Official Transcript of Proceedings		
NUCLEAR REGULATORY COMMISSION		
Title:	Advisory Committee on Reactor Safeguards Thermal-Hydraulic Phenomena Subcommittee	
Docket Number:	(not applicable)	
Location:	Rockville, Maryland	
Date:	Wednesday, February 28, 2007	

Work Order No.: NRC-1452

Pages 1-191

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

		1
1	UNITED STATES OF AMERICA	
2	NUCLEAR REGULATORY COMMISSION	
3	+ + + + +	
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)	
5	THERMAL HYDRAULIC PHENOMENA SUBCOMMITTEE	
6	+ + + +	
7	WEDNESDAY,	
8	FEBRUARY 28, 2007	
9	+ + + +	
10	The meeting was convened in Room T-2B3	
11	of Two White Flint North, 11545 Rockville Pike,	
12	Rockville, Maryland, at 8:30 a.m., Dr. Sanjoy	
13	Banerjee, Chairman, presiding.	
14	MEMBERS PRESENT:	
15	SANJOY BANERJEE Chairman	
16	GRAHAM B. WALLIS ACRS Member	
17	THOMAS S. KRESS ACRS Member	
18	SAID ABDEL-KHALIK ACRS Member	
19		
20		
21		
22		
23		
24		
25		
	I	

1	NRC STAFF PRESENT:
2	GREG CRANSTON
3	SAMUEL MIRANDA
4	TAI HUANG
5	ZENA ABDULLAHI
6	KULIN DESAI
7	
8	ALSO PRESENT:
9	JOSE MARCH-LEUBA
10	ALLAN CHUNG
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	I

2

	3
1	C-O-N-T-E-N-T-S
2	AGENDA ITEM PAGE
3	INTRODUCTION
4	OPENING REMARKS
5	SRP 15.0 INTRODUCTION 6
6	BWR STABILITY
7	Introduction and Regulatory Perspective 104
8	Overview of stability, regulatory issues
9	Long term solutions
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	1

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	CHAIR BANERJEE: The meeting will now
3	come to order.
4	INTRODUCTION
5	CHAIR BANERJEE: This is a meeting of
6	the Advisory Committee on Reactor Safeguard,
7	Subcommittee on Thermal Hydraulic Phenomena.
8	I am Sanjoy Banerjee, chairman of the
9	subcommittee.
10	Subcommittee members in attendance are
11	ACRS members Graham Wallis, Tom Press and Said
12	Abdel-Khalik.
13	The purpose of this meeting today is to
14	discuss the post staff revisions to the standard
15	review plan, Section 15, introduction, and Section
16	15.9, BWR Stability.
17	The subcommittee will hear presentations
18	by and hold discussions with the NRC staff; the
19	contractors; and other interested persons regarding
20	these matters.
21	The subcommittee will gather
22	information; analyze relevant issues and facts; and
23	formally propose positions and actions as
24	appropriate for deliberation by the full committee.
25	Ralph Caruso is the designated federal
I	1

(202) 234-4433

	5
1	official for this meeting.
2	The rules for participation in today's
3	meeting have been announced as part of the notice of
4	this meeting previously published in the Federal
5	Register on January 31 st , 2007.
б	A transcript of the meeting is being
7	kept, and will be made available as stated in the
8	Federal Register notice.
9	It is requested that speakers first
10	identify themselves and speak with sufficient
11	clarify and volume that they can be readily heard.
12	I would also like to remind the members
13	that the committee has determined that speakers
14	should allow the first 10 minutes of presentation
15	without questions from the members.
16	Now that's optional.
17	We will now proceed with the meeting,
18	and I call upon Mr. Cranston of the staff to begin.
19	Mr. Cranston.
20	OPENING REMARKS
21	MR. CRANSTON: Good morning. My name is
22	Greg Cranston. I'm the branch chief for the reactor
23	systems branch.
24	And I just want to introduce Sam
25	Miranda, the senior reactor system engineer, and
I	I

(202) 234-4433

	6
1	senior technical reviewer for the reactor system
2	branch.
3	We will discuss the proposed standard
4	review plan, Chapter 15, transient and accident
5	analysis, which introduces the standard review plan
б	sections that deal with the accident analysis.
7	He will focus on the categorization of
8	events; acceptance criteria; and their basis.
9	Sam.
10	SRP SECTION 15.0 - INTRODUCTION
11	MR. MIRANDA: Thank you.
12	My name is Sam Miranda. I'm a technical
13	reviewer in the reactor systems branch in NRR. And
14	I was working on the Chapter 15 introduction part of
15	the standard review plan, along with several other
16	reviewers in the reactor systems branch with Gene
17	Hsii, George Thomas, Summer Sun and Lambros Lois.
18	I'd like to talk about the proposed
19	revisions to Standard 15. And basically this was an
20	opportunity for us to improve the standard, and was
21	only one change that I think should be discussed
22	here which I will get to later.
23	But in this revision, the 2007 revision,
24	which is the first one since 1996, we have an
25	opportunity here to make some accounting for the new

(202) 234-4433

	7
1	reactor designs, and to add some content to this
2	introduction.
3	Prior to this point Chapter 15.0 didn't
4	have much of anything in there.
5	We also wanted to improve the links to
6	the regulations, various acceptance criteria and
7	guides for review. We wanted to make as close a
8	link to the regulations as possible, and also to
9	update the bases and the references, and finally, to
10	make the text more readable.
11	MEMBER WALLIS: Are we free to talk about
12	things other than the changes?
13	MR. MIRANDA: Well, if you want to. I'm
14	here to introduce the changes. But if you have
15	other questions.
16	CHAIR BANERJEE: I think it would be
17	helpful to give a little background, fill us in.
18	MR. MIRANDA: Okay. In that case maybe
19	we should go to the last slide.
20	This is a chronology of some related
21	events to this section in the SRPs. And we begin in
22	1968 with the promulgation of 10 CFR 50 Part 34,
23	which talks about the SRP.
24	And it also indicates in that section, a
25	couple of paragraphs that appear also in the SRPs,

(202) 234-4433

	8
1	which basically say that the SRPs are not law; that
2	they are guidelines, and licensees are free to
3	propose alternatives. That's in the regulations,
4	and it's also in the SRPs.
5	And then the following year we have the
6	birth of ATWS. In 1969 ATWS was conceived by an
7	ACRS consultant named Dr. Epler who postulated an
8	anticipated operational occurrence coincident with
9	failure of a reactor trip to occur. And this would
10	be a failure due to a common mode cause.
11	Then the GDCs, the general design
12	criteria, appear in 1971, and you will see these
13	referenced throughout the SRPs, and you will see
14	bits and pieces of them throughout the acceptance
15	criteria. So that occurs in `71.
16	In `72 the Standard Format and Content
17	reg guide is issued, and in this Standard Format and
18	Content reg guide we have a reference to the various
19	events and how they are categorized, but we see more
20	of that in 1973 in the ANS standard for PWRs.
21	This standard, 18.2-1973 sets up three
22	classes of events, and they refer to them as
23	condition two, three and four events.
24	Condition two events were anticipated
25	operational occurrences. They were events defined

(202) 234-4433

	9
1	by the ANS as events that can occur during a
2	calendar year in plant operation.
3	Condition three events were slightly
4	less frequent. They can occur during the lifetime
5	of a plant.
6	And condition four events are the
7	limiting faults.
8	Then in `73 -
9	MEMBER WALLIS: This is a time to ask a
10	question about the first page here of the SRP. It
11	appears that the intent of the standard you are
12	mentioning was that all significant events would be
13	investigated.
14	And yet on the first page of the SRP it
15	simply says, a sufficiently broad spectrum of
16	events. Now what is a sufficiently broad spectrum?
17	That seems to be not very good guidance for some new
18	reviewer who doesn't really know what to include and
19	what not to include.
20	MR. MIRANDA: Okay. I think what they
21	meant by that language is that the - of course all
22	events, all possible events should get considered.
23	MEMBER WALLIS: If they're significant,
24	yes.
25	MR. MIRANDA: But the sufficiently broad

(202) 234-4433

	10
1	spectrum would be those events that are limiting.
2	So if we have a set of events, 100 events, we might
3	choose a sufficiently broad spectrum -
4	MEMBER WALLIS: One includes the others,
5	or limits the others in some way, that makes sense.
б	MR. MIRANDA: Yes.
7	MEMBER WALLIS: But there is no guidance
8	here about what sufficient broad spectrum means.
9	That's what troubled me.
10	MR. MIRANDA: Okay, well, hopefully we
11	will be able to provide more information on that
12	later on in the SRPs.
13	CHAIR BANERJEE: Are you going to - I
14	mean there are going to be remarks made here. And
15	are you going to appear in front of the full
16	committee next week?
17	MR. MIRANDA: Yes.
18	CHAIR BANERJEE: So at the end of your
19	presentation we should try to summarize your
20	understanding of what remarks were made, and how we
21	would plan to respond to them.
22	So as far as this remark is concerned, I
23	guess, the issue lies in how do you define a
24	sufficiently broad spectrum. And perhaps even how
25	you define limiting as this was supposed to be
l	I

(202) 234-4433

	11
1	guidance to reviewers.
2	MR. MIRANDA: At this point maybe I
3	should mention that in addition to the SRPs there
4	will also be a desk reference, which is going to be
5	for internal use by the reviewers that's going to
б	provide a lot more information than the SRPs.
7	CHAIR BANERJEE: As long as we know
8	what's then in the desk reference, defining these
9	terms, that will be fine.
10	MR. MIRANDA: In 1973 getting back to
11	ATWS, between `69 and `73 there had been various
12	submittals made by vendors of analyses of ATWS
13	events, and they were showing some pretty bad
14	results, usually pressures in excess of 4,000 psi.
15	And WASH-1270 was issued by the staff
16	basically laying down guidelines for assumptions to
17	be used in ATWS analyses, and calling for a new
18	round of submittals by the vendors.
19	And I introduce ATWS in here because one
20	of the changes we are going to make in the SRP, in
21	Chapter 15 especially, is that we want to separate
22	ATWS. ATWS has sort of bled into the other events,
23	and ATWS was really in a class by itself. The
24	history of ATWS is sort of intertwined with all of
25	these others. But ATWS is not an AOO per se; it has

(202) 234-4433

	12
1	to have a common failure in the reactor protection
2	system - a very unlikely event. So it's outside the
3	design basis of the plant, and including it in
4	Chapter 15 with the design basis events seems a
5	little bit out of place.
6	MEMBER WALLIS: So what is the criterion
7	for deciding when something is design basis and when
8	it is not?
9	MR. MIRANDA: Okay, we have some
10	definitions in Chapter 15 at the end. And there is
11	a definition for design basis event.
12	But basically a design basis event is an
13	event that is used to size protection equipment.
14	For example, the LOCA of the design basis event for
15	the ECCS.
16	MEMBER WALLIS: But it seems to be a sort
17	of circular thing. I mean it's what you use in
18	design; it's not the basis of what you use in
19	design. But there's got to be some - it seems to me
20	- some critical philosophical reason for selecting
21	certain things to be design basis events, and then
22	used for design. You could exclude or include
23	various things. Or decide - how do you decide
24	whether or not to include ATWS in the design basis,
25	for example.
I	1

(202) 234-4433

	13
1	MR. MIRANDA: Well, ATWS actually going
2	back to the history of ATWS, ATWS was the first
3	event that the staff wanted to approach licensing
4	with a probabilistic safety goal.
5	And ATWS was supposed to be - I think
6	the goal was something like 10^-6 core damage
7	frequency per year, and then it was changed to 10^-7
8	and back to 10^{-6} , and that presented a lot of
9	difficulties.
10	In fact it led to a 15-year long
11	controversy about ATWS, which wasn't settled until
12	the promulgation of the ATWS rule in 1984.
13	MEMBER WALLIS: Well, I guess this is
14	related to my first question. When you've got a
15	sufficiently broad spectrum to be looked at, and
16	then you need a sufficiently broad spectrum of
17	design basis events, too.
18	But when you are faced with, say, a new
19	reactor design, how do you decide which of these
20	accidents among the myriad which you can imagine
21	should be in the design basis? I don't know how you
22	decide that.
23	MR. MIRANDA: Well, the design basis are
24	the accidents that can occur due to failures of
25	components or systems. And some of these failures
l	

(202) 234-4433

	14
1	are more likely than others.
2	So these accidents are broken down into
3	two categories.
4	MEMBER WALLIS: Well, ATWS isn't a
5	failure of the system - the scram system,
6	presumably.
7	MR. MIRANDA: It's a special failure of
8	the scram system. The scram system itself is single
9	failure proof, so in order to fail the scram system
10	you need to have multiple failures or a common
11	cause.
12	So that's what puts it beyond the design
13	basis.
14	CHAIR BANERJEE: But are there scenarios
15	which could potentially lead to this, like seismic
16	events? Have you taken those things into
17	consideration?
18	MR. MIRANDA: Well, yes, certainly there
19	are external events. Yes, you could have seismic
20	events. You could have a plane crash. You could
21	have a number of different things.
22	When you start layering these events
23	upon events, then you get into some very small
24	probability space.
25	MEMBER WALLIS: When did LOCA become a
I	

(202) 234-4433

	15
1	design basis event?
2	MR. MIRANDA: LOCA as far as I know has
3	always been a design basis event.
4	MEMBER WALLIS: Before 1970 or so there
5	were certainly people who spoke loudly both in and
б	outside the agency as it was at that time saying
7	that certain accidents were impossible, such as
8	double-ended guillotine breaks, which we are now
9	debating again, this transition break size thing.
10	So it's conceivable that large LOCAs
11	would again be outside the design basis.
12	What's the basis for deciding that?
13	MEMBER KRESS: But would it be wrong to
14	say that if the regulations require the design to
15	accommodate postulated events, then those are the
16	design bases which would in my mind include ATWS,
17	because the regulations require that they do it.
18	Why is that not a design basis?
19	MR. MIRANDA: Well, ATWS from the
20	beginning was defined as an event that was outside
21	the design basis for the reasons I stated, that you
22	need a very special set of circumstances to get into
23	an ATWS.
24	MEMBER KRESS: Yes, but the design has to
25	accommodate it.
I	

(202) 234-4433

	16
1	MR. MIRANDA: And it does.
2	MEMBER KRESS: It seems like doublespeak
3	to me.
4	MR. MIRANDA: The design is accommodated
5	through the ATWS rule which requires special
6	equipment.
7	CHAIR BANERJEE: What is your intent
8	actually excluding this? Are there reasons to
9	believe that the design cannot cope with ATWS,
10	especially with the new designs?
11	MR. MIRANDA: Well, I have to be careful
12	when I say excluded. We are not excluding ATWS.
13	ATWS is in Chapter 15.8 of the FSAR.
14	But excluding it in terms of the
15	categorization of events. ATWS is not an AOO, and
16	it's not a postulated accident. It's something
17	else. That's the exclusion I'm talking about.
18	MEMBER WALLIS: What's the large break
19	LOCA going to be?
20	MR. MIRANDA: That's going to be a
21	postulated accident.
22	The GDCs -
23	MEMBER WALLIS: Is it going to be outside
24	the design basis, maybe, depending on how things go?
25	MR. MIRANDA: Possibly. I can't speak to
I	1

(202) 234-4433

	17
1	that.
2	As of now it's in the design basis. And
3	LOCA is the design basis for designing the ECCS.
4	CHAIR BANERJEE: So is this a change with
5	regard to ATWS?
6	MR. MIRANDA: No, it's not - the change
7	is only in making this distinction. ATWS, I've
8	noticed that in submittals and in SRPs ATWS has sort
9	of been creeping into consideration with other
10	accidents, accidents that for example could happen.
11	And ATWS was never intended to be one of those
12	accidents. ATWS was a special case.
13	MEMBER WALLIS: Why aren't all accidents
14	just in the design basis? Because the plant has to
15	somehow respond to all possible accidents.
16	MR. MIRANDA: Well, yes, that's one way
17	of interpreting it. Yes, they are all in the design
18	basis, but some are more limiting than others.
19	So you would design protection equipment
20	for the limiting accidents.
21	MEMBER WALLIS: The worst of a certain
22	class or something like that.
23	MR. MIRANDA: That's right. Right.
24	MEMBER WALLIS: But unless you covered
25	everything -
I	I

(202) 234-4433

	18
1	MR. MIRANDA: That's right.
2	MEMBER WALLIS: But then if you start
3	saying some are design basis and some are not, then
4	you have to explain why you are giving different
5	treatment to certain kinds of accidents.
б	MR. MIRANDA: Okay. ATWS, if you look at
7	the ATWS rule, if you look at the ATWS systems,
8	mitigation systems, unlike other accidents,
9	mitigation of an ATWS is accomplished by equipment
10	that is not necessarily safety grade.
11	The rule is that the equipment has to be
12	highly reliable but not necessarily safety grade.
13	MEMBER WALLIS: Is that a good thing?
14	MR. MIRANDA: Well, this was the solution
15	to the 15-year-long argument over ATWS. It was a
16	compromise.
17	ATWS is not in the design basis, and the
18	agreement was that therefore the mitigation systems
19	for ATWS need not necessarily -
20	MEMBER WALLIS: If you put all these
21	things into the design basis for future reactors we
22	wouldn't have another 15-year argument then. Just
23	put everything in the design basis.
24	MR. MIRANDA: Well, then that would be a
25	change. That would be a different kind of a change.
I	I

(202) 234-4433

	19
1	Right now this is not a change. All I'm doing is -
2	MEMBER WALLIS: So the commission decides
3	then what is in the design basis in some way, in
4	some philosophical way?
5	MR. MIRANDA: The -
6	MEMBER WALLIS: Suppose we wanted the
7	staff to reexamine this basis, particularly in the
8	context of new reactors.
9	Should there be a design basis, and if
10	so how should it be designed? How do we go about
11	that? Is it best to do it in the context of new
12	reactor regulations?
13	MR. MIRANDA: Are you talking about
14	accidents in general or ATWS?
15	MEMBER WALLIS: Anything.
16	MR. MIRANDA: Anything?
17	MEMBER WALLIS: I'm taking a fresh look
18	at regulations.
19	MEMBER KRESS: Should there even be a
20	design basis?
21	MEMBER WALLIS: Maybe we should handle
22	this as part of our new framework rather than
23	attacking the decades old history.
24	MEMBER KRESS: The new framework talks
25	about licensing basis again, which in my mind is the
l	I

(202) 234-4433

	20
1	same thing as design basis. They just changed the
2	name.
3	MEMBER WALLIS: Well, maybe we should
4	move on. I just wanted to raise these points since
5	we are looking at something very fundamental here,
б	and maybe this is where we can have -
7	CHAIR BANERJEE: I'm sure that the main
8	committee will debate this as well. So I think your
9	answers on this need to be a bit crisper as to what
10	you select as a design basis and what you don't.
11	It's not just codifying past history.
12	There has to be some rationale for it.
13	MR. MIRANDA: Well, the rationale is
14	identifying the limiting accidents. But those are
15	accidents that require protection, and this
16	protection is required in order to keep you within
17	the acceptance criteria, whatever they are, for that
18	accident, keeping the core cool for example.
19	And then designing and sizing your
20	equipment in the mitigation system to deal with that
21	accident. So when you've found the limiting
22	accident, and you've design a system to deal with
23	it, then that is the design basis.
24	CHAIR BANERJEE: Well, I think we should
25	move on and revisit this later on.
I	

(202) 234-4433

	21
1	MEMBER WALLIS: I just have another
2	question. What is the stuck-open POVR in the design
3	basis, the design basis accident, is a small-break
4	LOCA at TMI.
5	MR. MIRANDA: The stuck-open POVRs in the
6	design basis, has always been in the design basis -
7	MEMBER WALLIS: As a small-break LOCA, is
8	that right, what it is?
9	MR. MIRANDA: Actually it's been in the
10	design basis both as aan anticipated operational
11	occurrence, and as a small break LOCA.
12	And the difference is, if you'd like to
13	know, is that a stuck-open POVR as an anticipate
14	operational occurrence is caused by a false
15	electrical signal that operates the pore. It opens
16	and it sticks open.
17	And in that case it relieves steam. And
18	the stuck-open POVR as a small-break LOCA could be
19	for example a mechanical problem; it could even be a
20	stuck-open safety valve. It would be a broken
21	valve. And it too would begin by relieving steam
22	but eventually would relieve water. And the water
23	relief would be small-break LOCA.
24	Okay now we get into the standards. The
25	AMS standard which defined those three classes of
I	1

(202) 234-4433

	22
1	events, conditions two, three and four, was issued
2	in `73.
3	CHAIR BANERJEE: What did the standards
4	say about ATWS?
5	MR. MIRANDA: It didn't. Nothing. In
6	fact none of the standards that you see here say
7	anything about ATWS.
8	WASH-1270 was issued. And then in `78
9	the standard for boiling water reactors was issued.
10	And right guide 170 was revised. And then we had
11	the first version of the SRPs issued in 1980.
12	And that refers to the regulation 50.34
13	which mentions the SRP. It's kind of a circular
14	reference. One reference - each references the
15	other.
16	1982 is a landmark year in which plants
17	that are docketed after that, May 17^{th} , 1982, are
18	expected to follow the guidelines of the SRPs.
19	In `83 the ANS standards were replaced
20	by newer standards. And at this point maybe I
21	should mention the ANS policy on standards. When
22	ANS issues a standard, it reviews that standard
23	every five years, and either revises it or replaces
24	it.
25	And if after 10 years they have revised
I	

(202) 234-4433

	23
1	it or replaced it, then they withdraw it. And the
2	standards that are mentioned that were replaced in
3	`83 were withdrawn in 1998. They were reaffirmed in
4	1988.
5	The ATWS rule comes out in `84. And the
6	ATWS rule specifies that certain equipment needs to
7	be installed in plants, in certain plants. It
8	doesn't really say anything about analyses, but we
9	follow the bases for the rule, that the analyses
10	that led to the rule.
11	And the reviewer is instructed, when
12	reviewing an ATWS, to keep in mind how the rule was
13	formulated, and how the analyses were made, the
14	assumptions especially, in particular the moderator
15	temperature coefficient.
16	In `96 we have the version of the SRPs
17	that we are dealing with now. And then two years
18	later these ANS standards are withdraw.
19	So what happens is, the condition two,
20	three and four events that were established by these
21	standards - and by the way, they were never endorsed
22	by the NRC staff - but nevertheless, the licensees
23	followed that classification of events, and
24	submitted analyses based on that classification.
25	And the NRC staff reviewed those
I	1

(202) 234-4433

	24
1	analyses, and issued licenses based on those
2	analyses. So whereas the NRC staff did not endorse
3	the standards, there was in the act of issuing the
4	licenses forms a tacit approval of that
5	classification.
6	And the change that we are making, it's
7	not really a big change, because the SRPs had not
8	generally followed these three classes of events;
9	the SRPs had always had two classes of events, and
10	we are just formalizing that.
11	We are going to use the same names that
12	the GDCs use. So whereas the SRP refers to events
13	of moderate frequency and limiting faults, which
14	correspond to condition two and condition four
15	events, from now on they are going to say,
16	anticipated operational occurrences of postulated
17	accidents. And those are the terms used in the
18	GDCs.
19	So basically what it does is, it lumps
20	the condition three events, the infrequent events
21	that can occur during the lifetime of a plant, it
22	lumps them in with the condition two events to form
23	the AOOs. And the AOOs are defined as events that
24	can occur within the lifetime of a plant.
25	MEMBER WALLIS: That are likely to occur.

(202) 234-4433

	25
1	That are likely; it's all a probabilistic thing.
2	You said that can occur. I mean I think that what
3	you mean are likely to occur.
4	MR. MIRANDA: I see what you are saying.
5	But the language it says can occur.
б	MEMBER WALLIS: Well, I think we have to
7	be clear about some of those things. Because later
8	on we get some criteria which are absolute and don't
9	allow anything probabilistic, and then if someone is
10	going to use a 95-95 criteria on something which is
11	absolute, then that's a problem it seems to me.
12	It states that the maximum fuel element
13	temperature shall not exceed 2,200; that is an
14	absolute statement. It doesn't say with 95/95
15	confidence or something. It just says, shall not.
16	MR. MIRANDA: That's right. And that's
17	what's in 50.46.
18	MEMBER WALLIS: It's quite a different
19	from the interpretation of the stop.
20	MR. MIRANDA: We don't have any leeway in
21	that.
22	MEMBER WALLIS: Well -
23	MR. MIRANDA: That's in the regulations.
24	MEMBER WALLIS: But then it's not being
25	interpreted that way.
l	I

	26
1	CHAIR BANERJEE: What was the word that
2	"shall" has replaced?
3	MEMBER WALLIS: There are lots of
4	"shalls" now on page seven for instance.
5	CHAIR BANERJEE: What was it before?
6	Those "shalls" are highlighted.
7	MR. MIRANDA: Oh, yes, those "shalls" are
8	highlighted. They were highlighted by the technical
9	editor for the reviewers to consider whether we
10	should be using "shall" or maybe some other word.
11	MEMBER WALLIS: What was used previously?
12	MR. MIRANDA: It was "shall."
13	MEMBER WALLIS: We'll get onto that page
14	later perhaps. I have quite a few questions on
15	that.
16	CHAIR BANERJEE: As Professor Wallis was
17	asking, in practice was it interpreted as "shall,"
18	or was it interpreted in some other way by the
19	staff?
20	MR. MIRANDA: I believe it was
21	interpreted as "shall." If you have an analysis
22	that indicates 2201 degrees, then that analysis
23	fails.
24	MEMBER WALLIS: But the present
25	Westinghouse method uses some sort of 95/95
I	·

(202) 234-4433

	27
1	probability, that is not a shall; that's with a high
2	probability. And that's what the ECCS rule says.
3	It doesn't say, shall. It says with a high
4	probability. If you look at the actual 10 CFR,
5	50.46, it says with a high probability. It doesn't
6	say shall.
7	There is something different there.
8	MR. MIRANDA: Okay.
9	MEMBER KRESS: If you could append that
10	shall if the calculations are made according to the
11	specifications in Appendix K. Then it becomes an
12	absolute. I mean there is an implied probability in
13	there somewhere.
14	MEMBER WALLIS: We can talk about page
15	seven when we get to it. I don't want to interrupt
16	your train of thought here.
17	CHAIR BANERJEE: So if you use the CSA
18	methodology, and the best estimates -
19	MEMBER KRESS: Then you have to go to 95.
20	MEMBER WALLIS: There is no shall. There
21	is a very strange criterion in number four on eight
22	which says "might" instead of "shall." When we get
23	to page seven, I think, are the details.
24	I don't want to interrupt your train of
25	thought. You are leading us through the history
ļ	I

(202) 234-4433

	28
1	which would be good. Then perhaps we can look at
2	some of these details.
3	MR. MIRANDA: The reason I wanted to go
4	through this history was that there was another
5	criteria which we have not yet discussed, and that
б	is the one that prohibits the escalation of an event
7	from one class into the next higher class.
8	MEMBER KRESS: Prohibits is another one
9	of those absolute words.
10	MR. MIRANDA: Yes.
11	MEMBER WALLIS: It prohibits.
12	MR. MIRANDA: Yes.
13	MEMBER WALLIS: That's a "shall."
14	MR. MIRANDA: That's a "shall," yes,
15	shall not.
16	That criterion first appeared in the ANS
17	standard of 1973 -
18	MEMBER WALLIS: But TMI was one of those
19	where it started out as an AOO and it ended up as a
20	LOCA, and then actually led to core damage.
21	MR. MIRANDA: That's right. That was in
22	the ANS standard for PWRs in `73. It was repeated
23	in the ANS standard for BWRs in `78. And it appears
24	in licensing submittals that rely on the condition
25	two, three and four event classification, and it was
ļ	I

(202) 234-4433

	29
1	approved by the NRC staff, although the standard
2	itself wasn't endorsed.
3	And I couldn't find any basis for that
4	criterion in the regulations.
5	And then in 1998 the standards are
6	withdrawn, so we would like to retain that
7	criterion. We think it's an important criterion.
8	So in `98 the standards disappear, but
9	we do have in 1999 10 CFR 50.59 which governs
10	changes, tests and experiments. And in there there
11	are a series of eight questions, and these questions
12	seem to touch on this criterion.
13	MEMBER WALLIS: We talked about class two
14	leading to class four. How about ATWS? Is there
15	something that says ATWS shall not lead to a class
16	four accident?
17	MEMBER WALLIS: ATWS is already worse
18	than a class four.
19	MEMBER WALLIS: But it could lead to
20	other things which are - you know - the ATWS
21	sequence could lead to ejection of a control rod or
22	something. The thought is that things could lead to
23	other things.
24	MR. MIRANDA: I can see that. But ATWS
25	is already -
I	·

(202) 234-4433

	30
1	MEMBER WALLIS: So bad already that you
2	don't worry about it.
3	MR. MIRANDA: I don't know whether you
4	are going to worry about these other things.
5	In fact, in ATWS in a PWR it would
6	produce a very high pressure. And yeah, you could
7	possibly end up ejecting a control rod. And I don't
8	know what would happen then. In that you may have a
9	relief path.
10	So this last item, this 50.59 has these
11	eight questions dealing with, have you increased the
12	possibility that an accident can occur? Have you
13	increased the consequences of said accident? And so
14	on.
15	MEMBER WALLIS: The whole stuff about
16	minimal and nonsignificant and so on, hard to
17	define.
18	MR. MIRANDA: That's right.
19	So if I want to keep that criteria that
20	prevents one accident from leading to another, then
21	that's about as close as I could come to it in the
22	regulations.
23	Okay.
24	CHAIR BANERJEE: Does that have to be
25	demonstrative by the applicant, that in some that -
l	1

	31
1	how does the applicant show that it won't propagate
2	from one class to another?
3	MR. MIRANDA: That's a good question.
4	Applicants usually show this - there is only one
5	sequence that I know of that can lead from one
6	accident to the other, and that is, similar to the
7	TMI scenario, the pressurizer is filled during some
8	anticipated operational occurrence, for example,
9	take a loss of feedwater, which is what happened at
10	Three Mile Island.
11	You fill the pressurizer, and then once
12	the pressurizer is water solid, pressure gets very
13	high very quickly, and you eventually reach the PORV
14	opening set point. The PORV opens and relieves
15	water. And the PORV not being designed to relieve
16	water is assumed to stick. And now you have your
17	small-break LOCA at the top of the pressurizer.
18	So typically applicants have been shown
19	that accidents such as loss of feedwater and other
20	operational occurrences that can cause pressurizer
21	level to rise - these are typically loss of heat
22	sink type events - they show that they won't lead to
23	a small-break LOCA by simply showing a transient
24	that is over before the pressurizer fills.
25	MEMBER WALLIS: How about combinations of
I	I

(202) 234-4433

	32
1	events? I mean the problem at TMI wasn't that the
2	POVR stuck open; the problem was that there were two
3	problems, and someone had left the valves closed on
4	the aux feed. So that when they lost the feedwater,
5	and asked for aux feed, it didn't come on.
б	And that happened, and then this POVR
7	stuck open. Two things are going wrong
8	simultaneously. So this classification of
9	everything is one accident here, one accident there,
10	one event here, one AOO, does that prevent looking
11	at combinations of events?
12	MR. MIRANDA: You are touching now on the
13	other change that we want to make to Chapter 15.0.
14	MEMBER WALLIS: That's I think why TMI -
15	my explanation - why TMI confused the operators so
16	much was that two things went wrong. And they fixed
17	one, and sort of assumed that, you know, they fixed
18	one so everything is fine.
19	MR. MIRANDA: Well, actually, more than
20	two things went wrong.
21	MEMBER WALLIS: Yeah, but there is a
22	sequence, a cascade of things. But there were two
23	initiators in a way. There was the feedwater thing,
24	then there was the aux feed problem. And then there
25	as the POVR stuck open problem. Two things went
I	I

(202) 234-4433

	33
1	wrong. Two systems failed.
2	MR. MIRANDA: Yeah, or maybe three, yeah.
3	MEMBER WALLIS: Maybe three. Is there
4	some way to catch those kind of events in these
5	reviews?
6	MR. MIRANDA: Well, for Three Mile Island
7	there was a lessons learned, and that kind of thing
8	- Three Mile Island you will find is scattered
9	throughout the SRPs, and applicants have to show
10	that they meet the requirements of the lessons
11	learned report.
12	And one of those is the requirement to
13	show that you are not going to uncover the core as a
14	result of an anticipated operational occurrence like
15	Three Mile Island.
16	MEMBER WALLIS: Well, somebody having
17	left the aux feed valves closed during maintenance,
18	is that an operating occurrence, or what is that?
19	It's not an accident. It's a latent thing,
20	something waiting to happen. It changed the state
21	of the system. But it's not yet an accident. How
22	does something like that get considered?
23	MR. MIRANDA: Well things like that are
24	addressed through the tech specs, you have
25	surveillance requirements; you these things things.
I	

(202) 234-4433

	34
1	And you have surveillance periods. You test these
2	things every 30 days or something like that.
3	MEMBER WALLIS: You change the whole
4	course of action; that's the problem.
5	MR. MIRANDA: Yes, and when we do
6	accident analyses, the assumption is that the plant
7	is operating within the tech spec operating limits.
8	And you are not in an action state.
9	MEMBER WALLIS: That is the problem.
10	I don't know how far you need to
11	investigate that, but I think that's probably when
12	plants are most likely to get in trouble when for
13	some reason that maybe the operators don't know they
14	are not in tech specs. And then there is some
15	event.
16	The fact that they are not in tech specs
17	somewhere changes the course of events, or it
18	doesn't look like what they've been trained on.
19	MEMBER KRESS: I think you are mixing up
20	two different spaces. You're mixing up design basis
21	space with reality which is the PRA space.
22	MEMBER WALLIS: Well, reality is always a
23	better space to be in.
24	MEMBER KRESS: The PRA space is reality
25	as we know it. The design basis space is a sort of
	1

(202) 234-4433

	35
1	manufactured - they are not real accidents.
2	MR. MIRANDA: Then we don't need it if
3	it's not reality.
4	MEMBER KRESS: They are descriptions of
5	events, an event identified that could occur. But
6	there are specifications going along with it, like
7	how do you calculate the results? What kind of
8	figures of merit you have to meet?
9	And do you have a single failure
10	criteria? There are redundancy and diversity
11	requirements for some of them.
12	These are all artificial type things
13	that have been designed to use design basis space in
14	an attempt to render the plant an acceptable level
15	of risk.
16	But that connection is a little tenuous;
17	I mean it's not a one-to-one connection. So we are
18	kind of mixing up those two spaces when we talk
19	about like the TMI; that's not a design basis event.
20	That's a PRA thing.
21	MR. MIRANDA: Maybe we don't need design
22	basis events if we have a good enough PRA.
23	MEMBER KRESS: Well, the designers like
24	to have something to base their design on. And to
25	base it primarily on the PRAs may be a little
Į	1

(202) 234-4433

	36
1	tricky. Because then you have to be very careful
2	how you deal with the uncertainties.
3	Design basis space, there are no
4	uncertainties.
5	MEMBER WALLIS: I guess we are going to
6	revisit this again.
7	CHAIR BANERJEE: Tom, would the PRA space
8	of sort of if you didn't know the answer now
9	predicted that the TMI sequence could occur?
10	MEMBER KRESS: Yes. In fact it was
11	predicted in WASH-1400 as the dominant accident.
12	MEMBER WALLIS: But that someone would
13	leave -
14	MEMBER KRESS: That type of event. Well,
15	the small-break LOCA.
16	MEMBER WALLIS: No, but the aux feed as
17	well.
18	MEMBER KRESS: Well, that came out of
19	WASH-1400. It was in there.
20	CHAIR BANERJEE: The plant could have an
21	accident when it's out of tech spec.
22	MEMBER KRESS: Sure. That is a
23	probabilistic event.
24	CHAIR BANERJEE: And what is the
25	likelihood that a plant is out of tech spec?
I	

```
(202) 234-4433
```

1 MEMBER KRESS: Well, that is supposed 2 be covered in the PRA, the failure probabilities 3 certain things. 4 CHAIR BANERJEE: But the PRA should 5 inform the design basis space.	of Iow
 3 certain things. 4 CHAIR BANERJEE: But the PRA should 	low Dasis
4 CHAIR BANERJEE: But the PRA should	asis
	asis
5 inform the design basis space.	asis
	asis
6 MEMBER KRESS: That is my opinion. N	
7 up to now we didn't have PRAs to inform design k	of
8 space. And that's why we end up with this sort	0L
9 manufactured accident that covers the spectrum of	f
10 what we think are identified occurrences.	
11 But I think the new reactors, you ou	ıght
12 to really inform design basis space by using the	<u>!</u>
13 PRS. But I would rely on it completely, because	<u>!</u>
14 then you have to be very careful about the	
15 uncertainties.	
16 CHAIR BANERJEE: Sure. But nonethele	ess,
17 we have this SRP now which doesn't consider the	
18 possibility that the plant is out of tech spec.	
19 MR. MIRANDA: No, it's still in desig	ın
20 basis space.	
21 CHAIR BANERJEE: Yeah, strictly.	
22 MR. MIRANDA: Design basis space to a	L
23 large extent has not been fully informed of PRA.	
24 CHAIR BANERJEE: If that's a fairly h	igh
25 probability event, then that should have informe	d

(202) 234-4433

	38
1	the design basis space.
2	MEMBER KRESS: You would think so.
3	CHAIR BANERJEE: Do you have an answer
4	for that?
5	MR. MIRANDA: I believe for the new
6	reactor designs, they are using the results of PRAs
7	to design new systems.
8	MEMBER KRESS: Yes, I think for new
9	designs that's the case.
10	MEMBER WALLIS: We are talking here about
11	a way to improve the SRP. It's our chance to change
12	it if it's a good thing to change.
13	MR. MIRANDA: That's right, and we are
14	trying to put in some provision in here for the new
15	reactor designs.
16	And so that PRA-informed design could
17	enter into the SRPs through that route. And as far
18	as the older deterministic approach that has been
19	around since 1973, we're - the improvements there
20	are just in adding clarity and content, and linking
21	it as closely as possible to the regulations that
22	exist now.
23	MEMBER ABDEL-KHALIK: Back to the
24	requirement of prohibiting one class of accidents
25	from escalating to a higher class. Now if the plant
l	I

(202) 234-4433

	39
1	is designed to handle the higher class event, what
2	difference does it make how that event started,
3	whether it started as a lower class event, or from
4	time zero it was a higher class event?
5	MR. MIRANDA: The difficulty there is
6	that we have events of moderate frequency, lower
7	class events. They are more likely to occur, and
8	therefore they have more stringent acceptance
9	criteria.
10	This applies the principle of constant
11	risk, you know, that if you multiply the probability
12	of an occurrence by its consequences it should be
13	about the same across the spectrum of events.
14	MEMBER WALLIS: I wanted to ask you about
15	that. That's one of my questions.
16	This doesn't take into account risk
17	aversion. The public has a kind of risk averse
18	attitude. It's quite willing to tolerate a lot of
19	things which are minor, but it's not particularly
20	fond of the tremendous accident which is a very rare
21	occurrence.
22	And when you say that the risk - in
23	other words, probability times consequence - should
24	be the same for sort of a minor accident and a major
25	one is a big philosophical statement.

(202) 234-4433

	40
1	MR. MIRANDA: It's what we've been using
2	all these years.
3	MEMBER WALLIS: I know, but is it right?
4	Is that the way the public looks at nuclear
5	accidents? I'm not sure that it is.
6	I hear a lot from George and others
7	about risk averse public.
8	MR. MIRANDA: Well -
9	MEMBER WALLIS: You have to make the risk
10	of the major accident less than the risk -
11	MEMBER KRESS: Once you depart from the
12	risk averse curve, you open up an infinite number of
13	curves. And you have to decide on which one you
14	want.
15	And I know of no criteria, other than
16	poll the public and say which one of these do you
17	prefer.
18	MEMBER WALLIS: Okay.
19	MEMBER KRESS: But you know that's
20	uninformed. Those people don't know. They may be
21	risk averse, but we have to choose something that we
22	think is reasonable.
23	I think the non-risk averse curve is
24	probably the most reasonable one to choose.
25	MEMBER WALLIS: Well, that's what you
I	I

(202) 234-4433

	41
1	think.
2	MEMBER KRESS: Yeah, I know, but this is
3	a policy issue. You can't decide - I don't think
4	there is a technical basis to decide on how much
5	risk aversion to put in on a regular basis.
6	MEMBER WALLIS: I want to make the point,
7	though, that assuming that the risk is constant
8	across the spectrum of accidents is a policy
9	decision.
10	MEMBER KRESS: Sure.
11	MEMBER WALLIS: You say it's a policy
12	decision. You say it's a principle. It's not a
13	principle of nature.
14	MR. MIRANDA: It's a design criteria.
15	MEMBER WALLIS: Someone has decided it.
16	CHAIR BANERJEE: Has it actually been
17	formulated as a policy decision?
18	MEMBER KRESS: They are looking at it -
19	no, there is nowhere in the policy statements that
20	you can read that says that.
21	MEMBER WALLIS: So where did it come
22	from? Why is it a principle?
23	MEMBER KRESS: Well, I think they just
24	made it a principle.
25	MR. MIRANDA: Well, actually, that
I	

	42
1	principle, I've seen it in print in the BSR standard
2	of `78.
3	MEMBER KRESS: I see. It actually goes
4	up there.
5	MR. MIRANDA: I think so, yes.
6	MEMBER KRESS: I didn't know that.
7	But anyway there is an infinite number
8	of choices you can make. But I know of no technical
9	basis to make a choice.
10	MEMBER WALLIS: So when you make this
11	statement in the SOP there is no reference to some
12	policy statement by the commission or something that
13	justifies it?
14	MR. MIRANDA: No.
15	MEMBER WALLIS: So it's just sort of
16	stated without any -
17	MR. MIRANDA: It's the way things are.
18	It's why we have more stringent acceptance criteria
19	for the more frequent accidents.
20	And getting back to your question -
21	MEMBER WALLIS: Well, I guess the problem
22	is with the more severe consequence. There is a lot
23	more uncertainty about both frequency and
24	consequence. So maybe one should be more cautious
25	about these relatively rare accidents, because there
I	

(202) 234-4433

	43
1	is much more uncertainty about both the frequency
2	and the consequence.
3	CHAIR BANERJEE: To actually give some
4	credence to this, I have seen numbers on pipe
5	breaks, probabilities which exceed the age of the
6	universe. So I mean - and age of the earth by a
7	factor of 10 or 100.
8	MEMBER WALLIS: You mean one over the age
9	of the universe.
10	CHAIR BANERJEE: Yeah. One over. So I
11	mean these numbers are highly speculative.
12	MR. MIRANDA: I agree. And there are
13	accidents that we postulate are not going to happen
14	that actually have happened. So this is just a
15	general statement. It's about constant.
16	MEMBER WALLIS: Okay. Well, when we get
17	to new reactors, I'm going to challenge this
18	statement.
19	MEMBER KRESS: That's what's being put
20	into the new reactor framework.
21	MEMBER WALLIS: I know. It seems to be
22	being put in without explicitly stating it. Sort of
23	implied by it.
24	MR. CARUSO: Remember also how this
25	policy gets determined. The staff is proposing
I	•

(202) 234-4433

	44
1	guidance, and it's coming to the technical committee
2	for its comments. You are going to CRGR with us?
3	MR. MIRANDA: No.
4	MR. CARUSO: Sometimes CRGR gets to look
5	at it, and then put it out for public comment,
6	right? So the public gets to take a whack at it.
7	So that's how these policies aren't in
8	the policies - this process. So this is the
9	committee's chance to stick its foot in the water on
10	this policy.
11	MEMBER KRESS: I think we're going to get
12	a disagreement.
13	CHAIR BANERJEE: I think one of the
14	probabilities should be limited to one-tenth the age
15	of the earth.
16	(Laughter)
17	MR. MIRANDA: Or one-hundredth, what
18	would you prefer?
19	MEMBER ABDEL-KHALIK: I guess if I go
20	back to the question I asked earlier about the
21	escalation requirement, my concern there is that by
22	putting this requirement, you are actually excluding
23	- possibly excluding a whole group of initiating
24	events that you are excluding from eventually
25	becoming design basis events just simply by the fact
I	I

(202) 234-4433

	45
1	that they are part of the lower classification of
2	events.
3	MR. MIRANDA: The criterion is there to
4	prevent the possibility that you can have a limiting
5	fault, a very serious accident, with the same
6	probability of occurrence as an AOO.
7	MEMBER ABDEL-KHALIK: No, that is not the
8	concern. The concern is similar to the issue that
9	Professor Wallis raised earlier, that you have a
10	sequence of events, and the probability of that
11	sequence of events is quite low so that it would
12	fall in the higher category, higher classification
13	category; but the very first event in that sequence
14	is a lower classification event.
15	MR. MIRANDA: Okay, now I think we are
16	getting back to the differences between the PRS
17	deterministic approaches. Because for example the
18	scenario described earlier, the stuck-open POVR,
19	what I mentioned before was, a POVR relieving water
20	is assumed to stick open. In real life it may not.
21	It probably will not. But for the deterministic
22	accident analyses it's always assumed to stick open.
23	The probability is one.
24	In that case you have a small-break LOCA
25	with the same probability of occurrence as the

(202) 234-4433

	46
1	original opening of the POVR. And now you have an
2	accident with serious consequences postulated to
3	occur fairly frequently.
4	And that's the difficulty in the
5	deterministic side. And all of these SRPs that
6	follow in Chapter 15, they are all deterministic
7	analyses.
8	MEMBER WALLIS: Okay, thank you.
9	CHAIR BANERJEE: That's been very useful.
10	MEMBER WALLIS: I think we can probably
11	go through these fairly quickly now.
12	As I said before, we were going to try
13	to put in some provision at least for the new
14	reactor designs, at least put in a placeholder. We
15	expect there will be more changes.
16	MEMBER WALLIS: What's going on with the
17	bottom one? The bottom one seems to be more - go
18	back to the TMI thing. There is a failure of aux
19	feed, and then there's also an AOO. You don't often
20	allow that. You don't have to consider that.
21	MR. MIRANDA: I'll get to that.
22	MEMBER WALLIS: Okay.
23	MR. MIRANDA: So we are defining the two
24	categories, and we're separating out - we are not
25	changing anything in ATWS, but we are making the

(202) 234-4433

	47
1	distinction that ATWS is a separate category.
2	We want to retain this -
3	MEMBER WALLIS: What does prohibit mean?
4	Do you mean by design you make it impossible to
5	happen. Or is it you prohibit it in design basis
6	space? Is it a physical thing you are prohibiting
7	or a regulatory thing?
8	MR. MIRANDA: This is a design criteria.
9	So if you are going to make, for example, if you
10	have a design such that the pressurizer will always
11	fill, then you need to design the POVR to relieve
12	water. If that's in your design, if your POVRs are
13	going to open and relieve water, then they should be
14	designed to relieve water and then reclose after
15	that.
16	MEMBER WALLIS: And there is no
17	probabilistic thing? You must absolutely prevent an
18	AOO from becoming an accident with any probability
19	whatsoever, like one over the age of the universe?
20	MR. MIRANDA: Yeah, that's right.
21	MEMBER WALLIS: Hard to do with design.
22	MR. MIRANDA: There are six plants, for
23	example, in the U.S. that have designed their POVRs
24	to relieve water.
25	MEMBER WALLIS: Then they only relieve
I	

(202) 234-4433

	48
1	water with some probability. I mean you have to
2	consider. Prohibit is a bit of a strong statement.
3	MR. MIRANDA: For our purposes, in a
4	deterministic analysis, if they are safety grade
5	POVRs, and they are designed to relieve water -
6	MEMBER WALLIS: They always work?
7	MR. MIRANDA: - they always work, yeah.
8	MEMBER WALLIS: Even if they are allowed
9	to deteriorate over months?
10	MR. MIRANDA: Well, that's what tech
11	specs are for.
12	MEMBER ABDEL-KHALIK: How do you sort of
13	reconcile that with the leak before break?
14	MR. MIRANDA: I don't. Leak before break
15	I think falls into the space between - leak before
16	break is recent compared to these. These have been
17	around since `73.
18	So leak before break, I put it in the
19	space between the deterministic and probabilistic
20	approaches.
21	MEMBER ABDEL-KHALIK: But still, I mean
22	physically, we are talking about something that will
23	start out as a minor leak; then it evolves into a
24	small-break LOCA, and possibility propagate into a
25	large-break LOCA.
I	I

(202) 234-4433

	49
1	So you are covering the entire spectrum.
2	So how do you reconcile that with the requirement
3	that an anticipated occurrence cannot, or should be,
4	prohibited from becoming a possibility of an
5	accident?
б	MR. MIRANDA: I can address that by
7	playing with the definition. I can say, for
8	example, that a leak for example in the pipe, a leak
9	in a pipe is a mechanical fault, and therefore, not
10	very likely to occur in the first place.
11	MEMBER KRESS: It's not an AOO.
12	MR. MIRANDA: It's not an AOO, right. So
13	it's a limiting fault of different dimensions.
14	CHAIR BANERJEE: Is that consistent with
15	actual experience? I mean we've had a lot of leaks.
16	MR. MIRANDA: Well -
17	CHAIR BANERJEE: I mean shouldn't you
18	really keep your feet on reality here? It has
19	occurred during the lifetime of plants, right?
20	MR. MIRANDA: This is true.
21	CHAIR BANERJEE: Each time we get a
22	surprise, and we say, oops, didn't think of this
23	material problem.
24	Every 10 years roughly there is a new
25	problem that arises, Bill Shack says that, that we
I	I

(202) 234-4433

	50
1	haven't thought of, and we get a leak.
2	MR. MIRANDA: That's true. And what you
3	are saying is, that when we classify these events,
4	that the boundaries are not that clear. Sometimes
5	what we think is a limiting fault, we may really
6	have the likelihood of an occurrence of an AOO.
7	Things like that have happened.
8	MEMBER KRESS: They are covered in the
9	other category.
10	MR. MIRANDA: They are.
11	MEMBER KRESS: They are covered. It's
12	just that we decided if it's not an AOO, it ought to
13	just be in the other category.
14	CHAIR BANERJEE: So the decision is not
15	as we discussed informed by any probability. It is
16	simply arbitrary to classify something as - more or
17	less arbitrary to classify something as an AOO -
18	MEMBER KRESS: Well, the frequencies are
19	implied.
20	CHAIR BANERJEE: They are implied, yes.
21	MEMBER KRESS: They are not off the top
22	of your head. Just talk about occurring over the
23	lifetime of a plant versus some other.
24	CHAIR BANERJEE: Perhaps we should
25	reexamine those in the light of experience and see
I	1

(202) 234-4433

	51
1	what should be reclassified as AOOs. I mean we have
2	a lot of experience now.
3	MEMBER KRESS: Yeah, I don't know why we
4	got rid of events that occur over - within years
5	past. I would have kept those, I think. I mean
б	that's just finer division of the things you look
7	at.
8	MEMBER ABDEL-KHALIK: I think perhaps
9	what we ought to do is try to understand the
10	implication of misclassifying an event.
11	In the very beginning, when the ANS-1973
12	standard came out, steam generator two were
13	considered class four events. And then later on
14	they were reclassified as class three events.
15	The question is, what changed?
16	MEMBER WALLIS: They happened more often.
17	MEMBER ABDEL-KHALIK: Well, that's why
18	they were classified as class three rather than
19	class four.
20	But from a practical standpoint, what
21	did that reclassification result in?
22	MR. MIRANDA: From a practical standpoint
23	probably very little. Because class three events
24	has always been an ambiguous. The criteria for
25	class three has been some level of fuel damage which
I	1

(202) 234-4433

	52
1	was defined by offsite dose limits.
2	It was - events have always been class
3	two or class four. Class three has been very hard
4	to define.
5	But you are right, the reclassification
6	occurred because we had better experience, and we
7	knew that steam generator tube rupture is something
8	that is going to occur during the lifetime of a
9	plant.
10	And when these classifications were
11	first set up in 1973 I believe they were done
12	according to the knowledge that was available at
13	that time. And it's only right and proper to modify
14	these as we get more experience.
15	CHAIR BANERJEE: But is that taken into
16	account in the documents? Experience.
17	MR. MIRANDA: Well, the SRPs are
18	guidelines, and licensees can propose alternatives.
19	And if a licensee comes in and has some experience,
20	data, operating experience, and wants to classify an
21	event into another category, and can back it, we
22	would have to consider it.
23	CHAIR BANERJEE: Right, but that is
24	putting the onus on the licensee.
25	MEMBER KRESS: If you want to impose new
ļ	

(202) 234-4433

	53
1	requirements on existing plants, by reclassifying
2	one of these things, then you have to do a backfit
3	analysis. So it may not be imposable on them. But
4	it could very well apply to any new plant.
5	MEMBER WALLIS: The last bullet you just
6	alluded to, is that something new?
7	MR. MIRANDA: The last bullet is
8	something new, and we will discuss that.
9	MEMBER WALLIS: What was it before?
10	MR. MIRANDA: Before there was a
11	requirement in the SRPs that said, you take an AOO,
12	and you consider it for - for an AOO you consider it
13	a single active failure. Any single active failure
14	criteria is AOO.
15	MEMBER WALLIS: And this has been
16	removed? You're going to talk about it later.
17	MR. MIRANDA: It's already come up a
18	couple of times, so I guess we should do it.
19	I call it the combo AOO requirement.
20	And this is the language in the SRP, an incident of
21	moderate frequency, or an AOO, in combination with
22	any single act of component failure, or single
23	operator error, shall be considered, and is an event
24	for which an estimate of the number of potential
25	field failures shall be provided for radiological
I	I

(202) 234-4433

	54
1	dose calculations.
2	What this says in effect is that a
3	moderate frequency event, an AOO, if you combine it
4	with another failure, has now bumped into a next
5	class. Now, because the acceptance criteria for an
б	AOO don't allow any fuel failures. But now you are
7	allowing fuel failures.
8	So it's a way of - they are combining
9	accidents. And when they say any single act of
10	component failure, that could be - that's any single
11	act of failure.
12	That could be - that's any single act of
13	failure. That could be another AOO. That could be
14	something that is not related to the original
15	accident.
16	MEMBER KRESS: It seems to me that we are
17	losing some of the conservatism; you are losing some
18	margin here.
19	MR. MIRANDA: I don't believe that. And
20	the reason is that this requirement is hard to meet.
21	It's ill defined, because you can postulate any
22	combination of AOOs or accidents.
23	For example it's a loophole. I can take
24	an accident, an AOO, and postulate a single act of
25	failure with it that has nothing to do with the
I	

(202) 234-4433

	55
1	accident; that doesn't aggravate the accident. But
2	now I've just relaxed my acceptance criteria.
3	MEMBER KRESS: I don't see that that
4	follows.
5	MR. MIRANDA: Why have you done that?
б	CHAIR BANERJEE: That sounds like
7	gamesmanship.
8	MR. MIRANDA: Yes.
9	MEMBER ABDEL-KHALIK: I'm sorry, could
10	you explain what you just said?
11	MR. MIRANDA: Okay. Take an AOO, I don't
12	know, loss of feedwater, okay. And loss of
13	feedwater, and I combine it with another accident,
14	for example, operator turns off safety injection, or
15	doesn't turn it off, it never goes on, but he
16	disables safety injection, so you don't get safety
17	injection. That's a lot -
18	MEMBER KRESS: Would that be a single
19	failure?
20	MR. MIRANDA: That's a single operator
21	error.
22	MEMBER KRESS: Those are included in
23	single failures.
24	MR. MIRANDA: According to this language,
25	it says -
I	I

(202) 234-4433

	56
1	MEMBER WALLIS: Then this leads to a high
2	cause accident which is something that you have
3	already forbidden; is that what you are saying?
4	That's why it should not -
5	MR. MIRANDA: No, what I'm saying is, if
6	I want to play this game, I can postulate any active
7	failure, and that active failure could be something
8	that doesn't affect the original accident. It could
9	be something totally different.
10	And since it doesn't affect the
11	accident, all it's done is, it's bumped it,
12	according to this requirement, it's bumped it into a
13	more relaxed acceptance criteria. Now I can take
14	some fuel damage -
15	CHAIR BANERJEE: Has this actually ever
16	occurred?
17	MEMBER WALLIS: Why does it have a more
18	relaxed acceptance criteria?
19	MR. MIRANDA: Because an AOO by itself,
20	the acceptance criteria for that is no fuel damage.
21	But if I combine that AOO with a single act of
22	failure, now I'm allowed to have some fuel damage.
23	So if I'm free to choose any single act
24	of failure or operator failure, I can choose one
25	that has no effect on the accident, and in doing so
I	1

(202) 234-4433

	57
1	I have a more relaxed acceptance criteria.
2	MEMBER ABDEL-KHALIK: But that doesn't
3	remove the original AOO requirement from being met
4	by itself.
5	MR. MIRANDA: By itself, yes, it does
6	not.
7	MEMBER ABDEL-KHALIK: So your argument is
8	incorrect.
9	MR. MIRANDA: Well, my argument - yes,
10	that's right, the AOO remains and you have to meet
11	those acceptance criteria; that's right.
12	And this requirement, also, this
13	requirement then has no effect. Why have it in the
14	first place?
15	MEMBER ABDEL-KHALIK: Well, because,
16	let's go back to your example of a loss of
17	feedwater, and if the operator disables safety
18	injection. That is not the only single failure that
19	needs to be postulated in conjunction with a loss of
20	feedwater event. And there is possibly another
21	single failure that can be postulated that would
22	make this event more severe than the loss of
23	feedwater in and of itself.
24	MEMBER KRESS: You have to design around
25	that.
ļ	

(202) 234-4433

	58
1	MEMBER ABDEL-KHALIK: Correct.
2	MEMBER KRESS: That's why I say it seems
3	to reduce the margin.
4	MEMBER ABDEL-KHALIK: Absolutely.
5	CHAIR BANERJEE: I think this is
б	something we need to discuss with the full
7	committee. This is a significant change.
8	MR. MIRANDA: Well, this requirement by
9	the way, when we discussed it in the active systems,
10	no one could figure out where it came from. It's
11	not in the regulations. And the only reference I've
12	seen to it anywhere was one line in the 1970 BWR
13	standard. It didn't appear in the PWR standard.
14	And the way this is written it's not
15	well defined, especially if I take any active single
16	failure. I mean we discussed this already.
17	MEMBER KRESS: The problem I have is in
18	our deterministic regulations, part of them is
19	always the single failure is part of it. And now we
20	are taking that way from one class of accidents for
21	some reason I don't understand.
22	MR. MIRANDA: No, there are two single
23	failure criteria. And there's been some confusion
24	about this. We have had a lot of discussion about
25	this.
I	

(202) 234-4433

	59
1	There is the single failure criterion
2	that is specified in standards like IEE-279. It's
3	specified in the GDCs. This is the single failure
4	criterion that says, a protection system has to be
5	able to perform its function despite the worst
6	single act of failure.
7	MEMBER KRESS: Yeah, that's what I
8	believed. That is a different kind of single
9	failure.
10	MR. MIRANDA: Yeah. The single failure
11	of this one, the one I'm talking about, is, the
12	single failure is also - it's an accident. It's an
13	A00. It can be anything. It can be a reactor trip.
14	It can be an operator error. It can be a valve
15	opening or closing.
16	MEMBER KRESS: It seems like we need to
17	sharpen our definition of what a single failure is.
18	Because I was thinking this first definition you
19	gave is what the -
20	MR. MIRANDA: Yeah, a lot of people are
21	thinking that. It's not. It's - that's why I call
22	it the combo AOO. We've got two AOOs at the same
23	time now. We've got two accidents at the same time,
24	and it says so. Two simultaneous AOOs.
25	And this is like -
Į	

(202) 234-4433

	60
1	MEMBER WALLIS: That's in PRA space
2	presumably.
3	MR. MIRANDA: Yeah, that's right, or
4	three AOOs if they are sufficiently likely to occur.
5	Yeah. This is similar to looking at an accident
6	occurring during a tech spec action statement.
7	You've already got a system that is out of service,
8	and now you've got an accident.
9	MEMBER ABDEL-KHALIK: I still think we
10	have to tread here very carefully. Because I would
11	consider this a part of the defense in depth. And
12	therefore just simply eliminate it, just because it
13	doesn't exist in any written document, is probably a
14	decision that has to be made with care, a lot more
15	care.
16	MEMBER KRESS: I think the person I would
17	ask, given this change, what does that represent in
18	terms of changes, possible changes to the plant?
19	That's where the rubber meets the road.
20	I don't know what it means.
21	MEMBER WALLIS: Well, we use a PRA to
22	show that the risk is climbing.
23	CHAIR BANERJEE: Maybe you could address
24	the question that Dr. Kress has as to what it really
25	means in terms of changes to the design or whatever.
Į	

(202) 234-4433

	61
1	What are the practical consequences of
2	this likely to be?
3	MR. MIRANDA: Well, one practical
4	consequence that I've seen as a reviewer is that
5	some licensees submit analyses of AOOs, assuming
б	single active failures in combination AOOs. Some of
7	them do submit analyses like this, and others don't.
8	And -
9	CHAIR BANERJEE: Does it reduce the
10	conservatism? Because they still have to meet the
11	A00 criterion.
12	MR. MIRANDA: That's right. So when I
13	see analyses like that, I don't really know what to
14	do with that.
15	CHAIR BANERJEE: Where does the confusion
16	arise?
17	MR. MIRANDA: The confusion arises in
18	several places. One is in your choice of analyses,
19	your choice of active failures, the combinations
20	that they decide to analyze. And the other is the
21	acceptance criteria that they say they need to meet.
22	CHAIR BANERJEE: Do they still meet the
23	AOO acceptance criteria?
24	MR. MIRANDA: Certainly.
25	CHAIR BANERJEE: That, and then when they
I	1

(202) 234-4433

	62
1	do this combination they can choose whatever they
2	like? What are the consequences of them bumping it
3	up? Is there any consequence of that?
4	MR. MIRANDA: I don't see any practical
5	benefit. They do the analysis. They choose the
6	combination of failures as they arise. And then the
7	acceptance criteria that they need to meet, this
8	business about allowing some fuel failures, that's
9	kind of ambiguous. How much fuel failure is
10	allowed?
11	Now we have acceptance criteria for AOO,
12	and we have them for limiting events, limiting
13	faults. Those are well defined.
14	But in between, for combinations of
15	events, I don't know what to do with that.
16	MEMBER WALLIS: There is no acceptance
17	criteria?
18	MR. MIRANDA: Well, there is, and you saw
19	it. It says that - it says there will be an
20	estimate of the number of potential fuel failures -
21	MEMBER WALLIS: Provided - that's the
22	only criteria.
23	Mr. BANERJEE: Bring it to the judgment
24	of the reviewer.
25	MEMBER WALLIS: Then presumably these
I	

(202) 234-4433

	63
1	dose calculations have to meet the dose criteria.
2	MR. MIRANDA: Well, they don't say that,
3	do they? About the only firm criterion you'll see
4	there is that there will be no less of function to
5	any fission product barrier other than the fuel
6	cladding. So that means that the vessel remains
7	intact, and the containment remains intact.
8	MEMBER WALLIS: But in all of this, you
9	have to consider this, but then you have a weaker
10	criterion for some reason.
11	Well, maybe the whole thing needs to be
12	straightened out, not deleted. Just because it's
13	awkward doesn't mean you get rid of it. You have to
14	consider how do you meet the intent of this original
15	advice here.
16	MR. MIRANDA: So then I would ask you,
17	what is the intent?
18	MEMBER WALLIS: I don't know; I didn't
19	write it.
20	MR. MIRANDA: Well, neither did I.
21	MEMBER ABDEL-KHALIK: The intent perhaps
22	is to provide some reasonable connection between
23	design space and -
24	MEMBER KRESS: Risk space.
25	MEMBER ABDEL-KHALIK: Right, and the real
I	1

(202) 234-4433

	64
1	world. That's the intent of this.
2	MR. MIRANDA: I would say that that's
3	what tech specs are for. That's what action
4	statements do, that if something occurs, and a
5	system is not operating at full capacity, then you
6	are required under action statements to repair it
7	within a certain period of time. And that is
8	determined probabilistically.
9	MEMBER WALLIS: How long has this been in
10	the review plan, this statement?
11	MR. MIRANDA: Well, at least since `96.
12	As a matter of fact -
13	MEMBER WALLIS: That's not so long ago.
14	You could probably find somebody who wrote it.
15	CHAIR BANERJEE: But let me ask you, I
16	mean the impression you are giving, which may be
17	unintended, is, this is being done to provide
18	clarity and some ground to the reviewer. That can
19	be done in different ways.
20	I mean if you specified what the
21	radiological dose calculations of potential fuel
22	failures would be, you are attempting to limit that.
23	That could also provide some clarity, as Professor
24	Wallis said. You could just improve the language
25	there so you would make it a little bit more
I	I

(202) 234-4433

	65
1	deterministic.
2	MR. MIRANDA: And what would be my basis
3	for that?
4	CHAIR BANERJEE: I don't know.
5	MEMBER ABDEL-KHALIK: The word, any.
6	That's the basis for that. I mean you say that the
7	licensees come up with analyses in which they do
8	these calculations, and they pick and choose
9	whichever component they assume to fail.
10	They do that maybe because there is no
11	guidance as to what the word, any, means, in this
12	requirement.
13	And if you provide them with that
14	guidance, if you specify the range of additional
15	single failures that they have to consider, that
16	would eliminate the uncertainty.
17	MR. MIRANDA: That's one side of the
18	uncertainty. That's the definition of the event.
19	And then we have the uncertainty of the acceptance
20	criteria.
21	MEMBER WALLIS: And you clarify that too.
22	MR. MIRANDA: But then -
23	MEMBER ABDEL-KHALIK: Well, there is a
24	clear definition of - at least a part of the
25	acceptance criteria. It is that the only failure as
I	

(202) 234-4433

	66
1	far as fission product barriers would be just the
2	fuel cladding. The other two barriers would remain
3	intact. That's a clear acceptance criteria.
4	MR. MIRANDA: Okay, in that case I could
5	argue that the combination AOO requirement is
6	bounded by ATWS. I would say that ATWS is an AOO
7	with probably the most serious event, which would be
8	the failure of the reactor trip. And the acceptance
9	criteria for ATWS is that you have an intact vessel,
10	an intact containment.
11	So this, if you do an ATWS analysis,
12	then you have covered all possible combination AOOs.
13	MR. CARUSO: Well, I could argue that for
14	ATWS you don't really have reactor coolant pressure
15	boundaries. It doesn't maintain its integrity.
16	Because to mitigate ATWS you have to blow down the
17	reactor vessel quite a bit in order to relieve the
18	pressure.
19	So you're throwing a lot of - if you
20	have lost sufficient fuel cladding integrity, you
21	have lots of fission products that are getting out
22	of containment.
23	CHAIR BANERJEE: You are not maintaining
24	that last -
25	MR. CARUSO: Well, you're going from -
l	

(202) 234-4433

	67
1	for ATWS you are going from two barriers to one
2	barrier. And if you look at pressure inside BWR
3	containments, I think they get pretty high in an
4	ATWS, don't they?
5	MEMBER KRESS: Yes, sir. That's one of
б	the problems.
7	MR. CARUSO: So it's not clear to me that
8	that's a good thing.
9	CHAIR BANERJEE: We have seen that
10	before. I mean it's one of these upgrades.
11	I think that what you are looking for is
12	some clarity with the "any." Of course I think that
13	Professor Abdel-Khalik pointed out, that you can
14	probably take care of. You are talking about some
15	clarity with the radiological dose calculations.
16	MR. CARUSO: Yes, and I'm also - there is
17	the issue of clarify, and definition of acceptance
18	criteria. But there is also the issue I had when I
19	first looked at this. I didn't know where it came
20	from, and I didn't know why we needed it.
21	CHAIR BANERJEE: Well, it's surely
22	redundant. If you can really show it's redundant,
23	and I don't think you've quite shown that to us,
24	then that would be a good enough argument, too.
25	Because you also said it's redundant, I think.
ļ	I

(202) 234-4433

	68
1	MR. CARUSO: Yes, because you have the
2	whole class of AOOs. You consider those
3	individually, and none of them can result in fuel
4	failures. So you do that.
5	CHAIR BANERJEE: The redundancy I think
б	is your strongest argument, is that it doesn't add
7	anything. It's already there. What you intend to
8	do is already done by the regulations without this,
9	whether by the guidance, without this.
10	MR. CARUSO: Then I could also argue
11	reduction of regulatory burden.
12	CHAIR BANERJEE: That's a difficult one
13	to argue. If it's redundant, then that's a good
14	one. If it's just an imposed burden that achieves
15	nothing, that's okay. But the redundancy I think is
16	the best argument you have. If you can really make
17	that one.
18	MEMBER KRESS: If one looked at this
19	principle of constant risk across the frequency,
20	non-risk events, and used as your consequence the
21	quantity of radioactivity released for example, then
22	the AOOs have a range of frequency to them.
23	But generally they are limited to - you
24	know, they are set. They happen every year, and
25	there are some that happen over a lifetime.
ļ	I

(202) 234-4433

	69
1	But it seems to me like one could have a
2	criterion that relates the frequency, at least AOO,
3	to the quantity of fission product released. As
4	your figure of merit for acceptance criteria. You
5	could have associated with that a failure of a
6	single active combo. That would just be another
7	specification in how you -
8	CHAIR BANERJEE: But are you going to
9	require this additional failure as well, then?
10	MEMBER KRESS: You could. I mean that's
11	generally what's been done with the design basis of
12	this.
13	Now I don't know about this second
14	single failure definition I heard.
15	CHAIR BANERJEE: Are there frequencies of
16	this combo of the order of the LOCA?
17	MEMBER KRESS: No, not generally. A LOCA
18	is something that happens over the lifetime of the
19	plant. So most of these AOOs are not that frequent
20	- are more frequent than that.
21	CHAIR BANERJEE: Right, but I mean the
22	combo.
23	MEMBER KRESS: The combo? Probably is
24	the same order as the LOCA. I don't know. You'd
25	have to look at the PRA.
I	I

(202) 234-4433

	70
1	CHAIR BANERJEE: Maybe we've said enough.
2	This is clear a point that has to be adjusted -
3	MEMBER KRESS: Anyway it looks like this
4	one is one that we worry about.
5	CHAIR BANERJEE: You've got the message.
6	It is going to come under scrutiny.
7	So if you were flagging items to bring
8	up in front of the main committee, and not the whole
9	talk. Because they are going to want to know the
10	real issues, this will be a real issue.
11	MR. MIRANDA: This is the issue that I'm
12	here about today actually. This is the change I
13	wanted to bring up today.
14	CHAIR BANERJEE: You want us to agree to
15	it?
16	MR. MIRANDA: Well -
17	CHAIR BANERJEE: Our opinion on it,
18	right? Or then you can really show it's redundant
19	with conclusive arguments, then I think I would buy
20	it. If you can show that it's taken care of already
21	by something else. Then you don't need it.
22	MR. CARUSO: I think it was probably put
23	in there because someone discovered a sequence that
24	wasn't covered that someone gamed. So this is to
25	plug a hole.
I	

(202) 234-4433

	71
1	CHAIR BANERJEE: Maybe it's a post-TMI
2	thing.
3	MR. CARUSO: Maybe post-TMI. But
4	somewhere some licensee or vendor figured out a
5	creative way to define an event in a certain way.
б	And this was put in there to plug a hole. The
7	language strikes me as open.
8	MR. MIRANDA: The hole-plugging is with
9	chewing gum.
10	MR. CARUSO: Well, since we don't know
11	what's behind the hole, I mean -
12	MR. MIRANDA: This requirement has been
13	followed in the submittals by CE plants by not by
14	Westinghouse plants. And we have reviewed both.
15	Not only is it a requirement I have a problem with,
16	but it hasn't even really been followed.
17	CHAIR BANERJEE: But that is not the
18	licensee's fault. If you have a requirement that
19	people don't follow, and you don't call them on it,
20	then they got away with something. I mean it's your
21	job to do it.
22	MR. MIRANDA: That's why I said earlier
23	that I don't know what to do with this. When I see
24	analyses that come in with these combination events,
25	I don't know what to do with them. I don't know how
I	I

(202) 234-4433

	72
1	to judge them. I don't have any acceptance
2	criteria.
3	CHAIR BANERJEE: Because this is just
4	basically guidance to the reviewer. And it has to
5	be based on a regulation of something somewhere.
6	And what you are saying is, there is no
7	basis for it anywhere.
8	MR. MIRANDA: The only basis I could find
9	is one line in a 1978 BWR standard.
10	CHAIR BANERJEE: That may be sufficient.
11	MEMBER ABDEL-KHALIK: So where is this
12	requirement defined? Where is this language that
13	you are coding gone? Where does this come from?
14	MR. MIRANDA: This comes from the current
15	1996 SRPs. I can get you a copy.
16	MEMBER ABDEL-KHALIK: I think that would
17	be a good idea.
18	CHAIR BANERJEE: We don't have a red line
19	version, do we?
20	MR. MIRANDA: No, we don't have a red
21	line version. I'll provide copies of the old SRP.
22	CHAIR BANERJEE: Do you have a red line
23	version for us.
24	MR. MIRANDA: Of this language?
25	CHAIR BANERJEE: No, of the SRP. I mean
I	I

(202) 234-4433

	73
1	we don't - it's going to - reading two SRPs and
2	comparing them is hard. So if you have a red line
3	version that would be a lot easier for us; edited
4	version.
5	MR. MIRANDA: You asked this before,
6	didn't you?
7	MR. CARUSO: I don't think I got it.
8	What I was told was that it was so rewritten it
9	wasn't worthwhile to put together a red line.
10	CHAIR BANERJEE: Well, that's why we
11	should give a lot of consideration to it, then, if
12	it's a new document.
13	MR. CARUSO: That's what I was told was
14	that it was so different than a red line wouldn't
15	make any sense. If I have one, I'd like to know
16	where it is.
17	MR. MIRANDA: That's true for the ATWS
18	standard. The ATWS standard before was only three
19	pages; now it's more like 15. But you are talking
20	about in general, the SRPs, right?
21	MR. CARUSO: No, no, just the 15.0.
22	MR. MIRANDA: 15.0?
23	MR. CARUSO: 15.0, yeah.
24	MEMBER WALLIS: Okay, well, if we've got
25	to red line them, I'll provide it to the members.
I	

(202) 234-4433

	74
1	CHAIR BANERJEE: If changes have been so
2	large that a red line version doesn't exist. Our
3	changes we've shown are not that many.
4	MR. CARUSO: I have an old version of
5	15.0. I have the 1996 version, and I have the new
6	version that you are proposing. But I don't have a
7	comparison.
8	MR. MIRANDA: Okay. I don't think I have
9	seen that one. But I have with me the old version
10	and the new version.
11	MR. CARUSO: What I'm saying is, I do not
12	have a compare.
13	CHAIR BANERJEE: Well, that's something
14	you can work out. Either you find a red-line
15	version, or you make a comparison yourself and let
16	us know the results.
17	MR. MIRANDA: All right.
18	MEMBER WALLIS: Can we move on? We've
19	obviously highlighted it.
20	MR. MIRANDA: That's all right. Don't
21	worry about it. We will get it later.
22	MEMBER WALLIS: Is that okay, Sanjoy?
23	CHAIR BANERJEE: Yes.
24	MEMBER WALLIS: There may be some more
25	questions, too.
l	

	75
1	CHAIR BANERJEE: Right. And we are also
2	over time. So.
3	MEMBER WALLIS: But I think this is an
4	important thing. This is Chapter 15. It's a major
5	part of the regulations. This describes the
6	Agency's advice about how to make them work.
7	MR. MIRANDA: You are right. And I think
8	probably we should have spent more time on this one
9	requirement. Because this is the requirement I
10	wanted to bring up before the committee. This is
11	the major change. The others were editorial.
12	MR. CARUSO: Can I ask you a question?
13	I notice in all the discussion that we
14	talk about active failures. And this is for
15	advanced reactors, and we all know the advanced
16	reactors use a lot of passive systems. And I
17	wondered, did the staff consider how to deal with
18	passive system failures, as opposed to active
19	failures, and if not, why not?
20	MR. MIRANDA: I haven't worked on the new
21	designs, so I don't know if there is any different
22	approach that has been taken for passive failures.
23	The question itself has been considered
24	in the past in depth. There has always been this
25	distinction between active and passive failures.
I	I

(202) 234-4433

	76
1	And I can't answer the question, because I don't
2	know whether the new reactor designs would change
3	that approach at all.
4	MEMBER WALLIS: Well, let's consider,
5	there are filters, debris filters in the passive
6	systems. There's a big tank, and there's a pipe
7	that goes and cools the reactor.
8	There's a filter in some of those
9	things. Now if it should be that there is some
10	debris clogging that filter for any reason, that's
11	built up over the years or something; then you have
12	a passive system that failed when called upon,
13	because it blocks the flow of water. It doesn't
14	flow as much as it should. The passive system fails,
15	like a pump failing in effect. But it's not a pump;
16	it's gravity.
17	MR. MIRANDA: Okay, you can look at it
18	that way. You can say it's a passive system that
19	failed. Or I could say that it's a system that
20	should be operating but has not be surveilled
21	properly.
22	MEMBER WALLIS: Or is outside the tech
23	specs.
24	MR. MIRANDA: That's right. It's a
25	failure that will go undetected until you have gone
	1

(202) 234-4433

	77
1	through your surveillance. And that way it would
2	not be any different from a diesel generator that's
3	in its 29 th day on a 30-day surveillance schedule.
4	CHAIR BANERJEE: So shall we flag this
5	and move on? I think you have a basis for - to come
б	to the main committee.
7	So we now are up to the constant risk
8	principle, are we?
9	I didn't mean to stop. I think we
10	should -
11	MR. MIRANDA: I thought we were over
12	time.
13	CHAIR BANERJEE: There are lots of
14	things; I'm going to give you a little more time.
15	MEMBER WALLIS: Shall we ask questions?
16	Or will you move on with your presentation?
17	CHAIR BANERJEE: I think we should move
18	on with the presentation.
19	MEMBER WALLIS: And I will try to fit
20	them in as they are relevant.
21	CHAIR BANERJEE: You have already made a
22	comment on this, and so has - we've had a brief
23	discussion on this.
24	Now this is a very philosophical policy
25	issue. So perhaps, I don't know if we need to
ļ	I

```
(202) 234-4433
```

	78
1	debate this as part of this RP. It's a much larger
2	debate that you are talking about.
3	So what is the opinion of the members
4	here? Do you want to address this here or is it a
5	larger policy issue?
6	MEMBER KRESS: I think it's a larger
7	policy issue.
8	MEMBER WALLIS: I think we can flag it.
9	MEMBER KRESS: Our committee ought to
10	discuss it among ourselves.
11	MEMBER WALLIS: We ought to discuss it.
12	CHAIR BANERJEE: All right.
13	MEMBER KRESS: Because it doesn't need
14	debate back and forth with the staff. We ought to
15	decide ourselves.
16	MEMBER WALLIS: But if we think something
17	else should be done, we should say so.
18	MR. MIRANDA: This is a very basic
19	principle. If we change it now, we will have to
20	change a lot of other things.
21	MEMBER WALLIS: But do you know where it
22	came from? Is it another one that is shrouded in
23	the mysts of antiquity? Someone wrote it sometime,
24	and -
25	MR. MIRANDA: I haven't seen it written
l	

(202) 234-4433

	79
1	anywhere except as I said in the passing reference
2	in a BWR standard -
3	MEMBER WALLIS: Well, this one is also
4	like the last one, the combo.
5	MEMBER KRESS: It shows up in the Palmer
6	curve, where I first encountered it.
7	MEMBER WALLIS: If it's a principle there
8	ought to be somewhere where it's defined, and sort
9	of on tablets or something.
10	CHAIR BANERJEE: It's not part of any
11	regulation.
12	MR. MIRANDA: If you read the GDCs, and
13	there are 60 GDCs, if you read them, you come to a
14	sense that underlying all of them is this thing.
15	MEMBER KRESS: It is implicit perhaps.
16	CHAIR BANERJEE: It is a little bit like
17	interpreting the Constitution.
18	MEMBER WALLIS: Constant risk inference.
19	MEMBER KRESS: And in fact if you look at
20	the technology mutual framework, they established a
21	series of frequency ranges and the consequences. If
22	you draw a straight line to that, it follows this
23	principle pretty close.
24	Those were derived from the current
25	regulations. They were trying to be consistent. So
ļ	I

```
(202) 234-4433
```

	80
1	it's implied in the regulations.
2	MEMBER ABDEL-KHALIK: It's sort of
3	implied in the categorization process itself.
4	MEMBER KRESS: Yes.
5	MR. MIRANDA: Exactly, yes. And all we
б	are doing is, we are sort of coming to terms with
7	this difficulty of categorization, and some
8	accidents maybe ought to be - one category or
9	another, depending on experience. And we are
10	reducing it from three categories to two, because I
11	don't think we can get any finer than that.
12	CHAIR BANERJEE: And that is based on the
13	regulations.
14	MR. MIRANDA: That's right, the GDCs have
15	only two categories.
16	CHAIR BANERJEE: That's why I understood
17	is your rationale for doing that.
18	MR. MIRANDA: Yes.
19	CHAIR BANERJEE: And so what is the
20	feeling of the members here about this? Should we
21	discuss it amongst ourselves at a different time?
22	MEMBER WALLIS: I think it's something
23	that should be presented like this to the full
24	committee, and the full committee wants to say this
25	is something we'll take up with new reactors or
I	1

(202) 234-4433

	81
1	something, then we can do that.
2	I'm not sure we are going to change this
3	now, but it's something that we -
4	MEMBER KRESS: I will guarantee it will
5	be discussed at the next meeting.
6	MEMBER WALLIS: So you should show this
7	slide to the full committee and see what happens.
8	MEMBER KRESS: It is definitely on the
9	agenda for the next meeting.
10	CHAIR BANERJEE: You better give a lot of
11	time for this.
12	MEMBER WALLIS: We will take it from the
13	formal hydraulic -
14	CHAIR BANERJEE: I hope so.
15	All right.
16	MR. MIRANDA: Okay. We talked about
17	this. We are going to follow Appendix A, Part 50 -
18	MEMBER WALLIS: Anything is possible, it
19	should say likely to.
20	CHAIR BANERJEE: I guess that is the
21	language there already, right?
22	MR. MIRANDA: Yes, that is their
23	language. The only thing it says, that we have on
24	this slide, is for new plants and any operating
25	plants that choose to do so, we would use the two
I	I

```
(202) 234-4433
```

	82
1	categories of the GDC's appendix A, and for
2	operating plants that have submitted their analyses
3	according to the condition two, three and four event
4	scheme, you just continue to apply that system.
5	So there would be no back-fitting here.
6	CHAIR BANERJEE: Where did that ANS
7	category three come from? What was the reason for
8	them to invent that?
9	MR. MIRANDA: They made a distinction
10	between events that can be expected to occur during
11	a calendar year of operation, and events that are
12	not expected to occur, but may occur during the
13	lifetime of a plant, during the 40-year lifetime of
14	a plant.
15	So they drew the line there. Can it
16	occur in one year? If not, can it occur during the
17	lifetime of a plant? If not, then it becomes a
18	postulated accident.
19	CHAIR BANERJEE: But there was no basis
20	in the regulations for that, right?
21	MR. MIRANDA: No, there wasn't.
22	CHAIR BANERJEE: It was arbitrary?
23	MR. MIRANDA: I don't know if it was
24	arbitrary. I can tell you that there were other
25	versions of standards from the ANS that appeared
l	I

(202) 234-4433

	83
1	after that that further talked about accident
2	categorization.
3	There was one standard I looked at that
4	had something like five categories. And it was a
5	BWR standard, 1983 standard, for example, that had
6	many different plant conditions, they called them.
7	And these were accident categories, and they
8	combined them with external events such as
9	earthquakes or other events, and they had a whole
10	scheme of categories. I think it was in excess of
11	five or six categories.
12	But that was never adopted.
13	CHAIR BANERJEE: Was there any reg guide
14	or anything?
15	MR. MIRANDA: The reg guide that comes
16	closest to this is reg guide 1.70, the standard
17	format. And you will see that on the last slide.
18	And that reg guide talks about moderate frequency
19	events, infrequent events, and limited faults. It
20	doesn't use the same names, but they line up pretty
21	closely.
22	MEMBER KRESS: In essence it seems to me
23	like this changes - actually it goes more in a
24	conservative direction. And it adds margin.
25	The reason is, if you had divided AOOs
I	

(202) 234-4433

	84
1	into different frequence ranges, like a year or two
2	years or five years, 20 years, whatever, then you
3	could have different acceptance criteria for those,
4	to follow the principle of costs and risks.
5	But what this does is say, oh, if it's
6	going to happen during a lifetime, then we are going
7	to have the same acceptance criteria. So we are
8	going to treat those things that happen very
9	infrequently over a lifetime the same as other
10	frequencies. So this to me adds a level of margin
11	and conservatism, and makes it more consistent with
12	the regulations as they are anyway.
13	So I don't have any real problem with
14	this.
15	CHAIR BANERJEE: I don't either.
16	MEMBER ABDEL-KHALIK: Well, I mean, this
17	reclassification into two categories would make it
18	more conservative if you retain -
19	MEMBER KRESS: If you retain
20	MEMBER ABDEL-KHALIK: - from condition
21	two. But the question is, what is the acceptance
22	criteria now.
23	MEMBER WALLIS: That's right. That's a
24	good point.
25	MR. MIRANDA: That's right, and that's
l	I

(202) 234-4433

	85
1	exactly what we wanted to do. What we are doing is,
2	we are folding the condition three events into
3	condition two, and condition two is an AOO. And
4	condition two does not allow for field failures.
5	MEMBER KRESS: So it adds some
6	conservatism.
7	MEMBER WALLIS: Correct.
8	MR. MIRANDA: And that's also why we are
9	allowing plants that currently have condition three
10	events to retain them.
11	CHAIR BANERJEE: So you don't have to
12	reanalyze any plants, nothing. They follow this,
13	it's fine.
14	Let's move on.
15	MR. MIRANDA: This is a little comparison
16	of what we were just discussing. Reg guide 1.70 is
17	what the licensees were following, and this is what
18	the - and also some of them talk about moderate
19	frequency events; others talk about condition two
20	events. But basically that's what they were
21	following.
22	But the regulations, the GDCs, had only
23	the AOOs and the postulated accidents. And this
24	slide will show you that the infrequent events, the
25	condition three, are going to have to meet the same
I	I

(202) 234-4433

	86
1	criteria as the AOOs.
2	And this is a little discussion about
3	ATWS and why it's a separate category. It's outside
4	the plant design basis, and the regulations for ATWS
5	were found in 50-62.
б	The non-escalation criteria, the
7	important - we need to retain this criteria, and we
8	need it to prevent the possibility that you could
9	create an accident, a postulated accident, that has
10	the same frequency of occurrence as an AOO.
11	CHAIR BANERJEE: I guess the issue was
12	brought up that how do you actually show that this
13	doesn't happen?
14	I mean I guess it's up to the applicant
15	to do it.
16	MEMBER KRESS: And he has to use approved
17	calculations in their design, and they have to show
18	that their system will not lead to any fuel failure
19	_
20	MEMBER WALLIS: It's a bit extreme to say
21	this still has the frequency of an AOO. Because
22	there is a conditional probability of it developing
23	into a possible accident.
24	An AOO could have a probability of 10 to
25	the minus one per year, but the probabilities have
ļ	I

(202) 234-4433

	87
1	been developing into a postulated accident could be
2	another 10 to the minus five or something.
3	MR. MIRANDA: That's true.
4	MEMBER WALLIS: So that what is important
5	is this probability of developing into a postulated
6	accident, not excluded.
7	MEMBER KRESS: But that's implied in the
8	calculational methodology that they have to use.
9	They are given a methodology that has conservatisms
10	in it, and these are reviewed and approved, and
11	there are figures that have to meet -
12	MEMBER WALLIS: It's not as if -
13	MEMBER KRESS: And so if you follow all
14	that, and you don't develop into a postulated
15	accident, then there are some implied probability in
16	it.
17	MEMBER WALLIS: What I object to is your
18	statement, you imply that if it could develop into a
19	postulated accident, then the postulated accident
20	has the same probability as the AOO itself.
21	MR. MIRANDA: I made that statement based
22	on the rules of the deterministic analyses, which
23	say that if a POVR is not qualified for water relief
24	it's going to fail; the probability there is one.
25	The same thing with fuel rods. If they
ļ	I

(202) 234-4433

	88
1	into DNB, they fail. The probability is one.
2	MEMBER WALLIS: I understand that. Now I
3	understand. So this seems reasonable.
4	CHAIR BANERJEE: Yes. Let's move on.
5	MR. MIRANDA: We talk about this, trying
6	to find a regulatory basis for retaining that
7	criterion, and the closest I could find is in 50.59
8	which seems to touch on the same questions that this
9	criteria deals with.
10	MEMBER WALLIS: And you talked about that
11	one.
12	MR. MIRANDA: That is an open item.
13	MEMBER WALLIS: Will you talk about the
14	criteria sometime? I have questions on page seven,
15	which is called analyses and acceptance criteria.
16	Are you going to talk about that?
17	MR. MIRANDA: Okay.
18	MEMBER WALLIS: Or can I ask questions?
19	MR. MIRANDA: Go ahead.
20	MEMBER WALLIS: All right.
21	At the top of the page, it says, lists
22	of basic criteria to meet the requirements of GDC
23	postulated accidents. And it lists them. It says,
24	pressure in the RCS should be maintained below -
25	fuel clarity will be maintained. These are sort of
Į	

(202) 234-4433

	89
1	slightly different things, should be, will be and
2	shall be.
3	But then you have some extraordinary
4	thing, which says, a postulated accident might cause
5	sufficient damage to preclude resumption of planned
6	operation.
7	This isn't a criterion. It should read
8	something like, a postulated accident shall not
9	cause sufficient damage - it's not a criterion the
10	way it's written. It simply says it might happen.
11	That's not a criterion. You need a shall or a
12	should or something in there instead of a might. Or
13	should not.
14	MR. MIRANDA: I think if you look at the
15	ANS stated or that defines the condition two, three
16	and four events, or if you look at the definition of
17	an AOO, an AOO is an event that occurs that will not
18	result in fuel damage.
19	MEMBER WALLIS: This is for postulated
20	accidents.
21	MR. MIRANDA: I know. I know. It will
22	not result in fuel damage, and the plant can be
23	returned to operation shortly after the fault is
24	corrected. That is what an AOO is.
25	So the postulated accident here, it says
I	I

(202) 234-4433

	90
1	might cause sufficient damage.
2	MEMBER WALLIS: But that's the definition
3	of a postulated accident. It's not a criterion for
4	acceptance. A description of what you mean by a
5	postulated accident.
6	MR. MIRANDA: That's right, it is a
7	definition.
8	MEMBER WALLIS: So you are going to put
9	it somewhere else?
10	MEMBER KRESS: Well, you know if you are
11	a reviewer, this is a review plan -
12	MEMBER ABDEL-KHALIK: But this relaxes
13	the acceptance criterion, then, the acceptance
14	criteria for condition two events say that there is
15	no damage to the plant that would preclude the plant
16	from being restarted once the cause of the
17	malfunction has been identified and corrected.
18	MEMBER WALLIS: We're talking here about
19	postulated accidents.
20	MEMBER KRESS: In terms of postulated
21	accidents -
22	MEMBER WALLIS: This is a criterion for
23	postulated accidents, okay.
24	MEMBER KRESS: If the analyst makes an
25	analysis of a postulated accident and it shows that
I	I

(202) 234-4433

	91
1	there is significant fuel damage, but it still meets
2	all the criteria, the reviewer must say, well, is
3	this acceptable or not? And I think what he's
4	saying is, even if there is fuel damage it could be
5	acceptable.
6	MEMBER WALLIS: But then you have to have
7	some criterion for acceptability of damage.
8	MEMBER KRESS: I think there is; there's
9	dose criteria.
10	MEMBER WALLIS: But then you have to say
11	it in the form of a criterion. This isn't a
12	criterion.
13	MR. MIRANDA: This is - you're right,
14	it's a definition. It serves to distinguish a
15	postulated accident from -
16	MEMBER WALLIS: You are going to fix
17	that? It should be in the text and not a criterion.
18	MR. CARUSO: Actually I think it's
19	appropriate here. Because remember this is
20	providing guidance to the reviewer. And it says to
21	the reviewer, when you do the review, when you find
22	this accident, it's going to be really bad, and it's
23	going to make a really bad mess. And they will
24	probably never operate this plant again. That's
25	okay for this accident.
ļ	I

(202) 234-4433

	92
1	MEMBER KRESS: That's what it says.
2	MR. CARUSO: It says to the reviewer, if
3	you review this accident and you find that it's
4	going to make a real bad mess and they are going to
5	lose their investment, that's okay.
6	MEMBER WALLIS: Then you need to say it.
7	But this sort of "might" is a strange thing. You
8	say that if the criteria would clearly say that fuel
9	damage is allowed, and there is no criterion
10	limiting it or something, that would be clear.
11	But saying it might cause damage, that
12	isn't a criterion at all.
13	MR. CARUSO: Maybe it can be revised.
14	MEMBER WALLIS: You're going to fix that
15	anyway. You will fix that so I don't have any
16	questions about it next time.
17	MR. CARUSO: As I understand it, this is
18	a definition.
19	MEMBER WALLIS: It's not a criterion as
20	written.
21	Now we get down to loss of coolant
22	actions, LOCAs. It says the calculated maximum
23	cadmium shall not exceed. There is no probability
24	at all.
25	CHAIR BANERJEE: I guess that is the
I	I

(202) 234-4433

	93
1	regulation.
2	MEMBER WALLIS: No, the regulation says
3	with a high probability.
4	CHAIR BANERJEE: Oh.
5	MEMBER WALLIS: So I don't quite know how
б	this squares with the regulation and the allowable
7	probabilistic approach to this which the current
8	stuff now permits.
9	CHAIR BANERJEE: Well, I think it should
10	echo the regulation.
11	MEMBER KRESS: The trouble is, there are
12	two sets of regulations to choose from.
13	CHAIR BANERJEE: Clarify that.
14	MEMBER WALLIS: 10 CFR 50.46 says, with a
15	high probability -
16	CHAIR BANERJEE: I think you should
17	clarify that.
18	MEMBER WALLIS: It says with a high
19	probability.
20	Anyway I know that this is now being
21	done with probabilistic stuff, and it seems to be in
22	conflict with this statement.
23	MEMBER KRESS: Yes, I think you're right.
24	MEMBER WALLIS: That needs to be fixed.
25	And then - you're going to sort that
I	

(202) 234-4433

	94
1	out? And then this statement, calculated changes in
2	core geometry shall be such that the core remains
3	amenable to cooling, really means nothing. TMI was
4	cooled. Anything can be cooled eventually.
5	MEMBER KRESS: Yes, but they go on to
б	specify what coolability is.
7	MEMBER WALLIS: Well, they don't. This
8	is a separate criterion. Really the coolable
9	geometry is defined by this 2-21 rule.
10	MEMBER KRESS: That's the amount of
11	hydrogen generated.
12	MEMBER WALLIS: But this statement is a
13	very empty statement.
14	CHAIR BANERJEE: Isn't there some
15	guidance as to what coolable geometry means?
16	MEMBER KRESS: It means you don't exceed
17	a certain energy, you don't exceed a certain
18	hydrogen generated, and you don't -
19	MEMBER WALLIS: That's different, because
20	_
21	CHAIR BANERJEE: No, I mean that's a
22	separate thing here, right?
23	MEMBER WALLIS: Because the core can
24	balloon and still not exceed 2,200. It could be at
25	2,000 for a very long time, so other things
ļ	I

```
(202) 234-4433
```

	95
1	happening to it.
2	(Simultaneous voices)
3	MEMBER WALLIS: How do you interpret a
4	coolable geometry?
5	MEMBER KRESS: The fuels people are
6	working on this to revise this regulation, to give a
7	crisper definition of coolable.
8	MEMBER WALLIS: I know. We've debated it
9	quite a bit.
10	MEMBER KRESS: We've debated it quite a
11	bit. Right now it's still the 2,200 and the 17
12	percent -
13	MEMBER WALLIS: Well, that's one, two and
14	three, but what does four mean? One, two and three
15	says 2,200, 17 percent and one percent. Four has an
16	additional criterion, core shall remain amenable to
17	cooling.
18	(Simultaneous voices)
19	MEMBER WALLIS: Doesn't it?
20	MEMBER KRESS: No.
21	MEMBER WALLIS: Amenable to cooling.
22	MEMBER KRESS: No, no, it means its
23	geometry is still maintained pretty much.
24	MEMBER WALLIS: Well, then you have to
25	explain that in some way.
I	'

(202) 234-4433

	96
1	MEMBER KRESS: Well, I don't know where
2	you explain it.
3	MEMBER WALLIS: Well, I've raised the
4	question. I think it's doesn't mean anything, then,
5	this statement.
6	CHAIR BANERJEE: Well, the problem is,
7	it's in the regulation.
8	MEMBER WALLIS: Is it?
9	MR. CARUSO: Yes, it's part of 50.46.
10	CHAIR BANERJEE: But there is no guidance
11	as to how to interpret that.
12	MEMBER WALLIS: So maybe your hands are
13	tied on this one.
14	MR. MIRANDA: We'll have to discuss that
15	at the LOCA.
16	CHAIR BANERJEE: Is there a reg guide or
17	anything that says this is an acceptable way to
18	interpret coolable geometry?
19	MEMBER WALLIS: No, I don't think there
20	is.
21	MR. CARUSO: I'm not sure there is any
22	particular regulatory guide. But it's in the
23	methodologies that are used to calculate performance
24	during a scenario, and that's where this gets
25	captured.
ļ	1

(202) 234-4433

	97
1	MEMBER ABDEL-KHALIK: I mean the
2	implication is that if you meet conditions I, ii,
3	and iii, that the four condition would be met.
4	That's the current interpretation.
5	MR. CARUSO: That's the current - but the
6	fourth criteria is there to cover all the situations
7	that may not be covered in one, two and three.
8	MEMBER WALLIS: But the tubes, they all
9	buckle and -
10	MR. CARUSO: Ballooning for example, or
11	something weird happened. And that's in there for
12	the staff -
13	MEMBER WALLIS: Well, there should be -
14	is a calculated change in the core geometry the
15	accumulation of debris in the spaces? Is that -
16	MR. CARUSO: That could be considered,
17	yes.
18	MEMBER ABDEL-KHALIK: Boron
19	precipitation?
20	MR. CARUSO: Yes, it could be.
21	MEMBER WALLIS: Boron precipitation, yes.
22	MEMBER KRESS: That is exactly the sort
23	of thing that -
24	MEMBER WALLIS: What is your criterion to
25	determine that it is coolable?
1	

```
(202) 234-4433
```

	98
1	MEMBER ABDEL-KHALIK: That's part of - I
2	shouldn't be involved in this. That's part of the
3	dialog that occurs between the staff and the
4	industry in establishing whether a particular fuel
5	design or system is acceptable.
б	MEMBER WALLIS: So there isn't a clear
7	definition of a coolable geometry?
8	MEMBER ABDEL-KHALIK: No.
9	CHAIR BANERJEE: Is there any references
10	to documents and things where they have
11	interpretations of what coolable meant?
12	MR. MIRANDA: I don't know; I'll have to
13	check on that.
14	MEMBER KRESS: If you look into FSAR,
15	look under the LOCA calculations.
16	MS. ABDULLAHI: There is an SRP section
17	on this.
18	This is Zeyna. Isn't there an SRP and a
19	desktop for ECCS LOCA?
20	MR. MIRANDA: Yes, there is.
21	MS. ABDULLAHI: That would define more -
22	MR. MIRANDA: Does it have practical
23	measures to determine whether or not the core is in
24	a coolable geometry?
25	MS. ABDULLAHI: No, but I think each
I	1

(202) 234-4433

	99
1	licensee, like Ralph pointed out, each fuel vendor
2	has to show how they meet those criteria, and they
3	define exactly how they meet coolable geometry, and
4	when that process, like Dr. Kress said, is approved,
5	then you have that criteria approved. And
6	subsequently every plant would have to meet that.
7	CHAIR BANERJEE: Well, it would be
8	useful, because I'm sure this issue will come up - I
9	mean we've debated this at ACRS a number of times.
10	So if you have any sort of backup.
11	MEMBER WALLIS: The cladding could
12	disappear. You'd have a pebble bed reactor. It
13	might still be coolable.
14	CHAIR BANERJEE: All right. So how is it
15	being interpreted now? This is a pragmatic thing.
16	MEMBER WALLIS: Okay, I don't want to
17	prolong that discussion.
18	There are an awful lot of GDCs at the
19	end of this, I notice.
20	CHAIR BANERJEE: Is there anything else
21	we should know?
22	MR. MIRANDA: No, I believe that the
23	subcommittee had questions on what is sufficiently
24	broad spectrum of events, and the definition of a
25	design basis, and questions regarding the LOCA
l	I

(202) 234-4433

(202) 234-4433

	100
1	acceptance criteria, whether all those shelves
2	really belong there. And whether or not - I don't
3	know what to discuss about the constant risk
4	principle, but I will bring it up again so you can
5	debate that.
б	MEMBER WALLIS: I think you've done a
7	very good job of answering our questions and
8	explaining things.
9	MR. MIRANDA: Thank you.
10	MEMBER WALLIS: We have tried, I think,
11	to bring up some of the basic questions, because
12	this is a very important part of the SRP.
13	MR. MIRANDA: As far as I - the open
14	issue here is the criterion that we want to remove,
15	the combination of the AOOs. I'll try to provide
16	more information on that.
17	CHAIR BANERJEE: That was probably the
18	most significant issue.
19	Let me just look through my notes.
20	MEMBER WALLIS: So this is a question of
21	like sufficiently broad spectrum, are you going to
22	address that?
23	CHAIR BANERJEE: For example, that is
24	another issue that you might want to clarify what
25	you mean by that.
ļ	

(202) 234-4433

	101
1	MEMBER WALLIS: We want to leave it vague
2	for the staff so they can figure out what's a
3	reasonable number.
4	CHAIR BANERJEE: Whatever it is, you
5	should have some justification for using that
6	wording.
7	MR. MIRANDA: Yeah, I don't even know if
8	that's wording that was changed from the old
9	revision.
10	CHAIR BANERJEE: Now, I understand that
11	there is a mock up version on ADAMS which somebody
12	will let you know, Ralph.
13	MR. MIRANDA: Okay.
14	MR. CARUSO: I'll get you a copy.
15	CHAIR BANERJEE: Okay.
16	MEMBER WALLIS: Now are we going to write
17	a letter on this SRP, or what are we going to do?
18	MR. CARUSO: Yes, I think we are supposed
19	to.
20	MEMBER WALLIS: Is this a follow up also
21	_
22	MR. CARUSO: No, this isn't a form
23	letter. I think this has to be a regular letter.
24	That's the way it's been done with other of these
25	sections that have been reviewed.
I	I

(202) 234-4433

	102
1	MEMBER WALLIS: Because with all of them,
2	we said we didn't want to review those.
3	MR. CARUSO: Right. The ones that did
4	get reviewed, I was told there was a regular letter
5	that was written.
6	CHAIR BANERJEE: Okay.
7	MEMBER WALLIS: It's sort of like boiling
8	water stability. We have an option of saying - this
9	is a subcommittee, we don't think that the full
10	committee needs to review it?
11	MR. CARUSO: I think that's another
12	option if you decide to do that, yeah.
13	CHAIR BANERJEE: This I think the full
14	committee needs to review it. And you have the
15	issues brought up by the subcommittee. I mean there
16	other issues that the full committee brings up.
17	But I think what you talked about was
18	very informative for us. So we know which points
19	need to be addressed. But we don't know exactly
20	what the full committee will do. They have a
21	different viewpoint perhaps.
22	Then what happens after the letter? We
23	have to generate a letter.
24	MR. CARUSO: We generate a letter, and I
25	don't know what NRR is going to do with it. I guess
l	I

(202) 234-4433

	103
1	if it's a positive letter they will go forward with
2	it; if it's a negative letter, I don't know.
3	MEMBER WALLIS: They may suggest some
4	changes.
5	CHAIR BANERJEE: I think it's more likely
6	to be a letter which might deal with some
7	clarifications and suggestions.
8	MR. CARUSO: By dealing with those
9	comments.
10	CHAIR BANERJEE: I don't think - I can't
11	speak for the full committee - but it's likely to
12	have a few suggestions.
13	MEMBER WALLIS: Well, it's certainly not
14	a bad document. It's a very nice document. It's
15	just that we want to discuss certain aspects of
16	certain paths; that's all.
17	But in general, it's got to be a good
18	document. It's matured over decades. How could it
19	be bad?
20	MR. MIRANDA: It's a lot larger than the
21	other documents.
22	MEMBER KRESS: You think things get
23	better with age?
24	CHAIR BANERJEE: Only us.
25	Well, thanks very much. That was very
	·

	104
1	helpful.
2	I think now we will take a 15-minute
3	break and then get on BWR Stability.
4	MEMBER KRESS: Be back at 10 till?
5	CHAIR BANERJEE: Ten till.
б	(Whereupon at 10:36 a.m. the
7	proceeding in the above-
8	entitled matter went off the
9	record to return on the record
10	at 10:59 a.m.)
11	CHAIR BANERJEE: So we are back in
12	session.
13	So Dr. Huang, do you want to start off?
14	BWR STABILITY
15	INTRODUCTION AND REGULATORY PERSPECTIVE
16	MR. CRANSTON: This is Greg Cranston
17	again.
18	The subject we are going to be talking
19	about is boiling water reactor stability, which
20	includes Standard Review Plan 15.9. And it's going
21	to be presented by Dr. Huang, who is a reactor
22	systems engineer, and also with assistance from Dr.
23	Jose March-Leuba, who is an NRC consultant from Oak
24	Ridge Laboratories.
25	DR. HUANG: Thank you.
I	I

(202) 234-4433

	105
1	This is Tai Huang, the ATWS system
2	branch, the technical review on the stability issue,
3	since the early `80s and at that time frame.
4	This presentation will cover two parts.
5	The first part, for the BWR stability, where we will
6	get the background on the whole story since the
7	issue became important for the BWR operation.
8	And the second part will be after you
9	get this background, the SRP 15.9 you are going to
10	have more background, now why it is separated out
11	from small part of standard review print 0.4.
12	Now the BWR stability, it have a
13	potential violating subtle. And it effect the day-
14	to-day BWR operations.
15	The details covered later, we try and
16	show them in the presentation. And the regulatory
17	requirement based on 10 CFR 50 appendix A, there are
18	two. One is the generic design criteria, GDC 10 and
19	GGDC 12.
20	GDC 10 would be the reactor design, and
21	GGDC 12 would be power - reactor power oscillation.
22	So these two criteria to meet.
23	And then we keep going for the spectrum
24	you know like the history, and the BWR events. And
25	you look at these ones, since the Vermont Yankee
I	1

(202) 234-4433

	106
1	event, and then also they have a test over there.
2	And we have Peach Bottom test, and keep going down
3	to a generic letter, 8602. They say COC-80 from GE
4	tell us that the operating limitation for detection
5	and separation are acceptable to demonstrate
6	compliance with GDC 10 and 12.
7	And they keep going for the La Salle
8	event in 1988. And the staff has the enforcement
9	notice, 8839, that would tell us, tell the industry
10	what's going on there.
11	And down the row the NRC Bulletin 8807
12	and that require prints without automatic trip
13	capability to manually scram if fuel the separation
14	pump trip occurs.
15	And then keep going down the row to
16	1988. There is a generic letter, you know, like GE
17	Part 21, talking about MCPR might be - might be
18	violated if 10 percent APRM swing is used as a
19	criteria for manual scram.
20	Since then, after that, the La Salle
21	events, industry, very concentrated from this
22	issues. And then there is an industry effort. So
23	we, at that point, we have working on the NEDO
24	31960.
25	This is a BW Owners' Group who come out
ļ	I

(202) 234-4433

	107
1	with the resolution on how to deal with BWR and the
2	Yucca instability issues.
3	And then in 1992 they say what they
4	call WMT-2 events but now they call current event,
5	the name change.
б	And then the 1994, the American labor,
7	they call required all the reactors, BWR reactors.
8	You have some kind of mechanism to control this
9	instability if that occurs.
10	And then they say, INPO, in1994, there
11	is INPO report, SER 07-00, they try to get something
12	like a lessons learned from the instability events.
13	And then they keep going to the end to
14	about 1990 - in or about, close to 1995 to 2000 time
15	frame, they say, GE 21, time of issue.
16	Then after that generic letter in `94-
17	02, all the industry BWR owners group, BW reactor
18	owners, they had some kind of options, the detail
19	we'll cover later.
20	And they already implement - some of
21	them are now implemented. And some increment - some
22	reactors, they implemented their system, and then
23	they have one assumption like a generic issue. And
24	then we, NRC as a result with this issue, and to
25	come out with a resolution for the specific

(202) 234-4433

	108
1	guidelines. You are not going to use the generic
2	line slot to come out with set point.
3	Then in 2003 there's the Nine Mile
4	Point-2 event. They're option three, but in the
5	operation situations, they have an event occurs, and
б	from there we have a lesson learned. They call
7	Long-Term Solution-III, set insensitive, and the
8	detail would be covered in later slides.
9	MEMBER WALLIS: Can I ask you on this
10	historical trend here.
11	DR. HUANG: Yes.
12	MEMBER WALLIS: BWRs have been increasing
13	their power level, our operators, and they have been
14	changing fuel design. And they have been having
15	fuel designs which are much more complicated,
16	because now they can design and optimize their fuel
17	loading pattern and all that to get more power out
18	of them and various other things.
19	Have these changes led to the reactors
20	being more stable or less stable or what?
21	DR. HUANG: Of course from these MELLLA+
22	operations, and single loop, all kind of operation
23	situation.
24	If you don't have a control, of course
25	it create more unstable situations.
Į	I

(202) 234-4433

	109
1	MEMBER WALLIS: Does it become more
2	difficult to control? And what's the trend?
3	DR. HUANG: The trend would be, they
4	develop some kind of resolution from NRC and the
5	industry to come up with a group from ICA into that
б	_
7	MEMBER WALLIS: But do we need to have
8	more stringent controls -
9	DR. HUANG: Yes.
10	MEMBER WALLIS: - or more sensitive
11	diagnostics because these things are now getting
12	more difficult to control? Or what is happening?
13	MR. MARCH-LEUBA: No, the reactors are
14	getting more unstable because of the new fuels and
15	the new extended operating procedures. The
16	controlling the instabilities is just as simple as
17	it used to be. So the solution is still working.
18	The frequency of events is increasing,
19	its likely to increase.
20	MEMBER WALLIS: So it's like a car which
21	is getting more unstable to drive?
22	MR. MARCH-LEUBA: You are driving faster,
23	but your brakes still work. That's where we are.
24	CHAIR BANERJEE: Option three is an ABS
25	system?
Į	1

(202) 234-4433

	110
1	MR. MARCH-LEUBA: Option three is the
2	real brakes. Whenever we start going too fast
3	downhill, you hit the brakes.
4	MR. CRANSTON: This is Greg Cranston. I
5	also want to add that in conjunction with this, we
6	are in the process of going through the MELLLA+ and
7	approving MELLLA+ for plants. We are tying this to
8	stability, detect and suppress, with that in
9	conjunction with making sure the plants have an
10	operational system, prior to us approving their
11	operation in the MELLLA+ domain.
12	So that's what we are considering too to
13	make sure we've covering here the concerns that you
14	expressed as far as are they pressing the limits) a
15	little bit more, and do we need the fully automated
16	scram system operable at the time we allow them to
17	move into that expanded operating domain.
18	CHAIR BANERJEE: This Perry event, was
19	that when they had option three?
20	MR. MARCH-LEUBA: Yes. Both Nine Mile
21	Point and Perry are option three.
22	DR. HUANG: Yes, so this just give you
23	the background on the regulatory history and BW
24	events. And then the detail we slice.
25	So if you flip over the next slide, you
I	

(202) 234-4433

	111
1	see like before La Salle events, what's going on
2	there. And then after La Salle events, what's going
3	on there.
4	And since then there are large industry
5	effort result in BW owners group long term
6	solutions. And this solution would be in the
7	following
8	And long-term solutions are now fully
9	implemented in all BWRs right now. And there are
10	many reactor years' experience. Also with
11	complicated idea that Dr. Juarez mentioned
12	comprehended by authority and second issue
13	identifying the fuel stock 21. Also there is
14	possibly a system noise level. And that the NRC
15	staff will closely follow implementation of
16	stability solution by three means.
17	One is through the technical
18	specification review. And we do that, they plan
19	audits on their system. And we confirmation or
20	operator training on the crane simulators.
21	And staff conducted I would say a number
22	of the decay measurements as the production of new
23	fuel changes.
24	MEMBER WALLIS: There is no effort to
25	design away the instability. It seems to be
	I

(202) 234-4433

	112
1	something you always have to live with. These
2	reactors cannot improve the design so the region of
3	instability shrinks?
4	MR. MARCH-LEUBA: You can. Unfortunately
5	again, it was the economics of the plant.
6	MEMBER WALLIS: Oh it's economics that
7	limit it.
8	MR. MARCH-LEUBA: Right. There are two
9	big developments on fuel that have affected
10	stability. Number one was going to faster-
11	responding fuels, 9X 9 and 10X10 fuels. So there's
12	longer to respond faster. They give you a much
13	better CPR performance and recognition rate. So
14	they are good for everything else except the
15	stability.
16	So you're saving what you say for LOCA,
17	and you make - the second big development that
18	happened to fuel was the Parkland rods. And by
19	eliminating 14 or 15 rods from the top of the core,
20	they reduce the friction pressure drop
21	significantly. And that's what saved us from
22	instability.
23	If we did not have pull rods we could
24	not live with the 10X10.
25	And the third development you'll see in
I	I

	113
1	a few minutes, you will see why the
2	So we can force the stability to be
3	impossible in a reactor. It will make LOLA worse.
4	DR. HUANG: Okay, so now after that, the
5	stability identify as a security concern. And then
6	the resolution is, resolve by the EPG ATWS mediation
7	actions.
8	And then after that La Salle, and then
9	keep going on to today -
10	MEMBER WALLIS: We're going to get into
11	ATWS, I guess. But this ATWS has never happened,
12	has it? So we are just sort of relying on computer
13	simulations of ATWS stability?
14	MR. MARCH-LEUBA: Correct. Now on the La
15	Salle event was analyzed up to the point of the
16	scram. The ATWS scram system, the La Salle event was
17	caused by the ATWS system causing a circulation pump
18	trip. There was a low level transient that caused -
19	the reactor thought it was in ATWS. So for the
20	first two or three minutes to the point of a scram,
21	it wasn't hours, as far as the reactor thought it
22	was. What the computer was telling us is if you let
23	it go. And you'll see at the end of the
24	presentation a bad thing would have happened, an
25	unacceptable thing.
l	1

(202) 234-4433

	114
1	DR. HUANG: So now the second bullet, up
2	to this moment we have expanded operating domains
3	something like MELLLA+ operations, the post-
4	instability challenges. And there are true industry
5	mechanisms for the systems to control this
6	instability.
7	And there is one like a detect - like a
8	DSS/CD detect in solution, confirmation density
9	algorithm. GE Systems has been approved. And then
10	another one is under staff review. It is called
11	Enhanced Option III, EO3 from Ariba, is under staff
12	review.
13	So these two systems are ready for that,
14	expanding.
15	And our position and solution has
16	evolved these two we just mentioned previous. One
17	information becomes available for this BW operation
18	in terms of stability issue, and also the design
19	operating changes more aggressive core and fuel, and
20	also a more expanded operating domain.
21	In the diagram later we show what a
22	domain is.
23	CHAIR BANERJEE: Now is this meant to
24	also deal with ESBWR, or is that a separate issue?
25	MR. MARCH-LEUBA: SRP 59 does deal with
I	I

(202) 234-4433

	115
1	ESBWR.
2	CHAIR BANERJEE: So at some point or the
3	other, both Professor Wallis and I have been
4	concerned about floraging (phonetic) type
5	instabilities.
б	MR. MARCH-LEUBA: That's my first slide.
7	CHAIR BANERJEE: Hm?
8	MR. MARCH-LEUBA: My first slide.
9	BWR STABILITY
10	OVERVIEW OF STABILITY, REGULATORY ISSUES AND
11	LONG TERM SOLUTIONS
12	MR. MARCH-LEUBA: There are - so now at
13	last my turn.
14	MEMBER WALLIS: There is also the
15	question of the computer simulation. I remember
16	when we were doing the ESBWR, we're going to come
17	back to this, the courant number is not properly -
18	MR. MARCH-LEUBA: That is correct.
19	MEMBER WALLIS: So there is an artificial
20	damping of void waves. It really needs to be fixed.
21	MR. MARCH-LEUBA: And if you look at the
22	record, a minute ago it was sitting right here, it
23	tells you we will have that calculation, and we do
24	have it. You will see it.
25	CHAIR BANERJEE: We asked for a fine
I	I

(202) 234-4433

	116
1	utilization calculation.
2	MR. MARCH-LEUBA: The chimney and it has
3	been performed. So this chimney with notes about
4	this smaller
5	MEMBER WALLIS: You've been very
6	responsive.
7	MR. MARCH-LEUBA: We believe our
8	premises, because there is a record of them. And we
9	expect you to ask us.
10	And it has been assured no issue. No
11	what we call loop instabilities.
12	MEMBER WALLIS: No artificial damping.
13	MR. MARCH-LEUBA: With parameter one you
14	don't have numerical damping on the chimney. You
15	inevitably have damping somewhere else, but on the
16	chimney certainly not. And it came out - the
17	simulation show that this is not an issue.
18	So first let me tell you that this
19	presentation was discussed with Ralph Caruso. We
20	are supposed to present number 15.9, the SRP. And
21	he said, well, why don't we have a summary of
22	everything that has happened for the last 20 years.
23	And let's just put it together, so we will make the
24	review of the SRP a lot easier.
25	So what we are doing here is just a
ļ	

(202) 234-4433

	117
1	summary for your benefit. And this afternoon on the
2	second presentation we will talk about the SRP 15.9.
3	CHAIR BANERJEE: So today we could finish
4	the stability overview by lunch. We can delay the
5	lunch a little bit.
6	So the plan would be, let's say, if we
7	could finish it by 12:15 or so, that gives you about
8	an hour, to include the ATWS as well.
9	MR. MARCH-LEUBA: I'll talk faster.
10	CHAIR BANERJEE: Then after lunch we can
11	discuss the SRP.
12	MEMBER KRESS: We'll talk faster than
13	usual.
14	MR. MARCH-LEUBA: I suspect, I'm hoping,
15	the SRP 15.9 is a lot more straightforward than the
16	15.0 this morning. And there won't be as many
17	questions. So we don't really need three hours for
18	the SRP.
19	CHAIR BANERJEE: So I mean however you
20	guys want to arrange it is fine with me. But we do
21	want to finish roughly at let's say 2:30 or so.
22	MR. MARCH-LEUBA: I promise by 1:45 we
23	will move into SRP no matter where we are.
24	CHAIR BANERJEE: Okay.
25	MEMBER WALLIS: You can't promise
I	1

(202) 234-4433

	118
1	anything, because we might ask thousands of
2	questions.
3	MR. MARCH-LEUBA: I promise I will try.
4	CHAIR BANERJEE: This is Said.
5	MR. MARCH-LEUBA: Said is well known.
б	MEMBER WALLIS: So I should be quiet and
7	ask him to ask all the questions.
8	MR. MARCH-LEUBA: All right. There are
9	many, many, many instability modes in two-phase
10	floor systems. And you can't even enumerate them
11	probably.
12	If you think about it, the transition
13	from tubular to laminar or vice versa is an
14	instability. There are two equilibrium points.
15	It's a known instability. Two equilibrium points,
16	one becomes unstable, the other one becomes stable,
17	and it jumps from one to the other.
18	Boiling transition is an instability.
19	There are two equilibrium points, one with steam,
20	one with water. And if one of them becomes unstable
21	it causes very significant consequences, boiling
22	transition for example.
23	But that was handled by the CPR
24	correlation. When we took over the stability, there
25	are two modes that we see coming up. We see in BWRs
Į	I

(202) 234-4433

	119
1	with experience that have cause, potential to
2	challenge the powers. And there are two. There are
3	the control system instabilities, and there are the
4	density wave instabilities.
5	Control system instabilities are handled
б	by INC technicians. So what happens more often than
7	not is, a sensor goes bad, or an actuator goes bad,
8	and you start having oscillations.
9	And you send in the INC guy and he fixes
10	it.
11	Density wave instabilities are the ones
12	that cause like the La Salle event. They cause very
13	large - they have the potential to cause very large
14	power oscillations. Has the potential to violate
15	SAFDLs. And they are handled by their long-term
16	solutions.
17	And my presentation will talk about the
18	long-term solutions, which is how we put the brakes
19	on these instabilities.
20	MEMBER WALLIS: What do you do to
21	suppress an instability?
22	MR. MARCH-LEUBA: Scram.
23	MEMBER WALLIS: You scram?
24	MR. MARCH-LEUBA: Yes.
25	MEMBER WALLIS: You shut down?
I	I

(202) 234-4433

	120
1	MR. MARCH-LEUBA: You shut down. That's
2	the only - back on the pre-La Salle event, the seal
3	380 allowed you to reverse the actions that got you
4	into that situation.
5	So if you pull rods, and you see an
6	oscillation, you remove the rod that you pulled in,
7	and you reinsert the rod, and you suppress the
8	instability.
9	The new solution don't allow you to do
10	that. If option three sees an instability it will
11	scram. It doesn't ask questions.
12	And therefore it puts a big economic
13	penalty on the plant on instability. Because any
14	scram costs a lot of money.
15	MEMBER WALLIS: It means you have to
16	suppress your noise level. Otherwise you would be
17	getting all sorts of -
18	MR. MARCH-LEUBA: It has to go above the
19	noise level.
20	MEMBER WALLIS: - false indicators.
21	MR. MARCH-LEUBA: And we did have one - I
22	don't know if you are familiar with the Brunswick
23	event in Christmas of 2006. We did have a false
24	scram on most level.
25	All right, so we are going to
Į	

(202) 234-4433

	121
1	concentrate on this density wave. The controller
2	system, the INC guys will fix, and the other
3	instabilities, we have not seen them for the last 50
4	years of power.
5	So if we look at power versus flow, the
б	operating domain, you have these blue lines. If you
7	draw a red line that separates the unstable from the
8	stable, it looks approximately like this. So it is
9	a parabolic type of line, and it is always in this
10	corner.
11	MEMBER WALLIS: Is that a natural
12	circulation curve or something like that?
13	MR. MARCH-LEUBA: The blue line is the
14	natural circulation curve.
15	MEMBER WALLIS: So it implies that the
16	natural circulation phenomena are somehow related to
17	the instability? It seems to, but apparently not.
18	MR. MARCH-LEUBA: No. Number one, this
19	line is an artist's conception, depending on which
20	reactor moves up to here, or up to there.
21	There are reactors in which this line is
22	completely outside of -
23	MEMBER WALLIS: During the life of the
24	fuel for instance or the cycle?
25	MR. MARCH-LEUBA: Oh, yes. It moves to
I	I

(202) 234-4433

	122
1	the event. It was - occurred about here. It
2	scrammed. There was an instability. We have our
3	inspection team, and we analyze all possible
4	components of risk to the reactor.
5	We restart the reactor on the same power
6	to flow ratio, the decay ratio was CO .2. Same
7	position a week later. It was just a power
8	distribution.
9	So by choosing different control flow
10	patterns we chose a power distribution that was less
11	peaked, and the characteristic went from 1 to 0.2.
12	So it changes daily. Now, I have this
13	slide here also for another purpose. Last time I
14	was here we were talking about MELLLA+ and EPU.
15	This is 100 percent, 100 percent power, 100 percent
16	flow, operating, which is called the OMTP. This is
17	the 100 percent rod line, which means that if you
18	keep your controllables fixed, and you change flow,
19	the power follows this trajectory. And you see it's
20	not 45 degrees. It's a little higher, because as
21	you go down in flow, or in power, the fuel water
22	heaters are not as effective, and you have
23	difference of cooling, and you do get an increasing
24	power.
25	MEMBER WALLIS: If you trip the pumps,
I	

(202) 234-4433

	123
1	you follow down the -
2	MR. MARCH-LEUBA: If you trip the pumps,
3	you will go like this.
4	MEMBER WALLIS: Go down there?
5	MR. MARCH-LEUBA: And then eventually go
б	out. There is a transient. But if you do it
7	slowly, so your fuel water temperature is in
8	equilibrium, you will follow that line there.
9	And again this line depends on
10	everything, on the reactor. In real life it will
11	have a slightly different slope. And this is kind
12	of an average base that comes from GE plant
13	experience.
14	Now most reactors operate at what's
15	called the MELLLA or ELLA line. Which is - it goes
16	all the way to the 100 percent and 75 percent level.
17	So you were allowed to operate along this line at
18	100 percent power; have flow control to compensate
19	for all your burner.
20	What the reactor is for EPU was increase
21	the flow line that was already allowed all the way
22	to the higher power.
23	MEMBER WALLIS: Are those approximately
24	lines of constant exit quality or something? Are
25	they something like that?
ļ	I

(202) 234-4433

	124
1	MR. MARCH-LEUBA: No, because cooling has
2	a lot to do with it. They are lines, of course void
3	fraction, K infinity.
4	MEMBER WALLIS: So it's void fractions?
5	Okay.
б	MR. MARCH-LEUBA: But the cooling is
7	changing.
8	MEMBER WALLIS: Which feeds back to the
9	reactivity.
10	MR. MARCH-LEUBA: Your K infinity must be
11	one. But as you move down, your feedwater heater
12	loses efficiency, because you have less steam. And
13	I have never understood why completely, but as you
14	move down this cooling changes, and you have colder
15	temperature coming in the reactor.
16	You must have the same core average
17	void. And therefore you have less or more power.
18	The new proposed extended operating domain, what we
19	call extended operating domain is this MELLLA+ which
20	they actually want to regain this flexibility or
21	having the same power SEPU, but be able to control
22	burn up with flow. It gives them a lot more
23	flexibility, operating flexibility, in the reactor.
24	What they have now, and the operator
25	will tell you, we have now a DPU, is a flow crack.
I	

(202) 234-4433

125 1 They have only about roughly one percent flow that 2 they can control the burner. So they are constantly moving control rods. 3 4 At one plant they were telling us, my 5 neighbor is the guy that does all the operations on weekends. And every other weekend he has to be 6 7 working, because they have to go down and change control rods and come back in. They have to do it 8 9 every two weeks, where it used to be once every six 10 And that's because of the lack of flow months. 11 control. 12 So to gain the flow control, they are proposing to go to this MELLLA+, maximum extended 13 14 low line limit analysis plus, which is 140 percent 15 down to 80 percent. Which creates now this line. And you can see what happens when you 16 17 used to lose a pump, a separation pump from OTP, you 18 ended up here. When you moved to MENA (phonetic) or 19 MELLLA, right here, in the 100 percent and 75 20 percent, and you lose your pumps, you end up here. 21 When you are not in the MELLLA+ corner, 22 you end up up here, way way inside the instability 23 domain. And the simulations show that if you are in 24 the MELLLA+, in a reactor today, operating below 25 MELLLA, you have a 50-50 chance if you trip the pump

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	that it will be unstable.
2	In a MELLLA+, you trip the pumps, you
3	will be unstable, 95, 99 percent probability. So it
4	does increase the probability.
5	CHAIR BANERJEE: What is that - how do
6	you accomplish that straight line down? We have a
7	presentation on MELLLA+ coming up.
8	MR. MARCH-LEUBA: Correct. Which line,
9	this one?
10	CHAIR BANERJEE: Yes.
11	MR. MARCH-LEUBA: Oh this is arbitrary.
12	That is a 55 percent flow. And the reason is to
13	stay away from the red line, to stay away from the
14	instability.
15	CHAIR BANERJEE: How do you do that?
16	MR. MARCH-LEUBA: You are not allowed to
17	operate below there.
18	MEMBER WALLIS: You pull the rod - push
19	in the rods.
20	MR. MARCH-LEUBA: You can, by tech specs,
21	on the MELLLA+, an operator could stop like this and
22	go and operate right here if he wanted to. There is
23	probably no reason to do it, but he could.
24	He could not operate there on purpose.
25	Now if he loses his pumps, and he moves there, he is
ļ	I

(202) 234-4433

	127
1	now out of tech space, and he is supposed to insert
2	rods and get out of there within 15 minutes.
3	So really for 15 minutes he is allowed
4	to operate here, but not
5	MEMBER WALLIS: Well, if the stability
6	boundary is moving around, how does he know where it
7	is?
8	MR. MARCH-LEUBA: He doesn't.
9	MEMBER WALLIS: He doesn't?
10	MR. MARCH-LEUBA: He doesn't. Nobody
11	knows.
12	MEMBER WALLIS: So how does he know where
13	he can be on this map then?
14	MR. MARCH-LEUBA: There is - what you do
15	is, you define a stability boundary that is
16	conservative enough so that it will cover most of
17	the spectrum.
18	MEMBER WALLIS: What if he is looking at
19	his various displays. Does he have a display like
20	this that tells him where he is?
21	MR. MARCH-LEUBA: Let me go off here. He
22	has a display like this.
23	MEMBER WALLIS: Well, okay, similar.
24	MR. MARCH-LEUBA: Similar. And this
25	comes from -
I	I

	128
1	MEMBER WALLIS: - know where the
2	stability boundary is?
3	MR. MARCH-LEUBA: There is a stability
4	boundary that has been -
5	MEMBER WALLIS: - moves around. Is that
6	the very conservative one?
7	MR. MARCH-LEUBA: That's the conservative
8	one. The conservative one is called the scram
9	avoidance region.
10	MEMBER WALLIS: Okay. That's what he
11	goes by.
12	MR. MARCH-LEUBA: This is what he goes
13	by. And as Tai was saying, we do a lot of volumes.
14	So Tai and I are well known in all the BWRs in the
15	plan, they see us coming. And we always see this
16	thing. This is from the core, the core operating
17	limit report. There is always a copy of it, stuck
18	with Scotch tape next to the operator's control. He
19	has this map. Because he has to know where it is.
20	And the most prominent thing on this map
21	- that's the reason I have this figure - is the
22	stability region. There is a stability of awareness
23	in the fleet which I cannot say there was 20 years
24	ago.
25	I was involved in one of the stability

(202) 234-4433

	129
1	tests that we did when we were introducing the 9X9
2	fuel in a plant. And we were there for two days
3	doing some stability measurements and tests. And
4	after those tests, the guy, one of the operators,
5	comes up and says, what are you talking about, there
б	is a stability thing. What is that?
7	The operator didn't even know there was
8	a stability problem. Now they do. Now they do, and
9	we go to plant simulators. We interview operators.
10	Everybody is well aware, because this is their
11	control room, and that is the most prominent
12	feature.
13	Plus every time they have to start, they
14	get very close to it for startup. And it really
15	bothers them. And by making the reactor more and
16	more unstable, it's making a startup harder and
17	harder.
18	CHAIR BANERJEE: Do they know where they
19	are?
20	MR. MARCH-LEUBA: The power flow? Yes.
21	MEMBER WALLIS: There must be a cursor or
22	something.
23	MR. MARCH-LEUBA: Depending on which
24	display you are looking at. If you are looking at
25	SPDS, safety parameter displace system, there will
I	

(202) 234-4433

	130
1	be a crosshair, a crosshair on where you are.
2	MEMBER WALLIS: And it probably has some
3	history. It probably shows where they have been?
4	MR. MARCH-LEUBA: Some do, some don't.
5	And operators like to rely on the core thermal power
6	instead of APRM. The core therma power has a lag at
7	the minimum of six seconds from the fuel, but
8	typically it's a balance with steam and everything,
9	it may have a lag.
10	So if you are having a transient, they
11	will look at this PDS, because the coefficient of
12	power has too much of a lag. They typically look at
13	the hard wire controls on the wall.
14	CHAIR BANERJEE: Is the flow measure in
15	the -
16	MR. MARCH-LEUBA: Jet pumps.
17	CHAIR BANERJEE: Yes. Well, in the jet
18	pumps, or where is it measured?
19	MR. MARCH-LEUBA: In the jet pumps.
20	CHAIR BANERJEE: As well as the feed
21	water flows.
22	MR. MARCH-LEUBA: The only flow that is
23	measured is the drive flow, the circulation drive
24	flow. And then you have jet pump delta Ps, and you
25	want to control them, and you will see 20 jet pump
Į	

(202) 234-4433

	131
1	delta Ps, and really it's the most prominent display
2	in the control room.
3	And then somewhere somebody makes an
4	estimation of what the core flow is. But there is
5	no –
6	MEMBER WALLIS: - plotted here. Wasn't
7	it plotted on the axis?
8	MR. MARCH-LEUBA: Oh, this is core flow.
9	And that is a correlation based on the drive flow.
10	So it is really - they measure the drive flow, and
11	they know how -
12	MEMBER WALLIS: Drive function?
13	MR. MARCH-LEUBA: There is circulation
14	drive flow in the jet pumps.
15	MEMBER WALLIS: What's actually drawn in
16	by the pumps?
17	MR. MARCH-LEUBA: Yes, that's what you
18	measure. And then they have a correlation that
19	says, when I have 100 percent drive flow, I get 100
20	percent core flow. When I have sealed drive flow, I
21	have about 30 percent drive flow. And that's what
22	is used.
23	CHAIR BANERJEE: And the thermal power is
24	estimated by the flow?
25	MR. MARCH-LEUBA: Thermal power is a

	132
1	balance of energy.
2	CHAIR BANERJEE: Sure. So do you have to
3	know the flow from the feedwater system?
4	MR. MARCH-LEUBA: Feedwater flow, steam
5	flow.
6	CHAIR BANERJEE: Steam flow is not that
7	secure.
8	MEMBER WALLIS: It's not done by
9	neutronics.
10	MR. MARCH-LEUBA: That's the APRM power,
11	and it's also displayed.
12	MEMBER WALLIS: But that's much quicker?
13	That's much better, isn't it?
14	MS. ABDULLAHI: There is a core
15	monitoring as well, system.
16	MR. MARCH-LEUBA: There is a whole other
17	measurements, okay.
18	CHAIR BANERJEE: But what is actually
19	displayed for that?
20	MR. MARCH-LEUBA: On an SPDS, typically,
21	is the thermal power.
22	MEMBER WALLIS: The thermal power.
23	CHAIR BANERJEE: That's an energy -
24	MEMBER WALLIS: It has a lag of a few
25	seconds.
I	

(202) 234-4433

	133
1	MR. MARCH-LEUBA: It's probably more like
2	10, 10 or 20, for - but SPDS is not a safety
3	display, right. All of their - depending on what
4	you want to do. For ATWS they always look at SPRM
5	power for example, for ATWS.
б	For - do you have several dimensions of
7	power, and they use the one that applies for the
8	particular - I'm not an expert in the field.
9	CHAIR BANERJEE: What about those two
10	lines?
11	MR. MARCH-LEUBA: Oh, these are what's
12	called the flow bias scram. This is called the APRM
13	simulator thermal power scram. When you are at 100
14	percent power, it is 100 percent power, which is 77
15	megapounds per hour in this plant, your scram is 118
16	percent.
17	Now as you move down in flow, you have a
18	flow balance scram. So if you hit 50 percent flow,
19	you will scram if your power hits 85.
20	MEMBER WALLIS: So really an instability
21	region.
22	MR. MARCH-LEUBA: It's way beyond that.
23	The blue line is the rod block, which you can think
24	of it as an alarm.
25	CHAIR BANERJEE: What is the blue line
I	'

(202) 234-4433

	134
1	again?
2	MR. MARCH-LEUBA: It's the APRM, it's
3	called a rod block. It's an alarm. If you, for any
4	reason you position yourself here, the system does
5	not allow you to pull any control rods beyond there.
6	That is a rod block. And it also has another alarm.
7	On this, if we ever get to the long-term
8	solutions, there are two implementations of this
9	flow bias scram. One of them uses the thermal
10	power, or the simulated thermal power like this, in
11	which they take the APRM signal and they filter it
12	with a six-second time constant to simulate where
13	the heat flux coming onto the fuel cladding is.
14	Or they can have what's called an
15	unfilter (phonetic) flow bias scram, in which they
16	take the APRM signal by itself.
17	And as you see - because the six-second
18	constant on stability makes a big difference. If
19	you are here, and you have an oscillation, and you
20	are filtering with a six-second time constant, you
21	dump it.
22	So then the flow scram doesn't help you
23	for oscillations on the plants that have a simulated
24	thermal power flow bias scram.
25	On the old plants that don't have the
I	'

(202) 234-4433

	135
1	STP, it helps you. You have to scram when the
2	oscillation hits doubling. And that's how the
3	plants call solution two are doing it, in option one
4	D. They actually rely on this red line to scram,
5	not on option three.
6	CHAIR BANERJEE: The red line is
7	established for all time. Is that a matter of the
8	state of core.
9	MR. MARCH-LEUBA: Sorry? The red line
10	defines your analyzed domain. You - when you do
11	your Chapter 15 analysis, you assume your scram when
12	you get there.
13	CHAIR BANERJEE: How is that established?
14	By analysis?
15	MR. MARCH-LEUBA: It's established - you
16	can think of it as arbitrarily. The plant sets up a
17	slope for this line. And then demonstrates that
18	that slope is sufficient to satisfy all your Chapter
19	15 analysis.
20	If it wasn't sufficient, they will go a
21	little lower, or they will change particulars, or do
22	something. So it typically mirrors the roll line,
23	and you can see that the smoke is a little flatter,
24	to accommodate variations on the real core line.
25	And it's just an arbitrary - has a coefficient.
ļ	I

(202) 234-4433

	136
1	And this shape that you see here is
2	because the scram is done on dry flow, again. And
3	you see here, the dry flow and you going into
4	another circulation.
5	So the scram line is really linear on
6	dry flow domain.
7	CHAIR BANERJEE: Why is the blue line
8	more sloped than that? Or is it parallel?
9	MR. MARCH-LEUBA: I think it's a
10	percentage. It's probably a percentage. That's why
11	they are getting closer here.
12	CHAIR BANERJEE: So that could explain
13	it.
14	MR. MARCH-LEUBA: Yeah, it's a
15	percentage.
16	So moving on, you do understand now why
17	we are concerned with MELLLA+ for stability. And
18	you understand now why we are not that concerned
19	with EPU for stability. Because the stability
20	happens here. So to get there, you have to lose
21	your circulation powers.
22	So by moving from this point to that
23	point, that's what EPU plants have done, you are
24	still on the same line, and you end up going on the
25	same position. If you remember I gave you the
I	

(202) 234-4433

	137
1	analogy with the onion, that you can model an onion
2	as a homogeneous sphere. As a homogeneous sphere,
3	EPU doesn't affect the stability at all. You start
4	peeling the onion and seeing all the details, you do
5	see that indeed it has some effects. Because to
6	make your plant go up there, you have to change all
7	your power distributions and your loading. And even
8	your fuel.
9	And therefore, it does have second order
10	effects, which in stability can be very important.
11	So again the presentation. And there
12	are three recognized instability models within
13	density wave. One of them is the channel mode, and
14	there are two core instabilities, the core one and
15	the regional.
16	And the channel instability is purely
17	thermodhyraulic. And this happens with only one
18	channel, it becomes thermohydraulically unstable,
19	and the power remains constant.
20	And this is the stability that most
21	thermodyraulic people are used to. This is just a
22	flow oscillation. And this happened twice. It
23	happened once in an Italian reactor in the `60s that
24	had a turbine flow meter on the outlet of the
25	channel, and the turbine blocked, creating a big
ļ	I

(202) 234-4433

(202) 234-4433

	138
1	pressure drop at the outlet of the channel that
2	caused this flow instability.
3	It happened the second time in Sweden
4	recently, 10 years ago, when a channel was not
5	properly seated. And there was a tremendous amount
6	of bypass flow. So the flow of that channel was
7	significantly reduced as opposed to the rest of the
8	core. And that channel stopped oscillating, and
9	they saw it on the LPRMs close by, and they saw the
10	oscillation, and they couldn't figure out where it
11	was coming from. And eventually they found out that
12	there was a channel with static flow.
13	CHAIR BANERJEE: Was this Fosmark
14	(phonetic)?
15	MR. MARCH-LEUBA: It was a Swedish plant.
16	I'm not sure which of them. I don't know the true
17	details.
18	And the core instabilities - so this is
19	purely thermohydraulic. The power is 100 percent
20	constant. And the core instabilities, now you have
21	a thermodydraulic oscillation, so your void fraction
22	oscillating being referred also by the reactivity
23	feedback.
24	So you have now not only your
25	thermohydraulic but your power oscillating in phase.
Į	I

(202) 234-4433

	139
1	And there are two models for that one. There is the
2	core-wide instability where you excite the
3	fundamental mode in neutronics, and all of the
4	channels are going up and down at the same time.
5	And this is regional, or I call it out-of-phase
6	instability mode in which you excited the second
7	model of the neutronics, and half of the core goes
8	up and half of the core goes down. So it's just
9	going side to side.
10	And sometimes this one may even precede,
11	because there are two installation models, one in
12	this direction, and one in this direction. And it
13	may sometimes, it jumps from this to 90 degrees
14	periodically. And it might even going forth some
15	people have seen helicoidal behavior.
16	Again, those two types of instabilities
17	have been observed. Typically 75 percent of the
18	instabilities are core-wide; 25 percent are out of
19	phase in history.
20	We have not had any out-of-phase
21	instability in the United States. I'm talking about
22	mostly European - okay, I'll move fast.
23	For those three modes of instability,
24	there are two ways in which you can approach the
25	stability boundary. You can have a flow reduction,
ļ	I

(202) 234-4433

140 or you can have a power increase. And they are 1 2 completely different. 3 Because when are having a power increase 4 going out this way, you put in control rods, and you 5 do that in a very controlled manner. So typically when you have a step up instability like this, you 6 are putting control rods, you get a slightly inside 7 oscillation, and you have time to recover and insert 8 the control rod and get out. Because by long time 9 10 solutions you will not be allowed to do that, 11 because the protection system will take over. 12 But this type of instabilities are not of great significance from a regulatory point of 13 14 view, because they are going to be small. 15 These type of instabilities, the flow reduction stabilities, are significant, because when 16 17 you lose your pumps, you don't know where you are 18 going to end. And you end up way inside the crucial 19 region, and you end up with a very large oscillation. 20 21 So those are the ones that you should 22 worry more, and we worry more, about. 23 There is a third type which is the time 24 in which you do the pump action. But the BWRs 25 operate with pumps that have two speeds, slow speed

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	and fast speed. And in between they use a flow
2	control valve. And they are - there is some
3	mechanism that for NPSH considerations you always
4	start on the slow speed until you have power, and
5	then you have to go back and that was the cause of
6	WP-II. The speed of time, will move fast. D
7	Here is a list of all the instability
8	events. There was - the very early ones in the
9	states was in the Vermont Yankee. Which was
10	followed then by some tests in which they actually
11	pulled rods in a controlled manner, and they
12	actually made the reactor unstable again.
13	In between there was the Peach Bottom
14	test, where they were not unstable. It was a very,
15	very stable configuration.
16	The thing that started everything was La
17	Salle, which as I said before, it was really an ATWS
18	for the first three minutes until the reactor scram.
19	And it was a very large unpredictable oscillation.
20	It reached the high amplitude, 118 percent power.
21	So the oscillations - they were operating on roughly
22	50 - 60 percent power, and the oscillations reached
23	120. So fairly large amplitude oscillations.
24	CHAIR BANERJEE: What happened there?
25	MR. MARCH-LEUBA: There was a fuel water
I	I

(202) 234-4433

	142
1	controller failure above that site. And that
2	reduced the water level in the vessel.
3	So it tripped the circulation pumps.
4	When it tripped the circulation pumps it got this
5	into the region, and everything started going.
6	CHAIR BANERJEE: Now if we go back, this
7	is an old plant, right?
8	MR. MARCH-LEUBA: 3 or 5.
9	CHAIR BANERJEE: So when it went down, if
10	you go back to that old figure, was it on the blue -
11	oh it was on that line?
12	MR. MARCH-LEUBA: Yes. It was on this.
13	I mean remember La Salle could have had the
14	stability.
15	CHAIR BANERJEE: So it wasn't on the
16	lowest line there. Okay.
17	MR. MARCH-LEUBA: Now you can plot the
18	lines of constant decay ratio by using some
19	assumptions, and they are all like this. So this is
20	decay ratio one, and then there will be decay ratio
21	point eight, point six, point four.
22	And on the other side you can plot the
23	lines of limit cycle amplitude. And so this will be
24	a limit cycle of zero, and this will be a limit
25	cycle of 10 percent, 20 percent, 100 percent. So
I	I

(202) 234-4433

	143
1	you can think of it as, the more you get in there
2	the larger your limit cycle.
3	CHAIR BANERJEE: La Salle went into -
4	MR. MARCH-LEUBA: Way -
5	MEMBER WALLIS: Because it's not
6	exponential growth; there's a limit cycle.
7	MR. MARCH-LEUBA: Correct. There is a
8	limit cycle that protects the growth.
9	Now unfortunately it's not limited in
10	size. That's what we're seeing on the ATWS
11	stability. It gets to very large, 1000 percent
12	oscillation. Very large.
13	Okay. Instabilities, we did have the
14	WNP2 event. And since then at that point we were
15	already working on the long term solutions. After
16	the La Salle event, the staff said, operator action
17	- before La Salle, and as a consequence of Vermont
18	Yankee, we have the famous Seal 380 that Dr. Huang
19	talked about which said, basically, operators are
20	supposed to look at their PRM ratings. If they see
21	any upscale or downscale alarms, that's an
22	indication there is instability. If there is
23	instability, you do the reverse action that you got
24	you there. And if you cannot do that, you scram.
25	That was Seal 380.
Į	

(202) 234-4433

	144
1	After La Salle we had what is called an
2	interim correction actions, which really reduced the
3	operator flexibility after an instability, and
4	mandated some immediate scrams for some conditions,
5	and started working on the long-term solutions.
6	So we have these two nomenclatures which
7	now are 20 years old, interim corrective action
8	versus long term solution. So the interims were
9	supposed to work while we were working on the long-
10	term solution.
11	So while we are working on the long term
12	solutions, there will be WP-2 instability was during
13	the startup, and we talked about that before. And
14	then we had a spell of 10 years with the LTS, long-
15	term solutions, implemented, and nothing happened.
16	Everything was really good. And we started having
17	9X9 fuel, 10X10 fuel, and then EPU, and all the
18	things that Dr. Wallis has mentioned.
19	And now we see a trend. I mean 2003 we
20	had Nine Mile Point, we had an instability. 2004 we
21	have very instability. Recently we had an event in
22	Brunswick which was not an instability, but we do
23	see a trend that all these crucial regions, or these
24	red lines, are moving to the right.
25	CHAIR BANERJEE: So the EPUs, you are on
I	I

(202) 234-4433

	145
1	the EPU line for all of these? So what line are you
2	on then?
3	MR. MARCH-LEUBA: The ELLA+. So it's the
4	EPU line, but you are in the same EPU line. So they
5	are operating back in the -
6	mR. BANERJEE: I see.
7	MR. MARCH-LEUBA: And I don't remember
8	where the -
9	CHAIR BANERJEE: So they are in an
10	extended operating range, right?
11	MR. MARCH-LEUBA: We have an expert to
12	help us.
13	CHAIR BANERJEE: It's okay.
14	MR. MARCH-LEUBA: But as we said, the EPU
15	has really not a major effect on the stability.
16	CHAIR BANERJEE: I realize that. You are
17	on that line.
18	MR. MARCH-LEUBA: In the meantime there
19	have been many, many events in foreign reactors. In
20	Spain there have been two, in Sweden there have been
21	a large number. In Germany they actually run
22	stability tests every cycle, and they actually mark
23	the red line for every cycle before a startup. So
24	they actually go unstable every time.
25	We see this - the purpose of this slide
I	

(202) 234-4433

	146
1	when I was writing it is to tell you that when you
2	look in the COLA (phonetic), when you look in the
3	control room, stability hits you in the eye. Every
4	single time we went to a power plant and we asked
5	them, every single operator knows about it. They
6	are aware of it.
7	CHAIR BANERJEE: What's the green
8	regions?
9	MR. MARCH-LEUBA: This is the - this is a
10	solution three plant. And the OPRM scram, the
11	solution three scram, is armed inside the green
12	region, and is not armed, so even if there is noise
13	in this area, it will not scram.
14	This is set conservatively at 60 percent
15	flow, arbitrary. Thorough analysis shows that we
16	have never seen stabilities at 60 percent flow.
17	What controls the stability, and we are
18	talking about an ATWS circulation, is really the
19	frequency of the oscillation is the most important
20	part of it. And the frequency of the oscillation is
21	controlled by the bubbles core. And as you move
22	down in flow, that's where you get lower
23	frequencies.
24	And the most important parameter you
25	have to worry about instability, and that's why you
ļ	1

(202) 234-4433

	147
1	don't have instabilities at 100 percent power, at
2	100 percent flow, is the frequency.
3	If you were to match higher frequencies,
4	the fuel filters in an oscillation doesn't let it go
5	into thermohydraulics. The void fraction doesn't
6	see your power oscillations.
7	Next. So we said, following La Salle,
8	there was a large industry wide effort. We are
9	talking meetings, there were groups where there were
10	50 people from industry involved in every meeting.
11	And lots of back and forth between the industry and
12	the staff.
13	And the main concern was a concern with
14	the regional or out-of-phase instability mode, the
15	one that goes from left to right. Because the
16	protection system in most reactors averages APRMs
17	from the whole core. So the right side goes up, but
18	the left side goes down. And when you sum them all,
19	in theory you don't get anything.
20	So that's when GE says that if we do an
21	analysis and we wait for APRM to have a 10 percent
22	oscillation, the local channel is 200 percent, and
23	we are violating CPR. And there is a real
24	tremendous magnification on that.
25	So that was APRM and said, we need to do
	I

(202) 234-4433

	148
1	something about that.
2	And what we did in the meantime, we
3	issued interim corrective actions, and we worked on
4	the long-term solutions.
5	CHAIR BANERJEE: But operator who was
6	looking at the core thermal power to find where they
7	area would not see a big deviation from core thermal
8	power when this happened, right?
9	MR. MARCH-LEUBA: Oh, no, the thermal
10	power doesn't even oscillate.
11	CHAIR BANERJEE: You would see no
12	oscillation?
13	MR. MARCH-LEUBA: At this point the
14	operator would have two instrumentations. One of
15	them is a strip chart, which is paper copy with a
16	pen, that has the APRM time trace. And instead of
17	being a line, you will have a wiggle in a paper.
18	You will also have the LPRM upscale and
19	downscale alarms. Around every one of the control
20	rods you have the upscale and downscale alarms. So
21	if the APRM was oscillating it will have a red
22	light.
23	Unfortunately, if you have actually had
24	an APRM failure some time a week ago, that red light
25	was already on, and it's locked. And until they fix
I	

(202) 234-4433

	149
1	it, then that instrument was unavailable.
2	And the moment there is one red light in
3	the whole panel that was on, there would not have
4	been an audible alarm. So the other lights would be
5	coming on and off, but there wouldn't be any ding-
6	ding-ding to make you look at it. So it wasn't even
7	reliable, which is to say that it was unreliable.
8	When we decide to do long-term
9	solutions, we looked at the regulations. And we
10	will see that on the SRP. The main rule that we
11	have is the general number 12, which says in short
12	that oscillations are either not possible or can be
13	reliably detected and suppressed.
14	So on this point there was a split in
15	the BWR group. Some plants have already digital
16	protection systems, which they can implement as
17	solution three. Oil plants did not have a digital
18	protection system, and it would be very expensive to
19	implement a scram of this magnitude.
20	So there was a break. And there were
21	actually a lot of actions. Everybody chose their
22	own, and some actions were cheap, and they didn't
23	have to pay anything to develop it.
24	In general there are two types. There
25	is the prevention as CDC allows you. You say,
I	

(202) 234-4433

	150
1	oscillations are not possible in my reactor. And
2	then the solution that detectors suppress. You
3	allow oscillations to occur, but if they happen they
4	will not violate anything.
5	And the preventive oscillations are
6	option - enhanced 1A and option 1D which basically
7	define a red area in the map where you are not
8	allowed to operate. And in the case of option 1A
9	it's enforced automatically by scram system. If you
10	get in there, you scram; that's it, you don't have
11	any option.
12	Option 1D has this famous flow bias
13	scram, which was not filtered, and therefore it has
14	some protection for core-wide oscillations. And
15	they were to demonstrate that they could not have
16	out-of-phase oscillations because of the
17	characteristics of the core.
18	And frankly, to do -
19	CHAIR BANERJEE: That's option two?
20	MR. MARCH-LEUBA: Option 1D.
21	CHAIR BANERJEE: Oh, 1D.
22	MR. MARCH-LEUBA: There are slides later
23	on that describe each one.
24	To do justice to this, this would have
25	to be a semester class, and each of these slides
ļ	I

(202) 234-4433

	151
1	would be a lecture. So I'm going to give you a
2	headache by going this fast. But I'm giving you a
3	flavor of -
4	CHAIR BANERJEE: 1D in some way analyzes
5	out-of-phase oscillations.
6	MR. MARCH-LEUBA: 1D plants, they must
7	demonstrate by analysis that oscillations are
8	unlikely in the regional norm. And that happens
9	because you have a lot of separation between the
10	fundamental and the first harmonic, and you have a
11	tight inlet orifice which makes flow oscillators
12	more unlikely. And those two things tend to favor
13	the core-wide versus the regional model.
14	In addition you do have unfiltered flow
15	bias scram, so you do have protection against the
16	core-wide model solution. So those, I believe there
17	are three plans that satisfy this requirements, and
18	they refine a region of the map where they were not
19	allowed to operate, but they were allowed to do it
20	administratively. They didn't have to scram
21	immediately, because even inside their plant, inside
22	the region, they have protection. So they were off
23	really cheap and didn't have to do anything.
24	So we will go into all of them if we
25	talk real fast. The good thing about this -
ļ	I

(202) 234-4433

	152
1	CHAIR BANERJEE: Just give us a flavor.
2	MR. MARCH-LEUBA: Yes. Let me tell you,
3	the good thing about all these solutions is that
4	they are publicly available. They are owned by the
5	owners group, and anybody - anybody that wants to
6	use them, has to negotiate with the owners group.
7	If they didn't pay the fees to start with, they will
8	have to pay for the fees. But all these solutions
9	are available, and they can be implemented for SBWR,
10	for whatever.
11	Let me give a flavor. Option E1A is a
12	crucial region which has an immediate scram
13	component and it's automatic.
14	1D demonstrates that you would only have
15	core-wide instabilities; demonstrate that you have
16	protection against core-wide instabilities with a
17	flow bias scram; and that you will not - that's it.
18	Option II only applies to the BWR II
19	type, which is the very old plants. And those
20	plants, the APRM averaging was actually done in
21	quarters. Instead of being the whole core, the
22	APRM-A is only one quarter of the core. APRM-B is
23	the other quarter. C is the other quarter, and this
24	is a quarter.
25	And therefore it does not prevent from
I	I

(202) 234-4433

	153
1	the instability, and they can demonstrate that they
2	have protection from both, core-wide and out-of-
3	phase.
4	And what they do is, they do similar to
5	option D. They have an area of the map where they
б	are not allowed to operate, but it's administrative.
7	And even if they get there, their scram protects
8	them.
9	Option three is the one that most plants
10	chose because it gives them the most operating
11	flexibility. You go anywhere you want. And we have
12	a detection system. If there is an instability we
13	will see it. And it will scram on it.
14	And that is what has - often it's called
15	the oscillation power range monitor, OPRM, which
16	created a new - you have the local power range
17	monitor, the average power range monitor, and then
18	the OPRM monitor, oscillation, that is now a range
19	around OPRM plus is to be able to detect these out-
20	of-phase instabilities.
21	Now recently we have been coming in to
22	the extended operating domains, and MELLLA+ in
23	particular, and through analysis we found out that
24	it is very difficult to make this old options to
25	operate when your instabilities are so likely to
ļ	

(202) 234-4433

	154
1	happen if it goes through pumps.
2	And indeed, what we saw with MELLLA+ is
3	that the oscillation happened even during the flow
4	run-back. Therefore the frequency oscillation is
5	changing, and the algorithm really doesn't have time
6	to catch up.
7	CHAIR BANERJEE: By analysis?
8	MR. MARCH-LEUBA: By analysis. By
9	analysis General Electric demonstrated that an
10	option three maybe would work, but it would require
11	very, very small cell points, and there would be too
12	susceptible to noise problems.
13	Therefore, they proposed the solution,
14	confirmation density oscillation.
15	The problem with this one is known as
16	the GE proprietary. The owners group didn't have
17	anything to do with it. It's owned by GE, and if
18	you want it you have to buy it from them.
19	It has been approved, and if we want to
20	see the details of this one, we will have to have a
21	closed session, because it is owned by GE.
22	Basic flavor which is not proprietary
23	is, like a solution three, but instead of requiring
24	two channels to oscillate, you know, to get a scram
25	in a reactor you have to have train A and train B to
I	

(202) 234-4433

	155
1	coincide, and both agree that it's a scram.
2	With confirmation density you require
3	now at leave five, maybe more, depending on how many
4	LPRMs are operating. There is a density of OPRMs
5	that agree there is an instability. And if all five
6	of them agree, you get a scram.
7	By doing that they are able to reduce
8	the scram cell points to essentially nothing, and be
9	able to deal with MELLLA+.
10	And there is a whole bunch of other
11	details which are proprietary.
12	Areva doesn't want to be behind, and
13	they have proposed an enhance of two three, which is
14	also proprietary. And that one is under staff
15	review.
16	And this one, they have some
17	understanding of what the issues are with this
18	process, and they are trying to solve it with a
19	combination of a crucial region and a scram. So
20	they will have a crucial region for a particular
21	model instability and a scram for the other.
22	And as I say, this is under review, and
23	we have issued a number of REIs, because we have
24	concerns about implementation.
25	These are a list of other plans and
I	I

(202) 234-4433

	156
1	which options they chose.
2	CHAIR BANERJEE: Let me ask a naive
3	question. What are we supposed to review in this
4	MELLLA+ meeting that is being arranged?
5	MR. MARCH-LEUBA: For stability?
6	MR. CARUSO: No, remember, we're here
7	today to talk about -
8	CHAIR BANERJEE: SRP, right.
9	MR. CARUSO: - SRP. In the future you
10	are going to look at a topic report that relates to
11	MELLLA+. And another optical report that is related
12	to that, which involves GE analytical methods.
13	MR. MARCH-LEUBA: And at the same time we
14	will give you a full presentation on the DSS/CD.
15	MR. CARUSO: Oh, okay, that's when we're
16	going to hear - because there was some talk at some
17	point about coming to talk about DSS/CD.
18	MR. MARCH-LEUBA: It makes sense to do it
19	at that point.
20	CHAIR BANERJEE: And just to understand
21	the situation, that's going to happen in April,
22	sometime?
23	MR. CARUSO: What's the date I have
24	currently for that? I thought it was March 27-28.
25	MS. ABDULLAHI: No, March 28 th you would
I	I

(202) 234-4433

	157
1	get the methods, I guess. You should get it by
2	today from Projects.
3	The MELLLA+ itself will come a little
4	bit later.
5	MR. CARUSO: No, no, when were we going
б	to meet to talk about it?
7	MS. ABDULLAHI: Oh, the meeting of the
8	MELLLA+ method?
9	MR. CARUSO: Yes.
10	MS. ABDULLAHI: April 2^{nd} to the 5^{th} .
11	MR. CARUSO: That's it, okay, I'm sorry.
12	CHAIR BANERJEE: Three days?
13	MS. ABDULLAHI: Well, I think it's more
14	than three days -
15	MR. CARUSO: It's the week of the full
16	committee meeting. I believe it's the Monday and
17	Tuesday of the full committee meeting. And I didn't
18	recall that was in March or if that was in April.
19	MS. ABDULLAHI: I think it's in April,
20	April 2 nd and 3 rd .
21	MR. CARUSO: You said you will be coming
22	back from Washington, so you'll stop there for a
23	week.
24	CHAIR BANERJEE: Fine, go ahead.
25	MR. MARCH-LEUBA: Next, please.
Į	

(202) 234-4433

	158
1	Okay, I gave you the real flavor. Are
2	you interested in the details of the solutions? Or
3	just go through the -
4	CHAIR BANERJEE: I don't think we have
5	time. We are interested in the details. Right, so
6	tell us what you think we need to know.
7	MR. MARCH-LEUBA: E1A has a cycle-
8	specific Exclusion Region defined, where stabilities
9	are very likely - very unlikely to occur outside of
10	which - it uses very conservative generic
11	assumptions which are very well defined on an LTR
12	that has been reviewed by the staff. So anybody
13	that wants to do ElA they just have to read the LTR
14	and do the calculations that are prescribed there in
15	extreme detail that define a crucial region, modify
16	the protection systems so that if they get in there
17	they scram. And basically what they do is modify
18	the - remember that red line and blue line? They
19	modify that red line to cover this exclusion region.
20	So they have that scram with E1A.
21	It does have some different in there,
22	where there are some buffer regions, it's what's
23	called a detection algorithm, which is the next
24	slide. It will be the next other slide.
25	At the time we didn't even know why the
I	

(202) 234-4433

	159
1	regional model of instability occurred, much less
2	how to calculate it. There had been some rumors
3	that somebody had seen one in Europe, but that was
4	it. But that was back in the La Salle event. After
5	that many have occurred, and we have a much deeper
б	understanding of what happened.
7	But other time we didn't have a
8	calculation and tool that will tell us what the
9	decay ratio of the outer face mold is.
10	So that's what the so-called dog-bite
11	correlation, which is also called the core versus
12	external correlation, or the bypass correlation came
13	into play.
14	And what the owners group is - we will
15	know how to calculate core decay ratio. And they
16	plotted on this domain all of the events that had
17	occurred at the time with out of phase. And they
18	all happen to be in this area.
19	And the idea is that now that we know
20	what the regional stability is, regional
21	instabilities are mostly thermohydraulic, and so are
22	enforced by the neutronics, which means that channel
23	degradation tells you how thermohydraulically
24	unstable you are, so when you have a high channel
25	decay ratio, and also some activity feedback with

(202) 234-4433

	160
1	the core, that's when you tend to get regional
2	instabilities.
3	And I would love to give you a two-hour
4	presentation on this, because I was the one that
5	discovered it.
6	But basically what we did is, we threw a
7	line that covered experimentally all of the events
8	that were known at the time. And this has become -
9	officially it's called the bypass acceptance
10	criteria. But really everybody calls it a dog bite,
11	because this is like somebody - a dog came here and
12	took a bite out of your map.
13	And what you do to calculate the crucial
14	region is you change the power and flow, and start
15	plotting core versus external decay ratio, one comes
16	here, comes here, comes here, comes there. And when
17	it crosses this line, that's the point where the red
18	exclusion region is drawn.
19	And if it goes through here, if that
20	sequence of points goes through here, you think it's
21	going to be an out-of-phase instability. If it goes
22	through here you think it's going to be a core-wide
23	instability.
24	Since then we have all of the cores now
25	can do the regional instability, and indeed, for
ļ	1

(202) 234-4433

	161
1	years BWR, we did not allow them to use this
2	correlation. But this is - it would be a back-fit
3	now to require everybody to do it the right way in a
4	sense. Because this is good enough.
5	CHAIR BANERJEE: Is it a correlation, or
б	is it a linear stability analysis?
7	MR. MARCH-LEUBA: This is a correlation,
8	this is an empirical correlation; 100 percent
9	empirical.
10	CHAIR BANERJEE: But it can't be
11	analyzed?
12	MR. MARCH-LEUBA: The decay ratio for
13	original model, yes, indeed it is analyzed now
14	regularly. All of the frequency domain calls, and
15	all of the good time domain calls calculate regional
16	model instability.
17	CHAIR BANERJEE: These are all linear
18	analyses?
19	MR. MARCH-LEUBA: The time domain calls
20	are nonlinear, but this is a linear instability.
21	Okay? So just so you know, in the SRP
22	it will say use of the bypass correlation is
23	acceptable. That's what we mean. It is a
24	historical thing. If we were not allowed to do it,
25	it would be a back fit.
I	1

(202) 234-4433

	162
1	For new reactors like BWR, we don't
2	allow them to do it. We want them to it right.
3	But for other reactors, it's already
4	approved.
5	The other defense in that is that the
б	period based algorithm. And maybe we will spend all
7	of the time of your lunch doing this. But this is
8	how - solution three detects instabilities.
9	This is your power time trace, like
10	that. And it's looking for periodicity. And what
11	it's looking for is what what are called
12	confirmations, is the time it takes to go from a
13	minimum to a minimum, and from a maximum to a
14	maximum, is within the program.
15	So this is your first base period. And
16	then the second one is a first confirmation, because
17	the distance between peaks is the same as before
18	plus minus epsilon.
19	Then you have a second confirmation, and
20	a third confirmation, and a fourth confirmation. If
21	you get 10 confirmations, it's a variable depending
22	on which plant you are, then it says, your single is
23	periodic, you have an instability.
24	So that's why when you look at option
25	three, people are talking about so many confirmation

(202) 234-4433

	163
1	counts. That's what it means; you have so many
2	confirmation counts.
3	To prevent problems there are some
4	safety features, like the T-min and t-max. You do
5	have - or we have a range of frequencies, of which
б	this oscillation is considered to be a density wave.
7	So we have an oscillation that is 10
8	Hertz. We know it is not a density wave.
9	So to have a confirmation the base
10	period has to be greater than T-min and less than T-
11	max, so that there are some parameters that you
12	have.
13	There is an Epsilon that allows you to
14	say there is a confirmation or not. And then there
15	is the number of confirmations.
16	And these are the parameters we talked
17	about before on Nine Mile Point 2. The plants have
18	an option based on their experience of how many
19	false positives they were getting to make this more
20	sensitive. And all the plants, guess what, they
21	have taken into the minimum sensitivity parameter
22	allowed by the OTR, and it was not sufficiently
23	sensitive. There was a Part 21, and some parameters
24	were tight enough.
25	CHAIR BANERJEE: What's the time scale,
I	

(202) 234-4433

	164
1	and the amplitude in rough terms?
2	MR. MARCH-LEUBA: The oscillations are
3	roughly two seconds from peak to peak, a half a
4	Hertz. And the amplitude at the time of the scram
5	would be a volume of 10 percent. There is a minimum
6	amplitude for solution three to scram. It's done at
7	this, the set point. When somebody tells you the
8	option three set point, it's how large the amplitude
9	needs to be. And on the order of 10 percent.
10	Typical noise which you have day-in and
11	day-out is about three percent. So three times
12	above noise.
13	CHAIR BANERJEE: These are then based on,
14	in option three, some averaging done?
15	MR. MARCH-LEUBA: The OPM averaging is
16	done by collecting a list eight LPRMs that are close
17	together, or in a corner of the core and then there
18	is another LPRM here and another LPRM here.
19	And any one from the A side of the
20	protected system has to say, yes, there is an
21	instability. And then you go to the B side, the B
22	chain, you know, fire protection and separation of
23	powers and all that.
24	CHAIR BANERJEE: It's a virtual OPRM. It
25	depends on LPRMs.
I	1

(202) 234-4433

	165
1	MR. MARCH-LEUBA: Oh, it's an LPRM. It's
2	a sum of LPRMs. But they are averaged together to
3	represent the power in a core breach.
4	So issue one has something similar to
5	Option III, but it's only an alarm. So Enhanced 1A
6	we also have an alarm if it detects instability.
7	The operator then will have to make a decision.
8	We talk about Solution 1D, it has an
9	unstable region where you are not allowed to operate
10	unless you satisfy some conditions, and you
11	demonstrate that you have protection by analysis,
12	because you will not have an out-of-phase
13	instability. If you have an in-phase instability
14	your flow bias scram will defend it.
15	Option II plants, we talk about the
16	Option II plants, only applies to the quadrant-based
17	APRM scrams, which is the BWR-IIs. These actually
18	again don't have to do anything. They don't have to
19	modify anything. They actually have protection, and
20	they just have demonstrate that they do have
21	protection, and every cycle they do that.
22	We look also at Solution III is based on
23	_
24	CHAIR BANERJEE: - by analysis, I
25	presume, codes which have been approved.
I	I

(202) 234-4433

1MR. MARCH-LEUBA: Correct. Correct.2CHAIR BANERJEE: Are these like best3estimate codes? Or what sort of codes are they?4I mean when you say by analysis.5MR. MARCH-LEUBA: It's like every other6scram system. You have to demonstrate that your7reactor set point value, you protect against CPR8violations or sample. But in particular CPR.9And that's when we go into what's called10a DIVOM correlation. And that will require our11displaying why. But basically what the industry12does with TRAC-G for General Electric for example,13approved code for DIVOM, or Framaton used their14approved - one of their remote alerts.15What they do is, they postulate16different oscillation amplitudes. And they17calculate a delta CPR versus an initial CPR.18CHAIR BANERJEE: This is now - you20superimpose a sine wave on the -21mR. MARCH-LEUBA: On a steady state22correlation?23MR. MARCH-LEUBA: On a steady state24correlation, correct.25CHAIR BANERJEE: But the oscillation		166
 estimate codes? Or what sort of codes are they? I mean when you say by analysis. MR. MARCH-LEUBA: It's like every other scram system. You have to demonstrate that your reactor set point value, you protect against CPR violations or sample. But in particular CPR. And that's when we go into what's called a DIVOM correlation. And that will require our displaying why. But basically what the industry does with TRAC-G for General Electric for example, approved code for DIVOM, or Framaton used their approved - one of their remote alerts. Mhat they do is, they postulate different oscillation amplitudes. And they calculate a delta CPR versus an initial CPR. CHAIR BANERJEE: This is steady state? MR. MARCH-LEUBA: This is now - you superimpose a sine wave on the - mR. BANERJEE: But on a steady state correlation? MR. MARCH-LEUBA: On a steady state 	1	MR. MARCH-LEUBA: Correct. Correct.
4I mean when you say by analysis.5MR. MARCH-LEUBA: It's like every other6scram system. You have to demonstrate that your7reactor set point value, you protect against CPR8violations or sample. But in particular CPR.9And that's when we go into what's called10a DIVOM correlation. And that will require our11displaying why. But basically what the industry12does with TRAC-G for General Electric for example,13approved code for DIVOM, or Framaton used their14approved - one of their remote alerts.15What they do is, they postulate16different oscillation amplitudes. And they17calculate a delta CPR versus an initial CPR.18CHAIR BANERJEE: This is steady state?19MR. MARCH-LEUBA: This is now - you20superimpose a sine wave on the -21mR. BANERJEE: But on a steady state22correlation?23MR. MARCH-LEUBA: On a steady state24correlation, correct.	2	CHAIR BANERJEE: Are these like best
5MR. MARCH-LEUBA: It's like every other6scram system. You have to demonstrate that your7reactor set point value, you protect against CPR8violations or sample. But in particular CPR.9And that's when we go into what's called10a DIVOM correlation. And that will require our11displaying why. But basically what the industry12does with TRAC-G for General Electric for example,13approved code for DIVOM, or Framaton used their14approved - one of their remote alerts.15What they do is, they postulate16different oscillation amplitudes. And they17calculate a delta CPR versus an initial CPR.18CHAIR BANERJEE: This is steady state?19MR. MARCH-LEUBA: This is now - you20superimpose a sine wave on the -21mR. BANERJEE: But on a steady state22correlation?23MR. MARCH-LEUBA: On a steady state24correlation, correct.	3	estimate codes? Or what sort of codes are they?
6 scram system. You have to demonstrate that your reactor set point value, you protect against CPR violations or sample. But in particular CPR. 9 And that's when we go into what's called a DIVOM correlation. And that will require our displaying why. But basically what the industry does with TRAC-G for General Electric for example, approved code for DIVOM, or Framaton used their approved - one of their remote alerts. 15 What they do is, they postulate different oscillation amplitudes. And they calculate a delta CPR versus an initial CPR. 18 CHAIR BANERJEE: This is steady state? 19 MR. MARCH-LEUBA: This is now - you superimpose a sine wave on the - mR. BANERJEE: But on a steady state correlation? 23 MR. MARCH-LEUBA: On a steady state 24 correlation, correct.	4	I mean when you say by analysis.
reactor set point value, you protect against CPR violations or sample. But in particular CPR. And that's when we go into what's called a DIVOM correlation. And that will require our displaying why. But basically what the industry does with TRAC-G for General Electric for example, approved code for DIVOM, or Framaton used their approved – one of their remote alerts. What they do is, they postulate different oscillation amplitudes. And they calculate a delta CPR versus an initial CPR. MR. MARCH-LEUBA: This is now - you superimpose a sine wave on the - mR. BANERJEE: But on a steady state correlation? MR. MARCH-LEUBA: On a steady state	5	MR. MARCH-LEUBA: It's like every other
8 violations or sample. But in particular CPR. 9 And that's when we go into what's called 10 a DIVOM correlation. And that will require our 11 displaying why. But basically what the industry 12 does with TRAC-G for General Electric for example, 13 approved code for DIVOM, or Framaton used their 14 approved - one of their remote alerts. 15 What they do is, they postulate 16 different oscillation amplitudes. And they 17 calculate a delta CPR versus an initial CPR. 18 CHAIR BANERJEE: This is steady state? 19 MR. MARCH-LEUBA: This is now - you 20 superimpose a sine wave on the - 21 mR. BANERJEE: But on a steady state 22 correlation? 23 MR. MARCH-LEUBA: On a steady state 24 correlation, correct.	6	scram system. You have to demonstrate that your
9And that's when we go into what's called10a DIVOM correlation. And that will require our11displaying why. But basically what the industry12does with TRAC-G for General Electric for example,13approved code for DIVOM, or Framaton used their14approved - one of their remote alerts.15What they do is, they postulate16different oscillation amplitudes. And they17calculate a delta CPR versus an initial CPR.18CHAIR BANERJEE: This is steady state?19MR. MARCH-LEUBA: This is now - you20superimpose a sine wave on the -21mR. BANERJEE: But on a steady state22correlation?23MR. MARCH-LEUBA: On a steady state24correlation, correct.	7	reactor set point value, you protect against CPR
10a DIVOM correlation. And that will require our11displaying why. But basically what the industry12does with TRAC-G for General Electric for example,13approved code for DIVOM, or Framaton used their14approved - one of their remote alerts.15What they do is, they postulate16different oscillation amplitudes. And they17calculate a delta CPR versus an initial CPR.18CHAIR BANERJEE: This is steady state?19MR. MARCH-LEUBA: This is now - you20superimpose a sine wave on the -21mR. BANERJEE: But on a steady state22correlation?23MR. MARCH-LEUBA: On a steady state24correlation, correct.	8	violations or sample. But in particular CPR.
11displaying why. But basically what the industry12does with TRAC-G for General Electric for example,13approved code for DIVOM, or Framaton used their14approved - one of their remote alerts.15What they do is, they postulate16different oscillation amplitudes. And they17calculate a delta CPR versus an initial CPR.18CHAIR BANERJEE: This is steady state?19MR. MARCH-LEUBA: This is now - you20superimpose a sine wave on the -21mR. BANERJEE: But on a steady state22correlation?23MR. MARCH-LEUBA: On a steady state24correlation, correct.	9	And that's when we go into what's called
12does with TRAC-G for General Electric for example,13approved code for DIVOM, or Framaton used their14approved - one of their remote alerts.15What they do is, they postulate16different oscillation amplitudes. And they17calculate a delta CPR versus an initial CPR.18CHAIR BANERJEE: This is steady state?19MR. MARCH-LEUBA: This is now - you20superimpose a sine wave on the -21mR. BANERJEE: But on a steady state22correlation?23MR. MARCH-LEUBA: On a steady state24correlation, correct.	10	a DIVOM correlation. And that will require our
13 approved code for DIVOM, or Framaton used their 14 approved - one of their remote alerts. 15 What they do is, they postulate 16 different oscillation amplitudes. And they 17 calculate a delta CPR versus an initial CPR. 18 CHAIR BANERJEE: This is steady state? 19 MR. MARCH-LEUBA: This is now - you 20 superimpose a sine wave on the - 21 mR. BANERJEE: But on a steady state 22 correlation? 23 MR. MARCH-LEUBA: On a steady state 24 correlation, correct.	11	displaying why. But basically what the industry
14approved - one of their remote alerts.15What they do is, they postulate16different oscillation amplitudes. And they17calculate a delta CPR versus an initial CPR.18CHAIR BANERJEE: This is steady state?19MR. MARCH-LEUBA: This is now - you20superimpose a sine wave on the -21mR. BANERJEE: But on a steady state22correlation?23MR. MARCH-LEUBA: On a steady state24correlation, correct.	12	does with TRAC-G for General Electric for example,
 What they do is, they postulate different oscillation amplitudes. And they calculate a delta CPR versus an initial CPR. CHAIR BANERJEE: This is steady state? MR. MARCH-LEUBA: This is now - you superimpose a sine wave on the - mR. BANERJEE: But on a steady state correlation? MR. MARCH-LEUBA: On a steady state correlation, correct. 	13	approved code for DIVOM, or Framaton used their
16 different oscillation amplitudes. And they 17 calculate a delta CPR versus an initial CPR. 18 CHAIR BANERJEE: This is steady state? 19 MR. MARCH-LEUBA: This is now - you 20 superimpose a sine wave on the - 21 mR. BANERJEE: But on a steady state 22 correlation? 23 MR. MARCH-LEUBA: On a steady state 24 correlation, correct.	14	approved - one of their remote alerts.
<pre>17 calculate a delta CPR versus an initial CPR. 18 CHAIR BANERJEE: This is steady state? 19 MR. MARCH-LEUBA: This is now - you 20 superimpose a sine wave on the - 21 mR. BANERJEE: But on a steady state 22 correlation? 23 MR. MARCH-LEUBA: On a steady state 24 correlation, correct.</pre>	15	What they do is, they postulate
18 CHAIR BANERJEE: This is steady state? 19 MR. MARCH-LEUBA: This is now - you 20 superimpose a sine wave on the - 21 mR. BANERJEE: But on a steady state 22 correlation? 23 MR. MARCH-LEUBA: On a steady state 24 correlation, correct.	16	different oscillation amplitudes. And they
MR. MARCH-LEUBA: This is now - you 19 MR. MARCH-LEUBA: This is now - you 20 superimpose a sine wave on the - 21 mR. BANERJEE: But on a steady state 22 correlation? 23 MR. MARCH-LEUBA: On a steady state 24 correlation, correct.	17	calculate a delta CPR versus an initial CPR.
20 superimpose a sine wave on the - 21 mR. BANERJEE: But on a steady state 22 correlation? 23 MR. MARCH-LEUBA: On a steady state 24 correlation, correct.	18	CHAIR BANERJEE: This is steady state?
21 mR. BANERJEE: But on a steady state 22 correlation? 23 MR. MARCH-LEUBA: On a steady state 24 correlation, correct.	19	MR. MARCH-LEUBA: This is now - you
22 correlation? 23 MR. MARCH-LEUBA: On a steady state 24 correlation, correct.	20	superimpose a sine wave on the -
23 MR. MARCH-LEUBA: On a steady state 24 correlation, correct.	21	mR. BANERJEE: But on a steady state
24 correlation, correct.	22	correlation?
	23	MR. MARCH-LEUBA: On a steady state
25 CHAIR BANERJEE: But the oscillation	24	correlation, correct.
	25	CHAIR BANERJEE: But the oscillation

(202) 234-4433

	167
1	period, it says about one second.
2	MR. MARCH-LEUBA: Two seconds.
3	CHAIR BANERJEE: Two seconds.
4	MR. MARCH-LEUBA: There are - in the
5	TRAC-G qualification report there are several
б	examples where it has been qualified for this type
7	of instability. Periodic dry-out and rewetting.
8	And it does a pretty good job. You would think it
9	wouldn't, but it does.
10	So basically they set up different
11	oscillation amplitudes, using the correlation for
12	GE. They calculated the CPR over ICPR, and plot the
13	cases. Here they are, and here are some No. 9 fuel
14	rolls, and 10X10 fuel rolls and different
15	conditions.
16	And they created what was called delta -
17	well, the DIVOM core. I don't know exactly what -
18	delta initial versus oscillation magnitude, I think.
19	And create this slope. Now with this
20	slope, then knowing what your scram set point is,
21	you know how large your amplitude is. Then you go
22	back and calculate how much CPR you lose for that
23	oscillation. And then that's how you demonstrate
24	that you have protection against that oscillation.
25	I frankly have problems with this, and I
I	I

(202) 234-4433

	168
1	would love to explain why.
2	CHAIR BANERJEE: Well, let me ask you
3	something. The delta CPR, has it been actually
4	validated ever in terms of oscillating flows?
5	MR. MARCH-LEUBA: Well, the correlations
б	- and I'm not an expert on CPR correlations - but
7	what I've seen is that they go into a facility. And
8	the oscillate power in a sine wave. And you do get
9	periodic dry out and re-wets. And they go with
10	TRAC-G. And they simulated that, and they go into
11	dry out and re-wet at the same time or about the
12	same time. And about the same time - same power
13	level, and it does simulate the dry out and re-wet.
14	CHAIR BANERJEE: I'm saying, these were
15	experimentally validated.
16	MR. MARCH-LEUBA: That has been
17	experimentally validated. It's part of the
18	correlation or the Framaton correlation validation.
19	Both vendors have that.
20	DR. HUANG: I think we can move on for
21	the stability, how about that?
22	MR. MARCH-LEUBA: Sure. There were some,
23	particularly ones which you can read about, some
24	issues with implementation of Solution III.
25	The implementation of Solution III -
I	

(202) 234-4433

	169
1	I'll just move real fast out of there - took a long
2	time. I mean really, really long time; we're
3	talking about 10 years. Because everybody was
4	having problems, and as they were really collecting
5	information, they were finding more problems.
6	Now I can say, everybody is implemented.
7	We are all fine.
8	But there is argumentation why it took
9	so long. It is a very complex professional system.
10	It is very difficult. It is making noise analysis,
11	and then to scram on that. And it took that long
12	because it was that complex.
13	Now we are going into the operating
14	domains. We talked about that. The issue with the
15	operating domains when you are moving now from
16	MELLLA or from EPU to MELLLA+, if you lose your
17	pumps, you move farther inside into the stability
18	region. It makes it more unstable.
19	And indeed you become unstable on the
20	middle. There are issues with frequencies changing.
21	So there are new challenges. And because of that
22	the industry has responded with DSS/CD, and solution
23	III.
24	CHAIR BANERJEE: Don't run away from
25	DSS/CD. What is it?
I	I

(202) 234-4433

	170
1	MR. MARCH-LEUBA: DSS/CD is an Option III
2	in which the amplitude set point is removed. But it
3	is really - on the original -
4	CHAIR BANERJEE: It's a hair trigger
5	then.
6	MR. MARCH-LEUBA: It's a hair trigger.
7	But it requires a lot of OPRMs to agree. So if you
8	have one OPRM signal doing like that, it doesn't do
9	it.
10	During testing we found out that we
11	still need a small amplitude to protect against
12	noise fluctuations. And there was revision two of
13	the DDS/CD that allowed for a very small amplitude
14	set point.
15	CHAIR BANERJEE: Do they look for a
16	correlation coefficient? Or how do they actually
17	look and see that these are all saying the same
18	thing?
19	MR. MARCH-LEUBA: Oh, well, you have the
20	PVDR which I show you the figure of there. You have
21	ten confirmations of periodicity. But the OPRM on
22	this corner of the core has to live with the OPRM on
23	this corner of the core, and has to live with that
24	corner -
25	CHAIR BANERJEE: But is it a correlation
I	

(202) 234-4433

	171
1	coefficient -
2	MR. MARCH-LEUBA: No, all of them have to
3	have a permissive. So OPRM I is scram. OPRM II is
4	scram. OPRM III is scram. And if enough of them
5	scram, it's a minimum of five, and depending on how
б	many -
7	MEMBER WALLIS: - where some of them
8	don't show a selection?
9	MR. MARCH-LEUBA: Well, the expectation
10	was that you would have this spurious noise
11	problems. We only happening one of them, but it was
12	happening in 10 of them.
13	MEMBER WALLIS: No, that's right. But
14	aren't there some modes of oscillation where some of
15	them don't show anything?
16	MR. MARCH-LEUBA: Correct.
17	MEMBER WALLIS: So how does the -
18	MR. MARCH-LEUBA: You still have enough
19	of the others.
20	MEMBER WALLIS: Have to have enough of
21	the others.
22	MR. MARCH-LEUBA: Right. You don't
23	really five when there are when there are 35 OPRMs.
24	MEMBER WALLIS: Okay. So I guess that's
25	all right.
Į	•

(202) 234-4433

	172
1	MR. MARCH-LEUBA: Yes.
2	MEMBER WALLIS: The whole question - I'm
3	listening to all your explanation here. We are
4	talking here about an SRP. Is the reviewer of all
5	this stuff knowledgeable enough to understand
б	whether or not this is good enough.
7	MR. MARCH-LEUBA: The reviewer is
8	knowledgeable enough to know, and the SRP tells you,
9	are they using a long term solution that has been
10	reviewed and approved by the staff.
11	MEMBER WALLIS: Okay. So there is a
12	check off, this has all been reviewed and -
13	MR. MARCH-LEUBA: Absolutely. Now for
14	new reactors, for new MELLEA+s, then new NTTSR
15	requirements, then you need to have a reviewer that
16	is knowledgeable.
17	And Dr. Huang has been working on this
18	for 30 years. I've been working on it for 25.
19	DR. HUANG: This is detail on the desk
20	references in a lot of the stuff in there. So the
21	reviewer can go back to here and get that
22	information, get that paper, so they can reviewed
23	based on it.
24	CHAIR BANERJEE: Now how much of this
25	review is - say I can see that non-ATWS stuff, TRAC-
I	I

(202) 234-4433

	173
1	G, has been approved, right. But for ATWS we've
2	never looked at even TRAC-G up to now.
3	MR. MARCH-LEUBA: No, actually TRAC-G has
4	been approved for ATWS stability.
5	CHAIR BANERJEE: It has been approved for
6	ATWS stability.
7	MR. MARCH-LEUBA: ATWS stability,
8	correct.
9	CHAIR BANERJEE: I didn't know that.
10	MR. MARCH-LEUBA: Yeah, it was the only
11	tool we have available to do it.
12	CHAIR BANERJEE: Because presumably it
13	came through ACRS at some point.
14	MR. MARCH-LEUBA: Oh, yes.
15	CHAIR BANERJEE: TRAC-G.
16	MR. MARCH-LEUBA: TRAC-G and all the ATWS
17	stability, we had lots of interaction with - we had
18	- it was not like this where we do the work and then
19	we tell you. We involved ACRS over many meetings
20	during development over a couple of years.
21	We had some meetings in San Francisco,
22	because most of the ACRS members work on the West
23	Coast.
24	CHAIR BANERJEE: This is going back how
25	long?
	I

(202) 234-4433

	174
1	MR. MARCH-LEUBA: Back to `92.
2	CHAIR BANERJEE: TRAC-G?
3	MR. MARCH-LEUBA: TRAC-G, yes.
4	MS. ABDULLAHI: This is Zena, I'd make a
5	little bit of a correction regulatorywise. At that
б	time it was acceptance of TRAC-G for use, but
7	licensing wise, approval of TRAC-G for instability
8	is the reason, quite recent.
9	CHAIR BANERJEE: But I didn't know that
10	it had been approved for ATWS.
11	MS. ABDULLAHI: That's a different story.
12	For instability per se, the 1980 - after the La
13	Salle period, I think we looked at it. And that's
14	when the ACRS and everybody in the industry was
15	involved. And at that point it was accepted for use
16	for instability only.
17	CHAIR BANERJEE: ATWS instability.
18	MS. ABDULLAHI: ATWS instability. But
19	right now it's not approved specifically for ATWS
20	instability. But GE has committed to come in I
21	think December, `07, and convert all their ATWS
22	analysis to TRAC-G.
23	CHAIR BANERJEE: They are still using
24	ODIN for ATWS.
25	MS. ABDULLAHI: That's a long story.
I	I

(202) 234-4433

	175
1	Yes, you will hear all of that when you do the
2	MELLLA+.
3	CHAIR BANERJEE: Well, the reason I'm
4	asking this is that I was at a meeting about two
5	years ago in San Jose, GE, and you were there too,
6	Professor Wallis. And the results we saw with TRAC-
7	G for ATWS were not comforting that the code was
8	doing anything useful at that time.
9	MEMBER WALLIS: It was probably more than
10	two years ago.
11	CHAIR BANERJEE: About three years ago.
12	MEMBER WALLIS: A long time ago.
13	MS. ABDULLAHI: Yes, I know what it was.
14	CHAIR BANERJEE: No, we have never seen
15	TRAC-G after that showing ATWS calculations.
16	MS. ABDULLAHI: Well, the MELLLA+
17	presentation would entail basically mostly
18	instability and ATWS instability, because these are
19	the predominant response that affects MELLLA+.
20	So in April that's what we will be
21	focusing on. But beyond acceptance of ATWS
22	instability at the time of the 1988 - `90 -
23	DR. HUANG: `92, 1992-94 time frame, that
24	staff has reviewed and approved at number 32007,
25	along with the needle 32164. One is for the outer
I	

(202) 234-4433

	176
1	loop issues, BWR co-thermal hydraulic stability.
2	The other one is BWR mitigation of BWR
3	co-thermal hydraulic instability in ATWS.
4	So they are `90,'92 and `94.
5	CHAIR BANERJEE: So then why does GE come
6	in to have it approved in December, TRAC-G?
7	MR. MARCH-LEUBA: Oh, they are waiting
8	for ATWS, not the one -
9	CHAIR BANERJEE: Yes, that's what I mean.
10	MR. MARCH-LEUBA: It's different. It
11	was approved - let's move into ATWS stability, and
12	you will know why it was approved.
13	CHAIR BANERJEE: Keep on going for 10
14	minutes more, 15 minutes.
15	MR. MARCH-LEUBA: There are many, many,
16	many different types of ATWS events, just like a
17	LOCA. Like ATWS instability. And when you put
18	those two names together, it gets a visceral
19	reaction from many people - ATWS stability - because
20	it's a really bad event.
21	It's a particular class of ATWS events
22	where the following has happened: the condensate is
23	available. So you can get very cold water from the
24	condenser. So then all that cold water is fed into
25	the vessel.

(202) 234-4433

	177
1	And then because of that very cold water
2	is fed into the vessel, you could raise the power of
3	the core so much that extreme amplitude oscillations
4	are developed, and you don't have a scram.
5	And this oscillation we are talking
б	about, more than 1,000 percent. And they are large
7	enough that you do have all this periodic dry-out
8	and re-wetting. Whenever you see these
9	oscillations, you dry out and you don't re-wet. So
10	you just continue to heat them up, and cladding
11	failure occurs. You heat 2,200. So it's a really
12	bad event.
13	And the worst thing is -
14	MEMBER WALLIS: What sort of frequency
15	are these?
16	MR. MARCH-LEUBA: About every four
17	seconds, four or five seconds. It's supposed to be
18	every two seconds, but as they become linear, they
19	space out.
20	Once - what happens is, you have a peak
21	that is so large, that you get heat of such
22	temperature that it doesn't record. Even if you re-
23	wet it with cold water it doesn't re-wet.
24	The serious problem, the serious
25	instabilities, is that it is not a full transient
I	

(202) 234-4433

178 1 evolution. So if the operator takes hands off in 2 some plants, that's exactly what will happen for ATWS events. 3 4 So something needed to be done. And 5 this is one simulation from the Brookhaven analyzer at the time of the La Salle event. La Salle 6 7 happened up to here. Here is where the scram happened. And they predicted what would happen if 8 9 the scram had failed. And at the time nobody was 10 really aware of this notion that the most important 11 thing during ATWS instability certainly is what 12 happens with the balance of plant. Because what you 13 have is, you have your power train, and then this is 14 the relative power, increases a little bit. But 15 then as you start getting all the cold condenser 16 water, you start increasing the power of the core, 17 and you end up having an analyzed power of 80 18 percent, 90 percent. And these oscillations are 19 allowed to grow. 20 MEMBER WALLIS: It goes 1,000 percent. 21 MR. MARCH-LEUBA: That's the ATWS power. 22 The oscillations are measured on this side; they are a factor of 12. 23 MEMBER WALLIS: Oh, that's relative. 24 25 That's 10 times -

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	179
1	MR. MARCH-LEUBA: That's 12 - 1,000 to
2	1,200 percent, very large oscillations. And one of
3	the peaks becomes so large that it just blows up the
4	fuel. I mean it mixes so hot that it cannot re-wet.
5	So the balance of plant modeling was
6	crucial for this event. And we have to credit the
7	Brookhaven guys, because at the time we were not
8	aware of it. It was a St. Louis engineer and a
9	plant engineer analyzer that we found out about
10	this.
11	The issue, and why this happens, is that
12	the fuel water heaters work with extraction steam
13	from the turbines. So when the turbine trips, you
14	don't have steam to heat up the fuel water. And the
15	fuel water keeps pumping water, but it's not heated.
16	So if you lose your turbine, you are
17	putting cold water in the core. So if you have a no
18	occilation ATWS the - and the bypass, the turbine
19	bypass valve is fully open, you are sending all of
20	that steam to the condenser. You are not - have no
21	pressure. Nothing happening other than your average
22	power is going up and up and up, and your
23	oscillations are developing.
24	And that's when a very large sample to
25	limit cycle occurs.
l	1

(202) 234-4433

	180
1	And if it is a default hands-off
2	sequence for some plants, and most plants don't do
3	this. La Salle does this. And that was the one we
4	were focusing on.
5	You require - so this is the sequence of
6	events. You have turbine trip. The bypass opens.
7	And somehow you send a scram signal to become an
8	ATWS.
9	So the scram fails, and you are in ATWS.
10	Because you are in ATWS, maybe an oscillation of the
11	water level like happened in La Salle, you have a
12	recirculation pump trip. You go into the red area.
13	The control system now stabilizes the
14	water level, and everything to the operator looks
15	normal. I have my containment open. All my heat is
16	going to the condenser. And they are still cooling
17	the core. Everything is fine.
18	But the power continues to rise because
19	of the cold water, and you start developing these
20	very large oscillations.
21	We can ignore this one. We talked about
22	MELLLA+ enough.
23	MEMBER WALLIS: What do you do about it?
24	MR. MARCH-LEUBA: First, let me tell you
25	why some plants you don't have to worry about it.
ļ	1

(202) 234-4433

	181
1	Some plants like La Salle have 100 percent bypass
2	capacity for determining it.
3	MEMBER WALLIS: There's instability on
4	the computer.
5	MR. CARUSO: Well, we've lost our signal.
6	We've lost our screen here.
7	CHAIR BANERJEE: If this is the case, why
8	don't we stop it now. If we can't recover this,
9	we'll come back after lunch and briefly - oh, it's
10	back. Let's finish it.
11	MR. MARCH-LEUBA: So in some plants which
12	don't have as much bypass capacity this cannot
13	happen. And some plants, really most plants, the
14	fuel water pumps are driven by the same steam that
15	heats the fuel water. So that cannot happen either.
16	Because at the same time you lose the fuel water
17	heating capacity, you lose your fuel water pumping
18	capacity.
19	So it's not a problem for everybody.
20	But definitely was deemed unacceptable, and it was -
21	we decided to deal with it generically.
22	It was dealt with through the emergency
23	procedure guidelines. It was an extensive study by
24	the industry, ACRS, the staff, everybody was
25	involved. And it resulted in the ATWS study
ļ	

(202) 234-4433

	182
1	mitigation actions.
2	And those mitigation actions are
3	included in the emergency procedure guidelines,
4	which then get reflected into the emergency
5	operating procedures in the plant. And every time
6	we go to our control room on a plant simulator, I
7	ask them to pull the emergency operating procedures.
8	They pull those, and I see exactly where these
9	mitigation efforts are.
10	The mitigation actions are several, but
11	the most important ones is, there is an early boron
12	injection, so that if oscillations develop, the
13	boron goes in immediately. You don't wait until you
14	start - before you had to wait until you were
15	hitting the suppression pool before you could inject
16	boron. And in this scenario you are not hitting the
17	suppression pool.
18	So you start injecting the boron. But
19	boron is too slow. It takes 20 to 30 minutes to
20	actually work. The really thing that works is the
21	immediate water level reduction. And you reduce the
22	water level in the vessel to below the fuel water.
23	And the fuel water with this cold water is injecting
24	into the steam area of the vessel, and is
25	splattering all over, and is doing two things.
I	

(202) 234-4433

	183
1	First it is condensing the steam that is now going
2	to the suppression pool maybe; and it is preheating
3	the water that goes into the core.
4	MEMBER WALLIS: Is this something that
5	can be very accurately predicted, this condensation,
б	indirect contact?
7	MR. MARCH-LEUBA: There was review by
8	better experts than me, and they claim that two feet
9	was sufficient to preheat the fuel water.
10	And the argument was that the fuel water
11	nozzle sprays against the core and splatters all
12	over. So you have very fine bubbles. It's not -
13	CHAIR BANERJEE: Shroud.
14	MR. MARCH-LEUBA: Yeah, it's not a faucet
15	coming down. It would never hit.
16	CHAIR BANERJEE: - that's spraying.
17	MR. MARCH-LEUBA: It was revealed by
18	better people than me, and concluded that two feet
19	was sufficient to preheat. I would want to see four
20	or five, ten feet of steam.
21	So the EPGs now tell you you lower the
22	water level at least two feet below the sparger and
23	it typically ends up lowering more than that. All
24	plans have a range of five or ten feet that they can
25	control the water level. So you prevent the problem

(202) 234-4433

	184
1	from occurring.
2	CHAIR BANERJEE: And how do they do that?
3	MR. MARCH-LEUBA: They lower the level.
4	Because once you are in ATWS, you are now, the
5	operator just controls manually at the control
6	system. And he sets a control level.
7	If you are doing it will feed water,
8	it's relatively easy. Because feed water has nice
9	fine control. If you are doing it with SPCI it's
10	almost more like a bang bang. If you go see an ATWS
11	in the plant simulator, there's a full guy, full-
12	time guy, doing the water level control. That's all
13	he does.
14	MEMBER WALLIS: Does he wait until he
15	gets oscillations? Or -
16	MR. MARCH-LEUBA: No, no, that's
17	immediate. The moment there is an ATWS red light,
18	they pull the charts, and the SRO tells him, lower
19	the water level to a hundred and so.
20	CHAIR BANERJEE: Now why doesn't that
21	conduct be automated? Is there a reason for that?
22	MR. MARCH-LEUBA: Because at this point
23	you are not sure what systems are working in that.
24	And you may have to realign valves to get water into
25	the vessel. You are having a bad day and you
Į	1

(202) 234-4433

	185
1	cannot really rely on the control system to do it.
2	CHAIR BANERJEE: Can you rely on the
3	operator to do it?
4	MR. MARCH-LEUBA: Better than the control
5	system. Because you are, in this case, you don't
6	know what happened. You have to realize what's
7	happened. Also they will have to realign valves to
8	get water from the suppression pool or from the
9	condenser or from whatever it is available. What
10	systems you have, you have SPCI, SPS? Is it
11	sufficient with fuel water? Maybe I have only 20
12	percent fuel water, and we have to supplement it.
13	MEMBER WALLIS: Figuring out how to
14	realign valves doesn't happen instantly, does it?
15	MR. MARCH-LEUBA: No, it doesn't.
16	CHAIR BANERJEE: So long before the
17	operator -
18	MR. MARCH-LEUBA: The assumptions on the
19	analysis were, it takes two minutes for them to do
20	it. And you can here the oscillations grow, and
21	then when the cooling start going down because the
22	water was reduced, the oscillations are eliminated.
23	MEMBER WALLIS: So those are the
24	oscillations on the top?
25	MR. MARCH-LEUBA: These are the
I	

(202) 234-4433

	186
1	oscillations on the top for the first two minutes.
2	This is two minutes.
3	MEMBER WALLIS: It's a log scale. Those
4	are oscillations -
5	MR. MARCH-LEUBA: Oh, yeah, this is more
6	than 1,000 percent.
7	MEMBER WALLIS: We still get 10 times.
8	MR. MARCH-LEUBA: Oh, yeah. Oh, yeah.
9	MEMBER WALLIS: But not for very long.
10	MR. MARCH-LEUBA: Right.
11	MEMBER WALLIS: It's an oscillation.
12	MR. MARCH-LEUBA: So we need to get them
13	as fast as we can.
14	MEMBER WALLIS: Is that good enough to
15	save the fuel?
16	MR. MARCH-LEUBA: No.
17	MEMBER WALLIS: No?
18	MR. MARCH-LEUBA: It may or may not. You
19	cannot guarantee it. You cannot guarantee it.
20	In this particular case the temperature
21	never reached 2,200. What has happened in the
22	simulations, occasionally it's a peak like this one
23	here, it is larger than the others.
24	MEMBER WALLIS: And a full strike is very
25	capable of predicting these oscillations accurately?
I	I

(202) 234-4433

	187
1	MR. MARCH-LEUBA: No.
2	CHAIR BANERJEE: Not the evidence we saw.
3	So this must be very recent then.
4	MR. MARCH-LEUBA: No, this is 1994. 1992.
5	CHAIR BANERJEE: Certainly TRAC-G doesn't
6	do this today. I mean it has a lot of difficulty.
7	MR. MARCH-LEUBA: This is using what is
8	called the stability normalization and stability
9	numerics, explicit methods from the core, and
10	finalization at the bottom of the core.
11	All cores do that. TRACE does this.
12	Even TRACE does it.
13	MEMBER WALLIS: Even TRACE does it?
14	MR. MARCH-LEUBA: Yeah. Not very
15	reliable, but it has done it. I mean we did run
16	from MELLLA+. We did run some confirmatory
17	calculations using TRACE.
18	MEMBER WALLIS: Since it's only an
19	analysis that you are relying upon, it should be
20	done independently by different codes.
21	MR. MARCH-LEUBA: This has been done
22	independently by several codes, right.
23	MEMBER WALLIS: It would be interesting
24	to see that.
25	MR. MARCH-LEUBA: Next slide. Okay, this
I	

(202) 234-4433

	188
1	next slide shows that boron is effective, but it
2	takes a long time. Now here, remember, with the
3	water level reduction, at 150 we were already down.
4	This continues, and it continues down here.
5	And finally at 300 to 500 seconds, boron
6	started to bypass occilations. So boron is what
7	eventually cancels everything. But it takes a long
8	time. It takes 20 - 30 minutes to shut down the
9	reactor.
10	The implication for extended fractal
11	remains, we will see them next month. We do start
12	transit with a high power to flow ratio. So
13	everything is going to be even worse.
14	But the issue was - the question we had
15	is, the mitigation actions, lowering the water level
16	and boron injection, were good enough before. Has
17	anything changed qualitatively to change the
18	conclusions that mitigation actions are effective?
19	So we asked General Electric to re-run
20	the same calculations. And when they lowered the
21	water level with TRAC-G and injected boron early,
22	they show that the oscillations are indeed reduced
23	as effectively as before.
24	We have performed some efforts on the
25	timing of operator actions. We have gone to the
l	

(202) 234-4433

	189
1	simulators, and seen what operators do during this
2	ATWS stability events. And frankly, they are not
3	stressed at all. It's a very calm - there is plenty
4	of time to do what they are required to do.
5	CHAIR BANERJEE: Two minutes.
6	MR. MARCH-LEUBA: Two minutes is what we
7	give them credit for on the TRAC-G analysis. In
8	reality it happens in 20 seconds. Because they are
9	ready for the transient; it's coming. But the
10	transient in the real plant, you almost miss it if
11	you are not looking for it.
12	MEMBER ABDEL-KHALIK: And they do that
13	primarily by reducing feedwater flow?
14	MR. MARCH-LEUBA: Yeah, and in most
15	plants feedwater cuts itself automatically, because
16	you don't have a steam obstruction.
17	But what you see, whenever an ATWS is
18	declared, is the SRO says, ATWS, he goes pulls his
19	big charts, where he has all the flow assessments.
20	It says, entering RC1. Lower the water level to
21	level 120 inches. And he goes there and starts
22	working on it.
23	In the meantime, he sends the other guy
24	to ARI, say, start inserting alternate rod
25	injection. And the other guy is working with

(202) 234-4433

	190
1	alternate rod injection.
2	And he may have to call INC to bypass
3	some things like MSID closure valve and things like
4	that.
5	But it's fairly - I mean it really - I
6	would recommend it to anybody that - if you ever get
7	invited to one of these simulators, to walk through
8	and see, it's not as bad as you will make it look
9	like on PRA analysis. It really is fairly relaxed,
10	very professional - very professional - and well
11	trained people.
12	MEMBER WALLIS: So this ATWS stuff has
13	nothing to do with this SRP that we are going to
14	look at?
15	MR. MARCH-LEUBA: This is something I
16	want to tell you, because ATWS stability was
17	consulted. And one question we have for you is, we
18	decided to put the stability with 15.8 ATWS instead
19	of 15.9 stability.
20	So you will not see anything on 15.9,
21	SRP 15.9 stability of ATWS stability. Because
22	stability is always a long term solution. ATWS
23	stability is solved with the emergency procedure
24	guidelines, which belongs under ATWS. It's more
25	logical to review under there. And that will be one
I	I

(202) 234-4433

	191
1	of the questions we pose for you this afternoon.
2	MR. CARUSO: Staff does not plan to send
3	us the ATWS SRP section for review. If you think we
4	should do that, then I need to know that soon so
5	that we can decide to review it.
6	Has that been issued yet, do you know?
7	ATWS 3.8?
8	MR. DESAI: I think staff decided that
9	ATWS, the ATWS acceptance criteria is like a current
10	practice, and that's why it's not planned to send it
11	to ICRS. But if you are interested, and go with all
12	the changes, we would like to do that. It is
13	completed. It is available.
14	CHAIR BANERJEE: Why don't we take up
15	this issue after we have the 15.9 discussion. And
16	then if we have time for discussion.
17	Right now, I think we have come to a
18	logical sort of point to stop, then we will go and
19	have lunch and then continue this after lunch. Is
20	that good?
21	All right, so we will go out of session,
22	and then come back at 20 to 2:00.
23	(Whereupon at 12:41 p.m. the proceeding
24	in the above-entitled matter went off the record.)
Į	

(202) 234-4433