Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Meeting of the Subcommittee on Reliability and Risk Assessment

Docket Number: (None provided)

Location: Rockville, Maryland

Date: Friday, March 23, 2007

Work Order No.: NRC-1498

Pages 1-157

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	+ + + +
6	MEETING OF THE SUBCOMMITTEE ON RELIABILITY AND
7	PROBABILISTIC RISK ASSESSMENT
8	+ + + +
9	FRIDAY,
10	MARCH 23, 2007
11	+ + + +
12	The Subcommittee convened at 8:30 a.m. in
13	Room T-2B3 of the Headquarters of the Nuclear
14	Regulatory Commission, 11545 Rockville Pike,
15	Rockville, Maryland, George E. Apostolakis, Chairman,
16	presiding.
17	MEMBERS PRESENT:
18	GEORGE E. APOSTOLAKIS, Chairman
19	SAID ABDEL-KHALIK
20	MARIO V. BONACA
21	THOMAS S. KRESS
22	OTTO L. MAYNARD
23	WILLIAM J. SHACK
24	STAFF PRESENT:
25	MAITRI BANERJEE
	I

	2
1	A-G-EN-D-A
2	
3	OPENING REMARKS
4	Chairman Apostolakos 3
5	
6	GENERAL OVERVIEW OF RMTS INITIATIVE 4B,
7	GUIDELINES DOCUMENT, NEI 06-09
8	Mr. Tjader 5
9	
10	PRA, CRMP & LICENSE AMENDMENT REQUIREMENTS FOR RMTS
11	Mr. Howe
12	
13	STP AUDIT RESULTS
14	Mr. Howe
15	
16	HRA MODELS FOR US IN PRA/PRA TRANSITION INTO THE CRM
17	TOOL
18	Mr. Canavan
19	
20	CRM TOOLS/STP PERSPECTIVE OF 4B PROCESS
21	Mr. Hess
22	Mr. Phelps
I	NEAL R. GROSS
	(202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433

	3
1	P-R-O-C-E-E-D-I-N-G-S
2	8:25 a.m.
3	CHAIRMAN APOSTOLAKIS: The meeting will
4	now come to order. This is a meeting of the
5	Reliability and Probability Risk Assessment
6	Subcommittee of the ACRS.
7	I am George Apostolakis, Chairman of the
8	Subcommittee.
9	ACRS Members in attendance are Dr. Said
10	Abdel-Khalik, William Shack, Tom Kress, Otto Maynard
11	and Mario Bonaca.
12	The purpose of this meeting is to review
13	the industry guidance document on the safety
14	evaluation prepared by the NRC Staff on the risk
15	managed technical specifications 4B. We will hear
16	presentations from representative of the Office of
17	Nuclear Reactor Regulation and Nuclear Energy
18	Institute and the Electric Power Research Institute.
19	RMTS Initiative 4B proposed to rely on
20	probability risk assessment and risk monitors to
21	calculate technical specification completion time for
22	returning structures, systems and components to
23	operable steps.
24	The Subcommittee will gather information,
25	analyze relevant issues and facts and formulate

(202) 234-4433

proposed position and action as appropriate for deliberation by the full Committee.

The rules for participation in today's meeting were announced as part of the notice of this meeting previously published in the *Federal Register* on March 5, 2007. We have received no written comments or requests for time to make oral statements from members of the public regarding today's meeting.

9 A transcript of the meeting is being kept and will be made available as stated in the Federal 10 notice. Therefore, we request that 11 Register participants in this meeting use the microphones 12 located throughout the meeting room when addressing 13 the Subcommittee. Participants should first identify 14 themselves and speak with sufficient clarity and 15 volume so that they can be readily heard. 16

The ACRS Subcommittees on Reliability and 17 PRA and on Plant Operations were jointly briefed on 18 19 April 28, 2006 by the NRC and the industry on the 20 status of this initiative. And, of course, at that 21 time we provided comments and raised some questions. 22 And the Staff indicated at the time that the guidance 23 document was not complete and pilot plant visits were 24 scheduled to review the on site programs during the 25 summer months of last year before preparing a safety

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

(202) 234-4433

4

	5
1	evaluation report.
2	We requested that the Staff brief us again
3	after completing their safety evaluation report. And
4	that's why we're here today. And the staff will brief
5	us, the subcommittee today. And we have scheduled
6	time for the full Committee to be briefed at the next
7	meeting at the beginning of April. And the staff is
8	asking a letter from the ACRS. Of course, they would
9	prefer it to say that the Committee agrees with the
10	Staff's endorsement of the RMTS guidelines.
11	So we will now proceed with the meeting.
12	And I call upon Mr. Tjader of the Office of Nuclear
13	Reactor Regulation to begin.
14	Bob?
15	MR. TJADER: Thank you, Dr. Apostolakis,
16	ACRS Members.
17	Today we're reporting once again on this
18	management tech spec initiative for the risk-informed
19	completion times.
20	Today we will discuss the risk management
21	tech spec guidance document, NEI 06-09 which you have
22	received in final form. That document contains the
23	process for determining risk-informed completion
24	times, the requirements, the limits and overall
25	guidance for implementing risk-informed completion
	I

(202) 234-4433

times.

1

2

3

4

5

6

7

The document has been developed, negotiated and evolved over many years. The Staff believes that this document is acceptable for implementing risk-informed completion times and that it enhances safety and is an improvement in operating with technical specifications.

The Staff's acceptance is reflected in the 8 9 near complete safety evaluation that has been provided 10 to you. Once any comments from industry and the ACRS are received, if any, and once they're addressed and 11 12 final safety evaluation will incorporated а be developed and be provided to the full ACRS prior to 13 14 the full ACRS Committee meeting in April.

15 That safety evaluation, final safety evaluation will reflect some differences from the 16 version that you have, but nothing of significance in 17 way of technical application or implementation of it. 18 19 There are some editorial changes, some consistency 20 consistent changes to be with operability 21 determination process and there is some discussion of 22 the degree to which examples should be included in the 23 document. And we're working out those final details, 24 but the essence of the safety evaluation provided to 25 you is in its final form.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

6

	7
1	In addition to the guidance document which
2	I Andrew Howe, the lead reviewer from the PRA Branch
3	will discuss, we'll also provide you some related
4	information which you requested at prior meetings such
5	as human reliability, uncertainty and a discussion of
6	the audit which Andrew Howe will provide you.
7	And as you mentioned, Dr. Apostolakis, we
8	do seek the Commission's support for this with this
9	initiative in validating the effort.
10	Next slide.
11	The purpose of the risk management tech
12	specs initiatives and this initiative 4B as we call
13	our support completion time are to be consistent with
14	the Commission's policies to utilize risk information
15	and decision making both in changes to tech specs and
16	in implementing, such as this one, the technical
17	specifications using risk information to do the
18	correct and safe thing. To take the correct action.
19	The initiatives are consistent with
20	this initiative and others are consistent with the
21	maintenance rule and established guidance such as Reg.
22	Guide 1.174 and 1.177 and NUMARC guidance that we
23	utilize and, to some degree, have endorsed.
24	CHAIRMAN APOSTOLAKIS: Now Reg. Guide
25	1.174 refers to permanent changes.
I	I

(202) 234-4433

	8
1	MR. TJADER: Correct. 1.174 is the
2	overall application of risk of applying risk in
3	decision making processes. 1.177 is the specific
4	application of technical specifications.
5	CHAIRMAN APOSTOLAKIS: But the main idea
б	behind 1.174 was really the permanent changes. And you
7	do make a connection with it even though the changes
8	are temporary. And I'd like at some point to have a
9	discussion on that one. We don't have to do it now.
10	At the appropriate time. But you state that
11	periodically that we'll have to calculate the increase
12	in risk and go back to 1.174. I think that's an
13	interesting comment.
14	But 1.177 is the main one that really
15	drives this?
16	MR. TJADER: The specific application of
17	utilizing risk
18	CHAIRMAN APOSTOLAKIS: Right.
19	MR. TJADER: in technical
20	specifications. And to some degree you're right.
21	They're dealing with AOT and 3.C changes that to some
22	extent are permanent. But these decisions are
23	consistent with that and are not in anyway superseding
24	or overruling those guidance documents.
25	MR. HOWE: That is the main. 1.177 is the
1	1

(202) 234-4433

ĺ	9
1	tech spec change that's permanent.
2	MR. TJADER: 1.177.
3	MR. HOWE: 1.777, right. This is now a
4	floating kind of change.
5	MR. TJADER: An extension of that. An
6	extension.
7	CHAIRMAN APOSTOLAKIS: Right. But it's
8	1.177 that really deals with incremental quantities as
9	opposed to 1.174.
10	By the way, is the fire document that we
11	have received included in all of this.
12	MR. HOWE: I'm not familiar with our
13	document.
14	MR. TJADER: It's the EPRI fire document
15	CHAIRMAN APOSTOLAKIS: It's not? You have
16	not reviewed this? It's not part of your review
17	MR. HOWE: We have not reviewed the EPRI
18	fire methodologies.
19	CHAIRMAN APOSTOLAKIS: Okay.
20	MR. TJADER: It is an example of
21	methodology that would be utilized for applying it to
22	a PRA.
23	CHAIRMAN APOSTOLAKIS: But that will be
24	reviewed at some future time?
25	MR. TJADER: Well, I mean PRA Reg. Guide.

(202) 234-4433

1 1.200 does not yet incorporate fire in it. At some 2 extent it will, and then that will be an actual review 3 of PRAs in the application of 4B. What we do now, and 4 what we have done last summer with South Texas is 5 we've gone to them and the PRA staff has reviewed that and they extensively reviewed how fire 6 PRA is 7 reflected in the PRA. And, in fact, your report deals 8 with that for several paragraphs. 9 And so until Reg. Guide 1.200 is in place 10 and its application is incorporated we will review the incorporation of fire in the PRA --11 CHAIRMAN 12 APOSTOLAKIS: So one major criterion or -- I don't know, in this case is that 13 14 unless the PRA has been developed according to 1.200, 15 you're not looking --16 MR. TJADER: I'm sorry. 17 MR. HOWE: Let me --CHAIRMAN APOSTOLAKIS: The fire is not 18 19 part of 1.200? 20 That's right. Today Reg. Guide MR. HOWE: 1.200 only addresses internal events. 21 22 CHAIRMAN APOSTOLAKIS: Right. 23 It has some high level MR. HOWE: 24 requirements for fire, but no standard has been 25 Our position is that until those standards enforced.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

10

	11
1	are in place, we will have to: First of all, license
2	these must quantitatively addressed fires and afford
3	the application, and the Staff has to review how they
4	are doing that. If they have a fire PRA, we'll have
5	to do a fairly extensive review of how it was
6	developed, how screen criteria was applied, et cetera.
7	If they use bounding analyses or other more
8	conservative, we'll have to review those to see that
9	they are appropriate for a 4B application. But once
10	Reg. Guide 1.200 is revised to endorse the standard
11	and whatever grace has expired, licensees will be
12	expected if they're implementing 4B to have a fire PRA
13	to address the significant risk
14	CHAIRMAN APOSTOLAKIS: Well, there is an
15	EPRI document we received titled "Methodology For Fire
16	Configuration Risk Management."
17	MR. HOWE: Right.
18	CHAIRMAN APOSTOLAKIS: This is not part of
19	what you have reviewed?
20	MR. HOWE: We have not reviewed that and
21	we have not endorsed that. In fact, our SE
22	specifically states that that we have not endorsed
23	that. That is not to say that a licensee couldn't
24	come forward and say we would like to use this in 4B,
25	and then we would review it. But at this point we
ļ	I

(202) 234-4433

(202) 234-4433

Í	12
1	haven't.
2	MR. TJADER: And as I said before, the
3	underlying purpose of these initiatives in Initiative
4	4B is to enhance safety, enhance the operator focus on
5	safety to ensure that the appropriate safe action is
6	taken and that knee-jerk actions such as shutdown are
7	not necessarily taken.
8	Next slide.
9	Just going very briefly over risk-informed
10	completion times it is, as you stated, a real-time
11	determination or calculation of a completion time
12	based upon the plant configuration and its associated
13	risk. It extends the existing completion time.
14	If a licensee within the existing
15	completing time of the tech specs determines that they
16	may not be able to restore the condition to operable
17	status within the existing completion time, within
18	that completion time they will perform a risk
19	assessment to determine what would be an appropriate
20	risk-informed completion time up to a maximum backstop
21	of 30 days.
22	The guidance document includes the
23	decision making process. It includes requirements,
24	guidance, requirements for PRA, technical adequacy,
25	configuration risk monitoring tool, requirements,
	I

(202) 234-4433

	13
1	documenting requirement, training requirements.
2	South Texas is the pilot plant that is
3	your approval. The PRA audit was completed last
4	summer, you have the report. We expect to issue their
5	license amendment this summer, Fort Calhoun later in
6	the year.
7	Next slide.
8	The risk-informed completion time benefits
9	are that they take into account integrated
10	configuration risks. It does take into account when
11	you're in a risk-informed completion time multiple
12	component outages both tech spec and non-tech spec
13	systems that are reflected in the PRA.
14	It allows for decision making on a real-
15	time basis with risk insights, utilizing risk
16	insights.
17	Next slide.
18	The risk management guidance document NEI
19	06-09, the methodology document will be incorporated
20	into the administrative controls section of the tech
21	specs under the configuration risk management program.
22	So the requirements and limits within this document
23	will become tech spec requirements and limits.
24	The organization. Section 2 has the
25	absolute requirements and limits within it. Section
I	I

(202) 234-4433

	14
1	3 has the overall guidance and an explanation of those
2	limits. 4 deals with PRA. And there are other
3	sections on documentation and training incorporated
4	within.
5	Next slide.
6	This is a good example of how it will
7	work, the completion time can confirm completion time,
8	the risk-based or risk-informed completion time up to
9	a maximum of 30 days.
10	Next slide.
11	Just a generic tech spec example, which is
12	in the guidance document as an example. You would have
13	a system that is inoperable. You're going to have to
14	restore it within 72 hours. Of the licensee
15	determines that they can't restore it within 72 hours,
16	they must do the qualified risk assessment as
17	prescribed by the guidance document to determine what
18	the appropriate risk-informed completion time is. That
19	must be done within the 72 hours.
20	CHAIRMAN APOSTOLAKIS: Wait a minute. The
21	72 hours is the frontstop?
22	MR. TJADER: That's true. That's the
23	frontstop. That's existing. That's just
24	CHAIRMAN APOSTOLAKIS: That comes from
25	1.177?
	I

	15
1	MR. TJADER: No, no.
2	MR. HOWE: No, the PRA. But it's most
3	probably the deterministically derived completion that
4	exists
5	CHAIRMAN APOSTOLAKIS: Oh, it is. Yes.
6	MR. HOWE: There's nothing with 72
7	hours. It could be whatever it is in the specs. It
8	could be 4 hours, it could be 7 days. It's whatever
9	it's.
10	CHAIRMAN APOSTOLAKIS: It's the frontstop.
11	MR. TJADER: It's the frontstop. Whatever
12	that frontstop is if the licensee determines that they
13	need to go beyond that to restore the system, they
14	perform a quantified risk assessment within the
15	frontstop and determine what the appropriate risk-
16	informed completion time. Then they have to
17	periodically reperform that when there are
18	configuration changes, emergent conditions, SSCs
19	become inoperable, SCCs are restored it will be
20	updated.
21	MEMBER SHACK: Has anybody actually used
22	1.177 to change their tech specs?
23	MR. TJADER: Extensively. They've come in
24	frequently to extend their existing and
25	surveillance frequencies. Yes.
Į	I

(202) 234-4433

	16
1	CHAIRMAN APOSTOLAKIS: Right. I believe
2	their diesel generator AOT at South Texas is now 7
3	days or 14?
4	MEMBER MAYNARD: Fourteen days.
5	CHAIRMAN APOSTOLAKIS: Fourteen?
б	MR. TJADER: Fourteen.
7	MEMBER ABDEL-KHALIK: Has there been any
8	situation in which the opposite was found to be true
9	where the frontstop has been found to be inadequate?
10	MR. TJADER: I'm not aware of any. The
11	frontstops were originally deterministically derived
12	by the engineers that designed and developed the
13	plant. And they were very conservatively derived. And
14	they were also, keep in mind, focused just on that
15	system and the inoperability of that system. So the
16	numbers are very conservative in nature. And if in
17	the application, of course, of Initiative 4B it is
18	found that a frontstop is not conservative, it would
19	follow whatever completion time you derive from risk-
20	informed completion time when you're in there and then
21	it would be incumbent upon the licensee, it would be
22	the prudent thing to do, the appropriate thing to do
23	to come in with a license amendment request make it
24	conservative and appropriate. But I don't think we've
25	found a frontstop that's not conservative.
ļ	I

(202) 234-4433

	17
1	Now keep in mind it is with respect to
2	just that one system not multiple inoperabilities when
3	you could then encounter a situation where perhaps the
4	risk-informed completion time could be less than some
5	of the frontstops.
6	CHAIRMAN APOSTOLAKIS: What does IAW stand
7	for?
8	MR. TJADER: In accordance with.
9	CHAIRMAN APOSTOLAKIS: In accordance with?
10	MR. TJADER: Yes.
11	MEMBER BONACA: Now, say that you're
12	having a 30 day calculated completion time and now
13	you're having an emergent condition, as you mentioned
14	before, is there a specific time within which you have
15	to perform an evaluation?
16	MR. TJADER: Subsequent analyses have to
17	be performed within the shortest of the existing
18	completion times or 12 hours, whichever is shorter.
19	MEMBER BONACA: Okay. So either 12 hours
20	or the 72 hours?
21	MR. TJADER: No, no. The 72 is just an
22	example of an example of an existing frontstop.
23	MEMBER BONACA: I understand.
24	MR. TJADER: The guidance document says
25	that completion time have to be calculated within the

(202) 234-4433

	18
1	existing frontstop completion times.
2	MEMBER BONACA: Okay.
3	MR. TJADER: Whatever they are; 7 hours,
4	4 hours or 12 hours whichever is shorter.
5	MEMBER BONACA: Whichever is shorter?
б	Okay.
7	CHAIRMAN APOSTOLAKIS: Where did the 12
8	hours come from?
9	MR. TJADER: I'm sorry?
10	CHAIRMAN APOSTOLAKIS: Where did the 12
11	hours come from?
12	MR. TJADER: Well, a couple of years ago
13	you probably don't remember the slide up there said 24
14	hours and there was a lot of discussion whether that
15	was too long of a time. And we discussed it and we
16	thought that 12 hours was a time in which in
17	reality, 12 hours for the operator is plenty of time
18	to chug and plug the numbers in his configuration risk
19	management tool. What the 12 hours does is permit
20	administrative processes within the plant to proceed
21	in order in case they come into a configuration,
22	for instance in South Texas a case that may not be in
23	the database, that's not yet analyzed, it gives them
24	time to at least to attempt to address that
25	configuration, that 12 hours. Twenty hours instead of
11	

(202) 234-4433

	19
1	24, we went back to 12 because 12 hours is, for the
2	most part, is what do you call it a watch
3	cycle.y
4	CHAIRMAN APOSTOLAKIS: So let me
5	understand. The system is down the subsystem is
6	down. The 72 hour limit starts running, right? They
7	have to
8	MR. TJADER: The clock starts as soon as
9	you find an inoperability.
10	CHAIRMAN APOSTOLAKIS: They realize 5
11	hours into the 72 hours that they cannot complete it
12	by 72 hours. That's when the 12 hour limit starts?
13	MR. TJADER: No, no, no. If they realize
14	within the 72 hours they can't restore the system,
15	okay?
16	CHAIRMAN APOSTOLAKIS: Yes.
17	MR. TJADER: They can then perform a risk-
18	informed completion time analyses within that 72
19	hours. That can be done anytime in the 72 hours. Then
20	they're going to come up with a risk-informed
21	completion time. And that risk-informed completion
22	time is going to be independent of that 72 hours.
23	That's going to be whatever the configuration of the
24	plant dictates.
25	CHAIRMAN APOSTOLAKIS: Right.
l	

(202) 234-4433

	20
1	MR. TJADER: Okay. The clock starts at
2	the inoperability, whatever your completion time is.
3	CHAIRMAN APOSTOLAKIS: I understand that.
4	So the 12 hours, where is the 12 hours?
5	MR. TJADER: Well, that is when you have
6	an emergent
7	CHAIRMAN APOSTOLAKIS: When you have an
8	emergent condition?
9	MR. TJADER: You have a new inoperability.
10	I see.
11	MR. HOWE: The bottom line is this: Until
12	the licensee has calculated a valid risk-informed
13	completion time he has to comply with his existing
14	specs. So when 72 hours is reached, the licensee does
15	not yet have a valid RICT calculated, he beings the
16	shutdown process. At the point in time when he has
17	that valid RICT and he knows he can continue to
18	operate, he could continue to operate.
19	If an emerging condition emerges while
20	you're in a risk-informed completion time
21	MEMBER BONACA: It means an other
22	component?
23	MR. HOWE: maybe you're in a 2 hour LCO
24	or four hour LCO, at the point of time when you reach
25	that limit if you don't have a new valid RICT that
Į	1

(202) 234-4433

	21
1	reflects that new emergent condition, you start
2	shutting down. When you have the RICT and it allows
3	you to continue to operate, then you may continue to
4	operate.
5	MEMBER BONACA: Well the reason why I
б	asked the question was because I was wondering whether
7	12 hours is an adequate time. And it seems to be a
8	short time. But you said that you feel that it's
9	plenty sufficient?
10	MR. TJADER: Yes.
11	CHAIRMAN APOSTOLAKIS: Let's see again.
12	We'll go down. The clock starts. At 60 hours there is
13	an emergent condition. By that time they were
14	estimating they could complete it by the 72 hours. So
15	they only have 12 hours now. Let's make it 65 hours.
16	They only have 7 hours.
17	Now they can go back to a preexisting
18	configuration with a new situation and say "Oh, now we
19	have a RICT of, you know, 90 hours." If they don't
20	have already they have to figure out what to do in
21	the remaining 7 hours?
22	MR. HOWE: I'll come back to this. Until
23	you have a valid risk-informed completion time you
24	must comply with your existing specs
25	CHAIRMAN APOSTOLAKIS: Sot hey can have a

(202) 234-4433

	22
1	certain amount?
2	MR. HOWE: If the existing specs during a
3	RICT and the existing specs are allowing you to
4	they're not restrictive, you have 12 hours to
5	determine. At the end of 12 hours if you're not sure
6	your RICT is valid, then you follow the existing
7	specs. You're out of the risk-informed, you're back to
8	the existing specs.
9	MEMBER BONACA: For most
10	MR. HOWE: It's a grace period.
11	MEMBER BONACA: For most significant
12	components it seems to me by reading this that they
13	already have calculated RICT time, right? I mean they
14	already have so then they'll have to, you know, in
15	the 72 hours I mean, they can see whether or not
16	they can stay within 72 hours or immediately go to
17	their configuration? I mean, it is not
18	MR. TJADER: It should not take the
19	actual argument said the plugging and chugging of the
20	numbers should not take 12 hours.
21	MEMBER BONACA: Yes. Yes. Now, the reason
22	I asked about an emerging situation, it means that
23	there is another component. And so now I know that
24	they have calculated they have a matrix with
25	probably you have several components that you've
I	I

(202) 234-4433

	23
1	considered already in your matrix. And so they really
2	have also a way to immediately accommodate that?
3	MR. TJADER: Right.
4	MEMBER BONACA: I would expect that it is
5	difficult to find multiple components that have not
6	been considered, I mean if they have already several
7	thousand combinations. Okay.
8	MEMBER MAYNARD: Where's the 12 hours
9	going to be? Will that be in the tech specs or is
10	that pat of the guidance documents. What implies that
11	as the requirement?
12	MR. TJADER: It is in section 2 of the
13	guidance documents, both in the guidance document will
14	be a requirement in the admin control section of the
15	tech spec in the configuration risk management program
16	maybe that requirements they'd have to follow.
17	Next slide.
18	What this is is this is a tabular form of
19	section 3-1. I'll just quickly go through it.
20	Figure 3-1 in the guidance document gives
21	you a flow chart of the logic that we did.
22	Basically, it has a tech spec, it's been
23	entered that allows the use of risk-informed
24	completion times. The licensee when he comes in will
25	define specifically which tech specs, Initiative 4B,
Į	I

(202) 234-4433

	24
1	risk-informed completion times can comply to. If the
2	answer is no, well you apply the current tech specs
3	and the current tech spec completion time limits.
4	If it's yes, then the next question is is
5	the frontstop expected to be exceeded, you expect to
6	need to extend that completion time. If it's yes,
7	then you do the calculation. And you do it, the
8	completion time is calculated to an ICDP of 10 to the
9	minus fifth and that gives you the time that you have.
10	There is a ten to the minus sixth point,
11	which we call a risk management action time. And that
12	time the licensee must consciously evaluate and
13	ascertain what management actions, compensatory
14	actions must be taken for the sake of safety and plant
15	appropriateness.
16	If you don't expect to go beyond the
17	frontstop, then you do not need to apply 4B.
18	CHAIRMAN APOSTOLAKIS: You mentioned that
19	a major element in this is Regulatory Guide 1.200.
20	MR. TJADER: PRA quality.
21	CHAIRMAN APOSTOLAKIS: But 1-200 refers to
22	PRA quality for standard PRAs. And here it seems to
23	me you're not using the PRA. You have to modify the
24	PRA.
25	MR. HOWE: We'll be talking more about
I	I

(202) 234-4433

	25
1	that one later.
2	CHAIRMAN APOSTOLAKIS: Later?
3	MR. HOWE: Yes, sir.
4	CHAIRMAN APOSTOLAKIS: Okay.
5	MR. HOWE: We know that's an issue you
6	wanted to hear about.
7	MR. TJADER: If any of the completion time
8	limits have been reached, if you're within the
9	frontstop and your reach completion time, if you're in
10	the risk-informed completion time, you reach the
11	completion time limit or the backstop completion time
12	has been reached, whichever is applicable, then you
13	take the appropriate subsequent tech spec action. In
14	other words, you haven't been able to comply with that
15	action you're within, you take the subsequent one,
16	which is in all likelihood get out of the mode of
17	applicability, shutdown.
18	And then have the actions been existed?
19	If you're in a risk-informed completion time and you
20	have to come out of it, then you apply the subsequent
21	tech spec required requirements shutting down. If you
22	haven't existed, you're still within a completion
23	time, then you continue to apply risk management
24	actions, updating, recalculating risk-informed
25	completion time depending on emergent conditions.
l	I

(202) 234-4433

	26
1	Next slide. Basically the limits that the
2	risk-informed completion time is calculated to, the
3	risk management actions are calculated to an ICDP of
4	one to the minus six or ten to the minus seven.
5	Either the or ten to the minus fifth ICDP or ten to
б	the minus six ILERP and any instantaneous core damage
7	frequency of the ten to the minus third and ten to the
8	fourth LERF puts you into immediate out of the
9	completion time into the required actions.
10	CHAIRMAN APOSTOLAKIS: The NRC, though,
11	you state does not endorse whatever. You take no
12	position in the ten to the minus three?
13	MR. TJADER: Oh, yes, we do.
14	CHAIRMAN APOSTOLAKIS: Don't you say
15	somewhere that this is
16	MR. TJADER: We take no position on the
17	ten to the third or ten to the minus fourth
18	CHAIRMAN APOSTOLAKIS: Yes.
19	MR. TJADER:instantaneous limits.
20	CHAIRMAN APOSTOLAKIS: Yes.
21	MR. TJADER: There are voluntary
22	restrictions on this program by industry, but the
23	Office of NRR has not stated that that's the
24	acceptable limit or that we may not come up with
25	limits ourselves sometimes.
ļ	

(202) 234-4433

	27
1	CHAIRMAN APOSTOLAKIS: That's what I'm
2	saying.
3	MR. TJADER: But in the meantime they do
4	CHAIRMAN APOSTOLAKIS: This is not part of
5	your approval?
6	MR. TJADER: The ten to the minus fifth
7	and ten to the minus sixth numbers are.
8	CHAIRMAN APOSTOLAKIS: Yes, I know.
9	MR. TJADER: Not the
10	CHAIRMAN APOSTOLAKIS: Right.
11	MR. TJADER: I'm walking this fine line
12	here as previous safety evaluations said about the
13	instantaneous risk on this. They were proposed at
14	NUMARC 93-01.
15	CHAIRMAN APOSTOLAKIS: I know.
16	MR. TJADER: The Staff said we accept them
17	but we don't endorse them. I'm saying the same thing.
18	CHAIRMAN APOSTOLAKIS: And they're
19	accepted. And you're saying if you want to do it, do
20	it, but we have no position.
21	MR. TJADER: In our guidance the
22	guidance as a review in NRR is in Reg. Guide.1.177,
23	1.174 as well as what's been endorsed in NUMARC 93-01
24	for configuration I'm applying that to this program
25	to reach acceptability. Okay. These aren't part of my
I	

(202) 234-4433

	28
1	reg guidance.
2	CHAIRMAN APOSTOLAKIS: What I'm saying is
3	that this slide should say we approve everything and
4	except that we take no position on relying not to
5	exceed ten to the three and ten to the minus five.
6	MR. TJADER: Yes, if they find that
7	acceptable.
8	CHAIRMAN APOSTOLAKIS: If they don't
9	object.
10	MEMBER MAYNARD: For this application for
11	this process you're accepting that that's going to be
12	a limit. But you're not relying
13	CHAIRMAN APOSTOLAKIS: Even if it is
14	exceeded, you are not going to action because it's
15	not
16	MR. TJADER: In parts of Initiative 4B and
17	when a licensee comes in and adopts this program and
18	we approve it, they will have this guidance document
19	incorporated in their tech specs. This guidance
20	document in section 2 sets certain limits and
21	thresholds. One of those thresholds is if you got a
22	CDF, ten to the minus three, LERF ten to the minus
23	four, no voluntary action and what it may not have
24	here but also it says is not only is there no
25	voluntary action, basically what it is says is that if
	I

(202) 234-4433

	29
1	in a configuration due to an emergent event, implement
2	the appropriate risk management actions.
3	CHAIRMAN APOSTOLAKIS: Who says that?
4	MR. TJADER: That's in the guidance
5	document which they will
б	CHAIRMAN APOSTOLAKIS: But you say in the
7	SER the Staff neither endorses nor disapproves of the
8	ten to the minus three and the ten to the minus four
9	values. That's a very statement.
10	MR. HOWE: Exactly what was said about the
11	original guidance and I took those same words, the
12	endorsement.
13	CHAIRMAN APOSTOLAKIS: And this is also
14	the current guidance?
15	MR. HOWE: Right. My management basically
16	said to me you can't use that as an acceptance basis
17	for this because that's not
18	CHAIRMAN APOSTOLAKIS: Exactly. So why are
19	we making a big deal out of it? It's very clear. You
20	neither endorse nor disapprove? In other words, they
21	cannot come to you with an argument that's based on
22	ten to the minus three unless you want to review the
23	argument and Staff, you know, okay. That's very
24	simple.
25	MR. HOWE: But I'll point this out. If
I	

(202) 234-4433

	30
1	they reach that and they say well even though the
2	guidance document says I shouldn't do that, I'm going
3	to because the NRC hasn't said that. No, they were
4	committing to that guidance document, and we accept
5	that. That's fine.
6	MS. BANERJEE: And we can write
7	violations, right?
8	MR. HOWE: Yes. It's part of the
9	document, hopefully. It's a tech spec limit.
10	MS. BANERJEE: Well, it becomes part of
11	tech spec.
12	MR. TJADER: A tech spec limit.
13	MR. HARRISON: Yes. This is Donnie
14	Harrison from the PRA Branch.
15	What's happening here is the industry is
16	voluntarily opining this to themselves, if you look at
17	it that way. So i'm agreeing with your, Dr.
18	Apostolakis. It is
19	CHAIRMAN APOSTOLAKIS: Is it part of the
20	tech spec?
21	MR. HARRISON: It becomes part of the tech
22	specs because it's endorsed in the guidance, but not
23	endorsed by us. It's being done by the industry to
24	themselves.
25	CHAIRMAN APOSTOLAKIS: Well, it's
ļ	I

	31
1	interesting. We neither endorse nor disapprove, yet
2	it's part of the guidance. Well, that's very
3	interesting.
4	MR. TJADER: I think we've discussed it
5	adequately. I think quickly just go to 15 and then
6	16. What they do is they show the documentation
7	requirements that when you go within a risk-informed
8	completion time things that must be documented. And
9	then 16 is some of the training prior to a plant
10	implementing this. We envision what personnel have to
11	be trained.
12	Let me turn it over to Andrew Howe of the
13	PRA Branch and he will now discuss the PRA aspects of
14	the limits.
15	MEMBER SHACK: Just one question. Those
16	incremental limits on the ICDP, what other guidance
17	documents are those from? I mean, that's a new
18	position here, isn't it?
19	MR. TJADER: It's consistent with 1.177.
20	Reg. Guide 1.182 endorsed those limits with the
21	exception of the instantaneous limits from 93-01 in a
22	specific revision. I don't remember exactly. Section
23	11 and
24	MEMBER SHACK: Okay. So 1.177 doesn't?
25	MR. TJADER: No.
ļ	I

(202) 234-4433

	32
1	MEMBER SHACK: It has a different set of
2	incremental limits?
3	MR. TJADER: That's correct. But that
4	applies to permanent change.
5	MEMBER SHACK: That's permanent changes.
6	Okay.
7	MR. TJADER: That's different.
8	MEMBER SHACK: Okay. The 1.182 on the
9	maintenance stuff gives you this particular limit.
10	Okay.
11	MR. HOWE: That's where they come from,
12	yes. And we're applying them to be consistent with
13	maintenance rule.
14	So, good morning. I'm Andrew Howe with the
15	Division of Risk Assessment. And I've been the primary
16	reviewer from PRA License Branch for about the last
17	year and a half for this risk-informed tech spec
18	initiative.
19	And the first presentation will be to
20	discuss the quality requirements of the PRA, the CRMP
21	and what a license needs to provide to us for our
22	review of the licensing amendment 4B program.
23	I'm going to discuss the requirements for
24	PRA technical adequacy, the implementation of CRMP,
25	license amendment submittal and review.
I	I

(202) 234-4433

	33
1	This is going to be fairly abbreviated
2	because I know we presented this fairly often before
3	to you.
4	Basically the PRA needs to be a full scope
5	addressing the significant contributors. Obviously,
6	internal events would have to be included. We require
7	quantitative treatment of fires and other external
8	events also must be included in the PRA or
9	quantitative capability unless it's justified by the
10	licensee that that particular source of risk is not
11	significant for configuration risk management.
12	An example there would be if you had an
13	external event that went directly to core damage like
14	a large plug. Certainly not relevant what equipment
15	is in or out of service. Therefore, you could exclude
16	that from the scope of the 4B PRA.
17	It must address core damage frequency and
18	large early release frequency, both metrics are
19	applied in the 4B document.
20	Shutdown risk is not in scope. It is
21	specifically excluded in NIE 06-09 at this time. So
22	mode 5 and mode 6 for PWRs and I think mode 4 and 5
23	for BWRs are not in scope.
24	Next slide.
25	Regarding specifics for the different
	I

(202) 234-4433

	34
1	PRAS. The internal events PRA model must comply with
2	Reg. Guide 1.200 Rev. 1 which was issued, I believe,
3	late January of this year and be consistent with
4	capability category 2 of the latest standard.
5	There is also the requirement that we
6	impose that PRA system success criteria needs to match
7	with your design and license basis. So that's
8	something that we need to look at for technical
9	accuracy of the internal events PRA.
10	In regards to fire, Reg. Guide 1.200 Rev.
11	1 does not yet endorse a standard but it does provide
12	some high level requirements. You must treat fires
13	quantitatively but you can use a conservative bounding
14	calculation if you don't have a plant specific fire
15	PRA of some sort at this point.
16	CHAIRMAN APOSTOLAKIS: But the
17	conservative calculations, I mean I remember the five
18	methodologies from EPRI. Essentially it's a screening
19	method. It eliminates occasions.
20	MR. HOWE: Right. Right. That would not
21	be
22	CHAIRMAN APOSTOLAKIS: So how would that
23	be useful to anyone who wants to do this?
24	MR. HOWE: I don't think that would be
25	useful.
I	I

(202) 234-4433

	35
1	CHAIRMAN APOSTOLAKIS: It would not be
2	useful? So conservative you mean
3	MR. HOWE: When I say conservative
4	CHAIRMAN APOSTOLAKIS: you may
5	identify your PRA, but in some cases where you don't
6	have the numbers whatever, you can make it
7	conservative assumptions?
8	MR. HOWE: Right. You bound the risk of
9	the different configurations that you want to go to.
10	CHAIRMAN APOSTOLAKIS: Okay.
11	MR. HOWE: And you show the risk-informed
12	completion time
13	CHAIRMAN APOSTOLAKIS: Right.
14	MR. HOWE: legally would not be less
15	conservative than you were using.
16	CHAIRMAN APOSTOLAKIS: And I think the
17	same would apply to the seismic margins?
18	MR. HOWE: For plants where seismic is
19	very significant, yes. I think some plants where it's
20	really not a big deal
21	CHAIRMAN APOSTOLAKIS: Oh, no, I
22	understand that. Yes. I mean if you do the bounding
23	evaluation and you declare that that particular event
24	irrelevant, I understand that. Because those bounding
25	calculation always bother me.
I	I

(202) 234-4433

	36
1	MR. HOWE: In all honesty as a reviewer,
2	I think it would be a high hurdle to cross for a
3	licensee to come in and say I don't have a fire PRA,
4	but here's a way I'm doing it.
5	CHAIRMAN APOSTOLAKIS: Right. Right.
6	MR. HOWE: We'd have to review that pretty
7	extensively to be able to conclude that it could be
8	acceptable. Maybe if you're only apply, you know, a
9	4B program to a limited subset of systems that really
10	aren't in the safe shutdown path for fire, you could
11	justify that. But if you're a full scope plant,
12	you're really going to need some kind of fire PRA.
13	CHAIRMAN APOSTOLAKIS: Very good. I'm glad
14	you said that.
15	MR. EDAWAR: Mr. Chairman?
16	CHAIRMAN APOSTOLAKIS: Yes.
17	MR. EDAWAR: May I ask a question?
18	CHAIRMAN APOSTOLAKIS: Of course you may.
19	You have to come to the microphone, though. Identify
20	yourself, please.
21	MR. EDAWAR: My Zouhair Edawar. I'm the
22	presenter from the HRA group. And I am on the
23	Configuration Risk Management Forum Committee.
24	My question is about match PRA system
25	success criteria with design basis. This is extremely
	I

(202) 234-4433

	37
1	restrictive requirements on PRAs. The PRA success
2	criteria are almost never a design basis success
3	criteria.
4	MR. HOWE: Well, let me clarify that
5	position a little bit. What I should have said was
6	maybe not match, but present us what the differences
7	are.
8	What our concern is here, I'll use an
9	example is probably the best way to illustrate this.
10	Let's assume that a licensee wished to apply a 4B
11	program to their accumulator tech spec. They come in
12	and say, yes, we model accumulators in our PRA, but we
13	only use them for small LOCAs where we have this
14	problem and we're depressurizing them. We don't care
15	about them for large LOCAs and all that.
16	Well, then your PRA really isn't
17	reflecting the tech spec requirements for those
18	accumulators. Therefore, for a 4B plant they may need
19	to either access what will be the impact of the LCOs
20	they're proposing to use and show that it wasn't
21	important or they may need to modify their PRA to put
22	those accumulators in as a requirement, or make some
23	argument as to why what they had was adequate.
24	MR. TJADER: Or take the accumulators off
25	of the applicability of this program.
Į	I

(202) 234-4433

	38
1	MR. HOWE: The fundamental thing we want
2	is we want the reviewer to make sure if he has a
3	thorough understanding of what the tech spec design
4	basis is that they're proposing to apply 4B to and how
5	the PRA models those systems in the success criteria.
6	Understand the differences, if any, and assure
7	ourselves that the risk-informed completion time that
8	are being calculated are reasonable and reflect not
9	only the risk but also the tech spec function that
10	we're hoping.
11	MR. EDAWAR: Would you mind if you had one
12	more example that I will bring, if I may, like the
13	success criteria for auxiliary feedwater. A design
14	basis may be 2000 gpm, but my thermo-hydraulics
15	analysis will indicate 700 is enough to prevent core
16	uncovery. The PRA will be based success criteria on
17	700 gpm. Will that be objectionable to by this bullet
18	here?
19	MR. HOWE: Very possible. It very
20	possibly would be. If it caused a let's say that
21	your design basis said I needed two of three pumps but
22	your PRA said one of three is acceptable? We want to
23	have an understanding of why there should be a
24	difference? Why can't you change your tech spec?
25	What are the differences that are driving such a
	I

(202) 234-4433

significant change between the design basis success criteria --

3 MR. TJADER: And once we understand that, 4 and once we understand that the PRA is more relaxed, 5 that doesn't negate the fact that the licensee has to follow the tech spec requirement. The system will be 6 7 inoperable and they have to be in the required actions for that inoperability. However, in determining what 8 an appropriate completion time is, if it is determined 9 that the system -- the feed water system or whatever 10 system it is that's designed in you example, that you 11 12 only need 700 to provide the safety function gallons, not the 2000, if the PRA reflects that, then there is 13 14 nothing that should prevent and nothing in this 15 program that would prevent -- in fact they're allowed to utilize that capability in determining a completion 16 time for the required actions and the spec that 17 they're in. 18

19 they would still be inoperable. So 20 There's nothing that changes what that inoperability 21 is for that system. What this does is allows you to 22 reflect that the actual capability of the system is if 23 it's reflected in the PRA to determine an appropriate 24 completion time ...

MR. HOWE: I discussed fire. Other

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

(202) 234-4433

39

	40
1	external events is the same basic way. Reg. Guide
2	1.200 provides high level guidance which we would
3	review. And if external events were significant to the
4	4B process, we provide appropriate level of review
5	until standards are endorsed.
б	Next slide.
7	I just wanted to talk about the issues
8	regarding translation of the baseline PRA to the CRMP
9	that you mentioned earlier.
10	The NEI 06-09 identifies the key areas
11	that ourselves and industry have come up with as what
12	needs to be looked at just to make sure that the CRMP
13	has been correctly interpreted and translated from the
14	baseline PRA model.
15	To highlight these issues. Basically the
16	configuration impact of initiating events. For
17	example, if I'm taking out a service water pump where
18	I have three, does that effect the frequency of a loss
19	of service water initiator year and does the CRMP
20	properly account for that?
21	Truncation levels. If the baseline PRA
22	model uses a different truncation level than the CRMP,
23	that would need to be reviewed to make sure that we're
24	satisfied that it cannot adversely impacted risk-
25	informed completion times.
I	I

(202) 234-4433

	41
1	We have a requirement for benchmarking.
2	That is, they need to demonstrate consistency by
3	actually running cases in the CRMP to the baseline
4	model and show that they could get in either identical
5	or consistent results, that we can understand the
6	differences if any.
7	PRA models are average risk models. So
8	there may be events that are dependent on what time
9	year you're in or what point in the operating cycle,
10	like the unfavorable or moderate temperature
11	coefficient. Typically PRAs treat those as fraction
12	of a years, and that's acceptable. But in a CRMP it
13	may matter whether I'm in the beginning of the cycle
14	or the end of cycle based on my configuration.
15	Therefore, that's another aspect we look at to make
16	sure it's either treated or as in the case of our
17	pilot plant, it's treated conservatively. It's simply
18	assumed that they're always in the most conservative.
19	CHAIRMAN APOSTOLAKIS: There is another
20	average, and I thought that's what you're referring
21	to. For standby systems the average on availability
22	between tests is one-half the interval between tests
23	times the failure rate.
24	MR. HOWE: Yes.
25	CHAIRMAN APOSTOLAKIS: Which is the
ļ	I

(202) 234-4433

	42
1	average.
2	MR. HOWE: Yes.
3	CHAIRMAN APOSTOLAKIS: Now the actual one
4	of course one minus E to the minus number T, but
5	nobody wants to work with that. But that average
6	remains.
7	MR. HOWE: We're accepting that. We're
8	not requiring to say how many days
9	CHAIRMAN APOSTOLAKIS: Okay.
10	MR. HOWE: may to. So that's sliding
11	under a liability.
12	CHAIRMAN APOSTOLAKIS: Now the other thing
13	is this your baseline is no maintenance, right?
14	MR. HOWE: Yes.
15	CHAIRMAN APOSTOLAKIS: The CDF starts
16	counting from the moment you take anything out?
17	MR. HOWE: It's the delta between the zero
18	maintenance case and what the actual configuration is,
19	yes.
20	CHAIRMAN APOSTOLAKIS: All right. And now
21	with online maintenance being done, I don't know the
22	what fraction of the year is the plant in this
23	configuration where nothing is out for maintenance?
24	MR. HOWE: Well, during my past history
25	from the Shearon Harris plant, I don't think we were

(202) 234-4433

	43
1	ever in a condition where nothing
2	CHAIRMAN APOSTOLAKIS: Yes. Right. IS
3	that correct? Does anybody want to
4	MR. GRANTOM: Yes. Pretty much.
5	This is Rick Grantom from South Texas
6	Project.
7	We reached a zero maintenance state.
8	Usually by the end of the work week we try to return
9	everything back to service after the work week. Now
10	we can sometimes are used for surveillance. So
11	there's some aspect of that. But there's a mark to get
12	back to the zero maintenance tech before we start the
13	next work week.
14	CHAIRMAN APOSTOLAKIS: End of work week?
15	You mean Friday? Is that what you mean?
16	MR. GRANTOM: Yes. Yes.
17	CHAIRMAN APOSTOLAKIS: So during the
18	weekend you're saying it's zero maintenance? Is that
19	essentially what you're saying?
20	MR. GRANTOM: Yes, except with the
21	exception of sometimes we're having surveillance that
22	are being done during that time.
23	CHAIRMAN APOSTOLAKIS: So then most of the
24	year you are already above the zero maintenance
25	condition, right?
ļ	I

(202) 234-4433

	44
1	MR. HOWE: I would say normally
2	MR. GRANTOM: Yes. During any given
3	regular Monday through Friday we'll be in some
4	maintenance state for planned maintenance activities
5	as part of a 12 week rolling preventative maintenance
6	cycle.
7	CHAIRMAN APOSTOLAKIS: Therefore these you
8	just work with allowed average time that you have
9	already determined. No big deal because this is
10	planned?
11	MR. GRANTOM: Correct.
12	CHAIRMAN APOSTOLAKIS: But if anything
13	happens during that time, then you start thinking this
14	way, perhaps.
15	MR. GRANTOM: This would give us an option
16	to be able to deal with this differently now. Yes. If
17	we had an emergent condition.
18	CHAIRMAN APOSTOLAKIS: Okay.
19	MR. HOWE: Sometimes I forget I'm a
20	regular now and not a utility guy. I probably should
21	correct the record of Shearon Harris where I worked.
22	If there was a radiation monitor broke or
23	some relatively insignificant thing, but major safety
24	systems, you know, it's routinely that we were in the
25	zero maintenance with regards to important systems.
I	

(202) 234-4433

Í	45
1	So I don't want to cast on my prior pilot plants.
2	MEMBER MAYNARD: I think it should also be
3	pointed out that you do a number of systems, number of
4	components and plants. So, yes, there may be work
5	going on. All the safety systems are tracked and you
6	have goals on the amount of time that they're
7	unavailable. In fact, there's performance indicators.
8	It's also part of the maintenance rule. And there's
9	some, you know, fairly low limits for safety system
10	unavailability.
11	So just not all maintenance out there is
12	taking systems to an inoperable state, too.
13	MEMBER BONACA: I still have a question.
14	MR. HOWE: Sure.
15	MEMBER BONACA: The frontstops are really
16	that you presented were deterministically the set
17	MR. HOWE: They are what they are to the
18	plant.
19	MEMBER BONACA: That's right. But I mean
20	the plant could use Reg. Guide 1.174 to modify those,
21	too, right? 1.177.
22	MR. HOWE: Yes, sir.
23	MEMBER BONACA: Okay. That seems to be
24	what you've done at South Texas.
25	MR. GRANTOM: This is Rick Grantom again.
I	

(202) 234-4433

	46
1	Yes, we have had some allowed outage time
2	extensions, notably diesel generators 14 days, which
3	is now the frontstop.
4	MEMBER BONACA: That's the frontstop. You
5	know, conceptually it makes the I would like to see
6	that change. I mean because of the issue that we
7	discussed before. I mean, you're going from a
8	deterministically based frontstop and then you are
9	going to a PRA based completion time. And so it's
10	okay. But, again, the significant changes of the
11	frontstop.
12	CHAIRMAN APOSTOLAKIS: I mean it's called
13	existing AOPs deterministically determined. I mean,
14	that's another statement. It was a judgment of a bunch
15	of people. I don't think it was
16	MEMBER BONACA: Judgment, absolutely. But
17	on occasions it was
18	CHAIRMAN APOSTOLAKIS: Other things were
19	deterministically, I can grant you that.
20	MEMBER BONACA: Yes.
21	CHAIRMAN APOSTOLAKIS: But this one was
22	really what do you think, what do you think, what I
23	think, let's do it this way.
24	MEMBER BONACA: Oh, yes. No, not even
25	this Committee.
ļ	I

```
(202) 234-4433
```

	47
1	CHAIRMAN APOSTOLAKIS: Not even this
2	Committee.
3	MEMBER BONACA: I will know how they say
4	that at the first plant. But I think that after the
5	first plant sets those to their own tech specs, it was
6	like a cascading
7	MR. HOWE: We've been doing pretty well
8	over the years, though. I mean, we've been doing them
9	for 30 some years without
10	MEMBER BONACA: Very conservative values,
11	too.
12	MEMBER SHACK: I mean somebody went
13	through this process with the OOS, I mean if you
14	hadn't already done the 1.177 would be all set up to
15	go back and look at his frontstops
16	CHAIRMAN APOSTOLAKIS: Sure.
17	MEMBER SHACK: I would think.
18	MR. TJADER: I think once a plant
19	implements 4B the only thing they might want to do is
20	take a look at some of the very short frontstops and
21	say well can I adjust by a longer time to allow me
22	better time to
23	CHAIRMAN APOSTOLAKIS: Yes. It adds
24	flexibility.
25	MR. HOWE: Yes. I wouldn't expect somebody
I	I

(202) 234-4433

	48
1	to come in to a 4B plan and say well I want my 72
2	hours to go out to 14 days so I don't have to do any
3	of this. No. This is the process we think is
4	appropriate. We would prefer everybody to go to this
5	rather than to use 1.177.
б	MR. TJADER: Yes. I think docket 4B we
7	would be very skeptical about subsequent (4)(a)
8	applications. And of course if they've had (4)(a)
9	applications now, then obviously if they went to 4B
10	then the implementation of the risk-informed
11	completion time with respect to those systems that are
12	(4)(a), it would be obviously less margin or less
13	additional time that they could get from the
14	frontstop.
15	CHAIRMAN APOSTOLAKIS: Is it true that
16	my impression is that for plants that have extended
17	the frontstop using Regulatory Guide 1.177 that the
18	probability that they will get into this is very low.
19	I mean, South Texas I remember your diesel
20	generators, you have 14 days but you never really
21	reach 14 days, is that correct?
22	MR. PHELPS: This is Jay Phelps, South
23	Texas Project.
24	Really the extended allowed outages that
25	are currently just out of Reg. Guide 1.177 are not
I	I

(202) 234-4433

	49
1	frequently utilized either. Those are longer time
2	frames. The value in the Initiative 4B is not going
3	to be for those single system outages. It's going to
4	be for the unplanned event for that opposite train
5	component while you have its fellow component out of
6	service is where this would actually be utilized.
7	CHAIRMAN APOSTOLAKIS: Well then this
8	would be fairly infrequent?
9	MR. PHELPS: Yes.
10	MEMBER BONACA: No. The reason why I asked
11	the question is that the frontstop, I use the word
12	deterministically, but in the back of your mind for
13	example an aux feed pump you have the accident
14	analysis. And you think about int he accident analysis
15	you're presenting a level of conservatism that is
16	different from what you are assuming in your success
17	criteria in the PRA. So there isn't any consistency
18	there.
19	And if you change that frontstop, you
20	would get a different value that is more coherent with
21	this initiative.
22	CHAIRMAN APOSTOLAKIS: Coming back to the
23	translation go ahead.
24	MR. TJADER: Let me just clarify something
25	that Jay Phelps just said there.
I	

(202) 234-4433

1 I think he's taking you from a South Texas 2 perspective. Basically South Texas is a very unique 3 case where for many systems they have three trains 4 where other plants have two. And therefore, their 5 risk-informed completion times for many systems could be extensive. 6 7 And when he's saying that the application would be when the other train is out, that is for when 8 9 they still have a capability, i.e, it's a two train 10 spec, they have three trains; they still have a third train there available ready to go. So those tech 11 12 specs are overly conservative. What this explicitly does not do is permit 13 14 not for inoperabilities of all trains of a system, it 15 does not permit extension which relate to loss of safety function. 16

Sot hat implication I wanted to wipe off 17 the board for those that were concerned about it. 18

19 CHAIRMAN APOSTOLAKIS: That's okay. So 20 back to the translation.

21 MR. HOWE: I mentioned time here or time 22 in cycle. Recur reactions are also another elements 23

24 of the PRA that may be applied without regard to 25 looking at specific configurations. So there's a

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	requirement to make sure that if there are recovery
2	actions that maybe shouldn't apply to certain
3	configurations, that you address that.
4	And one I think is very important is the
5	user interface. If you want to apply 4B to a certain
6	tech spec, your CRMP, you should have a very easy way
7	for the operator to identify how he tells the CRMP
8	that this equipment is out of service to get that
9	time. He shouldn't have to fumble around and try and
10	figure out he needs to maneuver his computer to give
11	him the tech spec answer that he needs.
12	CHAIRMAN APOSTOLAKIS: Now all of these
13	are really requirements when you want to develop a
14	risk monitor, is that correct? Because a risk monitor
15	is not based directly on the PRA. You have to modify
16	the PRA.
17	MR. HOWE: In these
18	CHAIRMAN APOSTOLAKIS: Because the risk
19	monitor is a real-time basis monitor.
20	MR. HOWE: Correct. And these are what we
21	consider to be the things that need to be monitored.
22	CHAIRMAN APOSTOLAKIS: So if you already
23	have a risk monitor on your plant, you presumably have
24	done these things or if you develop
25	MR. HOWE: No, not necessarily. I think

(202) 234-4433

	52
1	that I don't think there are specific how do I
2	want to say this?
3	I don't think we have specific rules and
4	requirements that are as detailed as this for the
5	maintenance rule risk monitors.
б	CHAIRMAN APOSTOLAKIS: We don't.
7	MR. HOWE: It really is a tool to say oh
8	on average what's the risk and this is where you
9	want to run your tech spec completion times based on
10	the output of this. And we are getting much more
11	specific on what you have to do.
12	CHAIRMAN APOSTOLAKIS: No. But you're not
13	regulating risk monitors. But what I'm saying is if
14	a plant has a risk monitor for its own use, they have
15	gone through this. Otherwise, it's not a risk
16	monitor.
17	MR. HOWE: And what I'm telling you from
18	my experience is, no, we didn't take a look, for
19	example, at time in gear and time in cycle; we just
20	accepted the average. So from a maintenance rule
21	maybe early in cycle some of our risk inputs for
22	maintenance rule are not exactly what they should be,
23	but they give you a feel for it. But for the CRMP for
24	4B plants you're going to use that risk monitor.
25	CHAIRMAN APOSTOLAKIS: Right.
	I

(202) 234-4433

	53
1	MR. HOWE: You're going to have to go
2	back and make sure that you have addressed these or
3	address them.
4	CHAIRMAN APOSTOLAKIS: Yes. Correct. Yes,
5	the time year may be some special case. But if you
6	want to have a risk monitor, you really have to watch
7	how how are you handling common-cause failures
8	here? You have one component down
9	MR. HOWE: Right, I understand.
10	CHAIRMAN APOSTOLAKIS: extra risk
11	management actions to make sure that the other
12	MR. HOWE: Yes.
13	CHAIRMAN APOSTOLAKIS: one is not
14	susceptible?
15	MR. HOWE: We discussed this pretty
16	extensively about a year and a half ago. Should you
17	when you have an emergent failure where a component is
18	part of a common-cause group, should you adjust the
19	risk-informed completion time until you are sure there
20	is no common-cause. What we have decided is that the
21	existing requirements for operability determination
22	and assessment of extended condition are adequate for
23	plant safety to date. And that modifying the risk-
24	informed completion time conservatively on common-
25	cause for emergent failure was a burden didn't give us
ļ	I

(202) 234-4433

I	54
1	a commensurate safety benefit.
2	What we agreed to was that if you have
3	emergent failure and you are in a risk-informed
4	completion time, while you are still evaluating that
5	extended condition to absolutely assure yourself that
6	the other components are not in anyway effected by it,
7	you would simply assess risk management actions that
8	may be appropriate and implement then while you're in
9	the RICT.
10	In other words, all you're already
11	required to do an immediate op pump operability
12	determination for redundant component and you're
13	already required to do a thorough review of the
14	extended condition. And this program doesn't relieve
15	you of that burden. But we didn't think it was
16	beneficial to require changing the numbers for the
17	RICT based on the emergent failure. It was more
18	appropriately handled by risk management issues.
19	CHAIRMAN APOSTOLAKIS: All right.
20	MR. HOWE: Okay.
21	Final bullet, there are administrative
22	controls. The CRMP I think it's obviously has to be
23	under software QA. There needs to be configuration
24	controls so as to reflect the as-built as-operated
25	plant. Users have to be trained in any procedures. It
I	1

(202) 234-4433

(202) 234-4433

	55
1	should be under the corrective action program to
2	assure that the tool is maintained "operable."
3	And that's what I have to say about the
4	CRMP implementation.
5	Next I want to get into a license
6	amendment review. What are we proposing for a licensee
7	to submit and how are we going to conduct our reviews
8	with the 4B plants. These aren't in any particular
9	order, it'll just give you a flavor for what we are
10	going to focus our reviews on.
11	The first thing is licensee must identify
12	exactly which tech spec actions they want to apply
13	risk-informed completion time to. So they need to
14	identify what functions those systems provide in the
15	design and licensing basis and how were they modeled
16	in the PRA. You can't apply this to a system that's
17	not in the PRA. This is a risk-informed use of the
18	PRA. So applying it to a radiological ventilation
19	system which it doesn't mitigate core damage, would
20	not be appropriate.
21	I mentioned before, and I used the
22	improper words ago so the same argument applies, if we
23	want to see what the differences are between the
24	success criteria and the design and licensing basis
25	versus the PRA and understand those differences and
ļ	1

(202) 234-4433

	56
1	make sure we're satisfied that it's appropriate for
2	the 4B program.
3	And, again, exceptions to that would be
4	either justified or appropriate restrictions applied
5	to their 4B program.
6	The licensee will assess against Reg.
7	Guide 1.200 for the quality of their PRA models.
8	Right now it's just internal events, but later for PRA
9	we're going to look at a lot of detail about that. We
10	expect to go to each site and do it all, just like we
11	did South Texas. And this is one of the prime areas
12	we would focus on.
13	If certain external events are excluded,
14	we want to review why they've been excluded and make
15	sure that justification is appropriate.
16	Next slide.
17	Most licensees only have at power PRA
18	models. So in modes 1 and 2 are power and start up
19	operation that are covered. And if they wish to apply
20	risk-informed completion times to lower modes, again
21	not in cold shutdown but the transition modes, they
22	would have to justify whether PRA tools are
23	appropriate. So that's another area we would look at.
24	We want to see their programs and
25	procedures that assure that the PRA models and CRMP
I	

(202) 234-4433

	57
1	are kept current with the plant.
2	And as I mentioned before, we'll look at
3	the configuration risk management program in the areas
4	we talked about for translating the PRA model to the
5	CRMP, the admin controls, the scope and so forth.
6	And again, that last bullet we focused on
7	how easy it is for the operator to use that CRMP tool.
8	Does he really understand it? Because that's how he's
9	going to comply with the tech specs.
10	Next slide.
11	We'll look at key assumptions and sources
12	of uncertainty. Basically we're going to focus on how
13	do they identify with them, how do they disposition
14	them through sensitivity studies, were there any
15	impacts on the 4B program and how would they propose
16	to be handled.
17	That last bullet on cold shutdown out of
18	scope, it's inappropriate. T should have been carried
19	without a previous slide.
20	And we're going to look at their
21	implementation, their program procedures, their staff
22	responsibility for this and their decision process for
23	risk management action. Typically when you extend the
24	tech spec they could propose what comp measures they
25	might put in place for an extended CT. Here it's
I	1

(202) 234-4433

	58
1	really just a program and a process to assess and put
2	in place. So we want to understand that.
3	That is what we will be looking at when we
4	review a 4B program.
5	CHAIRMAN APOSTOLAKIS: I have a couple of
6	questions.
7	MR. HOWE: Sure.
8	CHAIRMAN APOSTOLAKIS: Let's see if I can
9	find them.
10	This business of going back periodically
11	but most every 24 months and compare with 1.174. I
12	find that a little intriguing.
13	MR. HOWE: Okay. That was actually Bob's
14	presentation, not mine.
15	MEMBER APOSTOLAKIS: But you will have to
16	answer.
17	MR. HOWE: Pardon me?
18	CHAIRMAN APOSTOLAKIS: You will have to
19	answer that. I don't think Bob should open his mouth.
20	But let me see if I can find my comment
21	here.
22	You're saying in the SER here which I'm
23	looking at there it is. A period assessment of the
24	risk incurred due to the extensions of CTs is also
25	required. This is an evaluation of the calculated
Į	1

```
(202) 234-4433
```

delta CDF and delta LERF are met. If the RG limits are exceeded, then corrective actions must be implemented.

Let me tell you how I understand this and 6 7 maybe you have comment. You have a licensee who takes 8 advantage of this three or four times a year. And they 9 do this on a regular basis. Then at some point even though the whole thing is based on the assumption of 10 an increment in risk, which is temporary, at some 11 point you wonder. You say wait a minute now, this 12 temporary thing is way too permanent. They do this all 13 14 the time. So if I calculate now the total risk for the three years, or whatever, including those incremental 15 risks, I should have the delta CDF which I would treat 16 as permanent. I should have delta CDF that should be 17 less than ten to the minus five; that's really what 18 19 you're saying here? Otherwise the guy has increased 20 the risk permanently using a tool that is supposed to 21 be for temporary increases. Is that the thinking here? 22 Yes. But I'm not sure then to MR. TJADER: 23 the minus is the right five is the right number. I 24 think, what is it --

CHAIRMAN APOSTOLAKIS: Well, it says

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

	60
1	here
2	MR. HOWE: Well, I was confused. Because
3	you were looking at him but you told me to answer the
4	question.
5	CHAIRMAN APOSTOLAKIS: I am reading from
6	the document. It says "To assure that the guidance of
7	Regulatory Guide 1.174 for delta CDF (ten to the minus
8	five per year)," this is the upper bound in that CDF
9	on the Regulatory Guide where above ten to the minus
10	five is the normal acceptable region. Most of the
11	time it's below, ten to the minus six, right? And
12	then delta LERF is consistent, ten to the minus six.
13	And this is, in fact, on page 4 it says. Page 4.
14	I mean, believe me, I wouldn't lie.
15	MR. HOWE: I think I understand
16	CHAIRMAN APOSTOLAKIS: Do you have it?
17	MR. TJADER: Go ahead, Andrew.
18	CHAIRMAN APOSTOLAKIS: Oh, you don't have
19	the important documents with you? Do you find it on
20	page 4?
21	MEMBER BONACA: At the bottom of page.
22	MR. HOWE: In the SE?
23	CHAIRMAN APOSTOLAKIS: Yes, in the SE.
24	The numbers are correct. I mean, I don't know why you
25	are surprised. I mean, it is ten to the minus five.
I	

(202) 234-4433

	61
1	MR. HOWE: Well, I'm good with it.
2	As the SE writer, let me tell you
3	CHAIRMAN APOSTOLAKIS: Yes, please.
4	MR. HOWE: The direct implementation of
5	any particular 4B LCO extension is to us a temporary
6	change in risk. Therefore, the guidance in Reg. Guide
7	1.177 and especially in 1.177 which is a five E minus
8	seven ICCG limit, associated LERF limit, don't apply
9	because it's not a permanent change to the tech specs.
10	CHAIRMAN APOSTOLAKIS: Correct.
11	MR. HOWE: You assess it each time based
12	on the actual risk. Therefore, that's why we applied
13	the guidance in NUMARC 93-01 endorsed by Reg. Guide
14	1.182 because that's how they normally would assess
15	configuration risk and maintenance rule space applying
16	the tech spec LCO on top of that. This initiative is
17	intended to make those consistent, and that's probably
18	comparable.
19	We interpret, however, that the overall
20	implementation of the program however many times you
21	will use extended LOCs, once a year, once a month or
22	whatever, as proposed by industry is consistent with
23	Reg. Guide 1.174 in that it should only result in
24	either zero or small increases in risk. But the
25	problem for me as
	I

(202) 234-4433

	62
1	CHAIRMAN APOSTOLAKIS: Permanent
2	decreases, though?
3	MR. HOWE: Yes. As the program determines
4	that's our distinction. We say that each individual
5	application is temporary, but you're putting it as a
6	permanent program change to your tech spec. So we want
7	to look at overall as you implement these risk-
8	informed completion times sporadically what is it
9	doing to the risk profile plan? We can't predict
10	that. As Mr. Phelps indicated at South Texas mostly
11	it's going to be for emergent failures that they can't
12	predict.
13	So what we decided to do, what was
14	proposed by industry and we've accepted in our safety
15	evaluation, is that periodically not exceed I believe
16	two operating cycles
17	CHAIRMAN APOSTOLAKIS: Twenty-four months
18	in the backstop.
19	MR. HOWE: or a two year I'm sorry?
20	CHAIRMAN APOSTOLAKIS: The backstop is 24
21	months.
22	MR. HOWE: Okay. All right. That they
23	would go back and look at the past history of how they
24	applied individuals and assess what was the
25	incremental risk. In other words, they would have been
	I

(202) 234-4433

1 limited by their frontstop CT, but now they have this 2 flexibility we've granted them so they incur an 3 additional amount of risk temporarily. And maybe that 4 gets offset by improved performance of the equipment 5 or they didn't have to do --instead of doing five small outages, maybe they did one big one. So that's 6 7 where you make it back to zero. 8 CHAIRMAN APOSTOLAKIS: Right. So --9 But they're required to MR. HOWE: 10 directly assess that, compare it to the 1E minus five CDF change and assure that this not being abused. 11 12 CHAIRMAN APOSTOLAKIS: Right. And if they find in fact that 13 MR. HOWE: 14 the way we're implementing this program is causing 15 risk creek, if I can use that term, they're required to go back and assess why is that happening, what can 16 17 we do to change our program and get it back to as it 18 was originally proposed. 19 CHAIRMAN APOSTOLAKIS: So I think I 20 understood it correctly more from what you're saying. 21 MR. HOWE: Okay. 22 That you don't want CHAIRMAN APOSTOLAKIS: 23 the people to use this and over the years to 24 effectively decrease their CDF even though this --25 MR. HOWE: That's correct.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

63

	64
1	CHAIRMAN APOSTOLAKIS: But another point
2	that I maybe should be making clear here is that this
3	delta CDF is not the delta CDF that is used in this
4	4B. This delta CDF in 1.174 is from the average CDF
5	over the year that includes all sorts of maintenance
6	activities and so on. It's not the zero maintenance.
7	MR. HOWE: The delta CDF that I'm looking
8	for is I operate my plant in a configuration and I
9	calculated that risk when I look beyond the frontstop.
10	So I know how much extra risk I accumulated when I see
11	that
12	CHAIRMAN APOSTOLAKIS: Yes, extra risk.
13	MR. HOWE: I never would have
14	accumulated by using a 4B plan.
15	CHAIRMAN APOSTOLAKIS: And you subtract
16	that from what? Not from the zero maintenance.
17	MR. HOWE: I don't strike anything. That
18	is the delta right there in my opinion.
19	CHAIRMAN APOSTOLAKIS: No.
20	MR. HOWE: No?
21	CHAIRMAN APOSTOLAKIS: No. Because that
22	comes from the zero maintenance. You are measuring
23	from the zero maintenance. 1.174 doesn't do that. It
24	says here is the average CDF, five ten to the minus
25	five, your delta CDF for primary changes is ten to the
Į	1

(202) 234-4433

	65
1	minus five, so you increasing it. They are two
2	different baselines. And you have to be careful with
3	MR. BRADLEY: Biff Bradley, NEI.
4	Just to clarify. The risk you're
5	measuring that Andy's speaking of is not above zero
6	maintenance. It's above the frontstop. You don't start
7	accumulating that risk until you've exceeded the
8	frontstop. So you're looking at the delta of this
9	application from the current tech specs to having 4B
10	in place. That's the incremental risk.
11	CHAIRMAN APOSTOLAKIS: Well, that's not
12	the same as the one in 1.174. 1.174 I look at the
13	plant and I do a standard PRA that says, you know,
14	these components are periodically tested. They are
15	repaired and all these activities, human actions, it's
16	an average estimate of the CDF over the year.
17	MEMBER BONACA: Unavailabilities included.
18	CHAIRMAN APOSTOLAKIS: Unavailabilities
19	included, everything.
20	MEMBER BONACA: That's right.
21	CHAIRMAN APOSTOLAKIS: It has nothing to
22	do with frontstops or zero
23	MR. GRANTOM: This is Rick Grantom.
24	George, you're correct, Dr. Apostolakis.
25	When we look at a rolling 52 week average, is kind of

```
(202) 234-4433
```

	66
1	what we're talking about here in this, the way we look
2	at that is we do it in a zero maintenance state. But
3	we normalize it against the average annual estimate of
4	CDF. And so what we're measuring is if our average
5	estimate is 1E minus five, then on the graph
6	CHAIRMAN APOSTOLAKIS: The PRA result.
7	MR. GRANTOM: Yes. Our average is 1E minus
8	five, we'll call that one and then we'll look at
9	normalize it. Two is twice that amount. Three is
10	and so we measure the rolling 52 week average and we
11	take a look at our actual risk when we're looking at
12	rolling 52 week averages are. And we look at that
13	against the average. What does the actual risk do
14	against the average. Because you're correct. We have
15	average maintenance durations for planned and
16	unplanned, average frequencies in the average model.
17	And then we look at our actual configuration risk
18	against that and are we within a band around that.
19	CHAIRMAN APOSTOLAKIS: Well, that's the
20	application you're doing. I'm talking conceptually
21	now. I'm trying to understand this and make sure that
22	we're all on the same page.
23	When I implement the 4B we have agreed
24	that I measure risk from the zero maintenances. So I
25	assume there's no maintenances. Or if something is
ļ	I

(202) 234-4433

(202) 234-4433

	67
1	out, it's out, right? The clock's started.
2	MR. HOWE: The differential to the zero
3	maintenance.
4	CHAIRMAN APOSTOLAKIS: The differential.
5	Exactly. Started. And using now my changes, I
6	calculate backstops and so on and so on. And I that
7	for a number of times over the year, always from zero
8	maintenance.
9	Then I calculate the average risk I guess
10	from these calculations over the year, right? And
11	this will be the average increment from the zero
12	maintenance risk CDF. But that's not the difference
13	I have to go and apply to 1.174. I will have to take
14	that extra and subtract from the average CDF that a
15	normal PRA gives me that includes inavailabilities, it
16	includes everything.
17	MR. BRADLEY: And I think it's simpler
18	than that. You're just looking at the delta due to
19	this application. Okay. So you're looking at the risk
20	that you accumulate beyond the frontstop.
21	MEMBER SHACK: It's a different delta.
22	CHAIRMAN APOSTOLAKIS: And that's what I'm
23	saying.
24	MEMBER BONACA: It's a different delta.
25	Yes, it's a different delta.

	68
1	MR. BRADLEY: You're not comparing it to
2	an average model. All we're doing is every time you
3	enter RMTS you're keeping track on how much risk above
4	the frontstop you've accumulated. You add that up and
5	that's your delta.
6	CHAIRMAN APOSTOLAKIS: In 4B I do that.
7	MR. BRADLEY: Right.
8	CHAIRMAN APOSTOLAKIS: But then on top of
9	it every two years I have to go to 1.174. And I'm
10	saying that's not the appropriate delta now.
11	MR. GRANTOM: This is Rick Grantom again.
12	You could look at two averages. One
13	average that you said was the average of the
14	configurations that occurred. And then there's the
15	average annualized model which has average assumptions
16	in there for lots of different things in there.
17	Okay. So there's an average that's
18	associated with that. There is an average of the
19	configurations that have occurred, and you can measure
20	that value also. Now, whether one would take the
21	delta between the average of the configurations and
22	the average annualized model is, I think, what Dr.
23	Apostolakis is talking about versus looking at the
24	average CDF model and it's basically what I was saying
25	with the rolling 52 week average. We're looking at a
I	I

(202) 234-4433

	69
1	rolling 52 week average of the configurations against
2	the average annualized model to see if it comes within
3	a band.
4	So when I was discussing this rolling 52
5	week average here is basically what I was
6	communicating was I think almost the same thing that
7	you were talking about.
8	CHAIRMAN APOSTOLAKIS: I suspected it was
9	the same thing. But let's put it in a different way.
10	One more way.
11	In 1.174 there is nothing like zero
12	maintenance. We don't mention anything there like
13	that,right? So we're saying that the baseline CDF,
14	let's call it the baseline CDF, right, which is a
15	result of a standard PRA assuming all kinds of things,
16	whatever happens to the plant. Then you propose a
17	change permanent, like extending the diesel outage
18	time to 14 days, you do your calculations. Find the
19	new CDF and you subtract it from that baseline, and
20	that's now the measure of whether it's acceptable.
21	That's one case.
22	If I didn't want to use 1.174, I have to
23	use the baseline CDF and deviations from it.
24	In your case, though, your baseline CDF is
25	not the PRA CDF, it's a zero maintenance.
I	I

(202) 234-4433

	70
1	MR. HOWE: It's lower.
2	CHAIRMAN APOSTOLAKIS: Exactly.
3	MR. HOWE: Which is lower.
4	CHAIRMAN APOSTOLAKIS: Which is lower.
5	So you do your calculations there. Within
6	the 4B everything is fine; self consistent, we
7	calculate the accumulative risk and all that. But then
8	you have the extra requirement that every 24 months I
9	have to take some of these results and go back to
10	1.174. And what I'm saying is when you go back make
11	sure that you're using your baseline CDF now to
12	calculate the delta CDF. Because that's what 1.174
13	says. That's all.
14	MR. HOWE: Actually, these were limiting.
15	We make sure that we say and with from help for Dr.
16	Perry I understand what you're saying.
17	I believe that if the licensee were to
18	assess forget about Reg. Guide 1.174 for a minute. If
19	you were to assess the actual delta risk that you
20	accumulated greater than the frontstop, you just said
21	my delta from the zero risk for the time that is there
22	is this amount of risk. I believe that would be a
23	conservative estimate for you to take the extra
24	unavailability he got from his equipments, put it in
25	his baseline CDF and calculate it.
I	I

(202) 234-4433

	71
1	So it's a conservative way to bound
2	themselves to the Reg. Guide 1.174. But I think it
3	would be acceptable to say for the last 24 months I've
4	been using 4B. Here's my new unavailabilities of the
5	equipment. I put those in my PRA and I don't see a
6	difference, or my difference is within I think that
7	would be
8	CHAIRMAN APOSTOLAKIS: It seems to me that
9	this should be clarified.
10	Gareth, do you have a comment?
11	DR. PERRY: Yes. This is Gareth Perry,
12	NRR.
13	I think this is really I think what
14	they're doing, and if I understand what Biff is saying
15	correctly, that you really only are looking at the
16	delta between the frontstop and the rest, what you're
17	really doing is you're taking a sample of what the
18	average risk would look like if you traced it through
19	the year and then taken the difference between that
20	and what the actual is, having added on the extra. So
21	I think in the limit if you added up all the years you
22	would get exactly to the Reg. Guide 1.174 calculation.
23	So I think this is just a it's a sample
24	approach to getting at the difference. And I think if
25	you also look at it as a practical way of implementing
	1

(202) 234-4433

	72
1	principle 5 of Reg. Guide 1.174, which is to monitor
2	the change, it's a way of doing that.
3	CHAIRMAN APOSTOLAKIS: I think you maybe
4	right, and right now I can't follow the argument.
5	There are two or three delta CDFs in this
6	safety evaluation that mean different things in my
7	view. Some clarification would be useful. And if
8	your argument is correct, which I'm sorry right now
9	it's difficult to follow, then so be it. I mean, but
10	just put it down; that's all I'm saying. Because if
11	I go back for example, the tables that Bob showed
12	us where, you know, neither endorse or accept or
13	whatever, not disapprove, you had a delta CDF there,
14	no? No. It was CDF. CDF. But again, those were
15	I mean, was it from assuming zero maintenance or the
16	average CDF? No, it was instantaneous. So it assumed
17	zero maintenance, right?
18	MEMBER BONACA: The text does not specify
19	that.
20	CHAIRMAN APOSTOLAKIS: That's what I'm
21	saying. It's confusing. Well, I mean, I've read it.
22	MEMBER BONACA: It says what you have to
23	do.
24	CHAIRMAN APOSTOLAKIS: Sure. Sure.
25	MEMBER MAYNARD: Well, I'm not sure. I
I	I

(202) 234-4433

	73
1	think you have to be careful with this evaluation
2	we're talking about. And it may be good to take a look
3	and for a sanity check, but if you have two identical
4	plants side-by-side and you have one that's using this
5	process and one that's not, one may have to take a
6	system out twice to get something done where the other
7	one can get it done within using this process.
8	Actually in a shorter time than it may exceed
9	frontstop, but he only has to take it out once instead
10	of twice.
11	So I don't think the fact that you exceed
12	the frontstop is necessarily in itself means that
13	you've increased the overall risk. You may have
14	actually decreased it by not having to take something
15	out two or three times or maybe by having to live with
16	degraded equipment.
17	So I think it's good to maybe look at it,
18	but I think we have to be careful that we're not
19	saying that this is definitely a definitive increase
20	in risk
21	CHAIRMAN APOSTOLAKIS: I think that we're
22	discussing two or three different things now. But the
23	point you just raised, Otto, is whether this is worth
24	doing and if you do it, what conclusions do you draw,
25	which is one point.
ļ	I

(202) 234-4433

	74
1	MEMBER MAYNARD: Yes.
2	CHAIRMAN APOSTOLAKIS: My point is more
3	mechanical. That when you calculate the delta CDF and
4	the delta LERF make sure you are doing it consistently
5	with the regulatory guide you're using. If you use the
6	4B, it's one calculation, clearly stated. If you use
7	1.174 in my mind it's another calculation unless
8	somebody proves otherwise.
9	So there are two issues. One is what you
10	just said. I mean, having done it correctly, what
11	conclusion do I draw now, which is a valid point.
12	MEMBER BONACA: But what I'm saying here
13	is that paragraph is not correct. It's a correct
14	statement.
15	CHAIRMAN APOSTOLAKIS: It's incomplete.
16	It's incomplete.
17	MEMBER BONACA: What I'm saying is yes,
18	but you want to have the recipe with, you know, how
19	many tablespoons of this and whatever
20	CHAIRMAN APOSTOLAKIS: No. No. I want this
21	paragraph to continue and put a statement as to what
22	or alert the user to the fact that these delta CDF now
23	is the 1.174 delta CDF. Why is this a big deal?
24	MEMBER BONACA: That is not a big deal.
25	MR. HARRISON: Dr. Apostolakis, Donnie
	I

(202) 234-4433

	75
1	Harrison from the PRA Branch.
2	CHAIRMAN APOSTOLAKIS: It shouldn't be.
3	MR. HARRISON: We'll take that comment and
4	go back and reread the text. And if we're talking
5	about different delta CDFs and how they're being used,
б	we'll clarify that in the SE.
7	CHAIRMAN APOSTOLAKIS: Yes. Yes. That's
8	all I'm saying.
9	MR. GRANTOM: And, Dr. Apostolakis, this
10	is Rick Grantom.
11	If I might add there, that that's in fact
12	how we're doing. I call it the rolling 52 week
13	average, but every data point is the average of the
14	actual configurations from the previous 52 weeks we've
15	been in. So it is in fact measuring what you're
16	talking about.
17	CHAIRMAN APOSTOLAKIS: Yes. And again, the
18	issue is not really how the pilot is doing. It's what
19	we're going to do in the future.
20	MR. HARRISON: And I think it's worth
21	clarifying that so that we don't have the confusion,
22	as well as point out as Dr. Perry pointed out, which
23	is this is a way of implementing the fifth principle
24	performance monitoring to make sure that the decisions
25	you're making are being maintained. And that
	I

(202) 234-4433

	76
1	CHAIRMAN APOSTOLAKIS: Now our lives are
2	run by 1.174.
3	MR. HARRISON: Okay.
4	CHAIRMAN APOSTOLAKIS: There is always a
5	principle that applies to what kind of breakfast I'm
6	going to have.
7	Are you okay now? Are you fine. Okay.
8	MR. HOWE: I understand your comment. I
9	guess my words are misleading in the SE
10	CHAIRMAN APOSTOLAKIS: I'm not saying
11	they're misleading. They just need to be clarified.
12	MR. HOWE: The licensee who implements 4B
13	needs to do the calculation properly to assure they're
14	in compliance.
15	CHAIRMAN APOSTOLAKIS: I think that's a
16	very smart thing that you require them to do, as long
17	as you put two clarify two things here. One is the
18	mechanics of doing it and second what Mr. Maynard just
19	said, what conclusions do you draw from this. Be
20	careful. That's all. Okay.
21	MR. HOWE: Okay.
22	CHAIRMAN APOSTOLAKIS: So you think we're
23	going to have that by the full Committee? I mean,
24	it's just a line?
25	MR. HOWE: Absolutely. Sure. Sure.
l	I

	77
1	CHAIRMAN APOSTOLAKIS: Yes. Very good.
2	Thank you.
3	MR. HOWE: That concludes my first
4	presentations. I'm ready not to discuss the South
5	Texas audit results and what we
6	CHAIRMAN APOSTOLAKIS: Yes. And we're
7	close to an hour and a half. So following my
8	principle 1.174, we will break for 15 minutes. We
9	will reconvene at ten minutes past.
10	(Whereupon at 9:48 a.m. a recess until
11	10:06 a.m.)
12	CHAIRMAN APOSTOLAKIS: Okay. We're back
13	in session.
14	MR. HOWE: Thank you. My second
15	presentation is on South Texas Project audit that we
16	performed in June.
17	Next slide.
18	Talking about the purpose of the audit and
19	what we found.
20	Our logistics of this, we have four
21	experienced PRA analysis including two of our current
22	senior leadership positions in PRA, Dr. Perry and Mr.
23	Steve Laur. We also had the senior reactor analyst
24	from the Region who was what was his name? I don't
25	know. Had some tech spec expertise, Bob Tjader. And
ļ	

(202) 234-4433

	78
1	we also have the South Texas Project Manager Mr.
2	Thadani there. So we had a pretty well experienced
3	team looking at a variety of different aspects of
4	their 4B program.
5	We spent $3\frac{1}{2}$ days on sight in late spring.
6	The weather was beautiful.
7	We had a prewritten audit and review plan
8	that was developed by the reviewers prior to the
9	visit, and that was shared with the licensee so they
10	could be well prepared to have the information
11	available to us.
12	The purpose of the audit, and I just
13	quoted from our audit plan, was to provide assurance
14	that the PRA model configuration risk management
15	program and supporting activities are adequate to
16	conclude that the implementation of the proposed RMTS
17	amendment request will not challenge public health and
18	safety. That's a pretty high level goal. We also
19	looked at a lot of details that would support that
20	statement.
21	MR. TJADER: Mike Runyan was his name.
22	MR. HOWE: What was that?
23	MR. TJADER: Mike Runyan.
24	MR. HOWE: Mike Runyan, yes. He was the
25	senior reactor analyst.
ļ	I

(202) 234-4433

	79
1	The scope of the audit was to establish
2	the technical adequacy of the licensee's PRA models
3	where we didn't have standards. This was specifically
4	the fire, the seismic and external events.
5	South Texas had submitted the high level
6	information required by Reg. Guide 1.200. This was a
7	more detailed look to make sure we were satisfied that
8	those models could support a 4B program.
9	We wanted to look at the development
10	implementation of the CRMP to address the issues we
11	talked about earlier.
12	We wanted to look at the status of the
13	licensee's training and their procedures for their
14	personnel to support RMTS' implementation because this
15	is a very significant change in tech spec compliance
16	philosophy.
17	And going along with that, we wanted to
18	look at the overall plant safety and risk culture of
19	their organization. And this is a soft thing, but
20	really what we're looking for here is if we're going
21	to use the PRA for tech spec compliance, does the line
22	management at the site really understand PRA and to
23	the extent and we were going to believe it and say,
24	yes, that's a good way to run my plant.
25	Just briefly the overall conclusion was
	I

(202) 234-4433

	80
1	that the South Texas PRA models, their configuration
2	risk management program and tools and their procedures
3	and their training appear sufficient in scope and
4	detail to support the license amendment request. So
5	we didn't find any outstanding issue that would be a
6	show stopped, if you will.
7	I'm going to go into some of the details
8	now of what was looked at and some of the findings.
9	The first area was the fire PRA. And the
10	fire PRA at South Texas was developed, I believe, in
11	the late 1980s and it was reviewed by Sandia National
12	Labs documented in a NUREG.
13	They identified it was updated in 1994 due
14	to fire barrier issues. And that they use a successive
15	screening approach. This was reviewed in some detail
16	by our reviewers. In fact, that was really the main
17	focus area; are we screening fire scenarios that for
18	certain configurations could be risk significant, and
19	therefore those need to be put back into the model. In
20	fact, one of the findings that discusses, they
21	needed to go back and kind of take a look at some of
22	those and assure themselves that it wouldn't be
23	appropriate to maybe include more of the site
24	scenarios in their fire PRA.
25	It also identified that there was

(202) 234-4433

(202) 234-4433

suppression credit or credit given for fire suppression pumps, but it was adjusted based on whether pumps were available. I think they had two or three -- three pumps. Thank you. And if one was out of service, they changed the credit they would give. And that's a positive aspect of this for configuration risk management.

8 Sort of kind of just a brief flavor for 9 what was looked for the fire PRA. And there was 10 probably a good day spent by two reviewers, of two 11 SLs, as a matter of fact looking at that in some 12 detail.

With regard to the seismic PRA, South 13 in a low seismicity zone, so it's not 14 Texas is something that we considered to be significant. They 15 do also assume that failures from seismic events are 16 17 100 percent correlated. So if you get an event that's of sufficient size to fail one component, it's going 18 19 to fail all the components that are similar to that. 20 So it's a conservative analysis and we didn't find any 21 issues there.

22 Some time was spent on the internal events 23 because we do have a standard for that. Fundamentally 24 we found that we can agree that they meet capability 25 category II of the existing ASME standard. There was

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

81

some additional detail we felt was necessary in their 2 documentation to make sure they clearly state that 3 they meet capability category II as opposed to just meeting the standard. 4

We also did review some instances where 5 the PRA model scope really wasn't complete enough to 6 7 match up with tech spec functions. And this lead to in their resubmittal after the audit some of the tech 8 9 specs that were in scope originally were removed from They now realized or decide that their PRA 10 scope. model at this time didn't support it. But they may 11 12 have to go back and add those systems into their PRA and make a later submittal. So there were some 13 14 changes that came out as a result of the internal 15 events review.

Next slide.

Prior to the South Texas CRMP 17 their program, as we've said, is a database look up of pre-18 19 solved configurations. This is convenient in terms of 20 translating the model because you're not putting the 21 model in place for online user manipulation. You're 22 simply pre-solving it, getting it numbers and they 23 simply have a database that they're checking to see what their configuration risk is. 24

> identified that They there ΟA are

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

16

25

	83
1	requirements that review these results. Obviously,
2	with 20,000 cases you're not going to a thorough
3	review of every single case, but you do the up front
4	checks on the process to make sure that what you're
5	getting should be reasonable.
б	They identified that there was no credit
7	given for any repairs of out-of-service equipment for
8	the CRMP, which is appropriate.
9	And with regard to time dependent
10	variables and cycle dependent variables they simply
11	assumed the most conservative time of year/time in
12	cycle as opposed to assessing it. So that's acceptable
13	for 4B.
14	We did find some issues with is there an
15	easy association between what tech spec I'm in versus
16	how I maneuver the CRMP. And South Texas took that and
17	is looking at their procedures and programs. And
18	based on their last submittal we're satisfied with
19	their consolidation.
20	Next slide.
21	Uncertainty analysis was another we looked
22	at. This was not yet completed. South Texas was just
23	finishing up the final revision of their PRA and was
24	getting ready to do the uncertainty analysis. So we
25	couldn't look at results. That's been done subsequent
ļ	I

(202) 234-4433

	84
1	as part of an RAI. But they did make a presentation
2	to discuss what they plan to do. And we had a meeting
3	to give us an opportunity to provide them some
4	feedback and our insights on what we think how they
5	ought to be accomplishing this task.
6	MEMBER ABDEL-KHALIK: Can we go back to
7	the previous slide, please?
8	MR. HOWE: I'm sorry. Absolutely.
9	MEMBER ABDEL-KHALIK: The comment about no
10	time dependent variables assuming the most
11	conservative value. Are there any future core designs
12	that would violate this?
13	MR. HOWE: Are you talking about the
14	moderate temperature coefficient?
15	MEMBER ABDEL-KHALIK: Right.
16	MR. HOWE: I can't speak for South Texas
17	Project.
18	MEMBER ABDEL-KHALIK: You know, say for in
19	general.
20	MR. GRANTOM: I can tell you right now
21	that our current tech specs don't allow a positive
22	moderator temperature coefficient, which would be the
23	one variable that would be considerably different.
24	We're always required by our current tech specs to
25	have a negative zero or negative moderator temperature
I	I

(202) 234-4433

	85
1	coefficient.
2	MEMBER ABDEL-KHALIK: But you're using the
3	less negative value as of now, I guess?
4	MR. GRANTOM: This is Rick Grantom.
5	We assume the most conservative throughout
6	the whole year for everything.
7	MEMBER ABDEL-KHALIK: Up to this point,
8	meaning up to the core design, things you have
9	documented so far. I mean, you still can come up with
10	a core design that would not violate the positive MPC
11	requirement and yet would be more restrictive than
12	whatever you've been doing so far?
13	MR. GRANTOM: In terms of the PRA
14	translation of that, though, we would assume the most
15	restrictive most conservative assumptions in the risk
16	analysis relative to that.
17	MEMBER ABDEL-KHALIK: Okay. I thought
18	these were all pre canned?
19	MR. GRANTOM: They are, and the criteria in
20	the analysis assumes the most conservative value with
21	regard to things like moderator temperature
22	coefficient.
23	MEMBER SHACK: But if you had a whole new
24	core design, you'd have to rerun these?
25	MR. GRANTOM: Right. If we had the core
ļ	I

(202) 234-4433

	86
1	design that did that, that would impact tat, yes we
2	would have to update it at that point in time.
3	MR. HOWE: Just to follow on to that, this
4	was a snapshot audit of where they are today. But the
5	other thing we looked at is their programs and
6	procedures that required them to access, are you're
7	mentioning. If they make design changes on anything
8	that could effect the CRMP look up cases, their
9	programs and procedures require them to update. That's
10	a feature that we look for in a 4B plan.
11	MEMBER ABDEL-KHALIK: Thank you.
12	MR. HOWE: Going to this one.
13	Okay. So in their presentation the
14	licensee identified or basically presented their
15	plans, which is they're going to identify the key
16	uncertainties using industry I think they were
17	draft documents at that time, as guidance for how they
18	would identify those key sources.
19	They would assess those key uncertainties
20	impact on any of their configurations where the time
21	was already less than the 30 backstop. In other words
22	if you have one that's already 100 and some days, it's
23	still unlikely that uncertainty could significantly
24	impact that. And we felt that was reasonable.
25	They were going to perform any sensitivity
ļ	

(202) 234-4433

	87
1	studies required. And per NEI 06-09, if necessary,
2	they would implement any program restrictions or comp
3	measures necessary to address those key sources of
4	uncertainty.
5	CHAIRMAN APOSTOLAKIS: Now you have a
6	statement in Safety Evaluation Report that the Staff
7	has not reviewed this document and the NRC neither
8	endorses nor disapproves its methods?
9	MR. HOWE: Yes. The same version we used
10	for the ten minus three, ten minus four.
11	CHAIRMAN APOSTOLAKIS: It starts with
12	review each individual licensee's process for
13	identifying assessing key uncertainties. Why haven't
14	you reviewed this document?
15	MR. HOWE: I haven't personally reviewed
16	it. The NRC is in the process of reviewing it. In
17	fact if they doesn't mind, I'll ask Dr. Perry to
18	comment ont he uncertainty document.
19	CHAIRMAN APOSTOLAKIS: Do we have that, by
20	the way? Does the ACRS have this document?
21	DR. PERRY: This is Gareth Perry, NRR.
22	I doubt it. We've seen draft versions of
23	it.
24	MEMBER SHACK: We had a presentation on
25	it, though, didn't we? I don't remember.
ļ	1

(202) 234-4433

	88
1	DR. PERRY: Well, you had a presentation
2	MEMBER SHACK: Their in engineering.
3	DR. PERRY: on an early yes,
4	before.
5	MEMBER SHACK: Oh, way back. Yes.
6	CHAIRMAN APOSTOLAKIS: That was more than
7	a year ago.
8	DR. PERRY: That was a long time ago.
9	MEMBER SHACK: Yes.
10	CHAIRMAN APOSTOLAKIS: But is it possible
11	for us to get it?
12	DR. PERRY: I think you should probably
13	ask Ken Canavan from EPRI.
14	MEMBER SHACK: But they've submitted it as
15	a license
16	MR. CANAVAN: Mr. Chairman, if you would
17	like it
18	CHAIRMAN APOSTOLAKIS: If I would like it?
19	No. Does it look like I don't like.
20	MR. CANAVAN: Ken Canavan from EPRI.
21	Mr. Chairman, we can make the documents
22	available to you.
23	CHAIRMAN APOSTOLAKIS: Thank you.
24	Since you're here now, I was reviewing two
25	documents from EPRI, they're pdf. And somehow you do
I	I

```
(202) 234-4433
```

	89
1	something to them and we cannot mark them, we cannot
2	highlight anything. Why? This makes it so
3	inconvenient. I mean as long as you give us the
4	document, what's the point of not allowing us to
5	highlight or to make comments on it?
6	MR. CANAVAN: It's not my personal
7	decision to lock the pdf. What they do is lock the
8	pdfs.
9	CHAIRMAN APOSTOLAKIS: Yes.
10	MR. CANAVAN: The point is to protect
11	copyright. So it's our publications.
12	CHAIRMAN APOSTOLAKIS: I don't understand
13	how copyright is protected that way since you are
14	giving it to me.
15	MR. CANAVAN: I'm not sure either.
16	CHAIRMAN APOSTOLAKIS: Can you tell
17	someone over there that this is very inconvenient?
18	MR. CANAVAN: I will register your point.
19	CHAIRMAN APOSTOLAKIS: Thank you very
20	much.
21	It's so inconvenient.
22	MR. HOWE: I hope the document we provided
23	in pdf will unlock.
24	MEMBER SHACK: NRC doesn't know how to
25	lock the documents.

	90
1	CHAIRMAN APOSTOLAKIS: Oh well.
2	So can you give us an example of an
3	uncertainty that was identified and how it was
4	handled?
5	MR. HOWE: I remember one of the key
6	source of uncertainty was the ventilation systems for
7	the switch gear and control room, Bob.
8	Mr. Grantom could probably give you one.
9	MR. GRANTOM: This is Rick Grantom.
10	One of our key sources of uncertainty is
11	loss of electricity auxiliary building HVAC, the
12	heating, ventilating, air conditioning at South Texas
13	Project. And this particular initiating event is
14	uncertain because we don't really know exactly at what
15	point in time if you lose fans to these rooms, these
16	rooms house safety related electrical switch gear, the
17	motor generator sets for the rod control systems in
18	there. So high heat load in some of these rooms and we
19	lose van cooling, what's the heat uprate, how long
20	does it take, what are the thermal fragilities of the
21	equipment in there and recovery actions that we may be
22	able to do?
23	So we conservatively modeled it as an
24	initiating event and also within a time constraint.
25	And it cascades itself eventually to an internally

(202) 234-4433

1 generated station blackout. Even though you have 2 power on the grid, you can't get it through the switch 3 gear rooms to do anything. And so it cascades itself 4 to an internally generated station blackout which 5 causes an importance to determine generator auxiliary 6 feedwater pumps. We have an alternate reactor coolant 7 pump seal injection capability with the positive displacement pump powered diversely from a technical 8 9 support system centered diesel generator. And so it 10 causes these components to be somewhat important. But that's an area of uncertainty that we've tried to 11 examine and look at that. 12 And it's still a large area of uncertainty. 13 14 HVAC being taken out of service has a big 15 impact on the results when you assume that being out of service. And it's driven by common cause failure of 16 17 the fans. So that's one area that's --MR. HOWE: I remember it, I don't know if 18 19 there were uncertainties. 20 MR. GRANTOM: -- that we have a high area 21 of uncertainty. 22 The reactor coolant pump seal LOCA, we used both models and the different seal LOCA models 23 24 over there to try to address that issue on the 25 uncertainty about the seal LOCAs.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

91

	92
1	Human error is another large area of
2	uncertainty, as it is with everybody.
3	The steam generator bypass where you have
4	a bypass of a the tube rupture going to a larger
5	release, the fraction of that release is another large
6	uncertainty that we do analysis on that area.
7	And those are really the kind of big ones.
8	The last one on the stup tubes is
9	uncertainty because it effects a larger release
10	frequency at that point in time. And in fact, this is
11	a dominant contributor now based on the analysis what
12	we have.
13	CHAIRMAN APOSTOLAKIS: So the general
14	approach was to be conservative and assume the worst?
15	MR. GRANTOM: Generally be conservative.
16	We were conservative that we assumed that the motor
17	generator sets are going to overheat, the plant's
18	going to trip on loss of electrical auxiliary HVAC.
19	So now once we have a trip, now we have an initiator
20	or now the plant's going to go. And if there is not
21	any means by which to remove heat from the rooms or
22	from the building, then we predict that conservatively
23	that all the equipment is going to fail. This is why
24	we cascade and switch conservatively to an internally
25	generated station blackout. Pretty severe that we
ļ	I

(202) 234-4433

	93
1	don't allow any equipment at that point in time, other
2	than these other ones that I talked about.
3	CHAIRMAN APOSTOLAKIS: These sound to me
4	like are all of model uncertainty type.
5	MR. GRANTOM: Yes. This would be
6	CHAIRMAN APOSTOLAKIS: I mean parameter
7	uncertainty really is irrelevant here, is it not?
8	MR. GRANTOM: In this regard, yes, for
9	this application parameter uncertainty is pretty much
10	irrelevant. This is an epistemic uncertainty, a
11	modeling uncertainty that's associated with South
12	Texas Project. And it's driven in a sense because of
13	where we are in South Texas. It does get quite hot.
14	And we tried to evaluate the room, heat up of the
15	systems, but all that's based on having fans, some
16	motive power to move air through rooms. And when you
17	calculate through the PRA, ultimately you find it's
18	common-cause failure of the fans that drive the
19	results.
20	CHAIRMAN APOSTOLAKIS: Yes.
21	MR. GRANTOM: So these fans right now are
22	extremely important in the risk modeling and our
23	ability to deal with that. So, yes, in a sense we
24	handled it conservatively.
25	CHAIRMAN APOSTOLAKIS: Very good.
I	I

(202) 234-4433

	94
1	MR. HOWE: Just to finish up, the NRC team
2	listened to their presentation, had some
3	recommendations based on our visit here at the site.
4	CHAIRMAN APOSTOLAKIS: So at some point
5	you would same something about NEI 06-09? It is under
6	review now?
7	MR. HOWE: Not 06-09. That's our
8	guidance. You talking about the EPRI document?
9	CHAIRMAN APOSTOLAKIS: Yes. And the EPRI
10	document is different from NEI 06-09?
11	MR. HOWE: Yes. Yes.
12	DR. PERRY: Yes. This is the guidance
13	document for tech specs.
14	CHAIRMAN APOSTOLAKIS: So the EPRI
15	document is 1009652.
16	DR. PERRY: Okay. Something like that.
17	CHAIRMAN APOSTOLAKIS: Which is referenced
18	by NEI 06-09?
19	DR. PERRY: That's correct. Yes. And to
20	clarify that, that's one of the documents that we're
21	supposed to be reviewing in the forthcoming NUREG on
22	uncertainty analysis.
23	CHAIRMAN APOSTOLAKIS: Okay. So all this
24	is one effort?
25	DR. PERRY: The
I	I

95 1 CHAIRMAN APOSTOLAKIS: We are told that 2 there is already a good draft of this NUREG report on 3 uncertainty events. 4 DR. PERRY: Okay. 5 CHAIRMAN APOSTOLAKIS: We are told that there is already a draft. 6 7 There is a draft. DR. PERRY: 8 CHAIRMAN APOSTOLAKIS: Okay. 9 DR. PERRY: And I can tell you that we do 10 have some concerns about the EPRI document. Not so much the process, but the details. 11 CHAIRMAN APOSTOLAKIS: The what? 12 DR. PERRY: The details. 13 14 CHAIRMAN APOSTOLAKIS: Okay. But 15 ultimately it would be the NUREG report that really will be used in these cases? 16 17 DR. PERRY: That's right, yes. Well, that would be the one that would provide the NRC's position 18 19 on the EPRI documents. 20 CHAIRMAN APOSTOLAKIS: And we will hear 21 about it some time in the near future? 22 DR. PERRY: You need to talk to Ms. Gillian about that. 23 24 CHAIRMAN APOSTOLAKIS: Okay. 25 MR. HOWE: Next slide. Oh, I'm sorry.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	That's all I had to say about uncertainty.
2	We also looked at the human reliability
3	analysis. South Texas was in the process of finishing
4	up their update to use the EPRI calculator, which is
5	they're going to use a more robust method. They
6	currently were using the FLIM, which I've written down
7	what these acronyms mean just in case somebody wanted
8	to know.
9	A peer review was identified as being
10	required by the ASME standard because they are
11	changing methodologies. And the Staff made some
12	observations regarding the methods used in the
13	supporting t/h analysis.
14	MEMBER ABDEL-KHALIK: What does FLIM stand
15	for?
16	MR. HOWE: You're going to ask me that.
17	Failure or likelihood index method. Now you know as
18	much about it as I do.
19	MEMBER MAYNARD: And what gave the
20	opportunity to
21	MR. HOWE: Just, you know, cause-based
22	decision tree, human cognitive reliability operator
23	reactor experiments. And now I've covered all my
24	acronyms.
25	CHAIRMAN APOSTOLAKIS: So we had
ļ	

(202) 234-4433

	97
1	everything on this yesterday.
2	MR. HOWE: Well you should all know all
3	about it then.
4	CHAIRMAN APOSTOLAKIS: Never heard of it.
5	MEMBER MAYNARD: I've gone through the
6	EPRI notes and not used the I wanted to ask.
7	MR. HOWE: Okay. On CRMP implementation,
8	we reviewed the implementing procedures. We found them
9	to be consistent with the RMTS guidance and have
10	identified the four procedures that we reviewed, which
11	included the actual program, operations program for
12	configuration risk management, the risk management
13	actions procedures which they used to determine what
14	comp measures might be used during a risk-informed
15	completion time as well as their software QA and how
16	they maintain configuration control.
17	We also attended ongoing operator training
18	for RMTS. And I personally found this very useful to
19	me as a reviewer. It helped me see how the operators
20	were really understanding their role in the RMTS
21	program, the RICTs. And I was favorably impressed
22	with the knowledge level. They seemed to understand
23	it and accept it. I asked some tough questions, as I
24	recall. They were handled fairly well by the South
25	Texas PRA staff. But my overall impression was they
I	1

(202) 234-4433

	98
1	understand core damage and LERF and their tools and
2	they're very comfortable using them from a textbook
3	compliance point of view. And that's what we were
4	looking for.
5	MEMBER MAYNARD: Is this part of their
6	continuing training? Do they train their operators on
7	this or have a session
8	MR. HOWE: I'll have to defer to South
9	Texas.
10	MR. PHELPS: This is Jay Phelps.
11	Yes. Actually we have included risk
12	managed tech spec training in our licensed operator
13	continuing requal training program for the last four
14	cycles. Probably have included about five hours of
15	classroom training to date just on this in addition to
16	some additional hands-on training that we'll be
17	performing during this upcoming refueling outage with
18	someone from Rick's group coming over there using the
19	tool as it's finally being modified. And a little
20	later on I'll show you some screen shots of how that
21	tool looks and how that works for us.
22	MEMBER MAYNARD: Okay.
23	MR. HOWE: Next slide.
24	Finally, the risk and safety culture. We
25	took a look at how risk management is used in plant

(202) 234-4433

1 operations, how it's an element of the plant safety 2 culture and the overall risk and safety culture. Interviews were conducted with an I&C technician on up 3 4 through several strains in management. Aqain, the 5 overall finding was that risk assessment management is really integral to daily operation of the South Texas 6 7 Project, which is something they've been telling us for some time during our reviews, and we confirmed 8 9 that. Finally, conclusions. Again, overall STP 10 appeared to be on the right track to implement RMTS. 11 12 There were some areas that were considered in the request for additional information as part of the 13 14 license amendment request. Again, as I mentioned, to 15 justify that the screening applied to fire scenarios was appropriate and that they were going to go back 16 and reread some of that. 17 Some of the fire PRA data was a little bit 18 19 dated and maybe consider that in the uncertainty 20 analyses. 21 They need to update their Reg. Guide 1.200 22 assessment and provide some more details. And, again, 23 go back and take a look at some of the tech specs and 24 matching them up to the CRMP to make sure the operator 25 really can implement for each of those tech spec of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

99

Í	100
1	this program.
2	And that was the result of findings of our
3	audit. That's all I have.
4	CHAIRMAN APOSTOLAKIS: Any problems, any
5	questions?
б	Thank you very much.
7	MR. HOWE: Thank you. Appreciate it.
8	CHAIRMAN APOSTOLAKIS: The next
9	presentation is from Mr. Canavan on the HRA models for
10	use.
11	MR. CANAVAN: I brought my electronic
12	brain, my laptop.
13	Good morning. I'm Ken Canavan. I'm with
14	the Electric Power Research Institute. And I'm the
15	Program Manager for their Risk and Assessment
16	Management Programs at EPRI.
17	Thank you for the opportunity to speak in
18	front of you. I kept my presentation extremely short,
19	two slides. And feel free to ask as many questions as
20	you'd like.
21	I understand there were two topics. The
22	first topic was human error probability treatment in
23	4B. I know you've heard a lot about human errors in
24	the last couple of days, which is one of the reasons
25	why I kept the slides relatively short.
	I

```
(202) 234-4433
```

In general, the human error reliability treatment or the human error probability treatment in tech spec 4B is fairly straightforward. In general, there are no changes made to the HEP values or performance shaping factors or the actions.

treatment is generally 6 This slightly 7 conservative, the reason being when you do an HEP for the average plant in the average model there's a 8 9 little bit more uncertainty associated with what condition the plant's truly in. And in this case, the 10 configuration is well known by the operators. So we're 11 12 in a situation where I think they understand more adequately where the plant is in terms 13 of its 14 configuration. And in addition, there are risk 15 management actions for certain configurations that fall into either a medium or a high risk type area. So 16 there's even more controls and more understanding of 17 the actual plant configuration. 18

And in the case of STP, I just thought I'd mention, and actually it was on one of the previous slides, they are currently using the HRA Calculator, primarily a THERP-based methodology. Since you've heard so much about that in the last few days I thought I'd --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MEMBER SHACK: Yes, but we got a different

(202) 234-4433

25

1

2

3

4

5

	102
1	one in the last slide.
2	MR. CANAVAN: Yes. They were using FILM,
3	but they were transitioning to the HRA Calculator. So
4	on the last slide they were saying "transitioning to,"
5	and I believe that that's transition been completed.
6	And I see Rick shaking his head yet.
7	MEMBER SHACK: But it wasn't THERP they
8	were transitioning to?
9	MR. CANAVAN: No. Transition to THERP
10	from FILM.
11	MEMBER SHACK: Oh. That's not what he said
12	in the previous slide.
13	MR. CANAVAN: Take a look.
14	MEMBER SHACK: It said you were using, you
15	know, the empirical-based one, HCRORE and cause-based.
16	CHAIRMAN APOSTOLAKIS: I think most people
17	use that.
18	MR. CANAVAN: Yes. Maybe they are going to
19	you can use those methods within the Calculator.
20	MEMBER SHACK: Yes. I go from one slide to
21	the next slide, it just catches your attention. That's
22	all.
23	MR. CANAVAN: Yes.
24	MEMBER SHACK: Which one are we using?
25	THERP or
	I

(202) 234-4433

	103
1	DR. PERRY: Maybe I can answer this, Rick.
2	I think you're using both. Because you're using the
3	CBDT for the cognitive part and THERP for the
4	execution.
5	MEMBER SHACK: Ahhh.
6	MR. CANAVAN: There's two parts of the
7	DR. PERRY: Yes.
8	MR. CANAVAN: Right. Okay.
9	And my second slide, again, I'll start
10	with sort of the generic approach to the treatment of
11	uncertainty in tech spec 4B. In the case of
12	parametric uncertainty it's performed for the base
13	model as it's normally performed. And in this
14	particular case for a delta risk type calculation,
15	there's generally no significant change. I believe
16	the Chairman had indicated it was generally
17	irrelevant, which is true. So there's nothing in
18	particular in general done for parametric uncertainty.
19	And in the case of modeling uncertainty
20	the EPRI guidance documents weren't available at the
21	time of the development of this particular submittal.
22	They were in draft. But the general process of
23	treating modeling uncertainty in tech spec 4B is to
24	perform the base case methodology for the base case
25	PRA. And I can put up the flow chart. You saw that
ļ	

(202) 234-4433

104 1 about a year ago and it has not changed since then. 2 And the applications guide takes you 3 through doing a set of series of what I call CANDOR, 4 CANDOR or standard sensitivity cases looking at HRA 5 and CCF, the no maintenance model and data. So it 6 looks at your database -- it uses those standard 7 sensitivity cases to bound many of the sources of 8 uncertainty that you may come across in your model. So 9 when you just find a source of uncertainty that fits within one of the generic cases, you may just move on. 10 In cases where it doesn't fit within the generic case, 11 12 you may do a specific sensitivity case for that source of uncertainty where the risk achievement worth of 13 14 that source of uncertainty is greater than two. And 15 that can be SSEs -- source of uncertainty can be SSEs It an be a phenomena or other 16 and individual SSEs. items that are sources of uncertainty. And there's a 17 process that gives you a set of generic sources of 18 19 uncertainty and then you can augment that with plant 20 specific.

And there's a new focus in the uncertainty guide, and they're going to be revised based on some of the Staff's concerns on the methodology. And that is to put a new focus on new sequences or new phenomena that doesn't appear in the original base

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	case model. So as you go do an application if you
2	create new sequences, that's actually in the
3	methodology now but it's certainly not emphasized.
4	And the Staff would like us to consider increasing the
5	emphasis on that. So that's one of the changes.
6	We're also in some discussions of the
7	criteria.
8	So the overall methodology isn't really
9	changing, but there are some details that we're
10	working on to improve its applicability.
11	And in the case of STP they did not
12	initially use the EPRI applications documents
13	uncertainty, primarily because they were in draft at
14	the time. But they went back and did a consistency
15	check with those draft documents. So they were
16	certainly consistent with the methodology.
17	And the Chairman has asked if he can get
18	copies of those documents. There are actually two.
19	The first one is the Guideline For The Treatment of
20	Uncertainty In Risk-Informed Applications, it's a
21	technical basis documents. That's 350 pages of
22	everything you ever wanted to know about uncertainty,
23	so the technical basis sort of covers the full range
24	of technical issues. That was published in December of
25	2004. And that's the document you refer to 10096523.
I	I

(202) 234-4433

	106
1	The Guideline For The Treatment of
2	Uncertainty In Risk-Informed Applications is the
3	applications guide with two pilots of that
4	applications guide. That was completed in October of
5	2006. And the number of that report is 1013491.
б	We probably will be, based on comments
7	that we received both from the industry and from the
8	Staff, revising those documents to change the criteria
9	and some of the emphasis within those reports to
10	stress
11	CHAIRMAN APOSTOLAKIS: But you think you
12	can send us copies?
13	MR. CANAVAN: You had indicated you would
14	like them, yes, I will send them to you.
15	CHAIRMAN APOSTOLAKIS: Thank you.
16	MR. CANAVAN: I'm not sure I can get
17	publications to let you comment in the pdf
18	MEMBER SHACK: We'll take care of that.
19	CHAIRMAN APOSTOLAKIS: Oh boy. You really
20	take away a lot of the usefulness of the electronic
21	document.
22	MR. CANAVAN: Well, lawyers do that.
23	That's their job.
24	And that actually concludes my
25	presentation. I intended to be brief because I thought
I	1

(202) 234-4433

	107
1	that there would be a lot of overlap, and there indeed
2	was.
3	CHAIRMAN APOSTOLAKIS: Very good.
4	Any questions?
5	Thank you.
6	MR. CANAVAN: Well, thank you.
7	CHAIRMAN APOSTOLAKIS: So now we are
8	moving on to what? To
9	MEMBER SHACK: Just coming back to that.
10	Now a particular case that Rick was talking about,
11	would that come out when you were doing these RAW
12	things, when you were looking at components that had
13	risk achievement? In this process is that where you
14	would find something like that or you just knew that
15	to begin with and it wasn't part of this process?
16	MR. GRANTOM: What are you referring to?
17	MEMBER SHACK: You know the EPRI treatment
18	says we go through these things where we look at RAWs
19	and I was asking, you know you brought up a particular
20	case that was sensitive for you. And I just wondered
21	if that would come out of this study or you just knew
22	that?
23	MR. CANAVAN: It is a direct result of the
24	study. You might also know that one of the things
25	that we learned from the pilots we did is a lot of
I	I

(202) 234-4433

	108
1	these you already know. You know, loss of off site
2	power is an important contributor to the profile.
3	Therefore, things that relate to that
4	MEMBER SHACK: Well, I was thinking of the
5	HVAC.
6	MR. GRANTOM: Yes, we do a lots of
7	different sensitivity studies and look at both risk
8	achievement worth and fossily and look for those kinds
9	of impacts of what drives those areas. Part of that
10	is part of diagnoses and error finding, but another
11	piece of that is just to learn what are the dominant
12	contributors and why they're there and understanding
13	that type of thing. So we do see a lot of those
14	things. That's why we saw the fact that EOD frag was
15	such a dominant contributor in this and understanding
16	the reasons why that is. Then you see losses of off
17	site power and the other types of contributors.
18	And when we put together a whole risk
19	profile of initiating events you see that when you
20	group them together loss of EAB is there, but we still
21	have the LOCA spectrums of things that have a
22	percentage contribution, tube ruptures, loss of off
23	site power is one of our largest contributors. And
24	then we have separated out EAB HVAC separately from
25	that.
ļ	I

(202) 234-4433

	109
1	CHAIRMAN APOSTOLAKIS: Steve?
2	MR. HESS: Thank you. For those who don't
3	know me, I'm Steve Hess with the Electric Power
4	Research Institute. And following my manager's lead,
5	I too intend to be brief.
6	We were requested to talk about
7	configuration risk management programs and tools. It's
8	going to be a two part presentation. I'll talk in
9	general and give an overview and then we have Jay
10	Phelps, whose the Operations Manager from South Texas
11	will provide a briefing on what they're doing down in
12	South Texas now, they plan to implement. I'll defer
13	most of my time to Jay because I think a picture is
14	usually worth a thousand words, and he's got some good
15	pictures.
16	In general, industry configuration risk
17	programs have been around a long time. They are
18	mature. They are effective at controlling risk,
19	configuration risk in your normal operational
20	conditions. They have been around and are an integral
21	part of the industry's implementation in meeting the
22	current regulatory requirements, particular Section
23	(a)(4) of the maintenance rule.
24	Those programs have matured over the past
25	decade and a half or so, and the tools that the
Į	I

(202) 234-4433

ĺ	110
1	industry used to implement the requirements have
2	matured along with them.
3	CHAIRMAN APOSTOLAKIS: Excuse me.
4	MR. HESS: Yes?
5	CHAIRMAN APOSTOLAKIS: Just a point of
6	clarification. Do I really need the CRM program for
7	the maintenance rule? I don't think so, do you?
8	MR. HESS: For (a)(4) implementation.
9	CHAIRMAN APOSTOLAKIS: Find me what (a)(4)
10	is?
11	MR. HESS: That's essentially you
12	effectively control risk
13	CHAIRMAN APOSTOLAKIS: Set in the goals?
14	MR. HESS: No, no, no.
15	MEMBER SHACK: The applicable components
16	are the service
17	MR. GRANTOM: This is Rick Grantom, South
18	Texas
19	Maintenance rule (a)(4) of assessing the
20	cumulative effects of equipment out of service from
21	risk.
22	CHAIRMAN APOSTOLAKIS: So I need the PRA?
23	MR. GRANTOM: No, not necessarily. The
24	industry guidance does allow other quantitative
25	approaches to be able to assess that.
I	I

(202) 234-4433

	111
1	CHAIRMAN APOSTOLAKIS: But I don't need
2	these particular CRM configuration risk management
3	tools, do I, for that?
4	MR. GRANTOM: You don't absolutely have to
5	be required by it, but if you want to be more
6	technically correct, you will use a PRA with a CRM.
7	CHAIRMAN APOSTOLAKIS: Heaven forbid I be
8	allowed to do that.
9	No, I'm a little surprised by the
10	statement you know, that plant CRM programs are
11	mature. Throughout the industry are they mature
12	really?
13	MR. HESS: Yes. And along those lines,
14	it's a very focused and important industry function.
15	All plants have configuration risk management
16	programs. Some are more aggressive in terms of the
17	amount of online maintenance and the degree to which
18	they do take systems out of service at power and do
19	maintenance and the like. But they all have formal
20	programs to manage it. Basically all use the PRAs
21	that they have in place to assess risk during those
22	conditions.
23	CRM programs do augment the PRA type of
24	evaluations with additional defense-in-depth
25	evaluations throughout power configuration risk

(202) 234-4433

	112
1	management.
2	There is an annual industry forum that
3	we've done for the past I think six years that brings
4	up issues and helps further development of methods and
5	tools.
б	And, by the way, there is significant
7	amount of industry and Staff interaction at that
8	forum. Typically, as long as you're not operating in
9	a continuing resolution, there's a number of NRC staff
10	that come to the forum and the interchange between
11	industry and staff is mutually beneficial. And I know
12	folks on the PRA Staff actually look forward to coming
13	down. Plus, Florida in January is not a bad excuse.
14	But, in fact, the programs and tools are
15	mature. And via the EPRI research and Staff
16	interaction with EPRI and industry and the forum we
17	continue to advance the technologies and the
18	capabilities.
19	MEMBER BONACA: But I hear that some
20	licensees do not use really risk information. They do
21	evaluations, et cetera?
22	MR. BRADLEY: Can I clarify that?
23	MR. HESS: Yes.
24	MR. BRADLEY: There's actually two
25	regulatory drivers for CRM now, even before 4B. One
I	

(202) 234-4433

	113
1	is (a)(4) of the maintenance rule and the other is
2	plants that have done AOT extensions using Reg. Guide
3	1.177 have a CRMP requirement as part of that. And
4	that's why we've been doing this for a number of
5	years.
6	In 1995 the original maintenance rule had
7	(a)(3), which was a recommendation to have this. It
8	was changed to a requirement in 2000 with the
9	promulgation of (a)(4).
10	While our guidance allows plants to use
11	non-quantitative methods, all plants use PRA informed
12	methods for (a)(4).
13	4B is an extension of the existing (a)(4)
14	methods that everyone's using. The 4B imposes a lot
15	more rigor on the elements of those methods. But as
16	Steve says, all plants have got a lot of experience
17	using these methods already.
18	MR. HESS: Okay. Thank you, Biff.
19	And I think the three sub-bullets there on
20	the bottom are very important benefits that plants,
21	regardless if you would do 4B or not, have achieved
22	and obtained from their configuration risk management
23	programs. And as Biff said, for certain things in
24	(a)(4), things like compensatory risk management
25	actions and things like that are requirements.

(202) 234-4433

	114
1	Specifically within the implementation of
2	4B the implementation guidance is very specific
3	requirements, of which these are just very high level
4	groupings of what are there for the plant
5	configuration risk management program and tools,
6	particularly ensure that your CRM program and tools
7	are faithful reproduction of the PRA model. And that's
8	a bigger concern and issue for those people who use
9	CRM tools that are on demand type PRA calculation
10	engines as opposed to the approach that, for example,
11	South Texas has where it's a direct just static
12	database of the PRA results.
13	There are specific quality assurance and
14	quality control requirements on the CRM programs and
15	tools. And there are specific configuration control
16	requirements both on the front end in terms of
17	ensuring the CRM tool and program is a faithful
18	reproduction of the PRA and on the backend as you make
19	changes to the facility that those get implemented and
20	in an appropriate manner and in a timely manner.
21	My last slide is just a bit of a recasting
22	of the first slide and the first two bullets. But in
23	terms of the tools, there are basically four tools
24	used within the industry. They fall into two
25	categories. One is a presolved PRA type look up
Į	I

(202) 234-4433

(202) 234-4433

	115
1	databases, the RASCaL and the RICTCal approaches that
2	South Texas are using fall into that category. A lot
3	of the plants use the Sentinel tool, which is a
4	presolved PRA type of tabular approach.
5	Also there is on demand configuration PRA
6	solvers. Those are the EOOS and the safety monitor
7	tools and it's probably roughly a third, a third, a
8	third split between EOOS safety monitor and Sentinel
9	right now.
10	All of those tools also provide provisions
11	to do additional defense-in-depth type analysis to
12	make sure the risk is sufficiently analyzed, and
13	particularly for communicating to work week management
14	and shift personnel provides a new characterization
15	tool.
16	And with that, I'll let Jay talk about
17	what
18	MEMBER SHACK: Are they using these same
19	tools now for their shutdown management or they still
20	have other tools for that?
21	MR. HESS: Most people for shutdown
22	management use the ORAM tool.
23	MEMBER SHACK: ORAM.
24	MR. HESS: There's a lot more work in
25	approaching defense-in-depth as opposed to specific
	I

(202) 234-4433

	116
1	PRA type modeling. And obviously there's an A&S
2	standards committee working on a PRA standard. So we
3	expect that that will evolve over the next few years.
4	But even within that defense-in-depth is still going
5	to be an important element of shutdown. And I'll go
6	back to what Andy said, you know, specifically for 4B
7	it's geared toward that power type AOC extensions.
8	MR. PHELPS: I'm Jay Phelps. I am one of
9	the division managers for STP in the operations
10	department and hold a senior reactor operators license
11	on that facility, and have since 1991.
12	I'm going to talk to you a little bit
13	about the South Texas Project's readiness to implement
14	the risk-informed tech specs.
15	I want to thank you for the opportunity
16	here for the vision that has come out of both the
17	Committee, out of the NRR and as well as the ACRS'
18	receptiveness to our discussions on this area.
19	Got just a few desired outcomes. Want to
20	make sure that that's going to meet what your needs or
21	what information you'd like out of me. We're going to
22	just provide a brief overview of our online risk
23	assessment tools. We'll talk a little bit about our
24	risk-informed completion time calculator, those
25	attributes and how that's applied at the South Texas
	1

(202) 234-4433

	117
1	Project. And then we want to talk about the risk
2	management tech spec implementation at the South Texas
3	Project.
4	Is there anything else we're going to want
5	to talk about or would that cover your needs? Okay.
б	All right.
7	Currently with the risk-informed
8	completion time calculator it's based on our existing
9	configuration risk management tool. You may have heard
10	the term RASCal. This calculation's been using.
11	That's for the implementation of maintenance rule
12	(a)(4). So we're for each plant configuration we're
13	able to take a look at the actual risk associated with
14	those configurations.
15	The other pat of it does meet the NEI 06-
16	09 guidelines. We were fortunate as Andy and the team
17	from the NRC came down to South Texas Project. You saw
18	they did have some feedback for us. And actually we'll
19	end up with a better risk management as a result of
20	that audit that we had performed.
21	Steve mentioned South Texas uses presolved
22	maintenance states. Currently there are about 20,000
23	of those that are identified. They've got core damage
24	and larger other release are prequantified in there.
25	And it's a user friendly interface developed in
ļ	I

(202) 234-4433

	118
1	cooperation with the users, primarily that's been our
2	work control organization and our licensed operators.
3	They've been intimately working with Drew Richards out
4	of risk management program to make sure that the tool
5	works for those in the control room that are going to
6	have to implement this as we move along.
7	MEMBER ABDEL-KHALIK: Let me just repeat
8	a question that I asked earlier.
9	MR. PHELPS: Yes.
10	MEMBER ABDEL-KHALIK: As a result of this
11	work with 20,000 sort of pre-canned states, have you
12	found any frontstops that are currently in tech specs
13	to be inadequate.
14	MR. PHELPS: I'll let Rick answer that one
15	for you.
16	MR. GRANTOM: This is Rick Grantom.
17	No, we haven't.
18	MEMBER ABDEL-KHALIK: Okay. Has it been
19	logical in the long term to replace all
20	mechanistically based frontstops with results of these
21	risk based assessments?
22	MR. GRANTOM: I can help with that, too,
23	a little bit. But I think it really kind of comes
24	down to a strategy at this point in time. We have
25	already in the past extended some of our allowed
I	I

(202) 234-4433

	119
1	outage times, like diesel generators. With RITS 4B,
2	you know, the consequences of an administrative
3	shutdown due to a frontstop has been reduced. However,
4	we may find it appropriate in the future here to take
5	a look at some of the very short type of frontstops
6	that we may have, the ones that are on the order of
7	hours and maybe determine if those might should be
8	extended out, the frontstops of those be extended out.
9	But that's work that's yet to be done that we've not
10	really evaluated right now. I mean, right now we have
11	this before us and we're working on this, but it may
12	lead eventually to something like that for things that
13	have really short allowed outage time.
14	MEMBER ABDEL-KHALIK: I was just looking
15	for conceptual consistency and if we're using this
16	process, you know, why not use the same process to
17	establish a much more defensible set of frontstops?
18	MR. GRANTOM: I take that as a very good
19	comment, and I will use it as the basis as I go
20	forward with my licensing people to in fact to be able
21	to push this argument. Because I've had this argument
22	before as to why do we have to do anything within an
23	hour? I mean, what is so magic about an hour?
24	MEMBER ABDEL-KHALIK: If I may? Staff
25	objected to that position before. They said that once
ļ	I

(202) 234-4433

	120
1	you had the 4B you didn't need (a)(4). They
2	discouraged (a)(4)
3	MR. HOWE: This is Andrew Howe.
4	To clarify what I think I said, which is
5	we wouldn't anticipate a licensee coming in and asking
6	for a 14 day OT when he already had 4B. But if he had
7	some very short times, he may want additional, maybe
8	12 hours instead of one to give him the time to
9	implement the 4B process. That's what we would
10	entertain.
11	We can't say we wouldn't entertain those
12	things, because obviously licensees can submit what
13	they wish. But once we've gone through the process of
14	granting a 4B license then we would think we would
15	think they pretty much got the flexibility they need.
16	MR. HEAD: This is Scott Head of South
17	Texas.
18	Let me state that is the position. We
19	view this to happen rarely enough that for our
20	resources and NRC resources to go back through and
21	change all those frontstops, that that's not in the
22	benefit of either STP, NRC or the industry. It would
23	be much better to go and look at some other ones that
24	are either not in risk managed tech specs and take
25	those from one hour to 12 hours or something like
	I

(202) 234-4433

	121
1	that; that would be much more of a significant
2	benefit.
3	MEMBER ABDEL-KHALIK: Well, I fully
4	understand if this process involves the use of a lot
5	of resources that you can direct somewhere else, but
б	at the same time if during this process you can
7	identify inadequate frontstops, then that would be
8	critical to know.
9	MR. HEAD: Absolutely. We would agree
10	with that. But right now for the vast majority of the
11	work weeks and the work that we do, the frontstops are
12	adequate. It's on those occasions, like in December
13	we had two enforcement discretion that we were granted
14	by the NRC. Risk managed tech specs would be how we
15	would have addressed those.
16	MEMBER ABDEL-KHALIK: But how would you
17	know that the current frontstops are adequate if you
18	have not gone through the process of systematically
19	evaluating them.
20	MR. HEAD: Because we do it on a weekly
21	basis. We see the risk of each of these systems taken
22	out on a weekly basis and we understand we see the
23	risk impact on a weekly basis. And they've never come
24	close to challenging the frontstops or the risk limits
25	we have here.
ļ	I

(202) 234-4433

	122
1	MR. HOWE: This is Andrew Howe again with
2	DRA.
3	My slides were necessarily brief, but let
4	me be a little more elaborate.
5	One of the things that we've identified in
6	the SE is a requirement to be submitted is an
7	evaluation of the tech specs you're proposing to apply
8	risk-informed tech specs to and to tell us what the
9	typical risk-informed completion times would be. So
10	if you had an example where the frontstop should be
11	more restrictive, if you will, I mean that would be
12	immediately apparent to us as reviewers and we would
13	have to question whether 4B was appropriate for that
14	tech spec given that the frontstop was already
15	nonconservative. So that is being looked at in the
16	context of 4B license applications.
17	Thank you.
18	MR. TJADER: This is Bob Tjader.
19	And South Texas provided that information,
20	too, in a tabular format addressing each and every
21	system that 4B is applying to and what would
22	conceivably the AOT be extended to.
23	MR. PHELPS: Steven, if you'd go to the
24	next slide, please.
25	Did we answer your question?
	I

(202) 234-4433

	123
1	MR. HEAD: I agree with all that. I don't
2	think it really addresses Said's question. Because
3	you're not submitting for those that you're not asking
4	for the 4B to be applied to.
5	MR. PHELPS: Right.
6	MEMBER ABDEL-KHALIK: So you really don't
7	know?
8	MR. HESS: Well, if I may hazard just, I
9	guess, more of an opinion than anything. Most of the
10	tech specs that were provided and developed and even
11	the standard tech specs that were approved under the
12	ITS program were done with quite a bit of engineering
13	analysis and conservatism in terms of the decision
14	making setters. We don't reasonably expect that we
15	would find a lot of instances, if any, of what you're
16	questioning.
17	Theoretically it's possible, but I think,
18	again, with a qualitative high degree of confidence we
19	can say based on the analyses done that set in 4B
20	space is the frontstop is a conservative time frame
21	that does not have any significant risk impact. So
22	the expectation is we wouldn't find very many of them,
23	if we find any. And South Texas and other plants'
24	experiences I think are very similar that the
25	configuration would be very, very rare where an

(202) 234-4433

	124
1	existing frontstop would be unacceptable.
2	MR. GRANTOM: This is Rick Grantom.
3	I'd like to add a little bit more to what
4	you're talking about.
5	When you look at the entire technical
6	specification scope there is some technical
7	specifications that are amenable to this type of
8	evaluation and there are some that certainly aren't.
9	Some that are associated with safety limits and set
10	points are clearly out of scope. Things that are
11	associated with core design, core limits those kinds
12	are out.
13	But I'll go back to again a sense of what
14	I said before. We have done a systematic look at every
15	frontstop that could potentially potentially be
16	modeled in a PRA. We have selected this scope as a
17	whole plant pilot, which is a pretty extensive scope
18	here. But I do feel that in the future this could be
19	an area that we could look at to find out are there
20	overly restrictive allowed outage times, and I'm
21	talking tech spec items that may be on the order of
22	hours for some punitive type of LCO action, you know
23	to shutdown and those types of things.
24	MEMBER BONACA: But that, I expect that
25	you find those. Not the opposite. I mean all tech
	I

(202) 234-4433

	125
1	specs I know that are very conservative.
2	MR. GRANTOM: But I'll tell you part of
3	the reason why that doesn't necessarily happen is
4	because of the structure of tech specs right now.
5	They're all done on single systems and single trains
6	or channels within systems. You find the information
7	where the LCO may not necessarily be so restrictive
8	when you start looking at configuration risks and
9	combinations of things and trains for which current
10	tech spec methodology clearly can't do.
11	MR. BRADLEY: Yes. If I could add one more
12	thing. That's one of the reasons that (a)(4) is a
13	requirement today is to facilitate the risk management
14	of tech spec. So you have (a)(4) for all plants today
15	whether you implement 4B or not you're required to
16	assess the risk of those configurations. And using
17	the same metrics we're using here.
18	So I think someone said earlier you would
19	know if you're doing this. Well we've been
20	implementing 4B or (a)(4) for seven years now and
21	there's a considerable experience that demonstrates
22	that.
23	MR. GRANTOM: Right. Even in the
24	maintenance rule if you see I mean, part of the
25	reason that we're sensitized, and this is one of the
I	I

(202) 234-4433

	126
1	good things that happened about using risk approaches.
2	For example, our functional equipment, we do our
3	maintenance by functional equipment groups. During the
4	early days when we first started risk profiling, we
5	would challenge our threshold, the 1E minus 6
6	threshold quite often. And as we got to examining that
7	it really just came down to what components were
8	included in specific functional equipment groups. And
9	they did some shuffling around of that and brought the
10	risk down quite considerably where we rarely challenge
11	or even come close to that 1E minus six threshold.
12	And that was strictly from a scheduling basis. So we
13	were able to see that type of thing.
14	Once you can visualize these things, it
15	does drive in a sense improvement.
16	Now some of the other areas that you may
17	be addressing are areas where there's not normally
18	online maintenance performed on these components. And
19	there, you know, we are possibly in a situation where
20	I would tend to think that it'll be more the case that
21	I talked about that we'll find that the LCO was too
22	restrictive than what it is, rather than the case
23	where we find for a single train or a single channel
24	of a single system level function that the LCO is not
25	adequate in that regard. Now, that's a personal
ļ	I

(202) 234-4433

(202) 234-4433

	127
1	opinion there but based on our experience that we've
2	had, I've not ever seen that.
3	So I would probably just say that this is
4	an area, you can call it phase 2 or call it something
5	else, but it's certainly an area that we haven't
6	started to get into yet when we're trying to refine
7	tech specs.
8	I hope that helped to answer part of the
9	question.
10	MR. TJADER: If I could just say two
11	things.
12	Number one, that was a question that came
13	up very early on in the process. You know, well are
14	there any frontstops that are currently
15	nonconservative. And to be quite frank about it, I
16	don't think we've found any at all, you know, that
17	came up in the standard specs or anything like that
18	where we think that we're nonconservative on just that
19	single system basis. And I think in the application,
20	as Scott said, in the daily application of Initiative
21	4B it would certainly come to the fore if there were
22	a nonconservative frontstop. It would be readily
23	apparent. And then I think then that it would become
24	incumbent upon the plant and I think they would do the
25	right thing and change that.
I	1

(202) 234-4433

	128
1	I think there's another aspect of your
2	question, and that was raised too earlier in the
3	process, and that was why not just go to a 4B process
4	period and do away with frontstops? And conceptually
5	that can be done, but practically it poses problems.
6	And some of those problems are what if you find that
7	you have a degradation in the tool itself, what then
8	process do you have to cope with that on an immediate
9	online basis type thing.
10	And some of those things can be addressed,
11	but they are a phase in the future that can be
12	addressed.
13	MR. PHELPS: All right. Does that answer
14	the question? Come close? A good dialogue on that.
15	Okay. Moving on to just application. It's
16	going to primarily be used by the operations staff.
17	They'll be handling any emergent issues that come up.
18	We're going to have a planned work week that our
19	maintenance planners come in. They're figure out what
20	sequence of equipment to remove from service that's
21	going to result in the lowest risk and allow the work
22	to be completed. Operations will have that loaded in
23	and any changes in that plant configuration as
24	equipment comes back to service to where it's operable
25	again, or if some other piece of equipment is
	I

(202) 234-4433

necessary to take out, the tool that I'll show you in a moment is what is going to be used to do that.

Like I said, we use the look up table so 3 4 we got a risk management group that if it's a 5 nonquantified configuration, something we haven't looked at before, we've made an easy tool for the 6 7 operators to be able to contact that group, show them 8 exactly what that configuration is, and then allow 9 them to come out and quantify that, put that into the 10 program so that the numbers and the allowed outage time will easily make very clear to the operations 11 12 staff.

Real quick, this is really the first 13 screen the operator will come to when he's in the 14 15 This is going to allow him to enter control room. 16 whatever the inoperable systems. We kind of 17 preprogrammed a few components in there; safety 18 injection, alpha, chilled common water alpha, 19 essentially cooling water alpha train. And then we 20 added a new bug in here. Said, okay, what happens if 21 the bravo diesel generator was made inoperable? So 22 the operator enters all this in there. He can time 23 stamp it with what comes in. He simply comes up to the 24 RICTCal button, hits that. And as that's going on, 25 these calculations are taking place, and this is the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

129

	130
1	screen that comes up. I really want to focus on a
2	couple of areas there. And we're working on the words
3	over here, so we'll try to explain them.
4	Backstop, this is really looking at what
5	is the completion time based on that plant
б	configuration.
7	The words that are up here now say
8	"regulatory." That would be the 30 day backstop
9	limit, if you will.
10	The calculated value is going to say at
11	what threshold, at what point do we pause the E to the
12	minus five for what that risk-informed completion
13	time. The one labeled CP down here is going to
14	actually plug in the value that's the most limiting of
15	those two values. That's what the operator will now
16	have for his allowed outage time. That's the time
17	that equipment has to return to service or be shutdown
18	for what we're doing there.
19	You can see there's lots of other values
20	and stuff that's really the focus area. It tells you
21	what the configuration is. It's within the PRA. And
22	what the completion time is for the operator.
23	MEMBER SHACK: Doesn't he need to know,
24	why isn't this RMAT thing kind of highlighted over
25	there, too?

(202) 234-4433

	131
1	MR. PHELPS: Well, it's not highlighted
2	there, but you're right that is one of the other key
3	attributes of the risk-informed tech specs. That
4	prior to exceeding that E to the minus six, or if you
5	planned on doing that, the risk management actions
6	have to be in place identified and documented showing
7	what you're going to do to support that risk-informed
8	completion time.
9	Just one more quick
10	MR. HEAD: Jay, could you just clarify for
11	everybody?
12	This is Scott Head.
13	The top, I guess, four were the planned
14	activities for the week.
15	MR. PHELPS: That is correct.
16	MR. HEAD: And when essential cooling
17	water goes out, the diesel goes out also. And so
18	breaking the diesel we're in an unplanned
19	configuration. And it is sort of interesting to see
20	that basically almost seven hours into that we need to
21	have some risk management actions now because we're on
22	a much steeper slope now than we would have been
23	before.
24	MR. PHELPS: Yes.
25	MR. HEAD: And so everything is available
I	I

(202) 234-4433

	132
1	to us, the operators, to make the decisions.
2	MR. PHELPS: That's correct.
3	All right, thank you, Scott.
4	MEMBER SHACK: A huge difference between
5	your safety limit and your RMAT limit?
6	MR. HEAD: Absolutely. And it's meant to
7	be that way.
8	MR. PHELPS: And you can see, I mean we
9	even have what the hourly rate is based on the
10	durations for what that change in core damage
11	probability is as time's clicking out.
12	Okay. Go one more. I'll just give you a
13	quick example. Adding on to that, now we also had an
14	additional problem crop up that showed the qualified
15	display processing system bravo was made inoperable in
16	there. You can see it just comes up just backgrounded
17	in red. That indicates, you can tell by that the key
18	on the bottom, that that's a nonquantified state.
19	To make it simple, all we have to do is
20	you notice notify risk management admin if there's
21	nonquantified states. The operator just clicks that
22	button. An email goes out to all the individuals that
23	are in Rick's group that have the ability to come on
24	out or sit at their home computer to prequalify that.
25	It'll show up all of this information on the
I	

(202) 234-4433

electronic mail system that goes out to them. And he can sit there at home with the actual whatever tool they use to come up with that quantified state. Program that in there so that it'll go ahead and fill in what the calculated, what the completion times. And that's the expectation, we do that within 12 hours.

I just want to point to you the LERF. 8 The values aren't in there. We simply haven't loaded that 9 information in yet. That will be a part of this tool 10 so that that will be identified so that you know 11 whether you're working off of a LERF restrictive value 12 whether you're working off of a core damage 13 or 14 probability value.

15 So those are the tools we've implemented for the South Texas Project to implement this at this 16 17 time. And, like I said, we've got some hands-on training with that tool again during this outage where 18 19 someone from Rick's group will be working with all of 20 our senior reactor operators working through the 21 various procedures that we have in place that are 22 ready to go.

And the bottom line is, is when this is approved and we get the SE resulting from the South Texas Project application, South Texas Project is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	134
1	ready to implement this new process and appreciate the
2	opportunity to discuss that.
3	Any more questions for me?
4	MEMBER MAYNARD: For South Texas, it
5	sounds like the way you're doing it, the operators are
6	the ones who is going to plug in the numbers and
7	determine what the completion times, allowed outage
8	time are. It's a final say as with the operators
9	there?
10	MR. PHELPS: Yes, sir. That is correct.
11	MEMBER MAYNARD: And you only have to go
12	to the risk management group or if you have
13	unqualified number?
14	MR. PHELPS: That is correct. Yes.
15	Anything that's already presolved and basically any
16	configuration we have found ourselves in up to this
17	time, Rick and them have turned that into one of those
18	look up values on that table. So it would be
19	someplace we hadn't been before, and they'd have to
20	out there and solve that one so that they could go
21	into the table, recognize that current plant
22	configuration to calculate whatever the risk-informed
23	completion time would be for that specific
24	configuration.
25	MR. HESS: And if I may talk about for CRM

(202) 234-4433

1 tools in general for the industry, the paradigm and 2 the way it's done at South Texas it standard pretty 3 much across the industry. Work week managers and on 4 shift supervisors all have training, knowledge and 5 capability of how to run the order. It's EO, Sentinel, 6 safety monitor or in your case RASCaL and RICTCal. 7 Those tools are robust and user friendly and training 8 is provided to those people as part of their job 9 function. 10 MEMBER MAYNARD: And I have no problem with the operators doing it. My question really gets 11 12 more into a jurisdictional and whose from a license standpoint, who is the one making the final decision 13 14 and doing the work. And that's why I'm asking. Not as 15 to any other reason. No doubt. The on shift SRO is 16 MR. PHELPS: 17 going to make the determination of inoperability and when that component can be returned to an operable 18 19 status. 20 MR. GRANTOM: Which you would expect with 21 tech specs. 22 Having been an ex-SRO that is MR. HESS: 23 always function of the person who holds the operating 24 license. 25 MEMBER ABDEL-KHALIK: I'm just trying to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

135

	136
1	understand this process. You're going to go through
2	and do this and you come up with a date. And
3	presumably this date is going to go on a work order so
4	that whoever is doing the repair work knows what the
5	deadline for completion of this task should be?
6	MR. PHELPS: It's actually tracked in the
7	control room log. But if a new work order does come
8	up, we do have a place just in our process where we do
9	stamp the required return to service time for those
10	individuals on
11	MEMBER ABDEL-KHALIK: Now, let's say
12	something else crops up and you have a work order out
13	there with that date stamped on it, how does that date
14	change based on the new result?
15	MR. PHELPS: Well, physically we would not
16	go out and grab that work order and change that. That
17	would be communicated through the various management
18	meetings that we have on what the required return to
19	service dates are. They're published in our normal
20	daily work status meetings, if you will, for the
21	normal management team. Because those dates can
22	change, you're right. They're different than what
23	current tech specs on frontstops, but they pretty much
24	stay set, if they will. But if that changes due to
25	something else breaking in the interim, that just
	I

(202) 234-4433

	137
1	communicated it through the station to the responsible
2	manager in that organization to say now you only have
3	two days to complete that
4	MEMBER ABDEL-KHALIK: And how is that
5	documented? How is that documented for the people who
6	are actually doing the work?
7	MR. PHELPS: Documented for people
8	actually doing the work? It's just contained in the
9	station log. We utilize a process called the
10	operability assessment systems, that's the official
11	record for tech spec tacking at the South Texas
12	Project where that information is documented. As far
13	as an individual work group's work package that's
14	maybe working on some component, it is not documented
15	on their work package.
16	MEMBER MAYNARD: Well, first of all, it
17	really isn't any different than the process without
18	this.
19	MR. PHELPS: Right.
20	MEMBER MAYNARD: Because you can have the
21	same thing occur under the current tech spec
22	MR. PHELPS: Correct.
23	MEMBER MAYNARD: And typically anything
24	that has a tech spec system out of service, you have
25	somebody specifically assigned and following that. And
I	1

(202) 234-4433

	138
1	the control room is following up on that, too. So not
2	all plants are going to stamp anything on the
3	document.
4	MR. PHELPS: Correct.
5	MEMBER MAYNARD: The workers, and in fact
6	you don't always not necessarily want them working
7	under a time pressure. They're to do a job. You have
8	other people managing the project that have to be
9	minding the
10	MEMBER ABDEL-KHALIK: Yes. But my concern
11	is, you know, if there's a piece of paper out there
12	stamped that says this work has to be done by $3/27/07$
13	and then suddenly something else happens that requires
14	the work to be done earlier than that, there is a
15	document out there that says it has to be done by
16	3/27/
17	MR. HEAD: This is Scott Head.
18	As Jay said, our process is the
19	communications process, even if you want to go down to
20	something we call a 30 minute rule on informing
21	individuals of changes in the station, that
22	information will quickly get to the management
23	structure or maintenance and all the way out to the
24	field to the people that say, oh boy the way, you know
25	we're under a new situation now. But I have to agree,
I	1

(202) 234-4433

1 that's not at that point in time then to transfer 2 schedule pressure, and is one of the aspects of this 3 that's I think appropriate is that we have a new 4 completion time. The station is area of it. With 5 respect to the people doing the work, it's still almost irrelevant. They're going to get the work done 6 7 based on the schedule that they have that has been 8 transferred to them. 9 So the processes are set up to deal with this within the station. And that piece of paper that 10 was out there before won't impact that. 11 12 Well, people who have to MEMBER MAYNARD: know it are the operators in the control room. 13 14 Because they're the ones who is going to have to take 15 action if it's not returned to service within that 16 time. 17 MR. HESS: If I may, and this allows me to 18 actually reemphasize a point Ι made that Dr. 19 Apostolakis challenged me on, is our CRM programs 20 mature. 21 All plants' CRM programs -- plants have 22 processes and procedures in place with appropriate 23 personnel, typically the work week manager. When an 24 issue like this comes up, whether you're a 4B plant or 25 just regular now with maintenance rule that this is a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

139

Í	140
1	normal course of business and it gets handled within
2	that framework of the configuration risk management
3	program. And, you know, in even broader context. You
4	know if there are issues that come up that do not get
5	addressed well during the week, there are formal
б	debriefs and look backs and lessons learned that go in
7	the corrective action program to address these. And
8	in instances where we don't address them maybe in an
9	ideal manner, those lessons get learned and allow for
10	continual improvement.
11	So this is standard fare for plant
12	configuration risk management programs.
13	MEMBER MAYNARD: I guarantee everyone
14	knows if you're getting close to a completion time,
15	not that this would be a deterrent.
16	MR. PHELPS: Station processes and
17	procedures are pretty robust about communicating the
18	needs for return to service equipment even as plant
19	configuration changes
20	MEMBER MAYNARD: And doing it without
21	putting pressure on the workers to rush.
22	MR. PHELPS: Right.
23	CHAIRMAN APOSTOLAKIS: Any other comments
24	or questions? Yes?
25	MR. EDAWAR: This is Souhair Edawar. I'm
	I

(202) 234-4433

	141
1	from Palaveri Incorporated.
2	Since you work from presolved cases, if
3	you have to encounter something that is not in there
4	among the presolved cases, do you feel 12 hours is
5	adequate for you during a night shift to bring a PRA
6	engineer and solve the specific case for you?
7	MR. PHELPS: Yes, I would say we were
8	pretty intimately involved with the actual development
9	of that guidance. And in our case we feel very
10	confident that 12 hours we can easily accomplish that.
11	And the other side is that if you can't do it within
12	that 12 hours, the right thing is probably to shut the
13	unit down if you can't get
14	MR. EDAWAR: Well, I mean in the a night
15	shift where you have to bring somebody from home and
16	do it, PRAs are usually I feel that's not enough
17	MR. GRANTOM: Well, this Rick Grantom.
18	We have a duty risk engineer on duty 24
19	hours a day that rotates through my staff. And they
20	are on call. And if they get the call to do this,
21	we've given them the capability to quantify an
22	unquantified maintenance state either at their home or
23	at the site. But if it's at their home, they've got
24	the ability to update the maintenance state database
25	remotely and transmit that back to the control room
I	I

(202) 234-4433

	142
1	operator all under software quality assurance programs
2	to do this. And, in fact, they can do it like within
3	an hour in many cases. A couple of hours. I mean
4	usually it's just the amount of time to get them on
5	the phone. So we've done this.
6	And we have been doing this for many years
7	already to do unquanified maintenance states and turn
8	these things around within hours. So we, in fact,
9	have been doing it for ten years already.
10	MEMBER MAYNARD: I have one other question
11	for South Texas since you're the first one going
12	through this. Staff identified that there were a
13	couple of the tech specs that you had identified that
14	you took out of the process as a result of the audit.
15	And I'd just like to have South Texas' perspective on
16	whether they think the process is being too stringent
17	or whether there are things that need to be taken out?
18	MR. GRANTOM: No, absolutely not. We
19	believe that interaction was appropriate. And what
20	it's, I guess, given us is a strategy moment is that
21	to move forward in some of those that was taken out,
22	we're going to have to put them in the model more
23	effectively. And so when I call on site, and I've
24	talked to our senior management about, is phase 2 that
25	if we want that stuff, those components to be embedded
I	I

(202) 234-4433

in risk management tech specs, then we're going to have to go back and more effectively model them in the PRA. Now, in many cases they're not there

5 because they don't have much of a risk impact. I mean they're not there for a logical reason, but for us to 6 7 want to be able to take advantage of this, putting it 8 back in is the logical place to go. So that is what 9 we're calling phase 2. Once we get past this, we might envision here a couple of years from now we come 10 11 in with another submittal where we have put more 12 systems back in. But to do that they'll have to be modeled and they'll have to be able to meet NRC's 13 14 expectations in those areas.

15 CHAIRMAN APOSTOLAKIS: Any other comments?
16 Well, thank you very much, gentlemen.
17 Appreciate your coming here.

There are two things we need to do. One is to give advice to the Staff as to what they should present to the full Committee. I've drafted here something, and then maybe the members can add or subtract.

23 We have an hour and a half in April. We 24 also have several members who are new to the 25 Committee. So it would be nice for you to give an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

	144
1	overview of what 4B is all about, a little more detail
2	than today, in other words.
3	I like that example with the actual curve
4	that is in the document that shows, you know, how
5	assuming one component is down the risk starts going
6	up and then there is an emergent condition, it goes
7	up. That goes a long way towards explaining what this
8	whole business of backstops and risk-information
9	completion time. That's figure 3-3 or something
10	similar.
11	You have used in the past.
12	MR. TJADER: Yes. I know what you're
13	talking about.
14	CHAIRMAN APOSTOLAKIS: But I think it's
15	worth repeating.
16	I would like to see included this issue of
17	uncertainties, especially what Mr. Grantom mentioned,
18	the specific examples that you found. Because this is
19	language that most members understand what kind of
20	uncertainty we're talking about and how it was
21	handled.
22	I would like to see, you know, the issue
23	of how Regulatory Guide 1.174 enters into this and the
24	delta CDF/delta LERF. And maybe change also as
25	appropriate the SER.
ļ	

(202) 234-4433

	145
1	And also, Mr. Maynard's comment as to what
2	conclusions one would reach by comparing with the
3	regulatory guide so we have the mechanics of it and
4	plus the conclusion.
5	And my understanding is that what you are
6	asking the ACRS to do is to write a letter endorsing
7	your approval of NEI 06-09, that's really what it is?
8	MR. TJADER: Yes, sir.
9	CHAIRMAN APOSTOLAKIS: Now is there
10	anything else that the members would like to add to
11	their presentation?
12	MEMBER MAYNARD: Well, one other thing I
13	would like to see in there, just a brief thing, but
14	this whole presentation kind of comes across as just
15	a way to have a system out of service longer. One of
16	the real benefits also is to the NRC and the
17	regulatory because of the way things that are handled
18	now, you end up with a problem that would otherwise
19	shut you down. You have to go into enforcement
20	discretion. You're talking about late night calls,
21	perhaps, and the NRC being put in a position of having
22	to make a decision for enforcement discretion.
23	This kind of eliminates that process for
24	these things.
25	CHAIRMAN APOSTOLAKIS: Sure. Yes, the
Į	I

(202) 234-4433

	146
1	benefits from these
2	MEMBER MAYNARD: The benefits, yes.
3	CHAIRMAN APOSTOLAKIS: both to the
4	industry and to the agency.
5	I don't know, are you gentlemen planning
6	to come or is it only the Staff.
7	MR. TJADER: Yes, we'll be here.
8	CHAIRMAN APOSTOLAKIS: You'll be here.
9	Okay.
10	MR. HOWE: They don't trust us to be here
11	alone.
12	CHAIRMAN APOSTOLAKIS: They also like the
13	ACRS.
14	MR. GRANTOM: Jay Phelps will be on night
15	shift. And Rick will be on night shift, but he might
16	be here. We'll see.
17	CHAIRMAN APOSTOLAKIS: You think your
18	issue should be addressed at the full Committee
19	meeting of nonstops and all that or are you satisfied?
20	MEMBER ABDEL-KHALIK: No, I think
21	conceptually that's fine.
22	CHAIRMAN APOSTOLAKIS: You are satisfied?
23	MEMBER ABDEL-KHALIK: Right.
24	CHAIRMAN APOSTOLAKIS: Bill or Mario?
25	MEMBER BONACA: Well, I think the
I	I

(202) 234-4433

	147
1	presentations were very clear.
2	CHAIRMAN APOSTOLAKIS: Yes.
3	MEMBER BONACA: I mean, with a few
4	clarifications.
5	CHAIRMAN APOSTOLAKIS: Yes.
6	MEMBER BONACA: Plus they were pretty
7	condensed anyway, so that it will fit well in a hour
8	and half.
9	CHAIRMAN APOSTOLAKIS: Okay. Great.
10	Now, can we go around the table and have
11	the members give me some advice as to what to put in
12	the letter or should I just draft a letter and have
13	you slobber it?
14	MEMBER BONACA: I think, you know I mean
15	I am very positively impressed by the progress made in
16	this area.
17	CHAIRMAN APOSTOLAKIS: Okay.
18	MEMBER BONACA: I think there are great
19	benefits to the use of this tech specs, as I was
20	saying. And it is really a coherent step with
21	everything we have done in risk-informed in the
22	regulation. I think that's it.
23	CHAIRMAN APOSTOLAKIS: So if we approve
24	this, you will not come to the ACRS again requesting
25	another else? 4B is done, right, if we say fine and

(202) 234-4433

	148
1	the Commission says fine?
2	MR. TJADER: I don't envision us needing
3	to come back again. The reason that we want this is
4	validation.
5	There are, perhaps you've encountered it
6	in what you do for a living, but I know that on the
7	Staff we encounter it frequently, that there's a lot
8	of skeptics. Okay. And I think that it would be
9	beneficial to have the ACRS weigh in positively,
10	obviously not negatively, on this. And I think it
11	would be helpful in us being able to justify going
12	forth on this. Not that we aren't doing that already,
13	not that we haven't fought a lot of internal battles
14	and been successful in it.
15	Andrew just brought up thing that perhaps
16	I don't know I have to think it you can think
17	about it.
18	One of the things that we currently I've
19	come to grips with and I think that we've satisfied
20	the Staff that it's adequately addressed, and that is
21	that applying this to systems where there's a loss of
22	function. And conceptually the way it works is that
23	and I feel comfortable with the way it works. And I
24	think the industry does. But I know that ont he Staff
25	there's some discomfort to applying this in general.
l	I

(202) 234-4433

The way it conceptually works in tech specs is that if there is a loss of function, if there is an inoperability which causes two trains to go inoperable and you've lost function, you cannot apply a risk-informed completion time. An we agree with that.

7 Where the controversy comes in is where you have inoperabilities of both trains on a two train 8 9 plan. Okay. And then you retain some of its capability 10 in its safety function area. And then being able to, when you're to apply that, that capability that is 11 12 reflected in the PRA to extend the completion time we feel is a perfectly justifiably thing to do. 13 But we 14 find great resistance from the Staff in doing that.

15 And I think after we explain it a little they become more comfortable with it. But 16 bit, 17 conceptually it's something that has to be overcome.

18 CHAIRMAN APOSTOLAKIS: Would you please 19

include that in your presentation?

MR. TJADER: Next time? CHAIRMAN APOSTOLAKIS: This issue. Yes. It goes along with what MEMBER MAYNARD:

23 was mentioned about the no add and the benefit.

24 CHAIRMAN APOSTOLAKIS: But make sure that 25 you include it.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

20

21

22

	150
1	So the issue is you have a two train
2	system.
3	MR. HOWE: But both trains are declared
4	inoperable but you think there is still
5	CHAIRMAN APOSTOLAKIS: function
6	MR. TJADER: Well, you don't necessarily.
7	Just because a train is declared inoperable, it
8	actually necessarily sometimes need to effect the
9	function of it why it's inoperable.
10	CHAIRMAN APOSTOLAKIS: I see.
11	MR. TJADER: And plus if you have backup
12	capabilities that provide function that are not
13	reflected in the specs, then it could cause you to
14	take that shutdown action when there still is some
15	functional capability remaining.
16	MR. HOWE: I think where the real issue
17	comes in for the other staffers is and I'll say
18	these words don't take any offense licensees, but
19	trusting licensees to make the decision that something
20	still has capability when it's declared inoperable.
21	The mind set, which is perfectly legitimate, is once
22	you declare something inoperable you're supposed to
23	shut the plant down as you've lost both trains.
24	MEMBER BONACA: Often times it's purely
25	the degree or it's purely there is cases where
	I

(202) 234-4433

	151
1	you're sure of functionality.
2	MR. HOWE: Right.
3	MEMBER BONACA: The question is the degree
4	of assurance that you have functionality. That's the
5	big question.
б	MR. HOWE: And it hard to write a document
7	that really nails that down specifically. I think
8	we've done a pretty good job.
9	MR. TJADER: Yes. The document is written
10	very conservatively. The problem is always there's
11	shades of gray. You know, the document is written
12	decisively that if you do not if you're uncertain
13	about the functionality, you take the conservative
14	action.
15	CHAIRMAN APOSTOLAKIS: I remember seeing
16	something like that in the document. Tell me where it
17	is, so I can go. Is it easy for you to tell me right
18	away? That's in the SER?
19	MR. TJADER: There are two places.
20	Functionality is addressed in the reg. guide in not
21	the reg. guide, the NEI 06-09 area. It's stressed,
22	for instance in the
23	MEMBER MAYNARD: Page 5.
24	MR. TJADER: In section 231 paragraph 11.
25	Okay. PRA functional assessment. And then we have in
	I

(202) 234-4433

	152
1	the SE, we have now let me give you something else.
2	What I said opening the presentation this morning is
3	that the essence of our SE has not changed. What has
4	changed is the wordsmithing to satisfy some of these
5	concerns. And now is the time I guess I didn't
6	know that I would need to, but here are this is the
7	area in the SE which has been changed.
8	CHAIRMAN APOSTOLAKIS: Regarding this
9	issue?
10	MR. TJADER: Regarding this issue.
11	CHAIRMAN APOSTOLAKIS: Okay.
12	MR. TJADER: This is where we've had to
13	address that issue.
14	MR. HARRISON: I would suggest if we're
15	going to actually present that topic, that we give it
16	as an example so you can understand exactly through
17	the example what's going on.
18	CHAIRMAN APOSTOLAKIS: Rephrase it anyway
19	so the members will have an opportunity to first
20	understand it.
21	MR. HARRISON: As a background.
22	CHAIRMAN APOSTOLAKIS: And second, comment
23	on it.
24	MR. TJADER: I think when you read this,
25	you'll see that really you compare it to what you've
ļ	I

```
(202) 234-4433
```

	153
1	given. And there aren't significant differences. But
2	internally just these changes have involved days worth
3	of discussion and argument, and compromise and so
4	forth. So it may not seem like a lot, but this is an
5	area which internally the Staff has voiced
6	considerable concern.
7	CHAIRMAN APOSTOLAKIS: Okay. Very good.
8	Thank you.
9	Any other comments from the members?
10	MEMBER MAYNARD: I believe it's a process
11	that benefits safety, it benefits the NRC and I think
12	it benefits the licensee. And I think overall it's a
13	good process and a much better way of doing business
14	than what was originally the way we did the tech spec.
15	So I think overall it's the right thing to do.
16	I think from what I've heard and what I've
17	seen that it has the right constraints in it and the
18	right processes involved. So overall, I think it's
19	something we should endorse.
20	MS. BANERJEE: I'm Maitri Banerjee. I'm
21	ACRS staff.
22	I was wondering if you would like staff to
23	talk about any items for inspection follow up like the
24	resident inspections at the plant. I mean, they're
25	going to be writing a TI inspection guidance, right?
	l

(202) 234-4433

154 1 MR. TJADER: I've prepared a draft 2 inspection procedure. I think internally I'm somewhat 3 behind, but Andrew and I have prepared a draft. Ι 4 prepared it, he's edited it somewhat. We've given it 5 to our inspection branch. I need to pursue and push it along so that when it hits South Texas that we have 6 7 something in place for the residents. 8 But if you want, I can -- two weeks is a 9 very short time to --10 MS. BANERJEE: Not the whole guidance. MR. TJADER: Just some words? I could put 11 12 something in there. Some important aspects that 13 MS. BANERJEE: 14 needs to be followed up or will be followed up or the 15 guidance. Is that of any help? 16 MR. TJADER: Okay. 17 MEMBER MAYNARD: That would be helpful. Fine. 18 19 MR. TJADER: Just a few words. 20 MEMBER MAYNARD: Okay, as long as we don't 21 get diluted so much --22 MEMBER SHACK: Yes. I mean I'm a little 23 worried here that we're going to cover the waterfront 24 here. You know, an hour and a half -- especially for 25 the new members that sort of need to go back to the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	fundamentals of this.
2	CHAIRMAN APOSTOLAKIS: Yes.
3	MEMBER SHACK: Three hours of the hour and
4	a half are already covered.
5	MEMBER MAYNARD: I think this may be
6	something to be prepared if a question or something
7	comes up.
8	MR. HEAD: This is Scott Head.
9	We can discuss. As we have briefed to the
10	Region, we have briefed to the resident. We talked
11	about it before. This is tech specs and so on their
12	morning visit to the control room, they will know this
13	has been implemented and they will be able to pursue
14	it within their tech spec modules they already have
15	available to them. And even their (a)(4) modules. So
16	there's a lot of aspects that are already built into
17	the program that would allow them to look and evaluate
18	this.
19	So I recognize a TI could come out to help
20	in that, but I mean this is something the residents
21	can get engaged in immediately.
22	MR. TJADER: I can make it a backup slide
23	to the next presentation.
24	CHAIRMAN APOSTOLAKIS: If necessary, yes.
25	MEMBER SHACK: Even, George, even your
I	1

(202) 234-4433

	156
1	1.174 issue I just look at as something that could get
2	us going down the road for a long time. It's kind of
3	a small piece of this.
4	CHAIRMAN APOSTOLAKIS: Oh, not quite.
5	They're asking them to do it every 34 months as part
6	of the
7	MEMBER SHACK: But you didn't hear any
8	objections from anybody.
9	CHAIRMAN APOSTOLAKIS: What do you mean?
10	MEMBER SHACK: Of doing it, you know.
11	CHAIRMAN APOSTOLAKIS: No. And I don't
12	object either. It's just how it's done.
13	MEMBER SHACK: Well, as we try to explain
14	this, I can just see this barreling out of control in
15	the meeting.
16	CHAIRMAN APOSTOLAKIS: I'm Sub Chairman,
17	you will be Chair
18	MEMBER SHACK: Well, I'll be Chair. Right,
19	the gavel will be handed.
20	MR. HOWE: Can I have a gavel, too?
21	CHAIRMAN APOSTOLAKIS: Are we okay?
22	MR. TJADER: Okay.
23	CHAIRMAN APOSTOLAKIS: So I guess it's
24	favorable impression.
25	Okay.

	157
1	MEMBER SHACK: If the South Texas PRA is
2	just barely adequate for this purpose, I'm not sure
3	for the rest of the world. But that's okay. It's one
4	PRA at a time.
5	MR. TJADER: You have a point,
6	unfortunately. We had a couple of pilots that needed
7	to upgrade their PRAs. And due to related issues, they
8	had to withdraw.
9	CHAIRMAN APOSTOLAKIS: Okay. Thank you
10	very much. This is very informative. And we'll see
11	you in a couple of weeks.
12	(Whereupon, at 11:38 a.m. the Subcommittee
13	meeting was adjourned.)
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
ļ	I