in your time.
9	But it always seems to be that new information coming
10	in, we didn't see how it was all going to be put
11	together in a final recipe for making decisions.
12	MR. KLEIN: And I think that is a very
13	good point. One of the challenges that the staff
14	faces here is that this is very much an evolving issue
15	and that the industry approach has changed over time.
16	There was an initial approach based on the
17	base model WCAP. As you can see, it predicts a large
18	amount of precipitate. The initial integrated head
19	loss tests that were performed did not meet head loss
20	criteria.
21	So it's caused a reassessment in the
22	industry. And the staff is reacting to that as well.
23	But at this point we have issued
24	MEMBER BANERJEE: Have we heard from the
25	Southwest Research Institute? I don't recall.

(202) 234-4433

	118
1	MR. KLEIN: No, I don't believe that the
2	Subcommittee has been briefed on that. And this is a
3	very limited-scope effort, I should add. In this
4	case, what happened was we had some money that was
5	allocated for evaluating thermodynamic models.
6	And it became clear at some point to the
7	staff that the current commercially available models
8	would not be able to be developed to a point where
9	there would be a useful predictive tool. We used some
10	of that leftover money to perform some tests.
11	MEMBER BANERJEE: Yes. We did hear
12	something about that.
13	MR. KLEIN: Yes, but you had not heard
14	about the leaching tests.
15	CHAIRMAN WALLIS: So they're not going to
16	be used?
17	MR. KLEIN: The thermodynamic models from
18	our perspective will not be used as a predictive tool.
19	So, just to finish off this slide, there
20	have been two sets of RAIs.
21	MR. TREGONING: I'm sorry to interrupt.
22	Rob Tregoning, Office of Research.
23	I just wanted to clarify. We did brief
24	you on the thermodynamic research.
25	CHAIRMAN WALLIS: Right.
	1

(202) 234-4433

	119
1	MR. TREGONING: The subsequent leaching
2	test results we did not brief you on, but we did
3	provide you with those reports along with a stack of
4	other NUREG reports that you have been given. So we
5	haven't specifically briefed on those, but it's a
6	letter report that we received from CNWRA. So you do
7	have those results.
8	MR. KLEIN: Thank you, Rob.
9	We have received responses to both sets of
10	RAIS. The latest response from the owners' group came
11	in to the agency in April. And we're projecting an SE
12	for late summer time frame.
13	Slide 4. I don't intend to discuss in
14	detail the WCAP model, but I will try to add some
15	perspective to the model and how its development is
16	implemented in subsequent integrated head loss
17	testing.
18	If you look at the WCAP model as a whole,
19	there are probably two main pieces that you can divide
20	it into: development of the chemical model or
21	predictive tool. And then the second part is the
22	actual preparation of surrogate precipitate that is
23	ultimately implemented in subsequent head loss testing
24	by individual strainer vendors.
25	MEMBER BANERJEE: The Argonne tests, they
	1

(202) 234-4433

	120
1	used typical surrogates, right, in this report?
2	MR. KLEIN: The ANL follow-on tests that
3	I will describe here used the WCAP surrogate prepared
4	as recommended within the WCAP.
5	CHAIRMAN WALLIS: Didn't they also make
6	some in the loop itself?
7	MR. KLEIN: Yes. The ANL head loss
8	program was made in the loop for the most part.
9	MEMBER BANERJEE: Well, we heard I thought
10	also something about surrogates as well as made in the
11	loop. They had already been reported to us or when
12	they reported to us, I remember that there was
13	something on surrogates.
14	MR. KLEIN: That's correct. And I will
15	get to that in one slide.
16	MEMBER BANERJEE: Okay.
17	CHAIRMAN WALLIS: Well, the bottom line
18	seemed to be as soon as you put some in, the stream
19	plug
20	MEMBER BANERJEE: It was a large effect.
21	MR. KLEIN: Yes. So I'm still on slide 4
22	here. Within the development tool that they had to
23	predict how much precipitate forms, you heard Rick
24	Reid describe earlier some of the dissolution tests,
25	some of the precipitation tests. Ultimately their
	1

(202) 234-4433

	121
1	spreadsheet predicts a total amount that is not based
2	on the precipitation testing. It's based on how much
3	material goes into solution. And then all of that
4	material is presumed to precipitate.
5	CHAIRMAN WALLIS: By it presumes a
6	precipitate, you mean it becomes particulate matter
7	which can accumulate on the screen because precipitate
8	to some people means it settles down in
9	MR. KLEIN: No. It becomes an amorphous
10	precipitate that's hydrated that has
11	CHAIRMAN WALLIS: Which could be available
12	to deposit on the screen?
13	MR. KLEIN: Correct.
14	CHAIRMAN WALLIS: And it's very fine
15	material?
16	MR. KLEIN: It tends to be very small
17	material that's highly hydrated. It's important to
18	note here, too, that individual strainer vendors have
19	adopted different approaches to integrated head loss
20	testing.
21	Most of the strainer vendors are using as
22	input to their tests the chemical model predictions.
23	In other words, they would work through the chemical
24	model spreadsheet and then calculate the amount of
25	precipitate that's predicted for the plant-specific
	1

(202) 234-4433

1 condition and then add that to their test. Not all strainer vendors are doing that, 2 Some have decided based on assessment that 3 however. the model is overly conservative. Some have decided 4 5 to try to do elevated temperature time-dependent tests more similar to IECT, only at higher temperatures over 6 7 a 30-day period. 8 With respect to the actual adding of 9 precipitate to these integrated tests, again, it's a mixed bag within the different strainer vendors. 10 Some 11 use a WCAP recipe to form the precipitates prior to the test and then add the solution to the test, 12 simulate chemical precipitate. Others have injected 13 14 chemicals into the loop similar to the ANL approach. 15 CHAIRMAN WALLIS: So they have done the 16 large-scale tests with chemical reactions within the 17 loop itself? Yes, there have been some 18 MR. KLEIN: tests done with addition of chemicals that would 19 20 induce precipitation. 21 Slide 5. The purpose of this slide was to try to just highlight some of the areas where we have 22 23 ongoing technical discussions with industry. And what 24 I will do, I quess, step through each one and try to highlight some of the things that we are still trying 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	to resolve with industry prior to issuing an SE.
2	Part of the WCAP approach, develop a
3	precipitate, and you perform settling rate tests in
4	order to assure yourself prototypical settling
5	behavior.
6	And one of the staff questions has to do
7	with the acceptance criteria that's within the WCAP.
8	And we won't go into discussions with industry on
9	that. And that's obviously important with respect to
10	transport of the precipitate to the strainer surface
11	during integrated testing.
12	We also have some questions that are
13	ongoing with respect to the aluminum release rate
14	equation that's in the WCAP. And that's most
15	important since aluminum is by far the largest element
16	that's released during these tests.
17	MEMBER BANERJEE: With regard to the
18	settling rate, as we haven't seen the WCAP, we don't
19	know. But are they suggesting some rate should be
20	used in the calculations?
21	MR. KLEIN: The settling rate is just a
22	measure that as they make the surrogate to add to the
23	test loops, there is an effective concentration. So
24	as you tend to concentrate the precipitate,
25	agglomeration is favored. And it settles more

(202) 234-4433

	124
1	quickly.
2	And so it's just to ensure that you don't
3	have non-prototypical behavior that you artificially
4	settle the precipitate out during the test, rather
5	than having it arrive on the strainer surface.
6	Most strainer vendors intentionally create
7	turbulence or agitation within their tests in order to
8	make sure everything that is analyzed to reach the
9	strainer surface actually does that during the
10	integrated tests.
11	But there is one approach that is trying
12	to look at settlement of both debris and chemical
13	precipitate based on realistic approach velocities in
14	containments. And so for those tests in particular,
15	it is very important that the chemical precipitate
16	settling rate is representative of what is expected in
17	a plant and what was observed during the WCAP and
18	other tests.
19	CHAIRMAN WALLIS: Well, settling rate is
20	very sensitive to size and shape and any kind of
21	flocculation and all sorts of things. And settling
22	rate is a very sensitive parameter. So probably
23	assuming that it doesn't settle at all is the best
24	thing to do.
25	MR. KLEIN: That's correct. We also have

(202) 234-4433

	125
1	some ongoing discussions in a couple of areas related
2	to peer review panel comments, such as potential
3	effects from reactor coolant system oxides or effects
4	of radiation.
5	And NRC has a working group internally
6	that is going through each of the items as raised by
7	the peer review panel. I think Rob Tregoning and
8	Ervin Geiger in the next presentation will go into
9	more detail about our approach and where that effort
10	is headed. But, in addition, we have also taken these
11	concerns to the industry via the RAI process.
12	And I think the last bullet here is an
13	important one. The WCAP 16530 base model and the SE
14	are going to be based on what we think will be
15	conservative assumptions.
16	However, at the same time, the industry
17	has a number of refinements that they are trying to
18	pursue or are pursuing with additional testing. That
19	is not part of the WCAP effort or the WCAP base model.
20	However, the staff sees these as very
21	important. And so we have ongoing discussions with
22	them on the areas such as solubility or passivation of
23	aluminum by either phosphates or silicates. And so
24	this is very much related to the WCAP but handled
25	outside of the WCAP space at this point.
	1

(202) 234-4433

	126
1	Next slide, please.
2	MEMBER ABDEL-KHALIK: So let me just ask
3	this. The settling rate criterion is essentially an
4	acceptance criterion as to whether the surrogate truly
5	represents what is expected?
6	MR. KLEIN: It's an acceptance criteria
7	provided within the WCAP to assure the individual
8	vendor or whoever would conduct the test that they
9	have produced a precipitate that is representative and
10	as intended by the WCAP preparation technique.
11	MEMBER ABDEL-KHALIK: Wouldn't it be
12	better to use a more primitive parameter to define the
13	acceptability of the surrogates, rather than a derived
14	parameter, like settling rate?
15	MR. KLEIN: I guess if you look at some of
16	the things that they have done to try and look at the
17	precipitate, its effect on head loss is of the utmost
18	importance. So they did filterability tests to try
19	and compare head loss at a precipitate. And that is
20	one of the things that we followed up with at ANL, is
21	to understand that their surrogate precipitate was as
22	effective at driving head loss as some of the earlier
23	precipitates that were performed in the ANL tests.
24	Settlement is a parameter that can be used
25	to look at what is formed and see if it will transport
	l

(202) 234-4433

	127
1	in your integrated test in a way that is assumed as
2	part of the WCAP preparation technique.
3	CHAIRMAN WALLIS: How about the material
4	to block the Argonne screen, which you couldn't even
5	see? That isn't modeled presumably in this WCAP.
6	MR. KLEIN: I would agree that we are not
7	using an invisible precipitate that drove head loss
8	out.
9	CHAIRMAN WALLIS: It was there. It was
10	very, very fine or something. I forget. I just
11	forget what it was called, but I remember that Bill
12	Shack said you couldn't see it and it had a big effect
13	on head loss.
14	MR. KLEIN: Correct. I think that that
15	was accounted for in the WCAP approach because all of
16	the solutions were
17	CHAIRMAN WALLIS: How do you know a
18	settling rate if you can't see it?
19	MR. KLEIN: I don't think we are producing
20	invisible precipitates.
21	CHAIRMAN WALLIS: Not producing that
22	stuff. Right. That's bigger than the ANL tests.
23	MR. KLEIN: Well, from the staff
24	perspective, what we wanted to ensure was that maybe
25	the invisible precipitate formed or in WCAP testing
	1

(202) 234-4433

	128
1	wasn't missed. And from that perspective, they did
2	pass all of the solutions through a filter that you
3	could probably argue is finer than what you might see
4	in a fiber mat. So if the invisible precipitate was
5	there, we should have seen head loss response during
6	those tests.
7	I am on slide 6.
8	CHAIRMAN WALLIS: Well, it might mean that
9	you need to make the stuff within the loop, rather
10	than tossing it in as a powder.
11	MEMBER BANERJEE: Well, I guess that is
12	the issue, right.
13	CHAIRMAN WALLIS: Right.
14	MR. KLEIN: It's not tossed in as a
15	powder. It's pre-made outside of the loop as a
16	hydrated amorphous precipitate, yes, as a slurry. And
17	from our perspective, what we have seen is that the
18	precipitate developed by the WCAP process is as
19	effective or perhaps more effective driving head loss,
20	compared to what we saw in the ANL test.
21	CHAIRMAN WALLIS: Is it stored in a bottle
22	and it's poured in?
23	MR. KLEIN: It's stored, typically made in
24	holding tanks and then poured in during the course of
25	the test. That's correct.
	1

(202) 234-4433

	129
1	CHAIRMAN WALLIS: Presumably if it's in a
2	holding tank, the precipitate has all kinds of
3	opportunity to agglomerate or change its physical
4	nature or
5	MR. KLEIN: It's one of the reasons that
6	settlement tests are performed to try and ensure that
7	the precipitate is behaving in the manner that was
8	anticipated by the WCAP.
9	MEMBER BANERJEE: So if there are some
10	effects, it's valuable that you said that there are
11	some experiments where on a fairly large scale, they
12	have been made in the loop itself, rather than added
13	as a precipitate.
14	MR. KLEIN: There are tests done by one of
15	the vendors where they inject sodium aluminate, for
16	example. Instead of pre-producing an aluminum
17	oxyhydroxide precipitate, they inject the chemical
18	within the test loop. So the precipitation occurs
19	within the test loop.
20	CHAIRMAN WALLIS: These precipitates,
21	presumably they are nucleate and then they grow, but
22	if they nucleate as very small particles, then they
23	are being whisked around this loop. And they get
24	filtered out before they have grown very much.
25	They would be very different. They would
	1

(202) 234-4433

	130
1	be like if they sat in the sump and grew for longer
2	before they were filtered out. I'm not sure that this
3	is modeled at all in any of these reports of the
4	dynamics of the formation and growth of the
5	precipitate itself.
6	MEMBER BANERJEE: I guess what you're
7	saying, though, is that the surrogates are as bad or
8	worse than when you grow them in the loop. But are
9	these loops recirculating the loops or are they just
10	once through?
11	MR. KLEIN: These are all recirculating
12	loops. So material that passed through the loop
13	through the strainer would come back around.
14	CHAIRMAN WALLIS: I'm not sure what's
15	worse. If you have very, very fine particles, then
16	that's
17	MEMBER BANERJEE: No. They're saying the
18	surrogates are worse.
19	CHAIRMAN WALLIS: We didn't say it was
20	necessarily worse.
21	MEMBER BANERJEE: No, no.
22	MR. KLEIN: Well, I think what we saw was
23	that the head loss response was very immediate and
24	caused complete blockage at the ANL vertical head loss
25	loop.
	1

(202) 234-4433

	131
1	CHAIRMAN WALLIS: So it doesn't really
2	give you any
3	MR. KLEIN: It's harder to get worse than
4	that.
5	CHAIRMAN WALLIS: It tells you don't do
6	it. It doesn't give you any criterion for head loss
7	at all on this.
8	MEMBER BANERJEE: Do you think making it
9	horizontal you said you were careful to point out
10	vertical head loss making it horizontal makes any
11	difference with this fine precipitate?
12	MR. KLEIN: I think it does, yes,
13	absolutely, because there has been testing done with
14	the WCAP precipitate with both vertical head loss
15	loops and with larger-scale flume tests, where you
16	might have strainers that are oriented, such that
17	you're approaching from the side. And it's clear that
18	the vertical head loss loop tests have much higher
19	head losses, even for the same amount
20	CHAIRMAN WALLIS: Well, you make a uniform
21	set to catch the preaccepted. Isn't that the main
22	thing?
23	MR. KLEIN: Typically in those tests you
24	have a flat screen. You have a uniform bed, and you
25	capture all of the material. There is no chance for
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	132
1	settlement. And even though these precipitates do
2	settle very slowly, there is some settlement over the
3	course of time. Typically you don't have 100 percent
4	reach the strainer surface, even though you are
5	recirculating the solution.
6	CHAIRMAN WALLIS: The question really
7	becomes, what are you going to accept? I mean, you
8	could legislate that to be conservative, will it
9	assume it's a horizontal strainer, although it isn't?
10	MR. KLEIN: As far as acceptance, you
11	know, I think our expectation has been that the
12	individual licensee will run a test such that the
13	amount of precipitate that's added and actually
14	reaches the strainer surface is conservative compared
15	to what they think will happen within their plant.
16	And that seems to be the easiest
17	CHAIRMAN WALLIS: Approach.
18	MR. KLEIN: approach. And if you try
19	to model this thing in a scientific manner, it's very
20	complex. And the actual precipitates themselves may
21	be aging and changing over time. So it becomes a very
22	difficult process.
23	MEMBER BANERJEE: But the problem with the
24	precipitation being taken out is such a strong
25	function of things like turbulence and vertical

(202) 234-4433

	133
1	structures and things that you have.
2	And I have been looking through these
3	calculations that people have done, the color-fluid
4	dynamics. I'm not sure that this is really sort of
5	the calculation that is going to tell you anything
6	about that, you know.
7	So how can they guarantee that this would
8	actually come out? The flume is not what the real
9	situation is.
10	MR. KLEIN: I'm not sure if I understand
11	the question.
12	MEMBER BANERJEE: I'm saying how much
13	preaccepted comes out, anything comes out, deposits on
14	the way to the screens or the geometry are a strong
15	function of turbulence. And the turbulence
16	calculations that are done in these types of
17	geometries are extremely primitive.
18	So you cannot put any reliance on them.
19	Therefore, you don't know the level of turbulence.
20	Therefore, you don't know how much of anything, not
21	just the
22	CHAIRMAN WALLIS: So we'll assume none of
23	the precipitate.
24	MEMBER BANERJEE: Yes.
25	MR. KLEIN: I think for the most common

(202) 234-4433

approach to integrate a test, the strainer vendors are working very hard to get all the material to the strainer surface. So they're not trying to credit settlement other than there's one vendor, in particular, that's trying a new approach that will look at settlement. But for the most part, they would calculate what makes it to the strainer surface and then they will work with stirrers or other mechanical means in order to make sure that stuff transports during the test. Well, there is another MEMBER BANERJEE: Sure, it makes it to the surface. But then factor. how it distributes itself on the surface is also a function of turbulence and, you know, interfering bodies and stuff like that around. So it's not a very simple thing to say what is going to happen other than they could be uniformly distributed, you know, which is why Graham said make it a --CHAIRMAN WALLIS: I think that's what I think where they can in these flume they're doing. tests, they try to make the conditions as bad as they could be imagined.

MEMBER BANERJEE: Someone is going to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

(202) 234-4433

134

	135
1	teach me CFD.
2	CHAIRMAN WALLIS: Then you won't rely on
3	the CFD. Just try to make it as bad as you can
4	imagine in the test.
5	MR. LEHNING: This is John Lehning from
6	NRR staff.
7	As Paul said, most vendors aren't
8	crediting that. There is one vendor that is
9	attempting to credit settling of that precipitate, but
10	we have had open items in some of the audit reports on
11	simple particulate, not chemical precipitate, but
12	other precipitate like zinc powder and other things
13	and how you model the turbulence on that and whether
14	a Stokes law approach, which is what these licensees
15	had chosen, was adequate but because these particles
16	are not necessarily perfectly spherical, they're not
17	all uniformly sized, and there was not test data out
18	there to benchmark that data. And similar comments
19	would apply to the precipitate in my opinion.
20	MEMBER BANERJEE: I think one has to be
21	extremely careful about these arguments of settling
22	and non-uniform distributions being credited.
23	CHAIRMAN WALLIS: Identify yourself.
24	MR. LU: Shanlai Lu, NRR staff.
25	Related to that turbulence issue, I think
	1

(202) 234-4433

	136
1	that part is already mentioned in that for most of the
2	other vendors except one, then they want to take
3	credit of settlement. So most of the chemical
4	precipitates really end up on the screen.
5	One particular one, which is one vendor,
6	we have been working with them at this point to define
7	the criteria, how to accept it but to resolve the
8	particular issue related to the turbulence and then
9	the plan to perform safety analysis and calculate the
10	localized turbulence and then the test loop with the
11	proposed view to have the downcomer to inject water to
12	create the possible turbulence load very close to the
13	strainer.
14	So that might be resolved in this issue,
15	but it's an ongoing process. We are having a dialogue
16	with the particular vendor to resolve these issues.
17	MEMBER BANERJEE: Yes. I noticed that one
18	of the I don't remember who it was, but they were
19	doing some CFD calculations and trying to say that we
20	see this in the flume; therefore, the CFD calculations
21	are right.
22	It's very easy to show something in a
23	flume is right. It is very difficult to show in a
24	real geometry that it is right. You know, they had
25	some turbulent kinetic energy.
	1

(202) 234-4433

	137
1	MR.LU: That's right. Yes. I think that
2	is calculated based on CFD factored, averaged, based
3	on certain average and taking it to apply to the loop
4	to set up the testing.
5	MEMBER BANERJEE: Yes. We can discuss it,
6	but I think it is sort of dangerous to depend on those
7	things.
8	MR. LU: It's a challenge.
9	MEMBER KRESS: In the business of
10	transport of aerosols, which is a severe accident
11	issue, they finesse this issue by assuming the
12	aerosols are always well-mixed in some sort of
13	compartment volume and combined that with the Stokes
14	law.
15	And these finessed bottles have been
16	well-validated for containment
17	MR. LU: Right.
18	MEMBER KRESS: and transport through
19	the primary system.
20	MR. LU: Right.
21	MEMBER KRESS: You might look into that
22	because it's supposed to be conservative when you do
23	it this way, conservative where you get less
24	precipitate.
25	MR. LU: Right.

(202) 234-4433

	138
1	MEMBER KRESS: But I don't know what you
2	do with that Stokes law. You have to measure the
3	settling grates and weigh in, relate that Stokes law.
4	MR. LU: I understand that.
5	MR. KLEIN: Thank you, Shanlai.
6	CHAIRMAN WALLIS: Well, also you don't
7	have uniform temperature of the sump, do you? You
8	have fluid coming in which isn't quite the same
9	temperature as the stuff in there. So you have got
10	convection currents presumably as well as turbulence.
11	I don't know.
12	MEMBER ABDEL-KHALIK: You say that only
13	one vendor takes credit for settling. Is that
14	accounted for always in the experiments?
15	MR. KLEIN: One vendor approach that's
16	trying to take credit for settlement, those tests have
17	not yet been performed. The staff has been
18	interacting with that vendor up ahead of the test to
19	gain an understanding of their approach and to resolve
20	any technical questions that the staff has.
21	MEMBER ABDEL-KHALIK: Because if one does
22	not take care or take account of settlement in the
23	analysis of experimental data, that would be
24	non-conservative.
25	MR. KLEIN: Well, I'm not sure I
	1

(202) 234-4433

	139
1	understand.
2	MEMBER ABDEL-KHALIK: Well, I mean, you
3	are talking about a certain loading. And if you are
4	measuring pressure drop and you do not take into
5	account the fact that not all of the material is going
6	to deposit on the filter, that would be
7	non-conservative because you are getting a pressure
8	drop for a lower amount of deposition.
9	MEMBER BANERJEE: You mean interpreting
10	the result?
11	MEMBER ABDEL-KHALIK: Yes, interpreting
12	the results of the data.
13	MR. LEHNING: This is John Lehning, NRR
14	staff.
15	The way that we were trying to explain it
16	is that that settling would be debris that didn't make
17	it to the strainer.
18	MEMBER ABDEL-KHALIK: That's exactly the
19	point I'm trying to make.
20	MR. LEHNING: So having more of that
21	debris on the strainer, as opposed to settling out on
22	the floor and not reaching the strainer, in general,
23	you know, not always there are some thin bed cases
24	or some cases where different debris mixtures with
25	less can cause a higher head loss, but in general for

(202) 234-4433

	140
1	the test plan that we have and the test plans that
2	licensees are working with, having more debris reach
3	the strainer, as opposed to settling out, would lead
4	to a higher head loss.
5	MEMBER ABDEL-KHALIK: Yes, I understand.
6	But when you analyze the data, what are you measuring?
7	You are measuring the head loss, right?
8	MR. LEHNING: Correct.
9	MEMBER ABDEL-KHALIK: And you are
10	attributing that head loss to a certain amount of
11	material that is deposited on the filter.
12	MR. LEHNING: Correct.
13	MEMBER ABDEL-KHALIK: And that amount that
14	is deposited on the filter is the total inventory
15	minus the amount that is settled.
16	MR. LEHNING: Correct.
17	MEMBER ABDEL-KHALIK: So if you don't take
18	into account the amount that is settled, you are
19	actually underestimating the effect of the material
20	that is deposited on the filter, which would be
21	non-conservative.
22	MR. LEHNING: An easy way to answer that
23	question for the vendors that are using artificially
24	generated turbulence that is well in excess of the
25	amount of turbulence in the plant would be to show
	1

(202) 234-4433

	141
1	that that is far more conservative than the transport
2	conditions that would occur in the actual plant in the
3	test. And that would bound the small amount of debris
4	that won't reach the strainer during the test. And we
5	see that.
6	And that is something that when we go and
7	take trips to observe tests, we look for the amount of
8	debris that does not reach the strainer and make sure
9	that that is an insignificant quantity. And if it
10	isn't, then we ask vendors to justify that that
11	settling is prototypical and they have to have a
12	technical basis for that.
13	CHAIRMAN WALLIS: Well, actually, with a
14	thin bed effect, it can be the other way around that
15	you need more material on the screen in order to
16	dilute the fines to get less versatile. It's not
17	clear that having less material on the screen leads to
18	a lower pressure drop.
19	MEMBER ABDEL-KHALIK: I think the point I
20	am trying to make is that if you are analyzing
21	experimental data, if you don't take into account the
22	fact that some of the material will settle down before
23	it actually deposits on the filter. That is
24	non-conservative.
25	MR. LEHNING: I see your point now. In a
	1

(202) 234-4433

	142
1	way, that is true, but these tests are just to show
2	that this experimental test is what is being used to
3	qualify the strainer. It's not as if there is some
4	correlation that is being used to correlate this
5	amount of debris.
6	If that were being done, then I would
7	agree with what you're saying. But the point is just
8	to show that that task is representative and bounding
9	of the plant condition.
10	MEMBER BANERJEE: But that's I guess what
11	is bothering a lot of us. Imagine you do a test in a
12	flume and you put whatever it is, the screen, whatever
13	geometry, and you bring some stuff with debris and as
14	long as the debris sticks and gives you a pressure
15	loss.
16	Now you go to the real system. And you
17	have got these top hats or whatever they are, some
18	arrays or stacks, some of them, some in disks. You
19	know, now the whole situation, the local fluid
20	mechanics around these is very different from having
21	these go in a horizontal flume.
22	And, for example, if you took a single
23	stack, let's say, and you tested it, it has certain
24	surface area. Now if I put it one on top of the other
25	and I fill things in, you know, it will start to, the
	1

(202) 234-4433

	143
1	debris will start to, get in between there.
2	You know, so that approach velocity is no
3	longer the approach velocity perpendicular to that
4	stack but, actually, if the approach velocity is just
5	the opening of this do you see where I am getting
6	at now?
7	MR. LEHNING: It's the dynamic effect that
8	you have built up.
9	MEMBER BANERJEE: Yes. Everything is
10	changing all the time. Now, what is worrying to me is
11	that when I read some of the stuff, they're talking of
12	CFD calculations where they are actually looking at
13	tumbling velocities and precipitation rates, which is
14	almost impossible to do in a CFD calculation.
15	I will give you a very simple example.
16	That a flume. Okay? Just put some polystyrene
17	particles in it. Okay? And what you will find is the
18	velocity of the liquid is higher at horizontal flume
19	than of the polystyrene particles. Why is that?
20	If any of those codes can actually be
21	predicted, I would be happy to see it. If not,
22	because there is no force, this is a horizontal, get
23	the particles that are lagging, the velocity of the
24	liquid. None of these codes can do that. So it's
25	very dangerous to rely on them at all.

(202) 234-4433
	144
1	MR. LEHNING: Yes. I'm not going to try
2	to answer that question, but the CFDs I just used for
3	the flow. And they're not used directly for the
4	debris transport part of it. And they're used away
5	from the strainer as well. They're not generally used
6	
7	MEMBER BANERJEE: That's even more
8	worrying that they're used anywhere. But I want to
9	revisit this thing with CFD when it comes up.
10	CHAIRMAN WALLIS: Paul, can you get us to
11	the end of this presentation, do you think?
12	MR. KLEIN: Yes.
13	MR. SCOTT: Mike Scott.
14	Before we go further, are you suggesting
15	that we should be taking a different approach here?
16	MEMBER BANERJEE: Yes. I think it's very
17	difficult to take an experiment like this and glue it
18	together in the real geometry of the CFD, at least the
19	current type of CFD which is being done.
20	MR. SCOTT: So what are you suggesting
21	that we would do instead?
22	MEMBER BANERJEE: You might need to do
23	tests which are in more typical geometries directly?
24	MR. SCOTT: Typically of?
25	MEMBER BANERJEE: Of the real stacks, of

(202) 234-4433

	145
1	the real arrays or whatever the
2	MR. SCOTT: But the testing that is being
3	done by the licensees attempts to replicate those
4	kinds of geometries at a scale. It's not full-scale,
5	but it takes a strainer array and it imposes the
6	conditions in a particular plant's containment. I
7	mean, like if there is a wall nearby, that wall will
8	be represented. So that sort of thing is going on.
9	MEMBER BANERJEE: Yes. I don't know. I
10	haven't heard from them. But what I have seen of the
11	very few graphs which we got in the slides, some of
12	they seem like they were basically tests which were
13	being done in flumes. You know, they were not typical
14	geometries, typical arrays of things. I could be
15	wrong.
16	MR. SCOTT: Well, maybe that would be a
17	good question to ask the sample licensees who are
18	going to be presenting for you because
19	MEMBER BANERJEE: Who are going to present
20	because if they are more typical, I feel much more at
21	ease about that, you know.
22	CHAIRMAN WALLIS: Can we move on now?
23	MR. KLEIN: Okay. I'm on slide 6, staff
24	perspective. I think the WCAP test did provide some
25	value, supplemental information, IECT, expanded the
	1

(202) 234-4433

	146
1	range of pH temperatures and also materials,
2	particularly the non-metallics.
3	Some of the limitations in the WCAP
4	include mostly single effects tests, the total
5	precipitates achieved by some of the individual test
6	results. And the characterization of the precipitates
7	themselves is based on EDS scans of the area. It's
8	not quite the definitive answer that you might get
9	with more sophisticated techniques.
10	Our preliminary perspective, however, is
11	that the base model was conservative. And the
12	following slide will touch on some of the reasons why
13	we believe that.
14	If you look at the WCAP methodology as a
15	whole, they put a variety of materials into the test
16	solutions at elevated temperatures for short-term
17	durations. And then for the cases of the three
18	predominant species that went into solution, which
19	represents 99 percent of the total mass in solution
20	during the WCAP tests, they assume that that material
21	precipitates as soon as it goes into solution. And
22	that is
23	CHAIRMAN WALLIS: Do you mean as it
24	precipitates on the screen?
25	MR. KLEIN: Well, it precipitates within
	1

(202) 234-4433

	147
1	the pool.
2	CHAIRMAN WALLIS: It doesn't settle out?
3	MR. KLEIN: It does not settle out.
4	CHAIRMAN WALLIS: It makes a precipitate
5	which goes around the loop in some way. Either it
6	goes into the screen or through the reactor or
7	something. It stays in suspension.
8	MR. KLEIN: Yes. There are two pieces to
9	this, really. The WCAP itself does not predict what
10	happens to the precipitate once it forms. The
11	strainer vendor tests if they use the WCAP methodology
12	take the amount predicted by the WCAP, and then they
13	put that into solution. And then they typically force
14	that to the strainer or it passes through and comes
15	around again but eventually through flume turnovers or
16	pool turnovers reaches the strainer surface.
17	CHAIRMAN WALLIS: So it's assumed to
18	precipitate in solution? It's not allowed to
19	precipitate by deposition on the fuel, for example, if
20	you have an inverse solubility curve?
21	MR. KLEIN: That's the
22	CHAIRMAN WALLIS: It's very different. A
23	way to get it into the core might be not to
24	precipitate it until it gets there.
25	MR. KLEIN: That's a different topic. And

(202) 234-4433

	148
1	the assumptions for the in-vessel aren't necessarily
2	the same as for the strainer.
3	CHAIRMAN WALLIS: Okay.
4	MR. KLEIN: For the strainer, it's
5	conservative to assume that all precipitates in
6	solution arise at the strainer surface for the
7	in-vessel, that is not a conservative assumption. And
8	that's not an assumption that
9	CHAIRMAN WALLIS: Okay. You make
10	assumptions?
11	MR. KLEIN: Correct.
12	CHAIRMAN WALLIS: Okay. Thank you.
13	MR. KLEIN: The model also doesn't really
14	consider that there might be a delay in precipitation
15	due to sluggish kinetics or some other effect. If you
16	look at IECT, for example, the aluminum oxyhydroxide
17	that formed in IECT 1 and IECT 5 primarily occurred
18	after the solution began to cool from a 140-degree
19	test temperature.
20	The WCAP model itself assumes that this
21	material is immediately available. And so when
22	licensees implement an integrate head loss test,
23	they're typically assuming a 30-day inventory of
24	precipitate. And they're evaluating that against a
25	minimal NPSH margin that is available in their plant.

(202) 234-4433

	149
1	As time goes on after an accident, that margin
2	increases substantially. So that is a conservatism.
3	They also in the base model do not
4	consider passivation of aluminum by phosphate or
5	silicate. And we did observe those phenomena in the
6	IECT tests. It has also been confirmed by additional
7	tests, either by industry or at LANL. So we think
8	those things are real, but the base model does not
9	consider it.
10	So the first three bullets really are
11	related to treatment within the WCAP process. These
12	last two bullets discuss tests that the staff has
13	requested in order to help evaluate different aspects
14	of the WCAP model.
15	In particular, the tests at ANL that you
16	did hear about in February, we took an amount of
17	precipitate that would be the equivalent of the
18	Argonne vertical head loss loop volume if it had five
19	parts per million in excess of solubility limit, for
20	example, that transformed into precipitate. We wanted
21	to see how that would affect head loss. So we ran a
22	test with what we thought would be a small amount of
23	WCAP-generated precipitate.
24	When we did those tests, we saw a very
25	immediate head loss response that resulted in complete

(202) 234-4433

	150
1	blockage of the loop. In fact, they had
2	CHAIRMAN WALLIS: It seems to me a problem
3	because we haven't sort of quantified the effect of
4	these precipitates on head loss except that when you
5	get some, it seems to make an unacceptable head loss.
6	I'm not quite sure how you are going to
7	predict what is allowable in terms of amounts of
8	precipitate in the plant. They don't really know what
9	the effect of a small amount is on head loss.
10	MR. KLEIN: Well, the criteria for the
11	plant, really, is that the NPSH margins are met. So
12	if the precipitate causes
13	CHAIRMAN WALLIS: How do you predict that?
14	MR. KLEIN: How do you predict that?
15	CHAIRMAN WALLIS: How do you predict it?
16	Do you do it just by experiment?
17	MR. KLEIN: You do it by experiment by the
18	plant-specific debris that is added to the larger
19	scale tests. And then they add a conservative amount
20	of chemical precipitate on top of that.
21	MEMBER BANERJEE: So the key thing here
22	would be for us to listen to these presentations which
23	are coming.
24	CHAIRMAN WALLIS: So it's conceivable that
25	Argonne got essentially complete blockage with five

(202) 234-4433

	151
1	parts per million, but it may be with certain screen
2	designs you don't get complete blockage or you get
3	almost no blockage up to maybe I don't know 20
4	or 50 parts per million or something.
5	MR. KLEIN: Well, and it's a function of
6	also the individual plant whether they have a debris,
7	a fiber bed on their strainer, something
8	CHAIRMAN WALLIS: There is nothing
9	quantitative you can take from Argonne and apply it to
10	your decision-making.
11	MR. KLEIN: That is accurate, I think.
12	CHAIRMAN WALLIS: Yes. It's just a
13	qualitative
14	MR. KLEIN: I think what it showed us
15	qualitatively is that the WCAP precipitate effectively
16	drives head loss. So if you have a methodology that
17	predicts a conservative amount of precipitate, then
18	that should be conservative.
19	And also, in addition to the head loss
20	test, Argonne also did a series of bench-top tests to
21	try and understand sensitivities on preparation of the
22	WCAP surrogate and how it could potentially if you did
23	not follow directions exactly, what would be the
24	ramifications on the precipitate that was formed.
25	And then the final larger bullet here
	1

(202) 234-4433

	152
1	talks a little bit about the test at Southwest
2	Research. And we really had two objectives with these
3	tests. One of them was to take a limited number of
4	WCAP test conditions and try and replicate them just
5	to see the different test facilities, different heater
6	material, but the same material, same test condition,
7	what might happen relative to what was reported in the
8	WCAP.
9	So those sets of tests were done. And, in
10	general, what we saw is that in the Southwest Research
11	test, the concentration of leachate was either similar
12	to or less than what was reported in the WCAP.
13	The second part of the Southwest Research
14	was to pick out some of the materials that were not
15	tested in the WCAP. If you look at the WCAP
16	methodology, they classify materials.
17	And then they tested a representative
18	material from each of those classes. We wanted to
19	evaluate some of the other materials that were deemed
20	equivalent to some of the material classes and see how
21	they would behave as well in this type of test.
22	So when we did those tests, we did not
23	observe any precipitates with those other additional
24	materials that were not tested within the WCAP.
25	Slide 8.
	1

(202) 234-4433

	153
1	CHAIRMAN WALLIS: Maybe we could just read
2	this one and move to the last one.
3	MR. KLEIN: You can certainly read slide
4	8 and move on.
5	The final slide talks about the regulatory
6	path forward. And there are really four major areas
7	shown in this slide the staff is working on to try and
8	prepare ourselves to evaluate the chemical effects
9	evaluations that will be provided in the supplemental
10	responses to
11	CHAIRMAN WALLIS: What if the Commission
12	asks us at the meeting in June "Are the staff and
13	industry are on track to resolve GSI-191?" We will
14	probably have to say we don't know. We just have to
15	say they're still evaluating.
16	MR. KLEIN: That is true. I think that
17	there is an aggressive schedule that both industry and
18	staff are trying to meet here. This is clearly a
19	complex area.
20	And, as you will see, the bottom line of
21	this slide will talk about the individual areas, but
22	any one of these four bullets could really trigger
23	requests from the staff for additional confirmatory
24	research in order to support resolution of chemical
25	effects.
	1

(202) 234-4433

	154
1	But, in particular, path forward, we will
2	be working with the Office of Research to disposition
3	the peer review panel member comments contained in
4	NUREG 1861 and identified by the PIRT. You will hear
5	more about that in the next presentation.
6	We are continuing our assessment of the
7	ongoing industry chemical effect tests. We are
8	CHAIRMAN WALLIS: So you aren't able to
9	say, "We had ten questions, and we have successfully
10	resolved eight of them" or anything like that? You've
11	still got all of the questions. Is that right?
12	MR. KLEIN: For the peer review panel and
13	the PIRT?
14	CHAIRMAN WALLIS: No. For the state of
15	where you are in resolving GSI-191. My impression is
16	that the questions are still the same and the answers
17	aren't yet finished.
18	MR. KLEIN: In the chemical effects area,
19	I think that we have definitely made progress. I
20	think we're learning
21	CHAIRMAN WALLIS: You haven't answered any
22	questions completely yet?
23	MR. KLEIN: Well, we have answered certain
24	aspects of it. We certainly have some larger
25	technical issues that remain to be resolved.

(202) 234-4433

	155
1	MEMBER BANERJEE: Is it correct to say
2	that you are guided by what has been done, you are
3	relying very heavily on industry experiments in
4	prototypical geometries, large-scale prototypical
5	geometries, as a means of evaluating?
6	MR. KLEIN: I think that's one important
7	piece of information that we will rely on, certainly
8	not
9	CHAIRMAN WALLIS: Okay.
10	MEMBER ABDEL-KHALIK: Does approval of
11	WCAP 16530 imply approval of the surrogate
12	characteristics and preparation method, regardless of
13	the plant-specific conditions?
14	MR. KLEIN: I think the safety evaluation
15	will be written for WCAP 16530, might approve the
16	overall process as conservative, including the use of
17	those surrogates.
18	Now, I think what maybe didn't come out as
19	part of this presentation and the real challenge to
20	the staff is that I've sat here and I've sort of
21	described overall we think this base model is
22	conservative. And I've provided some of the reasons
23	for that.
24	At the same time, there is work underway
25	to try and remove some of that conservatism. And so
l	

(202) 234-4433

	156
1	the challenge I think for the staff is going to be
2	trying to understand how much conservatism can be
3	removed from that base model and still have a
4	conservative method overall.
5	CHAIRMAN WALLIS: Okay, well we've had a
6	very liberal interpretation of the agenda and the time
7	frame that I would like to finish. Thank you very
8	much, Paul.
9	We are going to take a break now for lunch
10	until 12:30.
11	MR. KLEIN: Thank you.
12	(Whereupon, a luncheon recess was taken
13	at 11:40 a.m. until 12:34 p.m.)
14	CHAIRMAN WALLIS: Okay, this presentation
15	will be pursuant from this morning, the staff
16	presentation on Chemical Effects Peer Review.
17	Rob, are you going to start?
18	MR. TREGONING: Yes, yes, sir.
19	CHAIR WALLIS: Please go ahead.
20	MR. TREGONING: Thank you, Mr. Chairman.
21	I'm Rob Tregoning from the Office of
22	Research. And seated up here with me is Erv Geiger
23	from the Office of Research. And we are going to
24	present a status update of the Chemical Effects Peer
25	Review and how we are working through issue
	•

(202) 234-4433

disposition
presentation
both Februa
the mechanic
some of th
reviewers.
come back du
we were prog
the future.
to revisit
have what we
and March me
were identi
that we put
mechanisms
identified,
and reviewed
in the last
of the resea
chemical eff
December 20

П

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Slide two please. This is really a status presentation. We were originally in front of you in both February and March where we presented a lot of the mechanics and history. And actually talked about some of the issues that were raised by the peer reviewers.

And we said at the time that we would come back during this May meeting and let you know how we were progressing. And what we still had to do in the future. So these first couple of slides are just to revisit that earlier presentation to make sure we have what we are doing now in proper context.

So as we indicated back in the February and March meetings, many important chemical phenomena were identified by the team of five peer reviewers that we put together. And there were one of two mechanisms that these phenomena or issues were identified, either in NUREG 1861, which you have seen and reviewed and actually commented on quite in depth in the last meeting that we had which was their review of the research that we had conducted in the area of chemical effects up to that time that was published in December 2006.

And the other mechanism was the PIRT that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	158
1	we conducted and we decided to conduct in the middle
2	of their peer review when it became apparent to us
3	that many of the issues that were being raised at the
4	time were outside of the scope of the initial research
5	efforts. So combining those two documents or
6	activities led us to identify various phenomena.
7	After the PIRT, once you took into account
8	the rankings from the PIRT process as well as some of
9	the extraneous issues that were in NUREG 1861 that
10	were identified specifically in the PIRT, we were able
11	to identify 41 phenomena or issues that we needed to
12	disposition as a staff.
13	So that's and I'm very definitive when
14	I say 41 because I'm going to provide binning
15	statistics later. I want to make sure everything adds
16	up. So I didn't say approximately 40 because I know
17	you guys will do the math later.
18	CHAIR WALLIS: So someday we'll got a
19	checklist of 41 issues to check off?
20	MR. TREGONING: Yes. We have actually
21	formed a table of all these issues. And one of the
22	columns in the table is the disposition strategy as
23	well as the technical justification supporting that.
24	And that will be documented.
25	Next slide please. Again, this is just a

(202) 234-4433

	159
1	repeat of what was provided in February and March. If
2	you looked at the issues and categorized them, they
3	fell into one of these seven bins. And back in
4	February and March, I gave about ten different
5	examples that fell within each of these bins.
6	CHAIR WALLIS: Can we give this number to
7	the Commission when the Commission asks us in our June
8	meeting what is the status of chemical effects
9	phenomena. We'll say the staff has 41
10	MR. TREGONING: Sure.
11	CHAIR WALLIS:phenomena.
12	MR. TREGONING: These slides are publicly
13	available.
14	MEMBER BANERJEE: And also this was
15	identified by the peer review group, right?
16	CHAIR WALLIS: Yes, but you actually
17	looked at the peer review. You might have discarded
18	some of them as not worthy of further consideration.
19	MR. TREGONING: Well, the PIRT process
20	itself, you obviously go through a ranking. When we
21	did brainstorming as a group, there were well over 100
22	that were identified.
23	CHAIR WALLIS: That sounds a large number
24	to me.
25	MR. TREGONING: No, again, when you go
	1

(202) 234-4433

	160
1	through any sort of PIRT and when you do it
2	comprehensively, you identify a lot of potential
3	phenomena and issues. So, again, in the original
4	brainstorming, now these statistics I don't have
5	exactly right, but I want to say it was probably about
6	120 specific phenomena that we identified and ranked.
7	So ideally yes, it seems like a large
8	issue, but the other thing is we tended to be
9	inclusive rather than exclusive. So if there was any
10	doubt about whether we had sufficient justification to
11	conclude that something was or wasn't significant, we
12	tended to include it so that we could at least have
13	staff discussion on it.
14	MEMBER BANERJEE: So these are not
15	necessarily what would be highly ranked?
16	MR. TREGONING: Not necessarily although
17	certainly all of the highly-ranked issues were
18	included in this list. We had a few issues that
19	actually the aggregate score was low ranked but if
20	we had one peer reviewer that had sort of a passionate
21	justification for why it shouldn't be ranked low, we
22	tended to throw those into the mix as well.
23	So again and that is something that you
24	don't always do in a PIRT. So we tried to err towards
25	inclusivity rather than exclusivity in this. And,
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

(202) 234-4433

	161
1	again, a few of the issues weren't even raised in the
2	PIRT. They were raised outside the PIRT within NUREG
3	1861.
4	Next slide please. So how have we gone
5	about evaluating these various issues? And this
6	really follows on the proposed path that we talked
7	about in February and March. We formed a team from
8	NRR and Research that is going through and separately
9	evaluating each of the items. And we have been
10	through an initial binning of each of those items.
11	I'm going to give you the results of that shortly.
12	And when we look at these items, we're
13	trying to identify or evaluate them based on
14	information that wasn't available to the PIRT
15	reviewers at the time. Because, again, the expertise
16	of the PIRT panelists largely were chemists, chemical
17	engineers. We had one PIRT panelist that did have
18	specific and direct industry experience.
19	But there were a lot of aspects about
20	specific plant conditions as well as the industry
21	mitigation strategies for chemical effects that either
22	weren't apparent at the time because they have evolved
23	since or, again, there was not enough knowledge from
24	the peer review panel itself to really accurate or
25	intelligently comment on the effects of some of those
	1

(202) 234-4433

	162
1	things.
2	So we have considered these first two
3	bullets in our evaluation to identify which issues we
4	still think are still outstanding.
5	Now in future, for those issues that
6	either the industry mitigative approach or
7	consideration of plant conditions aren't in and of
8	themselves sufficient, these last two bullets indicate
9	some future steps that we are looking at taking to
10	continue the evaluation.
11	The third bullet is staff is considering
12	some scoping analysis. And by scoping analysis, I
13	wanted to define what we meant by that because that
14	can be a vague term. We are talking about here within
15	the context of this is either literature review,
16	conservative calculations, or limited conservative
17	experiments.
18	The purpose for that would be for any
19	specific issue to try to provide some context to
20	determine who significant this issue would be.
21	So we are really trying to look to do
22	something fairly conservative to make that initial
23	assessment.
24	And then finally for those issues that
25	remain, we will be, you know, considering and

(202) 234-4433

	163
1	evaluating the need for any targeted follow on either
2	industry and/or NRC sponsored research. And, of
3	course, that last bullet is something that we for
4	some of these issues, you know, you will see that we
5	have continued to work in parallel. It is the belief
6	of at least portions of the staff and some of the
7	currently industry sponsored research on chemical
8	effects as well the pending research that will go on
9	this summer will address some of the issues that were
10	raised by the PERT team. So this did you have a
11	question?
12	CHAIR WALLIS: No, I'm just looking ahead.
13	MR. TREGONING: Okay, okay. The other
14	thing that we are doing in parallel is we are
15	documenting and summarizing the PIRT process. And
16	item four, we have been in parallel communicating.
17	Much of these issues have already been communicated to
18	the vendor teams and the licensees through either the
19	RAIs that Paul spoke about or other mechanisms, public
20	meetings, and otherwise. So we have been communicating
21	that information to these teams so we can facilitate
22	in as timely a manner as possible the resolution of
23	the generic letters.
24	As we've already discussed today, we are
25	on a challenging schedule. So we are trying to do
	1

(202) 234-4433

(202) 234-4433

	164
1	many of these things in parallel as much as we can.
2	So slide five is a bit of a process slide
3	but I thought it was important to at least show this.
4	This at least shows the binning or the screening
5	strategy used by the staff in terms of evaluating the
6	phenomena or the issues that have been raised by the
7	peer reviewers.
8	CHAIR WALLIS: Can we move over to slide
9	six now?
10	MR. TREGONING: Okay, we'll go to slide
11	six. We can come back to that if we need to.
12	CHAIR WALLIS: All right. Now the
13	interesting thing to me is that 34 of them became
14	deleterious chemical vendors.
15	MR. TREGONING: Yes, yes. So you can see
16	there what I've tried to do is just before we move
17	on
18	CHAIR WALLIS: You were unable to screen
19	out many of these. Most of them survived as being
20	important potentially important.
21	MR. TREGONING: Right. There were a few
22	that had no practical implications, as you see. There
23	were a handful which were advantageous. And then 34
24	which were potentially deleterious. However, of those
25	34, the current belief among the staff is that we have
	1

(202) 234-4433

	165
1	sufficient available information to disposition about
2	half of those. So there is really another 19
3	remaining which we think we need to have some
4	additional consideration in order to properly
5	disposition.
6	MEMBER BANERJEE: Can you give us an
7	example of one?
8	MR. TREGONING: The next slide I have
9	examples. So let me work through this slide and then
10	we'll give you some examples. And what I've done is
11	I have given examples of things that fall within each
12	of the bins so you can see some of the differences.
13	What else are we doing? The draft PIRT
14	report I mentioned, we have actually completed the
15	draft version of that report and the target completion
16	for the final report this fall of 07 . And, again, we
17	are considering scoping analysis to support the
18	generic evaluation. And that would support resolution
19	of those 19 issues there. The target completion for
20	that, if we embark on that, would be December in
21	parallel with the generic letter resolution.
22	And I just mention some of the venues that
23	we are using to communicate this information to the
24	vendors and licensees. And I mention bimonthly public
25	meetings. The next one is June 20th. I think Michael

(202) 234-4433

	166
1	Scott had indicated June 18th earlier. It is
2	actually, I think, June 19th. So let me point out
3	that error on that slide.
4	CHAIR WALLIS: Usually we are less
5	interested in process than we are in results.
6	MR. TREGONING: Yes. Yes. So let's go to
7	at least some example results on the next slides. And
8	I don't have all the results. If you remember in
9	February and March I presented ten issues that were
10	representative of the types of things that were raised
11	by the PIRT.
12	I've taken five of those ten that happen
13	to fall within different bins so you could see what
14	types of things were falling in different bins so, for
15	instance, one of the issues that we discussed and
16	addressed in the PIRT was the fact that there needed
17	to be sufficient particular nucleation sites in order
18	to foster precipitation, okay?
19	And essentially what came out of the PIRT
20	as well as subsequent discussion is that in either a
21	normal or laboratory environment or certainly in
22	containment, that you are going to have enough of
23	these sites available that will be enough to foster
24	precipitation.
25	We have also, both in some of the NRC-
	1

(202) 234-4433

sponsored research and in the industry-sponsored research, looked at addition nucleation sites through the form of either nano particles and RKs. I'm not sure of the size scale of the industry particles but in either case, whenever we have added more particles, they did not seem to have any noticeable effect on the precipitation mechanics or kinetics.

So that would tend to reinforce what was 8 already some of the information we got from the peer 9 10 reviewers that the expectation was that there was 11 sufficient sites available in these typical So there is one where we believe that 12 environments. there is no practical implications of that particular 13 14 phenomena.

The second item, and I had mentioned this before, was the fact that you can have quiescent settling of participates. At least with respect to sump screen head loss, this is something that by and large is an advantageous effect with respect to ECCS performance.

But other than the scaling analysis that you mentioned earlier, that is a separate issue, but with respect to actual performance, if you do have settling or conditions which allow larger, more stable particles to form, which then have a greater

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

15

16

17

18

19

20

	168
1	propensity to settle, that certainly could decrease
2	the solids inventory that you have.
3	CHAIR WALLIS: What do you mean by a
4	stable particle?
5	MR. TREGONING: Stable particles meaning
6	that they are I mean hydrodynamically stable there.
7	So they are not going to
8	CHAIR WALLIS: Break up?
9	MR. TREGONING: break up. Yes.
10	CHAIR WALLIS: They won't break up.
11	MR. TREGONING: Yes. And if you have
12	quiescent enough conditions that allow the growth and
13	nucleation and then potential agglomeration of those
14	particles, they can be much more resistant to either
15	break up or redissolving in solution after the fact.
16	And we have actually seen some of that in some of the
17	benchscale testing that we have done when we have
18	tried to redissolve or resuspend things that we had
19	allowed to form under
20	CHAIR WALLIS: One of your items that came
21	up in the PIRT, this formation of gas in the sump that
22	makes particles then rise to the surface by buoyancy,
23	can some of these chemical reactions produce gas?
24	Hydrogen?
25	MR. TREGONING: Yes.
	1

	169
1	CHAIR WALLIS: And the gas bubbles then
2	make particles rise up. And then they the bubble
3	breaks and they cascade down again. So this settling
4	is effected by that.
5	MR. TREGONING: Yes. And how you
6	CHAIR WALLIS: Is this one of your items
7	you are looking at?
8	MR. TREGONING: One of the items that we
9	looked at was actually the effects of organics on
10	buoyance which
11	CHAIR WALLIS: How about bubbles? Are you
12	looking at bubbles?
13	MR. TREGONING: Bubbles only with respect
14	to how it effects the overall turbulence within the
15	pool. I mean you
16	CHAIR WALLIS: They actually make certain
17	particles buoyant that weren't buoyant before.
18	MR. TREGONING: Yes, but once right but
19	it is potentially a transient effect as well,
20	especially with hydrogen. As the bubble goes
21	CHAIR WALLIS: Yes. Just because
22	something settles into a sludge at the base doesn't
23	mean to say it is not going to be buoyant
24	MR. TREGONING: That's right.
25	CHAIR WALLIS: because of chemical
	1

(202) 234-4433

	170
1	reactions within the sludge.
2	MR. TREGONING: That is entirely correct.
3	CHAIR WALLIS: So add it to your list if
4	it isn't there already 42.
5	MR. TREGONING: Well, whenever you have a
6	new PIRT panel, you open yourself up for additional
7	issues. Okay.
8	The next one as we go down the table, pH
9	variability. Here is one that the peer reviewers
10	thought was very important with respect to both the
11	initial break chemistry and the fact that that is
12	variable throughout the fuel cycle depending on the
13	amount of boron that you have in your RCS.
14	And the related issue is the fact that we
15	know that containment chemistry will evolve post-LOCA
16	as a function of time as the buffer continues to get
17	added. So that is an issue that was rated of high
18	importance by the peer reviewers. But this has been
19	an issue that has had a lot of interest and
20	examination. And this is something that the industry
21	has been considering and evaluating in their generic
22	letter evaluations all along.
23	So this is something that at least with
24	respect to this particular issue, there is an
25	expectation that this will be addressed by the
	1

(202) 234-4433

	171
1	industry in their generic letter submissions. And it
2	is sufficient mature enough so that the variability
3	can be understood.
4	CHAIR WALLIS: Boron is needed for
5	criticality control, isn't it, early in the cycle?
6	MR. TREGONING: Yes.
7	CHAIR WALLIS: So you don't want it
8	precipitating out.
9	MR. TREGONING: Yes, that is correct. And
10	that is what leads to when I talk about initial
11	break chemistry being variable, specifically I'm
12	talking about
13	CHAIR WALLIS: Are you adding more boron
14	later on in the scenario?
15	MR. TREGONING: Yes, you inject it as well
16	in the scenario, yes. And that's what drives the
17	chemistry, the injected boron levels are typically
18	higher than you would get in your RCS level. And that
19	drives the chemistry.
20	But at least very early on, the RCS
21	chemistry will drive the chemical reactions. But it
22	is a relatively short time period before that
23	injection starts. So over the post-LOCA sequence,
24	that aspect is a very small percentage.
25	MEMBER ABDEL-KHALIK: So people would have
	1

(202) 234-4433

	172
1	to do their LOCA analysis at different burn-ups?
2	MR. TREGONING: They would have to
3	potentially consider those effects. But, again, that
4	is a very small window compared to the whole post-LOCA
5	scenario. I think you heard today that most of the
6	licensees are taking products that would develop over
7	30 days. Because, again, these products are evolving
8	with time.
9	So they are making conservative
10	assumptions that those 30-day products are available
11	to judge or evaluate their minimum net section head
12	loss margin which would occur after like an hour or so
13	into the accident.
14	CHAIR WALLIS: Do they stay subcritical
15	forever.
16	MR. TREGONING: Yes.
17	CHAIR WALLIS: Or 30 days you mention
18	30 days.
19	MR. TREGONING: We say 30 days. But you
20	have got to be able to cool it, yes.
21	CHAIR WALLIS: You've got to cool it and
22	if it is, you know, low burn-up material, you have to
23	keep it subcritical
24	MR. TREGONING: That's correct.
25	CHAIR WALLIS: for a long time
	1

(202) 234-4433

	173
1	presumably.
2	MR. TREGONING: Right. So there is
3	nothing magical about 30 days although it is beyond
4	30 days, you know, if additional cooling is needed, A,
5	you have a lot of margin, and B, you also have the
6	potential for developing other ways of cooling. So 30
7	days has been
8	MEMBER ABDEL-KHALIK: Do current LOCA
9	analysis account for or keep track of pH variation
10	during the transient?
11	MR. TREGONING: Yes, I might ask Paul to
12	jump in on this. But essentially yes would be my
13	answer.
14	MR. KLEIN: I think once you have a LOCA,
15	it is a very, very short time frame for blow-down. I
16	think what we were trying to address in part of this
17	bullet is that you have a fine dependent evolution of
18	pH. You initially have very low pH, highly borated
19	water from all your injection tank sources.
20	And that as you either spray sodium
21	hydroxide or you dissolve TSP, that pH adjusts over
22	time. And that is part of what goes into the
23	spreadsheet input as a function of time. And it is
24	accounted for as they try to determine what forms as
25	a precipitate.

(202) 234-4433

	174
1	MEMBER ABDEL-KHALIK: So is this something
2	that would have to be integrated within LOCA analysis
3	methodology? Or is this sort of a separate side
4	calculation?
5	MR. TREGONING: It could be integrated or
6	it could be considered it could be conservatively
7	handled as well. I mean depending on which aspect you
8	are looking at, if you are looking at corrosion or
9	dissolution, you could make conservative arguments in
10	terms of what you pH is and how you are evaluating
11	that corrosion or dissolution.
12	So there are at least two ways to handle
13	it. More realistically or more conservative. And I'm
14	not sure if you can comment in terms of what the
15	expectation is for particular approaches from
16	licensees. Do you have any
17	MR. KLEIN: No, I think the you know
18	part of the disposition of this is that the amount of
19	corrosion you get during that initial 30-second period
20	is very small relative to the amount that accumulates
21	over the subsequent 30 days.
22	MEMBER ABDEL-KHALIK: I mean it seems like
23	temperature and pH are the dominant variables that at
24	least were examined experimentally. And if you are
25	going to, you know, take advantage of the experimental
	1

(202) 234-4433

	175
1	data, you ought to be able to provide at least
2	reasonably accurate estimates of the time history of
3	these two parameters. And the question is do the
4	current analyses do that?
5	MR. KLEIN: Yes. Temperature and
6	MEMBER ABDEL-KHALIK: Temperature I can
7	understand. But pH
8	MR. KLEIN: And pH is predicted as a
9	function of time.
10	MEMBER ABDEL-KHALIK: Okay.
11	MR. TREGONING: Okay, thanks, Paul.
12	Another issue that we talked about was
13	silica concentration. These were things that we did
14	we certainly accounted for silica within the ICET
15	test in the sense for the insulation materials that we
16	had as well as concrete. But we did not explicitly
17	consider silica in the RWST or RCS, how that might
18	contribute to the chemical products that could form.
19	Now when we looked at that again and
20	evaluated that in terms of the RCS contribution, there
21	is really a negligible contribution to additional
22	silica compared to what was considered in the ICET
23	analyses were we typically had, depending on the test,
24	anywhere from 80 to 100 PPM of dissolved silica.
25	So the idea at least behind that issue is

(202) 234-4433

	176
1	that we have well-encompassed the amount of silica
2	that we would need to consider within these sump pools
3	by the testing that has been done.
4	CHAIR WALLIS: Well, it is a continuous
5	process. I mean if this stuff is precipitating in the
6	core, then it is continually being dissolved in the
7	sump presumably. And then re-precipitated in the
8	core. It is not as if it is limited by some parts per
9	million. It is what happens in that cycle that
10	matters, isn't it?
11	MR. TREGONING: Well, in terms of how much
12	in terms of if you get re-dissolution of solid
13	product, that is certainly important. But I guess the
14	point here is that the expectation is that most plants
15	will have well in excess of that amount or that
16	concentration in silica due to other sources without
17	necessarily having to account for silica that may
18	exist initially in the RWST and RCS.
19	CHAIR WALLIS: So what you are saying is
20	there is plenty of silica from everything else?
21	MR. TREGONING: Yes, in general.
22	Now, again, maybe if you had a plant that
23	was able to demonstrate that they effectively had very
24	little silica, this issue would
25	CHAIR WALLIS: Well, I think our problem
	1

(202) 234-4433

	177
1	was this species of retrograde solubility. But they
2	are also formed from the other silica.
3	MR. TREGONING: That's right.
4	CHAIR WALLIS: Okay. So it's not
5	MR. TREGONING: That's exactly right.
6	Yes, so I apologize for the confusion there.
7	CHAIR WALLIS: So the two things are sort
8	of mixed up.
9	MR. TREGONING: They are mixed up. So,
10	yes, I apologize for that.
11	And then the last item is one that we
12	talked about. And that is effects of radioloysis.
13	And there are various effects potentially of
14	radiolysis that fall into these other bins. I just
15	picked one out here. And that's the effects on the
16	redox potential. And essentially the corrosivity of
17	the environment itself.
18	And this is something that we are
19	considering for doing some of these additional scoping
20	studies.
21	MEMBER BANERJEE: So would these be in
22	sort of a little ICET set up or what?
23	MR. TREGONING: You know, it is premature
24	at this point to comment. I think with respect to
25	this particular one issue, I think at least I would
	1

(202) 234-4433

	178
1	envision some limiting scoping calculations on how
2	radiolysis might effect the redox potential compared
3	to the redox potential that we had, for instance, in
4	the ICET test.
5	And if we could demonstrate that the redox
6	was not significantly different, they you potentially
7	have a justification for saying okay, the additional
8	effects for radiolysis aren't a significant
9	consideration.
10	Now if we are not able to make that case,
11	then you have to think about okay, well then how do I
12	evaluate the effects of radiolysis. And then that
13	potentially takes you to a point where you have to
14	consider some sort of testing, more refined
15	calculations, you know whatever you need to do. But
16	that is the whole point behind the proposed scoping
17	analysis was we will try to evaluate how important
18	this is.
19	MEMBER BANERJEE: The thing is you might
20	be able to you may be able to get rid of chemicals
21	but you may not be able to get rid of what radiolysis
22	effects.
23	MR. TREGONING: That's correct.
24	MEMBER BANERJEE: So one must have a feel
25	whether it is important or not.

(202) 234-4433

	179
1	MR. TREGONING: Well, and that's why
2	hence and you asked about, you know, lack of
3	buffering before, you know, and what questions would
4	remain. Well, this would potentially be a question
5	that would remain. So there is not an expectation
6	that there would be no chemical effects if we removed
7	the buffer. They would just be different effects
8	likely.
9	MEMBER BANERJEE: Right, right.
10	MR. TREGONING: And Paul had mentioned
11	some of the German experience with some of their
12	testing. They do not buffer. And they have still,
13	Paul had mentioned, corrosion of zinc. But then also
14	they have also seen some iron corrosion as well.
15	So they still have chemical effects. They
16	are just different effects.
17	MEMBER ABDEL-KHALIK: Back to the pH
18	variability issue, the dissolution data was based on
19	experiments that were done over 90-minute periods in
20	which the rate is assumed to be constant and equal to
21	whatever the total amount after 90 minutes divided by
22	90 minutes, that gives you the rate.
23	So how can you use this information along
24	with a very fine resolution of calculated temperature
25	and pH over a time frame of seconds?
	1

(202) 234-4433
	180
1	MR. TREGONING: Well, that's a broad
2	question. You know I don't want to tackle all the
3	industry aspects of it. But I guess what I will say
4	is the industry tests were 90-minutes tests. And they
5	were looking at calculating rates, reaction rates.
6	There has been a lot of other similar small-scale as
7	well as large-scale tests where we looked at fairly
8	earlier on sampling as well as longer sampling to
9	catch saturation effect.
10	So although I don't think I'm answering
11	your question because your question let me make
12	sure I understand it again, you are saying how can we
13	take that reaction rate data and resolve fairly small
14	differences or fairly fast differences in pH?
15	MEMBER ABDEL-KHALIK: And within that 90-
16	minute period over which the averaging is being done.
17	One would expect some variation with time
18	MR. TREGONING: In terms of pH or
19	temperature or
20	MEMBER ABDEL-KHALIK: Or dissolution rate.
21	And the issue then is, you know, how can you use time
22	averaged data over a 90-minute period along with
23	calculated temperature and pH history that are
24	resolved to the tenth of a second time scale? And
25	what would be the value of doing that?
	1

(202) 234-4433

	181
1	MR. TREGONING: Well, I think what you
2	will see, especially with respect to chemical effects,
3	is and this is something that we looked at
4	initially when we were developing the parameters for
5	our ICET testing and if you recall, ICET was an
6	isothermal test. And we did some speciation calcs to
7	try to predict at least, you know, dissolution and the
8	amounts of materials that would occur to the
9	relatively high temperature yet very short duration
10	part of the event versus the lower temperature,
11	longer-term aspects of the event.
12	And in terms of the actual amounts of
13	dissolved species, it was always dominated by the
14	longer-term history. So while in essence it's true
15	that you need to consider all those effects, at least
16	by and large with respect to the amount of chemical
17	species that is available, it is really that longer-
18	term, lower temperature effect on submerged materials
19	more than un-submerged materials, that is going to
20	result in the dominant contributions to the
21	containment pool chemistry.
22	MEMBER ABDEL-KHALIK: I'm just questioning
23	the logic in the sense that I don't know how much
24	effort will be involved in resolving this pH
25	variability issue. And whether you would require
	1

(202) 234-4433

	182
1	people to do LOCA analyses at different burn-up so
2	that they can find out what is the worst condition in
3	terms of the calculated pH and temperature history,
4	whether that is your plan or not. And whether that is
5	consistent with the level of detail as far as
6	experimental data.
7	MR. TREGONING: You are going to have to
8	take that one. I can't answer that.
9	MR. KLEIN: Well, I'll add to that. I
10	guess from our perspective, we don't need to resolve
11	down to the very, very short-term corrosion rates
12	because if you look at the overall testing that was
13	done in WCAP and elsewhere, it is not necessarily the
14	lower pH, very short time duration that provides the
15	bulk of dissolution. It is the higher pHs that tend
16	to release more materials.
17	And that those tend to evolve over time.
18	And using short term, 30- or 90-minute tests,
19	typically overestimates the amount of say aluminum
20	corrosion because what we saw in ICET and what you see
21	elsewhere on corrosion data, you don't account for
22	oxide formation and passivation of aluminum over time
23	by doing short-term tests. You tend to be
24	conservative.
25	MR. TREGONING: Now there are counter
	1

(202) 234-4433

	183
1	examples to that. We know Cal-Sil, for instance,
2	dissolves more readily at lower pH and can dissolve
3	very rapidly. That is something that we demonstrated
4	or that is something that we saw not only in ICET
5	but in some of the benchscale testing that we did.
6	But, you know, the industry has already
7	looked at those. They have done the same tests. They
8	are aware of the data. So the expectation would be
9	that they would appropriately consider those effects
10	as well.
11	MEMBER WHARTON: And I think when you look
12	at something like Cal-Sil, it is assumed it
13	essentially all dissolves for the amounts that we are
14	talking about are relatively short orders.
15	MEMBER ABDEL-KHALIK: Thank you.
16	MR. TREGONING: Okay? If there are no
17	questions, I'll move to the last slide, the summary
18	slide.
19	Essentially the first bullet, the peer
20	reviewers did identify many chemical phenomena in
21	order, in their opinion, to comprehensively consider
22	chemical effects and make sure that we are adequately
23	resolving those. When we look at closing out generic
24	letter 2000-402, we have completed an initial
25	screening of each of these now at least 41 with one
	1

(202) 234-4433

	184
1	additional phenomena. And we are looking to
2	disposition each item.
3	The ultimate resolution strategy or path
4	will be provided by either existing information that
5	we have to date, ongoing research and evaluations, or
6	additional NRC-sponsored research as appropriate. And
7	I had mentioned that we are considering conducting
8	some scoping analyses for several items to support the
9	evaluation of the generic letter responses by the
10	staff on chemical effects.
11	Are there any other questions? I know you
12	are anxious to move on to hear some of the industry
13	presentations.
14	MEMBER BANERJEE: There were no velocity
15	effects identified as being important?
16	MR. TREGONING: In terms of if you
17	could be more specific.
18	MEMBER BANERJEE: In corrosion rates or
19	things like that.
20	MR. TREGONING: We certainly discussed
21	that. And that's why I wanted you to be more
22	specific. We talked about velocity effects certainly
23	with respect to corrosion, especially if they were
24	going to be, again, mass transfer or diffusion-limited
25	types of phenomena.
	1

(202) 234-4433

1 We also talked about the effects of velocity that they might have on -- and this got much 2 3 more discussion because the effects were deemed to be probably more significant there -- on agglomeration 4 5 and growth of precipitates that may form. There the effects of velocity were discussed and identified 6 7 quite rigorously. 8 So -- but with respect to additional 9 corrosion, while we discussed those, at least the PIRT 10 panelists didn't indicate that they thought that that 11 would be a significant perturbation or significant difference than anything we had done in the ICET 12 testing, for instance, where we had relatively low 13 14 flow flowing past these samples. 15 MEMBER BANERJEE: Okay. 16 MR. TREGONING: Just to ensure that, 17 again, we continually refreshed the solution that was interacting with those plates. 18 19 CHAIR WALLIS: So we have here some more 20 work in process. We cannot write a letter or a report 21 everything saving has been resolved to our satisfaction. 22 23 MR. TREGONING: Well, you could. But it 24 would be premature.

> That would be sticking our CHAIR WALLIS:

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	186
1	neck out a little too far.
2	MR. TREGONING: Yes.
3	CHAIR WALLIS: Well, thank you, Rob. You
4	have done a very good job. You have actually gained
5	some time.
6	MR. TREGONING: Anything we can do to get
7	you back on schedule, we'd be more than happy to
8	comply with.
9	(Laughter.)
10	CHAIR WALLIS: Well, I was just thinking
11	of your previous reputation in this matter. You have
12	done very well.
13	The next part of the meeting, I believe,
14	will be closed.
15	PARTICIPANT: It can be open.
16	CHAIR WALLIS: It can be open? So we
17	don't need to close this. This is the PWR owners
18	group open meeting.
19	PARTICIPANT: It is the same subject. But
20	the staff requests
21	CHAIR WALLIS: The staff wants their part
22	to be closed?
23	PARTICIPANT: Yes, so they can present
24	more information.
25	CHAIR WALLIS: I see. So we will leave

	187
1	the meeting open
2	PARTICIPANT: Wait a minute. What did you
3	say? Okay, so it is entirely open.
4	CHAIR WALLIS: It is entirely open. So we
5	don't need to close the meeting at all? Thank you.
6	That is good. Let's more ahead.
7	PARTICIPANT: Our understanding was that
8	we might have proprietary information to discuss
9	although the slide show is not proprietary.
10	CHAIR WALLIS: Okay.
11	MR. DINGLER: What we did is we have a lot
12	of slides. We went in and took some slides we wanted
13	to at least emphasize to you. We will go over those.
14	You can ask questions to all or any of the slides we
15	have. And go from there. So we've got some slides
16	picked out that we want to make sure we emphasize to
17	you. And go from there if that's all right with you.
18	PARTICIPANT: These are the slides here,
19	right?
20	MR. DINGLER: Yes, those slides there and
21	then we took some slides out to emphasize. And we
22	will go through those. And then you can do whatever
23	ask questions or whatever you want.
24	CHAIR WALLIS: Okay.
25	MR. DINGLER: We're trying to follow Rob
	1

(202) 234-4433

	188
1	Tregoning's sparkling example.
2	CHAIR WALLIS: We will follow what you
3	want to tell us. And then we may ask questions on
4	something we see here that you didn't tell us.
5	MR. DINGLER: That's correct.
6	CHAIR WALLIS: Okay. I see an awful lot
7	of words here. Okay. Go ahead.
8	MR. ANDREYCHEK: Yes, sir, that's true.
9	CHAIR WALLIS: And you are presenting?
10	MR. ANDREYCHEK: Yes, I am.
11	CHAIR WALLIS: Okay. I won't stop you.
12	Go right ahead.
13	MR. ANDREYCHEK: Okay. Thank you very
14	much, Dr. Wallis.
15	We'll go to slide two, the objective of
16	this presentation is to review the particular WCAP on
17	voucher efforts, WCAP-16406-P, what its purpose is,
18	its use, and the status of the NRC review. And
19	quickly review application of the methods that plants
20	would be using.
21	Moving to slide three, the WCAP presents
22	wear abrasion and blockage methods for pumps that are
23	used in ECCS and the containment spray systems, safety
24	related valves, in those systems, heat exchangers,
25	orifices, containment spray nozzles, piping and
	1

(202) 234-4433

	189
1	instrument tubing, and reactor internals.
2	The fuel will be addressed in a separate
3	WCAP that was alluded to several times this morning.
4	And that WCAP is in draft form and under internal
5	review right now. It is WCAP=16793.
6	CHAIR WALLIS: Now do these include what
7	we have been calling, I think, thermal gradient
8	effects in the past and heat exchangers in the reactor
9	internals? There is heat transfer going on at the
10	same time. And, therefore, those changes in
11	temperature which can change the soluabilities, and so
12	you can get build up of material as the result of
13	having a hotter occult surface. Is that part of your
14	study?
15	MR. ANDREYCHEK: That was handled
16	separately from this study. This study was primarily
17	focusing on wear abrasion and blockage.
18	CHAIR WALLIS: All right.
19	MR. ANDREYCHEK: So physical sizes of the
20	debris that we
21	CHAIR WALLIS: Are you going to talk about
22	the thermal effects today or not?
23	MR. ANDREYCHEK: Thermal effects
24	CHAIR WALLIS: Yes.
25	MR. ANDREYCHEK: in terms of solubility

(202) 234-4433

	190
1	and things plating out?
2	CHAIR WALLIS: Yes. Heat it up and cool
3	it down and certain things precipitate when you heat
4	them up, some when you cool them down.
5	MR. ANDREYCHEK: No, I'm not.
6	CHAIR WALLIS: You are not going to talk
7	about that, okay.
8	MR. ANDREYCHEK: No, sir.
9	MEMBER BANERJEE: Are you going to talk
10	about blockage of the core?
11	MR. ANDREYCHEK: If you drive me to that
12	later in the presentation I will, yes.
13	MEMBER BANERJEE: But before that you are
14	only going to talk about wear and blockage of valves
15	and pumps.
16	MR. ANDREYCHEK: That's correct. And heat
17	exchangers. Yes, sir.
18	MEMBER ABDEL-KHALIK: So you are
19	addressing blockage in the absence of temperature
20	gradients?
21	MR. ANDREYCHEK: That is correct.
22	MEMBER ABDEL-KHALIK: Okay.
23	MEMBER BANERJEE: You have only you
24	have some slides of the core inlet, right?
25	MR. ANDREYCHEK: That is correct, sir.
	1

(202) 234-4433

	191
1	MEMBER BANERJEE: So we hope to get there.
2	CHAIR WALLIS: Yes, we'll get there.
3	MR. ANDREYCHEK: Yes, sir, we will.
4	MEMBER ABDEL-KHALIK: But aren't
5	temperature gradients sort of a dominant parameter
6	that would effect precipitation and, therefore,
7	blockage?
8	MR. ANDREYCHEK: Well, first off, we are
9	in the process of evaluating precipitation in general
10	in the reactor core as part of WCAP-16793, which I
11	referenced on the fuel. And we are evaluating that.
12	I'm not prepared to discuss that in any detail today.
13	With regards to precipitation and
14	formation on other components like the downcomer
15	region, we don't see that is such a wide open area,
16	we don't see that that is a challenge. We're talking
17	about inches as opposed to
18	MEMBER ABDEL-KHALIK: I understand.
19	MR. ANDREYCHEK: quarters of an inch or
20	so.
21	MEMBER ABDEL-KHALIK: But in places where
22	blockage would be important, temperature gradients
23	would be a significant independent parameter that
24	would effect that rate at which precipitation would
25	take place.
	1

(202) 234-4433

	192
1	MR. ANDREYCHEK: That is correct. And
2	that is in the core.
3	MEMBER ABDEL-KHALIK: And that is not
4	covered by your presentation today?
5	MR. ANDREYCHEK: Not today. That is
6	correct, sir.
7	MEMBER ABDEL-KHALIK: Thank you.
8	CHAIR WALLIS: But it will be in the
9	future?
10	MR. ANDREYCHEK: It is being addressed in
11	WCAP-16793, which, if you look at the bottom of page
12	slide 3, it is the fuel, in general.
13	CHAIR WALLIS: Okay.
14	MR. ANDREYCHEK: That is where it is
15	addressed.
16	MEMBER BANERJEE: And when is that going
17	to be available?
18	MR. ANDREYCHEK: That WCAP
19	MR. DINGLER: Mike Scott says I'm
20	committed to submit that 11:59 on May the 31st.
21	MR. ANDREYCHEK: Of this year.
22	MR. DINGLER: Of this year.
23	CHAIR WALLIS: So things are going to get
24	very interesting later this year when all this stuff
25	comes together.
	1

	193
1	MR. ANDREYCHEK: Yes, they will.
2	MEMBER BANERJEE: And when will we get to
3	see that?
4	MR. DINGLER: You've got to ask the NRC.
5	I can't answer that.
6	MEMBER BANERJEE: I guess after the staff
7	has had a shot at it, right?
8	MR. DINGLER: Correct.
9	MEMBER BANERJEE: Which will be
10	MR. DINGLER: We expect to see it sometime
11	in June will be our first time to look at WCAP-1793.
12	MR. UNIKEWICZ: I'm Steven Unikewicz. And
13	I'll be the lead reviewer or one of the lead reviews
14	for 16793. We expect to see that early in June. Once
15	we see it and we haven't we've seen it in bits
16	and pieces and parts it will become available some
17	time after that.
18	MEMBER BANERJEE: So we may expect to see
19	it in what September or October?
20	MR. UNIKEWICZ: We expect to see it long
21	before that.
22	MEMBER BANERJEE: You expect to but when
23	would we see it?
24	MR. UNIKEWICZ: Let me talk to Mike Scott.
25	When it becomes available, we will see what we can do.
	1

(202) 234-4433

	194
1	MEMBER BANERJEE: Okay.
2	MR. UNIKEWICZ: Okay? I don't have an
3	answer but I can get one.
4	MEMBER BANERJEE: I guess there is a lot
5	of interest in this.
6	MR. UNIKEWICZ: Understandably.
7	MEMBER BANERJEE: So but we are quite
8	happy to see it after you have done your
9	MR. UNIKEWICZ: Sure.
10	MEMBER BANERJEE: evaluation.
11	MR. UNIKEWICZ: We'll talk a little bit
12	about our method of review and things we are looking
13	for when it arrives in a few minutes.
14	MEMBER BANERJEE: Okay.
15	MR. ANDREYCHEK: Thanks, Steven.
16	The first part of the evaluation for wear
17	and abrasion and erosion on pumps, valves, and heat
18	exchanger internals
19	PARTICIPANT: Which slide are you on?
20	MR. ANDREYCHEK: I'm sorry, I'm on slide
21	four. We look at what we call a debris ingestion
22	calculation and we look at the debris sources, where
23	they come from, fibrous debris, particulate debris,
24	and coatings. And these, of course, are plant
25	specific based on the plant specific debris generation
	1

(202) 234-4433

	195
1	calculations. And they form the basis for the debris
2	concentration that is ingested and evaluated for wear
3	and abrasion and erosion.
4	CHAIR WALLIS: But aren't wear and
5	abrasion is usually due to hard particulates?
6	MR. ANDREYCHEK: That is correct.
7	CHAIR WALLIS: So I think you are really
8	talking about certain aspects of the latent debris and
9	maybe the RMI? And are there any coatings that are
10	hard enough to do any wear and abrasion?
11	MR. ANDREYCHEK: Well, let me back off
12	just a little on that. We will get to that. But
13	there was some testing that was done by Westinghouse
14	back in the `70s that looked at a combination mix of
15	fiberglass, concrete dust, and epoxy coatings. And it
16	made no attempt to try and differentiate between the
17	abrasive capabilities of any of the three. And looked
18	at overall abrasion.
19	So for the purposes of this calculation,
20	we considered all there sources of debris for erosive
21	capability.
22	MEMBER BANERJEE: You are going to tell us
23	what you found, correct?
24	CHAIR WALLIS: Yes, you are going to tell
25	us what you found.

(202) 234-4433

	196
1	MR. ANDREYCHEK: Yes, we will.
2	CHAIR WALLIS: You are going to talk about
3	wear and abrasion. Is this an important part of the
4	whole story? Or can we move quickly through it?
5	MR. ANDREYCHEK: We can move fairly
6	quickly through it.
7	CHAIR WALLIS: Because isn't blockage more
8	important than wear and abrasion? Or not? No?
9	MR. ANDREYCHEK: Well, it's
10	CHAIR WALLIS: Abrasion is significant?
11	MR. ANDREYCHEK: It is a significant issue
12	and I think we need to pay a little bit of attention
13	to it particularly on the pumps.
14	CHAIR WALLIS: Is it because it damages
15	the seals or does it actually damage metal parts?
16	MR. ANDREYCHEK: Well, it is on the pumps
17	themselves and the rotating surfaces.
18	CHAIR WALLIS: Is it the seals that it
19	grinds up or is it the metal parts of the pump?
20	MR. ANDREYCHEK: Both.
21	CHAIR WALLIS: Both, okay. You're going
22	to tell us.
23	MR. ANDREYCHEK: Yes.
24	CHAIR WALLIS: Go ahead.
25	MR. ANDREYCHEK: Okay. For the purposes
I	1

	197
1	of the discussion, if we can skip past slides five,
2	six, and seven, which deal with more details on debris
3	ingestion, you'd mentioned a little bit about vessel
4	blockage evaluation. I wanted to just briefly touch
5	on that before we get into the wear and abrasion
6	discussions.
7	MEMBER BANERJEE: So when you talk of
8	debris ingestion, it means stuff that gets through the
9	strainers?
10	MR. ANDREYCHEK: That is correct.
11	MEMBER BANERJEE: So they are pretty fine
12	stuff.
13	MR. ANDREYCHEK: Potentially.
14	MEMBER BANERJEE: Okay.
15	MR. ANDREYCHEK: Potentially.
16	Now I would ask you to remember that this
17	was written this WCAP was written approximately two
18	years ago prior to sump screens being redesigned. And
19	at the time, some of the debris sizes could be on the
20	order of an eighth of an inch going through sump
21	screens.
22	CHAIR WALLIS: And we hope it is not bits
23	of broken strainer when the load on them gets too big.
24	MR. ANDREYCHEK: I would hope so also.
25	But, you know, certainly with the current strainer
	1

(202) 234-4433

	198
1	design, with maximum sizes on the order of a tenth of
2	an inch of hole penetration, we are dealing with
3	fairly fine debris that gets through the strainer.
4	CHAIR WALLIS: Unless it is lined up just
5	right to go through.
6	MR. DINGLER: That is correct. And in the
7	next presentation from the utilities, you will see
8	some of that information of actual SEM data that shows
9	how small and how short they are.
10	MR. ANDREYCHEK: We're looking at the
11	vessel blockage, we look at pinch points, the minimum
12	dimensions for flow through the system. And this is
13	everything outside of the core. And we look for the
14	entire system.
15	CHAIR WALLIS: Now when you think about
16	what gets through the strainer, I think in some of the
17	experiments there is a blow-through phenomenon or
18	something where you make the layer and then it blows
19	through the hole. I forget what they call that. But
20	presumably when it blows through the hole, it blows
21	off a piece of felted-type material rather than
22	individual fibers.
23	So you get chunks of felted material
24	conceivably comingif there is blow through of
25	individual holes. It is already being sort of pushed

(202) 234-4433

	199
1	together in the screen. And then pushed through the
2	screen as a hunk and rather sort of little pieces, you
3	know, as a little piece of felt.
4	MR. DINGLER: I think there is one vendor
5	that showed some of that and they had to do some
6	different things. Steve can speak for that. But some
7	of the screens that we are seeing made by some of the
8	vendors so that doesn't happen. You don't have enough
9	
10	CHAIR WALLIS: It does happen in some of
11	the horizontal screen tests.
12	MR. UNIKEWICZ: Let me and I don't
13	want to jump in on your presentation.
14	MR. ANDREYCHEK: Go ahead, Steve.
15	PARTICIPANT: Can you just comment on the
16	bore holes for a second, Steven, I think that is what
17	Dr. Wallis is asking about.
18	MR. UNIKEWICZ: Well, actually I have a
19	better answer because I'll tell you let me finish
20	and then you can jump in, okay? Bear with me because
21	understandably a lot of these discussions with
22	technical folks and unfortunately Tim wasn't part
23	of the discussions this morning nor Maurice.
24	With regard, most of the licensees right
25	now aren't even considering that. The vast majority
	1

(202) 234-4433

	200
1	are looking at the latent debris or they are looking
2	at their initial walk downs and they are assuming 100
3	percent pass through. So a lot of the discussions
4	when we talk about worm-holing, talk about pass
5	through through the screens, from the perspective of
6	downstream equipment evaluations, it is not even being
7	considered.
8	CHAIR WALLIS: They are going to assume
9	that the
10	MR. UNIKEWICZ: Right now they
11	CHAIR WALLIS: grinding powder all gets
12	through.
13	MR. UNIKEWICZ: It all gets through.
14	CHAIR WALLIS: Wow.
15	MR. UNIKEWICZ: A lot of the basis for
16	this WCAP, as you listen to Tim and go through this,
17	a lot of the screen penetration tests, there are a
18	handful of utilities that are considering using that.
19	You will understand that's one of my points on my
20	presentation that is a challenge because we are
21	looking at their testing.
22	The vast majority of licensees right now
23	are assuming that anything ten percent larger than the
24	hole goes through. A four-to-one aspect ratio from a
25	particulate standpoint goes through. A hundred
	1

(202) 234-4433

	201
1	percent of the latent debris goes through. And that
2	forms their basis for their input to start of their
3	component level evaluation.
4	CHAIR WALLIS: So lots of RMI would get
5	through?
6	MR. UNIKEWICZ: RMI smaller than the hole.
7	Again, that input is taken from we are using those
8	input parameters from other testing. So as the folks
9	that are doing the RMI testing and they say that
10	particle size distribution is XYZ, that particle
11	distribution size, if it is less than ten percent of
12	the hole opening, 100 percent of that assumes to go
13	through.
14	Again, if you think about it in a
15	different way, if I have a half-inch hole and I'm
16	saying a three-quarter inch piece makes it way
17	through, it seems like it is a reasonable assumption
18	along those lines. So we can talk about worm-holing,
19	we can talk about a lot of things but recognize that
20	that is the exception rather than the rule when people
21	are physically doing these evaluations.
22	MR. ANDREYCHEK: Thank you.
23	CHAIR WALLIS: So you have got to be very
24	conservative then.
25	MR. ANDREYCHEK: That's correct.
	1

	202
1	MEMBER BANERJEE: That is probably because
2	it doesn't matter, right, in this case?
3	MR. ANDREYCHEK: No.
4	CHAIR WALLIS: Well, we are going to hear
5	about that.
6	MR. ANDREYCHEK: That is not necessarily
7	true.
8	MEMBER BANERJEE: It is not necessarily
9	true?
10	MR. ANDREYCHEK: No, it is not. It does
11	matter.
12	MEMBER BANERJEE: In which case you will
13	become less conservative?
14	MR. UNIKEWICZ: Those folks that are
15	redoing their evaluations and looking at the actual
16	screen testing are those folks that failed the first
17	time through. So when they attempted to do it with
18	100 percent pass through with those conservative
19	assumptions they didn't make it.
20	By didn't make it, they mean they decided
21	they either plugged downstream components or their
22	wear rates within rotating equipment were such that
23	there was an instability in the pump and they needed
24	to reevaluate and use the modifications.
25	Once they flunked that, now they refined

(202) 234-4433

	203
1	their approach. And the refining of the approach has
2	to do with bypass testing. And all five different
3	vendors have a slightly different approach.
4	Not jumping ahead to my presentation but
5	that is truly one of the challenges to look at what
6	assumptions they are now making based upon their
7	actual configuration of their screen design. But,
8	again, that is the exception rather than the rule at
9	this point in time.
10	CHAIR WALLIS: Okay. So we will go back
11	to the owners group.
12	MEMBER ABDEL-KHALIK: Thanks, Steve.
13	MR. ANDREYCHEK: Now the vessel
14	evaluation, once again, was looking for what were our
15	pinch points were at and where it might block in the
16	vessel outside of the core. Slide nine briefly
17	identifies the things that we were looking at, the
18	areas we were looking at. And the graphic shows the
19	areas that
20	CHAIR WALLIS: Are you going to give us
21	results of what you looked at? Or just telling us you
22	are looking at it?
23	MR. ANDREYCHEK: We can give you results.
24	We looked at the downcomer and the region between the
25	upper core plate and the neutron panel. We looked at
	1

(202) 234-4433

	204
1	upper support plate and then the guide tube assemblies
2	and support columns. We looked at the lower plenum
3	and typically the areas
4	CHAIR WALLIS: Have you made predictions
5	or did you do experiments of some sort?
6	MR. ANDREYCHEK: Actually we looked
7	physically at them using drawings, plant drawings, as
8	constructed drawings. And looked at the debris size
9	that would fit through the sump screen, compared it to
10	the clearance sizes, and in the cases that we looked
11	at, the clearance sizes were on the order of five to
12	eight times larger minimum than the debris that fit
13	through. And typically they were much more they
14	were over 20, factor 20 or greater clearance.
15	CHAIR WALLIS: Do you have all the fuel
16	support grid things, the things that are in the actual
17	around each fuel element? Those weird shaped
18	things that
19	PARTICIPANT: The P grids?
20	MR. ANDREYCHEK: Are you talking about
21	support grids where you have the egg-crate design?
22	CHAIR WALLIS: They are a very unique kind
23	of design.
24	MR. ANDREYCHEK: That's correct.
25	CHAIR WALLIS: Are you looking at that,
	1

(202) 234-4433

	205
1	too?
2	MR. ANDREYCHEK: That's, again, part of
3	the core evaluation.
4	CHAIR WALLIS: So you are looking at it?
5	MR. ANDREYCHEK: Yes, yes.
6	MEMBER KRESS: Is your criteria the pinch
7	point area being substantially bigger than the biggest
8	part of the design?
9	MR. ANDREYCHEK: That is correct.
10	MEMBER KRESS: Well how much bigger does
11	it have to be?
12	MR. ANDREYCHEK: We were looking what
13	we found in looking at design drawings was that the
14	tightest pinch point was on the order of about eight
15	times larger than the eighth inch particle.
16	MEMBER KRESS: Is that sort of a
17	representative diameter of the pinch point?
18	MR. ANDREYCHEK: It is actually clearances
19	when we walked around the reactor vessel outside of
20	the core. Again, I want to stress that we didn't look
21	at the core for this particular part of the
22	evaluation. This was in the reactor vessel proper,
23	the upper internals, the lower internals.
24	The flows in those regions are designed to
25	provide flow straightening in the lower plenum but
	1

(202) 234-4433

	206
1	they are fairly wide open. But we needed to confirm
2	that.
3	MEMBER KRESS: And your belief is that
4	sort of situation won't plug up?
5	MR. ANDREYCHEK: That is correct.
6	MEMBER KRESS: And how do you know that?
7	MR. ANDREYCHEK: The flow clearances are
8	sufficiently large enough that they won't physically
9	grab in there. I mean if you have a two-inch diameter
10	hole and you have a tenth of an inch
11	MEMBER KRESS: Well, I am aware of cases
12	where small debris plugs up big holes. Abridging,
13	eventually building up little layers on the side and
14	eventually
15	CHAIR WALLIS: If it is sticky, if it is
16	at all sticky.
17	MEMBER KRESS: If it is sticky.
18	CHAIR WALLIS: Right.
19	MEMBER KRESS: So I'm not so sure I can
20	buy your criteria. Of course, it is a start. I am
21	aware of cases where big pipes have plugged up with
22	very small debris building up over time. This
23	requires time and sufficient sources of stuff to
24	continue. But anyway, I'm not so sure your criteria
25	is exactly one we could buy into.

(202) 234-4433

Í	207
1	MR. ANDREYCHEK: Okay. Understood.
2	MEMBER BANERJEE: But that was what you
3	did.
4	MR. ANDREYCHEK: That is correct.
5	With regards to slide 10
6	CHAIR WALLIS: Well, in the extreme case,
7	I mean if you have a drain from your kitchen sink and
8	you put fats down there and form little small
9	globules, eventually you may get a plug which fills
10	the whole thing.
11	MEMBER KRESS: Yes, it depends on the
12	flows and the stickiness.
13	CHAIR WALLIS: Yes.
14	MR. ANDREYCHEK: Okay. Slide 10, we'll
15	move on to pumps. And I've got several slides that
16	show the different types of pumps that are typically
17	in use. We are looking at debris depletion.
18	And over time, the debris, we believe,
19	will deplete because of settle out in different areas
20	of the recirculatory system, some of the evaluation
21	criteria which Steve alluded to previously and
22	potential plugging.
23	Slide 11 is a typical
24	MEMBER BANERJEE: I'm sort of interested
25	in this issue of settling out. How will you figure

(202) 234-4433

	208
1	out where it settles and how much settles? Is there
2	any attempt to do that?
3	MR. ANDREYCHEK: The attempt that we
4	looked at was to settle out in the lower plenum of the
5	reactor vessel. We assume no other settle out
6	anywhere else for these evaluations, including in the
7	containment sump, which we felt was a very
8	conservative approach.
9	And the reason we were looking at the
10	lower plenum for settle out is if we got large debris
11	through the sump screen, could we argue could we
12	show that it would settle out in the lower plenum and
13	not reach up into the reactor core and potentially
14	cause blockage of flow paths, tight flow paths as
15	alluded to by Dr. Wallis in the complex configuration
16	of the sump screen of the fuel.
17	MEMBER BANERJEE: So I'm just trying to
18	get an idea. Is there not stuff getting through that
19	can actually fill up the lower plenum and then get up
20	to the core?
21	MR. ANDREYCHEK: That is a good question,
22	Dr. Banerjee. We have taken a look at what can
23	actually get through.
24	CHAIR WALLIS: We asked you last time you
25	presented. We took your truckloads and we took a
	1

(202) 234-4433

	209
1	portion of them.
2	MR. ANDREYCHEK: Yes, you did.
3	CHAIR WALLIS: And it doesn't take much
4	a fraction of all those truckloads to fill the lower
5	plenum.
6	MR. ANDREYCHEK: No, it does not.
7	Although we did do some calculations based on some
8	audit questions that two licensees received. And
9	based on their plant-specific sump screen testing, we
10	showed that they would fill up less than about 15 or
11	20 percent of the lower plenum given that all the
12	debris that could fit through the screen did get
13	through the screen and did get to the lower plenum.
14	So in response to your question, based on
15	what we have seen so far from plant-specific testing,
16	no, we would not fill substantial portions of the
17	lower plenum, certainly not to the point that it would
18	fill up and block the entire lower plenum.
19	MEMBER BANERJEE: So it is not that you
20	are going to get everything smaller than those holes
21	through.
22	MR. ANDREYCHEK: That is correct.
23	MEMBER BANERJEE: You are going to get
24	some of it through.
25	MR. ANDREYCHEK: That is correct.

(202) 234-4433

	210
1	CHAIR WALLIS: Now is it still undergoing
2	chemical reaction while it is in the lower plenum?
3	Presumably it is. It is still making stuff.
4	MR. ANDREYCHEK: Typically the material
5	that would get through that would be that we would
6	look at would be I would say non-reactive debris.
7	CHAIR WALLIS: So you wouldn't get Cal-Sil
8	through?
9	MR. ANDREYCHEK: If the Cal-Sil got
10	through, typically when it goes through, it is very
11	fine. It would tend to actually
12	CHAIR WALLIS: Go right through the core.
13	MR. ANDREYCHEK: Yes.
14	MEMBER BANERJEE: But if it started to get
15	sticky, then it could form
16	CHAIR WALLIS: If it was sticky, it might
17	want to stick to the pump blades and things like that
18	because of the separation in the pump throwing it at
19	the wall.
20	MR. ANDREYCHEK: There are other areas
21	where it potentially could collect at besides that.
22	MEMBER BANERJEE: Plug up the pump
23	volumes, correct?
24	MR. ANDREYCHEK: If it were sticky, it
25	potentially could.

(202) 234-4433

	211
1	CHAIR WALLIS: How sticky is it?
2	MR. ANDREYCHEK: I have not looked at
3	that. I don't have a way of judging that.
4	CHAIR WALLIS: Are your surrogates sticky?
5	They're not but they might be in reality.
6	MEMBER BANERJEE: The stuff that Bill
7	Shack was showing us was real sticky stuff. Wasn't it
8	really sticky that white material in the argon tests?
9	MR. ANDREYCHEK: I'm not familiar with the
10	argon tests but I can tell you from what I can recall
11	seeing, and I was very deeply involved in the ICET
12	tests that were run at the University of New Mexico,
13	the precipitate material that we formed there, as I
14	recall, was not sticky.
15	I believe is Rob Tregoning still here?
16	What we saw from the precipitants from the ICET tests,
17	and there were five different samples using calcium
18	silicate, fiberglass, as well as sodium hydroxide,
19	TSP, and sodium tetraborate, all of the samples that
20	were pulled over the 30-day period, put in small glass
21	jars, and allowed to settle did have some precipitants
22	that settled out over time.
23	And if they were stirred, shaken a little
24	bit, it became basically an emulsion. There was no
25	stickiness associated with those precipitants. And
	1

(202) 234-4433

	212
1	that included materials like calcium silicate and
2	fiberglass being in the mix. We had zinc and aluminum
3	panels, concrete panels, and we actually ground up a
4	small amount of concrete dust and threw it in as
5	latent debris.
6	So from the ICET test, which was a long-
7	term test done at a somewhat elevated temperature of
8	140 degrees F for 30 days, we saw nothing that I would
9	argue would be something that would agglomerate and
10	hold on to sides of things even with regards to the
11	glass jars. We didn't see that sticking on to it. So
12	I don't know what
13	MEMBER BANERJEE: Did the ICET test, that
14	white stuff that came out in the pipes, what was that?
15	It seemed to form a
16	MR. ANDREYCHEK: There was a test that did
17	have some material that actually fouled a turbine
18	MEMBER BANERJEE: Right.
19	MR. ANDREYCHEK: flow meter.
20	MEMBER BANERJEE: Was it a flow meter?
21	MR. ANDREYCHEK: It was a flow meter. And
22	there was some white material that did settle on the
23	pipes. Now I was there when they shut down one of the
24	tests.
25	And it is unclear that that actually
	1

(202) 234-4433

	213
1	formed during the running of the test or formed when
2	they were cooling the facility down and draining the
3	test down. We did not to my way of thinking, I
4	couldn't tell what it was. And so to my way of
5	thinking, I didn't see anything that really stuck.
6	MEMBER BANERJEE: And the flow meter, what
7	happened there?
8	MR. ANDREYCHEK: I was not there when the
9	flow meter was pulled out. But my understanding was
10	is that some material had formed on the rotating
11	element and caused it to freeze.
12	MR. KLEIN: I just wanted to add to what
13	Tim had said, Paul Klein from NRR, we didn't really
14	see evidence of if you want to describe it as
15	sticky it almost had a consistency of face cream is
16	how it was described.
17	But during the Cal-Sil TSP test, as Tim
18	described, on about Day 8, the flow meter did stop
19	working and we pulled it out at that point. And it
20	had probably a combination of very fine Cal-Sil
21	particles and also calcium phosphate precipitate on
22	the material at that time.
23	MEMBER BANERJEE: And was it a creamy
24	consistency? Or what was it like?
25	MR. KLEIN: I was not there when they
	1

(202) 234-4433

	214
1	physically removed it. But that was my understanding
2	that it was a creamy consistency.
3	MR. UNIKEWICZ: Let me put in perspective
4	again 500 horsepower pump, roughly 1,800 RPMs, some
5	3,600 RPM. Tip speeds on the order of a few thousand
6	feet per second. Things that we have seen from a
7	chemical standpoint are not they are going to pass
8	through, at least from a chemical perspective, by your
9	pump impeller and through your pump even on a single-
10	stage low-pressure injection pump.
11	Okay, again, on the order of 300 to 500
12	horsepower motor massive tip speeds, very quick tip
13	speeds, these chemical effects are not going to stop.
14	MEMBER BANERJEE: We were talking about
15	the volute.
16	MR. UNIKEWICZ: I understand.
17	MEMBER BANERJEE: Yes.
18	MR. UNIKEWICZ: Even collecting on the
19	volute, okay, and the turbulence that is inside the
20	volute as you go through, it is not going to collect.
21	It is not going to stick although it may be sticky and
22	I'll say relatively speaking low velocity situations
23	inside the volute, extraordinarily turbulent
24	situations, it is not going to stick to a stainless
25	steel casing. It is not going to stick to a stainless
1	•

(202) 234-4433

	215
1	steel
2	CHAIR WALLIS: Well, one way to look at
3	flow patterns in a pump is to throw a can of paint
4	into it. And you certainly see on the surface the
5	stream lines.
6	MR. UNIKEWICZ: That is correct. And it
7	will pass through.
8	CHAIR WALLIS: Because, you know, there is
9	paint left on the blade. It is not as if it all
10	disappears.
11	MR. UNIKEWICZ: Correct. But it doesn't
12	agglomerate to the point where we are going to stop
13	CHAIR WALLIS: Probably not.
14	MR. UNIKEWICZ: I understand your question
15	and really we worked through that question early on
16	during the chemical effects discussions. And as soon
17	as that came out, that was one of our concerns. And
18	that was a very early question we had two or three
19	years ago. So we did work through that.
20	CHAIR WALLIS: I think the concern with
21	plating is more when you got temperature if you've
22	got really hot fuel, the stuff comes along and melts
23	on the fuel.
24	MR. UNIKEWICZ: Right. This would be more
25	of a fuel question rather than a pump impeller. Or
I	I

(202) 234-4433
	216
1	even from a heat exchanger perspective.
2	CHAIR WALLIS: Right, right.
3	MR. UNIKEWICZ: It is less of a heat
4	exchanger perspective.
5	MEMBER BANERJEE: Well, it is any point
6	where there might be a vortex of some sort where you
7	might trap something for a while, whether it is a
8	pump, whether it is a valve, whether it is an elbow,
9	wherever there is a separation region, that would be
10	the concern.
11	And I am assuming that the material that
12	gets through is probably not of large enough
13	quantities that it would do that. But I don't know
14	that.
15	MR. UNIKEWICZ: Not from a pump
16	perspective certainly.
17	MEMBER BANERJEE: Yes, a pump is very
18	unlikely. It is forcing things through as long as it
19	is running.
20	MR. UNIKEWICZ: That's right.
21	MR. ANDREYCHEK: I understand.
22	MEMBER BANERJEE: All right.
23	MR. ANDREYCHEK: And again, slides 11, 12,
24	and 13 are
25	CHAIR WALLIS: Are you going to accelerate

(202) 234-4433

	217
1	through these?
2	MR. ANDREYCHEK: Yes.
3	CHAIR WALLIS: I'm sorry.
4	MR. ANDREYCHEK: It's okay. Slide 14 is
5	an example of abrasive wear for three different types
6	of materials.
7	CHAIR WALLIS: As an experiment or as a
8	model?
9	MR. ANDREYCHEK: No, it is actually
10	correlations from industry, industry practice. This
11	is what it looks like.
12	CHAIR WALLIS: It looks pretty slow.
13	MR. ANDREYCHEK: Pardon?
14	CHAIR WALLIS: It looks like a pretty slow
15	rate, isn't it?
16	MR. ANDREYCHEK: That's true. And that is
17	based on three different types of materials and debris
18	concentration by weight. This is what you can expect
19	in terms of wear and abrasion at least on
20	CHAIR WALLIS: Is this significant for
21	your problem?
22	MR. ANDREYCHEK: It is useful information
23	to start with.
24	Slides 15 and 16
25	MEMBER ABDEL-KHALIK: Excuse me.
	1

(202) 234-4433

	218
1	MR. ANDREYCHEK: Yes, sir.
2	MEMBER ABDEL-KHALIK: What other
3	parameters, other than the debris loading parts per
4	million, effect the results of the abrasive modeling?
5	MR. ANDREYCHEK: The flow rate, how fast
6	the water is flowing.
7	MEMBER ABDEL-KHALIK: How about the
8	characteristics of the particles themselves?
9	MR. ANDREYCHEK: Again, we were using an
10	agglomerate of materials that were tested based on
11	three different types of materials. We didn't deal
12	with at least initially in the initial screening
13	process
14	MEMBER ABDEL-KHALIK: What quantitative
15	physical property of the debris enter into the
16	calculation of the abrasive wear model?
17	MR. ANDREYCHEK: It is my understanding
18	that the physical property was an aggregate or an
19	average abrasiveness associated with the debris. I'm
20	not sure how else to put it.
21	MEMBER ABDEL-KHALIK: Is it a hardness
22	number? Is it a density?
23	MR. ANDREYCHEK: I think it was
24	MEMBER ABDEL-KHALIK: What property enter
25	into this quantitative model?

(202) 234-4433

	219
1	MR. ANDREYCHEK: I can't answer that right
2	now.
3	MR. UNIKEWICZ: I'll answer the question.
4	MR. ANDREYCHEK: Go ahead.
5	CHAIR WALLIS: Well, is it predictable
6	also?
7	MR. UNIKEWICZ: The answer to a lot of
8	again, I'll kind of jump ahead. I talk about this a
9	little bit. Right now
10	CHAIR WALLIS: We're going to cut down on
11	your presentation.
12	MR. UNIKEWICZ: That is quite all right
13	with me.
14	But the significant point of discussion,
15	I'll say right now, between staff and the owners group
16	is, in fact, the abrasive versus the erosive wear
17	models. The key inputs to that abrasive wear model
18	are yes, Brunell hardness of both pump internals, the
19	Brunell hardness, the hardness materials of the latent
20	debris and how it effects.
21	The chaff loading, DP across from a stage
22	to stage standpoint, all those things are inputs. The
23	interesting thing about looking at debris as it passes
24	through the system and, Dr. Wallis, you recall seeing
25	our little curve at CCI, that peak loading of pass
	1

(202) 234-4433

	220
1	through is the area of concern from a pump evaluation.
2	So yes, parts per million, abrasiveness of
3	material, hardness, quantities, DP across a stage, all
4	those have an impact on that wear rate calculation and
5	effectively the pump models, if you will, the rotor
6	dynamic models.
7	If I look at a valve evaluation, it is
8	abrasiveness and PPM and speed seven to ten feet per
9	second or so from an erosive standpoint. When I look
10	at vessel evaluations, it is the area under the curve
11	for all that stuff.
12	MEMBER ABDEL-KHALIK: The question really
13	was driving at whether or not you have any chance of
14	predicting in an a priori manner what those relevant
15	physical properties are for the range of debris that
16	would be expected?
17	MR. UNIKEWICZ: Yes, I believe there is.
18	And the reason I say that is a couple, one is there
19	are, from a slurry calculation standpoint, Archin
20	model, there are a few other calculational methods
21	that are very well defined in the tribological world.
22	So these types of calculational methods are very
23	common, I'll say, outside the nuclear industry.
24	We have or there has been a
25	presentation of different hardness for all the latent

(202) 234-4433

debris. And we have asked the questions of the silicas, the rust, the dirt, you know, Brunell hardness of that. It is very well documented, the hardness of the stellite 6, stellite 12 wear rings within the pump internals, those type of comparisons are probably the most key comparisons within these evaluations.

Understand it is a two-step process. One is you calculate wear rate. The second thing after you calculate wear rate, now I'm looking at pump instability. So it really is a two-pronged approach.

The very short answer is yes, we have fairly well documented material properties. We have some good calculational methods that currently the owners group and staff are going over. So all of those inputs that you are talking about are included.

Now it is not included in the one that you 17 will see here but it will be included in the Rev. 1 to 18 19 the WCAP.

CHAIR WALLIS: I'd like to move on from 20 21 this subject because there is a lot more --

-- that is interesting, 22 CHAIR WALLIS: 23 isn't there?

24 MR. ANDREYCHEK: I gather from your comment, you found something you have particular 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

	222
1	interest in so we can move on. Say again?
2	PARTICIPANTS: Orifices.
3	MR. ANDREYCHEK: I just want to point
4	briefly on page 18 and 19 is the success criteria for
5	the pumps wear and abrasion. And 19 contains a flow
6	diagram of doing the evaluation.
7	CHAIR WALLIS: This is something of
8	concern? We have to worry about pump abrasion in
9	considering this problem? Or is it a red herring we
10	do have to worry about.
11	MR. ANDREYCHEK: We do have to worry about
12	it.
13	CHAIR WALLIS: What we need to remember is
14	we need to revisit it.
15	MR. ANDREYCHEK: Right, exactly.
16	CHAIR WALLIS: Thank you.
17	MR. ANDREYCHEK: And the same is true on
18	slide 20. It is another flowchart of how to do the
19	evaluation.
20	Moving on to orifices, this is erosive
21	wear. A similar type of checklist of items to look
22	for. And on slide 22 is a couple of examples of
23	orifices. And slide 23 would be the checklist for
24	what you would need to assemble to do an orifice
25	evaluation.
	1

(202) 234-4433

	223
1	MEMBER BANERJEE: What about orifices? Is
2	there something that we have to worry about orifices
3	here?
4	MR. ANDREYCHEK: Yes, there are.
5	MEMBER BANERJEE: What happens to them?
6	MR. ANDREYCHEK: Well
7	MEMBER BANERJEE: Or are you coming to
8	that?
9	MR. ANDREYCHEK: Well, what can happen to
10	them, particularly in the ECCS system under certain
11	conditions in the high hot head systems, there are
12	flow balancing orifices for the purposes of assuring
13	delivery, relatively equal delivery to the different
14	points of injection.
15	And wear and abrasion on these could throw
16	that balancing out of whack and might cause you some
17	problems. The acceptance criteria is a change in flow
18	rate over the nominal flow rate of less than three
19	percent.
20	MEMBER BANERJEE: Right.
21	MR. ANDREYCHEK: Okay.
22	MEMBER BANERJEE: But if that happened,
23	compared to blocking up the core or something, is this
24	a major issue?
25	MR. ANDREYCHEK: It is potentially an

(202) 234-4433

	224
1	issue of loss of ECCS flow, yes.
2	MEMBER BANERJEE: It is?
3	MR. ANDREYCHEK: Potentially reduce the
4	ECCS flow below the desired limits to maintain a
5	coolable core. So, yes, it should be considered.
6	MEMBER BANERJEE: Let me understand it.
7	You have these orifices but the fact that one become
8	bigger than the other due to wear or something, it
9	diverts the flow in some undesirable direction, is
10	that it?
11	MR. ANDREYCHEK: Potentially, yes.
12	MR. DINGLER: The other one is we have to
13	look at if we change the flow balance, which changes
14	the flow and changes the head of the that pump, we
15	might be at run off on the head of that pump so we've
16	got to look at that and make sure we don't go past the
17	runoff on the pump curves.
18	MEMBER BANERJEE: Okay. That's more
19	sensible.
20	MR. DINGLER: In other words, we will get
21	enough flow but we might take the pump above the pump
22	curves.
23	MEMBER BANERJEE: Yes, okay.
24	MR. ANDREYCHEK: Slide 25, plugging
25	evaluation
I	1

	225
1	MEMBER BANERJEE: So these orifices
2	basically throttle down
3	MR. DINGLER: What they are doing is
4	equalize the head loss in each leg so say in a four
5	looper, you have equal injection in all four legs. And
6	they are adjusted by a massive flow balance. And you
7	put them in and you take them back out. And you put
8	them in and make sure you flow balance.
9	MEMBER BANERJEE: Thank you.
10	MR. DINGLER: And then you do some
11	throttling of the valves to help on that, too. There
12	are throttle valves on that, too.
13	MEMBER BANERJEE: So this could be
14	actually a real problem because the orifices might
15	actually erode.
16	MR. DINGLER: There is a potential and you
17	have got to look at it and evaluate will they erode
18	too much and will they not, yes.
19	MEMBER ABDEL-KHALIK: Where are these
20	orifices exactly? Which orifices are we talking
21	about?
22	MR. DINGLER: For some plants, they are
23	put in in front of the injection flows so they don't
24	have to throttle their throttle valves down so tight.
25	And the flow balance for going into the RCS from the
	1

(202) 234-4433

	226
1	charging and the high head pumps.
2	MEMBER ABDEL-KHALIK: Okay. So you are
3	looking at the difference between the effected loop
4	and the unaffected loops?
5	MR. DINGLER: In other words, I'll speak
6	for a four looper, we eject we have the ability to
7	eject in all legs. So in other words, you flow
8	balance your throttle valves and that to the
9	injections based on loss of head.
10	So in other words, some plants have so not
11	to throttle their valves as tight, they put flow
12	orifices in and open their valves to reduce the flow
13	or to increase the head so that it will adjust the
14	flow so it is equal.
15	MEMBER ABDEL-KHALIK: Okay. Thank you.
16	CHAIR WALLIS: Now this slide here, Los
17	Alamos did some experiments with RMI and valves.
18	MR. DINGLER: That's correct.
19	CHAIR WALLIS: It is a bit surprising how
20	they did actually get some plugging even though the
21	product holes were fairly small.
22	MR. DINGLER: Based on Los Alamos, they
23	went ahead and ejected my understanding, Dr.
24	Wallis, they slug load into the valve and see how much
25	it took of a slug load to plug a valve.

(202) 234-4433

	227
1	CHAIR WALLIS: But this sort of rule of
2	thumb that if the orifice is four times as big as the
3	sump screen size, it seems to me a little
4	unconservative. I mean it is of an assumption which
5	is in the best of all possible worlds, this is true.
6	But is it really true?
7	MR. ANDREYCHEK: What slide are you on?
8	Sorry?
9	CHAIR WALLIS: I was looking at what was
10	up there.
11	MR. ANDREYCHEK: I know I missed it.
12	CHAIR WALLIS: Twenty-five.
13	MR. ANDREYCHEK: Yes, 25.
14	CHAIR WALLIS: It seems to me this has to
15	be verified by experiment or something rather than
16	just assuming.
17	MEMBER BANERJEE: Is it plugging we are
18	talking about or where?
19	MR. ANDREYCHEK: This was plugging.
20	MEMBER BANERJEE: We were talking wear.
21	MR. ANDREYCHEK: We were talking wear.
22	This is a plugging issue.
23	CHAIR WALLIS: Well, you see if the RMI is
24	sort of gathered together somewhere and then came down
25	as a group of RMI, it could conceivably plug the
	1

(202) 234-4433

	228
1	orifice. I think this is sort of an assumption that
2	looks a little hopeful.
3	MR. ANDREYCHEK: Well, I'm not sure that
4	I would agree with that outright. And let me explain
5	the reason why. These orifices are downstream of the
6	pump.
7	CHAIR WALLIS: Yes.
8	MR. ANDREYCHEK: So if the debris is going
9	to get to this orifice, it needs to go through the
10	pump. And, again, we are dealing with high head SI
11	pumps and charging pumps, which are multi-stage pumps,
12	very tight tolerances.
13	CHAIR WALLIS: So it is going to be
14	chopped up?
15	MR. ANDREYCHEK: Yes, sir. Or my pump is
16	plugged up and I don't have to worry about it. Or the
17	pump won't function, one of the two. The orifice will
18	be fine but the pump may have a challenge.
19	MEMBER ABDEL-KHALIK: Might have a
20	challenge, correct.
21	CHAIR WALLIS: Well, the staff is going to
22	settle this out isn't it?
23	MR. ANDREYCHEK: Yes.
24	CHAIR WALLIS: Okay.
25	MEMBER ABDEL-KHALIK: I mean it just
	1

(202) 234-4433

	229
1	doesn't make much sense. Are there any orifices
2	downstream of these safety injection pumps that are in
3	the order of an eighth of an inch diameter?
4	MR. ANDREYCHEK: I can't answer that from
5	a plant by plant basis. I can't say for sure one way
6	or another.
7	Mo, do you know what the size of the
8	orifices are?
9	MR. DINGLER: It is very plant specific.
10	And I can't answer that.
11	MR. UNIKEWICZ: I can answer that. Okay.
12	A couple things. One is you need to put this in
13	perspective. And part of the perspective is the
14	assumption right now is 110 percent of something
15	larger than the screen is going to make its way
16	through, okay.
17	And the way this evaluation works, right
18	now so initially you are assuming something 110
19	percent bigger than the screen size. When you get
20	down to this piece of the evaluation here, you now
21	kind of limit that a little bit smaller and say well,
22	gosh, even if 110 percent went through, a smaller
23	piece may or may not plug it.
24	From a practical standpoint, the issue is
25	from a practical perspective it is not orifices.

(202) 234-4433

	230
1	Orifices tend to wear away and it becomes a pump run
2	out issue more than anything else.
3	Throttle valves, and there are any number
4	of throttle valves which are on the order of a tenth
5	of an inch openings, those particular plants for the
6	most part are making modifications. And the way they
7	are making their modifications there are a couple,
8	three ways.
9	One is they are changing throttle valve
10	sizes. They are putting something with a more open
11	ported valve. The other thing that they are doing is
12	a combination of that an adding upshuring orifices so
13	that they are allowing upshuring orifices to take some
14	of the pressure drop before you get to the throttle
15	valve.
16	The third thing that is happening is there
17	are a number of plants that have DP gauges across
18	throttle valves. And they have downstream flow
19	indication. If you are watching downstream flow
20	indication, and are sure that you have flow and you
21	have the ability within your EOPs or your AOPs to open
22	up a valve, by opening up the valve it flushes what is
23	there through.
24	Now when you talk back to that LANL
25	report, the LANL report, in effect, said things the
	1

(202) 234-4433

	231
1	same size or smaller plug it or larger plug it.
2	Things smaller go through. And the amazing conclusion
3	that if I open up a valve larger, things that are
4	caught in it likely will flow through because I'm
5	looking at anywhere between say five to 15 feet per
6	second.
7	So that assumption is in an of itself I'll
8	say a realistic assumption. And recognize that when
9	you when I'm looking at my source term, my source
10	term can't get that small anyways. So you have to
11	sort of look at them at the same time.
12	MEMBER BANERJEE: That report, if I
13	remember, had some curious results in it.
14	MR. UNIKEWICZ: It did.
15	MEMBER BANERJEE: Yes.
16	MR. UNIKEWICZ: It had some interesting
17	results.
18	MEMBER BANERJEE: That piece of argon got
19	caught in a vortex or something in the pump and then
20	sat around and blocked things.
21	MR. UNIKEWICZ: Yes, the pieces and parts
22	don't get chopped up in these pumps.
23	MEMBER BANERJEE: Yes.
24	MR. UNIKEWICZ: They don't. They will
25	pass through. They are fairly wide open. Even
1	•

(202) 234-4433

	232
1	thought there are tight clearances for all intents and
2	purposes, the material that is not caught in a 10- to
3	12-mil spot in the shaft are going to pass through.
4	Nobody is taking credit for collection of
5	debris within the pump. And we're not going to allow
6	that even if they tried to, okay. Everything passes
7	through.
8	Then you will look at, again, three
9	different evaluations from a downstream standpoint, an
10	erosive, a plugging, and an abrasive.
11	MEMBER BANERJEE: So what sort of valves
12	are these throttle valves?
13	MR. UNIKEWICZ: Typically globe valves.
14	There are some other style valves. There are some
15	cage valves. There are some dragflow valves from
16	different vendors.
17	MEMBER BANERJEE: So if they were globe
18	valves, for example
19	MR. UNIKEWICZ: They are, in effect, globe
20	valves with very tight clearances. And, again, those
21	people with a tenth of an inch or so openings, they
22	are evaluating that. In a lot of cases they are
23	doing, again, one of three things: adding orifices and
24	looking at whether they have instrumentation to
25	throttle if they can. Or in a case one of the
	1

(202) 234-4433

	233
1	extension requests are that they are redesigning the
2	valve so that they have a more open style body while
3	maintaining that proper flow balance and opening up a
4	little bit to let things pass through.
5	MEMBER BANERJEE: It must be quite a
6	trick.
7	CHAIR WALLIS: Are we talking about all
8	this so we'll never get to the core? Is that all this
9	is?
10	MR. UNIKEWICZ: That is the more fun part
11	anyway. This is the more interesting part. The core
12	is the core. It is more fun to talk about this.
13	MEMBER BANERJEE: Is that what you want to
14	present to the full Committee then? This stuff?
15	MEMBER KRESS: But once again, I want to
16	refer you to some work done by EPRI in the mid-80s.
17	I don't recall the reports or the title. But one of
18	the authors was a fellow named Morawitz. That's about
19	all I can remember. But the subject was what would
20	happen with the holes in containment in aerosols,
21	which is a similar issue.
22	Their contention was that these aerosols
23	would plug up these holes. Although the holes were
24	big and aerosols were small. So they ran a series of
25	tests to validate that contention. And sure enough,
	1

(202) 234-4433

	234
1	they plugged them up. So , you know, these are small
2	things plugging up big holes.
3	MR. UNIKEWICZ: You are correct. There are
4	also some service water systems on rivers and ponds
5	that have silt meaning we have seen them pass six-inch
6	lines. Now granted, as you mentioned, it is a long
7	period of time. Service water lines, this was in a
8	matter of 15 years that they did plug up with silt.
9	MEMBER KRESS: Well now Morawitz and
10	Company ere concerned about containment. And that is
11	a smaller pie.
12	MR. UNIKEWICZ: Understand. But I will
13	look into that.
14	CHAIR WALLIS: Okay, let's move on.
15	MR. ANDREYCHEK: Okay. If it is
16	acceptable, we'll look at slides 26, 27, and 28, and
17	29, which are all heat exchangers.
18	CHAIR WALLIS: But there is no heat
19	transfer effect you are looking at here so
20	MR. ANDREYCHEK: No, there isn't.
21	CHAIR WALLIS: And they don't plug, do
22	they?
23	MR. ANDREYCHEK: No, they do not. The
24	velocity within the
25	CHAIR WALLIS: So then we can just move on
I	1

(202) 234-4433

	235
1	with no problem?
2	MR. ANDREYCHEK: Yes. We also looked at
3	a erosive wear and heat exchanger is not a problem
4	plugging. The same
5	CHAIR WALLIS: Well, now we've got some
6	valves here.
7	MR. ANDREYCHEK: And, Dr. Banerjee, you
8	had asked about what are the different types of
9	valves, if you take a look at slide 33, there are
10	several different types of valves that are
11	CHAIR WALLIS: If they plug, you just open
12	them up, is that what you do?
13	MR. ANDREYCHEK: Well, you
14	CHAIR WALLIS: If you know they have
15	plugged, you can open them up.
16	MR. ANDREYCHEK: I don't know that you can
17	open them up in the plant. Some of these might be
18	locked in position. Most specifically, some of the
19	ECCS valves.
20	MR. DINGLER: It depends on the location.
21	Some of them you can access. They are high radiation.
22	CHAIR WALLIS: That is kind of self-
23	defeating. I mean you make a pump to pump water in
24	and then you make it pump through a tiny little hole
25	so it is more difficult for the water to get in. It's

(202) 234-4433

	236
1	very strange. But anyway.
2	MEMBER BANERJEE: Let's talk about debris
3	going through that valve.
4	MR. ANDREYCHEK: But 34 is similar to what
5	you have seen. Slide 34 is similar to what you have
6	seen before in terms of what you need to do the
7	evaluation.
8	CHAIR WALLIS: We're still on erosive
9	wear?
10	MR. ANDREYCHEK: I beg your pardon yes,
11	erosive wear.
12	CHAIR WALLIS: We're still on that
13	subject. Could we go on to something else?
14	MR. ANDREYCHEK: Sure.
15	CHAIR WALLIS: Or is there nothing else?
16	MEMBER BANERJEE: No, the core blockage.
17	CHAIR WALLIS: Well, their evaluation of
18	blockage at core inlet 41.
19	MR. ANDREYCHEK: Is that where you would
20	like to go, sir?
21	CHAIR WALLIS: It sounds good to me.
22	MR. ANDREYCHEK: Okay.
23	CHAIR WALLIS: Is that okay with the
24	Committee to do that?
25	MR. ANDREYCHEK: Fine.

	237
1	MEMBER BANERJEE: At some point though you
2	will have to explain to me how these many trap loads
3	become less than one plenum load but that is okay.
4	CHAIR WALLIS: Pull up on the screen.
5	MR. ANDREYCHEK: We can talk at the break.
6	For a double-ended guillotine break, the
7	refueling water storage tank or the borated storage
8	water tank can be depleted in approximately 20
9	minutes. Fibrous and particulate debris can pass
10	through the sump screen. We have seen that.
11	CHAIR WALLIS: And dissolved chemicals?
12	MR. ANDREYCHEK: And dissolved chemicals.
13	And there is a potential for build up at the core
14	inlet, particularly at the fuel assembly bottom
15	nozzle. There are some debris-capturing devices that
16	the vendors have put on the bottom of the fuel so it
17	is a tight pinch point.
18	We had a screening criteria previously.
19	We used an eighth of an inch of fiber that formed on
20	the bottom of the this so the fuel would collect
21	debris. And the objective here was to look at well
22	what happens really.
23	We took a more detailed look and we went
24	through and looked at the break location. And we
25	choose to use a double-ended guillotine break, boat
	1

(202) 234-4433

	238
1	leg, because it would have the limiting amount of flow
2	that would actually get to the core. It is driven by
3	gravity head in the down flow.
4	CHAIR WALLIS: So you've only got that
5	head to drive the flow through the core?
6	MR. ANDREYCHEK: That is correct, sir.
7	CHAIR WALLIS: All right.
8	MR. ANDREYCHEK: Okay. We go to slide 43,
9	looking at a plant selection, trying to come up with
10	a model to use, the down-flow baffle barrel regions
11	are the most limiting because the only way you can get
12	water into the core realistically is through the
13	bottom of the fuel. If you have a design that is up
14	flow, there are alternate flow paths where you could
15	get water in part way up the length of the fuel. If
16	it is a converted up flow, there is still another flow
17	path that is close to the top of the fuel.
18	For the purposes of the evaluations that
19	we did
20	MEMBER BANERJEE: This is sort of a bypass
21	part from the top?
22	MR. ANDREYCHEK: In the down flow, no,
23	there is no bypass. It all has to come all the
24	flow has to come through the lower plenum. Any other
25	design
	1

(202) 234-4433

	239
1	MEMBER BANERJEE: Okay.
2	MR. ANDREYCHEK: any other design
3	MEMBER BANERJEE: There is some bypass.
4	MR. ANDREYCHEK: has some potential for
5	bypass, yes, sir.
6	Okay. We were using the Westinghouse
7	COBRA/TRAC code to do these calculations, long-term
8	calculations. We used the three-loop pressurized
9	water reactor that had a very high core power density,
10	more limiting and even some of the four loopers that
11	e are familiar with.
12	The right-hand side is the COBRA/TRAC
13	noting diagram. And the left-hand side shows the
14	schematic of the the cutaway to the reactor vehicle
15	itself. And it is there for illustrative purposes.
16	Slide 45 is the approach we took to doing
17	the computations. We modified the code slightly to
18	identify and allow the users to change the resistance
19	at the entrance to the core, to flow into the core.
20	And that was at the very first set of channels. And
21	that allowed us to simulate, if you would, a blockage.
22	Deterministically, we are going to assign a blockage
23	there and see that happens.
24	MEMBER BANERJEE: Can you do this some
25	time into the transient?

	240
1	MR. ANDREYCHEK: That is correct. And if
2	you will, on Slide 46, it describes when we did that.
3	We ran these blockage calculations for up to 40
4	minutes of transient time. And we allowed the
5	refueling water storage tank to be drained down over
6	the first 20 minutes of the transient.
7	So it went through a blowdown and drained
8	the refueling water storage tank for up to 20 minutes.
9	Then from 20 minutes to 20.5 minutes, we ramped the
10	loss coefficient at the entrance to the core from the
11	nominal value based on physical characteristics of the
12	geometry of the core entrance itself to a value of one
13	times ten to the ninth, a very large hydraulic loss
14	coefficient.
15	And for all practical purposes, that
16	simulated complete blockage of those areas that the
17	loss coefficient was assigned to. We also modified
18	the RHR heat exchanger outlet temperature.
19	MEMBER ABDEL-KHALIK: Let me just
20	understand this.
21	MR. ANDREYCHEK: Sure, go ahead, sir.
22	MEMBER ABDEL-KHALIK: Did you this
23	assumption of increased loss coefficient at the
24	entrance, was that applied uniformly to all channels
25	at the inlet?

(202) 234-4433

	241
1	MR. ANDREYCHEK: Bear with me for just a
2	moment and I will answer that question. I have a
3	couple of slides further back. And it shows where we
4	applied it.
5	MEMBER ABDEL-KHALIK: Okay.
6	MR. ANDREYCHEK: Okay?
7	MEMBER BANERJEE: The short answer is no.
8	CHAIR WALLIS: It can't be if it is
9	applied to everything and nothing gets through.
10	MEMBER BANERJEE: On page 47.
11	MR. ANDREYCHEK: It is not applied
12	everywhere but almost everywhere.
13	CHAIR WALLIS: Almost everywhere.
14	MR. ANDREYCHEK: Okay.
15	CHAIR WALLIS: But not .6 percent.
16	MR. ANDREYCHEK: That's correct.
17	MEMBER KRESS: The COBRA/TRAC allows cross
18	flow in the core when you
19	MR. ANDREYCHEK: That is correct.
20	MEMBER KRESS: when you bypass the
21	blockage.
22	MR. ANDREYCHEK: That is correct. It does
23	allow for flow redistribution through the open lattice
24	structure of the fuel.
25	We modified and allowed the water being

(202) 234-4433

	242
1	ducted into the reactor vessel to go to 190 degrees
2	Fahrenheit, which is the
3	MEMBER BANERJEE: But in a COBRA/TRAC, the
4	cross flow channel because this is basically a
5	parallel channel core, is based on really fairly high
6	flow rates. And I wonder if it can really be applied
7	to these very low flow rates that you are talking
8	about because it actually mixes by turbulent mixing.
9	Maybe somebody looked at that. Who ran this?
10	Somebody who
11	MR. ANDREYCHEK: This was done by Mitch
12	Missley and Kevin Barber, both out of the LOCA
13	analysis group. You may be familiar with Mitch
14	Missley.
15	MEMBER BANERJEE: Yes, the problem is, as
16	you know, it is primarily used for fairly high
17	MR. ANDREYCHEK: That's correct.
18	MEMBER BANERJEE: flows. And much of
19	the mixing between channels is turbulent mixing.
20	CHAIR WALLIS: These velocities are really
21	creeping flows.
22	MEMBER BANERJEE: Yes. So that would be
23	a well, it should be looked at. I'm not saying the
24	results are wrong.
25	MR. ANDREYCHEK: I understand. I

(202) 234-4433

	243
1	understand. I will offer that I did a calculation
2	about five or six years ago where we looked at
3	flooding the core from the side.
4	MEMBER BANERJEE: Right.
5	MR. ANDREYCHEK: And we modeling the
6	ability for the flow to go from assembly to channel
7	to channel. And took into account the appropriate
8	loss coefficients from a lateral standpoint. And we
9	demonstrated reasonable results.
10	MEMBER BANERJEE: Yes, in fact I could
11	probably do this by hand.
12	MR. ANDREYCHEK: I wouldn't argue that.
13	MEMBER BANERJEE: Yes, so
14	MR. ANDREYCHEK: I wouldn't argue that.
15	But, again, the RHR temperature did increase the
16	temperature we were injecting into the reactor vessel
17	went from the RWC temperature to 190 degrees
18	Fahrenheit to simulate recirculation from the sump.
19	And we did look at two cases. And I think
20	this answers your question specifically. The one case
21	where we looked at the periphery being blocked. In
22	the second case, we assumed everything except for the
23	hot channel being blocked. And the hot channel not
24	being blocked represented 99.4 percent of the core
25	being blocked.
	1

(202) 234-4433

	244
1	CHAIR WALLIS: How did the fibers know not
2	to block the hot channel?
3	MR. ANDREYCHEK: We will get to that in
4	just a minute. I don't have a slide specifically
5	dealing with that but we can talk about that in just
6	a moment please.
7	MR. DINGLER: They are smart fibers.
8	MR. ANDREYCHEK: Slide 48 just
9	demonstrates a standard COBRA/TRAC model for the three
10	loop pressurized water reactor. HA stands for the hot
11	assembly structure.
12	CHAIR WALLIS: What does integrated mass
13	flow rate mean?
14	MR. ANDREYCHEK: I beg your pardon.
15	CHAIR WALLIS: It says integrated mass
16	flow rate?
17	MR. ANDREYCHEK: Yes. Bear with me and
18	let me get to that slide.
19	CHAIR WALLIS: Oh, I'm sorry.
20	MR. ANDREYCHEK: Okay. Slide 49 shows the
21	noting pattern of the blockage to the core for the two
22	locations. And slide 50 talks about the containment
23	pressure. We did drop it down low.
24	CHAIR WALLIS: Why did you just unblock
25	underneath the hot channel. You could unblock that

(202) 234-4433

	245
1	hole could be anywhere, couldn't it?
2	MR. ANDREYCHEK: That's true. We chose
3	the hot channel for the purposes of if, again, we are
4	20 minutes into the transient. We have recovered the
5	core. And the though process was if we restrict flow
6	everywhere but the hot channel and we allow for the
7	lateral distribution to flow out, the hot channel
8	would be the one that would be tending to get the
9	warmest later. It was an approximation.
10	MEMBER KRESS: It seems like the worst
11	case maybe cell blockage everywhere.
12	MR. ANDREYCHEK: Right. Well, again, bear
13	with me a little bit and we can discuss that in just
14	a moment. I understand your comment, Dr. Kress.
15	Okay, we talk about flow through the
16	blocked channel. And what the flow through the
17	blocked channel means if this is the flow
18	redistribution. And we are actually seeing what we
19	would actually tend to see in the blocked channel over
20	time. And fundamentally it peaks out, it bottoms out.
21	CHAIR WALLIS: What is being plotted here,
22	this intake? What sorts of vertical access?
23	MR. ANDREYCHEK: It is the total mass flow
24	that actually comes into the bottom of the channel.
25	CHAIR WALLIS: But it is a rate. So it is
	1

(202) 234-4433

	246
1	in pounds per hour or something?
2	MR. ANDREYCHEK: Right.
3	CHAIR WALLIS: What is that? Pounds per
4	hour, I'm sorry. I apologize that we didn't have the
5	units on there.
6	MEMBER BANERJEE: But the integrated mass
7	flow rate.
8	MR. ANDREYCHEK: Right, that is correct.
9	MEMBER BANERJEE: What does that mean?
10	MR. ANDREYCHEK: That is the total flow
11	through the bottom of the core. And what you see is
12	at the time of the blockage, through the channels that
13	are blocked, there is no more flow running through the
14	bottom of the core. It basically says we've blocked
15	that portion of the core.
16	CHAIR WALLIS: That's the green thing?
17	MR. ANDREYCHEK: The green and the black.
18	MEMBER BANERJEE: What is the black then?
19	MR. ANDREYCHEK: Again, if you look back
20	at the model on slide 49 and take a look at the flow
21	channels
22	CHAIR WALLIS: That is 10, 11, and 12?
23	MR. ANDREYCHEK: Correct. You see that
24	there is no more flow coming in.
25	CHAIR WALLIS: And where is 13 then? Oh,
	1

	247
1	13 is on the left. And on the right, why isn't 13 on
2	the right? Because 13 is the only place that flow is
3	coming in, isn't it?
4	MR. ANDREYCHEK: No, actually the channel
5	that's coming it is channel 10, 11, and 12, if you
6	look on the left-hand side for the 82 percent blocked
7	case, what you are seeing is the flow if you want
8	to call it deadlines at channels, 11, 12, and 1, which
9	indicates that those channels are blocked. There is
10	no more flow coming in through the bottom of the core.
11	MEMBER ABDEL-KHALIK: So the green, let's
12	say, is channel 11, right?
13	MR. ANDREYCHEK: That's correct.
14	MEMBER BANERJEE: So just walk me through
15	this green curve on slide 51, the left hand side.
16	MR. ANDREYCHEK: Okay.
17	MEMBER BANERJEE: What is happening on the
18	left-hand side curve there, to the green?
19	MR. ANDREYCHEK: Up to 1,200 seconds, 20
20	minutes, the flow is bouncing around at up to about
21	300 or so seconds, we are getting a lot of flow coming
22	in.
23	MEMBER BANERJEE: Right.
24	MR. ANDREYCHEK: There is some flow
25	perturbation, which bounces around a little bit. And

(202) 234-4433

	248
1	then at 1,200 seconds, no more flow comes in.
2	CHAIR WALLIS: Why does it have those
3	cliffs and then rise up again?
4	MEMBER BANERJEE: Well, that's before.
5	You start your blockage at 1,200 seconds.
6	MR. ANDREYCHEK: That's correct.
7	MEMBER BANERJEE: And the green line after
8	1,200 seconds which goes horizontal means
9	MR. ANDREYCHEK: That's correct. There is
10	no more flow coming into the bottom. The blockage is
11	
12	CHAIR WALLIS: So integrated must be I
13	don't understand.
14	MEMBER ABDEL-KHALIK: In pounds, rather
15	than pounds per hour.
16	MR. ANDREYCHEK: Yes.
17	CHAIR WALLIS: Well, then there is a
18	negative flow for part of the time?
19	MEMBER ABDEL-KHALIK: In some cases. It
20	can't be rate.
21	CHAIR WALLIS: It must be
22	MR. ANDREYCHEK: No, it is not rate.
23	CHAIR WALLIS: Okay. It is not rate. It
24	is integrated mass flow. There is no rate there at
25	all.
	1

(202) 234-4433

	249
1	MEMBER BANERJEE: I'm just confused by the
2	axis here.
3	MEMBER ABDEL-KHALIK: What are the units
4	of the vertical axis? Maybe that would clarify. Sir?
5	MR. ANDREYCHEK: I'm writing a note.
6	CHAIR WALLIS: Pounds?
7	MR. ANDREYCHEK: I don't have an answer
8	right now. Let me get back to you on that.
9	MEMBER BANERJEE: Because the integrated
10	flow
11	MR. ANDREYCHEK: It should be pounds.
12	MEMBER BANERJEE: could be going down
13	only if the flow reverses.
14	CHAIR WALLIS: It must be going down part
15	of the time?
16	MEMBER BANERJEE: Right.
17	MR. ANDREYCHEK: That's correct. And you
18	see the same or similar type of behavior on the figure
19	on the left or, excuse me, on the right. Left
20	lower right.
21	CHAIR WALLIS: And why does this mean
22	everything is okay?
23	MEMBER BANERJEE: It doesn't. He is just
24	showing us these figures. We don't know if it is okay
25	yet.
I	1

(202) 234-4433

	250
1	MR. ANDREYCHEK: That's correct. We need
2	to look at the flow temperatures.
3	CHAIR WALLIS: Well, we could probably
4	spend a long time trying to figure this out. What are
5	we supposed to conclude from these figures?
6	MR. ANDREYCHEK: Well, if we look at slide
7	53
8	CHAIR WALLIS: Well, I'm looking at slide
9	51. I'm not supposed to conclude anything from that
10	except that there are some wiggles?
11	MR. ANDREYCHEK: Just some wiggles.
12	CHAIR WALLIS: I mean this is supposed to
13	give me a message, isn't it?
14	MEMBER BANERJEE: You are going to clarify
15	this for us then?
16	MR. ANDREYCHEK: I will clarify it for
17	you.
18	CHAIR WALLIS: The whole idea is to give
19	us a message that we can take away. And I can go home
20	and tell my wife everything is fine in Washington, you
21	know.
22	MR. ANDREYCHEK: Then let's look at slide
23	53.
24	MEMBER BANERJEE: All right. Let's look
25	at 53.

```
(202) 234-4433
```

	251
1	MR. ANDREYCHEK: And slide 53 compares the
2	boil off rate versus the
3	CHAIR WALLIS: Boil off rate, it says
4	integrated mass flow rate. And what are we looking at
5	there? See I think there is a problem with what you
6	mean by
7	MR. ANDREYCHEK: I agree with you.
8	CHAIR WALLIS: So what is the message?
9	MR. ANDREYCHEK: The message that I would
10	ask you to take back with you
11	CHAIR WALLIS: Is that you guys are
12	confused, right.
13	MEMBER ABDEL-KHALIK: No, they're not
14	confused. It's just the
15	MR. ANDREYCHEK: We need to make sure that
16	the units are consistent on the axis.
17	CHAIR WALLIS: But this is supposed to
18	convince us of something, isn't it?
19	MR. SCOTT: There is another message here
20	which is that we don't even have the topical report
21	that has this sort of activity in detail, right?
22	MR. ANDREYCHEK: That's correct.
23	MR. SCOTT: This is now the work you
24	are presenting here is from the earlier topical or the
25	later one that we don't have yet?

(202) 234-4433
	252
1	MR. ANDREYCHEK: This is the one from the
2	one you don't have yet.
3	MR. SCOTT: Okay. So I guess what you are
4	hearing from the Committee is that there is some lack
5	of clarity in these graphs. And this is one that
6	really is a work in progress. We owe you this at the
7	next subcommittee meeting. This thing ain't ready for
8	prime time yet I believe is my conclusion.
9	MEMBER BANERJEE: Well, as I guess as you
10	have them here, the message is that 54 shows you that
11	there is no problem with
12	CHAIR WALLIS: Are you going to present
13	this to the full Committee in July?
14	MEMBER BANERJEE: Do you want to?
15	CHAIR WALLIS: Are you going to get your
16	act together and have a convincing story?
17	MR. SCOTT: I would suggest, Dr. Wallis,
18	that tomorrow afternoon at the conclusion of all these
19	discussions maybe we discuss
20	CHAIR WALLIS: Tim comes back?
21	MR. SCOTT: what to present in July.
22	CHAIR WALLIS: Maybe Tim could come back
23	tomorrow and tell us what he really meant to say
24	today.
25	MEMBER BANERJEE: Now that you have whet
	1

(202) 234-4433

	253
1	our appetites
2	CHAIR WALLIS: Because these look very
3	interesting. It looks very interesting. And I have
4	not a clue what it means. I would be very happy for
5	you to come back and tell us what it really meant.
6	MR. ANDREYCHEK: That is a fair comment.
7	MEMBER BANERJEE: We'll give you ten
8	minutes.
9	MR. ANDREYCHEK: In ten minutes?
10	MEMBER KRESS: But be sure and check that
11	cross flow correlation.
12	MR. ANDREYCHEK: Understood.
13	MEMBER KRESS: Because that's key.
14	MR. ANDREYCHEK: Understood.
15	CHAIR WALLIS: Yes.
16	MEMBER BANERJEE: I guess what you are
17	arguing is even if a little bit of water gets through,
18	it will find its own level because
19	MEMBER KRESS: And it may convert into
20	steam so it may still be an effective heat transfer.
21	MR. ANDREYCHEK: That's the point, yes.
22	CHAIR WALLIS: But the bottom line would
23	seem to be slide 54 if we can believe it. That
24	nothing really gets too hot.
25	MR. ANDREYCHEK: That is correct.
	1

(202) 234-4433

	254
1	CHAIR WALLIS: And the blockage starts at
2	the red line?
3	MR. ANDREYCHEK: That is correct.
4	CHAIR WALLIS: It doesn't do anything at
5	all.
6	MR. ANDREYCHEK: That is correct. And
7	part of the reason for that is the mislabeled
8	CHAIR WALLIS: How bad does it have to be
9	before it does have an effect?
10	MEMBER BANERJEE: I think it is a very
11	simple calculation. If enough water gets in
12	MR. ANDREYCHEK: That's right.
13	MEMBER BANERJEE: to the
14	MEMBER KRESS: It makes the boil off rate
15	
16	CHAIR WALLIS: The boil off
17	MR. ANDREYCHEK: That's right.
18	MEMBER BANERJEE: Yes, that's done at that
19	point.
20	CHAIR WALLIS: Well maybe you could tell
21	us how much the blockage needs to be in order for that
22	to happen.
23	MEMBER BANERJEE: Yes. So you can work
24	backwards exactly as Graham said.
25	MEMBER KRESS: The boil off calculation
	1

(202) 234-4433

	255
1	MR. DINGLER: Keep in mind that is
2	sometime plant specific if you have bypass flows and
3	stuff like that. So that
4	MEMBER BANERJEE: I mean for the specific
5	scenario where you can only answer the call from the
6	bottom, if you get enough in so that you can have a
7	stable
8	MR. ANDREYCHEK: that's right.
9	MEMBER KRESS: A stable level.
10	CHAIR WALLIS: Yes. So while it is
11	boiling off, it is leaving behind all the chemicals
12	and debris which was in the water when it came into
13	the core, right? So if you boil off for long enough,
14	the core is full of all the stuff that didn't boil
15	off.
16	MR. ANDREYCHEK: That's correct. You
17	potentially will get some plate off.
18	CHAIR WALLIS: You're going to tell us
19	that, too, presumably.
20	MR. ANDREYCHEK: That's correct.
21	MR. DINGLER: And as Mike says, that's the
22	WCAP that is underway right now.
23	MEMBER BANERJEE: So you've got an early
24	comment now.

	256
1	(Laughter.)
2	MR. ANDREYCHEK: I appreciate it quite
3	frankly. You know sometimes you don't see the forest
4	for the trees. This is one forest I should have
5	stayed out of.
6	CHAIR WALLIS: Are you going to come back
7	to us and explain it? Are you going to have a try at
8	that?
9	MR. ANDREYCHEK: I'm sorry, say it again?
10	CHAIR WALLIS: Are you going to come back
11	tomorrow and explain it or not?
12	MR. ANDREYCHEK: I will have specifically
13	correct yes, I will have the correct ones for
14	tomorrow, yes.
15	CHAIR WALLIS: I think it would be good to
16	have that on the record, too, that everything was
17	sorted out.
18	MR. ANDREYCHEK: Not a problem.
19	CHAIR WALLIS: Okay.
20	MR. ANDREYCHEK: I regret
21	CHAIR WALLIS: And everything is
22	consistent with NRC findings? So the NRC findings
23	were like this in summer of 2006?
24	MR. ANDREYCHEK: There was a blockage
25	calculation that was done by NRC.

(202) 234-4433

	257
1	CHAIR WALLIS: And they concluded
2	everything was okay?
3	MR. DINGLER: They concluded actually a
4	slightly larger blockage and they still got acceptable
5	core clad temperatures. So yes.
6	MEMBER BANERJEE: I suppose it depends on
7	how the blockage occurs. I mean if you got blockage
8	so that you have got this thin layer and you have got
9	water seeping through
10	MR. ANDREYCHEK: Well, that's pretty much
11	the case, yes. If you have weeping flow, even if it
12	is uniformly across the bottom, you will get that.
13	And the point that I wanted to drive out and drive
14	home was there was some testing that was done on
15	representative fuel bottom nozzles and bottom grids
16	where they took what would come through a sump screen,
17	basically your bypass flow, with particulates in it.
18	And ran this up into the bottom of the fuel grade.
19	And what was observed, both by industry
20	and several NRC representatives, was that the flow did
21	not was not blocked off. They still got flow
22	through this fibrous particulate stuff because the
23	flow was not sufficiently my guess is and in
24	looking at it, it was not sufficiently fast enough,
25	harsh enough to cause the fibrous material to mat.
	1

(202) 234-4433

	258
1	And create the mat that would not allow flow to go
2	through it. It was more of a I want to call it a
3	fuzzy ball.
4	MEMBER BANERJEE: Was the experiment done
5	of this study with heated rods or something?
6	MR. ANDREYCHEK: Not with heated rods.
7	This was a cold assembly. It was done as an example
8	of just at one someone wanted to see what it
9	would look like. And so they jury-rigged up a loop
10	that had a fuel assembly bottom nozzle and maybe two
11	grids or so. And a bottom nozzle as well as the core
12	support plate. And what they saw was that they got
13	fiber collection there certainly that would be
14	bypassed from the sump screen. But it did not form a
15	map that chocked flow. They continued to get flow
16	through there.
17	Furthermore, what they observed was
18	upstream of this fibrous mat, they didn't get fiber
19	concentrating into the fuel based upon photograph
20	evidence that we have.
21	MEMBER BANERJEE: Is this documented
22	somewhere?
23	MR. ANDREYCHEK: It's in the report that
24	we are working on.
25	MEMBER BANERJEE: Oh, okay.

	259
1	MEMBER KRESS: Basically this becomes an
2	issue of a boiling pool rather than a turbulent
3	convection heat transfer. As long as you can get
4	water in the core and the water level is such that the
5	steam cools the tank and the boil off rate is less
6	than or equal to the input rate, then we're okay.
7	MR. ANDREYCHEK: That's correct, sir.
8	CHAIR WALLIS: So if I'm an operator
9	MEMBER KRESS: That obviates the need for
10	this cross flow plate.
11	MR. ANDREYCHEK: That's correct.
12	MEMBER KRESS: So you really don't need
13	it.
14	MR. ANDREYCHEK: No.
15	CHAIR WALLIS: At a very low flow rate,
16	you do.
17	MEMBER KRESS: Yes, a very low flow rate.
18	MEMBER BANERJEE: It just finds its own
19	level.
20	MEMBER KRESS: Yes.
21	MR. ANDREYCHEK: That is correct.
22	MEMBER KRESS: Gravity will make it flow.
23	CHAIR WALLIS: And if I'm an operator and
24	I begin to observe super heated steam, what do I do if
25	I've got this? I know that I've got a LOCA. I know
	1

(202) 234-4433

	260
1	that I've got debris. And I'm somewhat concerned
2	about possible blockage. And I begin to observe super
3	heated steam coming off the top of my core, what do I
4	do?
5	MR. ANDREYCHEK: Anyway I can to add more
6	water.
7	CHAIR WALLIS: But how can you do that?
8	Is there some way you can get water in the top of the
9	core or something?
10	MR. ANDREYCHEK: There are a multiple of
11	different ways depending on, again, that will be a
12	very plant-specific evaluation. A lot of times those
13	are covered in the severe accident guidelines.
14	CHAIR WALLIS: Well, do they go to hot leg
15	injection and that kind of thing? Is that going to
16	immediately ameliorate this situation?
17	MR. SCOTT: The cold leg or yes some
18	of that is cold leg.
19	CHAIR WALLIS: Isn't that going to
20	ameliorate the situation where water can come in from
21	the hot leg and just come in from the top?
22	MR. ANDREYCHEK: There are something that
23	are there are many things you can do. Some that
24	are proceduralized. Some that are not.
25	CHAIR WALLIS: You should be able to get
	1

(202) 234-4433

	261
1	60 pounds per minute into the core that way.
2	MEMBER BANERJEE: Well, wherever you put
3	bypass flows, you are going to
4	MR. ANDREYCHEK: That will hopefully be a
5	conclusion.
6	CHAIR WALLIS: Well, that would be a very
7	useful conclusion that no matter what happens, you are
8	always going to be able to keep the pot full enough so
9	that it doesn't boil dry.
10	MR. UNIKEWICZ: As Mr. Scott said, staff
11	has not had a chance yet to look at
12	CHAIR WALLIS: Okay.
13	MR. UNIKEWICZ: this WCAP. So some of
14	these are
15	CHAIR WALLIS: Well, that is very useful
16	I mean to sort of know if you can convince us that no
17	matter what happens with all this stuff, there is
18	going to be a way that you can keep the core from
19	drying out.
20	MR. UNIKEWICZ: Correct.
21	CHAIR WALLIS: Well, that would be very
22	useful.
23	MR. ANDREYCHEK: And I don't disagree with
24	you. I would suggest that, again, this calculation
25	was done as a bounding type of a calculation. It's
	I contraction of the second

(202) 234-4433

	262
1	not meant to be representative of any situation. It
2	is if it were to happen, could we get enough water in.
3	And the answer was yes.
4	CHAIR WALLIS: Well, maybe it is time to
5	finish this discussion. You have some work in
6	progress here
7	MR. ANDREYCHEK: Yes, I do.
8	CHAIR WALLIS: that we are going to see
9	sometime like all the rest of what we saw today.
10	MR. ANDREYCHEK: Yes.
11	CHAIR WALLIS: And it looks as if you are
12	making some progress. And some work needs to be done.
13	MEMBER BANERJEE: It would be nice to do
14	an experiment. I always like experiments.
15	CHAIR WALLIS: With a core?
16	MR. ANDREYCHEK: I understand.
17	MEMBER BANERJEE: Well, not a real core.
18	Just a few rods here and there.
19	CHAIR WALLIS: Okay. Can we move on?
20	MR. ANDREYCHEK: Thank you very much.
21	CHAIR WALLIS: Rather than taking a break,
22	I'd like to move on and see if Steve, who has already
23	had his time up here, can get us through pretty
24	quickly.
25	MR. UNIKEWICZ: I suspect this can be as
	I contraction of the second

(202) 234-4433

	263
1	quick as you desire.
2	CHAIR WALLIS: Okay. Do we have any copy
3	of your slides?
4	MR. UNIKEWICZ: You should have them over
5	on the edge further. It's not a long presentation nor
6	is it meant to be because the purpose this
7	presentation is to update you on where we are with
8	respect to both in-core and ex-core downstream
9	evaluations.
10	One change in the program, you may have
11	noticed from the presentation in the past and that is
12	Thomas Prayer has taken a position outside of the
13	agency so I have been chosen to lead the charge, if
14	you will, on the in-vessel evaluations also, certainly
15	with a lot of support from additional staff, the same
16	staff as before. Just that typically rather than
17	Tommy, you'll probably hear myself talk about the in-
18	vessel evaluations.
19	Where are we? Well and the purpose of
20	this short presentation is to tell you where we are
21	both from an in-vessel and an ex-vessel we'll start
22	with the ex-vessel. We'll talk about some of the
23	challenges and where we are going and how we are going
24	forward.
25	Recognize that almost every licensee
	1

(202) 234-4433

	264
1	currently has used 16406 Rev. 0, the initial issue of
2	the PWR owners group WCAP on downstream effects.
3	Revision 1 or draft revision 1 was the topical report
4	that was submitted to staff for review.
5	So that being said, a lot of the current
6	evaluations are based upon an earlier version that we
7	are looking at. On February 16th, staff we issued
8	72 RAI with regard to this current WCAP. Where we are
9	on it as of today is we've been having weekly phone
10	calls. In fact, the latest phone call was this
11	morning from 9:00 to 11:00.
12	And we're working through those 72 open
13	issues. Now they did, the owners group did give us
14	draft responses on May 3rd. And, again, on a week-to-
15	week basis, we're going after them.
16	As of last week, there were currently six
17	open RAI with regard to the in-vessel evaluations.
18	Now 16406 does mention in-vessel evaluations, however
19	it really describes them in a very broad brush
20	standpoint. The later WCAP that we expect to see at
21	the end of the month, 16793, if I've got my numbers
22	right, will be that evaluation that does specifically
23	address in-core.
24	So with regard to those six open items on
25	in-vessel, they are more or less, I'll just say
	1

(202) 234-4433

	265
1	they're not wrong. They are just not specific enough.
2	So there is a lot of there's detail to be added to
3	make it very clear on how this evaluation portends to
4	in-vessel.
5	With regard to the ex-vessel evaluations,
6	there were approximately 17 open RAI, mostly focused
7	on, as we mentioned earlier, the abrasive versus
8	erosive wear calculations, how you model it. And the
9	issue really becomes that the pump internals, it is
10	not quite a classical two body wear model. And it is
11	clearly not a three body model. So it is someplace in
12	between.
13	So as we are working through that
14	situation, that is where the bulk of the questions
15	come from. They go back to the use of Brunell
16	hardness. They go back to concentrations. They go
17	back to pressure drop across from stage=to=stage to
18	bearing loads and from the shaft. That's what the
19	bulk of the current open items with regard to the
20	pump evaluations are.
21	The open items with regard to valve
22	evaluations, again, have a lot to do with not all
23	classifications of valves were included. So there a
24	few additional things that need to be added to this
25	evaluation to make it complete.
	1

(202) 234-4433

	266
1	The section on debris characterization is
2	being completely rewritten. The owners group made
3	somewhat of a presentation along those lines. We
4	expect to see that hopefully in the next couple of
5	weeks.
6	From an overall standpoint, this WCAP on
7	our end should be wrapped up within the next three to
8	four weeks, at least from a technical discussion. And
9	I don't mean the writing in a safety evaluation. But
10	it is delving through all the technical issues and
11	working through the RAI.
12	There are a number of actions that aren't
13	covered within this WCAP that need to be addressed by
14	the licensees. Operator actions, where we talked
15	about potentially opening up throttle valves, changing
16	system line ups. That is not covered with the scope
17	of this WCAP.
18	Stopping and starting of pumps, which
19	would be an operator action, is not covered within
20	this WCAP. Those things would have to be and are
21	expected to be evaluated by licensee on their very
22	plant-specific downstream evaluations.
23	Cyclone separators were not evaluated as
24	part of this. Cyclone separators, there are a few
25	plants that are struggling with the design of their
	1

(202) 234-4433

	267
1	cyclone separators and how they fit into their system.
2	Some are the plugging of the cyclone separators.
3	There are some decisions being made of whether or not
4	they need to keep them or not.
5	And in a couple of cases, there is some
6	testing being done at flow cert with regard to cyclone
7	separator operation. Cyclone separators, again, are
8	not covered s part of this WCAP. The expectation is
9	that as licensees present their evaluations, that is
10	covered.
11	So reactor fuel and, again, long-term
12	cooling is covered in that additional WCAP.
13	There are some challenges. And part of
14	the challenges is downstream pump valve heat exchanger
15	evaluations are very plant specific and require large
16	amounts of very plant specif information.
17	Jumping ahead to bullet 4, so some of the
18	staff concern is if we have a reference book, if you
19	will, the staff feels that a number of different
20	people are going to be doing ths evaluation.
21	The struggle has been to put it to the
22	point where a reasonably competent engineer in the
23	field or from another organization would be able to
24	use this documentation in an of itself to be able to
25	go through this.

(202) 234-4433

	268
1	That's part of the struggle going through
2	the RAI. And again, it is the WCAP is not wrong.
3	Again, it is just not specific enough. We are adding
4	a lot more detail to this evaluation so that other
5	folks can use it.
6	Some vendors, as we mentioned, earlier,
7	are using vendor testing and those plants that are
8	those ones that, in effect, flunk the pump
9	evaluations. If I decide that I'm getting too much
10	internal wear on the pump such that my pump vibrates
11	in excess and potentially disables my pump, those
12	folks are going back and reevaluating. They are not
13	using the very conservative inlet input assumptions of
14	this WCAP. They are trying to do that.
15	We are looking at them on a case-by-case
16	basis. The WCAP does not really address off-normal,
17	if you will, situations nor is it intended to do that.
18	It is intended to give a method to do calculations, a
19	method to do evaluations within a very tight parameter
20	box. If you are outside of that, then it is a little
21	more difficult.
22	There are plant modifications planned,
23	both planned and ongoing. There are people who have
24	hard-faced internal components. There are licensees
25	who are going through plant modifications whether they
	1

(202) 234-4433

	269
1	are adding orifice plates to allow opening of throttle
2	valves. There are a couple of utilities that are
3	hard-facing throttle valves. There are a couple that
4	are doing a complete redesign of their HIPSI throttle
5	valves.
6	So there are a number of different things
7	going on. Since this is very plant-specific, those
8	tend to be the ongoing challenges. As I mentioned, we
9	are working with the owners group on a weekly basis.
10	We have typically Tuesday morning phone calls with
11	them. They tend to be very technical going through in
12	excruciating detail the details of the WCAP.
13	The expectation is we get this safety
14	evaluation and the revision one out sooner rather than
15	later because from a practical standpoint, almost
16	every licensee is going to have to at least do some
17	sort of reevaluation of where they are.
18	CHAIR WALLIS: It is still very much work
19	in progress.
20	MR. UNIKEWICZ: Well, I would say that it
21	is a work in progress but we are converging upon a
22	solution. And that convergence should be within the
23	next realistically within the next couple of weeks.
24	CHAIR WALLIS: I guess I was hoping
25	I've probably said it already today that you folks
	1

(202) 234-4433

	270
1	would come in saying certain things had been resolved
2	so we could go away with a little more assurance that
3	specific progress had been achieved. But that doesn't
4	seem to be the case. A lot of things are still being
5	worked on.
6	MR. UNIKEWICZ: I may have a little bit of
7	issue with that in that many of the modifications that
8	have been made to date have been down on the
9	conservative end where at least on the pump and valve
10	evaluations, where they failed, they failed miserably
11	and quite early.
12	So while they did use Revision 0 and Rev.
13	0, we had some issues with it. When I look at the
14	aggregate and you look at the end, realistically
15	people probably aren't going to be making additional
16	modifications because they did default on the
17	conservative end even though the methods weren't 100
18	percent, if you will.
19	CHAIR WALLIS: Okay.
20	MR. UNIKEWICZ: The issue that we are
21	at least from a component standpoint, ex-vessel, we
22	should be done with it in the next month. So we are
23	converging upon a solution. And again, these aren't
24	they are not dramatically different from what we
25	have seen.
	1

(202) 234-4433

	271
1	CHAIR WALLIS: Can we move on to the in-
2	vessel?
3	MR. UNIKEWICZ: Yes.
4	MR. SCOTT: Let me just add sort of sum
5	up with what you had mentioned a second ago, Dr.
6	Wallis. It is, in fact, the case with GSI 191 that we
7	are still working on virtually every area of 191. And
8	although we don't believe that, for example, ex-vessel
9	downstream is going to be the long pull in the pin so
10	to speak, we've got to dot the Is and cross the Ts and
11	that has not been done yet in really any of these
12	areas.
13	So we are fast approaching a deadline.
14	And we are still pretty busy. So in September,
15	October, this issue should be behind us hopefully.
16	That the ex-vessel downstream will have in-vessel
17	topical review results to talk to you about.
18	We are probably still going to be talking
19	to you about chemical effects and where we are going
20	with that. And we are not fully there yet. So it is
21	still very much a work in progress with a lot of
22	questions.
23	CHAIR WALLIS: Yes but some day soon you
24	folks are going to have to come here and say we have
25	resolved this. And this is why. Here is the
	1

(202) 234-4433

	272
1	evidence. And here is the logic and everything.
2	MEMBER BANERJEE: But does it have to be
3	a complete resolution or do you resolve
4	MR. SCOTT: Well, we've said all along
5	there is the possibility here that we may say that we
6	have reasonable assurance that Generic Safety Issue
7	191 has been resolved but there are specific technical
8	questions still out there just like some of those
9	things that Rob Tregoning talked about, the peer
10	review panel items. Some of those may be part and
11	parcel to resolution of 191. Or we may carry them in
12	some other manner. Research may looking into them in
13	a period that goes beyond when we currently planned to
14	resolve this safety issue.
15	So the trick, of course, is to say well
16	when we've gotten the uncertainties down low enough
17	that we can have that
18	CHAIR WALLIS: Well, what I'm thinking of
19	though is that we've got all these things up in the
20	air and today we haven't really dug in technically at
21	any depth and do anything. And in order to be able to
22	give some sort of ACRS assurance that everything is
23	okay, eventually we are going to have to do that.
24	So it seems to me that we may have to have
25	several subcommittee meetings where we dig into -
	1

(202) 234-4433

	273
1	MEMBER BANERJEE: Specific items.
2	CHAIR WALLIS: specific things in some
3	depth. That might take some time. So don't assume
4	that when you have your critical path and all that it
5	is going to be sort of a trivial tome to us with
6	something substantial. And it is going to take some
7	time.
8	MR. SCOTT: Well, I understand that. And
9	if you look at the timelines we're talking about here,
10	this topical report that Steve was addressing, will be
11	hopefully final or the SER for it will be final in the
12	fall so you could review that at that point.
13	CHAIR WALLIS: Well, you see everything
14	else is there, too. We've got the chemical effect and
15	everything else that is coming along in the fall. And
16	it's a full-time effort in the fall trying to cope
17	with all this stuff.
18	MR. SCOTT: Absolutely. And
19	CHAIR WALLIS: The ACRS has other things
20	to do so I'm not
21	MR. SCOTT: But none more important than
22	191, right?
23	CHAIR WALLIS: Ahhh.
24	MR. SCOTT: Well, that is what everybody
25	tells me.
	1

(202) 234-4433

	274
1	MEMBER BANERJEE: I guess let's ask
2	Susquehanna to take care of this.
3	MR. SCOTT: I understand that is might
4	take and I guess it depends on how many of these
5	particular subject areas you want to delve into. And
6	we haven't even talked about coatings today.
7	CHAIR WALLIS: We will delve into anything
8	that is important.
9	MR. SCOTT: Well
10	CHAIR WALLIS: If you do a really good
11	job, we won't have to delve into anything perhaps.
12	MR. SCOTT: I'm sure that is the way it
13	will play out.
14	MEMBER BANERJEE: But what about plating.
15	I mean you
16	MR. SCOTT: About what?
17	MEMBER BANERJEE: talk about coatings
18	but what about platings on these, you know,
19	temperature gradient things.
20	CHAIR WALLIS: Yes, right.
21	MR. SCOTT: Are you talking about in-
22	vessel? In the core?
23	MEMBER BANERJEE: Yes.
24	MR. SCOTT: The core?
25	MEMBER BANERJEE: Right primarily.
	1

(202) 234-4433

	275
1	CHAIR WALLIS: And then the heat exchange.
2	MEMBER BANERJEE: The heat exchange may
3	not be bad.
4	MR. UNIKEWICZ: Heat exchanger typically
5	is not that critical a part. And the reason that it
6	is not, there are a couple of reasons. One is that
7	the type of materials used in the heat exchangers is
8	more of following it tends to be a long-term
9	phenomena with a half-inch, three-eighths inch tubing.
10	The
11	CHAIR WALLIS: You are talking about wear?
12	MR. UNIKEWICZ: No.
13	MEMBER BANERJEE: No, we're talking about
14	plate out.
15	CHAIR WALLIS: Plate out?
16	MR. UNIKEWICZ: The following of the heat
17	exchangers. The second thing is shut down cooling
18	heat exchangers in general, the way they are designed,
19	they are designed for the maximum cooling load
20	typically early maximum heat load. They are
21	typically over-designed by 15 to 20 percent, depending
22	on the vintage of the plant. Later plants were
23	designed 10 to 15 percent.
24	When we are looking at the use of heat
25	exchangers, shut down cooling heat exchangers, later
	1

(202) 234-4433

	276
1	on in the accident, we're talking at least better by
2	half the design loads that most of these heat
3	exchangers were initially sized for.
4	Now the calculations on heat exchanger
5	evaluation, usually we'll make sure they have the
6	appropriate falling factor for chemicals. And I am
7	not as concerned about chemical effects, about
8	shutdown cooling heat exchangers.
9	The plating out with regard to fuel should
10	be covered by 16793, the in-vessel evaluations. So at
11	least they should be addressed.
12	MEMBER BANERJEE: Maybe that would set our
13	mind at rest. But we need to have it set at rest.
14	MR. UNIKEWICZ: Okay. The heat exchanger
15	evaluation, at least the shutdown cooling heat
16	exchanger piece is covered in 16406.
17	With regard to the vessel, the playing out
18	of the vessel and I'll say boiler scale for lack of a
19	better term right now, that is intended to be covered
20	by 16793. Now understand that staff has not see this
21	yet. The next couple of slides, which I may in
22	your prerogative we'll either go through now were
23	a number of issues that the staff had presented to the
24	owners group back in February.
25	And really it was our request to ensure
	1

(202) 234-4433

	277
1	that these issues are very specifically addressed
2	within the WCAP.
3	MEMBER BANERJEE: I wonder if I mean
4	some of these may not be resolved immediately. But
5	things like cooling after blockage and things,
6	potentially research could take a look at some of this
7	inflect inflect is still alive and well and living
8	in Pennsylvania. I'm not sure. Is it? Operational?
9	MEMBER KRESS: Who? Emergency cooling
10	MEMBER BANERJEE: Yes.
11	MR. UNIKEWICZ: The core heat transfer
12	test and no, that facility no longer exists.
13	MEMBER BANERJEE: It's gone?
14	MR. UNIKEWICZ: That is correct. It is
15	gone.
16	CHAIR WALLIS: Well, the Flek Test doesn't
17	exist but Hawkwright just built another one.
18	MEMBER BANERJEE: Hawkright has one in
19	MR. ANDREYCHEK: You are talking about the
20	Penn State test?
21	MEMBER BANERJEE: Right.
22	MR. ANDREYCHEK: That test facility is
23	alive and well, yes.
24	CHAIR WALLIS: Well, we need to move on
25	here. Are we going to be finished with in-vessel

```
(202) 234-4433
```

	278
1	fairly soon here?
2	MR. UNIKEWICZ: We can be. And really the
3	next seven slides really just explain those items we
4	specifically addressed with the owners group while
5	they were in the process of putting together 16793.
6	Our expectation, when we review this and we get it
7	next month, will be that they have addressed all of
8	these issues as well as any others we have.
9	Now we did meet with the owners group
10	yesterday afternoon. So while I say we haven't looked
11	at the WCAP, there are issues that we are addressing
12	currently with the owners group.
13	This over the next few months will be an
14	ongoing, week-to-week process. There, the expectation
15	is going to be if not weekly phone calls, biweekly
16	phone calls going through all of the issues so that we
17	can address our questions and ensure that things are
18	being addressed in real time.
19	CHAIR WALLIS: I'm just looking at your
20	slides. The things that you have on slides 12 through
21	15, 16, 17 are just the kind of questions I think that
22	we have been having.
23	MR. UNIKEWICZ: Right. And these were the
24	questions
25	CHAIR WALLIS: They still seem to be
	1

(202) 234-4433

	279
1	unanswered, is that right?
2	MR. UNIKEWICZ: Our expectation is those
3	questions will be answered by 16793. They were, I'll
4	call them preliminary RAIs because we hadn't received
5	the WCAP. It was a presentation we had made to the
6	owners group saying this is what we expect to see
7	being addressed. This is what we expect to see being
8	addressed once we receive the WCAP.
9	CHAIR WALLIS: Well, how are they
10	addressing something like debris collected in
11	restricted channels? Are they doing experiments or is
12	it all analysis? Or what? How do they address
13	something like that?
14	MR. UNIKEWICZ: We haven't seen the WCAP
15	so I can't answer that question yet.
16	CHAIR WALLIS: You don't know how.
17	MEMBER BANERJEE: But I think you can
18	guess that it is not with experiments.
19	MR. UNIKEWICZ: I can guess a lot of
20	things. However, I would
21	MEMBER BANERJEE: All right. We won't
22	guess. But in case it is not by experiment
23	MR. UNIKEWICZ: Mr. Andreychek, I'm sure,
24	can answer that question. But I'm not going to be so
25	presumptuous as to guess what is in the WCAP without
	1

(202) 234-4433

	280
1	looking at it. But these are our initial set of staff
2	concerns that we expect these to be addressed when we
3	see this over the next couple of weeks.
4	CHAIR WALLIS: There are three WCAPs here
5	that are
6	MR. UNIKEWICZ: There are three WCAPs that
7	really effect downstream. One is the one Paul Klein
8	had talked about earlier in the day, 16530.
9	CHAIR WALLIS: How many WCAPs are there
10	overall that we are going to have to look at in the
11	fall. There are three here and there are some more
12	MR. UNIKEWICZ: these are the three. At
13	least
14	CHAIR WALLIS: Yes. But there are other
15	ones on chemical effects and stuff.
16	MR. UNIKEWICZ: Well, 530 is the chemical
17	effects one.
18	CHAIR WALLIS: So it is part of that one?
19	MR. UNIKEWICZ: Correct.
20	MR. SCOTT: There is another chemical
21	effects topical report that the staff is not being
22	asked to do an SE on. It is the one that was referred
23	to by Paul Klein and others this morning regarding
24	refinements of the 16530 methodology. So we're going
25	to provide comments on that. And you all may want to
	•

(202) 234-4433

	281
1	take a look at it. But it is not going to be the
2	subject of an SER.
3	MEMBER BANERJEE: Again, remind me what
4	the methodology is.
5	MR. SCOTT: You remember that the owners
6	group told you about, the chemical effects WCAP, which
7	is they called it a model and you took some issue
8	with that, remember.
9	MEMBER BANERJEE: Right, right.
10	MR. SCOTT: And then there were a couple
11	of things in there a couple of subject areas and
12	they went through it so fast. It was the second part
13	of the presentation, that I think they kind of glossed
14	over this. There is another report to follow that
15	will contain those refinements that are trying to pull
16	back some of the known conservatisms in the chemical
17	effects modeling, okay.
18	That report is supposed to come in when?
19	Mo, when?
20	MR. DINGLER: The end of the month.
21	MR. SCOTT: The end of this month, same as
22	
23	MEMBER BANERJEE: That is the passivation
24	stuff?
25	MR. SCOTT: That is one of the examples of

(202) 234-4433

	282
1	it, yes. And, again, they are not asking for an SE on
2	that. So what will happen is is we will make comments
3	on it. And licensees who choose to reference it will
4	have to recognize what those comments were that we
5	made. And incorporate that methodology at their risk,
6	so to speak.
7	So now that makes four reports if you are
8	interested in looking that one, which I assume you
9	would be.
10	CHAIR WALLIS: Four reports and then
11	several SERs from you?
12	MR. SCOTT: Three SERs. If you are
13	interested in looking at our review guidance,
14	additional review guidance that we are planning to
15	develop this fall, that is another item. So there is
16	a full plate.
17	MEMBER BANERJEE: I think we need a full-
18	time consultant.
19	CHAIR WALLIS: Okay.
20	MR. UNIKEWICZ: I really didn't have
21	anything more. If there are those nine bullets
22	really were just our thoughts. That is where we are
23	going with it. And just what we expect to review.
24	CHAIR WALLIS: I'd like to take a break
25	until three o'clock. We are behind. We will try to
	1

(202) 234-4433

	283
1	catch up. But it looks as if we are going to be here
2	at least beyond five o'clock. So we'll take a break
3	now until three o'clock. And then we will hear from
4	NEI.
5	(Whereupon, the foregoing
6	matter went off the record at
7	2:48 p.m. and went back on the
8	record at 3:03 p.m.)
9	CHAIRMAN WALLIS: We are looking forward
10	to a presentation from NEI, and then we will move on
11	to the real stuff from what the plants are doing. So
12	let's go ahead.
13	MR. BUTLER: All right. Thank you. John
14	Butler, NEI.
15	I just want to kick this off very quickly
16	and turn it over to Salem for their discussion. But
17	I wanted to start this off by pointing out that we
18	have put together what we are calling four case
19	studies to illustrate what the plant activities are to
20	resolve GSI-191.
21	They are intended to give you a better
22	sense of those activities. You have been listening
23	this morning and early this afternoon of a number of
24	the specific topic areas that are still underway,
25	still have a high degree of uncertainty. Irrespective
	1

(202) 234-4433

	284
1	of this, the plants have a schedule they have to meet,
2	and they are doing what they can with these
3	uncertainties to meet that schedule.
4	So it is important to keep that in mind.
5	Now the four case studies that we have picked There
6	were a number of criteria that I put together to try
7	to identify the plants for these case studies. I am
8	looking for a range of resolution activities
9	illustrated in these four cases, and I think we have
10	accomplished that.
11	With these four cases, we have four of the
12	five strainer designs being utilized. So you will get
13	a little bit of insight into the range of strainer
14	designs and the actions surrounding those strainer
15	designs.
16	We also wanted to have, for lack of a
17	better word, interesting cases. So I avoided picking
18	plants that were low fiber, would basically are
19	basically complete with their activities.
20	CHAIRMAN WALLIS: Do you have the one with
21	all the aluminum in it?
22	MR. BUTLER: No. The final criteria and
23	probably the most important criteria I'll preface
24	that by saying you have to realize that there is a
25	tremendous amount of activity underway at plants to
	1

(202) 234-4433

	285
1	meet the schedule that they have.
2	So my third criteria was finding four
3	plants that would allow me to or would provide me
4	the time necessary to give the presentation here. So
5	I am very happy that I was able to find four plants to
6	meet that third criteria, to give us the time to
7	discuss what activities they have underway.
8	So with that, I will turn it over to
9	Salem.
10	CHAIRMAN WALLIS: Now we are only going to
11	hear Salem today.
12	MR. BUTLER: Yes. The three cases that
13	will be discussed tomorrow are Fort Calhoun for OPPD,
14	Wolf Creek, and Indian Point.
15	So with that, I will turn it over to
16	Salem.
17	MR. RAJKOWSKI: Good afternoon. My name
18	is Len Rajkowski. I am the design manager at Salem
19	Station, and thus responsible for the ultimate
20	implementation of the GSI-191 and the design basis of
21	the station.
22	I have brought a team with me today to
23	represent the different aspects, the vendors involved
24	with this project, so that we can make sure you get
25	the full enlightenment of that resource here today.
	1

(202) 234-4433

	286
1	Starting off to my right is Kiran Mathur.
2	Kiran is the lead responsible engineer for this
3	project, the implementation. I would like him to go
4	over the modifications specifically that we have done
5	to date and yet to go.
6	To the right of him is Dr. Blumer. Dr.
7	Blumer is with the strainer manufacturer, CCI. He
8	will be talking about many of the design features,
9	fabrication and testing.
10	To the right of him is Sargent and Lundy,
11	our architectural engineering firm, performing most of
12	the engineering analysis for this modification, and
13	they are ready to discuss debris generation, debris
14	transport and chemical effects analysis with Dr.
15	Blumer's help, for sure.
16	With that, I will turn it over to Kiran.
17	MR. MATHUR: Thank you, Len. Before I
18	start giving you what modifications we made, I don't
19	know how much familiar you are with the old Salem
20	plant. I will just give you a brief overview.
21	Salem is a four-loop Westinghouse plant.
22	It is a dry large containers dry large containment.
23	All the interpolate systems are located inside the
24	bioshield area, and our containment sump is located in
25	the outer annulus area.

(202) 234-4433

	287
1	We have two RHR pumps that take suction
2	from the containment sump during the recirculation
3	phase of the LOCA, and they provide cooling water to
4	the reactor core to the reactor, to the high head
5	and the low head pumps and also to the containment
6	sump. The next slide, please.
7	The next slide just gives you a broad
8	overview of how these systems are laid out. Okay.
9	Next slide.
10	Just the containment layout. As I said,
11	the ECCS sump is located along our annulus area.
12	There are four entrances into the ECCS, and actually
13	if during a postulated LOCA, all the degree that is
14	generated inside the bioshield has a potential to flow
15	through these openings and eventually could end up at
16	the containment sump. Next slide, please.
17	Oh, and just to let you know, the initial
18	pre-GSI-191 strainer layout, we had only 85 square
19	feet of the strainer that was there. Next slide,
20	please.
21	CHAIRMAN WALLIS: So this is different
22	from some plants. You actually have some inner region
23	where lots of the debris may get held up.
24	MR. MATHUR: That's right.
25	CHAIRMAN WALLIS: Are you taking credit
	1

(202) 234-4433
	288
1	for that?
2	MR. MATHUR: We assumed the debris flows
3	through the bioshield wall Yes.
4	VICE CHAIRMAN BANERJEE: Where are the
5	bioshields?
6	MR. MATHUR: If you see those four
7	circles. Those are the accumulators, and those walls
8	or entrances are at that location.
9	VICE CHAIRMAN BANERJEE: They are pretty
10	sizable openings?
11	MR. MATHUR: Yes. They are decent size
12	openings. Okay. And if you see, our sump is located
13	along the annulus area on the outside of the bioshield
14	wall, along the wall of the containment.
15	The next two slides just give you an
16	overview of the debris that we have that could be
17	generated. It consists of the metallic reflective
18	insulation, Nukon.
19	Predominantly, we have a lot of Nukon
20	insulation. We have some calcium silicate, Kaowool
21	insulation and this Min-K insulation, what we talked
22	about today in the morning, and we have some qualified
23	and unqualified coatings.
24	CHAIRMAN WALLIS: How much Cal-Sil do you
25	have?
	l

(202) 234-4433

	289
1	MR. MATHUR: We have What we did was we
2	had around 400 lineal feet of calcium silicate that
3	was identified within the zone of influence, and we
4	have already replaced all the calcium silicate
5	insulation.
6	CHAIRMAN WALLIS: So you've taken out all
7	the Cal-Sil?
8	MR. MATHUR: That was within the zone of
9	influence, yes.
10	CHAIRMAN WALLIS: And so this that's on
11	the feedwater
12	MR. MATHUR: And the blowdown piping.
13	CHAIRMAN WALLIS: is not likely to be
14	affected, or is it?
15	MR. MATHUR: No, those two pipings had
16	calcium silicate insulation, and we replaced it with
17	the metallic reflective insulation.
18	VICE CHAIRMAN BANERJEE: What is the steam
19	generator insulation?
20	MR. MATHUR: On Unit Number One, we have
21	steam generator insulation is the Nukon kind
22	insulation, and on Unit Two also we have Nukon
23	insulation, but on Unit Number Two we are replacing
24	those steam generators in the spring of 2008, and at
25	that time the insulation will be replaced with
	1

(202) 234-4433

<pre>1 metallic reflective insulation. 2 CHAIRMAN WALLIS: And the Min-K 3 much of that is there? 4 MR. MATHUR: We do not have much of 5 insulation. This insulation is actually instat 6 some very hard to get, congested areas. So, re 7 where we have identified Min-K insulation, we 8 taken it out.</pre>	how f Min-K lled in eally, e have t out?
 CHAIRMAN WALLIS: And the Min-K much of that is there? MR. MATHUR: We do not have much of insulation. This insulation is actually installing some very hard to get, congested areas. So, room where we have identified Min-K insulation, we taken it out. 	how f Min-K lled in eally, e have t out?
3 much of that is there? 4 MR. MATHUR: We do not have much of 5 insulation. This insulation is actually instand 6 some very hard to get, congested areas. So, res 7 where we have identified Min-K insulation, we 8 taken it out.	f Min-K lled in eally, e have t out?
 MR. MATHUR: We do not have much of insulation. This insulation is actually instation some very hard to get, congested areas. So, ro where we have identified Min-K insulation, we taken it out. 	f Min-K lled in eally, have t out?
5 insulation. This insulation is actually insta 6 some very hard to get, congested areas. So, ro 7 where we have identified Min-K insulation, we 8 taken it out.	lled in eally, have t out?
 some very hard to get, congested areas. So, r where we have identified Min-K insulation, we taken it out. 	eally, have t out?
7 where we have identified Min-K insulation, we8 taken it out.	e have t out?
8 taken it out.	t out?
	t out?
9 CHAIRMAN WALLIS: You have taken i	
10 MR. MATHUR: Yes.	
11 VICE CHAIRMAN BANERJEE: So this is	before
12 you made any marks?	
13 MR. MATHUR: That's right. That's	how it
14 was before we made the marks. Okay?	
15 CHAIRMAN WALLIS: So how big is th	le new
16 strain or maybe you are getting to that?	
17 MR. MATHUR: We'll talk about it.	Okay.
18 This slide just gives you a perspect	ive of
19 our plan parameters we have. As I said, we have	ve two
20 RHR pumps. Each If one pump is operating,	the
21 maximum flow could be 5110 gpm for the Unit Or	ne and
22 4890 for the Unit Two, and if the two pump	os are
23 operating, we have 9,000 gpm flow.	
24 The next, the columns show you the	e NPSH
25 required, and then we talk about the flood height	ght.

(202) 234-4433

	291
1	CHAIRMAN WALLIS: It's a fairly high NPSH,
2	I would say.
3	MR. MATHUR: Right. Then we have the
4	flood height, and our formulate is sodium hydroxide.
5	VICE CHAIRMAN BANERJEE: What do you mean
6	by the flood height?
7	MR. MATHUR: Oh, what we determined was,
8	if you have a LOCA, what is the minimum amount of
9	water that could go into the containment, because what
10	we wanted to make sure is our new strainers that we
11	are installing are completely submerged underwater.
12	So we determined the minimum flood height.
13	VICE CHAIRMAN BANERJEE: This is the
14	height above the sump bottom?
15	MR. MATHUR: Yes. Our containment is at
16	the elevation 78. Okay? So we will 2 foot, 10
17	inches. This would be
18	CHAIRMAN WALLIS: So 80 feet of water.
19	MR. MATHUR: That's right. I'm sorry.
20	That's what it meant.
21	CHAIRMAN WALLIS: Okay.
22	MR. MATHUR: Okay. The next slide shows
23	the existing sump that we have. Oh, I'm sorry.
24	CHAIRMAN WALLIS: Are you thinking of
25	changing the buffer material?
	1

	292
1	MR. MATHUR: No, we do not. No.
2	The next slide talks about the plant
3	modifications.
4	VICE CHAIRMAN BANERJEE: You do not, but
5	why not?
6	MR. MATHUR: We did not find any Based
7	on our chemical testing we have done, we did not find
8	any necessity of doing it at all. Okay?
9	The next slide talks about all the plant
10	modifications we have made. As you see, initially we
11	had about 85 square feet of strainer On Unit Number
12	one. We have installed 4,854 square feet of
13	strainers. Okay? We replaced our existing
14	VICE CHAIRMAN BANERJEE: This is open
15	area. In other words, they are stacked strainers.
16	You are counting all the area.
17	MR. MATHUR: That's right. This is the
18	pockets. These are the pocket areas. This is strainer
19	area. That's exactly right. Okay? And we removed
20	our existing enclosed sump enclosure. We installed
21	a new sump enclosure and, as we just said, we have
22	around 23 strainer modules. There are 140 pockets
23	each, and we have one strainer module that has 210
24	pockets, and all these strainer modules are lying next
25	to each other, and eventually they connect to the

(202) 234-4433

	293
1	containment sump.
2	Other thing we did was we installed new
3	level switches. The new level switches were
4	installed, because the existing the original level
5	switches have a higher uncertainty. So these level
6	switches provide a very tight uncertainty. It is plus
7	or minus half an inch.
8	So we can get a very good indication of
9	what our containment flood level is. And the new sump
10	strainers that we have installed have perforated holes
11	of 1/12th of an inch. Previously, we had 1/8th of an
12	inch openings.
13	MEMBER ABDEL-KHALIK: These level switches
14	are just for the operators information or
15	MR. MATHUR: These are No, these are
16	They tell the operator that at When the containment
17	flood level goes to 62 percent, the switchover can
18	happen to the recirculation phase.
19	So, basically, it gives the operators
20	indication that they can turn over to the
21	recirculation phase. Okay?
22	CHAIRMAN WALLIS: So this is a tremendous
23	improvement.
24	MR. MATHUR: Absolutely is.
25	CHAIRMAN WALLIS: Orders of magnitude.

(202) 234-4433

	294
1	MR. MATHUR: Yes.
2	VICE CHAIRMAN BANERJEE: And this
3	perforated plate
4	MR. MATHUR: We installed a trash rack in
5	front of our strainers. I'll show you in a picture.
6	Yes, we have a picture of that one, and we installed
7	even installed a perforated plate behind this trash
8	rack to act as a pre-strainer.
9	VICE CHAIRMAN BANERJEE: What were the
10	size of the old one?
11	MR. MATHUR: Same size as our strainers,
12	1/12th of an inch.
13	CHAIRMAN WALLIS: Why don't you work in
14	metric system?
15	VICE CHAIRMAN BANERJEE: Now this
16	perforated trash rack perforated plates can't
17	block up, can it?
18	MR. MATHUR: It does not matter. As you
19	see Yes, that's right. It should not be a problem
20	at all. Then as you
21	CHAIRMAN WALLIS: You are taking credit
22	for something with this trash rack perf plate?
23	MR. MATHUR: We'll talk about it a little
24	bit later in the presentation about it. Okay?
25	Again, as is aid, we replaced around 400
	1

(202) 234-4433

	295
1	linear feet of calcium silicate insulation and
2	replaced the Min-K insulation with reflective metallic
3	insulation. The only thing is in certain areas where
4	it was because of the accessibility concerns, we
5	had to install some Nukon insulation instead of it,
6	and that amount of Nukon insulation was taken into
7	consideration when we did our debris generation
8	calculation.
9	VICE CHAIRMAN BANERJEE: Where was this
10	accessibility?
11	MR. MATHUR: The piping comes from the
12	reactor. It goes From the nozzle it goes through
13	a bioshield into the bioshield wall. So inside the
14	wall it was very difficult for us to put in the
15	metallic reflective insulation, because of very tight
16	clearances. So that's why we put in this Nukon
17	insulation.
18	VICE CHAIRMAN BANERJEE: Inside the
19	bioshield?
20	MR. MATHUR: That's inside the wall.
21	CHAIRMAN WALLIS: How much did you have to
22	consider radiation to the personnel who were putting
23	this in?
24	MR. MATHUR: No, it was The radiation
25	was not that much at all, and also inside the
I	1

(202) 234-4433

	296
1	bioshield also, when the piping comes out of the
2	reactor nozzle, it is sitting in a place called the
3	sign box. So periodically we inspect the nozzles. So
4	in the last outage we removed that sign box. So at
5	that time, we replaced the insulation. So there was
6	no additional those workers, what you are talking
7	about, impacted by this modification.
8	CHAIRMAN WALLIS: What is this big black
9	thing here?
10	MR. MATHUR: This is the reactor wall.
11	What I'm positive is it's our refueling
12	CHAIRMAN WALLIS: So you have holes in
13	that for the things that go through all that black?
14	MR. MATHUR: Yes, that's right.
15	CHAIRMAN WALLIS: And you have to somehow
16	change the insulation in those?
17	MR. MATHUR: That's right, yes, inside
18	those walls. It was not that much of a difficulty.
19	CHAIRMAN WALLIS: So if you have a LOCA
20	inside, it would be protected then from blowing
21	insulation off the steam generator, if you have a LOCA
22	inside that wall.
23	MR. MATHUR: Yes.
24	CHAIRMAN WALLIS: That's a very
25	substantial wall there.
	1

	297
1	MR. MATHUR: Yes.
2	VICE CHAIRMAN BANERJEE: How high is that
3	wall? As high as the reactor?
4	MR. MATHUR: Yes. It goes above the
5	reactor.
6	VICE CHAIRMAN BANERJEE: Above the
7	reactor?
8	MR. MATHUR: Yes. Next slide, please.
9	This is the Unit Number Two
10	modifications. They are very similar to what we just
11	talked about Unit Number One. The only main
12	difference is that we have one less module installed
13	on Unit Number One. This is again because of the
14	access ability concerns.
15	We had an interference at one location.
16	so we had to put a transition connection between the
17	two strainer modules instead of a strainer there.
18	Other than that, all the modifications on Unit Number
19	One is similar to Unit Number Two, and both these
20	installations have been completed now. Okay.
21	The next slide shows the old sump strainer
22	layout. As you see, it was just a small box, and
23	that's all. It had the strainer around it, and the
24	water would just go through it.
25	The next slide

(202) 234-4433

	298
1	VICE CHAIRMAN BANERJEE: What are we
2	seeing, actually, here?
3	MR. MATHUR: This is the strainer box
4	This is the old sump strainer box. Okay?
5	CHAIRMAN WALLIS: We have the treads on
6	the ladder. So I guess we have some idea.
7	MR. MATHUR: It was If I'm not
8	mistaken, it was like 8 feet by 3 feet. The total
9	square footage was 85 square feet.
10	VICE CHAIRMAN BANERJEE: So how high was
11	it?
12	MR. MATHUR: Around 3 1/2 feet, if I am
13	not mistaken, three feet. Yes, three feet.
14	VICE CHAIRMAN BANERJEE: Okay. And what
15	is those vertical lines there?
16	MR. MATHUR: Those are the existing
17	Those are the level instruments that we have, the
18	level indication instruments.
19	VICE CHAIRMAN BANERJEE: Within this box?
20	MR. MATHUR: Oh, these ones? These are
21	what we call the trash recs, so that you start the big
22	debris from going in. In fact, that we had the screen
23	mesh.
24	CHAIRMAN WALLIS: Oh, the strainer is even
25	smaller. It's inside there.

(202) 234-4433

	299
1	MR. MATHUR: Yes.
2	CHAIRMAN WALLIS: It's gone now anyway.
3	So we don't need to worry about that.
4	MR. MATHUR: Okay. The next slide shows
5	CHAIRMAN WALLIS: It's in a museum
6	somewhere?
7	MR. MATHUR: Yes. The next slide our Unit
8	Number One enclosure, the sump enclosure.
9	CHAIRMAN WALLIS: This is the new one?
10	MR. MATHUR: Yes, this is the new sump
11	enclosure that we have installed, and it is very
12	similar on Unit Number Two also, and all the strainers
13	connect to this one, and all the pumps take suction
14	from underneath.
15	CHAIRMAN WALLIS: This is all stainless
16	steel?
17	MR. MATHUR: That's exactly right.
18	VICE CHAIRMAN BANERJEE: So what is this
19	that we are seeing there, the stainless steel box
20	there. What is it?
21	MR. MATHUR: This is the enclosure that is
22	sitting on top of our sump pit, and all the strainers
23	connect to this enclosure.
24	VICE CHAIRMAN BANERJEE: So where does the
25	water
	1

(202) 234-4433

	300
1	MR. MATHUR: We'll see the next slide.
2	Okay, now if you see the next slide, the next slide
3	shows the strainers that we have installed. Okay?
4	And all these are interconnected, and they dump the
5	water into
6	CHAIRMAN WALLIS: Now let's see. The
7	strainer there's a layer at the bottom which is
8	different. Those are
9	MR. MATHUR: Those are the trash racks we
10	just talked about.
11	CHAIRMAN WALLIS: These at the bottom?
12	Oh, those are trash racks?
13	MR. MATHUR: Yes.
14	CHAIRMAN WALLIS: So the pigeonholes go
15	down behind the trash racks, do they?
16	MR. MATHUR: Yes, they do.
17	CHAIRMAN WALLIS: They are just hidden at
18	the bottom?
19	MR. MATHUR: Yes, they do. It goes to the
20	bottom.
21	CHAIRMAN WALLIS: So in order for the top
22	level here to be activated, there must be an enormous
23	amount of water in this area.
24	MR. MATHUR: Yes. It has to go to 2 feet,
25	10 inches, and these strainers the height is 2

(202) 234-4433

	301
1	feet, 7 inches.
2	VICE CHAIRMAN BANERJEE: Oh, so this
3	height is 2 feet, 7 inches?
4	MR. MATHUR: the height of the strainer
5	right now is 2 feet, 7 inches.
6	CHAIRMAN WALLIS: A big containment. The
7	diameter is 200 feet or something?
8	MR. MATHUR: I don't remember.
9	CHAIRMAN WALLIS: It's big.
10	MR. MATHUR: Yes, it is.
11	CHAIRMAN WALLIS: It's large.
12	MR. MATHUR: Yes. I think, if I am not
13	mistaken, the when The refueling water storage tank
14	dumps in around 400,000 gallons of water.
15	MEMBER ABDEL-KHALIK: So where on this
16	picture is the 2 foot, 7 inch elevation from the
17	floor?
18	MR. MATHUR: That is the top of the
19	strainer module.
20	MEMBER ABDEL-KHALIK: The top?
21	MR. MATHUR: Yes.
22	MEMBER ABDEL-KHALIK: Okay. Thank you.
23	VICE CHAIRMAN BANERJEE: Those
24	pigeonholes?
25	MR. MATHUR: Yes, the top of the
	I Contraction of the second

	302
1	pigeonholes, and those are the strainer pockets we
2	talked about.
3	CHAIRMAN WALLIS: They are all encoded by
4	ZIP Code, in other words.
5	MEMBER KRESS: Only a certain degree goes
6	in this.
7	VICE CHAIRMAN BANERJEE: I still can't get
8	what is the function of that big stainless steel
9	CHAIRMAN WALLIS: Collection.
10	MR. MATHUR: No. All the water goes into
11	the box or pit.
12	VICE CHAIRMAN BANERJEE: Underneath that.
13	MR. MATHUR: Yes, that's right, and it has
14	the level indication also.
15	CHAIRMAN WALLIS: Is that where the old
16	strainer used to be there?
17	MR. MATHUR: That is exactly right.
18	CHAIRMAN WALLIS: Same staircase, but new
19	strainer.
20	MR. MATHUR: We had to even modify the
21	staircase also to accommodate the new layout. We had
22	to do a lot of modifications, because even these new
23	strainers that we had, we had to do a lot of
24	modifications, because we had some cable tray
25	CHAIRMAN WALLIS: Well, you were lucky in
	1

(202) 234-4433

	303
1	a way. You have a lot of open space to put this
2	strainer.
3	MR. MATHUR: No, but you have to realize,
4	when we did this modification, we had to do a lot of
5	pre-work, because those areas were all covered with
6	the cable tray supports. So we had to cut off part of
7	the cable tray supports and put these bridges. If you
8	see those, you see those bridges around? So those
9	were the cable tray supports that went all the way to
10	the floor.
11	CHAIRMAN WALLIS: Okay. But at least you
12	did have some space. It's just that you had the poles
13	in there.
14	MR. MATHUR: Okay. Now if you see this
15	slide on the screen, it shows you
16	CHAIRMAN WALLIS: Which one is that?
17	MR. MATHUR: I'm jumping ahead to Slide
18	39.
19	VICE CHAIRMAN BANERJEE: That is much
20	clearer.
21	MR. MATHUR: That's right.
22	CHAIRMAN WALLIS: Well, 39 is a long way
23	ahead.
24	MR. MATHUR: Yes. Dr. Blumer is going to
25	talk more about it.
	1

```
(202) 234-4433
```

	304
1	VICE CHAIRMAN BANERJEE: Yes, but it shows
2	you the layout.
3	CHAIRMAN WALLIS: I got that impression
4	already, I think. Are there dimensions on it.
5	VICE CHAIRMAN BANERJEE: One has the
6	suction box on the left, and the other on the right.
7	MR. MATHUR: That's right. They are
8	opposite plans. If you see, we tried to put in as
9	much of strainers as possible based on the real
10	estate, and if you see at the end, we have this lift
11	tank. That's where we could not go any further
12	beyond.
13	VICE CHAIRMAN BANERJEE: So you just put
14	as much in the way of strainers as the space would
15	accommodate?
16	MR. MATHUR: Yes. Almost, yes.
17	CHAIRMAN WALLIS: So the river of stuff
18	comes in through this around this yellow whatever
19	it is here. It comes in around this door. There's a
20	door. There's a space.
21	MR. MATHUR: Yes. All the doors, yes.
22	VICE CHAIRMAN BANERJEE: So the green
23	stuff there is the bioshield. Right?
24	MR. MATHUR: That's right. That's the
25	bioshield wall.

	305
1	VICE CHAIRMAN BANERJEE: The yellow circle
2	is the opening that area?
3	MR. MATHUR: Actually, that is an
4	accumulator there, and that's where the opening is.
5	Yes.
6	MR. RAJKOWSKI: Yes. The openings would
7	be on both sides of each accumulator. So there is
8	actually You are looking at eight openings.
9	MR. MATHUR: Right.
10	VICE CHAIRMAN BANERJEE: But this is one
11	of those eight openings.
12	MR. MATHUR: That's exactly right.
13	DR. BLUMER: The only thing that is not
14	shown is the trash rack on both sides of this.
15	CHAIRMAN WALLIS: Right.
16	VICE CHAIRMAN BANERJEE: Which is shown in
17	that other picture.
18	MR. MATHUR: Other picture, yes.
19	CHAIRMAN WALLIS: Okay. So we are going
20	to go back to 19 or wherever we were? Sixteen? Well,
21	it's all the same.
22	MR. MATHUR: Yes. The two pictures shown
23	one for Unit Number One and one for Unit Number Two,
24	actually, which are very similar to each other.
25	CHAIRMAN WALLIS: And you are keeping the
	1

(202) 234-4433

	306
1	floor very clean.
2	MR. MATHUR: Oh, we keep it very spick and
3	span, actually. It's very clean. There is no
4	question about that, and we have a very tight We'll
5	talk at the end. We have a very tight control on
6	anything that goes inside the containment. The next
7	slide.
8	I think we talked a lot a little while
9	back on the downstream effects. I don't know how much
10	you want to talk about it. But as we said, we have
11	the strainer openings that are 1/12th of an inch, and
12	still some debris can pass through it.
13	So what we did was we went in and looked
14	at all the components on the downstream of the sump,
15	and we identified around 151 components for Unit
16	Number One and 156 for Unit Number Two. We even did
17	a bypass testing at the CCI facility, which Dr. Blumer
18	will talk later on.
19	The downstream components consisted of
20	pumps, heat exchangers, valves, orifices, everything,
21	and our analysis showed that the downstream clearances
22	are acceptable. We did not see any problems with them
23	at all.
24	As far as the in-core thing is concerned,
25	Westinghouse did a design specific evaluation for us

(202) 234-4433

	307
1	at the time, and we determined that we do not have any
2	core blockage problems; and now based on the
3	presentation we just saw, we just saw that even if you
4	had 99 percent core blockage, there is no problem.
5	VICE CHAIRMAN BANERJEE: And you had no
6	blockage at all or you had
7	MR. MATHUR: No, no. We calculated around
8	28 percent blockage. What we did was we When the
9	bypass testing was done, we did a very specific
10	analysis. We measured the fiber that got bypassed,
11	and then evaluated as to how it would fit in on the
12	grid, and we found out that a maximum of 28 percent of
13	blockage.
14	CHAIRMAN WALLIS: So how many pick-up
15	loads of debris would you release in a LOCA?
16	MR. MATHUR: We'll talk about it.
17	CHAIRMAN WALLIS: You're going to tell us?
18	MR. MATHUR: Yes. We have a lot of
19	information on that.
20	MEMBER ABDEL-KHALIK: Now when you say 90
21	percent of blockage can be accommodated
22	MR. MATHUR: That's what we just talked
23	about.
24	MEMBER ABDEL-KHALIK: What does that mean,
25	quantitatively?
	1

	308
1	MR. MATHUR: No. What I meant What we
2	meant to say was what was discussed, the WCAP is
3	saying that, even if your core, at the bottom of the
4	core, is 90 percent blocked, still you could cool down
5	the You will not have any core cooling problems.
6	MEMBER ABDEL-KHALIK: You would meet the
7	acceptance criteria?
8	MR. MATHUR: That's right.
9	MEMBER ABDEL-KHALIK: In terms of peak
10	clad temperature.
11	MR. MATHUR: That's exactly right.
12	MEMBER ABDEL-KHALIK: During a LOCA.
13	MR. MATHUR: Yes.
14	CHAIRMAN WALLIS: This is a big room that
15	these things are in. I would think the velocities in
16	there would be pretty small except near the openings.
17	MR. MATHUR: Actually, they are rather
18	high. Again, we will talk about it.
19	CHAIRMAN WALLIS: Okay, you will talk
20	about that?
21	MR. MATHUR: Yes. We have quite high
22	velocities.
23	CHAIRMAN WALLIS: Okay.
24	MR. MATHUR: And also the next slide, we
25	looked at the wear components, and we did not have any

(202) 234-4433

	309
1	problems with them also.
2	CHAIRMAN WALLIS: That means that the wear
3	was
4	MR. MATHUR: Acceptable.
5	CHAIRMAN WALLIS: So less than a mil or
6	something, that sort of thing?
7	MR. MATHUR: I will say it was acceptable.
8	I do not have the calculation in front of me right
9	now. So I can't answer quantify the number, but it
10	was evaluated in accordance with the Rev. 0 of the
11	WCAP we talked about.
12	CHAIRMAN WALLIS: Okay.
13	MR. MATHUR: Now I will turn over to Bob
14	Peterson. He will talk about what we were just
15	talking about, the W generation and transport
16	evaluations that we did, and he will talk a little bit
17	about the chemical analysis also.
18	MR. PETERSON: Thank you, Kiran. As
19	introduced, I am Bob Peterson from Sargent and Lundy.
20	We did a number of the support calculations, and we
21	will go into the details of three of them that are of
22	prime interest here.
23	The first ones are the debris generation,
24	and it is tied directly to the debris transport. The
25	goal of these calculations is to determine a maximum
	1

(202) 234-4433

	310
1	debris load to forward to the test engineer to
2	demonstrate acceptability of the screen.
3	This process is really somewhat of an
4	iterative process, meaning we started off quite a long
5	time ago with a preliminary load, and as you can see,
6	we put in a very, very large screen. Then through
7	evolutions in the industry, better information, better
8	tests, we have refined the load, but basically we have
9	followed the NEI-0407 document as accepted and as
10	well, as discussed in the NRC SER with two notable
11	exceptions.
12	One is we have incorporated the smaller
13	ZOI of 5D for the qualified coatings. I believe a
14	number of utilities have done this. It was very
15	important for Salem in that, while they have a very
16	small unqualified coatings relative to other
17	utilities, inside the zone of influence, let's say,
18	someone coated of lot of component. So this reduction
19	was pretty significant for us.
20	CHAIRMAN WALLIS: You don't have a scale
21	on here, but the zone of influence can hardly be
22	spherical with all these walls around.
23	MR. PETERSON: It's a spherical zone, and
24	it is truncated when you hit a solid you know, when
25	you hit the wall.

(202) 234-4433

	311
1	CHAIRMAN WALLIS: It's a big strange,
2	because don't you think it might bounce off the wall
3	and move off to some other area, but you just cut it
4	off when it hits the wall?
5	MR. PETERSON: You cover Yes. But you
6	are covering big, big chunks of this containment.
7	It's really what It is limiting you.
8	CHAIRMAN WALLIS: If we look at, say,
9	break S6 here, that's a double-ended guillotine break.
10	Is that what that is?
11	MR. PETERSON: Yes.
12	CHAIRMAN WALLIS: How big is that zone of
13	influence? Could you just sort of indicate for me?
14	MR. PETERSON: Depends on the target.
15	CHAIRMAN WALLIS: Well, does it reach
16	number 13-SG?
17	MR. PETERSON; Yes.
18	CHAIRMAN WALLIS: So it takes in pretty
19	well that whole side of the containment?
20	MR. PETERSON: Once again, it depends on
21	the target, not a 5D coating, but on the insulation.
22	CHAIRMAN WALLIS: On what the stuff is?
23	MR. PETERSON: Right.
24	CHAIRMAN WALLIS: But if it's Nukon, it's
25	pretty big.

(202) 234-4433

	312
1	MR. PETERSON: Right.
2	VICE CHAIRMAN BANERJEE: When you say 5
3	diameters, 5 diameters is of the pipe?
4	CHAIRMAN WALLIS: For Nukon, it's more
5	than that.
6	MR. PETERSON: Yes. The slide that is up
7	there still, the SER had a 17D. We are using the AT,
8	which was subsequent.
9	CHAIRMAN WALLIS: It's on three feet?
10	VICE CHAIRMAN BANERJEE: So you say that
11	the justification for this is contained in WCAP not
12	yet available?
13	MR. PETERSON: Yes. There's some
14	subsequent testing that was sponsored.
15	MR. DINGLER: This is Mo Dingler.
16	Tomorrow at Wolf Creek you will see the actual blow
17	of that Nukon. I have that in my slides.
18	VICE CHAIRMAN BANERJEE: So you have data?
19	MR. DINGLER: Yes. So if you want to
20	postpone that until tomorrow
21	CHAIRMAN WALLIS: So there is something
22	else that we could evaluate, if we wanted to.
23	MR. PETERSON: Okay. As shown on this
24	slide, we looked at many break locations on the
25	primary loop, and one at the base of the pressurizer.

(202) 234-4433

	313
1	VICE CHAIRMAN BANERJEE: Let me ask you
2	something. Suppose you had used 10D and 17D. How
3	much more debris would you have got?
4	MR. PETERSON: The 10D to 5D was
5	approximately a 50 percent reduction on the coating
6	load.
7	VICE CHAIRMAN BANERJEE: Okay. And the 8D
8	versus 17D?
9	MR. PETERSON: That was because of the
10	actual locations Well, okay. The amount that was
11	generated went down by about 50 percent. What
12	happens, though, as you get to smaller and smaller
13	zones of influence, the particles, the size
14	distribution, becomes skewed more and more. So you
15	get smaller and smaller particles.
16	We will get into where that ends up
17	helping you or what happened there. So as I have
18	very, very large zones of influence, we use a 4 to 3
19	size categorization of intact, large, small and fines.
20	The percentage of fines continues to go up as those
21	zones go smaller.
22	VICE CHAIRMAN BANERJEE: But the amount?
23	MR. PETERSON The amount also well,
24	goes down as I reduce
25	CHAIRMAN WALLIS: The percentage goes up.

(202) 234-4433

	314
1	MR. PETERSON: The percentage of the lower
2	end categories goes up. So it's the net, but there is
3	also an erosion term which feeds into why we put the
4	trash rack in.
5	VICE CHAIRMAN BANERJEE: If this is a
6	spherical zone of influence, then that really means
7	that you have a volumetric chain that goes almost a
8	volume of eight.
9	MR. PETERSON: That would be true if you
10	had a containment that was solid of Nukon, but you
11	have specific targets.
12	VICE CHAIRMAN BANERJEE: Right. Right.
13	So it hits the steam generator there, number 11?
14	MR. PETERSON: For a break in one loop?
15	VICE CHAIRMAN BANERJEE: At 6, yes.
16	MR. PETERSON: It hits 11.
17	CHAIRMAN WALLIS: Well, the big one hits
18	13, I think.
19	MR. PETERSON: Yes.
20	VICE CHAIRMAN BANERJEE: But now S1 will
21	not hit 13. Right?
22	MR. PETERSON: Correct.
23	VICE CHAIRMAN BANERJEE: Whereas, if you
24	had that old thing, it would have hit 13.
25	MR. PETERSON: And as Mo said, he will
	1

(202) 234-4433

	315
1	show you those, I guess, or discuss those tomorrow,
2	but the results of that testing at these 8D indicated
3	no damage, you know, slight bending of the jacketing,
4	that type of thing. So what we have done is
5	VICE CHAIRMAN BANERJEE: Steam generators
6	in any case are going to be all RMI, aren't they?
7	MR. MATHUR: That's on Unit Number Two
8	only. Unit Number One insulation was already
9	replaced, and at that time everybody like Nukon. So
10	we put in Nukon at that time.
11	MR. PETERSON: It's one of the very ironic
12	things in the industry, that the people that have
13	already replaced their generators predominantly a new
14	plant, switched from RMI to Nukon because of heat loss
15	issues and fit-up issues in the containment, and now
16	the solution from GSI would have been to put RMI in.
17	These break locations, as I have
18	discussed, though, are based on trying to maximize the
19	problematic debris, ease of transportation, and then
20	to provide an appropriate mix of the problematic
21	debris. So we look at a number of them, and we have
22	worked through these various break locations. As
23	you
24	VICE CHAIRMAN BANERJEE: All this Nukon on
25	Unit One doesn't lead to a different design of your

(202) 234-4433

	316
1	strainer system or anything?
2	MR. PETERSON: The testing is different,
3	and we will show you that. Predominantly, that is the
4	lead unit, meaning if you can demonstrate that one
5	works, you are probably pretty far along on the Unit
6	Two, and we will show you those differences.
7	Okay. Next slide. I think this came up
8	earlier today. There was some discussion about this
9	latent debris. That was the terminology we are using.
10	This is the background dirt dust.
11	We used masolin cloths and wiped down
12	areas of containment. So you measured out so many
13	square feet of a horizontal, vertical pipe, different
14	types of areas of the containment, and wipe these
15	areas down. Then we used a statistical analysis to
16	combine those, and then took that loading rate, so
17	many grams per square foot, and then multiplied by how
18	many square feet of that type of area in containment.
19	We had already started the analysis, and
20	early on a number was, oh, we will say floated around
21	the industry of about 200 pounds as a number. It was
22	never endorsed. It was just a number sort of floated
23	around as a starting place.
24	These walk-downs substantiated substantial
25	margins. As shown in the photos from Puron earlier,
	1

(202) 234-4433

	317
1	the containment is pretty clean. So it was just a
2	confirmatory analysis.
3	Also during the walkdowns, we validated
4	what we'll use the terminology of foreign
5	materials. These are the placards, the labels, and we
6	have included those in the analysis. They become
7	basically sacrificial area, area on the screen that we
8	are not crediting as far as something of a filter-out
9	fiber or particulates. Next slide.
10	CHAIRMAN WALLIS: You've only got one
11	cubic foot of latent particulate. That is a pretty
12	clean containment.
13	MR. PETERSON: Well, that is based on the
14	200 pounds, 15 percent of 200 pounds. Yes. So this
15	starts answering questions of kind of how many
16	truckloads. Regrettably, they are in cubic feet, and
17	I don't know the payload.
18	CHAIRMAN WALLIS: Well, I was going to say
19	it's about 400 cubic foot. Depends how much you pile
20	it in, but something like that.
21	MR. PETERSON: Okay.
22	CHAIRMAN WALLIS: So you've got one
23	truckload of Nukon. Not too bad.
24	MR. PETERSON: Yes. And like I said, the
25	qualified coatings is down. You know, the 12.6 cubic
	1

(202) 234-4433

	318
1	feet is the reduced value, as is the Nukon.
2	VICE CHAIRMAN BANERJEE: How much is the
3	truckload?
4	CHAIRMAN WALLIS: Four or five hundred
5	cubic feet. That's a good full-size truck reasonably
6	loaded.
7	MR. PETERSON: I know, when we do these
8	tests, they are scaled values and scaled factors of
9	like 50, and we have quite a few garbage bags and cans
10	of debris to throw out.
11	CHAIRMAN WALLIS: Now wait a minute. No,
12	I'm sorry. I was comparing I was dividing it by
13	I got five truckloads. It's about 80 to 100 cubic
14	feet. I'm sorry, I was multiplying by five. Okay.
15	MR. MATHUR: I just want to make one
16	clarification. When I was talking, I said that we had
17	replaced all our known Min-K insulation. The only
18	thing I did not tell you was and on Unit Number One
19	you see apparent 5.3 cubic feet of Min-K insulation
20	that we are putting in our testing.
21	The reason was, as I said, on Unit Number
22	One we did not remove our sandbox. So it would have
23	been very expensive for us to replace that insulation.
24	So we are going to do it in the next outage of Unit
25	Number One, which will be toward the fall of next

(202) 234-4433

	319
1	year.
2	So in the meantime we have added that one
3	into our debris generation calculation here, and for
4	Unit Number Two you see a 24 cubic feet number. The
5	reason is our drawings show this to be a metallic
6	reflective insulation, but some of our people who do
7	a lot of walkdown, they think there is some Min-K
8	insulation. So just to be on the conservative side,
9	we have put that in our debris generation calculation.
10	VICE CHAIRMAN BANERJEE: So latent fiber
11	looks like 12 1/2 cubic feet; whereas, latent
12	particulates is one. So you have latent fiber which
13	is roughly 12 times as much as
14	MR. PETERSON: The ratio It's 85
15	percent fiber to 15 percent particulates.
16	CHAIRMAN WALLIS: This is from clothing.
17	Is that what it comes from?
18	MR. PETERSON: Well, the numbers we use,
19	there was several stations that provided samples, I
20	believe, to Los Alamos, and they did a screening.
21	That was the average, and given the margin we have put
22	into our total relative to what we measured.
23	CHAIRMAN WALLIS: Was debris from the
24	fiberglass and stuff like that cleaned up?
25	MR. PETERSON: Yes. We didn't really
I	

(202) 234-4433

	320
1	characterize it. These are weight samples, and we
2	used the characterization that was out there.
3	You know, the one thing that really is
4	interesting on that is, of course, people had normal
5	housekeeping, but no awareness of GSI 191 for all
6	years of operation. Well, now they do. They are
7	going to be cognizant of that, and this is We went
8	in there and did these walkdowns.
9	You know, it was what was out there after
10	all these years, and it really was not much at a plant
11	like Salem, and we have sufficient margin, we feel,
12	using this 200 pounds.
13	Okay. So after the values are generated,
14	the next portion is the debris transport. We are in
15	agreement with the NEI 04-07 document and the
16	associated SER guidance.
17	We made limited use of CFD, and we will go
18	into what that is. I see color photos open. We used
19	FLUENT 6.1.22. And if you look at this photo, what
20	you will see is the inside of the containment next
21	slide looks like it's missing.
22	Well, it is in the CFD analysis. When we
23	are at this minimum flood level of 2 feet, 10 inches,
24	the inside this inside annular area is an elevated
25	portion of the containment. So the openings we were
	1

(202) 234-4433

	321
1	discussing down by the accumulators, you actually have
2	to go downstairs.
3	So early when you go into recirc, there
4	really is no water except the sheeting action inside
5	the annulus. So even though we have a very large
6	containment, the water is all concentrated out in that
7	outside annulus, and we have relatively high
8	velocities.
9	VICE CHAIRMAN BANERJEE: Why is the lower
10	velocity around the upper left?
11	MR. PETERSON: The door Yes, in the 10
12	o'clock position. That door is We did not modify
13	that door, and there is an extremely strong potential
14	that door will block.
15	VICE CHAIRMAN BANERJEE: You blocked it in
16	your calculations?
17	MR. PETERSON: We blocked it analytically,
18	because we believe that would be the first door, and
19	it would block. For this simulation, all we were
20	really trying to do was, by maximizing the flow-out of
21	the other three doors, you will see the one adjacent
22	to that at like four o'clock has some relatively low
23	velocity region. That's all we are really trying to
24	credit here, is some minor settling in that area, and
25	it really was not that successful, because of the

(202) 234-4433

	322
1	relatively high velocities.
2	VICE CHAIRMAN BANERJEE: But you have some
3	velocities which look like zero. Right?
4	MR. PETERSON: Yes. There is a dead spot
5	between the two doorways, between the one at two
6	o'clock and four o'clock there or whatever. There is
7	a dead spot, and that would be expected, because the
8	screen It's which unit we are showing. The screen
9	is in the upper in the lefthand side.
10	CHAIRMAN WALLIS: The strainer is all up
11	in the top to the northwest or whatever.
12	MR. PETERSON: Right. Maybe we'll start
13	using directions.
14	CHAIRMAN WALLIS: There is nothing down in
15	the bottom at all?
16	MR. PETERSON: Correct. So the flow comes
17	out and finds its way to the screen and really leaves
18	that dead area.
19	VICE CHAIRMAN BANERJEE: But the debris
20	never gets there.
21	MR. PETERSON: Correct. You are correct.
22	The debris is generated predominantly inside the
23	annulus. It is pushed down these doors.
24	VICE CHAIRMAN BANERJEE: And you take no
25	credit for debris settling, which was my issue with

(202) 234-4433

	323
1	CFD, that it is not sufficiently
2	MR. PETERSON: Because of the nature
3	Well, for some other stations that has been done, but
4	for this, given the elevated
5	VICE CHAIRMAN BANERJEE: You are not going
6	to present any of those to us.
7	MR. PETERSON: No. This is my only
8	CHAIRMAN WALLIS: But one might suppose
9	that quite a bit of the RMI doesn't make it to the
10	strainer.
11	MR. PETERSON: Yes. RMI, yes, and that's
12	also part of this trash rack concept, to keep it away
13	from the bottom of the screen.
14	VICE CHAIRMAN BANERJEE: That may tumble
15	around that portion.
16	MR. PETERSON: But the RMI is really not
17	a head loss constituent to worry about. It's these
18	other items.
19	VICE CHAIRMAN BANERJEE: As far as the
20	other stuff is concerned, you don't drop it out
21	anyway.
22	MR. PETERSON: No.
23	VICE CHAIRMAN BANERJEE: The rest of it is
24	almost irrelevant then.
25	MR. PETERSON: Well, we
	1
	324
----	---
1	VICE CHAIRMAN BANERJEE: What is relevant
2	about this?
3	MR. PETERSON: Okay. Well, if you will
4	notice, it says preliminary. This does not have the
5	trash rack in. There's another run that is in process
6	to quantify velocities at the trash rack, and I will
7	get to in a few slides down, I will get to why we
8	are doing that.
9	VICE CHAIRMAN BANERJEE: There's a problem
10	with these calculations, if I might just make a
11	general remark, is that these flows are being driven
12	by differences in level.
13	MR. PETERSON: Yes.
14	VICE CHAIRMAN BANERJEE: And these types
15	of computer quotes do very badly when it comes to
16	calculation of the free surface area. So for example,
17	they have no free surface module in those. But what
18	happens is that every time it goes past an obstacle,
19	as you know, things have to go up and down.
20	So inherently, these are extremely
21	inaccurate calculations. You may do this for fun, but
22	they have
23	MR. PETERSON: There is information, but
24	I guess I wouldn't characterize it as "for fun."
25	There was information that is used, and I will show
	1

(202) 234-4433

	325
1	you where it was used as we go forward here.
2	VICE CHAIRMAN BANERJEE: So if you go past
3	a bridge, for example, the surface changes, you now.
4	MR. PETERSON: Right. And this is
5	CHAIRMAN WALLIS: Well, if you get
6	shooting flow, then you get all kinds of stuff.
7	MR. PETERSON: This is even you know,
8	as far as the grid, the floor has a relatively steep
9	slope on it also here. You know, that is why there is
10	not even a straight shot across the floor here.
11	VICE CHAIRMAN BANERJEE: The floor is not
12	flat.
13	MR. PETERSON: Sloped in the annulus also.
14	CHAIRMAN WALLIS: Which way is it sloped?
15	MR. PETERSON: I should have known that.
16	CHAIRMAN WALLIS: Slopes outwards or
17	something?
18	MR. PETERSON: Toward the sump. So that
19	was part of our concern.
20	CHAIRMAN WALLIS: Slopes toward the sump?
21	MR. PETERSON: Toward the original sump.
22	So that was part of the concern on making sure the
23	outermost screen is still submerged.
24	VICE CHAIRMAN BANERJEE: So your concern
25	was to make sure the screen remained submerged?
	1

(202) 234-4433

	326
1	MR. PETERSON: Right. You want to make
2	the screen as tall as possible to minimize the real
3	estate, but you have to also cope with that. I mean,
4	it's just another design consideration.
5	CHAIRMAN WALLIS: Well, if these
6	velocities are like this, the velocities to the old
7	sump could have been fairly high, seems to me.
8	MR. PETERSON: Yes.
9	VICE CHAIRMAN BANERJEE: In fact, one of
10	the things that might be of concern here is that, if
11	these calculations are indicative of something, that
12	the debris comes primarily with the flow. So it would
13	reach some part of these strainers, whereas the other
14	part of the strainers would be relatively inactive,
15	because the velocities
16	CHAIRMAN WALLIS: Until the first ones get
17	caught.
18	VICE CHAIRMAN BANERJEE: Until they get
19	caught. But that is a different calculation. Right?
20	That would be slowly changing in that some part of it
21	would get clogged, and then the flow would be direct.
22	MR. PETERSON: The fun you just mentioned
23	just went up exponentially if you started running all
24	those cases.
25	VICE CHAIRMAN BANERJEE: And, certainly,

(202) 234-4433

	327
1	you wouldn't want to do it with this code.
2	MR. PETERSON: I know. Yes.
3	VICE CHAIRMAN BANERJEE: You would
4	probably do it with something that handled the free
5	surface.
6	MR. PETERSON: Yes. Okay, next slide.
7	So this is also something a little unique
8	to the Salem station. I mentioned that the fiber has
9	a size distribution of small, large, and intact. So
10	the concern was, if I trap pieces of these bigger
11	pieces of fiber, do they erode?
12	The original SEI guidance had a 90 percent
13	erosion factor. So remember when I was talking about
14	these zones of influence. It's sort of It really
15	penalized you. You had these very, very large zones,
16	and then you hit yourself with this large erosion
17	factor.
18	We thought there was some big benefit to
19	go after there in parallel with the testing that was
20	going on. So we did some plant specific testing. We
21	developed pieces of Nukon and Kaowool in the size
22	distribution.
23	I know early on there was concerns, do you
24	bake these things? We baked them for six hours at 600
25	degrees, and we used the velocities in the CFD

(202) 234-4433

	328
1	analysis to get us a flavor of the velocities we would
2	expect in the containment, so we could look at these
3	erosion parameters. Next slide, please.
4	VICE CHAIRMAN BANERJEE: Let me ask you
5	one question.
6	MR. PETERSON: Sure.
7	VICE CHAIRMAN BANERJEE: The reason you
8	went down to 7D or 8D or whatever you did was because
9	you had stainless steel coating on your Nukon. Right?
10	MR. PETERSON: Stainless steel jacketing.
11	VICE CHAIRMAN BANERJEE: Jacketing.
12	That's what I mean.
13	MR. PETERSON: Yes.
14	VICE CHAIRMAN BANERJEE: So that was
15	protecting.
16	MR. PETERSON: Yes.
17	VICE CHAIRMAN BANERJEE: Otherwise, you
18	would do 18D or 17D, whatever that is.
19	MR. PETERSON: Yes. We matched with the
20	testing that was going on, and we did both of these
21	again. Both of these activities in parallel, some way
22	to reduce the Nukon load. You've heard, and I think
23	you are well aware, that these fiber loads are one of
24	the bigger problems. So these are two parallel paths,
25	and it turns out we plan to use both of them.

(202) 234-4433

	329
1	So this slide shows the test facility.
2	CHAIRMAN WALLIS: What is being eroded
3	here?
4	MR. PETERSON: It's samples of Nukon and
5	Kaowool. The next slide after this I will
6	CHAIRMAN WALLIS: What do you mean by
7	being eroded then?
8	MR. PETERSON: It's samples If you go
9	here, these are baskets that are in the flume. So
10	these are pieces of insulation that were dislodged due
11	to line break. They are no the fines. So they are
12	not going to move along right away, and they are going
13	to tumble and move along the floor.
14	They may get caught up
15	CHAIRMAN WALLIS: By erosion, you mean
16	MR. PETERSON: Break down to they are
17	all fines. Correct.
18	CHAIRMAN WALLIS: I see. Okay.
19	MR. PETERSON: And the original guidance
20	had a 90 percent factor. We felt that was really a
21	burden on us, and we felt some subsequent testing at
22	plant specific flow rates would generate some
23	meaningful answers, and this was that test.
24	VICE CHAIRMAN BANERJEE: But this flume
25	has a fairly uniform velocity. Right?

(202) 234-4433

	330
1	MR. PETERSON: Correct.
2	VICE CHAIRMAN BANERJEE: So if you had,
3	say, these chunks of stuff coming out, and flow
4	turned, as it does in your containment if you go back
5	to this picture there, you tend to get accumulations
6	of material sitting on the floor in those sort of
7	what are obviously vortical regions that there isn't
8	much action going on.
9	So those would move much more slowly, and
10	they would generate a lot of fines probably. That is
11	a function of time. I don't know.
12	It's a difficult calculation to base on
13	just the flume experiments. That's all I'm saying.
14	MR. PETERSON: Well, the original data was
15	some testing at the University of New Mexico. They
16	ran it for a few hours, and figured out an erosion
17	rate and then integrated it for 30 days. That's where
18	the 90 percent came from.
19	We used the CFD. We used the highest
20	velocities we found in the CFD analysis, and we put
21	those in the flume. We thought that more than bounded
22	anything else that would be out there.
23	So these are velocities substantially
24	higher than what would be needed to tumble the
25	insulation, and we thought, well, this was indicative
	1

(202) 234-4433

	331
1	of a piece of insulation either getting trapped
2	somewhere or, hopefully, getting trapped on our debris
3	interceptor.
4	VICE CHAIRMAN BANERJEE: Depends what is
5	causing the
6	CHAIRMAN WALLIS: The uniform velocity
7	doesn't really do anything, does it? It just carries
8	it along. But these vortices could do something
9	different altogether. Is this an issue anyway?
10	VICE CHAIRMAN BANERJEE: This is in a
11	basket. I mean, how much of an appeal do you have to
12	make to this erosion to save your skin here?
13	MR. PETERSON: Not that much.
14	VICE CHAIRMAN BANERJEE: So you don't
15	care.
16	MR. PETERSON: Well, I mean, we The 90
17	percent is and we are using this, but
18	VICE CHAIRMAN BANERJEE: Can you live with
19	90 percent?
20	MR. PETERSON: Probably not.
21	VICE CHAIRMAN BANERJEE: So what is the
22	amount that you
23	MR. PETERSON: If I show you Well, I'm
24	not going to in this public meeting present the actual
25	results, but we'll show you a few more slides, and
	1

(202) 234-4433

	332
1	then let's get back to it. But we ran these tests,
2	for example, in these baskets, and we experimented
3	with ways to run the tests.
4	We put them on little spikes, and we did
5	some stuff, and we thought the basket was the best
6	idea in that it somewhat tumbled like a dryer, and we
7	ran these 10 days, and the erosion after there is
8	an initial kind of puff kind of cleaning process, the
9	erosion term is not very great as a function of time.
10	VICE CHAIRMAN BANERJEE: So what
11	MR. PETERSON: You've heard 30 days as
12	kind of our goal here and, like I said, we ran these.
13	I have a slide. I forget if it's 10 or 12 days, but
14	we ran these 10 days. We ran these quite a long
15	time.
16	CHAIRMAN WALLIS: These things are
17	tumbling around in this cage all the time?
18	MR. PETERSON: A little bit, but at this
19	velocity they don't move that much. They really
20	don't.
21	VICE CHAIRMAN BANERJEE: So how much
22	credit do you get for this reduction in the erosion
23	rate?
24	MR. PETERSON: It was significant.
25	VICE CHAIRMAN BANERJEE: You don't want to

(202) 234-4433

	333
1	say it in a public meeting. You want to close the
2	meeting eventually at the end?
3	CHAIRMAN WALLIS: Well, you claimed it.
4	Did the NRC accept it?
5	MR. PETERSON: It's Yes, it's like 20
6	percent rather than 90 percent. It's down to the 20
7	percent.
8	VICE CHAIRMAN BANERJEE: So it's 20
9	percent rather than 90?
10	MR. PETERSON: Yes.
11	CHAIRMAN WALLIS: That's a big difference.
12	MR. PETERSON: Yes.
13	CHAIRMAN WALLIS: Has this just been a
14	claim so far or has it bee accepted by the staff?
15	MR. PETERSON: I don't believe the staff
16	has.
17	CHAIRMAN WALLIS: Nothing has been
18	accepted.
19	MR. SCOTT: Mike Scott, NRR. Remember, we
20	have not seen this information.
21	CHAIRMAN WALLIS: Oh, you haven't seen it
22	yet?
23	MR. SCOTT: This particular licensee is
24	fortunate enough to be an audit plant. So we are
25	going to be seeing them in what is it? October.
	1

(202) 234-4433

	334
1	Right? So we will have more information for you after
2	that.
3	CHAIRMAN WALLIS: You might have some
4	questions about this tumbling and erosion?
5	MR. SCOTT: Yes.
6	MEMBER ABDEL-KHALIK: But what is the
7	break-up mechanism?
8	MR. PETERSON: The original is the energy
9	from the jet, and now
10	MEMBER ABDEL-KHALIK: But in this process,
11	what is the break-up mechanism?
12	MR. PETERSON: We are envisioning as
13	insulation that moved down these stairwells and
14	MEMBER ABDEL-KHALIK: I mean, if you look
15	at that, you know, small particles being generated
16	because of break-up of a large pieces, what is the
17	break-up mechanism that separates these small
18	particles? Is it sheer?
19	MR. PETERSON: I believe it's some basic
20	sheer on the outside, yes.
21	MEMBER ABDEL-KHALIK: So if that is the
22	case, wouldn't that be controlled by velocity
23	gradients rather than velocity?
24	MR. PETERSON: Well, now we are back to
25	the let's try to predict velocity gradients in the
	•

(202) 234-4433

	335
1	pool.
2	CHAIRMAN WALLIS: It isn't controlled by
3	velocity at all. It's by tumbling against solid
4	surfaces that it gets broken. So rattling around in
5	this cage, it's collisions with the cage that break
6	it, isn't it? Aren't the forces much bigger that way?
7	MR. PETERSON: There is this terminology,
8	and I've heard You know, I was here. As I heard
9	the discussion earlier today of incipient tumbling
10	velocities.
11	For Nukon, I believe it's .12 foot per
12	second. We are using velocities five times that in
13	this. We feel that the justification is in the
14	substantial increases on the LOCA velocity. Relative
15	to, one, what it would take, the stuff would just move
16	along, and we are envisioning it got stuck somewhere
17	and, therefore, had the opportunity to erode.
18	We are also envisioning it got stuck at
19	the location within the containment that had the
20	largest velocity, and on a volume basis that's an
21	extremely small spot. It's right around those
22	accumulators, and we are eroding them there.
23	We eroded these for a long period of time,
24	and saw a substantial reduction.
25	VICE CHAIRMAN BANERJEE: What happened in
	1

(202) 234-4433

	336
1	the New Mexico test? You said that
2	MR. PETERSON: They had a couple of data
3	points. It was in a pool, and they measured and
4	this is from memory. It was out a few hours, and they
5	measured the before and after, and got a loss, a
6	material loss, for that time, and then did an
7	extrapolation to 30 days, and that wa s
8	VICE CHAIRMAN BANERJEE: This was a chunk
9	of some
10	MR. PETERSON: They were samples that the
11	University of New Mexico had. Right.
12	VICE CHAIRMAN BANERJEE: And they had it
13	in a moving fluid or
14	MR. PETERSON: It was in a pool.
15	VICE CHAIRMAN BANERJEE: It was just
16	sitting there?
17	MR. PETERSON: No. It was in a moving
18	pool, a recirculation. It was meant to model a
19	recirculation pool.
20	VICE CHAIRMAN BANERJEE: And this was in
21	the Los Alamos report? I don't remember that.
22	MR. PETERSON: No. This was a separate
23	NUREG from the University of New Mexico. I don't have
24	those numbers with me.
25	VICE CHAIRMAN BANERJEE: It wasn't in
	1

(202) 234-4433

	337
1	those It was separate?
2	MR. PETERSON: It was in also in the
3	knowledge base NUREG that was put together. This
4	stuff is all several years old.
5	VICE CHAIRMAN BANERJEE: So, you know,
6	that's fine. I would appreciate the reference to
7	that.
8	MR. PETERSON: Okay.
9	VICE CHAIRMAN BANERJEE: In any case.
10	You were trying to build up a larger
11	database, if you like, experience with this type of
12	phenomena to augment what was there with the New
13	Mexico experiments. Right?
14	MR. PETERSON: Yes.
15	VICE CHAIRMAN BANERJEE: You used did
16	you use the same sort of treatment that they used, or
17	different?
18	MR. PETERSON: I really can't speak for
19	how they prepared the samples. Like I said, we baked
20	our samples, indicative of an insulation that was on
21	a hot pipe for 20 years, to provide There is well
22	known literature data that there is a breakdown of the
23	binder material on this insulation. That happens at
24	temperature. When it is installed, they do this to
25	off-gas it.
	1

(202) 234-4433

	338
1	MR. LEHNING: This is John Lehning of the
2	NRR staff. What Bob was talking about was, I think,
3	published in around 2002, and it was an integrated
4	debris transport testing. That debris was a little
5	bit different. Like he said, it was in a pool, and
6	they measured quantities of debris. This is just
7	blocks of that fiber, small pieces.
8	So they measured this debris before and
9	after, and then the missing quantity was attributed to
10	erosion. It wasn't controlled cubes of debris in
11	baskets in that case.
12	VICE CHAIRMAN BANERJEE: But they were
13	lying on the bottom?
14	MR. LEHNING: That is correct.
15	VICE CHAIRMAN BANERJEE: And they were
16	exposed to unit directions or more chaotic?
17	MR. LEHNING: It was not unit direction.
18	It was in a pool, and there were different structures
19	in there to model walls of internal compartments of
20	the containment.
21	VICE CHAIRMAN BANERJEE: Yes.
22	MR. LEHNING: And there was turbulence, I
23	believe.
24	VICE CHAIRMAN BANERJEE: Right. Yes. So
25	it would be a little different from this, but I mean,
I	1

(202) 234-4433

	339
1	I don't know which is closer to your physical
2	situation, but the problem is that, if you look at the
3	geometry of this, it's quite a complicated I mean,
4	there are three river-like spots, but there is quite
5	a lot of obstruction of the geometry.
6	CHAIRMAN WALLIS: I think you worry about
7	if it got caught in an eddy and was banging against
8	the wall many, many, many times.
9	VICE CHAIRMAN BANERJEE: There are regions
10	of vortec regions.
11	CHAIRMAN WALLIS: Well, you could talk
12	about this forever, seems to me, without ever
13	resolving it. We should move on.
14	MR. PETERSON: Okay, we will.
15	VICE CHAIRMAN BANERJEE: But it is a
16	fairly substantial credit.
17	CHAIRMAN WALLIS: Oh, yes. I think it is
18	a thing to be questioned, but we should move on. We
19	are not going to resolve it here until we do the right
20	test.
21	VICE CHAIRMAN BANERJEE: No.
22	MR. PETERSON: Next slide, please. I
23	guess we did that one already.
24	CHAIRMAN WALLIS: Where are we now?
25	MR. PETERSON: Why don't we get to Slide
	1

(202) 234-4433

	340
1	30. So after the erosion testing, we did some
2	screening tests to design a trash rack/debris
3	interceptor, the device that you saw the photos of,
4	and we added RMI debris into this test matrix.
5	We looked at vertical plates, just with
6	grating. We looked at vertical perf plates, and we
7	will show you what we came up with.
8	This was really meant to start from the
9	test data that was available in the literature, once
10	again from tests at the University of New Mexico, for
11	lift over curbs. So the data was out there that, if
12	you had a jump over a curb, there was a certain debris
13	retention capability, and we wanted to make use of
14	that. Next slide.
15	CHAIRMAN WALLIS: Was the idea that you
16	put this right across the flow passage, and then the
17	fluid has to go over the top when it gets
18	MR. PETERSON: Yes. This is like the
19	trash rack that was shown in the photos earlier
20	installed. This is roughly nine inches high, a
21	three/four inch overhang there, and it goes around the
22	perimeter of the screen near the floor to keep this
23	debris that is sliding along the floor off the screen.
24	CHAIRMAN WALLIS: It goes on the floor
25	where the strainers are?

(202) 234-4433

	341
1	MR. PETERSON: Yes. Yes, we showed you a
2	photo earlier. We could run back.
3	VICE CHAIRMAN BANERJEE: Is it on both
4	sides or just on one side?
5	MR. PETERSON: Just the one and the two
6	ends.
7	VICE CHAIRMAN BANERJEE: Fifteen. Is that
8	right?
9	CHAIRMAN WALLIS: Fifteen?
10	MR. PETERSON: Fifteen or 16, if you go
11	back. Sorry.
12	CHAIRMAN WALLIS: Well, what do I see? I
13	don't see anything there.
14	MR. PETERSON: Right on the floor. You
15	see the pillars? Right behind them there is
16	CHAIRMAN WALLIS: Oh, that's it. That's
17	it there.
18	MR. PETERSON: Yes, that grating.
19	CHAIRMAN WALLIS: Okay. You talked about
20	it then. This doesn't look quite like this thing.
21	MR. PETERSON: No, it doesn't. This was
22	what was used for the testing. Now we feel that the
23	actual grating offers additional resistance.
24	CHAIRMAN WALLIS: It's like a pre-
25	strainer, really, because the fluid has to The
	1

(202) 234-4433

	342
1	stuff on the floor has to go through there to get to
2	the strainer.
3	MR. PETERSON: Or over it. As it starts
4	clogging up, it's It becomes this curb.
5	CHAIRMAN WALLIS: But conceivably, all the
6	RMI will get caught there.
7	MR. PETERSON: If it transported that far.
8	CHAIRMAN WALLIS: If it gets that far?
9	MR. PETERSON: Right. And if it didn't,
10	that's fine, too.
11	CHAIRMAN WALLIS: Okay.
12	MR. PETERSON: Okay.
13	CHAIRMAN WALLIS: Another thing to try to
14	model, though.
15	MR. PETERSON: So Slide 32, just a photo
16	from the test rig. This was a cable test, somewhat as
17	expected, a triangular debris pile. As we put in
18	more, it backs up, and we would determine threshold
19	velocities.
20	CHAIRMAN WALLIS: Do all these things, but
21	then how to quantify it in design is another question.
22	How do you actually predict how much is going to get
23	caught?
24	MR. PETERSON: This is where we made use
25	of the CFD, to work our test data with the CFD here to
	1

(202) 234-4433

	343
1	understand prototypical velocities in the plant and
2	then apply those velocities in the test flow.
3	CHAIRMAN WALLIS: Okay.
4	MR. PETERSON: Next slide, 33. Thanks,
5	John. So this is the debris load for both units, and
6	we have repeated the generated numbers that I showed
7	you earlier, and by "transport it," we mean transports
8	to the strainer. You see, for example, on the Nukon,
9	oh, roughly a 50 percent reduction.
10	VICE CHAIRMAN BANERJEE: The Transco RMI
11	is because you are saying some will remain on the
12	floor somewhere.
13	MR. PETERSON: Correct. The fines are
14	what are moving along.
15	VICE CHAIRMAN BANERJEE: So but then you
16	look at the Nukon. You've got half the Nukon coming
17	out, and quite a bit of the Kaowool. Right?
18	MR. PETERSON: Correct.
19	VICE CHAIRMAN BANERJEE: What is the
20	rationale for that?
21	MR. PETERSON: It is moving up in a
22	simplistic way. It moves up to the debris the
23	trash rack and is exposed to an erosive term there
24	that, after 30 days, was indicative of these values.
25	VICE CHAIRMAN BANERJEE: So this is like
	1

(202) 234-4433

	344
1	the tumbling that you were talking about?
2	MR. PETERSON: This is The output from
3	that was used to justify this. Correct.
4	CHAIRMAN WALLIS: Okay.
5	MR. PETERSON: Other items that we didn't
6	test: You will see basically no reduction, things
7	like Min-K at the smaller numbers. We just carried
8	them through.
9	VICE CHAIRMAN BANERJEE: Why is there a
10	difference between U1 and U2? Maybe there isn't, but
11	if I look at the Kaowool there, U1 it is 128,
12	generated 37, transported; whereas, U2 it is 116 and
13	76.
14	CHAIRMAN WALLIS: It is more easily
15	transported, for some reason.
16	MR. PETERSON: It has to do with its
17	location.
18	VICE CHAIRMAN BANERJEE: Oh, I see.
19	MR. PETERSON: Some of these atypical
20	insulations are not necessarily mirror images.
21	CHAIRMAN WALLIS: All right.
22	MR. PETERSON: Next one. So the last
23	analysis was the chemical effects analysis. Now this
24	uses the WCAP-16530 that Westinghouse had presented in
25	the morning. So this is the execution of the

(202) 234-4433

	345
1	spreadsheet.
2	At this time, the later discussion
3	regarding possible inhibition, we have not credited.
4	So this is the base value, if you would, out of the
5	WCAP. Next slide.
6	As Kiran mentioned, sodium hydroxide
7	buffer, approximately 48 minutes of spray duration,
8	relatively high; spray pH, followed with onset of
9	recirculation for 30 days.
10	The maximum sump pH long term is 8.4. We
11	did do sensitivities regarding the pH. We used
12	maximum sump temperature profile to maximize any of
13	the corrosive effects.
14	CHAIRMAN WALLIS: So you have a prediction
15	somewhere of the amount of aluminum calcium and
16	silica?
17	MR. PETERSON: Yes.
18	CHAIRMAN WALLIS: We are going to get to
19	that?
20	MR. PETERSON: Yes. This slide. One
21	thing you will hear about later when we do the
22	chemical testing, the value of that we analytically
23	predict we will call that the 100 percent value.
24	Because of some of the uncertainties in the ongoing
25	REIs and discussion, we have actually put a margin on

(202) 234-4433

	346
1	there, and we are using what we are calling 140
2	percent of our analytical value when we do our
3	chemistry tests.
4	This has, in addition, all the
5	conservatives, and we have heard in the Westinghouse
6	discussion. The big thing is this is the three-day
7	integrated chemical load.
8	VICE CHAIRMAN BANERJEE: So this is based
9	on the correlations?
10	MR. PETERSON: Yes, that you discussed
11	earlier today. Correct. And at this point, we are
12	assuming all the precipitates happen, time zero
13	dropout, and they are all available as a debris load.
14	The values for this station, sodium
15	silicate, 571 kilograms, and the aluminum
16	oxyhydroxide, 17 kilograms.
17	VICE CHAIRMAN BANERJEE: So you are
18	assuming the precipitate is out?
19	MR. PETERSON: Yes.
20	VICE CHAIRMAN BANERJEE: Before it arrives
21	at the screens?
22	MR. PETERSON: It is the precipitant that
23	is available as a debris load in front of the screen.
24	CHAIRMAN WALLIS: On the screen?
25	MR. PETERSON: It is in front of the

(202) 234-4433

	347
1	screen.
2	CHAIRMAN WALLIS: Precipitate means it's
3	on the screen. It's a confusing term.
4	MR. PETERSON: Well, I want to call it
5	It's in front of the screen.
6	CHAIRMAN WALLIS: In front of the screen?
7	MR. PETERSON: Well, we don't pack it on
8	the screen. We put in a test loop in front of the
9	screen, just like any other debris. You dump it in as
10	close to the screen as you can, and Dr. Blumer will
11	get into all those details.
12	MEMBER ABDEL-KHALIK: Just for my own
13	information, you update this calculation over the 30-
14	day period?
15	MR. PETERSON: It's an integrated value
16	over the 30-day period.
17	MEMBER ABDEL-KHALIK: So you don't march
18	in time, taking into account time variations of both
19	pH and temperature. How do you do that?
20	MR. PETERSON: Yes, we do. The
21	spreadsheet allows that is one of the inputs, is a
22	pH transient and a temperature transient, and then the
23	debris load. You put that in, and you determine the
24	amount of precipitants after 30 days. But as the
25	people from Westinghouse pointed out, the ability is

(202) 234-4433

	348
1	in there. You could stop it at five days. You could
2	stop it and capture the answer at anytime, and
3	depending on the results of the test, we had those
4	plans. We just so far haven't needed to do those.
5	MEMBER ABDEL-KHALIK: So typically, how
6	does the pH change with time over a 30-day period?
7	MR. PETERSON: We are using limiting
8	values. For example, we know, depending on the debris
9	load is a higher or lower pH conservative, and we have
10	run studies to determine that.
11	So, for example, your calculation Your
12	analytical value, your analysis for long term pH, may
13	be a pH between 7 and 8 $1/2$, as an example. You would
14	make runs at 7. You would make runs at 8 $1/2$, and you
15	would understand the sensitivity.
16	In a plant like Salem that has a lot of
17	different sources, that was the best way to go. If
18	you had just limited sources, you could look at the
19	available data and determine should you bias the pH
20	high or low, as an example.
21	MEMBER ABDEL-KHALIK: Thank you.
22	VICE CHAIRMAN BANERJEE: Now the last
23	bullet you have, which is I want to get back to
24	that primary precipitates in the post-LOCA sump
25	pool, 371 kilograms of whatever at 17 kilograms of
	1

(202) 234-4433

	349
1	oxyhydroxide.
2	This is coming out of the calculation you
3	just talked about?
4	MR. PETERSON: Yes. This is the results
5	of that calculation. It is the execution of the WCAP
6	16530.
7	VICE CHAIRMAN BANERJEE: Okay. And these
8	precipitates are then somehow ratioed and put
9	appropriately into the experiments that you will be
10	talking about, but this is the total for your
11	MR. PETERSON: For this plant, and if you
12	think of it I had those debris tables earlier that
13	we were trying to determine how many truckloads. This
14	is another debris. Those were all given in cubic
15	feet. These are in kilograms. They are scaling
16	factors that are applied to go to the head loss
17	testing.
18	VICE CHAIRMAN BANERJEE: And these are at
19	whatever temperature and pH?
20	MR. PETERSON: These are long term, and
21	typically we bring the temperature down, back down
22	probably lower than the LOCA started, to get
23	everything back out, everything that has dissolved as
24	precipitate.
25	VICE CHAIRMAN BANERJEE: So how do you go
25	VICE CHAIRMAN BANERJEE: So how do you go

(202) 234-4433

	350
1	from these numbers to the numbers that you then
2	deliver for the experiments? How do you scale it
3	down?
4	MR. PETERSON: Dr. Blumer can get into all
5	that, but it is a scaling based on the screen area.
6	So if you have 5,000 square feet of screen and you are
7	going to test 50, you apply that scaling factor.
8	VICE CHAIRMAN BANERJEE: But now one of
9	the real problems I see is that even your CFD
10	analysis, for what it's worth, shows that there are
11	only certain parts of the screen that actually see any
12	velocity. Otherwise So that what is being
13	delivered is being delivered to a fairly small part of
14	the screen.
15	In fact, that is one of the points that I
16	was saying earlier, that it is very hard to do a
17	representative experiment if you don't have really
18	reliable CFD. Unfortunately, the CFD is much less
19	than reliable, because of what you are doing.
20	So what you end up with is If you look
21	at this diagram here, let's assume for the moment that
22	it is correct. So we do with that favor. But
23	wherever that is. Yes, here. Much of the stuff is
24	being delivered to the screen in those discolored
25	tongues.
	1

(202) 234-4433

	351
1	If you look at the areas, the rest of it
2	is quiescent. Nothing is happening.
3	MR. PETERSON: Well, no, there's velocity
4	through all those areas. It's just, due to the
5	height, it is a relatively low velocity. On the
6	lefthand side, you are passing an elevator, and there
7	is a small area there, so a lot higher velocity. And
8	then up on the other you will see The three white
9	lines you see are the pedestals for the pressurizer
10	relief tank. Once again, it occupies area, and you
11	have a higher velocity through there.
12	These are also velocities right on the
13	floor.
14	VICE CHAIRMAN BANERJEE: Well, without
15	going into detail, the white sort of arcs are where
16	the strainers are. Right?
17	MR. PETERSON: Yes.
18	VICE CHAIRMAN BANERJEE: Okay.
19	MR. PETERSON: Or walls or other devices.
20	VICE CHAIRMAN BANERJEE: Yes, but at
21	least
22	CHAIRMAN WALLIS: Some is coming in from
23	the wall sides.
24	MR. PETERSON: Yes.
25	CHAIRMAN WALLIS: Some of the stuff is
	1

	352
1	coming in from the back side over here.
2	VICE CHAIRMAN BANERJEE: Right, right.
3	But what I'm saying is that it is only where the
4	velocities are significant let's say 0.09 or
5	something because most of it is just blue, and I
6	can't tell the difference between blue and
7	MR. PETERSON: Blue and blue?
8	VICE CHAIRMAN BANERJEE: blue and blue.
9	MR. PETERSON: Right.
10	VICE CHAIRMAN BANERJEE: So it's hard for
11	me to tell, but I'm assuming that most of the stuff
12	which is being delivered are in these plumes which are
13	light blue. Okay? Or green or yellow.
14	So now the strainer on the left at the ten
15	o'clock position has reasonable coverage, let's say.
16	Even on the back there is some delivery, and certainly
17	about half of it is getting delivery in the front, but
18	the strainer on the right is not getting all that much
19	debris.
20	That was the point I was making early this
21	morning when I said that it is very hard to do a test
22	in representative conditions, because it's an
23	iterative process. You can't really test the scale
24	model of this unless you
25	CHAIRMAN WALLIS: Well, let's say it
	1

(202) 234-4433

	353
1	another way. Every strainer, every piece of strainer
2	has different conditions. As you go around the arc,
3	you get one which has a lot of stuff, some which may
4	have no stuff, and some in between.
5	MR. PETERSON: Or another way to think of
6	it is, as I block a portion of the strainer, the
7	debris is going to move on to the next one, and it is
8	going to balance itself out, which is
9	CHAIRMAN WALLIS: Are you going to model
10	all of that?
11	MR. PETERSON: The testing does, and we'll
12	get to that.
13	CHAIRMAN WALLIS: Let's see if it does.
14	Are you sure it does?
15	MR. LU: Dr. Banerjee, maybe I can add
16	something here, from NRR staff.
17	I think that is related to most of the
18	other strainer testing, so not even in particular a
19	Salem test. Then as he indicated, that if you have
20	average assume all the debris, it is going to approach
21	all the surfaces uniformly. That's the conservative
22	assumption for the helos testing, because if you have
23	just as you pointed out, that a lot of debris will
24	end up on a significant portion of the strainer
25	preferentially only, and then the rest of the strainer
	1

(202) 234-4433

354
may be just clean. If you have clean strainer
surface, it will be very small.
So that's the principle, and that's one of
the fundamental assumptions for the prototypical helos
testing is to perform the areas of scaling, and then
that's the You know, that's the assumptions that
are used by most of the strainer vendors there, too.
VICE CHAIRMAN BANERJEE: Yes, and it may
be a good assumption, but there are, unfortunately,
another aspect of this that might occur. Imagine now
that you have debris of different sizes. Extremely
fine debris will be carried even with the very low
velocities through the areas which are open.
The other debris will go and block the
regions which are associated with the higher
velocities
MR. LU: That's right.
VICE CHAIRMAN BANERJEE: because you
know, basically, there is going to be a size
separation system going on. So what you may find is
that you get these areas blocked off, some fine and
some
MR. LU: That's right.
VICE CHAIRMAN BANERJEE: And the fine
debris all goes through the other part.

(202) 234-4433

	355
1	MR. LU: Well, if you have a preferential
2	debris transported to certain portions of the
3	strainer, that portion of the strainer will take the
4	debris load first. Right?
5	VICE CHAIRMAN BANERJEE: Right.
6	MR. LU: So you have a significant
7	accumulation of the debris on that portion, and then
8	the rest of the strainer surface will take much less,
9	no matter whether it's a fine or large chunk of the
10	debris.
11	VICE CHAIRMAN BANERJEE: Right. So the
12	way to do an experiment here that would be interesting
13	would be to see if there is an entrainment effect of
14	the fines, even at low velocities, through the open
15	screen areas which are not being blocked by the coarse
16	material.
17	So, you know, if you have one fine and one
18	Let's say you have one relatively blocked area
19	because of high velocity, one relatively open area
20	because it has low velocity. The thick stuff only
21	gets through this relatively high velocity area.
22	MR. LU: Okay.
23	VICE CHAIRMAN BANERJEE: The thin stuff is
24	like a fluid tracer everywhere. Okay? So it goes
25	everywhere.
	1

(202) 234-4433

	356
1	CHAIRMAN WALLIS: Falls off in the core.
2	MR. LU: So if you look at the assumption
3	then, the assumption is the uniformly distributed.
4	For the fines it is also assumed it is uniformly
5	distributed, and in that case they may have already
6	taken into account this effect already.
7	CHAIRMAN WALLIS: We have to know what the
8	vendor and what the utility proposes as a method.
9	Otherwise, you can speculate forever about it.
10	MR. LU: That's right.
11	CHAIRMAN WALLIS: And I don't think we
12	want to do that.
13	MR. PETERSON: In the next section, I will
14	go into all the testing. You know, I seem to have
15	gotten prematurely into the testing mode, and we
16	should let Dr. Blumer do that.
17	CHAIRMAN WALLIS: We'll get to that.
18	MR. PETERSON: Yes.
19	CHAIRMAN WALLIS: And someday this closure
20	arm which is going to be proprietary, because you are
21	not going to tell us today all the sort of details of
22	the numbers and how you actually moved the numbers.
23	MR. PETERSON: The numbers would be a
24	stack of paper about this big.
25	CHAIRMAN WALLIS: You aren't going to tell
	1

(202) 234-4433

	357
1	us that today.
2	MR. PETERSON: Yes, there will be.
3	CHAIRMAN WALLIS: You are?
4	MR. PETERSON: Yes.
5	CHAIRMAN WALLIS: Okay.
6	MR. PETERSON: It's in the next section.
7	CHAIRMAN WALLIS: Well, let's get to it
8	then.
9	MR. PETERSON: Okay.
10	MEMBER ABDEL-KHALIK: Can I just ask a
11	question? To get that 371 kilogram and the 17
12	kilogram number, you presumably figured out the total
13	surface area of aluminum components.
14	MR. PETERSON: Yes.
15	MEMBER ABDEL-KHALIK: And if you have done
16	that, that means you know the total mass of these
17	components. What does this 371 and 17 kilogram
18	represent in terms of percentage? Is it a hundredth
19	of a percent?
20	MR. PETERSON: I heard your question this
21	morning, and I regrettably I had that slide in
22	here. I deleted it. So I don't have that with me.
23	I can provide that to you.
24	MEMBER ABDEL-KHALIK: All right.
25	CHAIRMAN WALLIS: But it's a small

(202) 234-4433

	358
1	percent?
2	MR. PETERSON: It's a small percentage,
3	yes.
4	CHAIRMAN WALLIS: The ladder doesn't
5	disappear. The ladder still is a recognizable ladder.
6	MR. PETERSON: Yes. You have taken a
7	little film off of it.
8	CHAIRMAN WALLIS: Okay.
9	MR. PETERSON: But, yes, I do not have
10	that with me.
11	MEMBER ABDEL-KHALIK: But I think it would
12	be a good idea to know the order of magnitude of what
13	we are talking about.
14	MR. PETERSON: That concludes my portion.
15	So Dr. Blumer will talk about testing.
16	DR. BLUMER: Okay. On the next slide you
17	see the scope of my presentation. I will talk a
18	little bit about the design and the considerations of
19	the layout, about the testing, and then about the
20	overall calculation methodology and also the results
21	that we've got so far, mainly for Unit One.
22	On the next slide, you see a typical
23	layout. This is for Unit One. You see that we have
24	a number of standard modules, and in between there
25	where the "m" of modules is there, you have a little

(202) 234-4433

	359
1	bit longer module, which is the 15 pocket long module.
2	The others have 10 pockets in the flow direction.
3	This train of modules comes to a Z-shape
4	duct at the end. We had to implement a Z-shaped duct
5	because of constraints with the geometry of the sump.
6	Then we come into the suction box where the two pipes
7	of the RHR are taking suction.
8	CHAIRMAN WALLIS: Can I ask about the
9	material that gets to the back side of the strainers
10	near the wall, the outside wall.
11	DR. BLUMER: Well, that's the next thing
12	I will -
13	CHAIRMAN WALLIS: Presumably, in some
14	accidents it has to come around the ends. There isn't
15	enough water on top of the strain.
16	DR. BLUMER: That is the beauty of the
17	arrangement exactly, because the water has to flow
18	over the strainers to get to the other side, because
19	there is too much constriction on both ends for the
20	water to go through.
21	CHAIRMAN WALLIS: But there are some
22	accidents where you don't have that much water.
23	DR. BLUMER: Yes, we do have three inches
24	as a minimum.
25	CHAIRMAN WALLIS: Over the top of the
	1

(202) 234-4433
	360
1	strainer always?
2	DR. BLUMER: On top of the strainer.
3	CHAIRMAN WALLIS: For a large break LOCA,
4	but not for all LOCAs.
5	MR. MATHUR: No, but for small break LOCA,
6	you do not go into recirculation more
7	CHAIRMAN WALLIS: Well, there must be some
8	intermediate break where there is water on the floor,
9	but it doesn't cover the strainers.
10	MR. MATHUR: We calculated 80 feet 10
11	inches to be the minimum flood level.
12	CHAIRMAN WALLIS: That doesn't always
13	happen, does it?
14	MR. MATHUR: I don't know what kind of
15	LOCA we are talking about.
16	CHAIRMAN WALLIS: Well, in the small break
17	LOCA there is no water there. IN the large break LOCA
18	there is a lot of water. There must be some
19	intermediate size where there is an intermediate
20	amount of water.
21	MR. GASPER: Joe Gasper, Omaha Public
22	Power. In order to go to recirculation, you empty the
23	entire
24	CHAIRMAN WALLIS: That's right.
25	MR. GASPER: tank.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	361
1	CHAIRMAN WALLIS: Therefore, it has to be.
2	Okay. Just conservation of water.
3	MR. MATHUR: Yes. You do not turn over
4	until you have
5	CHAIRMAN WALLIS: You wouldn't pump You
6	wouldn't start pumping unless you had that much water.
7	MR. MATHUR: That's exactly right.
8	CHAIRMAN WALLIS: That's obvious. Okay.
9	Thank you. That's very clear.
10	DR. BLUMER: So if we look at these
11	pictures, also the next slide which is almost a mirror
12	image, the next slide has for Unit Two just a
13	connection duct, due to this obstacle that we have
14	there, and this just connects to standard modules.
15	CHAIRMAN WALLIS: Now the velocity in the
16	connection duct is presumably quite high?
17	DR. BLUMER: No. It has been designed to
18	have a reasonable head loss. We calculated the head
19	loss, and it was in reasonable limits.
20	CHAIRMAN WALLIS: A few feet a second or
21	something?
22	DR. BLUMER: It's got the same width like
23	the standard models inside, more or less. I'll show
24	you the standard module picture afterwards.
25	I just want to show you still with this

(202) 234-4433

	362
1	layout here what we do for testing. We take a slice
2	of this, and we assume that we can test only with one
3	side of the strainer. So flow to one side. This
4	means that for the other side we are very
5	conservative.
6	For the wall side, the water actually has
7	to flow over the strainer, and the strainer itself
8	acts as a big curb or a big trash rack, preventing the
9	debris to also go over the obstacle of the
10	CHAIRMAN WALLIS: Unless it's fine, unless
11	it is very fine.
12	DR. BLUMER: So we did testing for another
13	U.S. unit about exactly this arrangement where we have
14	one side against the wall, and we had strainers, test
15	strainers, with both sides, and we saw a significant
16	reduction of head loss. So this shows that we have a
17	very conservative test arrangement.
18	CHAIRMAN WALLIS: Very low head loss, but
19	perhaps more bypass of fine material.
20	MR. MATHUR: Which is exactly what I was
21	saying.
22	DR. BLUMER: But I understood that we have
23	quite a margin in downstream effects here of fibers.
24	MEMBER ABDEL-KHALIK: What is the scale on
25	this picture? What is the space between the back of

(202) 234-4433

	363
1	the strainer and the wall?
2	MR. MATHUR: I don't remember. I should
3	know that.
4	CHAIRMAN WALLIS: It's a couple of feet or
5	something, typically, like that?
6	DR. BLUMER: It's about The width of
7	the strainer modules is about four feet, roughly.
8	MEMBER ABDEL-KHALIK: This is a fairly
9	substantial gap, like two feet.
10	DR. BLUMER: Yes, sure. The modules are
11	about four feet, I think, and this gap is about two
12	feet or something like that.
13	CHAIRMAN WALLIS: In figure 41, it
14	actually looks less. I don't know how to scale that
15	is, though.
16	MR. PETERSON: You've got to get around
17	the columns you will see on like Figure 39.
18	DR. BLUMER: Let's go to Figure 40 now.
19	There you see a module. This is the standard module
20	with 140 pockets, 70 pockets on each side. You see
21	that the cover on top is all unperforated. We have
22	not done that like this for all the U.S. utilities.
23	When we have a lot of water coverage, more than a foot
24	or two feet, then we have usually also perforated area
25	on top.
	1

(202) 234-4433

	364
1	Like this, we prevent any air vortexes,
2	and we have done testing to show that air vortexes in
3	these conditions do not occur.
4	VICE CHAIRMAN BANERJEE: Now in the
5	pockets that you are showing, are you going to show us
6	this in more detail, each of these, what these pockets
7	look like?
8	DR. BLUMER: I have a slide later on which
9	shows a pocket, yes.
10	What you also see on this slide is the
11	fixation to the floor. We have bolts that are
12	adjustable, and with these little bolts that you have
13	beside them, you can adjust to the floor, to the floor
14	level, because it is not perfectly even, the floor;
15	and we can also locate the location of rebars. The
16	rebars can be detected, and then we can choose the
17	location with this turning plate that you have there
18	that we can not hit the rebars in the concrete.
19	Of course, you have these feet on both
20	sides of the module. They are only shown on one side
21	here. In the middle we have the central duct for the
22	water, and we do calculation of this head loss in the
23	central duct as well. I'll talk about this later on.
24	In the next slide, we see the last module
25	in the flow direction and the Z-shaped duct, and then
	1

(202) 234-4433

	365
1	the suction box.
2	MEMBER ABDEL-KHALIK: What happens if this
3	Z-shaped duct were to fail?
4	DR. BLUMER: Due to what reason?
5	MEMBER ABDEL-KHALIK: Is it seismically
6	qualified?
7	DR. BLUMER: Oh, sure. Yes. Well, we
8	have taken out all the slides about the structural
9	qualification, because we wanted to reduce the total
10	number of slides. But we have loads of differential
11	pressure, the maximum that you can expect, and then
12	seismic loads, OBE and SSE, and we have qualified
13	this, including some loads of the water acting on the
14	structures, not only the structures' weight itself but
15	also the interference fluid structure interaction and
16	so on. So we have qualified this.
17	MEMBER ABDEL-KHALIK: Thank you.
18	DR. BLUMER: The next slide shows you an
19	optimization that we did especially to have acceptable
20	head losses and to gain margin for the overall head
21	loss. We put in veins that you see in the kinks of
22	this Z-shaped box, and you also see a defuser to the
23	left of it. This defuser allows us to regain some of
24	the dynamic water head, and as we go into the box
25	there is another a beam that goes across.

(202) 234-4433

	366
1	We made the whole CFD calculation to see
2	what the head loss would be with and without these
3	veins in the defuser. So we have chosen for Unit One
4	to implement these already in the last outage, and I
5	will show you the CFD calculations that we have used.
6	CHAIRMAN WALLIS: There is no screen in
7	the box? The box is just a box with a whole in the
8	bottom to go into the pump? In the corners of the box
9	you could get debris accumulating past the bypass
10	debris.
11	DR. BLUMER: I'm not sure I understand
12	your question.
13	CHAIRMAN WALLIS: It's a two-phase mixture
14	in the box. There's the water and there is the fine
15	particles that came through the screen, and the
16	velocity isn't very high in the box, is it?
17	VICE CHAIRMAN BANERJEE: The velocity is
18	fairly high.
19	CHAIRMAN WALLIS: So you think everything
20	is perhaps stirred up enough?
21	VICE CHAIRMAN BANERJEE: Yes. I don't
22	know if it will be There could be dead regions.
23	CHAIRMAN WALLIS: That's right. So there
24	may be piles in the corners. Okay.
25	VICE CHAIRMAN BANERJEE: Growing piles.
	1

(202) 234-4433

	367
1	MEMBER ABDEL-KHALIK: The cross-section is
2	the bottom?
3	DR. BLUMER: We'll have to scale it. I
4	don't have the numbers and the drawings with me.
5	MEMBER ABDEL-KHALIK: I mean, roughly.
6	Are we talking about five foot square?
7	CHAIRMAN WALLIS: More than that.
8	DR. BLUMER: It's about eight feet long
9	and maybe four feet wide.
10	CHAIRMAN WALLIS: Looks like a pick-up
11	truck bed or something.
12	MEMBER ABDEL-KHALIK: The cross-section is
13	about 30 square feet?
14	DR. BLUMER: Well, I mentioned also that
15	the fluid velocities are very low in there, and we can
16	see that from the CFD calculation, which I will show
17	you just now.
18	MEMBER ABDEL-KHALIK: This is just a way
19	to geometrically connect one side to the other,
20	because you have to avoid some obstacles?
21	MR. PETERSON: This is the original hole,
22	the original sump, and now we have this box to connect
23	to it and to seal it up. It's a box on top of a sump.
24	VICE CHAIRMAN BANERJEE: That's why they
25	have this weird V-shaped

(202) 234-4433

	368
1	MEMBER ABDEL-KHALIK: To connect to it.
2	Okay.
3	MR. PETERSON: And then out of the sump
4	are the pipes that go out to the pumps.
5	VICE CHAIRMAN BANERJEE: And you are
6	trying to lose as little head as possible.
7	DR. BLUMER: Right. Yes. So Slide 42
8	shows you the goals, as I said already, that we wanted
9	to optimize the load.
10	CHAIRMAN WALLIS: Is there any air in this
11	box?
12	DR. BLUMER: No. It is
13	CHAIRMAN WALLIS: Free surface on top,
14	isn't it?
15	VICE CHAIRMAN BANERJEE: What happens if
16	it is not completely full?
17	CHAIRMAN WALLIS: Is it full of water, or
18	what is it? Is there air on top of the water in the
19	box?
20	DR. BLUMER: The air would go out.
21	MR. PETERSON: It is submerged.
22	DR. BLUMER: It is submerged, yes.
23	CHAIRMAN WALLIS: Are you sure? Well, is
24	it full of air when you start this? Where does the
25	air go that is in the strainer to start with? The Z-
	1

(202) 234-4433

	369
1	shaped duct comes down. I would think there would be
2	a lot of air left behind in the
3	DR. BLUMER: The modules are on the same
4	level as the suction box.
5	CHAIRMAN WALLIS: It comes out through the
6	strainers. It comes out through the top.
7	DR. BLUMER: Right. As you fuel up,
8	during the injection?
9	CHAIRMAN WALLIS: Through the top of these
10	pigeonholes here. That's where it comes from. Okay.
11	VICE CHAIRMAN BANERJEE: Oh, they closed
12	off the vents on top.
13	CHAIRMAN WALLIS: And it comes out through
14	here.
15	DR. BLUMER: Well, as you have the
16	injection phase, the water level slowly rises, and the
17	water gets out, but the top pockets You have no
18	flow yet in this.
19	The goals, as I said before, is the
20	optimization of the flow geometry with veins and
21	diffuser and minimizing the head loss.
22	VICE CHAIRMAN BANERJEE: Do these pumps
23	need to be primed or are they self-priming, or how
24	does it work?
25	MR. MATHUR: I'm not sure, but we had
	1

(202) 234-4433

	370
1	recirculation. Those recirculate
2	CHAIRMAN WALLIS: There is a problem in
3	some of these pumps, or there has been, with air in
4	the suction line to the pump. I guess that's been
5	sorted out now. There has been a problem with some
6	pumps.
7	Well, if you don't remember that, you can
8	run the pump and nothing happens.
9	VICE CHAIRMAN BANERJEE: I've done that
10	many times in my life, unfortunately.
11	DR. BLUMER: Okay. The method that we
12	used to determine the head loss in this region was CFD
13	modeling of the whole geometry from the last module up
14	to the suction pipes in the sump itself. So we did
15	steady state and transient computations.
16	We saw that there was some instability of
17	flow, and that is why we chose to use also transient
18	computations, and for the head losses that we later on
19	use is the maximum of the fluctuation affecting head
20	loss.
21	We modeled the entrance of the chemical
22	effects on viscosity a little bit. Although we have
23	turbulence regime, it is not very important, and we
24	have looked at the two flow rates mentioned earlier.
25	In the next slide

(202) 234-4433

	371
1	VICE CHAIRMAN BANERJEE: What were the two
2	flow rates? I have forgotten.
3	DR. BLUMER: 5,110 for Unit One, and 9,000
4	GPM for two-pump operations.
5	MR. MATHUR: There is one-pump operation
6	and two-pump operation. That's what we are talking
7	about here.
8	DR. BLUMER: And this is the basic
9	geometry of the CFD model.
10	The next slide shows you the velocity
11	distribution. You see that at the ends of the
12	diffuser you see this beam that's in the way there.
13	We modeled this beam as well to see some back pressure
14	occurring, and you see that there is quite an
15	efficient function of these veins that really take the
16	flow around the corners of Z-shaped duct.
17	The next slide shows you
18	VICE CHAIRMAN BANERJEE: What are the
19	velocities? I can't read the slide.
20	DR. BLUMER: That's the maximum of the
21	scale above there is 2.8 meters per second. Yes,
22	meters per second, that should be. Yes.
23	CHAIRMAN WALLIS: Nine feet a second?
24	DR. BLUMER: Yes. It's quite a high
25	velocity. That's why we chose to use these veins in
I	1

(202) 234-4433

372
the diffusers.
CHAIRMAN WALLIS: That's more than a foot
of water.
DR. BLUMER: It was quite substantial, but
if we wanted to reduce that, that would have been a
big effort, and it would have been difficult to put it
in, in the existing geometry of the whole containment
there.
VICE CHAIRMAN BANERJEE: And what are the
pressures? Again, I can't read the pressures.
DR. BLUMER: Let ;me see. That's Pascals,
and I think the last to the right of the scale is
4,000.
VICE CHAIRMAN BANERJEE: Four thousand
Pascals?
DR. BLUMER: Yes.
VICE CHAIRMAN BANERJEE: And on the left?
It's not zero, is it?
DR. BLUMER: It's something close to zero,
probably. I cannot read on my thing as well.
CHAIRMAN WALLIS: Anyway, it's all figured
out. The NPSH they need is 25 feet or something like
that?
DR. BLUMER: Well, anyway, I showed the
results in the next draft. There, I have the head

```
(202) 234-4433
```

	373
1	loss portions transferred from Pascals to feet. You
2	see the two flow rates that we have, and with the
3	plane geometry that means without veins and
4	diffuser we have 1.32 and 3.95 feet. With the
5	improvement that we have designed, we have 0.61 and
6	1.86, which gives us more than two feet for the two-
7	pump operation. It is quite substantial what these
8	things bring that we use for optimization.
9	So that s just something on the green side
10	of the strainer, and I am going to tell you about
11	MEMBER ABDEL-KHALIK: What do you mean
12	when you say gives you more than two feet for the two-
13	pump operation? Just allowing for the net positive
14	suction head?
15	DR. BLUMER: Yes, for the overall head
16	loss and then also for the NPSH margin, yes.
17	MEMBER ABDEL-KHALIK: Based on the 2 foot
18	8 inch
19	DR. BLUMER: I'm just talking about
20	MR. PETERSON: He's saying the reduction
21	is two feet. He went from 3.95 to 1.86 by installing
22	these turning veins.
23	MEMBER ABDEL-KHALIK: Oh, I see.
24	MR. PETERSON: That he reduced the head
25	loss by two feet. So that bought us two feet to use
I	1

(202) 234-4433

(202) 234-4433

	374
1	for debris or chemicals or anything else.
2	DR. BLUMER: Then I come to the next slide
3	with the test facilities. We have in Switzerland the
4	small size vertical test loop, a large size horizontal
5	test loop. They are both used for head loss testing,
6	and then a multi-functional horizontal test loop.
7	Here we have done quite a number of testing for
8	chemical effects, as well bypass testing, transport
9	testing, and flume sedimentation testing.
10	CHAIRMAN WALLIS: What you don't show here
11	is the man with the bucket who pours the debris in.
12	DR. BLUMER: Yes, well, we have several of
13	these people now, because we are doing such a lot of
14	testing.
15	VICE CHAIRMAN BANERJEE: But CCI is not
16	associated with Sulzer anyway.
17	DR. BLUMER: We were Sulzer originally in
18	Switzerland in Winterthur, and 10 years ago we were
19	sold to an American company, CCI in California, and we
20	have the Switzerland location.
21	CHAIRMAN WALLIS: I went to see this, and
22	I think one of the variables certainly is the way the
23	man with the bucket stirs the bucket and pours the
24	debris into this system.
25	DR. BLUMER: We have come quite a way for
	1

(202) 234-4433

	375
1	debris preparation as well. We use the mechanical
2	stir. That is a mechanical drill with a propeller at
3	the end, and we have seen through testing that there
4	is a better way, and we use a water jet now to
5	dissolve the fibers very much better into single
6	fibers, which gives also a thin bed, if that occurs at
7	all.
8	VICE CHAIRMAN BANERJEE: So you don't use
9	a blender. I remember in the past people used
10	blenders.
11	CHAIRMAN WALLIS: But the material sits
12	around in buckets, doesn't it, before it gets poured
13	in?
14	DR. BLUMER: It is put together All the
15	debris is put together in a bucket with the water, and
16	then we use a water jet to dissolve the fibers.
17	CHAIRMAN WALLIS: Stir it up. And you do
18	that while you are pouring it in?
19	DR. BLUMER: Yes, partly, and then we fill
20	up. Of course, if we have
21	CHAIRMAN WALLIS: When we first saw it,
22	there was a trowel used to get the mud out of the
23	bucket. Now he uses a jet.
24	DR. BLUMER: Yes. We usually have several
25	buckets also if we have a big amount of debris, so

(202) 234-4433

	376
1	that we can really stir the whole lot, and we don't
2	have a deep
3	CHAIRMAN WALLIS: So you are try, I
4	think, to be as conservative as possible, to stir it
5	up more than it would be stirred up in the plant.
6	DR. BLUMER: Right.
7	CHAIRMAN WALLIS: Because it's very
8	difficult. You can't simulate what happens in the
9	plant, but you can try to be extra conservative.
10	DR. BLUMER: Well, what we try to do is
11	all the debris that Bob Peterson was explaining that
12	was transported to the screen that this is all fine
13	fibers, completely fine, and not various classes of
14	fibers.
15	VICE CHAIRMAN BANERJEE: I think the point
16	I was making is, unfortunately, stirring makes a big
17	difference in the sense that, if you stir it up too
18	much, as Graham was saying, everything goes to the
19	screen, and it's nice and uniform. But if you don't
20	stir it quite that much, you could get some part of it
21	going and blocking some part of the screen and the
22	other part just going and passing through, or bypass.
23	It may not be a problem for this plant,
24	but all I'm saying is that it could be a problem for
25	other plants. Uniform stirring is not necessarily the
	1

(202) 234-4433

	377
1	worst case.
2	CHAIRMAN WALLIS: Uniform stirring is
3	different from you have it in a bucket uniformly
4	stirred. You pour that into a pool. What the
5	contents of the bucket does now is not necessarily
6	uniformly distributed.
7	VICE CHAIRMAN BANERJEE: No, I'm sorry.
8	I thought you meant stirring up the pool as well.
9	CHAIRMAN WALLIS: You don't stir the pool,
10	do you?
11	DR. BLUMER: No, no, no. We just of
12	course, we get some waves and some
13	CHAIRMAN WALLIS: Just all the way through
14	here that does natural stirring. But you don't have
15	a stirrer in the pool itself.
16	DR. BLUMER: No. No.
17	CHAIRMAN WALLIS: But when you pour a
18	dense mixture from a bucket into a pool, it goes to
19	the bottom and flows around, presumably.
20	DR. BLUMER: Well, we get sort of vortexes
21	on the horizontal axis that go like this.
22	VICE CHAIRMAN BANERJEE: Vortexes are
23	wonderful separators, actually.
24	DR. BLUMER: Yes, very slow vortexes.
25	CHAIRMAN WALLIS: IN a teacup.
	1

(202) 234-4433

	378
1	VICE CHAIRMAN BANERJEE: That's the
2	problem. All I'm saying is that you can get tight
3	separation.
4	CHAIRMAN WALLIS: Well, the staff is well
5	on top of all this, I'm sure.
6	DR. BLUMER: Okay. The next slide shows
7	you the vertical small scale loop. I think we haven't
8	used that very much after some initial testing.
9	The next slide shows you the university of
10	Winterthur loop. That's quite a large loop, and we
11	have separation plates that allow us to simulate the
12	geometry of the plant that's as good as possible.
13	The next slide shows you
14	VICE CHAIRMAN BANERJEE: This is the
15	What is the laminar flow zone around strainer module
16	mean?
17	DR. BLUMER: Well, what we usually have
18	done for the French, for example this is the thing
19	that shows how we have done it for the French. You
20	see this pipe there with the holes in it? That's the
21	pipe bringing in the water, and we have there a
22	turbulent zone from these holes, and we have no
23	sedimentation in this compartment. That's why we put
24	in the debris.
25	Then the debris and the water would flow

(202) 234-4433

	379
1	around this plate, this first plate, into the
2	strainers with a relatively quiet zone there. That
3	was the specification of the French. They wanted to
4	have it done this way.
5	For the U.S. plants, we usually put the
6	debris directly before the strainers, less
7	sedimentation.
8	CHAIRMAN WALLIS: Were you doing the Salem
9	tests when we visited you, or not? Do you remember?
10	DR. BLUMER: I think it was not Salem, no.
11	CHAIRMAN WALLIS: It was Salem?
12	DR. BLUMER: No. Actually, when you were
13	in Winterthur, we didn't do actual testing which were
14	valid for QA tests for any plant, I think, but a
15	different one, yes. Yes.
16	VICE CHAIRMAN BANERJEE: I didn't know
17	there was a university in Winterthur.
18	DR. BLUMER: There's different levels, I
19	think, at a university where you do a BSE, and then in
20	Zurich the Federal Institute of Technology, you make
21	a Master's degree.
22	CHAIRMAN WALLIS: That's an offshoot of
23	Zurich.
24	DR. BLUMER: Not really. It has different
25	roots in Winterthur.

Í	380
1	VICE CHAIRMAN BANERJEE: It is not the
2	ATR?
3	DR. BLUMER: No, no. The ATR is in
4	Zurich, yes.
5	CHAIRMAN WALLIS: Much more practical than
6	the ATR.
7	DR. BLUMER: Okay. The next slide shows
8	you the multi-functional loop, and that is actually
9	the configuration as we used it for the chemical
10	testing. So you have some compartments before the
11	strainer, and you see a typical strainer module with
12	a certain number of pockets, for example, 10 rows high
13	and four rows wide, and then the pump behind.
14	The water is brought back from the pump
15	above in a part into the first compartment again. So
16	you will see a better picture of this again later on.
17	VICE CHAIRMAN BANERJEE: So this is a
18	once-through or the recirculating?
19	DR. BLUMER: This is recirculating. The
20	older loops are recirculating.
21	VICE CHAIRMAN BANERJEE: So the fines get
22	carried around?
23	DR. BLUMER: Right. Everything that goes
24	except for the bypass testing. for the bypass
25	testing, we captured the fines in a special screen

(202) 234-4433

	381
1	where we brought back the water in the first
2	compartment there, and then we took out the screen,
3	the fine screen, later on, dried it and weighted it
4	and analyzed it for bypass.
5	VICE CHAIRMAN BANERJEE: So the screen now
6	is a submicron filter of some sort?
7	DR. BLUMER: Yes. It was. I don't know
8	the size of the mesh anymore. I don't say a number,
9	because I don't recall it, but it was considered fine
10	enough to capture practically all the fibers and most
11	of the particulates. But we tested mainly for fibers.
12	Especially for Salem we tested with fibers only for
13	bypass.
14	So the next slide shows you the different
15	types of testing. You see small scale, large scale,
16	bypass testing, and chemical testing, the last two
17	being done on the multi-functional loop. The debris
18	types are for the small scale and large scale the
19	Nukon, Kaowool, particulates, RMI; and for the bypass
20	testing, as I said before, we used only fibers.
21	CHAIRMAN WALLIS: the mix that you put in
22	is the mix that you expect from the plant?
23	DR. BLUMER: Yes. Yes. We actually
24	bounded it by extreme cases. We used only Nukon and
25	then a mixture of Nukon and Kaowool, and we saw that

(202) 234-4433

	382
1	the Kaowool was much more severe with respect to head
2	loss.
3	CHAIRMAN WALLIS: You know, head loss
4	things are rather peculiar. If you have if the
5	Nukon all goes to the first few strainers and some of
6	the other stuff goes down, it makes a thinner bed, it
7	could be worse for head loss than if it was all mixed
8	together; because sometimes a thin bed is worse than
9	a thick bed with the same amount of particulates in
10	it.
11	DR. BLUMER: I have a last column there,
12	benefits of learning. We also learned that thin beds
13	have not really formed. We couldn't see a head loss
14	there with the thin beds, which was 1/8th of an inch.
15	We also have seen that the RMI, which is actually, as
16	we have learned before, is held up by the trash rack,
17	but we didn't take account of this. So the RMI head
18	loss was not important anyway.
19	MEMBER ABDEL-KHALIK: How is the head loss
20	measured in this facility?
21	DR. BLUMER: Well, we have two little
22	parts that go before the strainer and after the
23	strainer, and we have a U-tube that we use normally
24	for these tests. So this is a very accurate
25	measurement, just by measuring the lengths. Then we
	1

(202) 234-4433

	383
1	also have a calibrated electric gauge that tells the
2	head loss.
3	MEMBER ABDEL-KHALIK: So the elevation of
4	the upstream tap is where I mean, you are saying
5	you have 10
6	DR. BLUMER: At the mid-height of this
7	vein, yes.
8	MEMBER ABDEL-KHALIK: And you are assuming
9	that the pressure upstream of this thing is pretty
10	much uniform?
11	DR. BLUMER: Yes. Well, you have the
12	gradient from the gravity, of course.
13	MEMBER ABDEL-KHALIK: Right.
14	DR. BLUMER: But that is equal on both
15	sides.
16	MEMBER ABDEL-KHALIK: But the outlet here
17	doesn't seem to have the same cross-section as the
18	inlet.
19	DR. BLUMER: Well, actually, this drawing
20	is misleading that you have, this CAD drawing, because
21	we have a taped connection between the strainer and
22	the pump.
23	VICE CHAIRMAN BANERJEE: Is this the
24	facility you are using primarily or that one?
25	DR. BLUMER: For chemical effects, it's
	1

(202) 234-4433

	384
1	the third one, this one, yes. And the large scale one
2	was used for learning and, as I said to you, we
3	learned about sand bed effects, about RMI influence,
4	about influence of the fiber type, that Kaowool would
5	be more detrimental for head loss.
6	CHAIRMAN WALLIS: What type of testing are
7	you going to use for engineering purposes?
8	DR. BLUMER: Well, the bypass testing was
9	done in the multi-functional loop, and then the
10	chemical testing.
11	CHAIRMAN WALLIS: When you calculate head
12	loss in the plant following a LOCA in order to get
13	NPSH, are you going to use the results from the large
14	scale testing?
15	DR. BLUMER: No. We have decided to use
16	the last MFTL testing, including the chemical effects.
17	CHAIRMAN WALLIS: From the chemical
18	effects tests?
19	DR. BLUMER: Yes, because that includes
20	everything. That includes the fibers, the
21	particulates and the chemicals and also the RMI. So
22	we have the totality of all
23	CHAIRMAN WALLIS: distributed across
24	that tall skinny screen?
25	DR. BLUMER: I'll talk about this.
	1

(202) 234-4433

	385
1	MEMBER ABDEL-KHALIK: So if we go back to
2	Slide Number 51, what does this picture really look
3	like?
4	DR. BLUMER: Maybe we have a better
5	picture later on. Fifty-nine, yes. Well, okay.
6	Fifty-nine is actually showing better what we did for
7	Salem. Fifty-eight is just a
8	CHAIRMAN WALLIS: There is a bigger
9	diffuser or whatever you want to call it.
10	DR. BLUMER: You see that there is a taped
11	connection piece which joins to the pump there.
12	MEMBER ABDEL-KHALIK: The downstream
13	pressure tap is located where?
14	DR. BLUMER: We have two different ones,
15	one on this taped section and one before the pump.
16	MEMBER ABDEL-KHALIK: Before the pump?
17	DR. BLUMER: Yes. We looked at the
18	velocity influence of that, and that proved to be
19	acceptable.
20	MEMBER ABDEL-KHALIK: But if the cross-
21	sections are the same, the difference form the
22	hydrostatic head will be important.
23	DR. BLUMER: Yes, sure, but we checked
24	with the velocity that we expected there, that this
25	would be within the allowable difference. So the
	1

(202) 234-4433

	386
1	dynamic head was not important here. That was
2	checked.
3	MEMBER ABDEL-KHALIK: No. That's not what
4	I'm talking about. If you are measuring if you are
5	putting your pressure tap at the mid-level elevation
6	upstream, and you are putting the downstream pressure
7	tap at the mid-level elevation of this smaller cross-
8	section, there is a hydrostatic pressure difference
9	between the two. Are you accounting for that?
10	DR. BLUMER: But your piping, the flexi-
11	piping that goes to the instrument also is full of
12	water, and the hydrostatic difference is taken care of
13	by the piping that you have. There is no flow in this
14	little piping. So you just have to make sure that
15	your little pipes that connect up to the measuring
16	instrument are full of water. You cannot have air in
17	there.
18	CHAIRMAN WALLIS: There is no flow. The
19	level is the same in the little piping.
20	DR. BLUMER: There is no flow, and you
21	must make sure that there is no air pocket in there.
22	That's clear.
23	VICE CHAIRMAN BANERJEE: And the other
24	thing that you said is that the change in the velocity
25	from the inlet to the outlet doesn't give you any

(202) 234-4433

	387
1	significant velocity head difference.
2	DR. BLUMER: Can you repeat that?
3	VICE CHAIRMAN BANERJEE: You have a
4	difference in cross-section area going from the inlet
5	at least from what I can see in 58.
6	CHAIRMAN WALLIS: To the green arrow.
7	VICE CHAIRMAN BANERJEE: To the green. So
8	just due to Bernoulli's effect, there will be some
9	change in the pressure, static pressure, that you
10	measure. I'm assuming that the velocity head
11	difference is small then.
12	DR. BLUMER: Yes. It is very small. Yes.
13	VICE CHAIRMAN BANERJEE: So what is the
14	fluid velocity going in there?
15	DR. BLUMER: I would have to calculate it.
16	VICE CHAIRMAN BANERJEE: Roughly.
17	DR. BLUMER: It's similar to the real
18	situation in the plant, because it is scaled.
19	VICE CHAIRMAN BANERJEE: Point-one meters?
20	DR. BLUMER: Less than .1 foot, I think.
21	VICE CHAIRMAN BANERJEE: .03 meters per
22	second?
23	DR. BLUMER: It's very, very Well,
24	before the strainer it is completely negligible, and
25	after maybe it is one millimeter or something like

(202) 234-4433

	388
1	that. We measured also the clean head loss always, by
2	the way, and it was negligible. So already without
3	debris we should have seen this influence, and we
4	always measured For every test before we started
5	the test, we did a zero measurement. That means with
6	a clean strainer.
7	CHAIRMAN WALLIS: By the way, maybe I
8	should say my intention. It is now five o'clock. My
9	intention is to just keep going.
10	DR. BLUMER: Okay.
11	CHAIRMAN WALLIS: Is that all right with
12	everybody? Until we finish.
13	VICE CHAIRMAN BANERJEE: What is a typical
14	pressure loss across the screen?
15	DR. BLUMER: Without debris?
16	VICE CHAIRMAN BANERJEE: Well, without
17	debris and with debris. Start without debris.
18	DR. BLUMER: Without debris, it is, I
19	think, maximum at 0.01 foot or something like this
20	head loss, almost zero. Excuse me?
21	VICE CHAIRMAN BANERJEE: Can you give it
22	to me in pascals?
23	DR. BLUMER: I have the head loss reports
24	with me. So I could look it up.
25	VICE CHAIRMAN BANERJEE: So what is that,
	1

```
(202) 234-4433
```

	389
1	.1 foot
2	DR. BLUMER: No, .01 foot about. It's
3	almost not measurable within the grounds of the
4	signal.
5	VICE CHAIRMAN BANERJEE: Okay. So the
6	screen material or the strainers have almost no loss
7	associated with them?
8	DR. BLUMER: Right.
9	VICE CHAIRMAN BANERJEE: And with the
10	debris, what does it come to?
11	DR. BLUMER: This depends on the
12	conditions. I'll talk about this later on.
13	VICE CHAIRMAN BANERJEE: But roughly. I'm
14	just looking for a measurement.
15	DR. BLUMER: Well, about up to we
16	measured up to five feet or something like this.
17	It depends very much Oconee, for example, which is
18	another plant which I won't talk much about, but they
19	have head losses of .1 foot, including the green
20	strainer cavity head loss and so on. So they have
21	very, very low head loss.
22	CHAIRMAN WALLIS: Put enough chemicals in,
23	you can make it pretty high.
24	DR. BLUMER: I doubt it there, because we
25	have very little fibers there, which cannot capture

(202) 234-4433

	390
1	the chemicals.
2	CHAIRMAN WALLIS: Once you get the fibers,
3	though, you can then stop putting in particles.
4	MR. PETERSON: To answer your question,
5	two feet is upper limit on the test at Salem, head
6	loss.
7	CHAIRMAN WALLIS: So your NPSH you want is
8	25 feet, and you are looking at something like 2 feet
9	pressure drop?
10	MR. PETERSON: The NPSH-R that was on the
11	earlier slides is what is required by the pump. We
12	will show you the limit. I mean, you got to subtract
13	the friction losses and the static and all of those
14	calculations. We just gave you the raw data for the
15	pump on that early slide. We will show you later the
16	limit.
17	CHAIRMAN WALLIS: We'll get to that then.
18	DR. BLUMER: Okay. So
19	VICE CHAIRMAN BANERJEE: We never can fill
20	up these pockets. With so much pocket area that these
21	six truckloads or whatever
22	DR. BLUMER: No. We can show you some
23	pictures in another slide later on that you see the
24	degree of filling of the pockets.
25	I'll talk a little bit about bypass

(202) 234-4433

	391
1	testing that we have done. We found out that some
2	people use percentages of this bypass quantification.
3	We have used another measure, because we found that
4	there is a certain saturation of the amount that goes
5	through a certain screen.
6	It means the saturation level is
7	proportion to the screen area and, more or less, also
8	a function of velocity through the screen.
9	CHAIRMAN WALLIS: You are off at the
10	beginning before you build up the fibers.
11	DR. BLUMER: Right. Right. And so
12	CHAIRMAN WALLIS: If you do build up the
13	fibers.
14	DR. BLUMER: So we thought using a
15	percentage is maybe not the best way of doing it, but
16	we chose a certain amount of cubic feet of fibers per
17	square fee of screen that goes through.
18	VICE CHAIRMAN BANERJEE: Is this some sort
19	of a steady state that you get to?
20	DR. BLUMER: Right. Right. So once you
21	get to certain fiber thickness on the screen, then
22	nothing passes through anymore. Then later on you
23	don't get more.
24	In the next slide 54, you see the fiber
25	amount and the ordinate this value that I was

(202) 234-4433

	392
1	talking about; and you see at the very low fiber
2	amounts you also get low fiber bypass, and then you
3	get with some scatter, more or less steady amount of
4	fibers. Excuse me?
5	CHAIRMAN WALLIS: Are these repeatable
6	experiments? If you do test two again, do you get the
7	same value?
8	DR. BLUMER: There is some scatter, and
9	then this I also depends, of course, whether
10	what type of fibers you use, whether it's Nukon or
11	Kaowool.
12	CHAIRMAN WALLIS: You're not bold enough
13	to put an equation through this?
14	DR. BLUMER: No, but you can give quite
15	easily an upper limit to that.
16	CHAIRMAN WALLIS: That's what they use for
17	design.
18	DR. BLUMER: I have not used these
19	results. So maybe
20	MR. MATHUR: Five cubic feet. That's what
21	we came up with, actually. Five cubic feet per foot
22	square.
23	CHAIRMAN WALLIS: Out of 5,000 square
24	feet. So that's .01?
25	MR. MATHUR: Yes.

```
(202) 234-4433
```

	393
1	CHAIRMAN WALLIS: So that's .01.
2	MR. MATHUR: One cubic feet per square
3	CHAIRMAN WALLIS: So it's the top of the
4	graph. You use .001?
5	VICE CHAIRMAN BANERJEE: It's not. Here
6	it's about three cubed per thousand feet squared. So
7	you could be
8	CHAIRMAN WALLIS: Well, that's three, but
9	here it's They could be low, yes.
10	VICE CHAIRMAN BANERJEE: These are
11	representative. The issue that I was having was much
12	more severe than this. I am still having this issue.
13	As was pointed out, as a region gets blocked off, you
14	keep moving the region.
15	CHAIRMAN WALLIS: So you get more bypass.
16	VICE CHAIRMAN BANERJEE: You get much
17	more.
18	CHAIRMAN WALLIS: You should get much more
19	bypass.
20	VICE CHAIRMAN BANERJEE: Much more bypass.
21	CHAIRMAN WALLIS: Right.
22	VICE CHAIRMAN BANERJEE: That's exactly
23	what I was saying.
24	CHAIRMAN WALLIS: Yes. This is probably
25	not acceptable as a predictive tool for the real

	394
1	thing.
2	MR. PETERSON: But if you do it on a per
3	square foot, every new section behaves just like the
4	previous.
5	VICE CHAIRMAN BANERJEE: No, because you
6	get an initial before it starts to build up the
7	bed, the bypass
8	CHAIRMAN WALLIS: And then to a saturation
9	value.
10	VICE CHAIRMAN BANERJEE: Eventually, but
11	it takes a while.
12	CHAIRMAN WALLIS: But maybe the fibers
13	don't make it that far, just the fines, in which case
14	it is going through all the time. Yes.
15	VICE CHAIRMAN BANERJEE: The other
16	scenario.
17	CHAIRMAN WALLIS: Well, the staff is going
18	to sort all that out.
19	MEMBER ABDEL-KHALIK: These tests are
20	presumably run for a long time in order to reach
21	CHAIRMAN WALLIS: The staff is very aware
22	of all these problems. They are going to sort them
23	all out.
24	VICE CHAIRMAN BANERJEE: The staff are
25	aware that you might be getting fines popping through.

(202) 234-4433

	395
1	MEMBER ABDEL-KHALIK: To get back to the
2	point that you were making at the beginning, these
3	tests were done for a long time in order to reach this
4	asymptotic value for the bypass?
5	DR. BLUMER: They were done until the
6	water was relatively clear. So that we didn't expect
7	the values to go up more anymore.
8	VICE CHAIRMAN BANERJEE: But the bypass
9	was initially very high. Right?
10	DR. BLUMER: Right. That is why you get
11	high turbidity at the beginning and then water clears
12	off after a while. Yes.
13	CHAIRMAN WALLIS: Why was test 6 so high?
14	DR. BLUMER: We have to look at the test
15	report. But you can clearly see that there is a
16	function of penetration velocity at 0.05 inch per
17	second. There is distinctly less bypass than at the
18	high velocity.
19	CHAIRMAN WALLIS: What happened to Riot
20	Zane? Didn't appear on the
21	DR. BLUMER: Well, the Riot Zane is
22	another thing which is not shown. I think there are
23	only nine points in the other one as well.
24	CHAIRMAN WALLIS: Right. So it's not
25	scale?

(202) 234-4433
	396
1	VICE CHAIRMAN BANERJEE: I want to ask you
2	where you got the transient data on the bypass? Do
3	you have
4	DR. BLUMER: We have turbidity
5	measurements, yes, and we have also samples taken at
6	different times. Yes. We see a peak at the
7	beginning, and then very low values
8	CHAIRMAN WALLIS: We've seen that. We've
9	seen that. We saw that last time.
10	DR. BLUMER: Well, I can show you the
11	graphs of the test report, if you are So we
12	definitely see a very high peak at the beginning and
13	then almost nothing afterwards.
14	VICE CHAIRMAN BANERJEE: How long does
15	that peak last?
16	DR. BLUMER: I can't pick a number now
17	from my memory.
18	VICE CHAIRMAN BANERJEE: This is
19	interesting, because if you, one, was actually doing
20	a series here of peak calculation, you could probably
21	take some of this into account as the screen blocked.
22	CHAIRMAN WALLIS: But we are not going to
23	do that.
24	VICE CHAIRMAN BANERJEE: They are not
25	going to do it, but if we wanted to amuse ourselves,

(202) 234-4433

	397
1	we could.
2	CHAIRMAN WALLIS: You can do it.
3	DR. BLUMER: Okay. I come to the chemical
4	testing after the bypass testing. We have a plant
5	with the ICET Number 1 chemical condition. We have
6	done testing at room temperature and also with
7	simulated plants' pH, and as was mentioned before by
8	Bob, we had WCAP methodology to come up with the total
9	precipitate amounts.
10	What is perhaps special here is that we
11	used the test loop as a particle generator, which has
12	some advantages. We have avoided another step in the
13	whole process. We don't have a particle generator.
14	We would have to analyze the particle generator, then
15	the loop.
16	CHAIRMAN WALLIS: So you used the particle
17	loop as a chemical reactor.
18	DR. BLUMER: Right. Right. And I will
19	explain that a little bit in the next slide then.
20	We also have precipitate concentration
21	which is much closer to the real plant situation than
22	if we would do it in a particle generator.
23	VICE CHAIRMAN BANERJEE: But the
24	temperature is kept at room temperature.
25	DR. BLUMER: Right.
	1

(202) 234-4433

	398
1	VICE CHAIRMAN BANERJEE: So the kinetics
2	of the reactions
3	DR. BLUMER: Well, we saw that what we put
4	in, and I will talk about this later on, is
5	immediately precipitate, and so we know that the flow
6	the rate of the chemistry reaction is not really
7	important here.
8	Then we've done pre-analysis by lab
9	benchtop testing. We wanted to see the effect of tap
10	water in the other debris, like stone flour that we
11	have used, and we made tests of the filterability, the
12	settling rate, the viscosity effect, and also the size
13	distribution of the precipitates.
14	So after having done all these things, we
15	started the procedure in the test loop. We put in all
16	the debris, and we added then the boric acid to a
17	certain concentration, and established a certain pH of
18	four-point-something, 4.1, I think.
19	MEMBER ABDEL-KHALIK: How does the
20	settling rate that you measured compare with the
21	settling rate specified by Westinghouse for the
22	surrogate debris?
23	MR. PATERSON: All of the data was
24	comparable to the Westinghouse values.
25	MEMBER ABDEL-KHALIK: For the surrogate

(202) 234-4433

	399
1	debris?
2	MR. PATERSON: They had limits specified
3	in their particle generator portion of the WCAP that
4	they measured, and we compare to those same limits for
5	filterability, settling.
6	MEMBER ABDEL-KHALIK: Okay. Thank you.
7	DR. BLUMER: We increased the pH and also
8	started precipitation by slow addition of sodium
9	aluminate, and then there was, as I said, immediate
10	precipitation. So the chemistry reaction rate is not
11	really very important here.
12	We have done similar steps, which I won't
13	go into detail about, with calcium chloride and sodium
14	silicate that was formed, and we did additional
15	buffering to adjust the pH value according to the
16	measured pH value in the loop.
17	VICE CHAIRMAN BANERJEE: This is a
18	different surrogate procedure from Westinghouse's.
19	DR. BLUMER: Right, and maybe we have a
20	lady here who can explain to you about this.
21	MS. PENROSE: Yes. There are a couple of
22	things that are different. I'm Jeri Penrose with
23	Sargent and Lundy.
24	The first thing that's different is that
25	we wanted to do the precipitation in borated water.

(202) 234-4433

	400
1	Our feeling was that boron would likely absorb on the
2	aluminum hydroxide and, if it did, we wanted that to
3	happen.
4	It turns out that the boric acid helps us,
5	in a way. We need a source of acid to counterbalance
6	the alkalinity of the sodium aluminate, which was the
7	source of aluminum, and by mixing the two, the pH
8	worked out pretty well.
9	So we used the sodium aluminate. We added
10	it first, so that we would precipitate some aluminum
11	hydroxide. Next, calcium was added as a source of
12	calcium. We didn't really expect calcium to do much,
13	but it might participate in a calcium aluminum
14	silicate instead of a sodium aluminum silicate. And
15	since it was there in prototypical conditions, we
16	wanted it there.
17	The last thing that we added was the
18	silicate, sodium silicate. We added it last to make
19	sure that we added it to an alkaline solution. We
20	were afraid that, if we added it first, that to an
21	acid solution we might precipitate colloidal silica.
22	So we had a particular order that we
23	selected. The whole idea behind this was to add the
24	masses of aluminum, calcium, and silica to match what
25	would be seen in containment, and let the reaction do
	1

(202) 234-4433

	401
1	what it wants to do. Whatever it wants to make, it
2	makes.
3	VICE CHAIRMAN BANERJEE: Is the sequencing
4	sort of what one would expect in containment?
5	MS. PENROSE: It would happen
6	simultaneously in containment.
7	VICE CHAIRMAN BANERJEE: Right. But would
8	you precipitate colloidal silica in containment?
9	MS. PENROSE: No, because it is alkaline.
10	by the time it cools enough, it's going to be
11	alkaline.
12	VICE CHAIRMAN BANERJEE: So this is
13	another alternative to the Westinghouse surrogate.
14	MS. PENROSE: Well, we didn't develop it
15	as an alternative. It was actually done in parallel.
16	At the time this work was done, the Westinghouse
17	information was not available, and we actually started
18	with predicting quantities from hydrogen generation
19	calcs. You can get the amount of aluminum from that.
20	We took the ICET resolves and tried to use
21	it, and only later when we went to do the test, the
22	Westinghouse data was available. So we calculated the
23	masses from the Westinghouse data, but the procedure,
24	the methodology, we had developed in parallel.
25	So we don't have an issue with the
	-

(202) 234-4433

	402
1	Westinghouse methodology. This is We did it this
2	way; they did it that way.
3	VICE CHAIRMAN BANERJEE: Right, but
4	there's some sort of a continuing program where there
5	would be perhaps evaluation of effects due to
6	radiolysis of water and other things, peroxides going
7	on, which Are you going to do some sort of a
8	parallel program to take into account some of those
9	things which came out of The original peer review
10	group comments came into this whole program, and now
11	the surrogate, but on the other hand, there are some
12	remnants of the peer review group comments which are
13	going to be applied to make sure everything is okay
14	with peroxides or whatever.
15	MR. PETERSON: We did not add any
16	peroxide.
17	VICE CHAIRMAN BANERJEE: You didn't do
18	anything like that?
19	MR. PETERSON: No. I'm not sure what the
20	peroxide would do in this kind of a test.
21	VICE CHAIRMAN BANERJEE: It cannot do
22	anything. I have no idea. I'm just saying you are
23	cognizant of all that stuff, though.
24	MR. PETERSON: Sure.
25	MEMBER ABDEL-KHALIK: Are there any plans

(202) 234-4433

	403
1	to duplicate these experiments using the Westinghouse
2	surrogate to show equivalency?
3	MS. PENROSE Not that I'm aware of.
4	MR. PETERSON: As Jeri outlined, we made
5	we've put some estimates together based on
6	literature and ran these tests. I think they were
7	probably the first non-vertical head loss tests in the
8	industry, and this was prior to the Westinghouse data.
9	Now when the spreadsheet methodology
10	became available, we, of course, checked those
11	quantities and all of that test data relative to our
12	estimates, and switched to that estimate. It was
13	based on a lot more experimental data.
14	The exception, if you would, is just the
15	choice to use the surrogate generator outside the
16	loop. We had already embarked on this.
17	MS. PENROSE: And our thinking in doing it
18	inside the loop was that it avoided a step of
19	handling. We didn't want to double handle the
20	precipitate. If there was going to be any
21	flocculation or other changes from time of storage
22	Now if you make the stuff and let it sit around for a
23	couple of days It wasn't that we thought there
24	would be a difference. We just wanted to avoid the
25	question.
	1

(202) 234-4433

	404
1	MEMBER ABDEL-KHALIK: I think my question
2	should have been directed to Westinghouse as a way to
3	validate their methodology.
4	MR. PETERSON: Yes. Other people have
5	experienced aging issues with the surrogate. We have,
6	obviously, minimized that.
7	DR. BLUMER: I just have an additional
8	argument for using the loop instead of a particle
9	generator. The WCAP tells you, you have to use at
10	least 20 percent of the volume in the particle
11	generator.
12	Now if you say we don't want to use the
13	minimum, maybe 30 percent or so, then it would be a
14	third of the water to add to the loop, which means the
15	water level changes during the test enormously, which
16	makes completely different approach velocities and so
17	on.
18	So we found it also from this standpoint,
19	it is much more practical to use the loop itself as a
20	particle generator and not change the amount of water
21	value and also the water level.
22	VICE CHAIRMAN BANERJEE: How quickly do
23	these particles form?
24	DR. BLUMER: I think instantaneously.
25	MS. PENROSE: Immediately.
	1

(202) 234-4433

	405
1	VICE CHAIRMAN BANERJEE: I see.
2	DR. BLUMER: Okay.
3	MR. PETERSON: One of the keys to our
4	acceptance of this methodology was all the bench tests
5	we did prior to going in the loop, and then there are
6	also our samples extracted from the loop to make sure
7	we are still getting in the loop with all the other
8	debris, getting the characteristics we had
9	anticipated.
10	DR. BLUMER: So I think we've looked at
11	this slide of the
12	VICE CHAIRMAN BANERJEE: The tests have
13	now been concluded?
14	DR. BLUMER: For Unit One, yes. For Unit
15	Two, we are still going to do it.
16	CHAIRMAN WALLIS: Although we have looked
17	at it before, might we please look at it again, this
18	one? You say debris introduction there, just before
19	the strainer.
20	DR. BLUMER: Right.
21	CHAIRMAN WALLIS: Now it seems to me that
22	those particles have some sort of a trajectory, and
23	depending on just where you put them in, some may fall
24	down preferentially at the top or part-way down or all
25	the way to the bottom, depending on the velocity of
	1

(202) 234-4433

	406
1	the water and the size of the particle and exactly
2	where and how you put them in.
3	DR. BLUMER: Yes.
4	CHAIRMAN WALLIS: It makes a difference
5	how you put the debris in.
6	DR. BLUMER: Of course, it also depends
7	very much how quickly you pour the bucket. So while
8	you put the thing in, you create some turbulence, of
9	course, and this
10	CHAIRMAN WALLIS: The characteristics of
11	the man with the bucket again becomes pretty important
12	here.
13	DR. BLUMER: It's very difficult to really
14	introduce that in a way that is predictable. It's
15	very, very difficult to do that, because what you can
16	do is put it in far away, but then you get the local
17	sedimentation.
18	CHAIRMAN WALLIS: Well, what do the
19	results mean if it depends on how you manipulate the
20	bucket?
21	MR. PETERSON: If you think about in the
22	plant, especially with Salem where I mentioned the
23	debris, if we back off from the chemicals for a
24	moment, as generated inside the annulus and then is
25	swept down the stairways, and then probably settles at
	1

(202) 234-4433

	407
1	that point, sits for 20 minutes, and then when I turn
2	the pumps on in recirculation
3	CHAIRMAN WALLIS: It may or may not move.
4	MR. PETERSON: it meanders toward the
5	screen, predominantly near the floor. So the fact
6	that we are introducing it up high is only helping on
7	getting some of
8	CHAIRMAN WALLIS: More conservative than
9	putting it on the floor.
10	MR. PETERSON: putting it all on the
11	floor and trying to get it to jump up. You know,
12	gravity is still going to be out there, and
13	CHAIRMAN WALLIS: Did you try sort of
14	using different people with different buckets to see
15	how much scatter there was in the results?
16	MR. PETERSON: I think they are all Swiss.
17	Right?
18	CHAIRMAN WALLIS: No, it's not a trivial
19	thing, and you know, it would be interesting to see
20	how much variability you could get by how you put the
21	stuff in. They would all be conservative, but it
22	would still be interesting.
23	DR. BLUMER: What we actually
24	VICE CHAIRMAN BANERJEE: Are they
25	uniformly distributed?

(202) 234-4433

	408
1	MR. PETERSON: We have done repeat tests.
2	DR. BLUMER: They are not uniformly
3	distributed. You will see a picture later on.
4	CHAIRMAN WALLIS: More at the bottom than
5	the top, of course.
6	DR. BLUMER: Definitely. That's why we
7	don't get the same bed as well.
8	CHAIRMAN WALLIS: Well, if you put it in
9	very close to the top, you might get it all at the
10	top. If you trickled it down
11	DR. BLUMER: Well, that is what happens
12	when you introduce the debris. You have a higher
13	density of the fluid, and it goes to the bottom and
14	forms a sort of a vortex; and when you see what is
15	happening, also the modules before get dark very
16	quickly. First, of course, you have clear water, and
17	the whole thing really moves around.
18	CHAIRMAN WALLIS: So the plume from the
19	bucket depends on the velocity of the fall from the
20	bucket.
21	DR. BLUMER: But I don't think the bucket
22	introduction method is very important, because you've
23	got a fairly quick distribution in the whole thing.
24	But the most conservative we can do is put it in front
25	of the strainer.
	1

(202) 234-4433

	409
1	If we stuff it manually into each pocket,
2	that's also not reasonable. It's not realistic. So
3	we must put it as close as possible
4	CHAIRMAN WALLIS: As long as, I suppose,
5	you have a big margin, it's all right. But if you
6	came to the point where you were
7	DR. BLUMER: Well, we'll talk about
8	CHAIRMAN WALLIS: then you might be
9	able to fiddle the results by manipulating the bucket
10	appropriately. You might be able to vary them by a
11	factor of two, let's say.
12	VICE CHAIRMAN BANERJEE: In this case,
13	there's so much area, it's probably not an issue.
14	CHAIRMAN WALLIS: Maybe it's not an issue.
15	MR. PETERSON: Maybe one way to answer, we
16	have done repeat tests. Now I don't know how You
17	know, I assume it was introduced the same way, but the
18	repeats came out relatively close to each other for
19	the debris loads.
20	CHAIRMAN WALLIS: Well, you didn't have
21	someone trying to get different results by putting it
22	in differently?
23	MR. PETERSON: No. These were meant to be
24	repeats.
25	CHAIRMAN WALLIS: I think you ought to
	1

(202) 234-4433

	410
1	talk to NRC staff and say see what you can do with the
2	bucket, see if you can make it different, because this
3	is the number you are going to use for design, isn't
4	it? They wont' be too sensitive to the experiment.
5	MR. PETERSON: And, you know, as we have
6	described, we feel there is conservatism on most steps
7	as you work your way through it.
8	CHAIRMAN WALLIS: That may be true, but
9	then you could have easily got four instead of two or
10	one instead of two.
11	MR. MATHUR: But if we introduce a
12	different precipitate
13	MR. PETERSON: That's the other thing.
14	MR. MATHUR: It was not just one time we
15	introduced it.
16	MR. PETERSON: It's staged. When we did
17	these, we First, you don't know the answer.
18	Second, as I mentioned in my statement that you are
19	doing these debris calculations simultaneously with
20	testing. The hope is that you test something that
21	works that you can support by analysis.
22	So we did these as introductions. We did
23	40 percent, 70 percent of the final debris load.
24	CHAIRMAN WALLIS: Right. You put it in
25	different batches.

(202) 234-4433

	411
1	MR. PETERSON: So it's at least different
2	buckets.
3	CHAIRMAN WALLIS: You put it either all in
4	one bucket or in a whole series of buckets?
5	MR. PETERSON: It's a whole series of
6	buckets.
7	CHAIRMAN WALLIS: Right. All those things
8	make a difference.
9	DR. BLUMER: The chemicals were tested up
10	to 140 percent. So
11	CHAIRMAN WALLIS: Okay. Maybe we should
12	go on. We've talked enough about it.
13	DR. BLUMER: Well, the next slide shows
14	you what was asked in an earlier question about the
15	form of the bucket, and you see that there is one
16	entrance of the water and actually five sides where
17	the water flows out again. So that's the basic
18	principle of our strainers, and we have used that
19	principle for BWR strainers as well as PWR strainers.
20	CHAIRMAN WALLIS: I think we need to let
21	the recorder have a short moment. Is that right? So
22	we are going to have to take a break. How long is
23	this break going to be? Five minutes?
24	We'll let's take a break until, let's say,
25	25 to six. Would that be okay? You want to take a

(202) 234-4433

	412
1	more substantial break? We could take a break until
2	20 minutes to six then, and then we'll come back
3	refreshed, and we can ask more questions.
4	(Whereupon, the foregoing matter went off
5	the record at 5:31 p.m. and went back on the record at
6	5:43 p.m.)
7	CHAIRMAN WALLIS: Let's come back into
8	session and continue where we left off.
9	MR. LEHNING: May the staff just make a
10	comment on the debris at this time?
11	CHAIRMAN WALLIS: Absolutely.
12	MR. LEHNING: We were looking I guess
13	we heard the different comments based on the debris
14	addition and for what purpose it is and uniformity.
15	Our position is that we expect a conservative approach
16	and not necessarily analyzing small perturbations to
17	that, as long as the licensees do a conservative job,
18	and for the purpose of maximizing the head loss, for
19	the tests that we have observed we felt that adding
20	this debris near the front of the strainers was
21	conservative in the sense of generating a uniform
22	debris bed.
23	There are a few pictures in here of the
24	debris bed. It's a little bit hard to see it for this
25	case, but the mixing and dispersion of adding that

(202) 234-4433

	413
1	debris to the test tank was often greater than the
2	flow going into the pockets and
3	CHAIRMAN WALLIS: It's conservative with
4	respect to what happens in the plant?
5	MR. LEHNING: That is what we would
6	expect.
7	CHAIRMAN WALLIS: it may be conservative
8	by a factor of 10.
9	MR. LEHNING: In addition to the other
10	points as they already raised, the non-uniformity in
11	the vertical profile and the actual plant.
12	So that was our staff view.
13	CHAIRMAN WALLIS: Okay.
14	MR. LU: I just want to add one more point
15	there. Since you also mentioned it as non-
16	conservative, the variation might be acceptable. I
17	just want to point out what might be the conservative
18	here.
19	They are conducting tests assuming all the
20	debris, including the eroded fiber. They end up on
21	the screen surface right out of the recirc time.
22	That's an additional conservative. And the internals
23	of the corroded aluminum and then the chemical effects
24	is less than the corrosion were less upon several
25	days, hours. It generated that much. It would take
	1

(202) 234-4433

	414
1	several days. Then they assume it's 100 percent
2	CHAIRMAN WALLIS: So this is conservative
3	from the point of view of pressure loss.
4	MR. LU: So, yes. We asked them these
5	questions about testing protocols. We can delve into
6	many, many different variations which can trigger the
7	question what's the uncertainty, but if we consider
8	the input, the debris inputted to the head loss
9	testing, actually it covers not only CCI but also for
10	the entire fleet, and then the other inputs are
11	conservative.
12	So should we delve into that much detail
13	regarding the variation and the uncertainty there? I
14	think the staff took a stab, and we believe that is
15	reasonably
16	CHAIRMAN WALLIS: It may well be
17	conservative from the point of view of head loss, but
18	from the point of view of bypass, it may go the other
19	way. Putting on the uniform debris may be not
20	conservative from the point of view of what gets
21	through.
22	MR. LU: We have somebody else here.
23	CHAIRMAN WALLIS: Okay.
24	DR. BLUMER: Okay. Well, again this slide
25	shows you the typical pocket, as we have used it

(202) 234-4433

	415
1	everywhere.
2	The next slide, you see some results. The
3	filter surface is given the approach velocity
4	CHAIRMAN WALLIS: This velocity is flow
5	rate divided by the total area of the strainer
6	pockets?
7	DR. BLUMER: Right. Right.
8	CHAIRMAN WALLIS: Runs off the facial
9	area?
10	DR. BLUMER: No, no. And then
11	VICE CHAIRMAN BANERJEE: How about if you
12	use the facial area for velocity?
13	DR. BLUMER: But for what purpose?
14	CHAIRMAN WALLIS: Transporting debris to
15	it.
16	DR. BLUMER: For that, you surely have to
17	use the approach velocity to the strainer and not the
18	filter screen velocity.
19	VICE CHAIRMAN BANERJEE: No. I meant what
20	is the approach velocity to the face approach?
21	DR. BLUMER: I think it's about a factor
22	of 12 or 14 higher, probably more on the order of
23	magnitude.
24	VICE CHAIRMAN BANERJEE: So in the
25	experiment you did, the approach the face of the

(202) 234-4433

	416
1	strainer was not this velocity. This is the approach
2	velocity to the filter area.
3	DR. BLUMER: Right. Right. So multiply
4	that by 12 or 14 or a bit more. I don't know for
5	Salem exactly the factor between the approach surface
6	and the filter surface, but it is about 12 or 14 or
7	something.
8	VICE CHAIRMAN BANERJEE: So your actual
9	velocity was like .04 or .05.
10	DR. BLUMER: Just take away one zero after
11	the comma after the period.
12	The pH value is typical. Maybe somebody
13	else can comment about this. The theoretical debris
14	bed thickness is 1.6 inches, which is theoretical,
15	because you get some overlap within the pocket, of
16	course. The fiber to particulate ratio, which is one
17	over eta, is 0.74. Then the water turnovers per hour,
18	depending on the loop volume, was 6.3 for the high
19	flow velocity and 3.6 for the one-pump operation.
20	VICE CHAIRMAN BANERJEE: It went round 6.3
21	times?
22	DR. BLUMER: Per hour, yes. There you see
23	the debris that we have used and the chemical that was
24	used as well, the sodium aluminate and the sodium
25	silicate.
	1

(202) 234-4433

	417
1	So the next graph shows you what happened.
2	We did some testing, and then we also decided at
3	Christmas we want to let the test run until after the
4	long holidays there in Switzerland, and we had a 12-
5	day test.
6	The head loss went up almost linearly over
7	these whole 12 days. We made two fits there, but if
8	you look at the whole range, we have steady increase
9	from about one foot of head loss up to two feet of
10	head loss.
11	CHAIRMAN WALLIS: And it's still going on.
12	It's still going on.
13	DR. BLUMER: Yes, right.
14	CHAIRMAN WALLIS: But you haven't changed
15	any chemicals or anything?
16	DR. BLUMER: We dumped in all the
17	chemicals at zero hours and all the debris. The only
18	thing we did before, a test at 9,000 gallons per
19	minute, and then we reduced it to 5,110 for this test
20	that you see here.
21	CHAIRMAN WALLIS: Why is it going up for
22	12 days?
23	DR. BLUMER: Well, we can have two
24	reasons. One is we had some settlement of debris
25	before, and there is a certain erosion of the settled

(202) 234-4433

	418
1	precipitates that is occurring, or that there is
2	certain aging of the chemicals, of the precipitates
3	that is occurring in the loop are the things I can
4	imagine.
5	That is what was measured, and we decided
6	to extrapolate this linear relationship up to 30 days,
7	and that is what you will see
8	CHAIRMAN WALLIS: What happens in the sump
9	in the plant? Does this go up like this? When does
10	it stop?
11	MR. PETERSON: The part that was We had
12	a stability criteria that was very tight. We were
13	meeting our stability criteria during this time. It
14	was a unique time frame for us, because we had this
15	holiday area.
16	I was at a previous public meeting, and
17	there were some concerns expressed by the staff to, I
18	believe, some tests at Argonne that had been run a
19	period of time. So we chose to run this.
20	We have, as Dr. Blumer mentioned, a few
21	theories, but we penalized ourselves with you know,
22	extrapolated to 30 days and penalized ourselves with
23	it right now.
24	CHAIRMAN WALLIS: You are going to be
25	going beyond 30 days or you just stop at 30 days?

(202) 234-4433

	419
1	MR. PETERSON: As was mentioned earlier
2	today, there's quite a few things you can start doing
3	long term. You can start doing your emergency
4	operating procedure. People have used 30 days as a
5	mission time for this.
6	MEMBER ABDEL-KHALIK: This debris
7	thickness that you refer to as being 1.6 inches
8	when was that measured?
9	DR. BLUMER: Well, that's just a
10	calculation.
11	MEMBER ABDEL-KHALIK: It's a calculated
12	value responding to all the debris
13	DR. BLUMER: You just take the volume of
14	the debris and divide it by the theoretical surface.
15	MEMBER ABDEL-KHALIK: Assuming what
16	DR. BLUMER: Three thousand feet, the
17	spread-out surface.
18	MEMBER ABDEL-KHALIK: Yes, but you know,
19	is it solid or assuming some kind of packed bed of
20	particles?
21	DR. BLUMER: No. It's the as-fabricated
22	density that we use of the fibers, and that gives us
23	a certain volume, and actually it is specified as a
24	volume.
25	MEMBER ABDEL-KHALIK: Would be compacted?
	1

(202) 234-4433

	420
1	DR. BLUMER: I don't think so at these
2	head losses there is a big compacting going on.
3	MR. PETERSON: Well, a couple of things.
4	First, it's a calculation, same as when people used to
5	refer to an eighth of an inch as a thin bed; and
6	second, in these pockets it is not a true thickness,
7	something you can go in and measure. You know, you
8	have pockets
9	CHAIRMAN WALLIS: It's a big fraction of
10	the pocket volume, isn't it?
11	MR. PETERSON: It's just a
12	characterization of the
13	CHAIRMAN WALLIS: But the width of the
14	pocket is how much?
15	DR. BLUMER: Well, if you look at the next
16	slide maybe you can show the next slide. You see
17	that the pockets are pretty full. Yes. In the middle
18	picture that you see there, you see that there is not
19	much free space. So if you have it spread out as
20	screen, a theoretical one, you get 1.6 inches, but
21	here, of course, you get overlap between the surfaces,
22	and they interfere. So that you don't have a full
23	not a filling of the pockets, but still quite a
24	substantial using up of the interstitial space.
25	VICE CHAIRMAN BANERJEE: How long do your

(202) 234-4433

	421
1	normal experiments last?
2	DR. BLUMER: Until we reach termination
3	criteria.
4	VICE CHAIRMAN BANERJEE: Which is
5	typically when in terms of hours?
6	DR. BLUMER: Well, we've done testing
7	between a day of, say, eight hours or two days,
8	typically.
9	VICE CHAIRMAN BANERJEE: So 48 hours?
10	DR. BLUMER: Right, yes.
11	VICE CHAIRMAN BANERJEE: So how here you
12	have a condition which is a head loss of one foot in
13	48 hours. What's the variability on that, if you
14	repeated these tests, typically?
15	MR. PETERSON: We didn't repeat the long
16	term tests. The other tests we repeated, and within
17	a few tenths of a foot.
18	VICE CHAIRMAN BANERJEE: So here is one
19	foot. Right?
20	MR. PETERSON: Right.
21	VICE CHAIRMAN BANERJEE: Will you get
22	I looked at your data or you showed it to me. How
23	variable is that going to be at one foot at 48 hours?
24	DR. BLUMER: Well, it depends also the way
25	you are doing the testing. What is not shown here is

(202) 234-4433

	422
1	the history up to 48 hours. We had a flow rate of
2	9,000, which we reduced to 5,110 afterwards. So we
3	get some pre-compaction of the whole debris layer,
4	which we thought was conservative for this flow rate.
5	VICE CHAIRMAN BANERJEE: So if you repeat
6	it whichever way you like I'm just trying to get a
7	handle on the variability. Is it that, if you
8	repeated this test for 48 hours, you would get 1 $1/2$
9	feet sometimes, .5 feet sometimes?
10	DR. BLUMER: Well, we have not repeated
11	this test, but we can say from other tests, for
12	example, for another U.S. plant, we had very good
13	repeatability for the chemical tests. There we
14	repeated the test, and we had very similar values.
15	MR. PETERSON: Let me try to answer that.
16	As far as on the debris portion of it, we have
17	repeated it, and I believe the repeatability was on
18	the order of the variation, a tenth of a foot.
19	It's pretty close.
20	VICE CHAIRMAN BANERJEE: On how many feet?
21	MR. PETERSON: It would be something less
22	than a foot.
23	VICE CHAIRMAN BANERJEE: Well, with
24	chemicals you are getting one foot loss at these
25	velocities. Right?

(202) 234-4433

	423
1	MR. PETERSON: Correct.
2	VICE CHAIRMAN BANERJEE: So without
3	chemicals you must get a lot less.
4	CHAIRMAN WALLIS: Yes. What do you get
5	without chemicals?
6	MR. PETERSON: Regrettably, we probably
7	could have had 300 slides. We deleted so many of
8	them.
9	CHAIRMAN WALLIS: What do you get without
10	chemicals?
11	MR. PETERSON: I just don't recall.
12	CHAIRMAN WALLIS: Is it much less or is it
13	half or something? Is there a very big effect here?
14	VICE CHAIRMAN BANERJEE: Well, everywhere
15	else it seems to have a huge effect.
16	CHAIRMAN WALLIS: Three orders of
17	magnitude.
18	VICE CHAIRMAN BANERJEE: Three orders, two
19	orders of magnitude.
20	MR. PETERSON: That was not We did not
21	see anything like that. I think the way a number of
22	people have characterized this is, as long as you
23	still have some open area, then the chemicals aren't
24	so bad. If you close the area, then you see these
25	orders of magnitude.
	1

(202) 234-4433

	424
1	CHAIRMAN WALLIS: But the pockets
2	whether you actually fill up every pocket. If you
3	don't fill up a pocket, then there is no chemical
4	effect for that pocket. There's no fibers in it. It
5	makes a difference how you distribute the fibers among
6	the pockets.
7	MR. PETERSON: The center slide here I
8	mean, this is after drain-down, because there is no
9	way to really get inside.
10	MR. SCOTT: Can I make a point here,
11	please? I think it's important to remember that the
12	objective for the testing that the licensees are doing
13	is simply to show that they are adequate conservative.
14	So they've made the point here that dumping it in at
15	the top is conservative, and I think for the same
16	effect that mentioned, it is also conservative as
17	well, Dr. Wallis.
18	So as long as they can show that it is
19	conservative, then the variabilities in, for example,
20	the bucket loading that you were talking about, I
21	don't believe, are going to going to come into play,
22	unless I misunderstand your concern.
23	CHAIRMAN WALLIS: Well, sometimes it's not
24	so easy to know just what is conservative.
25	MR. SCOTT: Okay. Well, I just wanted to
	1

(202) 234-4433

	425
1	make I understand, but I wanted to make the point
2	that these licensees are testing to show that they are
3	conservative, and when they get to that point, they
4	consider themselves complete.
5	MEMBER ABDEL-KHALIK: Well, how do they
6	know that linear extrapolation of this plot over a few
7	days, up to 30 days, is conservative?
8	MR. SCOTT: That's a separate question.
9	I was referring to the loading that he was talking
10	about.
11	MEMBER ABDEL-KHALIK: But, you know,
12	without understanding the mechanism for the increase
13	in pressure over this multi-day period.
14	MR. PETERSON: The thought process was we
15	ran roughly a third of our 30-day mission, and it was
16	quite linear during that whole time.
17	MEMBER ABDEL-KHALIK: But what is the
18	cause of the pressure increase during that period?
19	DR. BLUMER: We have mentioned two things,
20	that I can imagine some erosion of the stuff that is
21	lying next to the strainers, as you see it in this
22	graph on the lefthand side. You see some deposition
23	at the lowest rows. And that there may be some
24	erosion occurring just similar to the erosion of the
25	fibers that have been tested before.
	1

(202) 234-4433

	426
1	The second thing could be an aging of the
2	chemicals.
3	MEMBER ABDEL-KHALIK: Well, how about a
4	change in the morphology of the bed?
5	MR. BUTLER: That's the point I was going
6	to make. You are starting with your 30-day loading of
7	chemicals and debris. At that day one, you are
8	starting with 30-day loading. You've already got a
9	bed there. There may be over time a changing of flow,
10	a compression, further compression of that bed over
11	time, but you've got to view that in part as day 31,
12	day 32.
13	MR. PETERSON: And to clarify, we are
14	using 140 percent of the chemical load, which the hope
15	is when the subsequent WCAP comes out from
16	Westinghouse with the inhibition and things like that
17	We have not credited any of that, but that
18	analytically we could go back and possibly credit some
19	of that. We got to look into it. Then it might be,
20	rather than a 40 percent chemical margin,
21	substantially higher, much like how we did the debris
22	load where we have the test results and then somewhat
23	fit the analysis, you know, to justify that load. But
24	at the present, it's got a 40 percent margin, plus as
25	John just said, it's the whole 30-day at time zero.
	1

(202) 234-4433

	427
1	MEMBER ABDEL-KHALIK: Thank you.
2	VICE CHAIRMAN BANERJEE: What is the end
3	result of the chemicals?
4	DR. BLUMER: I have the results on the PC.
5	Can I go on with this in the meantime?
6	CHAIRMAN WALLIS: Please.
7	DR. BLUMER: Okay. On these figures you
8	see on the left side, there is some sedimentation.
9	You also see some RMI that's lying there, and as I
10	mentioned before, we didn't get much effect from the
11	RMI, but you still see
12	CHAIRMAN WALLIS: How much of the material
13	is sedimented here? What fraction? Do you have an
14	idea?
15	DR. BLUMER: It was measured, but
16	CHAIRMAN WALLIS: Looks like a fair amount
17	of stuff down there, like quite a lot of material
18	sedimented.
19	DR. BLUMER: And on the righthand side you
20	see a look into the loop after removal of the
21	specimen.
22	CHAIRMAN WALLIS: So there is material
23	deposited all the way along the loop, or no? Not a
24	long way along. It's clean beyond. We are looking
25	upstream in the loop on the righthand side?
	1

(202) 234-4433

	428
1	DR. BLUMER: Yes.
2	MEMBER ABDEL-KHALIK: So when you
3	correlate the pressure drop data, you correlate it in
4	terms of the total amount that was placed in the loop
5	or the total amount minus the amount that was
6	deposited upstream of the filters?
7	DR. BLUMER: We decided that this is the
8	most realistic way we can do the testing, and
9	sedimentation is part of reality here. We cannot do
10	experimenting in space, and it couldn't be realistic.
11	So we have to have the gravity effect within the
12	testing, and
13	MEMBER ABDEL-KHALIK: But this is true
14	only if you expect sedimentation in your experiment to
15	be identical or similar to what you expect in the real
16	system.
17	MS. PENROSE: Well, don't forget the
18	materials added immediately upstream of the strainers,
19	and in reality it is considerably further upstream.
20	So if you see a wedge shape here, you would expect to
21	see a wedge shaped deposit in the prototypical.
22	MR. PETERSON: The screen velocity not
23	using the terminology of an approach, but the velocity
24	near the screen is scaled the same as in the plant.
25	So we have a flow rate, if it's a two-train scenario,
	1

(202) 234-4433

	429
1	9,000 gpm, and we have ratioed that based on the
2	number of modules. So we have the same flow rate
3	approaching the screen.
4	So if settling occurs because we drop it
5	directly in front of the screen, it would happen in
6	the plant, and it would be swept along the floor.
7	There is nothing different that we are doing here. We
8	are doing it at the same flow rate as would be
9	experienced in the plant.
10	MEMBER ABDEL-KHALIK: The particle number
11	density upstream of the filter during your experiment
12	is the same as what you would expect in the plant?
13	MS. PENROSE: The mass load on the screen
14	is the same.
15	MR. PETERSON; Yes. It's ratioed by the
16	area, by the number by the pocket area.
17	MEMBER ABDEL-KHALIK: But in terms of
18	particle density, number of particles would be the
19	same?
20	DR. BLUMER: Yes. That's the scaling load
21	that we use all the time. So flow rate and surface
22	and debris quantities are scaled by the same number.
23	MEMBER ABDEL-KHALIK: Okay. And
24	therefore, that's the basis for saying that you would
25	expect that the amount of material settling upstream
	1

(202) 234-4433

	430
1	of the filter would be in this case much smaller than
2	what you would expect in the real plant; because the
3	transit time
4	DR. BLUMER: In the real plant, it will be
5	much better, because the water has to flow over the
6	strainer to the other side.
7	MEMBER ABDEL-KHALIK: For a much longer
8	distance.
9	MR. PETERSON: Yes.
10	DR. BLUMER: And you get this curb effect
11	in the plant, because the water flows predominantly
12	over to the other side, and we didn't model that. We
13	just modeled the approach from one side. So if you
14	take this effect into account that the water actually
15	to the other side has to flow over a very high
16	entrance, then it's much better in reality.
17	CHAIRMAN WALLIS: So the decision here all
18	depends on the judgment of the staff that you have
19	been conservative enough.
20	VICE CHAIRMAN BANERJEE: Well, I'm not
21	convinced that you have been, because if you look at
22	the flow velocities approaching, which is what we are
23	talking about, they lie in the range of half a foot
24	per second to .7 feet per second, your own
25	calculations. That's what the flow velocities are.
	1

(202) 234-4433

	431
1	You are using velocities which are a
2	fraction of that.
3	If you look at your slide 25 and assume
4	that those are flow velocities, because they are one
5	to three inches above the floor, then you've got
6	velocities which lie in the range of .45 to .63 feet
7	per second, which is almost two orders of magnitude
8	higher than what you are showing there.
9	MR. PETERSON: Correct, but those are
10	quite distant as you work around this large
11	accumulator, around a stairwell.
12	VICE CHAIRMAN BANERJEE: Well, this is
13	actually leading up. So the fact that the debris
14	won't be transported to these is a specious argument.
15	I think, if you wanted to emulate this, you would have
16	the turbulence conditions which are typical of this.
17	You would have had approach velocities which were
18	lying between .5 and .7 feet per second.
19	So I don't believe that you have answered
20	Graham's question. In fact, I don't believe it's a
21	conservative argument that you have put forward.
22	MR. PETERSON: One thing, as I mentioned
23	when I showed the CFD and the reason it is stated as
24	preliminary and needs to be rerun with the trash pack.
25	VICE CHAIRMAN BANERJEE: Well, that's
	1

(202) 234-4433
	432
1	fine. I'm just going on this. When somebody got up
2	and said that they believed it was conservative or
3	maybe they didn't I don't know but I think
4	Professor Wallis' point is that it matters how you
5	dump this stuff in, because I think it's a lot more
6	turbulent in the real situation than you are talking
7	about.
8	If you believe these numbers, it's a lot
9	more turbulent.
10	MR. PETERSON: So again in the real
11	scenario in the plant, we would generate the debris
12	inside the annulus, would
13	VICE CHAIRMAN BANERJEE: We are talking
14	two orders of magnitude lower than this.
15	CHAIRMAN WALLIS: Actually, you wait. You
16	put it, and then you leave it there before you turn on
17	the pump.
18	MR. PETERSON: Right. I wait 20 minutes.
19	I let it settle down to the floor
20	VICE CHAIRMAN BANERJEE: You increase the
21	velocity to half a foot per second. It's quite a high
22	velocity. The Reynolds numbers here must be of the
23	order of hundreds of thousands foot per second. It's
24	a very turbulent floor.
25	MR. PETERSON: When you go through those

(202) 234-4433

	433
1	restricted areas. Correct, and then they hit other
2	areas.
3	VICE CHAIRMAN BANERJEE: I'm just saying
4	that I'm not and I think Graham is not convinced
5	that dumping it the way you did it, a quiescent fluid,
6	is actually typical of what is happening.
7	MR. PETERSON: Well, quiescent I mean,
8	when we dump it in, the pumps are running.
9	VICE CHAIRMAN BANERJEE: They are running,
10	and your approach velocity is .02 feet per second.
11	Here it is .5 on the ground. On the ground.
12	MR. PETERSON: I see in front of it the
13	dark blue.
14	VICE CHAIRMAN BANERJEE: Yes. Look at the
15	yellow stuff.
16	MR. PETERSON; I see down to something
17	less than .09.
18	VICE CHAIRMAN BANERJEE: No, no, no, no.
19	Look at the velocities approaching We are talking
20	of entrainment of this material into the floor. This
21	is the velocity near the floor, one to three inches
22	from the flow, one to three inches from the floor that
23	you have shown.
24	MR. PETERSON: Correct.
25	VICE CHAIRMAN BANERJEE: Okay? These

(202) 234-4433

	434
1	velocities in the yellow and green regions which are
2	screening the debris
3	MR. PETERSON: They are nowhere near the
4	screen, though.
5	VICE CHAIRMAN BANERJEE: Doesn't matter,
6	near the screen. I'm saying whether it's turbulent
7	enough to entrain the material.
8	MR. PETERSON: Yes.
9	VICE CHAIRMAN BANERJEE: And what's
10	happening is you are dumping this stuff into quiet
11	water. Here it will all sink, naturally.
12	MR. PETERSON: No, no. The water is not
13	quiet, though.
14	VICE CHAIRMAN BANERJEE: It's moving at
15	.02 feet per second. If that's not quiet water, what
16	is quiet?
17	MR. PETERSON: Oh, I don't have that.
18	VICE CHAIRMAN BANERJEE: Look, it's in
19	here. I really don't want to get into this, but I
20	just object to the fact that it is called
21	conservative. If you look at Slide 60, multiply those
22	numbers by 10 to get the FIS, it's .04 and .02, and
23	your numbers there are .5 and .7. Okay? So whatever
24	is entraining the stuff I mean, if you just look at
25	the Reynolds numbers, you are a factor of at least 10

(202) 234-4433

	435
1	to 100 off on the Reynolds numbers.
2	CHAIRMAN WALLIS: So we have something
3	that has to be resolved next time we meet perhaps?
4	VICE CHAIRMAN BANERJEE: I think so.
5	Turbulence is important. It's sort of important in
6	most things.
7	CHAIRMAN WALLIS: It doesn't die away
8	right away. I mean, if you have the jets with
9	turbulence at one end of this annulus space, that is
10	going to continue.
11	VICE CHAIRMAN BANERJEE: Maybe you have
12	another argument why it is not turbulent.
13	MR. LU: I'm just adding one observation
14	here. They are talking about the circumferential
15	velocity. If you are comparing a screen approach
16	velocity versus that CFD analysis, you are absolutely
17	right.
18	I think that we are supposed For this
19	particular case we are supposed to compare the
20	circumferential velocity, so which is several factors
21	higher than the approach velocity.
22	CHAIRMAN WALLIS: You can do a test.
23	During analysis you fill the sump with water, and you
24	turn on the recirculation pumps, and you see what
25	happens.

(202) 234-4433

	436
1	MR. LU: It's a full scale analysis and
2	test.
3	VICE CHAIRMAN BANERJEE: I am simply
4	objecting to this being called conservative.
5	CHAIRMAN WALLIS: Well, if it's not
6	conservative, then what are they going to hang their
7	hat on?
8	MR. LEHNING: This is John Lehning of NRR
9	staff. We identified the same question. We had a
10	conversation with Salem and vendors over the phone and
11	asked this similar question on the turbulence and
12	other effects based on this test. So just so you
13	know.
14	CHAIRMAN WALLIS: I think the staff is
15	asking all the questions we are asking, and they are
16	the ones who have to sign whether it's okay.
17	MEMBER ABDEL-KHALIK: Is there any way to
18	estimate from the data how much of the material has
19	actually settled?
20	MR. PETERSON: Yes.
21	MEMBER ABDEL-KHALIK: Or is it too late?
22	MR. PETERSON: No. There's observations
23	that are recorded during the test of how much. You
24	know, they have run test after test. There's an
25	observation of how much.
	1

(202) 234-4433

	437
1	CHAIRMAN WALLIS: Well, I think next time
2	we meet with the Commission, we will nominate Sanjoy
3	to be the spokesperson.
4	MEMBER KRESS: That's an idea. His time
5	has come. But it's not just the staff.
6	CHAIRMAN WALLIS: Okay. I think we should
7	move on. This is something for further discussion.
8	MEMBER ABDEL-KHALIK: If I could go back
9	to the question I was asking, do you recall how much
10	of the material has actually precipitated upstream?
11	Is it 10 percent or 50 percent or 90 percent?
12	DR. BLUMER: I must get back to the
13	testing people to find out. I will tell you right
14	away. I don't know the number by heart.
15	MEMBER ABDEL-KHALIK: Thank you.
16	CHAIRMAN WALLIS: It would also be good to
17	have photographs of all of the pockets, not just the
18	bottom rows, to see how much material is in the top
19	row.
20	DR. BLUMER: We have additional
21	photographs, of course.
22	CHAIRMAN WALLIS: Interesting to see how
23	much material is in the very top row of pockets where
24	you put the bucket in, whether you get much in there
25	at all, because you could have a bypass of four
	1

(202) 234-4433

	438
1	pockets at the top.
2	Okay. Are we ready to move any further
3	on?
4	DR. BLUMER: Okay. Next slide, please,
5	next one. Next one. Okay.
6	Well, again the head loss increased from
7	one to two feet in 13 days or 12 days, however you
8	count it, and the head loss was
9	CHAIRMAN WALLIS: That second one, I
10	marked that as being interesting, because in fact,
11	presumably, it's the ones on the very top that have
12	the least material in them.
13	DR. BLUMER: Right.
14	CHAIRMAN WALLIS: And so perhaps that is
15	how you managed to avoid a higher head loss, by having
16	not much material on the very top. So it would be
17	interesting to know how much there is there.
18	DR. BLUMER: And we still have an
19	increase. It was almost linear over the whole time,
20	as I said before, and adding RMI didn't affect the
21	head loss very much. Of course, we also got some
22	settling there.
23	Then the reduction of the flow from 0.0046
24	to the one-pump operation reduced the flow rate, not
25	in a proportional manner but more than that. Then we

(202) 234-4433

	439
1	increased it again, and we had an increase from 2 to
2	only 2.5 feet, getting back there.
3	MEMBER KRESS: Were those two different
4	tests or during the same test?
5	DR. BLUMER: Well, if you look at the
6	MEMBER KRESS: Yes. I was looking for the
7	reduction first, from 2.6 to one foot.
8	CHAIRMAN WALLIS: It doesn't seem to be on
9	the figure, does it?
10	MEMBER KRESS: No.
11	DR. BLUMER: So you see on the graph that
12	we had measured head loss up to 2.5 feet.
13	CHAIRMAN WALLIS: Oh, this was at the
14	beginning.
15	DR. BLUMER: No.
16	MEMBER KRESS: No, at the end.
17	CHAIRMAN WALLIS: No, but this reduction
18	of 2.6 to 1, was that at the very beginning?
19	MEMBER KRESS: Yes, that's what I was
20	thinking.
21	DR. BLUMER: No. I think
22	CHAIRMAN WALLIS: You see, the experiment
23	was
24	DR. BLUMER: It was at the beginning,
25	right.
	1

```
(202) 234-4433
```

	440
1	CHAIRMAN WALLIS: This is the beginning.
2	DR. BLUMER: Right. That was at the
3	beginning at 48 hours.
4	CHAIRMAN WALLIS: That's at the beginning.
5	DR. BLUMER: And the other one is at the
6	end, and so we were back to 2.5, which was not
7	proportional to the flow rate.
8	CHAIRMAN WALLIS: Now we are a
9	subcommittee, and we are going to have a meeting of
10	the full committee in July at which this is going to
11	be presented. It seems to me personally we are going
12	to come around to this again, but the most interesting
13	part of all of this is the particular test which is
14	going to be used for the plant design, which is what
15	we are talking about now.
16	That's the most interesting part of
17	everything we have heard so far. This is what should
18	be presented to the full committee. Is it planned
19	that you folks will be there for that meeting? Is
20	that the idea?
21	MS. ABDULLAHI: I don't think we've
22	planned the agenda yet.
23	CHAIRMAN WALLIS: Because I think the last
24	thing we want to hear is there's all the work in
25	process, and nothing has been finished, which is what
	1

(202) 234-4433

441 1 we heard this morning. But this sort of stuff is --You're going to hang you hat on this for design 2 I think the committee would be really 3 purposes. interested in that. 4 5 VICE CHAIRMAN BANERJEE: We like to see data, and the only aspect of this which is a little 6 7 unsettling is what is the uncertainty in this slope. 8 In other words, if you had, say, even more data at 48 9 hours and that showed what the uncertainty was, is it 10 48 hours 1.5 or 2 or .5, some measure of this. 11 You mean to say, if you did DR. BLUMER: more than one test? 12 VICE CHAIRMAN BANERJEE: Well, if you had 13 14 even other tests which ran out for a period --15 MR. PETERSON: As I mentioned earlier, 16 without the chemical test with the debris, which makes 17 up a bigger chunk of the total, we have done repeat 18 tests. 19 VICE CHAIRMAN BANERJEE: Right. 20 MR. PETERSON: We have all that data. 21 There was a slide earlier of the number of tests that had been done specifically for Salem. 22 There have been numerous head loss tests, including for the design 23 24 basis like fiber load and, you know, Min-K load. With 25 the predominant actors, we've done repeats. Those

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	442
1	came out relatively close.
2	VICE CHAIRMAN BANERJEE: I think that
3	would be in itself valuable to have, because without
4	the chemicals, clearly, it's interesting to know what
5	the uncertainties are.
6	CHAIRMAN WALLIS: Well, we want to see
7	data, but we also particularly want to know the basis
8	for the staff's decision, and the basis for the
9	staff's decision, to my understanding, is these type
10	tests. You are going to use these tests to validate
11	the design in the plant.
12	Really, apart from that, everything else
13	is irrelevant. This is the key part of your decision
14	making. That's what we should focus on.
15	MR. PETERSON: But one second. We may be
16	able to give you
17	DR. BLUMER: That was a repeat, but not
18	for 12 days, of course.
19	MR. PETERSON: No, no. This is a data
20	with 100 percent of the chemical. We didn't get the
21	140 in yet. Same debris load with a repeat. This is
22	in millibars. One test was 76. The other one was
23	75.5.
24	CHAIRMAN WALLIS: They are about the same?
25	MR. PETERSON: Then we went up to the 140
	1

(202) 234-4433

	443
1	the same test, but on each 77 and -8.
2	CHAIRMAN WALLIS: It didn't make that much
3	difference.
4	MR. PETERSON: So those were repeats.
5	CHAIRMAN WALLIS: They were repeats.
6	MR. PETERSON: That's what I'm showing,
7	that those were short durations.
8	VICE CHAIRMAN BANERJEE: How long were
9	they?
10	MR. PETERSON: These were We would have
11	to look. My guess is a few days.
12	CHAIRMAN WALLIS: So I think what we need
13	to do is have sort of a set of criteria that the tests
14	are demonstrably conservative, that they are
15	repeatable, that they are this and this, and then you
16	want to show it by evidence. That would be the
17	argument to be presented to the full committee.
18	VICE CHAIRMAN BANERJEE: And I think the
19	concern about the approach stream turbulence has to be
20	dealt with in some way, because even though the flow
21	is circumferential and not perpendicular to the bank,
22	it still stirs it up. You understand the argument.
23	Here is the filter. The flow is going
24	this way. Okay? And the approach velocity this way
25	may be low, but the turbulence is generated by the
	1

(202) 234-4433

	444
1	flow going that way, and that is what is mixing up the
2	stuff, and then that is being transported.
3	Now the flow going this way is at a very
4	high Reynolds number. So it is very, very turbulent,
5	even though the approach velocity sideways is rather
6	small. You see?
7	So it would be like if you had, let's say,
8	your box here, and it was sucking, but now you had a
9	very fast flow going this way carrying the debris.
10	It's fast enough that even right running from the
11	bottom it is half a foot per second. So if you take
12	a long velocity profile, it's of the order of two or
13	three feet per second in the main stream.
14	CHAIRMAN WALLIS: It is a high Reynolds
15	number, but it's It's just these pockets.
16	VICE CHAIRMAN BANERJEE: Unless your
17	calculations are wrong.
18	MR. PETERSON: You are looking at an area
19	remote. You are looking at the accumulators.
20	VICE CHAIRMAN BANERJEE: No, I am not
21	looking at the accumulators. I'm looking at the
22	circumferential velocity in front of the filters. If
23	you look at your figure, that's what I was saying.
24	I'm assuming your calculations are right.
25	I take no responsibility for them. But look in front

(202) 234-4433

	445
1	of
2	MR. PETERSON: We can do those
3	confirmatories. They are easy enough calculations.
4	VICE CHAIRMAN BANERJEE: Yes, but as they
5	stand right now
6	MR. PETERSON: Yes?
7	VICE CHAIRMAN BANERJEE: look at this
8	part of the flow. Look at your ten o'clock region.
9	Right? Ten o'clock region there in front of your
10	filters. Your velocities are yellow, green. Now they
11	could be parallel to the filters. It doesn't matter
12	if they parallel to the filters.
13	MR. PETERSON: They won't be, once Like
14	I mentioned earlier, this is without the debris trash
15	rack. The only purpose of these is currently
16	VICE CHAIRMAN BANERJEE: It's okay.
17	MR. PETERSON: It is going to move you
18	away from the screen farther.
19	CHAIRMAN WALLIS: But, look. They flow
20	also past all these pillars. There is a wake from
21	every pillar, and you can get into a
22	VICE CHAIRMAN BANERJEE: Actually, I think
23	the flow these types of flows with this height are
24	very turbulent. It could be that the approach
25	velocity going in is pretty low, because you have a
	1

(202) 234-4433

	446
1	high surface area. But the flow that is going by is
2	very turbulent.
3	CHAIRMAN WALLIS: The Reynolds number is
4	humongous.
5	VICE CHAIRMAN BANERJEE: It's humongous,
6	and it is going to churn everything up. Honestly,
7	believe me, I am not trying to
8	MR. PETERSON: And our analysis has that
9	in there right now.
10	VICE CHAIRMAN BANERJEE: It is very
11	important that you have experiments or effect. That's
12	why I said did you put some propellers or something to
13	stir it up. I thought you were stirring it up.
14	That's why I asked that question. Maybe there is no
15	reason to stir it up, but in general
16	CHAIRMAN WALLIS: Well, we are certainly
17	stirring things up today, and I would like to move on,
18	because I think we have made the point that there is
19	an issue here.
20	VICE CHAIRMAN BANERJEE: Okay.
21	CHAIRMAN WALLIS: And the staff is
22	scratching their heads about what they are going to
23	do. So could we return to Slide 64 then?
24	DR. BLUMER: Okay. Now I'm talking
25	finally about the overall head loss determination

(202) 234-4433

	447
1	steps. We had this head loss which was a conservative
2	value with regard to picking the flow rate.
3	We had two different flow rates, as you
4	know, for one-pump and for two-pump operation; and we
5	picked the one which had the higher relative value,
6	and then we came up with a head loss as a function of
7	time, of course, using these 12-day periods and
8	extrapolated to 30 days, then as a function of
9	temperature.
10	Because we tested only at room
11	temperature, we had to use the viscosity to scale the
12	head loss for other temperatures with the viscosity of
13	the water. Then also the debris loading thickness,
14	because as we have a long train here I'll come at
15	that in the next slide. As we have a long train, we
16	have an axial pressure gradient within these green
17	channels, and we have a non-uniform flow rate into
18	these modules as you go along in this long train.
19	We assumed that we have also a debris
20	loading proportional to the flow rate into each
21	individual module. So we came up with such a head
22	loss function of these three parameters.
23	Then we made the final difference model
24	computation. Maybe I will show it in the next slide.
25	Yes, that is it. We have a pressure degree of freedom
	1

(202) 234-4433

	448
1	in each intersection between two modules. We have a
2	inflow over the debris layer, and the axial flow was
3	in the clean flow path, and we produced a finite
4	difference scheme to calculate what's happening.
5	If we have higher head losses say, at
6	low temperature where the viscosity is high and
7	we've got a fairly uniform influx into the modules,
8	typically 10 percent difference between the first
9	module and the last one. But when we have very low
10	debris head losses at high temperatures and early on
11	in the first day, for example, then we get non-uniform
12	debris influx into the modules, which can be a factor
13	of two difference between the first and the last
14	module.
15	So we used such a finite difference scheme
16	to calculate that. Now we can go back to the other
17	slide again, one before. Yes,
18	The second bullet was shown in this graph
19	afterwards, and then we added the Z-shaped connection
20	channel head loss, which we calculated by CFD, as you
21	have seen before. The result is the graphs that we
22	have as a function of time, temperature and flow rate.
23	Now we can go two slides ahead. Yes, this one.
24	This is what we get for the 5,110 gpm.
25	This is a one-pump operation. You see the
	1

(202) 234-4433

	449
1	temperature, and you see also the curves for a zero
2	base. That is the beginning of the test for two days
3	and for 30 days.
4	These numbers of time points were picked
5	because they are interesting for the NPSH
6	calculations. Then you also see the limit that was
7	imposed. You see above the design temperature of 190
8	degrees that there is a small intersection of the
9	curves, but actually it is not reasonable to have 190
10	degrees at 30 days. So this point at the intersection
11	there is not really critical.
12	The next slide shows you that we have more
13	margin with a 9,000 gpm flow rate. The graph shows
14	you basically the same thing.
15	So you see that these two graphs show you
16	that we have very large margins at lower temperatures,
17	even after 30 days. The only critical time point is
18	at the very high temperatures, above the design point
19	of 190 degrees.
20	Of course, our chemicals have not formed
21	all at these temperatures. So our head losses there
22	seem to be fairly conservative. My overall conclusion
23	on this is that we have substantial margins here.
24	MEMBER ABDEL-KHALIK: The temperature
25	effect that you have included here is primarily a

(202) 234-4433

	450
1	viscosity effect?
2	DR. BLUMER: Right. Yes, that's the
3	viscosity effect. Yes.
4	MEMBER ABDEL-KHALIK: But the change in
5	the source term itself, the amount of material?
6	MR. PETERSON: That was already included
7	to come up with that 30-day integrated chemical value
8	that we actually used 140 percent that we introduced
9	at time zero.
10	MEMBER ABDEL-KHALIK: Oh, I see. So
11	MR. PETERSON: So this is just the
12	viscosity.
13	MEMBER ABDEL-KHALIK: that corresponds
14	to the temperature of 190 degrees?
15	MR. PETERSON: The total loading
16	corresponds to the 30-day integrated temperature.
17	This temperature is just the viscosity change.
18	MEMBER KRESS: It's just the viscosity
19	with water.
20	MR. PETERSON: Viscosity with water. We
21	also put the chemicals in based on what was noted in
22	ICET.
23	MEMBER KRESS: But they wouldn't affect
24	the viscosity much.
25	MR. PETERSON: It was slight and we put it
	1

(202) 234-4433

	451
1	in. I think Dr. Blumer
2	DR. BLUMER: Yes. I made an evaluation of
3	the results of the ICET tests, and I took those
4	viscosities and factored them into the results on the
5	conservative side.
6	MEMBER KRESS: The delta is a linear
7	function of what? You just extrapolated The
8	pressure drop is linearly proportional to the
9	viscosity?
10	DR. BLUMER: They are the portion of the
11	debris, but of course, the turbulent part is assumed
12	as constant and independent of temperature for this
13	calculation. So you cannot scale it directly, if you
14	look at these curves, because part of it is the clean
15	head loss that was factored into this finite
16	difference scheme.
17	CHAIRMAN WALLIS: I think we've got to the
18	end here, haven't we? Have we got to the end? Then
19	there is something called questions, isn't there, that
20	haven't been asked yet. We can now leave the floor
21	open for questions.
22	VICE CHAIRMAN BANERJEE: I noticed that
23	you say some additional testing in the vendor's
24	facility, supplemental testing at vendor's facility.
25	So you could still conceivably stir up the stuff and
	1

(202) 234-4433

	452
1	see what difference it makes, especially with the
2	chemicals. I think that would satisfy almost
3	everybody in some way, if you stir it up. It may not
4	matter if you actually stirred it up after that.
5	Shouldn't matter that much.
6	CHAIRMAN WALLIS: It would be interesting
7	to stir it up, try and get a uniform distribution.
8	VICE CHAIRMAN BANERJEE: You know, I was
9	sure that you were stirring it up.
10	CHAIRMAN WALLIS: If you dumped as you
11	stirred, you could dump it so that more of it fell to
12	the bottom as you put it in. If you put it in further
13	upstream and stirred it, you get a more uniform
14	distribution on the screen, whichever way you want to
15	do it. There's a lot of ways to change things.
16	DR. BLUMER: We've seen that through a
17	quite bit of turbulence we reduce head loss
18	enormously, because we disturbed the layer of debris
19	on the screen. In some cases we dumped in RMI. The
20	head loss went down, because we disrupted the layers.
21	VICE CHAIRMAN BANERJEE: See, I think what
22	you've got in the real situation is that outside those
23	pockets the external flow is pretty turbulent, as you
24	would expect, because the Reynolds number is quite
25	high.
	1

(202) 234-4433

	453
1	Of course, once it goes into these
2	pockets, it is not because your approach velocity is
3	so low in these pockets in some way. As you correctly
4	point out, it is very low. So what you are faced with
5	is material which is fairly well stirred up outside,
6	eat least for some part of the system, and it is
7	sucking it into this reasonably well distributed.
8	That was why I asked you initially whether
9	you stirred this before you introduced it, because I
10	thought you were trying to emulate the system in the
11	containment where the Reynolds numbers for the
12	external flows would be expected to be quite high, not
13	in the pocket itself. The local Reynolds number is
14	very low there.
15	DR. BLUMER: Maybe we have to look at this
16	more closely. But again, as you see in these curves,
17	the margins that we have are
18	VICE CHAIRMAN BANERJEE: May not matter at
19	all. Sure. Sure.
20	MEMBER KRESS: Perhaps one approach might
21	be if you had a pressure drop function as a function
22	of the amount of debris on a unit area. I don't know
23	if you have this anywhere or not, but one could
24	develop a calculational tool that distributes it along
25	the height different ways, and actually make an
	1

(202) 234-4433

	454
1	estimate of whether you get a different pressure drop
2	for a uniform distribution or one that varies.
3	CHAIRMAN WALLIS: I think the problem with
4	that is the chemical effects.
5	MEMBER KRESS: Well, yes, of course.
6	CHAIRMAN WALLIS: Because we don't know
7	We have no way of predicting chemical effects.
8	MEMBER KRESS: I know, but that would be
9	one approach.
10	CHAIRMAN WALLIS: That would be all right
11	if you didn't have the chemical effects, I think.
12	VICE CHAIRMAN BANERJEE: They have a
13	multi-node calculation which is one dimensional. If
14	they made it two-dimensional, had a vertical
15	MEMBER KRESS: Yes.
16	VICE CHAIRMAN BANERJEE: You could do it,
17	exactly what they are saying.
18	MEMBER KRESS: But he's right. You don't
19	know what to do about the chemical effect.
20	MEMBER ABDEL-KHALIK: Aside from all the
21	questions that have been asked today, I would like to
22	compliment you on, really, the amount of effort and
23	systematic work that you have done on this issue.
24	CHAIRMAN WALLIS: And are you going to
25	stay for tomorrow?
	1

(202) 234-4433

	455
1	DR. BLUMER: I have a flight at six. So
2	I'm not sure whether I can
3	CHAIRMAN WALLIS: Now tomorrow we have
4	another three cases. Each one of them is very
5	interesting, and we will obviously go over the time.
6	VICE CHAIRMAN BANERJEE: I have a flight
7	at 5:40.
8	CHAIRMAN WALLIS: Oh, so the last
9	presentation is
10	Okay. I think we ought to close it for
11	today, unless someone has a burning desire. I don't
12	see anyone leaping up and down, wishing to stay. So
13	we will meet again tomorrow, same place, same time,
14	8:30 in the morning.
15	Thank you all very much.
16	(Whereupon, the foregoing matter went off
17	the record at 6:37 p.m.)
18	
19	
20	
21	
22	
23	
24	
25	
	1