Official Transcript of Proceedings		
NUCLEAR REGULATORY COMMISSION		
Title:	Advisory Committee on Reactor Safeguards Thermal-Hydraulic Phenomena Subcommittee	
Docket Number:	(not applicable)	
Location:	Rockville, Maryland	
Date:	Tuesday, February 27, 2007	

Work Order No.: NRC-1437

Pages 1-374

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

		1
1	UNITED STATES OF AMERICA	
2	NUCLEAR REGULATORY COMMISSION	
3	+ + + + +	
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)	
5	THERMAL HYDRAULIC PHENOMENA SUBCOMMITTEE	
6	+ + + + +	
7	TUESDAY,	
8	FEBRUARY 27, 2007	
9	+ + + + +	
10	The meeting was convened in Room T-2B3	
11	of Two White Flint North, 11545 Rockville Pike,	
12	Rockville, Maryland, at 8:30 a.m., Dr. Sanjoy	
13	Banerjee, Chairman, presiding.	
14	MEMBERS PRESENT:	
15	SANJOY BANERJEE Chairman	
16	GRAHAM B. WALLIS ACRS Member	
17	THOMAS S. KRESS ACRS Member	
18	SAID ABDEL-KHALIK ACRS Member	
19		
20		
21		
22		
23		
24		
25		
I	I	

1	NRC STAFF PRESENT:
2	ERVIN GEIGER
3	TONY SHAW
4	ROB TRAGONING
5	PAUL KLEIN
6	MIKE SCOTT
7	PAULETTE TORRES
8	JOHN LEHNING
9	WILLIAM KROTIUK
10	
11	ALSO PRESENT:
12	JOHN BUTLER
13	TOM MICHENER
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	1

	3
1	A-G-E-N-D-A
2	OVERVIEW/INTRODUCTION
3	S. Banerjee (ACRS)
4	E. Geiger (RES)
5	NUREG-1861, PEER REVIEW OF GSI-191 CHEMICAL EFFECTS
6	RESEARCH PROGRAM
7	P. Torres (RES)
8	BREAK
9	SURROGATE TESTING PROGRAM
10	E. Geiger (RES)
11	LUNCH
12	NUREG/CR-6917, EXPERIMENTAL MEASUREMENTS OF PRESSURE
13	DROP ACROSS SUMP SCREEN DEBRIS BEDS 171
14	W. KROTIUK (RES)
15	NUREG-1862, DEVELOPMENT OF PRESSURE DROP CALCULATION
16	METHODS
17	FOR DEBRIS-COVERED SUMP SCREENS IN SUPPORT OF
18	GSI-191
19	W. KROTIUK (RES)
20	CONCLUSION
21	DISCUSSION
22	ADJOURN
23	
24	
25	
	1

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:33 a.m.)
3	CHAIRMAN BANERJEE: The meeting will now
4	come to order. This is a meeting of the Advisory
5	Committee on Reactor Safeguards, Subcommittee on
6	Thermal Hydraulic Phenomena. I'm Sanjoy Banerjee,
7	Chairman of the Subcommittee. Subcommittee members in
8	attendance are ACRS Members Graham Wallis, Tom Kress,
9	Said Abdel-Khalik.
10	The purpose of this meeting today is to
11	discuss the NRC Staff's progress involving research
12	activities on chemical effects associated with the
13	resolution of NUREG safety issue 191, PWR sump
14	performance. The subcommittee will hear presentations
15	by and hold discussions with the NRC staff and other
16	interested persons regarding these matters. The
17	subcommittee will gather information, analyze relevant
18	issues and facts, and formulate proposed positions and
19	actions as appropriate for deliberation by the Full
20	Committee. Ralph Caruso is the Designated Federal
21	Official for this meeting.
22	The rules for participation in today's
23	meeting have been announced as part of the notice of
24	this meeting previously published in the Federal
25	Register on January 30^{th} , 2007, and February 15 th ,

(202) 234-4433

	5
1	2007. A transcript of the meeting is being kept, and
2	will be made available, as stated in the Federal
3	Register notice. It is requested that speakers first
4	identify themselves, and speak with sufficient clarity
5	and volume so that they can be readily heard. I would
6	also like to remind the members that the committee has
7	determined that speaker should be allowed the first 10
8	minutes of presentation time without question from the
9	members.
10	MR. WALLIS: Was that ever really decided?
11	MR. KRESS: I don't remember voting on
12	that.
13	MR. WALLIS: This is a Ralph Caruso
14	inquisition.
15	MR. KRESS: Did we vote on that, or didn't
16	we?
17	MR. CARUSO: We did, back a long time ago.
18	MR. KRESS: I think the P&P Subcommittee
19	just imposed that.
20	MR. WALLIS: But it's never been
21	implemented.
22	MR. CARUSO: It was tried several times.
23	CHAIRMAN BANERJEE: What do you think,
24	should we, or shouldn't we?
25	MR. KRESS: I think we ought to play it by
I	1

(202) 234-4433

	6
1	ear.
2	CHAIRMAN BANERJEE: All right.
3	MR. KRESS: If you have a burning
4	question, you ought to ask.
5	CHAIRMAN BANERJEE: I think we'll play it
6	be ear then. And I don't have any real comments to
7	make, except that let's try to stick to the time, and
8	I'll introduce Mr. Geiger of the staff to begin the
9	presentation.
10	MR. GEIGER: My name is Ervin Geiger.
11	MR. KRESS: Do you have anything to do
12	with the Geiger counter?
13	(Off the record comments.)
14	MR. GEIGER: I'm with the Office of
15	Nuclear Regulatory Research. I usually talk with a
16	soft voice. I'd just like to thank the subcommittee
17	today for giving us the opportunity to present the
18	final research or research activities. We're
19	providing an overview of the research program. The
20	program has been going for quite a long time, and we
21	have completed the research projects that were
22	originally slated, so I'd just like to present an
23	overview of what we have accomplished so far, and go
24	into some other presentation.
25	MR. WALLIS: You're going to speak about
I	1

(202) 234-4433

	7
1	all the projects?
2	MR. GEIGER: Well, I'm just going to I
3	understand that this is a chemical effects, but I just
4	thought I would brush up over some of the other
5	issues.
6	MR. WALLIS: Are you going to speak about
7	the Pacific Northwest experiments, for example?
8	MR. GEIGER: Yes.
9	MR. WALLIS: You will. Okay.
10	MR. GEIGER: Yes, this afternoon, because
11	I was under the impression that the subcommittee was
12	very interested in the Northwest Laboratory tests, and
13	also Bill Krotiuk's correlation NUREG, so I thought it
14	would be proper to present this at this time, since it
15	hadn't really been discussed before in its details,
16	since it was just completed at the end of this year,
17	if the committee has no objection.
18	MR. XIAO: Erv, can I just interject for
19	one thing?
20	MR. GEIGER: Right.
21	MR. XIAO: My name is Tony Xiao. I'm the
22	Branch Chief of the Mechanical and Structural
23	Engineering Branch in Research. It's under my branch
24	this research work has been conducted for the past
25	several years, and the purpose of today's meeting, as
I	

(202) 234-4433

1 the Chairman described earlier, was really to 2 summarize the work we have done so far. We have 3 completed all the planned research work associated in support of Resolution GSI-191. And so Erv will 4 provide the overview, and we have some change of 5 personnel, as you recall. Dr. Rob Tragoning was the 6 7 Program Manager for the past couple of years. He will 8 join us shortly, but today - since then, Erv had taken 9 over as the Program Manager for the overall project as we were winding down. As you will hear later from Mr. 10 Geiger, we have published, or are about to publish a 11 12 total of 15 NUREG reports and letter reports, and In the detailed discussion, as you 13 NUREG/CR reports. 14 will see from the agenda, will include the work, as Dr. Wallis referred to earlier, the PNNL work, and the 15 correlation by Bill Krotiuk in the 16 head loss 17 afternoon. After Mr. Geiger's summary and overview, Ms. Torres will also describe in more detail the peer 18 19 review process we have employed to ensure the quality 20 of the research work. So this is overview as we're 21 coming to the end of this research program, to wrap it 22 all up, and to make a presentation to you before the 23 Full Committee. Thank you. 24 CHAIRMAN BANERJEE: Now let me ask a 25 The peer review, if I understand, was question.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	9
1	mainly on chemical effects.
2	MR. XIAO: Yes, it was. Yes.
3	CHAIRMAN BANERJEE: So is the focus of the
4	discussions today going to be chemical effects, or is
5	it going to be the whole program? It seems that Mr.
6	Krotiuk will present correlations and so forth, which,
7	perhaps, have nothing to do with chemical effects.
8	MR. GEIGER: Well, no it does not in that
9	respect, no. The chemical effects research had been
10	presented in previous subcommittees to a great extent,
11	mostly include the ANL that was presented in great
12	detail in past ACRS meetings, so I didn't feel that
13	there was any additional information that we could
14	really offer the subcommittee at this point. All the
15	contracts had lapsed, they had been completed. There
16	was no budget remaining to bring in any of the
17	contractors to discuss any additional wrap-up issues
18	that they might have, so what the object and since
19	we had not really presented Bill Krotiuk's research,
20	the PNNL research, and the head loss correlation, we
21	thought this would be an opportunity to present that,
22	and that would be this afternoon.
23	MR. WALLIS: Well, chemical effect we
24	learned could be very big.
25	MR. GEIGER: Well, if
I	

(202) 234-4433

MR. WALLIS: We also learned that we didn't have a quantitative way of predicting them. Are you going to tell us how you faced this sort of situation?

5 MR. GEIGER: Where we are right now with the research is that -- the intent of the research 6 7 initially was to inform GSI-191 problem. We did some, 8 as you know, the ICET test to see what kind of -- to 9 prove to the industry that there was an issue with 10 generating all those precipitates and chemical products that could effect sump. And then in 11 12 conjunction with that, the ACRS recommended that we investigate the chemical effects research. 13

14 When we finished the ICET, and the ICET 15 had no -- part of the ICET program did not include any testing of head loss; therefore, we went on did the 16 17 ANL testing, we did some testing at PNNL, and at ANL, to determine what the effects were. Now at ANL, the 18 19 tests we ran, we determined that even small quantities of these chemicals, aluminum oxyhdroxides caused a 20 21 great deal of -- as soon as there's even a small 22 amount precipitated, it created head loss across the 23 screens, across the fiber bed that were really -- the 24 pressure drops were excessive, and really exceeded the 25 allowables at many of the plants, if not most of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	11
1	plants. Okay? We know that, right? So where we are
2	right now is and the industry, at the same time,
3	had done similar tests, and they came up with the same
4	conclusion. So at this point, what the industry is
5	doing is they're re-evaluating their entire program on
6	how they're going to assess or address the head loss
7	issue across the
8	MR. WALLIS: The real question would seem
9	to be what is industry doing when you have found out
10	there are large effects?
11	MR. GEIGER: Yes.
12	MR. WALLIS: You know you have to now be
13	aware of that, but the real question is how do we
14	determine whether or not they occur in plants, and if
15	they do occur, how big they are? Those are questions
16	that industry is presumably answering, so really we
17	need presentations from those folks.
18	MR. GEIGER: Well, they are doing testing
19	on that. Unfortunately well, Research is not in
20	direct communication with the vendors; therefore,
21	Research has no mechanism for actually going out and
22	asking the industry as to how they are what they
23	are doing. We've had meetings with not EPRI, but -
24	I'm sorry - NEI, yes, thank you. We had meetings with
25	NEI, we had many meetings with NEI. They have
ļ	I

(202) 234-4433

provided presentations where the industry is going. And, actually, I have some of that at the end of this presentation as to what the industry is doing to alleviate the problem with the chemical effects on the fiber bed.

this point, we have no direction 6 At we should research. 7 exactly which area The 8 possibilities of researching all these different 9 chemical effects, as outlined even in the peer review, 10 the field is so great that we would be evaluating all of these different, from different concentrations, to 11 12 different temperatures. We could be looking at this for a long period of time, so if we can narrow down 13 14 the parameters that are of consideration, then we may 15 have a better chance at getting the right answers, 16 knowing what to do.

17 So I guess my answer is, this is not like 18 a university research project where somebody wants to 19 see what the effects of a certain chemical is on a 20 certain thing.

21 MR. TRAGONING: Hey, Erv, I'm sorry. I 22 think Paul could maybe add some information to address 23 Dr. Wallis' comment, in terms of -- I'm sorry. This 24 is Rob Tragoning from Office of Research. Paul Klein 25 from NRR can add some more specific information in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

terms of what the industry is doing, and how they're 2 approaching the problem, and sort of what our stance is with respect to evaluating the industry's -- their 3 4 proposed approach.

5 CHAIRMAN BANERJEE: So can we have him address this at some point today? Do you want to do 6 7 it now or later? Let's do it at the end of his talk. 8 MR. KLEIN: I guess maybe I'd add a few 9 comments, at this point, if I could. I'm Paul Klein 10 from NRR. Just to provide some broader perspective. Initially, the question was raised by ACRS about 11 12 chemical effects. There was a joint NRC-Industry sponsored test that identified chemical products could 13 14 form. And then the question became what do these 15 precipitates mean in terms of head loss, so the NRC 16 sponsored a number of tests to try and understand not 17 only what they mean in terms of head loss, but also 18 how parameters such as temperature, pH, and other 19 important things that vary within a post LOCA pool 20 could affect head loss, so we sponsored a number of 21 tests that evaluated that parameters.

22 We certainly don't have all the answers at 23 this point, but I think we identified a number of key 24 parameters. And at the same time, our management made 25 decision that it really was at а point in а

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

(202) 234-4433

	14
1	understanding that industry needed to address the
2	issue, so they are aggressively working the issue.
3	They have a number of different strainer vendors that
4	are conducting head loss tests. The staff observes a
5	number of these tests. We visited the facilities, we
6	have periodic meetings with industry about every other
7	month where they provide us status update and describe
8	some of their test results. They are working on a
9	generic chemical model that would be used to try and
10	predict what might form in the sump.
11	There's a number of activities underway.
12	It's quite possible on the back end of this, once NRR
13	has a better understanding of how industry is
14	proceeding to try and resolve chemical effects. We
15	might need independent research on the back end to
16	confirm what's been observed in industry tests, and to
17	help us evaluate the licensee submittals.
18	MR. TRAGONING: Rob Tragoning again from
19	Research, if I could just add a little bit to what
20	Paul stated. One of the things that we definitively
21	learned is, I would agree with Paul, is we learned in
22	many cases the effect of important variables, and we
23	have some ideas of some cases where we saw very large
24	effects due to chemical precipitants, and some where
25	we saw either little or no effect. But one of the
I	I

(202) 234-4433

(202) 234-4433

1 other things that we learned was that the plant-2 specific conditions are very important, in terms of 3 not just the materials that are existing at individual 4 plants, but also their containment pool conditions in 5 terms of temperatures, pH, and, again, other materials that are within that sump pool environment. 6 So 7 really, when we see the individual submissions coming 8 in, and we've stressed this to industry time and time 9 again, that an understanding or a characterization of their unique mix, and their unique conditions is 10 really important. 11 I think at the end of the day, when we see 12 the submissions from industry, there'll be a certain 13 14 percentage that we look at the conditions, and based 15 on the research that we've already done, we'll be able to pretty clearly state well, there's probably not 16 There will be other areas where we may have 17 concerns. specific concerns that have been highlighted by the 18 19 research that we've already done, and then there'll be 20 other areas that we may have some gaps, or that we may 21 not know if there are issues that need to be addressed 22 for that specific set of plants that have a particular 23 mix of materials and conditions that we may have some 24 concerns about. And if that's the case, at that 25 point, it would be particularly appropriate to embark

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	16
1	on some possible additional confirmatory research to
2	validate the work that the industry is doing.
3	CHAIRMAN BANERJEE: What is it that you
4	would like the ACRS to do? I mean, this is a
5	subcommittee meeting, and then we are going to go to
б	a Full Committee meeting next week. What is the
7	MR. GEIGER: Well, let me say that right
8	now the industry is planning all of their tests, so
9	they have not they have done some preliminary
10	testing. They've come to the same conclusion that we
11	have, that there are some serious issues that need to
12	be resolved. Now, like Rob said, the different plants
13	are pursuing different strategies, and the additional
14	these strategies and tests will not be in place
15	until this summer, so they really will not have any
16	resolution to this until late into fall, probably,
17	when they will know exactly what the modifications
18	are, because they're putting in larger screens, and in
19	some cases the larger screens may in addition to
20	the larger screens, they may need to do other things,
21	like remove the materials that are problematic.
22	Okay. The question posed as to what I
23	would like the ACRS to do, at this point, I think my
24	impression was that the ACRS was interested in our
25	progress, and the status on what we have learned today
I	

(202) 234-4433

	17
1	in areas other than also just chemical effects. I
2	guess if I misread the subcommittee's intent, I
3	apologize.
4	MR. WALLIS: I guess we could talk a lot
5	about this. I mean, you've told us that you stopped
6	work, and if you went on, it would take you years to
7	sort of really solve the problem. And then you've
8	told us that each plant has a specific situation which
9	has to be worked out. Now is that plant going to
10	spend years working on that specific situation before
11	it's got an answer?
12	MR. XIAO: Dr. Wallis, this is Tony Xiao
13	again from Research. We would like to request that
14	ACRS at the subcommittee today, as well as the Full
15	Committee in March would look at what we have done so
16	far up to this point. As I stated earlier, the
17	purpose of this meeting and the March meeting is to
18	present the overall view of the program we have
19	completed so far. We have no plans to do any
20	additional research unless the industry has done
21	something like Paul and Rob alluded earlier, that we
22	feel it's necessary to do additional confirmatory. At
23	this point, we have no plans to do any more, so we
24	would like to request that ACRS look at this whole
25	package of the research and the reports we've done so
Į	1

(202) 234-4433

1 far given the context of the condition and the timing 2 we have, so that this is sufficient research for us to be able to support the regulatory decision in making 3 4 sure the industry is doing this properly in an 5 engineering manner that's appropriate to resolve these As far as plant specific, that has to be 6 issues. 7 seen, so to request ACRS just to write a letter to see 8 what your review is as far as the research work done 9 so far. 10 MR. WALLIS: We've already done that, and we're not going to learn much more today. It's been 11 12 commented on a year or so ago. Graham, can I answer your 13 MR. SCOTT: 14 question directly about the industry's intent? This 15 is Mike Scott, NRR. I would say a couple of plants have largely completed their chemical testing. 16 We 17 know of at least one that states, and have provided us data to indicate that they are complete with chemical 18 19 testing. 20 As was said, a lot of the rest of the 21 chemical testing will go on this spring and summer, 22 and the intent of the industry is still to show a 23 solution set to GSI-191 by the end of this calendar 24 year. Now if you do the time line on that, and 25 they're doing the chemical testing in the summer, it's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	19
1	going to be very challenging for a number of them to
2	perhaps react if they have trouble with their first
3	solution, to come up with a different one, and then
4	test that, so it's going to be tight. But we don't
5	anticipate that this is I think you referred to an
б	out there multi-year effort by the industry to do this
7	testing. The testing is to happen in calendar year
8	2007; and, hopefully, that will allow the industry to
9	provide us the responses to Generic Letter 2004-02
10	that are due by the end of this year.
11	And we, NRR, plan to come talk to you in
12	May about the status of the issue then, and we'd be
13	happy to tell you at that point whatever we know about
14	the chemical effects results that are available to us.
15	MR. WALLIS: Well, I know all that. The
16	thing we're taking this high-level view. The thing
17	that's a bit of concern is that all the steps forward
18	in understanding these problems so far seem to have
19	been made by NRC. And, originally, there was no
20	concern with chemical effects, and so there was some
21	concern, and then some work was done, and it was
22	discovered that yes, indeed, there are. And then it
23	was discovered that yes, indeed, they can have huge
24	effects on pressure drop. All this was discovered by
25	the NRC. I'm a little concerned about having the NRC
ļ	I

(202) 234-4433

	20
1	going out of the business of discovering what's going
2	on, leaving it all to industry.
3	MR. BUTLER: Dr. Wallis?
4	MR. WALLIS: Yes.
5	MR. BUTLER: John Butler, NEI. I object
6	to that characterization that it's the NRC who is
7	discovering this. The discovery of the effect of
8	chemical effects came out of the ICET program, which
9	was a industry-NRC jointly sponsored program. Now you
10	could argue - in fact, I would argue that it was
11	industry who put forward that program, and invited NRC
12	to participate in that program.
13	MR. WALLIS: I thought that industry was
14	telling the ACRS there weren't any chemical effects,
15	before eventually you were persuaded to do this.
16	MR. BUTLER: That is correct, yes. But,
17	actually, it was ACRS who was putting forward that
18	there were chemical effects, and both NRC staff and
19	industry were saying we did not believe that. But on
20	the ACRS urging, give yourself credit, then
21	investigated whether or not there were truly any
22	chemical effects.
23	MR. WALLIS: Maybe we should include some
24	other ideas about effects in that case.
25	MR. BUTLER: But the point I want to argue
I	

(202) 234-4433

	21
1	with you against is the characterization that it's NRC
2	who is always finding these issues, and that industry
3	is always responding. That has not been the case.
4	MR. WALLIS: Okay. Thank you. Maybe I
5	misrepresented it. History is something we can always
6	investigate if we want to, but we don't have to go
7	there today.
8	MR. XIAO: This is Tony Xiao again from
9	research. I just want to make it very clear to the
10	committee that we are not going out of business on
11	this research. All we're saying right now is we've
12	planned out the research in the past few years working
13	with the NRR, and in some cases working with industry,
14	like John pointed out. But we are all we're saying
15	right now is at this point we believe we have done
16	enough research to be able to really understand the
17	issues, and identify some issues, to let the industry,
18	given all the technical knowledge we've gained from
19	the past few years, to move forward, come up with
20	their specific solutions, if necessary. And we are
21	going to continue to monitor through NRR the industry
22	resolutions. And like Mike said earlier, whenever
23	there's need, we'll jump back in and do the research.
24	All we're saying, at this point we have no plans to do
25	any more, but we're not going out of business.
ļ	1

(202) 234-4433

(202) 234-4433

	22
1	CHAIRMAN BANERJEE: Let me just summarize
2	what I think, just to summarize my understanding.
3	What you're looking for from the ACRS then is to write
4	a letter saying that at the moment, we feel that the
5	research done has been adequate for its purposes, has
6	identified some issues, and now this has been handed
7	over to NRC, I mean, to the industry to deal with.
8	And then
9	MR. WALLIS: I think we've written that
10	letter already.
11	CHAIRMAN BANERJEE: Yes, so I'm wondering
12	what is it that you really want from us? Do you want
13	us to say we don't we see it's fine that you stop
14	research until the industry does something, and then
15	come back, and then you'll do whatever is needed to
16	validate or verify, or whatever? What is it that you
17	want?
18	MR. GEIGER: Okay. Well, let me say to
19	the point - at this point, we feel that the research,
20	the need for the research identified to-date has been
21	completed. And I know Dr. Wallis agrees with this
22	position, but right now, we have sufficient
23	information on all the sump pool chemistry issues to
24	at least realize that there is a significant problem
25	at some plants, and they may be making modifications
Į	

(202) 234-4433

	23
1	to mitigate those conditions. And I was going to
2	present some of the issues in this presentation about
3	what some of these are, but at this point, I thought
4	the - like you said, I would hope that the
5	subcommittee would conclude that, for the time being,
б	what we have done, including the PNNL work, is
7	adequate to sort of wrap-up this phase of the
8	research. And in the event that other issues arise to
9	this chemical testing, it would be handled on an as
10	issues arise basis.
11	CHAIRMAN BANERJEE: So the real thing that
12	you're the real questions you're putting to us is,
13	are you is the ACRS in agreement that research
14	should be stopped? I mean, that's what it amounts to.
15	MR. WALLIS: You've already wrote a letter
16	that said research should not be stopped. You wrote
17	this letter. We reviewed all these programs already,
18	and we looked at the major effects discovered, and we
19	said that we were not sure that it was a good idea to
20	stop research, because there were still these
21	questions were not resolved to the point where you
22	could quantify many of the effects, and so on. And I
23	don't see what we could add to that, unless you add
24	something substantial today that we didn't know when
25	we wrote the previous letter. I don't know why we
ļ	

(202) 234-4433

	24
1	should write another letter.
2	MR. TRAGONING: Let me jump in here a
3	little bit. Rob Tragoning from Research. Let me
4	relive a little bit of the history and try to get at
5	why we're here today, and try to address your comment,
6	and Dr. Banerjee's comment, as well.
7	The last time we were in front of you, I
8	believe was June, and then prior to that was maybe
9	last February or so. And during each of those times,
10	we've been presenting the status of the research to-
11	date. And at the time, in both February and June, it
12	was ongoing. Okay? What the purpose of today is, is
13	we've had activities in June that have subsequently
14	finished, and we had activities in June that we hadn't
15	that were preliminary that we didn't provide
16	results, so what Erv and the rest of the presentations
17	today are structured to do is to present information
18	that either indicates programs that we haven't
19	presented to you in the past; for instance, the peer
20	review report, okay? That information we have not
21	presented to ACRS in the past, because in June it was
22	still in development and preparation. It wasn't
23	mature enough to present to the committee.
24	There are several other areas that were
25	not quite finished in June; for instance, the

(202) 234-4433

	25
1	development of the head loss correlation. That work
2	has been completed, as well as some of the - I think
3	the PNNL testing was done. In fact, that's not being
4	presented today, is it?
5	MR. GEIGER: Just some follow-on testing
6	that we did in response to the initial findings.
7	MR. TRAGONING: So all today will do will
8	fill in the gaps, and provide additional information
9	for other programs that we haven't previously
10	presented. Now if you choose, based on that
11	information, to go back and revisit any of the
12	positions that you've stated in previous letters, then
13	that would be particularly appropriate. If you choose
14	not to, I think that might be particularly
15	appropriate, as well. If you learn something, or we
16	say something from the peer review comments, for
17	instance, that triggers some additional thoughts that
18	you'd like to capture, that would be appropriate. But
19	other than that, I don't know that we're specifically
20	asking for a letter, as much as we're providing
21	status, and continual update of the programs that
22	we've previously presented in the past. I know
23	there's been a bit of a confusion, but hopefully that
24	will hopefully we can come to some agreement.
25	MR. WALLIS: Met with the commission, I
I	I

(202) 234-4433

	26
1	forget exactly what the date was.
2	MR. TRAGONING: July, maybe, or August.
3	MR. WALLIS: After we had met with you in
4	June, and I remember saying that we had our say, that
5	the staff knew what to do. And really, it was
б	something they had to work out between NRR and
7	industry, and we would sort of follow events, but we
8	were not - we had our say. We're not sure we could
9	add anything. Essentially, that's what I was saying
10	at that time, and I think I feel the same today. I
11	mean, this is deja vu, what I've seen in the reports
12	is simply a collection of what we already knew. And
13	the peer review simply confirms, I think what we
14	already thought.
15	MR. TRAGONING: Right. There are some
16	interesting ideas in the peer review that may need
17	some discussion, and possible consideration. But
18	again, I look at this meeting as simply - as filling
19	out and providing an update on the research that we've
20	done, as well as giving you an opportunity. We've
21	essentially dumped a number of these reports on the
22	committee, and we wanted to use this vehicle to
23	address any comments or questions that you may have
24	had as a result of reviewing those reports.
25	MR. WALLIS: I'm sorry to get in this

(202) 234-4433

1 discussion. I read this stuff, and I'd like to say 2 that the Pacific Northwest report - now the most 3 interesting thing they discovered was that the order 4 in which you put the stuff in can make an enormous 5 difference to the pressure drop. Having discovered this in one series of tests, they were told to stop 6 7 their work. And then Argonne discovered that yes, you 8 could get these enormous pressure drops with certain 9 chemicals. Now you think the rational thing to do is to say ah-hah, those are important effects. 10 Now I want it done right, so I understand what's going on. 11 Instead of that, the attitude of RES is stop the work. 12 We said this before. 13

14 CHAIRMAN BANERJEE: And one thing pointed 15 out in the peer reviews is that at least some of the 16 peer reviewers felt there were a number of issues 17 which warranted more work. And, in fact, there was a suggestion that the work be on a smaller scale. 18 Thev 19 felt these very large experiments were very expensive, 20 and didn't add - perhaps in the beginning they were 21 useful, but to investigate some of these effects at 22 relatively smaller scale, less expensive program 23 looking at some of the issues raised by them would be useful. 24 In particular, some of the peer reviewers 25 raised the issue that development of simulation tool

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	28
1	which was based on existing tools were, perhaps, not
2	the right direction to go. There were different
3	suggestions made. And, in fact, some sort of
4	confirmatory or predictive tool which would actually
5	look at some of the non-equilibrium thermal dynamics
6	was suggested, as this was not an equilibrium process.
7	I hope those issues are going to be addressed. You're
8	not just going to talk about the peer review, but
9	actually tell us what you're going to do about the
10	issues we raised.
11	MR. GEIGER: All I can say to that issue
12	is that it was a very good comment, and we looked at
13	four different
14	CHAIRMAN BANERJEE: None of them really
15	
16	MR. GEIGER: And none of them really gave
17	us anything.
18	CHAIRMAN BANERJEE: did the job.
19	MR. GEIGER: So then my question to you
20	is, is what would it take to actually develop those
21	programs. I mean, these industry programs out there
22	have been out there for a long time, so what would it
23	take to complete those to where we could use them?
24	And when you're looking at the time spent, and when we
25	have to resolve this issue, by the time those models
ļ	I

(202) 234-4433

	29
1	or programs proposed would be completed to the
2	satisfaction where they would be useful, it would be
3	too late for this effort, so maybe we could use them
4	for some other effort at some other time, but that's
5	really not the objective of this project.
6	CHAIRMAN BANERJEE: That was not the
7	feeling that -
8	MR. GEIGER: So what we decided is we're
9	not going to use
10	CHAIRMAN BANERJEE: That was not the
11	feeling that some of the people in the peer review
12	panel had. I mean, they felt that those tools were
13	not appropriate that was used, but that there were
14	appropriate tools. And I can go through all the
15	comments, I read them in detail.
16	MR. TRAGONING: But I don't know that we
17	had consensus on that issue. We had a number of
18	different views. We had some views that essentially
19	I think it was universally realized, and we agree
20	that the method, or the tools that we were using
21	weren't particularly appropriate. However, in terms
22	of what the path forward was, I would argue that there
23	was no consensus. We had five different peer
24	reviewers, and we had comments raising from the
25	development of codes may not be a very useful exercise
11	

(202) 234-4433

1 for this instance. We had some comments that said we 2 could use thermal dynamic codes and, essentially, 3 calibrate our the kinetics to use existing codes. And 4 then we had some comments that said no, you have to 5 fully develop a kinetic code to really address these 6 issues, so I don't know that we had any consensus from 7 the peer reviewers on path forward with that 8 particular issue. 9 CHAIRMAN BANERJEE: What would be useful, 10 I think, is when you deal with the peer reviews, to summarize their comments, and to tell us what the NRC 11 12 thinks about it. I mean, you may or may not agree with the peer reviewers, and some of them have written 13 reports which are almost as long as your reports. 14 15 MR. GEIGER: Yes. So it would be nice to 16 CHAIRMAN BANERJEE: 17 hear the main issues that there is, and what the NRC wants to do with it. 18 19 MR. GEIGER: Unfortunately, I'm not really 20 qualified - I'm not a chemist, or at least I'm not 21 qualified to respond to all of those peer review 22 issues at this point, and I guess we could --23 MR. WALLIS: Well, you could skip all the 24 lists of all the reports, and go to your slide where 25 you talk about what the results are, and what you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	31
1	learned from them. And we should stop interrupting
2	you, perhaps.
3	MR. GEIGER: No. I understand.
4	CHAIRMAN BANERJEE: It was useful to know
5	what we are being asked to do.
6	MR. GEIGER: Well, I guess what I was
7	trying to point out, though, is that if you look,
8	we've done - we have six NUREG
9	MR. WALLIS: You've produced a lot of
10	paper. All right. Now what useful results came out
11	of it?
12	MR. GEIGER: What useful?
13	MR. WALLIS: You produced a lot of paper.
14	MR. GEIGER: Paper, yes.
15	MR. WALLIS: Now what useful results came
16	out of the work?
17	MR. GEIGER: Well, NIS
18	MR. XIAO: We said earlier you also
19	mentioned, Dr. Wallis, and that, first of all, we have
20	confirmed some of the, for example, chemical effects.
21	That's brought up by ACRS and we have confirmed that,
22	and industry also right now is taking action on that.
23	And there a lot of useful results came out of all this
24	research. I would say that there are other head loss
25	correlation, that's also a new one. You look at the
ļ	

(202) 234-4433

6224 correlation several years ago, we realize there are deficiencies in there, so Krotiuk in his contract started to work on that.

4 MR. WALLIS: Are they going to stand up 5 and say that we discovered that there was an effect with aluminum oxhydroxides. We did a computer 6 7 research program. We understand the chemistry, we 8 know how to predict when these things happen. We know 9 how to predict what the effects are, we know that there's a critical level of concentration before 10 there's any effect on head, we can predict that for 11 any plant. You're not going to give that kind of a 12 nice crisp presentation. 13 14 MR. XIAO: No, we're not.

MR. WALLIS: That's what I'd like to see.
MR. XIAO: That's a very --

MR. WALLIS: Are we ever going to get it? MR. XIAO: That's correct, I don't think we're ever going to get there, to be able to tell you categorically, or anybody say hey, we've got developed this tool, we understand completely. Nobody has to do tests, or I can tell you exactly how to solve the problem. I don't think we'll ever get there.

MR. WALLIS: Right.

MR. KRESS: The other way it could go is

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

1

2

3

(202) 234-4433

	33
1	rely on the plant-specific tests for a relatively
2	clean resolution of the issue on a temporary basis,
3	based on your insights, and then to do confirmatory
4	research to develop this integrated overall predictive
5	model, which I would like to see, also. And use that
6	to say did we do it right? And that could be the
7	MR. WALLIS: Otherwise, you may be
8	revisiting this problem forever.
9	MR. KRESS: Yes. That could be the
10	comment we'd like to make.
11	MR. WALLIS: Well, we made that comment
12	before.
13	MR. KRESS: Yes, we've done that before.
14	That's not original with me.
15	MR. WALLIS: Okay.
16	MR. GEIGER: Okay. I'm sorry. Is there
17	where you want me to go?
18	CHAIRMAN BANERJEE: Do you have any
19	information you could give us about what industry is
20	actually doing? Because if they're doing a number of
21	ad hoc tests, they may or may not be addressing the
22	issues. And we have no idea what they're doing in
23	response to this. For example, the peer reviewers
24	bring up issues related to temperature changes that
25	you can basically set up a mass transfer loop, where
	I

(202) 234-4433

you're redissolving and depositing stuff. Now there 2 are a whole lot of things which they discuss which 3 weren't addressed up to now, and could be addressed, 4 they think, in relatively small-scale tests. So what is industry doing? I mean, these are reviews that the peer reviewers are making now. 6 If you give the industry work sort of equivalent peer review, the 8 issues would still be there.

This is Paul Klein from NRR. 9 MR. KLEIN: 10 I think in the May meeting we'll try to provide you a good summary of industry tests, what's going on, what 11 12 results they're seeing, and NRR's perspective on those From my viewpoint, the research has 13 test results. 14 been very helpful, because as we go out and we try to 15 understand the plant-specific testing that's underway, trying to understand the effects of some of these 16 parameters, and to see the effects of different 17 buffers that have shown to be different, and the 18 19 research results have been very valuable to us, and we 20 have provided feedback to different industry vendors 21 on their test techniques, and probably asked better 22 questions about how they're conducting their tests as 23 result of the information we've learned from а 24 research.

> Well, let's go on. CHAIRMAN BANERJEE:

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

5

7

(202) 234-4433

35 1 MR. GEIGER: Okay. So as part -- well, 2 this is a summary of what we've learned. So we 3 learned that we can form a gelatinous material in certain post LOCA environments. We've learned that 4 5 Nukon with sodium hydroxide buffer environments produce a white precipitate that deposits and causes 6 7 We've also learned that Nukon with TSP head loss. buffer produced a precipitate which deposited on 8 9 insulation fibers, which meant that now people with TSP and Nukon are going back to see how they can 10 11 resolve this interaction. Nukon cal sil with a TSP 12 buffer produced a white precipitate, again, which coated the inside of all the piping and so on, which 13 14 could lead to the mass transfer, as Dr. Banerjee has 15 just mentioned. That is actually a downstream effect that research has not really been involved in, that's, 16 17 I guess, the --Presume that these 18 MR. WALLIS: 19 precipitates were all different, because they had different chemicals involved? 20 21 MR. GEIGER: Yes. 22 What were the precipitates MR. WALLIS: 23 They were all white, but what were they? then? GEIGER: Well, we had calcium 24 MR. 25 phosphates.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	36
1	MR. WALLIS: Were they actually analyzed?
2	I mean, you don't say.
3	MR. GEIGER: All of these were covered in
4	previous
5	MR. WALLIS: But if you'd say what the
6	precipitate was, that might help us.
7	CHAIRMAN BANERJEE: Some of these have
8	reverse solubility effects.
9	MR. WALLIS: Right. You heat them up,
10	they right.
11	CHAIRMAN BANERJEE: Heat them up.
12	MR. TRAGONING: Yes, we provided all this
13	information.
14	MR. GEIGER: This has all been
15	MR. WALLIS: You don't put it on the
16	screen. If you just say white precipitate, that's
17	sort of vague.
18	MR. TRAGONING: I agree.
19	MR. GEIGER: I'm sorry. I was trying to
20	limit to a one-hour
21	MR. WALLIS: Would it produce phosphates
22	of calcium?
23	MR. TRAGONING: Yes, calcium phosphates in
24	the TSP.
25	MR. WALLIS: Which has a reverse
I	I

	37
1	solubility, doesn't it? You heat it up, and it
2	precipitates, or is that
3	CHAIRMAN BANERJEE: Some of them.
4	MR. WALLIS: Some of the calcium salts do,
5	so you put them through the core, they're going to
б	precipitate in the core. Is that right?
7	MR. TRAGONING: Well, that's not a
8	specific effect that we had looked at in our research.
9	MR. WALLIS: Yes, but this is raised by
10	many of the peer reviewers.
11	MR. TRAGONING: No, I understand.
12	MR. GEIGER: That's an issue that's being
13	evaluated by the PWR Owner's Group, and their
14	evaluation of effects within the core is that issue of
15	calcium precipitation.
16	MR. WALLIS: So it's all someone else's
17	work, someone else's responsibility to figure it out?
18	MR. GEIGER: No, I don't think that's an
19	accurate characterization. I think that industry has
20	a role in this, and NRC does, as well.
21	MR. WALLIS: All right.
22	MR. GEIGER: So what we have done, the
23	effect of this research was to prompt industry to
24	investigate alternatives to resolve some of these head
25	loss issues, and there are plants that are looking at
I	I

(202) 234-4433

1 changing their buffers. Some plants are removing or 2 relocating problematic materials, like aluminum items. installing debris 3 They're interceptors to keep 4 insulation fibers and things from going towards the 5 sump. They're reducing latent debris, installing jet shields to minimize the amount, or to reduce the zone 6 7 of influence so that they don't have as much debris 8 generated which could then react in the sump pool. 9 Do you have shields? MR. WALLIS: 10 MR. GEIGER: Yes. MR. WALLIS: You know where the LOCA is 11 12 going to be, so you put a shield there? MR. GEIGER: Well, you know where the LOCA 13 14 is going to be, yes. It's on the RCS pipe, typically, 15 so you would either put deflectors or something like 16 that to protect. And it's commonly done, if you don't 17 want insulation to come off, you'll put a structure in front of it. 18 19 Between the pipe and the MR. WALLIS: 20 insulation. MR. GEIGER: Yes. But these are all 21 22 things that utilities are looking at to mitigate some 23 of these issues. 24 CHAIRMAN BANERJEE: One of the issues the 25 peer reviewers raised was the organic materials that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	39
1	were there in the insulation, and their reactions.
2	Right?
3	MR. GEIGER: Yes. Are you talking about
4	the binders in the insulation?
5	CHAIRMAN BANERJEE: Yes, yes, yes.
6	MR. GEIGER: Well, the organics in the
7	fiberglass insulation, the part that's close to the
8	surface will burn-off. Right? And as the temperature
9	decreases across the gradient of the insulation, the
10	outer layers may have some organics. But my
11	experience has been with plants that operate for a
12	long time those temperatures also eventually
13	volatilize a lot of those, so I don't know how much of
14	those have been
15	CHAIRMAN BANERJEE: But we haven't seen
16	any assessment.
17	MR. GEIGER: No, we have not. No.
18	CHAIRMAN BANERJEE: But in the
19	MR. GEIGER: What we have done is in the
20	tests we've used some of these Nukon blankets with
21	this material on it, so in that respect it has been
22	simulated. Are you going to add something, Rob?
23	MR. TRAGONING: Yes, we did have those
24	organic components within the ICET.
25	MR. GEIGER: Now there are other issues we
Į	I

(202) 234-4433

1 looked at, like how about lubricants, like the reactor 2 coolant pump waste oil tank, and that sort of thing, 3 that may add some issues. Now we haven't discounted 4 that that would happen, but typically, there isn't 5 that much, other than the reactor coolant pumps, there aren't any other lubricated - they're usually lifetime 6 7 lubricated bearings and that sort of thing in the rotating equipment, so you wouldn't expect a lot of 8 9 oils and things to be in containment, especially since they're a source of fire, so fire protection practices 10 keep plants from putting any lubricants and things in 11 12 containment. Now it was brought up, like I said, that

13 14 the reactor coolant pump waste oil tank would spill 15 water into the pool, but it typically has a gooseneck vent on it so that it would prevent the oil from 16 17 coming out. There's a trap, and they would also have to be submerged in a pump. Now I agree that we've 18 19 sort of looked at that and said well, really, that may 20 real problem, but we haven't not be а really 21 investigated in any real detail.

22 Other carbon parts, I don't know. I guess 23 they're in the LOCA, you could have things come off 24 the insulated cables and things, that sort of thing, 25 but we did not look at that. Well, I'm not sure the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	ICET didn't.
2	CHAIRMAN BANERJEE: Well, this at least be
3	put to bed in the sense that an issue will address
4	that, or
5	MR. GEIGER: What's missing, and I agree
б	with you
7	CHAIRMAN BANERJEE: Assessment.
8	MR. GEIGER: What's missing is a real
9	answer-by-answer. And we've sort of answered them in
10	general, and some of the things, as the research was
11	going on. Part of the problem is that the peer review
12	was going concurrent with the research, so when the
13	research was at a certain point, it might not have
14	been possible to incorporate a lot of these things
15	into existing research. Now some of the other things
16	they recommended, we may look at. You're right, we
17	probably should come up with a point-by-point
18	response. We have not done that.
19	MR. KLEIN: Erv, if I could add to that -
20	Paul Klein from NRR. In some of the industry tests to
21	support their chemical model that are in the WCAP that
22	was submitted to NRC, they evaluated fiberglass that
23	both had binder and did not have binder, and they did
24	not see a significant effect between the two different
25	types of material, as far as what was released into
I	I

(202) 234-4433

	42
1	the test solution.
2	CHAIRMAN BANERJEE: Well, in a more
3	general way, the peer review, which we are going to
4	hear about was, I think, a very useful exercise, and
5	NRC should be complimented on subjecting themselves to
6	this. And some of these peer reviewers are pretty
7	expert at what they did. Now they made some comments,
8	and I think we should tabulate them, would be my
9	suggestion, and say what we are doing about it, if
10	anything. We can say industry is doing this, or this
11	is not important, we don't feel this is - but at least
12	we should somehow - the value of this peer review
13	process is very high, I think, and if you don't
14	respond to something, I think you should say we choose
15	not to respond to it. Okay? That's fine.
16	MR. GEIGER: I agree with you, and
17	unfortunately, we have not done that on a point-by-
18	point, like I said, as we went along. But
19	historically, since I can't speak to all of the how
20	they were incorporated in different research projects,
21	because I was not involved at that time, and my intent
22	for bringing this issue up in this meeting was I
23	figured that somehow a lot of those comments needed to
24	be addressed. And, quite frankly, when I got into it,
25	I realized I was overwhelmed by the number of comments
ļ	1

(202) 234-4433

(202) 234-4433

and how it went.

1

2 But you could maybe CHAIRMAN BANERJEE: 3 categorize them and say okay, we have evidence that 4 organics are not a problem. This is what industry has 5 already done. They have shown that it's not, we had them in the ICE test, or wherever, so that we've dealt 6 7 with these in a systematic way. And, actually, they 8 have some comments which you say could lead to a need 9 for additional work, which we are not prepared to do 10 right now. I mean, may as well be straightforward about, and say well, we just don't have the money or 11 12 something. Well, another thing is take-MR. WALLIS: 13 14 up of CO2. Several reviewers talked about take-up of CO2 from the containment --15 16 CHAIRMAN BANERJEE: And the aging of 17 concrete. Some carbonizing things, 18 MR. WALLIS: 19 which hasn't been part of the discussion so far at all 20 of chemical effects. The thing that surprised me a 21 bit was there were some really interesting comments by 22 reviewers about things being misleading, or erroneous, 23 or totally inadequate and so on, and so on, and then 24 in the introduction someone presumably from NRC said 25 that the principal objectives have been met, and the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	44
1	reviewers confirm the technical adequacy of the
2	research programs. It's hard to see from some of the
3	comments of reviewers that that was true.
4	CHAIRMAN BANERJEE: Maybe the overall gist
5	of it may be that way, but
6	MR. WALLIS: As long as it was very
7	preliminary, as long as this was just try it and see
8	what happens, I think you could say that you did meet
9	your objections, but then there was no follow-up. It
10	was all left to industry to follow-up.
11	CHAIRMAN BANERJEE: Well, even if we leave
12	it to industry, it would be valuable to convey to them
13	the issues that came up in the peer review, and what
14	the disposition of these issues was.
15	MR. WALLIS: How about CO2 take-up? Are
16	we now going to require that industry do that?
17	MR. GEIGER: Well, when you model the sump
18	screens and you do these flow tests, it's open to
19	atmosphere because they're done at atmospheric
20	conditions in these test facilities, so they would
21	unless you put a spray to it that would increase the
22	CO2, it would replicate pretty much what you see in
23	containment for the duration of the accident, except
24	for the first initial spray. Now how much CO2 is in
25	the volume of the containment, that would affect what
Į	I

(202) 234-4433

	45
1	happens. I guess I can't really make a judgment on
2	that. I would think that there's negligible CO2,
3	looking at what the percentage of CO2 would be.
4	MR. WALLIS: Well, someone actually did
5	the quantitative analysis.
6	MR. TRAGONING: Rob Tragoning, and let me
7	comment because Professor Banerjee and Professor
8	Wallis have both raised some good ideas for path
9	forward here. And the other piece of information
10	that's missing, as part of this peer review, while we
11	had all the experts together, we also conducted a PRT.
12	Now we're not going to we haven't finalized or we
13	haven't summarized the results of the PRT. We're not
14	going to summarize that today; although, many of the
15	peer review comments you might imagine came back up
16	again in the PRT. But the idea behind the PRT, we got
17	- because of the volume of peer review comments that
18	we got, we wanted a way to try to prioritize and rank,
19	and get some idea, at least from the peer reviewers'
20	perspective, which comments were, they felt, most
21	important or appropriate for future consideration. So
22	one of the exercises that we're doing is we're
23	continuing to evaluate the PRT responses, and evaluate
24	which of those, again, issues the peer reviewers felt
25	were most important. And my expectation would be that
	I

(202) 234-4433

	46
1	an outcome of that would be that the PRT results would
2	be shared with both the industry and NRR, and there
3	would be some consensus, or some joint resolution that
4	we would try to address those and figure out which
5	ones of these we feel are issues, and which ones we
6	feel like we've appropriately addressed. So that's
7	the other piece of missing information that we're not
8	going to have today, but I think it ties into some of
9	the path forward issues or direction that you've been
10	discussing.
11	CHAIRMAN BANERJEE: Okay. That's good.
12	MR. GEIGER: Now depending on what actions
13	the plants take, a lot of these may be moot, a lot of
14	these suggestions. It depends on how much fiber we
15	end up with in which plants, so it's going to be very
16	plant-specific. And I agree, at the point when
17	certain plants make certain decisions, we need to have
18	the capability to evaluate what they're doing. And,
19	perhaps, that's what we need to look at. But I also
20	take your suggestion on actually tabulating all of
21	these peer review comments and coming out with some
22	sort of either resolution and why we did it, why we
23	didn't do it, or what needs to be done. That's a
24	point well taken.
25	CHAIRMAN BANERJEE: It would also be
	I

(202) 234-4433

(202) 234-4433

	47
1	useful if all of you took an impartial look at it and
2	said that well, should we really - in spite of what
3	management says, should we really have, as some of the
4	peer reviewers suggested, a relatively small scale
5	program in place to look at some of these effects? So
6	I think it would be nice to divorce this a little bit
7	from what management wants, and what is actually
8	required. They're two different things.
9	MR. GEIGER: Okay.
10	MR. TRAGONING: Again, that's not trivial.
11	Let's go back over the history. We started the
12	chemical experience with conducting a very large
13	number of small scale tests, and the immediate
14	feedback we got from that is they were too simplistic,
15	and we need to conduct multi-scale integrated testing
16	so that we could look at the synergism of all these
17	various variables. So now we're at that point where
18	we did the multi-scale, larger scale testing, and we
19	did find out some things, some combinations that were
20	particularly appropriate.
21	Now I think what the peer reviewers were
22	recommending to say okay, at that point, now you
23	potentially need to go back and do some additional
24	smaller scale tests, focusing on the effects that were
25	identified in the integrated test to try to get a
ļ	

(202) 234-4433

(202) 234-4433

	48
1	better understanding of what the effect is of key
2	variables on the specific precipitates. And if I look
3	at some of the work we've done, as well as some of
4	industry's work, there's certainly been a move back to
5	more small scale experiments. Now it's not clear to
б	me yet what additional small scale experiments may be
7	needed, as well as what additional integrated tests
8	may be needed. And I think that's where the
9	industry's research that they're doing now to identify
10	what issues really remain once the specific mitigation
11	procedures were developed, I think it's just
12	particularly appropriate and important to determine
13	which way we really need to go at this point.
14	CHAIRMAN BANERJEE: Okay.
15	MR. XIAO: This is Tony Xiao from
16	Research. Let me just add to what Rob said.
17	Consistent with what I said earlier, we're not going
18	out of business. What we will do is to work with NRR
19	very closely. We will watch, we will monitor what
20	industry's implementation plans are in resolution of
21	these issues. And based on that, we'll make a
22	decision down the road as to what - any research would
23	like to do small scale.
24	MR. GEIGER: And as Rob mentioned, we
25	started out with a small scale, and then this is the
I	

(202) 234-4433

(202) 234-4433

	49
1	issue, and I've always faced this quite often, is that
2	you do the small scale - well, how do you know it's
3	really representative of what the macro is doing, so
4	then you do macro tests to actually simulate - and
5	I've worked at the utilities where we've done tests,
6	put in the parameters of our plant and we test it, and
7	this is what we have. There's no budget assigned to
8	do esoteric research and things, we try to solve the
9	engineering problem at-hand. So, I guess, that's why
10	I'm so used to, but when somebody does a small scale
11	test, how does it look on a macro? And if you do
12	macro, then well, how about if we do calculations to
13	calculate it. You do calculations, well, you have to
14	demonstrate it with some tests, so it's a circle. You
15	do your test, then your calculations, so on, so it
16	ends up that you have to do all three. And I think
17	we've pretty much done all three of those things.
18	We've done the small scale, and I'll go later on into
19	some additional testing that we did at ANL, the next
20	presentation. We did some testing at ANL at the
21	request of NRR to investigate the surrogate
22	recommended by the WCAP, and also then we looked at
23	some
24	CHAIRMAN BANERJEE: What is the surrogate?
25	MR. GEIGER: The aluminum oxyhydride, the
ļ	

(202) 234-4433

(202) 234-4433

	50
1	way they produce it.
2	MR. XIAO: That's scheduled. We'll start
3	that at 10:50 this morning.
4	CHAIRMAN BANERJEE: Okay.
5	MR. GEIGER: Okay. And that was done by
6	Dr. Shack. Unfortunately, he's not here. Since the
7	budgets for the research had sort of lapsed and the
8	contract's run, I didn't feel I could impose on him to
9	make a presentation, so I'm presenting his paper
10	today. I'm sorry. But we scheduled for today. And
11	I'm sorry if I misread the subcommittee's intent on
12	what you wanted to see today, but when I present some
13	follow-on studies and chemical effects head loss
14	research done at ANL, and then well, the peer
15	review, which, after discussing with you, I think
16	we've already discussed the peer review, and we know
17	where it's going. This afternoon we'll have a
18	presentation on the pressure drop research done, and
19	then the correlation down at
20	CHAIRMAN BANERJEE: But these two, will
21	they take into account chemical effects, or they're
22	just the
23	MR. GEIGER: These are done with - and
24	this is the one where Dr. Wallis had said that the -
25	we found out that the sequence of addition of the
ļ	I

(202) 234-4433

	51
1	things - but there are no chemicals. These were done
2	using fiberglass calcium silicate, and then we did
3	some coating chips to see what coating chips would
4	affect. It was basically a particulate
5	CHAIRMAN BANERJEE: And these I
6	remember Mr. Krotiuk's previous presentations.
7	Refresh my mind as to whether it takes the sequence of
8	deposition into account, or not?
9	MR. GEIGER: Yes, it does.
10	CHAIRMAN BANERJEE: It does.
11	MR. GEIGER: It was a topic from the last
12	meeting, I understood the subcommittee was interested
13	in.
14	MR. WALLIS: So it would appear that
15	you're asking ACRS to give you feedback on these four
16	items that you're going to present?
17	MR. GEIGER: Yes.
18	CHAIRMAN BANERJEE: And what will you
19	present to the main committee next week? Right?
20	MR. GEIGER: Well, I'm not sure how the
21	main committee meeting was scheduled. I'm not sure
22	what I'm going to present to the main committee at
23	this point. I don't know if anybody has any
24	suggestions.
25	MR. XIAO: At this point - this is Tony

(202) 234-4433

	52
1	Xiao from Research. I assume we'll present the same
2	material, unless you have other ideas, or the main
3	committee wants to do something. It's the same
4	material.
5	MR. WALLIS: Until we see it, we won't
6	really know.
7	MR. KRESS: Normally, we try to give some
8	guidance on what we want to hear.
9	MR. WALLIS: Well, I guess you've got to
10	do better than you did in the first hour today.
11	MR. XIAO: We certainly hope so.
12	CHAIRMAN BANERJEE: All right.
13	MR. WALLIS: Okay. So are we going to the
14	South Sea somewhere here?
15	MR. GEIGER: Yes, that would be good, but
16	a day like today with the weather out there. Is
17	Paulette here?
18	MR. TRAGONING: She's getting her memory
19	stick. Do you have your presentation?
20	MR. GEIGER: It's on here, unless she
21	changed something.
22	CHAIRMAN BANERJEE: Well, actually
23	MEMBER WALLIS: Are there slides?
24	MR. GEIGER: Yes.
25	CHAIRMAN BANERJEE: How did you select the
	I

	53
1	peer reviewers? It was a very
2	MR. GEIGER: Well, maybe Rob could respond
3	to that.
4	CHAIRMAN BANERJEE: In fact, you made a
5	comment that you got suggestions from ACRS and staff.
6	MR.GEIGER: We looked at well, experts
7	in various fields that were related to the power, like
8	radiation.
9	CHAIRMAN BANERJEE: The point that was
10	weak in the peer review was the pressure loss parts.
11	The chemistry was strong, but we didn't get enough
12	feedback on the pressure loss.
13	(Off the record comments.)
14	MR. CARUSO: I have one more piece of
15	information. Mr. Scott from the staff told me this
16	morning that the staff had sent out a letter regarding
17	the Research use of the information from the use of
18	this research information, and although I'm on the CC,
19	I don't recall receiving it, and I'll pass it out
20	right now. So we're still waiting for
21	CHAIRMAN BANERJEE: Should we switch
22	around the two presentations? Someone said she went
23	to get her memory stick, but I have it here.
24	MR. WALLIS: Are we on the record with all
25	this discussion here?
I	I

(202) 234-4433

	54
1	MR. CARUSO: Why don't we take a little
2	
3	CHAIRMAN BANERJEE: Yes. If she's not
4	here, then
5	MR. CARUSO: Why don't we take a little
6	break here.
7	CHAIRMAN BANERJEE: Okay. Let's go off
8	the record, take a small break.
9	(Whereupon, the proceedings went off the
10	record at 9:38:38 a.m., and went back on the record at
11	9:45:44 a.m.)
12	CHAIRMAN BANERJEE: Okay. Let's go back
13	into session. Are you ready, Paulette? We're back in
14	session.
15	MS. TORRES: Good morning. My name is
16	Paulette Torres, and I represent Office of Research,
17	Division of Civil Engineering and Radiological
18	Research. I am the
19	CHAIRMAN BANERJEE: Bring that a little
20	closer.
21	MR. WALLIS: Is the mic on?
22	MS. TORRES: Peer review of GSI-191
23	Chemical Effects Research Program. The purpose of
24	this presentation is to primarily present the
25	reviewers' significant key findings. NUREG-1861
ļ	I

(202) 234-4433

described the Chemical Effects Peer Review assessment process, and summarized the reviewers' significant findings. NUREG-1861 also compiles the formal review reports received from each peer reviewer. The final assessment reports of the peer reviewers are included as appendices to NUREG-1861.

7 The Chemical Effects Peer Review consisted 8 of five members, and it is important to mention that 9 this review is not a consensus review. Each reviewer 10 was asked to provide an individual evaluation based on 11 their particular area of expertise, and the Peer 12 Review NUREG-1861 was published December 2006.

The objectives of the review are to assess 13 14 the technical adequacy of research activities related to the chemical effects in pressurized water reactor 15 sump pool environments, to have the peer reviewers 16 17 recommend improvements to research programs in the area of chemical effects, and to identify additional 18 19 important technical issues that should be addressed. 20 And to attempt to gain a thorough understanding of the 21 relevancy of these chemical effects in the post LOCA 22 environment.

The research project addressed by the peer
review included the integrated chemical effect testing
at Los Alamos National Laboratory, the ICET follow-up

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

testing and analysis, also known as the aluminum chemistry research, also conducted at Los Alamos. The 3 chemical speciation prediction, also known as the 4 Thermal Dynamic Simulation, conducted at the Center of Nuclear Waste Regulatory Analysis, and the chemical loss research conducted effect head at Argonne National Lab.

This table, you have seen it before, but 8 9 we wanted to, again, present that the chemical effect consisted of five members selected from industry and 10 academia, and they were selected for their diversity 11 12 and their affiliations, and technical expertise. The review group participated in kick-off meetings 13 and 14 final meetings, which promoted the discussion, and enabled the members to exchange information, 15 and 16 address questions.

developed individual 17 The members preliminary reports, as well as individual final 18 19 reports, and those were provided as appendices to the 20 NUREG, that provided the formal assessment of both the 21 prior and ongoing research activities. Next slide.

22 I just want to say that the summary of key 23 findings - they are part of the NUREG, and I just want 24 to highlight them, because there were a lot. I'm just 25 going to highlight the ones that we thought were very

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

7

	57
1	important to share.
2	MR. WALLIS: It's strange. I mean, bullet
3	one and bullet three seem to be in disagreement.
4	MS. TORRES: For bullet one
5	MR. WALLIS: You've simulated the
6	principal variables, and yet the ones which you
7	haven't simulated maybe have the most impact. It
8	doesn't seem to make any sense.
9	MR. GEIGER: Those were the findings, so
10	I guess I mean, this in other words, what this
11	states is there are different reviewers, there are
12	five reviewers and different reviews
13	MR. WALLIS: Okay. So that's two
14	different people speaking. Right?
15	MR. GEIGER: Yes.
16	CHAIRMAN BANERJEE: I guess, again we come
17	back to how you might want to present this, that when
18	you have something like that on a slide it really begs
19	the question. I mean, if you put it as individual
20	reviewer comments, and Reviewer 5 said this, and
21	Reviewer 2 said that, that would be
22	MR. GEIGER: Well, it wasn't a consensus
23	so there wasn't a vote, but yes. Okay.
24	MR. WALLIS: Number two is the vaguest
25	possible conclusion.
l	I

(202) 234-4433

	58
1	CHAIRMAN BANERJEE: What you are showing
2	is the texture of the reviews here. All right.
3	MS. TORRES: Well, to support number one,
4	bullet one, I got that they agree on the type of
5	materials that were presented in the research testing,
6	and they said that they have been appropriately
7	selected.
8	MR. WALLIS: Well, my summary of the key
9	findings is that they all agree there's a long way to
10	go before you have much understanding of what happens
11	chemically in a sump.
12	CHAIRMAN BANERJEE: Wouldn't that be
13	better to say here? I mean, that
14	MR. GEIGER: Would we be done then?
15	MR. WALLIS: That's really what they say.
16	They talk about all kinds of species which could
17	happen, and all kinds of other effects which could
18	occur, and so on. There's a long way to go before you
19	really have confidence and you know what's happening.
20	CHAIRMAN BANERJEE: And then you could say
21	why you don't agree with that. That's fine.
22	MR. GEIGER: Well, it's interesting,
23	because if you look at this comment, the third bullet
24	
25	MR. WALLIS: Which says - now, I'm
	I

(202) 234-4433

	59
1	reading, I'm quoting from the report here.
2	CHAIRMAN BANERJEE: Yes.
3	MR. WALLIS: I think this is the summary
4	written by you guys. The reviewers agree that the
5	methods used within the ICET program were not
6	sufficient to characterize and analyze chemical
7	byproducts. That's a statement in the peer review
8	report, and I think it's in the summary, so it must
9	come from you folks. That doesn't seem to agree with
10	what you put up here.
11	MR. KRESS: That's probably the source of
12	the fourth bullet.
13	MR. WALLIS: But the top one says,
14	"inadequately simulated", and here it says, "the
15	methods used were not sufficient."
16	MR. KRESS: Contribute that first bullet
17	to one reviewer.
18	MR. WALLIS: One reviewer. Okay. All
19	right. I'll maybe we should move on then.
20	MR. KLEIN: Paul Klein from NRR. I think
21	the first bullet also might address things like the
22	ICET tank represented containment materials, the boron
23	level approximated the equilibrium temperature of the
24	pool, so I believe it's related more to those parts of
25	the test.
I	I

(202) 234-4433

	60
1	MS. TORRES: For bullet two, the reviewers
2	suggest a comprehensive evaluation of the physical and
3	chemical properties of the observed precipitates,
4	along with a detailed evaluation of all the data to
5	better understand the product formation. And they
6	agree that the temperature has a significant effect on
7	solubility and the types of compounds that will form,
8	and also recognize that temperature is a difficult
9	aspect to model, and they recommend further work.
10	MR. KRESS: Well, in that fourth bullet,
11	they seem to be concerned about particles and particle
12	sizes. But I've been under the impression that these
13	chemical effects are due to gels, gel-like substance.
14	I'm not quite sure I understand what they're focusing
15	on there. Could you comment on that?
16	MR. GEIGER: Well, part of the because
17	we looked at also the particles that could affect the
18	insulation debris bed, and the particle size as far as
19	the property of the coagulate and so on that forms.
20	I'm not sure these are particle sizes actually or just
21	in a different molecular structure and size of the
22	molecules.
23	MR. KRESS: Yes, you might get some of the
24	molecules out of an x-ray, but transmission would have
25	to okay.
ļ	I

(202) 234-4433

	61
1	MR. KLEIN: Paul Klein from NRR. I
2	believe the comment on particle size probably came
3	from Dr. Woo Chin who specializes in filtration, and
4	part of his comments were that the particle size is
5	important for trying to understand the impact to head
6	loss.
7	MR. WALLIS: Well, I think what you got
8	from that was that - you can't just talk about a
9	precipitant. In some experiments, they got a heavy
10	snow, and in some cases they got very, very, very
11	fine, some cases they got precipitate you couldn't see
12	at all, yet it was clogging up the screen, so it's not
13	good enough to just say we have calcium phosphate
14	precipitate. It's very important what its physical
15	nature is. And this isn't something which I think
16	anyone has really researched in these programs. They
17	just got precipitates, and they've taken whatever
18	they've got, but they haven't said what were the
19	conditions that gave us a coarse one, or a fine one,
20	or an unrated one.
21	MR. KRESS: Well, if you're going to try
22	to understand the effect on pressure drop, you'll
23	probably need that.
24	MR. WALLIS: You need that.
25	MR. KLEIN: I think ANL did a number of
ļ	

(202) 234-4433

	62
1	studies trying to evaluate the effects of different
2	parameters on the size of precipitate that formed, and
3	whether it was amorphous, or crystalline. And Mark
4	Lasky at LANL did try to evaluate things like the
5	amount of hydration, so that work has been done.
6	MR. WALLIS: Yes, there were some
7	observations, there were some observations, but I
8	don't think there was a predictive capability that
9	said in a sump, if you know what your sump is, this is
10	going to be the size of your precipitate.
11	MR. KLEIN: I agree with that statement.
12	CHAIRMAN BANERJEE: I think one of the
13	things the reviewers pointed out was that we didn't
14	take into account the effect of the very high
15	radiation fields in
16	MR. WALLIS: It's on the next page.
17	CHAIRMAN BANERJEE: Oh, is it?
18	MR. WALLIS: It's on the next page, yes.
19	CHAIRMAN BANERJEE: Okay.
20	MS. TORRES: For the chemical fixation
21	prediction program, the reviewers agree that this
22	program does not explore the existing capabilities of
23	the selected host to their full advantage. Two
24	physical effects in that model were the radiation
25	field from the fuel, and the layer of corrosion
ļ	I

(202) 234-4433

	63
1	products on the interior surface of the RCS. And
2	reaction rates, also known as kinetic, are not handled
3	well by the modeling software.
4	MR. WALLIS: What does the NRC think about
5	number two? I mean, has there been an assessment of
6	the effects of radiolysis, or has there been an effect
7	assessment of the effect on these ferritic
8	corrosion, or iron basis interacting with what's in
9	the sump? Has there been an assessment of that, or is
10	it just comment that the reviewer made?
11	CHAIRMAN BANERJEE: Well, this is a
12	comment which is common to a lot of the reviewers.
13	MR. WALLIS: So is somebody following up
14	on that?
15	MR. KLEIN: Paul Klein from NRR. Yes, Dr.
16	Wallis, we are. We've asked those questions of
17	industry as part of the RAI that went out with WCAP
18	1650NP, so we'll be following that up with industry.
19	And, ultimately, we trying to get a contract in place
20	to bring in some more technical expertise to help us
21	on a number of issues, including this one.
22	MR. KRESS: This has to do with
23	recirculation to the core?
24	CHAIRMAN BANERJEE: That's one shield, but
25	gamma, high gamma field
l	I

(202) 234-4433

ĺ	64
1	MR. KRESS: Gamma is not going to do it to
2	the sumps.
3	CHAIRMAN BANERJEE: No, but there
4	MR. KRESS: Recirculation to the core.
5	CHAIRMAN BANERJEE: is also a concern
6	about any releases would lead to alphas, which have a
7	short range effect, and they could then have an effect
8	on the sump. I mean, it's a complicated business, and
9	also got to do with any released fission products.
10	MR. KLEIN: And we'd also have to look at
11	how much shielding is afforded by the sump pool, so
12	what kind of radiation you're looking at.
13	CHAIRMAN BANERJEE: Yes. I think Digby
14	points out iodine.
15	MR. KRESS: Yes, but we're in this
16	problem, we're only dealing with what's possibly in
17	the gap of a fuel element, and this is not
18	CHAIRMAN BANERJEE: Right.
19	MR. KRESS: Fission products aren't a
20	problem.
21	CHAIRMAN BANERJEE: Yes. I think you
22	really need to address the issue and put it to bed, if
23	necessary. They're concerned about peroxide as well,
24	right? They're also concerned about hydrogen peroxide
25	forming.
I	I

(202) 234-4433

	65
1	MR. GEIGER: Yes, they mentioned hydrogen
2	peroxide generation, yes, and its reaction.
3	CHAIRMAN BANERJEE: Well, there's so much
4	I mean, we are coming back to the point that I
5	think you really need to address this in a more
6	systematic way than you're doing here. I think you
7	need to tabulate them, take the remarks, see what your
8	response is. If you don't know, just be honest. Say
9	it needs to be further assessed.
10	MR. GEIGER: The question is how would we
11	publish that, what kind of a document would have that?
12	Maybe another NUREG
13	CHAIRMAN BANERJEE: Well, maybe just
14	internally to present to us. If you come in front of
15	the main committee next week, I think it would be
16	useful to summarize what the three or four main
17	comments each reviewer made, and what your response,
18	and what are common, or something like that, what are
19	the issues. And some you can address, some you can't,
20	some you're giving to industry to address, whatever
21	action you're taking on it, that would be useful.
22	MR. GEIGER: Point well taken. Should we
23	finish this?
24	MR. WALLIS: Well, there's an interesting
25	peer review by Brian Sheron in the preface, which says
	I

(202) 234-4433

	66
1	that, "This work provides initial understanding and
2	insights." I agree with that, but that sort of raises
3	the question, where do you go from here, if anywhere,
4	if you've just got an initial understanding and
5	insight.
6	CHAIRMAN BANERJEE: I guess you're coping
7	with the feeling that ACRS had, and we put in our last
8	letter, that some research should continue. And
9	looking at this peer review, the peer reviewers seem
10	to feel the same way. Now if you say that you're
11	going to turn all this over to industry, as you've
12	done, then I think some justification
13	MR. GEIGER: Be provided.
14	CHAIRMAN BANERJEE: Yes, should be
15	provided saying we don't believe that we need to do
16	this, but industry can do it, and we'll monitor it.
17	Something happens, we'll take care of it then. There
18	has to be some specific response to each of these
19	points.
20	MR. GEIGER: Well, if you look at the
21	reports, there's well over 100 different points going
22	paragraph by paragraph on the different, and we did
23	not address them because, one, a lot of these as
24	the research developed, and this peer review was done
25	pretty much after we had some research, so a lot of
	I

(202) 234-4433

times it's difficult to go back. And where we could, we went back, because the reviewers also were involved with the labs. So, in the end, we got the product we got.

5 CHAIRMAN BANERJEE: But now in retrospect, we can look at these and divide them into major 6 7 comments or minor comments. You can see the minor 8 comments, we don't need to worry about too much. Here 9 are some of the major comments. Some of these were addressed during the research, some of these were not, 10 then what do you intend to do about this? 11 If you 12 think they're important, it's also your judgment call. You guys have been doing the research. 13

14 The part of the peer review which I 15 thought was not particularly strong was related to 16 pressure losses compared to the chemical part of it, 17 and the interpretation of the pressure loss experiments, and what to make of it, for what it's 18 19 Let me give you my feel for it. worth.

20 MR. GEIGER: Because I guess the experts 21 we had were more in the other fields, and really were 22 not hydraulics-type people, so that didn't catch their 23 interest as much as the chemistry that was occurring 24 in the pool.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

CHAIRMAN BANERJEE: All right. So there's

(202) 234-4433

25

1

2

3

4

	68
1	one whole set of experiments which were
2	MR. GEIGER: Well, because that's
3	CHAIRMAN BANERJEE: You asked them to look
4	at three sets of experiments - sorry, one study which
5	was simulation, the other was the ICET tests, and then
6	the pressure loss tests. And the pressure loss didn't
7	get the same
8	MR. GEIGER: Review.
9	CHAIRMAN BANERJEE: examination.
10	MR. GEIGER: I guess, not to be simplistic
11	or something, but I guess originally the GSI-191
12	started out as effects on ECCS performance. Correct?
13	So we did all this chemical testing and so on, and the
14	particulate testing to see what the products were.
15	And then at the end when we plugged them into some
16	head loss test, we realized we had a problem, so we
17	sort of demonstrated what the issue was. Now I
18	understand that's sort of simplistic, and it's not a
19	holistic research approach, but right now we know that
20	there are some issues with these chemicals going to
21	the sump, so now it's up to the industry to show that
22	either these chemicals or the blast doesn't get to the
23	sump, or whatever. And then if, at that point, there
24	are issues that still are out there that we need to
25	look at, then I think we would look at it. Again,
	1

(202) 234-4433

getting back to the thing, even with this peer review and all these recommendations, at this point we sort of felt that --

4 MR. WALLIS: And these aren't just 5 recommendations, they're statements they are quoting. Shannon says, "There is a high possibility that the 6 7 sump screen will encounter head loss problems during 8 post LOCA recirculation. It's a statement, quotable 9 statement. And he says, "The total suspended solids 10 were in the range in which rule of thumb expects plugging in a few days, one to three days." This is 11 what he says, right? He makes these statements, and 12 they're in a published NUREG, so I'm not quite sure 13 14 how the agency handles things like that.

MR. KLEIN: Paul Klein from NRR. 15 I think 16 from our perspective, we understand the issue, but 17 keep in mind the one thing that the peer review panel did not have access to, is industry's response to some 18 19 of these issues. And you'll find that for a number of 20 plants that have problematic materials, or a bad 21 combination of buffering materials, they're taking 22 action to try and prevent the problem from occurring, 23 rather than show that they can accommodate the head 24 loss, because the test results from both NRC sponsored 25 and industry sponsored testing have shown that it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

(202) 234-4433

	70
1	doesn't take a whole lot of hydrated amorphous
2	precipitate to cause problems in head loss space.
3	There is a number of things that are being
4	done to try and not put yourself in a position to have
5	a continuous fiber bed, and have amorphous hydrated
6	precipitate impinge upon that in a post LOCA
7	situation.
8	CHAIRMAN BANERJEE: Well, what
9	MR. WALLIS: Does this happen very often?
10	Sorry.
11	CHAIRMAN BANERJEE: Go ahead.
12	MR. WALLIS: I was just thinking that this
13	is an interesting situation, because so much of these
14	technical problems get resolved between the NRC and
15	industry, and the public, all the experts apart from
16	the ACRS don't sort of get involved in the process.
17	And here you've got an open process where you've
18	solicited peer reviews from people not involved
19	directly in the problem, or in the regulatory
20	framework, and they've written this report. This is
21	sort of an outsider's comment on what's going on.
22	Just reading it like that, it raises all the questions
23	about what's going on. Are we just going to leave it
24	there in that context, or is it going to be food
25	MR. GEIGER: Well, I think
I	1

(202) 234-4433

	71
1	MR. WALLIS: or what is it?
2	MR. ABDEL-KHALIK: I think you heard Rob
3	Tragoning earlier speak about a PRT that was done with
4	the peer review panel, and a ranking of issues was
5	done by the peer review panel themselves. And I
6	believe he commented that he owed, or not he, but
7	research was planning on developing that further, and
8	bringing it forward for review.
9	MR. GEIGER: Getting back to the specific
10	comment where the statement was made that there's not
11	particulate to create clogging within a couple of days
12	he said. Right? Well, that right there is a
13	conclusion. I'm not exactly sure what you're looking
14	for for research to do with that, or I mean, right
15	now that's out in the public
16	MR. WALLIS: Well, if I were a lawyer, if
17	I were a contesting party's attorney, I would use
18	these quotes. I'd ask for a response.
19	MR. GEIGER: From NRC or from?
20	MR. WALLIS: From the agency.
21	MR. GEIGER: And I think we can say that
22	we are responding.
23	MR. WALLIS: You're lucky I'm not a
24	lawyer, or don't intend ever to be one.
25	MR. GEIGER: Well, right now these
	I

(202) 234-4433

	72
1	reports are all public, and everybody is aware of
2	them, so industry
3	MR. WALLIS: Which is good.
4	MR. GEIGER: We're getting back to the
5	same thing, is that we have actually, you have to
6	give the NRC a lot of credit in that they have
7	demonstrated that there are some of these issues that
8	are real. All right? That's where we are. And now
9	we're trying to cope with the real issues. That's
10	where it's all at. And the bottom line is going to
11	be, and what is occurring is that individual plants
12	are doing testing based on their sump designs, their
13	chemicals, their buffers and the insulation, and
14	whatever else they have to come up with a viable sump
15	screen design so that they meet the minimum MPSH
16	requirements. That is basically where the whole thing
17	is right now. And it's in industry's hands to develop
18	that, and that's all we can offer. We can't go and
19	design their sumps for them or anything.
20	CHAIRMAN BANERJEE: Of course, but on the
21	other hand, some issues raised here go a little bit
22	beyond that, because we were aware of these issues
23	with downstream effects. But, clearly, there is an
24	issue with deposition in the core, solubility, all
25	these things have been brought up by the peer review.
Į	

(202) 234-4433

	73
1	MR. GEIGER: And these are supplemental to
2	the original task or scope of the whole GSI-191, I
3	think, because they were sump, ECCS. Right? Now
4	we're into the core, which right now - because
5	research is not involved in downstream effects. As
6	Paul had mentioned, there are a lot of efforts within
7	NRR to address downstream effects, and I can't really
8	speak to any of those. I just know there's some
9	analysis being done
10	CHAIRMAN BANERJEE: Well, I realize you're
11	not involved with temperature gradient effects, but
12	that has been brought up as one of the main - one main
13	issue.
14	MR. GEIGER: I guess what it is, is we
15	need to address that.
16	CHAIRMAN BANERJEE: Yes, one way or the
17	other.
18	MR. GEIGER: We need to address that, yes.
19	MR. WALLIS: Well, how will you address
20	it? You will require that industry do experiments
21	with heat transfer surfaces and chemical effects?
22	MR. GEIGER: Well, I guess we need to get
23	together with NRR to see how that would work.
24	MR. WALLIS: How are you going to simulate
25	the core environment with a very high radiation? Are
	I

(202) 234-4433

	74
1	you going to do that? That's not an easy experiment
2	for industry to do unless they put it through a real
3	core.
4	MR. GEIGER: I guess one of the things we
5	would have to look at is how much calcium really is
6	there? See, these are issues. My experience with
7	plants is that calcium - if there's very little
8	calcium by insulation that's exposed. I would be
9	surprised if any number have a significant
10	MR. WALLIS: Well, there's concrete dust.
11	MR. GEIGER: And there's concrete dust.
12	And, typically, the concrete and everything is painted
13	to facilitate decontamination. It all has many layers
14	of epoxy on it, so now there are some plants that may
15	have bare concrete. But, see, all of these are very
16	specific items, specific to certain plants. Now if
17	one plant has all this concrete, yes, we need to - I
18	guess we need to look at it, because then they would
19	have a problem. But until it's shown that there's
20	really a lot of bare concrete, I guess it would be
21	something that NRR would need to address with the
22	different utilities, whether there's an issue. I
23	think we need to discuss that within NRR.
24	MR. TRAGONING: And if I could just add to
25	that a little further, I think the WCAP testing showed
ļ	I

(202) 234-4433

(202) 234-4433

	75
1	that the contribution of total calcium from concrete
2	was relatively small compared to contribution from
3	things like cal sil, or even insulation. And the peer
4	review agreed with the assessment that the
5	contribution from concrete would be relatively small.
б	MR. WALLIS: I think they also said it's
7	been around a long time. It's going to be carbonate
8	by the time
9	MR. GEIGER: That's correct.
10	MR. CARUSO: Well, it's interesting, we
11	have this letter that Mr. Scott sent out on the use of
12	this information, and for the peer review it says,
13	"The staff will apply insights from the NUREG in
14	evaluating uncertainties. The staff has also used the
15	insights to assess generic industry approaches.
16	However, the overall applicability of the peer review
17	comments to the staff's regulatory implementation in
18	GSI-191 is limited." What does that mean?
19	MR. GEIGER: Well, that's an NRR letter,
20	but I think what it do you want to respond to that?
21	MR. KLEIN: I'll take a crack at it. What
22	we tried to communicate in that letter was that there
23	was good information within the peer review panel.
24	We've taken some of the issues that were identified by
25	the peer review panel, and we haven't put our heads in
l	I

(202) 234-4433

	76
1	the sand. We've asked industry, in some cases, to
2	address some of these issues. I think I mentioned
3	earlier, we're trying to get a contract in place to
4	bring in additional technical expertise on some of
5	these issues to help us out. The last part of your
6	statement that you read, though, was intended
7	MR. XIAO: Not my statement.
8	MR. KLEIN: I'm sorry. The last part of
9	the statement that you read was intended to get the
10	thought across that the peer review panel comments by
11	themselves didn't provide regulatory direction for us,
12	that they identified issues, or important parts of the
13	research that we would consider, but it was not a
14	direct link to, for example, reviewing Generic Letter
15	20004-02 Supplemental Response.
16	CHAIRMAN BANERJEE: What is the point of
17	having that last sentence in your regulatory use of
18	peer review? It seems superfluous to me. "However,
19	the overall" - also seems a bit God-like. "However,
20	the overall applicability of the peer review comments
21	to the staff regulatory implementation of GSI-191 is
22	limited." Why add that?
23	CHAIRMAN BANERJEE: I don't understand
24	what is limited here.
25	MR. KLEIN: I think the limitation is that
	I

(202) 234-4433

	77
1	- and you take any of this research, and it might
2	identify important parameters, or key issues, but it
3	does not always provide a direct link to a plant-
4	specific problem, and so that's the limitation that
5	we're trying to identify.
6	CHAIRMAN BANERJEE: Is that what you mean,
7	that some of these comments do not apply to plant-
8	specific problems?
9	MR. SCOTT: This is Mike Scott. As we've
10	said a number of times, one of the constraints of the
11	resolution of GSI-191 is the tremendously plant-
12	specific nature of this issue, and every aspect
13	related to it. And so what Paul was trying to get at
14	is that a lot of this research information - and
15	you'll see this theme in that memo in several places -
16	a lot of this information is intended to support the
17	staff in reviewing what the industry turns into us
18	plant-by-plant. And because it's plant-specific, a
19	generic statement about a particular problem may or
20	may not apply to each of these plants. And the method
21	that's been chosen, and we understand you have
22	concerns with it, is to identify the problem to the
23	industry, and review what the industry does in
24	response to it. And then based on what the industry
25	does, or maybe does not do, we might consider
	I

(202) 234-4433

	78
1	additional research. And that's the path that's been
2	taken, and that memo is intended to speak to that.
3	MR. WALLIS: Well, there's a question -
4	let's take anything, like this business of corrosion
5	products on the vessel, the layer of oxides of iron.
6	A question has been raised by these reviewers. It may
7	well be that industry doesn't do anything about this.
8	What are you going to do? Are you doing to do
9	anything about it, or just leave it out there as a
10	question?
11	MR. SCOTT: If there are unanswered
12	questions at the end of this process that we're going
13	through now, which will wind up presumably next year,
14	since the responses come in towards the end of this
15	year - if there are unanswered questions, and there
16	undoubtedly will be, then we will have to assess for
17	each of those questions whether they are significant
18	enough that they need to be followed up in some
19	manner. And if they need to be followed up in some
20	manner, what that manner is.
21	MR. WALLIS: Someone has to go through all
22	the peer review, and look at all the questions raised,
23	and at some point, decide on your response to it.
24	MR. SCOTT: We have to look at the
25	questions that are out there at the time. I don't
I	I

(202) 234-4433

	79
1	know that we have signed on
2	MR. WALLIS: I don't know what that means.
3	MR. SCOTT: Let me finish. I don't know
4	that we have signed on to go through each peer review
5	comment. That's a good suggestion that we'll
б	certainly consider.
7	MR. WALLIS: When you say a question
8	arises, now whose question, is it your question, the
9	reviewers' question, industry's question?
10	MR. SCOTT: Ultimately, in the resolution
11	of the generic letter, it's the staff's question.
12	MR. WALLIS: It's your question, so if you
13	choose not to ask a question that a peer reviewer
14	asks, you've got to have, probably, some justification
15	for that, it would seem.
16	MR. SCOTT: It would certainly seem
17	reasonable that if a question has been raised by a
18	knowledgeable source that we should have an answer to
19	it, yes.
20	MR. CARUSO: Now you said also that this
21	peer review points up the fact that the resolution is
22	very plant-specific, yet the staff has told the
23	committee on several occasions that it only plans to
24	sample some of the licensee responses, and does not
25	plan to review each individual plant response. How do
I	I

(202) 234-4433

	80
1	you fit those two concepts together?
2	MR. SCOTT: I don't recall having made
3	that statement, Ralph. What we are going to do, and
4	we are doing, as I've said in past meetings, is we are
5	auditing a sample of plant responses to the generic
б	letter. We are attempting to get two samples from
7	each vendor's solution set; so that is, we'll do two
8	plants that use AECL as a vendor, for example, two
9	plants that use General Electric, and so on. And from
10	that sample, we are providing the information to the
11	industry to say here are the issues that are
12	identifying. I did not say earlier, at least I didn't
13	intend to say, that we're not going to look at the
14	generic letter responses that come in from the
15	individual plants, because we are. The question of
16	the depth of review of the individual plants will
17	largely be based on what we find in the audits that
18	are ongoing.
19	MR. WALLIS: Well, there is a question not
20	just of what the chemicals do in the sump, but what
21	the chemicals do in the core, isn't there? What they
22	do in the whole part of the the whole circulatory
23	system.
24	MR. SCOTT: Yes.
25	MR. WALLIS: Is that part of your concern?

	81
1	Do you know the questions to ask in that regard?
2	MR. SCOTT: We are working on - I should
3	say working with the industry. They are planning to
4	turn in a topical report on downstream effects, both
5	in vessel and ex-vessel. The ex-vessel report is in-
6	house, the in-vessel report is not yet in-house.
7	MR. WALLIS: It did include chemical
8	effects, right?
9	MR. SCOTT: I believe that's correct, yes.
10	That reported is expected to come in-house in May, but
11	it's going to be really tight getting that review to
12	support the December 31^{st} deadline for the generic
13	letter.
14	MR. WALLIS: Does this material boil when
15	it goes through the core in recirculation phase?
16	MR. SCOTT: Does what material boil?
17	MR. WALLIS: The coolant, the recirculated
18	coolant containing all this stuff.
19	MR. SCOTT: There will be boiling in the
20	core, yes.
21	MR. WALLIS: It will boil. So,
22	presumably, you need to know something about what
23	happens to it when it boils?
24	MR. SCOTT: And the concentration that
25	occurs to
	I

(202) 234-4433

	82
1	MR. WALLIS: Do you guys know anything
2	about what happens to this soup when it boils?
3	MR. SCOTT: These questions have been
4	asked of the industry in conjunction with their soon
5	to be submitted topical report.
6	MR. WALLIS: So my question was, do you
7	folks know anything about what happens when it boils?
8	I wasn't asking what industry might know.
9	MR. TRAGONING: I think we do know what
10	happens with some of these materials as they're
11	heated. I don't believe we've run a specific test, or
12	we've taken it to boiling and continued to boil it for
13	a long period of time.
14	MR. WALLIS: You're very dependent then on
15	what industry tells you.
16	MR. TRAGONING: Our currently planned
17	resolution process depends on the industry to resolve
18	the issues that have been identified to them, yes. If
19	that approach does not result in success at the end of
20	the day, then we'll come up with a different one,
21	which might, as we've said several times, might
22	involve additional research.
23	MR. WALLIS: Is there any historical
24	precedent of a major technical issue that was resolved
25	solely by industry?
ļ	

(202) 234-4433

	83
1	MR. TRAGONING: I believe you've asked
2	that question before, Dr. Wallis, and
3	MR. WALLIS: Well, we're still thinking
4	about that. I mean, in the old days it seemed to me
5	that almost all the key research was done by NRC, but
6	that was when there was all the money for it.
7	MR. TRAGONING: I'm afraid I'm not going
8	to be able to answer that one.
9	CHAIRMAN BANERJEE: Shall we move on then?
10	MR. WALLIS: Yes, we should move on.
11	MR. GEIGER: Where are we? I guess my
12	whole presentation from here on changes a little bit.
13	MR. KLEIN: Before you leave this slide,
14	could you give us specific examples about some key
15	findings or recommendations that were, in fact,
16	incorporated into the research?
17	MR. GEIGER: This statement is based on
18	conversations I had with people who previously had
19	some of these projects. I don't have any specific
20	MR. WALLIS: I haven't found any examples.
21	That's a good question.
22	MR. XIAO: I think in some of the chemical
23	speciation modeling, they did additional work that
24	reflected the reviewers' comments, and you'll see that
25	in some of the peer review panel comments. I know one
I	I

(202) 234-4433

	84
1	of the things that was evaluated at ANL was use of
2	sodium aluminate instead of aluminum nitrate to
3	produce the precipitate based on a peer review panel
4	comment, so there were a few things that were done.
5	MR. GEIGER: Also, I'm sorry, I do not add
6	on a CMWRA, thermal dynamic simulation. Some comments
7	were taken into consideration, additional analyses -
8	so that much I know.
9	CHAIRMAN BANERJEE: When did the peer
10	review finish, in June last year, actual work of the
11	
12	MR. GEIGER: About that time.
13	CHAIRMAN BANERJEE: Around that time? And
14	when did the research program sort of finish?
15	MR. GEIGER: About the same time.
16	MR. WALLIS: Well, there was comments, for
17	instance, on the use of calcium chloride to simulate
18	the solution of cal sil, give unrealistically high
19	concentration and fails to provide other solutes, such
20	as blah, blah, blah, blah. I'm not aware that
21	anything was done afterwards to change the way in
22	which
23	MR. GEIGER: I can't answer that either.
24	I guess the point - we've taken the point from the
25	ACRS that we should do an accounting of the comments,

(202) 234-4433

	85
1	which we have not done a thorough accounting, so
2	perhaps we can leave it at that.
3	CHAIRMAN BANERJEE: In a more generic way,
4	what this points up is that while you should be
5	commended in having this peer review process, which I
6	think was very valuable, the earlier it can be in a
7	research program in terms of interactions, the better.
8	A different view point.
9	MR. GEIGER: Well, the sequence is how do
10	you set it up, because you have to have a certain
11	amount of something done so they critique it. Right?
12	And then when they critique it, what do you do, you go
13	back and redo everything again? So it's a dilemma, I
14	think. I'm not sure exactly if you have a
15	suggestion how you could work around that problem
16	without doing things twice, and anything
17	CHAIRMAN BANERJEE: I guess it's a more
18	iterative process than
19	MR. GEIGER: It's difficult to go back and
20	tell LANL that now you've got to redo all these tests
21	and put some pathways
22	MR. WALLIS: Well, the good thing is that
23	all the peer reviewers involved in the planning and
24	execution of the program.
25	MR. GEIGER: I think what we were hoping
I	

(202) 234-4433

1 is that we had a certain test program out there. We 2 ran it a certain way. We came up with some results, 3 and then the peer review basically did an assessment 4 of whether that was done correctly, was it valuable, 5 or could more have been done? So I guess my main question is, or my consideration is what we have done, 6 7 is it adequate to inform the question at hand? And you may disagree with me, but at this point, I would 8 9 say that other than downstream effects and effects on 10 plating out on the core and that sort of thing, which we have not really looked into at all, or plating out 11 12 on the RHR heat exchangers and so on, where constantly there were temperature fluctuations and things. 13 Other 14 than that, I think we have gotten information that 15 pretty well defines what happens in the sump pool itself, and how it affects the sump strainer. And it 16 17 points to certain issues that are being dealt with via - by NRR via the industry. I don't know what else I 18 19 could offer to that. Now, we could --20 CHAIRMAN BANERJEE: You've got indications 21 of where the problems are. 22 I guess what we could do --MR. GEIGER: 23 the peer review indicates where you could have done 24 more, where problems are. I mean, the statement Dr. 25 Wallis quoted about clogging the strains in four days,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

86

	87
1	well, that's a fact. Right? That's a statement. Now
2	I guess we could look into whether we could either
3	do some looking into it to see if we agree with that,
4	or if we could counter it. That may be maybe it's
5	not as serious as that reviewer thinks it is. We have
6	not done that, and I guess your point is well taken,
7	that perhaps we should maybe address each
8	MR. WALLIS: I think we're spending so
9	much time on this because, in general, we like the
10	idea, I think collectively, of having peer reviews.
11	It provides a useful check on what you're doing. You
12	have some outside eyes, and maybe they see things that
13	you didn't see yourselves.
14	MR. GEIGER: Yes.
15	MR. WALLIS: Very useful. And the
16	question which you're asking here is well, now you've
17	got this thing, which is a huge document, much bigger
18	than the original research they're reviewing, what are
19	you doing to do with it? I wouldn't want this to be
20	a bad experience where you decided we'll never have a
21	peer review again. It should be a good experience,
22	and you should benefit from it.
23	MR. GEIGER: Well, I guess my answer would
24	be to that, is if there was something glaring in the
25	peer review, we should deal with it.
ļ	I

(202) 234-4433

	88
1	CHAIRMAN BANERJEE: That's nice to hear.
2	MR. TRAGONING: Well, it's a valid
3	question, certainly, that if points are raised in a
4	peer review, what are you going to do about them? We
5	certainly understand your point.
6	MR. GEIGER: Let us get back to you on
7	that. Okay?
8	CHAIRMAN BANERJEE: Yes. Also, let's say
9	some of us submit a report or a paper to a journal
10	where it's peer reviewed, you will get comments like
11	this. Okay? And then before you are able to publish
12	it, you have to actually respond to each comment and
13	do something about it. It's not that you can just
14	pass it off. No, there's no way. All right. Let's
15	go on.
16	MR. GEIGER: I don't know if there's any
17	point. I just may embarrass myself if I go further on
18	this, because you're not going to agree with some of
19	these things. The comments on the ICET, again - the
20	initial objective of the ICET program was to simulate
21	the sump pools in representative plants, and we tried
22	to cover the bases with the materials that we expected
23	to see. We polled the industry to see what
24	constituents they had and we ran tests on that. And
25	based on that, we identified the compounds that were

(202) 234-4433

	89
1	formed, and it's a very it's a seven volume report.
2	It's a huge report, and I don't know what else we
3	could add to that. It's all completed now. I guess
4	we could, if need be, we could resurrect some of the
5	testing, but at this point, I think the ICET program
6	accomplished what it was intended to do, which was to
7	identify the chemical products that are formed
8	MR. WALLIS: I've got a question. Will
9	there be chemical products? And the best conclusion
10	from the point of view of what one had to do would be
11	that nothing happened, unfortunately or fortunately,
12	whatever. And, realistically, things did happen, and
13	you did identify some major products, which then led
14	to some work at Argonne. That's fine. It's useful.
15	MR. KRESS: This could be considered your
16	response to the first three bullets on
17	MR. GEIGER: Right. That was the
18	MR. WALLIS: But claiming that this thing
19	really simulated what happens in a real sump pool is
20	quite a big step, and I think that quite a few
21	reviewers said this isn't really a real sump pool.
22	Other things are going on.
23	MR. GEIGER: Well, okay. There's
24	Radiolysis, which we really couldn't
25	CHAIRMAN BANERJEE: You could have added
	I

(202) 234-4433

	90
1	some hydrogen peroxide, for example.
2	MR. GEIGER: I guess we could have.
3	CHAIRMAN BANERJEE: Anyway, I think we're
4	only quibbling over the word "sufficient". I think if
5	you say it is the staff's opinion that the tests
6	provide insight into some of the chemical processes
7	MR. WALLIS: Some of the major processes,
8	or something.
9	CHAIRMAN BANERJEE: Yes.
10	MR. WALLIS: Yes.
11	CHAIRMAN BANERJEE: I think that would be
12	more modest and more accurate. "Sufficient" is a very
13	strong word there. Perhaps, I mean, you don't want to
14	overstate your case. It doesn't do anybody any good.
15	MR. GEIGER: Well, I would like to, I
16	guess, not get too deep into this, but I will go back
17	and
18	MR. WALLIS: What it told you is that you
19	had to pay attention to chemical effects. That's
20	really what you learned from it. So the question then
21	was what's the next best step?
22	MR. GEIGER: In the chemical speciation,
23	again I'll state that, the primary purpose of that
24	program was - well, there were actually two of these
25	CNWA programs, one was there were some tests run
	I

(202) 234-4433

	91
1	simulated to identify what type of constituents we
2	should include and the quantities in the ICET test,
3	and to see if temperature was a concern, and should we
4	run at elevated temperatures or fluctuate, so these
5	tests were, I guess, to inform that. And then the
6	follow-on additional chemical speciation prediction
7	was intended to give us a tool, to see if we could
8	find a tool that we could use to then just do an
9	analysis of simple chemistries and predict what the
10	chemical products would be, and so on. So the outcome
11	of that was that it had some benefit, but it was
12	the database used in the predictions was not, I
13	guess, wide ranging enough to be able to provide us a
14	tool that we could consider.
15	CHAIRMAN BANERJEE: The two most
16	knowledgeable reviewers in this direction seem to feel
17	that these programs were rather inadequate for
18	handling the sort of problem that arose here where
19	there was a lot of kinetics, and metastable states and
20	stuff like that. And as far as I know, much of these
21	programs were associated with just thermal dynamics.
22	There wasn't any significant so why do you say
23	kinetic prediction there?
24	MR. GEIGER: Well, because what happened
25	
ļ	I

(202) 234-4433

(202) 234-4433

	92
1	CHAIRMAN BANERJEE: They didn't do any
2	kinetics.
3	MR. GEIGER: They didn't. That's why I'm
4	saying, there wasn't any capability there.
5	CHAIRMAN BANERJEE: Yes.
6	MR. GEIGER: Okay? Which is what
7	CHAIRMAN BANERJEE: Third would be to
8	determine if these could do thermal dynamics, really.
9	So the word "kinetics" shouldn't even be there.
10	Unless I'm missing something, these quotes couldn't do
11	kinetics.
12	MR. GEIGER: No, they couldn't.
13	CHAIRMAN BANERJEE: Yes.
14	MR. GEIGER: And I guess that was my point
15	in the comment is that they really couldn't, so what
16	was missing, so to predict the rates and so on, how
17	long when these things precipitates actually.
18	CHAIRMAN BANERJEE: I just want to be
19	enlightened on this a little bit. In the chemical
20	industry, obviously, everything is dependent on
21	kinetics. There are packages around which obviously
22	do kinetics. For example, Dow, one of the consultants
23	you had there, I know uses kinetics packages all the
24	time. Why do you feel that kinetics cannot be done?
25	Is it that it's the specific problem rather than
I	I

(202) 234-4433

	93
1	chemical reactors we're talking about?
2	MR. GEIGER: Unfortunately, I'm not a
3	chemist, and I guess my chemistry goes
4	MR. CARUSO: I think part of the big
5	problem is there was not a lot of boric acid data.
6	CHAIRMAN BANERJEE: Pardon?
7	MR. CARUSO: There was not a lot of data
8	about boric acid range.
9	CHAIRMAN BANERJEE: Okay. So the database
10	was the kinetics. The kinetic database wasn't
11	there.
12	MR. KRESS: Well, the first thing you have
13	to do is identify reactions will occur between
14	identify your reactants. You may have for a problem
15	like this, you may have 100 reactions going on, and
16	you have to have the reaction rate coefficients. They
17	don't exist. Some of them do, but not all of them,
18	and so it gets very difficult to do a kinetic code if
19	you've got a bunch of species involved.
20	MR. CARUSO: I think one of the kickers
21	was that the key player was boric acid, and there's
22	not data about boric acid reacting with all these
23	other
24	MR. KRESS: There's not, there's not a
25	lot.
I	1

(202) 234-4433

	94
1	MR. KLEIN: That's correct. I think the
2	peer review panel comments thought that there'd need
3	to be development of a whole new database, along with
4	testing to inform that database in order to get to a
5	point where you might have a code that could be more
6	reliable than the existing codes.
7	CHAIRMAN BANERJEE: But we are talking
8	about bent scale experiments to do kinetics
9	parameters.
10	MR. KRESS: Oh, yes. Absolutely.
11	CHAIRMAN BANERJEE: I mean, these are very
12	small, so it's not a very expensive program we're
13	talking about, necessarily.
14	MR. GEIGER: I don't think it's a trivial
15	job to try and develop a database that includes
16	kinetics, and trying to account for all the different
17	possible materials and combinations of temperatures
18	and pHs.
19	MR. KRESS: And, in fact, if you're going
20	to have this overall integral predictive model that we
21	talked about, you really have to have that as part of
22	it. That, to me, is almost a prohibitive part of it,
23	that you're not going to be able to put it together.
24	CHAIRMAN BANERJEE: The impression that is
25	left here is that you can do some thermal dynamics to
ļ	1

(202) 234-4433

	95
1	see what are the equilibrium states, possibly.
2	Unlikely that a system in the short term we build will
3	do anything on the kinetics, so you'll have to depend
4	quite heavily on empirical evidence, what's going on.
5	MR. KRESS: Which means the integral tests
6	that the industry did have to be pretty good
7	simulations.
8	CHAIRMAN BANERJEE: Yes.
9	MR. KRESS: And that's what worries me.
10	I think that's where Cordini - I'm sorry, not Cordini,
11	but a recently departed member from Ohio State had a
12	problem with it.
13	CHAIRMAN BANERJEE: Rich Denning.
14	MR. KRESS: Rich Denning, yes.
15	MR. WALLIS: Well, there's a problem of
16	defining the problem. I mean, some of the viewers
17	said that there are other things going on. I mean,
18	there's fine particulates which you only know about,
19	which are in suspension, which affect the
20	heterogeneous nucleation. Now these are washed down
21	from the building. You don't really know what they
22	are. There are all sorts of things which - small
23	quantities, but finely divided can have a huge effect
24	on the transient precipitation. Just defining the
25	problem is difficult.

(202) 234-4433

96 1 CHAIRMAN BANERJEE: This is what the PRT 2 is supposed to do. Right? What state is the PRT in? 3 MR. GEIGER: The PRT, it's about half - I 4 think the reviewer comments were all tabulated and 5 they went back to the reviewers and they ranked them in significance, and so on, but that's about --6 7 CHAIRMAN BANERJEE: Is the PRT panel the 8 same as the peer review panel, or is it a different 9 panel? 10 MR. GEIGER: Well, I think a lot of them 11 are the same, yes. 12 MR. XIAO: No, the PRT was done with the peer review panel. 13 14 CHAIRMAN BANERJEE: Okay. 15 MR. GEIGER: So a lot of the same things 16 They're pretty much parallel. appear. CHAIRMAN BANERJEE: But it does what 17 Professor Wallis is saying, that tries to give at 18 19 least their ranking of the phenomena --20 MR. GEIGER: Yes. 21 CHAIRMAN BANERJEE: -- to a first 22 That would be valuable for us to see approximation. 23 at some point, I think. When is that going to be 24 finished, or is it already finished? 25 GEIGER: Well, it's not -- Rob MR.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	Tragoning is working on it, and he sort of
2	CHAIRMAN BANERJEE: He said June or
3	something. If I look at my notes, let me just see.
4	Rob's probably gone now, but he said that this might
5	be possible to talk about in June.
6	MR. GEIGER: Yes.
7	CHAIRMAN BANERJEE: Is my notes correct on
8	that? So you'd come back to us with a review of the
9	PRT at that time, or what?
10	MR. GEIGER: Would that be viable? Would
11	you like a presentation on it? Is that
12	CHAIRMAN BANERJEE: Well, it seems that
13	where we are is sort of intermediate position right
14	now. We've got these comments, which I think are very
15	valuable. You've got a program which is more or less
16	finished. You're going to respond to this in some
17	way, hopefully, and show it's not just the peer
18	review comments. I think you should also have your
19	own comments on this as to where the program has
20	identified things which are valuable which NRR can
21	use, and where some areas are still open issues, which
22	may or may not be resolved by you, but may be resolved
23	by industry. And I think in understanding the
24	importance of these issues, the PRT would be very
25	valuable, because at least you'd have the feedback
	1

(202) 234-4433

1 from the reviewers as to what is important and what is 2 not, which is also essentially what we're asking you 3 to do in some independent way. But if you interact 4 with the PRT, that's fine. I mean, it's not a bad 5 thing at all. You bring your own insights, and the PRT insights, give us some sense of -- because these 6 7 reviewers are not as close to the problem as you are, 8 in some sense, they're not necessarily - the Dow 9 person is not a nuclear engineer. GEIGER: Well, this committee 10 MR. participated in some of these PRT, one PRT meeting, I 11 12 the final one where it was basically quess а brainstorming session type thing, where a lot of ideas 13 14 were thrown out, and they were all basically captured 15 and put down, and then put in the tables, and it went 16 out for rating and so on, so that -- I think that's --17 18 CHAIRMAN BANERJEE: You got the ratings 19 back now. 20 MR. GEIGER: Yes, the ratings are back, so 21 that's pretty much where we are. We need to 22 consolidate it, so I'll have to talk to Rob to see 23 when we can finish that. 24 CHAIRMAN BANERJEE: Give us a hint, what's 25 the most important issue?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

98

	99
1	MR. GEIGER: Radiolysis seems to play an
2	important role on the radiation exposure, and also the
3	CO2 was brought up. Other than that, I'm trying to
4	think what else would be I can't think of anything
5	at this point right now, but I think radiation was
6	one.
7	CHAIRMAN BANERJEE: Okay.
8	MR. GEIGER: Of course, I'm sorry, carbon
9	also from - which I mentioned before - lubricants, and
10	then we discussed if there was any freon-type things
11	inside, but typically there aren't any chemicals like
12	that in containment. So I think it was the carbon,
13	the other I mentioned, radiology.
14	MR. WALLIS: Can we move to the next
15	slide?
16	CHAIRMAN BANERJEE: Yes, let's go on.
17	MR. GEIGER: Okay. As far as the
18	recommendation on using the small-scale testing, and
19	I think we covered that. Small-scale tests were done
20	as bench top tests in beakers, and then somebody said
21	well, we need to look at a bigger test. And, also,
22	like the ANL test which his comment was - it consisted
23	of two pages. One, it was to identify the chemical
24	reactions and precipitates, and the other one, they
25	actually did some head loss testing, so I think the
ļ	1

(202) 234-4433

	100
1	scale of the equipment, which was a 6-1/2 inch ID was
2	fairly representative.
3	MR. WALLIS: This is a very strange
4	conclusion. I mean, this simply says that the
5	facility was adequate. It doesn't say anything about
6	the work was adequate, the results were adequate.
7	MR. GEIGER: I'm sorry?
8	MR. WALLIS: It says the facilities were
9	adequate. It doesn't say that the results were
10	adequate.
11	MR. GEIGER: Oh. Well, the comment
12	MR. WALLIS: They may have done no work at
13	all except build a facility.
14	MR. GEIGER: Well, the comment was - I'm
15	addressing the comment - that we should do small-scale
16	bench testing instead of large tests.
17	MR. WALLIS: Yes, but if you look at the
18	comments - I mean, I don't want to quote these at you
19	because they'll be on the record, but there's a lot of
20	comments about the limitations of these tests and
21	their results, and the reviews, and you don't put that
22	in your conclusions here.
23	CHAIRMAN BANERJEE: Well, one of the
24	comments was they could be too conservative, these
25	tests.
ļ	I

(202) 234-4433

	101
1	MR. WALLIS: Some of them might be too
2	conservative.
3	CHAIRMAN BANERJEE: Yes.
4	MR. WALLIS: Right.
5	CHAIRMAN BANERJEE: So in some sense, it
6	would be to the benefit of
7	MR. WALLIS: Using a horizontal screen
8	that collects everything is very conservative.
9	CHAIRMAN BANERJEE: So you make
10	MR. GEIGER: Yes, but at the same point,
11	if you had a vertical screen, you'd have to have a
12	pretty good large screen to observe debris falling or
13	spaulding off, which again, the - is how the industry
14	tests are being done. And their designs have a
15	variety of designs where some are horizontal, some are
16	vertical of this type, so it's
17	MR. WALLIS: So is the ANNL testing any
18	use at all for evaluating those industry tests which
19	have completely different geometries?
20	MR. KLEIN: Certainly it is. I think,
21	keep in mind, the ANL tests were to try and identify
22	some of the head loss consequences, and also to
23	evaluate how changes in things like calcium
24	concentration, or pH, or temperature could potentially
25	impact head loss. The intent of the ANL head loss
I	I

(202) 234-4433

program was never to take those tests, and then use that to identify the head loss that you might see 3 within a plant-specific situation with a complex 4 strainer, but to have a fundamental understanding of what are important things we should be considering as we go out and observe industry testing.

7 MR. LEHNING: Could I follow-on to that, My name is John Lehning in NRR, as well, and no 8 Paul? 9 test can simultaneously satisfy all the criteria we might want to have out there, and so these small-scale 10 tests were sort of a first step to let us understand 11 12 the phenomena that are out there. For instance, had we done larger scale tests, then there would have been 13 14 other questions, did the stuff transport, did it 15 settle out somewhere in the flume, and how do you know you got the right head loss, and how do you know 16 17 you'll understand why it wasn't as you predicted. So yes, those are very valuable in helping us understand 18 19 what happens in the larger tank. And we didn't 20 answer, necessarily, every question you might ask on 21 some of the large-scale tests, but they are very, very 22 helpful.

23 MR. WALLIS: Well, what they taught you 24 was that calcium phosphate can, under certain 25 conditions, completely block a screen, essentially.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

	103
1	Pressure drop goes up orders of magnitude. They also
2	taught you that hydroxides of aluminum or
3	oxyhydroxide, whatever they are, could completely
4	block a screen under certain conditions, and that's
5	what they taught you, those two things. Really,
6	that's it, because the conditions were not
7	investigated enough for you to say what those
8	conditions had to be in order for this to happen.
9	They just showed that it could be made to happen.
10	MR. KLEIN: I would argue that they did
11	more than that. I mean, they certainly I would
12	argue that they did do that, but I think they did
13	more. They didn't definitively identify every
14	condition, but we did look at a number of different
15	scenarios, and I would especially say with respect to
16	calcium phosphate formation, we looked at a lot of
17	different effects in terms of pH, phosphate
18	dissolution time, cal sil concentration, debris
19	loading timing and sequence, a number of variables
20	that we knew were important in terms of the formation,
21	and we're able to ferret out, in my opinion, some of
22	the more important ones for consideration.
23	MR. WALLIS: But then let's look at
24	predictability, which was a question raised by quite
25	a few reviewers. Even in the tests where you had no
	I

(202) 234-4433

(202) 234-4433

1 chemical effects, you had this cal sil and Nukon, they 2 did one, which I think was 15 grams of each or something, which they did five or six times, and if 3 4 you look at those tests, the pressure drop for a 5 certain velocity was ranges from .4 to something like 2.8, or 2.9, or something, and there's a spread, it's 6 7 .4, .6, 1.2, 1.4. In the same test, there's a range of a factor which is, I don't know, eight or something 8 9 from the minimum to the maximum, and the data points 10 are scattered all along. This tells you something about repeatability of the tests, even with no 11 12 chemical effects. Now chemical effects are more whimsical than these physical effects, so presumably 13 14 repeatability of the chemical tests would need to be 15 investigated. They didn't have any money to do that. 16 They just did the tests. They didn't repeat the whole 17 series. Well, again, I think those 18 MR. KLEIN: 19 baseline tests were really in line with the types of 20 results that we've seen at PNNL and other places. 21 Variability is not unexpected, especially due to --22 But that's with no chemical MR. WALLIS: 23 effects, at all. 24 MR. KLEIN: Of course, of course. But in 25 some cases, and you have to look at how those effects

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

104

	105
1	form, and what the timing of those effects are.
2	MR. WALLIS: So now you're not going to
3	require - since you know there's a huge variability in
4	the Argonne tests, are you going to require that
5	industry do 20 tests of each condition in order to get
6	the variability and uncertainty, or something? You
7	have to make some decisions based on what you learned,
8	some of which is qualitative. I think you have very
9	interesting questions raised about how you're going to
10	make decisions. Is one chemical effects test going to
11	be adequate, when they did a test and nothing much
12	happened, and they said well, wait a minute, suppose
13	we wait for four days, and gee whiz, something did
14	happen.
15	MR. KLEIN: This is Research's opinion,
16	and NRR is going to jump in and contradict this
17	opinion. And I shouldn't even say it's Research's
18	opinion, it's my opinion. Let me be particularly
19	honest here. I think there's certain conditions,
20	certain plant-specific conditions that they'll
21	probably be able to make a very easy case that
22	chemical effects are not important either through
23	analysis, or through a limited number of tests.
24	There'll be other conditions, and this is - again,
25	this is my expectation - that will be much more
I	I

(202) 234-4433

difficult to make that case. Now what strategy we try to go down in that road will depend on a number of 3 considerations. One consideration and one particular 4 path forward would be to do exactly what you've suggested, to try to get a handle on specific uncertainty and variability associated with that particular mix of conditions that's of particular concern to either that certain plant, or a subset of That's one particular possible path forward. plants.

Another path forward would be to look at 10 other mitigative approaches which would alleviate the 11 12 concerns through other measures, either by removing ensuring sufficient 13 materials, that you've qot 14 mitigative strategies under even worse case 15 conditions. There are other ways that you could still tackle and address the problem, other than trying to 16 have a definitive characterization of uncertainty or 17 variability. So which way we go, I think, will depend 18 19 on many different considerations, and it will be a 20 function of, again, the possible severity concern, the 21 doing ease of some of these other mitigative 22 approaches, and that'll determine how much we really 23 have to understand a particular mix.

24 MR. KLEIN: And I'd like to add to that -25 There may be cases where a licensee Paul Klein, NRR.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

7

8

9

1 goes out and performs a number of tests to evaluate 2 repeatability. We just observed some testing in New Jersey where they ran a number of repeat tests to try 3 4 and get an understanding of uncertainty. In other 5 cases, a licensee may do much less testing, but then they need to demonstrate to us that limited number of 6 7 tests were conservative, that for whatever reason by 8 the amount of precipitate that was added, or other 9 testing decisions that they've made, they've done a bounding-type test. 10 MR. WALLIS: It's very difficult to show 11

12 conservativeness, whatever the right word is here. If 13 you look at PNNL, this business of how the stuff comes 14 to the screen, and the order in which it comes, makes 15 a difference of three orders of magnitude in the 16 pressure drop. Now how do you show a condition which 17 is conservative?

MR. KLEIN: Well, I think from a chemical 18 19 effects perspective, you look at how they modeled what 20 might form within their particular plant-specific 21 In some cases when they apply the WCAP environment. 22 model, they assume that everything that goes in to 23 solution forms a precipitate, and we know from our own 24 testing that that's a conservative assumption. So in 25 some cases, that model drives plants into hundreds and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	108
1	hundreds of pounds of chemical precipitate, and it
2	seems to be a conservative number.
3	MR. WALLIS: And then if you assume that
4	all of that forms a thin layer on top of the fiber
5	stuff because it goes through the reactor and comes
6	around later, the way that they did at PNNL, then you
7	get a huge pressure drop, which is also unrealistic.
8	I mean, you can push this conservative thing to
9	absurdity extremes, but you don't know how extreme
10	you're being if you don't have a picture of the
11	severability of things.
12	MR. KLEIN: And I think that's a challenge
13	that we're all facing right now, and what we're seeing
14	from some of the response from industry is that if
15	they have the option, they would prefer not to address
16	uncertainty, they would prefer to take other steps,
17	such as removing a sufficient amount of fiber so that
18	they don't have a covered screen, or evaluating
19	potentially a back-flush system to try and assure
20	themselves if they were to get high head loss
21	situation, they could accommodate that, so there's a
22	lot of work trying to find engineering solutions,
23	rather than quantify the uncertainty.
24	MR. WALLIS: That appeals to me very much,
25	and I think we've said that in our letter, too; that
ļ	

(202) 234-4433

	109
1	if you could find a way of getting around this messy
2	problem, that's far better than trying to confront all
3	the uncertainties. I'm just surprised at this slide.
4	It doesn't say anything about the conclusions and the
5	usefulness of the work.
6	MR. GEIGER: I guess that was not the I
7	was just responding to the comments.
8	MR. WALLIS: Okay.
9	MR. GEIGER: The conclusions?
10	MS. TORRES: Well, the objectives were
11	met, but we need to do some follow-up.
12	MR. WALLIS: Well, the first one, I mean,
13	they did a peer review. Again, objectives should
14	include what kind of response you expect to make to
15	the review, not just the fact that it was done. In
16	that sense, I'm not sure you've really thought through
17	the objectives of the peer review, and the objectives
18	of the peer review should presumably be to get
19	comments, and then respond to them in some way.
20	CHAIRMAN BANERJEE: Well, I guess one
21	objective would be if the peer review had just blessed
22	everything, it would be the defamation of the program.
23	And if they bless it in general, but have some
24	specific issues, which is, I think, more or less the
25	state, overall. They like the program, but they point
I	I

(202) 234-4433

	110
1	out some things that need to be taken care of.
2	MR. WALLIS: And number three is just a
3	hopeful statement. I think we read from NRR that they
4	have limited value, or whatever the quote was that the
5	Chairman made.
6	CHAIRMAN BANERJEE: But they qualified
7	that.
8	MR. WALLIS: Now it's great value?
9	CHAIRMAN BANERJEE: Plant-specific.
10	MR. WALLIS: Show me the value, show me
11	one instance of a value.
12	MR. GEIGER: Well, I think the fact that
13	the statement said that they were limited use, was the
14	fact that they're relying a lot on individual vendor
15	testing
16	MR. WALLIS: Show me one - what's the
17	great value? Is there anything that they raise which
18	you found of great value? Give me an example.
19	MR. KLEIN: If I might jump in - Paul
20	Klein from NRR. I believe it's great value they
21	raised the question of effects of radiation on
22	everything. We did not identify that as part of the
23	ICET or head loss protocol, and it's a valid issue
24	that needs to be addressed.
25	MR. WALLIS: Thank you.
I	I

(202) 234-4433

111 1 MR. TRAGONING: Yes, there were several 2 things, and I think the peer review - people have 3 questioned the timing of the peer review, but one 4 thing I will say is that the research that we had 5 conducted provided a good technical basis for most of the reviewers 6 for peer to have а better 7 understanding of the types of interactions that can go 8 in these environments. And lacking that, I think the comments wouldn't have been as focused as some of them 9 were, on specific things to address, so there were a 10 number of things. I mean, he brought up the effect of 11 12 radiation, crud release at the beginning of a LOCA, that was another one that was something that we hadn't 13 14 really considered in any great detail, so there were 15 a number of specific comments that came out that we thought were particularly important for future, at 16 least, consideration. 17 18 CHAIRMAN BANERJEE: So then you can add to 19 your table these are of regulatory significance, we 20 think. All right. Are we done? 21 MR. GEIGER: Yes. 22 CHAIRMAN BANERJEE: So do you think we 23 could take a break now? So let's go off the record, 24 unless any of you have comments, and we'll reconvene. 25 (Whereupon, the proceedings went off the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	record at 10:59:27 a.m., and went back on the record
2	at 11:14:11 a.m.)
3	CHAIRMAN BANERJEE: So you're going to
4	tell us about the surrogate testing program now.
5	MR. GEIGER: Yes. Okay. At the request
6	of NRR to help evaluate the use of the Westinghouse
7	surrogate, we asked ANL to do some additional testing
8	on surrogates, actually just one surrogate.
9	MR. WALLIS: Is this something new that we
10	haven't seen, or is this
11	MR. GEIGER: Yes, it is, and I apologize.
12	I just received the report last week from Dr. Shack.
13	It's in the form of a letter report. It should be
14	probably in Adams today, or maybe yesterday. I
15	finally signed it off yesterday.
16	MR. WALLIS: So they spent their money on
17	this rather than coming here to tell us what they did?
18	MR. GEIGER: Yes. We had allocated - we
19	found some money after our last meeting with NRR, you
20	expressed some concern about doing some additional
21	testing. We had, at that time, committed to looking
22	at some additional - looking at the surrogate, and
23	doing some other testing with some funds, so we did
24	find some funds to do this.
25	MR. KLEIN: If I could just add for one
	I

(202) 234-4433

minute here - this is Paul Klein. I think this is an 1 2 example of the type of research that we might envision 3 moving forward to. In this case, NRR staff had a 4 question about how the WCAP generated precipitate may 5 behave relative to what we had observed in the precipitate that we saw in ICET, and that we generated 6 7 ourselves in ANL test loop, so we had asked the Office 8 of Research to do two main things for us. One was to 9 try and evaluate the WCAP precipitate, and then the 10 second part, given that earlier tests had compared the head loss behavior in a number of buffers, we observed 11 12 that sodium tetra borate appeared to be more favorable than some of the other buffers. Since we, at the 13 14 original time, didn't have enough funds to do the 15 amount of research that we would have hoped for, we went back and requested some additional testing with 16 sodium tetra borate to both evaluate it from the head 17 loss perspective, and also in terms of what we might 18 19 see with aluminum solubility within sodium tetra 20 borate environments. So what indications 21 CHAIRMAN BANERJEE: 22 did you have that sodium tetra borate would be better? 23 Was that from the ANL tests? It was from the earlier ANL 24 MR. KLEIN: 25 They had looked at both sodium hydroxide, tests.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

113

	114
1	trisodium phosphate, TSP, and sodium tetra borate. We
2	spent a lot of time trying to evaluate the TSP, cal
3	sil interaction, since it was important to a number of
4	- about a half dozen or so plants that had that
5	existing combination. We also tried to look quite a
6	bit at sodium hydroxide since about 30 plants had that
7	as a buffering chemical. Sodium tetra borate is
8	currently the least commonly used of the three, but in
9	the earlier round of tests, looked like at certain
10	levels of dissolved aluminum, we saw no head loss
11	response at all, so we wanted to follow-up on that.
12	CHAIRMAN BANERJEE: Now if I recall, and
13	my memory may not serve, but the sodium hydroxide was
14	a problem when you had aluminum around in large
15	quantities. Right? Or in some quantities. There was
16	no aluminum sodium hydroxide, it was not that much of
17	a problem, was it?
18	MR. KLEIN: Yes, the sodium hydroxide
19	because it currently with plants, it tends to drive
20	you to a higher pull pH, also has greater aluminum
21	corrosion, so it tends to produce more dissolved
22	aluminum within the pull.
23	CHAIRMAN BANERJEE: Right. But if you
24	take the aluminum out, and this was mainly scaffolding
25	and stuff like that, what was the where did the
I	

(202) 234-4433

	115
1	aluminum come from?
2	MR. KLEIN: It comes from a number of
3	different components, a lot of fan coolers and other
4	type components within containment contain aluminum.
5	Part of the question with plants is trying to have an
6	exact understanding of how much aluminum is in
7	containment. In many cases, plants relied on hydrogen
8	calculations that were known to be conservative on the
9	amount of aluminum in containment, but the degree of
10	conservatism wasn't really known, so unless the plant
11	goes and actually does inventory of aluminum, they
12	tended to default to the higher levels, which in
13	chemical effects space gives you much more precipitate
14	to deal with.
15	CHAIRMAN BANERJEE: Okay.
16	MR. GEIGER: Okay. The objectives were to
17	evaluate the head loss performance of the WCAP
18	surrogate precipitates relative to the precipitates
19	generated during the earlier NRC-sponsored tests, as
20	mentioned by Paul.
21	MR. WALLIS: The question is what's the
22	real what's reality?
23	MR. GEIGER: What's reality? Correct.
24	How do we know we have these surrogates actually
25	reflect what's reality?
	I

(202) 234-4433

	116
1	MR. WALLIS: I think many of the peer
2	reviewers mentioned that what happens in the sump may
3	not be the same as ideal tests.
4	MR. GEIGER: Actually, with these
5	oxyhydroxides the reality could be anything. It
6	varies so much, and it's the size of the molecules,
7	and so on, and how to coagulate.
8	MR. WALLIS: The conclusion may be that
9	the Westinghouse surrogate is too conservative. It
10	just blocks everything in sight.
11	MR. GEIGER: Correct. I guess you went to
12	the end there, so these were
13	MR. WALLIS: Well, these are important.
14	We've been saying this all along, that you can't just
15	talk about precipitate. It depends very much on the
16	conditions under which it's made. And this may be a
17	temperature history and all kinds of things that
18	affect how precipitate forms.
19	MR. GEIGER: So, I mean, these are just
20	some, and
21	MR. WALLIS: So what are you going to use?
22	What are you going to use as a standard precipitant?
23	MR. GEIGER: These tests were done at ANL
24	by Bill Shack, and I just these are taken out of
25	the letter report, so
I	I

(202) 234-4433

	117
1	MR. WALLIS: So he just shows that how you
2	make it influences what it is.
3	MR. GEIGER: He shows you like different
4	concentrations at the top, and then at the bottom you
5	can see after 20 hours how much had settled out based
6	on
7	MR. WALLIS: It says "denser and more
8	compact." Did he do some particle size analysis or
9	something?
10	MR. GEIGER: These he just
11	MR. WALLIS: Just looks at them.
12	MR. GEIGER: Yes, I mean it's you can
13	see it's actually compacted a little bit over the
14	other ones, and there's not much product.
15	MR. WALLIS: That's the only test he did?
16	He didn't do particle size analysis, or something
17	else?
18	MR. KLEIN: No, I believe they did more
19	tests than just I believe the intent of that slide
20	that shows the pictures was to highlight that if you
21	get in this case they were looking at the WCAP
22	surrogate. If you get outside the bounds of the
23	recommendations within the WCAP, you can form
24	something that looks not representative like the other
25	three beakers to the left. So they were trying to
	1

(202) 234-4433

118 1 assess, in this case, how sensitive the preparation 2 technique was to the precipitate that formed, and I 3 believe they did particle sizing as part of that 4 assessment. 5 MR. GEIGER: My intent of this 6 presentation is not to present the total research and 7 all the slides that were prepared, just sort of a 8 summary of the research and what the finding --Well, it's like a lot of 9 MR. WALLIS: these tests, it shows there is an effect. But then if 10 you really wanted to quantify it, you'd probably have 11 12 do another research program to quantify to it thoroughly. 13 14 CHAIRMAN BANERJEE: So remind us briefly 15 about the recommended procedures in WCAP for preparing 16 the surrogates. 17 MR. GEIGER: Do you have that, Paul? I'm not that much --18 19 CHAIRMAN BANERJEE: Just briefly. 20 I think in the WCAP they added MR. KLEIN: 21 aluminum nitrate to de-ionized water, and then they 22 sodium hydroxide which produces precipitate, add 23 aluminum hydroxide-type precipitate. The question the 24 staff had was whether that precipitate that formed 25 with that sequence was representative of what we had

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	seen in ICET and what we believe we had reproduced
2	during the ANL head loss testing. Since a lot of the
3	strainer vendors were going to subsequently perform
4	tests using that surrogate as their standard material,
5	we thought it would be important to benchmark that
6	relative to what we had seen during some evaluations
7	ANL did in support of their head loss testing.
8	CHAIRMAN BANERJEE: These tests you're
9	talking about, what is the objective?
10	MR. GEIGER: The objective is to see that
11	the particles formed in size and structure are
12	representative of what you would see over a long term,
13	lower concentration chemical reactions in the sump
14	pool.
15	CHAIRMAN BANERJEE: So they're going to
16	compare this with ICET, or the what is the
17	benchmark for comparison?
18	MR. KLEIN: I think the question that we
19	asked research to evaluate for us was to try and
20	understand the head loss response of these
21	precipitates versus what we had benchmarked as part of
22	the ANL head loss test program, because the ultimate
23	question that NRR had is if we ran - I'm sorry - if
24	industry ran strainer vendor tests with this
25	precipitate and had whatever level of head loss
	I

(202) 234-4433

	120
1	measured, how would we evaluate that relative to the
2	database that had been established in ANL, so we were
3	trying to understand if these precipitates would
4	produce the same degree of head loss as was done
5	previously in the ANL test.
б	CHAIRMAN BANERJEE: How were the previous
7	- remind me again how the previous tests were done.
8	MR. KLEIN: In the previous tests at ANL,
9	it was very similar in how the precipitates were
10	produced, but I think the major difference was that
11	sodium hydroxide was added first so that the
12	precipitate formed in an alkaline solution, rather
13	than adding the sodium hydroxide second, such that you
14	were essentially had an acidic solution that then
15	became buffer to an alkaline. And some of the earlier
16	tests that ANL had done, we had questioned whether the
17	WCAP sequence of producing a precipitate would form an
18	amorphous precipitate, and so part of their assessment
19	was to look at that. And then also, more importantly,
20	to look at the precipitate in terms of head loss.
21	MR. WALLIS: Well, that first bullet - is
22	that an ANL conclusion?
23	MR. GEIGER: That's an ANL conclusion,
24	yes. That's right.
25	MR. WALLIS: They're concluding that you
	I

(202) 234-4433

ĺ	121
1	can do all this stuff with the surrogate, but it's a
2	test of the surrogate, it's not necessarily a test of
3	reality.
4	MR. GEIGER: Well, the question was
5	whether these surrogates would give you head loss. It
6	may not be reality compared to the long term.
7	MR. WALLIS: That wasn't the question they
8	were asked, really. The question was do some tests,
9	wasn't it? Were they asked to assess the validity of
10	using this surrogate at all, which is what the first
11	bullet addresses.
12	MR. CARUSO: What were they asked to do?
13	MR. KLEIN: They were asked to evaluate
14	the WCAP precipitate relative to the precipitate that
15	they had generated in their own facilities for with
16	respect to how much head loss does this precipitate
17	produce in your test loop.
18	MR. WALLIS: The first bullet addresses a
19	bigger question than that.
20	MR. KLEIN: Well, that was really, that
21	question was partly addressed in some of the original
22	program, and somewhat in this program, but the other
23	question that was on the table was the WCAP surrogate
24	produce a precipitate that's similar to what we had
25	produced at ANL during earlier testing. If you look
	I

(202) 234-4433

	122
1	at the WCAP, their goal in their surrogate precipitate
2	is to try and simulate the settlement rate and the
3	head loss properties of the precipitate that might
4	form in a post-LOCA environment.
5	MR. WALLIS: But you see the problem with
6	the first bullet here.
7	MR. GEIGER: The fine precipitates? Is
8	that what you're
9	CHAIRMAN BANERJEE: No, under conditions
10	that might occur in the sump.
11	MR. WALLIS: Right. I mean, is you're
12	saying that there is some other basis for choosing the
13	WCAP parameters for making decisions? Because if it's
14	not representative of precipitates in a sump pool, why
15	do the work at all?
16	MR. KLEIN: Let me elaborate on that first
17	bullet. I believe the first bullet - one of the
18	things that ANL had done to try and understand what
19	type of precipitate they were forming with their
20	protocol was to look at the response of temperature
21	and pH. And because of that, because of the
22	differences in solubility of crystalline aluminum
23	hydroxide versus amorphous aluminum hydroxide, ANL
24	believed that the precipitate formed by ANL in the
25	head loss loop was an amorphous aluminum hydroxide.
	I

(202) 234-4433

	123
1	That first bullet, I believe, is intended to say that
2	the WCAP didn't go to that level of demonstration, nor
3	did it claim to. I think the WCAP was trying to say
4	here's a surrogate precipitate that we believe is
5	representative in terms of how quickly it'll settle.
6	And, also, in how it will impact head loss across the
7	debris bed.
8	CHAIRMAN BANERJEE: So do you want to
9	speak to the second bullet now?
10	MR. WALLIS: That's the next slide, shows
11	some graph.
12	MR. GEIGER: So this is the next slide,
13	where they've taken
14	MR. WALLIS: They put the stuff in and the
15	pressure drop immediately goes up by two or three
16	orders of magnitude, essentially because the flow rate
17	comes down, the resistance goes up.
18	MR. GEIGER: Here's the pressure drop in
19	the red line here. I mean, as you can see
20	MR. WALLIS: How does this compare with
21	what they had done with the ANL precipitate? How does
22	this compare with a similar experiment using their
23	precipitate? I thought that was the purpose of the
24	test, was to compare this with what they've done.
25	MR. KLEIN: That's correct. And I'll
ļ	I

(202) 234-4433

	124
1	address, that Erv.
2	MR. GEIGER: Yes, go ahead.
3	MR. WALLIS: Do you have a similar plot
4	for their previous experiment?
5	MR. KLEIN: I don't know if
6	MR. GEIGER: I don't have that.
7	MR. KLEIN: he has that in his package,
8	but if you look at earlier presentations that ANL has
9	provided to the subcommittee, I think you'll see that
10	once you reach the situation where you had precipitate
11	in the loop that was beyond a saturation level, you
12	saw a very rapid head loss increase with time,
13	although nothing quite as dramatic as what's shown in
14	this particular slide.
15	MR. WALLIS: I don't understand this
16	multiple consecutive additions, because it seems to be
17	in the plot here, it's all in one shot.
18	MR. GEIGER: Well, that's just - what it
19	is, is that as soon as they added a little bit, before
20	they ever got to the rest of it, they already
21	MR. WALLIS: Okay. So it's the first
22	little bit they added that did it?
23	MR.GEIGER: Yes. I mean, as soon as they
24	had the equivalent of 5 ppm
25	MR. WALLIS: So it's 5 percent of 5 ppm
I	

(202) 234-4433

	125
1	that did it?
2	MR. GEIGER: No.
3	MR. KLEIN: NO, I don't think that's
4	correct.
5	MR. GEIGER: It's not the 5 ppm. This is
6	
7	MR. WALLIS: I want to know how does this
8	5 ppm compare with some experiment they did. I
9	thought they had 100 ppm or something before they got
10	an effect.
11	MR. KLEIN: Well, it's dependent on the
12	environment.
13	MR. WALLIS: Yes.
14	CHAIRMAN BANERJEE: I think it's the 5
15	ppm, which is the 5 percent of the total.
16	MR. KLEIN: The 5 ppm should be considered
17	5 ppm over saturation level such that you had the
18	equivalent of 5 ppm dissolved aluminum in the loop
19	transformed to precipitate. And I think in the
20	earlier tests where they ran for a period of time, you
21	would see either delayed kinetics, or you would run a
22	period of time until you reach some type of saturation
23	level. Once you exceeded that and precipitate started
24	to form, we observed that you did see rapid increase
25	in head loss.
I	I

(202) 234-4433

	126
1	MR. WALLIS: See, if you look at their
2	experiments, there's one here I'm looking at where
3	they add 50 ppm, nothing happened, and then they added
4	some more to bring up to 100 ppm, and suddenly the
5	pressure drop went way up. How does that compare with
6	this sort of experiment here?
7	MR. KLEIN: That's a sodium tetra borate
8	test. And I think what the way to compare that
9	particular result
10	MR. WALLIS: NaO3 added. Again, it's
11	aluminum nitrate which then reacts, so it's not the
12	same kind of aluminum as this surrogate, is it?
13	MR. KLEIN: Well, the way I would
14	interpret that particular test relative to this one,
15	at 50 ppm we don't believe you're forming precipitate
16	in the sodium tetra borate environment, and so you see
17	no head loss response. Once you added 100 ppm, you
18	exceeded the solubility, and you did see precipitate
19	probably greater than the 5 ppm equivalent shown in
20	this particular chart right now. But the head loss
21	response was the same. You saw a very rapid increase
22	in head loss that exceeded their capability.
23	MR. WALLIS: But quantitatively, how does
24	this compare with the ANL precipitate? Is this a more
25	effective screen blocker? Does it occur at a lower
ļ	I

(202) 234-4433

	127
1	concentration of aluminum? How does it compare with
2	what ANL did, with their aluminum?
3	CHAIRMAN BANERJEE: This is also ANL.
4	MR. GEIGER: This is also ANL. Yes, I
5	don't have the
6	MR. WALLIS: Are they duplicating a test
7	which is in their report here, ICET-1W?
8	MR. KLEIN: No, they're not duplicating a
9	test, because
10	MR. WALLIS: So how can you compare it
11	with all the stuff that they did?
12	CHAIRMAN BANERJEE: To answer your
13	question, really.
14	MR. KLEIN: The WCAP protocol, you
15	generate precipitate, you can do the actual head loss
16	test in a environment that's, for instance, potable
17	water. Okay? The WCAP protocol does not necessarily
18	call for a head loss test using pH buffered borated
19	water environment. Based on that WCAP assertion, the
20	staff had a concern that some of the strainer vendor
21	tests might not be conservative when you just add the
22	precipitate, so the idea was to try and go to the ANL
23	test loop where we had generated head loss in a number
24	of different environments, and add, in this case, a
25	small amount of WCAP surrogate within just a potable
Į	

(202) 234-4433

water environment to see what the head loss response would be.

3 The way that we tried to compare it back 4 to the existing database was to look, given some of 5 the solubility information that we knew for some of these environments, like sodium tetra borate, compare 6 7 how much over a solubility limit we were when we saw 8 head loss response, and then compare the head loss 9 response relative to what we saw with the WCAP 10 surrogate. I think the overall conclusion was that the WCAP surrogate was at least as effective, or maybe 11 more effective at head loss for a given amount of 12 precipitate. 13

14 MR. WALLIS: It's very hard to compare 15 I mean, they had this 375 ppm, and then with ANL. 16 they had to cool the stuff down to make a precipitate, 17 but then they were able to make a precipitate with 100 They didn't really explore the exact conditions 18 ppm. 19 necessary to make a precipitate, so I'm not quite sure 20 how you compare this work with the work that ANL had 21 already done.

22 MR. KLEIN: Some of the follow-on ANL 23 research that you haven't received yet looked at 24 solubilities in sodium tetra borate, and tried to 25 determine at which level you might - once you exceed

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

128

1 it, you would start to produce precipitate, and then 2 within the letter report, there's an attempt made to 3 compare that delta on the amount of precipitate that 4 might form over the solubility limit with the amount 5 of precipitate that was added using the WCAP surrogate technique. And when they made that comparison, they 6 7 thought that the amount of head loss for the WCAP 8 surrogate was at least as high, or it produced head loss equivalent or greater than what was observed with 9 10 the ANL-generated precipitate. MR. WALLIS: Why are you talking about 11 12 sodium tetra borate? I think they just put in lithium hydroxide and boric acid, and NUKON. Then they put in 13 14 aluminum nitrate solution. I don't see any sodium 15 tetra borate. 16 MR. KLEIN: There's, I quess, two 17 different tests that I'm referring to. The WCAP surrogate test was not done with sodium tetra borate. 18 19 The way that we tried to compare the head loss 20 response relates to ANL testing in its sodium tetra 21 borate environment. 22 MR. WALLIS: So all I learned from this is 23 that the surrogate, the WCAP surrogate can block a 24 screen in very small amounts. 25 Correct. And that seems to be MR. KLEIN:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

129

	130
1	consistent with what we had seen at earlier ANL
2	testing. There might be time to which you'd form
3	precipitate, but once precipitate began to form within
4	that loop, it appeared like you didn't need a whole
5	lot in order to block the loop.
6	CHAIRMAN BANERJEE: This had no fiber,
7	nothing.
8	MR. WALLIS: Yes, it had NUKON
9	MR. KLEIN: This test had a NUKON fiber
10	bed.
11	MR. WALLIS: They filled the fiber bed
12	first, NUKON added.
13	CHAIRMAN BANERJEE: Oh, NUKON added.
14	Okay.
15	MR. GEIGER: Now we had more tests
16	planned, but when they ran this first test, it was
17	obvious that it did the job of what they said it would
18	do, so we didn't really go into investigating
19	CHAIRMAN BANERJEE: But sodium hydroxide,
20	or sodium tetra borate? What test was this?
21	MR. KLEIN: The WCAP surrogate test was
22	done without a buffer.
23	CHAIRMAN BANERJEE: Without a buffer.
24	MR. KLEIN: Yes. It was to try and run a
25	test that would be similar to what the WCAP protocol
I	I

(202) 234-4433

	131
1	would be.
2	CHAIRMAN BANERJEE: Potable water.
3	MR. KLEIN: Yes, or they might have used
4	de-ionized, I'm not sure.
5	CHAIRMAN BANERJEE: All right. So there's
6	not pH buffer.
7	MR. KLEIN: There is not a pH buffer in
8	this case.
9	MR. WALLIS: Okay. So it made a smooth
10	top coating, so it made a very thin layer on top of
11	the NUKON.
12	MR. KLEIN: Last time we put some varnish
13	over it.
14	MR. WALLIS: We're back to the thin bed-
15	type thing.
16	MR. ABDEL-KHALIK: Now what is the
17	expected range of concentration? Is 375 ppm within
18	the range of concentration that you would expect
19	during a LOCA?
20	MR. KLEIN: We would expect 375 to be on
21	the high end of dissolved aluminum concentration in a
22	post-LOCA containment pool.
23	MR. WALLIS: Only in some plants that have
24	enough aluminum available.
25	MR. KLEIN: Probably occur with a
I	I

(202) 234-4433

1 combination of a plant that had a significant amount 2 of aluminum, and also a pH controlling chemical, such 3 as sodium hydroxide, that would be on the higher pH 4 end to drive aluminum corrosion. As a benchmark, the 5 staff looked at a license amendment from Fort Calhoun to switch from trisodium phosphate to sodium tetra 6 7 borate, and as part of that license amendment, they ran the WCAP chemical model with sodium tetra borate 8 to try and estimate what the dissolved aluminum 9 10 concentration would be in their particular plant specific pool, and I think it was on the order of 22 11 12 parts per million. And if you had sodium 13 CHAIRMAN BANERJEE: 14 hydroxide, how much would it have been, was there such 15 a number? You could generate that 16 MR. KLEIN: 17 number. They did not, since they didn't have sodium 18 hydroxide, but the --19 CHAIRMAN BANERJEE: They had the 20 trisodium? 21 KLEIN: Yes, they had trisodium MR. 22 phosphate, but they're also a high calcium silicate 23 plant, so they had an incentive to switch from TSP. 24 MR. ABDEL-KHALIK: So the 375 ppm is a 25 real outlier, as far as expected concentrations. So

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

132

	133
1	what would be the probable range that people ought to
2	concentrate on in terms of running experiments, rather
3	than looking at outliers?
4	MR. KLEIN: Well, I think within the
5	research done at ANL, we tried to look at a range of
6	concentrations from as low as 50, up to as high as
7	375.
8	MR. ABDEL-KHALIK: And now Fort Calhoun
9	you said came back with an expected concentration of
10	22.
11	MR. KLEIN: Yes.
12	MR. ABDEL-KHALIK: So what would you do in
13	that situation, if you're outside the range?
14	MR. KLEIN: Well, in their particular
15	case, given that we had a fair amount of data that
16	indicated at 50 ppm dissolved aluminum with a sodium
17	tetra borate environment, there was no head loss
18	response. We felt comfortable that being less than
19	half of that, they would probably not see a head loss
20	response from a aluminum hydroxide-type precipitate.
21	MR. WALLIS: I don't know what I conclude
22	from this. Well, I conclude you can do all sorts of
23	different tests with these surrogates. ANL did some
24	stuff, and when they used the Westinghouse stuff, they
25	got a screen clog, but there was quite a different
I	I

(202) 234-4433

	134
1	precipitate, clogged in a different way, looked
2	different. I just don't know what this has to do with
3	reality. It seems to me that you can construct all
4	kinds of surrogate experiments, all of which are
5	different, and what do you conclude?
6	MR. KLEIN: I think the question we
7	raised, and we're trying to address was if licensees
8	were to use the WCAP precipitate in a test that tried
9	to measure head loss across a plant-specific debris
10	load, would that surrogate behave in such a manner
11	that it would produce head loss that was equivalent to
12	what we thought might be a more representative
13	precipitate? And the answer appears to be that very
14	small amounts of the WCAP precipitate induces high
15	head loss.
16	MR. WALLIS: If they're added after a bed
17	is there.
18	MR. KLEIN: Well, there's been tests done
19	within industry where they've evaluated the relative
20	timing of addition of chemical precipitate and debris.
21	MR. WALLIS: Well, this seemed to be the
22	worst case, where you make the bed first, and then you
23	put in the fines, and they make a cake on top of the
24	bed. That's the worst case, it seems. Even in the
25	PNNL, that was the same.
I	

(202) 234-4433

	135
1	CHAIRMAN BANERJEE: Eventually, they'll
2	recirculate around.
3	MR. GEIGER: These will recirculate,
4	eventually come around.
5	MR. WALLIS: They'll recirculate, but
6	these are deposited on the surface of the
7	MR. KLEIN: Yes.
8	MR. WALLIS: which I think was the PPNL
9	worst case, too.
10	MR. KLEIN: Well, when we evaluated
11	calcium phosphate precipitate in the ANL test loop, we
12	saw that the timing of the precipitate addition
13	relative to debris seemed to affect the amount of time
14	that it took for the head loss to reach the high
15	level. But, ultimately, you got to the same answer -
16	the head loss reached a very high level whether you
17	introduced the precipitate first, or the debris first.
18	But it did impact how quickly you achieved that high
19	head loss.
20	CHAIRMAN BANERJEE: What goes through
21	eventually comes back.
22	MR. GEIGER: Comes back, yes.
23	MR. ABDEL-KHALIK: Can we go back to slide
24	three? Okay. Let's look at the first objective.
25	What do you mean by the word "evaluate"? Do you mean
	I

(202) 234-4433

	136
1	compare?
2	MR. GEIGER: Yes.
3	MR. ABDEL-KHALIK: So what is the result
4	of that comparison, now that this study has been
5	concluded?
6	MR. KLEIN: We believe that the WCAP
7	precipitate can produce head loss as effectively as
8	the precipitate that we generated as part of the ANL-
9	sponsored head loss test.
10	MR. ABDEL-KHALIK: Sure. You put enough
11	of anything, you'll generate head loss that's
12	comparable. The question is, how does it compare at
13	the same concentration?
14	MR. KLEIN: I think the one of the
15	things that we can probably do is provide a copy of
16	the technical letter report, where they tried to make
17	a comparison of equivalent amounts of ANL surrogate to
18	WCAP surrogate. It's difficult to make the exact
19	comparison, but there's some discussion in there that
20	tries to compare the amount of precipitate that you
21	might expect based on being above the saturation
22	amount with the amount that was added in the WCAP.
23	And the conclusion was that the WCAP surrogate for the
24	same amount is as effective at producing head loss,
25	and maybe more so.
I	I

(202) 234-4433

	137
1	MR. WALLIS: This looks a bit like some of
2	these other programs, where as soon as you get an
3	interesting effect, stop the funding. This is
4	something which seems to have been investigated in a
5	very preliminary fashion, and there's no quantitative
6	comparison between WCAP and earlier responsive tests.
7	It's just a sort of qualitative conclusion.
8	MR. KLEIN: I would agree that this was a
9	very small scale effort.
10	MR. WALLIS: It's a very interesting
11	result that you do get; and, therefore, it cries for
12	a more thorough investigation.
13	MR. GEIGER: As to why?
14	MR. WALLIS: No, as to what happens if you
15	have different concentrations, or different
16	temperatures, or whatever.
17	CHAIRMAN BANERJEE: I mean, all this just
18	to prevent having to use pH buffered solution
19	experiments, industry experiments.
20	MR. KLEIN: I think you look at the
21	industry experiments, they tend to be very large-scale
22	tests, and it's probably more difficult for them to
23	run elevated temperature borated water pH buffered.
24	That's not my decision to make, but I guess from my
25	perspective, we need to be able to evaluate what
I	

(202) 234-4433

	138
1	they've done relative to what we know, and so that was
2	the incentive for trying to do at least a small-scale
3	effort to compare the WCAP surrogate to what we had
4	some test knowledge on the surrogate that was produced
5	as part of the ANL test programs.
6	MR. WALLIS: Can we move to the next
7	slide? I don't understand why we have on our slide a
8	big black square with no numbers at the bottom right-
9	hand side.
10	MR. GEIGER: The copy machine somehow
11	MR. WALLIS: It's very useful to have
12	numbers.
13	MR. GEIGER: I'm sorry, yes.
14	MR. WALLIS: Black squares designed to
15	obliterate the number.
16	MR. GEIGER: The copy that I printed off
17	had numbers, but when I ran it through the xerox
18	MR. WALLIS: It's just visible if you're
19	very careful. Okay.
20	MR. GEIGER: The copy machine made them
21	darker. I apologize.
22	MR. WALLIS: So here we conclude that the
23	two surrogates are different, the ANL surrogate, and
24	the Westinghouse surrogate are different things.
25	They look different.
ļ	I

```
(202) 234-4433
```

	139
1	MR. GEIGER: Yes. Well, they appear
2	different, but they
3	MR. WALLIS: They're different in color.
4	MR. GEIGER: The question is why the color
5	variation? There was no real explanation. We didn't,
6	you know
7	MR. WALLIS: When it says "the layer was
8	impervious", that means no water could flow through it
9	at all?
10	MR. GEIGER: Correct. They had to drain
11	the water by
12	MR. WALLIS: Really blocked up, it was
13	painted. They painted it.
14	MR. GEIGER: It was painted, yes. They
15	had to open the pressure caps to let the water out.
16	MR. WALLIS: Westinghouse surrogate paints
17	an impervious layer on top of a fiber bed?
18	MR. GEIGER: I wish Dr. Shack would be
19	here to address some of these things, but I was
20	planning on him to be here.
21	MR. KLEIN: I think that's correct. As
22	Erv described, they needed to disconnect the
23	transducer in order to drain the loop.
24	MR. WALLIS: How did it get to be 2
25	millimeters thick if there was so little of it?
I	

```
(202) 234-4433
```

140 1 CHAIRMAN BANERJEE: Is that the total bed 2 thickness? MR. KLEIN: I think that's what -- he's 3 4 describing a golden colored layer. I don't know if 5 they tried to separate, or if they could separate the precipitate from the underlying NUKON that probably 6 7 added part of the golden color to the layer. 8 MR. WALLIS: Well, I guess we have to go 9 on. 10 CHAIRMAN BANERJEE: Are these tests now completed? 11 12 MR. GEIGER: Yes. Yes. Number two is getting at my 13 MR. WALLIS: 14 question. I mean, here you've raised a very 15 interesting question, and so you deem that there's no benefit, and stop experiment. This is the whole basis 16 17 of industry work, is the WCAP surrogates, isn't it? MR. GEIGER: Well, and what we've done is 18 19 we demonstrated that if you use the surrogate --20 MR. WALLIS: Couldn't industry conclude 21 the same thing? 22 And they did, yes. MR. GEIGER: 23 They're not going to use the MR. WALLIS: 24 WCAP surrogate? 25 MR. GEIGER: About the same time we did

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	this, they came up with that, so I'm not I think
2	they're approaching
3	MR. WALLIS: What are they going to use?
4	MR. KLEIN: Paul Klein, again. I'd like
5	to add some perspective to that second bullet. When
6	we originally started - when we asked research, and
7	then they asked ANL to evaluate the WCAP precipitate,
8	we thought that we would do a series of tests where we
9	incrementally added additional precipitate over time
10	to evaluate the head loss response, much as we had
11	done with some of the earlier testing at ANL. We saw
12	with the WCAP surrogate was that at very low levels of
13	precipitate addition, it produced high head loss, so
14	the feeling was rather than try to evaluate greater
15	than 5 ppm, we knew what the answer would be. To try
16	and evaluate less than 5 ppm, we didn't want to try
17	and split hairs to that level or degree, because it
18	seems like what the results were telling us is that a
19	small amount of precipitate is effective at producing
20	head loss.
21	MR. WALLIS: It's not ppm that matters,
22	really, it's the total amount of precipitate in the
23	loop, isn't it?
24	MR. KLEIN: That's correct.
25	MR. GEIGER: I'm sorry. It was gauged on
I	I

(202) 234-4433

	142
1	a ratio, right - so surface area to what was expected.
2	MR. KLEIN: When we say 5 ppm, that
3	MR. WALLIS: Now this first conclusion is
4	unwarranted. I mean, you could simply say the WCAP
5	aluminum surrogate produces highly unpleasant results.
6	There's no conservative relative to what? I mean,
7	conservative relative to what's really going to happen
8	in the sump? You have no basis for making that
9	statement. And then the second one is extraordinary.
10	I mean, because the surrogate produces an undesirable,
11	highly unpleasant head loss, we're going to stop doing
12	any work with it. That's a strange conclusion.
13	CHAIRMAN BANERJEE: Is industry continuing
14	to use this surrogate?
15	MR. KLEIN: Industry went through some
16	initial tests with the surrogate. They've had
17	unpleasant results, as well. I think they've gone
18	back, and there's probably within the five strainer
19	vendors, there's a divergence of opinion on whether to
20	continue with the surrogate, or try another testing
21	approach.
22	MR. WALLIS: But if this stuff clogs the
23	screen, which it does, it would seem this is a key
24	thing to understand and investigate, and all its
25	dimensions.
I	I

(202) 234-4433

	143
1	CHAIRMAN BANERJEE: So what would industry
2	do, I mean, try to find a surrogate which is less
3	unpleasant?
4	MR. KLEIN: I will attempt to address
5	that. I hate to speak for industry, so John Butler,
6	if you're still here, and I misrepresent industry,
7	please jump in, but I think industry is looking at
8	this from a broad perspective, and they're trying a
9	number of different things. Some vendors have plants
10	that are able to reduce the amount of fiber, such that
11	they don't get a fiber covered strainer, and that is
12	one way to try and address it, because it seems like
13	one of the consistent test results we've seen is that
14	the precipitate by itself has not been clogging the
15	strainer.
16	Other people are looking at a number of
17	different options, potentially changing buffers to
18	reduce the amount of precipitate that forms.
19	Westinghouse is trying to go back to some of the
20	initial assumptions in the WCAP model, and look at
21	whether those assumptions were too conservative. For
22	example, aluminum corrosion was all assumed to be
23	commercially pure aluminum, when, in fact, the plants
24	have alloyed aluminum that might have corrosion rates
25	that are much less than commercially pure under the
	I

(202) 234-4433

	144
1	given environment, so there's a number of things that
2	are being looked at in the model to try and remove
3	conservatism, if it's warranted. And then there's a
4	number of test approaches that are looking at can we
5	do other things, such as try to get a bare strainer,
6	or try to incorporate some type of back-flush that
7	would help us get around the chemical effects issue.
8	CHAIRMAN BANERJEE: But they will not
9	continue to use this surrogate for their testing, or
10	will they continue to use it?
11	MR. KLEIN: I believe that some of them
12	will continue to use this surrogate.
13	MR. GEIGER: Well, let me ask - if the
14	surrogate represents the behavior of what you would
15	expect to find in the sump pool, wouldn't it indicate
16	that as soon as you start - you reach the saturation
17	limit, you have precipitates, you would start to
18	affect your fiber bed across the screen? So at levels
19	as low as 5 ppm with the surrogate, you would block
20	the screen. I would consider that to be a
21	conservative test, because let's say, if the real
22	precipitates went at 10 ppm or 20 ppm, then I've
23	under-predicted how much head loss I have.
24	MR. WALLIS: But this is subject to
25	temperature, as the sump cools down during the long
	1

(202) 234-4433

	145
1	period of recirculation
2	MR. GEIGER: More and more precipitates,
3	yes.
4	MR. WALLIS: Then you get more and more
5	precipitate.
6	MR. GEIGER: Yes.
7	MR. WALLIS: And this would seem to
8	indicate that eventually you're going to clog the
9	screen, because the screen has already got its fibers
10	and stuff on it.
11	MR. GEIGER: Yes.
12	MR. WALLIS: And now as the stuff cools
13	down, this new precipitate is going to land on top of
14	that fiber layer and make this impervious layer.
15	MR. GEIGER: So the question is at what
16	stage do I get precipitation of
17	MR. WALLIS: Then, of course, because you
18	can't cool the core, things heat up and you dissolve
19	it again.
20	MR. GEIGER: I'm running for 30 days, do
21	I come down to 60 degrees, or do I just come down to
22	80 degrees? If I come at 80 degrees, and I still
23	don't have any precipitate, then I'm happy. If, for
24	some reason - but I do get precipitate, then it has to
25	
l	

(202) 234-4433

	146
1	MR. WALLIS: Well, isn't this another case
2	where a small experiment done by NRC raises a new key
3	important question?
4	MR. GEIGER: As to?
5	MR. WALLIS: Well, it seems to me to be an
6	important question about whether or not you're going
7	to block screens with aluminum precipitates.
8	MR. GEIGER: Yes. That's a question, I
9	agree. And I think that's why
10	MR. WALLIS: Since it's so effective, you
11	seem to decide that there's almost no defense against
12	it, if you've got a fiber layer there already.
13	MR. GEIGER: What we were saying here is
14	we were looking to see how the surrogate precipitate
15	would behave, to see if it would affect, or how it
16	would compare to pressure drop
17	MR. WALLIS: The preliminary conclusion is
18	it's very bad stuff.
19	MR. GEIGER: And we found that was very
20	bad stuff, so I'm not sure exactly where we would go
21	from here at this point, as far as
22	MR. WALLIS: Discontinue the work, right?
23	MR. GEIGER: Well
24	MR. TRAGONING: This is a good example of
25	a case where industry had initiated and was conducting
I	

(202) 234-4433

1 some work. Okay? We had some issues, or some 2 concerns that we had, and one of the concerns was, 3 okay, they're creating a surrogate for this aluminum 4 oxyhydroxide, and the question was how well does that 5 surrogate represent the type of product we saw in the So there was a very specific concern, so that 6 ICET? 7 led to this targeted testing. The targeted testing 8 showed that well, the surrogate probably, in some 9 cases, or in many cases, may not be a very good 10 surrogate of aluminum oxyhydroxide. So the result of that is this information is being used to - and, 11 again, John Butler will, I'm sure, jump in if I 12 mischaracterize - has been used to inform the industry 13 14 path forward on this in terms of how they want to 15 surrogate, and how utilize this they want to 16 characterize the results they get from this type of 17 testing. But because of the 18 MR. WALLIS: 19 uncertainties about what's happening in the real sump, 20 you couldn't rule out that something like the WCAP 21 surrogate actually appears in the sump. MR. KLEIN: 22 That's correct. I think the 23 reason we requested the additional tests from the 24 Office of Research, if a strainer vendor, for example, 25 were to conduct a test with a debris bed, and add the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

147

	148
1	amount of surrogate that's predicted by the WCAP
2	chemical model, and were to achieve a test that
3	demonstrated a head loss that was acceptable, how
4	would the NRR staff review it? And so that's, I
5	think, where we were trying to head with some of this
6	additional targeted research.
7	MR. WALLIS: What is it that makes this -
8	it's the NaOH that makes these hydrogen
9	MR. KLEIN: It's a combination of aluminum
10	and
11	MR. WALLIS: It's probably difficult to
12	ban aluminum from power plants, but you can ban sodium
13	hydroxide, couldn't you?
14	MR. GEIGER: Well, you're going to try to
15	prevent the formation of aluminum oxyhydroxide.
16	MR. WALLIS: Right.
17	MR. GEIGER: That's what you need to do,
18	or eliminate fiber, or reduce the amount of fiber, or
19	increase your sump size to the point where the fiber
20	does not totally coat the strainer. And these are all
21	issues that
22	MR. WALLIS: Maybe you can coat all the
23	aluminum surfaces, or something?
24	MR. GEIGER: Well, it depends - that's up
25	to plants, but if you're looking at first of all,
	I

```
(202) 234-4433
```

1 it was brought up that there was a lot of aluminum in 2 the plant. Well, on the coils, the air coolers and so 3 on, they're at a higher elevation, so they're only 4 going to see this spray for the duration that the 5 containment sprays, a couple of hours, and then there won't be any more. So those will not be submerged 6 7 continuously in this soup, so we have to look at 8 what's actually on the floor. And I understand that 9 fiberglass insulation has aluminum in it, and all 10 these things. I mean, so there are other sources of 11 The question is how much, and how much aluminum. 12 leaches out? And those are all things that other research has to follow. I mean, what we've proven is 13 14 that the aluminum surrogate used by Westinghouse, or 15 recommended surrogate, is very effective at the causing head loss on a fiber bed. 16 I don't know how much further we could take it, unless we could prove 17 that well, this stuff doesn't really look like the 18 19 other. 20 ABDEL-KHALIK: The point is not MR. 21 whether it is effective at producing head loss. The 22 point is whether it is a true representative of what 23 actually happens. That's what the word "surrogate"

24 means. And go back to slide 3, what is the answer to 25 that guestion?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

149

	150
1	MR. WALLIS: Well, whatever question it
2	is, it probably is we don't know.
3	MR. ABDEL-KHALIK: That's the first
4	objective. The first objective of the research,
5	evaluate the head loss at performance.
6	MR. GEIGER: Actually, we're evaluating
7	the head loss performance is what we did. Now the
8	question you raised is yes, is it really the right
9	surrogate? That's the question.
10	MR. WALLIS: What you really seem to have
11	concluded is it's so bad, you don't want to
12	investigate it any more.
13	MR. GEIGER: Now I would think that
14	industry, Westinghouse would need to determine if this
15	really is but is it likely that this form of
16	surrogate could form in your sump?
17	MR. WALLIS: So you think they're going to
18	come up with a different surrogate?
19	CHAIRMAN BANERJEE: Well, they got there
20	because they didn't want to use the pH buffered water.
21	Right? I mean, how many options do they have? Not
22	that many.
23	MR. GEIGER: I think what most of the
24	plants are doing is increasing their screen size to
25	the point that when they take the fiber loading, it
ļ	I

(202) 234-4433

	151
1	does not load.
2	CHAIRMAN BANERJEE: I don't mean what the
3	plants are doing to cope with the problem, I'm saying
4	what options do they have with the surrogate, not that
5	many.
6	MR. GEIGER: Not that many, no, unless
7	they want to do the actual chemistry thing.
8	CHAIRMAN BANERJEE: Yes. So the issue
9	really is, does this give you a high pressure loss
10	over a variety of screen designs? Because I imagine
11	what these people will do is they'll try to change the
12	screen designs and so on, so that you don't get
13	MR. WALLIS: So you have some open area.
14	CHAIRMAN BANERJEE: Yes, have some open
15	area.
16	MR. GEIGER: Well, that's what they're
17	looking at, is to create so you don't have a uniform
18	coating over the entire mesh or the screen area.
19	CHAIRMAN BANERJEE: Yes, so you try to
20	take it out.
21	MR. WALLIS: Well, you could have a design
22	where you actually have a screen which you can open up
23	when you've caught all the fibers on the other screen,
24	then you open it up to let the surrogate through.
25	MR. GEIGER: I'm not familiar with all the
ļ	I

(202) 234-4433

	152
1	different
2	CHAIRMAN BANERJEE: I'm sure there are
3	lots of thinking going on here.
4	MR. GEIGER: And I think these tests are -
5	and also, the one industry did, because it was pretty
6	much a parallel, about the same time, they came up
7	with the same conclusions that we came up with
8	surrogate.
9	MR. WALLIS: Are you telling the
10	Commission about this, briefing the Commission about
11	this result? I think you are, aren't you?
12	MR. KRESS: Today.
13	MR. WALLIS: Today.
14	MR. CARUSO: I think that's more of a
15	programmatic briefing, than a technical briefing.
16	MR. KLEIN: I don't believe that the TA
17	briefing will be to this level of detail.
18	MR. WALLIS: Well, do we have to tell the
19	Commission about your results?
20	MR. KRESS: If we think it's a safety
21	issue.
22	MR. WALLIS: That sort of puzzled me about
23	this whole program, is that we write our letters, and
24	we usually put in a lot of stuff about what you guys
25	have discovered, but really the path shouldn't be
I	I

(202) 234-4433

	153
1	through us, it should be directly. And I assume there
2	is a direct path, which is more efficient than going
3	through us.
4	CHAIRMAN BANERJEE: Well, I guess we add
5	a layer of comment.
б	MR. WALLIS: The Commission doesn't like
7	surprises, especially from us. It seems to be a
8	significant observation. Am I somehow off base here?
9	I mean, this seems to be a very significant
10	observation, what's being used by industry as a
11	surrogate for aluminum hydroxides is extraordinarily
12	effective at blocking screens. It may well be overly
13	conservative.
14	MR. KLEIN: Well, I think the precipitate
15	that we generated is effective at blocking screens.
16	The difference in the tests was that there's a
17	solubility component that wasn't involved in this
18	test. In this test you generate the precipitate
19	outside the loop, and you add it to the test. In our
20	test, we added aluminum nitrate within the loop until
21	we exceeded a solubility limit. Once we did that and
22	precipitated a material, we saw very high head loss
23	response.
24	MR. WALLIS: You also do it by cooling
25	down by the loop.
	I

(202) 234-4433

	154
1	MR. KLEIN: You could also do it by adding
2	a constant level and dropping the temperate to affect
3	solubility. But the feeling was that equivalent
4	amounts of WCAP precipitate and the that was generated
5	using the ANL protocol both drove head loss high, and
6	maybe the bigger picture was that if you do have these
7	type of precipitates, it doesn't take a whole lot
8	across the debris bed to impact head loss.
9	MR. WALLIS: Now when industry was here a
10	few months ago talking to us about their experiments,
11	we asked about chemical tests, and they said - some of
12	them said that they had done tests, and the results
13	were unacceptable. Are these was it using this
14	kind of surrogate that led to unacceptable pressure
15	drop result?
16	MR. KLEIN: I missed part of that
17	question. Did you say that they indicated their
18	results were acceptable or unacceptable?
19	MR. WALLIS: We asked about chemical
20	tests. They said they had done a few chemical tests,
21	and the results gave unacceptable head loss. Was it
22	this surrogate, or some other surrogate for some other
23	particulate matter that gave unacceptable head loss?
24	MR. KLEIN: It would have been dependent
25	on the particular strainer vendor that you heard
I	1

(202) 234-4433

	155
1	MR. WALLIS: I don't know which ones they
2	were.
3	MR. KLEIN: Well, I believe you heard from
4	Allianz Science and Technology, who have used the WCAP
5	surrogate, and they had unacceptable head loss
6	responses.
7	MR. WALLIS: It was the one we're talking
8	about today.
9	MR. KLEIN: Yes.
10	MR. WALLIS: And what are they doing about
11	it?
12	MR. KLEIN: In their particular case, they
13	are considering a new testing approach that might go
14	back to an ICET-type approach, rather than a WCAP
15	surrogate approach.
16	MR. WALLIS: They make the chemical in the
17	loop?
18	MR. KLEIN: They would be this is
19	preliminary, so I don't want to provide too many
20	details, but I think they would be looking at what
21	might be generated within a loop given a
22	representative post-LOCA temperature, and pH, and
23	buffered environment.
24	MR. WALLIS: Well, we could write a letter
25	that said we've told you all of it before, except now
ļ	

(202) 234-4433

	156
1	we have this new result, which indicates that we were
2	right, that doing research is worthwhile, continuing
3	to do is worthwhile. Write about two paragraphs, and
4	that would be it, because this seems to be a
5	significant result. If you hadn't done this
6	experiment, we wouldn't be reaching some of these
7	conclusions. Very valuable, let's use the word
8	"value" we used before, a very valuable experiment,
9	isn't it, or not?
10	CHAIRMAN BANERJEE: Well, it's certainly
11	valuable in telling industry not to follow this path,
12	and try to find an alternative.
13	MR. KRESS: Well, I'm not so sure. If I
14	were interested, and I run a test with this surrogate,
15	and found out that my screen had acceptable flow
16	through it for the ECCS, I would assume I solved my
17	problem. My screen is acceptable to NRC. That's one
18	route to go. Now if they don't get that result, it
19	plugs up their screen, then they've got to do
20	something else.
21	CHAIRMAN BANERJEE: Which is maybe the
22	sort of test.
23	MR. KRESS: Yes, and then you've got to
24	evaluate those. But I think this is a valuable
25	result. It says if you use this stuff and get

(202) 234-4433

	157
1	acceptable results, it's acceptable to us. I think
2	that's
3	MR. KLEIN: That was the motivation behind
4	our request to try and evaluate the WCAP surrogate
5	within ANL head loss loop.
6	MR. KRESS: I think that's a reasonable
7	conclusion.
8	MR. ABDEL-KHALIK: But if the head loss is
9	dependent on the particle size distribution, and this
10	surrogate has a certain particle size distribution
11	that you can get around by redesign so that you can
12	get some acceptable results, what is there to tell us
13	that the actual stuff that's going to deposit will
14	have the same size distribution, so that this design
15	around solution that you came up with would actually
16	work in the real case?
17	MR. LEHNING: This is John Lehning in NRR.
18	I guess the way that I see it for most of the plants
19	that I think that we've looked at, this was sort of a
20	binary situation, that either you got the chemical
21	effects, and you had a fiber bed, and then you had a
22	really high head loss, or you didn't have the
23	threshold where you're going to get a chemical effect,
24	or you didn't have a fiber bed and you didn't get it,
25	so some of the details of modeling this surrogate with

(202) 234-4433

158 1 high fidelity would come into play more in the middle 2 ground of is the head loss such and such, or is it twice as much? But if you can say it's either a zero, 3 4 or it's too high for you to handle, then all those 5 details aren't quite as important, and you're really talking about what are the thresholds at which that 6 7 effect occurs. And that's what we really need to 8 understand, more so than I think all of the fine 9 points on that surrogate. Just to follow that a little bit, there 10 may be some plants out there where a certain plant 11 12 might need more information on that size distribution if they're in a middle ground, and then that would be 13 14 a valid question to ask for those plants, I think. 15 CHAIRMAN BANERJEE: So in this surrogate a precipitate is added, not made. 16 17 MR. KLEIN: In the WCAP testing protocol, the precipitate is made typically outside of the test, 18 19 and then added to the test, rather than generating it 20 within the test loop. CHAIRMAN BANERJEE: Well, the precipitate 21 22 is made like those little bottles. 23 MR. GEIGER: Made in a bucket, and poured 24 in, yes. 25 CHAIRMAN BANERJEE: Poured in.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	159
1	MR. WALLIS: It says no precipitate was
2	visible in the water?
3	MR. GEIGER: Correct.
4	MR. WALLIS: So the stuff that you add is
5	invisible, too? You have a bottle of it, and it's
6	invisible, and you drop it in?
7	(Laughter.)
8	MR. KLEIN: When you mix it, you typically
9	see a milky white solution.
10	MR. WALLIS: You see a milky white
11	solution, but when you put it in the loop, it's so
12	dilute you don't see it? But then it says no build-up
13	was visible. How about this yellow impervious layer
14	that you found? I mean, that's
15	MR. KLEIN: That was observed after the
16	test loop had well, it had cold, and probably sat
17	overnight and was drained the following day, so it was
18	not
19	MR. WALLIS: The yellow layer didn't
20	appear until the next day?
21	MR. KLEIN: They did not observe a layer
22	at the time the test was terminated, I believe. And
23	that is consistent with some of the tests that ANL had
24	conducted with sodium hydroxide, where they saw a head
25	loss response, but no chemical bed was visible.
ļ	I

(202) 234-4433

160 1 CHAIRMAN BANERJEE: Do you have any more 2 Are you done? A little depressing, but -slides? 3 MR. WALLIS: Maybe there's another 4 surprise. 5 MR. GEIGER: Well, they did some sodium tetra borate buffer testing just to, I guess, gain 6 7 some additional information on the solubility at 8 different temperatures. 9 So you observed very small MR. WALLIS: 10 translucent precipitate particles? Which eventually - yes. 11 MR. GEIGER: Am I jumping ahead here, or 12 MR. WALLIS: I'm on 13, I'm sorry. 13 where am I? 14 MR. GEIGER: You're on 13? 15 CHAIRMAN BANERJEE: Well, what do you have to say about the previous slide? Go back to where you 16 17 were. MR. WALLIS: Yes. 18 19 CHAIRMAN BANERJEE: What is the key 20 finding on this slide? 21 Okay. What we're trying to MR. GEIGER: 22 do here is that we created a solution - two sets. One 23 is, we created these at two different temperatures, 24 and what we did was we started at 10 ppm, and in 25 intervals we added 10 ppm, increased the concentration

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	161
1	by 10 ppm, trying to determine when the saturation
2	limit would be reached. And then we had another set
3	at 80, 100, and 120 degrees that we had aluminum
4	concentration of 400 ppm that we let set for a long
5	time.
6	MR. WALLIS: Were you trying to find out
7	if the sodium tetra borate affects the precipitation
8	of aluminum?
9	MR. GEIGER: Yes.
10	CHAIRMAN BANERJEE: Then why do you have
11	TSP there in the last
12	MR. GEIGER: Oh, did I misspell it? I'm
13	sorry.
14	CHAIRMAN BANERJEE: But you didn't add
15	trisodium phosphate. Right?
16	MR. KLEIN: That's a typo.
17	CHAIRMAN BANERJEE: Oh, that's a typo.
18	All right.
19	MR. WALLIS: It should be sodium tetra
20	borate, rather than TSP?
21	MR. KLEIN: STB.
22	MR. WALLIS: STB. It's rather confusing.
23	STB.
24	CHAIRMAN BANERJEE: Right. Okay. So we
25	know what
I	1

	162
1	MR. GEIGER: And we had - this is the test
2	setup, basically. That just shows a sample of the two
3	of them. They were immersed in an oil bath to keep it
4	at constant temperatures.
5	MR. WALLIS: It's a beaker. And what did
б	you find?
7	MR. GEIGER: Okay. Observations for the
8	solubility test at the 80 degree F, small translucent
9	particles are formed. And as we increased the
10	aluminum concentration from 50 to 55 percent is when
11	it started to form, and then at concentrations of 90
12	ppm, the overall solution
13	MR. WALLIS: Now when you put in more
14	aluminum, you get less precipitation?
15	MR. GEIGER: Well, the other it
16	actually dissolved a little bit, but
17	MR. WALLIS: But the 50, 55 - it looked as
18	if 50 was a critical one, because when you increased
19	from 50 to 55, you got precipitate. When you went up
20	to 90, it went transparent again?
21	MR. KLEIN: There's a couple of different
22	things that are going on here. At each addition they
23	go to a certain level, and then they hold it over
24	time, and then they look to see if anything drops out
25	of solution, and then they add additional aluminum
	I

(202) 234-4433

163 1 nitrate over time to increase the level. I think the 2 conclusion was overall the solution was clear, 3 although they did see some precipitation that started 4 to form at a certain level shown here, and then the 5 amount of precipitate that appeared to show up and drop to the bottom increased with increase 6 in 7 concentration. The solution remained 8 CHAIRMAN BANERJEE: 9 transparent, but that doesn't mean that you didn't find the precipitate. 10 Right. 11 MR. GEIGER: 12 MR. KLEIN: Correct. 13 CHAIRMAN BANERJEE: Okay. 14 MR. WALLIS: So we should conclude that 15 with TSB, you also get precipitates of aluminum. 16 CHAIRMAN BANERJEE: Over 50 ppm. Right? 17 MR. KLEIN: Yes. And that's consistent with their earlier head loss tests where we saw at 50 18 19 ppm dissolved aluminum, no head loss response. When 20 they went to 100 ppm, we saw a very rapid head loss 21 increase, so that the objective of these additional 22 tests was to try and evaluate that level between 50 23 and 100 ppm to see if we could determine a threshold 24 level which we might see precipitation, and also head 25 loss response.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	164
1	MR. WALLIS: Did you do head loss response
2	with this, too? Presumably not, if it was just mixed
3	in a beaker.
4	MR. KLEIN: I think some of the follow-on
5	slides are going to discuss at what concentrations
6	they observed head loss.
7	CHAIRMAN BANERJEE: Go back, don't go so
8	fast. Now you're going to discuss the 100 and 120
9	cases, what happened there?
10	MR. GEIGER: Well, these - the ones that
11	were 400 ppm solutions, after about nine days
12	sediments formed and settled, showing that the 120
13	degree F showed no visible sign of sedimentation by
14	day 20 of the test.
15	CHAIRMAN BANERJEE: These were still,
16	there was no stirring, nothing.
17	MR. GEIGER: No, these were all still.
18	MR. WALLIS: Some of the stuff stays in
19	suspension for days?
20	MR. GEIGER: Yes.
21	CHAIRMAN BANERJEE: Well, it's not clear
22	that the precipitate forms immediately either. Right?
23	MR. GEIGER: Well, they were somewhat
24	cloudy in the beginning, but then
25	CHAIRMAN BANERJEE: All of the tests?
I	1

(202) 234-4433

	165
1	MR. GEIGER: Yes, because these were all
2	at 400, yes.
3	CHAIRMAN BANERJEE: All right.
4	MR. WALLIS: Why does it stay in
5	suspension? Is it charged?
б	CHAIRMAN BANERJEE: It could be fine.
7	MR. WALLIS: It could be fine.
8	MR. GEIGER: I guess maybe somebody will
9	hit the slide on the
10	MR. WALLIS: But now Argonne got blockage
11	of the screen when they couldn't see anything in the
12	water at all.
13	CHAIRMAN BANERJEE: I guess you could do
14	some light scattering and see what the size of the
15	particles were. Right?
16	MR. KLEIN: Let me add some additional
17	information here. I think that the objective of these
18	tests was to supersaturate the solution at 400 ppm
19	dissolved aluminum at different temperatures, and then
20	evaluate over time what type of equilibrium dissolved
21	aluminum you might have in the supernate, such that
22	you would try to evaluate, eventually get to the
23	solubility limit at these given temperatures for this
24	system, so that was the objective. And what Erv is
25	describing is that for a number of these, you
I	I

(202) 234-4433

supersaturated the solution, and precipitate formed and it remained in solution over time, the solution remained cloudy.

4 MR. GEIGER: And I believe that even after 5 the -- at the end of the test they still had not reached equilibrium. And then we did some head loss 6 7 tests with STB buffer. And this head loss test was -8 the loop was filled with de-ionized water, and boric 9 acid and lithium hydroxide were added to the loop. And then sodium tetra borate was added to obtain a pH 10 of 8.3, and the loop was operated for 15 minutes just 11 12 to mix all the chemicals. And then debris fiberglass NUKON was added, allowed to form on a perforated 13 14 plate, and the temperature of the loop was raised to 15 140 degrees F, and the aluminum nitrate was added to 16 provide a final aluminum concentration of 50 ppm. WALLIS: Is there a theoretical 17 MR. solubility limit under these conditions? 18 19 MR. GEIGER: Yes, I'm sure there is, but 20 I didn't include it here. 21 MR. WALLIS: 50 ppm, are we dealing with 22 a solubility limit, or is it supersaturated, or what 23 is it? 24 MR. GEIGER: I'm sorry. At 50 ppm, or --25 Well, I mean, presumably MR. WALLIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

	167
1	there's a theoretical solubility limit for aluminum
2	with this buffer, and the pH and everything, and
3	temperature. I'm just wondering is that around 50, or
4	is it 10, or 5, or 100? Can you identify 50 as being
5	the solubility limit, or is it just
б	MR. KLEIN: Well, I think we can give you
7	observations based on testing that ran for a number of
8	days. Whether that's a true solubility limit, it's
9	probably difficult to comment, but in a number of
10	these cases the tests ran on for a long period of
11	days.
12	MR. GEIGER: Twenty-one days.
13	MR. KLEIN: Well, even beyond 21 days.
14	MR. TRAGONING: I wouldn't say these are
15	inconsistent with, because there were solubility
16	calculations that were done, obviously. But there's
17	a number of assumptions that go into those, and as
18	we've seen throughout these experiments and these
19	conditions that they're very sensitive. The actual
20	solubility is very sensitive, the actual conditions
21	you have for a given test, so I wouldn't say they're
22	inconsistent, but I wouldn't want to also say that
23	they are exactly equivalent to either. I mean, 50 was
24	some initial, again, very crude solubility
25	calculations was a pretty good ballpark estimate of
I	

(202) 234-4433

	168
1	when we expected to start seeing
2	MR. WALLIS: The peer review talked about
3	other particles, very small particles acting as
4	nucleation centers and things. That would be true if
5	you had a supersaturated solution, but if you're not
6	saturated, then presumably they won't produce
7	precipitates, will they?
8	MR. GEIGER: If there's nothing nucleate,
9	then yes.
10	MR. TRAGONING: Unless they provided
11	nucleation sites that wouldn't otherwise be available.
12	MR. WALLIS: Is this going to be a
13	regulatory requirement that you say as long as you
14	keep your pool under 50 ppm, you don't have to worry
15	about it, if you have to STB you don't have to worry
16	about clogging your screen?
17	MR. KLEIN: I think we're still trying to
18	determine what the right regulatory guidance should be
19	in the chemical effects area, and our intent is to
20	have some draft guidance by the fourth quarter of this
21	fiscal year.
22	MR. WALLIS: This is just a very
23	preliminary experiment. Before you have any guidance,
24	you'd want to be pretty sure, presumably.
25	MR. GEIGER: Well, would we provide this
	I

(202) 234-4433

ĺ	169
1	guidance, or is this something industry would propose,
2	and we would - because it depends on buffers and so
3	on, what they do.
4	CHAIRMAN BANERJEE: This is true in sodium
5	tetra borate.
6	MR. GEIGER: Yes.
7	CHAIRMAN BANERJEE: Is it true if it is
8	buffered in a different way?
9	MR. KLEIN: No.
10	MR. GEIGER: No. This is specifically for
11	
12	CHAIRMAN BANERJEE: Specific. And what
13	happens if it's buffered differently, is it a lower
14	number?
15	MR. KLEIN: Well, I think it would depend
16	on the buffering agent.
17	CHAIRMAN BANERJEE: Well, let's say it was
18	TSP.
19	MR. KLEIN: With TSP, the concern tends to
20	be more calcium species, formation of calcium
21	phosphate.
22	CHAIRMAN BANERJEE: Right. Right.
23	MR. GEIGER: You don't have calcium, yes.
24	MR. KLEIN: Not aluminum.
25	CHAIRMAN BANERJEE: And with sodium
	1

(202) 234-4433

	170
1	hydroxide?
2	MR. KLEIN: I would want to go back and
3	review the literature on sodium hydroxide before I
4	threw out numbers.
5	CHAIRMAN BANERJEE: So this 50 ppm is very
6	specific to the system you're talking about.
7	MR. KLEIN: Yes.
8	MR. GEIGER: We're trying to evaluate what
9	happens if we held it at 50 ppm for a certain number
10	of days, would we get a precipitation eventually, and
11	the kinetics of it. And so we ran it for 21 days at
12	80 degrees, with no significant pressure drop in the
13	loop. And after 21 days, we increased the aluminum
14	concentration by 10 ppm increments. After we ran it
15	at 10 ppm for a couple of days, then we increased it.
16	By this time, we were running out of time and budget,
17	but we were trying to see how long we could maintain
18	this loop and test increasing the concentration to see
19	what the at what point we would start to create
20	head loss across the screen.
21	Then what this says here is that "a
22	nominal 70 ppm dissolved aluminum, a notable increase
23	in the pressure drop was observed, indicating that
24	some precipitation was starting to form." And this is
25	a graph of the time history versus and shows where
	I

(202) 234-4433

	171
1	we added aluminum at different points.
2	CHAIRMAN BANERJEE: All this is in the
3	letter report you're talking about.
4	MR. GEIGER: Yes, it is.
5	MR. KLEIN: And the head loss response was
6	not inconsistent with what we saw in some of the bench
7	top tests. At 50 ppm, we observed no head loss
8	response at all. It wasn't until we got to a 70 ppm
9	dissolved aluminum concentration, and at that point,
10	head loss started to increase, and they added an
11	additional 10 ppm dissolved aluminum, and it started
12	to climb rather rapidly towards the end of that test.
13	MR. GEIGER: Small dips in solubility are
14	due to the increased temperature when it was added, so
15	the conclusion, that precipitation kinetics at long-
16	term loop test all suggest that the concentration of
17	50 ppm aluminum can be maintained in STD and boric
18	acid solutions with a pH of 8.4. And 70 to 80 degree
19	for periods of 20 days. That's the limit of the test.
20	So, I mean, this just sort of informs his plants want
21	to switch to TSB to evaluate.
22	CHAIRMAN BANERJEE: So how was the this
23	test was with aluminum hydroxide being formed in the
24	solution itself. Right?
25	MR. GEIGER: Well, they added
I	I

(202) 234-4433

	172
1	CHAIRMAN BANERJEE: Added.
2	MR. GEIGER: No, they added the
3	CHAIRMAN BANERJEE: It was added.
4	MR. GEIGER: Yes, it was added.
5	MR. WALLIS: Why was it added?
6	MR. KLEIN: You're correct. It would have
7	been formed within the loop.
8	CHAIRMAN BANERJEE: Yes.
9	MR. GEIGER: Yes.
10	CHAIRMAN BANERJEE: Okay.
11	MR. WALLIS: How was it added?
12	CHAIRMAN BANERJEE: It wasn't.
13	MR. KLEIN: Aluminum is added as an
14	aluminum nitrate solution.
15	MR. GEIGER: Nitrate, yes. I'm sorry.
16	CHAIRMAN BANERJEE: Yes, but the
17	precipitate was
18	MR. KLEIN: The precipitate would form in
19	the loop.
20	MR. GEIGER: It was added at a top,
21	opening at the top.
22	CHAIRMAN BANERJEE: Okay. All right. So
23	I think are you done with your slides?
24	MR. GEIGER: Yes, I am.
25	CHAIRMAN BANERJEE: Then we should go for
I	I

```
(202) 234-4433
```

	173
1	lunch now. Let's take a break until, let's see.
2	MR. WALLIS: 1:30?
3	CHAIRMAN BANERJEE: 1:30 sounds good.
4	Okay. We will adjourn.
5	MR. KRESS: Not adjourn, that means we go
6	home.
7	CHAIRMAN BANERJEE: Oh, sorry.
8	MR. ABDEL-KHALIK: Recess.
9	CHAIRMAN BANERJEE: Recess.
10	(Whereupon, the proceedings went off the
11	record at 12:28:38 p.m., and went back on the record
12	at 1:33:49 p.m.)
13	CHAIRMAN BANERJEE: All right. We'll come
14	back into session, and we'll hear from Dr. Krotiuk.
15	MR. KROTIUK: Now previously at the
16	previous meeting that we spoke about this subject, I
17	had presented some preliminary results of the testing
18	and modeling. All that effort is completed now, so
19	what I want to do is just summarize everything that
20	was done for both the testing and the modeling.
21	You've seen some of these slides before.
22	This is just to reiterate the objectives of the
23	testing, so I'll talk about the testing first. The
24	objectives were to look at the pressure drop on the
25	sump screen due to debris composition, debris
I	I

(202) 234-4433

	174
1	distribution in the bed, fluid temperature effects,
2	and PNNL built a test facility that was able to make
3	in situ bed thickness measurements. They were able to
4	control temperature of the liquid, and we also, I'll
5	talk about this more, were able to measure the
6	constituent masses of the two types of materials in
7	the bed itself. This testing was all done primarily
8	with NUKON and cal sil.
9	MR. WALLIS: You're presenting PNNL 16-
10	313?
11	MR. KROTIUK: Yes. I'm presenting the
12	6917, which is PNNL's effort, and then I'll be going
13	into the modeling effort. I didn't remember the
14	number, I had to look at it.
15	And as previously indicated, we wanted to
16	do additional testing really to look at the effects of
17	the cal sil addition with mixture with other debris
18	types. We want to address concerns that the ACRS had
19	indicated that they had, and essentially to support
20	regulatory applications. Testing
21	MR. WALLIS: You seem to have contracted
22	the test matrix, and they're originally intended to
23	have really thick beds, and higher velocities and
24	things.
25	MR. KROTIUK: That was changed as time
I	I

(202) 234-4433

	175
1	went on, and we originally had higher velocities, but
2	
3	MR. WALLIS: Had 18 inch beds that they
4	originally planned.
5	MR. KROTIUK: No, we did
6	MR. WALLIS: The advantage there is that
7	you can really see the compression of the bed.
8	MR. KROTIUK: Yes. We did not go that
9	thick, because we were modifying the matrix, and I'll
10	show you the matrix, as we were going along. And it
11	ended up we test in beds that were
12	MR. WALLIS: There are some industrial
13	reactor situations where I understand the screen gets
14	completely buried in insulation, so you do get very
15	thick beds.
16	MR. KROTIUK: That's true, but we looked
17	at remember the purpose of the testing was really
18	to come up with a correlation that was defended by the
19	test data, use the data to develop the correlation.
20	If you have too thick of a bed, I don't know how much
21	information you will get, because you may not have
22	much flow. We tried to we iterated on the matrix,
23	and I'll show that in a minute. We iterated on the
24	matrix a lot, and you'll see what we finally ended up
25	with, but it wasn't 18 inches, as you indicated. It
I	1

(202) 234-4433

	176
1	was thinner than that.
2	Okay. Let me just describe the test loops
3	a little bit. Basically, at PNNL, we had two test
4	loops, what we called the large test loop was really
5	the test facility where almost all the testing that
6	had the fine data, the bed height measurements, the
7	composition of the bed, that's where we did all the
8	data that we used basically to develop the
9	correlation. But we also had bench top loops, which
10	were smaller diameter loops that we could just run
11	quick little sensitivity studies, so that we could use
12	that as a basis
13	MR. WALLIS: Even this is a fairly big
14	loop, though. It's four inches out of six, and it's
15	got a lot of piping and stuff, so
16	MR. KROTIUK: Yes. But the 4 inch loop,
17	we were able to we didn't have as fine, like we
18	weren't as concerned about having real, real accurate
19	delta P measurements and everything else. It was done
20	for more of a sensitivity study so that we knew how we
21	should maybe modify the conditions in the large loop
22	to get the best data, so that's the purpose of the
23	smaller bench top loop. But you're right, it was
24	still pretty big.
25	CHAIRMAN BANERJEE: Well, it was less
	I

(202) 234-4433

	177
1	instrumented.
2	MR. KROTIUK: It was less instrumented,
3	yes. And data wasn't as good as the large loop. We
4	did a lot of work in the large loop to make sure that
5	the data was as best as we could get.
6	On the large loop we had temperature
7	control up to 90 degrees C. We were able to measure
8	the bed heights in situ so that we could use an
9	optimal triangulation technique. We were able to
10	pressurize the loop to 150 psi to maintain gaseous
11	solution so we didn't have two-phase flow. That's
12	something that wasn't in the smaller loop. And we
13	also had a filtration system to remove small suspended
14	particles, so we knew what we had flowing in the loop.
15	Now, let's see. This on the right here is
16	the picture of the test section itself. This is the
17	screen here. We have a clear section here, and the
18	flow basically comes down, so that's this section
19	right here. This is the test section, so the flow
20	would come down. You have delta P measurements across
21	the test section. You have a flow sensor here. This
22	is the filter. It's in parallel to be able to filter
23	out particulates in the loop, the pump, temperature
24	controller, and then it continued like this, and
25	connected up here. The debris in the case of the
I	I

(202) 234-4433

	178
1	NUKON and the cal sil, and other tests that we did, we
2	were able to add it, but in this area on the top of
3	the loop, and we also had an external pressurization,
4	as I said, to 150 psi to prevent gas from coming out
5	of solution.
6	MR. ABDEL-KHALIK: Now that filter, what
7	size particles can this filter stop? Is it a micron
8	filter?
9	MR. KROTIUK: Yes.
10	MR. ABDEL-KHALIK: Or a sub-micron?
11	MR. KROTIUK: Ten micron.
12	MR. ABDEL-KHALIK: Ten micron. Now in a
13	real case, wouldn't you expect some particles to be
14	within flow much larger than that?
15	MR. KROTIUK: Yes. This was done just for
16	testing reasons. As you add the debris into the test
17	loop - let me go to here - say we added in this
18	location here, and we started building the test bed in
19	the test section here, we could - even as it's
20	building, there's still suspended particles.
21	MR. ABDEL-KHALIK: Right.
22	MR. KROTIUK: So the intent of the
23	filtration was really just to take any of these
24	suspended particles out after we decided to start the
25	test, so that we didn't have - the bed didn't
ļ	I

(202) 234-4433

	179
1	continually start building. We had a set bed that we
2	did the tests on. That's the only reason the
3	filtration system is there.
4	MR. ABDEL-KHALIK: Okay.
5	MR. KROTIUK: The testing was done with
6	two types of screens, one was a perforated plate, and
7	one was a five-mesh screen. And then this is - you
8	saw this last time - this is just the way it was
9	mounted in a ring here, so I won't - I don't think
10	I'll pass it around because you saw that previously.
11	The interesting thing is that the specifications on
12	both the plate and the five-mesh screen were specified
13	basically after consulting with NRR, and this is the
14	flow area that they said to be using, and basically
15	the diameter of the holes in the plate, and the square
16	openings in the screen itself.
17	CHAIRMAN BANERJEE: Let me ask you one
18	thing. The correlation which we've heard about also
19	as it's been developing, remind me if it's only for
20	PWR sump screens, or does it apply to more general in
21	filter - I mean, also in the BWR?
22	MR. KROTIUK: It is a correlation to
23	calculate pressure drop over a porous medium debris
24	bed, so it could be
25	CHAIRMAN BANERJEE: Doesn't matter which
I	I

(202) 234-4433

	180
1	one.
2	MR. KROTIUK: Doesn't matter which one.
3	As long as you have the properties, that's the key
4	thing, and I'll get to that. You have to know the
5	properties of the debris.
6	Okay. Let me just go a little bit,
7	describe a little bit how the testing was done in the
8	large loop, because, as I said, that's where most of
9	the data came from. We prepared the debris
10	constituents before it was introduced into the loop,
11	and previously at a previous presentation, Carl
12	Enderlin went through a whole elaborate description of
13	how it was prepared, so I'm not going to go over that
14	again.
15	For the bulk of our testing, there were a
16	few exceptions to this, we formed the bed at .1 feet
17	per second. We started the flow, we added the debris,
18	and then we kept it at .1 feet per seconds, and built
19	the debris bed on the screen, and basically kept it
20	running for, as you said, about an hour, or seven
21	circulations in this entire loop so that we could
22	build the bed.
23	MR. WALLIS: Now this when you do that,
24	I would think that the big stuff, the long fibers get
25	caught the first time. They don't go through the
I	

(202) 234-4433

ĺ	181
1	holes.
2	MR. KROTIUK: That's probably right.
3	MR. WALLIS: So then as you build the bed,
4	the top of the bed you're building is going to be made
5	of finer fibers than the bottom.
6	MR. KROTIUK: That's correct.
7	MR. WALLIS: And if you have very fine
8	particles, maybe they go around seven times or
9	something before they settle.
10	MR. KROTIUK: That could definitely
11	MR. WALLIS: So you're not producing a
12	homogeneous bed.
13	MR. KROTIUK: That's absolutely right.
14	CHAIRMAN BANERJEE: This correlation is
15	supposed to take that into account.
16	MR. WALLIS: You're going to predict the
17	structure of the bed in your correlation?
18	MR. KROTIUK: That's what I have attempted
19	to do, with some success. It's not 100 percent
20	successful, but it's some success.
21	MR. WALLIS: You're going to show this,
22	the sort of concentration of fines and long fibers as
23	a function of depth in some way?
24	MR. KROTIUK: Yes.
25	MR. WALLIS: Because there's no
	I

	182
1	correlation that industry uses that I know of that
2	tries to do this.
3	MR. KROTIUK: That's correct. In fact, I
4	didn't find
5	CHAIRMAN BANERJEE: In fact, you showed us
6	the approach you were taking last time.
7	MR. KROTIUK: I showed the approach, and
8	it was still being developed at the time.
9	CHAIRMAN BANERJEE: Well, tell us.
10	MR. KROTIUK: Yes. One other thing is
11	that we measured the constituent debris mass, for
12	instance, of the NUKON and cal sil before we injected
13	it into the loop, and then after we retrieved the
14	debris bed, we dried it and then measured the weight,
15	so we knew how much was added, and how much was
16	actually deposited on the debris bed.
17	MR. WALLIS: I'm surprised how much got
18	lost.
19	MR. KROTIUK: I'm going to discuss that.
20	I have a slide that specifically shows how much got
21	lost.
22	CHAIRMAN BANERJEE: When were these tests
23	conducted, and when did they finish?
24	MR. KROTIUK: We finished them in, I think
25	it was early - last September. And they were
ļ	I

(202) 234-4433

	183
1	conducted for about eight months, ten months,
2	something like that, something of that nature.
3	CHAIRMAN BANERJEE: So they finished
4	September 2006.
5	MR. KROTIUK: And if we had a debris bed
6	that was composed of say NUKON and the cal sil, we
7	wanted to know how much of that debris was NUKON, and
8	how much of it was cal sil, so we used a post test
9	chemical dissolution technique to dissolve out the cal
10	sil so we could know the weight of the constituents in
11	the bed.
12	MR. WALLIS: Talking about circulation
13	time, I had a problem with the small scale loop,
14	because they gave the circulation in gallons per
15	minute, and they gave the volume of the loop, and I
16	couldn't make that agree with the circulation time.
17	Maybe someone needs to check that at some time.
18	MR. KROTIUK: Well, we could check that.
19	MR. WALLIS: May be a typo or something.
20	MR. KROTIUK: Yes. Nothing is - you know,
21	could be an error in there. I'll check on that.
22	MR. WALLIS: That was the small-scale
23	loop?
24	MR. KROTIUK: No, the seven circulations
25	were for the large
	I

(202) 234-4433

	184
1	MR. WALLIS: No, but I was saying the
2	problem I had was with the small scale.
3	MR. KROTIUK: Okay. Now, again, this was
4	for the bulk of the testing that was done. We took
5	steady-state pressure drop measurements across the
б	debris bed, and we started - we put it through a
7	series of velocities. We changed velocities, and then
8	ran it enough that we got a steady-state pressure.
9	And we started out, as I said, built a bed at .13 per
10	second, and then
11	CHAIRMAN BANERJEE: You added the cal sil
12	at that point?
13	MR. KROTIUK: You added the cal sil at .1
14	foot per second, so we added all the NUKON and all the
15	cal sil at .1 feet per second, built a bed. Then we
16	would - I'll describe it a little - then we typically
17	would let it circulate for that seven times around the
18	large loop. Then we would open up the bypass
19	filtration system, filter out any of the other
20	particles that may be floating around so that we now
21	have a bed without any - as much as we could
22	CHAIRMAN BANERJEE: A stable
23	MR. KROTIUK: A stable situation without
24	particles moving around. We closed off the
25	filtration, and then we started doing the testing, and
Į	I

(202) 234-4433

	185
1	changed the velocities, and measured pressure drop.
2	MR. ABDEL-KHALIK: So you actually never
3	collected transient data for pressure drop while
4	you're building the bed, during that one-hour period.
5	MR. KROTIUK: In actuality, pressure drops
б	were continually monitored and recorded, and it's all
7	- it is there on the raw data files, but I didn't use
8	that. I only used the steady-state
9	MR. ABDEL-KHALIK: The transient data can
10	help you sort of at least get an idea what the bed
11	structure is, if you know how things change with time.
12	MR. KROTIUK: That could be interesting.
13	I mean, we have the data. I just didn't really look
14	at it from that point of view.
15	MR. WALLIS: Now although you cycled the
16	velocity, you didn't seem to get the results that
17	University of New Mexico got with some of their tests,
18	where they go along, pressure drop behaved very nicely
19	with flow rate, and suddenly leap up by a factor of 7
20	or something.
21	MR. KROTIUK: I did get a few of those.
22	I'll show you.
23	MR. WALLIS: You did get a few of those?
24	MR. KROTIUK: Yes.
25	CHAIRMAN BANERJEE: And there was a
I	

(202) 234-4433

	186
1	hysterisis effect, of course.
2	MR. WALLIS: They got a bit of hysterisis,
3	but not so much.
4	MR. KROTIUK: Not so much, yes. But I did
5	get a few of those.
6	MR. WALLIS: Okay.
7	MR. KROTIUK: This is just a summary of
8	all the testing that was done. In the large loop, we
9	did testing without debris, with the five-mesh screen
10	and the perforated plate, just to measure the pressure
11	drop for that, for an unclogged or a plate or a screen
12	without any debris on it, so we did five of those
13	tests. We did testing of cal sil only, NUKON only,
14	NUKON and cal sil combined, both in the large and the
15	bench top loops, and you could see that there were a
16	fair number of tests done, 11 cal sil only tests, 90
17	NUKON only tests, and 45 NUKON cal sil tests. Then we
18	did some additional testing with coatings, primarily
19	in the large loop, but that was a very small number of
20	tests. There was only four tests done.
21	MR. WALLIS: But you never seem to build
22	up much of a bed of coat.
23	MR. KROTIUK: I didn't include any
24	discussions under coating, because I wanted to
25	concentrate on the NUKON and the cal sil, but yes,
I	1

(202) 234-4433

	187
1	there was not - if you read the report, there was
2	MR. WALLIS: Didn't seem to be enough
3	coating to really make a bed.
4	MR. KROTIUK: Right.
5	CHAIRMAN BANERJEE: But if the coating was
6	involved, wouldn't some of the other insulation be
7	involved?
8	MR. KROTIUK: You know
9	MR. WALLIS: Yes, it would be.
10	MR. KROTIUK: We came up with a test
11	matrix and investigated the NUKON and the cal sil, and
12	then we started adding some additional testing with
13	the coatings, and basically we ran out of time, and
14	money.
15	CHAIRMAN BANERJEE: Otherwise, you would
16	have done some with
17	MR. KROTIUK: I would have done some - I
18	had like a huge matrix that I was working trying to
19	fill, and one of them was to combine it with the
20	coatings, but I never was able to get there.
21	CHAIRMAN BANERJEE: What about the paint
22	flakes and things?
23	MR. KROTIUK: That's included in the
24	coatings. The coatings were done with paint flakes
25	and paint particles.
ļ	I

	188
1	MR. WALLIS: Now did you sort of blindly
2	follow a test matrix? I remember when you did the cal
3	sil only, for instance, you didn't form a debris bed,
4	but you almost did. I mean, the photos show that you
5	almost got a debris bed.
6	MR. KROTIUK: Almost.
7	MR. WALLIS: You've even got a few holes
8	in it.
9	MR. KROTIUK: Right.
10	MR. WALLIS: It seems to indicate that
11	with just a little more cal sil, you would have got a
12	debris bed.
13	MR. KROTIUK: We looked at that to a very,
14	very large degree. We ran, gosh, in the small and the
15	large loop maybe a dozen or so tests where we
16	constantly were increasing the mass of cal sil.
17	MR. WALLIS: You didn't report those?
18	MR. KROTIUK: They are in the final
19	report, yes.
20	MR. WALLIS: And you always got blow-
21	through or something?
22	MR. KROTIUK: Yes, and I don't remember
23	the number. I think two slides from now I'll show how
24	much we added, and how much was actually deposited.
25	And it came out that only about 10 percent of cal sil
I	1

(202) 234-4433

	189
1	on its own was collected.
2	MR. WALLIS: I think - was it, again, LANL
3	or somebody, was able to make, I think, one bed that
4	was only cal sil.
5	MR. KROTIUK: Right. That's correct.
6	MR. WALLIS: So it could happen.
7	MR. KROTIUK: It could happen, but we
8	tried very hard to build it, and we just were not able
9	to.
10	MR. WALLIS: Well, there are fibers in cal
11	sil.
12	MR. KROTIUK: Yes, there are, in
13	somebody's list in 10 percent of the mass is fibers.
14	MR. WALLIS: You catch the fibers first,
15	then you could build your bed.
16	MR. KROTIUK: We kept on trying to
17	increase the mass hoping to do that. Okay.
18	I'm showing the testing that was done, as
19	I said, on the large loop, and I broke it up into
20	Series I and Series II. And so this is just the first
21	testing that we did. Just to identify this, when it
22	says "SO", this was done with a screen, so SO stands
23	for screen only. NO stands for NUKON only, NC is
24	NUKON cal sil. This is the date in the front, as you
25	could see from my little label here.
I	

(202) 234-4433

1 The thing that I wanted to point, as you 2 indicated earlier, is that, for instance, let's look 3 at this NUKON test right here. We added - wait a 4 minute, that's probably not a good one. Let me just 5 go to a clean one. Okay. We had some problems, just to tell you this, is that the first series tests, 6 7 like, for instance, we added in this one 165 grams per 8 meter squared. I'd always like to do it grams per 9 meter squared because then that's comparative to whatever kind of loop you were doing testing with. 10 So if you notice that in this situation, we actually 11 12 ended up with a little bit more mass than we actually put in, and what had happened this one, on the first 13 14 Series I test, we had ordered a valve, and the valve turned out to be a bad valve, so we had to scrounge -15 we ordered a replacement valve, but we had to scrounge 16 17 around for a valve, and the valve we put in had rust particles in it, so some of these tests, as indicated 18 19 by the asterisks here, had problems because there was some additional rust in the debris bed. 20 21 But the thing I really wanted to point out 22 - like, for instance, on this one right here, we added 23 99 kilograms per meter squared. The bed was only 24 formed at .92, and so that there was only 93 percent

of the mass that was added in the NUKON into the loop

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

190

	191
1	onto the bed. And when it came to the cal sil for
2	these NUKON cal sil beds, even a small amount of what
3	was added was deposited into the bed.
4	CHAIRMAN BANERJEE: And you took some of
5	it out with the filter, didn't you?
6	MR. WALLIS: That's at the end,
7	presumably.
8	MR. KROTIUK: That's - yes, some of it
9	would have been taken out, but that would really be
10	
11	CHAIRMAN BANERJEE: The fine particles.
12	MR. KROTIUK: The fine particles, yes.
13	CHAIRMAN BANERJEE: So there was some
14	mass.
15	MR. KROTIUK: There was some mass that was
16	lost there, yes. We originally would go - actually,
17	we have the data. We didn't look at it too closely,
18	but we actually made some measurements about what went
19	into the filter, and so we actually know how much was
20	deposited in the filter after every test.
21	MR. WALLIS: And did the cal sil get
22	deposited in the rest of the loop?
23	MR. KROTIUK: I'm sorry?
24	MR. WALLIS: Did the cal sil get deposited
25	in the rest of the loop?
I	

(202) 234-4433

192 1 MR. KROTIUK: We looked at that during 2 these first tests, the Series I tests. PNNL actually, 3 after doing the NUKON cal sil tests, they actually 4 took parts of the loop apart to look at if there was 5 deposition in the loop itself, and they didn't find there was some, but not an extreme amount. I don't 6 7 remember the numbers off-hand. 8 CHAIRMAN BANERJEE: So where did they go? 9 Where did the mass go? MR. KROTIUK: Well, there was -- oh, I see 10 what you're saying. Yes. There was deposition in the 11 12 loop, but - that's a good question. CHAIRMAN BANERJEE: On the bed, you're 13 14 only deposited --15 MR. KROTIUK: Yes. 16 MR. WALLIS: If it stayed in the water, 17 you would --MR. KROTIUK: Yes, some stayed in - let's 18 19 Some had to be deposited, some stayed in the see. 20 water, and some, when we had the filter system 21 working, some was deposited in the filter. That's the 22 three locations that it could be at. That's a good 23 question. 24 CHAIRMAN BANERJEE: You never arrived at 25 a mass balance.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	193
1	MR. KROTIUK: You know, I should have done
2	that, and I didn't include that. That's a good
3	comment.
4	MR. KRESS: How did you weigh these?
5	MR. KROTIUK: Okay. You mean the debris
6	bed itself?
7	MR. KRESS: Yes.
8	MR. KROTIUK: We took the debris bed out
9	of the test section.
10	MR. KRESS: The circular, whole thing.
11	MR. KROTIUK: This whole thing with the
12	debris bed. I'll show pictures of it.
13	MR. KRESS: Re-weighed it, and subtract
14	out the original weight of the
15	MR. KROTIUK: Right.
16	MR. KRESS: There could be some errors
17	there.
18	MR. KROTIUK: Yes. There were some errors
19	in there. We had plus or minuses on the measurements,
20	also. But we made sure we dried it.
21	MR. WALLIS: You dried it?
22	MR. KROTIUK: I was just going to say, we
23	made sure we dried it.
24	CHAIRMAN BANERJEE: You would expect the
25	errors, however, to err on the side of having a little

```
(202) 234-4433
```

	194
1	more weight than it should have, because some water
2	might be still there. Nonetheless, I mean
3	MR. KROTIUK: We put a plus or minus on
4	the measurements.
5	CHAIRMAN BANERJEE: But still, the effect
б	is large enough that
7	MR. KRESS: I think with that way, you're
8	taking two big numbers and subtracting to get a small
9	one, and your measurement errors could multiply that
10	way.
11	MR. KROTIUK: And especially in the NUKON
12	cal sil bed, remember what I said, is that the way we
13	determined the cal sil mass is that we would measure
14	the weight of the entire bed, then use the chemical
15	deposition - chemical dissolution, I'm sorry, to leach
16	out the cal sil, and then we weighed it again, so the
17	weight of the cal sil was a difference of the total
18	weight minus the weight of the NUKON. So there was
19	errors in there, also.
20	MR. KRESS: So you could see where the
21	errors in that
22	MR. KROTIUK: Yes.
23	MR. KRESS: But they may not be really
24	important, because what you really want to know is how
25	thick the bed was.

(202) 234-4433

	195
1	MR. KROTIUK: Yes.
2	MR. KRESS: And how much was on it.
3	MR. KROTIUK: Let me just go to the next
4	slide, because this is
5	MR. WALLIS: Well, the thicker bed seems
б	to retain higher percentage of the cal sil, in
7	general. It looks like it.
8	MR. KROTIUK: Yes. Yes. It seemed to be
9	that.
10	CHAIRMAN BANERJEE: And the mass balance
11	
12	MR. WALLIS: Does this enable you to
13	predict how much cal sil will go into the reactor, and
14	not be filtered out?
15	MR. KROTIUK: I don't know if you could
16	predict it, but it would give you an indication.
17	MR. WALLIS: Gives you an indication.
18	MR. KROTIUK: It should give you an
19	indication. This is the Series II test, and this was
20	run with a perforated plate. The first two are plate
21	alone, this is a cal sil only test, these are NUKON
22	only tests, and these are NUKON cal sil tests. This
23	did not have the problem with the dirty valve in it.
24	The valve was replaced for this test, so the
25	measurements are pretty good in terms of what we
	I

(202) 234-4433

	196
1	added, and what we measured.
2	MR. WALLIS: Even with NUKON you've got
3	only 78 percent in one case left on the bed?
4	MR. KROTIUK: That's right.
5	MR. WALLIS: Well, it must depend on how
6	you shredded it.
7	MR. KROTIUK: You know, that - Carl had
8	done a lot of stuff on shredding it, and yes,
9	shredding it does affect not only deposition, but also
10	affects pressure drop.
11	MR. WALLIS: PNNL did quite a bit on leave
12	shredding, and blenders, and trying to get the
13	standard
14	MR. KROTIUK: Yes. And they basically
15	standardized the way
16	MR. WALLIS: What does this have to do
17	with what happens in a LOCA? You don't have leave
18	shredders in a reactor, so what -
19	MR. KROTIUK: You don't, but -
20	CHAIRMAN BANERJEE: We visited this one
21	day extensively.
22	MR. KROTIUK: Yes. We had to shred it in
23	some fashion, and the ultimate aim was to make sure
24	that we shredded it continually the same way so that
25	we could make comparisons, otherwise you can't compare
I	

(202) 234-4433

	197
1	one delta P measurement to another delta P
2	measurement.
3	MR. WALLIS: Well, how are you going to
4	predict something for - probably depends on which
5	blender you use, what you get for a result.
6	CHAIRMAN BANERJEE: Or which steam jet, or
7	whatever.
8	MR. KROTIUK: That's a very valid
9	question, and I don't have
10	MR. WALLIS: Unless there's something like
11	surface volume or something that is a factor that
12	correlates everything.
13	MR. KROTIUK: I have not been able to
14	CHAIRMAN BANERJEE: You'll see how many
15	free parameters
16	MR. WALLIS: Well, that old NUREG
17	correlation - I forget the number.
18	MR. KROTIUK: 6224.
19	MR. WALLIS: That sounds like it. That
20	has some sort of surface area imputed volume, wasn't
21	it, in there?
22	MR. KROTIUK: Yes.
23	CHAIRMAN BANERJEE: It's just a fudge
24	factor.
25	MR. WALLIS: Well, it gives you
I	

```
(202) 234-4433
```

	198
1	characteristic dimension, that's fine.
2	MR. KROTIUK: But that's called the SV,
3	specific surface area, and that's a very standard way
4	to measure pressure drop across
5	CHAIRMAN BANERJEE: In fact, the way it
6	was adjusted, if you recall, was
7	MR. KROTIUK: Yes, absolutely. Because it
8	was like
9	MR. KRESS: And they could
10	MR. KROTIUK: It was like 600 for a thick
11	bed, and 800, 900 - I'm sorry, 650,000 feet to the
12	minus one for a thick bed, and 800, 900,000 for a thin
13	bed, something like that.
14	CHAIRMAN BANERJEE: It was all over the
15	place.
16	MR. KROTIUK: Yes, so I'll address that
17	when I get to the modeling section. Okay.
18	Just what I wanted to show is that this
19	just summarizes for all those tests, this shows how
20	much of the NUKON that was added was actually ended up
21	being deposited.
22	MR. WALLIS: 3 percent is right. I guess
23	it is, yes. Well, that's a very small amount of cal
24	sil?
25	MR. KROTIUK: Yes.
	I

(202) 234-4433

199 1 MR. WALLIS: No, it looks like the same 2 experiment done twice. In one case it's 11 percent, 3 another case it's 3 percent. 4 MR. KROTIUK: Let me just take a quick 5 look. MR. WALLIS: You've probably got the same 6 7 amount of NUKON and cal sil added, but you've got much 8 less captured in --9 MR. KROTIUK: Yes, they were duplicate 10 testing. MR. WALLIS: Right. 11 12 MR. KROTIUK: But the interesting thing on that is that if you notice, this bed - for instance, 13 14 these three tests here, they all had the same amount 15 of NUKON and cal sil added, but in this case the bed was built at essentially 20 degrees C, this was about 16 17 55 degrees C, and this one was around 80 degrees C. Because we wanted to see the effect of temperature. 18 19 MR. WALLIS: Is it the temperature effect, 20 or just bad reproducibility? 21 MR. KROTIUK: My personal opinion is that 22 it's not related so much to temperature, as it is to 23 just a variance. 24 CHAIRMAN BANERJEE: Because here it's 25 complicated. You have to take the NUKON out, or the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	200
1	cal sil, and then it's a mixed bed. Right?
2	MR. KROTIUK: Yes, it's a mixed bed. It's
3	NUKON cal sil.
4	MR. WALLIS: So these are all the tests,
5	these tables?
6	MR. KROTIUK: These are all the tests that
7	were highly instrumented that were run in the large
8	loop. If you saw
9	MR. WALLIS: It doesn't look like many
10	data points on which to build a theory then.
11	MR. KROTIUK: Yes. I'm not going to argue
12	with that.
13	MR. WALLIS: I think you have a
14	repeatability problem.
15	MR. KROTIUK: Yes. I'm not going to argue
16	with you on that.
17	CHAIRMAN BANERJEE: But building the
18	theory also - I mean, each of these tests you've
19	cycled velocity many times.
20	MR. KROTIUK: We could only do so much as
21	we could do.
22	CHAIRMAN BANERJEE: I think Said's point
23	about looking at the build-up of the bed is
24	interesting.
25	MR. KRESS: That would be interesting to
	1

(202) 234-4433

	201
1	see, anyway.
2	MR. WALLIS: Did you monitor the pressure
3	drop as you built up the bed? It said no.
4	MR. KROTIUK: Yes.
5	MR. WALLIS: And in their report, they
6	said this was a different question, or something.
7	MR. KROTIUK: Yes, but it was - I'm going
8	to repeat again. I said this, but maybe it wasn't
9	clear. What we measured in the report was all the
10	stead-state pressure drop values. However, we
11	continually measured pressure drop, and we have it on
12	the data files.
13	MR. WALLIS: Yes, but there was a
14	statement in the report saying that it was not part of
15	this report, so we don't have it.
16	MR. KROTIUK: Right. We just didn't
17	report it. That's it.
18	CHAIRMAN BANERJEE: They have it.
19	MR. KROTIUK: We have it. We have the raw
20	data. Okay. And just this is just to show you
21	samples of the beds that were built. This one on the
22	left here is a very thin bed. It's NUKON only, and
23	the one on the right is a NUKON cal sil bed with
24	indicated loadings, and I notice that the plus or
25	minuses didn't come out, but it's a plus or minus
l	I

(202) 234-4433

	202
1	thing.
2	MR. KRESS: When I envision triangulation,
3	I envision three receivers and time of flight
4	differences. Are you talking about time of flight
5	differences for light waves going to receivers? What
6	is this triangulation
7	MR. KROTIUK: Okay. Let me see. Maybe
8	this will let me go back just to show you. And I'm
9	going to I'm not the one who developed this, PNNL
10	developed this, so I'll try to describe it the best
11	way I know how. Basically, there was a camera set up
12	here, and then a light source here. And the light
13	source would put a grid pattern on the top of the
14	debris bed.
15	MR. KRESS: A grid pattern?
16	MR. KROTIUK: A grid pattern. Okay.
17	MR. WALLIS: Well, that wasn't clear from
18	the description.
19	MR. KROTIUK: Sorry if it wasn't. So,
20	anyway,
21	MR. WALLIS: A grid pattern?
22	MR. KROTIUK: It puts a grid pattern on
23	it, and then you come up with
24	CHAIRMAN BANERJEE: Is that the grid
25	pattern we're seeing there?
1	

```
(202) 234-4433
```

	203
1	MR. KROTIUK: Yes. It's not very oh,
2	right. Here it is, see the grid? Right. There it
3	is, that's the grid pattern. And this is actually, as
4	it's expanding and contracting.
5	MR. WALLIS: If you look at it from an
6	angle or something.
7	MR. KROTIUK: Yes, we're looking at it
8	from an angle. And you basically standardize it on a
9	zero thickness, and then you could come up with a
10	conversion to different thicknesses. So the net
11	effect of this is that you are actually able to
12	develop
13	MR. WALLIS: Could we look back at that?
14	MR. KROTIUK: Sure. I was just going to
15	show the
16	CHAIRMAN BANERJEE: So you have a grid
17	pattern normal to the bed.
18	MR. KROTIUK: Grid pattern - yes.
19	CHAIRMAN BANERJEE: So that as the bed
20	moves it blocks.
21	MR. KROTIUK: Right.
22	MR. WALLIS: Now you showed some debris on
23	this bed, and it was red and yellow. Why is it two
24	colors? Is the red stuff denser or something, or
25	what? The stuff that's near the screen is redder than
	1

```
(202) 234-4433
```

	204
1	the yellow stuff, or does that mean anything there?
2	MR. KROTIUK: I'm not I don't think the
3	color means anything, because if you look at this
4	debris bed here, it's really pretty homogeneous in
5	color.
6	MR. WALLIS: Well, it's not in depth,
7	though. Homogenous from top to bottom, not from side
8	to side.
9	MR. KROTIUK: Right. I see what you're
10	saying down here.
11	MR. WALLIS: Redder there. Anyway, it's
12	elastic.
13	MR. KROTIUK: It's elastic, yes.
14	MR. WALLIS: But then it has a set. It's
15	elastic, but if you keep on squishing it, it becomes
16	more squished.
17	MR. KROTIUK: Right, becomes more
18	squished, but
19	MR. WALLIS: Doesn't rebound so much.
20	MR. KROTIUK: Right.
21	MR. WALLIS: Like a felt in felting
22	process.
23	MR. KROTIUK: I'm not familiar with a
24	felting process.
25	MR. WALLIS: Felt, you start with a lot of
ļ	

```
(202) 234-4433
```

205 1 fluffy wool and you keep sort of pushing it together 2 until you get a felt, which is the wool squished down 3 to --4 MR. KROTIUK: Okay. 5 MR. WALLIS: That's thinner, but denser. Push the fibers into each other, and it's denser. 6 7 MR. KROTIUK: Okay. Sounds similar. 8 MR. WALLIS: You're doing that here, 9 felting in a way. 10 MR. KROTIUK: This is just a sample of the readings that we get say for a particular velocity. 11 12 I didn't indicate it here, but we would have a rim thickness, a body center thickness, an average body 13 14 thickness because from the optical triangulation grid 15 we could actually come up with a contour, so we 16 actually had a contour of the surface of the debris 17 bed, itself. How do you maintain 18 MR. ABDEL-KHALIK: 19 constant flow? Is this a PD pump? 20 MR. KROTIUK: Tom, do you know what kind 21 of pump it was? You need to come to the 22 MR. KRESS: 23 microphone. This is Tom Michener from 24 MR. KROTIUK: 25 And I don't remember the type of pump so --PNNL.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	206
1	MR. MICHENER: I'll repeat that. Tom
2	Michener from PNNL. I wasn't the lead PI on this, but
3	as I recall, that was the type of pump they had on
4	there. They did a pretty good job on maintaining the
5	flow rates, and the pressure, so it wasn't where
6	the problem occurred is at the really low velocities.
7	It was hard to keep that wasn't our original intent
8	when we hooked up the pump that we used, and so when
9	we went to lower and lower velocities, that became
10	more of a challenge.
11	MR. ABDEL-KHALIK: So this was a positive
12	displacement pump, control the flow by controlling the
13	pump speed.
14	MR. KROTIUK: Right. Yes, we controlled
15	the pump speed. Correct.
16	MR. ABDEL-KHALIK: And you got whatever
17	pressure drop you got.
18	MR. KROTIUK: Right.
19	MR. MICHENER: Right. And we had constant
20	read-out of what the flow rate was.
21	MR. WALLIS: It didn't fluctuate. In some
22	of the other labs, the flow rate fluctuated a fair
23	amount.
24	MR. KROTIUK: I wanted to make sure that
25	we had a constant flow rate, so that we would adjust
I	

(202) 234-4433

	207
1	the speed of the pump if we had to.
2	MR. MICHENER: Our loop was highly
3	controllable. We had it was pressurized. It
4	wasn't an open loop. We had temperature feedback
5	controls. Like you said, the positive placement pump.
6	We could dial-in what we needed to do, repeatability
7	testing. We had a statistician on board telling us
8	which tests to repeat.
9	MR. WALLIS: So your report gave a lot of
10	results, didn't have very much of the raw data so we
11	could look at how much the things fluctuate and all
12	that. You just sort of presented a result, and we had
13	to believe it was steady-state. We didn't know how
14	you approached the stead-state and all that.
15	MR. KROTIUK: That's correct. The report
16	itself is pretty - is what, 500 pages long.
17	MR. WALLIS: Yes, but it doesn't is
18	that the one you gave us?
19	MR. KROTIUK: There were two reports.
20	There was a report that was 500 pages long, that's the
21	testing report.
22	MR. WALLIS: Oh, that's not the one I was
23	reading then.
24	MR. CARUSO: We've got it though, I'm
25	pretty sure.
I	

(202) 234-4433

	208
1	MR. WALLIS: Well, it's also it's one
2	of the other ones that I haven't looked at yet.
3	MR. KROTIUK: And then there's the 175
4	pages, which is the
5	MR. WALLIS: Gave the results? That's the
6	one I looked at.
7	MR. KROTIUK: Yes, that's there's a lot
8	more data, obviously, in the testing report.
9	MR. WALLIS: Okay. Thank you.
10	MR. KROTIUK: This is the you've seen
11	this one before, but I just wanted to emphasize
12	something here. This was head loss or pressure drop
13	versus the screen velocity for the approach
14	velocity for a case where we had a screen. And what
15	we did here, just to reiterate, is that if we mix the
16	NUKON and cal sil before time and added it to the
17	loop, we had delta Ps as a function of velocity in
18	this area. If we formed the NUKON bed, and then added
19	cal sil after the bed was formed, we actually got a
20	higher pressure drop for equivalent velocity. And
21	then the worst case, which we call the Case-1 case,
22	was that cal sil was added to the loop, and then 30
23	seconds later, NUKON was added. The NUKON
24	MR. WALLIS: The cal sil was still going
25	around the loop.

(202) 234-4433

	209
1	MR. KROTIUK: Right, so that the cal sil
2	started depositing into the debris bed as it was being
3	formed, and that gave the highest pressure for
4	particulate velocity.
5	MR. WALLIS: Well, was it as it was being
6	formed? It seemed as if you had a long delay time, so
7	you had the cal sil going around, and the NUKON bed
8	was probably formed before the first cal sil arrived,
9	I would think. It wasn't quite clear.
10	MR. KROTIUK: When I went down and I was
11	looking at the testing, after you added the cal sil
12	and the NUKON, the debris period, it didn't the
13	debris seemed to travel at a different velocity, so
14	you had kind of a long area. It wasn't just all in
15	one area, it was a couple of feet long where there was
16	debris traveling around.
17	MR. WALLIS: Well, I should think so, yes,
18	because of the velocity turbulence, and the velocity
19	profile and everything. But still, the cal sil was
20	sort of in the loop when you added the NUKON.
21	MR. KROTIUK: That's correct.
22	MR. WALLIS: And then it came around
23	later.
24	MR. KROTIUK: Then it came around later.
25	MR. WALLIS: So it's rather like the NUKON
I	I

(202) 234-4433

	210
1	first experiment.
2	MR. KROTIUK: It's similar, but that we
3	were trying to show the dependence upon injection of
4	it.
5	MR. WALLIS: This was the most interesting
б	part of the work, to me, and with the most practical
7	implication, and yet it seemed to be stopped here with
8	no more investigation, and that surprised me.
9	MR. KROTIUK: Let me go through the next
10	slide.
11	MR. WALLIS: Yes, but there wasn't much
12	more.
13	MR. KROTIUK: There wasn't much more.
14	Because
15	MR. WALLIS: This is a really key thing.
16	I mean, the way in which you make the bed has three
17	orders of magnitude difference, they said, which I
18	agree with on the pressure drop. This has an enormous
19	effect and it's worth understanding. You can worry
20	about getting a 25 percent error in a very controlled
21	correlation or something, but if you have three orders
22	of magnitude depending on how you make the bed, that
23	swamps everything.
24	MR. KROTIUK: It's a valid point. The one
25	thing is that there's a repeatability when you're
I	I

(202) 234-4433

	211
1	doing
2	MR. WALLIS: Yes, but that's because
3	you're trying to get a correlation, but if you're
4	trying to represent reality, you've got this huge
5	variation, and you want to know is your reality to the
6	right or to the left.
7	MR. KROTIUK: Yes.
8	MR. WALLIS: Where are sumps on this plot?
9	MR. KROTIUK: I tried I'm sorry, what
10	was it?
11	MR. WALLIS: Where are real sumps on a
12	plot like this?
13	MR. KROTIUK: And that's a good I can't
14	answer that question. I don't know where real sumps
15	are.
16	MR. WALLIS: So you've got a factor of
17	1,000 of uncertainty on what's going to happen in a
18	sump?
19	MR. KROTIUK: Well, one thing I tried to
20	do, and if you read the modeling report, is that - and
21	I'll address this a little bit more later, is that I
22	tried to be able to predict the worse case debris
23	distribution in the bed to come up with an upper
24	limit. And then, similarly, a lower limit for a
25	debris bed, and that would be
I	I

(202) 234-4433

	212
1	MR. WALLIS: A factor of 1,000 difference?
2	MR. KROTIUK: It was factor I'll show
3	the plots in a while. And I have three sample cases
4	that I plotted here, but there was substantial
5	differences. I don't know if it's I don't think it
б	was 1,000. Okay?
7	MR. WALLIS: You get three orders of
8	magnitude, you have to extrapolate your right-hand
9	data down to the origin, but linear is the worst case.
10	I mean, if it's curved, you get less pressure drop, so
11	that's conservative to use a linear extrapolation.
12	And that does give you a factor about 1,000 between
13	the highest and the lowest. That three orders of
14	magnitude statement in the report is okay.
15	MR. KROTIUK: Well, when we looked at this
16	Case-1, and something that I did not report on
17	previously when I presented this, when this plot was
18	presented, is that we wanted to see what the
19	distribution of the debris was in the debris bed for
20	this case, so, basically, we did this. This is - I
21	have two cases where we actually PNNL developed a
22	methodology where they took a debris bed, they encased
23	they injected it with epoxy, hardened it, and then
24	were able to see the distribution of the debris at
25	various locations in the bed. And this is through the
Į	I

(202) 234-4433

	213
1	bed, flow would have been in this direction, so this
2	is the top of the bed, and this is the sort of
3	MR. WALLIS: Arrow on top.
4	MR. KROTIUK: Right. So you could see
5	what happened here is that in the center region, the
6	bright white lines here are NUKON, and as you could
7	see, these gray areas is the cal sil, and you could
8	see just here and there in this area a little - here's
9	a little blob of cal sil here, but the bottom line of
10	all this is that all that the primary distribution
11	of the cal sil is on the surface of the bed. So this
12	is why I - later on when I was developing the model,
13	I said well, let me look at a case where I have cal
14	sil concentrated on the bed surface. That's what I
15	was trying to define as an upper limit.
16	CHAIRMAN BANERJEE: Now you have Case-1
17	was the cal sil followed by NUKON. Is this Case-2?
18	MR. KROTIUK: I'm sorry, this is Case-2.
19	I said the wrong thing.
20	MR. WALLIS: It's very confusing, because
21	Case-1 is actually Case-4C, and 4B is - one means
22	different things in the
23	CHAIRMAN BANERJEE: Yes.
24	MR. KROTIUK: That could have been my
25	fault for labeling.
	I

(202) 234-4433

	214
1	MR. WALLIS: Very confusing.
2	MR. KROTIUK: Yes, I labeled it wrong.
3	I'm sorry. That's my fault. That's Case-4. That
4	should have been Case-4. I put the label on
5	incorrectly.
6	CHAIRMAN BANERJEE: That's Case-4.
7	MR. WALLIS: But the text is confusing
8	about this, too.
9	MR. KROTIUK: I'm sorry, but if you look
10	at the labels, the labels are correct. Forget the
11	case, the labels are correct.
12	MR. WALLIS: We have what's written on the
13	graph.
14	MR. KROTIUK: And the definition here is
15	correct, complete nucleate formed before adding cal
16	sil. Yes, I did label it wrong.
17	CHAIRMAN BANERJEE: So what is Case-1A,
18	1B?
19	MR. KROTIUK: There were
20	CHAIRMAN BANERJEE: Which ones are those?
21	MR. KROTIUK: Okay.
22	MR. WALLIS: Those are the ones in the
23	middle, NUKON followed by cal sil.
24	MR. KROTIUK: NUKON bed formed, then cal
25	sil added.
	I

215 1 MR. WALLIS: All the cases on the figure 2 are wrong. 3 MR. KROTIUK: That is -- I made an attempt 4 to try to label it, and I did a bad job of it. CHAIRMAN BANERJEE: So Case 1 and 2 on the 5 upper, is the middle. 6 7 MR. WALLIS: The bar across the top is 8 correct. 9 MR. KROTIUK: Yes, the bar across the top 10 is correct. CHAIRMAN BANERJEE: All right. 11 MR. KROTIUK: I tried to do some labels to 12 13 _ _ CHAIRMAN BANERJEE: That's fine. We can 14 15 figure it out. 16 MR. KROTIUK: Okay. 17 MR. WALLIS: I think it's confusing, because I think in the text there's something like 18 19 case and run number, or something, and they're 20 different things. 21 MR. KROTIUK: In the test report, there is 22 a whole section that discusses this, and I read that -23 this is the report that was done by PNNL, and I took 24 that - this figure from that report. And I tried to 25 annotate it a little, but I believe that it's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	216
1	correctly labeled in the report.
2	CHAIRMAN BANERJEE: Okay. So in your next
3	figure, it should be really Case-4 that you're talking
4	about.
5	MR. KROTIUK: NUKON bed formed before -
6	yes, okay.
7	CHAIRMAN BANERJEE: The next figure, not
8	this. That's okay, yes.
9	MR. KROTIUK: Case-1. Right.
10	MR. WALLIS: But when you did the same
11	sort of thing in the large scale, you didn't get these
12	extreme things. You said when you did the large scale
13	head loss result
14	MR. KROTIUK: All the testing in the large
15	loop was done with premixed NUKON cal sil.
16	MR. WALLIS: All done with premix.
17	MR. KROTIUK: That's correct.
18	CHAIRMAN BANERJEE: So this case now,
19	which is the
20	MR. KROTIUK: The label is correct, forget
21	this.
22	CHAIRMAN BANERJEE: No, it should be Case-
23	4 Right?
24	MR. KROTIUK: Yes, should be Case-4.
25	MR. MICHENER: Tom Michener from PNNL. I
ļ	1

(202) 234-4433

	217
1	wanted to correct something. I just got a hold of
2	Carl. It was not a positive displacement pump. We do
3	have those, so I had to - that's why I wasn't sure.
4	We were using a centrifugal pump, but we had it
5	attached to a variable frequency drive, so we would
6	just alter the frequency, so that's how we were
7	maintaining it.
8	MR. KROTIUK: Okay. Thank you. Didn't
9	remember that. This was the second case that we did
10	the sectioning on, and it's similar to the first one
11	in that you could see the center of the region had
12	mainly NUKON, and the surface had the concentration of
13	cal sil.
14	MR. WALLIS: But when it's premixed, it's
15	quite a complicated problem because the first cal sil
16	that gets to the screen finds no NUKON there and goes
17	right through. And then you begin to build up NUKON
18	bed, which begins to catch some cal sil. But you've
19	still got a lot of cal sil going around the loop, and
20	coming in on top, so modeling that is quite a task, I
21	would think.
22	MR. KROTIUK: Agreed.
23	MR. WALLIS: Just because it's premixed
24	doesn't mean it's a homogeneous bed.
25	MR. KROTIUK: That's correct. And it
I	I

(202) 234-4433

	218
1	definitely was not a homogeneous bed.
2	CHAIRMAN BANERJEE: But it seems to give
3	you lower pressure drop.
4	MR. KROTIUK: It gives you the lowest -
5	the premix gives you the lowest pressure drop.
6	CHAIRMAN BANERJEE: Now why these two
7	beds you're showing us for Case-4 and Case-1 and 2,
8	they look somewhat similar. Right?
9	MR. WALLIS: I think they are.
10	CHAIRMAN BANERJEE: This case and the next
11	one.
12	MR. WALLIS: If you add cal sil afterwards
13	
14	CHAIRMAN BANERJEE: It doesn't seem to
15	matter what order you
16	MR. WALLIS: As long as it's
17	MR. KROTIUK: The cal sil seems to collect
18	on the surface of the NUKON bed.
19	CHAIRMAN BANERJEE: The order doesn't
20	matter.
21	MR. WALLIS: Well, if you add it and then
22	let it go around the loop, it comes in. In fact, it's
23	coming in later. It's gone around the loop.
24	MR. KROTIUK: That's right.
25	CHAIRMAN BANERJEE: But the curious thing
I	I

(202) 234-4433

	219
1	is that the two cases, when you reverse the order of
2	NUKON and cal sil
3	MR. WALLIS: It doesn't matter, because
4	it's stuck in the loop.
5	CHAIRMAN BANERJEE: Yes, but then when you
6	premix it, you get a much lower pressure drop.
7	MR. KROTIUK: Yes. And my hypothesis on
8	that is that the thickness of that layer may be
9	different.
10	MR. WALLIS: You caught more of the cal
11	sil in the premixing case earlier. You caught some of
12	the cal sil in the bed before it's gone around the
13	loop and deposited on the top.
14	MR. KROTIUK: So that it's the
15	distribution of the constituents in the bed that is
16	changing.
17	CHAIRMAN BANERJEE: And what's the
18	circulation time of the loop?
19	MR. KROTIUK: Well, as indicated earlier,
20	one hour was about seven circulations.
21	CHAIRMAN BANERJEE: Oh, okay. So by
22	adding the cal sil and then following 30 seconds by
23	NUKON, the cal sil has all just flown through and it's
24	come back one hour later, or one-seventh of an hour
25	later. So the two cases are almost similar.
ļ	I

(202) 234-4433

	220
1	MR. KROTIUK: There is some similarity.
2	MR. WALLIS: Now in the real sump, you
3	don't turn on recirculation right away.
4	MR. KROTIUK: No.
5	MR. WALLIS: The debris goes down there
6	and settles.
7	MR. KROTIUK: Yes.
8	MR. WALLIS: It's quite different, and
9	then it has to be stirred up in order to go through
10	the screen, or is it still in suspension when you turn
11	on the pumps, or what?
12	MR. KROTIUK: That's a good
13	CHAIRMAN BANERJEE: How long after you
14	turn on the pumps?
15	MR. KROTIUK: Typically, I mean, I did
16	some calculations, and like for one PWR that I
17	remember it was like 1,200 seconds.
18	MR. WALLIS: 1,200 seconds allows the
19	stuff to settle then.
20	MR. LEHNING: This is John Lehning from
21	NRR. Some of that debris may end up settled there on
22	the floor of the containment, but it depends, some of
23	that debris may be eroding with time, or some of it
24	may be falling down, it may be blown up.
25	MR. WALLIS: Washed down by the
I	I

(202) 234-4433

	221
1	recirculation.
2	MR. LEHNING: That is correct, so it's not
3	clear. I mean, there's a fraction of it doing
4	probably each of those things.
5	MR. WALLIS: Now what are you going to do
6	about it?
7	CHAIRMAN BANERJEE: What's the reason your
8	pressure loss is higher in this case than the other
9	case?
10	MR. KROTIUK: My hypothesis is that you
11	get a larger concentration of the cal sil on the
12	surface, and that's giving you the higher pressure
13	drop.
14	MR. WALLIS: Well, why?
15	CHAIRMAN BANERJEE: But why?
16	MR. WALLIS: Because it's arriving -
17	essentially arriving on top of the NUKON in both
18	cases. That's why I didn't it cries for more
19	investigation, really. And just you guys decided to
20	stop.
21	MR. KROTIUK: I did as
22	MR. WALLIS: As soon as you discovered
23	something really significant and important.
24	MR. KROTIUK: I did as much as I could do.
25	MR. ABDEL-KHALIK: Is there any way from
I	

(202) 234-4433

222 1 your data that you can get local values of porosity or 2 permeability of the bed? 3 MR. KROTIUK: Not off the top of my head, 4 I can't think of any. 5 MR. ABDEL-KHALIK: So these SEM images could not determine --6 7 MR. KROTIUK: Wait a minute. Wait a 8 minute. Wait a minute. I guess you can. Yes, you 9 can - just I was thinking about it, from the bed 10 thickness. You know the mass, and you know the thickness of the bed, so you have some idea of the 11 12 porosity. That gives you an 13 MR. ABDEL-KHALIK: 14 average value, but I was more interested in local 15 values, and whether that - the variation of the local values is dependent on the order in which the various 16 17 materials are deposited. Tom Michener from PNNL. 18 MR. MICHENER: We 19 actually had originally, if there was time, had 20 planned to use some of these pictures to grid up a 21 lattice Boltzman code where you do know the bulk flow, 22 and look at some of the velocities through the bed, 23 and what was happening on there, but there just wasn't 24 time or money to be able to do that. 25 BANERJEE: You have to CHAIRMAN

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	223
1	reconstruct the porosity anyway.
2	MR. MICHENER: I mean, you have enough
3	information - we've done that before in similar
4	problems like this one.
5	CHAIRMAN BANERJEE: You have only a 2-D
6	structure there. You'd have to slice at several
7	locations to
8	MR. MICHENER: We could do that.
9	CHAIRMAN BANERJEE: Yes, sure. I mean,
10	people do that with tumors all the time, they do 64
11	cuts through it and they reconstruct the porosity.
12	MR. WALLIS: Then you've got a bed which
13	although it's got more stuff in it, is thinner, too.
14	I mean, the bed thickness is different, B-1 and B-2.
15	That goes the wrong way. You've got more stuff, and
16	yet it's thinner. There's some kind of interplay
17	between the pressure drop, and the compression, and
18	everything else.
19	MR. KROTIUK: And the distribution of the
20	constituents. And, remember, this is the retrieved
21	bed thickness while it's being tested. That gives you
22	just an idea of what it is. You'd have to know the
23	thickness during testing.
24	MR. WALLIS: It raises a lot of questions,
25	doesn't it?

(202) 234-4433

	224
1	MR. KROTIUK: Yes. Okay. What I wanted
2	to just indicate here was, just some basic
3	sensitivity. This is just a plot of three NUKON only
4	tests, pressure drop versus approach velocity for
5	several steady-state velocity points, and this is -
6	since it's all NUKON, it's for three different
7	loadings on the NUKON.
8	MR. WALLIS: Are these three different
9	tests, or are they cycles within the same test?
10	MR. KROTIUK: Yes, three different tests.
11	The black, the red, and the green are three different
12	tests.
13	MR. WALLIS: But why are the three curves
14	in the green? Is that because of cycling?
15	MR. KROTIUK: Yes. That was cycling.
16	MR. WALLIS: Well, this isn't a
17	repeatability, this is just a cycling. If you do
18	another experiment with 1.245 NUKON, you might get a
19	different curve from the green curve.
20	MR. KROTIUK: For the NUKON only test, the
21	repeatability was very high. We were able to
22	duplicate that curve within, I don't know what
23	percentage, but there was a fair amount of
24	repeatability, because we did do that.
25	MR. ABDEL-KHALIK: If you didn't know

(202) 234-4433

	225
1	where sort of the balance of the particles ended up,
2	it would be kind of a hit and miss that are
3	duplicating the 1.245 loading. Right?
4	MR. KROTIUK: Yes, but that's why we
5	measured the weight of the debris bed itself, because
6	we wanted to know what was in the debris bed, not what
7	was added to the loop, what was in the debris bed.
8	MR. ABDEL-KHALIK: So if they wanted to
9	duplicate the experiment, they would have no idea how
10	much to add to get exactly 1.245.
11	MR. KROTIUK: Yes, but what we did is that
12	we actually duplicated tests, and we would maybe have
13	1.245, and 1.251, which was close enough that you
14	could make some conclusions.
15	MR. ABDEL-KHALIK: Okay. Fair enough.
16	MR. KROTIUK: You're not going to hit it
17	exactly all the time.
18	MR. WALLIS: What happens if you do an
19	experiment with .576, and cycle it a few times, and
20	then add some more until you come up to 1.245, does it
21	lie on top of it then?
22	MR. KROTIUK: I can't answer that
23	question. We didn't look at that.
24	MR. WALLIS: That's the thing. I mean,
25	they had such an opportunity to explore all kinds of
	I

(202) 234-4433

	226
1	things there. I think they should have been given a
2	bit more carte blanche, rather than being stuck with
3	a test matrix.
4	MR. KROTIUK: Well, you know, there's
5	arguments on both sides of that, because you have to
6	have a test matrix to begin with. You know, we were
7	doing a lot of testing in the bench top loop trying
8	MR. WALLIS: You have a different
9	attitude. In the university we tell a student go and
10	investigate this thing, and then if something
11	interesting shows up, you investigate more what's
12	interesting. You guys have a test matrix, and do this
13	willy nilly, whether it's interesting or not.
14	MR. KROTIUK: That's not true, because
15	generally, all the testing that we did in the large
16	loop, which is the highly instrumented case, before we
17	did it in the large loop, we did it in the bench top
18	loops.
19	MR. WALLIS: You explored things.
20	MR. KROTIUK: And we explored things, and
21	we do some sensitivity studies. That was the intent
22	of the bench top loop, to look at these sensitivities,
23	and then we said okay, now we want to run this case
24	here, and let's put it in the large loop so that we
25	have good instrumentation, and get data.
I	I

(202) 234-4433

	227
1	MR. WALLIS: Okay. So you did do some
2	exploring of things.
3	MR. KROTIUK: Yes, but it was just
4	beneficial to do it in a bench top loop, because we
5	could turn around what, about three, four tests a day.
б	In the large loop because it was so large, and there
7	was temperature control and all, we could maybe get
8	one, maybe a maximum of two tests a day.
9	CHAIRMAN BANERJEE: I think your next
10	slide will be of interest.
11	MR. KROTIUK: Yes, this is what you were
12	talking about.
13	MR. MICHENER: Just an aside, Bill, real
14	quick. You mentioned earlier the small scale loop was
15	4 inches, and large scale was 6 inches. And it's not
16	simply a ratio of the square of the radiuses, because
17	the amount of piping that was connected to the large
18	scale was a lot more than for the small scale, so
19	that's why we could do so much more on it, because it
20	was a lot less volume involved.
21	MR. WALLIS: Still had a pretty long delay
22	time in the small loop.
23	MR. KROTIUK: Yes, but it was much shorter
24	than for the large loop.
25	MR. MICHENER: Right.
	I

(202) 234-4433

	228
1	MR. ABDEL-KHALIK: If I were to just go
2	back one slide, slide 20. If you go to these sets,
3	any one set, does time always go from low delta P to
4	high delta P?
5	MR. KROTIUK: I'm sorry, repeat that
6	again?
7	MR. ABDEL-KHALIK: I mean, you're running
8	these, essentially repeating measurements while you're
9	running at the same flow rate. And the question - for
10	the same bed, and the question is, the later
11	experiments, do they always produce higher delta P?
12	I mean, is this a random error, or is it a systematic
13	error always indicating that later experiments give
14	you higher delta P for the same loading?
15	MR. WALLIS: I think it's the second.
16	Every time you do the experiment, you make
17	commentation.
18	MR. KROTIUK: You mean for these different
19	cyclings.
20	MR. ABDEL-KHALIK: Right.
21	MR. KROTIUK: Okay.
22	MR. WALLIS: It works its way up. It
23	ratchets its way up.
24	MR. KROTIUK: Right.
25	MR. ABDEL-KHALIK: Does it, or are these
	1

	229
1	random differences?
2	MR. KROTIUK: There is in all the tests
3	that we ran, we would say for the first cycle we would
4	be down here, second cycle would there, and the third
5	would be there, or first, third, second. First was
6	always lowest.
7	MR. ABDEL-KHALIK: Oh, interesting.
8	CHAIRMAN BANERJEE: That's probably
9	explainable, isn't it?
10	MR. KROTIUK: There's a certain amount of
11	- you know, some of the references that I read of
12	define this is what I used at the first compression
13	was non-elastic, and the following compressions were
14	elastic.
15	MR. WALLIS: But you may still be catching
16	some fines that are going around the loop, too.
17	MR. KROTIUK: But that's why we had the
18	filtration system, to try to get rid of those fines,
19	as much as we can. We tried to, and that's - there
20	have been some that didn't get captured. I won't deny
21	that, but we tried to eliminate it.
22	MR. WALLIS: The next one is interesting.
23	MR. KROTIUK: Yes, that's why I put that
24	here. This is for three loadings, which are I
25	tried to look at three cases that had about the same
I	

(202) 234-4433

	230
1	NUKON loading, but had different cal sil loading. And
2	the thing I wanted to point out here is that the lower
3	cal sil loading had a higher pressure drop than the
4	higher cal sil loading. This is something that was
5	interesting.
6	CHAIRMAN BANERJEE: But those loading
7	numbers could be fairly inaccurate. Right? Because
8	of the way you determined them.
9	MR. KROTIUK: There is a plus or minus
10	CHAIRMAN BANERJEE: The loading on the bed
11	itself.
12	MR. KROTIUK: This is the loading on the
13	so this is just a mass on the bed divided by the
14	area of the screen.
15	CHAIRMAN BANERJEE: Right.
16	MR. CARUSO: Is it possible that lower
17	loading
18	MR. WALLIS: Could be a hole in the bed.
19	MR. CARUSO: Yes, a hole in the bed. I'm
20	just trying to figure out how that would work.
21	MR. KROTIUK: Well, we continually
22	monitored the bed, because there was a camera on it
23	continually, and we would have known if there was a
24	hole. And definitely, after testing you would have
25	seen that hole.
Į	1

(202) 234-4433

	231
1	CHAIRMAN BANERJEE: But you had to remove
2	this stuff chemically.
3	MR. KROTIUK: Right. There is that
4	probably had the greatest inaccuracies, since we were
5	removing the cal sil chemically.
6	MR. WALLIS: And the top group, the
7	triangles there, presumably that's cycling.
8	MR. KROTIUK: Yes, it started here, and
9	then the first cycle was here, and then this was a
10	later cycle.
11	MR. WALLIS: So it lapped off after
12	MR. KROTIUK: Yes.
13	MR. WALLIS: So how are you going to
14	predict all this with a theory?
15	MR. KROTIUK: With great difficulty, as I
16	said. This is what I tried to relate this phenomena
17	to the distribution of the debris within the bed.
18	MR. WALLIS: But the business of the .05,
19	.025, .082, that sequence, the only way that could be
20	realistic would be if for some reason the .005 makes
21	itself very, very effective by concentrating in a th
22	in layer.
23	MR. KROTIUK: That's right.
24	MR. WALLIS: Why should that happen
25	particularly with that experiment, and not with the
	I

(202) 234-4433

	232
1	others?
2	MR. KROTIUK: I don't have a good answer
3	for that. I think there's a lot of randomness in
4	this, too.
5	MR. WALLIS: If you're going to predict
6	these, you have to know.
7	MR. KROTIUK: Excuse me?
8	MR. WALLIS: If you're going to predict
9	these, you have to know that.
10	MR. KROTIUK: Right.
11	MR. WALLIS: You have to know why it does
12	it.
13	MR. KROTIUK: Well, I hear what you're
14	saying, but the approach I took, I tried to define
15	maximums and minimums, and tried to bound it, because
16	I thought I really believed that the looking
17	into the details of what was going on was too complex
18	of a problem for me to handle within the time frame
19	that I had.
20	MR. WALLIS: Now are these kind of data
21	repeatable? If you do the experiment again with .005,
22	do you get the same result?
23	MR. KROTIUK: Not necessarily.
24	MR. WALLIS: No, I don't think you
25	necessarily would.
I	·

(202) 234-4433

	233
1	MR. CARUSO: Go back to some of those
2	shots you had of the surface of this, the debris bed.
3	
4	MR. KROTIUK: Those?
5	MR. CARUSO: No, back further, further.
6	That one. I'm just looking at that one on the right
7	there, and it looks like you have some, what I would
8	call rocks. And if you had one of those rocks
9	embedded in the debris bed holding open a pathway, it
10	wouldn't look like necessarily a hole, but it would be
11	opening up a flow path which would give you a larger,
12	or a lower pressure drop than you otherwise might see.
13	MR. WALLIS: Or a cluster of rocks, maybe.
14	MR. CARUSO: Or a cluster of rocks like
15	that.
16	MR. KROTIUK: There's a lot of randomness.
17	I mean
18	MR. CARUSO: Ahh.
19	MR. WALLIS: Are they rocks, or what are
20	they?
21	MR. KROTIUK: They're not rocks, they're
22	clumps of probably NUKON
23	MR. WALLIS: Why are they on top? I would
24	think they would settle out first.
25	MR. CARUSO: I mean, when you grind up the
I	

(202) 234-4433

	234
1	NUKON, you're going to get a distribution.
2	MR. KROTIUK: Right, yes. And, in fact,
3	we did distribution measurements, I didn't include
4	it here, but we did make distribution measurements on
5	the size of the cal sil particles, so we actually had
6	distribution measurements, size distribution.
7	MR. WALLIS: Are those cal sil rocks then?
8	MR. KROTIUK: I mean, I can't answer that.
9	I don't
10	MR. WALLIS: They don't look like fibers.
11	MR. KROTIUK: It could be clumps of
12	fibers, though. Without looking at it more closely,
13	I mean, we have all these
14	MR. WALLIS: You really pulverized the cal
15	sil, didn't you? You wouldn't have rocks like that.
16	MR. KROTIUK: Yes, but sometimes a
17	conglomerate could
18	MR. WALLIS: Conglomerates again.
19	MR. KROTIUK: Yes, yes.
20	CHAIRMAN BANERJEE: Well, let's go back to
21	the slide you were at.
22	MR. KROTIUK: Okay. Let's go to the next
23	one.
24	CHAIRMAN BANERJEE: How are we doing for
25	time right now?

```
(202) 234-4433
```

	235
1	MR. WALLIS: He's got the whole afternoon.
2	MR. KROTIUK: I have all afternoon.
3	CHAIRMAN BANERJEE: Okay.
4	MR. KROTIUK: Okay. The other
5	CHAIRMAN BANERJEE: We do want to finish
6	this afternoon.
7	MR. KROTIUK: Right, and I'll finish. I'm
8	a little bit less than halfway there.
9	CHAIRMAN BANERJEE: Okay.
10	MR. KROTIUK: The other thing that I
11	wanted to look at was temperature sensitivity. So
12	this is when you were saying repeatability. What we
13	tried to do, for instance, we looked at this NUKON,
14	three NUKON cases, and we put the loadings as close as
15	we can. We used the same loadings, and then we
16	measured what was actually deposited in the bed. And
17	you could see the variation, 1.245, 1.251, 1.191. But
18	the difference is that this first bed here was formed
19	at about 20 degrees, this was formed at 54, this was
20	formed at 82. And then we took two NUKON cal sil
21	cases, and with the same loadings that again resulted
22	- same - debris addition that resulted in slightly
23	different loadings on the bed. We formed it at 20
24	degrees, 54, 82, and then similarly, 20 and 54 for
25	these other loadings. Then we similarly went through

(202) 234-4433

	236
1	what we call LP-1, LP-2, LP-3, because we ran a cycle
2	here, then we upped the temperature, ran a cycle here,
3	upped the temperature, ran a cycle here to try to get
4	some sort of indication of what was going on.
5	MR. WALLIS: And what happened?
6	MR. KROTIUK: I'm going to go to the next
7	square. Okay, this is for the NUKON only case, and
8	this is the head loss versus the approach velocity,
9	again for the three cases which are close in terms of
10	loading.
11	MR. WALLIS: It makes a difference?
12	MR. KROTIUK: The temperature makes a
13	difference. The lower the temperature, the higher the
14	pressure.
15	MR. WALLIS: The viscosity effect?
16	MR. KROTIUK: That's a viscosity effect.
17	This was one of the questions that I think we probably
18	had discussed it at some point.
19	CHAIRMAN BANERJEE: Yes. The inertial
20	effects here are less if you take an Ergun-type
21	equation.
22	MR. KROTIUK: Right.
23	MR. WALLIS: Except that the curves cross
24	down at the .02. That doesn't seem right. Something
25	is wrong down at the extreme left there.
I	I

(202) 234-4433

237 1 MR. KROTIUK: Yes. It's pretty low, There is some slight differences in the 2 though. 3 loadings, too. 4 MR. WALLIS: They shouldn't cross. 5 MR. KROTIUK: Okay. So that's, again, the NUKON, since it was a --6 7 MR. WALLIS: Does this correlate properly 8 with velocity, with viscosity or not? I mean, it 9 doesn't look quite right. MR. KROTIUK: I'll address that during the 10 modeling. I actually --11 12 I would expect they're more MR. WALLIS: like equally separated, but you've got the two green 13 14 ones in --15 MR. KROTIUK: I reproduced this plot later on with predictions, so if we could just hold off 16 17 until I get to that point. MR. WALLIS: I mean, the viscous effect 18 19 should predominate at lower velocities. Then there 20 should be similar, more of the same at higher 21 velocities. It doesn't seem to be that way around. 22 CHAIRMAN BANERJEE: We'll flag this as --23 MR. WALLIS: He's going to explain it. MR. KROTIUK: Now for the NUKON cal sil 24 25 cases, it was somewhat similar for this one, but I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

1 have another one which I'll show after this. Aqain, 2 the loadings are not exactly the same because we added the same mass to the loop, but what was ended up 3 4 deposited in the bed was slightly different. But, 5 again, you had the - it was formed at three different temperatures. And then let me look at this one, it's 6 7 kind of interesting. This one is backwards. 8 MR. WALLIS: 9 MR. KROTIUK: Yes, this one is backwards. 10 And in this case, the higher pressure was for the higher temperature, and the lower pressure was for the 11 12 lower temperature, which doesn't fit the theory of viscosity. And what we postulated, this is due to the 13 14 fact, is that it's the distribution of the debris 15 within the bed. In other words, as you do -- you have your flow temperature, temperature differences, the 16 components in the bed could redistribute, specifically 17 say the cal sil within the NUKON itself. 18 19 CHAIRMAN BANERJEE: But did you have any 20 evidence, like core sections, to show that? 21 MR. KROTIUK: Not of these. Part of the 22 thing was that if we did the sectioning, we couldn't 23 do - measure the masses. It was one or the other, so, 24 you know - because once you did the sectioning, you -25 once you did, say the cal sil measurements, you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

238

	239
1	couldn't do sectioning, because you destroyed the cal
2	sil, and so we tried to use similar tests. But this
3	was interesting because it showed a different behavior
4	than what I expected to occur just from straight
5	theory Ergun-equation type of unit.
6	MR. ABDEL-KHALIK: If these had the same
7	exact distribution, and let's say the same conditions,
8	the same geometry within the bed, would the difference
9	on loading account for going from .6 to .69, account
10	for that much difference?
11	MR. KROTIUK: That's - I mean, I'm sure
12	that that had an effect, also, but we could only get
13	as close as we could get, so yes, that enters into the
14	equation, also.
15	MR. ABDEL-KHALIK: In this regime, would
16	delta P be proportional to the thickness, or the
17	square of the thickness?
18	MR. KROTIUK: I think it's proportional to
19	thickness is probably most closest, but it's not
20	CHAIRMAN BANERJEE: Well, the pressure
21	gradient doesn't have to be linear, if there is a
22	pressure gradient. I mean, it's really more like
23	pressing on one side.
24	MR. KROTIUK: You're right. The pressure
25	gradient is not linear, but I'm just thinking of - I'm
	I

(202) 234-4433

	240
1	trying to think of - coming up with some sort of just
2	guidelines, and I would say that it's closer to
3	linear.
4	MR. WALLIS: You're going to predict all
5	this. Right?
6	MR. KROTIUK: I'm not going to predict at
7	all. I made a good effort.
8	CHAIRMAN BANERJEE: You know, again going
9	back to Said's original point, you might get a clue to
10	what's happening if you look at the initial build-up
11	of the bed.
12	MR. KROTIUK: That's very valid. Again,
13	we have the data. We just didn't look at it.
14	CHAIRMAN BANERJEE: I mean, different from
15	the other data, in that we reverse the role of
16	temperature, so you're trying to explain this by some
17	form of debris distribution in the bed. However, in
18	this case, the conditions are not all that different
19	from the others, so why is the debris distribution so
20	different? You're getting NUKON followed by cal sil,
21	right?
22	MR. KROTIUK: This was all done premixed.
23	CHAIRMAN BANERJEE: This is all premixed.
24	MR. KROTIUK: This is all premixed.
25	CHAIRMAN BANERJEE: But what's different
	I

(202) 234-4433

	241
1	about this than the other ones, which
2	MR. KROTIUK: The previous
3	CHAIRMAN BANERJEE: Yes.
4	MR. KROTIUK: Loading, the loading was
5	different.
6	CHAIRMAN BANERJEE: How much?
7	MR. KROTIUK: Well, let's take a look.
8	That was this loading had NUKON of around say .2
9	kilograms per meter squared, so the last case had
10	about .6 something.
11	MR. WALLIS: Yes, but it had very
12	different cal sil.
13	MR. KROTIUK: Different cal sil loadings.
14	MR. CARUSO: What's the ratio?
15	MR. KROTIUK: I tried to purposely give a
16	range of ratios to not have
17	MR. WALLIS: Well, why didn't - when you
18	were investigating temperature, why didn't you keep
19	the NUKON and cal sil the same?
20	CHAIRMAN BANERJEE: He did.
21	MR. WALLIS: He did, but what he got on
22	the screen was different? Is that what happened?
23	MR. KROTIUK: I mean, like for these
24	three cases, we added the same mass
25	MR. WALLIS: What you put in was the same.
I	1

(202) 234-4433

	242
1	MR. KROTIUK: Right. But what
2	MR. WALLIS: What you got is very
3	different. I mean, you got four times as much cal sil
4	in one case as in another.
5	MR. KROTIUK: That's right.
6	MR. CARUSO: But you don't know where the
7	rest of it went.
8	MR. KROTIUK: Well, in these case these
9	were the later tests, so some was filtered out, some
10	was deposited in the loop, but probably not a lot.
11	MR. WALLIS: If I were your professor, I'd
12	say I want more evidence now. I want you to redo that
13	test.
14	MR. KROTIUK: We would have liked to redo
15	it.
16	CHAIRMAN BANERJEE: I guess, again,
17	there's a concern with the uncertainty in the
18	measurements of the bed content. Right? Because you
19	were using a chemical
20	MR. KROTIUK: Yes. I mean, that's the
21	greatest uncertainty.
22	MR. WALLIS: You can measure that some
23	time later so you don't immediately get the evidence,
24	which says you now go back and redo the test. These
25	numbers, presumably, came from injection of epoxy and
I	

(202) 234-4433

	243
1	doing
2	MR. KROTIUK: No, these numbers came from
3	just weighing the bed
4	MR. WALLIS: And then boiling away, and
5	dissolving away the cal sil.
6	MR. KROTIUK: Dissolving away the cal sil,
7	and then weighing
8	MR. WALLIS: Is that done immediately or
9	much later?
10	MR. KROTIUK: It's done as soon as the
11	beds are dry.
12	MR. WALLIS: So you get the evidence right
13	away.
14	MR. KROTIUK: Within a couple of days.
15	MR. WALLIS: So you could look at it and
16	say this is anomalous, let's do it again.
17	MR. KROTIUK: Yes.
18	CHAIRMAN BANERJEE: Just look at the ratio
19	of the cal sil to the NUKON. It's of the order of 10
20	percent or less. Right? So when you dissolve this
21	stuff away, you're left with maybe 90 percent of the
22	original mass. You're dissolving the cal sil away,
23	right?
24	MR. KROTIUK: Right.
25	CHAIRMAN BANERJEE: So you're taking the
I	

```
(202) 234-4433
```

ĺ	244
1	difference between two large numbers.
2	MR. KROTIUK: Yes. That's why I said, it
3	has the
4	CHAIRMAN BANERJEE: It's quite tricky, the
5	dissolving process.
6	MR. WALLIS: And you're predicting it to
7	three significant figures, so
8	MR. KROTIUK: Well
9	CHAIRMAN BANERJEE: That's just PNNL.
10	Right?
11	MR. KROTIUK: PNNL and me, both.
12	CHAIRMAN BANERJEE: You won't pass the
13	buck.
14	MR. KROTIUK: But you're right, that has
15	the greatest band of error.
16	CHAIRMAN BANERJEE: Yes.
17	MR. KROTIUK: Okay? Okay, so I'm just
18	going to summarize the testing, then I'll go into the
19	modeling. As I said before, the NUKON only debris bed
20	had relatively repeatable results. And complete -
21	just to make a note here - the complete debris bed, we
22	would generate loadings of .017 kilograms per meter
23	squared. That's the lowest that we did a test at.
24	As indicated, I can go into it in detail
25	now, is that debris preparation can influence pressure
	I

(202) 234-4433

1 drop; however, loading sequence of the NUKON cal sil 2 debris bed has much stronger influence on pressure 3 drop. As an indicated by one of the graphs that we 4 showed, the increases in cal sil mass in the NUKON cal 5 sil bed did not necessarily yield increases in drop. And I'm attributing this to 6 pressure 7 distribution of constituents in the bed. 8 This is a picture of a cal sil only debris 9 We added - this is what was added to the loop, bed. 10 4.352 kilograms per meter squared. I don't remember what that number was, it was pretty high, like 17 11 I don't know. 12 grams or something. And of that, even with this high loading, we were not able to form a 13 14 complete bed of cal sil. You could see in these -15 this is a picture of the debris bed in the test section before it was taken out, and this is a picture 16 after it was taken out. You could see all the holes 17 in the bed itself. 18 19 MR. MICHENER: Tom Michener from PNNL. As 20 I recall when we were doing these, what would happen, 21 and it was like it had no strength. It would build 22 up, and then you'd see these little bursts where they 23 go through and a hole would be formed. 24 MR. WALLIS: You're forcing water through, 25 anyway, with this, so it's got to go somewhere, and it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

245

	246
1	actually makes holes, and you see puffs of stuff
2	coming through?
3	MR. MICHENER: Yes, you'd see little puffs
4	coming through.
5	MR. KROTIUK: When I was there for one of
б	the tests, you actually - it was interesting to note,
7	because you'd actually see puffs underneath the debris
8	bed. And, finally, the debris bed does contract and
9	relax with changes of approach velocity. I didn't
10	present any of this, but the screen in the perforated
11	plate testing, they produced comparative results
12	because the flow areas are about the same, and the
13	correlation for the pressure drop for just the screen
14	in a perforated plate agreed with standard, as
15	expected, agreed with standard correlations.
16	MR. WALLIS: To go back to that cal sil
17	picture, where you see little holes all about the same
18	size, indicate there's one hole in the screen, those
19	little round holes, are they about the size of a
20	screen hole?
21	MR. KROTIUK: Yes. This is the perforated
22	plate.
23	MR. WALLIS: They're about the size of a
24	perforated plate hole, those white holes you see
25	there.

(202) 234-4433

	247
1	MR. KROTIUK: That's probably right.
2	MR. WALLIS: And one would suspect that
3	they were.
4	MR. KROTIUK: Yes. I mean, we were
5	postulating that the fibers in the cal sil never got
6	enough to say bridge it, bridged a hole to close it
7	off so that
8	MR. WALLIS: Once you've got a hole, it's
9	probably difficult to bridge it, because the stuff
10	gets oriented to go through the hole.
11	MR. ABDEL-KHALIK: What would be the
12	thickness of this bed, .4 roughly kilograms per square
13	meter?
14	MR. KROTIUK: It's in the report. I don't
15	remember.
16	MR. ABDEL-KHALIK: What is that, quarter
17	inch, five millimeters?
18	MR. KROTIUK: Quarter of an inch, to a
19	half an inch.
20	MR. WALLIS: Size of the perforation,
21	isn't it?
22	MR. MICHENER: A little bit more than a
23	quarter of an inch.
24	MR. KROTIUK: And then my last bullet here
25	just was indicating that in most cases the pressure
I	1

```
(202) 234-4433
```

248 1 drop decrease would increase temperature, but the 2 results that the measurement of pressure drop can be affected by the bed history, flow temperature, and 3 4 ultimately, the distribution of the debris in the bed. 5 Okay. Do you want to -- I finished under Should I just keep on going? 6 testing. 7 CHAIRMAN BANERJEE: I think keep going for a little while. 8 9 MR. KROTIUK: Okay. 10 CHAIRMAN BANERJEE: And we'll take a You tell me roughly when you have a turning 11 break. 12 point. I have a total of 59 13 MR. KROTIUK: Okay. 14 viewgraphs, so --15 MR. WALLIS: My word. 16 CHAIRMAN BANERJEE: You won't be able to get through 59. 17 18 MR. KROTIUK: No, I won't be able to get 19 through 59. 20 CHAIRMAN BANERJEE: Get through only the 21 important ones. 22 MR. KROTIUK: Okay. 23 CHAIRMAN BANERJEE: Let's take a half an 24 hour more of this and then we might take a break. 25 Okay?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	249
1	MR. KROTIUK: Okay.
2	CHAIRMAN BANERJEE: Go on.
3	MR. KROTIUK: Objectives, I won't go much
4	in detail, except I wanted the model to predict
5	pressure drop at the compression, effects of the bed
6	itself. Motivation - one of the important things was
7	to evaluate the sensitivity to particulate insulation
8	- debris beds composed of particulates and fibers, and
9	regulatory applications, basically to support
10	assessments here at the NRC.
11	Okay. I have completed this effort right
12	now, and I published a NUREG 1862, which you have a
13	copy of. Okay. Now let's talk about the modeling
14	technique. Something that I sort of described
15	previously. What I tried to do is to come up with a
16	methodology of bounding the upper and lower limit of
17	measurements of pressure drop for a given velocity.
18	So I used a homogeneous debris bed for the lower
19	limit, and a two-control volume for heterogenous
20	debris bed to calculate the upper limit, upper
21	pressure limit, pressure drop. And let me elaborate.
22	CHAIRMAN BANERJEE: Before you go on, you
23	show us why these are the limits at some point?
24	MR. KROTIUK: Let's see.
25	CHAIRMAN BANERJEE: It's not intuitively
Ĩ	

(202) 234-4433

	250
1	obvious.
2	MR. KROTIUK: Okay. Let me discuss the
3	homogeneous limit. From comparisons of the
4	homogeneous equations, which I'll show in a while,
5	comparing that to test data - say, for instance, if I
6	looked at an all NUKON debris bed, which is basically
7	homogeneous
8	CHAIRMAN BANERJEE: Permeated with cal
9	sil.
10	MR. KROTIUK: Not, let me just talk about
11	NUKON only, first.
12	CHAIRMAN BANERJEE: Okay.
13	MR. KROTIUK: So that's completely
14	homogeneous, and correlation would work pretty
15	decently with that, maybe over-predict it a little
16	bit. For the NUKON cal sil debris bed, what I found
17	from doing the calculations, if I assume that the cal
18	sil was evenly distributed in the NUKON, in the debris
19	bed and compared that pressure drop to test data, it
20	always was we had test data that was at that value,
21	or above it. It seemed to always indicate a lower
22	limit for the homogeneous mixture of NUKON and cal
23	sil. And this is just comparing
24	CHAIRMAN BANERJEE: That's test data.
25	MR. KROTIUK: This is just comparing with
I	I

(202) 234-4433

	251
1	test data.
2	CHAIRMAN BANERJEE: How do you know the
3	test data was homogeneous?
4	MR. KROTIUK: Well, no, I did not know
5	that it was homogeneous. When I said that the test
6	data was
7	CHAIRMAN BANERJEE: Oh, your model.
8	MR. KROTIUK: No, I looked at the test
9	data – let's see if I have it.
10	CHAIRMAN BANERJEE: Let me ask my question
11	a little better.
12	MR. KROTIUK: Okay.
13	CHAIRMAN BANERJEE: Do you have any test
14	data where the cal sil is homogeneously, or nearly
15	homogeneously distributed in the NUKON, after you look
16	at the sections
17	MR. KROTIUK: No.
18	CHAIRMAN BANERJEE: You do not.
19	MR. KROTIUK: Because we couldn't do a
20	sectioning if we calculated the mass of cal sil. If
21	we calculated the mass if we determined the mass of
22	cal sil, we couldn't do a sectioning, because one or
23	the other destroyed the bed, so we never had all the
24	information for one bed.
25	CHAIRMAN BANERJEE: Right.
Į	I

(202) 234-4433

	252
1	MR. KROTIUK: But there are some data from
2	tests that we believe that the cal sil was somewhat
3	evenly distributed in the fiber bed, and in those
4	situations, the measured pressure drop are close to
5	the homogeneous calculations.
6	CHAIRMAN BANERJEE: I see, and they give
7	you less pressure drop than when you have the two beds
8	separated.
9	MR. KROTIUK: When I have the situation
10	where I have a concentration of cal sil in a given
11	part of the debris bed.
12	CHAIRMAN BANERJEE: Is that because they
13	pack better with the I mean, each phase, think of
14	it as two phases, almost. Is that the cal sil then
15	forms a more dense bed than it would if it was
16	dispersed in the
17	MR. KROTIUK: Yes. And that's what I
18	tried to show by the SEM pictures that I showed
19	earlier, is that if you looked at the bottom of that
20	viewgraph, I gave an indication of the volume percent
21	of the different particulates, the fiber and the
22	particles, I'm sorry, in the sections, and you'll see
23	that in the surface area there was a larger
24	concentration of material than in the center region.
25	CHAIRMAN BANERJEE: Okay. Fine.
	1

(202) 234-4433

	253
1	MR. KROTIUK: So based on that thinking,
2	there is four conditions that I postulated could
3	exist. One is that you have a homogeneous, what I
4	call unsaturated particle or fiber bed, or particle
5	and/or fiber bed. In other words, it's all fiber, all
6	particle, or the particles are distributed evenly
7	within the fibers. And this is the calculational
8	method for this is a one-volume approach, and I'm
9	postulating that this is the would you give you the
10	lower bound delta P for beds with two debris types,
11	and give you a pretty good estimate of the delta P for
12	a bed with one debris type.
13	MR. ABDEL-KHALIK: What does the word
14	"saturated" refer to?
15	MR. KROTIUK: Okay. What I'm postulating
16	is that if I look at this case here, the second case,
17	if I have a fiber bed, the amount of particles that
18	could be trapped within that fiber bed has an upper
19	limit, upper practical limit, let's put it that way,
20	but an upper practical limit that would give me the
21	highest pressure drop, and so I'm calling that a
22	saturated particles within the fiber bed.
23	MR. WALLIS: Depends on how much the
24	fibers are compressed. If the fibers are compressed
25	
I	I

(202) 234-4433

	254
1	MR. KROTIUK: Yes, right.
2	MR. WALLIS: then you get less void
3	fraction in there to put the particles into.
4	MR. KROTIUK: Yes.
5	MR. WALLIS: So the saturation must be
б	somehow related to the compression of the matrix.
7	MR. KROTIUK: It is related to the
8	compression of the bed, yes.
9	MR. WALLIS: If you have one that's
10	already saturated, then presumably it can't be
11	compressed any more. Is that right?
12	MR. KROTIUK: No, it can be compressed,
13	because notice I said practical upper limits. I mean,
14	if you look at an ideal upper limit, it's going to be
15	that you have fibers and the particles completely
16	packing it, and you have no flow. It's just all
17	solid.
18	MR. WALLIS: Well, there's still some flow
19	passages through the particles.
20	MR. KROTIUK: Right, yes, but I'm saying
21	a practical upper limit says that there is some flow
22	passages. I'm not looking at a theoretical real
23	MR. CARUSO: How much does that depend on
24	the relative geometrical characteristics of the fibers
25	and the particles?
ļ	I

(202) 234-4433

	255
1	MR. KROTIUK: That's a good question, and
2	I don't really know the answer to that.
3	MR. CARUSO: I'm not even sure what you
4	would use as the geometrical representation for the
5	particles, because if they're long and thin but break
6	apart, or they deform and wrap around, and if they
7	break when they run into a particle, that I mean,
8	there's all sorts of different
9	MR. KROTIUK: Yes, I did not try to answer
10	that question, because I thought it was kind of too
11	difficult question to get my hands around, so I tried
12	to look at the test data and try to come up with a
13	methodology that would give me reasonable upper and
14	lower bounds of the test data, and that's why I'm
15	saying practical.
16	CHAIRMAN BANERJEE: I guess the word
17	"saturated" being used there is not really accurate,
18	because when you think of a saturated porous media,
19	that means all the pores are completely filled by
20	whatever it is, so you're always unsaturated.
21	MR. KROTIUK: I'm always unsaturated, but
22	I'm at a practical upper limit.
23	MR. WALLIS: What he means, I think, is
24	that the void fraction available between the fibers is
25	filled with particles.
ļ	I

(202) 234-4433

	256
1	CHAIRMAN BANERJEE: Well, if it is, then
2	there's no flow.
3	MR. KROTIUK: Then there's no flow.
4	MR. WALLIS: There's gaps between the
5	particles.
6	CHAIRMAN BANERJEE: Oh, yes, so it's not
7	saturated.
8	MR. WALLIS: Yes, it is. You've got as
9	many particles in there as can get in there.
10	CHAIRMAN BANERJEE: Without deforming the
11	fiber.
12	MR. WALLIS: Yes, without deforming the
13	fibers or the particles.
14	CHAIRMAN BANERJEE: Yes, or the particles.
15	MR. ABDEL-KHALIK: But like Ralph said,
16	this is a geometry problem. It depends entirely on
17	geometry.
18	MR. KROTIUK: But it's the form of
19	MR. CARUSO: Right. I mean, it's like I'm
20	going back to my heritage, a bowl of spaghetti and
21	meatballs, how does the sauce get through? It all
22	depends on what kind of pasta you use.
23	MR. KROTIUK: I like ziti.
24	(Laughter.)
25	CHAIRMAN BANERJEE: But why do you need to

(202) 234-4433

	257
1	make this distinction? More to the point, I mean
2	MR. KROTIUK: What I was trying to do is
3	
4	CHAIRMAN BANERJEE: There's no practical
5	way of determining if there's a saturation limit,
6	because
7	MR. KROTIUK: Right, and so this - what I
8	used is the test data to try to come up with this
9	practical upper limit.
10	MR. WALLIS: I think you could do it
11	geometrically. Forget about cal sil, you could take
12	very fine glass beads, and you could take fibers, and
13	you could geometrically work out what
14	CHAIRMAN BANERJEE: If they don't deform.
15	You could take needles and spheres, and you could find
16	a
17	MR. WALLIS: Take spaghetti and spheres.
18	CHAIRMAN BANERJEE: No, spaghetti and
19	spheres make it very difficult.
20	MR. WALLIS: Well, it's still doable, at
21	least experimentally.
22	CHAIRMAN BANERJEE: Maybe, but not
23	theoretically.
24	MR. WALLIS: Caviar and spaghetti, if you
25	ever want to eat something like that.
I	I

```
(202) 234-4433
```

	258
1	CHAIRMAN BANERJEE: Well, let's do this.
2	Let's run through this, because your definition of
3	saturated is
4	MR. WALLIS: We're going to run through
5	it, right?
6	MR. KROTIUK: Okay.
7	CHAIRMAN BANERJEE: going to make it
8	difficult.
9	MR. KROTIUK: Just remember, you're right.
10	Saturated doesn't mean - really it's a practical upper
11	limit. I was trying to point a terminology.
12	CHAIRMAN BANERJEE: Saturated porous media
13	has a clear meaning.
14	MR. CARUSO: How about closely packed?
15	MR. KROTIUK: Well, not fully packed. You
16	don't want to say - if it was fully packed, it would
17	mean there's
18	CHAIRMAN BANERJEE: He said closely
19	packed.
20	MR. CARUSO: It's like crystalline packed
21	structures, crystals.
22	CHAIRMAN BANERJEE: I doubt if there is a
23	practical upper limit. If you go on, let's say you
24	took a bed which you call saturated and you compressed
25	it
	I

(202) 234-4433

	259
1	MR. WALLIS: You can't compress it,
2	because the particles are not compressible.
3	CHAIRMAN BANERJEE: Well, but the oh,
4	are you meaning that if you so if you're saying
5	that there's a practical way of determining this, you
6	go on putting particles in a bed until you can't
7	compress it any more. Is that how you're
8	MR. KROTIUK: That's what well, part of
9	it, because there is a calculation of compressibility.
10	I mean, as you
11	CHAIRMAN BANERJEE: I think just
12	practically.
13	MR. KROTIUK: It's a practical limit.
14	CHAIRMAN BANERJEE: So I go on loading
15	this thing up with particles.
16	MR. KROTIUK: Right. Yes.
17	CHAIRMAN BANERJEE: And then when I
18	increase the pressure on it, the bed doesn't compress
19	any more.
20	MR. KROTIUK: Because that's what I was
21	trying to show here, is that this is a situation where
22	the particles and the fibers are at that upper limit,
23	and if you add any more particles to this, you're
24	going to get this situation, where you have a
25	saturated - I'll just use that terminology - of
ļ	I

(202) 234-4433

	260
1	particles and fibers, but then the rest of the
2	particles, if it collects, is just going to be
3	collected on top of the bed.
4	CHAIRMAN BANERJEE: All right. Let's look
5	at what happens. Let's continue.
6	MR. KROTIUK: And then these two are
7	homogeneous one-volume calculations, and the two-
8	volume, and the heterogeneous are two-volume
9	calculations, so I actually did pressure drops across
10	two control loads. I mean, in actuality, you could
11	use hundreds of control
12	MR. WALLIS: Compress the fibers by the
13	pressure drop through the top stuff.
14	MR. KROTIUK: Yes. This is the basic form
15	in the
16	CHAIRMAN BANERJEE: Your equations are
17	very difficult to read. Maybe you should just use
18	normal PowerPoint.
19	MR. KROTIUK: Oh, geez, it really did come
20	out bad.
21	CHAIRMAN BANERJEE: Yes.
22	MR. KROTIUK: Yes, sorry about that. The
23	Power Point
24	CHAIRMAN BANERJEE: You should use black
25	and white.
ļ	I

(202) 234-4433

261 1 MR. KROTIUK: Yes, PowerPoint did - let me 2 just see if it's bad. Well, let me just - consistent with the Ergun equation is a viscous term and a 3 4 kinetic term. One of the things that I wanted to 5 point out is that I derived this, and I didn't present the derivation here, but it's in the report - is that 6 7 there's viscosity, velocity. This is that specific 8 surface volume of the - whatever it is - fiber, 9 particle. This is - X is a void ratio, and there's this one thing called K(X), which is the -- so there's 10 a permeability relationship. And it basically --11 12 CHAIRMAN BANERJEE: What is X? MR. KROTIUK: Void ratio. 13 14 CHAIRMAN BANERJEE: Defined how? 15 MR. KROTIUK: My mind has just gone blank. 16 Just give me one second. 17 CHAIRMAN BANERJEE: Epsilon is the 18 porosity. 19 MR. KROTIUK: Epsilon is the porosity. 20 This is the void --21 CHAIRMAN BANERJEE: That's the void 22 fraction. 23 MR. KROTIUK: It's a --24 CHAIRMAN BANERJEE: It's a void to the --25 MR. WALLIS: Why is there a viscosity in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	262
1	the kinetic term? That's a correction factor that
2	MR. KROTIUK: That's because okay, I'll
3	get to that. Just give me a minute.
4	MR. WALLIS: A Reynolds number effect or
5	something?
6	MR. KROTIUK: Yes, that's a Reynolds
7	MR. WALLIS: Fairly weak effect, isn't it?
8	MR. KROTIUK: The whole kinetic term, as
9	I indicated, is listed 8 percent of the total pressure
10	drop.
11	MR. WALLIS: Even though the curves curve
12	up?
13	MR. KROTIUK: Because this K(X) is non-
14	linear. X is volume of the void over the volume of
15	the solid, so it's Epsilon over one-minus Epsilon.
16	MR. WALLIS: So it's the fraction of the
17	void filled by the particles. Is that what it is?
18	Voids in the fibers. And X tells you something about
19	how much - what's the volume of particles filling that
20	void in-between the fibers?
21	MR. KROTIUK: That's the ratio of the
22	volume of the void over the volume of the solid.
23	MR. WALLIS: Well, that's what I mean.
24	MR. KROTIUK: Okay.
25	MR. WALLIS: So it tells you how many
	I

(202) 234-4433

263 1 particles there are filling in the holes in the 2 fiberglass. 3 MR. KROTIUK: Okay. 4 MR. WALLIS: How much --5 CHAIRMAN BANERJEE: Depends how you are defining void here. Are you defining void as the 6 7 fibers plus the particles, or --8 MR. KROTIUK: No, void is void, nothing 9 there. 10 CHAIRMAN BANERJEE: No, I mean when you're talking about --11 MR. KROTIUK: When I talk about solid, 12 it's the particles plus the fibers. 13 14 CHAIRMAN BANERJEE: So one minus Epsilon 15 is particles plus fibers. MR. WALLIS: One minus Epsilon - oh, 16 that's the total solids? 17 CHAIRMAN BANERJEE: The total solids. 18 19 MR. KROTIUK: Total solids, right. 20 CHAIRMAN BANERJEE: Really, what you have 21 are three parameters. In some sense, you have the 22 volume fraction of the particles, the volume fraction 23 of the fibers, and the volume fraction of the voidage. 24 MR. KROTIUK: Right. 25 CHAIRMAN BANERJEE: How would you put

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	264
1	Epsilon - one minus Epsilon being equal to the total
2	solids.
3	MR. KROTIUK: You know, one thing I have
4	to say is that I presented this equation in this form
5	to try to show the similarity to the Ergun equation.
6	I actually - and I didn't present this in the report -
7	but this could actually be simplified to something
8	that eliminates a lot of these duplications of the X,
9	of the void ratios and the porosities, and all that.
10	I just tried to present it in this form, because of
11	familiarity.
12	CHAIRMAN BANERJEE: Okay.
13	MR. KROTIUK: Now to talk about this
14	kinetic term, this term here with this exponent is
15	really something that I came out - it's a semi-
16	empirical impression that's used to it was derived,
17	and I don't remember the reference, but it's for metal
18	screens of weaves, and they specified whether the
19	weave was cross, or this way, different type of
20	weaves, but this is for something that related to any
21	weave. And it also could be applied to beds composed
22	of spherical particles.
23	MR. WALLIS: Some correlations don't have
24	that factor in at all.
25	MR. KROTIUK: Right. But
ļ	1

(202) 234-4433

	265
1	MR. WALLIS: Which case, the pressure drop
2	becomes independent of the thickness of the bed,
3	because it doesn't matter whether it's thick. It's
4	the total amount of stuff there that gives you the
5	pressure drop.
6	MR. KROTIUK: But, again, I didn't really
7	investigate this too much, because when I started
8	doing comparisons with test data, this term turned out
9	to be so small. Typically, 8 percent was really an
10	upper limit. It was more on the order of 1 to 2
11	percent of the total pressure drop, so I wasn't really
12	too concerned with this term.
13	MR. WALLIS: Well, that can't give you the
14	moving up of the pressure then you'll be linear,
15	pressures will be linear with the velocity.
16	MR. KROTIUK: No, because of the K(X)
17	factor, which is non-linear.
18	MR. WALLIS: Well, the K(X) has velocity
19	in it?
20	MR. KROTIUK: You have
21	CHAIRMAN BANERJEE: I thought K(X) only
22	has the porosity in it.
23	MR. KROTIUK: Okay. I have
24	CHAIRMAN BANERJEE: If you make K(X) a
25	factor of velocity, then it's a non-linear term.
ļ	

(202) 234-4433

I	266
1	MR. WALLIS: I don't think it is, is it?
2	CHAIRMAN BANERJEE: No, I don't know his
3	model yet.
4	MR. KROTIUK: Let me just all right,
5	that's all. I wasn't really going to say more on the
6	model, so let me just go to one of my okay. These
7	are it's called a Happel Free Surface Model, and
8	these are the relationships for $K(X)$, so it's a
9	function of void ratio.
10	MR. WALLIS: It's nothing to do with
11	velocity. It's linear with velocity.
12	CHAIRMAN BANERJEE: As you would expect in
13	creeping flow type of problems.
14	MR. WALLIS: What are we doing here?
15	MR. KROTIUK: Yes, that's something that
16	you don't have. I just put it there because I thought
17	maybe someone would ask. I'm going back.
18	MR. WALLIS: I think that thing about age,
19	or about 20 significant figures.
20	MR. KROTIUK: That's a curve fit. We'll
21	get to that.
22	MR. WALLIS: Okay. So the sum effect of
23	permeability, which is messy.
24	MR. KROTIUK: And if I applied that
25	relationship to a NUKON and cal sil mixture in the
ļ	I

(202) 234-4433

	267
1	debris bed, basically I divided the total pressure
2	drop into pressure drop due to the NUKON, pressure
3	drop due to the cal sil. This is the viscous term and
4	the kinetic term.
5	MR. WALLIS: This is something really new,
6	of adding together these
7	MR. KROTIUK: Yes. And then, of course,
8	in addition there was exit and entrance effects.
9	MR. WALLIS: Which are small.
10	CHAIRMAN BANERJEE: So now that is more
11	close to what we were saying, that basically you've
12	superimposed these two.
13	MR. KROTIUK: That's right. It's the best
14	thing I could come up with, that seemed to match.
15	MR. WALLIS: But there's no theoretical
16	basis, is there, for adding together the two Kozeny
17	terms like that?
18	MR. KROTIUK: It's a question of parallel
19	
20	MR. WALLIS: If you've got two things in
21	series or something?
22	MR. KROTIUK: Parallel a series
23	approach, I mean, you know.
24	CHAIRMAN BANERJEE: Well, these aren't
25	series though. Right?
	I

	268
1	MR. KROTIUK: I mean, I tried both, to
2	tell you the truth.
3	CHAIRMAN BANERJEE: They would be in
4	series, according to this.
5	MR. KROTIUK: Right. This is
6	MR. WALLIS: Not in series, they're
7	actually mixed together.
8	MR. KROTIUK: I tried both approaches, and
9	the parallel approach did not I couldn't get
10	anywhere.
11	MR. WALLIS: The particles are inside the
12	voids in the fibers, that's the problem.
13	CHAIRMAN BANERJEE: So what's the
14	difference between this and having them in two layers
15	then?
16	MR. KROTIUK: This equation
17	CHAIRMAN BANERJEE: This is like having
18	them in two layers.
19	MR. KROTIUK: This equation is applied to
20	each layer.
21	CHAIRMAN BANERJEE: I know. But, I mean,
22	if you look at this equation, it is like you're just
23	having two layers, one of the cal sil, and one of
24	MR. KRESS: They both have the same
25	thickness.
I	

(202) 234-4433

	269
1	MR. KROTIUK: They have the same
2	thickness.
3	MR. KRESS: It's the thickness of the full
4	bed. That's the difference.
5	CHAIRMAN BANERJEE: Yes. And this is the
6	thickness of the full bed.
7	MR. KRESS: Yes. That makes it look
8	strange to me, but if this is like a porous bed where
9	the loop lets you do surface tension-like effects,
10	then you could rationalize something like this.
11	CHAIRMAN BANERJEE: So let's say the basis
12	for using this at the moment is empirical. Let's see
13	where it leads.
14	MR. KRESS: Okay. Good approach.
15	MR. KROTIUK: Okay. Now talk about the
16	compression and expansion. The references that I
17	looked at seemed to have the best match-up by the
18	best approach to the compression/expansion of the
19	porous media was to assume that, as I said previously,
20	that the first compression with a velocity increase
21	was a non-recoverable, irreversible process, and then
22	all the other compressions were elastic with constant
23	compressibility.
24	MR. WALLIS: It doesn't recover when you
25	decrease the velocity?
I	1

(202) 234-4433

	270
1	MR. KROTIUK: First
2	CHAIRMAN BANERJEE: Not completely.
3	Right?
4	MR. KROTIUK: Not completely. I mean, the
5	references that I read, in actuality what happens is
6	that you have the first one, first say compression
7	will be some fraction, like 90 percent non-reversible,
8	10 percent reversible. Then it'll come back down,
9	come back up, and then you may 60 percent non-
10	recoverable, so there's no real cutoff. This is just
11	a calculational approach, and from the references that
12	I read, it seemed to indicate that this was a
13	reasonable approach.
14	MR. WALLIS: Well, the first one is sort
15	of a standard for in the filtration business.
16	MR. KROTIUK: Right.
17	CHAIRMAN BANERJEE: It's sort of like what
18	
19	MR. WALLIS: That's right.
20	MR. KROTIUK: Yes, I forgot the reference
21	now.
22	MR. WALLIS: It's in my book, so it must
23	be right.
24	MR. KROTIUK: Yes.
25	MR. KRESS: It must be out of date.
Į	I

	271
1	MR. KROTIUK: It's not entirely, because
2	the difference is that this is X, not L.
3	MR. WALLIS: Well, that's strange. Did
4	the particles effect the compressibility of the
5	fiberglass?
6	MR. KROTIUK: Yes.
7	MR. WALLIS: If you take fiberglass and
8	squeeze it mechanically, you can do this test.
9	Mechanically, no fluid there at all.
10	MR. KROTIUK: Right. That's how they
11	MR. WALLIS: Put particles in there, does
12	it make a difference? I think it must eventually,
13	because if you squeeze it too much, you're actually
14	coming up against the particles.
15	MR. KROTIUK: The reference is from the
16	AICHE Journal, and it's by Johnson & Johnson. It's
17	actually a husband and a wife team.
18	MR. WALLIS: It goes back to
19	MR. KROTIUK: They actually yes, right.
20	They reference it, but they actually did those
21	experiments where they compressed.
22	MR. WALLIS: Right.
23	MR. KROTIUK: And they said that this
24	looks like a reasonable approach.
25	CHAIRMAN BANERJEE: So, I mean, phrasing
ļ	

(202) 234-4433

	272
1	it in terms of X, rather than L, simply changes N.
2	Right?
3	MR. WALLIS: N is always about one, two,
4	three, six.
5	MR. KROTIUK: It's the same number that
6	you came up with, about that order of magnitude.
7	MR. ABDEL-KHALIK: Can we go back to the
8	previous slide?
9	MR. KROTIUK: Sure.
10	MR. ABDEL-KHALIK: How are these
11	individual porosities defined? Epsilon cal sil, for
12	example, what is the definition of that?
13	MR. KROTIUK: Cal sil is only considering
14	the presence of cal sil
15	MR. ABDEL-KHALIK: The other material
16	doesn't exist.
17	MR. KROTIUK: Does not exist, right.
18	CHAIRMAN BANERJEE: Is the volume of cal
19	sil over the total volume?
20	MR. KROTIUK: Yes.
21	CHAIRMAN BANERJEE: If I understand what
22	you're doing.
23	MR. KROTIUK: Volume of cal sil over the
24	total.
25	MR. WALLIS: But it's not layered, because
I	I

(202) 234-4433

	273
1	if they were in series there would be different
2	volumes.
3	CHAIRMAN BANERJEE: One minus. At least
4	that's how I understand your
5	MR. WALLIS: It's somewhat strange.
6	MR. KROTIUK: It is. And, I agree, I was
7	trying different things, and basically trying to use
8	parallel and series approaches.
9	MR. WALLIS: It's a bold step forward,
10	which works fine if it's only cal sil, and only
11	MR. KROTIUK: Yes. Right.
12	CHAIRMAN BANERJEE: You know, what I said
13	earlier was let's assume this on an empirical basis
14	for now and see where it leads. Clearly, the equation
15	has almost no justification.
16	MR. WALLIS: My feeling about this was it
17	was very promising, but it really needed a much
18	broader experimental base in order to verify the
19	equation.
20	MR. KROTIUK: I used experiments that
21	actually, in the NUREG, I compare this to not only
22	the PNNL data, but to the ANL data, and to LANL data,
23	so there's a lot of comparisons.
24	MR. WALLIS: Okay.
25	MR. KROTIUK: I'm only presenting a
	1

(202) 234-4433

	274
1	limited number of cases here.
2	MR. WALLIS: This compression equation is
3	very interesting, because if P is zero, then X is
4	infinite.
5	MR. KROTIUK: Yes.
6	CHAIRMAN BANERJEE: The problem, of
7	course, that you face is that if you look at your
8	Ergun equation, it doesn't care how the porosity is
9	distributed. And when you put your fibers and your
10	particles in there, you're effecting the tocquicity,
11	or whatever the hell it's called. And that's what
12	affects the pressure drop. I mean the fluid dynamics
13	of it is just getting different sort of flow path than
14	you
15	MR. KROTIUK: Yes, in the paper by Johnson
16	& Johnson, what they actually did is that they used an
17	equation similar to this, but they actually divided up
18	their debris bed into a fairly large number of control
19	volumes. They would go - not just two - I forget, 10
20	or 20, or something like that, so that they could
21	predict the pressure drop distribution within the bed,
22	because it's non-linear, as I said earlier. And I
23	just thought that for a practical application, it was
24	not reasonable to do that, so I was trying to come up
25	with a hand calculation that would give me upper and
	I

(202) 234-4433

	275
1	lower limits.
2	MR. WALLIS: That's what Ingmanson does.
3	The bottom of the bed is compressed much more than the
4	top.
5	MR. KROTIUK: Right.
6	MR. WALLIS: And so you get a different
7	pressure going into the bottom than the top.
8	MR. KROTIUK: Yes, you get a whole
9	distribution.
10	MR. WALLIS: And you can get some
11	solutions- if it's linear like this, you can get some
12	form solutions, as long as Epsilon isn't too big.
13	MR. KROTIUK: Yes. It was an approximate
14	approach that I was trying to
15	MR. ABDEL-KHALIK: Going back to the
16	definition of these Epsilons.
17	MR. KROTIUK: Yes.
18	MR. ABDEL-KHALIK: So let's say Epsilon
19	cal sil, that is as if you've taken the NUKON and
20	replaced it with liquid.
21	MR. KROTIUK: Right. That's correct.
22	MR. ABDEL-KHALIK: You have a composition,
23	so that's physically what this picture looks like.
24	MR. KROTIUK: That's correct.
25	CHAIRMAN BANERJEE: You have to think
ļ	

(202) 234-4433

	276
1	about this.
2	MR. ABDEL-KHALIK: Right.
3	MR. KROTIUK: Yes.
4	MR. ABDEL-KHALIK: Because you really can
5	combine all the Epsilon and X terms, and come up with
6	just one function in terms of Epsilon. It turns out
7	to be one minus Epsilon cubed divided by Epsilon, a
8	product of the two X cubed times one minus Epsilon
9	squared divided by one plus X squared times Epsilon
10	cubed, that's just one minus Epsilon cubed
11	MR. WALLIS: I think you have a problem if
12	there's no cal sil there at all, because then Epsilon
13	is zero.
14	MR. KROTIUK: That's right. There is a
15	problem, yes.
16	MR. WALLIS: It doesn't make any sense.
17	MR. KROTIUK: No. And one of the things
18	when I was looking at this equation, I was trying to
19	look at the extremes of all NUKON and all cal sil.
20	MR. WALLIS: Maybe X cal sil cancels
21	Epsilon cal sil, or something. There has to be
22	something there.
23	MR. KROTIUK: Again, in the I recognize
24	that. Okay? I recognize that there's a problem at
25	one of the upper limits, and in
ļ	I

(202) 234-4433

	277
1	MR. WALLIS: The real problem, you have
2	nothing there has an infinite effect.
3	MR. KROTIUK: And there are what
4	happens there's a couple of things that happen.
5	One is that in the actual application that's outlined
6	in the NUREG, there are upper limits extremes, but
7	what happens also is that the K(X) value also feeds
8	into it, and the K(X) value becomes very large at one
9	point, so that you're dividing by a large number, and
10	it becomes
11	MR. WALLIS: Zero over zero.
12	MR. KROTIUK: Yes, so you have to I
13	tried to specify it very much in the application
14	section of the NUREG to say what happens when you
15	approach upper limits, and what to use at those upper
16	limit values.
17	CHAIRMAN BANERJEE: So what is the second
18	equation? The first one we have some understanding
19	of.
20	MR. KROTIUK: This equation came from, as
21	I said, Johnson & Johnson in an AICHE paper, in an
22	AICHE Journal, and they derived this equation in
23	there, and I used it just the way they derived it.
24	CHAIRMAN BANERJEE: So this is to account
25	for the sort of non-linear
Į	1

(202) 234-4433

	278
1	MR. KROTIUK: This is to account for the
2	elastic range.
3	MR. WALLIS: I'm tempted to say that
4	Johnson & Johnson manufacture band-aids.
5	(Laughter.)
6	CHAIRMAN BANERJEE: So they got this by
7	dividing the layer into many thin bits, and
8	integrating with something.
9	MR. WALLIS: Anyway, we can move on, I
10	think. There's some basis for this one.
11	MR. KROTIUK: You want me to
12	CHAIRMAN BANERJEE: Well, where are we
13	going now?
14	MR. KROTIUK: Well, I was just going to
15	
16	MR. WALLIS: Break, aren't we?
17	CHAIRMAN BANERJEE: Yes, but what is the
18	next few slides about?
19	MR. KROTIUK: The ones are just coming up
20	with the various
21	CHAIRMAN BANERJEE: That is your equation.
22	MR. KROTIUK: That's basically the
23	equation. And, as I said, there's a lot of derivation
24	in the paper. I didn't want to present the whole
25	derivation. It goes on for about 20 pages.
I	

(202) 234-4433

	279
1	CHAIRMAN BANERJEE: And you're going to
2	apply this to
3	MR. WALLIS: A whole lot of stuff.
4	CHAIRMAN BANERJEE: the two separated
5	layers, and all this sort of stuff.
6	MR. WALLIS: He's going to show us it's
7	better than CR6224.
8	CHAIRMAN BANERJEE: And show us how it
9	agrees.
10	MR. KROTIUK: I'm sorry?
11	CHAIRMAN BANERJEE: How it agrees with the
12	data.
13	MR. KROTIUK: How it agrees, or doesn't
14	agree.
15	CHAIRMAN BANERJEE: Doesn't agree. All
16	right. So this is a good time to take a break then.
17	Okay. So we take a break for 10 minutes, so back at
18	20 to 4.
19	(Whereupon, the proceedings went off the
20	record at 3:32:37 p.m., and went back on the record at
21	3:46:08 p.m.)
22	CHAIRMAN BANERJEE: Okay. Back in
23	session. So perhaps we could try to finish up about
24	4:30.
25	MR. KROTIUK: I think that's possible.
ļ	I

(202) 234-4433

	280
1	CHAIRMAN BANERJEE: All right.
2	MR. KROTIUK: As I said before the break,
3	what I want to do now is just indicate some of the
4	values that are in equation and what I determine the
5	value should be. One is that from the test data, one
6	of the things that you needed to know was the specific
7	surface area of the NUKON and cal sil fibers. And,
8	also, for any fibers in the cal sil that's included in
9	the cal sil. And looking at the test data, and seeing
10	what fit and everything else, and pluses or minuses,
11	I did a fairly detailed assessment of that, and these
12	are the numbers that I came up with.
13	For comparison, just so that you know,
14	this 300,000 number for the NUKON, what 6224
15	recommends is a number around 171,000. However, the
16	cal sil number of 650,000 is about the right order of
17	magnitude, which the 6224 correlation uses, which is
18	600,000. The densities for the NUKON and cal sil
19	fibers, they agreed with what was previously presented
20	in the various NUREGs, and what PNNL did is they
21	actually did measure the densities of the fibers, and
22	the particles, so they agreed.
23	One of the things that has to be sorry.
24	One of the things that has to be known to apply the
25	methodology I've developed is the initial thickness of
	I

(202) 234-4433

	281
1	the debris bed, so what I did is that since we formed
2	the debris bed at .1 foot per second which I termed as
3	a relatively low velocity, it's not super low, but
4	relatively low, I looked at all the test data, and
5	derived this relationship for the initial total bed
6	thickness relating the void ratio of the NUKON, the
7	area, masses of the NUKON mixed with cal sil, the
8	densities indicated up here. And the question is, is
9	what value for the void ratio of NUKON and cal sil
10	would match the test data? And, basically, looking at
11	the test data and backfitting it, these are the
12	numbers that I came up with. And let me just show you
13	the plot.
14	For instance, on this plot here, the
15	circles are the calculation. The solid diamonds in
16	blue, and the pink also are the measurements of the
17	actual bed thickness at .1 foot per second. The only
18	one that differs is this one happens to be at .2 feet
19	per second.
20	MR. WALLIS: Now if it were at a different
21	velocity what would be the difference?
22	MR. KROTIUK: It will be different.
23	MR. WALLIS: Well, that depends on the
24	pressure drop, doesn't it? If you're worried about
25	compression, the pressure drop has got to come into
	I

(202) 234-4433

(202) 234-4433

	282
1	it, too, not just velocity.
2	MR. KROTIUK: Well, if you look at the
3	relationship, the only thing I have in here is the
4	masses, the densities, and the area and these
5	empirical value for the void ratio. I actually
6	derived this. This is derived from
7	MR. WALLIS: Assuming no compression. Is
8	that what it is?
9	MR. KROTIUK: Assumes no compression, yes.
10	MR. WALLIS: So your compression theory
11	has a pressure in there.
12	MR. KROTIUK: Yes.
13	MR. WALLIS: At the initial thickness, but
14	there's no pressure here.
15	MR. KROTIUK: No, there is a pressure -
16	I'm sorry. There is a pressure at this thickness, and
17	that's
18	MR. WALLIS: You have to calculate that?
19	MR. KROTIUK: I mean, there is excuse
20	me?
21	MR. WALLIS: You have to calculate that
22	from your theory or something?
23	MR. KROTIUK: There is an iteration
24	process in the calculation whereby you would calculate
25	this PM prime, which is the starting point. But to do

```
(202) 234-4433
```

	283
1	that, you need the thickness. As I said, I don't want
2	to go through the whole application methodology, but
3	there is an iteration process. You have to know the
4	initial thickness, and then there's iterative process
5	to calculate the PM prime at that thickness.
6	MR. ABDEL-KHALIK: I mean, going back to
7	the question I asked earlier about how thick those cal
8	sil beds. If I use your density, and for a .45
9	kilograms per meter squared loading, I end up - if I
10	were to assume that I have a solid layer of cal sil
11	with that loading, it would end up being .25
12	millimeters thick.
13	MR. KROTIUK: This material density is the
14	density of the material.
15	MR. ABDEL-KHALIK: Right, density of the
16	solid. Right.
17	MR. KROTIUK: Yes.
18	MR. ABDEL-KHALIK: Now when you say that
19	the actual height of the bed
20	MR. KROTIUK: Is larger.
21	MR. ABDEL-KHALIK: is six millimeters,
22	roughly a quarter of an inch, that means this is a
23	very, very highly voided layer.
24	MR. KROTIUK: Yes.
25	MR. ABDEL-KHALIK: Right?
I	I

	284
1	MR. KROTIUK: Yes.
2	MR. WALLIS: Just cal sil?
3	MR. ABDEL-KHALIK: Right. Which, to me,
4	is very surprising, given the fact that cal sil is
5	very, very small particles.
6	MR. KROTIUK: And the only thing, as I
7	said, I did a lot of I looked at a lot of the data
8	at the .1 feet per second for NUKON and NUKON cal sil,
9	and I had no data for cal sil alone, so I back I
10	could come up with this parameter here for the NUKON
11	because I had NUKON only data, but this one had to be
12	backed out of basically the NUKON cal sil data, this
13	value here.
14	MR. ABDEL-KHALIK: But if I were to just
15	use his observation that the thickness of this layer
16	in that case was roughly a quarter of an inch, I would
17	get a ratio about 25 for cal sil only.
18	MR. KROTIUK: Well, I have to admit that
19	that was - the value for the cal sil was a weakness in
20	my derivation, and if I had cal sil data, I could have
21	come up with something. This was the best thing I
22	could come up.
23	MR. MICHENER: Tom Michener from PNNL.
24	Also, it wasn't really what we called a formed bed
25	either with the holes in it.
ļ	I

(202) 234-4433

	285
1	MR. KROTIUK: Yes, that was
2	MR. ABDEL-KHALIK: Looking at the
3	pictures, there are only a few holes. When you say
4	
5	MR. MICHENER: There was quite a few
6	holes.
7	MR. KROTIUK: Quite a lot of holes.
8	MR. MICHENER: Quite a few holes, and it
9	just depended on when you stopped, too. Because, like
10	I said, it just kept bursting through. But yes, we
11	never did what we call form an official cal sil only
12	bed, as I recall.
13	MR. KROTIUK: No. Closest we came was in
14	a bench top, which was better than the one in the
15	large loop, but it still had holes in it.
16	MR. ABDEL-KHALIK: The point I was trying
17	to make is that all you need to come up with a value
18	for X for cal sil is to come up with a thickness, an
19	actual measured thickness, or average thickness in a
20	loading and that gives you a value of X.
21	CHAIRMAN BANERJEE: You don't even have to
22	have a sieve, you just have to load it.
23	MR. ABDEL-KHALIK: Right.
24	MR. WALLIS: This curve here with this
25	figure here is thickness versus amount of stuff.
ļ	I

(202) 234-4433

	286
1	MR. KROTIUK: Yes.
2	MR. WALLIS: It doesn't say anything about
3	composition, really.
4	MR. KROTIUK: This is a total.
5	MR. WALLIS: Total amount of stuff.
6	MR. KROTIUK: This is NUKON and cal sil.
7	MR. WALLIS: Oh, it doesn't matter what
8	it's made out of?
9	MR. KROTIUK: That's what I plotted it as,
10	but if you look at the equation, the equation does
11	matter, because you have the NUKON mass and the cal
12	sil mass is separate, but just for this plot
13	MR. WALLIS: The circles are just sort of
14	a straight line through the middle of the picture.
15	MR. KROTIUK: It's not quite, because if
16	you notice, there are dips in it. It's not quite a
17	straight line.
18	MR. WALLIS: But it really seems to
19	indicate if the circles are right, that you're
20	predicting that the thickness simply depends on the
21	weight of stuff. It's dependent on what it's made out
22	of, cal sil or
23	MR. KROTIUK: Well, if you look at the
24	equation here is that
25	MR. WALLIS: I'm just looking at the
I	1

(202) 234-4433

Í	287
1	circles.
2	MR. KROTIUK: I know, but if you look at
3	NUKON has a greater effect than the cal sil does,
4	from what I
5	MR. WALLIS: Because of X.
б	MR. KROTIUK: So if you plot this same
7	curve which I've done, saying the NUKON, you also get
8	a NUKON concentration so that the total concentration
9	
10	MR. WALLIS: Isn't the thickness really
11	determined by the NUKON, essentially? Cal sil just
12	fills in the voids in the NUKON. It doesn't make any
13	difference.
14	MR. KROTIUK: Yes. And that's the reason
15	why this is 6 and that's 30.
16	MR. WALLIS: I would think that it's even
17	more so than that, because the cal sil can fit in-
18	between the NUKON fibers, that it's really the NUKON
19	that decides how thick the bed is. Anyway, let's go
20	on.
21	MR. KROTIUK: Yes. I feel more
22	comfortable with the 30 number than with the 6.2.
23	MR. WALLIS: Okay. The NUKON dominates
24	anyway.
25	MR. KROTIUK: The NUKON dominates. Now
I	

(202) 234-4433

	288
1	this is the real this is where I was I went out
2	most on the limb.
3	MR. WALLIS: I see.
4	MR. KROTIUK: Yes.
5	MR. WALLIS: I like the degree of
6	accuracy.
7	MR. KROTIUK: This is completely a curve
8	fit. There is no theory to this. I had basically,
9	this is the relationship for that minimum, what I call
10	a saturation thickness over the total initial
11	thickness as a function of the mass of cal sil and
12	NUKON. And I plotted up this data
13	MR. WALLIS: Exponential?
14	MR. KROTIUK: Yes.
15	CHAIRMAN BANERJEE: As you see in the next
16	slide.
17	MR. KROTIUK: And I emphasize here that
18	this is it could definitely be improved, but I
19	this is the best I could come up with. I tried
20	MR. WALLIS: Is this for saturation?
21	MR. KROTIUK: Yes.
22	MR. WALLIS: So when you've got a very
23	small amount of cal sil, a tiny amount of it can
24	saturate?
25	MR. KROTIUK: Yes, it can.
	I

(202) 234-4433

	289
1	MR. WALLIS: Doesn't make sense.
2	MR. KROTIUK: But it can. You could get
3	a saturation layer on top in the fiber bed, if that
4	but the pressure drop that you would have for that
5	layer will really be calculated by the pressure drop
6	equation.
7	MR. WALLIS: It's because it's not
8	homogeneous.
9	MR. KROTIUK: It's not homogeneous.
10	MR. WALLIS: Well, okay. That's the case,
11	but if it's homogeneous and filling in the pores, then
12	it wouldn't be an exponential relationship.
13	MR. KROTIUK: Right.
14	MR. WALLIS: It would presumably just be
15	simply a certain mass ratio.
16	MR. ABDEL-KHALIK: I mean, your
17	exponential fit is driven by that one outlier data
18	point, that one.
19	MR. KROTIUK: That's right.
20	MR. WALLIS: Right.
21	CHAIRMAN BANERJEE: How secure is that
22	point?
23	MR. KROTIUK: Well, this is one of those
24	points that after I got all the data together, and we
25	looked at testing that we completed, it was saying
ļ	I

```
(202) 234-4433
```

	290
1	geez, I wish I had more points out here.
2	MR. WALLIS: Let's get this clear. I
3	don't understand this at all. I thought that this
4	saturation was when the particles of cal sil
5	essentially filled the voids in the fiber.
6	MR. KROTIUK: That's correct.
7	MR. WALLIS: Which would simply be a mass
8	ratio, it doesn't matter how much there's no
9	MR. KROTIUK: Remember
10	MR. WALLIS: You have twice as much
11	fiberglass, you have twice as much cal sil, so
12	MR. KROTIUK: Remember what I said, that
13	this is a practical limit. I'm trying to use test
14	data to come up with a practical limit. This is not
15	a theoretical upper limit, it's a practical limit.
16	MR. WALLIS: And I think your practical
17	limit must be including the distribution throughout
18	the bed or something, because it doesn't make sense.
19	MR. KROTIUK: No. Okay. What I okay,
20	let me explain to you how I did this. Okay? What I
21	did is that I took my two-volume model, looked at test
22	data. I had pressure versus velocity for NUKON cal
23	sil beds. I assumed a thickness for the saturated
24	control volume, and then assumed that the second
25	control volume was entirely fiber, and I did the
11	

(202) 234-4433

291 1 pressure drop calculations for varying thickness of 2 this saturated layer. And when I calculated a 3 thickness that matched the test data, and it matched 4 up fairly well. I included the plots in the NUREG, 5 that are these points that I plotted here. MR. WALLIS: So it's very dependent upon 6 7 the model you're assuming. There's no direct 8 measurement. 9 MR. KROTIUK: There's no direct 10 measurement of this, no. I couldn't make direct measurements. As I said earlier, if we made direct 11 measurements, then we wouldn't have cal sil masses. 12 MR. ABDEL-KHALIK: Now let's look at the 13 14 limiting case, where you have zero of cal sil. This 15 equation would predict a ratio between delta L-min and delta L-initial of .007 something. 16 Right? 17 MR. KROTIUK: That's if you --ABDEL-KHALIK: But shouldn't this 18 MR. 19 value, this number in front of the exponent be just 20 simply one divided by X for NUKON? That's a good -- I didn't 21 MR. KROTIUK: 22 think about that. Yes. 23 MR. ABDEL-KHALIK: I mean, isn't that 24 physically what's going on? 25 MR. KROTIUK: I have to think about that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	292
1	MR. WALLIS: Particles are filling the
2	voids.
3	MR. ABDEL-KHALIK: I mean, you don't have
4	any more cal sil in. Right? And what you're doing is
5	compressing the NUKON by itself. And if that is the
6	case, you're essentially turning it into a solid
7	layer. And if that's the case, the ratio is just one
8	over X.
9	CHAIRMAN BANERJEE: And the other extreme,
10	when you form only a cal sil bed, of course, you get
11	a weird answer.
12	MR. KROTIUK: Yes, you get a weird
13	MR. WALLIS: You have this NUKON.
14	MR. KROTIUK: As I said, this I considered
15	the this is the hardest part of this derivation,
16	because all the rest of the parts, I had some
17	theoretical basis for it, maybe there was a little
18	empiricism in it or something. This one was
19	completely empirical
20	MR. ABDEL-KHALIK: You have your metric
21	limits that you can apply.
22	MR. WALLIS: So can you tell me more what
23	this delta L-min, and delta L-initial mean here?
24	MR. KROTIUK: Okay. Let me go
25	MR. WALLIS: I missed something.
	I

(202) 234-4433

	293
1	MR. KROTIUK: Right. Let me go back here.
2	MR. WALLIS: What's delta L?
3	MR. KROTIUK: My delta L-min is this - I'm
4	sorry - let me give it to you. It's this thickness
5	right here. The delta L is the entire thickness.
б	MR. WALLIS: So I still don't understand
7	at all now. You're saying that you've got a little
8	layer of cal sil on top of a lot of fibers when this
9	ratio is .001?
10	MR. KROTIUK: That's correct.
11	MR. WALLIS: But it doesn't say anything
12	about how you saturate the fiber bed.
13	MR. KROTIUK: Okay. Because I'm not
14	trying to calculate how I saturate the fiber bed. I'm
15	saying I want to calculate a practical upper limit for
16	pressure drop.
17	MR. WALLIS: Well, that's all together
18	different. So you're saying what's the thickness of
19	this thin layer on top of the fiber layer?
20	MR. KROTIUK: That's right.
21	MR. WALLIS: It has nothing to do with
22	CHAIRMAN BANERJEE: But it's more to -
23	the last one on the right seems to be
24	MR. KROTIUK: This is a case that we
25	actually didn't test. This is a case where you have
I	I

(202) 234-4433

	294
1	so much particles in the fiber that the particles
2	start collecting above the fiber bed.
3	CHAIRMAN BANERJEE: Isn't that more or
4	less like what you showed us in those micrographs?
5	MR. KROTIUK: No, because in those SEMs,
6	there were a mixture of cal sil and fibers, particles
7	and fibers.
8	CHAIRMAN BANERJEE: It looked almost like
9	you had a layer of cal sil, and then there was a
10	region of fibers plus cal sil.
11	MR. KROTIUK: Right.
12	CHAIRMAN BANERJEE: Rather than
13	MR. KROTIUK: But it
14	CHAIRMAN BANERJEE: It was more like on
15	the right, than that one. At least, if you go back to
16	the micrographs, so it looked like this was primarily
17	cal sil, and then on the left you had a mixture of cal
18	sil and fibers.
19	MR. KROTIUK: Well, one thing you could
20	say is this is primarily fibers, the amount of cal sil
21	is really small.
22	MR. WALLIS: Right.
23	MR. KROTIUK: And I could see fibers in
24	here, but you see the volumes. It's by volume, it was
25	59 percent. This was measured, 59 percent cal sil,
I	I

```
(202) 234-4433
```

	295
1	6.5 percent NUKON.
2	MR. WALLIS: Was delta L-min the thickness
3	of that layer on the right?
4	MR. KROTIUK: I'm sorry, say again?
5	MR. WALLIS: This delta L-min, is that
6	MR. KROTIUK: This is this layer.
7	MR. WALLIS: So you're not just talking
8	about the thickness ratio of the various layers?
9	MR. KROTIUK: Yes, well, it's - the
10	thickness ratio that I'm calculating is this over the
11	entire bed thickness.
12	MR. WALLIS: You're already assuming two
13	layers.
14	MR. KROTIUK: I'm assuming two layers,
15	right. I'm saying to do this calculation, I have to
16	have I'm assuming two layers.
17	MR. ABDEL-KHALIK: But like Dr. Banerjee
18	suggested, this corresponds to the last image on the
19	right, rather than the third image on the right.
20	CHAIRMAN BANERJEE: It's closer, anyway.
21	MR. ABDEL-KHALIK: Right. I mean, this is
22	like, you know, you have particles inside the voids
23	between the fibers.
24	MR. KROTIUK: Right.
25	MR. ABDEL-KHALIK: And then you squeeze on
I	

(202) 234-4433

	296
1	it, the particles come out because you can't keep too
2	many of them inside the fibers.
3	MR. KROTIUK: Right.
4	MR. ABDEL-KHALIK: And that's why you have
5	a layer of particles on top.
6	MR. WALLIS: Let's just follow from
7	geometry. If you put all the cal sil on top of the
8	fibers, you can figure out how thick the layer is.
9	You don't need any correlation at all.
10	MR. KROTIUK: You know, that's a valid
11	point.
12	CHAIRMAN BANERJEE: In one case you have
13	cal sil amongst the fibers, in the other case you have
14	fibers amongst the cal sil, more or less.
15	MR. KROTIUK: Yes. And I'm assuming for
16	that, that's it all fiber.
17	CHAIRMAN BANERJEE: Yes. So if you look
18	on the left, your volume fraction of the cal sil to
19	the NUKON is a factor
20	MR. WALLIS: I think there's something
21	sort of circular here, is you have this thing which is
22	somewhat vague, this delta L-min, which you derived
23	from the test data, and then you used your correlation
24	to predict the test data, so this is a kind of mammoth
25	fudge factor, this exponential thing.
ļ	I

(202) 234-4433

	297
1	MR. KROTIUK: In actuality it isn't,
2	because if I when I show you the results, it just
3	doesn't automatically calculate.
4	MR. WALLIS: Oh, okay.
5	MR. KROTIUK: But I like the comment that
6	was made, that to relate this I had a heck of a
7	time to try to come up with that, the value for the
8	delta L-min for this thickness here. And maybe I was
9	thinking too much, and I didn't think geometry. I
10	should have thought of that.
11	MR. WALLIS: So you say if there is a thin
12	bed, delta L-min is its thickness?
13	MR. KROTIUK: Correct.
14	CHAIRMAN BANERJEE: Go back to that,
15	again. There's something very weird about that,
16	because if you take the mass of cal sil over the mass
17	of NUKON, in that layer you showed us, which was 60
18	percent cal sil, and a little bit of NUKON, that's a
19	very large number.
20	MR. KROTIUK: That's by volume.
21	CHAIRMAN BANERJEE: Yes, but the volume
22	and mass are related by the density, which is still a
23	very large number.
24	MR. KROTIUK: Okay.
25	CHAIRMAN BANERJEE: So that becomes a huge
ļ	I

(202) 234-4433

298 1 number, it's also exponential. I just don't see that 2 it --3 MR. WALLIS: It's a very strange --4 MR. KROTIUK: And the thing is, I agree 5 with you, but it's --CHAIRMAN BANERJEE: That ratio is in the 6 7 exponential? 8 MR. KROTIUK: Right. 9 CHAIRMAN BANERJEE: Wow. 10 MR. WALLIS: No, it's the total mass, 11 isn't it? The total mass in the bed is M cal sil over M NUKON, total mass in the bed, in the whole thing. 12 MR. KROTIUK: The total mass in the bed of 13 14 M cal sil --15 CHAIRMAN BANERJEE: Oh, not in that layer. 16 MR. KROTIUK: Not in the layer. I'm 17 sorry. WALLIS: But this must be just 18 MR. 19 geometry, if your total mass in there, and you put it 20 on the surface, you know how much is there, too. 21 MR. KROTIUK: And I'm agreeing with you, 22 but at the time I was doing this, I was really 23 thinking of how to handle this, and that just didn't 24 dawn on me. 25 CHAIRMAN BANERJEE: Well, I think you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	299
1	should take another look at this equation.
2	MR. KROTIUK: I put on the bottom here
3	that I this was my indication that I'm not
4	completely satisfied with this equation, but it's what
5	I could come up with.
6	CHAIRMAN BANERJEE: Well, the simplest
7	model is to have two separated layers. Right?
8	MR. KROTIUK: And I have two separate
9	layers.
10	MR. WALLIS: One is all NUKON, and one is
11	all cal sil. Just put the cal sil bed on top of the
12	NUKON bed.
13	CHAIRMAN BANERJEE: What difference does
14	it make?
15	MR. KROTIUK: That's an interesting
16	approach.
17	MR. WALLIS: Isn't that what you did?
18	CHAIRMAN BANERJEE: No, he didn't.
19	MR. KROTIUK: No, I didn't, I mixed it.
20	MR. WALLIS: One possible case is
21	presumably a cal sil bed on top of a NUKON bed. Then
22	you just have them in series, and then simple
23	MR. KROTIUK: Then you have to
24	CHAIRMAN BANERJEE: The series works?
25	MR. KROTIUK: Yes, but then you still have
11	

(202) 234-4433

	300
1	to have a way of calculating the thickness of the cal
2	sil portion.
3	CHAIRMAN BANERJEE: It's all cal sil.
4	MR. KROTIUK: Yes.
5	MR. WALLIS: It's all cal sil, it's all up
6	there.
7	MR. KROTIUK: Yes, but what thickness are
8	you going to assign to it?
9	MR. WALLIS: Isn't that effect obtainable
10	with all cal sil, or do you have to have the cal sil
11	within the NUKON matrix to get a thin bed effect? I
12	don't know. It's never been clear to me what a thin
13	bed effect is.
14	MR. KROTIUK: It was never clear to me.
15	I just
16	CHAIRMAN BANERJEE: But first - I mean,
17	you are just trying to bound it. Right?
18	MR. KROTIUK: I'm trying to bound it.
19	CHAIRMAN BANERJEE: The lower bound is
20	like, it seems to me that if you completely separated
21	the bed and put all your cal sil in the impervious
22	layer, that's really the worst condition.
23	MR. KROTIUK: Yes. The problem that I
24	see, the practical problem, as I said, is to calculate
25	the thickness of that cal sil layer.
I	I

(202) 234-4433

301 1 MR. WALLIS: But you know how much cal sil 2 there is. 3 CHAIRMAN BANERJEE: You know that. 4 MR. KROTIUK: You know how much cal sil 5 that is, but you don't know the --The density of it? 6 MR. WALLIS: 7 MR. KROTIUK: You know the density of the 8 9 MR. WALLIS: You don't know it's Epsilon? 10 MR. KROTIUK: No, you don't know its Epsilon. Right. 11 12 CHAIRMAN BANERJEE: But it seems easier to estimate than this very --13 14 MR. WALLIS: Take some cal sil and measure 15 it. I think it's --16 CHAIRMAN BANERJEE: Yes, spray it on 17 something and see --MR. WALLIS: I think it's fairly high. I 18 19 mean, it's 40 percent solid, or something. 20 CHAIRMAN BANERJEE: It's going to be --21 MR. WALLIS: It's fairly dense stuff. 22 CHAIRMAN BANERJEE: I think that's what 23 Said was getting at when he said how thick was that 24 bed that you found? 25 MR. ABDEL-KHALIK: Yes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	302
1	MR. KROTIUK: Well, in all honesty, just
2	I didn't do that calculation, so I
3	CHAIRMAN BANERJEE: A few holes in it.
4	MR. KROTIUK: don't know what you would
5	come up with, but I'm wondering that if you did do
6	that calculation whether you would be coming up with
7	such a high pressure drop, that maybe it's not
8	practical.
9	MR. WALLIS: Well, I think it's not quite
10	as simple as that. I mean, you have this bed that's
11	being built up. What happens is you get maybe the
12	coarse particles first, and then you get finer
13	particles, and then the finer particles fill the holes
14	in that, and the finer finer particles fill the holes,
15	until eventually you apply everything. This is very
16	different from just shaking it up and measuring the
17	void fraction. There's a dynamic flow effect, which
18	is driving particles into the holes until they block
19	them, making a kind of check valve. There's a
20	plugging effect because of the flow, which wouldn't
21	occur if you just measure the void fraction.
22	CHAIRMAN BANERJEE: Well, but that's
23	unfortunately, you couldn't get a pure cal sil bed,
24	so you got holes in it. But if you could have got a
25	pure cal sil bed, you have a measure of it.
ļ	I contraction of the second

(202) 234-4433

	303
1	MR. WALLIS: That depends on how it's
2	formed.
3	CHAIRMAN BANERJEE: It matters, of course.
4	Though, if yes, if the fine particles pass through
5	it, eventually you
6	MR. WALLIS: Well, think of it. I mean,
7	you have some a bed of rocks, and gravel, and clay,
8	and so on. Eventually, the clay fills in the holes.
9	MR. KROTIUK: I think the bottom line of
10	all this discussion is that this is something that I
11	recognize needs further thought, but this is the best
12	I could come with.
13	MR. WALLIS: I think we're very suspicious
14	of this.
15	MR. KROTIUK: Yes.
16	CHAIRMAN BANERJEE: It should at least go
17	to the right limits.
18	MR. GEIGER: I hear you, and
19	MR. WALLIS: Especially that last digit,
20	too. I mean
21	(Laughter.)
22	MR. KROTIUK: It's a curve fit. I don't
23	have any more to say about it, but that.
24	MR. KRESS: It seems to me like you ought
25	to get two linear curves out of that. As you're
I	

```
(202) 234-4433
```

	304
1	filling in the fibers, you get one linear curve, and
2	then you completely fill in the fibers with the cal
3	sil, and you're just now putting it on the top, and
4	you ought to get another layer curve, so this looks
5	like to me the curve fit you had ought really be two
6	straight lines.
7	MR. ABDEL-KHALIK: But he's hanging his
8	entire hat on just one data point.
9	MR. KRESS: Yes, well that data point is -
10	one of these endpoints, maybe one of these endpoints
11	he's talking about, where you need to approach a lot
12	of endpoints.
13	MR. KROTIUK: I have no comment on that,
14	except that that's data that I had.
15	CHAIRMAN BANERJEE: Well, let's move on
16	and see where it gets to.
17	MR. KROTIUK: Okay. Now just some
18	comparisons between test data, and calculations.
19	These are the NUKON only tests, so I'll concentrate in
20	this area. And, basically, I'm going to show two
21	comparisons, this one, and this one in blue and
22	italics. And this curve, what I tried to do is to
23	come up with some sort of numerical quantifiable
24	number to say how good the correlation was with regard
25	to the test data. So I defined this parameter, delta
Į	1

(202) 234-4433

	305
1	P prediction of minus delta P test data over delta P
2	test data. And I averaged it for all of the points,
3	and then I listed here a maximum and a minimum, so
4	this is indicative of how good the correlation was.
5	MR. WALLIS: There are no fudge factors in
6	here?
7	MR. KROTIUK: None whatsoever.
8	MR. WALLIS: Does the compression make a
9	difference? You have to have an N or something. Does
10	the compressibility make a difference?
11	MR. KROTIUK: That was in the 236. I
12	didn't present that, but I used the test data, which
13	I had test data that was basically measured thickness
14	versus pressure, and I used that to come up with
15	MR. WALLIS: Used the measured thickness.
16	MR. KROTIUK: The measured thickness.
17	MR. WALLIS: Doesn't that make a
18	difference, is the pressure drop considerably higher
19	if you consider the compression or not? Does it make
20	much does it have much effect?
21	MR. KROTIUK: But if I use the
22	MR. WALLIS: If you just ignore
23	compression, does it matter?
24	MR. KROTIUK: For the 236, for the value
25	of N?
ļ	

(202) 234-4433

	306
1	MR. WALLIS: No, if you simply you have
2	a theory which says the bed compresses as the pressure
3	drop goes up, and this increases the pressure drop.
4	MR. KROTIUK: Right.
5	MR. WALLIS: You ignore that effect
6	completely and say the bed doesn't compress at all,
7	are you way off? Do you really have to consider that?
8	MR. KROTIUK: Yes, you do have to consider
9	it.
10	MR. WALLIS: And that's a significant
11	so you have to get that right.
12	MR. KROTIUK: I wills how a comparison on
13	that.
14	MR. WALLIS: Okay.
15	MR. KROTIUK: I'm going to show a
16	comparison. I actually have a comparison of that.
17	Okay. So, as I said, this is not
18	MR. WALLIS: Because that introduces a
19	non-linearity into the thing.
20	MR. KROTIUK: Right.
21	MR. WALLIS: As the pressure drop goes up,
22	the voids change, and so
23	MR. KROTIUK: So, as I said, this is not
24	a ideal comparison, but it is a comparison to give you
25	an idea of how good it was. So let's look at the
	1

(202) 234-4433

	307
1	first comparison, which is this one here. And this
2	was the NUKON bed, and it had .58 kilograms per meter
3	squared of NUKON, is that around 20 degrees C. This
4	is the test data, this is the one volume calculation.
5	And these are the value that I used, the 300,000 foot
6	to the minus one. Just for comparison, if I used the
7	NUREG/CR-6224 correlation, it came - this was the
8	result of the calculation.
9	MR. WALLIS: And if you use the NUREG S
10	value in your correlation
11	MR. KROTIUK: Say again?
12	MR. WALLIS: You're using the NUREG
13	correlation here.
14	MR. KROTIUK: The NUREG correlation.
15	MR. WALLIS: And you're using your
16	correlation with your S value.
17	MR. KROTIUK: Right. This is the my
18	correlation, the one-volume model with 300,000.
19	MR. WALLIS: It looks to me if you use
20	171,000 in your correlation, you might come out about
21	right.
22	CHAIRMAN BANERJEE: Or you may come down
23	to the NUREG.
24	MR. KROTIUK: They come down, but
25	remember, I if you remember here, I have a fair

(202) 234-4433

	308
1	number of NUKON test data points, and I could use that
2	using the thickness as a function of velocity, and
3	delta P and all that, you could actually calculate of
4	S to be as specific surface area. And when I looked
5	at that, I was trying to do two things, get a number
6	that was matched to data fairly one, but also try to
7	give me a number that was at the upper limit to give
8	a conservative calculation. So you're right, in this
9	particular case, if I had like maybe that 171, I would
10	maybe match the data, but I'm saying, I'm using 300K
11	because that's what I want to use that will give me a
12	conservative value for all the data that has been
13	collected.
14	MR. ABDEL-KHALIK: Now which test series
15	does this point follow?
16	MR. KROTIUK: This is from test series 2.
17	MR. ABDEL-KHALIK: So it is not in this
18	table, in the table on the previous - or is it
19	somewhere in this table on page 42?
20	MR. KROTIUK: It should be there. Let's
21	see, 63313, it's right here.
22	MR. ABDEL-KHALIK: Which one?
23	MR. KROTIUK: This one right here.
24	MR. ABDEL-KHALIK: This one.
25	MR. KROTIUK: It's just that it's in
ļ	I

(202) 234-4433

	309
1	italics.
2	MR. ABDEL-KHALIK: Okay. Now if you look
3	at this table, this entire series, this definition of
4	the ratio, the maximum value of the deviation,
5	fractional deviation was 1.88, and the minimum value
6	of the deviation was .664.
7	MR. KROTIUK: Right.
8	MR. ABDEL-KHALIK: Which means I guess the
9	predicted value should be off from the measurement at
10	least by 66 percent.
11	MR. KROTIUK: Yes, I
12	MR. ABDEL-KHALIK: According to this
13	definition.
14	MR. KROTIUK: At a given data point, yes.
15	MR. ABDEL-KHALIK: Right. But that's not
16	what the graph shows. This is not a 66 percent
17	difference between data and prediction.
18	MR. WALLIS: It's fairly big though, isn't
19	it? When you say 66 percent
20	CHAIRMAN BANERJEE: It's a log scale.
21	MR. ABDEL-KHALIK: No, it is not a log
22	scale.
23	MR. KROTIUK: That's not a log scale.
24	CHAIRMAN BANERJEE: Oh, it's not?
25	MR. WALLIS: When you say 66 percent, how
	I

(202) 234-4433

Í	310
1	do you define that?
2	MR. ABDEL-KHALIK: Delta P.
3	MR. KROTIUK: The definition is up on the
4	top here.
5	MR. WALLIS: Over delta P data, or delta
6	P over delta P theory?
7	MR. KROTIUK: It's delta P prediction
8	minus delta P data over delta
9	MR. ABDEL-KHALIK: Error divided by the
10	measurement.
11	MR. KROTIUK: Error divided
12	CHAIRMAN BANERJEE: That's closer to 100
13	percent.
14	MR. WALLIS: It's close to 100 percent.
15	MR. ABDEL-KHALIK: Right. So, I mean, I
16	would have expected the prediction to be off from the
17	data by nearly a factor of 2, based on the values that
18	you've given in this table. But that's not the case
19	here.
20	MR. KROTIUK: Well, you have over here
21	it is. You have about a 2 from the data, and this is
22	
23	MR. ABDEL-KHALIK: Oh, I'm sorry. I
24	misread this table. I misread this chart. Thank you.
25	Thank you. Sorry.

```
(202) 234-4433
```

	311
1	MR. KROTIUK: Now let me go to the next
2	one, because this is the prediction and the data for
3	the bed thickness. Again, the data is in black, the
4	predicted bed thickness that I predicted is in this
5	red color.
6	MR. WALLIS: The data are the diamonds?
7	MR. KROTIUK: The data are the diamonds,
8	right. And I just tried to differentiate between the
9	first compression, and then the subsequent
10	compressions. So the key thing that I'm trying to
11	show here is that there is a variation in the bed
12	thickness as a function of velocity.
13	MR. WALLIS: What you should really do is
14	plot the bed thickness versus this pressure drop,
15	because that's part of the load on it, which is what
16	the theory says it is.
17	MR. KROTIUK: You know, velocity is
18	related to pressure drop, you know.
19	MR. WALLIS: Yes, but the equation you use
20	is the delta P to the N or something, and if you
21	actually plotted that, you could show the equation
22	itself has the right form.
23	MR. KROTIUK: Yes, okay. Let's see, did
24	I do that?
25	MR. WALLIS: Very sparse data, you really
	I

(202) 234-4433

	312
1	need
2	MR. KROTIUK: Well, this is only one test.
3	I mean, we had data for every single one of those
4	tests. Let's go to the next one.
5	MR. WALLIS: What do we conclude from
6	this?
7	MR. KROTIUK: Well, let me go to the next
8	before making a conclusion. This is the other NUKON
9	test, NUKON only test, and in this case, the test data
10	is in black. This is the one-volume model prediction.
11	And it's very close to the test data. And this is the
12	reason why I said I recommended using the 300,000
13	value, because this was one of the cases that told me
14	to use it, because the other one really, as you said,
15	should have a lower value, but I wanted to bound all
16	the data. Okay? And this is now the comparison of
17	the one-volume model thicknesses versus velocity, and
18	the data.
19	CHAIRMAN BANERJEE: Now here the thickness
20	is predicted to be more than the data.
21	MR. KROTIUK: Well, initially it's close,
22	but then there's differences here. Considering
23	everything, I think it's pretty close.
24	CHAIRMAN BANERJEE: It's not a bound that
25	you're doing.
ļ	

(202) 234-4433

313 1 MR. KROTIUK: For the thickness, no. I'm 2 trying to bound the pressure drop. 3 CHAIRMAN BANERJEE: So the two are 4 related. Right? 5 MR. KROTIUK: There is a relationship between the two, yes. 6 7 CHAIRMAN BANERJEE: Let's see where you 8 go. 9 MR. KROTIUK: Okay. Next, wanted to --10 CHAIRMAN BANERJEE: What happened to the pressure in this case? 11 12 MR. KROTIUK: That's the pressure here. CHAIRMAN BANERJEE: Oh, it's that one. 13 14 All right. 15 MR. KROTIUK: Okay. Now I'm just going to 16 show three cases, one, two, three, four NUKON cal sil 17 beds. Again, this is similar type of plot, as indicated previously, where I'm trying to give some 18 19 numerical indication --20 MR. WALLIS: Your maximum errors, you've 21 got the error is five times the data, or six times. 22 MR. KROTIUK: Yes. 23 MR. WALLIS: Or .03 of the data, or 24 something. 25 MR. KROTIUK: Yes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	314
1	MR. ABDEL-KHALIK: And I guess, you know,
2	you feel comfortable about it, because none of these
3	numbers is negative.
4	MR. KROTIUK: It's a
5	MR. ABDEL-KHALIK: Not on the maximum end
6	of it.
7	MR. KROTIUK: Oh, on the maximum end.
8	MR. WALLIS: Very small on negative.
9	There are some negative
10	CHAIRMAN BANERJEE: Well, they're
11	averages.
12	MR. KROTIUK: Yes.
13	CHAIRMAN BANERJEE: Well, there is one
14	maximum with a slight negative.
15	MR. KROTIUK: I'm going to show a plot
16	here for a negative case, this one I'm showing, so
17	you'll see that. Okay? And I have one for 1.5, a
18	minus .4, and a .2.
19	CHAIRMAN BANERJEE: What about that minus
20	.466?
21	MR. ABDEL-KHALIK: The next column.
22	CHAIRMAN BANERJEE: Yes.
23	MR. KROTIUK: I didn't plot that case.
24	It's in the report, the plots of all these cases are
25	in the NUREG. I just chose three cases to show here.

```
(202) 234-4433
```

	315
1	CHAIRMAN BANERJEE: Okay.
2	MR. ABDEL-KHALIK: Now the hand-out, two
3	columns above, two rows above that gives us minus
4	.695. Your slide doesn't show the negative sign, or
5	is it just a bad slide?
6	MR. WALLIS: It's a bad slide. Minus is
7	
8	MR. ABDEL-KHALIK: One, two, three, four
9	rows from the bottom.
10	MR. KROTIUK: Four rows from the bottom,
11	minus .695, that should be gosh, I don't know what
12	- it's a bad
13	MR. ABDEL-KHALIK: Okay.
14	MR. KROTIUK: What's on the hard copy is
15	correct.
16	MR. ABDEL-KHALIK: Okay.
17	MR. KROTIUK: Because I'm looking here and
18	I could see a minus .695. I haven't been looking
19	there.
20	MR. ABDEL-KHALIK: Okay.
21	MR. KROTIUK: I don't know what
22	MR. WALLIS: I learned from this that you
23	have a hard time coming close to the data.
24	MR. KROTIUK: That's right. Now let's
25	look at the first case of comparison, that I'm
	I

```
(202) 234-4433
```

	316
1	comparing. And in this case, the data is down here.
2	This is for a NUKON cal sil concentration of .6 for
3	the cal sil, .13 kilograms per meter squared for the
4	I'm sorry, .6 for the NUKON, and .13 kilogram meter
5	squared for the cal sil. Again, it's around 20
б	degrees C, and in this case, I am over-predicting the
7	test data, so my definition of
8	MR. WALLIS: How did you do on the point
9	where they had 1,000 times the homogeneous value, the
10	extreme case in the small test loop, when they put in
11	the cal sil, and then they put in the NUKON.
12	MR. KROTIUK: Oh, I couldn't
13	MR. WALLIS: They got stuff which was way
14	up there.
15	MR. KROTIUK: I could not do that
16	calculation.
17	MR. WALLIS: Miles up there.
18	MR. KROTIUK: Unfortunately, that
19	calculation could not be done, because I did not have
20	the masses of the NUKON and the cal sil in the bed.
21	MR. WALLIS: You didn't report them?
22	MR. KROTIUK: That was not measured.
23	MR. WALLIS: They measured what they put
24	in, but not
25	MR. KROTIUK: They measured what they put
I	1

(202) 234-4433

	317
1	in, but not what was in the bed.
2	MR. WALLIS: Okay. So you could bound it
3	by assuming it's all in the bed.
4	MR. KROTIUK: I did not do that.
5	MR. WALLIS: I don't think you could
6	predict that very, very high value. It doesn't look
7	like it, because your two-volume model is never way up
8	there.
9	MR. KROTIUK: I did not do that
10	calculation.
11	CHAIRMAN BANERJEE: Strange, NUREG/CR-
12	6224, all this seems to be coming in lower in
13	prediction, and why is that?
14	MR. KROTIUK: One of the concerns that I
15	have is that when the NUREG 6224 was developed, it
16	always used in its calculations the mass of the debris
17	added to the loop. It never measured what was on the
18	debris bed.
19	MR. WALLIS: But then you'd expect that it
20	would be higher.
21	MR. KROTIUK: So that if you use the mass
22	data to the loop, it would raise the NUREG 6224
23	number.
24	MR. ABDEL-KHALIK: No, it would raise your
25	data by
	1

(202) 234-4433

	318
1	MR. KROTIUK: It would raise my but my
2	model is developed on the mass of the bed, not what
3	was added to the loop. And for these curves, all
4	these curves, I'm using the mass in the debris bed.
5	MR. ABDEL-KHALIK: Oh, I see.
6	CHAIRMAN BANERJEE: Including the
7	NUREG/CR.
8	MR. KROTIUK: Including the NUREG/CR.
9	CHAIRMAN BANERJEE: Okay. That probably
10	explains it.
11	MR. KROTIUK: Yes. So that was developed
12	for mass added to the test loop for NUREG/CR.
13	CHAIRMAN BANERJEE: While we had our
14	objections to NUREG/CR, we didn't think it would be
15	that non-conservative. All right.
16	MR. KROTIUK: Okay? And the other thing
17	I just want to point out here, is if I use that
18	homogeneous one-volume model, it is at the lower limit
19	of the test data.
20	CHAIRMAN BANERJEE: What's the difference
21	between the homogeneous one-volume - I guess that's
22	the difference.
23	MR. KROTIUK: That's the difference.
24	CHAIRMAN BANERJEE: Yes. But if you now
25	use the total mass of the NUREG/CR, would it come up
ļ	I

(202) 234-4433

	319
1	to the homogeneous one-volume calculation?
2	MR. KROTIUK: Yes. I actually did that
3	calculation, and it comes up - some of the I did it
4	for a number of them, and I don't remember for this
5	one particularly, but it came up slightly below, or
6	slightly above, but in the range of the one-volume
7	calculation.
8	CHAIRMAN BANERJEE: In the cases that you
9	don't have the mass on the
10	MR. KROTIUK: Debris bed?
11	CHAIRMAN BANERJEE: debris bed, how
12	will you use your model?
13	MR. KROTIUK: You have to my mind, the
14	way you have to do that is that you have to develop a
15	way of estimating how much is in the debris bed.
16	CHAIRMAN BANERJEE: How will you do that?
17	MR. KROTIUK: Well, if I add if I have
18	a sump and I'm adding 1,000, whatever, hundreds of
19	pounds of debris in there, you can't is it
20	practical to assume that everything is on the screen?
21	CHAIRMAN BANERJEE: No, no, but in this
22	case you've got a horizontal screen.
23	MR. KROTIUK: Right.
24	CHAIRMAN BANERJEE: So everything which
25	doesn't pass through the screen and get taken away
ļ	1

(202) 234-4433

	320
1	somewhere else, ends up on that screen.
2	MR. KROTIUK: Yes.
3	CHAIRMAN BANERJEE: So even then you see
4	quite a bit of mass missing. Right?
5	MR. KROTIUK: If I was trying to predict
б	something from the test loop setup, I would assume
7	that some high number, like 95 percent of the NUKON
8	reaches the screen, and some lower number, which I'd
9	have to look at the test data, some percentage of cal
10	sil would reach the screen, and be deposited there.
11	I mean, I would look at the test data and try to come
12	up with some way of predicting that.
13	MR. WALLIS: Doesn't the cal sil go on
14	being deposited forever? It keeps going around the
15	loop, and every time you get some more of it
16	deposited?
17	MR. KROTIUK: That's why in the test loop
18	we put in the bypass filtration system. It tried to
19	eliminate that.
20	MR. WALLIS: So in reality, you might as
21	well assume it's all there. Eventually, it's going to
22	get there.
23	MR. KROTIUK: Well, some of it
24	CHAIRMAN BANERJEE: All of it that is
25	entrained.
	I

(202) 234-4433

	321
1	MR. KROTIUK: Yes. Some of it, don't
2	forget, will pass through, also.
3	CHAIRMAN BANERJEE: Well, ultimately, it
4	won't. Right?
5	MR. WALLIS: I can't imagine it passing
6	through forever. Eventually it's going to take a path
7	where it gets stopped. It's going to go into a part
8	of the bed where it can't get through.
9	MR. KROTIUK: I don't know if I agree with
10	that totally, because I think that particles may start
11	moving through the bed, and eventually come out the
12	other end.
13	CHAIRMAN BANERJEE: But you didn't do an
14	experiment where you didn't remove the particles.
15	MR. TRAGONING: This is Rob Tragoning,
16	Office of Research. Yes, we some of the earliest
17	LANL tests, which there was which you all have
18	seen, and there were issues associated with those
19	tests, but some of the earliest thin bed effect tests
20	were run exactly that way, where they continued to
21	circulate the loop. And they showed exactly the
22	phenomena that you might expect, that initially, the
23	head loss build-up would be relatively small, but then
24	you could reach a state where your filtration
25	efficiency had increased due to the accumulation of
	I

(202) 234-4433

1 larger size particles within the fibrous bed, such 2 that it could trap some of the smaller ones. And then 3 you could get situations where the head loss would 4 elevate quite dramatically, and relatively quickly. 5 But, again, we recognized at the time that that was an artifact of the fact that we were recirculating within 6 7 that loop multiple times. That's one of the reasons 8 within these tests that we wanted to run some tests 9 where we only had a single bypass of the fluid. There 10 were other tests that were done at PNNL where they did do multiple recirculation, but it wasn't the lion's 11 And one of the things we wanted to realize is 12 share. we weren't trying to simulate resonance times within 13 these loops compared to what they would be like in an 14 15 actual plant environment, because resonance times 16 would be totally different. 17 CHAIRMAN BANERJEE: We're trying to understand how to use your correlation relationships, 18 19 so should it be that given enough time, you have to 20 assume that all the cal sil which hasn't dropped out, the live particles are going to be trapped on the 21 22 filters? 23 MR. KROTIUK: I don't think I could answer 24 that question right now. I have to think on that. 25 CHAIRMAN BANERJEE: Well, I mean, you have

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

322

	323
1	long-term recirculation tests both at Los Alamos, and
2	at PNNL. Right?
3	MR. KROTIUK: We have fairly long
4	recirculation.
5	CHAIRMAN BANERJEE: Yes, without you
6	have some data without taking out the
7	MR. KROTIUK: Without the bypass, yes.
8	CHAIRMAN BANERJEE: Okay. Now in that
9	situation, of course, because it's at least in the
10	PNNL, it's a vertical system, you would take out, I
11	mean, all the fluids passing through that. Right?
12	And there is no place to well, I suppose there are
13	places to deposit particles
14	MR. KROTIUK: One of the things - Tom,
15	correct me if I'm wrong about this - I seem to
16	remember when we were running the NUKON cal sil tests,
17	when the cal sil was when we didn't use the
18	filtration, so it was basically the Series-1 tests,
19	that cal sil always seemed to pass through, and was
20	recirculating during the entire test. Do you remember
21	that?
22	CHAIRMAN BANERJEE: Forever?
23	MR. MICHENER: I can't recall exactly, but
24	I remember that it was very dramatic when it would
25	come through.
I	1

(202) 234-4433

	324
1	MR. KROTIUK: Because I remember that blob
2	of cal sil.
3	MR. MICHENER: You'd see a cloud come
4	through.
5	MR. KROTIUK: You could physically see the
6	cloud.
7	MR. MICHENER: And then it would be clear
8	again, and then a little while here would come that
9	cloud again.
10	MR. KROTIUK: Yes, and it would
11	continually do it during the entire length of the
12	test.
13	CHAIRMAN BANERJEE: So it passed through
14	the bed and come out?
15	MR. KROTIUK: That's what I was saying, I
16	really think that a certain amount does pass through
17	the bed. Because I do remember seeing the burps of
18	MR. MICHENER: We were convinced that you
19	had to filter, and that pretty much answers the
20	question there.
21	CHAIRMAN BANERJEE: So if you had to use
22	your model, what would you do about the mass that you
23	would assume to be on the filter?
24	MR. KROTIUK: Well, as I said, in the
25	NUKON, I would assume somewhere
ļ	

(202) 234-4433

	325
1	CHAIRMAN BANERJEE: Almost all of it.
2	MR. KROTIUK: All of it, right.
3	CHAIRMAN BANERJEE: It doesn't drop off.
4	MR. KROTIUK: And cal sil, I looked at the
5	test data and see how much deposit would come up with
6	a number - some way to assume
7	CHAIRMAN BANERJEE: Which test data? Is
8	the data
9	MR. KROTIUK: All the test data.
10	CHAIRMAN BANERJEE: Do you have a
11	recommendation on that?
12	MR. KROTIUK: I have not thought about
13	that, so I don't know for the cal sil. And for the
14	NUKON it's kind of obvious, for the cal sil, it's
15	CHAIRMAN BANERJEE: Well, let's assume for
16	the NUKON it's 100 percent.
17	MR. KROTIUK: Yes.
18	CHAIRMAN BANERJEE: Whatever is entrained
19	goes there, but what happens with the cal sil is more
20	tricky. Right?
21	MR. KROTIUK: Yes.
22	CHAIRMAN BANERJEE: Because these
23	experiments that were done were taking out the fine
24	particles, and the question then becomes, is there a
25	big difference between when you take out the fine
ļ	I

```
(202) 234-4433
```

	326
1	particles, and when you don't. You did some
2	experiments without taking them out.
3	MR. KROTIUK: Yes, we did.
4	MR. WALLIS: Presumably, the fine
5	particles have a different coefficient of everything
б	than the coarse ones. Different surface area, value
7	and everything.
8	CHAIRMAN BANERJEE: There's even the issue
9	as to whether your correlation numbers like 300,000
10	really work.
11	MR. KROTIUK: Right.
12	CHAIRMAN BANERJEE: Because if some fine
13	particles get trapped, as Graham said, they have a
14	higher surface area to volume ratio.
15	MR. KROTIUK: Well, I didn't think about
16	that, and I don't have an answer on that right now.
17	CHAIRMAN BANERJEE: Okay. Well, let's
18	continue with this.
19	MR. KROTIUK: This is for that test, the
20	NUKON cal sil test, this is the comparison of the data
21	which is in black, two-volume model prediction.
22	MR. WALLIS: Why doesn't NUREG always
23	predict higher starting volume? I mean, you ought to
24	know the velocity, the volume of the stuff when
25	there's no velocity. You ought to know that, and yet
	I

(202) 234-4433

	327
1	they seem to be always off by a factor of 2 or
2	something.
3	CHAIRMAN BANERJEE: I guess it's the
4	artifact of what you assume is on the
5	MR. KROTIUK: This is also you have to
6	look at the NUREG correlation and look at the
7	assumptions for densities, what they call theoretical
8	or mac density, you know, insulation
9	MR. WALLIS: You have taken the stuff and
10	formed a bed, so presumably you've compressed it a bit
11	more than if you just drop it in there.
12	MR. KROTIUK: I don't feel that I should
13	in any way comment on the way that the NUREG is doing
14	its calculation. This is applying it
15	THE WITNESS:
16	CHAIRMAN BANERJEE: But you're not
17	applying it in the same way that they applied it.
18	MR. KROTIUK: The only difference
19	CHAIRMAN BANERJEE: You take the total
20	mass.
21	MR. KROTIUK: That's the only difference.
22	CHAIRMAN BANERJEE: Well, that's a big
23	difference, though, isn't it?
24	MR. KROTIUK: Yes.
25	CHAIRMAN BANERJEE: I mean, if you took
	I

(202) 234-4433

	328
1	the fraction of the what would happen if you took
2	the total mass?
3	MR. WALLIS: The velocity
4	CHAIRMAN BANERJEE: Would it make it much
5	thicker, or what?
б	MR. WALLIS: The velocity you'd form the
7	bed.
8	CHAIRMAN BANERJEE: Yes.
9	MR. KROTIUK: Make it thicker.
10	MR. WALLIS: At what velocity do you form
11	the bed?
12	MR. KROTIUK: This is formed at .1 feet
13	per second.
14	MR. WALLIS: So you should have about the
15	same thickness as they do, as you do. You've already,
16	when you formed it, compressed down that green curve
17	to whatever the point is there. You're not going to
18	uncompress that to .6, you're going to go along at .3.
19	So how you form the bed makes a difference. What you
20	do here, if you form the bed at .01 or something, you
21	might well be up on the NUREG curve. Once you've got
22	this point
23	MR. KROTIUK: There's other limitations.
24	I don't really feel I should comment on the NUREG.
25	CHAIRMAN BANERJEE: All right. So you're
I	

(202) 234-4433

	329
1	at .1, that's where your fixed point is. Right?
2	MR. KROTIUK: Right. That's my initial
3	thickness.
4	CHAIRMAN BANERJEE: Right.
5	MR. ABDEL-KHALIK: Does the fact that
б	your, in this particular case, the data and
7	predictions for the height are close, is that totally
8	fortuitous, or is that related to this sort of
9	exponential fit of height that you did earlier?
10	MR. KROTIUK: In actuality, I studied that
11	somewhat closely, and it's not related to that
12	exponential delta M height. It's more related to the
13	whole compressibility and expansion relations. And
14	the initial calculation of bed thickness.
15	MR. ABDEL-KHALIK: Because the model seems
16	to do better, I guess, for the two-volume in terms of
17	height for the two-volume model than the single layer
18	model.
19	MR. KROTIUK: I think you have to
20	MR. ABDEL-KHALIK: And I was wondering
21	MR. KROTIUK: I think you have to look at
22	all the
23	MR. ABDEL-KHALIK: if that's just
24	artificial.
25	MR. KROTIUK: I think you have to look at
	I

(202) 234-4433

	330
1	all the plots, and it just happened - you can't make
2	that generalization without looking at all of them.
3	And, generally, I found that the match-up between the
4	test data and the predictions for the model for both
5	the NUKON and the NUKON cal sil tests
6	MR. WALLIS: Well, can we look at some
7	more figures, and keep going here?
8	MR. KROTIUK: This is another case.
9	MR. WALLIS: Where the data are close to
10	the two-volume model.
11	MR. KROTIUK: And so this is, to my mind,
12	saying that this is now a practical upper limit.
13	MR. WALLIS: And that's what should be
14	used to be conservative?
15	MR. KROTIUK: Yes.
16	MR. WALLIS: And it's about 10 times what
17	NUREG/CR-6224 would predict, something like that?
18	MR. KROTIUK: Using the mass on the bed.
19	CHAIRMAN BANERJEE: I mean, how much mass
20	was what fraction of the cal sil was on the bed?
21	MR. KROTIUK: It's on top here. It's .243
22	NUKON, and .018 cal sil.
23	MR. WALLIS: There's not much cal sil.
24	CHAIRMAN BANERJEE: How much cal sil is
25	it? What fraction is it?
I	I

```
(202) 234-4433
```

	331
1	MR. KROTIUK: I have fraction - I'm trying
2	to do it in my head.
3	CHAIRMAN BANERJEE: Only 7 or 8 percent is
4	in the bed. If you then use the NUREG the way it was,
5	I mean, if you take all the cal sil and you bump it up
б	somewhere to the same region, right?
7	MR. KROTIUK: Quite possibly. I don't
8	remember this calculation, specifically.
9	MR. WALLIS: It seems strange that they've
10	got a tiny bit of cal sil, but if you put it in the
11	two-volume model, it has a very large effect on the
12	pressure drop.
13	MR. KROTIUK: Right, because
14	MR. WALLIS: That's where your exponential
15	thing comes in, isn't it?
16	MR. KROTIUK: Actuality, this is down
17	pretty low on the curve towards the zero.
18	CHAIRMAN BANERJEE: Well, I guess that
19	reflects the physics. I mean, even if you
20	MR. KROTIUK: You have a thin layer of cal
21	sil.
22	CHAIRMAN BANERJEE: Yes.
23	MR. KROTIUK: And then this is the
24	comparison of the bed thicknesses for that same test.
25	And then, finally, I wanted to show one that I didn't
ļ	

(202) 234-4433

	332
1	get good match-up.
2	CHAIRMAN BANERJEE: That's the negative
3	one.
4	MR. KROTIUK: And the model was not
5	conservative, even. And there are, as you saw from
6	that table, there are a few of them. And in this
7	case, I'm under-predicting the test data.
8	CHAIRMAN BANERJEE: What fraction of the
9	cal sil here is on the - again, how much cal sil? It
10	could be that your measurement of the cal sil has
11	dropped.
12	MR. WALLIS: Yes, there's a tiny, tiny bit
13	of cal sil. We're down to .005.
14	CHAIRMAN BANERJEE: It could be that
15	that's not a very accurate measurement. Right?
16	MR. KROTIUK: We measured the values as
17	accurately as we could.
18	CHAIRMAN BANERJEE: Well, one thing could
19	be to look at the two-volume model in the context of
20	all the data, and see what fraction of the cal sil
21	must be there to be always conservative.
22	MR. KROTIUK: What I found out when I
23	looked at all the data is that the errors, the
24	greatest error existed for the thinnest of that delta
25	M max, the saturated thickness. And there seems to be
I	

(202) 234-4433

Í	333
1	a very strong dependency, so if you were down on that
2	curve, if you were closer to zero, a small error in
3	that saturated thickness could produce - a small
4	difference in the saturated thickness could produce a
5	big difference in the pressure drop; whereas, if
б	you're out at the other end, small error in the
7	calculated thickness would not affect things as
8	greatly.
9	CHAIRMAN BANERJEE: And conversely, if you
10	just say a small error in the cal sil measurement,
11	because these are all measured values by difference.
12	Right?
13	MR. KROTIUK: Right.
14	CHAIRMAN BANERJEE: How sensitive are the
15	results to that? You could be off by easily 100
16	percent on your cal sil measurement.
17	MR. KROTIUK: You know, that's a good I
18	didn't look at that, because on the measurements for
19	the NUKON and the cal sil, when everything was
20	measured, we did have a plus or minus on it, and I
21	took the medium value to do all these calculations.
22	But in retrospect, I should have looked at some of the
23	extremes to see if that could explain
24	CHAIRMAN BANERJEE: Well, you're getting
25	the cal sil by difference, right?

(202) 234-4433

	334
1	MR. KROTIUK: Right. Yes. But, I mean,
2	PNNL did a whole statistical study to come up with the
3	probability, the accuracy of those measurements, so I
4	have - for all the numbers, I do have plus or minus
5	values.
6	CHAIRMAN BANERJEE: Typically, what is the
7	error on this, this very small number here?
8	MR. KROTIUK: You know, I don't
9	MR. MICHENER: It seems like this was one
10	of the areas that we thought we could improve on.
11	MR. KROTIUK: Yes.
12	CHAIRMAN BANERJEE: Because it goes
13	through your whole analysis. Right? I mean, in a
14	way, you go through the uncertainty analysis, it would
15	be interesting to see how it is affecting these
16	numbers.
17	MR. KROTIUK: I just didn't do the
18	calculations. It would have been interesting.
19	CHAIRMAN BANERJEE: Is this project
20	finished right now? What's the status?
21	MR. KROTIUK: When I finish this
22	presentation today, it's finished.
23	MR. WALLIS: So you aren't going to work
24	on it any more?
25	MR. KROTIUK: Right.
ļ	I

(202) 234-4433

	335
1	CHAIRMAN BANERJEE: Now how is this going
2	to be used?
3	MR. KROTIUK: I can't address that.
4	Someone from NRR would have to address it.
5	CHAIRMAN BANERJEE: NRR needs some more
6	analysis done, or some follow-up work in order to make
7	this stuff applicable.
8	MR. WALLIS: It doesn't apply to a real
9	thing. I mean, this is applied to a bed which is
10	uniform, and horizontal, and everything. It doesn't
11	apply to the typical screens that are actually used in
12	a sump. It may give them some clue about things to
13	look for, but they're going to use industrial data.
14	I would be very surprised if they use this
15	CHAIRMAN BANERJEE: At one point you have
16	NUREG/CR-6224 was what was planned to be used. Right?
17	MR. LEHNING: This is John Lehning in NRR.
18	And as you said, I guess in the safety evaluation that
19	we wrote on the NEI guidance report for doing those
20	sump designs, we requested that licensees do testing,
21	rather than use the 6224 data, in light of some of the
22	points that were raised about that correlation. And
23	we did, and I guess in that paper, I think Mike Scott
24	handed out to you all earlier, we did talk a little
25	bit about their intended regulatory usage of this
	I

(202) 234-4433

	336
1	correlation. And as Dr. Wallis suggested, that in
2	part due to some of the data limitations, that just -
3	the only data that we had, this new correlation for it
4	is NUKON and cal sil, and some of the other
5	differences with the geometries and things like that.
6	We were going to probably rely on testing, and showing
7	the typicality and prototypicality of those tests.
8	MR. WALLIS: It does support your not
9	using the 6224, because some of these data are quite
10	a long way from that, so it may support that decision
11	that you made.
12	MR. LEHNING: I guess, there are different
13	parameters that can be put into that 6224 correlation.
14	Some of the things with the density, as opposed to
15	when you have blended fiber, as opposed to as-
16	fabricated, and some of the other things out there.
17	But, again, I would agree with that, that some of the
18	things that you can clearly see that the 6224 would
19	under-predict that.
20	MR. WALLIS: Can we move on to the
21	temperature effects?
22	MR. KROTIUK: Yes.
23	MR. ABDEL-KHALIK: Just one more question.
24	Of the 150 or so experiments that you ran, what is the
25	fraction of those experiments in which the model
	I

(202) 234-4433

	337
1	under-predicts the data? I can't tell by max, min,
2	and average. I can't tell by that.
3	MR. KROTIUK: I knew that number off-hand,
4	and I've forgotten it. I forgot the answer to that,
5	but I do remember that it was maybe something, 30, 40
6	percent. Something - I don't - don't hold me to the
7	exact number, but it was a measurable amount. I just
8	don't remember.
9	MR. WALLIS: This is when you use the two
10	layers.
11	MR. KROTIUK: Two layers, right.
12	MR. ABDEL-KHALIK: Well, either way, I
13	guess.
14	MR. KROTIUK: No, for the NUKON, it was
15	for the NUKON only, the correlation is fine. That
16	was for the NUKON cal sil.
17	MR. WALLIS: The two layers, which is the
18	worst case you can think of, under-predicts the data,
19	then something else is happening.
20	CHAIRMAN BANERJEE: And it's not the worst
21	two layer model. The worst two layer model would be
22	all cal sil.
23	MR. WALLIS: He's got that weird
24	exponential thing. We don't know if that's worse or
25	better than all cal sil.
ļ	

(202) 234-4433

	338
1	CHAIRMAN BANERJEE: That's true.
2	MR. WALLIS: Can we look at the
3	temperature sensitivity, because that sort of shows
4	that you're not always
5	MR. KROTIUK: Now this is for the NUKON
6	only tests, and it's for the three - this is for the
7	plot facsimile that I had before, and this shows, for
8	instance, at 22-1/2 - about 20 degrees C, the
9	calculation is up here, the data is down here. At 55,
10	the calculation of data are about the same, and at
11	around 80 degrees, the calculation is above the data.
12	MR. WALLIS: Then the next figure is
13	MR. KROTIUK: Yes, so this is for the
14	NUKON only. The NUKON only basically always gave this
15	type of result.
16	MR. ABDEL-KHALIK: So temperature
17	manifests itself in this model through viscosity?
18	MR. KROTIUK: Yes.
19	MR. ABDEL-KHALIK: That's the only place
20	where it comes in.
21	MR. KROTIUK: That's the primary yes.
22	I mean, we postulated that there could be some other
23	effects, like possibly the NUKON becoming more
24	flexible, and
25	MR. ABDEL-KHALIK: No, I'm thinking about
I	

(202) 234-4433

	339
1	the model, the prediction
2	MR. KROTIUK: Yes, for the model
3	MR. ABDEL-KHALIK: It only comes in
4	through viscosity.
5	MR. KROTIUK: Okay. Now this is for a
6	NUKON cal sil case, showing the comparisons. This is
7	the data this is the one that I showed that -
8	previously on the previous one, where the calculation
9	was actually below test data. But then we went up to
10	55 degrees or so, the calculation and the test data
11	MR. WALLIS: It's weird that the
12	calculation is I mean, the trend with viscosity is
13	okay for the data, but not for the calculation.
14	MR. KROTIUK: This is NUKON cal sil, so
15	that's why I said before, that the trend for NUKON
16	only was directly related to the viscosity. For the
17	NUKON cal sil, there's other stuff there.
18	MR. WALLIS: Other stuff besides
19	viscosity?
20	MR. KROTIUK: Well, there's other
21	considerations.
22	MR. WALLIS: Such as?
23	MR. KROTIUK: Such as possibly
24	redistribution of material.
25	MR. WALLIS: But your calculation should
I	I

	340
1	have a consistent trend.
2	MR. KROTIUK: Yes, but if you remember,
3	this was one of the this could be one of the cases
4	where the model is under-predicting the data. I said
5	that there was
б	MR. WALLIS: AT least a trend should be
7	there, the calculation should show increasing pressure
8	drop with increasing viscosity, and it doesn't.
9	MR. KROTIUK: Yes.
10	MR. WALLIS: It's strange.
11	MR. KROTIUK: Yes.
12	MR. MICHENER: Tom Michener from PNNL.
13	This is the one that's the strangest here, the 20
14	degree one, that's one of the cases where the cal sil
15	was measured very, very low, so that may be
16	MR. WALLIS: Or it's something else. It's
17	not just the temperature.
18	MR. MICHENER: So I point that out, that
19	is that one.
20	MR. WALLIS: Not just the temperature
21	effect.
22	MR. KROTIUK: Then, finally, this is for
23	
24	MR. WALLIS: That's also very reassuring,
25	isn't it?
ļ	I

```
(202) 234-4433
```

	341
1	MR. KROTIUK: This was the case where we
2	had the measurement show that the the data showed
3	that the delta P measurement for the higher
4	temperature was actually higher for the lower than
5	temperature, which is whereas, the calculation is
6	showing that
7	MR. WALLIS: So can we look at the
8	conclusions, and then see where we are?
9	MR. KROTIUK: Okay. As I said, for the
10	one-volume homogeneous model, I did comparisons, and
11	they are in the NUREG for PNNL, ANL, and LANL tests.
12	They were all, the comparisons are all in there. And
13	generally for the NUKON only tests, the model does
14	predict conservative results for all the NUKON only
15	tests. For the NUKON cal sil test, it generally
16	predicts - not generally, it always predicted pressure
17	drops that were at or below the measurements.
18	MR. WALLIS: Always?
19	MR. KROTIUK: For the data, for the
20	comparisons of the
21	MR. ABDEL-KHALIK: This is the one-volume.
22	MR. WALLIS: One-volume.
23	MR. KROTIUK: One-volume, right. For the
24	two-volume model, the model gave good comparative or
25	conservatively higher results for all the tests where
	1

(202) 234-4433

	342
1	the cal sil saturation thickness was thicker relative
2	to the entire bed. When the calculated thickness, or
3	the saturation thickness was small, as I said, the
4	small inaccuracies in that calculated thickness could
5	result in large differences in calculation of pressure
6	drop, so there could have been - there could be little
7	differences between the measurements and the
8	predictions. And as I said before, that calculation
9	of that saturation or upper limit thickness is really
10	the thing that I feel could do with some improvement.
11	CHAIRMAN BANERJEE: Is it necessary to
12	I mean, couldn't you just bound it by separating the
13	two layers?
14	MR. KROTIUK: That's a thought, and I
15	didn't do that calculation, so I don't know. I may
16	try that just out of curiosity.
17	MR. WALLIS: You wouldn't need any
18	exponential stuff.
19	MR. KROTIUK: Right. I'm curious to see
20	what happens with that.
21	MR. WALLIS: It's a very simple thing to
22	do.
23	MR. KROTIUK: Yes.
24	MR. WALLIS: I mean you could say that
25	always bounds everything. It might be a candidate for
I	I

(202) 234-4433

	343
1	a conservative analysis.
2	MR. KROTIUK: Well, I'll take a look at
3	that.
4	MR. WALLIS: It seems to me that you have
5	allowed now a new degree of freedom, which says you
6	can have homogeneous layers. And since you put in a
7	new degree of freedom, you'd expect to be able to
8	predict data better because you've got a new degree of
9	freedom to fit things, and so on. Which is probably
10	something like reality, there probably are two layers,
11	or there's a gradient of cal sil or something, so you
12	put in some reasonable physics that catches some of
13	the major things going on. I think this has got a way
14	to go before it's a predictive tool.
15	CHAIRMAN BANERJEE: In any case, it would
16	have to be married to some sort of a CSD tool, to
17	estimate locally what the concentrations are, what has
18	dropped out and what hasn't. Otherwise, how would
19	MR. KROTIUK: I don't know if you really
20	want to do that. I mean, my approach to this was
21	trying to develop something that would be upper and
22	lower limits. Do you really need to know
23	MR. WALLIS: But you don't do that. You
24	want to predict that the whole screen is covered with
25	a thin layer of cal sil. That's terrible.
I	I

(202) 234-4433

	344
1	CHAIRMAN BANERJEE: That would be I
2	mean, the practical problems are often, as you know,
3	that you have multiple top hats or something behind
4	each other, so maybe the first few of them pick up a
5	lot of it, and then some of the later ones don't have
6	some. It's hard to I don't know what NRR's
7	intentions are, but it's very hard to see how industry
8	can do tests to cover all these eventualities without
9	some sort of a tool to interpret these experiments and
10	bring them to full scale. I mean, it would be nice to
11	be enlightened at one point about that.
12	MR. KROTIUK: Right. And just the final
13	conclusion, is that the bed thickness predictions, in
14	my opinion, were pretty close at least to trending for
15	all the cases modeled, and that the generally, the
16	method, calculation method predict higher pressure
17	drops at the lower temperatures, which is consistent
18	with the classical theory. However, it could be -
19	when compared to test data, it could be affected by
20	various things, flows, temperatures that affect
21	distribution of material in the bed.
22	CHAIRMAN BANERJEE: Is that it?
23	MR. KROTIUK: That's it.
24	CHAIRMAN BANERJEE: Thank you. I think we
25	kept you for a long time, but if there are some more
I	I

(202) 234-4433

	345
1	questions - anybody wants to
2	MR. XIAO: Dr. Banerjee, if I may - Tony
3	Xiao from Research. I want to thank you for this
4	opportunity to come in front of your committee to
5	basically do a wrap-up of the several of the projects
6	you may not have heard before. Earlier this - we want
7	to thank you for your input, as well. You provided
8	some recommendations and questions that made us go
9	back to rethink, and maybe things we could do better,
10	that we should do better.
11	I just want to assure you that we are not
12	closing shop from this point on. We will continue to
13	closely work with the NRR staff, and industry, and our
14	staff will monitor industry's input and how they
15	implement methods to resolve the GSI-191 issue at
16	their plants. If necessary, we'll get into agreement
17	with NRR, we'll do some more very defined, small-scale
18	research in the future, if necessary.
19	As far as for the scheduled next week's
20	full committee, at this moment, I don't see we have
21	new information between now and then to come in front
22	of the full committee, so I ask your decision for the
23	full committee, whether we will have to come back and
24	brief the full committee on the same topic, using
25	pretty much the same material. But certainly, if we
Į	

(202) 234-4433

	346
1	do come back, we will take today's lessons learned and
2	try to prepare better, and answer some of the
3	questions, if possible. But, by and large, we will
4	not have new information between now and then, and we
5	are not asking the committee to provide a letter to us
6	at this time.
7	MR. WALLIS: So you would be this is
8	more of an informative thing where you tell the
9	committee what's been going on, but you're not ready
10	for a letter.
11	MR. XIAO: Right, we're not asking the
12	committee.
13	CHAIRMAN BANERJEE: Is this an item on the
14	committee's agenda?
15	MR. CARUSO: Yes, it is.
16	MR. WALLIS: So we have to do it.
17	CHAIRMAN BANERJEE: How much time do you
18	have?
19	MR. CARUSO: I don't have it here. I
20	would say I think two hours.
21	MR. WALLIS: Two hours?
22	MR. CARUSO: I think this is a two-hour
23	item.
24	CHAIRMAN BANERJEE: And at the moment,
25	they're not asking for any response, it's only for
I	

	347
1	information.
2	MR. CARUSO: It's up to us.
3	CHAIRMAN BANERJEE: Yes, up to us. Now
4	the second thing is, there is some plans for thank
5	you, Dr. Krotiuk. I didn't mean to leave you sitting
б	there.
7	MR. KROTIUK: Yes, I was going to leave.
8	CHAIRMAN BANERJEE: Yes, it was very
9	helpful.
10	MR. WALLIS: Don't go away.
11	MR. KROTIUK: Okay.
12	CHAIRMAN BANERJEE: Even though it's 5:00.
13	MR. KROTIUK: Okay.
14	CHAIRMAN BANERJEE: Is there plans for NRR
15	to come to the committee or the subcommittee?
16	MR. CARUSO: There are some plans,
17	tentative plans to have NRR come to talk to the
18	subcommittee in late May.
19	CHAIRMAN BANERJEE: Okay.
20	MR. SCOTT: And we have - Mike Scott, NRR.
21	We have a number of subjects that we'd be interested
22	in talking to you about. For example, we will have
23	done several audits by then, we can come in and talk
24	about that. And we are also making plans for the
25	generic letter response reviews, we can talk about
I	I

(202) 234-4433

	348
1	that. Maybe that would be of limited interest to you.
2	We may by May have some indications of the testing
3	that's planned and ongoing by the industry. As I
4	mentioned earlier, there's one utility, at least,
5	that's finished their chemical testing, so hopefully
6	by May, there will be several, so we can come in and
7	tell you what we know at that point about what's going
8	on with the testing.
9	We'll also be able to talk to you about
10	progress on the downstream effects ex-vessel topical
11	report, so there's several things that we'll be ready
12	to talk to you about, at least give you a progress
13	report on then.
14	CHAIRMAN BANERJEE: Would you want to
15	come, I guess, in front of the subcommittee,
16	initially, and then in front of the full committee?
17	MR. SCOTT: I think that was the idea. I
18	think Ralph and I went back and forth about a date.
19	He said late May, I think my preference was middle.
20	MR. CARUSO: Middle May.
21	MR. SCOTT: Middle May, yes. I'm going to
22	be out the last week in May.
23	CHAIRMAN BANERJEE: All right.
24	MR. WALLIS: Well, in front of the full
25	committee, what are you going to say? It seems to me
ļ	

(202) 234-4433

	349
1	you have to make some key decisions. One is, whether
2	you're only going to discuss new material, because
3	they have heard lots of this before, or whether you're
4	going to also take a look at what you've learned from
5	all of these tests, which are in these NUREGs that are
6	coming out, and make some sort of summary of what's
7	the state-of-the-art that you've established, that you
8	didn't do today.
9	CHAIRMAN BANERJEE: I guess what if I
10	heard Mike correctly, he was saying that you have some
11	results of audits, and some of the industry efforts,
12	and programs
13	MR. WALLIS: But NRR isn't on our program,
14	are they?
15	CHAIRMAN BANERJEE: In May, I'm saying.
16	I'm talking about the May and June meeting.
17	MR. WALLIS: Oh, you're talking about May.
18	MR. SCOTT: Okay. Yes, I was
19	CHAIRMAN BANERJEE: Talking about the May
20	meeting really right now. So for next week's meeting,
21	all we can do is discuss what was done today.
22	MR. WALLIS: Is that right?
23	CHAIRMAN BANERJEE: We had two different
24	things.
25	CHAIRMAN BANERJEE: But is that a

(202) 234-4433

	350
1	worthwhile use of the full committee time, to listen
2	to this story that we heard today?
3	MR. CARUSO: Unfortunately, you're stuck,
4	because the agenda has been published.
5	CHAIRMAN BANERJEE: I think the
6	information would be useful, because when that is
7	the information in May would be added.
8	MR. WALLIS: Well, you could certainly
9	talk about the peer review.
10	MR. XIAO: We look to your direction. If
11	you feel the full committee would benefit from
12	hearing a condensed version, and we'll focus on the
13	peer review, we will do that, so I'm just asking
14	whether you think it's necessary for us to come back
15	to do it again in a condensed version next week.
16	MR. WALLIS: You don't want to come back
17	next week at all?
18	MR. XIAO: If you ask us to, we will.
19	MR. WALLIS: Well, I think Ralph is saying
20	you're on the agenda. There's a performance by you
21	scheduled, and it's been advertised, and you've got to
22	show up.
23	MR. KRESS: You pretty much have to.
24	CHAIRMAN BANERJEE: You have to.
25	MR. XIAO: I thought maybe you can send
	I

(202) 234-4433

	351
1	out an agenda change, if you feel it's not
2	MR. KRESS: It's too late.
3	MR. XIAO: it will not benefit.
4	MR. KRESS: Even when we change it, we
5	have to advertise them in the Federal Register.
6	MR. CARUSO: The only thing we can do is
7	just have a big hole, go off and have a smoke.
8	MR. WALLIS: We had that before, we have
9	sometimes had that, but very exceptionally.
10	CHAIRMAN BANERJEE: Well, I think we
11	should assume for the time being that there will be a
12	presentation, and get ideas from the subcommittee as
13	to
14	MR. WALLIS: To fill an hour?
15	CHAIRMAN BANERJEE: Well, I think how -
16	I'm sure it will fill more than an hour, but how best
17	to present the information so that we have the most
18	usefulness, so maybe we could start with Tom, and ask
19	him.
20	MR. KRESS: Well, I think I would focus on
21	the peer review, because it's new, and the rest of the
22	committee haven't heard it. As far as this discussion
23	on the modeling and comparison of the data, it's all
24	very interesting, but I don't think we have time for
25	that, and it's - I don't think I would get into it.
I	I

(202) 234-4433

	352
1	I think I'd just focus on the peer review.
2	CHAIRMAN BANERJEE: What about you,
3	Graham?
4	MR. WALLIS: Well, I think that maybe they
5	could hear about what's new, rather than - although I
6	would kind of like a perspective on what we've learned
7	from the entire program, since you're wrapping up all
8	this research, and you might sort of - but I don't
9	think you're ready to do that, so what did we learn
10	from all this work we've done?
11	Peer review I would think could take maybe
12	60 percent of the time or something, but then you've
13	got to do it right. I mean, you've got to give an
14	honest assessment of all these criticisms you've
15	gotten so the 50 or so recommendations, and how you're
16	going to respond to all that, I think you've got a lot
17	of work to do to put together a presentation along
18	those lines, because that's not really what we heard
19	today.
20	MR. XIAO: Correct.
21	MR. WALLIS: I do think it's worth
22	mentioning that there has been this new work on the
23	Westinghouse surrogate. I mean, that struck me as
24	being something that was important.
25	MR. KRESS: Yes, that's important.
Ĩ	

(202) 234-4433

	353
1	MR. WALLIS: Realize that this stuff could
2	really clog screens probably more effectively than
3	some of the things that Argonne has been using.
4	CHAIRMAN BANERJEE: Well, equally, let's
5	say.
б	MR. WALLIS: Well, it looked as if it was
7	maybe even more effective, but I think some summary of
8	that. And I wouldn't say nothing about the modeling
9	effort. I think you could say that there's been this
10	modeling effort. This is roughly - sketch out very
11	briefly how it's being done, and show that it
12	sometimes work, and it sometimes doesn't work, and
13	probably conclude that it's not a tool which is ready
14	for use.
15	MR. KRESS: They could show that slide
16	with the four different
17	MR. WALLIS: There are probably about five
18	or six slides showing, here's the basis of the model,
19	here is where it works, here's where it doesn't work,
20	here's some of the anomalies, and I think you're going
21	to conclude, probably, that it's not something that
22	you can use, but you've learned a few things
23	qualitatively, which might be useful for NRR in
24	deciding their RAIs and so on.
25	MR. XIAO: Okay. If that's what you
ļ	

(202) 234-4433

	354
1	prefer, we will come back and use next
2	CHAIRMAN BANERJEE: Let's hear from Said.
3	MR. ABDEL-KHALIK: I would concur fully
4	with what Dr. Wallis has said, particularly with
5	regard to the peer review. I think a rehash of what
6	was presented today would be not very useful.
7	MR. XIAO: I understand.
8	MR. ABDEL-KHALIK: I think a much more
9	thoughtful assessment of the comments and
10	recommendations made by the peer review, and how you
11	plan to address those comments, and the rationale for
12	your decision as to how you're going to address those
13	comments would be much more valuable. As far as the
14	other two items, I fully agree with what Dr. Wallis
15	has said.
16	CHAIRMAN BANERJEE: And do you feel, Tom,
17	that it would be important to present a very brief
18	outline of the surrogate experiments?
19	MR. KRESS: Oh, yes. I really think
20	that's very important.
21	CHAIRMAN BANERJEE: So I think then you
22	have our feelings fairly clearly. The only thing is
23	
24	MR. WALLIS: We don't know what you think.
25	CHAIRMAN BANERJEE: Well, I probably said
ļ	

(202) 234-4433

1 what I thought. But you've got two hours, let's say, so you would want to organize things so that roughly 2 to 70 percent of that time is taken up with 3 60 4 analysis of the peer review and what actions and responses you have. And then the rest with the 5 surrogate experiments, and maybe just an outline of 6 7 the work you've done with the correlations. I think 8 that's valuable, even if it's not immediately 9 applicable. It's indicated some thoughts about 10 separating these into two layers, and get a much better correlation with that, so I think that's 11 12 But you want to keep it short. useful. I saw Bill, as you were 13 MR. XIAO: Yes. 14 talking, as the other members are talking, I saw Bill 15 jotting down his notes, so I'm glad he's still here to hear it from you again to emphasize that. We will --16 17 CHAIRMAN BANERJEE: Fifty-nine slides, four or five. Right? 18 19 MR. XIAO: Okay. We'll be limited to four 20 or five slides. And I also heard, very clear to me --21 22 Back-up slides, have some MR. WALLIS: 23 back-up slides, because it may well be that you're 24 going to get a lot of discussion and questions which 25 could be answered by a suitable back-up slide.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

355

	356
1	MR. XIAO: We'll prepare those, as well.
2	We'll concentrate 60 to 70 percent on peer review.
3	MR. WALLIS: Very short, perhaps have a
4	lot of substance that you can turn to if you need it.
5	MR. XIAO: Okay. We'll focus on peer
6	review as to how we're going to address them, the
7	rationale behind
8	MR. WALLIS: Have you made up your mind?
9	Now are you going to in a week decide how you're going
10	to respond to the
11	MR. XIAO: It's going to be a challenge,
12	but it's a challenge going in front of the committee
13	at any time, so we'll take that challenge and do
14	better. I know we'll do better, how much better to
15	your full satisfaction, we'll try.
16	MR. WALLIS: Because if you don't do it,
17	then I may be tempted to quote from the peer review
18	and say okay, here's a statement, how are you going to
19	respond?
20	MR. XIAO: We'll try to prepare better so
21	you don't have to quote.
22	MR. TRAGONING: Yes, but just to be
23	realistic here, it's a relatively short time. I
24	wouldn't expect disposition of the peer review
25	comments between now and then. I think we'll
I	I

(202) 234-4433

	357
1	certainly indicate path forward. Another thing that
2	we can certainly do in this area is to prioritize and
3	highlight some of the ones that the peer reviewers
4	themselves thought were particularly important, and we
5	have information to do that.
6	We can present some strategies for moving
7	forward, but we may - and some of them, we may
8	actually have a disposition, but I would say, by and
9	large, we probably won't have that, most of that
10	information in terms of the exact disposition of
11	comment A, B, C, D by the next week or two.
12	CHAIRMAN BANERJEE: If you can get help
13	from the PIRT to order your thinking, and present it
14	in that form, that would be very useful.
15	MR. TRAGONING: Yes, and that's the plan.
16	We're going to inform the slides by the PIRT process,
17	and be able to, again, a little bit more
18	systematically present issues that percolated up in
19	the PIRT, as well.
20	CHAIRMAN BANERJEE: Okay.
21	MR. XIAO: We look forward to coming back
22	next week.
23	CHAIRMAN BANERJEE: All right. Thank you,
24	then. Do we have any more discussions?
25	MR. KRESS: Well, we probably ought to
I	I

(202) 234-4433

	358
1	have comments on what we've heard so far.
2	CHAIRMAN BANERJEE: Okay. So if you want
3	to say, say it.
4	MR. KRESS: Okay. Well, all in all, the
5	I thought it was a pretty good wrap-up. One thing
6	that bothers me is I'm disappointed that we haven't
7	made more use of chemical equilibrium models. I was
8	under the impression that you should be able to bound
9	the kinetics effects with these, and I haven't seen
10	any evidence of that, so that's one problem I have.
11	I still think there's a need for an
12	overall integral predictive model which would include
13	these chemical equilibrium. And I think that should
14	be the reason for doing additional research, to pull
15	that together, and I think it will be needed, as
16	confirmatory to their judgments they're passing on the
17	adequacy of the plant-specific tests. That's where I
18	think it's going to be needed.
19	I think the peer reviewers did a good job,
20	and I agree that there's a real need to respond to
21	each and every one of their comments, not necessarily
22	to agree with them, but to respond to them.
23	I thought the modeling approach was
24	interesting and promising, that I still consider a bit
25	of a work in progress. I think the curve exponential
	1

(202) 234-4433

	359
1	relating the percent cal thickness to the percent cal
2	mass needs a little rethinking. And I think you need
3	to figure out, like Sanjoy said, how to apply this to
4	real screens that may fill up in a non-uniform manner,
5	so you need - I mean, you don't just have a screen
6	with two layers on it, you have lots of strains with
7	different relations to these through it. And so, I
8	think there's a need to apply it to the real world.
9	Other than that, I thought it was a pretty good day.
10	MR. WALLIS: What I miss is some
11	leadership for all this research. I see a lot of
12	projects which are sort of not complete, and they've
13	discovered some things, and other things haven't been,
14	and so on. I would like to have someone knowledgeable,
15	and that's really what a manager should be able to do,
16	a technical manager should say these are the things we
17	have established by this research, and these are
18	things which we need to do, or what somebody needs to
19	do, and so put the whole thing in some kind of
20	technical perspective, and I really miss that. I
21	mean, someone who's here who's on track, who's going
22	to put the work in the best light, and so on.
23	And then the peer reviewers do some of
24	this. They actually point to this here, well, this
25	misses this and so on. I don't see a sort of a
I	

(202) 234-4433

	360
1	technical management perspective, where someone who's
2	in charge of this whole effort, the NRC in a technical
3	way, knows what's been achieved, and what hasn't been
4	achieved, and whether or not it's met some objectives,
5	or whether some other objectives have been neglected,
6	and all that. That's something I really miss, and I
7	don't think I'm going to get it, but I would really
8	like to. Then I'd feel really competent that somebody
9	here knew what was going on technically with this
10	issue.
11	MR. SCOTT: If I can interject one point -
12	one thing I would recommend you do is look at the
13	document that we gave you tardily today, and it shows
14	at least what NRR plans to do with the research
15	results, take a look at that, maybe it gets you part
16	way what you're interested in.
17	MR. WALLIS: Well, I understand the NRR
18	perspective. I mean, I'm just asking the RES
19	perspective on it. You do the best you can with this
20	stuff, and you're trying to solve the problem, and
21	you're going to rely a lot on industry, I understand.
22	MR. SCOTT: And I think maybe part of the
23	answer to the research part, and I'm speaking for Tony
24	here, is the RIL that you all were talking about
25	putting together. Right? That will have that kind of
ļ	I

(202) 234-4433

	361
1	perspective, will it not?
2	MR. XIAO: Yes, I think Rob - I wasn't
3	here, but I believe Rob Tragoning had mentioned there
4	is work on the RIL. It will be available later on
5	this year, probably May/June time frame.
6	MR. WALLIS: This was to summarize the
7	result and what the messages are from it, and so on.
8	MR. XIAO: Yes.
9	MR. WALLIS: That would be very good. I
10	look forward to that.
11	MR. XIAO: Okay.
12	MR. ABDEL-KHALIK: I would like to echo
13	that. There are just too many loose ends here. NRC
14	is doing research, there is an independent peer
15	review, industry is going to do work, and somehow all
16	of this has to be connected to come up with a coherent
17	useful story, where people in NRR can actually use it
18	to their best advantage, rather than eliminating or
19	excluding part of it, or relying to a large extent on
20	only a part of it.
21	The second comment I would like to make is
22	that with regard to the presentation that we heard
23	towards the end of the day, a lot of effort has been
24	expended on the experiments in the pressure drop
25	modeling, and it would seem that with some modest
ļ	1

(202) 234-4433

1 additional effort in the modeling area, we can extract 2 a lot more from the data that we already have. And I would sort of recommend that that not be stopped. 3 It 4 would just seem like the return on investment in that 5 case would be quite significant. Just more though, modest effort really should go into analyzing the 6 7 data, and coming up with a much more robust model. 8 Those are my comments. 9 But, Said, if you were MR. WALLIS: running a research program yourself, and you wanted to 10 write a proposal to solve this problem, or if I were 11 doing it, I think I would need quite a few man-years. 12 Well, what I'm trying 13 MR. ABDEL-KHALIK: 14 to see is what is the best we can do with the 15 information that we have with the relatively modest additional resources. 16 The trouble with this problem 17 MR. WALLIS: is there keeping being surprises, and you sort of 18 19 think you've got a correlation, and then someone does 20 another experiment, and then it doesn't work, so it's 21 very difficult to really comprehensively cover all 22 eventualities. 23 MR. ABDEL-KHALIK: But the starting point 24 really ought to be sort of a thoughtful assessment of 25 the peer review comments. These are by and large

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 people who have put in a lot of effort, and a lot of 2 thought into coming up with their comments and their 3 reports, and it would seem like we ought to take 4 advantage of all that knowledge and wisdom that they 5 have put forth, so the idea of organizing the response to the peer review, and coming up with why you accept 6 7 or reject some of these comments, and how would you 8 respond to them, would probably be --9 MR. WALLIS: I guess what I was asking 10 for, too, would be more of an internal peer review. And if you folks - a lot of the stuff the peer review 11 12 people came up with, I would think that you guys would come up with on your own. 13 14 CHAIRMAN BANERJEE: Well, there were some 15 things which apparently weren't thought of. First of all, I'd like to say that I very much appreciate and 16 commend the staff for going out for such a thorough 17 peer review. I've seen a lot of peer reviews, and 18 19 this was a pretty good one. And they were serious 20 people, they did a serious job, and to expose yourself 21 to the extent that allows these people to do this, I 22 think that's very commendable. And it's a first-rate 23 thing to do. 24 Now I think it's simply having to deal 25 with this, and learn the lessons from it, and go

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	364
1	forward, as Rob said, to have a path forward. And I
2	think the PIRT is a bit overdue, but once that is
3	done, at least you'll have things prioritized and
4	clear, clearer, let's put it.
5	The problem seems a very big problem, and
6	I don't think that it's going to very easy,
7	personally, to have some sort of a predictive model
8	for the effects. What the research can do is to
9	indicate directions that industry may or may not take
10	to deal with it, which may simply be to circumvent the
11	problem in some way by changing the buffering agents,
12	or whatever. I mean, whatever information that can be
13	made available to help that process would be useful.
14	And things should be organized so that that can be
15	done.
16	I do think, though, that the work on the
17	head loss is going in the right direction, but it's
18	still very much a work in progress, as somebody else
19	said. And to really make it useful, it will need to
20	be coupled to something which is a little bit more
21	global. I said CFD, but it doesn't have to be CFD.
22	There can be other ways of dealing with this, because
23	my feeling about what the industry will do is, they'll
24	do a series of tests, perhaps they'll do it in water
25	tunnels with a screen at the end, and with some
I	I

(202) 234-4433

1 conditions which are typical, and look at maybe drop-2 out in front of the screen. I don't know exactly what 3 they'll do. If I was in industry, that's what I would 4 do, probably.

5 Now how do you interpret this, because the real situation is going to be very complicated, and 6 7 the sump screens which will take out a lot of stuff, 8 other parts of it it won't. There has to be some sort 9 of a tool which can be used as a structure to 10 interpret what the industry proof tests are, put it into a framework. And maybe the sort of work that's 11 12 being done on the head loss modeling could be phrased into this structure even to interpret the sort of -13 14 what do these experiments mean? How do we interpret 15 Eventually, there's no escape from some the models? 16 form of modeling to scale up. 17 MR. WALLIS: I don't think there's any

18 model for the performance of the industrial-type 19 screens.

 20
 CHAIRMAN BANERJEE: Yes. Well, how do you

 21
 operate in the absence of a model?

 22
 MR. WALLIS: They're not homogeneous,

they're usually vertical, they have pockets in them, there's all kinds of stuff, and there's no model for that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 CHAIRMAN BANERJEE: Can be a very 2 empirical one, but I don't know what direction that would take. But it concerns me to operate without 3 4 some sort of a framework, and just depend on proof 5 tests. Anyway, those are my comments, and hopefully, in May we'll know more about the approach industry is 6 7 taking, and what actually they're accomplishing, so 8 that would be an important meeting. 9 MR. SCOTT: If I can insert one more thing 10 - we do now have one of our audit reports is public, and we'll, of course, get that over to Ralph. And 11 12 when you all have a chance, you might want to take a And you'll get an idea from that as to 13 look at that. 14 what sort of things we're finding out there, and what 15 we're writing up as an open item. And by May, we'll 16 have at least two more audit reports available, so 17 those will give you some perspective to support the 18 May meeting, too. Include chemical effects? 19 MR. WALLIS: 20 Well, unfortunately, what MR. SCOTT: 21 we're saying for chemical effects is, you haven't done 22 it yet for those plants that we've evaluated. But as 23 far as head loss and the other, many of the other 24 subject areas, there's a greater degree of completion,

so for those areas, you'll have perspective. For the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	367
1	chemical effects, what I would say we would plan to do
2	is talk to you at that point about what we know about
3	how the testing is going. We probably will not have
4	an audit report in-hand at that time speaking to
5	chemical effects.
6	MR. WALLIS: There are chemical effects,
7	what use are head loss tests without chemical effects?
8	MR. SCOTT: Well, you learn information
9	about their methodology as applied to the head loss
10	testing. What they may have to do, and a lot of the
11	plants will have to do, is redo the testing once
12	chemicals are factored in.
13	MR. WALLIS: Or get rid of the chemical
14	effects.
15	MR. SCOTT: Or get rid of the chemical
16	effects, yes. And they can simplify their problem in
17	many cases by that. And as we've said before, each
18	plant is going to look at it from their own particular
19	plant-specific situation, decide what combination of
20	all the above measures makes sense for them. And the
21	environment at any plant a year from now is going to
22	be very different from the environment that it was two
23	years ago when we started in all these mods.
24	MR. XIAO: This is Tony Xiao again from
25	Research. I would like to say that is really a result
	1

(202) 234-4433

	368
1	of the research we have conducted for the past few
2	years, that contributed to this kind of decision, the
3	regulatory decision to help industry to at least take
4	the right steps, steps in the right direction to avoid
5	certain things that will help the situation.
6	MR. WALLIS: Now, Tony, you said you don't
7	want a letter from the ACRS?
8	MR. XIAO: Correct.
9	MR. WALLIS: What is I think I was
10	assigned to write a letter, draft letter. Was that
11	right?
12	MR. CARUSO: I think so.
13	MR. WALLIS: I want to know - my
14	inclination is not to draft a letter, but if the
15	committee, subcommittee feels that a letter should be
16	drafted, then I should do it. I'm hoping at the
17	moment that we don't have to write a letter. I'm not
18	quite sure how we add value in the most useful way by
19	writing a letter at this stage.
20	MR. XIAO: Correct. Just a personal
21	suggestion, I think I would suggest that probably a
22	better time to write a letter is after May or June
23	when NRR came back and gave you their status update,
24	and we will come back, also describe the RIL we talked
25	about earlier. That would be a better time.
ļ	

(202) 234-4433

	369
1	MR. CARUSO: Also, that we have a meeting
2	with the commission in June.
3	MR. WALLIS: We don't want to discuss
4	sumps again.
5	CHAIRMAN BANERJEE: We might have to.
б	MR. CARUSO: They've always been asking
7	for it, so that's just something to consider.
8	MR. SCOTT: Are you going to hang around
9	for that, Ralph?
10	MR. CARUSO: I'm not.
11	MR. XIAO: On a personal note, starting
12	next week, I have a new assignment. I'll be working
13	at NRO, but I was trying to get my replacement here
14	today to be part of this meeting, but she was not in.
15	Her name is Rosemary Hogan. Some of you may know her.
16	But I'll stick around for a couple of more weeks just
17	to make sure we have good transition, and I will make
18	sure she will be here next week for that meeting.
19	CHAIRMAN BANERJEE: But who is going to
20	coordinate your presentations next week, you?
21	MR. XIAO: I will.
22	CHAIRMAN BANERJEE: Okay.
23	MR. XIAO: I will.
24	CHAIRMAN BANERJEE: Okay. If we have no
25	other business
	1

	370
1	MR. WALLIS: Then somebody new is going to
2	be managing the program?
3	MR. XIAO: Rosemary Hogan will be the new
4	Branch Chief.
5	MR. WALLIS: Will there be any continuity
6	then?
7	MR. XIAO: Absolutely, there will be
8	continuity.
9	MR. WALLIS: She'll have to be briefed on
10	everything all over again, and
11	MR. XIAO: Absolutely. Me and my staff
12	will do that. I mean, and that's why I was hoping she
13	would be here, get a taste of what kind of questions
14	the ACRS may have, but she was not in. But next week,
15	she will be here.
16	MR. KRESS: And where are you going?
17	MR. XIAO: NRO, Office of New Reactors.
18	MR. KRESS: Oh.
19	CHAIRMAN BANERJEE: Sump screens will be
20	interesting with passive circulation.
21	MR. XIAO: We'll probably see you also in
22	a different light.
23	MR. SCOTT: Regarding continuity on the
24	NRR side, I have been told I can't go anywhere else
25	until this is resolved, so you don't need to worry
I	

```
(202) 234-4433
```

	371
1	about that one.
2	MR. CARUSO: Until you retire.
3	MR. SCOTT: Or until I retire.
4	MR. WALLIS: What is the question - when
5	we look at new reactors, like I supposed AP-1000 is a
6	new reactor.
7	MR. SCOTT: What was your question?
8	MR. WALLIS: How does sump screen
9	questions affect things like AP-1000, which is a new
10	reactor, since Tony brought up the new reactors.
11	MR. SCOTT: We've been discussing that
12	very subject, as a matter of fact. We looked at all
13	of the new reactor designs, both the Bs and the Ps
14	from the perspective of strainer clogging, and the
15	situation for each one of them varies dramatically,
16	depending on the time line involved. For example,
17	ABWR was certified in 1994, and the BWR operating
18	plant corrective actions were taken about two or three
19	years after that, so we just sent, NRR just sent a
20	memo to NRO identifying the disparity between where
21	the ABWR was certified, and the rest for the other
22	BWRs, and suggesting that they address that with
23	General Electric, which I believe they plan to do.
24	AP-1000 was certified early on in the GSI-
25	191 resolution process. There are a number of COL
I	I

(202) 234-4433

	372
1	action items for AP-1000 that reflect sump concerns.
2	I would say that we are smarter now than we were then,
3	and so is Westinghouse, and so we understand that
4	Westinghouse plans to submit a topical report on sumps
5	to the NRC, among many topical reports, evidently,
6	that they are submitting to address, I guess, the
7	progress of knowledge since that design was certified.
8	ESBWR and EPR, of course, are either in
9	current review, or not started review yet, and so
10	we're fully up to speed, and involved with the reviews
11	of those designs. Of course, that work scope is going
12	to NRO, and some of the expertise will follow it so
13	that they can do those reviews. So we're working all
14	that.
15	MR. WALLIS: The ESBWR doesn't really have
16	sumps, and it doesn't have places where debris gets
17	into the tanks, which then inject water.
18	MR. SCOTT: They do have a strainer in
19	there, I believe it's called the gravity-driven, yes,
20	I'm not sure exactly.
21	MR. WALLIS: The PRA has strainers, and it
22	has some estimate of whether or not the strainers
23	blocked. I noticed that.
24	MR. SCOTT: Certainly, their
25	vulnerabilities, or lack thereof, are very different
	I

(202) 234-4433

1 from the current generation of plants. And the 2 interesting thing is that these designs are so different, each of them, from the traditional designs 3 4 that are out there now that you can't take your PWR 5 guidance and just plug it into the AP-1000, or the same for the BWR guidance for the ESBWR. You have to 6 7 look at it specific to that design. And in many cases, their vulnerability hopefully will be less, and 8 9 they've taken a number of measures in each of these new reactors to reduce vulnerability. For example, 10 the materials of construction for the BWRs, they've 11 gone from carbon steel to stainless steel to minimize 12 the amount of sludge they're going to have in their 13 suppression pool, so there have been a lot of changes, 14 15 but we're looking at that. Well, one thing would 16 CHAIRMAN BANERJEE: 17 be to design out chemical effects. Absolutely. Well, another 18 MR. SCOTT: 19 thing is to design out vulnerabilities. For example, 20 I'm trying to recall which one of the designs it is -21 I think the ABWR may have committed to all RMI 22 insulation, so the fiber is all gone. MR. KRESS: The IRIS doesn't look like it 23 would be vulnerable to this at all. 24 25 MR. SCOTT: No insulation of consequence.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	374
1	Is that the issue?
2	MR. KRESS: Right.
3	MR. SCOTT: Yes.
4	MR. XIAO: The new reactor designs are
5	like Dr. Banerjee argued, design out a lot of the
6	issue, vulnerabilities. One is the sump issue, the
7	other one is aircraft impact, so there's a lot of
8	effort there, too. And I believe we're also coming
9	back to the ACRS some time next week to give a summary
10	of our plans to do the aircraft.
11	CHAIRMAN BANERJEE: Aircraft. All right.
12	If there are no more discussion, then I'm going to
13	adjourn this meeting until tomorrow.
14	MR. CARUSO: No, not tomorrow. We're
15	going to adjourn today.
16	CHAIRMAN BANERJEE: Oh, adjourn today.
17	MR. CARUSO: Different meeting tomorrow.
18	CHAIRMAN BANERJEE: Oh, different meeting
19	tomorrow. All right. Adjourn today.
20	(Whereupon, the proceedings went off the
21	record at 5:35:17 p.m.)
22	
23	
24	
25	
I	I NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433