Official Transcript of Proceedings		
NU	JCLEAR REGULATORY COMMISSION	
Title:	Advisory Committee on Reactor Safeguards Subcommittee on Power Uprates	
Docket Number:	(not applicable)	
Location:	Rockville, Maryland	
Date:	Tuesday, January 16, 2007	

Work Order No.: NRC-1397

Pages 1-359

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	SUB-COMMITTEE ON POWER UPRATES
6	+ + + + +
7	TUESDAY,
8	JANUARY 16, 2007
9	+ + + + +
10	The meeting was convened in Room T-2B3 of Two
11	White Flint North, 11545 Rockville Pike, Rockville,
12	Maryland, at 8:30 a.m., Dr. Mario V. Bonaca, Chairman,
13	presiding.
14	MEMBERS PRESENT:
15	MARIO V. BONACA, Chairman
16	GRAHAM B. WALLIS, Vice-Chairman (in absentia)
17	THOMAS S. KRESS, ACRS Member
18	MICHAEL CORRADINI, ACRS Member
19	OTTO L. MAYNARD, ACRS Member
20	JOHN D. SIEBER, ACRS Member
21	
22	
23	
24	
25	

1	NRC STAFF PRESENT:
2	TIMOTHY MCGINTY
3	EVA BROWN
4	DENNIS ANDRUKAT
5	HUSSEIN HAMZEHEE
6	MARTIN STUTZKE
7	MARK RUBEN
8	RICHARD LOBEL
9	ROBERT DENNIG
10	JOSE MARCH-LEUBA
11	GEORGE THOMAS
12	MUHAMMED RAZZAQUE
13	TAI HUANG
14	ZENA ABDULLAHI
15	
16	ALSO PRESENT:
17	BILL CROUCH
18	ASHOK BHATNAGAR
19	ROBERT PHILLIPS
20	DAVE BURRELL
21	JOE VALENTE
22	RICH DeLONG
23	DAVID TILL
24	TONY ELMS
25	CRAIG NICHOLS
1	1

1	ALSO PRESENT: (CONT.)
2	JIM TATUM
3	FRAN BOLGER
4	DILIP RAO
5	DAN PAPPONE
6	JIM WOLCOTT
7	BILL EBERLEY
8	BILL MIMS
9	RANDY JACOBS
10	GREG STOREY
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	I contract of the second s

		4
1	I N D E X	
2	Introduction, M. Bonaca (ACRS)	5
3	Opening Remarks, T. McGinty (NRR)	7
4	Introduction, E. Brown (NRR)	17
5	Overview of EPU	36
6	BOP Systems, E. Brown (NRR)	90
7	Unit 1 Power Uprate and Large Transient	
8	Testing, H. Hamzehee (NRR)	116
9	Use of Risk for Power Uprate Applications,	
10	M. Stutzke (NRR)	123
11	Containment Accident Pressure	149
12	Containment Accident Pressure, R. Lobel (NRR)	243
13	Fuel Methodology and Reactor Systems, E. Brown	
14	(NRR)	315
15	Adjourn	
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

	5
1	PROCEEDINGS
2	8:32 A.M.
3	CHAIR BONACA: The meeting will now come
4	to order. This is a meeting of the Advisory Committee
5	on Reactor Safeguards, Subcommittee on Power Uprates.
6	I am Mario Bonaca, Chairman of the
7	Subcommittee for this uprate.
8	The Committee Members in attendance are
9	Said Abdel-Khalik, Sam Armijo is not here yet. Sanjoy
10	Banerjee, Dana Powers, Michael Corradini, Tom Kress,
11	Jack Sieber. And Mr. Maynard and Dr. Wallis, they
12	will be coming later because they've been blocked by
13	the weather.
14	Poor Otto has had his house had no
15	power for four days and the cover of his boat has
16	collapsed on his boat. So he's trying to recover the
17	boat, too.
18	The purpose of this meeting is to discuss
19	the five percent power uprate application for the
20	Brown Ferry Nuclear Plant Unit One.
21	The Subcommittee will hear presentations
22	and hold discussions with representatives of the NRC
23	staff and the Browns Ferry licensee, the Tennessee
24	Valley Authority regarding these matters.
25	The Subcommittee will gather information,
	1

(202) 234-4433

	6
1	analyze relevant issues and facts and formulate
2	proposed positions and actions as appropriate for
3	deliberation by the full Committee.
4	Ralph Caruso is the Designated Federal
5	Official for this meeting.
6	The rules for participation in today's
7	meeting have been announced as part of the notice of
8	this meeting previously published in the <u>Federal</u>
9	Register on December 21st and December 28th, 2006.
10	Portions of this meeting may be closed to discuss
11	proprietary information of PBA or its contractors.
12	A transcript of the meeting is being kept.
13	It will be made available as stated in the <u>Federal</u>
14	<u>Register</u> notice. It is requested that speakers first
15	identify themselves and speak with sufficient clarity
16	and volume so that they can be readily heard.
17	We have not received any requests from
18	members of the public to make oral statements or
19	written comments.
20	We will now proceed with the meeting and
21	before I call upon Mr. McGinty of the NRC staff to
22	begin, I would like to just make a couple of simple
23	requests regarding the application. First of all,
24	clearly the application, the SER we have reviewed
25	leverages the 120 percent power application in many

(202) 234-4433

	7
1	places, but it doesn't do so explicitly. It would be
2	from my understanding is that only some analysis
3	regarding fuel have been done specifically at 105
4	percent power.
5	So I would appreciate at some point during
6	the meeting if the staff and the applicant would tell
7	us exactly what analyses have been done at the 105
8	percent power because I understand there are
9	exceptions, rather than the norm.
10	And the second issue, there are number of
11	applications in the SER where some statement is made
12	about an analysis that will be delivered by January
13	31st or whatever, which has not been delivered yet and
14	I would like to have a clear statement that those are
15	confirmatory items and not open items of any nature
16	because, I mean, the SER is moot about that. It
17	doesn't say what they are.
18	So with those two requests, I move on and
19	turn it to Mr. McGinty.
20	MR. McGINTY: The intent of this briefing
21	is for the staff to, as Mario said
22	(Mic problems.)
23	MR. McGINTY: So with that said, the
24	intent of this briefing is for the staff to provide
25	some clarifications regarding several on-going issues

(202) 234-4433

	8
1	to discuss the methodology used for the Browns Ferry
2	power uprate submittal and the NRC staff review,
3	provide a status of the three applications.
4	As a result of this briefing and the ACRS
5	review, it is our desire that the ACRS be in a
6	position to make a positive recommendation to the
7	Commission confirming the staff's safety finding
8	regarding the 105 percent uprate and selected 120
9	percent review areas. And outlining the additional
10	information needed to be presented to the ACRS in
11	future meetings, in support of the 120 percent
12	extended power uprate submittals.
13	Next slide, please.
14	As a way of background, the Browns Ferry
15	site has three General Electric BWR design reactors
16	with Mark 1 containments. Unit 1's operating license
17	was issued on December 20th of 1973 with Unit 2's
18	being issued the next year on August 2nd and Unit 3's
19	being issued in 1976 on August 18th.
20	Today, the operating units, 2 and 3, are
21	licensed to operate at a rated core thermal power of
22	3458 megawatts thermal, while Unit 1 remains shut down
23	at the initial license thermal power of 3292 megawatts
24	thermal.
25	Next slide, please.
	1

(202) 234-4433

All three Browns Ferry units were voluntarily shut down by TVA in March of 1985 to address performance and management issues. Following the shut downs, TVA specified corrective actions which would be completed prior to restart. All three units retained their operating licenses during respective long-term shut downs.

The restart efforts for Units 2 and 3 were 8 both approximately five years in duration, with Unit 9 2 restarting in May of 1991 and Unit 3 following in 10 The TVA Board of Directors decided 11 November of 1995. 12 restart Unit 1 in 2002 time frame and soon to thereafter discussions began with the staff to address 13 14 their intent to not only restart Unit 1, but renew the operating license for all three units at extended 15 power uprate conditions. 16

Next slide, please.

Regarding power uprate submittals, in a 18 19 letter dated June 28, 2004, TVA requested a change to 20 operating license to increase the maximum the 21 authorized power level from 3293 megawatts thermal to 22 3952 megawatts thermal. This change would represent 23 an approximate 20 percent increase above the previous maximum authorized power level. 24

Similarly, in a letter dated June 25,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

17

25

(202) 234-4433

	10
1	2004, TVA requested a change that would increase the
2	maximum authorized power level from 3458 to 3952
3	megawatts thermal. This represents an increase of
4	about 15 percent above the current maximum authorized
5	power level.
6	At this time, there are issues with the
7	steam dryer analysis which will be addressed in more
8	specificity later on in the presentation and it
9	resulted in the decision of TVA to request an interim
10	approval of five percent for Unit 1. This would allow
11	Unit 1 to restart at the same power level as Units 2
12	and 3 whose five percent power uprates were completed
13	on September 18 of 1998.
14	Next slide, please.
15	With respect to the schedule, the Unit 2
16	and Unit 3 extended power uprate are less complex and
17	involve routine hardware modifications to the balance
18	of plant and power generating systems, while Unit 1's
19	modifications are much more extensive in that they
20	include the replacement of miles of piping, conduit
21	and cables over a thousand large valves and about 20
22	large pumps and 20 large motors.
23	The staff established an intended review
24	completion date of spring of 2007 to ensure that the
25	reviews were completed prior to the licensee's
	I contract of the second se

(202) 234-4433

	11
1	requested need dates which was originally spring of
2	2007 to support the restart of Unit 1; spring of 2007
3	for Unit 2; and the spring of 2008 for Unit 3.
4	Next slide, please.
5	Schedule changes regarding the Unit 1
6	implementation. Regarding the steam dryers, the NRC
7	sent the licensee, TVA, a letter on December 1st of
8	2006 stating that TVA did not provide the requested
9	steam dryer information in time to support the spring
10	of 2007 need date. And the NRC would reestablish the
11	extended power uprate review schedule when TVA
12	provides a schedule for submitting that information.
13	That includes a revised stress analysis report
14	incorporating analysis of actual operating data that
15	is being gathered from Browns Ferry Unit 2. TVA shut
16	down Unit 2 in the fall of 2006 to collect that
17	information and installed the instrumentation.
18	Ongoing discussions with TVA suggest that the needed
19	steam dryer information may be forthcoming in February
20	of this year.
21	Next slide, please.
22	From a lessons learned perspective, from
23	the standpoint of the staff review
24	CHAIR BONACA: I'm sorry, could you go
25	back to the previous slide?
	1

(202) 234-4433

12
MR. McGINTY: Yes.
CHAIR BONACA: You have at the bottom a
bullet expectations. That describes what you are
expecting them to deliver. Would you expand on that?
MR. McGINTY: On the expectation to
instrument all three units?
CHAIR BONACA: Yes. I mean what your
expectation is that they would instrument the three
units and then go to 120 percent power and monitor.
MR. McGINTY: It is our all three units
are being instrumented. We expect to process and have
future meetings with the ACRS on the outstanding
issues for the 120 percent power uprate submittals
that are not clarified and adequately addressed at
this meeting and to use the instrument to use the
data gained from the units to support that, yes.
CHAIR BONACA: What I'm trying to
understand is are you trying to monitor operation of
the 105 percent power and then extrapolate some data?
I'm trying to understand the methodology that you are
expecting TVA to use to justify operation at the 120
percent power.
Or are you expecting them to simply
instrument and then have step-by-step power
escalation, monitor vibration at different levels up

(202) 234-4433

	13
1	to 120 percent power and make the determination? I
2	don't know.
3	MR. McGINTY: If I might defer to Eva,
4	please.
5	MS. BROWN: Yes. Right now, the plan is
б	that we are proposing a test program similar to what
7	you saw in Vermont Yankee. The time frame may be a
8	little different, but we really don't have the
9	specifics yet as part of the EPU review is not
10	complete.
11	So once we get the information that the
12	licensee needs to support their request and validate
13	their steam dryer analysis, at that point we'll be
14	better able to tell you the scope and the type of
15	testing that we expect. But right now, our thoughts
16	are it will be very similar to what you saw at Vermont
17	Yankee with stepped increases and monitoring at each
18	step.
19	CHAIR BONACA: Okay, so you're looking
20	really for the plan, for the program that you can
21	agree to implement.
22	MS. BROWN: Yes. But I believe the
23	licensee did provide Bill, if you want to step in,
24	they did provide a program that I believe that we were
25	pretty comfortable with. We just have not decided on

(202) 234-4433

	14
1	the final details because we're still waiting for the
2	rest of the information before we do.
3	Bill, did you want to add anything?
4	MR. CROUCH: My name is Bill Crouch. I'm
5	the license manager at Browns Ferry. As Eva said,
6	what we've talked to the staff about is doing a
7	program very similar to VY where we will instrument
8	each unit, we'll take data like at 105 percent, do the
9	analysis, show that there's margin to move on up to
10	the next step, collect data, do the analysis and move
11	on up, looking to see if there's any anomalies like
12	that.
13	CHAIR BONACA: Okay, I understand. The
14	reason why I'm asking the question is clearly we were
15	expecting to see 120 percent power uprate and then
16	there has been a change, we're going to 105. And so
17	I really was trying to understand what is the
18	expectation. I mean why is it so time consuming that
19	it will take months to define this. I think you are
20	explaining it now and I've got some better
21	understanding, all right.
22	MR. McGINTY: Okay, thank you. I will
23	expand on that to some extent right now, at this point
24	on the lessons learned slide, if you would.
25	CHAIR BONACA:
l	

(202) 234-4433

15 1 Okay. 2 MR. McGINTY: When we take a look at the amount of time that these applications have been with 3 4 the staff, it's been an extended review and has taken quite an amount of time. 5 This effort has been a reflection of many changes throughout the industry 6 7 during these times. In 2004, the industry was struggling to find a resolution for several generic 8 issues, including instrument set points and fuel 9 methodology concerns, as well as steam dryer vibration 10 11 issues. 12 The fuel methodology issue was a direct result of the staff's efforts to ensure that a code or 13 14 methodology applied by a utility for a different use 15 remained valid. This issue is still under review by the staff, but for the Browns Ferry Unit 1, 120 16 percent uprate penalties on several thermal limits 17 will be imposed in the interim to address remaining 18 uncertainties, until adequate data from the fuel 19 vendor is obtained. 20 21 In the area of steam dryers, in 2004 22 through 2005, Vermont Yankee was the facility in the 23 lead for the implementation of what at the time 24 appeared to be a generic approach to steam dryer 25 vibration issues. TVA and the staff monitored these

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

efforts to identify insights from Vermont Yankee that could be applied.

3 Another lesson that the staff took away 4 was that many utilities focus on the similarities of 5 facilities which rather than necessarily the differences, at least from a staff viewpoint, that 6 7 decide whether generic approach remains relevant for 8 a particular facility. For Browns Ferry this is very 9 much the case and very early on in this review, the staff spent a fair amount of time getting information 10 from TVA in those areas where the uprate submittals 11 12 differed from the guidance and from each other.

With that said, unless there's any further 13 14 questions, I'm going to turn it over to Eva Brown. 15 I'd again like to reiterate that our intent to provide more details on the staff review to address any items 16 of outstanding confusion that have been created during 17 this process, that the staff and TVA are both here to 18 19 provide clarifications in that regard and our desire 20 to again, to reiterate our desire to obtain positive 21 recommendation with respect to the Unit 1 105 percent 22 power uprate and clarification on any issues that 23 remain for future 120 percent power uprate submittals for all three units. 24

CHAIR BONACA: Well, you make a big leap

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

	17
1	there. I understand 120 percent power uprate for Unit
2	1. They already pointed out some of the complexities
3	with a few.
4	MR. McGINTY: Yes.
5	CHAIR BONACA: And I understand that Unit
6	2 and 3 have not is the issue that they have a
7	different kind of feel.
8	MR. McGINTY: Again, I'm trying to set the
9	stage for future briefings in that regard and obtain
10	clarifications for any outstanding issues in that
11	regard.
12	MS. BROWN: Thanks, Tim. Good morning.
13	My name is Eva Brown and I'm the lead for the Browns
14	Ferry power uprates. Are you are aware, in 2002, the
15	ACRS recommended that a standard review plan be
16	developed for power uprates. This resulted in a
17	development of our review standard, RS-001. This
18	document outlines the staff's processes and
19	expectations, points to a regulatory review and
20	acceptance criteria and provides our draft safety
21	evaluation template.
22	Back in 1995, General Electric submitted
23	a topical report containing a generic evaluation for
24	GE BWR extended power uprates. This EPU licensing
25	topical report or ELTR was provided to the staff and
	I

(202) 234-4433

supplemented a couple of times until NRC approval in the 1999/2000 time-frame. TVA used the approach presented in the ELTRs for the Browns Ferry upright request. The ELs differ slightly from what you're used to with the constant pressure power upright approach, which was approved in topical report NADC33004P, which was used for the Vermont Yankee EPU.

8 For Browns Ferry, the staff used our 9 review standards, insights from the NRC approved EPU 10 topical reports to determine whether submittals met 11 the applicable acceptance criteria. Our conclusions 12 were then compiled in the standard template provided 13 in RS-001.

What we have here is a sort of graphic explaining our review. One challenge for our review was the submittal of two applications for facilities in differing states of operation, modification, and licensing basis. However, it was possible to find some commonalities.

Where possible, the staff was able to use the same approach and acceptance criteria to complete our review. As you can see for the 120 percent, most of the review was similar with the exception of issues in the areas of fuels, risk, containment overpressure, and large transient testing. It is our intent to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	19
1	address as much of both 120 percent reviews as
2	possible.
3	CHAIR BONACA: Could you go back to that
4	a moment? I have to digest it a little bit.
5	(Pause.)
6	DR. CORRADINI: Can you go back one more.
7	Wasn't there so, I just wanted to understand you
8	said it, and I just want to understand the logic. The
9	logic is to look at this whole map of issues at 120
10	percent and back up where there is uniqueness for Unit
11	1 for 105. Is that what you said or did I
12	misunderstand you?
13	MS. BROWN: That's close. You're a little
14	bit, a little ahead of us there for where we're going
15	with the 105. This graphic is just to explain the
16	commonalities between the Unit 1, which come in for
17	the 20 percent, and the Units 2 and 3, which were the
18	15 percent reviews. For a good part of the reviews,
19	they were common. The acceptance criteria and the
20	methodology that we used is exactly the same. And
21	again, we are going to address 105, and for the most
22	part, those analyses bounded the 105 review.
23	There are some areas around the outside
24	that are unit-specific, and those resolutions we'll
25	also discuss later on today, and fuels, risk,
	I contract of the second se

(202) 234-4433

	20
1	containment overpressure. And then on Unit 1,
2	containment overpressure, risk, large transient
3	testing and fuels.
4	DR. CORRADINI: And now back to the one, now
5	back to the next one. That one.
6	CHAIR BONACA: Now you introduce risk
7	here, and SER does not contain a discussion of risk.
8	The application has a risk evaluation, I think is an
9	erring evaluation. But that's specific to the back-
10	pressure issue.
11	MS. BROWN: The 105 application did not
12	have a risk component performed by the staff. They
13	felt that the evaluation performed at 120 percent was
14	adequate. For containment accident pressure, we did
15	do some risk analysis.
16	CHAIR BONACA: Who did? I mean
17	MS. BROWN: The licensee.
18	CHAIR BONACA: The licensee.
19	MS. BROWN: I believe we've looked at a
20	little bit.
21	Bill, you guys did some risk for
22	containment accident pressure?
23	MR. CROUCH: Yes.
24	MS. BROWN: We did some validation and
25	verification of that information provided for that.
1	

(202) 234-4433

21 1 But routinely, we don't normally require, request a 2 specific risk analysis for 105. And that submittal you saw was on the 120s. 3 4 So if we look at the overall method for 5 power uprate, the licensee in their submittal listed these systems as being minimally affected, if at all, 6 7 by power uprate which means that these systems are basically part of normal plant functions and are 8 separate from and in general required whether the 9 plant is at full power, partial power. 10 For others, the increase in power level 11 12 does not significantly change or alter the performance requirements of these systems. However, the uprate 13 14 may cause a small change in processed radiation or 15 area monitoring, but the only effect on these two systems would be a slight change in the normal 16 17 radiation activity reading, and the possibility of the need to increase shielding to minimize personnel 18 19 exposure. 20 As will be mentioned several more times, 21 the licensee's application is based on the EPU 22 licensing topical reports. And just as the previous 23 slide discussed, the minor impacts, the ELTRs also address the treatment of affected systems. 24 For

example, the generic evaluation for the low pressure

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	22
1	systems, such as core spray and residual heat removal,
2	indicated that the hardware is not affected.
3	Injection setpoints do not need to be changed, and
4	flow rates will not be increased as a result of the
5	extended power uprate.
6	For the recirculation system, the maximum
7	core rates are not increased on chief power uprate.
8	The control rod drive system should see a better scram
9	insertion time as a result of the higher reactor
10	pressure. Reactor water cleanup is slightly affected,
11	by the water print chemistry requirements should
12	remain unchanged.
13	DR. ABDEL-KHALIK: Excuse me.
14	CHAIR BONACA: Go ahead.
15	DR. ABDEL-KHALIK: Where does the OPRM
16	system fall in these two sets of systems that you have
17	listed?
18	MS. BROWN: Whether or not they are
19	affected by power uprate? The staff performed reviews
20	independent of the uprate for the stability analysis.
21	So the OPRMs for Unit 1, as a matter of fact, that's
22	one of our little blanks in the 105 SE. Because I
23	don't think at the time that we submitted you the
24	draft that that evaluation was complete. But as far
25	as effects, they were reviewed by the staff at 120

(202) 234-4433

	23
1	percent.
2	DR. ABDEL-KHALIK: So what's the answer?
3	MS. BROWN: About?
4	DR. ABDEL-KHALIK: Affected or unaffected?
5	MS. BROWN: I'm not sure. I'll have to
6	get back to you on that. I don't think I have the
7	staff here to specifically answer that, but we'll take
8	a note and get back to you. Our folks in the fuels
9	are going to be here this afternoon, and we'll be
10	better able to discuss the effects of the power uprate
11	on the OPRM.
12	CHAIR BONACA: Before you proceed, I have
13	another question. You said before that you do not
14	perform risk evaluation for the 105 percent power
15	uprate?
16	MS. BROWN: Yes, sir.
17	CHAIR BONACA: However, the analyses
18	presented and evaluated in the SER for the 105 percent
19	power really is the one made at the 120 percent power.
20	So why are we not talking about risk if the analysis
21	for reviewing is 120 percent power?
22	MS. BROWN: What was necessary for the 105
23	percent review was what we included in the 105 SE.
24	The insights and the increases from the 105 we didn't
25	feel were necessary for the approval.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	24
1	CHAIR BONACA: I went back to the
2	calculations, and those calculations are the ones
3	reported in 120 percent power.
4	MS. BROWN: Yes, sir. I was talking about
5	the 105. I'm sorry.
б	CHAIR BONACA: And they're used now to
7	justify 105 as a bounded case. Okay? And now it
8	seems to me that the risk evaluations for 120 percent
9	power is the same as 105 percent power because you're
10	using the same NPSH when you're presenting the
11	situation. So I'm confused.
12	MS. BROWN: We actually have a specific
13	presentation to address how power uprate, how the risk
14	impacts are applied to power uprate. I think it is
15	going to be before lunch. And then we will have a
16	discussion after lunch that addresses specifically our
17	evaluation of risk and containment accident pressure.
18	CHAIR BONACA: I appreciate that. I know
19	it's on the schedule, etcetera. I just bring it up to
20	illustrate the confusion that all of this is creating.
21	Okay, there are statements being made that are not
22	supported by the evidence in the SER. I mean, I'm
23	reviewing NPSH for 120 percent power and I'm
24	questioning the credit being taken and the length of
25	the credit. But it is really obscure there. There
	I contract of the second se

(202) 234-4433

	25
1	are statements which are not corresponding to inputs.
2	So, you know, we have to be careful that
3	we do not get to the point where there is total
4	obfuscation of where we are going here.
5	MR. McGINTY: And we agree, and as I've
6	mentioned earlier, one of our primary objectives is to
7	clarify any areas of confusion prior to this meeting.
8	CHAIR BONACA: Because, I mean, my concern
9	is this. You may say this is only 105 percent power
10	uprate, therefore we're not going to discuss risk
11	associated with NPSH. Okay? And then we say fine.
12	And then we get to the 120 power uprate, and you're
13	going to say oh, we already reviewed that before,
14	therefore we don't need to talk about it because the
15	analysis
16	MS. BROWN: No, sir. Not at all.
17	CHAIR BONACA: I'm not saying that you
18	would do that intentionally. I am only saying that it
19	is a possible outcome, and I really want to prevent
20	that.
21	MS. BROWN: No, sir.
22	MR. McGINTY: And that illustrates the
23	clarity of the communications during the conduct of
24	these meetings and the full committee meetings
25	subsequently. We agree.

(202) 234-4433

	26
1	MS. BROWN: Yes, sir. We actually have a
2	dedicated risk presentation tomorrow afternoon on the
3	120 percent risk.
4	CHAIR BONACA: Which?
5	MS. BROWN: It's Mr. Stutzke. So you'll
6	be hearing from him three times on risk aspects for
7	different issues.
8	Okay, low pressure systems. While many
9	issues in the submittals are generically resolved in
10	topical reports, several other issues have been
11	identified in a more unit specific analysis review
12	required.
13	Many of these interesting points are not
14	new and some issues have been discussed previously by
15	the staff before the ACRS. Just like for Vermont
16	Yankee, the resolution of these items has added an
17	additional level of complexity to the review. We have
18	attempted to focus our presentation today to address
19	these topics.
20	CHAIR BONACA: Before you move on, large
21	transient testing, I'm sure you will be discussing
22	this later, right?
23	MS. BROWN: Yes, sir.
24	CHAIR BONACA: But the licensee had
25	proposed one of the tests be done at the 120 percent

(202) 234-4433

	27
1	power, 115 to 120. And you said no, we're going to do
2	it at 105?
3	MS. BROWN: Yes, sir.
4	CHAIR BONACA: Does it mean they have to
5	do it again at 120 later on?
б	MS. BROWN: It depends on the outcome of
7	their 105 test. If they are completed satisfactorily,
8	they should have a very good justification for not
9	performing those tests again. But Mr. Tatum and Mr.
10	Hussein Hamzehee will discuss that in a little more
11	detail later on this morning.
12	CHAIR BONACA: Okay, thank you.
13	MS. BROWN: One of the unique features of
14	the Browns Ferry uprates is the fact that these
15	facilities had their operating licenses extended for
16	an additional twenty years prior to implementation of
17	the power uprate. This was not TVA's original intent.
18	Back in 2002, the licensee had originally indicated
19	that the EPUs would be submitted first and then the
20	license renewal. However, TVA ended up submitting the
21	license renewal on December 31, 2003, and the NRC
22	approved it May 4th of last year.
23	Just like license renewal, the licensees
24	analysis were performed at 120 percent. However, as
25	a license renewal was submitted and approved before

(202) 234-4433

1	the EPUs, the license was renewed at the existing
2	operating license power level, which was 100 percent
3	for Unit 1 and 105 percent for Units 2 and 3. This has
4	resulted in the staff having to add a license renewal
5	review for the power uprates.

The staff, using some information provided 6 7 during the license renewal review and through additional information requested, went back through 8 the submittal, focusing on the time limiting aging 9 analyses and aging management programs which might be 10 11 affected by the uprate. As part of the aging 12 management review, the staff required evaluation of EPU modifications to determine any impact from the 13 14 conclusions reached in the license renewal 15 application.

TVA performed reviews of the EPU mods for 16 17 The progress of the mods ranged from all three units. design status to complete. These results indicated 18 19 that additional components, materials no or 20 environments were introduced. Therefore, the staff 21 found that the aging management review completed 22 during the license renewal review remained acceptable. Final reviews confirming this will be completed after 23 implementation of all EPU modifications. 24

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Earlier, we touched upon the licensee's

(202) 234-4433

25

(202) 234-4433

desire to restart Unit 1 this spring. As a result of additional information needed to support the 120 3 percent steam dry review, in September of last year 4 the licensee requested an interim uprate of 5 percent. In this supplement, the licensee indicated that this request was bounded by the existing 120 percent analysis provided with the extended power uprate submittal in June 2004. 8

Therefore, last fall, the staff refocused 9 our review efforts to verify that the information 10 11 provided in the Unit 1 120 request remained bounding 12 This assumption was found to hold true for the 105. with one possible exception in the fuels area. 13 This 14 exception will be discussed later on in the reactor 15 systems presentation.

Just as before, for the 120 percent 16 17 uprate, the staff's review was conducted using the same quidance and accepted criteria adjusted as 18 19 necessary for the power level. In addition to the 20 conservative 120 percent analysis performed by the 21 licensee, the precedent established by the safe 22 operation for several years of Units 2 and 3 at this 23 power level provided additional comfort that the 105 24 percent submittal is acceptable.

Consistent with that, the staff compiled

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

5

6

7

(202) 234-4433

a safety evaluation using the template provided in the staff review standard.

3 CHAIR BONACA: Since you are talking about 4 Unit 2 and 3 experience in several locations in the 5 SER, you're saying that there isn't reason sufficient information yet from Unit 1, therefore, you rely on 6 7 Unit 2 and 3 experience to draw conclusions. For 8 example, if I remember pipe stress calculations, 9 that's a typical example. Why -- at some point you 10 have to explain why it's applicable. I mean is it the same materials? There have been a lot of changes in 11 Unit 1 and I remember when we did license renewal that 12 one statement was that the experience from Unit 2 and 13 14 3 have been used to make decisions regarding material 15 selection for Unit 1. We have to understand why we have to rely entirely on Units 2 and 3 experience and 16 17 not plant specific as Unit 1. Bill, did you want to touch on 18 MS. BROWN: 19 that now? 20 On the pipe -- for example, MR. CROUCH: 21 the pipe stress. At this point in time we've 22 completed, we have now completed all the pipe stress 23 evaluations. As you know, we were going through the

implemented and you have to go through and update the

restart process and so all the mods were being

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

1

2

(202) 234-4433

	31
1	calculations at the end. Those have been updated now
2	and we're in the process of closing all those DCNs, so
3	we've got the pipe stresses done for Unit 1.
4	CHAIR BONACA: Yes, we will have to look
5	at there are several cases of pipe stresses. That
6	is a good example. And there was a commitment to
7	delivery before the end of January, so you deliver the
8	package?
9	MS. BROWN: Yes, sir. We received a
10	letter, I believe it was last week, no, it was the
11	week before, actually.
12	MR. CROUCH: A couple of weeks ago.
13	MS. BROWN: Addressing pipe stresses and
14	that was one of our confirmatory action items that
15	didn't have a date in SE.
16	CHAIR BONACA: Okay.
17	MS. BROWN: Let's see where are we? So
18	what's left to do? The technical review for the 105
19	percent is complete. I know that the draft safety
20	evaluation has some blanks for dates. These items are
21	either pending letters addressing confirmatory items
22	like the status of implementation or mods or where the
23	review is some other technical area was performed
24	under a separate review like the safety limit MCPR.
25	The technical review for these items which

(202) 234-4433

Í	32
1	support Unit 1 through extended power uprate
2	conditions is complete. Although the review has not
3	been released to the public, the 120 percent technical
4	review is complete with the exception of steam dryers
5	and certain fuel issues.
6	We're aware that our constant scope and
7	schedule changes have caused some confusion, but I
8	just wanted to reiterate that it is our intent to
9	return to this Subcommittee to discuss all remaining
10	120 topics with our primary focus on steam dryers and
11	fuel issues.
12	With your favorable recommendation, we
13	intend to issue the 105 percent Unit 1 uprate to TVA
14	in February with 120 percent uprate tentatively
15	scheduled for early summer. As you would expect, our
16	ability to complete the 120 review is entirely
17	dependent on the timely receipt of the additional
18	information on dryers and fuels. At that time, we'll
19	be able to better predict the time frame for issuance
20	of the staff's 120 percent reviews.
21	CHAIR BONACA: Now you keep talking about
22	120 percent and are you making a distinction between
23	the Unit 1 and Unit 2 and 3?
24	MS. BROWN: I'm sorry, could you ask that
25	one more time?

(202) 234-4433

	33
1	CHAIR BONACA: When you talk about 120
2	percent power, you are referring to 120 percent power
3	for Unit 1.
4	MS. BROWN: I'm referring to 120 percent
5	power for all three units.
6	CHAIR BONACA: Now, so we need to
7	understand and certainly will be in the future, but
8	even now, I understand Unit 2 and 3 have different
9	fuel for Unit 1?
10	MS. BROWN: Yes.
11	CHAIR BONACA: And some of the topical
12	reports of GE may not be applicable. I mean there are
13	standard reports on power uprates, for example, cost
14	and pressure power uprates that are applicable if you
15	have GE fuel.
16	Does the current fuel supply have topicals
17	equivalent to those?
18	MS. BROWN: Not approved per se, but there
19	are some guidance provided to the industry regarding
20	mixed cores and other fuel types and where the staff
21	does a validation of verification review which was
22	conducted on Units 2 and 3 for the Framatone Areva
23	fuels.
24	CHAIR BONACA: We have never seen it at
25	the ACRS.
	I contract of the second se

(202) 234-4433

	34
1	MS. BROWN: Not that I'm aware of.
2	CHAIR BONACA: It think it is a
3	significant difference.
4	MS. BROWN: Yes, sir.
5	CHAIR BONACA: It would take time
6	MR. McGINTY: I appreciate that. Again,
7	throughout these discussions and I think it's led to
8	part of why there's been some confusion thus far.
9	While Eva is referring to our desire to in the future
10	come before the ACRS and resolve all issues associated
11	with 120 percent power uprates for all three units,
12	that is not to say that there are not individual
13	issues associated with each unit that need to be
14	addressed. And so clarity in our communications
15	throughout these proceedings, as well as on a daily
16	basis between the staff and TVA are necessary in that
17	regard.
18	CHAIR BONACA: I could see the possibility
19	of a need for a TH Subcommittee to look at some of the
20	calculations we have not seen before.
21	MS. BROWN: That is definitely one of the
22	issues we have on the agenda for the March
23	Subcommittee meeting is a discussion of the Units 2
24	and 3 fuel analysis and review.
25	DR. BANERJEE: I notice that you have on
l	

(202) 234-4433

	35
1	the agenda the containment accident pressure.
2	MS. BROWN: Yes, sir.
3	DR. BANERJEE: That will be for 120
4	percent power level?
5	MS. BROWN: The discussion will range from
6	will address the 105 as well as what's needed at
7	120 percent.
8	DR. BANERJEE: And you will also look at
9	long-term pooling issues in this at this point,
10	when you talk about containment pressure or only about
11	containment pressure?
12	MS. BROWN: When you talk about long-term
13	cooling, we're talking about suppression pool?
14	DR. BANERJEE: Yes.
15	MS. BROWN: I believe so.
16	DR. BANERJEE: Okay. Now you have nothing
17	related to loss of coolant accident or small break
18	LOCA.
19	MS. BROWN: That's integral in the
20	containment over pressure review. The primary event
21	that we look is the LOCA, but we also look at those
22	special events as far as station blackout, ATWS and
23	Appendix R.
24	DR. BANERJEE: Okay. Let's wait and see
25	what you cover.

```
(202) 234-4433
```
	36
1	CHAIR BONACA: And realize again, the
2	analyses were done at 120 percent.
3	DR. BANERJEE: Right, I realize that.
4	CHAIR BONACA: We will talk about that
5	later.
6	MS. BROWN: Okay. With that, I believe
7	that TVA will be making a presentation.
8	MR. BHATNAGAR: Good morning. My name is
9	Ashok Bhatnagar. I'm the Senior Vice President of
10	Nuclear Operations with TVA Nuclear.
11	My role currently is fully dedicated to
12	the efforts at Browns Ferry since October of this year
13	and is to safely integrate Unit 1 into the rest of the
14	operating fleet with TVA.
15	I want to thank you for allowing us the
16	opportunity to discuss some key topics with you
17	associated with the Unit 1 Browns Ferry five percent
18	uprate. I do appreciate the flexibility of the ACRS
19	and meeting with us this month to address this issue.
20	Since the beginning, this project has been
21	based on conservative decisionmaking and a commitment
22	to having the time and resources to do this project
23	correctly and I believe we have.
24	We've maintained and continue to maintain
25	a methodical approach to completing the small amount
	I contraction of the second

(202) 234-4433

	37
1	or remaining physical work in the plant and complete
2	the remaining robust testing program that has been on-
3	going and is yet to come.
4	We're recovering this unit in a safe and
5	reliable manner and with that, let me turn the
6	presentation over to Bill Crouch who will give us an
7	overview of what's been happening at Browns Ferry.
8	Thank you.
9	MR. CROUCH: Good morning. As I mentioned
10	earlier, my name is Bill Crouch and I am the Site
11	Licensing Manager at Browns Ferry and as Ashok said we
12	appreciate the opportunity to come and talk to you
13	today. We have brought a team of individuals with us
14	here today. I'm not going to introduce all of them,
15	but we have our Unit 1 Engineering Modifications Team.
16	We have Fuels people here. We have our EPU managers
17	here. We have GE Fuels people here. We have a
18	complete team. So if you have a question about the
19	Unit 1 five percent uprate, we're prepared to answer
20	it for you today.
21	I'm going to give a little bit of an
22	overview here, some background and history on Browns
23	Ferry. Some of this, the bullets up here are a
24	duplicate of what was in the NRC slides, so some of
25	these I will pass over very quickly and others I'll
1	I contract of the second se

(202) 234-4433

	38
1	spend a little bit more time to give you some
2	background.
3	So with that, I'm on page I-3 of the
4	presentation. It's about the third or fourth page
5	into the presentation, in the booklet you've got
6	there.
7	As you were told, Browns Ferry is a three
8	unit plant with GE BWR-4s with Mark 1 containments in
9	case any one is not familiar with what a Mark 1
10	containment is, that's the upside down lightbulb with
11	the large torus around it that serves as a suppression
12	pool. Coming off the torus, the ECCS systems take
13	their suction from a ring header that goes around the
14	bottom. So that gives you a physical geometry of the
15	plant.
16	Unit 1, 2 and 3 were licensed in '73, '74
17	and '76. And after Unit 1 and 2 got licensed, we had
18	the Browns Ferry fire which we recovered from in 1977
19	and began operating again. So a lot of people have
20	confusion that this restart that we're working on for
21	Browns Ferry Unit 1, we are not restarting from the
22	fire. We had restarted and continued to operate for
23	seven more years after that. So that's to give you
24	some background.
25	Some things that we've done in the near
1	

(202) 234-4433

	39
1	term is we have renewed all of our licenses for Units
2	1, 2 and 3 and there for an additional 20 years.
3	DR. CORRADINI: So just for the so that
4	takes you through the 33, 34 and 36?
5	MR. CROUCH: That is correct. We've also
6	recently done the alternate source term or AST that
7	people refer to. That was done back in 2004.
8	Right now, we plan to return Unit 1 to
9	service in early 2007. We're on track for doing that.
10	Next slide, please.
11	As we've gone through the Unit 1 restart,
12	it's our intention to make Unit 1 operationally
13	similar to Units 2 and 3. And the way we've done that
14	is we set out to maintain the same licensing basis for
15	all three units. As we restarted Unit 2, we, jointly
16	with the NRC, created the plan, the Nuclear
17	Performance Plan, and that gave us an outline of what
18	all was going to have to be done in order to return
19	the first unit to service.
20	We have utilized that same approach for
21	returning Unit 1 to service, meaning that we had the
22	same programs and performed the same modifications as
23	we then performed on Units 2 and 3. So we kept the
24	units to be the same.
25	Since the time of restart for Units 2 and

(202) 234-4433

1 3, they have had various upgrades performed on them 2 and so as part of our Unit 1 restart process, we 3 performed those same upgrades, once again to keep the 4 units the same.

5 As part of the Unit 1 restart, we also intended to go straight to the 120 percent. So in 6 7 addition to performing the restart mods and the upgrades since restart on Units 2 and 3, we've also 8 9 installed the modifications required for going to 120 percent. We are not here today asking for permission 10 to go to 120 percent. We'll only go to 105 and we'll 11 12 come back again as a separate request to go to the 120. The equipment will be in place to do that. 13

14 CHAIR BONACA: I am still -- this is more 15 curiosity on my part. Why didn't you proceed with 120 16 percent power uprate request and then make а 17 commitment to stop at 105 and operate at 105 with the provisions that you put in the RPS and other SER and 18 19 so on.

20 MR. CROUCH: We will get to that a little 21 bit later, but --22 CHAIR BONACA: This is more curiosity.

23MR. CROUCH: It was tied up with the steam24dryers.

CHAIR BONACA: I understand that.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	41
1	MR. CROUCH: Let me
2	CHAIR BONACA: Okay.
3	MR. CROUCH: When we get down here in a
4	minute, we'll talk about that.
5	CHAIR BONACA: One additional question I
6	would like to ask you and you can answer whenever you
7	want, one thing that comes to mind when I look at Unit
8	1, I went back to the documentation of record which is
9	the updated FSAR and it's still the updated FSAR of 20
10	years ago, whatever.
11	MR. CROUCH: It's kept up to date.
12	CHAIR BONACA: I understand you do that.
13	But assume some of the methodology used, of course, is
14	the methodology used by GE at that time and now you're
15	using say for GESTR and you know. So there are
16	certain steps in transition that you normally do. For
17	example, you realize all the base cases of originally
18	you had in the last uprate with the new technology to
19	compare the effects tied to the methodology you're
20	using and separate them from the power uprate.
21	It wasn't clear to me that this has been
22	done for this plant.
23	MR. CROUCH: The FSAR right now reflects
24	105 percent for Units 2 and 3. There's also
25	information in there for Unit 1. It still reflects
	1

(202) 234-4433

	42
1	the old 100 percent. As part of this restart process,
2	we will be updating the FSAR for Unit 1 to reflect
3	it's new condition. There's also another FSAR update
4	that will move the units to 120 percent.
5	CHAIR BONACA: I understand. I'm only
6	saying that when you do that, you have to realize your
7	latest analysis of record. When did you shut down the
8	plant, 19
9	MR. CROUCH: 1985.
10	CHAIR BONACA: 1985. Don't you have to
11	redo the analysis with the new methodology, okay, to
12	determine the effect of the methodology on the results
13	and then perform again the analysis of 120 percent
14	power to determine the effect to do the power uprate?
15	MR. CROUCH: The comparison between 100
16	and 105, we did that when we did the Units 2 and 3 and
17	showed what the impact was. And so we did not repeat
18	that for Unit 1, because of the similarity of the
19	units. And we have the analyses at 105 that were
20	performed and now we got the analysis for 120.
21	CHAIR BONACA: Units 2 and 3 are licensed
22	under Areva fuel so you have a different kind of basis
23	there. I mean different analysis models, right?
24	MR. CROUCH: We have done the analysis for
25	Units 2 and 3 for 105 which is what we did back in '98

(202) 234-4433

	43
1	and that was done with GE fuel and so we've got that
2	comparison. GE, 100 percent; GE, 105. We have since
3	done the analyses for Units 2 and 3 to compare the 105
4	Areva, on up to 120 Areva.
5	CHAIR BONACA: Okay, we need to understand
6	that better when we get there.
7	MR. CROUCH: Okay, next slide, please.
8	Just to give you some idea of the overall
9	scope of the Unit 1 project, these are some examples
10	of the major work that's been performed. This is by no
11	means an all-inclusive list. We've made major
12	modifications in the dry well structural steel, the
13	electrical penetrations, small bore piping, dry well
14	coolers, cable and conduit.
15	We replaced all of the recirc RHR core
16	spray, RBCCW and RWBCU piping inside the dry well. We
17	replaced it from its original material to corrosion-
18	resistant material. Kept the same geometries. It was
19	just a material change.
20	DR. CORRADINI: This is a little bit of
21	background. I apologize. So you've made it a point
22	of saying that beyond the fire, you operated for seven
23	years until '85 and then shut down?
24	MR. CROUCH: That's correct.
25	DR. CORRADINI: Can you remind us, a
	1

(202) 234-4433

	44
1	little more history, as to why then in '85 you shut
2	down Unit 1, but operated 2 and 3?
3	MR. CROUCH: Okay. We shut down all three
4	units in '85. All the entire nuclear fleet, the
5	entire TVA nuclear fleet was shut down in '85 because
6	of management concerns and safety concerns in that we
7	did not have an effective management structure to
8	identify and resolve problems and we had not resolved
9	various regulatory issues such as 790214 EQ, Appendix
10	R and different things like that. So it was a
11	combination of both management and technical issues.
12	DR. CORRADINI: And then 2 and 3 come back
13	up and one didn't because?
14	MR. CROUCH: We just didn't need the power
15	at the time.
16	DR. CORRADINI: Okay.
17	MR. CROUCH: We're now at the point where
18	we need the power.
19	CHAIR BONACA: Would you say now in the
20	changes you made in the piping, valves, etcetera of
21	Unit 1, Unit 1, 2 and 3 are identical?
22	MR. CROUCH: From a geometric standpoint,
23	they are identical. From an operational standpoint,
24	they'd be identical.
25	CHAIR BONACA: From materials?
	I contract of the second se

(202) 234-4433

	45
1	MR. CROUCH: From a materials standpoint,
2	they're mostly identical. We did more piping
3	replacement on Unit 1 than we did on 2 and 3. For
4	example, in the recirc system on 2 and 3 we replaced
5	what's called the ring header and the risers, but on
6	Unit 1 we also replaced the large suction piping and
7	discharge piping.
8	CHAIR BONACA: But is it the same
9	material?
10	MR. CROUCH: The material we put in the
11	ring header and risers on Units 2 and 3 is the same
12	material we used throughout on Unit 1.
13	CHAIR BONACA: That's what I wanted to
14	hear.
15	MR. CROUCH: So we've introduced no new
16	materials on Unit 1.
17	CHAIR BONACA: So you can make the claim
18	that
19	DR. POWERS: Is that really true since
20	they are different generations of what's nominally the
21	same material, they really aren't the same, are they?
22	MR. CROUCH: Whatever may have changed.
23	As a matter of fact, some of the piping we installed
24	in Unit 1 was actually bought in 1985 in anticipation
25	of doing this back that time ago. We've re-used it.

(202) 234-4433

	46
1	CHAIR BONACA: The reason for me is mostly
2	flow accelerated corrosion, statements made in the SER
3	that the experience of Unit 2 and 3 is applicable to
4	Unit 1 and that's why I'm asking questions regarding
5	materials and configurations.
6	MR. CROUCH: Robert would
7	MR. PHILLIPS: My name is Robert Phillips
8	and I'm with TVA and I'm their Senior Metallurgical
9	Engineer.
10	We reviewed the materials for Units 2 and
11	3 and at that time we used 316 MG. Now for Unit 1, we
12	used similar type materials. Now the CMTRs may not be
13	identical, but the specifications are MG-type
14	material. That's what we use.
15	MR. CROUCH: Okay.
16	DR. BANERJEE: You left some of the wiring
17	in, didn't you?
18	MR. CROUCH: I will point that out. In
19	the dry well, we replaced all the wiring.
20	DR. BANERJEE: Right, okay.
21	MR. CROUCH: In the reactor building,
22	there was a small amount of a non-safety related
23	wiring, but essentially all of the safety-related
24	wiring was replaced.
25	DR. BANERJEE: But you left some of the

(202) 234-4433

	47
1	old cabling in place?
2	MR. CROUCH: Yes, it was abandoned in
3	place.
4	CHAIR BONACA: But the fire analysis
5	doesn't talk about that in the SER list.
6	MR. CROUCH: The cabling that was left in
7	place is considered as part of the combustible
8	material that's in the area.
9	DR. SIEBER: The loading, combustible
10	loading?
11	MR. CROUCH: Yes.
12	CHAIR BONACA: That's 800,000 feet of
13	cable. Do you have 800,000 feet of old cable left
14	there?
15	MR. CROUCH: Dave, do we have 800,000 feet
16	of abandoned cable?
17	CHAIR BONACA: Plus or minus 100,000.
18	(Laughter.)
19	I hate to be so specific.
20	MR. BURRELL: My name is Dave Burrell with
21	TVA Unit 1 Restart. No, we didn't leave 800,000 feet
22	of abandoned cable in place. We removed all of the
23	cable out of the dry well. A goodly portion of that
24	that was in reactor building was removed. All of the
25	installed cable in the reactor building at post-fire

(202) 234-4433

	48
1	recovery was coated with flamastic. That that's still
2	under flamastic obviously remains.
3	CHAIR BONACA: So much of it was removed?
4	MR. BURRELL: That's correct.
5	DR. BANERJEE: What is flamastic?
6	MR. BURRELL: A material that we put on as
7	a part of post-fire recovery to retard any
8	flammability of the material. This would have been
9	pre-IEEE 383 type cable and to minimize any
10	combustibility for the cable we coated all the exposed
11	areas with a material called flamastic.
12	CHAIR BONACA: Is this the cable that's
13	left in right now, is it coated with this material or
14	the exposed area coated with it?
15	MR. BURRELL: Yes. The old material is
16	coated with the flamastic.
17	MR. CROUCH: Moving on to the reactor
18	building, once again we give you some examples of
19	things. We replaced the reactor building closed
20	cooling water heat exchangers. These are heat
21	exchanges that supply cooling water inside the reactor
22	building. They're a heat exchanged that has raw water
23	on one side and high quality on the other side.
24	Rather than trying to retube the condensers or show
25	that they were okay, we took the conservative approach
	I contract of the second se

(202) 234-4433

	49
1	and just completely replaced them.
2	Reactor water cleanup piping, we replaced
3	all of that inside the reactor building. We also
4	replaced the regen heat exchangers. We also
5	completely replaced the RWCU pumps. We took a
6	different approach on Unit 1 than what we did on 2 and
7	3 in that we went ahead and just took the conservative
8	approach and replaced a lot of items out there in the
9	building, rather than trying to do engineering
10	analyses to show that they were okay.
11	So I'm not going to go through this whole
12	list of all these things we've done. You can see
13	there was major replacements done throughout the dry
14	well, the reactor building and the turbine building.
15	We also did the in the control room,
16	what's called the control room design review or the
17	CRDR where we brought the control room up to the post-
18	heat bystanders for human factors.
19	DR. SIEBER: I take it that we need not
20	rely on any kind of a lay-up programs since you've
21	replaced a lot of this equipment?
22	MR. CROUCH: We have replaced a major
23	portion of the systems out there, but there are
24	systems that were in lay-up and for those systems
25	DR. SIEBER: That weren't replaced?

(202) 234-4433

	50
1	MR. CROUCH: That were not replaced.
2	DR. SIEBER: Could you give us a broad
3	brush outline of which systems those were?
4	MR. CROUCH: The main steam system was not
5	replaced. The feedwater system was not replaced. We
6	performed both visual inspections and UT inspections
7	of those systems and shown that there was no
8	degradation through the lay-up process.
9	DR. SIEBER: How were they laid up, wet or
10	dry?
11	MR. CROUCH: Those two systems were laid
12	up dry.
13	DR. SIEBER: Was nitrogen in them?
14	MR. CROUCH: Probably. I don't remember
15	for sure. In our guide, it had to acknowledge it.
16	Joe, do you remember? They didn't have
17	nitrogen on them. They just had
18	MR. VALENTE: Joe Valente from TVA. We
19	laid them up with dehumidified air.
20	DR. SIEBER: Hot air. Okay. Silica gel
21	or something like that?
22	MR. VALENTE: Yes.
23	CHAIR BONACA: I would like to point out
24	for those systems you made commitments to periodic
25	inspections under license renewal.
1	I contraction of the second seco

(202) 234-4433

	51
1	MR. CROUCH: Right, and we will get to
2	that here later on.
3	Other systems that were water systems,
4	some of them were laid up wet. Some of them were laid
5	up dry. The biggest effect we saw and I'll get to
б	that a little later on, in some of our raw water
7	systems that were laid up wet, we saw a good
8	performance and as long as it was laid up completely
9	wet, there was no impact from the lay up. If you laid
10	it up so that it was had some moisture in it with
11	air pockets, you saw some severe degradation. All
12	that type of system we replaced completely.
13	DR. SIEBER: How about biological growth?
14	I presume you treated it for that, but I could picture
15	a laid up system without circulation being a botanical
16	garden.
17	MR. CROUCH: Yes, and we monitored that
18	and we kept it in good condition.
19	DR. SIEBER: Okay.
20	DR. BANERJEE: What did you do with the
21	sump screens?
22	MR. CROUCH: We don't have sump screens.
23	We have the torus which has suction strainers and we
24	replaced the suction strainers as part of the Bulletin
25	96-03. They're the large GE stacked disk strainers.
	1

(202) 234-4433

	52
1	DR. BANERJEE: Stacked disk.
2	MR. CROUCH: Stacked disk.
3	DR. BANERJEE: And all of them are the
4	same?
5	MR. CROUCH: Yes. We have the same
6	suction strainers in all three units.
7	There's four large suction strainers in
8	each torus. They're about four feet in diameter, four
9	feet tall with the stacked disk design.
10	We also took a conservative approach in
11	terms of flow accelerated corrosion in that we took
12	lessons learned from Units 2 and 3 and places where we
13	experienced pack degradation and we went over into
14	Unit 1 and generically applied that experience to all
15	the various piping systems such that if we were seeing
16	degradation in one particular spot in Unit 2 or 3, but
17	we had similar spots in Units 2 and 3 that weren't
18	experiencing problems, we went over to Unit 1. We
19	replaced all those conditions generically throughout
20	the plant so as to prevent any future pack problems.
21	We replaced it all with pack-resistant chromally
22	piping.
23	Next slide, please.
24	Another conservative approach that we took
25	on Unit 1 was we took and installed the same digital

(202) 234-4433

	53
1	control systems as were installed on Units 2 and 3.
2	We have digital systems on the electro-hydraulic
3	control that controls the turbine, the feedwater
4	control system, condensate demineralizers, the recirc
5	pumps and the feedwater heaters.
6	DR. SIEBER: Is this a separate digital
7	system for each of these applications?
8	MR. CROUCH: Yes.
9	DR. SIEBER: They're independent of one
10	another?
11	MR. CROUCH: Yes.
12	DR. SIEBER: Okay.
13	CHAIR BONACA: These digital control
14	systems also is installed on Units 2 and 3?
15	MR. CROUCH: Yes, these are all installed
16	on Units 2 and 3.
17	CHAIR BONACA: So you have the experience?
18	MR. CROUCH: Yes.
19	CHAIR BONACA: Yes.
20	MR. CROUCH: Page 7 then. In addition to
21	doing major modifications work where we replace stuff,
22	we also went out in the plant and refurbished what was
23	already out there. Some examples of that was the
24	reactor core isolation cooling and the high pressure
25	cooling injection systems. Those systems were in a

(202) 234-4433

	54
1	poor state of repair when we started Unit 1. We've
2	gone on and completely refurbished the entire skids,
3	replaced valves as needed, whatever it required to
4	bring the system back up to full tech spec operable
5	status.
6	We rewound the main generator. We've gone
7	out and we've replaced throughout the plant we've
8	replaced many, many valves here. This gives you an
9	idea of how many valves we replaced throughout the
10	plant.
11	Instrumentation-wise, nearly all the
12	instrumentation in the whole, throughout the whole
13	plant has been replaced. The instruments that were
14	sitting out there had corroded contacts and all the
15	different problems you can imagine with instruments,
16	so it's just all been replaced and will be
17	recalibrated.
18	DR. SIEBER: Let me interrupt for a
19	second. The numbers you showed here for valves that
20	were replaced, looks like a big number, but there's
21	probably about 17,000 valves in that plant, so there's
22	a lot that weren't replaced.
23	MR. CROUCH: Right. For the valves that
24	were not replaced, we've gone out and we've inspected
25	each one of them, made sure they functioned.
	I Contraction of the second

(202) 234-4433

	55
1	DR. SIEBER: What about packing?
2	MR. CROUCH: That will have all been
3	checked.
4	DR. SIEBER: How do you check it, with a
5	
6	MR. CROUCH: All the packing has been
7	replaced.
8	DR. SIEBER: Okay, that's really the
9	point. I started up a plant once that was shut down
10	for a long time and every packing gland in the plant
11	leaked. So just repacking them while you've got the
12	chance and doing them all is probably economic. And
13	that's what you're doing.
14	MR. CROUCH: That's what we're doing.
15	Rather than trying to pencil whip stuff, we've taken
16	the conservative approach to go do the maintenance on
17	it or do the replacement on it.
18	DR. SIEBER: Okay. Your bill for
19	umbrellas will go down.
20	MR. CROUCH: That's right. In-vessel
21	work, we've done the replaced the control rod
22	drives. It's not actually in-vessel. It's under
23	vessel. We replaced all of the control blades. We
24	replaced all of the LPRMs. We've also done the BWR-
25	VIP inspections of the vessel internals.

(202) 234-4433

	56
1	Next slide, please.
2	Just to give you an idea of the scope,
3	there's some numbers up there. As you can see, many,
4	many feet of large bore and small bore piping. Many
5	hangers have been replaced. Miles and miles of cable
6	replaced throughout this project.
7	CHAIR BONACA: Let me ask you a question,
8	however. In the context of the power uprate, you're
9	talking about two large transient tests.
10	MR. CROUCH: That's correct.
11	CHAIR BONACA: Okay, but you're restarting
12	this plant almost as a new plant, so you must have a
13	full start-up program?
14	MR. CROUCH: Yes.
15	CHAIR BONACA: And you're probably testing
16	system by system?
17	MR. CROUCH: Yes.
18	CHAIR BONACA: Before you do integral
19	tests?
20	MR. CROUCH: Yes.
21	CHAIR BONACA: Okay. And how do you
22	integrate this program and if there is no mention of
23	it, perhaps we come into the power uprate tests and it
24	seems to me as I was reading that you would have
25	conducted this test of the 100 percent power anyway
	1

(202) 234-4433

	57
1	already.
2	MR. CROUCH: Yes.
3	CHAIR BONACA: Those two that you
4	mentioned, loss of feedwater.
5	MR. CROUCH: No. Our restart test program
6	which is driven by the nuclear performance plan I
7	referred to earlier, it is a combination of component
8	testing that you do as part of your post-modification,
9	post-maintenance testing, accompanied with your
10	surveillance testing, driven by tech specs,
11	accompanied with special tests that were driven out of
12	what's called our baseline test requirements
13	documents. So we would have gone out and tested every
14	safety function throughout the plant.
15	And so it's a combination of individual
16	component tests and integrated full-system tests and
17	then integrated-system tests.
18	The restart test program was not going to
19	re-perform the low rejection or MSIV closure. Those
20	tests were done back at initial licensing and it was
21	our opinion at first that we would not re-perform
22	those tests. However, through the discussions with
23	the staff we're now going to redo those tests at the
24	new 105 percent power.
25	CHAIR BONACA: So you don't have plans to

(202) 234-4433

	58
1	have those?
2	MR. CROUCH: We did not initially plan to
3	have them. We are now going to do them.
4	CHAIR BONACA: All right. Thank you.
5	MR. CROUCH: Next slide, please.
6	As Eva talked about, we initially
7	submitted our continued power uprate for Unit 1 in
8	2004. That was going to go straight to 120 percent
9	and we began installing the upgrades on Unit 1 to go
10	to the 120 percent.
11	As we just about the time that we were
12	making our initial submittals is when the problems
13	with Quad-Cities started showing up and we started
14	seeing these industry-wide issues. We initially were
15	going to go forward with the 120 percent.
16	We created a scale model. We went and ran
17	tests on for the steam dryers, collected data on the
18	scale model, did analyses and were we were planning
19	on using that as our verification for why it was
20	acceptable to go to 120 percent. Through discussions
21	with the NRC staff, it was decided that that was not
22	a sufficient basis for it and that's why as Eva
23	mentioned, we are backed up and taken the data, actual
24	plant data for Browns Ferry on Unit 2.
25	DR. POWERS: You said you constructed a
	1

(202) 234-4433

	59
1	scale model?
2	MR. CROUCH: Yes.
3	DR. POWERS: How do you scale it?
4	MR. CROUCH: It was scaled it's a 117
5	scale.
6	DR. POWERS: Why is that appropriate?
7	MR. CROUCH: Joe Valente, can you help us
8	here?
9	MR. VALENTE: The question was why was a
10	scale appropriate?
11	DR. POWERS: I mean how do you go about
12	scaling something for phenomena you don't understand?
13	MR. VALENTE: It was geometrical scaling
14	that was done based on parameters.
15	DR. POWERS: Why is that appropriate?
16	MR. VALENTE: Well, it had a lot of issues
17	with the various scale factors approximate the actual
18	conditions and staff in discussion with us essentially
19	rejected it, based on those unknowns and subsequent
20	review. We agree. It wasn't a satisfactory approach.
21	DR. CORRADINI: So are those results
22	available in some fashion?
23	MR. VALENTE: The scale model approach?
24	DR. CORRADINI: Yes. We had some data.
25	MR. CROUCH: The scale model approach
	1

(202) 234-4433

	60
1	results were all submitted.
2	MR. VALENTE: Yes. GE had some data and
3	we did submit.
4	DR. BANERJEE: In the report?
5	MR. CROUCH: It was not being used as our
6	basis, but it was submitted.
7	DR. CORRADINI: Thank you.
8	MR. CROUCH: So as a result of running in
9	these questions on the steam dryer, as we were getting
10	closer and closer to Unit 1 restart, we recognized
11	that we would not be able to go collect the data and
12	do the analysis for the 120 percent in time to support
13	our proposed restart date. We decided instead to
14	backup to the 105 percent.
15	We have operating experience on Units 2
16	and 3 that shows that the dryers are fully capable of
17	withstanding 105 percent. So we made a separate
18	submittal back in September to request to go to 105
19	percent, with the understanding that we would go and
20	collect the data, actual plant data, do the analysis
21	and resubmit that as our basis for going to 120
22	percent.
23	CHAIR BONACA: You keep talking about
24	collect data and perform the analysis at 105 percent
25	power.
	1

(202) 234-4433

	61
1	MR. CROUCH: Right.
2	CHAIR BONACA: What we discussed before
3	that actually what you have agreed to is to monitor
4	power escalation all the way to 120 percent power,
5	similar to what has been done.
6	MR. CROUCH: That's correct.
7	CHAIR BONACA: So that's not an analysis
8	supporting 105 percent data. Your simply acceptance
9	of the development of the monitoring program to
10	monitor vibrations.
11	MR. CROUCH: What you do is you go and
12	collect the data. We can talk about that more, but
13	you strain gauges to collect the data off the steam
14	lines.
15	CHAIR BONACA: At 105 percent power?
16	MR. CROUCH: At 105 percent power and
17	using the strain gauges, you can convert the strain
18	gauges data into pressure pulses inside the steam line
19	which they use to calculate a loading that goes back
20	to the steam dryer. At that point you do the analysis
21	of the steam dryer at 105 percent and then you look at
22	the results to make sure you've got sufficient margin
23	to go on up to the next thermal-hydraulic point which
24	would be 110 percent. You collect data again and redo
25	the analysis at that point.
1	

(202) 234-4433

	62
1	CHAIR BONACA: That is
2	MR. CROUCH: That is a step-by-step
3	process.
4	CHAIR BONACA: The analysis for the next
5	step.
6	MR. CROUCH: That's right.
7	CHAIR BONACA: Not for the 110 all
8	right.
9	DR. BANERJEE: I guess the hope is with
10	all the patches and tie bars that you've added to
11	these dryers that they'll hold up, right?
12	MR. CROUCH: That's the hope.
13	DR. BANERJEE: That's the hope.
14	MR. CROUCH: And we on Browns Ferry 2 and
15	3, we've seen just minor damage to the steam dryers.
16	It has not been caused by the pressure fluctuations.
17	The damage that we saw was due to a lifting problem we
18	had. And so we've seen no indications of any problems
19	at all at 105 percent.
20	DR. BANERJEE: Right, 105.
21	MR. CROUCH: Right. We have other plants
22	out there that have also gone on up to 120 percent
23	with no problems, so we will be doing it, not only the
24	monitoring of the steam line stresses as we just
25	talked about, but you'll also be doing monitoring for
	1

```
(202) 234-4433
```

	63
1	the moisture carryover, looking for that; looking for
2	any pressure pulses in your steam lines. Those kinds
3	of things would be indicative of the problem.
4	DR. BANERJEE: Do you have any strain
5	gauges? You will speak to this tomorrow, won't you in
6	detail?
7	MR. CROUCH: We can show you pictures of
8	where we put the strain gauges.
9	DR. BANERJEE: Okay.
10	MR. CROUCH: It's better to wait for these
11	detailed questions. We'll talk about that later.
12	Okay, next slide, please.
13	Page 10 there. As we talked about, we did
14	make our EPU application based upon GE's extended
15	power uprate licensing topical reports, the ELTR1 and
16	2. We also did a comparison to the review standard to
17	make sure we've supplied all the information. If you
18	look in our applications, since we are a pre-GDC
19	plant, if you look at the review standard, quite
20	frequently it refers to GDCs. So we supplied was like
21	a road map to get from our application to the RS-001
22	format. You kind of have to go through a step-wise
23	process, but we made sure we supplied all the
24	information in the RS-001.
25	As we started out to make our submittal,
	1

(202) 234-4433

	64
1	we also went out and did an industry-wide search,
2	looking for all the RAIs that have been submitted on
3	any other plants' EPU applications and we addressed
4	those explicitly in our application up front.
5	As we talked about some here, when we've
6	made our 105 percent submittal, in some cases we
7	utilized the analyses that were performed 420 percent,
8	since they were bounding. However, we also recognize
9	there are some places where the 120 percent analysis
10	did not accurately or adequately reflect what would be
11	operated at 105 percent. So in the area of the fuel
12	analyses, we have backed up and re-performed the
13	various analyses at 105 percent.
14	And one of the analyses that you referred
15	to earlier, Dr. Bonaca, was a submittal that's due to
16	you on January 31st and that is part of that fuel
17	analysis that's coming. We're still on track for
18	that, as far as I know.
19	Greg Storey? He says yes, we are.
20	CHAIR BONACA: That's the only analysis
21	you've done on 105 is really the fuel.
22	MR. CROUCH: The fuel is the only analysis
23	that was explicitly redone at 105.
24	Next slide, please.
25	Just to give you an idea that this is a
	1

(202) 234-4433

	65
1	comparison of the current values at 100 percent versus
2	105 percent, obviously the thermal power goes up.
3	Everything else pretty much scales up appropriately.
4	We're using the same rod line on the power flow map is
5	what we used before, so that results in the full power
6	core flow range being reduced since you've simply gone
7	up the same rod line to a higher power level.
8	As part of the application, we are also
9	requesting a 30 psi increase in reactor dome pressure
10	and that will put us at the same pressure as what
11	Units 2 and 3 currently operate at.
12	MR. SIEBER: That takes you out of the
13	constant pressure uprate topical
14	MR. CROUCH: That's correct. For Unit 1,
15	we could not use the CPPU process because it was not
16	constant pressure.
17	MR. SIEBER: Okay.
18	DR. BANERJEE: Was it essential that you
19	increased the pressure?
20	MR. CROUCH: It was essential on Unit 1
21	that we increased the pressure to make the Unit 1
22	operate like 2 and 3. You probably could have
23	achieved the full 105 percent uprate without doing the
24	pressure increase, but we didn't want to operate the
25	two units separately or differently.
	1

(202) 234-4433

	66
1	MR. SIEBER: There's less changes you have
2	to make to the turbine point.
3	MR. CROUCH: That's correct.
4	MR. SIEBER: Now to go to 120 you would
5	have had to you wouldn't do that, it would cause
6	some pressure in there, right?
7	MR. CROUCH: From the 1050? Yes, it will
8	be a constant pressure. It will stay at 1050.
9	MR. SIEBER: It will stay at 1050?
10	MR. CROUCH: Right.
11	MR. SIEBER: Oh, okay.
12	MR. CROUCH: And actually, when we took
13	Units 2 and 3 from 100 to 105, we raised the pressure
14	and did minor changes to the turbine nozzles. When we
15	went from when we go from 105 to 120, we're
16	replacing the high-pressure turbine and we'll talk
17	about that here in a moment.
18	MR. SIEBER: But you haven't done that
19	yet.
20	MR. CROUCH: On Unit 1 that has been done.
21	It has not been operating yet though.
22	Next page.
23	A few more operating parameters there.
24	Nothing of significant interest there on that page,
25	other than as you refer to, the second line item

(202) 234-4433

	67
1	there, the pressure at the upstream side of the
2	turbine stock valve by raising the pressure like we
3	did to 30 psi, and making the turbine control valves
4	control the pressure at the same point, we were able
5	to maintain the same unit pressure to the turbine.
6	Next slide, please.
7	To give you an idea of the modifications
8	that we performed for EPU, as that slide I talked
9	about earlier which showed many, many modifications
10	going on, most of the modifications that performed the
11	Unit 1 restart were not required for EPU. They were
12	required for all these other programs, but here I'm
13	going to talk about modifications that were explicitly
14	required for EPU.
15	I'm going to start over on the left side
16	of the page
17	CHAIR BONACA: Please, before you move on,
18	so that pages 11 and 12 really are specific to 105
19	percent parameters?
20	MR. CROUCH: They are specific to 105
21	percent.
22	CHAIR BONACA: One hundred five percent
23	and you performed the analysis to support that?
24	MR. CROUCH: Yes.
25	CHAIR BONACA: Okay.
l	1 I I I I I I I I I I I I I I I I I I I

	68
1	MR. CROUCH: So on page 13, starting over
2	on the left side, with the reactor, which is shown in
3	red. One of the first things we had to do was rerate
4	the recirc pump motors. The core flow does not
5	change, but we had to change the recirc drive flow
6	just a little bit because of the increased pressure
7	drop through the core, so the total core flow goes up
8	a very small amount.
9	The recirc drive flow is very small
10	amounts. We had to rerate the motors.
11	MR. SIEBER: How do you do that?
12	MR. CROUCH: It was
13	MR. SIEBER: Does that require a bigger
14	motor now?
15	(Laughter.)
16	MR. CROUCH: GE goes through and does an
17	analysis of the motor and shows that you can drive it
18	a little harder.
19	MR. SIEBER: All right. So you're going
20	to have a greater temperature?
21	MR. CROUCH: Yes.
22	MR. SIEBER: And cooling load?
23	MR. CROUCH: How.
24	MR. SIEBER: How are those motors cooled?
25	By air?

	69
1	MR. CROUCH: They're water-cooled.
2	MR. SIEBER: Water-cooled. Okay. And
3	that was taken into account in the analysis of
4	adequacy of the cooling water and outlet temperature
5	and all that?
6	MR. CROUCH: Yes.
7	MR. SIEBER: Okay.
8	MR. CROUCH: As we've talked about, on
9	Unit 1, we have performed modifications to the steam
10	dryers in anticipation of going to 120 percent. We
11	have replaced the portions of the outer structure that
12	was originally one half inch steel plate. We replaced
13	it with one inch steel plate to make it more robust.
14	Moving on down the steam lines, the high-
15	pressure turbine, as we talked about, we have replaced
16	the high-pressure turbine rotating elements on Unit 1.
17	So we get the additional energy out of the steam. So
18	you can utilize the same inlet pressure and just
19	change the pitch of the turbine blades and get the
20	additional energy out.
21	MR. SIEBER: It's all reaction blading?
22	MR. CROUCH: Yes.
23	MR. SIEBER: Okay. Most of them are.
24	They've been upgraded like this.
25	MR. CROUCH: Once the steam leaves the
	1

(202) 234-4433

1 high-pressure turbines, it goes through the moisture 2 separators. We do not have moisture separator 3 reheaters. We only have moisture separators. We've 4 replaced the internal veins inside the moisture 5 separator to remove a higher percentage of the We were originally something like an 85 6 moisture out. 7 percent steam removal and we'll be up well above 90, 8 after doing this. Is it normal not to reheat 9 DR. BANERJEE: 10 in this after moisture separation? MR. CROUCH: Our plant is not made with 11 12 reheaters. DR. BANERJEE: I know, but is it usual not 13 14 to? 15 MR. CROUCH: I don't know what -- some 16 plants have moisture separators on it. Some of them 17 have moisture separators reheaters. DR. BANERJEE: Just take it out. 18 MR. SIEBER: 19 Usually, PWRs have moisture 20 separator reheaters, some boilers do not. 21 I take it the pressure drop across that is 22 greater than. 23 MR. CROUCH: I don't know if the pressure 24 drop is --25 MR. SIEBER: More blades to get more water

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

70

	71
1	out tells me more pressure drop.
2	MR. CROUCH: Might be.
3	DR. BANERJEE: You'll probably get more
4	water at the low pressure end without the reheat.
5	MR. CROUCH: You would get more moisture
6	than you would if you had a reheat, yes, but by
7	changing internal blades, we removed it. I've
8	forgotten the exact number. Somebody remember, it's
9	something like 96 percent of the moisture or something
10	like that. It's a real high percentage of moisture
11	that we got out with this.
12	MR. SIEBER: You just have to look at it.
13	I think in almost every turbine application, the last
14	couple of rows of blades, you see drops of water.
15	MR. CROUCH: Okay, moving on down the main
16	generator has been rewound to handle the increased
17	electrical output. We've also replaced the main bank
18	and the spare transformers out in the yard. That was
19	not driven solely by power uprates, but was a
20	combination of power uprate and just longevity of the
21	transformers.
22	We've also increased the cooling in what's
23	called the iso-phase bus that the duct coolers that
24	cool the buses going out to the transformers, they
25	were originally a single fan. We've now gone and
	1

(202) 234-4433
	72
1	replaced them with dual fans that are bigger, so not
2	only have we increased the cooling capacity, we've
3	also increased the reliability of it by doing that.
4	Once the water comes out of the hot well,
5	we made major changes to the pumping systems sending
6	the water back to the reactor. The condensate in the
7	condensate booster pumps, we have upgraded them so
8	that they the condensate booster and reactor feed
9	pumps have all been upgraded such that we originally
10	operated such that we have three trains of pumps and
11	if we were to lose a single pump in one of those
12	levels, condensate booster or feeds, we would have to
13	reduce power.
14	We have gone and replaced pumps such that
15	now, even after the loss of one of those pumps we'll
16	still be able to operate at 100 percent power without
17	any runbacks. So by doing this, we've added margin in
18	the plant to prevent and power derates or any reactor
19	trips.
20	We've also gone and added additional
21	condensate demineralizers in to increase the clean-up
22	capacity of the system. The feedwater heaters, we had
23	to rerate the shell side on the number three heaters
24	because of the additional pumping capacity. The
25	pressure was higher than what the original shell was
	1

(202) 234-4433

73 1 rated at, so we've gone and increased the shell 2 pressure on that. 3 That kind of gives you an idea of the 4 magnitude of the modifications that were done to 5 support EPU. Obviously, there's also and I haven't shown on this page here, lots of set-point changes 6 7 associated with the neutron monitoring and various 8 systems out there. So we've taken all that into 9 account as part of the Unit 1 restart modifications. 10 MR. SIEBER: Did you have to make any 11 changes to the flow capacity of the reactor water 12 clean-up system to make that function as -- with the same water quality as it would have at 100 percent 13 14 power? 15 We did not originally do MR. CROUCH: that, but we have since gone and increased the RWCU 16 17 capacity to help maintain the water clarity. It seems to me a lot of 18 MR. SIEBER: 19 people would argue that you haven't changed the volume 20 of the system any, so the capacity of the RWCU doesn't 21 need to change, but you're putting more material into 22 the reactor that can settle out there and so it just 23 seems to me that you have to increase the capacity of 24 the system to remove it. 25 MR. CROUCH: We have done that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	MR. SIEBER: You've done that. Okay.
2	MR. CROUCH: Yes.
3	MR. SIEBER: How effective was it during
4	prior operation? Some plants it wasn't too good.
5	MR. CROUCH: Rich, can you help us with
6	that some?
7	Rich is engineering manager and oversaw
8	the work to go in and increase the RWCU flow.
9	MR. DeLONG: My name is Rich DeLong. I'm
10	the Site Engineering Manager, Browns Ferry. We've
11	actually completed the test in Unit 3 and Unit 3 is
12	operating at the higher, almost double the recirc flow
13	or RWCU flow.
14	We saw, immediately saw a couple tenths of
15	a PPM decrease in sulfate concentration in the vessel.
16	Not a whole lot of difference in any of the other
17	constituents. They were just so low and the exit
18	conditions from the demineralizers were already near
19	pure water. So we haven't seen it. I think we'll see
20	two things occur when we go to extended power uprate
21	and that number one, we'll see, we'll be able to
22	continue to maintain very low levels of sulfate
23	concentration, those things. And our recovery from
24	transients will be much better at that higher flow
25	rate.
1	1

(202) 234-4433

75
MR. SIEBER: Shorter.
MR. DeLONG: That's exactly right. We'll
be able to get back inside our normal, what we
consider our normal operating parameters of post-
transient or following a start up much quicker than we
currently do because the system in Unit 3 is
performing very, very well at the increased flows.
On February 9th, we'll do the same testing
we did in Unit 3 on Unit 2 and then subsequently raise
its flow permanently on the back end of doing that
test and upgrading our procedures.
We wanted to do this test on each unit
because they do have small differences in the
configuration of the clean up system, piping,
etcetera, to make sure we didn't miss a particular
operating parameter that was slightly different and
change our philosophy for operating at those higher
flows. We're pushing the system up there near its
operating margins so we've got to be careful.
MR. SIEBER: Sounds like to me that your
systems originally were working pretty well and taking
steps to adjust the flow capacities to make them meet
the new operative parameters.
MR. CROUCH: That's correct.
DR. BANERJEE: How are you monitoring the

(202) 234-4433

	76
1	flows. Are they Venturis?
2	MR. CROUCH: How is RVC flow measured? Is
3	it flow Venturi? They say yes, it's a flow Venturi.
4	DR. BANERJEE: A Venturi, and it's the
5	same throughout this uprate?
6	MR. CROUCH: Yes.
7	DR. BANERJEE: And they're all the same,
8	all the units?
9	MR. CROUCH: Yes. Any other questions on
10	the EPU modifications?
11	DR. ABDEL-KHALIK: You indicated that you
12	replaced the pumps, so that if you lose one out of
13	three, you can still operate at 100 percent power?
14	MR. CROUCH: That is correct.
15	DR. ABDEL-KHALIK: That 100 percent, is
16	that 120 percent?
17	MR. CROUCH: Yes.
18	DR. ABDEL-KHALIK: Okay.
19	CHAIR BONACA: This is an additional
20	question regarding the EPU. In the spent fuel
21	analysis, okay, now you need you show a couple of
22	different configurations that you can use to cool and
23	for example, one is one train each of spent fuel pool
24	cooling system and ADHRS system.
25	MR. CROUCH: Right.
	1

(202) 234-4433

	77
1	CHAIR BONACA: Is it the same
2	configuration we had before the uprate?
3	MR. CROUCH: Yes.
4	CHAIR BONACA: Okay, so even before
5	uprating, you needed tow pumps?
6	MR. CROUCH: Yes.
7	CHAIR BONACA: Okay, so you're not
8	changing I'm trying to understand.
9	MR. CROUCH: The fuel pool cooling system
10	itself is not the cooling function of fuel pool
11	cooling is not a safety-related function, the safety-
12	related cooling of the fuel pool is done by either RHR
13	system or this ADHR system. It's also not safety-
14	related.
15	CHAIR BONACA: But now you need one thing
16	each?
17	I'm trying to understand about the
18	reliability.
19	MR. CROUCH: Let us take that as a
20	question. We'll get back to you on that.
21	CHAIR BONACA: Okay. I would like to have
22	an answer before the meeting is over.
23	MR. CROUCH: Are we ready to move on?
24	Slide 14.
25	Just to I want to talk, touch on a

(202) 234-4433

	78
1	couple of little small topics here that don't really
2	fit into things in the future, so just to give you
3	some idea as far as grid reliability. We did do
4	studies of the grid reliability to make sure that once
5	we, first of all, brought Unit 1 back on service and
6	then also look at the fact that we were uprating all
7	three units to make sure that our grid had the
8	capacity and reliability to continue to meet its
9	requirements. TVA is a little bit unique in that we
10	both own the grid and operate the plant. So we can
11	control everything to make sure that we're in
12	compliance with the various FERC regulations and the
13	various GDCs.
14	So we have done the studies that confirmed
15	both the reliability and the capacity and we still
16	continue to meet the GDC-17 requirements. We also
17	have ensured that we meet our mega-VAr requirements.
18	We will as we operate the plants, the low
19	dispatchers require certain amounts of mega-VAr for
20	the plant and we've shown that we have that capability
21	to meet their requirements.
22	MR. SIEBER: I take it that probably some
23	place on your system you have plants that major
24	function is to supply VArs or heat VArs? Is Browns
25	Ferry in that position at any time?
	I contract of the second se

(202) 234-4433

(202) 234-4433

	79
1	MR. TILL: I'm David Till. I'm the
2	Transmission Planning Manager with TVA.
3	Browns Ferry is not in that position. We
4	have only one fossil plant on our system that is
5	really vital to VAr support.
6	MR. SIEBER: Okay. Now that you're up
7	there
8	(Laughter.)
9	I have one additional question. Usually,
10	you calculate the voltage reduction to the safety
11	systems in the plant if the unit trips. Now in the
12	case of Browns Ferry, have you done that calculation
13	to determine how far the voltage will dip at the plant
14	if all three units trip from some common cause?
15	MR. TILL: Let me make sure I understand
16	the question.
17	MR. SIEBER: Okay.
18	MR. TILL: If all three units trip
19	MR. SIEBER: Right.
20	MR. TILL: The calculation as to what will
21	be the effect inside the plant?
22	MR. SIEBER: As far as under-voltage is
23	concerned.
24	MR. TILL: No, we have not. That's
25	outside the scope of the off-site power calculations

(202) 234-4433

	80
1	that we perform.
2	MR. SIEBER: Have you done it for one unit
3	tripping?
4	MR. TILL: We have. We've done it for one
5	and we've done it for one unit tripping with the other
6	two off-line, the difference being that the system has
7	already compensated before the last unit trips.
8	MR. SIEBER: You're going to have,
9	depending on how you control your for all system
10	generation, you would have a period of maybe 30
11	seconds where you're recovering. But that would be
12	long enough to operate some of the trips, some other
13	trips on the shift. I'm curious as to how far you
14	got. I think the regulations don't require you to
15	assume that everything goes back at once.
16	I just wondered if you had done that.
17	MR. TILL: We've not gone quite that far,
18	no.
19	MR. SIEBER: Okay, thank you.
20	MR. TILL: Thank you.
21	MR. CROUCH: Any other questions on the
22	grid?
23	Next slide, please.
24	As Eva talked about, when we were here
25	back in previously for the license renewal

1 application, when we applied for license renewal, due 2 to the fact that we were applying for license renewal 3 and EPU at the same time, in order to make sure that 4 there was no confusion as to what was actually being 5 approved for license renewal, we -- even though a lot of the license renewal evaluations were done at 120 6 7 percent, the license renewal application only applied 8 to 100 percent power.

9 during the of the And so course 10 conversations with you back at that time, as you kept asking questions, what is the impact of EPU on this 11 license renewal and we kept saying we'll get to that 12 later, well, this is now later. 13

And so we're going to talk about the 14 15 impact of EPU license renewal. We've gone and looked at it from the standpoint of the operational changes. 16 When you go to the EPU you obviously increase the 17 18 reactor pressure. You've also increased pressure 19 throughout various other systems. You've increased 20 flow rates, temperatures, neutron fluence and 21 radiation levels.

Also going to EPU, we've looked at it from the standpoint of what materials are out there, both the existing materials that were not replaced in Unit 1, as well as any new materials that were put into the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	plant.
2	As we went through these, we as we did
3	each one of the modifications in Unit 1, our license
4	renewal staff looked at the modifications, based upon
5	the 120 percent conditions with the materials that
6	were being installed, as we they went through the
7	evaluated the impact on the license renewal.
8	So next slide, plese.
9	They factored the EPU impact into their
10	various scoping and screening studies that were done,
11	aging management reviews, aging management programs
12	and the time limited aging analyses. In particular,
13	there were four items here that were picked up as
14	applying directly to the time limited aging analyses:
15	the neutron embrittlement of the reactor vessels, the
16	metal fatigue on the reactor vessel and internals, the
17	EQ of electrical equipment, because of the increased
18	radiation levels throughout the plant; and also
19	primary containment fatigue.
20	As they did the evaluations, they
21	concluded that obviously since they had done the
22	evaluations at 120 percent that they found things to
23	be acceptable.
24	Next slide, please.
25	In addition, another topic we want to take
	1

(202) 234-4433

	83
1	on is Appendix R and fire protection. The Browns
2	Ferry Fire Protection Plan is a plan that's put
3	together for all three units. We have performed
4	modifications in Unit 1 to bring us into compliance
5	with the NFPA codes. We replaced the sprinkler system
6	and all the detector systems up to the code standards.
7	We've also gone through and evaluated the plant for
8	the Appendix R scenarios using the current methodology
9	for how you evaluate fire loadings and the fire
10	scenarios.
11	Coming out of that fire protection plan,
12	we have the safe shutdown instructions. This is the
13	plant procedures that proceduralize the manual
14	operator actions that are required in order to respond
15	to an Appendix R fire.
16	Obviously, as you bring a third unit into
17	the operation, there will be additional actions in
18	that there's actions over in Unit 1 that were not
19	previously, but there are no new types of operator
20	actions created as a result of bringing the third unit
21	on line. If you had to go over into Units 2 or 3 and
22	operate a certain breaker, when you go over in Unit 1,
23	you're operating the same type of breaker over there.
24	So no new types of manual actions were created when we
25	went to Unit 1.

(202) 234-4433

	84
1	There's an on-going NRC inspection that
2	will be coming in to look at our Appendix R manual
3	operator actions. I believe it's going on right now.
4	Next week, got moved a week. So that will be coming
5	in and validating our actions to meet our procedures,
б	to meet our fire protection report.
7	Next slide.
8	Unit differences. As we returned Unit 1
9	to service, as I said, we intended to do all the same
10	modifications on Unit 1 as we previously performed for
11	Units 2 and 3. However, in a few cases, we have
12	intentionally installed some unit differences. In
13	some cases, it was to eliminate unnecessary equipment.
14	Other cases it was to address obsolescence.
15	The first one here on this sheet is the
16	LPCI cooling injection cross tie valve. When the
17	plant was originally configured, we have what was
18	referred to as the LPCI loop selection logic which was
19	an instrumentation system that was for the purposes of
20	attempting to detect which of your recirc loops had
21	broken and then to direct all of your RHR flow to the
22	unbroken loop. Well, we later found out as several
23	people in the industry did, that there is a potential
24	single failure out there such that if this single
25	failure occurred, you could be dumping all of your RHR
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	85
1	out through your broken loop. So we removed LPCI loop
2	selection logic back before we actually even operated
3	it.
4	In order for that function to occur, there
5	was a cross tie between the two RHR loops that had an
6	isolation valve in it. As part of removing that loop
7	selection logic, we went and closed that isolation
8	valve. That line existed in all three units.
9	Well, the valve over the years has had a
10	problem of leaking through. So it creates a
11	maintenance headache. So as part of Unit 1 recovery,
12	since we don't need the line anyway, since we removed
13	the LPCI loop selection logic, rather than going and
14	closing the valve and removing power from it, we just
15	went and physically removed the line from the plant.
16	So even though it is a physical difference in the
17	plant, operationally there is no difference to the
18	plant.
19	Another item that will be different in
20	Unit 1 versus 2 and 3 is in the control room. We have
21	installed the newer paperless recorders. As far as
22	the operators are concerned, they'll still be getting
23	the same information, they just won't have the rolls
24	of paper to deal with.
25	The LPCI MG sets, the RHR pumps have LPCI

(202) 234-4433

	86
1	MG sets on them in Units 2 and 3 that continue to
2	provide power to the MG sets in the event of the we
3	have a loss of offsite power and we're swapping over
4	to diesels. We have done the analysis for all three
5	units and demonstrated that we do not need to have the
6	LPCI MG sets because we reconfigured the electrical
7	side of the plant now. We've installed that on Unit
8	1 and we've removed the LPCI MG sets. We have a
9	project in place to go and do this same modifications
10	on Unit 2 and 3, so we'll bring them back the same.
11	On Unit 1 for the low-pressure turbine,
12	we've installed monoblock turbine rotors. This is a
13	design that's put in place to eliminate the turbine
14	blade cracking problem that we've had throughout the
15	industry.
16	Hydrogen/oxygen analyzers, it's just
17	slightly different on Units 2 and 3 in that it's a
18	single train type system as opposed to dual trains.
19	Same way with PAS. We've scoped it down based upon
20	the newer regulations that have come out since we did
21	Unit 2 and 3 restart.
22	As I mentioned also, obsolescence, we're
23	replacing things. And what we talk about here is on
24	some of our instrumentation, rather than having a
25	brand X component, you can't buy a brand X any more,

(202) 234-4433

(202) 234-4433

	87
1	so we've now gone to a newer component. it does the
2	same function. It's just a slightly brand name. It's
3	got the same operating characteristics. We've done
4	that on valves, different things like that where you
5	cannot buy a particular component any more.
6	Once we get done with all of this, the
7	units will be operationally similar. Obviously,
8	things like LPCI cross tie valve, it doesn't affect
9	the operation. The only difference would be is when
10	Tony goes out to do his lot valve check list. He
11	won't have to verify that valve is closed.
12	CHAIR BONACA: Will the procedures be
13	identical?
14	MR. CROUCH: The procedures are identical
15	with the exception of what's required to address these
16	type of things.
17	CHAIR BONACA: I was talking about the
18	emergency procedures.
19	MR. CROUCH: The emergency procedures are
20	the same.
21	CHAIR BONACA: Yes.
22	MR. CROUCH: They're not the same
23	document. We have procedures for each unit.
24	CHAIR BONACA: The reason why I'm asking
25	is you have interchangeable crews, right?

(202) 234-4433

	88
1	MR. CROUCH: Interchangeable coolers?
2	CHAIR BONACA: No, crews.
3	MR. CROUCH: Crews, yes. We have crews
4	that they're licensed for all three units and they
5	rotate.
б	CHAIR BONACA: So I will expect that the
7	list for the emergency planning procedures, you will
8	have no differences?
9	MR. CROUCH: That's correct. Okay, next
10	slide, I'm not going to go over these. Obviously,
11	this is just a list of acronyms for you, as you look
12	through our slides and hear our discussions. If you
13	hear one of us refer to an ADHR or RHR or something
14	like that, if you've got a question, here's the
15	acronym for it.
16	MR. SIEBER: So look them up ourselves,
17	right?
18	(Laughter.)
19	MR. CROUCH: You can look them up
20	yourselves.
21	(Laughter.)
22	MR. CROUCH: Any further questions? Thank
23	you. I'll turn it back.
24	MR. SIEBER: Thank you.
25	CHAIR BONACA: I would propose we take a

```
(202) 234-4433
```

	89
1	break now, rather than waiting until the end of the
2	presentation. It's already 10:10. If that's okay,
3	then we meet again at 10:30.
4	(Off the record.)
5	CHAIR BONACA: We are ready. So before we
6	move into this presentation, I believe that Mr. Crouch
7	a response to my question regarding the configurations
8	for spent fuel pool cooling. I asked the question
9	because in the SER they state that an increased power
10	uprate, the licensee analyzed two configurations. In
11	each one of the configurations, the licensee is using
12	two pumps from different systems. I was asking
13	whether this was true also before the power uprate to
14	determine the reliability of the system. And I think
15	I have a response to that.
16	MR. ELMS: My name is Tony Elms. I'm the
17	Operations Manager at Browns Ferry. For 105 percent
18	power in the current configuration on Unit 2 and Unit
19	3, fuel pool cooling is designed with two 100 percent
20	capacity pumps and heat exchangers. The offload on
21	the core, we control the amount of heat we put in the
22	spent fuel pool by the rate that we offload the fuel.
23	We also have the augmented decay heat
24	removal system which supplements fuel pool cooling and
25	the procedural requirements as temperature rises in
	1

(202) 234-4433

	90
1	the fuel pool at 125 degrees, we have an additional
2	system that's supplemental fuel pool cooling from the
3	RHR system. So it would be placed in service also.
4	So the temperature rises, we do have additional heat
5	removal mechanisms that we can put in service.
6	We have had no problems at 105 percent
7	maintaining spent fuel temperature.
8	Any other question?
9	Thank you.
10	CHAIR BONACA: The only other question I
11	have in addition is this was true also before the
12	power uprate, but what this shows me, for example, in
13	configuration 2, where you're using spent fuel pool
14	cooling and the RHR system, okay, probably you did not
15	use both systems before the power uprate and now you
16	may need both pumps to provide the same cooling, just
17	because a higher heat load.
18	MR. ELMS: That is a possibility and those
19	systems will be available if they are needed.
20	CHAIR BONACA: All right. Thank you.
21	All right, let's proceed with this
22	presentation on plant systems.
23	MS. BROWN: Thank you. In this
24	presentation, we will be discussing the balance of
25	plant, fire protection and habitability, filtration

(202) 234-4433

91 1 and ventilation reviews. These areas are addressed in 2 Sections 2.5 and 2.7 of the staff's safety evaluation. Our approach in all the presentations is 3 to focus our discussions on the more significant 4 5 changes and process variables and EPU-related Unaffected or minor effects may be 6 modifications. 7 mentioned, but generally, it is our intent not to 8 dwell on them. The methodology using for operating a unit 9 entails increasing reactor power along specified rod 10 and flow lines. For balance of plant systems, this 11 results in an increase in mainsteam and feedwater flow 12 and an increase in reactor pressure. 13 14 For the Browns Ferry units, the pressure 15 increases contained in the five percent review, along with the scaled main and feedwater increases. 16 As 17 discussed previously, there are certain review areas where the review conducted for the 120 percent bounded 18 19 all aspects of the 105 percent and was applicable for 20 all three units. In the balance of plan area, this is true. 21 22 For the power uprates, specifically, the Unit 1 105 23 percent review, the 120 percent review had been 24 completed. For the 105 percent, the staff took 25 another look to ensure that the information submitted

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

completely bounded the 105.

1

2

3

4

5

6

Additionally, the technical review in these areas was also performed for Units 2 and 3 and found acceptable. Therefore, the information that follows is presented as staff's review for all three units at both power levels.

7 Staff's review found several areas which minimally affected which, 8 were as we discussed 9 earlier, means that these functions may not be powerdependent or the associated system changes do not 10 11 significantly change alter the performance or 12 requirements for these systems. So if we look like -if we look in the area of internal hazards, we look at 13 14 flooding. We have also looked at equipment and floor 15 system and the circulating water fire drains, protection. We looked at component cooling water 16 systems and we found this true for the ultimate heat 17 sink, balance of plant systems, mainsteam, the main 18 19 condenser and turbine steam bypass system, gaseous 20 liquid and solid waste management systems as well. 21 Some additional considerations like liqht load 22 handlings and a diesel fuel oil and transfer systems. 23 In these areas there were more significant 24 impacts seen such as internally generated missiles 25 under internal hazards, or the turbine generator and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

92

93 1 pipe failures. For component cooling and decay heat 2 removal, there are obvious impacts as you previously discussed with TVA on spent fuel pool cooling and the 3 4 obvious modifications required to the condensate and 5 feedwater systems to achieve 120 percent. The staff's review found that consistent 6 7 with a generic analysis, the existing design was adequate to bound power uprate effects in the area of 8 internal hazards, fire protection, fission product 9 control, waste management and most of the balance of 10 plant systems. A more detailed review was required 11 for the changes for spent fuel pool cooling and the 12 condensate and feedwater pump modifications. 13 14 This slide really covers, I think what TVA just discussed, where we addressed the fact that of 15 the increased heat in the spent fuel pool, so I think 16 17 why don't we just go to the next one. We're going to talk a little more about 18 19 the administrative controls. To ensure adequate spent 20 fuel pool cooling, the licensee has performed an 21 analysis for the offload scenarios, each cycle prior 22 to each offload to ensure that when core offload 23 commences, the spent fuel pool temperature limits can be maintained, that the time to boil is known and 24 25 adequate backup cooling capability is available.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	In addition, the licensee indicated that
2	the administrative controls will be used to ensure
3	that the cooled temperature limit and time to boil
4	will continue to satisfy licensing basis
5	considerations and that backup cooling capability is
6	provided for all spent fuel pool cooling scenarios.
7	These actions provide reasonable assurance
8	that the available fuel pool cooling systems are
9	adequate to support the increased decay heat as a
10	result of power uprate.
11	For Units 2 and 3, the submittal includes
12	a change to the original 95 degree limit. As Unit 1
13	was shut down, the temperature was never changed, but
14	in support of the previous 5 percent power uprate for
15	Units 2 and 3, the UHS temperature limit for the RHR
16	service water system was decreased to 92.5 degrees in
17	order to satisfy suppression pool temperature and
18	containment performance considerations.
19	The EPU analysis restores the ultimate
20	heat sink temperature limit for the RHR service water
21	system to 95 degrees. As containment design limits
22	will continue to be satisfied at the higher ultimate
23	heat sink temperature limit for RHR service water
24	during EPU operation, this change was found acceptable
25	by the staff.
	I contract of the second se

(202) 234-4433

1 Modifications were made to the condensate, 2 condensate booster pumps and motors and feedwater 3 pumps and turbines to accommodate the increased flow The condensate feedwater 4 required for EPU operation. 5 system, as modified, should remain capable providing adequate flow at the EPU operating pressure and 6 7 maintains sufficient margin so that a trip of one feedwater pump will not result in a reactor trip. 8 9 Staff review confirmed that the analyses support these 10 conclusions. However, to confirm the transient response 11 12 expected, the staff has imposed a license is as condition requiring performance of a single pump trip 13 14 test. This testing will be required on Unit 1 at 105 percent and possibly at 120 percent while testing for 15 Units 2 and 3 will be performed at 120. 16 17 For the balance of plant areas, in

addition 18 to this license condition. several 19 commitments were made to better clarify existing 20 When we look at the -- given the processes. 21 information provided, supports the acceptance criteria 22 and guidance outlined here, the NRC staff found that 23 the balance of plant areas are acceptable, based on 24 the evaluation results satisfying the acceptance 25 the completion of criteria, qiven the license

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

95

96 1 condition requiring single pump trip testing and the 2 commitment to implement the provided procedure --3 CHAIR BONACA: Would you go back to the 4 previous slide? These are all the draft GDCs 5 applicable to the plant systems that are in the licensing basis of Unit 1? 6 7 MS. BROWN: Yes, sir, in this portion on 8 the review. 9 CHAIR BONACA: Okay. 10 MS. BROWN: And just for your information, Bill had indicated that they provided a crosswalk. 11 It's in our February -- in their February 23, 2005 12 document is one of the enclosures. It's very useful 13 14 for the staff to go from one requirement to the other. 15 CHAIR BONACA: This plant was not an SEP 16 plant? 17 MS. BROWN: Not that we're aware of. That 18 question came up before and I think the staff 19 confirmed that it was not an SEP plant. We'll have to 20 look that up. 21 Okay, do you want to move on to fire 22 protection? 23 (Pause.) 24 Consistent with the extended power uprate 25 licensing topical report, fire protection is one of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

those areas reviewed where no uprate effects are seen result in the need for modification of to fire 3 protection systems such as suppression or detection or 4 significant changes to fire-related programs including safe shutdown and other Appendix R-related operator actions.

7 As part of the Appendix R review, we find 8 that the reactor and containment system responses such 9 as peak fuel cladding, containment reactor temperature 10 and pressure, as well as the integrity of fuel cladding, reactor vessel and containment while 11 maintaining the existing exemption for momentary core 12 uncovery during deep pressurization remain below 13 14 acceptance limits at EPU conditions.

15 DR. BANERJEE: What is this exemption for 16 the momentary core uncovery?

17 MS. BROWN: Ray, do you want to --Bill, do you quys have your -- do you remember what that --18 19 MR. CROUCH: Yes, we have an exemption 20 that allows what's called a momentary core uncovery. 21 The water level actually drops below the top of active 22 fuel and then is recovered. It lasts a matter of just 23 a few minutes. It's a standard exemption that nearly 24 all BWRs have.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

What causes this to happen? DR. BANERJEE:

(202) 234-4433

25

1

2

5

6

	98
1	MR. CROUCH: It's the depressurization.
2	You go through and you blow down the reactor so you
3	can get your low-pressure systems injecting and during
4	that depressurization time is when you uncover the
5	core for a short period of time.
6	DR. CORRADINI: Just to make sure I
7	understand it, is it not that you essentially, the
8	swell dies and then you reinject at a lower pressure
9	or do I have that incorrect?
10	MR. CROUCH: It is not just the swell
11	dropping. It is you blow down the reactor, so
12	you're losing inventory.
13	DR. CORRADINI: And then how much you
14	said for a matter of tens of seconds?
15	MR. CROUCH: It's on the order of minutes.
16	DR. CORRADINI: How much of the active
17	fuel somebody had addressed this a couple of
18	meetings ago, was it a matter of a couple of feet, a
19	couple of inches?
20	MR. SIEBER: Seventy percent.
21	MR. CROUCH: Does anybody remember how
22	much core gets uncovered?
23	DR. BANERJEE: This is quite substantial.
24	MR. SIEBER: Reactors are different, but
25	you don't get complete uncoveries like down to the 70

(202) 234-4433

	99
1	percent level.
2	MR. CROUCH: You don't completely empty
3	the reactor vessel, but I don't remember exactly how
4	far down it goes.
5	DR. CORRADINI: Okay, thank you.
6	DR. BANERJEE: And this is usual for all
7	BWRs?
8	MR. CROUCH: Yes, it's very common for
9	BWRs.
10	DR. BANERJEE: And what happens when you
11	go up 20 percent in part, how much heat up do you get?
12	MR. CROUCH: It's been analyzed that the
13	peak clad temperature limits are still met.
14	DR. CORRADINI: Is it a function of power
15	or is it a function of the depressurization?
16	MR. CROUCH: Both.
17	DR. CORRADINI: Both.
18	DR. BANERJEE: So when you say the peak
19	clad temperature limits are met, how high does it get?
20	(Off the record comments.)
21	MR. CROUCH: It stays less than 1500
22	degrees.
23	CHAIR BONACA: Is this issue treated
24	generically under the ELTR2 or ELTR1? No.
25	DR. BANERJEE: This is not treated
	1

(202) 234-4433

100
generically?
MR. SIEBER: No.
MS. BROWN: It's covered by the exemption
that the staff issued.
DR. BANERJEE: But that exemption is a
case-by-case exemption?
MS. BROWN: Yes, sir.
CHAIR BONACA: And has to be backed up by
analysis. It has to be similarities of record that
MR. CROUCH: That's correct.
CHAIR BONACA: Was this analysis re-
performed now at the higher power level?
MR. CROUCH: Yes.
CHAIR BONACA: Okay.
DR. BANERJEE: And what tools were used
for this analysis?
MR. DICK: This is Michael Dick with GE.
They use the safe adjusted suite of codes.
DR. BANERJEE: And the analysis is
contained in the in what? We've got it here,
Ralph?
We don't have I haven't seen this
analysis.
MR. CROUCH: The results would be in our
submittals, yes, but you won't have the actual report.

```
(202) 234-4433
```

	101
1	MR. ANDRUKAT: It's discussed in the fire
2	protection program, if you have a copy of that.
3	There's a discussion with graphs that show the
4	different power levels and core levels, etcetera,
5	right in the fire protection program.
6	DR. BANERJEE: All right, carry on.
7	MS. BROWN: We also see in this area that
8	adequate safety margin is maintained, even though the
9	times available for some fire protection actions are
10	reduced, such as the time available for operator, for
11	an operator to the three main steam relief valves and
12	the time available for an operator to secure a high-
13	pressure cool injection prior to spurious actuation
14	that would fill the reactor vessel.
15	CHAIR BONACA: You are telling us about
16	the time. I mean how has it changed for the proposed
17	rule?
18	MS. BROWN: Well, I think for the first
19	one, I think we have on the slide that the open the
20	main steam is reduced maybe five minutes.
21	CHAIR BONACA: Okay. Time available for
22	operator to secure high-pressure coolant injection.
23	MS. BROWN: Yes.
24	CHAIR BONACA: Prior time is six minutes.
25	MS. BROWN: Yes, sir. And I think Bill

(202) 234-4433

	102
1	had mentioned previously that they have run
2	validations of verifications of the operator actions.
3	CHAIR BONACA: That's right. How much is
4	this reduced, high-power level? You're giving us a
5	required time at six minutes. It's not that long.
6	What was it originally before the proposed rule?
7	MR. CROUCH: On which one, the HPCI? On
8	the HPCI, the analytical value at the 103 percent
9	power was seven minutes, but we had the procedure at
10	six minutes. When we go to the EPU, the analytical
11	answer is six minutes and we've left the procedure at
12	six minutes. So as far as the operator is concerned,
13	there was no impact.
14	CHAIR BONACA: Okay.
15	MS. BROWN: Some of the process variables
16	which changed in the Appendix R evaluation included
17	changes in the analysis temperatures and pressures.
18	Despite these changes, no hardware modifications were
19	needed as a result.
20	As these process variables remain within
21	the existing Appendix R limits, the acceptance
22	criteria shown here has been met. So the staff found
23	that the licensee adequately accounted for the effects
24	of the increase decay heat, maintains the ability to
25	achieve and maintain safe shutdown and therefore the
	I

(202) 234-4433

	103
1	fire protection program continues to meet its
2	regulatory requirements.
3	Do we have any other questions on fire
4	protection?
5	MR. SIEBER: This plant is an SEP plant,
6	an Appendix R plant?
7	MS. BROWN: I don't know that it's an SEP
8	plant. They are a pre-1979 plant, so they're not an
9	Appendix R plant.
10	MR. SIEBER: Okay, that means from a
11	separation standpoint you have to have barriers
12	because the separation criteria were put in the
13	regulations after the plant was designed, right?
14	MS. BROWN: Yes, sir. They do have the
15	requirements for 3G and J and L by extension of G.
16	MR. SIEBER: The fire barriers, there's no
17	thermal lag or any of that stuff in there, right?
18	MS. BROWN: I believe there is some
19	thermal lag
20	MR. BURRELL: There is some thermal lag.
21	MS. BROWN: The staff is looking at that.
22	MR. SIEBER: Where is it and what ratings
23	do you consider it to be, if any?
24	MR. BURRELL: I'm Dave Burrell with TVA.
25	As a part of recovering Unit 1, we are installing

(202) 234-4433

	104
1	thermal lag on six circuits in the reactor building.
2	MR. SIEBER: You're doing that now?
3	MR. BURRELL: We're doing that as part of
4	Unit 1 recovery.
5	MR. SIEBER: The thermal lag did not do
6	well on testing, right?
7	MR. BURRELL: TVA has test-specific data
8	that was performed for TVA and the thermal lag that's
9	being provided is being certified to meet those
10	testing requirements.
11	MR. SIEBER: Has the staff reviewed that
12	application of thermal lag?
13	MS. BROWN: As part of the inspection,
14	staff has looked at how the licensee installed the
15	thermal lag.
16	MR. SIEBER: But the test report itself?
17	MS. BROWN: I'm not sure whether or not
18	they've looked at the
19	MR. BURRELL: That material was reviewed
20	and test reports were reviewed and approved as part of
21	the Sequoia and Watts Bar.
22	MR. SIEBER: I need to get some
23	confirmation from the staff that they actually have
24	looked at the application of this material as
25	performing its fire protection function.
I	1

(202) 234-4433

	105
1	DR. BANERJEE: I just want to go back to
2	that core uncovery part, if I may. The calculations
3	were done with SAFER/GESTR, right? And the uncovery
4	periods about 450 seconds and I guess you're just
5	below the 1500 Fahrenheit limits, so what's the
6	uncertainty on that?
7	MR. BURRELL: The temperature actually
8	drops for the 120 case. It goes from 1485 to 1428.
9	DR. BANERJEE: It goes down?
10	MR. BURRELL: It goes down.
11	DR. BANERJEE: Why is that?
12	MR. BURRELL: I'll ask Fran.
13	MR. BOLGER: This is Fran Bolger from GE.
14	The calculation was done with the SAFER methodology.
15	The calculation is done as a nominal calculation
16	without additional uncertainties. As far as what the
17	differences of the calculation and why the water level
18	differences and the PC differences, I haven't reviewed
19	the calculation, so I can't comment on those reasons.
20	DR. BANERJEE: I guess we should look at
21	these calculations because they're close enough to the
22	limit, if I am understanding that.
23	We're talking about Appendix R. It's
24	1500. So we are close to the limit, so we need to
25	take a look at it.
1	I Contraction of the second

(202) 234-4433

	106
1	CHAIR BONACA: When are we going to get
2	this information?
3	MS. BROWN: Do you want to see the report
4	that the licensee submitted or the staff's review of
5	that report?
6	DR. BANERJEE: Both. Report and the
7	review.
8	CHAIR BONACA: We need both. So these are
9	available?
10	MS. BROWN: I'll have to get back with you
11	about that. I believe that the staff is reviewing the
12	thermal lag by inspection. And as part of the
13	inspection they would look at thermal lag and that
14	inspection is happening next week. So I have to check
15	and ensure that the
16	CHAIR BONACA: I'm talking more about
17	these analyses, SAFER/GESTR.
18	DR. BANERJEE: Oh, the SAFER/GESTR
19	analysis.
20	DR. BANERJEE: As they say they've used
21	nominal values, it might be perfectly fine, but we
22	need to take a look at it.
23	MS. BROWN: All right, so you're looking
24	for the SAFER/GESTR.
25	DR. BANERJEE: Yes.
	I contraction of the second seco

(202) 234-4433

	107
1	CHAIR BONACA: The analysis and the
2	review.
3	MS. BROWN: Okay.
4	MR. CROUCH: Hey, Eva.
5	MS. BROWN: Yes, sir.
6	MR. CROUCH: We should have the what we
7	refer to as our task reports that provide the backup
8	documentation for the PUSAR and so we ought to be able
9	to pull out the analysis out of that for the Appendix
10	R temperature analysis.
11	MS. BROWN: Okay, thank you.
12	MR. CROUCH: We can do that later today.
13	MS. BROWN: All right. We'll move to
14	habitability, filtration and ventilation.
15	In Section 2.7 of the staff's safety
16	evaluation, the staff discussed those habitability,
17	filtration and ventilation systems listed here.
18	Using the acceptance criteria outlined in
19	the draft general design criteria listed here, the
20	staff reviewed the submittal to ensure that the
21	ability of the systems to meet functional design
22	requirements were normal and accident condition was
23	maintained, given the capacity of these systems with
24	respect to flow rates, pooling and filtration to
25	perform as a result of the power increase, as well as
1	I contract of the second se

(202) 234-4433
	108
1	to area heat temperature and electrical load changes.
2	The staff found that consistent with the
3	generic evaluation provided in the EPU topical
4	reports, the increase in power has no or little impact
5	on a safety-related and nonsafety-related functions of
6	these systems. Therefore, the staff concluded that
7	there is sufficient capacity in the design of these
8	systems to accommodate the proposed power increase and
9	is therefore accepted.
10	CHAIR BONACA: So this conclusion is only
11	applicable to 105 percent?
12	MS. BROWN: It is applicable to all units
13	at up to 120 percent.
14	MR. SIEBER: That includes the effect of
15	the increased source term?
16	MS. BROWN: Yes, sir. We'll talk a little
17	bit more about source term tomorrow.
18	MR. SIEBER: All right.
19	MS. BROWN: That's what we have for plant
20	systems. Did you want to roll right into the power
21	ascension discussion?
22	CHAIR BONACA: That's yes.
23	(Pause.)
24	MS. BROWN: All right, for the power
25	uprate test program, the acceptance criteria for

(202) 234-4433

	109
1	review of the power uprate is provided in the
2	following criteria: Appendix B, Criterion XI, the
3	Standard Review Plan 14.2.1. Reg Guide 1.68 and
4	Section 50.34 of the Code. The UFSAR Section 13.5
5	contains the plant-specific initial test program.
6	The staff's review is focused on ensuring
7	that the power uprate test program includes testing
8	sufficient to demonstrate that the system, structures
9	and components will perform satisfactorily at the
10	requested power level, given the extent of the
11	original power ascension test program and
12	modifications. It also recognizes that licensees may
13	propose a completely different approach to testing
14	with adequate justification. Supplemental guidance
15	was provided in a standard review plan for staff
16	evaluation of alternative approaches.
17	TVA did propose an alternative to
18	integrated system testing. The staff's review of this
19	proposal will be addressed later on.
20	Back in September 2005, as part of the
21	license renewal briefing, TVA presented their proposed
22	test program. The testing is conducted in four
23	phases. Phase 1 deals with preoperational tests as
24	discussed in SFAR Section 13.4. Phase 2 contains the
25	fuel loading and shutdown power level tests. Phase 3
	I

(202) 234-4433

	110
1	addresses the initial heat up to rate at temperature
2	and pressure, while Phase 4 is essentially the testing
3	and support of the power uprate.
4	For Unit 1, the licensee has indicated
5	that Phase 1 contains the testing of the source and
6	intermittent range monitors, integratedly testing of
7	the containment and vessel hydrostatic testing.
8	Phase 2 looks at initial criticality and
9	shutdown margin, high pressure injection systems, core
10	thermal limits and calibrations of the average power
11	and local power range monitors, plus scram time
12	testing.
13	For Phase 3 which takes the Unit 1 to the
14	old 100 percent power, it includes testing of the
15	feedwater pumps, tuning system and runback test for
16	the recirc pump variable drives and injection and
17	tuning for the high pressure injection systems.
18	CHAIR BONACA: Wait a minute, these tests,
19	these tests are their testing program or what?
20	MS. BROWN: This is what they're proposing
21	for Unit 1 for the restart, just like you had
22	indicated. This is for Unit 1 and as Bill had talked
23	about looking at restart testing.
24	CHAIR BONACA: This is not discussed in
25	the SER.

(202) 234-4433

	111
1	MS. BROWN: That's true.
2	MR. SIEBER: What kind of variable drive
3	do they have on their recirc pumps?
4	MS. BROWN: Bill?
5	MR. SIEBER: This is the new drive system?
6	MR. CROUCH: This is the variable
7	frequency drive system. It will be new for Unit 1,
8	but it had been installed on Units 2 and 3 for several
9	years now. Works fine. Works very good.
10	Greatly minimized our number of trips.
11	MR. SIEBER: Okay.
12	MS. BROWN: Now for Phase 4, the testing
13	is performed at 2 to 5 percent increments. At each
14	increment, the licensee intends to assess the core
15	power distribution and performs testing of the
16	pressure regulator, condensate/feedwater system and
17	performs single pump testing. It verifies the vessel
18	water level and rad level monitoring.
19	Additionally, there will be steam dryer
20	monitoring similar to Vermont Yankee's test program
21	with the exact increments and data submission
22	requirements pending completion of the staff's steam
23	dryer review.
24	MR. SIEBER: Could you refresh my memory
25	as to what exactly is components of the Vermont Yankee
1	I contract of the second se

(202) 234-4433

	112
1	dryer testing?
2	MS. BROWN: I do not think I have the
3	right folks here for that because off the top of my
4	head I wouldn't want to mislead you.
5	MR. SIEBER: I can look it up.
6	MS. BROWN: Bill, do your guys remember?
7	I think we have someone in house that might remember
8	that.
9	MR. SIEBER: Maybe someone from TVA can
10	tell us what they plan to do.
11	MR. CROUCH: We have somebody that can
12	address that.
13	MR. SIEBER: Okay.
14	MR. NICHOLS: Good morning. My name is
15	Craig Nichols with GE. I was the TVA the VY
16	Project Manager for their power uprate. For the steam
17	dryer monitoring, the incremental power above 100
18	percent we required that every hour strain gauge data
19	was taken and they would be held at 2.5 and 5 percent
20	power increments. And at 5 percent increments that
21	data would be submitted to the staff for their review.
22	MR. SIEBER: What were the strain gauges?
23	MR. NICHOLS: The strain gauges were
24	installed on the main team lines in eight locations,
25	two on each main steam line similar to what TVA has.

(202) 234-4433

	113
1	MR. SIEBER: Were you looking for
2	vibration?
3	MR. NICHOLS: Looking for oscillating
4	pressure within the main steam piping to develop a
5	fluctuating pressure on the steam dryer.
6	MR. SIEBER: Hoop stress.
7	MR. NICHOLS: Correct.
8	MR. SIEBER: And what's the frequency and
9	magnitude which you would consider unacceptable?
10	MR. NICHOLS: That's still being developed
11	based on the exact same steam dryer design and the
12	acoustic sources at the TVA plant.
13	MR. SIEBER: Now things could be happening
14	in the dryer that would not reflect itself as a
15	vibration in the steam line, right?
16	MR. NICHOLS: Actually, the work done to
17	date with the various uprates have shown a very good,
18	what's called coherence between what's seen on the
19	strain gauges and what's seen on instrumented dryers,
20	most recently the Quad Cities dryer. And that
21	includes both acoustic loads and hydrodynamic loads.
22	MR. SIEBER: Okay.
23	DR. BANERJEE: Was that I don't recall
24	that information of the Vermont Yankee discussions.
25	Is that new information between the Quad Cities

(202) 234-4433

	114
1	instrumented dryer and the steam line?
2	MR. NICHOLS: And I believe there will be
3	discussions tomorrow and significant discussions on
4	the steam dryer.
5	DR. BANERJEE: When you show us this data?
6	MR. NICHOLS: I'm not sure if that's
7	within the presentation, but I'm sure questions could
8	be answered on that.
9	MS. BROWN: I believe that we're going to
10	have a very detailed discussion on that in March.
11	That's one of the items that we want to make sure that
12	we have all the information available to give you a
13	full picture and story.
14	So we intend for that to be part of the
15	March Subcommittee discussion.
16	DR. BANERJEE: And tomorrow?
17	MS. BROWN: Tomorrow, we're going to
18	status where we are and address the status of the
19	staff's review up to this point and our expectations
20	for what the licensee is going to provide.
21	MR. SIEBER: Thank you.
22	MS. BROWN: As far as the power ascension
23	testing, the staff reviewed this program to ensure
24	that it included adequate system, component post mod,
25	and component maintenance, as well as tech spec

(202) 234-4433

1 surveillance testing. As the Unit 1 restart and power 2 ascension tests up to the old 100 percent are similar to tests conducted for the Unit 3 restart, the staff 3 4 determined that integrated testing would be necessary 5 to effectively confirm plant response and analysis. This concern will be addressed by Mr. Hamzehee next. 6 7 During the balance of plant discussion a license condition was imposed for transient testing of 8 9 the condensate and feedwater system necessarily to confirm acceptability and consistency with analytical 10 results. 11 As a result, the staff finds that the 12 proposed test program, as supplemented by the staff 13 14 imposed license conditions, meets the acceptance criteria and provides adequate assurance that affected 15 16 systems, structures and components will perform 17 satisfactorily in service. And now Mr. Hamzehee will go over the 18 19 staff's review of the licensee's proposal for large 20 transient testing. CHAIR BONACA: This is new stuff from the 21 22 SER, so therefore, the SER you are discussing two 23 measure transient tests, right? The SER discusses the --24 MS. BROWN: 25 CHAIR BONACA: The license condition.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

115

	116
1	MS. BROWN: The MSIV. It discusses the
2	load reject and it discusses the feedwater and
3	condensate single pump testing which his what we're
4	referring to.
5	CHAIR BONACA: Okay, that's what you're
6	referring to?
7	MS. BROWN: Yes, sir.
8	CHAIR BONACA: All right, because I mean
9	you're mixing, you started off with other tests and
10	okay, so this is the one in which you are requiring
11	individual pump
12	MS. BROWN: Trip tests, yes, sir.
13	CHAIR BONACA: All right, that's the
14	second bullet.
15	MS. BROWN: Yes, sir. Hussein?
16	MR. HAMZEHEE: Well, this is basically the
17	results of the staff's review of the requirements for
18	large transient testing which includes the MSIV
19	closure test and main turbine generator load rejection
20	test.
21	And the regulatory requirements are 10 CFR
22	50, Appendix A, general design criteria that talks
23	about the requirements for SSCs that are important to
24	safety that should be tested consistent with the
25	quality standards and 10 CFR 50, Appendix B, Criterion
	I

(202) 234-4433

117 1 11 which is the test control and discusses the requirement for establishment of the test program to 2 3 ensure that the required tests are identified and 4 performed in accordance with test procedures. And 5 also, 10 CFR 50.34 that talks about the plans for preoperational testing and initial operations. 6 7 Next, please. The staff's reviews are based on the four 8 standards discussed here. It's the review standard 9 for NRC Extended Power Uprate Review, RS-001; and also 10 11 Section 14.2.1 of Reg. Guide 800 which is the generic 12 guidelines for EPU testing program, part of the standard review plan. And we also have the GE topical 13 14 report on generic guidelines for GE BWREPU, Appendix 15 L; Reg. Guide 1.68 which is the requirements for 16 initial test programs. These are the four standard 17 reviews that we have used in our large transient 18 testing. justifications 19 Now basically for not 20 requiring large transient testing have been identified and discussed in 14.2.1, Section 3(C). And the 21 22 highlights are summarized here which is basically the 23 extent and nature of plant modifications, the setpoint 24 changes, changes in plant operating parameters. Also, 25 to ensure that the plant is in conformance with the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 limitations of the analytical methods so that if their 2 inadequate information, that does not really is 3 conform with the analytical method, then we may have 4 to require the test, the large transient testing and 5 also we have to look at the availability of relevant operating experience and also the risk considerations 6 7 to make sure that number one, the risk associated with 8 initiating a plant transient. On the other hand, 9 benefits of having some of these plant problems identified during a controlled circumstance. 10 So these are the -- some of the basic criteria used for the 11 staff's review. 12 CHAIR BONACA: For determining. 13 14 MR. HAMZEHEE: Yes. And then now let's 15 look justification for requiring at the large transient testing for Unit 1 at Browns Ferry. 16 For 17 Browns Ferry Unit 1, we require large transient 18 testing mainly the MSIV closure test and main 19 load rejection test. And these are generator 20 consistent with the guidelines as discussed earlier of 21 14.2.1 of the SRP and the GE topical report. 22 And the main reasons for requiring the 23 large transient testing is the fact that the plant has gone through extensive modifications and I don't 24 25 believe I need to go over them this morning. You

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

118

	119
1	heard a list of all the changes, some of which were
2	light refurbication of main feedwater, condensate
3	pump, a lot of valves, booster pump, a lot of
4	conduits, cable trays replacement and also the fact
5	that the plant has been shut down for an extended
6	period of time, I believe since 1985 and also there is
7	not enough operating experience data to confirm some
8	of the related operational experiences.
9	Any questions?
10	CHAIR BONACA: You are requiring these two
11	tests?
12	MR. HAMZEHEE: Correct, for 105.
13	CHAIR BONACA: For 105.
14	MR. HAMZEHEE: Correct.
15	CHAIR BONACA: And the licensee had
16	proposed to perform one of them at 120, 115 to 120.
17	MR. HAMZEHEE: That's correct.
18	CHAIR BONACA: Why you chose 105?
19	MR. TATUM: This is Jim Tatum, Balance of
20	Plant Branch. We were pretty much following the
21	guidance of the review standard and the onus was on
22	the licensee to demonstrate any justification for
23	taking exception to the testing that's specified in
24	the review standard.
25	In considering the 105 situation, we felt

(202) 234-4433

	120
1	that it was inappropriate to delay the testing because
2	we don't know how long it's going to be sitting at 105
3	percent. So we essentially looked at this as two
4	separate power uprate conditions, one going to 105 and
5	establishing adequate assurance at that level, that
6	the plant will respond as analyzed.
7	Now when they go to 120, they will have
8	some operational data available, but still the onus
9	will be on the licensee to adequately justify
10	elimination of any testing at the 120 percent.
11	CHAIR BONACA: So you are leaving open the
12	possibility of a testing at 120 still?
13	MR. TATUM: That's correct.
14	CHAIR BONACA: Based on operation at 105.
15	I understand now.
16	DR. BANERJEE: It will get an automatic
17	exception within the 15 percent or whatever it is.
18	There's some
19	CHAIR BONACA: Didn't sound like it.
20	DR. BANERJEE: They don't, right?
21	MR. TATUM: That's correct. Just strictly
22	following the review standard, it would specify large
23	transient testing unless the licensee is able to
24	adequately justify the elimination of that testing.
25	And part of the equation there is what sort of
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

1 operating experience can they bring to bear for the 2 staff's review. And one of the real shortcomings at 3 least right now for Browns Ferry Unit 1 is the lack of 4 operating experience. And they've just been shut down 5 for so long, there's just nothing there for a plantspecific review of operating experience. 6 7 So we considered it very important to do the testing at 105 percent, especially recognizing 8 that they could be sitting there at 105 percent for 9 some extended period of time, but then when they go to 10 120 percent, we still have to consider the criteria in 11 12 the review standard and the licensee will have to sufficient information 13 prepare to justify not 14 performing the testing and that remains to be seen. 15 Next. Now for Unit 2 and 3, we are not requiring 16 17 the large transient testing to be perform again, based on the criteria in 14.2.1 and the Appendix L of the 18 19 topical report. 20 Again, based on the same justifications we 21 discussed earlier for Units 2 and 3, there are enough 22 operating experience information and data, and they 23 have had some generator load reject in the past and they've had turbine trips, turbine stop and full valve 24 25 closure events, so some of these things have already

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

121

	122
1	been experienced at Unit 2 and 3.
2	Also, a lot of changes are like Unit 1
3	that have been done recently and they have not been
4	tested. The changes have been implemented throughout
5	the last some years of the plant operation.
6	That should be it.
7	CHAIR BONACA: Okay, any other questions
8	on that?
9	MS. BROWN: All right, then we want to
10	move on to our generic risk presentation by Mr.
11	Stutzke.
12	(Pause.)
13	CHAIR BONACA: Now this is a risk
14	evaluation that is not referenced in the SER.
15	MS. BROWN: That's correct.
16	CHAIR BONACA: So what are you going to
17	tell us?
18	This is a risk evaluation that is not even
19	discussed in the SER.
20	DR. CORRADINI: Does that mean we have to
21	travel to the plant.
22	MS. BROWN: They've already been to the
23	plant.
24	(Laughter.)
25	CHAIR BONACA: What are we going to talk

	123
1	about?
2	MR. STUTZKE: I will try to clarify this.
3	Good morning. My name is Marty Stutzke. I'm a Senior
4	Reliability Risk Analyst for PRA Licensing Branch A,
5	Division of Risk Assessment, Office of Nuclear Reactor
6	Regulation.
7	Before we get started, I'd like to
8	recognize the contributions of my colleague, Steve
9	Laur. At the time the original 120 percent EPUs came
10	in, Steve was assigned to be the Unit 1 reviewer and
11	I was the Units 2 and 3 reviewer. At about the time
12	we got the request for the 105 percent uprate, Steve
13	was promoted to Senior Level Advisor and as a result,
14	I inherited all of the Unit 1 review work.
15	DR. CORRADINI: Congratulations.
16	MR. SIEBER: So why are you congratulating
17	him?
18	(Laughter.)
19	MR. STUTZKE: As a risk analyst, the
20	sequence is either successful or it's not.
21	This is the first of three presentations
22	I've been asked to deliver to you, gentlemen. I find
23	it amazing that you get to see me three times for the
24	105 percent discussions today and tomorrow, especially
25	since this is a nonrisk-informed application.

(202) 234-4433

	124
1	DR. POWERS: Is it performance based?
2	(Laughter.)
3	MR. STUTZKE: The idea was this, that we
4	knew that the Committee's composition and membership
5	has changed and there will be Members here were
6	unaware of how we look at the risk for nonrisk-
7	informed applications. And so this morning I wanted
8	to briefly explain how the staff goes through that
9	process.
10	CHAIR BONACA: Before you do that or
11	whenever, I'd like to understand when I go back to the
12	record, I see that TVA has submitted a risk evaluation
13	for the NPSH issue, that's a separate risk assessment.
14	MR. STUTZKE: That's correct.
15	CHAIR BONACA: That is not referenced in
16	the SER, although the SER discusses NPSH issue at the
17	120 percent power.
18	I was puzzled that was not referenced or
19	discussed in the SER.
20	MR. STUTZKE: I will try to explain that.
21	CHAIR BONACA: So you'll discuss that and
22	you'll discuss also the you will answer the
23	question, is there an overall PRA evaluations of the
24	power uprate NPSH.
25	MR. STUTZKE: Now this afternoon when I
1	I contract of the second se

(202) 234-4433

	125
1	come back I will talk about the risk evaluation of the
2	containment accident pressure credit.
3	CHAIR BONACA: Okay.
4	MR. STUTZKE: And then tomorrow afternoon,
5	I'll talk about the other insights from the risk
6	assessment, not related to the credit.
7	Let's flip to Slide 3, please.
8	As Mr. Sieber noted, power uprate requests
9	are not risk-informed submittals. In other words,
10	they're not submitted in accordance with Regulatory
11	Guide 1.174. Staff has a process whenever we receive
12	any requests for license amendment, a project manager
13	reviews it to NRR Office Instruction LIP101 to decide
14	whether there are risk implications going on here.
15	When we get a nonrisk-informed
16	application, then the staff starts to think about
17	Standard Review Plan Chapter 19, Appendix D. That's
18	the guidance to the staff on how to consider risk
19	information from nonrisk-informed applications.
20	The basis or the concept behind that
21	appendix is a use of risk evaluation techniques to
22	consider adequate protection. There's a presumption
23	that if licensees comply with regulations and other
24	requirements that adequate protections exist, like
25	this. So the purpose of the risk evaluation then is
	I

(202) 234-4433

	126
1	to act almost like a spoiler. We will try to find if
2	there are things in that application, be it non-risk
3	informed that would give rise to questions of adequate
4	protection in this.
5	DR. CORRADINI: Can you say that one more
б	time? I'm trying to understand.
7	MR. STUTZKE: It is confusing. The
8	presumption is adequate protection exists.
9	DR. CORRADINI: Because?
10	MR. STUTZKE: Compliance with regulation.
11	DR. CORRADINI: With the deterministic
12	rules so
13	MR. STUTZKE: Right. But there may arise,
14	we call them special circumstances, situations where
15	even though compliance with regulation can be
16	demonstrated, we still may be concerned about undue
17	risk.
18	MR. RUBEN: This is Mark Ruben from the
19	staff. I can give you a 20 second history of where
20	this came from. There was an issue of about five
21	years ago that involved retubing of the steam
22	generator, excuse me, sleeving repair of some degraded
23	tubes. And at that time, the steam generator repair
24	met all the deterministic design basis accident
25	requirements.

(202) 234-4433

However, the severe accident response of 2 the repaired tubes was somewhat less than the original So the issue arose of well, it meets the 3 tubes. 4 regulation of -- it meets the design basis accidents, 5 how do we consider the fact that there may be some nondesign-basis severe accident impact that should be 6 7 brought into NRR's decisionmaking process.

Senior office management felt that there 8 9 was a gap in guidance to tell the staff how to do that 10 and they directed the staff to develop some procedures and guidance that were sent to the Commission. 11 12 Basically, the -- as Mr. Stutzke said, the presumption is the plans are adequately safe. They meet all the 13 14 regulations, yet those regulations are based upon evaluations of plant to design-basis accidents as 15 16 defined in Chapter 15.

As we all know, the risk to the plants 17 don't come from design basis accidents, they come from 18 19 far beyond, in the severe accident space and the staff 20 just given direction and authority by was the 21 Commission in those rare instances and I want to 22 emphasize the word rare because we really haven't run 23 across them where the plant may meet all the 24 regulatory requirements, for design basis, but there 25 may be a degradation in the severe accident, severe

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

1 response realm that should be considered by the staff 2 and senior management in making its ultimate decision. And the guidance that was endorsed by the 3 4 Commission gives the staff the authority to seek, 5 attempt to seek risk information in those situations where they 6 believe adequate protection is not 7 maintained, even though all the regulatory 8 requirements are met. The Commission felt this would be such an 9 infrequent occurrence that if it is ever identified 10 11 and the staff implements the procedures to the point 12 of perhaps disallowing a licensee action based on this provision, we are required to notify the Commission 13 14 and that has not occurred up to this point. 15 DR. CORRADINI: Thank you. The translation is good engineering judgment requires that 16 17 you look at everything. 18 MR. RUBEN: Right. 19 STUTZKE: Moving to slide four, MR. 20 because the submittal is not risk-informed, the burden 21 then falls to the staff to demonstrate the presumption 22 of adequate protection that's not being supported. 23 And we have some guidance that defines so-called 24 special circumstances that tell us when we may have a 25 problem here.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

128

129 Moving on to slide five, examples of special circumstances are listed here: increasing the likelihood of consequences of accidents that are beyond the design basis; degrading multiple levels of defense or reactor oversight process cornerstones; significant degrading and availability or reliability of equipment; or synergistic or cumulative effects, specifically power uprates were identified. I would point out that part of the debate over the credit for containment accident pressure is a degradation of multiple levels of defense-in-depth.

12 That's the concern.

1

2

3

4

5

6

7

8

9

10

11

special 13 So once we suspect that 14 circumstances may exist, we can complete an evaluation 15 We do it by considering five as shown on slide six. key principles of risk-informed decisionmaking listed 16 in Reg. Guide 1.174, compliance with regulation, 17 consistency with defense-in-depth philosophy, adequate 18 19 safety margin; small risk increases and we need to 20 monitor for the impact of the change.

21 Now my job as the reviewer is primarily 22 number four, the other items are the more traditional 23 cognizant branches of these things.

That being said, we have to be mindful that the numerical risk acceptance guidelines in the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

130 1 Reg. Guide, what I refer to them as XY plots with 2 baseline CDF and delta CDF and similarly with LERF and delta LERF, those guidelines don't define what we mean 3 by adequate protection. That's a more broader term. 4 5 In other words, we're not risk-based, but we're riskinformed like this. 6 7 Continuing on, slide seven, SRP 19 does give us some guidance on when, how to look at the 8 9 defense-in-depth issues. Significant increases, challenges to barrier integrity or changes to barrier 10 11 failure probabilities, introduction of new or 12 failure dependencies additional among barriers. Again, that's the issue about the containment accident 13 14 pressure. Overall redundancy and diversity among barriers may not be sufficient for -- to meet the 15 16 quidelines. So this is the basis for deciding whether 17 defense-in-depth that's been preserved. 18 The word "significantly" shows 19 DR. KRESS: 20 up a lot in there. 21 MR. STUTZKE: Yes, sir. 22 (Laughter.) 23 Do you want to tell us a DR. KRESS: little bit more about that or --24 25 MR. STUTZKE: We have no specific guidance

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

131 1 beyond this as to what is a significant increase, for 2 example, in the likelihood of failure. I think it 3 comes down to a judgment call. DR. KRESS: Judgment call. 4 5 MR. STUTZKE: But it does admit there could be some increase. 6 7 Similarly, we have some guidance on safety margins as shown in slide eight, meeting established 8 9 engineering codes and standards and meeting the acceptance criteria of the licensing basis. 10 It's rather cut and dried. 11 12 Okay, with respect to changes in risk on slide nine, the EPU review standard prepared by NRR 13 14 indicates that the focus should be on the base risk, 15 total CDF, total LERF, no vulnerabilities for margins-16 type analyses, as opposed to the delta, the change in 17 risk evaluation. That's where you see a big difference in Req. Guide 1.174 where we -- I won't say 18 19 we fixate on the change in risk, but that's a major 20 part of it. We look at EPUs specifically the baseline 21 22 risk and the whole package is what's important, like 23 this. However, if the base risk or the change in risk would exceed the Reg. Guide 1.174 guidelines, then we 24 25 would have to investigate further and proceed with a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	more integrated decision process to decide if we've
2	actually identified the question of adequate
3	protection at this point in time.
4	Okay, so what happened on Browns Ferry
5	review, other than I suddenly inherited a lot more
6	work? The licensee did not provide a risk evaluation
7	of the interim 105 percent power uprate, nor does the
8	staff routinely look at the risk of proposed non-EPU
9	power uprates. So anything below about seven percent,
10	the PRA folks don't normally even look at the license
11	request.
12	I've been unable to identify any case
13	where that's not true. We tend to fixate only on
14	extended power uprates big ones like this.
15	However, we did notice that in order to
16	get the 105 interim power uprate, there was a request
17	for crediting containment accident pressure for NPSH
18	to the BCCS pump suctions.
19	DR. CORRADINI: Can you say that a
20	different way? I interpret that to mean that the fact
21	the containment has a higher pressure that helps their
22	NPSH, do I have that correct?
23	MR. STUTZKE: Right. Briefly, the idea is
24	
25	DR. BANERJEE: They are requesting credit
1	•

(202) 234-4433

	133
1	for it.
2	MR. STUTZKE: I'm sorry?
3	DR. BANERJEE: They're requesting credit
4	for it.
5	MR. STUTZKE: Right.
6	MR. SIEBER: And NPSH is needed. The
7	pumps need that extra help. Pumps won't function
8	properly without the extra pressure.
9	DR. CORRADINI: Made by the containment
10	pressurization.
11	MR. SIEBER: Right.
12	MR. STUTZKE: We will discuss this in, I
13	imagine
14	DR. CORRADINI: If it's later, it's later.
15	That's fine.
16	MR. STUTZKE: Detailed this afternoon.
17	DR. CORRADINI: Fine.
18	MR. STUTZKE: But the concern then from
19	the risk perspective is because the pumps need to be
20	containment accident pressured to prevent their
21	cavitation, it could be perceived as introducing a
22	dependency now between the various barriers.
23	DR. CORRADINI: Can I say it differently?
24	So if I have better heat transfer than I expect in
25	containment, I have a problem? Is that another way of
	I

(202) 234-4433

	134
1	saying it.
2	MR. STUTZKE: That's another way of saying
3	it.
4	DR. CORRADINI: Thank you.
5	MR. STUTZKE: Or alternatively, if the
6	containment loses its integrity, they have a problem.
7	So a containment failure is now inducing core damage
8	from a risk perspective.
9	MR. SIEBER: Causing a fuel barrier
10	failure
11	MR. STUTZKE: Right, and that's the
12	concern.
13	DR. CORRADINI: Thank you.
14	DR. BANERJEE: We have faced this concern
15	before.
16	MR. STUTZKE: Yes. Most recently at
17	Vermont Yankee.
18	DR. BANERJEE: Right.
19	DR. POWERS: Surely not.
20	(Laughter.)
21	MR. STUTZKE: So anyway, the idea was
22	because they needed containment accident pressure,
23	both for the 105 percent interim uprate as well as the
24	120 percent extended power uprate, we tended to fixate
25	or focus on the 120 percent power uprate. And so all

(202) 234-4433

	135
1	of the risk evaluations of the containment accident
2	pressure credit were based on 120 percent. I can give
3	you a little reason why the answer is not sensitive to
4	the power level.
5	When we did this in PRA space, the focus
6	will be looking at how one can lose integrity of the
7	containment either through some unidentified pre-
8	existing leak or perhaps a failure of containment
9	isolation, something like this. And accident
10	sequences are developed accordingly. The actual power
11	level doesn't have that strong of an impact. In other
12	words, we assume once the containment integrity is
13	lost, that the containment accident pressure probably
14	is not going to be there.
15	Now there are some we'll talk later
16	this afternoon
17	DR. BANERJEE: Don't you need more credit,
18	I mean a higher pressure for higher power?
19	MR. STUTZKE: Apparently not.
20	DR. BANERJEE: Why?
21	MR. STUTZKE: Well, when they do the
22	calculation, they will, in essence, they are back
23	calculating the required containment accident pressure
24	to prevent cavitation and that's compared to a
25	thermal-hydraulic calculation of the actual
1	I contract of the second se

(202) 234-4433

	136
1	containment pressure they expect to see.
2	DR. CORRADINI: But the I apologize.
3	I'm new to this. The inference is then stored energy
4	is not a function of power? And I at least to a first
5	approximation, it ought to be some function of power?
6	MR. RUBEN: This is Mark Ruben. One of
7	the driving forces, of course, is the pump
8	characteristics and what it requires. As part of
9	power uprate they needed increased ECCS flow, and as
10	a consequence we're in a different point on the pump
11	head flow curve, then it would be a function of power
12	uprate. But if you don't have to change the flow of
13	the pump, then it's just the normal head requirements
14	for that flow rate.
15	DR. BANERJEE: What about the temperature
16	of the water? If you're going up in pressure to
17	uprate the plant, does that change?
18	DR. KRESS: That's the pressure pool
19	temperature.
20	DR. BANERJEE: That's what I mean, yes.
21	MR. STUTZKE: I would suggest we defer
22	this to this afternoon's discussion.
23	CHAIR BONACA: But did they perform the
24	analysis at the 105 percent power?
25	MR. CROUCH: We are going to talk about
	1

(202) 234-4433

	137
1	all of this as part of J.D.'s presentation.
2	MS. BROWN: Yes, licensing goal in some
3	detail.
4	MR. STUTZKE: So that's what I have to
5	tell you for this morning.
6	DR. KRESS: In your consideration, 1.174,
7	I like your comment that adequate protection just
8	doesn't mean CDF and LRF. It also means all the other
9	things. But does it also mean releases and LRF, for
10	example, late containment failures. Is that part of
11	your look at the risk?
12	MR. STUTZKE: No, it's not. We tend to
13	look only at the risk metrics, CDF and LERF. Large
14	early release frequency.
15	MR. RUBEN: This is Mark Ruben again.
16	Those were certainly the primary metrics, but the two
17	or three vu-graphs that Mr. Stutzke went over is the
18	initial quick screen to be able to dispel the concern
19	of adequate protection.
20	If we don't meet the quick screen,
21	virtually everyone has always met it. You start
22	getting into a lot more complex issues and phenomenon.
23	One of those could very well be long-term containment
24	integrity with respect to adequate protection. So I
25	would rule out it would be part of the full decision
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

138 1 process. It's just not one of the quick screen 2 metrics. 3 DR. POWERS: The licensee has a history of 4 fire events at one of his plants, has gone to some 5 lengths to explain that he has upgraded his fire protection plan and fire protection capabilities to 6 7 reach various NFPA standards and what not. He is, of 8 course, acutely aware of Appendix R. 9 Can you explain how you go through and review the fire risk significance of the changes that 10 were made in this plant? 11 12 The review of an external MR. STUTZKE: event such as fire for this plant is basically a 13 margins-type of an approach. 14 In other words, there's 15 no quantitative fire risk assessment performed. Rather, it's a looking for vulnerability from room to 16 room, like this. 17 What that means is that they do what is 18 19 called area screening, so they systematically look at 20 every compartment, every room, every fire zone and ask 21 what would happen if all the equipment in the room was 22 damaged, was rendered ineffective? And going through 23 that sort of process they can quickly zoom in on the 24 rooms where things are vulnerable like that. 25 However, the estimate --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

139 1 DR. POWERS: It's all very remarkable 2 the particular that is of such because event 3 historical significance at this set of plants involved 4 a fire started in one room that propagated to another 5 room. And so it's remarkable to go room by room and not take advantage of the more integrated view that a 6 7 risk assessment offers. There is consideration when 8 MR. STUTZKE: 9 one does this analysis of the propagation from room to One does begin to look at combinations of 10 room. rooms, different types of scenarios like that. 11 12 But the idea of the screening then is done on a frequency of how likely are things. 13 And typically, scenarios that are 10^{-6} or so per year are 14 15 screened out from further consideration in the 16 analysis. Again, this is all very 17 DR. POWERS: remarkable because it seems to fly in the face of the 18 19 protestations made by the Commission that they want to 20 move to risk which would be looking at the product of 21 the frequency and the consequences, as rather just a 22 frequency itself. Well, I would argument 23 STUTZKE: MR. whenever one looks at risk metrics such as core damage 24 25 frequency or large early release frequency, one is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	focusing only on the frequency aspect, not the
2	consequence like this.
3	DR. POWERS: And I would agree with you
4	explicitly and again say it seems to fly in the face
5	of the protestations made by the Commission that
6	they're looking at risk, when in fact, they're not.
7	They're looking at frequency.
8	MR. RUBEN: Dr. Powers, your point is
9	obviously a very good one. About all we can say to
10	put the approach into perspective is that many, I
11	guess I could say, most plants do not have full fire
12	PRAs at this time. In fact, the developing standards
13	for fire PRA do allow simplified methodologies such as
14	five or modified versions of it.
15	DR. POWERS: The question is, of course,
16	whether it's simplified or simplistic.
17	MR. RUBEN: Yes, sir. But again, there is
18	no specific requirement for a PRA-based criteria to be
19	met as part of EPU. The issues you raise that are
20	very significant would essentially be almost the same
21	pre- and post-EPU, except for some small timing
22	changes of decay heat and the time you had available
23	to respond to a fire initiator. But your point is a
24	very good one.
25	DR. POWERS: But it seems to me that if
	I contract of the second se

(202) 234-4433

they're not specific requirements, in order to assure that we're providing adequate protection, then under Section D, the staff ought to be leaning forward in the trenches looking at the real fire risk associated with any plant changes and ought to have the tools to do so.

7 MR. RUBEN: At the current time, we don't have a regulatory vehicle to insist on fire PRA to be 8 9 done, except in those cases if I can refer you to the phase PRA quality initiative, except in those cases 10 11 when a licensee comes and voluntarily with a risk-12 informed initiative, where the fire contributors due to the change that the licensee is requesting, is a 13 14 significant contributor due to the change, and that 15 does not appear to be the case here. And in fact, this is not a risk-informed submittal. 16 So I certainly 17 can argue your technical merits. They have a lot of 18 validity, but with respect to this particular 19 implementation, the plant fire risk is what it is. 20 They chose not to do a full fire PRA. That's correct. 21 Marty? 22 That's correct. MR. STUTZKE: 23 MR. RUBEN: And so we have best simplified 24 methods which the industry has -- the majority of the 25 industry has used and in fact the standards allow them

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	142
1	to continue to be used with some limitations in Reg.
2	Guide 1.200, depending on the application.
3	DR. POWERS: But nothing you said
4	constrains the staff to use those simplified or
5	perhaps simplistic methods, does it? What you're
б	constrained right now is by the tools that you have
7	available.
8	MR. RUBEN: If we, in the course of our
9	evaluation, identify what we think is an issue of
10	adequate protection due to the power uprate, with
11	respect to fire, then we would pursue it as best we
12	could with whatever tools we had available, which
13	would likely be the simplified methods at this time.
14	If the simplified methods fall short of
15	providing the type of confidence we need, then as a
16	decision analyst you're forced to err on the side of
17	conservatism in your decisionmaking, based on the
18	uncertainty and the limitations of knowledge.
19	DR. POWERS: I would hope in the course of
20	your review, you identified a vulnerability to
21	anything, whether it was associated with a power
22	uprate or not, you would pursue it.
23	MR. RUBEN: I'm certain the people
24	responsible for that particular error would pursue it
25	and we would identify it for them. The ability to
1	

(202) 234-4433

	143
1	calculate the exact contribution is the issue I was
2	speaking to.
3	DR. POWERS: Let me inject that I have no
4	reason to think that there is any vulnerability for
5	this plant. This is a more generic issue.
6	MR. RUBEN: I share your concern, as a
7	matter of fact.
8	DR. POWERS: I know you do, and we'll get
9	to chew on this a little more in the future, I'm sure.
10	DR. KRESS: It seems like a good issue for
11	the technology-neutral framework. We want to make
12	sure we address that issue there.
13	CHAIR BONACA: But just looking at your
14	last slide, I mean you said that the evaluation done
15	at the 120 percent power will be similar to what you
16	would get in 105 percent. And yet, you're still
17	supporting the perspective that you do not need risk
18	evaluation for below seven percent power uprates? I
19	mean, the experience seems to show now that you should
20	even for those.
21	MR. STUTZKE: Actually, the experience
22	shows that for all of the extended power uprates,
23	we've done a look at the risk evaluation. We've never
24	identified a special circumstance. In fact, the core
25	damage frequencies don't seem to change very much as
1	I Contraction of the second

(202) 234-4433
Í	144
1	the result of power uprate either extended and by
2	extrapolation then for less than an extended uprate,
3	you wouldn't expect the risk to change very much
4	either as measured by core-damage frequency or large
5	early-release frequency.
6	DR. CORRADINI: So whether it be CDF or
7	LERF for extended power uprates, you don't see a big
8	effect?
9	MR. STUTZKE: Not on CDF or LERF.
10	MR. SIEBER: There's a couple of issues
11	there. One of them is you don't measure the decrease
12	of margin. Second one is risked people does increase
13	with the power uprate because the source term goes up.
14	MR. STUTZKE: Certainly the risk goes up.
15	MR. SIEBER: So we're using the wrong
16	surrogates to measure this.
17	MR. RUBEN: But if
18	DR. KRESS: Am I supposed to say amen
19	here?
20	MR. SIEBER: You can if you want. I read
21	your 100 white paper.
22	(Laughter.)
23	DR. KRESS: One hundredth of the same
24	subject.
25	MR. RUBEN: This is Mark Ruben again.

	145
1	There was you're absolutely right on the direct
2	impact on a "pure calculation of risk". The source
3	term MANRAM is essentially linear on power uprate.
4	There was a study done by the Swiss, I believe, and we
5	talked about it with the Committee about three years
б	ago. Very interesting study. But the approach that
7	the staff uses in its decisionmaking, lacking as Dr.
8	Kress has pointed out on a number of occasions, is
9	that a LERF is a LERF. It is a large enough release
10	to cause, have the potential to cause early fatalities
11	before effective evacuation can be put into place.
12	If we were to use a different metric, that
13	means we would evaluate a plant like Oyster Creek much
14	differently than we would evaluate a plant like Grand
15	Gulf. But we don't, and when we came to the Committee
16	with the risk-informed regulatory initiatives and the
17	decision metrics and the risk-surrogate metrics, it
18	was thought that they should based on per unit risk,
19	not be scaled for power and not be adjusted for number
20	of units on site, though that issue is being given
21	very vigorous attention on the new reactor, part 53
22	rule development
23	MR. SIEBER: I think we will give
24	commensurate attention to that also.
25	CHAIR BONACA: Okay, so we're anxiously
l	I contract of the second se

(202) 234-4433

(202) 234-4433

	146
1	waiting for these presentations in the afternoon. We
2	got to the end of our morning. We're well ahead of
3	time, but we cannot start before scheduled time,
4	because I think that's a problem. So we have to have
5	a long lunch. For those of you who smoke, you can
6	have a long cigar. Outside. So we'll now take a
7	recess until 1:40.
8	(Whereupon, at 11:53 a.m., the meeting was
9	recessed, to reconvene at 1:40 p.m.)
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	•

	147
1	
2	
3	<u>AFTERNOON SESSION</u>
4	1:42 P.M.
5	CHAIR BONACA: Okay, let's get back into
6	session and I believe the next presentation is going
7	to have to do with the containment of the pressure.
8	Before we do that, however, there was a
9	question from you this morning regarding LOCA.
10	DR. BANERJEE: Right.
11	CHAIR BONACA: And I think that TVA is
12	ready to provide some information?
13	DR. BANERJEE: Appendix R.
14	MR. CROUCH: Fran Bolger from GE is going
15	to answer the question.
16	MR. BOLGER: This is Fran Bolger from GE.
17	There was a question regarding what caused the
18	decrease in the PCT in the Appendix R calculation and
19	to clarify the calculation that was done at 105 used
20	the ANS 5.1 1979 decay heat. The calculation that
21	supported the 105 had a very sparse set of data points
22	in the decay heat curve and because of that, the decay
23	heat assumed, at the point of the maximum PCT was very
24	conservative.
25	That calculation was redone at 105 percent

(202) 234-4433

	148
1	power with the PCT of 1323. The EPU-calculated PCT is
2	for the same fuel type G13 was 1412. So then there
3	was so there is actually approximately a 90 degree
4	increase in PCT due to power uprate.
5	DR. BANERJEE: So the original calculation
6	shown was something like 1480 or something?
7	MR. BOLGER: 1485.
8	DR. BANERJEE: 1485. That was just due to
9	the fact that very conservative decay heat hadn't been
10	taken?
11	MR. BOLGER: That's correct.
12	DR. CORRADINI: Using the ANS decay heat
13	standard?
14	MR. BOLGER: Yes, but the table the
15	decay heat table had very sparse set of number of
16	points and you know, it's important to have a lot of
17	detail in the decay heat points in order to get an
18	accurate representation of decay heat and time.
19	DR. CORRADINI: Early in time,
20	particularly.
21	MR. BOLGER: Yes, that's correct.
22	DR. BANERJEE: Do you have a report or
23	something which summarizes all of this somewhere?
24	MR. CROUCH: We have a task report that's
25	prepared to support this more.

(202) 234-4433

149 1 DR. BANERJEE: And it contains all this 2 detail? MR. CROUCH: Yes. 3 4 DR. BANERJEE: And that's available -- has 5 it been submitted to the staff? MR. CROUCH: No, it has not been submitted 6 7 to the staff. It was the backup to the report, the 8 submittal to the staff. 9 DR. BANERJEE: Would it be possible to get 10 a copy to take a look at? MR. CROUCH: You can talk to Eva about how 11 12 to do that. MS. BROWN: We'll take a look and see 13 14 whether or not that is within the -- our ability to 15 get the reports. I'm not entirely sure. But we'll check back and coordinate with Ralph on whether or not 16 17 we can get that report. It's just to understand the 18 DR. BANERJEE: 19 details of what happened. The changes are 100 20 degrees. These are huge changes. So it's useful to 21 know what happened. 22 MR. CROUCH: We'll talk to Eva through the 23 afternoon and see what we can do. 24 DR. BANERJEE: Okay, thanks a lot. 25 CHAIR BONACA: So let's move on to the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	containment of the pressure presentation.
2	MR. CROUCH: In order to present the
3	containment overpressure today, we have with us two
4	individuals that will be actually making the
5	presentations. Some other individuals will be
6	providing backup. We've got Jim Wolcott here
7	immediately to my left. He is the Extended Power
8	Uprate Project Manager for Units 1, 2 and 3. And then
9	to his left is Bill Eberley who is the Mechanical
10	Nuclear Engineering Manager in Corporate Engineering.
11	And he was the preparer of many of the calculations
12	that actually dealt with containment overpressure. So
13	we have the people here to make the presentation
14	today.
15	Jim.
16	MR. WOLCOTT: We have been utilizing
17	containment overpressure in the NPSH calculation as
18	one of the terms in the calculation on Units 2 and 3
19	at 105 percent power already. This has been done for
20	a LOCA and it was done in response originally to NRC
21	Bulletin 96-03 which dealt with strainer blockage.
22	That bulletin dealt with a LOCA only. In
23	that particular original analysis, the RHR pumps for
24	the short-term part of the LOCA which is the first 10
25	minutes requires some containment overpressure and in
	1

(202) 234-4433

	151
1	the longer term part of the analysis greater than 10
2	minutes is core spray pumps that require some
3	containment over pressure.
4	For Unit 1, this will be the first time
5	we'll be using containment overpressure as a term in
6	the NPSH calculation.
7	CHAIR BONACA: When you say greater than
8	10 minutes, could you give us a sense of how long?
9	MR. WOLCOTT: Yes, in the current
10	analysis, the total duration in LOCA, that containment
11	overpressure is needed about eight hours.
12	CHAIR BONACA: You're referring to that
13	Unit 2 and 3 at 105 percent?
14	MR. WOLCOTT: That's correct.
15	CHAIR BONACA: Or 120 percent?
16	MR. WOLCOTT: At 105 percent. I'm
17	speaking of the original one.
18	DR. CORRADINI: So can I just repeat what
19	you said so I can get it right?
20	MR. WOLCOTT: Sure.
21	DR. CORRADINI: So there already has been
22	credit given for Units 2 and 3 at 105 percent for
23	this?
24	MR. WOLCOTT: That's correct. The dates,
25	I was going to say 1999 was when that was first
	•

(202) 234-4433

	152
1	established as a licensing requirement.
2	DR. CORRADINI: Just one other it's not
3	really fair directly to ask you this, but just give me
4	some feeling, so I am familiar with changes in PWRs
5	relative to things related to power uprates for
6	containment overpressure for different applications
7	and usually there's a band of potential containment
8	pressures that one looks at. So I'm not exactly sure.
9	Is this a mean value, an upper bound value, a lower
10	bound value? Do you see what I'm getting at in terms
11	of uncertainty in the value?
12	Can you get into that?
13	MR. WOLCOTT: Yes, we'll get into that.
14	Slide three.
15	We have a simplified diagram of the Browns
16	Ferry ECCS system as it relates to determining
17	containment overpressure and positive suction head.
18	We have four total RHR pumps which are down in blue
19	there and each one of those is aligned to its own RHR
20	heat exchanger so there are four total RHR heat
21	exchangers.
22	CHAIR BONACA: But you're assuming you're
23	losing two, right?
24	MR. WOLCOTT: That's correct. Some of the
25	analyses lose three and some of them lose two.

(202) 234-4433

	153
1	CHAIR BONACA: That's a limiting single
2	failure?
3	MR. WOLCOTT: Using design basis LOCA
4	rules, a limiting single failure leaves us with two
5	RHR pumps and heat exchangers. We'll cover that a
6	little bit more.
7	The RHR system is capable of several modes
8	that are drawn on here. They can inject to the
9	reactor vessel in the LPSI mode. They can return the
10	water to the suppression pool cooling mode and they
11	can cool the containment through containment spray,
12	either in the dry well part of the containment or the
13	wet well air space part of the containment.
14	We also have four core spray pumps which
15	are shown in yellow there and they are only capable of
16	core cooling. They spray water inside the core on the
17	core shroud.
18	DR. BANERJEE: Are your suction strainers,
19	not sump screens, are these like in Vermont Yankee?
20	MR. WOLCOTT: They are stacked, GE stacked
21	disked suction strainers.
22	DR. BANERJEE: They're laid horizontally,
23	right?
24	MR. WOLCOTT: No.
25	DR. BANERJEE: How are they done?
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	154
1	MR. WOLCOTT: Ours are on the wall of the
2	torus.
3	DR. BANERJEE: Right. How far from the
4	liquid surface are they?
5	MR. WOLCOTT: I don't know.
6	MR. EBERLEY: The plans where the strainer
7	assembly attaches is at elevation 5.7 feet and the
8	water surface, minimum water level is at 5.36 feet, so
9	it's the base of the strainer is submerged at that
10	difference.
11	DR. BANERJEE: And the top?
12	MR. CROUCH: About four feet. They angle
13	into the water volume on an angle, on a 45 degree
14	angle thereabouts.
15	DR. BANERJEE: How far from the water
16	surface is the top of the strainers?
17	MR. CROUCH: I can get back to you and get
18	a detailed figure for you.
19	DR. BANERJEE: Just roughly, four or five
20	feet.
21	MR. CROUCH: It's five, six feet,
22	something like that.
23	MR. EBERLEY: It's on the order of five
24	feet.
25	MR. WOLCOTT: The suction side of our
I	

	155
1	system is a little bit unique. We have four suction
2	strainers that are stacked disk suction strainers and
3	they supply a common ring header which all of these
4	ECCS pumps share. In many plants, the different
5	divisions of pumps have their own strainer.
б	Our pumps share the strainers and that
7	makes for a little bit of suction side interaction
8	when we're running more than one pump or groups of
9	pumps.
10	Slide four.
11	The NPSH analysis that we have submitted
12	is done at 120 percent of original license thermal
13	power and that bounds any result that we would get at
14	105 percent power.
15	We have four events that we're required to
16	analyzed as part of the licensing basis which would
17	require containment overpressure as part of the NPSH
18	equation in order to meet the manufacturer's required
19	NPSH.
20	DR. CORRADINI: Can I just interject one
21	question so I understand?
22	So you did this analysis at 120. In the
23	previous presentation we were given there was
24	essentially a set of data on operating data for the
25	machine where it shows the thermal power, feedwater,
	1

(202) 234-4433

	156
1	etcetera and I assume all the temperatures are
2	associated with 105. So what is the changes in what
3	we might see here relative to these accidents at 120?
4	Is that easily estimated?
5	MR. WOLCOTT: The major contributor and
6	possibly the only contributor from increased license
7	thermal power is the decay heat curve that would
8	result from operating at a higher power.
9	DR. CORRADINI: All other parameters are
10	essentially identical at 105 and 120?
11	MR. WOLCOTT: I believe it would be true
12	to say that they're all identical. I can't think of
13	one that's not.
14	MR. CROUCH: Core and sump cooling is just
15	slightly different, but the reactor pressure is the
16	same, so that overall the average temperature of the
17	water should be about the same.
18	DR. CORRADINI: Thank you.
19	DR. BANERJEE: The energy release during
20	LOCA, would that be more or less the same, 120 to 105?
21	MR. WOLCOTT: Yes. It's very close to the
22	same you have, part of the difference though.
23	There's a little bit more stored energy. If you're
24	comparing Unit 1 before having increased power level
25	I'm sorry, increased pressure to here.

(202) 234-4433

	157
1	DR. BANERJEE: Is that 20 percent more
2	stored energy or 15 percent?
3	MR. WOLCOTT: It's a very small
4	difference, but it probably is a difference that would
5	only manifest itself in the real short period of time
6	and then soon be overwhelmed by the difference in
7	decay heat which is the major difference by leaps and
8	bounds.
9	DR. BANERJEE: Well, the fuel is 105 and
10	120 is the same.
11	MR. WOLCOTT: Operating at the same
12	temperature.
13	DR. BANERJEE: But operating at a higher
14	power?
15	MR. WOLCOTT: That's correct.
16	DR. BANERJEE: Wouldn't you expect the
17	stored energy in the fuel to be a bit higher?
18	MR. WOLCOTT: Yes. That's all accounted
19	for in the difference in licensed thermal power.
20	DR. BANERJEE: Right, so if there is an
21	increase in the stored energy in the fuel, that has to
22	come out, right?
23	MR. WOLCOTT: Yes, it does.
24	DR. BANERJEE: During LOCA.
25	MR. WOLCOTT: Yes. What I was responding
	1

(202) 234-4433

	158
1	to is I probably had overlooked the fact that there's
2	a little bit more stored energy in the vessel because
3	Unit 1 from where it's currently licensed to now is
4	operating at a little bit higher pressure. So there's
5	a little bit more stored energy there.
6	DR. CORRADINI: Pardon us for being so
7	picky, I want to make sure. So I was just
8	guestimating that in your data here for 105, you went
9	up 5 percent in flow, so you went up a smidge in inlet
10	subcooling and a little bit in operating pressure to
11	make up for frictional pressure loss, but essentially
12	everything was taken up by an increase in flow rate,
13	if I understood the data for 105 that you gave us.
14	So at 120, I assume you just bump it 15
15	more percent in flow rate?
16	MR. WOLCOTT: Which thing?
17	DR. CORRADINI: Going from 105 to 120, I
18	don't have the 120 right in front of me. I assume you
19	increased the flow additionally another 15 percent?
20	MR. WOLCOTT: Things like feedwater flow,
21	steam flow, that's correct.
22	DR. CORRADINI: Okay. And then just to
23	follow through on Sanjoy's point, so if I increase
24	that, my heat transfer coefficient goes up which means
25	slightly

(202) 234-4433

	159
1	DR. BANERJEE: It doesn't go up much.
2	DR. CORRADINI: But the boiling heat
3	transfer may go up a little bit, so that cools down
4	the stored heat, but it's overwhelmed or taken over by
5	the 15 percent increase in thermal power?
6	DR. BANERJEE: But how many full powered
7	sections are stored normally at 105 in the fuel?
8	MR. RAO: This is Dilip Rao from GE. The
9	way we model the total shutdown power in the LOCA is
10	the shutdown power consists of a the decay heat,
11	the stored energy in the fuel and the reaction from
12	the metal water reaction and the last two terms are
13	selected generically and they're rationalized so that
14	at the higher power you would essentially be
15	multiplying by a larger number, so you proportionately
16	have a higher value for both the stored energy and the
17	metal water reaction term in the shutdown power table.
18	DR. BANERJEE: What I'm trying to
19	understand is how much energy is released during LOCA.
20	Let's say large break LOCA, keep it simple. In 105
21	percent versus 120 percent, let's say during the
22	blowdown phase, forget the how much more energy is
23	released?
24	MR. RAO: For the constant pressure, the
25	conditions in the reactor would be the same, the fluid

(202) 234-4433

	160
1	conditions and the temperature would be the same for
2	both 105 and 120.
3	DR. BANERJEE: But the heat in the fuel
4	has to come out somewhere, right?
5	MR. RAO: This would be carried through
6	the fuel and the way it's from fuel to the coolant,
7	the way it's modeled is that we actually attach that
8	to the decay heat term as a total shutdown power table
9	from time zero for the entire event.
10	DR. BANERJEE: Whichever way you cut it,
11	I'm just trying to get a feel for are you going to
12	have 15 percent more energy deposited in the
13	containment or not during blowdown?
14	MR. WOLCOTT: The total energy released is
15	going to be the area under the time decay heat curve
16	over the course of the event.
17	DR. BANERJEE: Plus the stored energy in
18	the fuel.
19	MR. WOLCOTT: Plus the stored energy
20	that's dumped to start with. Now I couldn't put that
21	in watt-seconds.
22	DR. BANERJEE: That's the question we're
23	asking. Simply to understand how much energy is being
24	deposited in the containment.
25	MR. CROUCH: Why don't we take that
	1

(202) 234-4433

	161
1	question and get back to you later on. We'll have GE
2	guys look into that.
3	DR. ABDEL-KHALIK: Let me ask a question
4	that's more directed towards the first statement. You
5	say that the analysis of 120 percent power in terms of
6	the I suppose of the net positive suction head
7	bounds the 105 percent power?
8	MR. WOLCOTT: Correct.
9	DR. ABDEL-KHALIK: Now does that mean that
10	the required net positive suction head at 120 percent
11	power is greater than the required net positive
12	suction head at 105 percent or that the available net
13	positive suction head at 120 percent power is less
14	than the available net positive suction head at 105
15	percent? Which one of these? Or both?
16	MR. WOLCOTT: The required net positive
17	suction head does not change with the change in power
18	level.
19	DR. ABDEL-KHALIK: Even though the
20	temperature might change?
21	MR. WOLCOTT: That's correct. The
22	required net positive suction head is independent of
23	temperature. The available, of course, is not. The
24	available net positive suction head goes down as
25	temperature goes up. So that's what is changing here.

(202) 234-4433

	162
1	DR. ABDEL-KHALIK: Okay.
2	MR. WOLCOTT: So to
3	MR. CROUCH: And you'll see that in his
4	slides as he goes on.
5	DR. ABDEL-KHALIK: Okay.
6	MR. WOLCOTT: Did that answer your
7	question?
8	DR. ABDEL-KHALIK: Yes.
9	MR. WOLCOTT: So we have continuing on
10	with this slide, there are four events that require
11	containment overpressure. These are four events that
12	we are required to analyze as part of the licensing
13	basis that we have to include an overpressure in order
14	to meet the vendor's required NPSH and they are the
15	loss of coolant accident, anticipated transient
16	without scram, station blackout and Appendix R fire.
17	CHAIR BONACA: Now the existing credit for
18	Unit 2 and 3 is only for LOCA?
19	MR. WOLCOTT: That's correct. Up to this
20	point, we've only analyzed LOCA at this level of
21	detail.
22	DR. BANERJEE: And that's with SAFER/GESTR
23	or something else?
24	MR. WOLCOTT: Is this primarily Super Hex.
25	The code that's used to generate the containment

```
(202) 234-4433
```

163
responses is Super Hex.
DR. BANERJEE: I'm saying the LOCA itself.
It is how do you analyze the LOCA?
MR. WOLCOTT: For core or impact on
DR. BANERJEE: Yes.
MR. WOLCOTT: That would be SAFER/GSTR.
DR. BANERJEE: Not you didn't use TRAKG
for any piece of it. And for the large break?
MR. LOBEL: This is Richard Lobel with the
staff. Let me just clarify something. We're talking
about containment analyses now, not LOCA analysis. So
the code that's used for modeling the mass and energy
release into the containment is the GE LAM code. It's
not SAFER/GESTR. SAFER/GESTR is for the peak cladding
temperature analyses that they do.
DR. BANERJEE: For the energy release, you
use a different code?
MR. LOBEL: For the mass and energy
release, yes.
It's an approved code, approved GE code
that is listed in the licensing topical reports that
go back to the early days of GE power uprate analysis.
DR. CORRADINI: So if this is an
appropriate time, unless you want to defer it, I'm
curious about the condensation heat transfer

(202) 234-4433

164 1 coefficient you used in this approved code. Do you 2 use Uchita Tagami per license evaluation or do you 3 use something different? 4 MR. RAO: We do have the Uchita 5 condensation model. 6 DR. CORRADINI: And that's what you're 7 using? 8 MR. RAO: That's correct. By way of 9 clarification and for the purpose of the long-term containment analysis, we used the SUPER X code. 10 The LAM code is used as a blowdown for the short term 11 12 response. DR. CORRADINI: Right, but where I'm going 13 14 with this is Taqami Uchita at least as is specified 15 for PWRs is known to be conservative from the 16 standpoint it under estimates the heat transfer coefficient. 17 So I'm trying to get a feeling for how the 18 19 you're predicting is affected by response the 20 uncertainty in the lost term to the containment cold 21 wall. 22 So that's where I'm going with all these 23 So you can do it now or you can do it questions. 24 later, but that's where I'm curious. 25 We'd have to get back to you MR. RAO:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	with a detailed response.
2	MR. CROUCH: Let us talk about that later.
3	DR. BANERJEE: I will still I'm going
4	back. LAM is only a the way you are describing it,
5	has its input then coming in from the LOCA, right? Oh
6	no. Or does it try to calculate also the energy and
7	mass?
8	MR. RAO: LAM is actually a code that
9	calculates the mass and energy release to the
10	containment and it is used for the purpose of
11	determining the peak containment pressure in the short
12	term on the order of several seconds for the purpose
13	of the NPSH calculation. We use a code Super Hex
14	which has an integrated vessel, dry well and wet well
15	representation and blowdown is calculated with this
16	integrated model of a vessel blowing down into a dry
17	well.
18	DR. BANERJEE: So now would it get a
19	different mass and energy release during blowdown from
20	say what you would get from your SAFER/GESTR
21	calculations? Or is it the same?
22	MR. PAPPONE: This is Dan Pappone from GE.
23	The basic blowdown when we're looking at the mass and
24	inventory and the energy, all three codes are set up
25	to model the same reactor, the same inventory, the
1	I

(202) 234-4433

	166
1	same core power. And it's really when we get to the
2	different applications that we'll see some of the
3	differences.
4	The LAM code we're looking at, just the
5	initial reactor blowdown pressurization of the dry
6	well that feeding into pressurization of the wet well,
7	the back pressure and peak containment pressure is for
8	the load is in the very short term. So in that sense
9	we're not interested in the stored energy coming out
10	of the fuel because the time period that we're looking
11	at is very short.
12	DR. BANERJEE: How long is that?
13	MR. PAPPONE: Within the first 10 seconds
14	or so.
15	DR. BANERJEE: Okay.
16	MR. PAPPONE: For SAFER/GESTR, we're
17	looking at the blowdown inventory, core uncovery and
18	heat up for the purposes of calculating the peak clad
19	temperatures during the LOCA on the fuel. When we get
20	to Super Hex for the long-term containment analyses,
21	again, we're starting with the same inventory volume,
22	the same initial energy, but we're looking at the heat
23	dumped into the containment into the pool, starting
24	well, we've got the right values, but we're not
25	concerned with that very early blowdown part. We do

(202) 234-4433

167 1 calculate and do track the energy moving from the 2 vessel into the dry well and into the wet well. 3 DR. BANERJEE: It starts from 10 seconds? MR. PAPPONE: No, no. 4 It's starting from 5 time zero again, but we don't have the details in the model to accurately track what's going on during those 6 7 first few 10 seconds. But again, for the problem, we're looking at what's happening several hours out in 8 9 the event, so we're not concerned with the details 10 right at the beginning. We're interested in the peak clad temperatures long term for the 11 Super Hex 12 containment calculations that --13 DR. BANERJEE: Do your -- let's say a 14 Super Hex or your LAM, whatever it is, the energy 15 going into the containment and the mass going into the containment and the mass going into the containment, 16 17 are they consistent with your SAFER/GESTR calculations 18 or not? 19 MR. PAPPONE: On the first order, yes, but 20 that's also when you get into the -- if you go to the 21 next order, that's where you start seeing the 22 differences in the details of the vessel modeling 23 So on LAM, we explicitly model the coming in. 24 recirculation loop because that code was designed for 25 initial the blowdown, the initial recirc,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

recirculation coastdown, flow through the core and it's also one of the reasons we're using it for the 3 short term containment analysis because it does a 4 better job of modeling the inventory coming out of the various regions of the reactor during that very short term blowdown.

7 When we get to SAFER, SAFER includes the volume of the recirculation loops in the vessel 8 volume. But it doesn't have the detail of an external 9 recirculation loop. For the purposes of the SAFER 10 analysis, that's effectively being taken care of by 11 12 the LAM code in a separate analysis. We're bringing in -- we're using LAM and TASK to calculate the fuel 13 14 dryout time for that initial blowdown to go into the core heatup calculation. 15

So we're not interested in that one. 16 We 17 get over to a containment analysis, but we do have -so on SAFER, we are tracking the inventory and then 18 19 Super Hex again, we're starting with the same vessel 20 inventory. That vessel inventory is effectively 21 emptying out during the first few seconds into the dry 22 well and then tracking and flowing into the wet well. 23 So it's a matter of what part of the 24 problem we're looking at and where are we interested 25 in those details and whether or not we need to detail

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

	169
1	have that detailed modeling in the reactor vessel.
2	DR. BANERJEE: When does the peak pressure
3	in the containment occur?
4	MR. PAPPONE: For the initial blowdown,
5	we've got that.
6	MR. RAO: For a combined LAM model with
7	the short-term containment response occurs in the
8	order of 10 to 12 seconds into the event.
9	DR. BANERJEE: And when do you actually
10	require credit for containment pressure, how far down?
11	MR. CROUCH: I think you'll see that's
12	covered in our presentation.
13	DR. BANERJEE: I'm just trying to
14	understand the time scales for when you have to get
15	good modeling of the energy and mass release into the
16	system?
17	MR. RAO: For the purpose of NPSH, it is
18	my understanding that it is at least on the order of
19	a few minutes into the event, not on the order of 10
20	or 12 seconds.
21	DR. BANERJEE: Okay. So currently, if I
22	understand your methodology, you're using LAM to get
23	the first peak in your containment pressure and you're
24	using Super Hex to get your long-term pressure
25	behavior and containment, right?

(202) 234-4433

	170
1	MR. RAO: That is correct.
2	DR. BANERJEE: Now the energy release
3	though is not being calculated by a LOCA code. It's
4	somehow a piece of this code, but how can you do that
5	energy and mass release without knowing what's
6	happening in the reactor because the release depends
7	on the conditions upstream of the break, right?
8	MR. RAO: We have a reactor vessel model.
9	It is a simple model. It does take into account the
10	mass of the reactor metal and the internals. It does
11	account for the fluid and steam inventory at time zero
12	prior to the break occurring in this integrated model
13	that's in Super Hex.
14	DR. BANERJEE: Was just a lumped
15	parameter?
16	MR. RAO: That's correct. It is a single
17	volume which has liquid and it has steam.
18	DR. BANERJEE: Is it conservative or is it
19	nonconservative?
20	MR. RAO: There is one conservative
21	presently and we assume that all of the liquid is
22	saturated, but in reality there would be a subcooled
23	fraction in the vessel. But as far as conservatism to
24	the total energy, we assume it is entirely saturated.
25	DR. BANERJEE: But wouldn't you get a
1	

(202) 234-4433

	171
1	higher steam fraction near the break than a well mixed
2	model which would give you a higher energy release?
3	Just if you look at straight forward thermal
4	hydraulics than a lumped parameter model.
5	MR. PAPPONE: This is Dan Pappone. That's
б	true, but again when we look at the time scale, that
7	would be important for the initial reactor blowdown in
8	emptying the inventory, emptying essentially flushing
9	out the
10	DR. BANERJEE: The first 10 seconds,
11	certainly that's true.
12	MR. PAPPONE: But when we get over to the
13	when we look at the NPSH calculation, we're not
14	concerned about NPSH until several minutes to hours.
15	So by that time, the simplification in the reactor
16	modeling really won't pay a part any more because
17	we'll already have assumed that that energy has been
18	dumped into the containment.
19	DR. BANERJEE: For NPSH it should be okay,
20	but not for the peak pressure?
21	MR. PAPPONE: Right, for the peak
22	pressure, where we're looking at the structural loads
23	on the containment, that's where we'll need the more
24	accurate modeling and that's where we're using more
25	accurate modeling from the LAM code to give us that
	1

(202) 234-4433

	172
1	detailed blowdown.
2	DR. BANERJEE: So does LAM use a lumped
3	parameter for the reactor or does it have a
4	distributed system?
5	MR. PAPPONE: LAM has got a distributed
6	system. Its modeling pressure drops between major
7	regions inside of the vessel. It does account for the
8	subcooling and the lower plenum below the feedwater
9	inlet and in the lower plenum does account for that
10	subcooling. It models the break flow path through the
11	jet pump nozzles and also through the recirculation
12	loop.
13	DR. ABDEL-KHALIK: I guess just to follow
14	up on this, what concerns me here in this discussion
15	is that what is considered conservative from the
16	standpoint of calculating peak containment pressure is
17	nonconservative from the standpoint of calculating
18	NPSH.
19	MR. CROUCH: Absolutely.
20	DR. ABDEL-KHALIK: And the question is how
21	do you handle that sort of on one side it's
22	conservative and on the other side it's not
23	conservative? Are you doing two different
24	calculations?
25	MR. CROUCH: Absolutely.

(202) 234-4433

	173
1	DR. ABDEL-KHALIK: Or are you doing the
2	same calculation?
3	MR. WOLCOTT: We turn everything in
4	reverse as far as in the way of conservatism, we
5	turn everything in reverse when we are computing the
6	containment pressure that we're going to take credit
7	for in net positive suction head. It's reversed from
8	where we are trying to compute containment pressure
9	for the purposes of peak pressure on containment, so
10	we take both of each of the conservatisms and
11	basically reverse them where they drive the pressure
12	lower rather than higher.
13	So we do that. That's something that's
14	part of Reg. Guide 1.82, rev. 3.
15	DR. ABDEL-KHALIK: Okay.
16	MR. WOLCOTT: Does that answer your
17	question?
18	DR. ABDEL-KHALIK: Yes.
19	DR. BANERJEE: What about ATWS? You said
20	you didn't analyze ATWS?
21	Are you going to tell us
22	MR. WOLCOTT: Core events, LOCA, ATWS,
23	station blackout and Appendix R are all analyzed for
24	net positive suction head with some credit for
25	containment of pressure.
	I Contraction of the second

(202) 234-4433

	174
1	DR. BANERJEE: How did you analyze ATWS?
2	What tools did you use?
3	We understood what you used for LOCA.
4	MR. WOLCOTT: ATWS, the tools that were
5	used for ATWS would be the ODIN code to compute the
6	power generated phase of the ATWS and Super Hex to
7	handle the containment phase.
8	Slide five.
9	The effect of power uprates on net
10	positive suction head are driven by an increase in
11	suppression pool temperature. To give you an example
12	for a LOCA, the peak suppression pool temperature at
13	original license thermal power would have been 177
14	degrees; for 105 percent or original power, all of the
15	things held equal, it would be 180 degrees; and for
16	120 percent analysis, it's 187 degrees.
17	DR. BANERJEE: Is this for Unit 1?
18	MR. WOLCOTT: Yes.
19	DR. BANERJEE: Unit 2 and 3 have different
20	fuel, right?
21	MR. WOLCOTT: They have different fuel,
22	but because this is driven by the thermal power level
23	in decay heat which is essentially the same, the units
24	are physically the same in this regard and the results
25	of their 120 percent calculations are the same. So

(202) 234-4433

	175
1	there are three identical calculations.
2	DR. BANERJEE: But most of this effect is
3	coming from the decay heat and not from the stored
4	energy.
5	MR. WOLCOTT: That's correct. The decay
6	heat, particularly, the longer out you get in time,
7	the decay heat dominates this.
8	Slide six.
9	I'll go over the basic elements of our net
10	positive suction head analysis. The first thing we do
11	is what we've been talking about here is we
12	calculate a suppression pool temperature profile.
13	This would be a time-temperature profile. We take our
14	conservative assumptions in the direction that would
15	maximize the temperature. The next element we would
16	look at is elevation head. That's pretty much fixed
17	by the geometry of the plant doesn't vary from event
18	to event. It has to do with the difference in
19	elevation between pool and the pumps largely.
20	We have to chooses the ECCS pump flows
21	that we're going to use in the analysis because
22	required NPSH is flow dependent and so are suction
23	losses. So for analyzing each event, we have to
24	choose the appropriate bounding flow to use.
25	Once we know the flow, we have to compute
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

2 pressure drops which we use standard industry methods 3 to do that. And suction strainer blockage and 4 pressure losses which are done in accordance with the 5 BWR owners' group, URG methodology which is NRC-6 approved. 7 In our particular plan, we are designed 8 with reflective metal insulation on the primary system 9 rather than fibrous insulation and that gives us quite 10 a bit of advantage as far as strainer debris blockage. DR. BANERJEE: You have no particles or 11 fibers? 12 MR. WOLCOTT: We don't -- we have a very 13 14 small amount of fibers that are back inside of pipe penetrations which are accessible as blown out debris 15 16 only in the case of paint work inside of the 17 penetration, so once you take that small amount of fiber and spread it out, over the strainers, it's not 18 19 significant compared to the reflective metal. 20 We do include other types of debris that are standard from that URG, paint chips, sand, sludge. 21 22 DR. BANERJEE: You have no particulate 23 material in your insulation? 24 MR. WOLCOTT: No, the reflective mirror 25 insulation wouldn't -- metal foil and stainless steel

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	177
1	sheathing.
2	DR. CORRADINI: So if I may just I'm
3	looking at it and trying to get a simple equation in
4	my head. So what you're basically telling me is the
5	pressure on the wet wall plus the hydrostatic head
б	minus the wet well minus the excuse me, the
7	temperature of the water, minus the delta Ps must be
8	greater than your NPSH?
9	MR. WOLCOTT: Greater than the required.
10	DR. CORRADINI: Excuse me, I'm sorry. And
11	then your point is by changing the temperature 10
12	degrees, that's the margin you need, 10 degrees out?
13	MR. WOLCOTT: If you change the
14	temperature 10 degrees, then that would increase the
15	vapor pressure by a certain amount and would take away
16	that particular amount of margin from the PSH
17	equation.
18	DR. BANERJEE: Did you do any strainer
19	tests or are you just using data?
20	MR. WOLCOTT: URG methodology on strainer
21	tests, I'll let Bill talk about that.
22	MR. EBERLEY: GE did prototype tests and
23	strainer testing on this GE design, stacked disk
24	strainer.
25	DR. BANERJEE: Did they do it with single
1	

(202) 234-4433

178 1 strainers or did they actually stack them and do 2 them? I can't speak to that. 3 MR. EBERLEY: 4 MR. CROUCH: They had actual stack 5 strainers. They went out and took various kinds of reflective metal insulation, both mirror insulation 6 7 and transco, subjected it to steam jets so that it 8 would form the foils that came out, took the foils and 9 dumped them into a test tank. They would have a strainer down there, then they would dump in various 10 amounts of sludge and other things that were part of 11 the possible things that would be inside people's 12 Then they ran the pumps and measured 13 containments. the delta-P across the stacked disk strainers. 14 15 DR. They were like BANERJEE: prototypical, full-size --16 17 MR. CROUCH: Yes. 18 DR. BANERJEE: -- strainers? Is that 19 documented somewhere, these stats? 20 MR. CROUCH: Oh yes. There's about a 5or 6-volume report on the URG methodology. 21 22 DR. BANERJEE: With these specific 23 materials you're using? 24 MR. CROUCH: Yes. It was all NRC-approved 25 back in the 1997 to 1998 time frame.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	179
1	DR. BANERJEE: And you're using the same
2	type of insulation?
3	MR. CROUCH: Yes.
4	MR. WOLCOTT: I was going down the list of
5	elements. The next one is determining a required
6	NPSH. That's supplied by the pump vendor. In our
7	particular case, the required NPSH has been given to
8	us in, as a function of time duration. We can
9	withstand less NPSH and more cavitation if we do it
10	for a shorter period of time. So, we, our NPSH
11	requirement changes and becomes more restrictive the
12	longer time duration we want to bear the reduced NPSH
13	condition.
14	DR. KRESS: And that time curve is
15	supplied by the pump vendor?
16	MR. WOLCOTT: That's correct.
17	DR. KRESS: And he knows very little about
18	temperatures at the core and stuff, so it must be on
19	the basis of when the pump would fail, or?
20	MR. WOLCOTT: No. It's based on, it's
21	based on testing that was originally done on our pumps
22	and how far they were, they have data on the pump as
23	far as, how far they've, how far they've tested it
24	that way and what kind of results they got from it.
25	And they conservatively constructed for us a time-

(202) 234-4433
	180
1	duration versus reduced NPSH curve that they felt
2	comfortable with would result in being continued to
3	operate the pump.
4	The pumps are normally designed for 8,000
5	hours of operation, so the standard single number that
б	you're given would be a number that you could operate
7	at for 8,000 hours. We don't do that with these
8	pumps.
9	DR. BANERJEE: This is the Salzer report
10	that we have?
11	MR. WOLCOTT: That's correct. That's the
12	Salzer report that you have.
13	DR. BANERJEE: But my impression was they
14	don't have any data at higher temperatures, right? I
15	mean they, I
16	MR. WOLCOTT: The tests were done at, you
17	know, ambient temperatures
18	DR. BANERJEE: Right.
19	MR. WOLCOTT: ninety degrees. We've
20	discussed that with them several times and they are,
21	they feel like doing it a lower temperatures is
22	conservative relative to doing it at higher
23	temperatures. The temperature, the main, the main
24	effect of the temperature of the water is built into
25	the NTSH equation via vapor pressure. And so, largely
	I

```
(202) 234-4433
```

	181
1	NPSH test results can be translated from one
2	temperature to another by vapor pressure.
3	DR. KRESS: Well, what happens to the
4	pumps in time? Do they slowly lose flow or do they go
5	along and quit?
6	MR. WOLCOTT: It's a function of time.
7	DR. KRESS: I know, but do they slowly
8	lose flow or what
9	MR. WOLCOTT: No. What would happen is a
10	function of time. If you believed that you had
11	cavitation, cavitation causes impeller erosion.
12	DR. KRESS: Right.
13	MR. WOLCOTT: And it causes vibration
14	which, which eventually would, you know, would wear
15	out the machine. So, what they've done is take that
16	out over, take that out over a function of time.
17	Erosion doesn't occur instantaneously, and fatigue and
18	vibration damage doesn't occur instantaneously. So,
19	over time, there would be slow degradation. Over
20	time. I think that was the question I asked.
21	MR. CROUCH: In other words, it would not
22	be a step function, just instantaneous failure of a
23	pump at any time. It would be a slow degradation.
24	DR. BANERJEE: Well, it also depends on
25	how much void is generated.

(202) 234-4433

	182
1	MR. SIEBER: On the other hand, does, as
2	you reduce NPSH below the pump operating point, there
3	is a decrease in flow which generally falls off
4	parabolically. My experience is that a lot of pumps
5	are running in a slightly-cavitated mode all the time,
6	not severe enough to cause pitting. It's not severe
7	enough to have vibrations that are damaging bearings.
8	And, from a cost versus flow and pressure standpoint
9	it's an efficient way to do it.
10	DR. CORRADINI: You mean at the very high
11	end of the pump curve?
12	MR. SIEBER: That's right. But as you
13	continue to reduce NPSH, the flow falls off until it
14	starts to chug and then you can lose flow all
15	together.
16	DR. KRESS: Well, what I was asking,
17	somewhere on this curve you described, it's
18	cavitating, but the pumps are still running.
19	MR. SIEBER: Yes.
20	DR. KRESS: And the question is how long
21	is it going to last until something happens and my
22	question was does that something happen all at once by
23	an impeller breaking or a bearing seizing or does the
24	flow continue to decrease slowly because the impellers
25	are losing effectiveness some way. I don't know.
	I

(202) 234-4433

	183
1	MR. SIEBER: I think it depends on where
2	you are on the curve. When you look at a pump that
3	has been cavitating slightly, has run its full, normal
4	period between maintenance, for a maintenance
5	interval, you will see all kinds of pits on the face
6	of the impeller, but the pump will have pumped all
7	that time and otherwise will not be damaged. The
8	seals are still good, the bearings are still good.
9	On the other hand, if you reduce it to an
10	even lower NPSH, you could induce a failure relatively
11	quickly. Depending on the total head developed across
12	the pump, that's one factor in determining how quickly
13	the pump will fail. For example, a pump that delivers
14	50 feet of head is going to last longer than one that
15	delivers 250 feet of head.
16	DR. KRESS: Well, let me ask the question
17	another way. I'm still not getting the answer. The
18	question I have is you have a time to operate versus
19	a net positive suction that was supplied by the
20	vendor. How did he get that time? What happened to
21	say this is the time. You no longer should operate
22	beyond this.
23	MR. SIEBER: Well, they don't operate the
24	pump to destruction.
25	DR. KRESS: How do they know when to quit
	1

(202) 234-4433

	184
1	this process?
2	They just quit at a certain arbitrary
3	time?
4	DR. BANERJEE: They have taken a baseline
5	as a year in the report.
6	CHAIR BONACA: Didn't you say the SER,
7	they're talking about a limited time of cavitation?
8	If I remember in the SER it speaks of four minutes.
9	DR. BANERJEE: I don't know exactly what
10	it means.
11	CHAIR BONACA: From what I was reading it
12	seems as if there were four minutes of cavitation in
13	the first ten minutes of the transient and for those
14	four minutes, there was specific information provided
15	by the vendor so there was a limited time to be
16	addressed in the evaluation. That's my understanding.
17	You presented a time of cavitation and the
18	vendor evaluated and said four minutes is not a
19	problem and then you went back and checked because the
20	test you did for the Unit 3 pump was done for those
21	time frames? Could you explain that to me? Because
22	I mean that's what is being referenced in the SER.
23	MR. EBERLEY: We can do that. We might be
24	covering that a little bit.
25	CHAIR BONACA: There was a test done for
l	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	185
1	one of the RHR pumps at Unit 3 that produced these
2	characteristics. I mean they
3	MR. LOBEL: This is Richard Lobel from the
4	staff. I think we're mixing two things together here.
5	What TVA is talking about is a curve with
6	recommendations from the pump vendor on required NPSH
7	and we talked about the same type of curve when we
8	were talking about Vermont Yankee. Vermont Yankee
9	used the same has the same pump vendor and they
10	supplied the same kind of curves.
11	And what the pump vendor does essentially
12	is the pump vendor has, I don't know, Salzer Bingham
13	probably has a hundred years of experience in
14	designing pumps and testing pumps. And I can't
15	explain all the details of what they did and it's
16	probably proprietary to the pump vendor, but usually,
17	their knowledge base and they're testing pumps, they
18	made recommendations of how long a pump could operate
19	at a certain level of required NPSH before that level
20	had to increase.
21	I had, in my presentation, I have the
22	curve. I can show you the curve. The four minutes
23	refers to a Browns Ferry specific time that comes from
24	their LOCA analysis and that includes credit for this
25	pump vendor curve. But those are two separate things.

(202) 234-4433

	186
1	The four minutes and the pump vendor curve are two
2	separate items.
3	CHAIR BONACA: I understand that. I said
4	we're only looking for how long credit is being
5	requested for.
6	MR. LOBEL: Four minutes.
7	CHAIR BONACA: That's right.
8	MR. LOBEL: Yes.
9	CHAIR BONACA: So that sets some kind of
10	limit to I mean, sets this up in the horizon for
11	how far we're going to do that. Now the pump vendor
12	may not address that specifically when he tells me
13	it's not 20 hours.
14	MR. LOBEL: Well, the pump vendor did
15	address it and I'm going to get into that in my
16	presentation. Maybe the thing to do is to go on for
17	now and when I get to that point in my presentation,
18	we can discuss it again with the licensee.
19	I don't want to answer all the questions
20	for the licensee, but
21	CHAIR BONACA: I'm trying to understand
22	the reason being provided that tells us that and
23	okay, so we'll talk about that later.
24	MR. EBERLEY: Can I say one short thing
25	about this? For example, for the core spray pump in
	I contract of the second se

(202) 234-4433

	187
1	one of our long term LOCA analysis, we applied an NPSH
2	requirement of 29 feet from this curb which Rich
3	mentioned 29 feet, we applied that value. That
4	value, if you provide 29 feet of net positive suction
5	head to that pump, you can run it from 24 hours to
6	8,000 hours for, you know, its life. So that's the
7	requirement to run the pump indefinitely, at 29 feet.
8	For that event, we only analyze it for 24
9	hours. That's the limit of the period of the time for
10	the long-term LOCA analysis where we are back down to
11	atmospheric pressure and didn't require any
12	overpressure whatsoever. So we're talking about
13	applying a requirement that's good for the whole life
14	of the pump for 8,000 hours, applying it to an event
15	where we only needed credit for 24 hours.
16	DR. CORRADINI: So if I can get back to
17	that, because I'm still of kind of listening to what
18	Sanjoy was asking what Said was asking. I just tried
19	to back calculate it. Perhaps I did it wrong, but my
20	impression is that from 100 percent to 120 percent,
21	we're talking a tenth of a bar. So 1.4 psia. Am I
22	right? So you're looking for credit of 1.4 psia
23	between the 100 and 120 hour and you're looking to add
24	that onto the wet well pressure.
25	MR. WOLCOTT: That's close. It's a little

(202) 234-4433

(202) 234-4433

	188
1	short.
2	MR. EBERLEY: Yes, using steam tables, I
3	had 1.7 psi.
4	DR. CORRADINI: All right. I'm just
5	trying to get a level for this. The only reason I'm
6	asking the magnitude is to go back to Said's question
7	is somewhere in yours or somebody's presentation, the
8	protocol on how you conservatively added or taken
9	away, I guess we want to understand your budgeting?
10	DR. ABDEL-KHALIK: This difference between
11	the conservative analysis on one side?
12	MR. WOLCOTT: Let us get deeper into it.
13	I think we'll cover some of that stuff.
14	DR. BANERJEE: How much of a pressure loss
15	did you have across suction strainer?
16	MR. WOLCOTT: In the long term analysis at
17	the flow that we have there it is .4 feet. But in
18	short term, where there is a whole lot more flow, it
19	is probably about 5.7 feet.
20	DR. BANERJEE: So that's about a couple of
21	psi.
22	MR. WOLCOTT: Okay, continuing to go down
23	this list and the final thing that we have to
24	calculate is if we're going to use containment
25	overpressure, is the wet well pressure term. That is

(202) 234-4433

ĺ	189
1	calculated, as we have already said, using Super Hex
2	and taking all of our assumptions and turning them so
3	that they drive the pressure to be the minimum
4	pressure that you would expect to have, rather than
5	the maximum pressure.
6	So we have two competing and inconsistent
7	sets of assumptions that we make here. In containment
8	analysis, we make one set of assumptions to drive the
9	suppression pool temperature profile high. And then
10	turn those assumptions around in the same analysis to
11	drive the pressure low.
12	Slide seven.
13	We are going to go over two of the events
14	in detailed analysis just to get a look at what they
15	look like. The first one will look at is the LOCA,
16	and that analysis is done in two separate phases, the
17	short-term phase that's done in the first ten minutes
18	of the event, and the long-term phase which is done
19	greater than ten minutes.
20	CHAIR BONACA: That's when you switch to
21	containment spray
22	MR. WOLCOTT: That's correct. There are
23	manual alignment changes that are assumed to occur at
24	or before ten minutes, and that's what makes that
25	break point. That's why the analysis is different
	I Contraction of the second

(202) 234-4433

	190
1	before and after.
2	CHAIR BONACA: Now for public context, it
3	says NPSH licensing basis analysis.
4	MR. WOLCOTT: Yes, we're still talking
5	about the licensing basis analysis here.
6	CHAIR BONACA: Unit 1, 120 percent power.
7	MR. WOLCOTT: This is at 120 percent,
8	that's correct.
9	CHAIR BONACA: Go ahead.
10	MR. WOLCOTT: In the short term analysis,
11	all the pumps that get an automatic start signal are
12	assumed to start, their valves to open, and they are
13	assumed to go to the flaw that they would go to match
14	the system head with the valves widening. So there
15	are four core spray pumps doing that, and two RHR
16	pumps doing that. They're injecting to the vessel.
17	In addition to that, we take and assume
18	that two of the RHR pumps are connected to the broken
19	loop which was the source of the LOCA to start with.
20	That has much less systems resistance on it because it
21	just has a piece of pipe and so that flow goes quite
22	a bit higher and forms the most bounding requirement
23	for NPSH required because the flow is so high.
24	There is debris loading on the strainers
25	in accordance with the URG methodology and in the 120
l	1

(202) 234-4433

191
percent analysis, both the RHR and core spray pumps
require some containment overpressure in order to meet
the NPSH required from the vendor.
CHAIR BONACA: You have a single failure
here and that's the other train, no?
MR. WOLCOTT: In the short term assuming,
strange as it seems, assuming a single failure would
be non-conservative, because in this short-term part
of the analysis the NPSH problem is being caused by so
many pumps demanding so much flow.
CHAIR BONACA: Okay.
MR. WOLCOTT: So we don't have any single
failures in the short term so that all the pumps run
at their full flow and put their full demand on the
suction side.
MR. CROUCH: It's just like what we were
talking about earlier when we maximize assumptions.
CHAIR BONACA: I understand.
MR. CROUCH: In this case, maximize
assumptions means to maximize the flow rate.
Jim, one thing you might want to talk
about a little bit is the broken loop and why we're
concerned about that broken loop in the pumps there.
DR. BANERJEE: Sorry, would there be a
single failure that would raise the temperature of the

(202) 234-4433

	192
1	suppression pool?
2	MR. WOLCOTT: Not in the short term.
3	DR. BANERJEE: Not in the short term.
4	MR. WOLCOTT: In the long term, however,
5	any single failure affecting heat removal capability
6	would result in the pool temperature being higher.
7	MR. CROUCH: These are not the assumptions
8	for the calculations of the pool temperature. Pool
9	temperature assumptions do assume a single failure,
10	but these are the assumptions for figuring out what
11	the flow is through the various pumps.
12	DR. BANERJEE: Pool temperature already
13	assumes this failure?
14	MR. WOLCOTT: Correct, yes it does. In
15	the long term
16	DR. ABDEL-KHALIK: What you're trying to
17	do is essentially underestimate the containment
18	pressure and overestimate the temperature. I can
19	understand how these would because of the higher flow
20	rate that you get in the pumps connected to the broken
21	loop, you have higher pressure drop in the line. But
22	which of these assumptions actually increase or result
23	in a higher than expected water temperature?
24	MR. WOLCOTT: None of them. In the first
25	ten minutes, we are not assuming any heat removal,

(202) 234-4433

1 because that alignment hasn't occurred yet. So there 2 heat being removed. So single failure is no 3 assumptions of pumps and what have you wouldn't have 4 any influence over what we are analyzing to be the 5 pool temperature, because we're not even crediting any heat removal until ten minutes when the operator has 6 7 time to line that up. So having single failures one way or 8 9 another would not influence the pool temperature.

Pool temperature is strictly a function of how much energy is released from the reactor and the physical size of the water body in the suppression pool during that phase.

14 MR. CROUCH: These assumptions here are 15 the assumptions that are used for calculating the pump 16 flows, not for calculating temperatures. Calculating 17 temperatures, we assume a simple failure would wipe out an entire loop. It maximizes temperature. 18 Just 19 like this slide here, this is one of the bullets on 20 the previous slide, how you maximize the pump flows. 21 DR. CORRADINI: So somewhere, I have been 22 looking ahead. Somewhere in here I'm kind of curious 23 about the what you were talking about, Said, about 24 that when you maximize, when you try to maximize

temperature, the containment pressure is here.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

When

193

	194
1	you try to maximize flows, the containment pressure is
2	here, and what the difference is. You're going to get
3	to that somewhere in here?
4	MR. WOLCOTT: We can talk through that
5	when we look at one of the event graphs, perhaps, we
6	can talk about where it is on there.
7	DR. BANERJEE: You have four strainers, so
8	if you blocked off one strainer, wouldn't you get more
9	for pressure loss on the suction side?
10	MR. EBERLEY: We analyzed that suction
11	piping network with the hydraulic flow balance
12	computer code which determines that percentage that
13	each strainer draws from the suppression pool and the
14	worst strainer draws 26 percent of the flow and that's
15	the one we analyzed in all cases, the 26 percent
16	contribution for that one strainer of total flow.
17	MR. CROUCH: If you were to somehow get
18	all of the debris to go to one strainer and block it
19	off completely, then the other three strainers would
20	be virtually clear, so you'd have very low pressure
21	drop.
22	DR. BANERJEE: That's not so clear because
23	this is not a linear thing, the pressure losses,
24	especially with fibers. So if you assume one strainer
25	blocked and the other operating with the same sort of
	1

(202) 234-4433

	195
1	pressure drop wouldn't be so far afield, but if that
2	happened would it cause you any significant problem,
3	if that was your single failure?
4	MR. EBERLEY: No, it wouldn't make this
5	analysis any worse than what we've got. We have full
6	reflective metal insulation saturation thickness, dead
7	thickness on these strainers and we're taking the
8	worse hit that we can from reflective metal source
9	term that we had.
10	DR. BANERJEE: No, I understand that. But
11	suppose you
12	MR. EBERLEY: If it was totally blocked.
13	DR. BANERJEE: Whatever reason. I mean
14	it's a single failure, it would be still be okay?
15	MR. EBERLEY: Yes.
16	DR. KRESS: Would your results of this
17	analysis be different if you changed the 10 minutes to
18	something else? Like suppose it were 5 minutes or 15
19	minutes? Does it change your results significantly?
20	MR. WOLCOTT: There would be an advantage
21	if the operator takes control earlier, there would be
22	an advantage to taking, a thermal advantage to taking
23	control earlier. So
24	DR. KRESS: It would be better off
25	earlier. How about later?

(202) 234-4433

	196
1	MR. WOLCOTT: Later, even if you weren't
2	considering net positive suction head, our licensing
3	basis aligning containment cooling is manual. And so
4	there is a limit of how long you could wait to align
5	that, because if you do that, you're eventually going
6	to get in trouble because you're not removing any heat
7	in a LOCA.
8	So our
9	DR. KRESS: You would get in trouble
10	elsewhere is what you're saying.
11	MR. WOLCOTT: Well, all the things that go
12	along with running the water in the torus too high.
13	So yes, there would be a problem if you waited and did
14	not align containment cooling. There would be several
15	problems caused by that.
16	CHAIR BONACA: How successful are your
17	operators when you test them on the simulator?
18	MR. CROUCH: Tony?
19	MR. ELMS: Tony Elms, Operations Manager.
20	And we're trying the net positive suction head on the
21	simulator and one of the things that we're talking
22	about is as the temperature in containment goes up,
23	you can reduce the flow on the pumps and bring
24	yourself back down. On your flow curve it requires
25	less net positive suction head.
	1

(202) 234-4433

197

3 there are two things, loss of net positive suction 4 head as well as strainer plugging. And as you see 5 that we're trained to lower the flow on the core spray 6 and RHR pumps to bring them back within their net 7 positive suction head curve.

8 There's also curves in the emergency 9 operating instructions that we check in our emergency 10 operating flow charts that will tell us what the 11 maximum flow is for the pressure in the suppression 12 chamber as well as the temperature of the water in the So we have guidance in what flow we can run 13 pool. 14 those pumps at with given pressures and temperatures 15 of water in containment.

16 MR. WOLCOTT: I think what he was asking, 17 what's involved in aligning containment cooling and 18 all that?

19 MR. ELMS: Aligned containment cooling, 20 you've got an injection valve that you have to close. 21 It's the LPSI injection valve and you have one 22 injection valve that you will open to allow the 23 suppression pool cooling and you've got a service 24 water heat exchanger that you'll have to open the 25 outlet valve to align the RHR service water to cool

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	198
1	the water.
2	CHAIR BONACA: And the question I had was
3	in simulator exercises are the operators successful in
4	identifying and performing the switch over in 10
5	minutes?
6	MR. ELMS: Yes, sir. That would be a
7	critical step in the simulator exercise that would
8	test this part of the emergency operating procedures
9	and if the crew did not successfully complete that in
10	a given time frame, they would go through a
11	remediation process.
12	CHAIR BONACA: Okay, all right. Thank
13	you.
14	MR. WOLCOTT: After ten minutes in the
15	analysis which we call the long-term analysis, we cut
16	back to two core spray pumps at design flow rate where
17	the operator can throttle the system, rather than
18	letting it run wide open and two RHR pumps in
19	containment cooling mode. There is debris loading on
20	the strainer during this period of time also. The
21	pressure drop isn't as much because the flow isn't as
22	much because we're stopping the pumps that we don't
23	need.
24	And in this particular part of the event,
25	it's only the core spray pumps that require

(202) 234-4433

	199
1	containment overpressure. The RHR pumps do not.
2	So with that
3	DR. BANERJEE: Is there any vortexing in
4	the vicinity of the strainers?
5	MR. WOLCOTT: We analyzed for that because
6	that's one of the things you have to look for.
7	DR. BANERJEE: How do you analyze that?
8	MR. WOLCOTT: I'm not sure I can answer
9	that question.
10	DR. BANERJEE: Does GE analyze it? Who
11	analyzes it?
12	MR. EBERLEY: We did.
13	MR. CROUCH: Let us take that as a
14	question and get back to you.
15	MR. WOLCOTT: We will turn to slide eight
16	then. This is the event graph that represents the
17	LOCA analysis I just talked about. This graph is for
18	the long-term part phase of that analysis.
19	The top most red line there is the
20	containment pressure, computed using assumptions that
21	minimize the containment pressure.
22	The second line down or the blue line is
23	the suppression pool temperature.
24	DR. CORRADINI: So can you give me an idea
25	of the I'm trying to get the right words here, the

(202) 234-4433

1 uncertainty on the red line versus your ability to 2 move it based on assumptions? In other words, you're 3 predicting a peak pressure of 21 psia, plus or minus 4 something based on how you model it, compared to you 5 noodling with the model to make it as low as possible and what's that plus or minus? That's kind of where 6 7 Said was asking that a while back. Do you see where 8 I'm getting? 9 MR. WOLCOTT: Let me answer that first and then I'll let GE take a second crack at it. 10 There is a great deal of conservatism buried in all of the 11 aspects in the way we do this thing. 12 When we're in doubt, we take a conservatism, that's just the nature 13 14 of how we do things. MR. CROUCH: We take a conservatism to 15 16 drive the pressure down. 17 MR. WOLCOTT: Well, to take whatever the conservative direction is. That's how we make up for 18 19 uncertainties, so my answer to that would be that this 20 curve is still unrealistically conservative, if you 21 went and picked apart all the conservatives that are 22 buried in it. 23 So the pressure would be the MR. CROUCH: 24 lower limit and then the temperature would be the 25 upper limit, based on those uncertainties.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

200

	201
1	DR. BANERJEE: It would be nice if you
2	could show the uncertainty band. This was the lower
3	limit and that was the upper limit.
4	DR. CORRADINI: Then we'd just get mad at
5	you about that. I just want to know in numbers so I
б	get a feeling for what it is.
7	DR. BANERJEE: But do you know what it is,
8	the uncertainty?
9	I mean is it 20 degrees or 5 degrees or
10	what is it? Ten psi, 20 psi, 30 psi? What is the
11	number?
12	DR. CORRADINI: Let me just make sure
13	you're clear on our logic because probably you're
14	right. You've done all the analysis. We're just here
15	shooting at you. But if it's 21, as your lowest
16	containment pressure and 186 as your highest
17	suppression pool temperature and you're claiming that
18	that's the highest blue and that's the lowest red, I
19	want to know when you try to make it realistic is it
20	25 and 170 or is it 22 and 285? It's the magnitude,
21	it's the quantitative magnitude of what you know and
22	don't know that is getting us a bit
23	DR. KRESS: How much margin
24	DR. CORRADINI: Yes, I want to know the
25	margin.

(202) 234-4433

	202
1	MR. WOLCOTT: We're going to talk later
2	about what these look like when we do it
3	realistically.
4	Do you want to wait for that and see if
5	that answers your question?
6	DR. CORRADINI: Sure.
7	DR. ABDEL-KHALIK: What is the peak
8	containment pressure the way you calculate for a LOCA?
9	DR. CORRADINI: During this time scale,
10	not the red that's going off scale, but during this
11	time scale?
12	MR. WOLCOTT: We'd have to pull the curve
13	out and look at it. At this point in time we just
14	usually look at the very peak peak which would be the
15	little spike off the to look at the entire duration
16	and how that compares, we'd have to pull the curve out
17	and look at it.
18	So going on with explaining what these
19	lines are, the reddish line in the middle there is the
20	containment pressure in absolute pounds. The
21	pressure, by the way, is using the righthand axis
22	there and temperatures using the lefthand axis. That
23	is the pressure in the containment absolute that is
24	required to include in the NPSH calculation in order
25	to just match the required NPSH that applies to that
	I contract of the second se

(202) 234-4433

	203
1	time frame.
2	DR. BANERJEE: This is psia, right?
3	MR. WOLCOTT: It is absolute pressure in
4	the containment.
5	DR. BANERJEE: Does that means that
6	it's only about four psig?
7	MR. WOLCOTT: That's correct. Three. The
8	top of it's three.
9	Now you note the discontinuity right in
10	the middle of that curve there. That is a reflection
11	of the time dependent required NPSH. Because
12	remember, this curve is defined as what it takes to
13	meet the NPSH required that comes from the vendor
14	because the vendor gives us NPSH required in time
15	frames. We have applied that in time steps. This
16	particular step occurs at eight hours and so at eight
17	hours we change the rules and say that it has to have
18	more now.
19	That step represents no phenomena or
20	anything like that. It's just a change in the rules
21	to make it harder to pass.
22	DR. ABDEL-KHALIK: So buried in this is
23	the water level in the torus?
24	MR. WOLCOTT: Yes, it is. The water level
25	in the torus is one of the other terms that is in that

(202) 234-4433

	204
1	line right there.
2	DR. ABDEL-KHALIK: When you say that the
3	required pressure is 10 psia and you're required the
4	positive suction head is 30 feet, I'm just trying to
5	reconcile these two numbers. It doesn't make sense.
6	MR. WOLCOTT: There are several more terms
7	in the NPSH equation. One of them is an elevation
8	term.
9	DR. ABDEL-KHALIK: Right.
10	MR. WOLCOTT: One of them is in the
11	textbook equation peak peak, PA, P atmosphere. That
12	is the containment overpressure the containment
13	pressure term that we're seeing here. What other
14	terms are there? There's the vapor pressure term
15	which is changing with temperature of the water and
16	those all
17	what you're seeing here is the result of those, all
18	added together and just meeting the NPSH required
19	that's given by the vendor. That defines the
20	DR. BANERJEE: It would be useful if you
21	might have, you could sketch just the different levels
22	that we have in this system because is there a sketch
23	like that somewhere here?
24	MR. WOLCOTT: By levels, you mean
25	elevations?

(202) 234-4433

	205
1	DR. BANERJEE: Yes, right. I mean you
2	have a sketch there, but there are no quantitative
3	numbers, right? So just an idea.
4	MR. WOLCOTT: Yes, to give an idea of
5	magnitude-wise
6	DR. BANERJEE: Start with the water level
7	and the torus.
8	MR. EBERLEY: The suppression pool level
9	would be used in the suppression pool level elevated
10	at 536 feet.
11	DR. BANERJEE: Right, and the pump.
12	MR. EBERLEY: The piping system is 527
13	feet.
14	The center line of the ring header is 525 feet 4
15	inches.
16	The center line of the suction core spray
17	pump is 525 feet 4 inches. The center line of the RHR
18	suction horizontal lines are at 521 feet, 7 inches.
19	DR. BANERJEE: Okay, thanks.
20	MR. CROUCH: Okay.
21	MR. WOLCOTT: Everybody good with that?
22	DR. BANERJEE: So you are again getting
23	about 15 feet or so just by elevation.
24	CHAIR BONACA: Yes, so you need apsi for
25	the core spray and you are given no credit for the RHR

```
(202) 234-4433
```

	206
1	because it's below atmospheric?
2	MR. WOLCOTT: Right, just continuing with
3	interpreting this curve, the dashed line that goes
4	across the middle represents atmospheric pressure at
5	Browns Ferry and what we are calling containment
6	overpressure is the difference between the pressure
7	required, the reddish line and atmospheric pressure.
8	So every time that one of these required lines is
9	above the dashed line, that defines the need for
10	containment overpressure.
11	So as you can see in this one, core spray
12	pump needs, begins to require containment overpressure
13	and then we've shortly, around 24 hours into the
14	event, the temperature has dropped down enough that it
15	ceases to need containment overpressure, that is 14.4
16	pounds absolute plugged into the NPSH equation will
17	match the vendor's required at that point.
18	DR. BANERJEE: Is it really hard to get
19	pumps that function with 15 feet instead of 30 feet?
20	Is that the reason why you've sort of gone through all
21	these hoops?
22	MR. WOLCOTT: Yes.
23	DR. BANERJEE: Because you can't buy such
24	pumps? Is that the problem?
25	MR. WOLCOTT: Yes, with a pump with other
	I contract of the second se

(202) 234-4433

	207
1	performance characteristics we'd need, there is no
2	magic pump that would do this. You could certainly do
3	it with different elevations.
4	DR. BANERJEE: The elevations were pretty
5	fixed.
6	MR. WOLCOTT: Yes, they are very fixed.
7	DR. BANERJEE: And you've changed so many
8	things out. I mean why not pick a pump where you
9	didn't have to go through this hassle.
10	MR. SIEBER: Generally, the way you do
11	that is a lot of these pumps are vertical pumps. You
12	just dig a hole deeper. That's why you had NPSH.
13	On the other hand, the longer the shaft of
14	the pump, the harder it is to balance and the more
15	likely it is to rip itself apart.
16	MR. CROUCH: These pumps sit on the base
17	mat of the reactor building, so
18	MR. SIEBER: Once you build the plant,
19	putting a new pump in, at a different depth is a
20	mighty expensive deal, meaning you start moving
21	concrete and drilling holes in the ground.
22	DR. BANERJEE: But it is not easy to get
23	a pump you're saying that has these operating
24	characteristics, 15 feet, rather than 30 feet.
25	MR. SIEBER: Well, the other thing you
	1

(202) 234-4433

	208
1	could do is raise containment six or eight feet.
2	(Laughter.)
3	That's the other solution. You guys can
4	do it.
5	DR. BANERJEE: You changed these pumps
6	already or did you keep these for the original pumps?
7	MR. WOLCOTT: These are the original
8	pumps, they're original design. They have new
9	impellers over the years. These are the originals.
10	DR. CORRADINI: So I'm looking at this
11	curve. I'm still trying to interpret, so the purple
12	line requires a credit of a little bit less than 2
13	psia over atmosphere.
14	MR. WOLCOTT: It's about 3.
15	DR. CORRADINI: At your discontinuity.
16	Okay, and you're claiming that the lowest containment
17	pressure you can force the calculation to give you
18	with reality is at that same location.
19	MR. EBERLEY: 3.1 psi higher.
20	DR. CORRADINI: So that's the margin?
21	MR. EBERLEY: Correct.
22	MR. WOLCOTT: We have about twice as much
23	as we need at that closest point there.
24	MR. EBERLEY: And that point, as I
25	explained earlier, is certainly high because of my

(202) 234-4433

209 1 choice of the NPSH requirement of 29 feet which is 2 corresponding to that peak. The requirement actually is 24.5 feet at eight hours. It has more to do with 3 4 margin. 5 DR. CORRADINI: And nothing you do in the modeling to drive the red line down gets you lower 6 7 than the line we see? 8 MR. EBERLEY: That's correct. 9 MR. WOLCOTT: We have some realistic 10 analyses that can get that line down. They don't 11 follow the licensing basis rules, so staying with the 12 licensing basis rules, we can't get this line down below the dotted line. 13 14 DR. CORRADINI: You said something that 15 I'm going to ask you about, unless you rephrase that. 16 Say that one more time. I thought you 17 told me that the red line is the lowest you can get it within --18 19 MR. EBERLEY: With the available pressure, 20 the standard pressure is the lowest you can get. 21 DR. BANERJEE: With the licensing basis 22 rules? 23 I'm sorry. I was answering MR. WOLCOTT: 24 a question about the wrong line. What I said made no 25 sense at all, if you were asking about the top line.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	210
1	DR. CORRADINI: Yes, I'm asking about the
2	red line.
3	DR. BANERJEE: That's the lowest realistic
4	line, right, the red line?
5	MR. EBERLEY: I wouldn't call it realistic
6	because we've gone out of our way to minimize it in a
7	non-mechanistic form.
8	DR. CORRADINI: What is the thing that
9	most controls so that's the next question since
10	we're now talking about the margin. What is the
11	physical parameter that most controls that red line's
12	position quantitatively?
13	MR. WOLCOTT: The most, I would say it's
14	the it's driven the most by the temperature of the
15	water in the torus would be the the temperature of
16	the suppression pool water is probably what drives it
17	the most. I mean most determines its value.
18	DR. CORRADINI: Is that the one you had
19	the highest okay.
20	MR. RAO: Is the question about the
21	containment pressure?
22	DR. CORRADINI: Yes.
23	MR. RAO: What we've done to get the most
24	conservative containment pressure is we've minimized
25	the initial pressure in the dry well and wet well. We
1	I Contraction of the second

(202) 234-4433

	211
1	maximized the relative humidity in the dry well and
2	wet well at times zero. And that helps us to
3	essentially come with the highest critical mass and
4	therefore it gives us the lowest effect, lowest
5	pressure. That, we say is not realistic because I
6	think in reality the humidity is at less than 100
7	percent, at least in the dry well for sure.
8	CHAIR BONACA: We are still anxiously
9	waiting for the later part of the representation when
10	you will tell us what it's worth.
11	At some point I think we'll hear about
12	that.
13	DR. ABDEL-KHALIK: How about the
14	condensation model that you use in the analysis?
15	MR. WOLCOTT: Condensation model, are you
16	talking about heat sink?
17	DR. ABDEL-KHALIK: Condensation model that
18	you use in the containment analysis.
19	MR. RAO: We do take credit for heat sinks
20	and we do have achieved a condensing model, but in
21	the first ten minutes, I believe it's essentially you
22	have about it's initially saturated and that is
23	going to heat up because the heat must transfer from
24	the suppression pool as the suppression pool heats up.
25	DR. ABDEL-KHALIK: But if you have better
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	212
1	heat transfer, then whatever you are assuming here,
2	then the red line will go down.
3	DR. BANERJEE: We are talking about long
4	term here, right?
5	DR. ABDEL-KHALIK: Correct.
6	DR. CORRADINI: He answered short term,
7	but we're talking long term.
8	MR. RAO: After ten minutes, we have
9	assumed that the containment sprays would be on.
10	Essentially, you would be have the effects of
11	almost any other phenomenon at that time.
12	DR. CORRADINI: Okay.
13	DR. BANERJEE: Would the spray, if you had
14	better condensation or heat transfer to the sprays,
15	would that drag the line down?
16	MR. RAO: We have assumed 100 percent
17	mixing of the sprays with the atmosphere, both in the
18	dry well and wet well.
19	DR. BANERJEE: And they're equally the
20	slight one equilibrium state?
21	MR. RAO: That is correct. It assumes an
22	instantaneous equilibrium for the spray with the air.
23	DR. CORRADINI: Thank you. That answers
24	that. So what about so we kind of have red, purple
25	and green margin lines here for the long term. Is

(202) 234-4433

	213
1	that more limiting than the short term ten minutes
2	that you were speaking about?
3	MR. WOLCOTT: In terms of which of our
4	lines?
5	DR. CORRADINI: Yes, I'm trying to
6	envisage what this looks like in the first ten minutes
7	now. So we've got this one for LOCA analysis over the
8	long term. Now there's a corresponding set of red,
9	purple and greens excuse me. Red and green for the
10	short term which is the RHR is limiting.
11	MR. WOLCOTT: The staff is going to cover
12	that one in detail, so we were going to not duplicate
13	that.
14	DR. CORRADINI: Okay.
15	CHAIR BONACA: That's also in the same
16	mode, about 3 psi?
17	MR. WOLCOTT: Yes, same order. So the
18	final item I haven't talked about here is the green
19	line which is the RHR pumps. In the long term, they
20	do not require containment overpressure because they
21	don't cross the dotted line.
22	The other event that we chose to present
23	here is the Appendix R fire event and that particular
24	event, the Appendix R rules as far as how to apply
25	fire damage and loss of off-site power. For one, RHR
1	I Contraction of the second

(202) 234-4433

	214
1	pump, for the worse case analysis and it is in a mode
2	where it's injecting to the reactor vessel and
3	returning to the suppression pool through the relief
4	valves which we call alternate shutdown cooling mode.
5	There is no strainer debris involved in this event
6	because there's no pipe break inside the dry well that
7	would generate the debris and transport it. And it is
8	the RHR pump that requires containment over pressure
9	in this case.
10	CHAIR BONACA: Well, you have one RHR
11	pump.
12	MR. WOLCOTT: That's correct, one and
13	only.
14	CHAIR BONACA: The single failure is the
15	other pump?
16	MR. WOLCOTT: Appendix R does not have a
17	single failure in the classic sense. What we do is
18	when we apply the Appendix R rules to the areas of
19	fire damage, we are in some fire areas left with one
20	RHR pump if we applied all the rules. It's not quite
21	a single failure.
22	Slide 10 is the event very similar to the
23	one we just looked at. The suppression pool
24	temperature is higher in this particular event because
25	we only have one RHR pump operating, rather than two
	1

(202) 234-4433

ĺ	215
1	and so we only have half of the heat removal that we
2	would have in the other event approximately.
3	The containment pressure is the red line
4	there and again it's computed using all of the
5	assumptions that would drive the containment pressure
6	to a minimum value.
7	DR. CORRADINI: Why is the green line
8	maybe I misunderstood. Oh no, this is containment
9	pressure. This is not the actual NPSH. This is the
10	required containment pressure to meet NPSH.
11	MR. WOLCOTT: That's correct.
12	DR. CORRADINI: Why is there no bump on
13	this one?
14	MR. EBERLEY: We refined the analysis on
15	this one in particular because we didn't pass
16	initially when we did the analysis. We were looking
17	at some new ways of doing Appendix R analysis. NPSH
18	hadn't been done before. Taking penalty for dry well
19	coolers being in service and removing heat from the
20	containment. We're in normal containment analysis.
21	We will take credit for, in this case, penalty for the
22	dry well cooler heat removal.
23	So initial analysis, the lines got close
24	together and we went back and refined the analysis and
25	interpreting the required NPSH curve from the vendor,
	I

(202) 234-4433
	216
1	we interpreted it as a function of lower time, the
2	whole time period. We varied it according to their
3	curve rather than step changes.
4	DR. CORRADINI: I interpret what you just
5	told me was the green and the red getting damn close.
6	MR. EBERLEY: They were getting close
7	early on, right there around two hours which is when
8	we now isolate the dry well coolers. And it was a
9	lesson we learned in this analysis that that operation
10	of the dry well coolers can't hurt you, but along the
11	lines of minimizing the overpressure and maximizing
12	the pool temperature.
13	DR. BANERJEE: The margin here is much
14	less.
15	MR. WOLCOTT: Much less, very short time
16	frame there. The margin overall is less.
17	CHAIR BONACA: You are presenting a result
18	of an analysis here. You need to show that you
19	require a pressure credit. In the SER, there is a
20	discussion, the licensee has committed to terminate
21	dry well cooling within two hours of entry into the
22	safe shutdown procedure which would be used for a
23	shutdown to fire. The analysis shows that this
24	results in an acceptable available NPSH for the RHR
25	pump.
	I

(202) 234-4433

	217
1	So are you asking for credit? Or are you
2	committed to do this modification to a procedure and
3	so you don't ask for a credit?
4	MR. WOLCOTT: The curve that you're
5	looking at here assumes that the dry well blower is
6	stopped at two hours as it's in there. So that
7	operator action is factored into the curve that you
8	see here.
9	CHAIR BONACA: So you still need credit?
10	MR. WOLCOTT: Yes, absolutely.
11	CHAIR BONACA: This analysis shows that
12	these results in acceptable available NPSH for the RHR
13	pump, whatever that means. We'll talk about it later.
14	It's not clear to me.
15	MR. WOLCOTT: So what the green line on
16	this curve shows is again the containment pressure
17	that's required to go into the NPSH equation so as to
18	just equal the required NPSH for that particular time
19	frame that's supplied by the vendor
20	As you can see, and again, the dotted line
21	as atmospheric pressure at Browns Ferry, so time and
22	area of which it's above the dotted line is the time
23	and the magnitude that the containment overpressure is
24	required as we define containment overpressure.
25	The main thing that drives the magnitude

(202) 234-4433

	218
1	of this event is doing it with one RHR pump. That is
2	the main difference between this event and previous
3	events. And we also do not use core spray pumps in
4	Appendix R, whereas the LOCA then had two pump curves
5	on it, this only has one.
6	DR. ABDEL-KHALIK: So as a result of this
7	analysis you have actually modified your emergency
8	operating procedures so that you can terminate
9	containment cooling within two hours of initiating
10	event?
11	MR. WOLCOTT: That's correct. It wouldn't
12	be the emergency operating procedures. It would be
13	the emergency procedures that are specific to a fire.
14	MR. CROUCH: Tony, you want to talk about
15	this and how we trained on it?
16	MR. ELMS: That's a two hour I'm Tony
17	Elms, Operations Manager. That's a two-hour action
18	limit. We validated these procedures. We already
19	have persons in the areas and there's three ways that
20	we can terminate this cooling. One is stop the RVCCW
21	pumps from the control room, if control room
22	abandonment is not required due to the fire. The next
23	way is to go locally to the shutdown boards that
24	they're fed from and trip the breakers. And the third
25	way is to close the valve that puts the cooling water

(202) 234-4433

	219
1	into the dry well from the control room. So depending
2	on where the fire is at, there's three different ways
3	that we can terminate this dry well cooling.
4	Our validation time has been within an
5	hour for any of these three actions. Any way we try
6	to isolate it, we can do it within an hour and it's a
7	two-hour time limit.
8	DR. CORRADINI: May I ask then just so I'm
9	clear, if you didn't do what you just said, the green
10	would intercept and go above the red?
11	DR. ABDEL-KHALIK: According to this
12	calculation.
13	DR. CORRADINI: Yes, I understand. I
14	understand. I understand. Where the red is a lower
15	limit. I understand. But am I understanding this
16	correctly?
17	MR. WOLCOTT: The red would go into the
18	green. It would terminate in the blowers, affects the
19	red line. So it would cause the red to
20	DR. CORRADINI: I'm sorry, excuse me. I
21	said it backwards. I apologize. I apologize.
22	And I still want to understand the pump.
23	You changed on how you apply the pump curve required
24	in NPSH. You said it, but I didn't get it.
25	MR. WOLCOTT: Let me say what he said
	1

(202) 234-4433

220 1 simpler. In the previous LOCA analysis, we applied the vendor changes in time as step changes. And we 2 3 just chose to do it at -- there's one step change in 4 ten minutes, and one step change in eight hours. In 5 this particular analysis, we did it as a continuum, basically, a very large number, very small changes. 6 7 The vendor's thing is a curve is a function of time, 8 so you can either do it in very coarse time steps 9 which makes big changes, or you can do it in real 10 small time steps. This is a more refined analysis that was 11 done in little tiny time steps. 12 DR. CORRADINI: Thank you. I understand 13 14 that. CHAIR BONACA: So anyway, this curve, the 15 green curve includes the two-hour action of the 16 17 operator. MR. WOLCOTT: The red curve. 18 The red 19 curve is influenced by that action. 20 CHAIR BONACA: Okay. DR. ABDEL-KHALIK: I'm sort of concerned 21 22 In a sense that this red curve is not about that. 23 reality. And what the operator will see in the 24 control room may be quite different than what these 25 And yet, you're telling the results indicate.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

operator according to this sort of calculation that we're doing with so many assumptions go ahead and terminate containment cooling, regardless of whether or not there's any indication of any possible problems with NPSH.

WOLCOTT: 6 MR. That's correct. The 7 Appendix R procedure is not symptomatic. It's a very 8 prescribed situation, procedure to take care of a very 9 degraded situation where a lot of equipment is assumed not be available. And so we take the minimum 10 equipment we know we have protected and we just --11 12 instruction just has us go out there and establish an alignment that we have pre-analyzed and know will 13 14 work. And so these dry well blowers are just part of 15 that.

We've also looked at the flip side to make sure that there isn't any problem terminating the dry well blowers, given that we're in this situation. There's injury conditions that we have to meet to even get into this thing and they kind of define the level of degradation you have to have already before you proceed down this procedural route.

DR. BANERJEE: What a scary thing to do though, I mean to terminate cooling when you've got a fire. I mean it's sort of counter-intuitive.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	222
1	MR. SIEBER: Like flying an airplane with
2	just a compass.
3	MR. WOLCOTT: The containment cooling is
4	still progressing per the safety systems. None of our
5	safety analyses take any credit for containment
6	cooling dry well cooling I'm sorry, I used the
7	wrong word there. So all of our safety analyses
8	assume that dry well cooling is lost. We would not
9	normally have any kind of a procedure we would
10	intentionally terminate that. So this is kind of new
11	to us and it is counter-intuitive. We thought about
12	it a lot before we
13	CHAIR BONACA: So it seems to me that this
14	is a scenario for which you need the longest credit?
15	MR. WOLCOTT: Yes.
16	CHAIR BONACA: About 60 hours?
17	MR. WOLCOTT: Yes.
18	CHAIR BONACA: And for the LOCA, long term
19	with sprays was 22.5 hours. I'm referring to Table
20	621 of your calculations for EPSS, the one you're
21	representing here, right?
22	MR. WOLCOTT: Correct.
23	CHAIR BONACA: So you really need what,
24	three psi credit for 60 hours.
25	MR. EBERLEY: This is 9.6 psi.
	1

(202) 234-4433

	223
1	CHAIR BONACA: 9.6 psi. That's right.
2	MR. WOLCOTT: Any other questions on this?
3	DR. BANERJEE: There's no that green
4	curve is simply given because you've got one RHR pump,
5	is that it? There's no way to get it down?
6	MR. WOLCOTT: We can do we can take
7	more realistic assumptions and get it down some, but
8	Appendix R is normally done with mostly realistic
9	assumptions, not all of the licensing basis
10	conservatism, so we have to put in what we call design
11	basis.
12	We didn't feel comfortable that we could
13	change the analysis in a way that we get that down
14	significantly and still do it in accordance with the
15	rules that are attendant to Appendix R events.
16	Go to slide 11.
17	From here out, I'll stop talking about
18	licensing basis analysis and start talking about
19	realistic analysis. We did do some realistic analysis
20	and some risk analysis on containment overpressure.
21	One of the things we did was compare
22	credit for containment overpressure to the five
23	principles that are given in Reg. Guide 1.174.
24	Largely a comparison we were making here was the
25	comparison between needing credit for overpressure and

(202) 234-4433

	224
1	not needing credit for overpressure, not necessarily
2	the difference in it, the amount of overpressure we
3	need for uprate as opposed to 105 percent.
4	We found that containment overpressure
5	meets current regulations. We reviewed all of this
6	against Revision 3 which is the latest revision of
7	Reg. Guide 1.82 which we take defines all the staff's
8	current expectations about how to do this type of
9	analysis. There is no regulation that says you can't
10	do this, but it's consistent with defense-in-depth
11	philosophy. What we would be worried about here is
12	creating an inter-dependency between barriers. That's
13	not appropriate. The barriers being a containment
14	barrier and the fuel barrier.
15	There already is as inter-relationship
16	between the integrity of the containment and the
17	operability of the ECCS system pumps and as a
18	consequence the cladding, the environmental
19	qualification of the ECCS system depends upon the
20	existence of the containment, its integrity. The
21	water that they are pumping comes from the containment
22	and we already require containment overpressure. This
23	is just a greater magnitude. So we're really not
24	introducing you to inter-dependency.
25	Maintenance of sufficient safety margins

(202) 234-4433

-- the two graphs I showed you there kind of illustrate the amount of margin that we have in this analysis and I've discussed when we're talking about the graph that the amount of conservatism that's even buried within those curves that give us a high degree of confidence that things will work out at least as well as show in those graphs.

8 Very small risk increase. I have a slide 9 in a minute that show the PSA results we got at 10 looking at containment overpressure and the impact is monitored. In the way of monitoring we do a lot of 11 12 things to monitor containment integrity. That would be the main thing we would monitor here because we're 13 14 depending on local replace testing, each refueling 15 cycle and at Browns Ferry we have a surveillance where we continuously monitor nitrogen usage in the dry well 16 and have to address anything that's -- any leakage 17 that's over 542 standard cubic feet an hour which 18 19 lines up with our accident leakage, what we call L 20 sub-A. 21 MR. SIEBER: You think a change in 22 nitrogen usage will indicate much of a leak? 23 MR. WOLCOTT: Yes. Our criteria is meant 24 to -- at normal containment pressures represent L sub-

A which is the leak rate test. That's not very large.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

	226
1	MR. SIEBER: Yes. I could see that in a
2	sub-atmospheric containment that in a regular pressure
3	containment, you know, atmospheric containment,
4	there's not going to be any leakage that you're going
5	to be able to see.
6	MR. WOLCOTT: Well, the bulk of the
7	containments say 1.1 psig on the outside and we
8	tracked the nitrogen leakage close enough that leakage
9	in the dry well part of the containment, that will
10	show up.
11	In the torus part of the containment which
12	is not above atmospheric necessarily, it would take
13	longer to find. We will probably find it more from
14	finding oxygen concentrations increasing than we would
15	
16	MR. WOLCOTT: What's the volume of the dry
17	well? Do you know?
18	MR. CROUCH: Two hundred seventy-nine
19	thousand cubic feet.
20	DR. BANERJEE: I guess the issue is really
21	how well can you monitor leakage, that's really
22	MR. WOLCOTT: It's the dry well part of
23	the containment which is the more complex part of the
24	containment as far as having penetrations in it. If
25	we've got a leak that's in the neighborhood of L sub
	1

(202) 234-4433

	227
1	A which is the same leakage that we assume when we do
2	this analysis for NPSH, we'll find it within 24 hours.
3	We'll know that we have I shouldn't say
4	that we'll find it, we'll know that we have it. We
5	might have to physically find it it might take a
6	little bit longer there. We'll know that we have a
7	problem.
8	DR. BANERJEE: Just remind me, if you
9	will, did we need such an extended period of
10	containment overpressure for Appendix R in Vermont
11	Yankee or not?
12	MR. WOLCOTT: Vermont Yankee
13	DR. BANERJEE: Didn't need an Appendix R?
14	DR. CORRADINI: Does not require what?
15	MR. WOLCOTT: Doesn't require COP for an
16	Appendix R event. They have two RHR pumps available
17	or two RHR heat exchangers available.
18	CHAIR BONACA: Why do they have two of
19	them? We have four heat exchangers and four RHR
20	pumps, and you're assuming only one. Is it because of
21	your licensee basis, the way it is now or what?
22	Why does Vermont Yankee only have two?
23	MR. WOLCOTT: I don't know the specific
24	differences, but it would have to do with how things
25	are laid out and how they've applied their fibers. I
	1

(202) 234-4433

	228
1	don't know the difference.
2	CHAIR BONACA: But these are limiting
3	situations that you have. You're asking for the most
4	credit for the longest time and you have to believe
5	that the operator will, in fact, maximize pressure in
6	containment which is somewhat counter-intuitive.
7	MR. WOLCOTT: Our durations and magnitudes
8	are if you just take all the events together, our
9	durations and magnitudes are not out of line with the
10	rest of the industry.
11	CHAIR BONACA: What do you mean by that?
12	MR. WOLCOTT: I believe Vermont Yankee,
13	for instance, in a LOCA is six hours and seven and a
14	half psi.
15	DR. CORRADINI: Six according to the
16	letter I have in front of me.
17	MR. WOLCOTT: This is not significantly
18	different in magnitudes in duration, not out of line.
19	This event, however, they just don't have or need it
20	for an Appendix R event and we do. But if you take
21	the events as a whole, just considering the
22	differences in the plants and their this isn't out
23	of line.
24	CHAIR BONACA: Okay. Sanjoy, do you have
25	a question?
	I contract of the second se

(202) 234-4433

	229
1	DR. BANERJEE: No, I was still pursuing
2	your question. Why only RHR pump available out of
3	four, RHR system? I really don't understand that.
4	DR. CORRADINI: Are the assumptions you
5	have to make relative to the fire?
6	MR. WOLCOTT: Dave Burrell can probably
7	address that best.
8	MR. BURRELL: In our Appendix R analysis
9	we have basically 39 fire area fire zones within the
10	three-unit plant and we assume for a fire in any one
11	of those 39 areas, the whole area is instantaneously
12	consumed by fire at T_{0+} .
13	And for the way our electrical
14	distribution system is laid out internal to the plant,
15	what equipment is fed from which boards, we have
16	ensured that we had one set of equipment, one RHR pump
17	available for all of the 39 fire areas and the
18	analysis and the modifications that would be required
19	to make two pumps available would be quite substantial
20	and involving significant cable reroutes as well as
21	reorienting the geometry of the layout of the
22	electrical distribution system itself.
23	MR. WOLCOTT: We'll talk a little bit more
24	about the realistic aspects of this in the next slide
25	or two.
1	I contract of the second se

(202) 234-4433

	230
1	Slide 12.
2	We made a PSA model that looked at LOCA,
3	ATWS and SBO events for the purposes of containment
4	overpressure. And to do that model, we developed
5	probability distributions for the various parameters
6	that influence net positive suction head and the need
7	for containment overpressure. That would be river
8	temperature, initial suppression pool temperature,
9	suppression pool water level or the volume inventory
10	of water in the vessel in the suppression pool, and
11	initial power level.
12	CHAIR BONACA: Why initial power level?
13	MR. WOLCOTT: All of our licensing bases
14	or analyses are done at 102 percent of the licensed
15	power level to account for the fact that there might
16	be errors in calibration of instruments and stuff, so
17	there's a probability distribution associated with
18	CHAIR BONACA: 102 percent.
19	MR. WOLCOTT: Yes. And then on top of
20	those things I named which govern the pool temperature
21	and whether it's high enough to meet containment
22	overpressure, then we also then added in the
23	probability of containment isolation failure and the
24	probability of having a pre-existing containment leak
25	which would then affect the wet well pressure
	1

(202) 234-4433

	231
1	available curve and could make those two curves on the
2	graphs I've shown come together. That's basically
3	what we're looking at.
4	DR. CORRADINI: Could you repeat that
5	again?
6	MR. WOLCOTT: Yes, we modeled the
7	probability of containment isolation failure and the
8	probability of having some pre-existing containment
9	leak that would be large enough that it would take
10	away the containment pressure that we are depending
11	on.
12	DR. CORRADINI: And then there was a
13	just so I clean it all up, there was a comment by the
14	General Electric folks that humidity was important.
15	MR. WOLCOTT: Yes, it is.
16	DR. CORRADINI: So why don't I see it
17	there as a variable that can affect this?
18	MR. WOLCOTT: We didn't do that one
19	because
20	DR. CORRADINI: Or is it linked?
21	MR. WOLCOTT: It's not a periodic
22	variable. That's why, in other words
23	DR. CORRADINI: It's linked to suppression
24	pool temperature in some mechanistic way in your
25	modeling?
	I contraction of the second

(202) 234-4433

	232
1	MR. WOLCOTT: No. It's really linked to
2	the thermodynamics of the dry well part of the
3	containment and I would say that there's really two
4	reasons we don't manipulate it. One of them we were
5	manipulating physical parameters focused on
б	determining what affects the water temperature.
7	That's one of the reasons. The other reason is is
8	that doesn't really periodically vary. We are taking
9	assumptions that we know to be conservative. We don't
10	actually measure dry well humidity on a day-to-day
11	basis.
12	DR. CORRADINI: Okay, thank you.
13	MR. WOLCOTT: So what we were doing, the
14	comparison we were making with this model here was to
15	compare the dependence that we realistically have on
16	containment overpressure versus a situation where
17	there is no dependence, that RHR pumps and core spray
18	pumps will always work irrespective of containment
19	pressure, irrespective of containment temperature. In
20	other words, it's a model that ignores the phenomena
21	compared to a model that models the phenomena. If you
22	test the risk, it's associated with taking credit for
23	this to begin with.
24	DR. KRESS: This is a separate event, CDF
25	event tree and I take it you go up or down on it
l	

(202) 234-4433

	233
1	according to some probability. If you go down on it,
2	if these various things above take you into a net
3	positive suction head below what's required at any
4	time during the 24-hour period, is that
5	MR. WOLCOTT: Mechanistically, the way it
6	would work if the parameters such as river temperature
7	and stuff are such that the curve, like I showed you,
8	crosses the
9	DR. KRESS: Crosses anywhere.
10	MR. WOLCOTT: Then we test to see if we
11	have containment integrity. And if we don't, then the
12	ECCS pumps would be assumed to fail in the model.
13	DR. KRESS: Yes.
14	MR. WOLCOTT: That's how it works.
15	DR. KRESS: Okay.
16	MR. WOLCOTT: So if the
17	DR. KRESS: It's at that point in time?
18	MR. WOLCOTT: Dave is going to have to
19	answer that question.
20	MR. MIMS: This is Bill Mims, TVA. We
21	added two additional top events to our PRA model and
22	that did exactly what J.D. We do not have containment
23	isolation. At the beginning of the sequence you don't
24	have low pressure ECCS.
25	DR. KRESS: Great.
	I contract of the second se

(202) 234-4433

234 1 CHAIR BONACA: Didn't you perform a 2 sensitivity on the relative humidity in the dry well? 3 MR. WOLCOTT: Yes, we performed on the 4 short term LOCA event, we performed the sensitivity 5 analysis where we dropped the initial relative humidity from 100 percent which is our standard 6 7 assumption in a LOCA to 50 percent which would not be 8 our standard assumption. And that date -- we've used 9 that to show if we just changed that assumption, that 10 would give us enough containment pressure to cover or envelope the required NPSH by the vendor. 11 CHAIR BONACA: You left out the other 12 conservatism and you modified that one. 13 14 MR. WOLCOTT: Yes. The staff will cover little bit more detail. 15 that I didn't in а 16 concentrate on that too much. CHAIR BONACA: You said something before 17 about you did not model humidity right before the long 18 19 The short term you have, so -term. 20 MR. WOLCOTT: In the PSAs, we didn't vary the humidity as a probability distribution. 21 It's 22 certainly considered in these analyses. It's just not 23 -- it wasn't assigned the probability distribution. DR. CORRADINI: You didn't allow it to 24 25 vary independently of the physical calculations.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

235 1 MR. WOLCOTT: That's correct. So the 2 result we got from that particular analysis for LOCA, ATWS and station blackout, delta CDF, delta LERF was 3 2.4 times 10^{-8} per year. That would be an effect of 4 5 depending on containment overpressure for those events as opposed to having some other way to take care of it 6 7 that did not require containment. 8 DR. CORRADINI: The reason -- maybe you 9 said it and I missed it. The reason they're the same surprises me and the reason is because they're exactly 10 11 the same because? 12 WOLCOTT: It's because in this MR. particular analysis any success path -- I may not be 13 14 saying this right, but the success path always has 15 containment in it and to fail you have to -- to fail this particular analysis, you've got to fail the 16 containment because that's what's making the ECCS work 17 and so that's the reason why in this particular 18 19 analysis they are the same. Somebody else might be 20 able to say that better. 21 DR. CORRADINI: Can I just say it back to 22 Is that they're one and the same, what you just vou? 23 said is if I fail, if I go into some kind of core degraded core state I have a failed containment 24 25 simultaneously.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

I	236
1	MR. WOLCOTT: Yes.
2	DR. CORRADINI: The failed containment is
3	causing that in this analysis?
4	MR. WOLCOTT: Yes.
5	MR. MIMS: This is Bill Mims. That's
6	correct. If you in order to not have containment
7	overpressure, you would have to have some failure
8	containment which means there's a hole. So in the
9	delta, in the CDF is mapped or assigned directly to
10	LERF.
11	DR. CORRADINI: Thank you.
12	MR. WOLCOTT: Slide 13. The final slide
13	I wanted to discuss a little bit, what realistic
14	analyses and what realistic differences figure into
15	these four events. And what I would conclude from
16	this is it takes a combination of unrealistic
17	assumptions, in one way or another, to get us to a
18	position where we need containment overpressure in
19	these events.
20	For example, for the LOCA analysis, we
21	have to have specific single failures that affect the
22	RHR system before we need containment overpressure.
23	If I have four RHR pumps or both trains, I do not need
24	containment overpressure. So I'm calling that
25	that's being driven by assumption of a particular set
	1

(202) 234-4433

237 1 of single failures that happen to get have other 2 train. 3 CHAIR BONACA: That's also long term? 4 MR. WOLCOTT: It's long term. 5 DR. BANERJEE: Because you won't have 6 enough RHR. You will need the core spray. 7 Because you get a lower suppression pool 8 temperature. 9 MR. WOLCOTT: That's correct. That lowers 10 the suppression pool temperature. For an ATWS event, if we analyze the power 11 generation phase of that event with a best estimate 12 code, we do not need containment overpressure. 13 There 14 isn't as much power generated and put into the containment and we would not need containment 15 16 overpressure --DR. BANERJEE: This is the Odin. 17 The licensing basis code MR. WOLCOTT: 18 would be Odin. 19 20 The best estimate code that we looked at 21 was TRACK. DR. BANERJEE: The best estimate 22 code is TRAKG. 23 MR. WOLCOTT: That's correct. So Odin is 24 25 DR. BANERJEE: Odin is the licensing code.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	238
1	MR. WOLCOTT: It's known not to be very
2	realistic when it's modeling this type of event.
3	DR. BANERJEE: What happens if you used
4	Odin?
5	MR. WOLCOTT: The curves that we use as
6	our licensing basis do use Odin and they do show that
7	we require containment overpressure.
8	DR. BANERJEE: For how long?
9	MR. WOLCOTT: What's the duration?
10	DR. BANERJEE: Is it in here?
11	MR. WOLCOTT: I don't have a slide on it.
12	DR. BANERJEE: Just a verbal.
13	MR. WOLCOTT: About an hour and a half.
14	DR. BANERJEE: And it's after two or three
15	psi.
16	MR. WOLCOTT: 1.9 psi for about an hour.
17	Moving on to the next event, talked about this a
18	little bit.
19	DR. BANERJEE: TRAKG used to have problems
20	with ATWS. Did you get rid of these problems now?
21	Who did this magic?
22	(Laughter.)
23	MR. JACOBS: Randy Jacobs, GE. What
24	problems
25	DR. BANERJEE: All sorts of problems.
l	

```
(202) 234-4433
```

	239
1	MR. JACOBS: We do have an updated version
2	of TRAK that we've been executing TRAKG-04 and it's
3	been much more robust in handling.
4	DR. BANERJEE: What did you do, put more
5	damping? Anyway, okay.
6	MR. JACOBS: We've got another TRAKG
7	expert here to maybe answer some of that.
8	DR. BANERJEE: It creates a diversion.
9	(Laughter.)
10	MR. ANDERSEN: This is Jens Andersen from
11	Global Nuclear Fuel. I'm not sure what the specific
12	problem that you're referring to is, but clearly the
13	conversion that we have with TRAK that's consistent
14	with the Panic 11 kinetics model is performing quite
15	reliable for ATWS calculations.
16	DR. BANERJEE: Okay, thanks.
17	MR. WOLCOTT: For the Appendix R event, as
18	I said earlier, that's driven largely by being down to
19	one pump of heat exchanger. If we had two pumps of
20	heat exchanger we would not need containment
21	overpressure.
22	In addition to that, loss of the normal
23	heat sink is a major driver in this. The fires that
24	we have that would affect the RHR pumps would not
25	affect the balance of plant. However, the Appendix R
	I contract of the second se

(202) 234-4433

	240
1	rule has us assuming a loss of off-site power that's
2	unrelated.
3	If we had a normal heat sink, we wouldn't
4	be having this conversation because we wouldn't be
5	heating up the pool. So there's a lot of things
б	inherent in the Appendix R analysis that define the
7	event to start with, that kind of pull us here that
8	are not really a very realistic
9	DR. ABDEL-KHALIK: And you feel like you
10	can give the operator firm instructions to terminate
11	containment cooling after two hours.
12	MR. WOLCOTT: There are firm instructions.
13	Once we realize that once we meet the entry
14	criteria for having this level of degradation in the
15	plant, if we don't meet that entry criteria that is if
16	we still have the balance of plant and we're still
17	cooling down to that, you would never enter that
18	procedure, you would never be told to do anything like
19	that. You just cool down the normal way and we
20	wouldn't need this.
21	So yes, once we
22	DR. ABDEL-KHALIK: What are the other
23	conditions that have to be present in order for the
24	operator to take that action?
25	MR. WOLCOTT: Tony, can you do that one?
l	

(202) 234-4433

	241
1	What are the entry conditions?
2	(Pause.)
3	If you want to give him a minute to look
4	at that, we can just talk about the next one while
5	we're doing it.
6	I'll just move on to the to how that
7	fits into the station blackout. We didn't put the
8	graph up there, but the station blackout, the need for
9	overpressure there is driven strictly by the fact that
10	the way we apply the event analysis, you have no AC
11	power and no heat removal at all for four hours. And
12	if you don't remove any heat, something has got to
13	give.
14	So if it's not very realistic, given that
15	we have eight diesel generators that there's no
16	connectable between units, that we would really be
17	caught for a full four hours without any AC power. If
18	we were able to get some AC power back and RHR pumped
19	back at three hours, we would not need containment
20	overpressure.
21	So again, that event is defined in a very
22	severe way and that's what's driving us to do this.
23	MR. ELMS: I am Tony Elms, Operations
24	Manager. Entry conditions for our site shutdown
25	instructions, first is Unit 2 and Unit 3 is greater
	1

(202) 234-4433

1 than atmospheric pressure and the magnitude of the 2 fire has the potential to affect the safe shutdown 3 capacity as identified by one multiple failures, 4 spurious actuations of systems and components have 5 occurred or erratic or questionable indications on numerous main control room instruments have occurred 6 7 or multiple trains or channels of safety-related 8 equipment are threatened by the fire. So those are the things that would cause 9 10 us to enter into the AOIs, I mean SSIs, excuse me. Thank you. 11 DR. BANERJEE: WOLCOTT: That concludes our 12 MR. presentation. 13 14 CHAIR BONACA: Well, three versus four 15 hours, what is your basis for Browns Ferry, four 16 hours? MR. WOLCOTT: It's four hours. The unit 17 has to cope for four hours with no AC power. 18 19 CHAIR BONACA: I think we need a break. 20 MR. WOLCOTT: Yes. 21 CHAIR BONACA: Thank you for your 22 presentation and we'll go to break until 4 and then we 23 have NRR presentation. 24 (Off the record.) 25 CHAIR BONACA: Okay, let's go back into

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

242

	243
1	session. We now have a presentation from the staff
2	regarding containment considerations.
3	MR. LOBEL: Good afternoon. My name is
4	Richard Lobel. I'm a Senior Reactor Systems Engineer
5	in the Containment Ventilation Branch in NRR. And I'm
6	here today to present the results of the NRC Staff
7	Review of the Browns Ferry Containment Safety Analyses
8	of Power Uprate Conditions.
9	I'll give a brief overview of the results
10	of our review and all the containment review areas and
11	then I'll provide more detailed discussion of the
12	issue of crediting containment accident pressure for
13	NPSH for the Browns Ferry pumps.
14	Let me just make two comments before I
15	start I was asked to make. The first was about the
16	comments on the TRAKG code. I just wanted to make it
17	clear that the comments that the licensee made and I
18	thought the licensee made it clear, was that these
19	were just sensitivity studies and they didn't play any
20	role in they aren't part of a licensing basis and
21	they didn't play any role in the staff approval of the
22	Browns Ferry power uprate for five percent.
23	The other comment was I wasn't going to
24	address this specifically unless there was a question,
25	but I thought it might be useful since this initiative
l	

(202) 234-4433

has been discussed with ACRS at every meeting we've had on the subject is that we are looking at -- we and the industry are looking at ways of making this analysis more realistic and quantifying the uncertainty in the analysis.

We had a meeting in October with the BWR 6 7 owners group where we discussed a little bit about 8 what would be done. That meeting was mostly a 9 scheduler meeting and a meeting to talk about regulatory business type affairs, not the technical 10 meeting. But it's my understanding that BWR owners 11 12 group is currently working on this method and the staff, now that you're done with the Browns Ferry 13 14 review and some other work is going to start the next revision of Reg. Guide 1.82 which will incorporate, 15 which will make the Req. Guide risk-informed on the 16 subject of containment accident pressure. 17

And hopefully, we'll be able to get some input from the BWR owners group and do some work on our own on the subject of more realistic analysis where we quantify the uncertainties in the significant parameters.

We were talking with BWR's owners group about a possible submittal of the first stage of the review around September 2007. That's a very tentative

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	245
1	date, but just to give you an idea of the time frame
2	and speaking for them, although I shouldn't be, they
3	might be persuaded to give a little presentation on
4	their progress at some point before then if the
5	Committee is interested.
6	CHAIR BONACA: This is the approach we
7	discussed for Vermont Yankee which was encouraged by
8	
9	MR. LOBEL: It was encouraged at Vermont
10	Yankee and it was also encouraged when we talked to
11	the Committee about Reg. Guide 1.82.
12	This slide lists the review areas
13	specified in the NRR review standard for power
14	uprates. Under containment functional design, the
15	staff reviews the peak pressure and temperature
16	analyses for the primary containment and for BWRs, the
17	response to hydrodynamic loads.
18	These result from a blowdown of the
19	reactor coolant system into the suppression pool
20	following a design basis LOCA or the discharge of
21	reactor steam into the suppression pool from the main
22	steam relief valves through the quenchers and the
23	suppression.
24	The analyses were performed by the
25	licensee using computer methods previously approved by
	1

(202) 234-4433

	246
1	the NRC. These include the LAM code for vessel
2	blowdown, the M3CPT code for the peak containment
3	pressure and temperature as a result of the LOCA and
4	the Super Hex code for long-term suppression pool
5	temperature and containment dry well and wet well
6	temperature.
7	The peak calculated dry well pressure was
8	48.5 psig and the dry well design limit is 56 psig.
9	So there's margin between the conservative calculated
10	peak and the design limit.
11	The suppression pool temperature is 187
12	degrees Fahrenheit and the design limit is 281 degrees
13	Fahrenheit. The hydrodynamic loads were all within
14	establish limits.
15	The subcompartment analysis for Browns
16	Ferry consists of calculating the pressure difference
17	between the pressures in the space between the vessel
18	and the biological shield and the pressure in the rest
19	of the dry well and this ensures that the peak
20	pressure difference doesn't exceed structural design
21	requirements.
22	For Browns Ferry, the allowable pressure
23	difference was 19 psid. The calculated peak pressure
24	difference is 2.6 psid. So there's ample margin for
25	that calculation.
	I

(202) 234-4433

	247
1	The mass and energy release into the dry
2	well is calculated using acceptable methods that I
3	just mentioned and
4	CHAIR BONACA: I think this slide okay.
5	Appreciate it.
6	MR. LOBEL: The mass and energy release
7	into the dry well is calculated using acceptable
8	methods that I just mentioned and results of this
9	calculation of the mass and energy are used for the
10	pressure temperature and hydrodynamic loads
11	valuations.
12	Combustible gas control deals with
13	generation of hydrogen and the steps taken to ensure
14	that the concentration of hydrogen remains below the
15	combustible concentration. This is done by inerting
16	the containment with hydrogen gas and the operation of
17	the containment atmosphere dilution system, CADS.
18	There were no review issues in this area for the five
19	percent power uprate.
20	Containment heat removal for BWR deals
21	primarily with cooling the suppression pool and it
22	also, because of the way the standard review plan is
23	structured, deals with the issues of net positive
24	suction, that's for ECCS pumps and I'll discuss that
25	in the remainder of my presentation.

(202) 234-4433

	248
1	There were no issues raised in the review
2	of the secondary containment.
3	Next slide.
4	We've covered a lot of this already, so
5	I'll try to spent more time on the points that weren't
6	discussed. The treatment of net positive suction head
7	for the Browns Ferry ECCS pumps was a big part of the
8	staff review, particularly for the RHR for spray
9	pumps. TVA meets the pressure both for LOCA and the
10	non-LOCA events that were already discussed at this
11	station blackout in Appendix R.
12	The licensee applied pump vendor curves
13	for reduced required NPSH and these curves provide
14	additional NPSH margin over the typical values of
15	required NPSH.
16	Can we go to the backup slide?
17	(Pause.)
18	This didn't turn out very well, but this
19	slide comes from the Salzer report and it's not
20	necessary to read any numbers, but just to give you an
21	idea of what the curve looks like, it's NPSH which is
22	really required NPSH on the Y axis and operating hours
23	on the X hours and a logarhythmic scale. And this is
24	the pump vendor's judgment of the required NPSH that
25	would be acceptable for these operating times and it's
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	249
1	parametric with pump flow rate.
2	So these are the curves that the licensee
3	incorporated into the NPSH analyses and the top
4	horizontal line is what was referred to before as the
5	8000 hour operating time. So the pumps would be
6	assumed to be at a required NPSH below the maximum
7	value for a limited amount of time.
8	And like I said before, that's really
9	based on the pump vendor's experience and judgment
10	from testing, not just at Browns Ferry pumps, but his
11	whole body of experience with centrifugal pumps.
12	So there's one case where the containment
13	atmosphere does not supply enough pressure for the
14	NPSH to be satisfied.
15	MR. LOBEL: Well, let me be clear.
16	MR. SIEBER: That would be yes, right?
17	MR. LOBEL: I'll get to it later. This
18	curve was included in all the NPSH calculations. Even
19	including this curve and credit for accident pressure
20	for the short-term LOCA that wasn't enough.
21	MR. SIEBER: Right.
22	MR. LOBEL: And there was a prediction
23	that the pump would cavitate or at least would
24	MR. SIEBER: Well, the question is will
25	the pump fail?

(202) 234-4433

	250
1	MR. LOBEL: Right, and I'm going to talk
2	about that.
3	DR. BANERJEE: Am I right in reading this
4	curve that these curves that at higher flows you
5	have less of a problem than at lower flows?
6	MR. LOBEL: No, at higher flows, you need
7	more the NPSH the required NPSH is higher. So
8	that would reduce the margin between the available and
9	the required.
10	Next slide.
11	DR. BANERJEE: What do the pump
12	characteristics basically on these flows look like?
13	do you have an idea? Like is the solid line at the
14	fire end of the characteristic or the head developed
15	is fairly low?
16	You have the head versus Q curves for
17	this?
18	MR. LOBEL: I don't have them with me.
19	DR. BANERJEE: I don't remember seeing
20	them in the report.
21	MR. LOBEL: I think they're in the Salzer
22	report.
23	DR. BANERJEE: Are they?
24	MR. LOBEL: Yes. And there are curves in
25	the FSAR too, I think. I don't know if they're the

(202) 234-4433

	251
1	same curves.
2	And the curves would probably be curves
3	from the pump vendor, so they may not be the latest
4	Browns Ferry values, but they should be curves.
5	DR. BANERJEE: What is the curve that is
6	being required, for example.
7	MR. LOBEL: This is for the RHR for the
8	long term. I'm sorry, for the short term. The pumps
9	that are pumping into the broken recirculation route
10	are at 11,500 GPM. The pumps pumping into the intact
11	loop are 10,500 GPM. And after the long-term, after
12	the operator thrives it's the 6500 GPM.
13	DR. BANERJEE: They require about 21 feet
14	NPSH? Sorry, no, about 27 feet or something, 26?
15	Between 26 and 30 or something like that,
16	right?
17	MR. LOBEL: Whatever, the numbers are.
18	DR. BANERJEE: That's how they establish
19	that 31 feet or something.
20	MR. LOBEL: Okay, Browns Ferry Units 2 and
21	3 currently credit accident pressure, I think we
22	already talked about that.
23	The RHR pumps have several safety
24	functions. Let me just list them again. They're the
25	low-pressure coolant injection pumps. They cool the

(202) 234-4433
1 suppression pool and they also provide the wet well 2 and dry well spray flow, so that's one of the reasons 3 that there's this short-term and long-term split 4 because originally the RHR pumps inject into the 5 vessel and after the ten minutes, then by then the There still is vessel, the core should be covered. 6 7 core spray flow into the vessel so if all the 8 conditions are met, the operator can defer the RHR 9 pumps to the suppression pool cooling mode. 10 I think we went through short-term and long-term enough. I mentioned the three events. 11 I included this, this is a summary of a 12 table in one of the licensee's calculations just 13 14 because the question always comes up about what the 15 margin was and how long containment pressure was needed and the amount. So CS is core spray. 16 RHRIL 17 refers to the intact loop. This is for the short term where one train is injecting into the intact loop of 18 19 the recirculation lines and the other two RHR pumps in 20 the other train are injecting into the broken loop. 21 We've already covered ATWS, Appendix R and 22 station blackout. The dry well coolers are terminated 23 Appendix R event has the maximum after two hours. 24 amount of pressure required and the longest duration 25 time because of the assumption that there's only one

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

252

	253
1	RHR pump available and one heat exchanger.
2	DR. POWERS: Have you thought or looked
3	quantitatively at the probability of maintaining the
4	containment intact in nine hours?
5	MR. LOBEL: We can talk about that a
6	little later, but well, not during the accident.
7	I wasn't going to talk about that, but could we hold
8	that off? I'm going to talk about containment
9	integrity. Can we hold it off until then? Or we can
10	talk about it now.
11	(Laughter.)
12	DR. POWERS: If it's forthcoming, I can
13	wait.
14	MR. LOBEL: The usual design basis
15	analysis always assumes containment
16	DR. POWERS: I'm not interested in what
17	you assume.
18	MR. LOBEL: The Appendix R and station
19	blackout and ATWS events have criteria that have to be
20	met, one of which is containment isolation is
21	maintained and containment integrity is maintained.
22	And that's done in terms of limits on containment
23	pressure and for station blackout, a demonstration
24	that losing all AC power isn't going to open up the
25	containment in some way.

(202) 234-4433

254 1 The containment is leak tested, and ILRT 2 Every so often, according to Appendix J, the is done. 3 4 DR. POWERS: None of which are done at 5 temperature. 6 MR. LOBEL: I'm sorry? 7 DR. POWERS: None of which are done at 8 temperature? 9 Right. And in Appendix J MR. LOBEL: 10 there's also a requirement in 10 CRF 50.55A that visual inspections and other inspections are done of 11 the structure for degradation. 12 DR. POWERS: You're not helping me. 13 14 MR. LOBEL: I'm sorry? 15 Not helping me. DR. POWERS: Other than, well, let me 16 MR. LOBEL: 17 mention one other thing I've mentioned before. I did mention the peak containment pressure is much less 18 19 than the design pressure. 20 DR. POWERS: Yes, but that's not where it 21 is going to fail, is it? 22 MR. LOBEL: Well. DR. POWERS: It's not going to fail from 23 24 overpressure. It's going to fail from leak failure, 25 seal failure, or something like that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	255
1	MR. LOBEL: The seals are supposed to be
2	environmentally qualified. They are supposed to
3	withstand environmental qualification temperature
4	that's
5	DR. POWERS: The road to hell is lined by
6	things that are supposed to not fail, isn't it?
7	MR. LOBEL: I'm sorry?
8	DR. POWERS: The road to hell is lined by
9	things that were not supposed to fail.
10	MR. LOBEL: I can't give a if you're
11	looking for a guarantee that nothing bad will happen
12	
13	DR. POWERS: What I'm looking for is
14	somebody looked at the probabilistics on this.
15	Everything you said is true and for a design basis,
16	accident, yes, those assumptions are made and we go to
17	elaborate lengths to assure through Appendix J and
18	a variety of other things that those assumptions are
19	valid. But the truth is there is still some
20	probability of failure. And what I'm looking for is
21	what is that probability?
22	MR. LOBEL: Well, there is a fragility
23	curve in the PSAs, and I don't know off-hand whether
24	that it is a temperature or not. It's not.
25	DR. POWERS: Yes, I mean it's an over-
	1

(202) 234-4433

	256
1	pressure failure. That's not where those things are
2	going to fail. They're going to fail in two ways.
3	Well, one is there was a mistake made. You can argue
4	that that's hard to have happen because of the
5	inerting requirement. You've got some positive
6	feedback here.
7	MR. LOBEL: Well, there are a lot of
8	checks that are done, too.
9	DR. POWERS: The other way it is going to
10	fail is that because of the thermal and radiation
11	environment you have that material degraded through a
12	stochastic event. The question is what is that
13	probability?
14	MR. LOBEL: Well, also most of the
15	containment isolation valves, if not all, and the
16	airlock doors are double-sealed, redundant valves,
17	redundant seals, so even if the first seal fails, it
18	would see the high temperature. The second seal may
19	not see that high temperature or as high a
20	temperature. And it is redundant, so that is another
21	level of safety. I can't sit here and tell you that
22	you know there is 100 percent chance that nothing will
23	ever happen. I think that we have considered the
24	possibilities within the regulations and looking at it
25	from a probabilistic safety point of view, too,

(202) 234-4433

	257
1	looking at different events and assessing the risk.
2	I don't know what more I can say.
3	MR. SIEBER: Well, maybe Marty can tell us
4	what the overall risk of all of these cases where
5	containment overpressure is required.
6	MR. STUTZKE: It's Marty Stutzke from the
7	staff. To be specific, the loss of containment
8	integrity that was examined by the risk assessment was
9	for existing leaks that were not detected. The actual
10	failure to achieve containment isolation, it's to my
11	knowledge that there is no time sensitive failure
12	modes in there like the reliability of the seals or
13	things to be considered.
14	As Rick pointed out, I mean, we don't
15	normally model MPRA past the failure modes like motor
16	operative valves spuriously open and things like this.
17	You would have to get several of them open to be in a
18	problem. With respect to seal failures, as Rich
19	points out they are environmentally qualified. I
20	would offer the radiation environment is small at this
21	point in time. It's prior to the core damage.
22	MR. SIEBER: On the other hand, the risk
23	from all accidents that require containment over
24	pressure, the function is what, ten percent of the
25	total risk?

(202) 234-4433

	258
1	MR. STUTZKE: Yes, that's correct,
2	roughly. I have some slides that I will present after
3	Rich, but the contribution to the total CDF from
4	containment accident pressure credit is about ten
5	percent, using some pretty bounding assumptions.
6	CHAIR BONACA: What about the issue of
7	just one RHR pump out of four? This is not
8	characterized as a single failure. It is a failure
9	assumed, I mean, some implications. I'm trying to
10	understand the combination, the conservatism
11	associated with the combination of assuming one RHR
12	and loss of containment.
13	MR. LOBEL: The way in general Appendix R
14	analyses is done, is you divide the plant into fire
15	zones, and you assume a fire in each zone wipes out
16	all the equipment in that zone. Then whatever you are
17	left with, is what you have to bring the plant to a
18	safe condition. In the case of Browns Ferry, for
19	their worse case, they end up with one RHR pump and
20	one heat exchanger and one RHR service water pump.
21	The RHR pump is, the flow goes through the heat
22	exchanger and the RHR pump is injecting into the
23	vessel. It's cooling the vessel and cooling this
24	suppression pool with one heat exchanger. That is
25	what gives the high temperature.
1	1

(202) 234-4433

259 1 DR. POWERS: The challenge you have with fire analyses and why the assumption that a fire zone, 2 all the equipment in that zone fails, may not be 3 4 conservative. Fire is a very peculiar beast. It can 5 cause equipment to fail or it just doesn't operate and can also leave equipment that operates, 6 it but 7 operates badly. That can be a worse situation, 8 equipment that just doesn't operate. Well, I don't know that much 9 MR. LOBEL: 10 about Appendix R, but it is my assumption that that is 11 looked too, so that's part of the analysis --12 You characterize the Appendix DR. POWERS: R analyses correctly. 13 14 MR. LOBEL: But I mean the business of 15 shorts and associated circuits and all of that. 16 DR. POWERS: That's another aspect of it. 17 That is to assure that you have one way of cooling down the plant. Here we're asking can you keep the 18 19 containment at this pressure that we need, which is 20 not very much pressure, but we need it for a long 21 time. That's a different analysis. That isn't done 22 in Appendix R. 23 LOBEL: Well, you also have to MR. 24 consider too that there is another consideration, and 25 the operator. The operator would be that is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 monitoring the NPSH. I'm getting all the way through 2 my presentation, but the operator is going to be 3 monitoring the behavior of this pump. If he sees that 4 there is a problem, he can throttle the flow more than 5 what is assumed in this analysis. That might still be enough to accomplish what the RHR pump needs to do, 6 7 but he wouldn't be cavitating any more. Or there's ways of putting water into the 8 9 containment, especially at Browns Ferry with 10 connections to the other units. There is ways of putting the water into the containment or into the 11 12 suppression pool or not cooling the suppression pool with the pumps from another unit, because that 13 wouldn't work. But there may be ways of adding water 14 15 to the vessel, so maybe the RHR pump wouldn't have to 16 The problem with those kinds 17 DR. POWERS: of arguments is they invite the comment that if the 18 19 operator can make things better, there's also some 20 chance that he will make things worse. 21 MR. SIEBER: Before you leave that chart, 22 the third one down, I presume, is the one you are 23 talking about. In LOCA short term with negative 24 minimum and NPSH margin, which means it is cavitating 25 pretty big time. If nobody does anything, what

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

260

	261
1	happens?
2	MR. LOBEL: If nobody does well, the
3	way the analysis works is the short-term analysis is
4	for ten minutes and then that's the end of the
5	analysis.
6	To answer your question
7	MR. SIEBER: What if the pump fails?
8	MR. LOBEL: Well, we're saying the pump
9	won't fail for four minutes that it's cavitating and
10	then that would be ten minutes. And if the operator
11	hasn't throttled the pump before then, the operator
12	can throttle the pump for ten minutes. And when he
13	throttles the pump, the pump won't be cavitating any
14	more.
15	MR. SIEBER: And if he doesn't, does that
16	mean that the pump continues to cavitate and if so,
17	for how long?
18	MS. BROWN: Bill, would you guys like to
19	discuss that a little better, since you guys have
20	MR. WOLCOTT: J.D. Wolcott, TVA. The
21	answer to that question would be the particular pumps
22	that have the negative NPSHR are having no function
23	whatsoever in that alignment. And so if no one ever
24	did anything with them, they would possibly fail after
25	a while, but if no one realigns them into a useful
	I contract of the second se

(202) 234-4433

	262
1	mode, then it wouldn't matter.
2	MR. LOBEL: I was going to say if the
3	pumps that are the reason this is important is that
4	the pumps that are cavitating there are two pumps
5	that are cavitating and two pumps that aren't
6	cavitating. For the short term, it doesn't matter
7	because the pumps that aren't cavitating are supplying
8	flow to the vessel.
9	Like J.D. said, the pumps that are
10	cavitating aren't doing anything and you don't care.
11	But then when you go to the long-term analysis, if you
12	take a single failure of the pumps that were not
13	cavitating
14	MR. SIEBER: One fails.
15	MR. LOBEL: One failure. Then you're
16	well, it takes out both pumps and the train. You fail
17	one train for whatever reason.
18	Now you depend on the pumps that were
19	cavitating that were in the suppression pool. So it's
20	important that those pumps
21	MR. SIEBER: Be operable.
22	MR. LOBEL: Be operable, survive the four
23	minutes of cavitation.
24	MR. SIEBER: So in that case, you're
25	actually relying on the operator to see the amps
	1

```
(202) 234-4433
```

	263
1	swinging and the floats swinging which gives them a
2	clue that there's cavitation going on.
3	MR. LOBEL: Right. Plus the high flow
4	rate to begin with.
5	MR. SIEBER: Good luck.
б	MR. LOBEL: Well
7	MR. SIEBER: There's a lot of instruments
8	on those boards.
9	MR. LOBEL: Yes, but this is one of the
10	more important ones, the operation of the ACCS pumps.
11	And I've been told by operators in the past that ten
12	minutes is really more time than is needed to throttle
13	back the pumps. The containment assumption is really
14	very conservative.
15	MS. BROWN: Bill, did you have anything
16	else to add?
17	MR. CROUCH: Yes, the action to throttle
18	the pumps at ten minutes and realign them, that's
19	procedurally driven to do that. They're not assuming
20	that the realignment happens because the operators
21	detect the cavitation. They're being procedurally
22	driven to realign the containment cooling mode.
23	So it will happen even if the pumps were
24	not cavitating.
25	MR. SIEBER: Okay.
1	

(202) 234-4433

	264
1	MR. LOBEL: Next slide. This is what we
2	just talked about.
3	CHAIR BONACA: Because actually, the case
4	we're making is that probably they would not be
5	cavitating.
6	MR. LOBEL: Well, I'm getting to that.
7	(Laughter.)
8	CHAIR BONACA: Well, I'm saying that again
9	
10	MR. LOBEL: Let me let's go to the next
11	slide.
12	This is the picture of what's going on in
13	the short term and the top there is the wet well
14	pressure, that's the pressure that's calculated,
15	conservatively calculated to be available. The
16	suppression pool temperature is the increase in curve,
17	a solid line increase in curve. The RHR intact loop
18	in the core spray need containment pressure, but you
19	can see that they're below the containment pressure
20	that's available and so although they're crediting
21	containment pressure, they're also crediting this
22	required NPSH pump vendor curve. They won't cavitate.
23	They're not predicted to cavitate. The RHR broken
24	loop is predicted to cavitate. This is the picture of
25	what was on the
1	I contract of the second se

(202) 234-4433

	265
1	MR. SIEBER: That ends in 600 seconds, but
2	that's when you ended the calculation.
3	MR. LOBEL: That's when the calculation
4	ends, but like J.D. said
5	MR. SIEBER: That could be going on
6	forever.
7	MR. LOBEL: No, well, what J.D. was just
8	saying, the operator would at that time switch over to
9	suppression pool cooling any way. So the flow rate
10	would go from the flow rates in here which are 10,500
11	and 11,500 down to 6500 GPM.
12	CHAIR BONACA: Those are pressures, RHR
13	and broken loop.
14	MR. LOBEL: Yes, that's
15	MR. SIEBER: You have to talk into mic.
16	DR. BANERJEE: There's a pointer next to
17	you.
18	Is the wet well pressure the lowest
19	possible pressure, the lower bound?
20	MR. LOBEL: Yes. It's conservatively
21	lower bound pressure.
22	DR. BANERJEE: So what are the
23	conservatisms in there?
24	MR. LOBEL: You assume that the
25	suppression pool temperature is at its tech spec
	I Contraction of the second

(202) 234-4433

	266
1	maximum to start with. You assume that the decay heat
2	is decay heat value plus two sigma uncertainty. You
3	assume that the reactor power is at 100 percent plus
4	2 percent for instrument uncertainty, so the reactor
5	power is 2 percent above the licensed thermal power.
6	DR. ABDEL-KHALIK: I'm sorry, that's the
7	opposite direction. All of these uncertainties give
8	you a higher pressure.
9	MR. LOBEL: I'm sorry, I'm talking about
10	raising the suppression pool temperature. Okay, for
11	
12	DR. BANERJEE: But that's for suppression
13	pool temperature.
14	MR. LOBEL: So the suppression pool
15	temperature is high. For the pressure, you assume the
16	containment volume is conservatively large. You
17	assume that the humidity, relative humidity is 100
18	percent because that minimizes the amount of air in
19	the containment and minimizing the amount of air in
20	containment minimizes the pressure.
21	Let's see, there isn't any cooling yet for
22	the short term, and there's
23	DR. BANERJEE: But it all depends a lot on
24	the discharge rate, what's coming out of the
25	MR. LOBEL: Yes, sure.

(202) 234-4433

	267
1	DR. BANERJEE: How do you make that
2	MR. LOBEL: You do a calculation that
3	would be well, I'm not sure. I'm not sure for
4	BWRs. I'm not sure how maybe GE or somebody can
5	answer that. I can answer for PWRs, but not BWRs.
б	DR. BANERJEE: How do you make the energy
7	input into the containment conservative?
8	Conservative from the point of view of the
9	pressure?
10	MR. RAO: Would you repeat the question,
11	please?
12	DR. BANERJEE: How do you make the energy
13	input into the containment for the purposes of
14	calculation of the pressure conservative?
15	MR. RAO: There is no specific input for
16	to make the pressure conservative. The pressure
17	conservatism comes from the initial conditions that
18	are assumed for the dry well and wet well by way of
19	dry well and wet well pressures being minimized and
20	the relative humidity being maximized.
21	DR. BANERJEE: The same input that raises
22	the if you go to that curve. The reason that
23	pressure is high is because of the energy input,
24	right?
25	MR. RAO: Yes, this is as a result of the
	I

(202) 234-4433

	268
1	blow down and the energy from the fuel. This is
2	correct.
3	DR. BANERJEE: Well, how do you make that
4	conservative? You want to minimize you're trying
5	to establish a lower bound. You're not helping me
6	right now.
7	MR. LOBEL: I'm not sure you do.
8	DR. BANERJEE: I thought you were trying
9	to establish a lower bound.
10	MR. LOBEL: You're establishing a lower
11	bound for the pressure and an upper bound for the
12	suppression pool temperature, but the suppression pool
13	temperature has a much larger effect on the NPSH and
14	so
15	DR. BANERJEE: I'm just trying to
16	establish that line there.
17	MR. LOBEL: Well
18	DR. BANERJEE: Is that line likely to be
19	20 percent lower or not?
20	MR. LOBEL: You could do the calculation,
21	I'm sure, in a way to make it 20 percent lower.
22	DR. BANERJEE: Well, if it was 20 percent
23	lower, and it was 100 or 110, what would happen?
24	MR. LOBEL: Why would you need to do that
25	calculation?

(202) 234-4433

	269
1	DR. BANERJEE: Let's say the pressure is
2	down by 20 percent.
3	MR. LOBEL: But why?
4	DR. BANERJEE: Because you've done
5	something wrong with your calculation. Let's assume
6	that I can find a way to calculate this which is
7	lower. I'm asking you about the energy input and I'm
8	not getting a straight answer.
9	MR. DeLONG: Rich, where do we get the
10	mass and energy inputs from?
11	DR. BANERJEE: Where do you get it from?
12	MR. DeLONG: Which code are they coming
13	from for the break?
14	MR. LOBEL: I'll let GE answer.
15	DR. BANERJEE: GE doesn't answer that.
16	We've asked them once.
17	MR. LOBEL: The mass and energy for the
18	short-term calculation comes from LAM, isn't that
19	right?
20	MR. RAO: No, it's from Super Hex.
21	DR. BANERJEE: It was ten seconds they
22	told us before.
23	MR. LOBEL: We're mixing a whole bunch of
24	stuff together.
25	DR. BANERJEE: Can you just
	I

```
(202) 234-4433
```

	270
1	MR. LOBEL: One thing at a time. The ten
2	seconds was for a peak pressure calculation. That's
3	to determine whether the peak pressure in the
4	containment is less than the design pressure. We
5	were talking about that now.
6	DR. BANERJEE: Yes, that was with LAM.
7	MR. LOBEL: Super Hex is used to calculate
8	the mass and energy release for the NPSH calculations.
9	It's not necessary, there's no requirement that every
10	variable be made conservative and in fact, like I
11	said, the suppression pool temperature is a much more
12	important variable than the pressure because the
13	suppression pool temperature affects the vapor
14	pressure which is very nonlinear. So the suppression
15	pool temperature has a much bigger effect. So you're
16	not trying to minimize suppression. In that case,
17	you're trying to maximize the energy that's going into
18	the dry well and into the suppression pool.
19	DR. BANERJEE: Now, let me ask you the
20	question. Imagine that the temperature curve is
21	fixed. You've established the highest temperature
22	curve, okay? We accept that.
23	Now I'm asking you how do you establish
24	that the pressure is the lower bound? This is a
25	question that came out before. We kept asking you
	1

(202) 234-4433

	271
1	about this before. Now imagine that was 20 percent,
2	then you'd a much more extended period of cavitation.
3	MR. DeLONG: Is there biasing in Super
4	Hex?
5	MR. LOBEL: The pressure is minimized by
6	using a larger than nominal volume, what did I say
7	before, the suppression pool level is a minimal level
8	so that there's more space for the steam and the
9	nitrogen. I'm sure there's others I'm not thinking of
10	right now the humidity, the relative humidity is
11	100 percent.
12	DR. BANERJEE: But the main thing that
13	determines the pressure is the energy input.
14	MR. LOBEL: It's more important to
15	maximize, or at least use a nominal energy input to
16	maximize the suppression pool temperature than it is
17	to maximize the pressure.
18	DR. BANERJEE: Right.
19	MR. DeLONG: So we bias the containment
20	variables. Do we do anything to bias the input that
21	we get or is that a nominal calculation?
22	MR. LOBEL: The input?
23	MR. DeLONG: The mass and energy.
24	MR. LOBEL: The power is 102 percent.
25	MR. DeLONG: Okay.
	I

(202) 234-4433

	272
1	MR. LOBEL: The decay heat is two percent
2	above the nominal value. For the short term, there
3	isn't a whole lot more, at least that I'm thinking of
4	right now. The initial temperatures of the water and
5	the air are maximized. So things are put in the
6	direction that gives them the most conservative
7	calculation.
8	DR. BANERJEE: So let me paraphrase what
9	you're saying.
10	MR. LOBEL: Yes.
11	DR. BANERJEE: As far as your calculation
12	inputs are concerned, you're trying to get the highest
13	suppression pool temperature.
14	MR. LOBEL: Right.
15	DR. BANERJEE: But you're not necessarily
16	getting the lowest wet well pressure.
17	MR. LOBEL: Well, when you put it that
18	way, I'm not getting the highest suppression pool
19	temperature either. I mean I always make it higher.
20	I could take decay heat plus three sigma and that
21	would give me a higher temperature than decay heat
22	plus two sigma.
23	DR. BANERJEE: So why did they choose two
24	sigma?
25	MR. LOBEL: Because two sigma is a usual
	I contraction of the second

(202) 234-4433

	273
1	uncertainty and 95 percent uncertainty for regulatory
2	requirements, regulatory analysis.
3	DR. BANERJEE: So what about taking two
4	sigma on something else?
5	MR. LOBEL: Well
6	MR. DeLONG: I think that's what we're
7	going to get into when we work with GE on specifying
8	the uncertainties and assigning distributions and
9	that's the goal of moving away from what appears at
10	times to be an arbitrary pushing of variables in one
11	direction or the other. We do this two ways. We
12	either put all the energy into the containment or we
13	put all the energy in the water which is very
14	confusing to people.
15	So I think the real answer to your
16	question is going to come when we can establish a more
17	systematic way of doing things as part of the 1.82
18	Reg. Guide revision. This is the best we can do for
19	now.
20	DR. BANERJEE: I guess I was under the
21	wrong impression and maybe the rest of the Committee
22	was as well, which was that you made a set of
23	assumptions which would give you the two sigma or
24	whatever, the highest suppression pool temperature and
25	that you then made a separate set of presumptions
I	I

(202) 234-4433

	274
1	which would give you the lowest, lower bound on the
2	wet well pressure. This was the impression I had.
3	Let me ask the rest of the Committee if
4	that was the impression they had. Definitely, this is
5	what I came away with and that's not what you've done.
6	If you had a wrong impression thank you for correcting
7	it.
8	MR. LOBEL: There is only one calculation,
9	so you try to do you try to minimize the pressure
10	and maximize the temperature, but you're only doing
11	one calculation. You could, I suppose, do a separate
12	calculation and calculate the very minimum pressure
13	DR. BANERJEE: That was the impression we
14	had, at least I had.
15	MR. LOBEL: Okay, well, I'm sorry.
16	DR. BANERJEE: What you've done is one
17	calculation in which you have chosen to maximize the
18	suppression pool temperature and you've taken whatever
19	pressure it is with some initial conditions which were
20	a little bit conservative, 100 percent humidity,
21	whatever.
22	MS. BROWN: I'm sorry. I think it's TVA
23	who made the assumptions regarding those values.
24	DR. BANERJEE: All right, TVA did.
25	MS. BROWN: Maybe the question may be
	1

(202) 234-4433

	275
1	better put to TVA as they made those assumptions.
2	MR. CROUCH: Hey, Eva. Let's J.D. talk
3	about what for a second.
4	MR. WOLCOTT: It still remains true that
5	there are essentially two separate things calculated,
6	trying to force the pool temperature higher with
7	assumptions and just force the containment pressure
8	lower with assumptions. The things that drive that
9	that are variables that we fool with are relative
10	humidity. Rich said what some of them were. Initial
11	temperature in the dry well, all of which govern how
12	much noncondensibles are in there to start with for
13	the containment pressure.
14	Now we do though what we don't do and
15	I think this might be what you're getting at, we don't
16	look at things like power level. We're doing these
17	we're doing the suppression pool assuming the initial
18	power is 100 percent and the containment pressure
19	assuming 100 percent power and not at some derated
20	power level, for instance, because as we start to
21	reduce some of those things like what the operating
22	state of the plant is, of course, the torus
23	temperature, the pool temperature will go down along
24	with the containment pressure.
25	So some of the things we had to pick
	1

(202) 234-4433

276 1 initial starting states and I think that might be the 2 nature of what your question is. DR. BANERJEE: I can imagine a scenario 3 4 where you discharged more hot water than steam into 5 the containment to start with. If you did that, you would discharge less energy, obviously, because steam 6 7 is what contains the energy. 8 So in that case your pressure might be 9 lower and you might get a lot of hot water because of 10 the specific heat. I don't know. I haven't actually sat down and done these calculations, but I can 11 12 imagine scenarios where the suppression pool temperature will be high and the pressure could be 13 14 lower. What I'd thought you'd done is you've given us 15 the upper bound of the suppression pool temperature and the lower bound of the pressure so that these two 16 calculations have been disconnected. 17 That was how I 18 understood it. 19 MR. CROUCH: And that's correct with 20 respect to how we make assumptions. I think what 21 you're talking about, the differences there I would 22 more character defining the event to start with like 23 whether we get more water out or steam has to do with 24 what our design basis break is, whether it would be a 25 steam line break or a recirc line break.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	277
1	Now we are choosing what we believe to be
2	the bounding worse case event to start with, so we
3	wouldn't, for instance, heat the pool up with a steam
4	line break, but produce the containment pressure with
5	a break in another location or something like that.
6	But as far as assumptions that you make
7	that are plant-variable assumptions like what's the
8	initial temperature, what's the initial pressure,
9	those things are the ones that we manipulate to force
10	the pressure down and the pool temperature up. But we
11	don't change events.
12	DR. ABDEL-KHALIK: Let me just ask the
13	question a little more directly. Are these results
14	do these results come out of one calculation or two
15	calculations? The temperature history and the
16	pressure history.
17	MR. WOLCOTT: GE would have to answer the
18	specifics of how they do that. They're asking how do
19	you get the different assumptions to figure into the
20	pool temperature.
21	MR. RAO: To maximize the pool
22	temperature, what we've done, of course, is to use the
23	initial conditions that are going to maximize the
24	temperature. We start with the highest initial pool
25	temperature and what we also have is a mixing model
	1

(202) 234-4433

which artificially in a way assumes that the blowdown from the broken loop does not get held up in the dry well. at least most of it is directed to the suppression pool without mixing with the dry well atmosphere. What that does is it does tend to lower the dry well pressure and then by inference also the wet well pressure.

It also has the effect of directing the 8 9 blow down into the suppression pool which tends to 10 raise its temperature considerably higher. So to that extent we have been able to get some reduction in the 11 dry well pressure and also simultaneously get the 12 energy into the pool and raise its temperature. 13

14 MR. LOBEL: Let me try to ask the 15 Committee's question in a different way and maybe this will help. Is the wet well pressure curve and the 16 suppression pool temperature curve calculated with the 17 same calculation at the same time? 18

19 MR. RAO: The wet well pressure and the 20 suppression pool temperature, they are calculated from 21 the same run, that's correct.

MR. LOBEL:

23 Sanjoy, I think what you would DR. KRESS: 24 like to see, as well as us, we discussed this as part 25 of the Vermont Yankee is the uncertainty analysis on

Okay.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

22

	279
1	both of these which gives you the two sigma, realistic
2	two sigma on each of these functions. And we've never
3	been able to see that.
4	DR. BANERJEE: Right, and that was
5	DR. KRESS: You'd have to do a Monte Carlo
6	or some other kind of nonparametric concerning the
7	analysis.
8	MR. LOBEL: And the BWR owner's group are
9	working on that.
10	DR. KRESS: Are working on that.
11	DR. BANERJEE: In the absence of that, I
12	thought what was being presented here was two separate
13	bounding calculations, one for the suppression pool
14	temperature and one for the pressure.
15	DR. KRESS: I was under the same
16	impression.
17	DR. BANERJEE: Up to now we've been living
18	with that impression, so it's good that our impression
19	has been corrected.
20	MR. LOBEL: I'm sorry, I didn't' realize
21	there was the misunderstanding.
22	DR. BANERJEE: It's been going on since
23	this morning.
24	MR. LOBEL: Okay. I think we I guess
25	the only thing I think everything else has pretty

(202) 234-4433

	280
1	much been covered, but I wanted to go through the
2	cavitation part.
3	Next slide.
4	Okay, I think I already explained why it's
5	important. You have two trains of RHR in the short
6	term. One train is cavitating, the other train is
7	injecting into the vessel. At the end of the short-
8	term calculation, I do the long-term calculation and
9	now I take a single measure of the train that was not
10	cavitating. Now I'm depending on the pumps that were
11	cavitating to cool the suppression pool.
12	That's why it's important. And why is it
13	acceptable? As part of the review and when we got
14	into talking about this, we asked the license to
15	obtain the opinion of the pump vendor on the operation
16	of the RHR pump and cavitation for the short-term LOCA
17	and the pump vendor came back with these two
18	statements that essentially say that there may be some
19	damage, the damage won't be catastrophic. At the end
20	of ten minutes, if the operational life graph is
21	followed, which is that required NPSH curve that I
22	was showing before. The pumps will continue to
23	function.
24	MR. SIEBER: Are these vertical pumps or
25	horizontal pumps?

(202) 234-4433

	281
1	MR. LOBEL: Vertical.
2	MR. SIEBER: So their cavitation
3	performance, that differs significantly from
4	horizontal shaft pumps. They have a tendency to surge
5	more.
6	MR. LOBEL: Well, the pump vendor included
7	surging in his analysis. Okay. So that was one basis
8	for our acceptance. The other basis was cavitation
9	tests that the TVA performed in 1976 on a Unit 3 RHR
10	pump in situ in the plant. The purpose of the test
11	was essentially the same scenario that we're
12	discussing now. The test was run by taking suction
13	from the Unit 3 suppression pool, and returning the
14	water to the suppression pool.
15	The suction conditions were controlled by
16	adjusting a valve upstream of a pump. The licensee
17	operated the pump at several levels of cavitation.
18	The pump motor vibration was measured during these
19	tests, and the degree of cavitation was judged
20	qualitatively by the suction pressure, the level of
21	vibration, and by sound or the noise the pump was
22	making.
23	The test report for these tests stated
24	that in all cases, the pump motor vibration,
25	displacements, and accelerations did not exceed the GE
	I Contraction of the second

(202) 234-4433

	282
1	recommended criteria for pump motor vibration
2	acceleration. This vibration was within the criteria
3	for the pump. The pump was operated at several levels
4	of cavitation, for a total of ten minutes, which is
5	longer than what is being requested now for these RHR
б	pumps. The margin between the three percent head drop
7	value of required NPSH, the typical value and the
8	lowest value of cavitation in these tests was nine
9	feet.
10	We independently assessed the TVA test
11	reports and found that they were acceptable based on
12	the fact that the test appeared to be carefully run,
13	data was recorded, the results of the tests appear
14	reasonable and consistent with other information on
15	these types of pumps and cavitation.
16	In addition to the pump testing, in
17	addition to the vender's opinion, the pump testing
18	that was done, there was a third aspect. We also
19	asked TVA to address whether the 3A pump, the tested
20	pump, had experienced any abnormal operation since the
21	testing. The TVA went back and looked at the records
22	and found no anomalies in surveillance testing or
23	maintenance for the two years following the test of
24	the pump.
25	In addition, in 1994, the 3A RHR pump
1	

(202) 234-4433

	283
1	impeller was replaced to address a wearing, cracking
2	concern that was a general concern, wasn't specific to
3	Browns Ferry, and the documentation that was reviewed
4	didn't show any indication of abnormal impeller wear.
5	So based on those three things, we found
6	it acceptable oh, and one more thing. I'm sorry.
7	The other thing is the licensee did a calculation, not
8	a licensing basis calculation, but they did a
9	sensitivity calculation where two of the conservative
10	assumptions were relaxed. The relative humidity
11	assumption was relaxed, and the pump flow was relaxed.
12	The licensee assumed 11,500 GPM for the NPSH analyses,
13	and system analyses showed that the pump flow would be
14	11,000. So with the relaxation of those two things,
15	cavitation wasn't predicted. They still needed
16	containment accident pressure.
17	CHAIR BONACA: Not cavitation, but you
18	would still need it.
19	MR. LOBEL: The containment pressure was
20	sufficient with the required NPSH curves. I won't say
21	anything about special effects or the long term. I
22	think they were covered pretty well unless you have
23	any questions on those. They were all done with
24	single analyses also. Like J.D. was saying, these
25	special events calculations were done with realistic
	I

(202) 234-4433

ĺ	284
1	holistic assumptions, but a lot of the conservatism
2	was in the initial assumptions. Station blackout for
3	four hours when we have eight diesel generators. It's
4	possible, but more unlikely than a plant with two
5	diesel generators.
6	The more realistic calculation for ATWS
7	showed that containment accident pressure wouldn't be
8	necessary. The Appendix R assumption has a lot of
9	conservatism built into the scenario.
10	Containment integrity. We talked about
11	before. There's Appendix J for the leak testing, 10
12	CFR 50.55a for visual examinations. The nitrogen
13	monitoring to make sure that as an indication that
14	there's no leak, there's oxygen detectors in
15	containment as another indication of no leakage.
16	There's the difference in level between there's the
17	different in pressure between the dry well and the wet
18	well which determines the level of water in the
19	downcomers which is a tech spec requirement that's
20	monitored.
21	There's detailed procedures for ensuring
22	that the containment isolation valves are in their
23	proper position. All those things go into an
24	assurance of integrity.
25	Operator actions, we already talked about

(202) 234-4433

	285
1	the operator has curves in the emergency operating
2	procedures that he can use to tell whether he has
3	adequate NPSH. The curves are parametric and so they
4	weren't changed for the power uprate. Those part of
5	the procedures weren't changed.
6	In the analysis of the LOCA and other
7	events, other special events where the sprays would be
8	actuated, spray operation is assumed for the length of
9	the accident, so the concern that the operator would
10	turn off the sprays is covered by the fact that the
11	sprays are assumed to operate for the whole accident
12	time.
13	That's all I have.
14	CHAIR BONACA: Now this is need for 120
15	percent power. Now for 105 you wouldn't need as much.
16	MR. LOBEL: Right. And there are analyses
17	that were done for well, I was going to say
18	analyses were done for the power uprate at 105, but
19	they weren't really. The licensee changed some
20	assumptions so that the suppression pool temperature
21	would be the same as before the five percent power
22	uprate. So I don't have numbers offhand that I can
23	give you for five percent. But it is true that 120
24	percent would be bounded. You'd be adding much more
25	energy at 120 percent to the suppression pool than you
l	1

(202) 234-4433

	286
1	would at 105.
2	CHAIR BONACA: Assume now we use the
3	analysis, assume we say yes, it's acceptable and then
4	they stay at 105 percent and never go to 120, so now
5	we're giving them more than they needed. I mean one
6	principle has always been that consideration for a
7	relaxation of the requirements would be based on
8	absolute need.
9	MR. LOBEL: Well, they're not getting more
10	than the five percent because I probably should be
11	addressing this because of the license is going to
12	limit them to the five percent power uprate. There's
13	no way they can go to 120 percent until the staff is
14	ready to give them that. So even though they've done
15	the analyses at a higher power level, they'll be
16	limited by their license to the lower power and that's
17	not that unusual a condition for the NRC to do that
18	kind of thing. There are systems in plants that are
19	designed using the higher power level, but the power
20	of the power plant is limited by the license.
21	CHAIR BONACA: One question we have not
22	asked is you know there is credit being asked of
23	scenarios and did TVA look at the possibility of
24	improving the RHR pumps or whatever so that the need
25	for NPSH will not be there, or not as much? Did they
	1

(202) 234-4433

(202) 234-4433

	287
1	look at that?
2	MS. BROWN: Bill? J.D.?
3	MR. WOLCOTT: J.D. Wolcott, TVA. Yes, we
4	did. The only two ways, the only two options that we
5	would have to eliminate the need for container
6	overpressure would either be to create some more
7	elevation head, which is fixed by the basic geometry
8	of the plant, or to, for the long-term events, to
9	increase our cooling capacity in some way by more RHR
10	heat exchangers or more fundamental redundancy in the
11	plant, both of which would have been expensive and
12	fundamental changes to make. We didn't feel like
13	there was a magic pump that could do, that could pump
14	water at some of the temperatures we're talking about
15	here without some assistance from elevation head.
16	MR. LOBEL: Let me make one more comment
17	in general. This doesn't help Browns Ferry, but I
18	think you have to realize where this stands in
19	relation to all power plants. Most PWRs don't take
20	credit for containment accident pressure. The BWRs
21	that we've allowed credit for accident pressure are
22	all the older Mark 1 designs. Even some of the newer
23	Mark 1s don't need credit for containment accident
24	pressure. Hope Creek is in for a power uprate now and
25	they don't, they haven't requested credit for
	1

(202) 234-4433
	288
1	containment accident pressure.
2	The way the Reg. Guide 1.82 is written
3	now, new plants would have to be designed so that they
4	wouldn't have to depend on containment accident
5	pressure.
б	So, we're really talking about early
7	designs. People have since then paid more attention to
8	this issue. Maybe, I'm not sure how to characterize
9	it and so the newer plants don't have this problem.
10	CHAIR BONACA: Yes. Well, I'm not
11	critiquing the existing plants. I'm critiquing the
12	20-percent power upgrade
13	MR. LOBEL: Well, I understand
14	CHAIR BONACA: it's a willful decision
15	is being made
16	MR. LOBEL: but we've had these generic
17	discussions too and I just wanted to put it in a
18	little perspective.
19	CHAIR BONACA: I'm just thinking about,
20	you know, every single review that we have we present
21	new specs. And here, there are more scenarios that
22	we've had to give credit for and there is the issue of
23	the short-term lack of sufficient NPSH and cavitation
24	even if you take credit for back pressure. So, you
25	know, this opens the question every time about what is

(202) 234-4433

	289
1	appropriate. And, I don't think the conservatism
2	discussion that you've made would seem to be as strong
3	as the one I've seen before for the Vermont Yankee.
4	MR. LOBEL: No, it's not.
5	DR. BANERJEE: Do you have capability in-
6	house to do some confirmatory analysis and maybe
7	sensitivity analysis of some of these things?
8	MR. LOBEL: We, we, for Vermont Yankee,
9	the reason we didn't do any for Browns Ferry was for
10	Vermont Yankee, we did both the mass and energy
11	release calculation and a containment calculation.
12	The mass and energy release calculation was done with
13	RELAP and the, and the containment calculation was
14	done with CONTAIN2 the NRC code. And we got pretty
15	good agreement in both, for both analyses, the mass
16	and energy and the, and the containment analysis.
17	The mass and energy was actually the more
18	independent analysis because the containment analysis,
19	you know, you pretty much depend on the licensee's
20	geometric description of the plant and the flows and
21	that kind of thing. So there's a lot more input that
22	comes from the licensee for the containment
23	calculation than for the mass and energy calculation.
24	But the mass and energy calculation, I believe, we
25	showed that GE was conservative to RELAP.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

(202) 234-4433

	290
1	DR. BANERJEE: The concern as you can see
2	is that if you put more of the energy into the water,
3	it heats it up more.
4	MR. LOBEL: Right.
5	DR. BANERJEE: And conversely, because
6	more of the energy goes into the water the containment
7	pressure goes further down. It doesn't go up as much.
8	So, just by changing that partitioning, which was what
9	I was saying, you can change the amount the water
10	heats up and the amount containment pressurizes, now
11	within a certain reasonable extent, of course. Within
12	the
13	MR. LOBEL: Yes.
14	DR. BANERJEE: uncertainties.
15	MR. LOBEL: GE, GE has done sensitivity
16	calculations in the past for these types of
17	calculations, where they, they looked at the NPSH for,
18	in the same calculation they would look at the case
19	where the suppression pool temperature was the highest
20	and the case where the pressure was the lowest. And,
21	and the conclusion was that the suppression pool, the
22	case, the situation where the suppression pool
23	temperature was higher was more limiting. So they
24	have done a sensitivity calculation. I'm sure it
25	wasn't done specifically for Browns Ferry. I'm

(202) 234-4433

	291
1	thinking back to past things I've read. But that kind
2	of sensitivity has been done.
3	DR. BANERJEE: Yes, it's a question of
4	what is reasonable in doing this partitioning.
5	MR. LOBEL: And, and
6	DR. BANERJEE: You know, it's not that
7	easy to do without a confirmatory analysis.
8	MR. LOBEL: And this is an, well, like I
9	say, we tried to do one for Vermont Yankee and, and
10	this is a case where until power uprates, the old way
11	of doing business, where you made everything
12	conservative, was good enough. And what we found out,
13	especially with Vermont Yankee and now with Browns
14	Ferry is that making everything very conservative gets
15	you into difficulties that you may not be in with a
16	more realistic analysis. And that's why we think it's
17	a good idea also to do this study of best estimate
18	plus uncertainty.
19	DR. BANERJEE: Well, that's not going to
20	help us with this.
21	MR. LOBEL: No.
22	DR. CORRADINI: May I ask a question? I
23	was absent so you probably answered this and then I'll
24	defer to a private thing.
25	Why did you stop at 600 seconds?
l	1

(202) 234-4433

	292
1	MR. LOBEL: By definition, that's the
2	length of time for the short-term analysis. And
3	that's based on the operator
4	DR. CORRADINI: No operator action?
5	MR. LOBEL: operator action after ten
6	minutes.
7	DR. CORRADINI: And then after that, all
8	bets are off. What, that something then else can
9	happen to
10	MR. LOBEL: After that, you assume a
11	single failure and you do a different analysis.
12	MR. LOBEL: The limiting situation for the
13	short term is really the RHR pumps, the RHR flow rate
14	out the broken loop. You're, you're close to run-out.
15	You would be at run-out at Browns Ferry if they didn't
16	have orifice plates to limit the flow. So, so in the
17	short term, it's the flow rate that gives you the
18	problem. In the long term, it's the suppression pool
19	temperature. High suppression pool temperature.
20	DR. ABDEL-KHALIK: Can I ask a question
21	about the calculations, which you present the results
22	on, slide number nine? Who did these calculations?
23	MR. LOBEL: TVA did.
24	DR. ABDEL-KHALIK: So the NRC did not do
25	any independent calculations in this regard?
	I

(202) 234-4433

	293
1	MR. LOBEL: We didn't do any for we
2	didn't do any for Browns Ferry. Like I said in the
3	previous power uprate review, Vermont Yankee, mass and
4	energy calculation and a containment calculation.
5	Those results are in the Vermont Yankee SER. There
6	are curves in the Vermont Yankee SER comparing the
7	staff and the licensee's calculations.
8	DR. ABDEL-KHALIK: Thanks.
9	MS. BROWN: Okay, we are going to
10	transition into Marty Stutzke's discussion on the risk
11	considerations for containment accident pressure.
12	(Pause.)
13	MR. STUTZKE: All right, here I am. For
14	my second presentation of the day, we will focus
15	strictly on the risk evaluation containment accident
16	pressure credit. Mr. Laur (5:18:01) is in the
17	audience now, so hopefully he provide to me a little
18	defense-in-depth.
19	(Laughter.)
20	Slide 2.
21	Just a quick recap for Units 2 and 3,
22	there already is a pressure credit on a design basis
23	LOCA, station blackout, ATWS and Appendix R as you
24	know. I'll point out these are deterministic types of
25	events. These are not the way that they would

(202) 234-4433

	294
1	normally be modeled in a PRA.
2	DR. WALLIS: Marty, I wasn't here, as you
3	know, but how much CAP credit is being asked for for
4	the Appendix R scenario?
5	MR. STUTZKE: Bounce that to TVA.
6	DR. WALLIS: It's 9 psi for quite along
7	time.
8	MR. STUTZKE: Up to 9, 68 hours.
9	DR. WALLIS: Isn't that unusual?
10	MR. STUTZKE: I believe it's the largest
11	one we've seen.
12	So as part of the 120 percent EPU
13	amendment they requested the credit for Unit 1 and an
14	increase in the existing credits for 2 and 3.
15	TVA requested the credit for the 105
16	interim power uprate.
17	Switching to slide 3, the high level
18	approach from making the risk evaluations based on
19	this concept under certain configurations, plant
20	conditions, loss of integrity of the containment
21	implies if you lose the overpressure, the low head
22	pumps go into cavitation and you lose their function.
23	This is a little different than we did at Vermont
24	Yankee. At Vermont Yankee we made the bounding
25	assumption that whenever you lost the containment

(202) 234-4433

	295
1	integrity, the pumps were in trouble. Here, we're
2	restricting we tried to identify combinations,
3	equipments and certain plant conditions.
4	I will give you on the next slide exactly
5	what we mean by that. But basically, it's trying to
6	look at the uncertainty and some of the input
7	parameters such as the river water temperature and
8	things like this, explicitly inside the risk
9	assessment rather that bounded.
10	As far as failure modes of the
11	containment, two are considered, the pre-existing
12	leaks, the probability depends on the interval between
13	integrated leak break test. As you know, Browns Ferry
14	containment is inerted if a leak were to be develop,
15	it could be detected by the nitrogen makeup of the
16	containment. There's no credit for that in the
17	estimate of the probability of pre-existing leaks.
18	The other way that's considered is the
19	failure to achieve containment isolation. We had
20	discussed a little bit earlier. We don't consider
21	loss of integrity after the isolation has been
22	achieved. So it's not time sensitive in the risk
23	calculation. For example, we don't model spurious
24	opening of motor-operated valves.
25	I did a little back-of-the-envelope
	1

(202) 234-4433

ĺ	296
1	calculation over there. A typical failure rate for
2	something like that is on the order of 10^{-7} per hour
3	so times 24 hours gives you 2E-6. These two failure
4	modes up here right now have a combined probability on
5	the order of 10^{-3} .
6	Dr. Powers had asked questions about seal
7	failures, what I'll call induced failures due to
8	thermal transients or radiation. Those are not
9	included in here. Probably another way to lose
10	containment isolation would be some sort of human
11	error. This would be, could be treated as an error of
12	commission. As you know, and you've heard from the
13	Office of Research, you would have to use their high-
14	powered human reliability technique called ATHENA,
15	just not officially out.
16	DR. POWERS: What if you used their low
17	powered THERP methodology?
18	MR. STUTZKE: You can't treat the
19	commission error. You don't know the estimate of the
20	probability that the operator just decides to open the
21	containment up.
22	DR. POWERS: I understand.
23	MR. STUTZKE: The problem with ATHENA is
24	that it requires an expert panel and I think there's
25	only three experts in the world.

(202) 234-4433

	297
1	(Laughter.)
2	The point I'm trying to make is bear in
3	mind that the total loss of containment integrity
4	that's used in the study is on the order of 10^{-3} and
5	ask yourself could we be really off from that number
6	and does it matter?
7	Slide 4. Unlike the design basis,
8	deterministic calculations that Mr. Lobel was talking
9	about, we tend to use or try to use realistic thermal-
10	hydraulic calculations. To be honest, realistic is in
11	the eye of the beholder. To me, it means we don't
12	deliberately introduce conservatisms, so we're not
13	using two sigma on the decay heat curve. It's
14	unwieldy.
15	DR. KRESS: You also don't do a Monte
16	Carlo and look for the uncertainties.
17	MR. STUTZKE: That's true. So we end up
18	with this set of success criteria, but let explain
19	this a little bit so you're clear. What it says is
20	for the large LOCA, if you're running three or four
21	pumps in suppression pool cooling, you don't meet
22	containment integrity. There's no the pumps won't
23	cavitage, even if you open the door to the
24	containment.
25	If you're down to two pumps in suppression
1	I contraction of the second seco

(202) 234-4433

298
in
S
lean
see
nps
eat
all
he
ldle
20
ght?
ıd
. <u>c</u>

```
(202) 234-4433
```

	299
1	case is on the order of 10^{-2} . So what that's saying
2	is the idea is you have a large LOCA when it's hot
3	in Alabama and you may be in trouble. That's the gist
4	of what this
5	DR. WALLIS: Same thing when it's hot in
6	Vermont.
7	MR. STUTZKE: So they've made an effort to
8	treat some of the uncertainties this way, the aleatory
9	part, certainly not the epistemic part like this and
10	it's treated very simplistically in the PRA. They
11	define plant operating states or conditions that would
12	be unfavorable to this. It's not a full-blown Monte
13	Carlo treatment like that.
14	Then down at the bottom for
15	DR. WALLIS: Excuse me, you put in the
16	statistics for the river water temperature?
17	MR. STUTZKE: Yes, they do.
18	DR. WALLIS: They do, okay.
19	MR. STUTZKE: All these parameters.
20	DR. WALLIS: Okay.
21	MR. STUTZKE: Slide 5, the other
22	initiators. This is perhaps more interesting. First
23	of all, the presumption is containment integrity is
24	always needed for the station blackout, ATWS and
25	Appendix R scenarios. What's important to realize is

(202) 234-4433

	300
1	that Appendix R scenario was generalized to look at a
2	broader set of PRA sequences as this Committee had
3	suggested a number of years ago like that.
4	And the reason is this, is when I started
5	to look at the definition of the Appendix R scenario,
6	they're talking about a loss of power conversion
7	system and a failure of all the high head injection
8	sources, so HPSI is gone, RKSI is gone,
9	depressurization by opening multiple safety relief
10	valves and then starting either for spray or LPSI
11	pumps, RHR pumps operating in the LPSI mode like this.
12	And that created a demand for containment
13	over pressure. Now in the deterministic world, people
14	like to say this is an unlikely scenario. In the PRA
15	world, this is always modeled in PRAs, this
16	depressurization and getting on to the low head pumps.
17	So Mr. Laur and I saw this and we set to work to try
18	to estimate it.
19	So we considered all sorts of PRA
20	initiating events where there's lots of maintenance or
21	heat sink, less than two RHR trains, suppression pool
22	cooling, that's a judgment call. It seemed
23	reasonable. And either we had to ask for
24	depressurization after a loss of all the other high
25	pressure sources or we considered some stuck open
	1

(202) 234-4433

	301
1	multiple relief valves like this.
2	The licensee made calculations. We did
3	confirmatory calculations using the SPAR models, the
4	standardized plant analysis of risk models maintained
5	by the Office of Research and the results are shown on
6	Slide 6. These are the breakdowns.
7	DR. WALLIS: This is a change in CDF, yes.
8	MR. STUTZKE: You can interpret these
9	are the change compared to as if no overpressure
10	credit was required. Okay, so it's the true change in
11	CDF for Unit 1. For Units 2 and 3 they already have
12	an overpressure credit. So it's not really the
13	change.
14	The way to look at this, this is roughly,
15	the total is roughly 10 percent of the total core
16	damage frequency of the units. About 10 percent.
17	And I'll call your attention, if you look
18	at the contributors to large LOCAs, ATWS, aren't
19	contributing very much, station blackout is a little
20	bit higher, it was the other transients, the expansion
21	of the Appendix R scenario that was driving this
22	answer like this.
23	The only other thing I'll have to offer is
24	the credit for containment accident pressure is not
25	the largest risk contributor of the extended power
	I

(202) 234-4433

	302
1	uprate nor is the human reliability.
2	DR. CORRADINI: Are we allowed to ask what
3	is?
4	MR. STUTZKE: I thought I would leave you
5	in suspense until I come back tomorrow afternoon.
6	(Laughter.)
7	DR. WALLIS: We can guess tonight and see
8	if we're right.
9	(Laughter.)
10	MR. STUTZKE: I can see Jack getting
11	nervous.
12	(Laughter.)
13	MR. STUTZKE: I'll give you a hint, they
14	changed the success criteria as a result of the power
15	uprate.
16	DR. WALLIS: Was your conclusion that this
17	sort of unusual containment pressure allowance should
18	be granted?
19	MR. STUTZKE: The conclusion is we haven't
20	identified special circumstances that would say put on
21	the brakes and stop it within the limits of this type
22	of calculation. For example, that 10 $^{-7}$ total, if it
23	is interpreted as a delta and I plot it against the
24	baseline risk of 10^{-6} , it's not even on the graph for
25	Reg. Guide 1.74, it's such a small risk contribution.
1	I contract of the second se

(202) 234-4433

	303
1	You're either tired or I've answered your
2	questions.
3	(Laughter.)
4	DR. CORRADINI: You can ignore her. She's
5	just tired. So the other transients are all Appendix
6	R related? That's what I thought you said.
7	MR. STUTZKE: It is a development or
8	generalization of the Appendix R to all of the other
9	internal events PRA initiators. Loss of offsite
10	powers that don't go to station blackout, loss of feed
11	water, loss of condenser heat sink, loss of service
12	water. All of them are there.
13	DR. CORRADINI: So it is a judgment on how
14	this sort of effect would affect everything else?
15	MR. STUTZKE: The problem, what I was
16	trying to convey before was the description of the
17	Appendix R scenario looks like sequences in the SPAR
18	model. For all the initiating events. They're
19	classic BWR risk sequences. So we modeled them.
20	DR. KRESS: That was good. In the PRA,
21	how did you treat the pump cavitation. I mean, you
22	can assume
23	MR. STUTZKE: I mentioned that maybe too
24	briefly before. The assumption is once containment
25	integrity is lost, the pump is totally failed. We
	I Contraction of the second

(202) 234-4433

	304
1	don't consider degraded flow out of the pump.
2	CHAIR BONACA: So you had scenarios where
3	the pump is lost?
4	MR. STUTZKE: Totally lost. Not to come
5	back.
6	CHAIR BONACA: Not just one pump?
7	MR. STUTZKE: Multiple pumps.
8	MS. BROWN: Thanks, Marty.
9	(Laughter.)
10	MS. BROWN: I think next we're going to
11	have TVA to come up and discuss fuel methodology and
12	fuels issues. I guess my only question is this
13	portion of the meeting needing to be closed? You
14	told us that there was no
15	MR. CROUCH: We intend to keep this in
16	open realm. If we start getting questions such that
17	we have to delve off into proprietary information, at
18	that time we will identify it.
19	MS. BROWN: Thank you.
20	DR. WALLIS: Since I have no idea what
21	happened today, I'm now in charge. Go ahead.
22	Enlighten me.
23	MR. CROUCH: We have with us here Greg
24	Storey who is our BWR Fuels Manager with TVA. He is
25	going to make the basic presentation. We also have
1	I contract of the second se

(202) 234-4433

	305
1	with us with the GE Fuels people here. I'm going to
2	turn it over to Greg. If we start getting into
3	certain aspects of the fuels analysis, we may have to
4	declare it to be proprietary information, and we have
5	some other people here that we would like to step out
б	of the room if that occurs. We'll let you know if it
7	comes to that situation.
8	So Greg?
9	MR. STOREY: Okay. I'd like to start off
10	just with an overview of the Unit 1 core design for
11	the restart core. It is primarily fresh fuel in the
12	core. It is composed of a mixture of GE13 and GE14
13	bundle designs. GE13 bundle design is a 9x9 matrix
14	fuel design, whereas the GE14 is a 10x10 fuel design.
15	There are 564 GE14 bundles in the interior of the
16	core, and those are in our high power interior
17	locations.
18	In addition, there are 108 GE13 bundles
19	and these are in near edge low power locations. Thy
20	are one row in off of the periphery of the core. The
21	core periphery itself is not fresh fuel. It is made
22	up of exposed reinsert fuel. These 92 bundles are
23	also a mixture of GE13 and GE14 fuel, and this fuel
24	comes from Unit 2 fuel that was discharged at the end
25	of the prior cycle, which would have been the spring
	1

(202) 234-4433

	306
1	of 2005.
2	The GE13, GE14 designs, those are industry
3	proven designs. They have been used extensively
4	throughout the industry. They have also been used at
5	both of the sister units at Browns Ferry. The core
6	design was done with NRC-approved methods. TG006
7	Code, which is the lattice Physics Code, and the Panic
8	11 code is the 3D simulator code.
9	Next slide.
10	One of the design considerations was the
11	cold shutdown margin design goal that we used on this
12	core. The Browns Ferry 1 Restart Core is somewhat
13	unique in the fact that it's the first core that
14	contains all fresh 10x10 in the interior positions.
15	So there is very limited information on which to pick
16	the reactivity basis of this core. So rather than use
17	the standard one percent design margin, we've decided
18	to increase this to 1.5 percent. This is roughly a
19	two sigma increase on the cold Eigen uncertainty.
20	Just to point out the tech spec that we have to meet
21	is .38 percent, so we have a substantial margin when
22	we use 1.5 percent.
23	Contingency studies. What we're doing
24	here is looking at what is a similar effect on the hot
25	reactivity. What if our hot reactivity basis that

(202) 234-4433

	307
1	we're developing the design with should be off by a
2	half percent in both directions, both more reactive
3	and less reactive. GNF was able to develop control
4	rod patterns on those altered bases that achieved
5	acceptable thermal limits and power shapes.
6	So our conclusion is that the core design is
7	very robust and it is very tolerant to the effect of
8	these design uncertainties on reactivity.
9	Next slide.
10	Moving into the reload analysis for the
11	105 percent power, of course we did an analysis last
12	year to support the 120 percent power and that was
13	submitted in mid-2006. For the 105 percent transient
14	analysis, there is almost a complete redo of what we
15	did for the 120 percent. We did consider the use of
16	the maximum extended load line limit domain which is
17	consistent with the Unit 2 and 3 licensing basis.
18	Also, all of the rated power transient
19	analyses were rerun at 105 percent power and that is
20	consistent with the GESTAR-II requirement that all
21	rated power transients be done at the licensed power
22	level.
23	In addition, we have off-rated thermal
24	limits. These are power-dependent limits. They are
25	primarily a multiplier on the rated thermal limit.

(202) 234-4433

	308
1	There are a few at very low power that are not a
2	multiplier and I'll talk about that in a second.
3	These are cycle independent and they're
4	not intended to be done each cycle. The approach we
5	used here had the limits derived originally for 120
б	percent power. These have been scaled down, based on
7	105 percent power operation for those that are
8	multipliers and there have been validation cases run
9	to show that that scaling approach is reasonable for
10	those intermediate powers.
11	At very low power, there is no multiplier
12	in the limits. They are actually absolute limits and
13	those were specifically reanalyzed based on the 105
14	percent being the license thermal power.
15	Next slide, please.
16	The next area we looked at on 105 percent
17	power is the safety limit MCPR. Here, a complete
18	reanalysis of the safety limit MCPR was performed
19	based on 105 percent power operation. Operating at
20	105 percent power you're going to have different
21	control rod patterns, and different power history that
22	you build into it. So this was complete reanalysis at
23	105 percent and it considered both the low core flow
24	of MELLA and the rated core flow. It has been shown
25	that the low flow point can be the limiting point and
	1

(202) 234-4433

ĺ	309
1	indeed in this case that is what happens with Unit 1
2	restart core.
3	The conclusion of that analysis was that
4	the safety limit calculated based on 105 percent is
5	bounded by the 120 percent result that was submitted
6	previously.
7	The area of stability analysis again,
8	here's an area where operation at 105 percent power
9	you're going to have a different power history,
10	different control rod pattern that the analysis is
11	starting from. Here we have another complete analysis
12	being done to demonstrate that the stability set
13	points that we're going to put in place will protect
14	the MCPR safety limit.
15	DR. ABDEL-KHALIK: When will we see the
16	details of these analyses?
17	MR. STOREY: These results will be in the
18	supplemental reload licensing report for 105 percent.
19	That's the document Bill alluded to earlier today that
20	we owe at the end of January.
21	DR. ABDEL-KHALIK: So these analyses will
22	be done at 105 percent power?
23	MR. STOREY: Right. There's stability
24	analysis at 105.
25	DR. ABDEL-KHALIK: The plant uses Option
	1

(202) 234-4433

	310
1	3?
2	MR. STOREY: Option 3.
3	DR. ABDEL-KHALIK: Right, now over the
4	years, several Part 21s issued for Option 3 plants.
5	Now while the plant was shut down, how did you handle
6	all these Part 21s?
7	MR. STOREY: Well, the primary Part 21 was
8	the DIVOM curve which relates to the delta C curve
9	thermal limit to the oscillation magnitude and that
10	has been incorporated through plant-specific DIVOM
11	analysis for Units 2 and 3.
12	Similar thing was done for Unit 1 when the
13	120 percent licensing was done. There was a cycle-
14	specific DIVON curve done.
15	DR. ABDEL-KHALIK: So you had a core
16	design for the 120 percent power for which you
17	generated this
18	MR. STOREY: This DIVOM, yes.
19	DR. ABDEL-KHALIK: But now you're going to
20	do this for 105?
21	MR. STOREY: For the 105 percent, there
22	are validation cases that show that that DIVOM slope
23	is applicable to the 105 percent condition. All other
24	remainder of that 105 percent stability analysis is a
25	standard stability analysis, using the normal GE

(202) 234-4433

	311
1	process.
2	DR. ABDEL-KHALIK: Now there have been
3	other Part 21s issued for stability analysis. Do they
4	apply at all?
5	MR. STOREY: I'm going to look towards GE
6	to field that question.
7	MR. BOLGER: This is Fran Bolger from GE.
8	I'm not sure what other Part 21s you're referring to.
9	DR. ABDEL-KHALIK: I think there have been
10	some issues related to Nine Mile Point.
11	MR. BOLGER: Yes, there has been. I
12	believe I'm not an expert in this area, but the
13	calculation of the OPRM was there was some
14	revisions made to that process as a result of the Nine
15	Mile Point Two and that been incorporated in this
16	analysis.
17	MR. CROUCH: We'll check back with our
18	staff and get back to you. We'll take that as an
19	action and get back to you and let you know about the
20	other Part 21s.
21	MR. STOREY: I'm ready to move on to the
22	next slide.
23	On the LOCA analysis for 105 percent
24	power, what we're using for Unit 1 is the current
25	three unit analysis of record which addresses 105
	1

```
(202) 234-4433
```

	312
1	percent power for both the GE 13 and GE 14 fuel types.
2	So therefore no additional analysis was required at
3	105 percent. That analysis was done in 2005.
4	On shutdown margin, as I mentioned
5	earlier, we did use the increased goal of 1.5 percent.
6	We did show that the effect of the 105 percent power
7	operation does not cause us to drop below that 1.5
8	percent value. We still maintain that margin.
9	Also, the standby liquid controls system
10	shutdown margin was unaffected by the operation at 105
11	percent. This is because it occurs at beginning of
12	cycle. So it would not be affected by the power
13	history.
14	DR. BANERJEE: Which plants have the Areva
15	fuel now?
16	MR. STOREY: Two and three.
17	Next slide, please.
18	And the conclusion slide here, we really
19	feel that that the Unit 1 Cycle 7 core is a robust
20	design. It uses industry-proven fuel types and we
21	have, as I mentioned, incorporated additional
22	reactivity margins to account for the unique nature of
23	the all fresh 10 by 10 core.
24	Unit 1 licensing
25	DR. WALLIS: The fuel that's in there now
	1

(202) 234-4433

	313
1	is capable of 120 percent.
2	MR. STOREY: Correct.
3	DR. WALLIS: That's what it's really
4	designed for.
5	MR. STOREY: The core was based on an EPU
6	operation, yes.
7	Unit 1 licensing analyses are finishing up
8	for 105 percent power. As I mentioned, complete
9	transient analysis at rated power is being done and
10	significant work at operated conditions. Safety-limit
11	value has been shown to be applicable at 105 percent
12	power and the impact on stability analysis is being
13	addressed through a specific stability analysis at
14	105.
15	We believe Unit 1 licensing for 105
16	percent is basically a typical GNF reload using NRC-
17	approved methods with the exception of the additional
18	shutdown margin that we designed into the core.
19	So that concludes my presentation, if
20	there's any questions.
21	DR. BANERJEE: Has any LOCA analysis been
22	submitted for the 120 percent?
23	MR. STOREY: That was in the task report
24	and in the PUSAR report, contains LOCA results for 120
25	percent.
	1

(202) 234-4433

	314
1	MR. CROUCH: The LOCA was reanalyzed 120
2	percent, yes, as part of our submittal to be made June
3	of 2004.
4	DR. ABDEL-KHALIK: The core has 564 GE-14
5	bundles, fresh bundles and 108 GE-13 fresh bundles.
6	Is there any reason why you decided to use a mixed
7	core, rather than using all GE-14 for example?
8	MR. STOREY: Yes, it's without crossing
9	into proprietary or commercial space, there's a
10	financial advantage to doing that. That's without
11	getting into proprietary session, that's really all I
12	could say. It's economic reasons.
13	DR. ABDEL-KHALIK: And there are no sort
14	of problems associated with using a mixed core that
15	would override that economic advantage?
16	MR. STOREY: No, we don't believe so.
17	DR. CORRADINI: Are we allowed to we're
18	not allowed to ask anything. Can you tell me the
19	difference between a GE-13 I'm looking carefully,
20	Said seems to know a lot more. What's the difference
21	between the two bundles?
22	MR. STOREY: As I mentioned, the 13 is a
23	9 by 9 fuel design. The GE-14 is a 10 by 10. Primary
24	reason we didn't locate the GE-13 in the interior of
25	the core is the GE-14 has higher inherent thermal

(202) 234-4433

	315
1	margin capability.
2	So having that
3	DR. CORRADINI: And 13 is on the ring?
4	MR. STOREY: Right, that's why we have
5	them in a low-duty area, so they're not limiting
6	locations.
7	DR. WALLIS: Are these tailor-made fuels
8	with sort of graded poisons and all that along the
9	length?
10	MR. STOREY: It does have access in it and
11	both fuel types have part-length rods.
12	MR. CROUCH: Anything else, Dr. Bonaca?
13	CHAIR BONACA: I don't think so. Any
14	other questions on this?
15	MR. CROUCH: Okay.
16	(Pause.)
17	CHAIR BONACA: Let's proceed.
18	MS. BROWN: All right, for our last
19	presentation of the day, staff is going to discuss
20	fuel and reactor systems. I just wanted to open up
21	and let them answer the question that we got this
22	morning on the OPRM application of effects on the
23	power uprate on the OPRM.
24	MR. THOMAS: My name is George Thomas.
25	I'm from the Reactor Systems Branch. Regarding the
I	1

(202) 234-4433

	316
1	OPRM operation, there is no difference when you are
2	operating at 105 or 100. It's all the same.
3	MS. BROWN: Was there a need to go into
4	any more detail? Okay.
5	DR. BANERJEE: Said asked the question.
6	DR. CORRADINI: That was way too fast for
7	me.
8	(Laughter.)
9	DR. ABDEL-KHALIK: If there is certainly
10	going to be a large difference in the analysis as to
11	whether you do the analysis at 100 percent power or
12	120 percent power, the stability analysis. The
13	hardware may be the same, so I can I understand
14	that. But I was much more concerned about doing the
15	analysis at the higher power level. Has that analysis
16	been done?
17	MS. BROWN: Let's focus to TVA as far as
18	the analysis on the OPRM at 120 percent.
19	MR. STOREY: Like I said earlier, there's
20	a complete analysis that was done for the 120 percent
21	power. And keep in mind you are on the same rod line,
22	regardless of whether it's 105 or 120. We're not
23	raising the license rod line.
24	You have the two-pump trip. You're going
25	to end up back at a natural circulation condition.

(202) 234-4433

	317
1	Starting rod pattern would be slightly different.
2	That's really the only difference in the analyses.
3	DR. KRESS: My impression was that it made
4	the stability, instability region a little bit larger,
5	so you got into it a little bit sooner on the rod
6	line.
7	Is that do I remember that correctly?
8	MR. BOLGER: This is Fran Bolger from GE.
9	I wouldn't expect that the stability region to be much
10	different. The core design is the same. You're
11	looking at the conditions around the natural
12	circulation condition, up the maximum rod line and
13	also along the natural circulation line and in what
14	the calculated K ratios are, if you were to calculate
15	region boundaries should be very similar, independent
16	of the two power level.
17	MR. MARCH-LEUBA: This is Joe March-Leuba
18	from NRC staff. The problem is very complicated and
19	I have to say often real life is like an onion, it has
20	many layers, okay?
21	DR. CORRADINI: It makes you cry.
22	(Laughter.)
23	MR. MARCH-LEUBA: On first observation you
24	can present it as a homogeneous sphere and on that
25	first observation the statement is correct. Once
1	

(202) 234-4433

	318
1	stability is a problem when you trip the pumps. Once
2	you trip the pumps, you don't care where you were to
3	start with. So you end up exactly at the same
4	location. So first of all observation, there is no
5	effect. When you start peeling the layers, you find
6	some differences and the differences are power
7	distributions. You have to load different fuel. And
8	I agree with you Dr. Kress that the region will be a
9	little larger, but not significantly.
10	All three Browns Ferry plants use solution
11	3 which is a detect and suppress solution in which the
12	
13	DR. CORRADINI: Could you say that again?
14	MR. MARCH-LEUBA: All meaning that you
15	allow the solutions to occur and then you scram if
16	they happen. So the size of this crucial region which
17	no other solution is important is not relevant in this
18	case. You will have more events, more challenges to
19	the protection system, but the protection system will
20	still work the same.
21	So in that sense
22	DR. KRESS: Thank you.
23	DR. WALLIS: We have to have faith that it
24	will work. I guess we have faith that it will work.
25	CHAIR BONACA: Let's hear about the fuel
	I contract of the second se

(202) 234-4433

	319
1	and reactor systems.
2	MS. BROWN: All right. The reactor
3	systems review is contained in Section 2.8 of the
4	safety evaluation.
5	For the reactor systems' review, the staff
6	looked at the following areas: fuel system and
7	nuclear design, thermal-hydraulic design, overpressure
8	protections, standby liquid control, the transient
9	analysis for LOCAs and anticipated transient without
10	scram.
11	For this presentation, the results are
12	applicable for all units up to 120 percent. Please
13	note that the fuel system and nuclear design
14	discussion today is applicable for Unit 1 only. So I
15	mean let me just say that one more time. That the
16	fuel system and nuclear design discussion today is
17	applicable for Unit 1 only.
18	DR. BANERJEE: Those other analyses are
19	not fuel sensitive?
20	MS. BROWN: No, sir. Our discussion today
21	will only be limited to Unit 1 for those fuel things.
22	Our intent is to come back to you in March to discuss
23	any issues that are outside of Unit 1, 105, because in
24	some cases the staff's review is not complete.
25	The staff's review was conducted using the
	1

(202) 234-4433

320 1 generic guidelines and evaluations from the extended 2 power uprate topical report. The staff found that 3 with the exception of certain thermal limit concerns 4 covered by TVA in the previous presentation, the Unit 5 1 fuel and nuclear design review performed at 120 percent that bounds the 105 submittal. 6 7 TVA has indicated that although Units 2 and 3 are currently operated with mixed cores of 8 9 Framatone and GE fuel, Unit 1 will restart cycle 7 10 with only GE fuel. The core contains 564 fresh GE-14 and 108 fresh GE --11 12 I'm sorry, I wasn't here DR. WALLIS: earlier, but you said there was this increase of 165 13 14 megawatts, but in fact, when I was reading the SER, I keep seeing this figure of 3954 or 52 or something. 15 SER is full of stuff which is 120 percent. 16 17 MS. BROWN: In some cases, well, in a lot of cases, the analyses were performed conservatively 18 19 20 DR. WALLIS: This seems to be 21 inconsistent. Sometimes you talk about 105 percent 22 and yet the megawatts, it's as if the editing wasn't 23 done properly or something. 24 MS. BROWN: I think --25 DR. WALLIS: Inconsistent.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	321
1	MS. BROWN: Yes, sir. We'll go back and
2	take a look at that. In some cases, I think we are
3	addressing the analysis which sometimes
4	DR. WALLIS: It appears as if you're
5	talking about 120.
6	MS. BROWN: Yes, sir. In some cases
7	that's the case.
8	DR. WALLIS: It's very difficult for the
9	reader to figure it out.
10	CHAIR BONACA: Clarification. I asked for
11	clarification when we started the meeting.
12	MS. BROWN: Yes, sir.
13	CHAIR BONACA: My understanding is that
14	the rating was done at 120.
15	MS. BROWN: Yes, sir.
16	CHAIR BONACA: And the only exception is
17	the fuel.
18	MS. BROWN: That's correct.
19	CHAIR BONACA: I agree with the comments
20	of Dr. Wallis here. When you go through the SER, it
21	refers to 105 or 120 or EPU, whatever. It's good for
22	everything, but I mean at least we got the
23	clarification.
24	MS. BROWN: Thank you.
25	DR. WALLIS: So we therefore are reviewing
Į	

```
(202) 234-4433
```

	322
1	the EPU today?
2	MS. BROWN: Selected items that where the
3	analyses for new methodology was the same regardless
4	of the power level and for a good deal of the power
5	uprate that is true.
6	CHAIR BONACA: I would say for the NPSH
7	discussion to be identical for 120 because it's all
8	based on 120 percent power.
9	MS. BROWN: There are some areas that
10	we're aware of that are
11	DR. WALLIS: When you talk about MAPLHGR
12	you're talking about 120 percent?
13	MS. BROWN: I'm sorry.
14	DR. WALLIS: When you talk about MAPLHGR,
15	you're talking about 120 percent?
16	All these refer to 120 percent then?
17	MS. BROWN: Yes.
18	DR. WALLIS: Okay.
19	MS. BROWN: In this discussion, we're
20	talking about Unit 1 only. Any time we have GE on a
21	slide, we're only talking about Unit 1.
22	DR. WALLIS: I understand that.
23	MS. BROWN: Okay.
24	DR. CORRADINI: And I think he was asking
25	about the power level.

	323
1	DR. WALLIS: Yes.
2	DR. CORRADINI: Relative to this.
3	DR. WALLIS: Yes, because it wasn't clear
4	to me.
5	MS. BROWN: Well, there's the possibility
6	that TVA will be going to 120 percent this cycle. As
7	far as we talk about the amount of fuel and the way
8	it's aligned in the core, it should be consistent,
9	unless they do something strange.
10	CHAIR BONACA: But the cycle of 7 thermal
11	limits evaluated, those are at 105 percent power?
12	MR. THOMAS: No, the Cycle 7 Supplemental
13	Report was all based on 120 and at the end of this
14	month, we are going to get the 105 Supplemental
15	Report. That will be a confirmatory review.
16	DR. ABDEL-KHALIK: I'm sorry, the analyses
17	you said you did before at 120 percent power used
18	exactly the same core design.
19	DR. WALLIS: You need to talk into the
20	microphone, Said.
21	DR. ABDEL-KHALIK: I was just asking if
22	the analysis that he referred to as being done at 120
23	percent power was done for exactly the same core
24	design described to us for which the calculations are
25	currently being done at 105 percent.
1	

(202) 234-4433
	324
1	MR. STOREY: Greg Storey, yes, that is
2	correct. It's the identical core design in both
3	cases.
4	DR. ABDEL-KHALIK: Okay, thank you.
5	MS. BROWN: All right, I think TVA had
6	already gone through the numbers of the GE-14 and the
7	GE-13 fuel. And we just discussed the fact that the
8	thermal limits that were provided in Cycle 7 SRLR for
9	at 120 percent back in May.
10	The requirements contained in the tech
11	specs and the approved methodology contained GESTAR II
12	requires a cycle and core specific reload analysis to
13	be performed. It should be noted that although these
14	documents require the performance of these analyses,
15	they are not required to be submitted to the staff for
16	review and approval, although the COLR is routinely
17	provided to us at a frequency that's outlined in the
18	code.
19	However, for the EPU and the 105, the
20	staff requested submission for review of the Unit 1
21	analysis. The staff's review concluded that the
22	staff's fuel design and operation review conducted at
23	120 percent should conservatively bound the 105
24	percent
25	DR. WALLIS: Are you going to give us any

(202) 234-4433

	325
1	numbers on this? I read the SER and it seems to be
2	very devoid of anything quantitative?
3	MS. BROWN: Yes, sir.
4	DR. WALLIS: Why don't you actually put
5	numbers on? If there's been a change in these fuel
6	limits or something, why can't we see some numbers to
7	know what's changed, rather than just know that the
8	staff is happy?
9	MR. THOMAS: In the PUSAR, if you want to
10	go into the numbers
11	DR. WALLIS: I have to go back to
12	something else to find it. Okay.
13	MR. THOMAS: I have numbers also in the
14	slide and LOCA results are given. LOCA is there.
15	DR. WALLIS: LOCA is very sparse too.
16	We're going to get to that as well, are we?
17	MS. BROWN: We're going to touch on it
18	briefly.
19	DR. WALLIS: But you don't requote the
20	numbers in the SER. You just say you're happy. What
21	I tend to look at is the SER, rather than having to
22	dig into the other stuff which is sometimes difficult
23	to find.
24	It's very difficult for me, especially
25	when a lot of extra RAIs and things to find out where

(202) 234-4433

	326
1	the evidence is.
2	MR. THOMAS: In the SER we tried to put
3	down important results, not everything
4	DR. WALLIS: But not much in this SER.
5	It's very short on numbers, this particular SER.
6	MS. BROWN: Yes, sir.
7	DR. WALLIS: And I don't know why that
8	should be because we've tried to make you in the past
9	tell us more about why you reached the conclusions you
10	reached. I thought you've been doing a very good job
11	until we get to this one which seems to slide back.
12	MS. BROWN: Yes, sir. Well, I think we
13	felt that for the 105 that that increase was not as
14	big as what we would expect for the 120 percent, so
15	the level of detail may not have been
16	DR. WALLIS: When we get to 120 percent,
17	we're going to see the detail?
18	MS. BROWN: It's going to be huge.
19	(Laughter.)
20	MR. THOMAS: More detail, yes.
21	DR. CORRADINI: She assured us of that
22	multiple times this morning.
23	MS. BROWN: The LOCA detail that's in the
24	105
25	DR. WALLIS: That's rather strange,
l	1 A CONTRACTOR OF A CONTRACTOR OFTA

```
(202) 234-4433
```

	327
1	because I thought this whole idea of 105 was somehow
2	to avoid having to go over it again when you got to
3	120 and that's not the case.
4	MS. BROWN: For the safety evaluation,
5	that's just for presentation.
6	However, for the EPU in the 105, the staff
7	requests that submission for review of the Unit 1
8	analysis. The staff's review concluded that the fuel
9	design and operation review conducted at 120 percent
10	should conservatively bound 105 percent operation.
11	However, the staff was concerned that the
12	prolonged changes in operation could affect core power
13	distribution which can affect the required increases
14	in SLMCPR.
15	As previously discussed by TVA, they had
16	GE reperform the submit recalculation using a limiting
17	control rod pattern at a limiting stake point. The
18	results indicated that the SLMCPR thermal limit
19	calculation appears to remain acceptable.
20	As Jose indicated, Browns Ferry is
21	implementing the Option 3 long-term stability
22	solution. TVA used staff-approved methods and hence
23	they were found acceptable.
24	Up here we also discuss that they are
25	implementing the detect and suppress; that they're
	1

(202) 234-4433

	328
1	using the hardware with the CD Scram disabled. So
2	what you end up with is effectively Option 3 which is
3	upgradable at a later time for the DSS/CD
4	DR. WALLIS: When I looked at this, it
5	seemed to me that you were saying they were using GE
6	methods, therefore, everything was going to be all
7	right. But I didn't see sort of a bottom line which
8	said it met some criterion. Does no criterion apply
9	to this sort of thing or is it just if they use the GE
10	methods everything is going to be all right?
11	MR. MARCH-LEUBA: This is Jose March-
12	Leuba. There are approved methods to be used for
13	long-term solutions and what we say in the SER is that
14	they follow those approved methods that were approved
15	
16	DR. WALLIS: How do you know that the
17	answer is okay?
18	MR. MARCH-LEUBA: Because those methods
19	were approved.
20	DR. WALLIS: And always work? They always
21	work for any power level?
22	MR. MARCH-LEUBA: Yes.
23	DR. KRESS: Actually, we approved, we
24	heard discussions on these and we agreed
25	DR. WALLIS: All right, so it's all right
	1

(202) 234-4433

	329
1	to say they used the right methods and everything is
2	all right?
3	MR. MARCH-LEUBA: It's not the methods.
4	It's the methodology, the hardware and the way they
5	have suppressed the solutions. Solution 3 has been
6	installed in power plants for now, since the early
7	1990s.
8	DR. WALLIS: But there must be some power
9	level where you begin to get into trouble when you use
10	it?
11	MR. MARCH-LEUBA: No.
12	DR. WALLIS: Never? There's no way you
13	can increase the power so much that you make the thing
14	unstable, no matter what you do?
15	MR. MARCH-LEUBA: Then you scram, no
16	matter what you do.
17	DR. WALLIS: Oh, so just suppressing is
18	okay. If you wait until there's a disaster, then you
19	prevent it.
20	MR. MARCH-LEUBA: Correct.
21	DR. WALLIS: Potential disaster.
22	MR. MARCH-LEUBA: There are two general
23	design criterias. They are 10 and 12 and you are
24	allowed to detect and suppress the solutions. That's
25	why it's called detect and suppress. If they keep on
	I

(202) 234-4433

	330
1	scramming every other week, that's their problem.
2	(Laughter.)
3	DR. WALLIS: That's an interesting
4	solution.
5	MR. MARCH-LEUBA: Yes, but it allows them
6	a lot of flexibility. There are other solutions like
7	Solution 1A which is preventive. It's a better
8	solution, but it does not have the operating
9	flexibility.
10	DR. ABDEL-KHALIK: But disabling the
11	confirmation count, is that done in response to some
12	recent Part 21?
13	MR. MARCH-LEUBA: No, the confirmation
14	density is a brand new long-term solution which is
15	designed specifically for MELLA plus and it's called
16	DSS/CD. And this plant and its operator, General
17	Electric methodology. Option 3 Browns Ferry 3 had
18	to purchase the hardware from General Electric to
19	implement Solution 3. So they went ahead and
20	purchased the newest hardware which is the CD hardware
21	and disabled the CD algorithm then it reversed to be
22	an Option 3 algorithm.
23	So basically, they are ready to go to the
24	DSS/CD and if and when they were able to MELLA plus.
25	They already have the hardware, but it's not armed.
	I Contraction of the second

(202) 234-4433

	331
1	As far as we're concerned, it's an Option
2	3 hardware, everything reversed.
3	The set points, there are some set points
4	that are associated with Solution 3 which are the
5	scram set points and those are calculated on a cycle
6	specific basis and the only realm of parameter really
7	is the power distribution. The radial and axil
8	peaking factors.
9	MR. HUANG: This is Tai Huang. Just to
10	supplement the question you had, Part 21 issue. This
11	set point is a cycle specific set point, so every
12	cycle the power change and core design change, they
13	have to input that to come out with a slope to fit
14	into their point specific design. So from there the
15	methodology or Option 3 that come out at trip set
16	point calculation.
17	MR. MARCH-LEUBA: Okay, since I have the
18	microphone, Said, you were asking about the normal
19	point events. With that resulting recommendation for
20	the newest owner's group and the owners' group to
21	tighten some of the parameters of Option 3, they have
22	written to be very non-sensitive. Most plants,
23	because of the noise issue have been relaxing the
24	sensitivity of Option 3. After Nine Mile Point where
25	it tripped like 20 seconds after everybody it was
	1

(202) 234-4433

	332
1	supposed to, the recommendation was to tighten those
2	parameters and make them more sensitive.
3	Dr. Huang and myself went to Browns Ferry
4	to audit all those implementations in preparation for
5	this meeting and we checked that they indeed are
б	following the owner's group, the newest owner's group
7	recommendation and have all the parameter settings
8	following the lessons learned from Nine Mile Point.
9	So those parameters are the corner
10	frequency and the EPU tolerance.
11	So we confirmed that they have followed
12	those to our knowledge.
13	MS. BROWN: All right, overpressure
14	protection. For the Browns Ferry units, each unit is
15	13 SRVs which are used to provide overpressure relief.
16	As the reactor steam dome pressure is being increased,
17	the opening pressure set points were raised.
18	The overpressure transient was performed
19	using a staff-approved methodology assuming 120
20	percent conditions. As a peak pressure calculator, it
21	made above the ASME limits, the staff found this
22	analysis acceptable for operation of Unit 1 at 120
23	percent which remains bounding for operation at 105
24	percent.
25	For SLC, the main effect is the need for
	I

(202) 234-4433

	333
1	the increased boron concentration and a change to the
2	system relief valve setpoint. The staff reviewed the
3	need and the amount of the boron concentration as part
4	of the alternate source term review which was
5	completed outside this application.
6	DR. WALLIS: This is used in are we
7	going to talk about ATWS?
8	MS. BROWN: Yes, sir. We're going to get
9	to ATWS a little later.
10	Transient Analysis. Most of the limiting
11	transients specified in the extended power uprate
12	licensing top core were analyzed in a Cycle-7 SRLR.
13	The staff approved and Odin analysis was used.
14	What the transient analysis found was
15	performed for the pressurization events for feedwater
16	control or failure, the load reject without bypass and
17	inadvertent HPCI/Level 8 actuation and for the
18	nonpressurization events for the rod withdrawal error,
19	fuel loading error.
20	These are the results of the LOCA
21	calculations done by GE. GE performed
22	MR. THOMAS: Excuse me. You can see the
23	core, the numbers for
24	MS. BROWN: Your numbers?
25	DR. WALLIS: Well, you gave me the DCT but

(202) 234-4433

	334
1	you didn't give me the oxidation or anything like that
2	on the SER. There are three criteria.
3	MR. RAZZAQUE: we say there is less than
4	
5	DR. WALLIS: It doesn't say anything about
6	it at all as far as I can see.
7	MR. RAZZAQUE: Normally, we don't talk
8	about that because it is so
9	DR. WALLIS: It is small.
10	MR. RAZZAQUE: It is standard thing, I
11	think. Most of the time there are
12	DR. WALLIS: There are three criteria.
13	Three are three criteria, though. It's nice to have
14	them tabulated. You didn't tell me what it was before
15	the operate either. You just said the change was
16	small, but I didn't see how big it was.
17	MR. RAZZAQUE: Also, the PCT's match. And
18	usually PCT's
19	DR. WALLIS: But you say in the SER, you
20	say
21	MR. RAZZAQUE:below point one.
22	DR. WALLIS: there's a small change.
23	Now, how much did it change?
24	MR. RAZZAQUE: You know, what I'm saying
25	is if the PCT is below point 200
	1

```
(202) 234-4433
```

	335
1	DR. WALLIS: I know that, but
2	MR. RAZZAQUE: which is well below,
3	then the oxidation rate usually is below point
4	DR. WALLIS: Not always. That depends on
5	the length of the transient. How long you keep it hot
6	for.
7	MR. RAZZAQUE: In general, I'm saying.
8	DR. WALLIS: But, but are you going to
9	give me that number?
10	MR. RAZZAQUE: We can't guarantee that.
11	Otherwise, there wouldn't be any operation.
12	DR. WALLIS: Are you going to tell me that
13	number, nor not?
14	MS. ABDULLAHI: We will look it up and
15	give it to you. One second.
16	DR. WALLIS: Not important to put it in
17	the SER? It's one of the three criteria, right?
18	There are three criteria. One likes to see them
19	enumerated and values attached to them.
20	MS. ABDULLAHI: Correct. You're talking
21	about
22	DR. WALLIS: You say there's a small
23	change. I'd like to know how much the change is.
24	MS. ABDULLAHI: You
25	DR. WALLIS: How much is the change in

(202) 234-4433

	336
1	PCT?
2	MS. ABDULLAHI: You want to know EPU?
3	DR. WALLIS: Why do you just say it's
4	small without giving the evidence?
5	MS. ABDULLAHI: Okay.
6	DR. WALLIS: SER should be complete.
7	Otherwise, the reader says it's small, and there's no
8	number.
9	MS. ABDULLAHI: I think we know that in
10	the improvement in the SC, but I, right now, what I
11	will try, like to do
12	DR. WALLIS: What was it?
13	MS. ABDULLAHI: is give you what the
14	pre-EPU and the post EP you have the PCT for 105
15	and you have the PCT at 120.
16	DR. WALLIS: Different fuel.
17	MS. ABDULLAHI: Correct. I'll try to look
18	it up. I have a document in front of my hand and, and
19	I'll see if I can get that
20	MR. RAZZAQUE: I have the information here
21	for the calculation, which is in the PUSAR. And it's
22	.3 percent. Seventeen percent is the limit.
23	DR. WALLIS: Yes. Okay, so it's well
24	within the limit.
25	MR. RAZZAQUE: Well within the limit, yes.

(202) 234-4433

	337
1	DR. WALLIS: Does it say what the PCT is
2	for 100 percent?
3	MR. RAZZAQUE: 105 percent, the PCT is
4	DR. WALLIS: One hundred percent.
5	MR. RAZZAQUE: Eighteen forty five.
6	MR. SIEBER: You probably didn't calculate
7	it
8	DR. WALLIS: They didn't calculate it for
9	rate? They must have it in, so there's no okay, so
10	it's a new reactor, then. They didn't have any
11	calculation for 100 percent power.
12	MR. RAZZAQUE: For 105 percent there is a
13	value for oxidation
14	DR. WALLIS: There's no value for 100
15	percent.
16	MR. BOLGER: This is Fran Bolger from GE.
17	And there was no calculation of PCT for 100 percent.
18	DR. WALLIS: For 100 percent. So it's a
19	new reactor, really.
20	MR. RAZZAQUE: 105 and 120.
21	DR. WALLIS: Then there's no baseline,
22	right?
23	MR. SIEBER: Every reload is a new
24	reactor. A different configuration.
25	DR. WALLIS: Yes, but this 105 percent is
	I contract of the second se

```
(202) 234-4433
```

	338
1	from a fictional power that's never existed and never
2	been calculated as best as I can make out.
3	MR. SIEBER: There you go.
4	(Laughter.)
5	CHAIR BONACA: I would like to point out
6	that the comments that have just been made are really
7	appropriate. The SER was extremely qualitative.
8	Very little qualitative information. I
9	mean I know I have to go back to original documents.
10	I have to look at the calculations. Fortunately, we
11	had all of them available.
12	We shouldn't have to do that. It comes
13	down to results of analysis. I think the SER should
14	be complete in that sense.
15	And the SER really was not very specific.
16	A lot of qualitative statements. Which means that we
17	have to really believe on trust; simply you say, we
18	say, we buy it. So, I think I second the
19	DR. WALLIS: So when you increase the
20	power, the limiting PCT goes down?
21	The small break sounds wonderful. One is
22	a small break and presumably a large break even lower,
23	120,
24	MR. SIEBER: Very easy to do that. All
25	you have to is change the fuel design.
	1

(202) 234-4433

	339
1	If you put more in smaller tubes, it's
2	going to go down.
3	DR. ABDEL-KHALIK: For completeness, what
4	is the maximum PCT for a large break at 120 percent
5	power?
6	MR. SIEBER: All we know it's small.
7	MR. RAZZAQUE: The licensee calculated it
8	at 1805 and our calculation gave 1800, which tends to
9	be lower for 105.
10	DR. ABDEL-KHALIK: Could you physically
11	explain the reason why
12	MR. RAZZAQUE: I can try. If you want
13	physical explanation is that the profile is flattened
14	from 105 to 120. Okay, when the profile is flattened,
15	you have a redistribution of the flow.
16	One line is that the average bundle will
17	now have less flow, so the redirection of the flow
18	towards the peak bundle so there are two competing
19	phenomena and the peak bundle is going on.
20	One is that the peak bundle power
21	increases a little bit. The average bundle is
22	DR. WALLIS: That's right.
23	MR. RAZZAQUE: But the other one increases
24	about 5 percent.
25	DR. WALLIS: The peak goes down for the

(202) 234-4433

	340
1	bigger proportion of the core. It's likely to reach
2	closer to it. That's what's happening.
3	MR. SIEBER: Boilers are different than
4	PWR.
5	MR. RAZZAQUE: So that explains why it
6	goes down if provided it is a large break. That's
7	what we are saying. Usually, in large break that
8	happens. In stored energy, it is still important.
9	DR. CORRADINI: May I ask since I've been
10	watching all these thermal-hydraulics so is there
11	somewhere in the behind the scenes documents that
12	identifies the difference between the average and hot
13	channel so I could know the root cause of what Graham
14	is suggesting. Or what you guys are both agreeing
15	took which is instead of 50,000 one quarter of the
16	50,000 are at this temperature. Now there's a half of
17	them are at a lower temperature. Do you see my point?
18	Where is that done or is that only done in
19	the hot channel?
20	MR. RAZZAQUE: Every bundle increases by
21	20 percent, directly proportional to the power.
22	The big bundle shouldn't increase at all
23	because it's complete flattening of the curve from
24	105. In reality, it increases a little bit five to
25	seven percent.
1	1

(202) 234-4433

341 1 DR. CORRADINI: But there is nothing 2 though that bridges that gap, in the sense that there's a computation of the average bundle and peak 3 4 bundle stuff. There's nothing, right? 5 MR. SIEBER: You can calculate the profiles, but at each power level it is different 6 7 because of void fraction varies. 8 DR. BANERJEE: I guess the main reason you 9 are getting a reduction is you've got a G14 fuel, 10 by 10, so the stored energy is much lower? Not much 10 11 lower, but somewhat lower. 12 DR. CORRADINI: Can I turn to the GE folks 13 _ _ 14 DR. WALLIS: I don't understand that about 15 the fuel, because I thought the fuel you put in there 16 was the 120 percent fuel. It's going to be --17 MR. RAZZAQUE: G13 and G14, right? MR. SIEBER: There is a mixture of fuel. 18 19 The outer edge has got the --20 DR. WALLIS: Aren't you going to run this 21 reactor at 120 as soon as --22 MR. SIEBER: As soon as you've got the chance. 23 WALLIS: The same fuel. I don't 24 DR. 25 understand the two different fuels here.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	342
1	MS. BROWN: Bill, would you like to
2	comment on the type of fuel and how it's going to be
3	run?
4	MR. STOREY: Well, as I said earlier, this
5	is Greg Storey. The core design is identical, either
6	for the 105 or the 120 percent design. So it's just
7	the control rod patterns and operating strategy
8	will be based on the particular power level, but
9	there's no difference in the loading pattern at all.
10	DR. CORRADINI: So can I just ask you then
11	a question? So is there background information that
12	identifies what is being suggested as the reason it
13	goes down? That is, there's essentially a
14	redistribution of the power shape and I have a larger
15	population of the channels at a higher, at a
16	different, at a higher temperature?
17	MR. BOLGER: This is Fran Bolger from GE.
18	The hot bundle, the SAFER/GESTR methodology places the
19	hot bundle on the LHGR limit. That LHGR limit is
20	unchanged and therefore that maximum power is the same
21	at the EPU analysis and the 105 percent analysis.
22	With respect to the sensitivity of the DVA
23	LOCA to the power level change, there is some
24	discussion of the phenomena associated with that in
25	our topical report for constant pressure power uprate.

(202) 234-4433

	343
1	What the staff has been discussing as far
2	as the average bundle and its impact on the DBA LOCA
3	is essentially correct.
4	DR. WALLIS: So how do these two fuels, 13
5	and 14 come out? I thought the 13 was on the
6	periphery?
7	MR. BOLGER: The calculations with the
8	SAFER/GESTR methodology are done independently for the
9	two different fuel types. The SAFER/GESTR calculation
10	is done with the G13 core, an average core and the G13
11	hot bundle and another SAFER/GESTR calculation is done
12	with the G14 core and a G14 hot bundle.
13	DR. WALLIS: The idea is then you are free
14	to load it anywhere you want?
15	MR. BOLGER: That's correct.
16	DR. WALLIS: But in reality, it's GE14
17	over most of the core, isn't it?
18	MR. BOLGER: That's correct.
19	DR. WALLIS: And it doesn't seem to be an
20	issue because this temperature is so low.
21	MR. SIEBER: You could almost bathe in it.
22	(Laughter)
23	MS. BROWN: With that, let's go to Slide
24	12. For Unit 1, the staff when to Browns Ferry to
25	review the licensee's large and small break LOCA using
	1

(202) 234-4433

	344
1	RELAP-5 and I believe this is what Jose had mentioned
2	before.
3	And the staff performed an independent
4	analysis to
5	DR. WALLIS: You used RELAP-5? You
6	didn't use TRACE?
7	(Laughter.)
8	DR. CORRADINI: Please, let it go.
9	DR. WALLIS: I'm trying to clarify.
10	DR. BANERJEE: What did you get?
11	MS. BROWN: The staff sensitivity studies
12	showed top peak actual power
13	DR. BANERJEE: Are we basically
14	DR. WALLIS: One hundred.
15	MR. RAZZAQUE: A couple of objectives of
16	these RD calculations and also we look for any new
17	information that we could get. As far as information,
18	we did confirm that the small break is the limiting at
19	120. There's a certain power level between 105 to 120
20	through large break limiting to small break limiting.
21	I think we understand that also, quite.
22	Other information was that the CE has been
23	clearly bumped as 2100 according to staff calculation
24	where there is 1830. And again, this 2100 is primary
25	reason is that intentionally very conservative models
1	

(202) 234-4433

	345
1	were used, like, for example rod rot radiation during
2	the dry period was conservatively
3	DR. WALLIS: So if you increase the power,
4	it switches to small break limiting.
5	DR. BANERJEE: Correct.
6	DR. WALLIS: Which means that having a
7	transition break size wouldn't do you any good
8	I'm trying to think what this means for
9	another issue. A small breaks limiting, then there
10	isn't some incentive to have a transition break size
11	presumably for this kind of reactor.
12	DR. BANERJEE: There are always two peaks.
13	Why are these peaks becoming larger?
14	MR. RAZZAQUE: The reason we think that in
15	the small break analysis we have seen that the decay
16	period is longer. Because of the additional decay
17	heat in the 120, plus this 105. And that is often a
18	little delayed injection of ECCS and that makes a
19	difference.
20	DR. ABDEL-KHALIK: There is a big
21	difference between 1830 and 2100 and presumably both
22	of these calculations are Appendix K type
23	calculations.
24	Could you explain?
25	MR. RAZZAQUE: I would be glad to. One is

(202) 234-4433

	346
1	that the GE code and other is the RELAP-5 Code. There
2	is several code differences.
3	More important is that we have used
4	bounding very conservative models. To give you an
5	example, the ADS, the number of ADS that are operating
6	actually six, but we use five, and we cut down one
7	ADS. just to make things conservative. And the
8	radiation rod rot radiation, the transfer model was
9	conservative designed.
10	DR. ABDEL-KHALIK: But what is the purpose
11	of doing independent calculations by the staff?
12	MR. RAZZAQUE: Again, I think the couple
13	of reasons. One is to confirm the GE's results.
14	DR. ABDEL-KHALIK: Right, but if you sort
15	of use different assumptions then what the applicant
16	has used, you will get different answers?
17	MR. RAZZAQUE: We do. We get unreasonable
18	assumptions. But we are saying we are trying to
19	find, for example, the limiting metal header, the
20	limiting power pitting factor which turned out to be
21	top-picked, rather than rate-picked. Originally,
22	licensee calculated the limiting by mid-picked which
23	was not limiting. We found it out. We went back to
24	licensee and asked them to recalculate their LOCA
25	analysis based on the top-picked accident and they

(202) 234-4433

	347
1	did. And the result on the LOCA analysis is it did
2	increase. Not by a significant margin, but it did
3	increase, 35 degrees, as far as I remember. But
4	there's another value to the calculation and the other
5	is confirmation is the main reason or if we come up
6	with new information like we came up with information
7	at least in this case.
8	There is some benefit to it.
9	DR. BANERJEE: Did you do some
10	calculations like this for the Appendix R calculation
11	that they did?
12	MR. RAZZAQUE: We the Reactor Systems
13	Branch didn't do that. The PUSAR, if you look at it,
14	what you have in the PUSAR is calculated area approved
15	to operate at 105 percent value of the design basis,
16	which is 1485, a staff-approved value which is less
17	than 1500 so
18	DR. BANERJEE: They're getting close.
19	Well, they explained that this morning. Because they
20	took a different decay heat primarily, you know.
21	MR. RAZZAQUE: So usually in this case, if
22	you use less
23	DR. BANERJEE: I'm just asking did you do
24	any confirmatory analysis?
25	MR. RAZZAQUE: No, we did not. We just
1	I contract of the second se

(202) 234-4433

	348
1	did the LOCA, the limiting LOCA for the regular LOCA.
2	CHAIR BONACA: Let's move on.
3	DR. BANERJEE: How much oxidation did you
4	get? MR. RAZZAQUE: Oxidation was in the PUSAR.
5	I'm sorry, if it wasn't in the SER, but it is for 105,
6	the oxidation is 2 percent and for EPU is 3 percent.
7	The limit is 17 percent. For hydrogen generation, 105
8	is .1 percent; EPU is 2.1 percent and limited 1
9	percent; 10 times more than the limit.
10	DR. CORRADINI: Say again, I'm sorry.
11	MR. RAZZAQUE: The hydrogen percent cool
12	water metal water reaction is 10 CFR 546 limit is one
13	less than 1 percent.
14	DR. BANERJEE: So the reason it is
15	interesting is of course if you have more bundles
16	close to 2100. You'd expect that you'd get
17	DR. CORRADINI: It's an exponential, so
18	it's not clear.
19	CHAIR BONACA: Give me those numbers
20	again?
21	MR. RAZZAQUE: Which ones?
22	CHAIR BONACA: The hydrogen.
23	MR. RAZZAQUE: Hydrogen generation is .1,
24	less than .1 for 105 and also .1 for EPU.
25	CHAIR BONACA: I'm a little surprised
	I

(202) 234-4433

	349
1	because
2	DR. WALLIS: The oxidation goes up. I
3	think the oxidation goes up at 120. You're at a
4	higher oxidation.
5	MR. RAZZAQUE: We haven't checked those.
6	Id' say the person who actually did our in-house
7	LOCA calculation is in a jury duty which looks like a
8	higher priority than this one, so he's not here. But
9	I don't know whether he has calculated the hydrogen
10	generation. I mean whether he has that information,
11	but he didn't give me the information to provide, at
12	least now for this.
13	DR. BANERJEE: These confirmatory analyses
14	were not in our package, were they. Okay. I haven't
15	seen it.
16	DR. WALLIS: I didn't see it in the SER.
17	DR. BANERJEE: If it was, it escaped me.
18	DR. ABDEL-KHALIK: The 92 bundles that you
19	got from unit two, these were once-burned?
20	MR. STOREY: This is Greg Storey. They're
21	actually a mix of once and twice burned. They're 56
22	GE13s that are 2-cycle burned and 36 1-cycle burned
23	GE14.
24	DR. ABDEL-KHALIK: So that the pre-
25	oxidation that you're calculating based on burnup must

(202) 234-4433

	350
1	be very low, if your maximum oxidation is two percent.
2	MR. RAZZAQUE: Oxidation is less than two
3	percent. It always is less than. It's also hydrogen
4	generation less than point one, so the comparative
5	energy in both cases less then one. They were less
б	than one case than the other case.
7	DR. ABDEL-KHALIK: What is the pre-
8	oxidation value for the burnup associated with the
9	twice-burned bundles that you plan to put in?
10	MR. STOREY: Well, this is Greg Storey.
11	We did do inspections of that fuel and we did not see
12	anything unusual in terms of corrosion or oxidation on
13	that fuel.
14	DR. ABDEL-KHALIK: But there must be a
15	value associated with burnup.
16	MR. BOLGER: This is Fran Bolger. The
17	LOCA calculation of oxidation doesn't include addition
18	of the pre-transient oxidation.
19	DR. ABDEL-KHALIK: But the 17 percent
20	limit does.
21	MR. BOLGER: The issue of whether pre-
22	transient oxidation is considered is, I believe, part
23	of the discussions on Friday, this week. Currently,
24	the SAFER/GESTR methodology does not include addition
25	of the pre-transient oxidation.
	1

(202) 234-4433

351 1 DR. POWERS: Well, I don't think 2 discussion to include it or not is part of tomorrow's 3 discussion. discussion. I believe that's a closed 4 issue. 5 DR. WALLIS: So you could confirm that the peak clad temperature, not the criteria didn't really 6 7 confirm, confirm it within 300 degrees or something. 8 That's not a very good confirmation. 9 DR. BANERJEE: But they used more --10 DR. WALLIS: But you used some more, you 11 used somewhat different assumptions, as my colleague 12 was saying here. So, you confirmed that they met the criteria. You didn't really confirm it itself, 13 14 because you didn't do the same calculations, they had 15 different assumptions. DR. BANERJEE: Well, I think they, they 16 also contributed something by showing that the --17 DR. WALLIS: Small breaks. 18 19 DR. BANERJEE: -- peaking factor, the 20 small breaks, so I think it's useful to to this. 21 DR. WALLIS: Yes. 22 Well, I think we just went MS. BROWN: 23 over everything on this slide. Let's go to --24 DR. WALLIS: To the hydro rating, yes. 25 Yes, let's look at what we MS. BROWN:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	352
1	have left. Let's see if we have anything left for
2	ATWS. Because I believe Jose went over this discussion
3	as well earlier
4	DR. WALLIS: When we did the ATWS, did you
5	talk about what the operators have to do? I mean, the
6	operators have to maintain the levels. And I think
7	that this was somehow confirmed by running simulators.
8	MS. BROWN: Yes, sir. I believe Mr. Huang
9	
10	DR. WALLIS: Going to talk about that?
11	They're under more pressure, presumably, at the higher
12	is it time to act?
13	CHAIR BONACA: This should go on the
14	agenda tomorrow.
15	DR. WALLIS: We can talk about it
16	tomorrow.
17	MS. BROWN: They're available to talk
18	about it now, if you'd like.
19	MR. MARCH-LEUBA: Anytime you want.
20	DR. WALLIS: There is a reduced time for
21	operation action?
22	MR. MARCH-LEUBA: A concern of the 120
23	percent uprate. You conceivably can be up 20 percent
24	
25	DR. WALLIS: Things happen quicker, do
	1 I I I I I I I I I I I I I I I I I I I

```
(202) 234-4433
```

353 1 they, and they --2 MARCH-LEUBA: Well, things happen MR. 3 quicker --4 DR. WALLIS: Right, right 5 MR. MARCH-LEUBA: And we went to the simulator and spent a whole afternoon in Browns Ferry 6 7 testing those features and I recommend that you go and 8 _ _ 9 DR. WALLIS: Did they know that they were 10 going to be tested on ATWS when they went into the 11 simulator? 12 MARCH-LEUBA: The simulator had MR. several ATWS and had real operators executing the real 13 14 emergency instructions --15 DR. WALLIS: It makes all the differences 16 what the operators are expecting when they go into the 17 test. MARCH-LEUBA: It does, it does. 18 MR. 19 Everybody knows that most accidents happen between Christmas Day and New Year's Eve and there's a reason 20 21 _ _ 22 DR. WALLIS: And they could mis-diagnose 23 it if they didn't know it was an ATWS. 24 MR. MARCH-LEUBA: But even then, if you do 25 go and see an ATWS in the simulator, you will find out

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	354
1	that it's not as stressful as we would think. The
2	operators are really calm, and they have plenty of
3	time to do the work
4	DR. WALLIS: That's because it's a
5	simulator, yes.
6	(Laughter.)
7	MR. MARCH-LEUBA: A real ATWS is going to
8	have three or four more events happening at the same
9	time. But, what we're asking the operator to do is
10	not unreasonable. That was our conclusion.
11	DR. WALLIS: But he does have less time.
12	MR. MARCH LEUBA: Really not.
13	DR. WALLIS: Not significantly? No.
14	Okay.
15	MS. BROWN: All right. Were there any
16	more questions on ATWS?
17	CHAIR BONACA: Tomorrow, we have a full
18	session on operator actions, right?
19	MS. BROWN: Yes, sir.
20	CHAIR BONACA: Your going to inform us on
21	the breadth of training and
22	MS. BROWN: Yes sir, TVA
23	CHAIR BONACA: we'll pick up that issue
24	again, risk and human performance.
25	DR. WALLIS: The ATWS pressure is getting

```
(202) 234-4433
```

	355
1	close to the limit, isn't it?
2	MS. BROWN: Yes, sir.
3	DR. BANERJEE: ATWS, you said the amount
4	of time doesn't vary relative to the operator
5	doesn't vary very much. Why is that?
6	MR. MARCH-LEUBA: There are two criteria
7	of relevance to an ATWS. First is the pressure, the
8	peak pressure as you get the pressurization wave and
9	that happens within 10 seconds. The operator has
10	nothing to do with it. And then you have the long-
11	term cooling of the containment in the suppression
12	pool. The operator has everything to do with that.
13	And that long-term is on the order of 20 to 30
14	minutes. So the operators have plenty of time to do
15	everything they need to do.
16	DR. BANERJEE: But it does shorten in
17	terms of the 20 percent uprate, correct?
18	MR. MARCH-LEUBA: If you think about it
19	from the 20 percent uprate, as long as you stay on the
20	MELLA line, the very first thing you do is trip your
21	suppression pumps. And you go back to another
22	circulation to exactly the same power you were before
23	the power uprate. So you have to start looking at the
24	second-order effects like power distributions and
25	things like that, but on first order approximation,
	1

(202) 234-4433

	356
1	the moment you trip the pumps, you follow the same
2	line and you end up exactly where you were before the
3	uprate.
4	DR. BANERJEE: But don't you get much
5	larger instability in those cases?
6	MR. MARCH-LEUBA: Not with EPU on first-
7	order approximation. MELLA plus is completely
8	different. And we'll be talking to you about MELLA
9	plus. But EPU stays on the same raw line. We have
10	more out there to see. But the moment you trip the
11	pumps on EPU you end up where you were before the
12	upgrade.
13	DR. ABDEL-KHALIK: Now, the 1500 psig, I
14	mean, you indicate that these values are less than
15	1500 psig, which is the ASME limit. Is that correct?
16	MR. THOMAS: Estimated level, C-limited.
17	DR. ABDEL-KHALIK: Now, 1484 is awfully
18	close to 1500. So, what is the uncertainty in the
19	initial pressure?
20	MR. THOMAS: Initial pressure is the
21	DR. ABDEL-KHALIK: I mean, you assume that
22	the plant is operating perfectly, whatever, the
23	pressure is going to be there, is absolutely no
24	uncertainty in the initial pressure?
25	MR. THOMAS: The initial pressure is
	1

(202) 234-4433

	357
1	assumed to be 1020 psig
2	DR. ABDEL-KHALIK: What is the instrument
3	uncertainty?
4	MR. THOMAS: Normally, you know, the
5	reactor vessel normally operates about 470 psig. But
6	the analysis assumed 1020 psig. So there is a
7	considered review function there actually.
8	DR. ABDEL-KHALIK: But the review pressure
9	is 1050, is that correct?
10	MS. ABDULLAHI: This is Zena Adbullahi.
11	That was analysis usually used as nominal assumptions.
12	And we would have to go through it. But, because it's
13	an ATWS and not a transient, not a, you know,
14	requiring a SAVETAL, it's based on nominal conditions.
15	There are some conservative assumptions in there and
16	we had, before had them listed what was those
17	conservative assumptions. And some of them were how
18	fast they open, which SRVs open first and things like
19	that and the lift tolerances, but generally it's
20	nominal.
21	So, yes, we have seen and we talk about
22	this every time because we're both uncomfortable with
23	it at 1499 in some plants.
24	DR. POWERS: I understand that there's
25	some margin built into the 1500. Local things set up
1	I

(202) 234-4433

	358
1	so that if it's 1499
2	DR. KRESS: Even if it's 1501, it's
3	probable.
4	DR. POWERS: Look, probably, but it does
5	not pass muster.
6	MR. RAZZAQUE: And there's a LOCA-related
7	event.
8	DR. POWERS: Say it again?
9	MR. RUBEN: A LOCA-related event.
10	DR. POWERS: Yes.
11	DR. WALLIS: You can lose a football game
12	by one point.
13	DR. POWERS: It's the end of the season,
14	so what?
15	CHAIR BONACA: So this wraps up your
16	presentation today?
17	MS. BROWN: Yes.
18	CHAIR BONACA: I don't think we'll want to
19	go on the table today. I think we'll do that
20	tomorrow. But I would like to ask members if there
21	are additional questions here on the presentation we
22	got today?
23	DR. WALLIS: Well, I had about fifty I
24	never got to ask, but I was sure my colleagues did a
25	very good job

```
(202) 234-4433
```

	359
1	DR. KRESS: We asked every one of them.
2	DR. CORRADINI: Sanjoy took over.
3	DR. POWERS: Actually, we corrected three
4	of your questions and asked them properly.
5	(Laughter.)
6	CHAIR BONACA: All right, if there are no
7	further questions then we will pick up the issue again
8	tomorrow at 8:30.
9	We are recessed until tomorrow morning.
10	(Whereupon, at 6:40 p.m., the meeting was
11	adjourned, to reconvene tomorrow, Wednesday, January
12	17, 2007 at 8:30 a.m.)
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	I. Contraction of the second se
