Official Transcript of Proceedings		
N	UCLEAR REGULATORY COMMISSION	
Title:	Advisory Committee on Reactor Safeguards Materials, Metallurgy and Reactor Fuels Subcommittee	
Docket Number:	(not applicable)	
Location:	Rockville, Maryland	
Date:	Tuesday, April 3, 2007	

Work Order No.: NRC-1512

Pages 1-155

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	SUB-COMMITTEE ON MATERIALS, METALLURGY AND REACTOR
6	FUELS
7	+ + + +
8	TUESDAY,
9	APRIL 3, 2007
10	+ + + +
11	The meeting was convened in Room T-2B3 of Two
12	White Flint North, 11545 Rockville Pike, Rockville,
13	Maryland, at 8:30 a.m., Dr. J. Sam Armijo, Chairman,
14	presiding.
15	MEMBERS PRESENT:
16	J. SAM ARMIJO Chairman
17	WILLIAM J. SHACK ACRS Member
18	THOMAS S. KRESS ACRS Member
19	
20	NRC STAFF PRESENT:
21	RALPH CARUSO
22	ANTHONY MENDIOLA
23	SHIH-LIANG WU
24	PAUL CLIFFORD
25	HAROLD SCOTT
I	I

1	ALSO PRESENT:
2	CARL BEYER
3	ROBERT MONTGOMERY
4	ODELLI OZER
5	GARY DARDEN
6	NAYEM JAHINGIR
7	ROB SISK
8	BURT DUNN
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	I

2

		3
1	I-N-D-E-X	
2	Introduction and Opening Remarks	3
3	Updates to SRP Section 4.2 fuel design	7
4	review staff guidance	
5	RIA Interim criteria and guidance	16
б	Interim RIA Criteria - Industry Comments	81
7	Other SRP 4.2 Changes - Industry Comments	123
8	Anticipated Impact of Proposed SRP 4.2	138
9	On Industry	
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:29 a.m.)
3	CHAIRMAN ARMIJO: The meeting will now come
4	to order. Do we have a is that our microphone
5	there? Okay. Great. That's an improvement.
б	This is a meeting of the Advisory
7	Committee on Reactor Safeguards Subcommittee on
8	Materials, Metallurgy, and Reactor Fuel. I am Sam
9	Armijo, Chairman of the Subcommittee. Subcommittee
10	members in attendance are Bill Shack and Tom Kress.
11	The purpose of this meeting today is to
12	discuss proposed staff revisions to the Standard
13	Review Plan Section 4.2, "Fuel System Design." The
14	Subcommittee will hear presentations by and hold
15	discussions with the NRC staff, their contractors, and
16	other interested persons regarding these matters.
17	The Subcommittee will gather information,
18	analyze relevant issues and facts, and formulate
19	proposed positions and actions, as appropriate, for
20	deliberation by the full Committee. Ralph Caruso is
21	the designated federal official for this meeting.
22	The rules for participation in today's
23	meeting have been announced as part of the notice of
24	this meeting previously published in the Federal
25	Register on March 20, 2007. A transcript of the
	I

(202) 234-4433

	5
1	meeting is being kept and will be made available as
2	stated in the Federal Register notice. It is
3	requested that speakers first identify themselves and
4	speak with sufficient clarity and volume so that they
5	can be readily heard.
6	I would also like to remind the Members
7	that the Committee has determined that speakers should
8	be allowed the first ten minutes of the presentation
9	time without questions from the Members. We have
10	received several requests from nuclear industry
11	organizations to make presentations, and they have
12	been included in the agenda for the day.
13	We will now proceed with the meeting, and
14	I call on Mr. Anthony Mendiola of the staff to begin.
15	MR. MENDIOLA: Thank you, sir. Good
16	morning, everyone. As a matter of introduction, my
17	name is Anthony Mendiola. I am the brand new Branch
18	Chief for the Nuclear Performance and Code Review
19	Branch.
20	I've only been in the job about a month
21	and still learning a lot of the things that we're
22	doing and in this case still learning a little bit
23	about the status and the history behind what we've
24	done with Standard Review Plan Section 4.2, "Fuel
25	System Design."
ļ	I

(202) 234-4433

ĺ	б
1	Also, to let you know, I'm also suffering
2	a little bit from the hay fever, so excuse ahead of
3	time if I sniffle and/or my voice changes during the
4	course of the presentation.
5	The purpose for my part of the
б	presentation today is to introduce my staff, which
7	will be making the majority of the presentation. The
8	staff appears today in front of the Subcommittee to
9	perform an informational briefing, information update
10	on the staff actions thus far with the Standard Review
11	Plan 4.2 updates.
12	The Standard Review Plan SRP updates were
13	something that we as staff had considered for a period
14	of time but, of course, became much more of an
15	imperative in the last couple of years due to the fact
16	of the goal to have the SRPs updated in time for the
17	COL applicants, which are expected toward the end of
18	this fiscal year and have them in place six months
19	before those applicants came into the NRC with their
20	applications.
21	The presentation consists of two parts
22	today. The first part, of course, is a detailing of
23	the revisions to SRP Section 4.2, and the second part
24	is a conversation and information associated with the
25	reactivity-initiated accident interim criteria, which
	I

(202) 234-4433

1 is Appendix B of the revised SRP. We will not have a 2 discussion about the changes associated with 50.46(b) 3 except its criteria, as research is still continuing 4 their work on those topics.

5 The revision to the SRP 4.2 basically is 6 to provide the staff guidance regarding the review of 7 new fuel system designs that have been updated to 8 capture a variety of lessons learned from a variety of 9 sources over the years. These sources are outlined 10 here on the slide, but most of them I'm sure most 11 folks in the room are familiar with.

12 Industry operating experience, various fuel research programs, and the review of advanced 13 14 fuel designs and advanced cladding materials have led 15 us to revisit the material in SRP 4.2 and to basically update it from the previous versions. As I mentioned, 16 it became the opportunity to revisit the criteria, and 17 the staff has developed RIA interim criterion 18 19 guidance to support the new reactor licensing that we 20 expect at the end of this fiscal year.

21 We've had industry comments. We've 22 variety of Industry received а comments based 23 primarily around the two public workshops that we had 24 at the end of 2006, and I'm certain we'll get 25 additional comments as we get closer and closer to the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

7

	8
1	COL applications arriving at the NRC.
2	As I mentioned, SRP Section 4.2 Appendix
3	B specifies new restrictive fuel cladding failure
4	criteria, discusses core coolability criteria and the
5	radiological source term, and presentations later will
6	get into much more detail than I can offer at this
7	point. We are currently finalizing our criterion
8	guidance and will make the necessary revisions to the
9	Reg Guides associated with this part of the SRP.
10	That's fundamentally just an introduction.
11	I have two staff members that will be making the
12	presentation. The first part of the presentation will
13	be the revision of the actual SRP, and Dr. Shih-Liang
14	Wu will be conducting that part of the presentation,
15	and then when we discuss the RIA interim criteria, Dr.
16	Paul Clifford of my staff will be performing that part
17	of the presentation.
18	So, beyond that, if there's any questions,
19	I'd like to ask Dr. Wu to come up front.
20	And for everybody's information, of
21	course, there's handouts in the back of the
22	presentations the staff will be making today.
23	DR. WU: Good morning. My name is Shih-
24	Liang Wu. I have been working on SRP now for all
25	these years, so is the opportunity for me to present
	I

(202) 234-4433

	9
1	that the new update in our the version of the
2	the version in March of this year, the updated
3	version.
4	Let me just start. Now this slide, we're
5	just trying to run down, you know, the history of the
6	SRP, so we start with the July 1981 and then the April
7	1996 and then the March this year.
8	So the SRP 4.2 is based on the 1996
9	version, and then we tried to update, and then as
10	Tony, you know, mentioned earlier that we took this
11	opportunity to update based on the present feelings
12	with the industry lessons learned and research, you
13	know, data and also recent review of the advanced fuel
14	and design and also the new cladding material.
15	And then I just I tried to run through
16	in order a little bit quickly, because this is just a
17	structure that, you know, familiar with, that is
18	familiar with the way we design. You know, all these
19	are straightforward. The SRP is based on the
20	structure has design bases, description, and design
21	drawing and the design evaluation. And then design
22	bases has you know, there's three category, fuel
23	system damage and the fuel rod failure and the fuel
24	coolability.
25	And the fuel system damage has we

(202) 234-4433

listed eight items now, and from here on, okay, I will only present those we changed. Those I do not present in an item, that means we did not -- either we did not make any changes, or there is little change, which it means little change I mean there is some - there is no significant, you know, technical change.

7 Okay. So the first item we made change is the oxidation, hydriding and the crud, and now this 8 9 item is -- in the past, in our old SRP, we only mentioned that you need to consider, you know, thermal 10 effect in the fuel performance, you know, in terms of 11 12 oxidation, but the current version we talk about a, you know, unspecific limits, and then these limits has 13 14 to be based on mechanical testing to show, you know, 15 adequate strength and ductility.

Well, let me just say I know we understand 16 that oxidation and the crud is sometimes to difficult 17 to distinguish, so I understand the Industry usually 18 19 do not, you know, specifically specify how much the oxidation, how much the crud, because there were these 20 21 measurements, so all these letters I would like to 22 just say early that all these are guidelines. That 23 doesn't means you're strictly you had that 24 distinguished and how much is oxidation, how much the 25 crud.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

(202) 234-4433

10

1 The next slide shows, you know, 2 dimensional changes, and the same thing. The raw 3 growth and the irradiation growth are old items, and 4 then the third item, the fourth item, that means you 5 can see that this is the PWR recently about just, you know, that recently we just -- our experience showed 6 7 the channel box can cause in the -- the channel box causing the control plate insertion problem, and then 8 9 channel box pole is causing differential this 10 irradiation growth, and it showed corrosion and the stress relaxation. 11 Especially this shadow corrosion is a new

12 phenomenon, and that's the reason that we include it 13 in this. So this is one example we use in -- we call 14 15 in our industry, you know, experience learned, lesson 16 learned, and so in this case we -- in the number four 17 we said in the PWR we may require in the future, you know, testing of severity to ensure control clad 18 19 insertion pellet, but actually, my understanding is 20 the Industry already -- you know, BWR Owners' Group 21 call quidelines for has put out they period 22 surveillance.

And then the next item is the rod internal gas pressure. The first -- the number one -- the first one, it says fuel and burnable poison rod

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	internal gas pressure remains below the system
2	pressure. This is a very old criteria.
3	Now the second one is rod internal
4	pressure is allowed to exceed the system pressure
5	based on these, you know, three conditions: no
6	cladding liftoff and no hydride reorientation and no
7	DNB propagation. And then based on these you can
8	allow it to exceed system pressure, and my
9	understanding is that most industry already, you know,
10	exceed system pressure based on the second, based on
11	these, you know, the criteria on the second item. So
12	this also say, demonstrate that all these, you know,
13	fuel criteria is evolved through all these years.
14	MEMBER SHACK: But if the old criteria is
15	number one, how do they proceed to number two before
16	you rewrite the guidance?
17	DR. WU: What is that? I'm sorry, I didn't
18	I'm sorry.
19	MEMBER SHACK: You know, the original
20	guidance is number one that you remain below the
21	system pressure, and yet you've said that, you know,
22	they already routinely exceed the system pressure,
23	although they meet these criterion. Was that reviewed
24	as a separate exception?
25	DR. WU: Yes. The older fuel vendors, you
I	I

(202) 234-4433

	13
1	know, they all supplied topical report to demonstrate
2	when they exceed the system pressure. Of course, now
3	there's a certain limit that you can exceed
4	indefinitely.
5	There's a certain, you know, a certain
6	limit that not even, you know, vendors, and then so
7	based on the, you know, the topical report, we review
8	them to satisfy all these three conditions, so then we
9	allow them to exceed system pressure.
10	MEMBER SHACK: Okay, so you're basically
11	systematizing something that you've done under a
12	topical report approval in the past?
13	DR. WU: Yes. Right. Yes.
14	CHAIRMAN ARMIJO: What are the limits on
15	the cladding liftoff? I mean, in principle, once you
16	have the internal pressure exceeding the system
17	pressure, there should be cladding liftoff.
18	DR. WU: No. No, because you are the
19	way the system in the case of the PWR, 2200 psi.
20	You need to exceed it in quite an amount in order to
21	force in cladding push and forcing the cladding push
22	away from the field, not immediately, right away.
23	CHAIRMAN ARMIJO: So there's a certain
24	delta-p that's allowable.
25	DR. WU: Right. Now I think usually the
	I

(202) 234-4433

	14
1	rod number is about you had to go beyond 700 psi
2	beyond, you know, 2200 psi. Then you're starting
3	CHAIRMAN ARMIJO: So around 3,000 psi or
4	something like that?
5	DR. WU: Yes, is about our range, yes.
6	Yes, that range. Then you starting seeing the
7	cladding starting move away from fuel, yes.
8	The next item, the control rod reactivity
9	and the insertability, and the first one the people
10	sees old story that, you know, we don't allow it to,
11	to leach away from the cladding, and then the
12	remaining - and the next item 2, 3, 4, and 5 is
13	these are the new, okay.
14	The first one is changing control rod
15	configuration. We meant if you change the, you know,
16	geometry, the shape you change, and the new material,
17	it could be we're talking about any that you use
18	new absorbent material, and the next item is changing
19	electronic and the mechanical lifetime.
20	Now what this means this meant that if
21	you, with the current design, and then you're trying
22	to make a control blade, a control rod stay in the,
23	you know, in the reactor a longer time based on some
24	electronic based on your electronic, you know, core
25	design or based on some starting mechanical change,
ļ	I

(202) 234-4433

	15
1	then you need to justify it to prolong the lifetime,
2	you know, justify that.
3	And then the last item is a change in
4	mechanical design is if you what it means you're
5	changing the, you know, the basically the strand
б	nature, but I just from hindsight we think, you
7	know, the number 2 and number 5 should be, you know,
8	merged together, so this is the thing we can improve
9	in the futures.
10	Okay, so we're finished with the fuel
11	system damage, and then we go to the second item.
12	It's fuel rod failure, and then here we list is also
13	eight items. The same thing, I'll present only the
14	one we make change.
15	Now hydriding is in the past we only
16	specify, you know, the internal hydriding. This talk
17	about, you know, fuel rod, I mean, the fuel failure
18	should the moisture should be limited, and then we
19	add on external hydriding.
20	This is kind of new, but I want to
21	emphasize that, you know, emphasize that this external
22	hydriding we did not mean we didn't specify the
23	limit. We just think the source of hydriding can be
24	from internally, from internal and also from
25	externally. So in actuality, we didn't specify what
l	1

(202) 234-4433

	16
1	is a external hydriding issue considered.
2	And next one is pellet/cladding
3	interaction, and here is the PCI of it is, you know,
4	we're all familiar with, and then we add on one PCMI,
5	you know, pellet cladding mechanical interaction, and
б	then this PCMI is, you know, strain driven affected,
7	you know, fuel pressure cladding, and then the causing
8	the cracking.
9	And then the one percent strain limit is
10	still same. The only things we add on that, you know,
11	mechanical testing to show that irradiated cladding
12	remain ductile to sustain the one percent strain
13	limit. This is new, and then we just well, this
14	meaning to deal with the high burnup effect that we're
15	concerned that when you go to high burnup, irradiated
16	cladding may not be able to sustain, you know, one
17	percent strain limit. And then the last item, no fuel
18	melting, that's same.
19	And then bursting, basically this still
20	the same thing, and we based on NUREG0630, "Cladding
21	Swelling and Rupture Models," and then of the burst
22	you need to consider a flow blockage.
23	So the last item is new, because when we
24	allow, you know, raw pressure to exceed system
25	pressure, then we start a concern LOCA condition.

(202) 234-4433

	17
1	Then LOCA accident you could have had, you know,
2	bursting causing the flow blockage. This is our
3	concern during one of our topical review so
4	CHAIRMAN ARMIJO: What kind of non-LOCA
5	accident are you concerned about specifically? Just
6	give me an example.
7	DR. WU: Yes, sure. Paul?
8	MR. CLIFFORD: Hello. My name is Paul
9	Clifford, NRR. A good example would be the locked
10	rotor event. During that event, the certain number of
11	fuel pins would experience DNB. Clad temperatures
12	would increase, and cladding would creep out due to
13	the rod internal pressure.
14	DR. WU: So then the next category is fuel
15	coolability, and then there's five items. The first
16	one is cladding embrittlement, and then we didn't
17	change, you know, the others, 2200 and 17% ECR. The
18	third bullet is measuring we're planning a
19	rulemaking to implement performance-based acceptance
20	criteria. That's in the near future.
21	Well, this fuel rod ballooning is the
22	bursting, as we talked earlier, and that's finishing
23	the design bases, and then the one I go to, the right,
24	I mean, the last item is a design evaluation. We made
25	a couple changes.
Į	I

(202) 234-4433

	18
1	In the section 3C. Analytical Predictions,
2	we add on cladding collapse and the fission product
3	inventory. Now this cladding collapse is the
4	because, you know, we're dealing with a lot of fuel
5	design change, and then some of this cladding collapse
6	was overlooked, you know, with the last one submitted,
7	but the vendor did not or licensee did not really look
8	into the collapse.
9	Of course, this would not happen, but we
10	just somehow feel that this needed to be emphasized
11	that whatever, you know, your new design, you need to
12	go back to check your old approved code to make sure
13	that your new designs still remain valid for, you
14	know, for this particular cladding collapse analysis.
15	And then the last item is fission product
16	inventory based on, you know, 10 CFR 100. It's old,
17	and then the new one is and this is already in the
18	10 CFR. It's, you know, 50.34 is for new reactors,
19	and the 50.67 is for existing reactors, and then for
20	non-LOCA accident we even, you know, we allow to use
21	ANS 5.4 model.
22	I think that finish my talk. Any
23	question? Thank you.
24	MR. MENDIOLA: Continue on?
25	CHAIRMAN ARMIJO: Yes.
ļ	1

	19
1	MR. MENDIOLA: Okay. Honorary Dr. Paul
2	Clifford.
3	MR. CLIFFORD: Good morning. My name is
4	Paul Clifford. I've been with the staff for about
5	four years. This is my first opportunity to present
6	to the ACRS. Even though I've only been here for four
7	years, I feel like an old-timer with all the new
8	hires.
9	I always thought it best when making a
10	presentation to answer the fundamental questions, what
11	and why, and we'll get on to how and when. The what
12	is the reactivity-initiated accident. For people in
13	the room that aren't too familiar with it, these
14	events consist of the control rod ejection for the
15	PWRs and the control rod drawbacks for the BWRs.
16	The next question would be why. Why am I
17	here today? Why has the staff issued interim
18	criteria? And there's really two main reasons why we
19	decided to issue interim criteria for this category of
20	events. The first is for the licensing of the new
21	reactors. We expect many, many COL applications in
22	six months or so, and we felt it was time, and there
23	was a need to develop conservative acceptance criteria
24	and guidance moving forward with this next generation
25	of reactors.
ļ	l

(202) 234-4433

	20
1	And the second reason was really to
2	provide a good target for the Industry. The Industry
3	will be presenting material later on where they will
4	be discussing the implementation of new criteria for
5	the current operating fleet, and it takes it will
6	take time for the Industry to develop the methodology
7	and to develop a strategy for dealing with this much
8	more restrictive criteria, and providing interim
9	criteria gives them a good target.
10	It's difficult to develop methodology if
11	you don't know what you're shooting for, so we're
12	providing a target for the implementation of the
13	current
14	CHAIRMAN ARMIJO: Now to make sure I
15	understand, the interim criteria are intended to apply
16	to new reactors, but when do they get applied to
17	existing reactors, or will they ever?
18	MR. CLIFFORD: The strategy we have, and I
19	can go to the next slide we have a two-stage
20	approach. As mentioned, the interim criteria will
21	apply to the new reactors, all the new reactors that
22	are coming in for licensing, and over the next 18
23	months we're gonna be doing a more rigorous evaluation
24	of the existing database, and there's also upcoming
25	testing that will hopefully provide us with a lot of
I	1

(202) 234-4433

	21
1	valuable information that we can use to potentially
2	rethink and reune this criteria, and we would expect
3	that after 18 months we would be in a position where
4	we would finalize the criteria and guidance.
5	We would revise Reg Guide 177, Reg Guide
6	1.183, and Reg Guide 1.195, and at that point we would
7	perform a 5109 backfit analysis and determine the
8	implementation on the current fleet.
9	CHAIRMAN ARMIJO: Okay.
10	MR. CLIFFORD: That's really the last
11	slide, so I guess I started at the end.
12	CHAIRMAN ARMIJO: Yes, but it gives us the
13	whole picture.
14	MR. CLIFFORD: Right. It's important to
15	recognize as we go through the slides that NRR is
16	building upon Research's fine work in this area.
17	RIL0401 was issued in March of 2007, which provided an
18	assessment of the currently operating units and
19	concluded that there is overly conservative methods
20	being used in the field such that the consequences of
21	an event were it to occur would be acceptable. In
22	fact, they conclude that fuel cladding wouldn't even
23	fail during even the worst postulated accidents.
24	So we have an operability assessment in
25	our back pocket for the current operating fleet, so
l	I

(202) 234-4433

	22
1	that's really one of the main reasons why we feel we
2	can wait the 18 months to then fine-tune them and then
3	implement them to the current fleet.
4	CHAIRMAN ARMIJO: And you're thinking that
5	that conservatism might not exist in new plants?
б	MR. CLIFFORD: New plants could have
7	different fuel designs, different rod works. There
8	could be a lot of different fuel management
9	strategies, which could potentially make the event
10	worse. We don't have an analysis for all potential
11	new reactors, so there's really no way of saying that
12	we have time there.
13	CHAIRMAN ARMIJO: Okay.
14	MR. CLIFFORD: Yes. The agenda will
15	consist of two distinct areas, and it's always good to
16	identify that there are two distinct areas, because
17	there will be numbers being thrown around today, and
18	people have always gotten confused between 170, 280,
19	230, 200, and so I broke this up into two.
20	The first is the radiological
21	consequences. Now this is to satisfy Part 100. To
22	meet Part 100 doses, you need to know two things, how
23	many pins fail and what's the source term from each
24	pin that did fail.
25	So we are first in the first half going
	I

(202) 234-4433

	23
1	to be discussing what is the criteria or the threshold
2	at which fuel cladding fails. Then we will be going
3	on to what is the source term. What is the isotopic
4	population, say, that will be released that will need
5	to go into your dose calculation?
6	And then secondly and separately, we will
7	be talking about core coolability, and this
8	presentation will deal with meeting the requirements
9	of 10 CFR 50, Appendix A, GDC 28 requirements.
10	I have a format on these slides I want to
11	make sure that everyone is aware of. Pretty much
12	first I'm going to identify what the current criteria
13	guidance is. Then I'm going to identify what's wrong
14	with it, and then finally I'm going to propose or I'm
15	going to identify what the interim criteria is.
16	The current criteria for fuel cladding
17	failure is specified in the current SRP, or I guess it
18	was the previous SRP now, and it states that the for
19	BWRs a radial average fuel enthalpy greater than 170
20	calories per gram would result in cladding failure,
21	and if you exceed your fuel design limits, say DNBR,
22	for instance, then you would have to presume there was
23	cladding failure.
24	Now the problem with the current criteria
25	is it's based upon testing on very low and sometimes
ļ	I

(202) 234-4433

1 fresh fuel rods, so the effects of high burnup or long 2 residence time and corrosion aren't really taken into 3 effect in the database that supports those current 4 criteria.

5 The 170 calories per gram is not always 6 adequate to protect rod integrity, and another thing 7 is that the presumption of fuel failure based upon a 8 steady-state critical heat flux correlation may be 9 overly conservative for a transient, which is over in 10 a matter of seconds.

It's important to identify the cladding 11 12 failure mechanisms, because there are several. The first is the high temperature cladding failure, which 13 14 consists of post-DNB oxidation and embrittlement and 15 fuel rod ballooning. The second is PCMI, pellet-tocladding mechanical interaction, and the third would 16 be molten fuel expansion and plastic flow of the --17 essentially melting of the cladding. 18

MEMBER SHACK: Very plastic.

20 MR. CLIFFORD: Yes, exactly. For the first 21 mechanism, which is the high temperature cladding 22 failure mechanism, this phenomena has been reported in 23 several of the RIA test programs that have been 24 conducted since the 1970s, and it is more limiting 25 than the PCMI failure.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

19

	25
1	You have fresh fuel that has low
2	corrosion, lots of ductility left in it. Generally
3	that type of fuel can withstand the thermal swelling
4	of the pellet, but you can kind of get bit by going
5	into DNB and dry up.
6	The sensitivities of this failure
7	mechanism would be anything that affects the heat
8	transfer for the fuel rod and anything that affects
9	rod internal pressure, and it's sensitive to total
10	fuel enthalpy as opposed to a change in fuel enthalpy,
11	which we'll get to.
12	The next slide here shows the empirical
13	database to date for all of the tests, the reactivity-
14	initiated accident test programs, and here we have the
15	non-PCMI failures.
16	MEMBER SHACK: Why don't these show some
17	trend with burnup? You know, you tell me your
18	sensitivity is the fact there's the influence
19	internal pressure and total fuel enthalpy, and yet I
20	see no at least, it looks like a shotgun here
21	against burnup.
22	MR. CLIFFORD: It would be tremendous
23	burnup effects, because
24	MEMBER SHACK: There should be, yes, but I
25	don't
I	1

(202) 234-4433

	26
1	MR. CLIFFORD: because in real life the
2	amount of power you would get from a high burnup rod
3	would be less. In other words, you would have
4	depletion of your fissile materials such that these
5	rods would be less likely to be the limiting rods.
6	However, in these test reactors, remember they're
7	driving the rods to a given power.
8	CHAIRMAN ARMIJO: I think maybe I
9	misunderstood.
10	MR. CLIFFORD: So it's not like you've
11	done an evaluation so that the high burnup rods, all
12	of them would be significantly higher fuel enthalpy in
13	the high burnup, so the low burnup would have high
14	enthalpy, and the high burnup would have low enthalpy.
15	Here they're all driven to a target enthalpy.
16	CHAIRMAN ARMIJO: But he capability of the
17	material is demonstrated by these tests. It says the
18	material can take will not fail by this mechanism
19	until you get to these high enthalpies.
20	MR. CLIFFORD: Right. This failure is not
21	driven by, for instance, the mechanical properties of
22	the cladding, so the effect of burnup on the cladding
23	doesn't drive this mechanism.
24	CHAIRMAN ARMIJO: Yes, what's the corrosion
25	failure?
	1

(202) 234-4433

	27
1	MR. CLIFFORD: It's not a corrosion
2	failure.
3	CHAIRMAN ARMIJO: What kind of failure is
4	it?
5	MR. CLIFFORD: It's a DNB failure, or it's
6	a balloon rupture failure. It would be very sensitive
7	to fuel design, assembly design from a DNB
8	perspective, and it would be very sensitive to burnup
9	from a rod internal pressure perspective, because the
10	higher burnup fuel rod would have a higher rod
11	internal pressure, so it has the potential to balloon
12	more readily if it were to achieve high enough
13	temperatures.
14	MEMBER SHACK: But basically I can drive
15	raw in any of these burnups to this enthalpy is what
16	you're really arguing here.
17	CHAIRMAN ARMIJO: In the test reactor.
18	MEMBER SHACK: In the test reactor, and it
19	won't fit, so it has that capability.
20	MR. CLIFFORD: Right. Here the 170, the
21	red line, that's the current acceptance criteria in
22	the SRP, and I put it up here to illustrate that there
23	are situations where the 170 would not be
24	conservative, and I'll get to those. In these
25	particular cases well, we can talk about them now.
ļ	I

(202) 234-4433

These BIGR rods had a high rod internal pressure that exceeded the capsule pressure in the test rig such that once they approached DNB and dryout, they ballooned and failed in that manner, so there is a -- there is some dependency on rod internal pressure.

7 Here's a figure. I hope it shows up 8 better in your plot. Here's a figure that was 9 provided by EPRI during one of our public workshops, and this is a plot of a lot of NSR low burnup data and 10 11 the Russian data from BIGR and IGR, and it kind of 12 shows the sensitivity of failure with differential pressure or pressure across the cladding. 13

14 We used this information in combination 15 with our own evaluation to come up with our first 16 criteria, and that's the bold criteria here. 17 Essentially, to determine cladding failure due to high cladding temperature failure mechanisms, we've drawn 18 19 two lines in the sand.

The first one is 170 calories per gram, and that is for any fuel rod where the rod internal pressure is less than system pressure, and the next line in the sand is at 150 calories per gram, and that is to capture the balloon burst effects if you have a rod internal pressure that's high.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

The second half of this paragraph states that for intermediate and full-power conditions, there is still the presumption of cladding failure of you go into DNB. So essentially we have an empirically based failure point at zero power, but once you reach power, once you're at power, it's impossible to know -- or I shouldn't say impossible to know.

There is a wide variety of fuel designs 8 9 and operating conditions, and at any point in the 10 fleet you could fuel designs that are, you know, either this far from DNB or this far from DNB, so it's 11 12 difficult to say that a certain calorie per gram would cause them to go to dry-out, so there are analytical 13 14 tools, and there is specific critical heat flux data. Although it's probably a little overly conservative to 15 apply them in this case, it's still conservative, so 16 17 MEMBER KRESS: This database you have on 18 19 failures, non-failures due to RIAs --20 MR. CLIFFORD: Yes, sir. 21 MEMBER KRESS: -- those come out of burst 22 test reactors, I presume? 23 MR. CLIFFORD: These are all of the -- this 24 is the test data from the RIA Program. 25 MEMBER KRESS: Those are test reactors.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

29

	30
1	MR. CLIFFORD: CABRI.
2	MEMBER KRESS: Now I presume there's some
3	criteria on the amplitude and the width of the RIA
4	input that has to be mapped in order to be applicable
5	to the real RIA accident. I mean, I could see how you
6	could insert a given amount with a long time and a
7	short amplitude or short time and high amplitude. Is
8	there a criteria for the tests to meet that's based on
9	some sort of concept of
10	MR. CLIFFORD: Well, let me start out
11	MEMBER KRESS: I would guess the high
12	amplitude/low time would be more severe.
13	MR. CLIFFORD: Well, for this particular
14	failure mechanism, it's really a total length. It's
15	how much energy you put into the system so that you
16	can go into DNB. A short pulse, a high pulse, would
17	be worse for a clad strain if you wanted to pulse the
18	fuel pellet so that it pushed out on the cladding and
19	potentially failed it that way. Here's it's really
20	total length. It would be over a period of time that
21	causes you to go into DNB. And all of this
22	information here has been presented to the staff.
23	MEMBER KRESS: That presumes you don't lose
24	much of the heat.
25	MR. CLIFFORD: Oh, right. Right. There's

(202) 234-4433

	31
1	all sorts of there's all sorts of variables.
2	MEMBER KRESS: Yes.
3	MR. CLIFFORD: And each of these tests, as
4	was presented when RIL0401 was presented to the staff,
5	each of these test reactors has different conditions
6	which are non-typical of a power reactor. For
7	instance, some may the pulse width could go from
8	I think they go from a couple hundred milliseconds to
9	three or four milliseconds, and some are done
10	I mean, CABRI was done in a sodium loop,
11	which really doesn't give you a good DNBR relative to
12	water. Some were done in cold conditions. Some we
13	got atmospheric pressure. Some were depressurized, so
14	there's a lot of variables.
15	CHAIRMAN ARMIJO: These are just raw data.
16	They're not adjusted for system pressure, pulse width
17	
18	MR. CLIFFORD: Correct.
19	CHAIRMAN ARMIJO: cladding temperature
20	or anything like that.
21	MR. CLIFFORD: Correct.
22	CHAIRMAN ARMIJO: Raw test reactor data.
23	MR. CLIFFORD: Raw data.
24	MEMBER KRESS: That may explain I was
25	trying to figure out how at a given burnup why there
ļ	I

(202) 234-4433

	32
1	is such a range of impacts in the test, actually.
2	CHAIRMAN ARMIJO: The open circles are non-
3	failures.
4	MEMBER KRESS: Oh, yes. I understand that.
5	CHAIRMAN ARMIJO: I mean, the only things
6	that failed are the filled-in symbols.
7	MR. CLIFFORD: Correct. Each of the
8	symbols is a different test specimen, so whatever they
9	were targeting for that particular test is what they
10	achieved. In other words, if they targeted a low
11	enthalpy, then maybe they didn't fail, and if they
12	targeted a high one, they failed.
13	MEMBER KRESS: Well, I was wondering, for
14	example, why the circles in the NSRR test at high
15	burnup never exceeded why the test never exceeded
16	the 170. It's probably because they can't get up
17	there, right?
18	MR. CLIFFORD: It is difficult to get the
19	higher burnup up there. It depends on the it
20	depends on the reactor. You know, also, another
21	reason might be that they were targeting a lower
22	enthalpy for the test, because they had seen PCMI
23	failures at a lower enthalpy for the higher burnup
24	rods, so there was if you were developing a test,
25	there's no reason to go to 170 if you think it's gonna
	1

(202) 234-4433

	33
1	fail at 70.
2	MEMBER KRESS: Yes, you're right.
3	MR. CLIFFORD: As I mentioned, this doesn't
4	have any of the PCMI failure data, though.
5	MEMBER SHACK: Just on this one
б	MR. CLIFFORD: This one?
7	MEMBER SHACK: the previous statement
8	was that up to about 700 psi was, you know, you didn't
9	have to worry too much about this, but that looks
10	pretty generous here.
11	MR. CLIFFORD: Well, it's really okay,
12	during the rod design analysis, you calculate what
13	they call a critical pressure. At normal operating
14	conditions when your clad is only at about 700 degrees
15	Fahrenheit, that's probably the 700 to 600 degrees
16	Fahrenheit is where your cladding temperature is going
17	to be.
18	The critical pressure is going to be 1,000
19	pounds, roughly, higher than system pressure before
20	you would creep out, and that's based on material
21	strength, clad thickness, you know, fuel rod design.
22	There's a lot of things that influence how strong that
23	tubing is.
24	Here, as soon as you go as soon as you
25	elevate the temperature of that cladding during a
	I

(202) 234-4433

	34
1	transient, all bets are off. Now you're really
2	it's the creep properties as opposed to the strength
3	properties that they're going to cause it to swell and
4	burst, so, I mean, that's the difference.
5	Okay, so we talked about this first
б	bullet, which is the interim criteria for the high
7	cladding temperature failure mechanism, and next we're
8	going to proceed to the PCMI failure criteria.
9	MEMBER KRESS: Now does this criteria, does
10	is it good for the various new clads that are out
11	there?
12	MR. CLIFFORD: This criteria is not as
13	sensitive to the material properties of the cladding,
14	because it really is thermal hydraulics, how much heat
15	you get through it before you go into DNB sort of
16	criteria. That's a good question, and it really
17	relates more to PCMI, which is much more reflected by
18	the cladding properties.
19	Okay. PCMI. We have this. PCMI failure
20	has been reported at many of the RIA test programs,
21	and it's more limited than the high temperature
22	failure mechanism when you start to reach corrosion
23	levels, you know, above a couple cycles of burnup, and
24	it's sensitive to it's sensitive to the fuel
25	thermal expansion, anything that will influence the

(202) 234-4433

	35
1	fuel thermal expansion and the cladding material
2	properties, and it's driven by a change in fuel
3	enthalpy as opposed to total fuel enthalpy, and we
4	chose to develop separate lines, separate criteria for
5	BWRs and PWRs, and I'll get to the reasons why.
6	Here is the data that was most of which
7	was presented in RIL0401 back a year and a half, two
8	years ago. We've added a couple points when we've
9	received a couple of points, VA1 and VA2 from NSR, so
10	we've added it to the database. I think there was a
11	couple more, too.
12	And we drew a line that was similar to
13	what research had drawn in the RIL. The difference
14	between I have a slide. Well, let's talk about the
15	data set first before we talk about differences.
16	We initially anchored the failure criteria
17	to 150 calories per gram. Now that's changed. That's
18	an increase in calories per gram, 150, and that's
19	anchored out to a oxide-to-wall thickness of .04. Now
20	for a modern 17-by-17 PWR design, that's approximately
21	25 microns of oxide, and how long it takes you to get
22	to 25 microns of oxide depends on coolant temperature
23	and the cladding. Probably cladding has a first-order
24	impact, whether it's, you know, M5, ZIRLO, Zirc-4,
25	whatever it is. It's going to affect the time it
I	I

(202) 234-4433

	36
1	takes you to get to 25 microns, and we chose to
2	normalize to wall thickness to account for the large
3	discrepancy in cladding thicknesses in the database.
4	CHAIRMAN ARMIJO: Why did you use oxide-to-
5	wall thickness for PWRs and hydrogen or hydrides for
6	BWRs? Isn't the mechanism pretty much the same as the
7	embrittling mechanism?
8	MR. CLIFFORD: The embrittling mechanism is
9	excess hydrogen. It is the hydrides that reside in
10	the cladding, and I can talk about it now. The best
11	approach is to relate the failure point directly to
12	hydrogen.
13	We didn't have much of the data to support
14	the for the PWRs on hydrogen. In other words, when
15	they collected the data, they would have had to have
16	done a test to determine what the hydrogen levels were
17	and they didn't necessarily to all those tests.
18	Secondly, the hydrogen pick-up fraction
19	and the hydrogen behavior on a PWR is pretty well
20	behaved. There's a lot of data out there for hydrogen
21	corrosion rates and corresponding I'm sorry, oxide
22	corrosion rates and corresponding hydrogen pick-up
23	fractions. There's a lot of data out there for PWRs
24	and it's pretty linear. The same can't be said for
25	BWRs.
Į	I

(202) 234-4433

1 CHAIRMAN ARMIJO: Okay, so you're 2 comfortable that oxide thickness, wall thickness ratio 3 represents a well behaved hydrogen increase as a 4 function of burnup. MR. CLIFFORD: I think as we move forward 5 and try to finalize the criteria we're certainly going 6 7 to investigate that further. There is a large

8 discrepancy between the alloys. In other words, alloy 9 A is going to have a different hydrogen pick-up than 10 alloy B, and that's going to have to be specifically 11 accounted for.

12 In other words, when a licensee uses this, is going to implement this interim criteria, they're 13 14 going to have to determine what their corrosion rates 15 are as a function of burnup for their particular unit, and then they're going to have to really cross-compare 16 that to, well, what's their hydrogen pick-up fraction, 17 and how does that differ from potentially the alloys 18 19 used in developing this line?

That's all going to have to be taken into account, but, I mean, if it was up to me, I would love to find the hydrogen data and re-plot this as a function of hydrogen.

24 CHAIRMAN ARMIJO: That's ultimately what's25 the controlling mechanism.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

37

	38
1	MR. CLIFFORD: Exactly.
2	CHAIRMAN ARMIJO: Okay.
3	MR. CLIFFORD: This oxide-to-wall is just
4	a surrogate for hydrogen.
5	MEMBER KRESS: What's the rationale for the
6	red line having some failures below it?
7	MR. CLIFFORD: Okay, we drew this line. At
8	the beginning here there's a few NSR points here.
9	There's a PBF. There's one PBF test. Well, first of
10	all, this is a pure empirically based line, and we
11	didn't feel initially that we needed to bound each and
12	every point.
13	MEMBER KRESS: Why not?
14	MR. CLIFFORD: Why not? Well, there was a
15	lot of non-prototypical conditions that are in this
16	test and certain points that are more questionable as
17	far as their applicability to the current fleet.
18	MEMBER KRESS: I gather from that you can
19	take every one of those points below it and point out
20	some reason why you can ignore it or discount it?
21	MR. CLIFFORD: I wouldn't say we would
22	ignore each point. It gets a little dangerous when
23	you start throwing away, when you have such a limited
24	database, when you start throwing away points, but,
25	for instance, the NSRR, which is the circles, the dark
I	I

(202) 234-4433

39 1 circles, those were slightly adjusted following what 2 the real methodology was, the RIL0401. 3 However, there's an expectation that there 4 is new data becoming available in the next 12 months 5 where the NSRR is going to be running hot tests. 6 These are all done at room temperature, 20 degrees 7 Celsius, and temperature has a more first-order impact on cladding properties and ductility, and so it would 8 9 have a first-order impact on PCMI failure, and we expect that when we see the results of the hot cell 10 program that we're going to be able to -- in addition 11 to putting more dots on the figure, we're going to be 12 able to calibrate or recalibrate those dots such that 13 they'll be above the line. So knowing that we had 14 15 this coming, we didn't want to be overly conservative. 16 MEMBER KRESS: The CABRI tests, those are 17 the ones you said were sodium-cooled? MR. CLIFFORD: CABRI is sodium-cooled, but 18 19 they are --20 MEMBER KRESS: That's a reason for maybe 21 discounting those diamonds? 22 CLIFFORD: Well, MR. for а pure PCMI 23 failure, the sodium bursts the water. It shouldn't 24 have that much of an impact. Certainly it had an 25 enormous impact on high temperature cladding failures

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	because of the heat transfer, the tremendous heat
2	transfer of sodium versus water, but for a pure PCMI
3	failure it should be less.
4	Now there will be more data when it comes
5	out in, oh, two years, three years, because CABRI is
6	supposed to be converting their loop to a water loop
7	such that they'll give us data that's more typical.
8	MEMBER KRESS: Is that red line slanted
9	above .08?
10	MR. CLIFFORD: .08 was one of the anchor
11	points.
12	MEMBER SHACK: But it has a slope is what
13	he's saying.
14	MEMBER KRESS: That seems a little strange
15	for empirical data of this type. I would have had
16	that a straight line. I can't envision the reason.
17	MEMBER SHACK: Where do you put the elbow
18	in what you picked for the slope?
19	MEMBER KRESS: Yes, those are questions I
20	would have about it, but
21	MR. CLIFFORD: I think if I gave a raw plot
22	like this to everybody here, we would end up with
23	MEMBER KRESS: You'd end up with different
24	
25	MR. CLIFFORD: 45 different slopes.
ļ	I

(202) 234-4433

	41
1	MEMBER KRESS: You certainly would, yes.
2	CHAIRMAN ARMIJO: Now these are all for
3	cold tests, all of these data are.
4	MR. CLIFFORD: Not all of these data are
5	for cold tests.
6	CHAIRMAN ARMIJO: All the NSRR?
7	MR. CLIFFORD: Correct.
8	CHAIRMAN ARMIJO: Now if you go up to
9	higher temperatures, the expected cladding temperature
10	in a reactor, the hydrogen goes into solution. At
11	least part of it reads off.
12	MR. CLIFFORD: Part of it, about 100 ppm or
13	so.
14	CHAIRMAN ARMIJO: And how big an effect
15	would you expect just from that?
16	MR. CLIFFORD: Well, the I think the
17	solubility of hydrogen at normal operating temperature
18	is around 100 ppm, and that corresponds to in very
19	clad allow dependent, but for, say Zirc-4 it's
20	probably about 25 microns. What do you guys think
21	over there? Good guess? Say 25 microns, so up to 25
22	microns, which is approximately this where the 150
23	before it drops down. You would essentially have no
24	hydrides. They would all be in a solution.
25	MEMBER SHACK: So that accounts for the
ļ	

(202) 234-4433

	42
1	flat part of your curves then.
2	MR. CLIFFORD: Right.
3	MEMBER SHACK: And after that you're
4	exceeding the solubility, and so you're
5	MR. CLIFFORD: Right. Now we're going to
6	get into when we get to BWRs, we're going to talk
7	about that very point, because the BWRs, they can be
8	at cold conditions when they start up.
9	CHAIRMAN ARMIJO: Right. I understand
10	that.
11	MR. CLIFFORD: So they have to take that
12	specifically into account.
13	CHAIRMAN ARMIJO: Right. Right.
14	MR. CLIFFORD: And I'll get to that in the
15	next slide or the next two slides, but this is the
16	reinforced, what we see here in the next slide. Here
17	is a comparison of the PCMI failures. The dotted
18	line, the blue dotted line excuse me the blue
19	dotted line is that of RIL0401.
20	MEMBER KRESS: So you're telling the
21	Research people that we don't believe that restrictive
22	is necessary?
23	MR. CLIFFORD: I would never say that. No,
24	the difference between the blue dotted line and the
25	red line is really that took a nose dive right at the
I	1

(202) 234-4433

	43
1	beginning, because it wanted to bomb some cold NSRR
2	data points that were on BWR Zirc-2 cladding, so the
3	difference we have here is we removed all the BWR
4	Zirc-2 cladding from the PWR.
5	MEMBER KRESS: Oh, those are BWR data?
6	MR. CLIFFORD: Yes.
7	MEMBER KRESS: That shows on the previous?
8	MR. CLIFFORD: No, no, no, no. The
9	previous slide is all PWR data, but
10	MEMBER KRESS: Well, it looked to me like
11	they were trying to
12	MR. CLIFFORD: If you would put the if
13	you go back and look at the RIL, there's a bunch of
14	data points here.
15	MEMBER KRESS: I see.
16	MR. CLIFFORD: And these are BWR data.
17	CHAIRMAN ARMIJO: You can't talk away from
18	the mic.
19	MR. CLIFFORD: I can't hear myself in this.
20	MEMBER KRESS: Just don't write on the
21	screen with the pen.
22	MR. CLIFFORD: It'll burn a hole in it.
23	Right here in the RIL there were several BWR Zirc-2
24	samples that were used in determining this line, and
25	by removing that cluster of BWR Zirc-2 when
	I

(202) 234-4433

44 1 determining the PWR line, it allowed us to move that 2 up. Also, there were a lot of testing up above 3 4 this area that didn't show any failures. We haven't 5 seen a lot of or any failures when you had essentially no corrosion and no hydrides. The cladding is very 6 7 ductile at that point, and it's able to withstand 8 that. So here is the RIL0401, and here is my 9 projected line. As you can see, they're very similar 10 11 when they get out to this point here. The dotted line 12 is something that EPRI will be discussing later on, this, whereas these lines 13 and two are purely 14 empirically based -- in other words, you look at the 15 empirical data. Maybe you perform a little scaling, whatever you feel comfortable with, but you go with an 16 empirical limit. 17 The dotted line represents a mechanistic 18 19 Separate effects testing is used to a approach. mechanistic model, which is then used to determine the 20 21 point of failure, and they'll be presenting later on 22 that they believe that the points that I used to bring this down here, the points right -- this family of 23 points here, they believe they can be either further 24 25 adjusted, or they can be dispositioned somehow, so

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	they don't need to include them, and they've got valid
2	they've got some valid points, which you'll like to
3	hear, but we end up similar out here.
4	So the purpose of this slide is to show
5	that we do deviate from what Research presented us
б	with, but there's a reason for that, and even though
7	we're using what we feel a pretty conservative
8	approach, we don't differ that significantly from what
9	the Industry is proposing, and for an interim
10	criteria, you always want to err on the conservative
11	side.
12	MEMBER SHACK: Good writeup, because this
13	is in two colors which are absolutely
14	indistinguishable in my screen.
15	MR. CLIFFORD: What this slide represents
16	is the application of a corrosion-based criteria in
17	the field. In other words, to give a licensee or a
18	fuel designer corrosion-based criteria isn't really
19	useful, so they're going to have to convert that
20	corrosion-based criteria to a burnup-dependent
21	criteria, and they'll do that by evaluating hydrogen
22	pick-up percentage and their corrosion behavior, their
23	cladding at their operating temperatures, and they'll
24	come up with a different curve.
25	Here is two different curves. This would
ļ	I

(202) 234-4433

	46
1	be this would be a modern alloy like optimized
2	ZIRLO or M5 here where you have good corrosion
3	properties such that you're really not getting a lot
4	of oxide, and you're really not picking up a lot of
5	hydrogen, so you're not really paying the penalty of
б	it, whereas this would be more of a current Zirc-4.
7	CHAIRMAN ARMIJO: Now with your interim
8	criteria, do they get credit for use of the modern
9	material that doesn't pick up much hydrogen?
10	MR. CLIFFORD: Absolutely. Absolutely they
11	would be able to take that.
12	MR. CARUSO: Is that staff going to require
13	licensees to monitor oxidation film thicknesses in
14	order to verify that the fuel is performing as
15	modeled?
16	MR. CLIFFORD: That's a good question. We
17	generally already have approved corrosion models built
18	into the fuel performance analysis where they've
19	presented a lot of pool-side examinations where
20	they've done corrosion measurements, and then in
21	combination with out-of-cell hydrogen measurements,
22	there's enough data presented. Do I expect to see a
23	change over time? There should be enough information,
24	but because there's so much operating experience with
25	like a Zirc-4
ļ	I

(202) 234-4433

	47
1	MR. CARUSO: There's also some operating
2	experience with surprises that have occurred because
3	people didn't control their chemistry.
4	MR. CLIFFORD: Well, certainly crud and the
5	effect of crud on corrosion is a wild card.
6	MR. CARUSO: So is the staff going to
7	require people to monitor their corrosion every
8	refueling outage to verify that the fuel is oxidizing
9	as the model is expected to oxidize, or are you just
10	going to be faith-based and
11	MR. CLIFFORD: It's a good question.
12	CHAIRMAN ARMIJO: It would be pretty
13	impractical, I mean, to try and do it to that level.
14	You've got to have some level of confidence that the
15	database and the materials are well controlled.
16	MR. CARUSO: Some countries do that.
17	MR. CLIFFORD: Well, I think a problem, a
18	visit would probably be sufficient to identify whether
19	you had a crud problem.
20	CHAIRMAN ARMIJO: Or if oxide's falling or
21	something bad going on.
22	MR. CLIFFORD: Right, but to go in there
23	and take any current testing or any other means each
24	cycle, that would be that would add time to the
25	reloads, and we would get a lot of resistance on that.
ļ	1

(202) 234-4433

	48
1	This I'm sure they would agree with.
2	CHAIRMAN ARMIJO: Okay. Well, this
3	encourages the development and application of modern
4	materials that address the hydrogen embrittlement
5	issue.
6	MR. CLIFFORD: Absolutely.
7	CHAIRMAN ARMIJO: And they would get
8	they'd have a benefit if they applied that using these
9	criteria.
10	MR. CLIFFORD: Right. The Industry, when
11	the Industry first came in, they proposed criteria
12	where they did the conversion themselves using worst
13	case Zirc-4, and I thought that was too much of a hit,
14	you know, to not be able to take advantage of a modern
15	cladding alloy.
16	Okay, next we come to BWR, and as I
17	mentioned, we separated the BWR Zirc-2 NSR data from
18	the rest of the population, and we looked at it as a
19	subset, and here it's plotted with reported hydrogen
20	content, which is the first-order effect on ductility,
21	cladding ductility, and there's some uncertainty in
22	hydrogen measurements and variability of hydrogen
23	content in a given specimen, and that's represented by
24	these little dumbbells or whatever you want to call
25	them.
ļ	I

(202) 234-4433

1 And so once again we maintained 150 2 calories per gram, which is -- we chose 150, even 3 though we didn't see a lot of failures above that, 4 even that, because that corresponds to the 170 that 5 we're proposing for the high temperature. If you take the 170 high cladding temperature failure line, adjust 6 7 it for the fact that at hot zero power you could be at 8 20 calories per gram, you're at 150, so you can't --9 though you could have drawn this line, even potentially drawing it higher, it doesn't buy you 10 11 anything, because you're going to be limited by the 12 other failure mechanism, so there's no sense even drawing it differently. 13 CHAIRMAN ARMIJO: What's the approximate 14 15 burnup for a modern Zirc-2 at the 150, you know, at the knee of that curve, the 150 ppm hydrogen? 16 17 MR. CLIFFORD: That's a good question, and the reason -- well, we wanted to go to hydrogen 18 19 content, because it is a first-order impact. 20 CHAIRMAN ARMIJO: Sure. 21 MR. CLIFFORD: But the need to go to 22 hydrogen for BWRs was that it is a shotgun when you 23 look at hydrogen content as a function of burnup and hydrogen content even as a function of corrosion. 24 25 There is a wide variability, so, you know, when

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

49

	50
1	developing the criteria, we really felt like we needed
2	to go right to the source, which was hydrogen, and 150
3	ppm, I mean, I would guess that that would be
4	relatively high burnup. I would guess that that would
5	be 40,000, 50,000 burnup. Guys, you got any input on
6	that?
7	CHAIRMAN ARMIJO: With that much
8	variability, what will the BWR people have to bring
9	you to satisfy you that they know what their hydrogen
10	is as a function of burnup for a particular fuel
11	design?
12	MR. CLIFFORD: Because it's less well
13	behaved, they're going to have to provide us with a
14	sufficient database of hydrogen content as a function
15	of burnup and then for them to then do that conversion
16	to a useful tool, and depending on the spread of the
17	data, I mean, you may be forced instead of using a
18	best estimate, you may have to take like a one sigma
19	or something. It just depends on the variability.
20	CHAIRMAN ARMIJO: Thank you.
21	MR. CLIFFORD: Okay, so the light one we
22	talked about earlier. Here we have the two PCMI
23	failure criterias. One is a function of function of
24	oxide-to-wall thickness. One is a function of
25	hydrogen, and those were put into the SRP update.
I	I

(202) 234-4433

1 Now next we get to -- well, now we have 2 criteria, which are more restrictive new for determining when cladding fails. Well, we also looked 3 4 at what about the fission product inventory. In other 5 words, how much iodine is there in the -- or xenon is there in the gap, or how much iodine is there 6 7 available for release if you do fail the fuel? 8 The current criteria is 10 CFR Part 100, 9 and the guidance for that is in Reg Guide 77, which identifies the off-site doses must be within -- must 10 be well within. 11 12 MEMBER SHACK: Is that a factor of three? Oh, well within. MR. CLIFFORD: 13 I don't 14 know who created this, but there's some secret decoder 15 ring out there. Small fraction is equivalent to ten percent of the allowable doses. Well within is 16 equivalent to 25 percent of the allowable doses, so 17 300 rem would go down -- which is the 100 percent of 18 19 10 CFR for, what's that, inhalation, two-hour 20 inhalation thyroid dose? Go from 300 down to 75. 21 The guidance on calculating doses is in 22 Appendix B of RG 1.77, and it's also in newer Req 23 Guides. It's in Reg Guide 1.183 and Reg Guide 1.195, 24 and they all say roughly the same thing, that you

should assume that ten percent of your iodines and ten

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	52
1	percent of your nobles are present in your plenum
2	region of your fuel rod such that if you have a breach
3	in your cladding, that inventory is available for
4	release and must be accounted for specifically in dose
5	calculations.
6	The problem with that guidance is that
7	there's been a lot of fission gas measurements
8	following these test programs. They would take a test
9	that didn't fail, and they would go and do a puncture
10	test and measure the isotopic population that was
11	released, and what they noted is there's a lot of
12	fission gas there, and
13	CHAIRMAN ARMIJO: More than these ten
14	percents?
15	MR. CLIFFORD: Right.
16	CHAIRMAN ARMIJO: Oh, okay.
17	MR. CLIFFORD: So you need to take that
18	into account, and what we have here, we first have to
19	look into the mechanisms. What's going on inside the
20	fuel room? Even though the cladding doesn't fail,
21	what's going on in there?
22	What's happening is over normal, routine
23	operation, you get a diffusion of fission gas, fission
24	products along the grain boundaries, out into the
25	plenum, and that is really a function of diffusion and
I	I

(202) 234-4433

	53
1	time and power and power history if you go through
2	some various power ramping, whatever you're
3	maneuvering, moving control blades, whatever you're
4	doing that can cause that diffusion to change.
5	But during this particular transient,
б	during this .05 seconds, what you can see is the
7	pellet itself is going through a very dramatic
8	transient. It's cracking. It's breaking. There is
9	grain boundary separation, and during that violent
10	transient, the pellet is releasing more fission gas.
11	I'm going to call that transient fission
12	gas release, and this transient fission gas release is
13	strongly depending on how much power that pellet sees.
14	It's strongly dependent on local power, and there's
15	also there would be potentially some burnup
16	effects, how much fission gas is available, and we've
17	looked at let me just jump right to the
18	We've looked at all of this data, and we
19	looked at it as a function of pulse width. We looked
20	at it as a function of burnup. We looked at it as a
21	function of anything we could think of, and this was
22	the best correlation we could come up with.
23	There is all of this data represents
24	measured fission gas release, and if you plot it as a
25	function of the change in enthalpy that the specimen
l	I

(202) 234-4433

	54
1	saw, you see a pretty good correlation. In other
2	words, if you put 100 calories per gram change on a
3	fuel pellet, it's going to release somewhere around 15
4	percent of its fission gas in addition to what may
5	have resided in the plenum region before the transient
б	even started, so both of these factors need to be
7	combined to get your overall source term for your dose
8	calculation.
9	I think these points here if memory
10	serves me correctly, I believe that these points here
11	were high enrichment, and by high I mean above five
12	percent, and these were research reactor fuel rods
13	from Japan.
14	CHAIRMAN ARMIJO: So those weren't really
15	BWR?
16	MR. BEYER: No, they were commercial
17	reactor, but they might have been around five percent.
18	I can't recall the exact enrichment level, but they
19	might have been around five, but one thing you can say
20	about them is that they were of a different fuel type
21	than a lot of the points up there except for there's
22	a couple of points that are below the line that had
23	that same fuel type, so we're a little bit
24	CHAIRMAN ARMIJO: There's a lot of
25	variability there.
I	I

(202) 234-4433

	55
1	MR. BEYER: Yes, right, and those three
2	data points all came from one rod. Those came from
3	small sections cut from the same rod, and for some
4	reason they behaved significantly different than all
5	the rest of the data. We've got like, I don't know,
6	33 data points up there, and
7	CHAIRMAN ARMIJO: Were these prefabricated
8	test panels?
9	MR. BEYER: Yes, they were prefabricated,
10	right.
11	CHAIRMAN ARMIJO: Yes, so a lot depends on
12	how
13	MR. BEYER: Yes, theoretically you could
14	think about cracking due to refabrication of the fuel,
15	but a lot of these data points up there are
16	prefabricated, too, so, you know, you could argue that
17	that may not explain it, either, and it's kind of
18	Robbie, do you have any opinion on those three data
19	points, because I know Industry has looked at this,
20	too.
21	MR. MONTGOMERY: Robert Montgomery from
22	Anatech. No, those three rods, which, like you said,
23	come from this come from the same father rod, do kind
24	of seem to be outliers in a way. They show a unique
25	behavior relative to all the data.
	I

(202) 234-4433

1 They were fabricated with a different 2 pellet fabrication process than most of the other data 3 out there on that plot. It had to do with the type of 4 grain structure and things in that nature that could 5 affect the distribution of the fission gas in the pellet. These had an interesting rem size variation, 6 7 so there may have been a different fission qas 8 inventory in the rem, which sees the largest amount of 9 temperature and the largest cracking in the pellet. 10 CHAIRMAN ARMIJO: Okay, so you've just tended to discount those data points and say the line 11 12 represents the envelope or bounding --MR. CLIFFORD: Well, I think, even if you 13 14 were to include those, you still want to fit the data, 15 and I think you would end up with pretty much the same 16 line. MEMBER KRESS: This is just the transient 17 release in addition to the gap? 18 19 MR. CLIFFORD: Exactly. 20 MEMBER KRESS: These tests had the gap 21 inventory removed before you --22 MR. CLIFFORD: Well, for many of the tests, 23 I mean, when you manufacture the specimen, you know, 24 when you're cutting, you're removing the fission, 25 whatever was there during the whole operation, so

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

56

57 1 anything you measure would be a product of the 2 transient, unless you had a segmented rod that was in 3 a reactor, which -- any of these actual segmented rods 4 that were radiated as specimen? 5 MR. BEYER: I can't remember if any of them are segmented or not, but if they were segmented, 6 7 typically they usually had relatively small gas 8 release. 9 MEMBER KRESS: Were the clads purposely 10 failed in these tests? CLIFFORD: No, none of these are 11 MR. 12 failed. MR. BEYER: No, all these were -- yeah. 13 14 MEMBER KRESS: Well, then how did you get 15 any release if they didn't fail? MR. CLIFFORD: Well, I think what we're 16 17 showing is just the pulse, the power pulse on the 18 pellet itself. Whether that was enough to cause 19 cladding failure or not, it still resulted in -- it 20 was insufficient. 21 MEMBER SHACK: It's measuring the plenum. 22 MR. CLIFFORD: Yes. 23 KRESS: Measuring the plenum. MEMBER 24 MR. CLIFFORD: Oh, I'm sorry, yes. 25 MEMBER SHACK: They didn't release it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	MEMBER KRESS: Okay, now I understand. So
2	essentially you remove the original gap inventory, and
3	then you measure what gets in the plenum due to a
4	MR. CLIFFORD: That's correct.
5	MEMBER SHACK: This pulse.
6	MR. CLIFFORD: Right, so the guidance we're
7	providing is essentially that you would need to
8	combine the two effects, the steady state inventory
9	that would be there during the normal operation and a
10	calculated transient fission gas release, which we
11	provided this correlation.
12	MEMBER KRESS: And this is not a function
13	of burnup, or the burnup shows up in the database?
14	MR. CLIFFORD: We looked at it as a
15	function. I would have expected a much stronger
16	burnup dependence only because you have more fission
17	gas that's in your grain boundaries to start with, so
18	it wouldn't take as much of a pulse to
19	MEMBER KRESS: And you've got the and
20	you've probably got more damaged fuel, more surfaces,
21	more rem effects.
22	MR. CLIFFORD: Right, exactly, but it
23	didn't fit as well as just looking at power.
24	MEMBER SHACK: And you really tried looking
25	at both of them? You know, you seem to have this
I	1

(202) 234-4433

	59
1	tendency to look at one variable at a time, but, I
2	mean, if you looked at the two of them, it didn't
3	you know, burnup and enthalpy rather than, you know,
4	well, enthalpy is better then burnup but
5	MR. BEYER: Well, what we
6	MR. CLIFFORD: We tried looking at this,
7	but then breaking it up to coloring and, like, between
8	zero and 30 burnup, 30 and 40 burnup, 40 and 50 burnup
9	and then
10	MR. BEYER: Yes, what we did is we'd apply
11	this correlation here just for the power effect and
12	then plot it as burnup then and see if we could see,
13	and in some instances a few tests looked like they
14	were a burnup dependence, and others didn't look like
15	there was any burnup dependent, so there was a lot of
16	scatter in the burnup effect.
17	MR. CLIFFORD: In the technical basis
18	document for the SRP updates there's a log there if
19	you guys want to come take a look at this.
20	MEMBER SHACK: Is this the one that gets
21	buried in the pdf file?
22	MR. CLIFFORD: Here, this shows this is
23	for
24	MEMBER SHACK: Yes, and that's a different
25	one.
	I

(202) 234-4433

	60
1	MR. CLIFFORD: Maybe I don't have it in
2	here. I have a spreadsheet with tons and tons of
3	plots. This is fission gas for these versus pulse
4	width, the fission gas for these versus burnup.
5	MEMBER SHACK: Yes, but see, you need to do
6	what Carl suggested, which was to, you know, that way
7	you're hiding the enthalpy in that plot.
8	MR. CLIFFORD: Right.
9	MEMBER SHACK: What you need is to do the
10	enthalpy and then plot it against the
11	CHAIRMAN ARMIJO: Color code them or
12	something for the burnups.
13	MEMBER SHACK: and see how they bounce
14	up and down.
15	MR. BEYER: We've done that, too.
16	MR. CLIFFORD: We've done that. We've done
17	that, and then we decided there wasn't as much of a
18	printer. During the break I'm sure I have the
19	spreadsheet on my disk. I could get that and check
20	following the break.
21	Okay, so ultimately we're saying that
22	there is another effect on fission gas release that's
23	not currently accounted for and needs to be.
24	CHAIRMAN ARMIJO: How do you know that if
25	you tested, let's say, segmented rods, already had
Į	1

(202) 234-4433

	61
1	some fission gas release, already have poisoned the
2	gap and if well, how do you know that that wouldn't
3	actually make your transient fission gas release
4	during an RIA even worse?
5	MR. BEYER: Because it's not a thermal
6	effect.
7	CHAIRMAN ARMIJO: You're just saying this
8	is just a shattering of the pellet? It's not a
9	temperature change?
10	MR. CLIFFORD: It's not diffusion-related.
11	It's not time and temperature. It's instantaneous.
12	CHAIRMAN ARMIJO: Two separate mechanisms?
13	MR. CLIFFORD: Right.
14	CHAIRMAN ARMIJO: Okay.
15	MEMBER KRESS: It looks like a substantial
16	effect. You get up to 30 percent of the inventory.
17	You really, I mean, yes
18	CHAIRMAN ARMIJO: If you take a sledge
19	hammer and smash into it, it's going to come out.
20	MEMBER KRESS: But the containment's still
21	intact.
22	MR. CLIFFORD: Absolutely.
23	MEMBER KRESS: So you compare these numbers
24	and see how far 100 to
25	MR. CLIFFORD: Dose is usually not
ļ	I

	62
1	limiting. Offsite dose is usually not limiting to the
2	this event.
3	MEMBER KRESS: Yes, I would guess not,
4	because normally 10 CFR 100 asks for inventories much
5	bigger than this to be put into containment.
6	MR. CLIFFORD: Well, you could consider,
7	even though your acceptance criteria is one-fourth
8	that of LOCA, the LOCA source here you dump the entire
9	core, assuming that the whole you have 100 percent
10	of your nobles and 50 percent of your iodides all just
11	dumped into containment.
12	MEMBER KRESS: Yes, that's in the
13	containment.
14	MR. CLIFFORD: And you survive that.
15	MEMBER KRESS: Yes.
16	MR. CLIFFORD: Even though your release
17	path is a little different, and your acceptance
18	criteria is lower, the inventory is significantly
19	lower than that of a LOCA, and also, it's a localized
20	event. The troja injection is a very localized event.
21	You're only going to have so many pins in that region
22	of the core that's going to get out.
23	MEMBER KRESS: Oh, yes, this you have to
24	count the number of pins.
25	MR. CLIFFORD: You've got to count the
I	

(202) 234-4433

	63
1	number of pins. This isn't core-wide. This is the
2	number this is the fission gas in a particular pin,
3	so if you only take six
4	MEMBER KRESS: Yes, that can make a big
5	difference.
6	MR. CLIFFORD: If you only fail 1,000 pins
7	out of 50,000 pins, you can see that the source term
8	still isn't
9	MEMBER KRESS: Yes, it's not really. Yes,
10	I've got you.
11	MR. CLIFFORD: Okay. That concludes the
12	first half of the presentation on calculating the
13	number of pins that fail and what's the source term
14	for your dose calculation. Next we're going to get
15	into the long-term cooling, which is GDC28, and the
16	reactive vessel integrity concerns.
17	CHAIRMAN ARMIJO: You've got about ten
18	slides, and we could we're ahead of schedule. We
19	could take a break now. It's ten minutes of 10:00, so
20	let's get back about five after 10:00, you know, a 15-
21	minute break, 10:05.
22	MEMBER KRESS: Which clock are you going
23	by?
24	CHAIRMAN ARMIJO: The official wall clock.
25	I have their well, you're right.
ļ	1

	64
1	MEMBER KRESS: Ten after.
2	CHAIRMAN ARMIJO: Ten after 10:00. We'll
3	recess for now.
4	(Whereupon, the foregoing matter went off the
5	record at 9:52 a.m. and resumed at 10:11 a.m.)
б	CHAIRMAN ARMIJO: Okay. We are resuming
7	the meeting, and if we can find Mr. Clifford okay.
8	All right. We're ready to resume.
9	MR. CLIFFORD: Right. What I pulled up
10	here during the break was this is just a plot of the
11	same data, and, as we were talking about, we wanted to
12	see if there was a burnup dependence. Here we have
13	the CABRI test data. Fission gas release is a
14	function of peak fuel enthalpy, and then we have three
15	different groupings, and it's similar down here with
16	the NSRR how we have two different groupings because
17	most of the fuel is likely it's going to burn up.
18	And we looked at this and decided, well,
19	you know, is it potentially two lines? Could there be
20	a line here and a line here based on burnup? And we
21	really didn't see it, so what we chose to do was to
22	group them all together and to kind of not bound all
23	the data but from the previous slide let me get
24	back. That's not it.
25	In the previous slide, we didn't bound all
I	1

(202) 234-4433

	65
1	the data, but we put it all into one population, and
2	then we put a line about a majority of the data, I'd
3	say. It's not a best estimate fit. I wouldn't call
4	it a one sigma, either.
5	MEMBER KRESS: You know, that all brings to
6	mind the question. You know, the obvious choices are
7	either a best estimate fit or a bound, and anything
8	that's different from those needs explaining, at least
9	it does in my mind, and so I don't understand. I
10	don't understand the line. I understand that a line
11	is a good thing to have there, but why not a binding
12	line or
13	MR. BEYER: Well, what we did here is
14	originally we did have a best estimate line for UO $_{\scriptscriptstyle 2}$,
15	and then we had one for MOX. The MOX one was a little
16	bit higher than the ${ m UO}_2$ one, and for the RIA, NRR just
17	decided to take the upper bound for MOX and use that
18	one.
19	MEMBER KRESS: The line is an upper bound
20	for MOX?
21	MR. BEYER: No, it's a best estimate for
22	MOX. It's a best estimate for MOX.
23	MEMBER KRESS: It's a best estimate for
24	MOX.
25	MR. CLIFFORD: It's a best estimate for
	1

(202) 234-4433

	66
1	MOX, but it's not that significantly different than
2	the best estimate fit for the UO_2 .
3	MR. BEYER: For the UO_2 , right.
4	MR. CLIFFORD: So you just combine all fo
5	the data into one population and just choose which
6	line is a little more conservative.
7	CHAIRMAN ARMIJO: This is when you say
8	best estimate, is this just a least squares fit?
9	MR. CLIFFORD: That's all it was.
10	MR. BEYER: Correct. Correct. Right.
11	Right, and it was a best estimate fit through the MOX
12	data, and the ${ m UO}_2$ one was a little bit lower, but not
13	significantly lower.
14	MR. CLIFFORD: I think it's the can you
15	see? The pink, I believe, is the MOX, that data
16	point, that data point.
17	MR. BEYER: Correct.
18	MR. CLIFFORD: It's those two.
19	MR. BEYER: Yes, that's it, just two data
20	points.
21	MR. CLIFFORD: Those are the data points.
22	CHAIRMAN ARMIJO: Okay.
23	MEMBER KRESS: Two data points
24	MR. BEYER: Yes. Right.
25	MEMBER KRESS: out of
Į	

	67
1	MR. CLIFFORD: Let's make a line.
2	MEMBER KRESS: Connect the two.
3	MR. BEYER: Right. Right.
4	CHAIRMAN ARMIJO: You ought to you
5	should have gone through zero and those three points.
6	MR. BEYER: Yes, but the UO $_2$ one was
7	slightly below that for best estimate, and, yes, and
8	surprisingly they were both parallel together,
9	reasonably parallel. The UQ best obviously has a lot
10	more data and, you know.
11	MR. CLIFFORD: But I would say since we
12	added that last grouping of data as it became
13	available, there used to be a difference between the
14	${\tt UO}_2$ best fit and the MOX best fit, but that almost
15	disappeared when we added this grouping up here.
16	MR. BEYER: Correct. Correct, yes.
17	MR. CLIFFORD: Over the next 18 months
18	we're going to try to obtain further data and fine
19	tune this correlation.
20	MEMBER KRESS: I think you need a rationale
21	for why best estimate is appropriate for this kind of
22	regulation as opposed to bounding, and, you know,
23	normally conservative people use bounding approaches.
24	MR. BEYER: Well, you could add another
25	four percent or so to this line, and it would be
I	I

(202) 234-4433

	68
1	essentially bounding.
2	MEMBER KRESS: Yes, it's not that it would
3	make enough of a difference to make me worry about it.
4	In fact, the whole release amount is not enough to
5	make me worry too much about it, but, you know
6	MR. BEYER: But technically for a good
7	argument, huh?
8	MEMBER KRESS: you need a technical
9	rationale to it.
10	MEMBER SHACK: Except there is no such
11	thing as bounding. You can only bound the data, but
12	
13	MEMBER KRESS: I know, so no matter what
14	you do, you'll probably have some confidence level in
15	it.
16	MR. CLIFFORD: Okay. The second of the
17	presentation we'll be dealing with coolability and
18	reactor vessel integrity, which, once again, is the
19	requirements to meet GDC28.
20	The phenomena at play during this
21	particular category of accidents is such that you need
22	to worry about a pressure pulse being generated by the
23	interaction between the fuel, either molten or near
24	molten fear fragments as they're expelled into the
25	reactor coolant.
I	

(202) 234-4433

69

Essentially, there is flow blockage due to fission product-induced swelling of the fuel coupled with cladding plastic deformation, fuel pellet and cladding fragmentation and dispersal, and fuel rod ballooning. These are the four phenomena that could effect either long-term cooling or reactor vessel integrity.

8 Here is a -- I wrote down what GDC 28 9 Basically it says that you cannot exceed states. 10 limited local yielding on your active pressure maintain 11 boundary, and you must core cooling 12 capability, and that regulation is disseminated within Reg Guide 1.77, which defines the acceptance criteria 13 14 to meet GDC28, which states that the radial average 15 fuel at the beam must be less than 280 calories per 16 gram and that the maximum reactor pressure boundary pressure cannot exceed Service Level C, which is 17 approximately 120 percent of design. 18

19 what's wrong with the Now current 20 As early as 1980, an evaluation was done by criteria? 21 a gentleman named MacDonald and friends, who did an 22 evaluation of the SPERT, TREAT and then recent PBF 23 test results, and he concluded that if you were to subject a fuel rod to the 280 calorie per gram limit 24 25 that there was a good probability that you would lose

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

your fuel rod geometry and impair long-term cooling 2 capabilities, and had the NRC expressed the criteria 3 in fuel enthalpy versus total deposited energy, the 4 more appropriate limit would have been 230 calories per gram. In addition, fuel fragmentation and dispersal is not addressed, and fuel rod ballooning is 6 not addressed.

So what this slide states is that the 280 8 9 calories per gram is wrong. MacDonald, back in 1980, 10 determined that 230 was a more appropriate limit and that there's other aspects of long-term cooling that 11 12 also need to be addressed that aren't part of the current guidance. 13

14 The empirical database for loss of rod 15 geometry and molten fuel coolant interaction is based 16 upon SPERT and PBF test programs. The more recent tests that were conducted in Europe and in Russia 17 didn't necessarily target a deposited energy which 18 19 would result in molten fuel.

20 They were targeting, determining the point 21 of clad failure, not the point of fuel melt. And fuel 22 fragmentation and dispersal has been reported at 23 several of these test programs. In addition, pressure 24 pulses have been measured at several of these test 25 programs.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

7

(202) 234-4433

70

The staff has developed four interim 2 criteria. We'll first discuss the first two, which is 3 the first one is that radial average fuel enthalpy 4 must remain below 230 calories per gram, and this is based on the 1980 finding by MacDonald, which is an evaluation of SPERT, TREAT, and PBF. And the second criteria is that fuel temperatures must remain below incipient melt conditions, and the next slide shows you graphically what this means.

The upper line here, the black, is the 10 11 current criteria, 280 calories per gram. The blue 12 line is what MacDonald proposed based on an evaluation the empirical data at the time. 13 of That's 230 14 calories per gram, and the green Ι have two 15 calculations of fuel melt temperatures. One's at a 20 millisecond pulse width. 16 One's at a 10 millisecond 17 pulse width.

What you should take away from this slide 18 19 is MacDonald observed that you could lose coolable 20 geometry potentially below melting conditions, and 21 also melting -- the enthalpy required to achieve 22 temperatures reduces significantly with melting 23 burnup, and that's due to a decrease in conductivity, 24 fuel conductivity with burnup. That's due to a highly 25 edged pellet power distribution during the transient

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

6

7

8

9

(202) 234-4433

71

72 1 in the rim region, and that's also due to a very high 2 burnup distribution in the rim region, which reduces 3 your melting point. 4 So the criteria from one and two combined 5 would be the lower of these lines, and it would be expected that this line here, these green lines, would 6 7 be dependent on fuel design. So instead of trying to come up with a single line, we would allow the 8 9 Industry to calculate using their specific fuel design what their enthalpy is to achieve melt temperatures, 10 and that would be determined and submitted and 11 12 reviewed. CHAIRMAN ARMIJO: Now the coolable geometry 13 14 in the low burnup range, is that ballooning? Is that the issue there, yes, right in that region, 15 the 16 MacDonald? MR. CLIFFORD: This line here? 17 18 CHAIRMAN ARMIJO: Yes. 19 MR. CLIFFORD: MacDonald concluded that you 20 could, as you approach melting conditions, you can 21 have all of the fission product swelling, which can 22 result in cladding. He called it a loss of rod 23 Essentially your cladding started to melt geometry. 24 and flow plastically into the channels, so you had a 25 situation where you didn't have a rod type geometry,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	so you couldn't guarantee cooling, in other words, if
2	this was to happen in a large region of the core.
3	CHAIRMAN ARMIJO: Okay, so it's literally
4	clad melting is the phenomenon that he's concerned
5	about.
6	MR. CLIFFORD: Right. When it's below,
7	yes. If it's at fuel melting, of course, when you get
8	fuel melting you get a volumetric expansion. You get
9	the fuel-coolant interaction and then an expansion of
10	the molten fuel into the channel, but
11	MEMBER KRESS: This presumes a fixed value
12	for the melting temperature of UO_2 ?
13	MR. CLIFFORD: No. This would be
14	calculated assuming this is a localized
15	calculation. In other words, at a higher burnup, the
16	local burnup in the rim region would be significantly
17	higher, maybe a factor of two or three higher than the
18	average pellet burnup.
19	So say you're at 50,000 pellet average
20	burnup. You could be at 100,000 burnup, local burnup
21	in your rim region, so you would have to include the
22	decrease in burnup temperature with burnup at that
23	local area, and then you would also have to take into
24	account the tremendous edge power shape during the
25	transient.
	I

(202) 234-4433

	74
1	MEMBER KRESS: Of course, that's how you
2	calculate it. My question was do you assume UO $_{ m 2}$ has
3	one melting temperature?
4	MR. CLIFFORD: No. It's burnup-dependent.
5	It's also dependent on other additives, but it's
б	burnup-dependent, 5080 minus, what is it, 60 per every
7	ten megawatts, something like that?
8	MEMBER KRESS: It this because you're
9	building in more plutonium and more fission products,
10	and it changes the character of the UO_2 ?
11	MR. CLIFFORD: Absolutely. That has to be
12	taken into account. That's the first two criteria,
13	and those criteria are more what's the word I'm
14	looking for? Those two criteria's numerical value,
15	it's very specific what it is. You calculate what
16	your fuel enthalpy is for your particular fuel design
17	to reach melting temperatures, and you have your two
18	280, I'm sorry, your 230 ceiling.
19	The next two criteria are really to
20	account for the effect of fuel coolant interaction.
21	Now we've already said there can't be molten fuel in
22	item 2, but there's still a potential to disburse
23	finely fragmented fuel particles that are approaching
24	melting temperatures, and the energy deposition or the
25	mechanical energy conversion of that dispersal needs
	I

(202) 234-4433

	75
1	to be accounted for in your pressure calculation. You
2	still can't exceed you don't want to blow apart
3	your reactor vessel. You have limits on pressure, and
4	you have to specifically account for the pressure
5	pulse generated by the dispersal of non-molten fuel,
6	and
7	MEMBER KRESS: That means you have to know
8	how much fuel gets dispersed and what the heat
9	transfer mechanism is and what the particle sizes are
10	and things like that?
11	MR. CLIFFORD: Yes. I'll get to that in
12	the next slide. This area of the criteria is a little
13	more difficult to respond to, and the database for
14	fuel mechanical interaction is somewhat limited, and
15	we believe it needs to be accounted for, and the staff
16	is basically drawing a map, saying "Here are the type
17	of phenomena that have to be addressed, and we're
18	awaiting the Industry's response."
19	The fourth criteria is addressing the
20	effects of fuel pellet fragmentation and dispersal and
21	ballooning. This would be more flow blockage issues
22	with number 4. The empirical database is very is
23	limited with respect to fuel dispersal and mechanical
24	energy generated as a result of fuel dispersal.
25	Technical challenges, which will need to

(202) 234-4433

	76
1	be overcome in dispositioning this regulatory position
2	would be that the flow channel blockage by the
3	fragmented fuel and cladding particles would need to
4	be quantified, and its effect on long-term cooling
5	would need to be qualified.
6	The same goes with fuel rod ballooning.
7	The fuel coolant interaction, mechanical energy from
8	the dispersal of the fuel would need to be evaluated,
9	and once again the pressure pulse, potential pressure
10	pulse that's generated would need to be qualified.
11	And finally, the transportation of
12	fragmented fuel particles throughout the reactor
13	coolant system needs to be assessed with respect to
14	the radiological source term, doses to the public and
15	workers, plant EQ, coolability, and potentially even
16	criticality.
17	CHAIRMAN ARMIJO: Now if this occurs during
18	presume that these events occur while there's full
19	reactor flow or partial reactor flow. Is that the
20	scenario we're addressing, or is that one of just
21	many?
22	MR. CLIFFORD: If you look at the TSARS for
23	the current operating fleet, whereas every other event
24	is analyzed for 30 minutes or longer, there's a
25	general requirement that the, say, a turbine trip,
I	

(202) 234-4433

1 they would run the event for 30 minutes. They would 2 then show that the reactor trip functions and the SFAS 3 systems were capable of mitigating the consequences of 4 bringing the transient to either a new plateau or a 5 decrease. In other words, temperatures were Pressures were decreasing. 6 decreasing. The event was 7 getting more benign with time. This particular event is only analyzed for 8 9 five or ten seconds in all of the SRs. You don't have 10 that long-term plant response in the past where we haven't requested it. It's really -- in the past 11 we've always focused on the first five or ten seconds. 12 How much fuel to you fail? 13 Do you melt 14 fuel? And are you going to blow your reactor vessel 15 in the first fives seconds? We never look at anything 16 past that. CHAIRMAN ARMIJO: But coolable geometry, I 17 would think, would take -- is more than a five-second 18 19 problem. 20 MR. CLIFFORD: Right. Coolable geometry we 21 kind of get into the situations where we are LOCA. 22 You know, how do you evaluate, you know, what's going 23 on over a period of time? You have a requirement to 24 maintain а core coolability, but how do you 25 demonstrate that if you've got particulates of fuel

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

77

	78
1	and cladding that's floating around in your RCS? It's
2	a difficult question to answer.
3	CHAIRMAN ARMIJO: Well, I hope the Industry
4	has some ideas on how to address these things, because
5	this is what you intend to evaluate in the
6	submissions.
7	MR. CLIFFORD: Correct.
8	CHAIRMAN ARMIJO: You want to see
9	MR. CLIFFORD: We would like to see these
10	
11	CHAIRMAN ARMIJO: documents that address
12	that.
13	MR. CLIFFORD: addressed and
14	dispositioned somehow. I mean, they may be able to
15	for instance, like a PWR rod ejection is a break in
16	the upper head, so you may be able to disposition that
17	by saying the long-term transient, you know, after
18	five seconds, I going to be very similar to a LOCA,
19	because you have a break I the reactor vessel.
20	It's depressurizing. You know, you have
21	your ECCS system responding to the event as though
22	it's a small break LOCa, so maybe one of the
23	approaches would be to demonstrate that it is bounded
24	by a LOCA analysis so you don't have to go into any
25	further detail, but, you know, it depends on, you
I	I

(202) 234-4433

	79
1	know, what's presented to us. I guess we're just
2	identifying what needs to be dispositioned and then
3	allow them the flexibility of dispositioning it.
4	CHAIRMAN ARMIJO: Okay.
5	MR. CLIFFORD: Okay, the last slide is
б	implementation, and we talked about this at the very
7	beginning. The interim criteria was developed to
8	support the licensing of the new reactors, the next
9	generation of reactors and will be used by the staff
10	in their review of all the COL applications and design
11	certification documents.
12	Over the next 18 months or so, we will be
13	doing more rigorous evaluation and awaiting further
14	data from the Japanese test program and, if necessary,
15	revising the particulars of the acceptance criteria
16	and guidance.
17	Like maybe the curves will change slightly
18	if we get more data points, and maybe we'll adjust the
19	fission gas inventory as a function of pellet power,
20	and then we intend to finalize the criteria and revise
21	the impacted Regulatory Guides and probably again
22	revise the SRP to replace the interim criteria with
23	final criteria.
24	During this period, we'll also be issuing
25	I shouldn't say during this period. In the next
I	I

(202) 234-4433

	80
1	two months, we intend to issue a RIS, which is a
2	Regulatory Information Summary, which is a vehicle for
3	NRR to communicate to the public and to the Industry
4	as to how we intend to implement this, because I know
5	there's a lot of concern.
6	There's a lot of confusion. Who's going
7	to implement it? When are they going to implement it?
8	You know, what's it going to look like? So we're
9	going to try to address all that in a RIS. That's our
10	plan right now and get that out on the street within
11	about two months.
12	And during this period as I mentioned,
13	there were two reasons why we were doing this in the
14	beginning. The first reason was to develop
15	justifiably conservative acceptance criteria and
16	guidance for the next generation of reactors, and the
17	second reason was to provide a target for the Industry
18	to use in developing a strategy for implementing the
19	final criteria, and we strongly encourage that the
20	licensees and vendors develop and submit new 3D core
21	neutronics methods and also develop a strategy for
22	dispositioning the long-term effects on coolability.
23	That's what I have.
24	CHAIRMAN ARMIJO: Okay. Any questions from
25	the Committee? Tom?
I	I

	81
1	MR. MENDIOLA: If I may, that concludes the
2	staff's presentation on this topic for today. I hope
3	it was informative, and I guess if there's any
4	suggestions on the material, how we could provide it
5	for the full Committee meeting later this week, it
6	would be helpful to understand where we could focus
7	our presentation.
8	CHAIRMAN ARMIJO: How much time do we have
9	on the agenda, Ralph, do you know, for the full
10	Committee?
11	MR. CARUSO: An hour and a half total.
12	CHAIRMAN ARMIJO: An hour and a half, so
13	MR. CLIFFORD: That would include the
14	Industry, too?
15	CHAIRMAN ARMIJO: Yes, so it's going to
16	have to be pretty condensed.
17	MR. MENDIOLA: I mean, any suggestions you
18	may have or would like to provide us on where we
19	should focus that would be ideal, but we recognize
20	it's a very difficult topic to move quickly through
21	but just a suggestion. We can do that.
22	CHAIRMAN ARMIJO: I think we should talk
23	about that after we hear from Industry
24	MR. MENDIOLA: Yes.
25	CHAIRMAN ARMIJO: and see how we
I	

(202) 234-4433

	82
1	apportion the time and get some ideas what would be
2	the most effective way to get this across in some way
3	that it'll actually get finished. So if you don't
4	mind, we'll just hold off.
5	MR. MENDIOLA: That's fine.
6	CHAIRMAN ARMIJO: Since we're ahead of
7	schedule, let's keep going, and I'm assuming there's
8	no problem with continuing.
9	MR. CARUSO: No.
10	CHAIRMAN ARMIJO: We'll just keep rolling
11	through, and I think our next presentation would be
12	Dr. Ozer from EPRI and Montgomery from Anatech on the
13	interim RIA criteria.
14	DR. OZER: Good morning. My name is Odelli
15	Ozer, and I'd like to, first of all, thank the
16	Committee for giving us this opportunity to present
17	the Industry position. Also, I'd like to thank NRR
18	for having afforded us the opportunity to listen to
19	our concerns and afforded us an opportunity to express
20	them at a couple of workshops and interactions over
21	the phone, as well.
22	Even though this presentation and the
23	following presentations have either my name or Robert
24	Montgomery's name or Gary Darden's name, I'd like to
25	make the point that these are really presentations
	I

(202) 234-4433

1 that were prepared jointly by the working group of the 2 fuel reliability program, so they really represent not 3 just our personal views but the consensus view of the 4 working group.

5 EPRI has representation from all the U.S. 6 nuclear utilities as well as a large significant 7 number of overseas utilities, and we have all the 8 vendors participating, all the major vendors 9 participating in this, as well.

10 As far as the Industry perspective on the interim criteria that were proposed by NRR, we 11 12 consider this criteria to be acceptable on an interim We are very grateful that a number of our 13 basis. 14 concerns have been addressed, namely the separate 15 treatment of the coolability limit. There were concerns of the RIL0401 was proposing collapsing that 16 onto the failure limit, and there were a number of 17 other items, as well, that are important, and they 18 19 have been addressed.

The one problem we have is that a lot of what I'm probably talking about will be based on the two documents that we saw, the draft of the SRP 4.2 that was released early in February and the technical basis document that was released in mid-January. Since then, we've had a lot of discussions, and it's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	possible we anticipate that some of these changes
2	may occur in the final version of the SRP, but I will
3	be mentioning them here anyway, because we don't know
4	whether they will be there or not.
5	The areas that we feel our concerns have
6	been addressed include the recognition of the prompt
7	versus delayed pulses. This is particularly important
8	for cold BWR where the delayed pulse can be a
9	significant fraction of the total pulse.
10	So, you know, when you put a limit on the
11	BWRs, it really it's the prompt part that is
12	driving. The limit should be on the prompt part, not
13	on the total and things that, you know, similar things
14	with regards to clear definition of terms, but we feel
15	that there are several key areas where improvement
16	still is needed, but we think that that's really
17	something that we'll be working on for the final
18	criteria.
19	There are some issues, of course, about
20	the implementation. We had some questions about that,
21	whether these interim criteria will be implemented
22	towards the current fleet of plants, and I think that
23	has been addressed by Paul. We do have some, you know
24	again, because this was a question that was in
25	flux, we may be coming back to that again.
l	I

(202) 234-4433

	85
1	But our main areas where we would like to
2	work involve the amount of conservatism that is
3	included in the failure threshold. We feel that the
4	RIL0401 still has exercised, you know, too much
5	influence on the failure, definition of the failure
6	threshold, and we are concerned about the extent of
7	work that will be needed to address the coolability
8	issue on an industry-wide basis, but we look forward
9	towards working with NRR toward development of these
10	improvements in time for the final criteria.
11	We are also a little concerned about the
12	timing. You know, if the final criteria are targeted
13	for 18 months from now, it really it's not much
14	time. We're concerned that there won't be much more
15	experimental evidence coming in within the next 18
16	months.
17	Our perspective on RIA. First of all, in
18	the last ten years since it became evident that high
19	burnup fuel may fail at a lower level than the
20	criteria that were present, the industry has invested
21	a considerable amount of R&D resources into this
22	issue. We studied it thoroughly, and I feel that we
23	obtained a very good understanding of the key
24	phenomenon that are in action here, and we feel that
25	the test results can be explained in terms of just
I	I

(202) 234-4433

1 pellet-cladding mechanical interaction in the burnup 2 range that we are interested in, the time-temperature 3 history resulting from the energy pulse and the 4 cladding ductility.

5 Public expense puts pressure the on cladding strain, and the question is whether cladding 6 7 will withstand or the cladding has enough ductility to 8 withstand that. There are no magic, no unanticipated 9 phenomena that are taking place at least, again, in 10 the burnup range that we're interested in and within the enthalpy levels that we're interested in. 11

This is -- you know, we've been planning 12 this for the last few years. Most recently this has 13 14 been -- there has been a seminar, a workshop at CABRI where this was really organized, I think, at the 15 recommendation of NRC that CABRI sits back and tries 16 17 to summarize the lessons learned from all the experiments, and I have some backup slides in the 18 19 handout about what the lessons learned were from this 20 CABRI seminar. They are pretty consistent with what 21 we have been saying all along.

To obtain this understanding, we developed a mechanistic methodology for the analysis and predictions of both the experiments and what will the response be in a reactor. It's rather

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	straightforward.
2	We used a fuel photomechanical code with
3	FALCON. It's a 2D final element methodology code, and
4	it's very simple. We just input the power pulse that
5	the test rod sees during the test and tried to
6	calculate what is going to be the pellet response.
7	Now this is a plot of half of the pellet.
8	This is the outside boundary, this is the cladding
9	region, and this is the center of the pellet, and
10	originally the temperature is low. The first thing
11	that we noticed is that it starts to rise in the rim
12	region here, and very quickly it rises way up while
13	the center of the pellet follows, and eventually the
14	rim temperatures decrease slowly while the center of
15	the pellet feels the impact of the energy pulse, and
16	long after the energy pulse is over we have a
17	parabolic distribution as before.
18	The thing to note here is that very early
19	on the cladding temperature is very low. It's down
20	here, and it heats up, eventually heats up, so the
21	question is do we have enough time to heat up the
22	cladding to improve its ductility. Very narrow pulse,
23	we don't have the time. You know, wider pulse, the
24	cladding heats up and has much more ductility.
25	CHAIRMAN ARMIJO: Now this preferential
I	I

(202) 234-4433

	88
1	heating at the periphery of the pellet, is that valid
2	for fresh fuel, as well as high burnup fuel?
3	DR. OZER: No, this is for high burnup
4	fuel. You have to have a rim.
5	CHAIRMAN ARMIJO: Okay.
6	DR. OZER: You have to have a rim, and, in
7	fact, I will be talking a little later about the
8	differences between UO_2 fuel, which has a rim, and MOX
9	fuel, which does not have a rim like the ${ m UO}_2$ fuel but
10	has many multiple rims around each of the plutonium
11	grains within the pellet.
12	Now, so we use this to this calculation
13	of temperatures and pellet expansions and pellet
14	stresses that the pellet will exert on the cladding to
15	determine the cladding strains, and we compared those
16	to the measured strains. So this is a calculated
17	strain, and these are the measured points for EPRI
18	tests.
19	So this is, you know, a basic difference
20	between our approach and the approach that NRC has
21	used is that we start from basic principles, try to
22	calculate, see whether we can predict what's happening
23	in the experiments, and then we go to try to make a
24	prediction in a reactor, whereas you know, so we
25	use the experiments, the RIA simulation experiments,
	I

(202) 234-4433

	89
1	primarily to validate our approach, to give us
2	confidence that what we're doing is correct.
3	CHAIRMAN ARMIJO: Now just to make sure I
4	understand, is this one validation step that you've
5	gone through?
б	DR. OZER: This is just an example.
7	CHAIRMAN ARMIJO: Okay, but there's been
8	more? You've done it for more rods
9	DR. OZER: That's right.
10	CHAIRMAN ARMIJO: and fed that back into
11	your model?
12	DR. OZER: Exactly, yes.
13	CHAIRMAN ARMIJO: Okay.
14	DR. OZER: And all of that has been
15	documented in a report, and we use this knowledge to
16	propose changes to the criteria. We found that we
17	obtained very good agreement with the measurement on
18	all non-failed cases.
19	We found that we you know, there is
20	something funny about the failed cases, and we went
21	and looked at them, and in every case they turned out
22	to be some unique characteristic. Either the tests
23	were done at room temperature, or in the case of
24	CABRI, they were done on severely spalled, and
25	cladding has really large hydride blisters, or they
Į	I

(202) 234-4433

	90
1	were MOX fuel.
2	So we proposed criteria and several of
3	those were reviewed to NRC in a topical report in
4	April of 2002. You know, since submitting this
5	report, we also had several workshops to discuss the
6	technical approach that was used, the assumptions that
7	were used, and we provided NRC staff with training on
8	the use of the FALCON code. In fact, we offered them
9	the FALCON code so that they could try to duplicate or
10	try to do an independent evaluation of our results.
11	The topical that we submitted was not
12	accepted. We received a number of questions
13	indicating staff concerns. They were primarily with
14	how we treated the uncertainties in mechanical
15	properties. Again, we used the mechanical properties
16	to feed the code to calculate what happens in the
17	test.
18	Well, there is less scatter in the
19	mechanical properties, and we used the best estimate.
20	You know, they were suggesting different approaches,
21	you know, and we used a metric to determine when fuel
22	fails, which we call the strain energy density,
23	critical strain we use critical strain energy
24	density.
25	We could have used another metric. We
ļ	I

(202) 234-4433

91 1 could have used total, you know, plastic elongation, 2 and, in fact, you know, that was questioned that we 3 are using this new metric, and there were some 4 concerns with our coolability limit approach, as well. 5 One thing I'd like to point out about the metric that we used is that you could use a different 6 7 metric, but if you use a similar approach, you end up 8 with pretty much similar failure occurs. This is the 9 plot that we took out from a presentation put together by the Swedish authorities and presented various 10 places, ANS meeting and the CABRI meeting by Jan In de 11 12 Betou from the Swedish Nuclear Power Inspectorate, and, you know, what he calls present study here is 13 14 really the Swedish study, which is this line here, and 15 he compares that to the line that we proposed, which drops really below his estimate, and he also included 16 a calculation done by Battelle-Northwest using FRAPCON 17 and also total elongation, I believe. 18 know, yes, 19 there Now, you are some 20 differences, but you can see that these all bunch 21 pretty much together. This is the staff research 22 proposed failure criteria proposing RIL0401. It's way 23 It's inconsistent. down. 24

24 MEMBER SHACK: Now on that best estimate, 25 as I recall that data, I mean, it was truly a shotgun.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

It was. 1 DR. OZER: Yes. Well, there are 2 large variations, and we can treat them -- what we did 3 was to do a best estimate to that data and then tried 4 to use a very conservative burnup-to-oxide. You know, 5 we need to -- we tried to translate this to a burnup 6 space, you know, so this is burnup here. 7 So to go from, you know, to go to burnup 8 from, you know, the real variable, which is hydrogen, 9 and we were using oxide as the surrogate, to go from 10 oxide to burnup we used a very conservative oxidation curve for Zirc-4, which should have really covered it. 11 12 And, yes, we --MEMBER SHACK: Why didn't you just use a 13 14 conservative one for the failure criteria instead of 15 the best estimate? I mean, that would seem like the 16 logical place to put the conservatism, where you have 17 all the scatter. DR. OZER: Yes, if we had done that and 18 19 used a conservative oxide-to-burnup approach, as well, 20 we would have predicted every surviving test to have 21 failed, whereas, you know, our predictions of the 22 surviving tests are pretty good. So, you know, that 23 would have been an overly conservative approach, but, 24 you know, what we could do is --25 You know, since then, since we've received

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 this feedback, we've been looking at different ways of 2 addressing the uncertainty issue, and we have done a 3 statistical approach. We tried to eliminate some of 4 the tests that were not that relevant to RIA, let's 5 say, focus on a burst test, for example. Just use burst tests. Try to fit those and do, you know, a 6 7 statistical 95-95, whatever, approach. 8 We also even tried a Monte Carlo approach, 9 and, you know, we can get different results with 10 those. You know, some are lower, but they are still higher than the RIL0401 guidance. 11 SHACK: I notice you didn't 12 MEMBER _ _ _ there's a criticism of FALCON that it under-predicts 13 14 fuel temperatures. Is that something that you've 15 agreed with in the SCR? DR. OZER: Robbie, can you comment on that? 16 17 MR. MONTGOMERY: I can comment on that, Robert Montgomery from Anatech. We didn't list 18 ves. 19 it on the slide. We've provided the staff with our 20 input on that. We don't believe it underestimates the 21 fuel temperatures. 22 DR. OZER: Now, you know, so this was a 23 comparison with RIL0401. As far as the interim 24 criteria is concerned, we did participate in their 25 We provided oral comments at NRR development.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

93

	94
1	workshops and responded to, you know, provided
2	technical input for the written and oral and provided
3	written documents on the draft criteria.
4	Some of these have been incorporated into
5	the technical justification document, in particular
6	the improved definition of non-PCMI failure criteria,
7	the recognition of the prompt versus delayed pulse
8	effect, the consideration of the role of hydrogen,
9	particularly for BWRs, and we've identified areas for
10	further improvement.
11	Now as far as a summary of the remaining
12	that we have, they have to do with implementation, the
13	enhancement of the technical basis for the PCMI
14	failure criteria, and the definition of the approach
15	and methods needed to address the coolability issue.
16	Now as far as the implementation of the
17	current plans, you know, we were very concerned about
18	whether they would be the interim criteria would be
19	implemented to the current plants, and there was a
20	letter that was put together under NEI's auspices, and
21	that was submitted to NRC.
22	Essentially, the letter says that since
23	these are interim criteria, and final criteria are
24	expected only within, you know, a short time that we
25	should really be focusing you know, if
ļ	I

(202) 234-4433

implementation is to be considered, it should be on the final criteria and should provide sufficient time so that the appropriate methodology is developed, and we felt that early, you know, too early implementation may have a considerable impact on the core design process.

As far as our concern with the failure criteria are concerned, we feel that the failure criteria still are a subjective lower bound of adjusted RIA-simulation tests. Again, we have to adjust the RIA tests to give us an idea of what that fuel would have responded like if it was in a reactor situation.

So you're taking room temperature rods, rods that have experienced a four millisecond pulse, and tried to translate those into, you know, pressurized high temperature, or in the case of BWRs we argue that if it's at room temperature the pulse is much wider, so almost an order of magnitude wider.

 20
 MEMBER SHACK: Odelli, I'm getting

 21
 confused.

DR. OZER: Sure.

23 MEMBER SHACK: If you go back to your slide 24 7, this criterion, that's the thing. Now do you agree 25 with the comparison that they've made in the technical

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

22

	96
1	basis document between the interim criteria? I'm
2	assuming that your mechanistic one here you've
3	everybody's plotting against different variables, so
4	I can't get a one-to-one comparison.
5	DR. OZER: Yes. Right.
6	MEMBER SHACK: Is their translation of your
7	criterion onto their plot, do you think they've done
8	it correctly?
9	DR. OZER: In what Paul has presented or
10	MEMBER SHACK: What Paul presented.
11	DR. OZER: Yes.
12	MEMBER SHACK: That's really the we're
13	still talking about the same curve, or is that a
14	different curve?
15	DR. OZER: Go ahead.
16	MR. MONTGOMERY: The curve that Paul
17	plotted is a different curve than the one that was
18	submitted in 2002. That's in the that Odelli's
19	talking about and showing here on this curve.
20	MEMBER SHACK: Okay, so that's a different
21	curve still, so there's three curves floating around.
22	MR. MONTGOMERY: Yes, and that one has not
23	been finalized or submitted to the NRC for any review
24	or anything at this point. This is just
25	MEMBER SHACK: How would this curve look
I	I

(202) 234-4433

	97
1	compared with this curve if I plotted them against the
2	same variables?
3	MR. MONTGOMERY: Dr. Shack, you'll have to
4	be a little more specific which is this curve and
5	which is that curve.
6	MEMBER SHACK: Paul's curve with he's
7	got fuel enthalpy rise and oxide wall thickness versus
8	this curve where I have radial average fuel enthalpy
9	and burnup.
10	MR. MONTGOMERY: Okay.
11	MEMBER SHACK: And I can't compare the
12	curves at all, because I've got different variables.
13	MR. CLIFFORD: If you look at my slide 14,
14	the green dotted line was what we call a 95 percent
15	lower bound. That's something they provided
16	MEMBER SHACK: Since.
17	MR. CLIFFORD: since, but if you were to
18	take that point at 150 calories per gram and just draw
19	it out all the way to about .16 and then start
20	lowering it slowly, that would be more in line with
21	what the original entry was, yes.
22	MEMBER SHACK: The original plot. Okay.
23	Okay.
24	MR. CLIFFORD: You agree with that?
25	MR. MONTGOMERY: I would agree with that.
I	I

(202) 234-4433

	98
1	MR. CLIFFORD: And, you know, that curve,
2	again
3	MR. MONTGOMERY: About .12 when it would
4	start to drop down. Is that what you said?
5	MR. CLIFFORD: I said .16.
6	MEMBER SHACK: He said .16, but close
7	enough.
8	MR. MONTGOMERY: I think closer to .12,
9	but, you know.
10	MEMBER SHACK: At least it gets us
11	somewhere in the same universe.
12	MR. MONTGOMERY: It should be noted, just
13	to finalize this or at least clarify this, it should
14	be noted that in the original proposal that's shown on
15	the figure here in terms of burnup, we did not
16	consider the effects of spallation. Spalled rods were
17	not considered in the development of that curve.
18	In the development process that we looked
19	at in the curve shown in Paul's slide, slide number 14
20	that says "EPRI mechanistic 95% lower bound," that
21	curve was developed considering the effect of
22	spallation, so there is a different-end approach that
23	we are currently exploring to consider the effects of
24	spallation and at least identify how they would impact
25	a statistical assessment, and then we can decide later
I	I

(202) 234-4433

	99
1	on which approach we want to take, considering
2	spallation or not, so in the figure that's shown or
3	the curve that's shown on slide 14 in Paul's
4	presentation includes the effect of spallation, which
5	the previous study did not.
б	MR. CLIFFORD: Another important point is
7	you had mentioned earlier that why did they use a best
8	estimate fit and then put the conservatism in the
9	burnup talks like conversion. The slide here on 14,
10	the line here is a 95 percent lower bound, so it's not
11	the earlier best estimate fit.
12	MEMBER SHACK: Yes, but did you get the 95
13	percent from the Monte Carlo on all the uncertainties,
14	or is this just a 95 percent on the CSD?
15	MR. CLIFFORD: 95 percent of a Monte Carlo
16	of all the uncertainties.
17	MEMBER SHACK: All the uncertainties.
18	MR. CLIFFORD: That's correct.
19	MEMBER SHACK: Okay, which seems like the
20	way to do it.
21	MR. MONTGOMERY: Yes. Now you get into the
22	discussion of the data that you use and what you
23	consider in terms of spallation and that sort of
24	thing.
25	DR. OZER: Yes, that curve was again,
I	I

(202) 234-4433

	100
1	we've been working, trying to address the
2	uncertainties in different ways, and we did not
3	identify it in a formal topical report. That's
4	MEMBER SHACK: That's not an official EPRI
5	curve.
6	DR. OZER: The concerns that we have with
7	the current, the proposed failure criterion for the
8	interim criteria is the use the adjustments that
9	were made to the data contain some really questionable
10	assumptions, and we question the applicability of
11	FRAPTRAN to this kind of RIA situation where it hasn't
12	really been very well validated, we feel.
13	As far as the assumptions, in order to
14	match the observed results, they have to assume that
15	the cladding gap for these high-burnup rods was of the
16	same magnitude as fabricated, fresh-cut. Otherwise,
17	you know, they could not predict the observed, you
18	know, strains.
19	And the assumptions that were made, that
20	there is no difference between UO_2 and MOX response,
21	that room temperature and hot-zero power cladding
22	ductility is pretty much the same it doesn't change
23	that much and that high corrosion cladding with
24	spalled and unspalled cases responded the same way,
25	and this results in a failure criterion that that is,
	I

(202) 234-4433

	101
1	you know, lower than it needs to be for moderate oxide
2	thicknesses due to these biases.
3	CHAIRMAN ARMIJO: As far as that gap issue,
4	if all of these rods were prefabricated before the
5	test, you know, how does anybody know what the gap is?
6	I mean, there's a lot of machining and drying out,
7	rewelding, refilling the gaps. How does anybody know
8	what the gaps are?
9	DR. OZER: In the RIA tests they are
10	conditioned. They run for a while, and, I mean, the
11	cladding is the same cladding, and they're just
12	putting encaps, so, you know, if the cladding has
13	collapsed, they will not pressurize it to the point
14	that it will, you know, expand again, so it will have
15	the gap that it has at the end of life, but, you know,
16	you may question whether they
17	CHAIRMAN ARMIJO: Well, whether it's
18	fragmented fuel, whether it's relocated during the
19	cutting and the machining and welding end plugs, a lot
20	of things happen. I'm just wondering how.
21	DR. OZER: Well, all of those things will
22	tend to make the gap even smaller.
23	CHAIRMAN ARMIJO: Yes.
24	DR. OZER: So, you know, assuming that you
25	have initial gaps is really going the wrong direction.
ļ	I

(202) 234-4433

	102
1	CHAIRMAN ARMIJO: Okay.
2	MR. MONTGOMERY: Dr. Armijo, I should also
3	point out that these are primarily high burnup rods,
4	so the residual gap is quite small to start with, so
5	even if there is some uncertainty, if it's five
6	microns versus ten microns, it's not going to be a
7	huge effect on the performance of the rod either in
8	the predictions or the test itself.
9	CHAIRMAN ARMIJO: So how does that compare
10	with the as-fabricated gap that was the adjustment
11	made by
12	MR. MONTGOMERY: The as-fabricated gap
13	would be on the order of about 100 microns, 90 to 95
14	microns, so we're talking about a residual gap on the
15	order of five percent or less typically for these high
16	burnup rods.
17	CHAIRMAN ARMIJO: Okay.
18	DR. OZER: I would like to address all of
19	these points one by one. First of all, as far as MOX
20	versus UO_2 , it's very obvious that, you know, MOX
21	doesn't have a rim in the same sense as $\rm UO_2$. Instead
22	it has multiple rims around each of the grain, each of
23	the plutonium oxide grains, and that results in more
24	of the pellet responding to the challenge, and, in
25	fact, to produce the same amount of stress on the
l	1

(202) 234-4433

	103
1	cladding that a MOX rod that is hit with 80 calories
2	per gram energy input, if you want to produce the same
3	amount of strain with a ${ m UO}_2$ pellet, you would have to
4	hit that ${ m UO}_2$ pellet with probably twice that amount of
5	enthalpy.
6	So, you know, they are pretty different,
7	you know, different types of fuel, and in countries
8	where MOX fuel is utilized extensively, they either
9	have implemented separate MOX criteria or are
10	proposing to use separate MOX criteria.
11	CHAIRMAN ARMIJO: And would those be more
12	conservative than the UO_2 ?
13	DR. OZER: Oh, yes. The MOX criteria would
14	be lower than UO_2 .
15	CHAIRMAN ARMIJO: And specifically what's
16	that? Is that French or what? What country is it?
17	DR. OZER: The Swiss have, I believe,
18	implemented already. The French are proposing. The
19	Japanese, I don't know. Rob?
20	MR. MONTGOMERY: I can't speak to the
21	Japanese.
22	CHAIRMAN ARMIJO: Okay.
23	DR. OZER: There is also in RIL0401
24	there is the argument that there isn't really that
25	much improvement in the elasticity of the cladding as
I	I

(202) 234-4433

you go from room temperature to high temperature to operating temperatures. This is a bunch of NFIR burst tests. These are at room temperature. These are at operating temperature, 300, 350. There is a factor of almost three improvement in total plastic elongation.

There is the claim that hydride blisters, 6 7 you know, don't play a role, and yet all the failures that we see originate at hydride blisters. You have 8 9 brittle failure which then propagates by a tear. In 10 cases where you have non-spalled situation, you go to an eight percent extension, and you finally fail here, 11 whereas when you have spalled oxide, one and a half 12 percent is sufficient because of the initiation of the 13 14 crack within the blister. Again, it's hard to see, but this is the blister here, and here is a blister. 15 MEMBER SHACK: Well, the SCR says that the 16 17 cladding cracks were not associated with hydride

18 blisters or spalled locations.

DR. OZER: We disagree with the SCR.

20 CHAIRMAN ARMIJO: Well that's a -- you have
21 a factual disagreement.

DR. OZER: Well, I don't think that we are the only ones to disagree with this. In fact, one of the things that comes up from the CABRI symposium -do you know what slide it is, what's the number of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	105
1	
2	MR. MONTGOMERY: 23 and 24.
3	DR. OZER: Here, these are the main
4	conclusions of the CABRI seminar based on the tests,
5	the CABRI tests. Hydride content distribution and
6	orientation is the main parameter leading to the
7	decrease in cladding ductility.
8	Non-spalled UO_2 rods have sufficient
9	ductility at 80 to 100 microns of oxide thickness to
10	survive up to 100 calories per gram. I mean, this is
11	the CABRI program participants' conclusion.
12	CHAIRMAN ARMIJO: That is a working group.
13	DR. OZER: It consists of the
14	representatives from regulatory agencies from all over
15	Europe and Japan. NRC participates in that, the
16	French, of course.
17	CHAIRMAN ARMIJO: So the question is
18	whether you have spalled rods in the power plants.
19	DR. OZER: Whether you it's not only
20	spallation by itself is not sufficient. You have to
21	operate in a spalled mode for long enough to form a
22	hydride blister. It's the blister, the hydride
23	blister, that is reducing the ductility of the
24	cladding. Incipient spallation, it is questionable,
25	you know, what the effect will be.
ļ	I

(202) 234-4433

	106
1	CHAIRMAN ARMIJO: Okay.
2	MEMBER SHACK: Just let me ask the staff if
3	they have any comment on that. I mean, your statement
4	is that the spalling did not cause early failure but
5	simply was a consequence of heavy oxidation that
6	performed, produced uniform hydrides, which degraded
7	ductility. So everybody agrees that having lots of
8	hydrogen and hydrides is bad. The question is whether
9	the blisters and the spallation itself played an
10	actual role.
11	MR. CLIFFORD: I'll defer this to Harold.
12	That position was developed by Research.
13	MR. SCOTT: This is Harold Scott from the
14	Office of Research. I guess we weren't prepared today
15	to rebut all of the industry items, but I don't think
16	you should assume that because we're not that we agree
17	with what they're saying.
18	As an example, in the CABRI tests there
19	were many cracks found in the PIE metallography that
20	were not associated with the blister. They just
21	didn't happen to be the one that cracked through
22	first. We don't know if it
23	CHAIRMAN ARMIJO: No, but the primary crack
24	is what's of interest, the one that actually caused
25	the failure. There can be subsequent cracks that are
ļ	

(202) 234-4433

	107
1	not particularly interesting. You know, it's the one
2	that actually causes the thing to fail. If the
3	primary started at blisters, you know, we'd certainly
4	like to know that.
5	MR. SCOTT: I don't remember exactly, but
6	it seemed like in one of the tests there were several
7	cracks that actually went through the wall.
8	CHAIRMAN ARMIJO: It kind of makes
9	MEMBER SHACK: There still is a debate
10	going on.
11	MR. SCOTT: There's a debate going on.
12	CHAIRMAN ARMIJO: But it kind of makes
13	sense that there's a lot more hydrogen in a blister
14	than there is in just a uniformly distributed rim, and
15	if hydriding is the mechanism, it's reasonable to
16	expect that the highest concentration of hydrides is
17	where you would have your minimum ductility.
18	MR. SCOTT: That would be true.
19	CHAIRMAN ARMIJO: So this kind of hangs
20	together, this argument that the blister is certainly
21	representative of spalled rods, and I certainly know
22	that spalled rods can exist in power reactors. Maybe
23	that's old fuel versus new fuel. I don't know, but I
24	wish I'd sure like to see the staff address that so
25	that we just aren't arguing that cracks don't form in
l	I

(202) 234-4433

	108
1	blisters or the cracks do form.
2	MR. SCOTT: Didn't.
3	MEMBER SHACK: You're testing the
4	CHAIRMAN ARMIJO: Yes. This is an issue of
5	fact rather than judgment, and so I'd sure like to get
6	that cleared up so that we
7	MR. SCOTT: The tests in the Japanese in
8	SRR were not spalling. They have cracking failure. So
9	go back to Odelli's slide of the strain, the uniform
10	elongation versus, yes, total elongation.
11	If we plot other data, it may not show
12	that strong a trend. It also, in the analysis that we
13	did, we found that making the assumption we did gave
14	a closer representation of the data and the analysis,
15	and this one would seem to give a spread the data
16	points apart after you adjusted them by using a
17	stronger temperature versus elongation.
18	CHAIRMAN ARMIJO: Okay, so we can conclude
19	there's a disagreement.
20	MR. SCOTT: Yes.
21	MEMBER SHACK: That much is clear.
22	CHAIRMAN ARMIJO: It's clear. Okay.
23	DR. OZER: To address the question of how
24	much spallation we would have to assume can exist in
25	current fleet of reactors, I'd like to note that none
I	I

(202) 234-4433

109 of the advanced cladding have shown any indication of having spalled. M5 cladding, you know, just doesn't oxidize that much, and ZIRLO cladding, even at high oxide thicknesses, the rod that was pushed to really high oxide thicknesses in the vendor's reactor by irradiating an extra cycle under rather high-duty conditions did not spall.

8 So in keeping that in mind, you know, that 9 the cladding that's most susceptible to spalling is 10 Zirc-4, this is the current inventory in U.S. PWRs. 11 The red line here is ZIRLO, and it's almost, you know, 12 67 percent. M5 is 12.5 percent, so, you know, this is 13 80 percent of the total fleet is advanced cladding.

The only plants -- there's only 20 percent of the inventory is Zirc-4, and this really tends to be in plants that don't have a high-duty expectation, so the probability of spallation is very small, and this is really the trend is for these to go down and these to go up, looking at just, you know, last year versus this year and projected.

21 So, you know, we need to keep that in mind 22 when assigning weight to the spalled rods in 23 determining the --

24 MEMBER SHACK: But again, the proposed 25 criteria wouldn't penalize the ZIRLO, because it's not

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	110
1	going to have a thick enough oxide to put you out on
2	that
3	DR. OZER: You would have to develop
4	yes, you would have to develop special criteria for
5	ZIRLO or justify ZIRLO can use a different set of
6	criteria. I think, you know, Paul showed a line that
7	
8	MEMBER SHACK: Wouldn't his his criteria
9	with the oxide thickness, doesn't that kind of cover
10	ZIRLO, because it's going to have a thin enough oxide
11	that you're going to be down in that, the high energy?
12	DR. OZER: It will not cover ZIRLO. It may
13	cover M5.
14	MEMBER SHACK: M5 but not ZIRLO. Okay.
15	DR. OZER: But not ZIRLO, and ZIRLO should
16	not be penalized for spalling.
17	CHAIRMAN ARMIJO: You're saying ZIRLO
18	shouldn't be penalized for spalling if it's not
19	actually happening there.
20	DR. OZER: Yes. We have not seen any.
21	MEMBER SHACK: So ZIRLO is going to be
22	somewhere in this .12 range that you're concerned
23	about.
24	DR. OZER: Yes.
25	MR. MONTGOMERY: Actually, it's more like
	I

(202) 234-4433

	111
1	.8. Once you get to .08, you've kind of reached your
2	that's like 50 microns or so.
3	CHAIRMAN ARMIJO: As long as we're at it,
4	for the BWRs, Zirc-2, do you have something similar
5	for that? Is the improved Zircoloid 2 more resistant
6	to spalling than the older versions?
7	DR. OZER: I'm sorry, I don't have that
8	information.
9	CHAIRMAN ARMIJO: Okay.
10	DR. OZER: The areas where we would like to
11	see the BWR criteria improved is you know, Paul
12	showed you a curve that we fixed to NSRR data, and
13	those NSRR data were obtained with four-millisecond
14	pulses versus a 30-millisecond pulse that we would
15	expect in an actual BWR, so, you know, we're adjusting
16	the PWR data upwards to account for these differences.
17	We feel that the BWR data should be adjusted, as well.
18	So, you know, we just feel that those are
19	conservative. What has been proposed is conservative.
20	There is some concern about the
21	application of the interim criterion to hot-zero power
22	cases. We feel that when you allow the BWR cladding
23	to heat up, the criteria that we propose for PWRs
24	should be applicable at high temperatures, so, you
25	know, you should be able to switch.
	I

(202) 234-4433

	112
1	CHAIRMAN ARMIJO: You're saying the
2	cladding mechanical properties should be adjusted.
3	DR. OZER: Well, the criteria should be.
4	We should be allowed to use the PWR criteria for BWRs
5	at hot power.
6	MR. MONTGOMERY: Because of the improvement
7	in the mechanical properties of the BWR cladding, it
8	should go from room temperature to hot conditions.
9	It's because of the mechanical properties.
10	DR. OZER: And there is some concern about
11	the language that is being used, because, you know,
12	we're using the most conservative we're using the
13	lower amount of the experimental data, and that has to
14	be combined with the most limited accident analysis,
15	so it seems like we're piling up uncertainties all in
16	the same direction.
17	This is some data to show the improvement
18	in the BWR cladding mechanical behavior with
19	temperature. What we have here is EDC test,
20	elongation due to contraction tests, expansion due to
21	contraction tests. These are tests where irradiated
22	cladding segments or pre-hydrided cladding segments
23	are filled with a plastic core, and then the plastic
24	core is pushed to expand to simulate an RIA
25	experiment.
	1

(202) 234-4433

	113
1	And what we have, what we see here is that
2	when you have zero hydrogen, you have quite a bit more
3	ductility than at room temperature, and then as you
4	heat up, it quickly goes up. These points are failure
5	points, so obviously the line has to be low all the
6	failure points. This is a surviving point.
7	Now if we have some if we have a
8	significant amount of hydrogen, like 250 to 350 ppm,
9	the initial ductility is lower already at room
10	temperature, and it takes longer for it to improve,
11	but eventually it does improve.
12	It improves at 150 degrees. If you have
13	300 to 500 ppm hydrogen, it takes still longer, but
14	still there is an improvement. Now we're not talking
15	about such high hydrogen concentrations.
16	So we feel that there are some potential
17	areas for improvement in the final failure criteria.
18	Both the newer experimental data will help, as well as
19	a fully qualified analytical approach to you know,
20	if we are going to use adjusted data, let's use
21	qualified, knowledgeable approach, and account for the
22	most severe loading from MOX, account for the improved
23	cladding ductility as temperature goes up, and the
24	improved cladding mechanical response if we don't have
25	spallation.
I	I

(202) 234-4433

	114
1	And my next plot shows what I mean. This
2	is pretty much the data that the PWR data that has
3	the adjustments of adjusted RIA simulation tests.
4	These are the SRR tests. These are the CABRI tests,
5	and this is the CABRI MOX test, and the failure
6	criterion that has been proposed fits this, you know,
7	has been proposed to fit this data.
8	What we believe is that the adjustments
9	are not enough. These are just a temperature
10	adjustment. These points would move up here if they
11	were adjusted using you know, if this were to move
12	up here, this one would move up here.
13	CHAIRMAN ARMIJO: That's just a temperature
14	correction?
15	DR. OZER: Just a temperature difference.
16	CHAIRMAN ARMIJO: Okay.
17	DR. OZER: Now MOX. We go from here up to
18	here if we account for, again, the stress that would
19	be exerted by the ${\rm UO}_2$ pellet on the cladding. So we
20	would propose to raise the failure criterion,
21	particularly in this range here, which is really the
22	most important range for operating the reactors, and,
23	you know, this would be taking into consideration the
24	spalled rods, and if we don't take into consideration
25	the spalled rods, we would have a curve like this.
I	I

(202) 234-4433

	115
1	It's really a shame that most of the
2	future experiments are focusing in this range of oxide
3	thicknesses, and, you know, these are beyond the
4	currently licensed oxide thicknesses, and we don't
5	expect to get there. We should be looking more in
6	this range, and we should be looking more at the
7	differences between MOX and UO_2 , but, you know, we hope
8	that, again, using a better, more systematic approach
9	we can justify using this kind of a curve.
10	CHAIRMAN ARMIJO: Is there any chance of
11	convincing the funding agencies or sponsors of these
12	future tests to focus in the area of interest to
13	operating plants? I don't know who makes those
14	decisions, but that's where you'd put your money.
15	DR. OZER: Well, it's, you know, we may
16	have a chance with the CABRI experiments, especially
17	if we can get NRC's support. You know, we are both
18	participating in that, but again, it's we would have
19	to convince the other sponsors of the CABRI program
20	that this is a good approach, that this is where the
21	data is most needed.
22	We have less control over the NSRR
23	experiments, because they are sponsored by the
24	Japanese government, but again, we can try to convince
25	them. That's the only thing we can do.
ļ	1

(202) 234-4433

(202) 234-4433

	116
1	MR. SCOTT: Excuse me. This is Harold
2	Scott. Could I just comment on since you moved
3	that MOX point so far, but you had a slide before that
4	said that the strain is primarily a function of the
5	thermal expansion. Well, the thermal expansion of MOX
6	is not twice ${ m UO}_2$, so I don't know why that point moves
7	so far.
8	DR. OZER: To produce the same amount of
9	strain on the cladding that a MOX rod would produce
10	under 80 calories per gram, you would have to insert
11	150 or 140 calories per gram into a UO $_2$ pellet. It's
12	
13	MR. SCOTT: Is it the neutronics? Is the
14	neutronics there not
15	DR. OZER: It's not twice the expansion.
16	It's where, you know, where the expansion is
17	happening, you know, the rim being on the outside in
18	the ${ m UO}_2$ versus, you know, the entire pellet
19	contributing in the case of MOX.
20	MR. SCOTT: Well, that's one answer, I
21	guess. Okay.
22	MR. MONTGOMERY: Harold, let me see if I
23	can try to answer that question for you. The
24	conclusions from the CABRI seminar were only focused
25	on ${ m UO}_2$, so the conclusion that ${ m UO}_2$ pellets, so the
l	

(202) 234-4433

	117
1	conclusion that the primary driving force for clad
2	loading is from thermal, pellet thermal expansion,
3	only applied to UO_2 , not MOX.
4	In MOX you have an additional component.
5	That could be the contribution of fission gas
6	expansion in the plutonium conglomerates that could be
7	expanding the pellet additionally above the thermal
8	expansion.
9	CHAIRMAN ARMIJO: So there's more than one
10	mechanism in play in MOX fuel.
11	MR. MONTGOMERY: That is the current
12	expectation, yes.
13	MEMBER SHACK: Yes, but that seems to be
14	counter to this one, that it takes so much more energy
15	to get another mechanism to drive it up.
16	MR. MONTGOMERY: What we're saying there is
17	that that rod failed at somewhere 100 calories per
18	gram as a MOX rod, but the cladding strain that it saw
19	was about which would be the expected amount to
20	cause it to fail. To get the same amount of cladding
21	strain in the ${ m UO}_2$ rod, you'd have to increase it to a
22	higher level. So that's the the hash symbols there
23	are the translated data point into a ${ m UO}_2$ space.
24	CHAIRMAN ARMIJO: Okay.
25	DR. OZER: As far as the coolability limit
	I

(202) 234-4433

118 1 is concerned, we see that there's a fair amount of 2 effort that will be required to disposition of it. There are two concerns. 3 4 One is the short-term, the impact of hot 5 particles being released into the coolant and the pressure pulse that may result from that, and ten 6 7 there is the longer term concern that Paul talked that the redistribution of 8 about the disbursed 9 material and the coolability questions, the ballooning and so on. 10 I think what we would like to do in this 11 area is really try to see whether they can be -- to 12 what extent they can be addressed on a generic basis, 13 14 maybe provide a reference so that individual licensees 15 can decide whether they want to use that or whether they need additional relief to do some additional 16 calculations of their own. 17 CHAIRMAN ARMIJO: Topical reports that 18 19 other people could reference --20 DR. OZER: Yes. CHAIRMAN ARMIJO: -- and justify applies to 21 22 their plants. 23 DR. OZER: Yes. 24 CHAIRMAN ARMIJO: Okay. 25 So as far as the "final" DR. OZER:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

119 1 criteria is concerned, we look forward towards working 2 with NRC to reach consensus on these. We hope to 3 enhance the technical basis of the failure criteria 4 using the newer data and improved analytical methods 5 and develop approach to disposition the coolability concerns. 6 7 CHAIRMAN ARMIJO: So you don't really --8 your next-to-last slide, you're saying as far as the 9 things that needs to be addressed, you're not 10 objecting to that. It's just how to do it efficiently 11 _ _ 12 DR. OZER: Yes. CHAIRMAN ARMIJO: -- is your issue. 13 14 DR. OZER: I think they need to be 15 addressed. They need to be looked at. 16 CHAIRMAN ARMIJO: Okay. Thank you. 17 DR. OZER: Thank you. 18 CHAIRMAN ARMIJO: These are the backup slides. 19 20 DR. OZER: Yes, the backup slides are the 21 conclusions from the CABRI seminar, and, you know, --22 CHAIRMAN ARMIJO: It might not hurt to just 23 -- we've got a little bit of time -- just to --24 DR. OZER: Well, I talked about the first 25 hydride distribution which is that the one,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	120
(orientation is the main factor and that non-spalled
]	rods can survive to 100 calories per gram, so we
e	expect the non-spalled limit to be about at that
]	range.
	They concur that PCMI loading is primarily
1	pellet thermal expansion up to 110 calories per gram
ä	and 75 gigawatt-days per to burnup, and that's the
]	range that we're interested. You know, beyond that,
2	you know, other things may happen, but

The others are not that relevant, I think, to -- yes, there is significant range in fission gas release from the green-grounded gases. We know that. They observed that there is up to 30 percent helium release it the total fission gas release, and they don't know why that is observed.

One thing that's kind of interesting and 16 17 has to be kept in mind is they observed that during the transient, most of the CABRI tests lost their 18 19 oxide layer, and this did not happen in the NSRR test, so they think that this may be a sodium effect. 20 You 21 have the temperature differential between the cladding 22 and the sodium, and it contributes to the spallation of the oxide during the test. 23

And I also would like to mention that once a rod fails in CABRI, it should be inspected very

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

soon, because sodium gets in there. It expands the 2 cracks, adds additional cracks, and, you know, if you 3 look at it three months later, you know, you don't --4 you know, it's very difficult to determine where the 5 initial crack has occurred, and I think that's what may be confusing research. 6

7 The rod that Harold was referring to was looked at, I believe, twice, once shortly after the 8 9 failure and once, you know, much later on, and the 10 cracks were much larger, had propagated, so that's one thing that has to be considered. And the last point 11 is that the fast pulse is ten milliseconds, are more 12 adiabatic, and lead to higher PCMI loading, less clad 13 14 heating -- that stands to reason -- and larger zone of 15 pellet fragmentation.

16 These are some slides to map out the MOX 17 versus UO, response. This is the -- during the test, the amount of sodium that is ejected at a certain 18 19 point, take a snapshot, and the lower curve is full of 20 UO_2 , and the upper curve is for MOX, the sodium that 21 is ejected from the test rig when the fuel enthalpy 22 reaches 70 calories per gram.

23 We have to cut it at a certain point, 24 because after that point, some of the ejection of the 25 sodium may be due to the expansion of sodium due to

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	122
1	heat-up, so, you know, you have to catch it early on,
2	and we already see this big difference here.
3	CHAIRMAN ARMIJO: So this is thermal
4	expansion of the test rod itself?
5	DR. OZER: That's right.
6	CHAIRMAN ARMIJO: So it's the volume change
7	of the fuel rod.
8	DR. OZER: Pushing out the sodium out of
9	the rim.
10	CHAIRMAN ARMIJO: Okay, and you get more
11	with the MOX than with UO_2 .
12	DR. OZER: Okay, this is just, I think, too
13	complicated.
14	CHAIRMAN ARMIJO: Yes, let's not
15	MEMBER SHACK: Well, it's just nice to see
16	such universal agreement on a criterial.
17	CHAIRMAN ARMIJO: It just makes our job
18	easy
19	DR. OZER: Well, it's more of a historic
20	interest, I think.
21	I think the next presentation see, we
22	focused this presentation on just the Appendix B of
23	SRP 4.2, but there are some additional issues,
24	feedback that we would like to provide with the to
25	NRC concerning the current version that was released,
I	

```
(202) 234-4433
```

	123
1	so that will be addressed by Rob.
2	CHAIRMAN ARMIJO: Okay. Well, we've got
3	25, 20 minutes before lunch. Do you think you can get
4	your presentation?
5	MR. MONTGOMERY: I think so.
6	CHAIRMAN ARMIJO: Well, why don't we do
7	Robs, and then
8	MR. MONTGOMERY: I have 13 slides.
9	CHAIRMAN ARMIJO: Well, we can run a little
10	over.
11	MR. MONTGOMERY: Yes, if we go to 12:15
12	CHAIRMAN ARMIJO: Yes, let's just do it.
13	MR. MONTGOMERY: It's only our lunch.
14	CHAIRMAN ARMIJO: It's our lunch. That's
15	right. We could afford to skip a meal once in a
16	while.
17	MEMBER SHACK: I have my Nutella right in
18	my bag.
19	CHAIRMAN ARMIJO: Do you have the slides?
20	MR. MONTGOMERY: Yes, they're out here.
21	Yes, they're in our C drive.
22	Okay, what I'd like to present today is a
23	summary of the industry's comments following our
24	review of the Standard Review Plan, Section 4.2,
25	Revision 3 revisions that were sent out in the March,
	I

(202) 234-4433

	124
1	mid-March time frame.
2	This slide here just summarizes the
3	outline of my presentation. I'll briefly give you
4	some background on our views on what we've been doing
5	in this area. This is not an area this is an area
б	that we've actually been looking at primarily in terms
7	of high burnup effects on SRP 4.2, so we have already
8	done some of these reviews and identified some of the
9	changes that have been developed by the staff.
10	Then I'd like to go through some of the
11	concerns that we have on the revisions. I've kind of
12	grouped them in terms of general comments and then go
13	through the fuel system damage items, the fuel rod
14	failure items, and then fuel coolability items, then
15	analytical predictions, and then just a brief summary
16	of the some of the Appendix B criteria for RIA that
17	we've developed and actually communicated back to the
18	staff, and then just a brief summary.
19	So the objective of our review was to try
20	to determine the impact the revisions would have on
21	the fuel and core design processes and the methods.
22	We had previously gone through a review of SRP 4.2,
23	Reg 3 that was issued in 1996 and developed a set of
24	recommended changes for burnup extension applications,

primarily going beyond 62,000 gigawatt days, our lead

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	125
1	rod average burnup.
2	These were summarized in a topical report.
3	The EPRI number is there. That has been provided to
4	the staff in the last, I think, last year sometime,
5	and they identified a number of the same items or
6	issues that our review identified several of the
7	same items and issues that were changed by the staff
8	changes, so our recommendations are pretty consistent.
9	However, there are some comments,
10	additional ones that we'd like to make. Just for
11	applicability to future cores, we'd like all the
12	references to zircaloy to be changed to zirconium
13	alloy and allow us to cover M5, Zirlow, instead of
14	talking about zircaloy.
15	In addition, one of the key questions here
16	is we need some specification on how the new criteria
17	are going to apply to current operating plants, not
18	just in Appendix B, which we also talked about today,
19	but also the rest of the criteria that are guidance
20	is provided in the document.
21	Now what I'll do is I haven't gone through
22	the whole I won't be going through the whole SRP.
23	I'm just going to highlight where we identified
24	comments, so I'll identify the section, subsection,
25	and then paragraph where there are comments. That's
	1

(202) 234-4433

	126
1	what this indication is here, section, subsection,
2	sub-subsection, and paragraph, I believe, of where our
3	comments are.
4	In terms of the fuel system damage
5	parameter related to oxidation, hydriding, and buildup
6	of corrosion products, there are two primary comments
7	we have. First is there's a definition there about
8	acceptable, should demonstrate acceptable strength and
9	ductility.
10	We expect that there needs to be some
11	better definition of what acceptable means. Would
12	that refer back to the strength and strain parameters
13	and other sections of the SRP, or is there something,
14	some other parameter there that's expected?
15	Secondly on that one, there is a focus on
16	primarily mechanical properties defining strength and
17	ductility, which seems to preclude the allowance of
18	alternative approaches to satisfying these criteria.
19	For example, thermal performance, the corrosion
20	thickness may need to be limited based on a thermal
21	performance and not a mechanical performance, or
22	design tolerances may require crud, limits on crud and
23	oxidation that don't have anything to do with
24	mechanical performance. It could be that there's a
25	fit difference.
ļ	I

(202) 234-4433

	127
1	Now we're not talking just fuel rods here.
2	We're talking all the assembly components, including
3	guide tubes, grid spacers, nozzles, and things like
4	that. So when we're talking about defining limits on
5	oxidation, hydriding, and buildup of corrosion
6	products, for those other components, these other
7	parameters may need other performance parameters
8	other thermal performance or design tolerances could
9	may define what the oxidation limits should be, so
10	some clarification there would be helpful.
11	In terms of the rod internal pressure,
12	this one, this particular paragraph has to do with rod
13	internal pressure. There is a specification for no
14	reorientation of hydrides in the radial direction in
15	the cladding, but there's no definition of what no
16	reorientation means.
17	For example, recrystalizing material
18	because of the crystalline nature of the cladding
19	material, the grain orientation, there is a tendency
20	to have radial hydrides form, even without a tensile
21	stress. So when you do a hot cell examination and we
22	look at a high burnup BWR rod, for example, we could
23	see some radial hydrides there.
24	Is that due to over pressurization? No,
25	it's not, but those aren't reoriented due to system
ļ	I

(202) 234-4433

over-pressure. They were just there because of the 2 natural tendency of the material to form some radial So how do we demonstrate compliance of this 3 hydride. 4 guidance is going to be a little tricky, and we need 5 some clarification there.

In terms of the rod failure criteria or 6 7 the fuel rod failure criteria, on the hydriding where 8 it talks about both external and internal sources, the 9 primary focus of that section has been on internal sources of hydriding related to sources coming from 10 the fuel or other components inside the cladding. 11

It doesn't really seem to be appropriate 12 to include external hydriding sources at this point in 13 14 the SRP, because it really just is kind of some 15 introductory comments, but there's no guidance given. 16 Most of the quidance appears to be given in the 17 section II.B.vi, which is the sources of external -pellet-clad interaction. 18

19 That's where the external hydriding 20 comment or issues are addressed, and we feel that just 21 kind of some reorganization there and moving, just 22 sticking to internal hydriding in II.1.B.i would be 23 appropriate and then moving all the external hydriding 24 issues to the II.B.vi would be more appropriate. 25 We're the pellet-clad qoinq to now

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

interaction section. First there's a -- just I think this is probably more a typographical error than anything, because Dr. Wu had it in his slide that it's strain-driven, but in the document it says stressdriven, so there just needs to be a, you know, this needs to be corrected.

7 And then for -- there is a focus there in that section on waterside corrosion as a surrogate for 8 9 It should be recognized that that may not hydrogen. 10 apply for BWRs, so the wording there may be -- it may be more appropriate, instead of just referring to 11 12 corrosion, adding hydrogen waterside content distribution and orientation as a measure of the 13 14 mechanical performance may be a better definition of 15 how to define that limit, the strain limit, instead of defining it in terms of corrosion thickness. 16

And also, in terms -- again, this is probably just a typographical thing. The mechanical testing should demonstrate that ductility is well above one percent strain criteria, not -- it says within. Within would apply to me. It should be below one percent. I don't quite understand that one.

Now here's one where there is some new guidance provided here in the PCI interaction, the pellet-cladding interaction section, and that has to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 do with power maneuvering quidance. There's 2 discussion there about vendors have views or have design 3 provided fuel limits based on power 4 maneuvering.

5 Generally that's not considered a fuel 6 design limit such as a ramp rate or threshold powers 7 for power maneuvering, reactor startups or mid-power 8 cycle maneuvers, but there is some indication there 9 that that's now a fuel design limit, and I'm not -- it 10 doesn't seem clear to me that that's appropriate for 11 this particular section, anyway.

suggestion would be to 12 take this My redefine it 13 paragraph and and move it into а 14 subsection unrelated to analytical predictions on 15 PCI/PCMI. It seems like the primary focus is to define that there needs to be analytical calculations 16 17 done to demonstrate that you meet the one percent criteria, and there should be some quidance on how 18 19 that PCMI calculation should be done.

And that's the purpose of that paragraph, primarily, seems to me, and it should just be moved into the analytical predictions section just like the clad collapse was modified. Add a section on PCMI analysis methods. So that's what I talk about, and in that you could then remove the reference to the power

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

maneuvering guidance.

1

2

5

6

7

And then we have a second point, and that is for AOO transients that are fairly short-term on 3 4 the order of half an hour or less, really gaseous swelling is not really an issue, and so there is some requirement there for treating gaseous swelling. For postulated accidents, it's a separate story, but A00s adding a requirement for gaseous swelling seems to be 8 9 over specification.

Now let's move on to fuel coolability. On 10 11 the cladding embrittlement there, there is a statement 12 that says that the ECCS performance analysis must satisfy the fuel design criteria. I believe that 13 14 really should be acceptance criteria in 50.46(b). I 15 don't believe that's fuel design criteria necessarily, 16 aqain, just trying to be consistent in our 17 terminology.

For fuel rod ballooning related to AOOs, 18 we believe that this is precluded already by other 19 20 fuel design criteria. It doesn't need to be 21 specified, and that would be in section II.1.C.iv, 22 where it talks about AOOs, because for AOOs we're 23 going to be limiting the cladding temperature to below 24 the DNB limit, so you're really not going to get 25 ballooning.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 You'll be below the temperature needed to 2 start ballooning, and you're also limiting the strain to one percent strain from section on the pellet-3 4 cladding interaction limits. So those two should 5 preclude DNB propagation during AOOs. That's our interpretation on rod ballooning and DNB propagation 6 7 related to rod ballooning. It should be precluded by 8 the other two criteria. Now if we just go into the analytical 9 10 predictions, there was again a section on fuel 11 temperature, stored energy calculations, which makes 12 a reference to the clad hydriding. As far as we're concerned, clad hydrides play no 13 role in the 14 calculation of stored energy. 15 gets back to --This it added was primarily to address PCMI-related calculations, and so 16 we recommend a new subsection that defines the PCMI 17 analysis methods and what the expected components 18 19 would be for that kind of calculation. 20 again, for the analytical And then, 21 predictions there's a reference in the mechanical-22 water reaction rate definition where there's two 23 definitions of providing technical, appropriate 24 technical data to support the model, and we believe

that Reg Guide 1.157 already allows that best-estimate

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

132

	133
1	reaction rate model to be provided.
2	You know, it doesn't need to be specified
3	twice. It's repeated a couple of times. It says you
4	can use either Reg Guide 1.157, or you can provide
5	your technical basis for the new model, and in Reg
6	Guide 1.157 it says you just need to provide your
7	technical basis for a model, so there's kind of
8	redundancy there.
9	On the NMRA criteria, these are the
10	comments that we had, and we've already communicated
11	these to the staff, and that is, first off, it wasn't
12	clear on what was meant by intermediate full-power
13	operations in the SRP. In the technical guidance
14	document that was provided that the SRP was based on,
15	it stated greater than five percent, so we want to add
16	rated power levels greater than five percent is what
17	was meant by intermediate and full power conditions.
18	In the fuel cladding failure criteria
19	related to PCMI, there were two clarifications that we
20	wanted to make sure got included, and that is that
21	first that they we were talking about the prompt
22	radial average fuel enthalpy when it talks about
23	radial average fuel enthalpy change. They were
24	talking about the prompt part.
25	And then also for the hydrogen content for

(202) 234-4433

	134
1	BWRs, for hydrogen content to be above the solubility
2	limit when defining the criteria, and that recognizes
3	that it gives some recognition to the temperature
4	effects on cladding ductility and provides us an
5	option for hot-zero power BWR events to allow some
6	improvement.
7	It's not all the improvement. As Odelli
8	said, we believe there's additional improvement
9	related to temperature, but this at least gives us
10	some improvement in terms of the solubility limit
11	increasing.
12	And then finally, this one has not yet
13	been really communicated to the staff those three
14	were is the clarification on the requirement of no
15	fuel melting only applies to hot-zero power control
16	rod ejection or control rod drop accident events that
17	have the temperature peaking in the periphery region
18	where you have quick access to the coolant and that
19	fuel melting is still allowed for hot-full-power
20	events where the peak temperature occurs at the
21	centerline. We'd like to have that clarification.
22	This is already accepted. In terms of the
23	fuel melting, we already have for hot-full-power
24	events an accepted methodology that allows fuel
25	melting in the centerline of the pellet.
l	1

(202) 234-4433

(202) 234-4433

135 1 CHAIRMAN ARMIJO: So this is a -- this is 2 a new comment that the staff hasn't received yet? MR. MONTGOMERY: That's correct, and it 3 4 relates to the relationship to RIA. In the previous 5 comments before the RIA, we have not communicated those to the staff yet. Just on the Appendix B have 6 7 we talked to the staff, but this one was not included at that time on the centerline melt. 8 9 So our review says that there will be some 10 impact on the fuel rod and design process, core design process of these new revisions. The impact has not 11 12 been fully assessed yet. We had some concerns that we've identified, and we are going to submit those in 13 14 a letter to the staff. We have not done that at this 15 point. We will write all this up and submit it to the staff in a letter, and I hope that we can work with 16 the staff to address these comments in the next 17 revision of the SRP. 18 19 CHAIRMAN ARMIJO: Okay. Any questions or 20 comments from Members or the staff? 21 MR. WU: Yes, I appreciate -- this is Shih-22 Liang Wu. Yes, I appreciate. I have a comment. Yes, 23 this, yes, we admit that we're missing maybe a 24 technical error in terms of like, for instance, one 25 percent should be way above one percent, and then

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	there's other editorial, I mean, error place like
2	acceptance criterial instead of field criteria.
3	But I have one comment is when you mention
4	the oxidation that we say that acceptable strength and
5	ductility, well, we will consider your situation, try
б	to look into that, you know, maybe better define, but
7	the other point is I would like to point out is
8	sometimes we start delivery not delivery.
9	I mean sort of make a kind of a little
10	vague, because that's why this different brand of
11	licensing can refer to different technology, and
12	that's, for example, in raw pressure, system pressure,
13	different vendor got different number. I just want to
14	try to explain that.
15	Sometimes we don't deliver it. We don't
16	specify. We just put a certain criteria and that the,
17	you know, the industry deliver their own basis here.
18	That's my comment.
19	MR. MONTGOMERY: Thank you.
20	MR. CLIFFORD: With respect to the notion
21	that you don't have to consider balloon or burst or
22	anything in AOO because you don't go into DNB, you
23	always have to consider the critical pressure from a
24	perspective of a depressurization event.
25	If you had an excess load event or a steam
ļ	

(202) 234-4433

137 1 geo tube rupture or anything which would drop RCS 2 pressure down towards your trip set points, you would 3 need to ensure that you wouldn't balloon or burst 4 during those events. That's why those words were put 5 in there, recognizing that those events are not in DNB, but there's still the fact that the delta P 6 7 across the cladding is increasing as RCS pressure is 8 decreasing. 9 MR. MONTGOMERY: But ballooning and DNB 10 propagation consequencing from ballooning would have to occur at cladding temperatures beyond DNB, 800 C-11 12 type temperatures. MR. CLIFFORD: Right. Right. 13 There's two 14 mechanisms at play here. One's the rod internal 15 The other one is the creep properties of pressure. 16 the high -- the high temperature creep properties of the material, and I'm saying if you were to determine 17 that no-clad liftoff during normal operation allowed 18 19 you to be at -- make up a number -- 3,400 pounds per 20 square inch --21 MR. MONTGOMERY: Right. 22 MR. CLIFFORD: -- then you would have to 23 show that during an AOO that you wouldn't fail that 24 cladding because of RCSD pressurization. Now instead 25 of 3,400 minus 2,250, it's 3,400 minus 1,800. The

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	delta-P across the cladding is increasing during the
2	event. You'd have to ensure that your clad maintains
3	enough strength. Even though the temperature of the
4	cladding is at normal operating temperatures, you have
5	to make sure it maintains enough strength so it
б	wouldn't balloon or burst.
7	MR. MONTGOMERY: Okay. I see the
8	clarification. I think that you still would be
9	limited by I can see how you can disposition that
10	by showing that you won't balloon or burst at those
11	temperatures.
12	MR. CLIFFORD: Right. I didn't you
13	know, I'm sure you can disposition, but it's something
14	that just has to be looked into.
15	MR. MONTGOMERY: Right.
16	CHAIRMAN ARMIJO: All right. Well, if
17	there's no other comments from the staff, we're ahead
18	of schedule, which is good news. It's noon now, and
19	let's reconvene at 1:15.
20	(Whereupon, the foregoing matter went off the
21	record at 12:00 p.m. and resumed at 1:16 p.m.)
22	CHAIRMAN ARMIJO: Okay, gentlemen. We're
23	going to resume, and there have been a couple of
24	changes to the proposed schedule. The presentation
25	related to LOCA is not going to be given. We've

(202) 234-4433

	139
1	completed the comments, industry comments on other SRP
2	4.2 changes, so we really, as far as I know, have only
3	one presentation left, and I don't know who the
4	speaker is going to be. Sorry.
5	MR. DARDEN: Okay. This is correct on
6	here. I'm Gary Darden from Dominion Generation, so
7	I'll be presenting this last presentation.
8	CHAIRMAN ARMIJO: Okay, Mr. Darden.
9	MR. DARDEN: All right. Thank you. I'd
10	like to thank the Subcommittee again for the
11	opportunity for myself and the rest of industry to
12	present at this gathering. This presentation involves
13	a discussion of some of the potential impact of
14	implementing the interim criteria and ultimately the
15	final criteria, you know, for operating plants in
16	particular.
17	The Industry and staff do concur, I think.
18	It's clear that there is not a safety issue with
19	regard to the criteria. That's stated in our staff
20	position, and the Industry does agree with that. As
21	was mentioned in one earlier slide, NEI did submit a
22	letter in early March to NRC staff for consideration
23	to determine a potential implementing schedule for the
24	RIA criteria, and that had two points which were
25	mentioned earlier, that the interim RIA criteria were
Į	1

(202) 234-4433

not proposed to be applied to existing plants, and the final criteria when those are issued have an implementation time frame of five years from release for the operating plants.

Now based on what we have heard in the 5 presentations this morning, we believe the NRC staff 6 7 position is consistent with that, but it would be good to have that guidance more specific in terms of if 8 9 that is the intent of not applying the criteria, interim criteria, at all for the new plants and then 10 -- excuse me -- for the operating plants, and it would 11 12 be very helpful to have a specified time frame in which the operating plants would be needing to 13 14 implement these criteria.

A major portion of this time frame that would be required is to just allow methodologies and assessments to be put in place that would support compliance with the new criteria. I've listed four key steps here that would be involved in such an activity.

The vendors and licensees would have to develop and license the criteria, the development and validating of the criteria, which could take a couple of years. The NRC first would typically conduct a generic review of the methodology, and then plants on

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

	141
1	a plant-specific basis would need to incorporate those
2	analyses for their plant and submit that in all
3	likelihood to NRC staff for review and approval.
4	So there would be a separate plant-by-
5	plant review activity that could be involved, and all
б	of this, you know, could very well take the five years
7	or potentially longer that I was suggesting.
8	CHAIRMAN ARMIJO: Now if these criteria are
9	applied to new plants, somebody is going to have to do
10	exactly all of those things to meet, to have the new
11	plants licensed, and I would expect that the Industry
12	would learn a lot from the work done on the new plants
13	and could significantly shorten this time.
14	MR. DARDEN: That's correct. I mean, these
15	same type of activities would be needed for the new
16	plant analyses and licensing, and there should be some
17	lessons learned from that, hopefully before that would
18	need to be applied to the operating plants. I mean,
19	that's the premise here, that the operating plants
20	would have somewhat longer to deal with this at all,
21	you know, then the new plants. That should be an
22	expectation from hopefully having gone through that
23	first for the new plant activities.
24	In the potential situation that the
25	interim criteria were implemented on the existing
I	I

(202) 234-4433

	142
1	plants, you know, there are a couple of activities
2	here and concerns with that. We've just addressed the
3	methodological item. The current approved methods in
4	most all cases are just not adequate to meet the
5	expected limits that we have seen without some
6	potentially significant effects on the reload core
7	designs, at least for some of the plant fleet. You
8	know, this is not universal, but for some of them
9	there would definitely be some of these issues.
10	And another item, I think this was also
11	alluded to earlier, the implementation of the interim
12	criteria as it exists would preclude further benefit
13	that may be gained from additional test data that is
14	expected, and some of that data may very well allow
15	relaxation of the current interim criteria.
16	Another item is really just a resource
17	challenge. Should the Industry for the operating
18	plants, you know, first be required to implement the
19	interim criteria and then potentially perform
20	additional analysis for the final criteria. That
21	could be a real challenge to NRC and Industry
22	resources, so these are some of the reasons we're
23	suggesting the delay for the implementing of the
24	criteria for the operating plants.
25	The next two slides, and I won't highlight

(202) 234-4433

	143
1	this any longer. The next two slides do indicate some
2	of the particular issues that may exist in having to
3	meet the more restrictive limits. In general, the
4	strategies involve doing things in actual core designs
5	and placement of fuel assemblies that would reduce the
6	rod worths, that would then reduce the severity of the
7	calculated reactivity insertion accident, and the
8	values listed here for some of the plants could
9	involve impacts of ten to 20 percent increase in
10	number of fresh fuel assemblies that do need to be
11	loaded on each batch and potentially either separate
12	from that or in conjunction with that shorter cycle
13	lengths to try to accommodate the same objective.
14	In the course of loading new additional
15	fresh assemblies, just with limited space and
16	placement in the core, there may be the tendency of
17	needing to load some closer to the core periphery,
18	which would tend to increase the power that's seen in
19	those locations and could cause additional side
20	effects such as increases in vessel fluence, which is
21	a significant materials issue with vessels now in some
22	cases.
23	CHAIRMAN ARMIJO: Now you distinguish
24	between the impact on the BWRs and PWRs. What's the
25	main reason for that having a greater impact on BWRs?

(202) 234-4433

(202) 234-4433

	144
1	MR. DARDEN: A more significant impact to
2	BWRs, I don't personally have that information right
3	here. Is there someone else that would comment on why
4	the degree of the effect would be larger?
5	MR. JAHINGIR: I'm Nayem Jahingir from GNF.
6	For BWR, the criteria, the interim criteria proposes
7	on for core conditions, so BWR kind of the startup
8	is limited at the core geo power, and most of our
9	plants should be impacted with this proposed interim
10	criteria.
11	CHAIRMAN ARMIJO: Okay.
12	MR. DARDEN: Okay, the next slide shows a
13	few additional items. In loading more fresh
14	assemblies, of course there would be more discharged
15	irradiated assemblies, and that would lead to
16	potentially additional expenses in dry cask storage
17	and just logistics of handling additional fuel
18	assemblies.
19	The reduced rod worths, which are a desire
20	for meeting the rod ejection issues for BWRS, could
21	reduce some operational flexibility in BWR startup in
22	particular and possible PWR power maneuvering. So, in
23	general, we would anticipate for these potential
24	issues, some of which might be rather costly, you
25	know, minimal benefits in safety of implementing the
ļ	

(202) 234-4433

1 interim criteria for the operating plants. 2 conclusion, there have been In some 3 impacts identified that would be associated with 4 implementing the interim criteria. There is a 5 concurrence, I think, with what, from the Industry, with what we believe to be the NRC approach to 6 7 establish the final criteria, and in conjunction with that it would be helpful once again to have a schedule 8 9 for implementation defined so that that would give the Industry not just the benefit of the numerical target, 10 which was mentioned earlier of the interim criteria, 11 which we do appreciate, but also some certainty in 12 terms of what the implementing time frame would be 13 14 that we are also trying to target. In all, this looks 15 like a reasonable balance of resources and safety considerations, but that specified time frame would be 16 very helpful to have. 17

MEMBER SHACK: But this sort of leaves the, you know, the operating plants with the old criteria, which we kind of all agree are not really right. How about an Industry effort to follow your own criteria as a middle ground? CHAIRMAN ARMIJO: Technically, in the right

24 direction but not as --

MEMBER SHACK: Technically in the right

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	146
1	direction.
2	CHAIRMAN ARMIJO: conservative as the
3	MEMBER SHACK: Not as conservative.
4	CHAIRMAN ARMIJO: as the interim.
5	MEMBER SHACK: But, you know, it gets away
6	from the current criteria, which are clearly
7	unrealistic.
8	MR. DARDEN: Correct. No, they are not,
9	but that is something that, you know, could be taken
10	into consideration, I suppose.
11	MEMBER KRESS: It would be a waste of time
12	unless the NRC staff agrees that that's an acceptable
13	solution.
14	MEMBER SHACK: Well, they're currently
15	going to accept the current criteria.
16	MEMBER KRESS: Well, they had to agree to
17	accept that as some sort of
18	MEMBER SHACK: Well, this is clearly more
19	conservative than that, so I'm assuming if they're
20	willing to live with the current criteria, they'll
21	live with anything that's more conservative than that.
22	MEMBER KRESS: Until what?
23	MEMBER SHACK: Until
24	CHAIRMAN ARMIJO: Until the final criteria.
25	MEMBER SHACK: Until the final criteria
Į	

(202) 234-4433

	147
1	come out.
2	CHAIRMAN ARMIJO: It's really converging,
3	coming from two different directions.
4	MEMBER SHACK: I'm just a little concerned
5	that, you know, people are going to be doing power
6	uprates, all those sorts of things that are going on
7	out there manipulating this fuel, and, you know, these
8	guys get to work with something that we universally
9	agree is not right. Now, you know, maybe we can't
10	universally agree on what is right, but it just it
11	is a suggestion as an approach.
12	MR. DARDEN: Okay. The point is well taken
13	for that.
14	CHAIRMAN ARMIJO: I'm not sure that the
15	staff has said that they are going to well, I'm not
16	exactly sure what the staff has said as far as the
17	interim criteria. I'd like to hear it again.
18	MEMBER SHACK: And operating plants.
19	CHAIRMAN ARMIJO: What about the operating
20	plants? Is the recommendation from Industry
21	consistent with what you're thinking of doing, or are
22	you just not ready to say? Industry first.
23	MR. MENDIOLA: Fundamentally, our plan is
24	to apply the interim criteria to the applicants in the
25	design certifications and the COL applicants, and we
	I

(202) 234-4433

1 are well aware of most if not all of these issues that 2 the operating plants have about providing, addressing 3 these criteria to them, as well, and that seems to be 4 the rub is how to do this best and considering all the 5 time tables and not to have this terribly long time period where you have two different sets of criteria 6 7 between the two different reactors, those being built 8 and those that are currently operating. 9 We hope to come up with a reasonable 10 solution in our still draft and yet to be issued regulatory generic communication tool here, but we're 11 still wrestling with all the issues that you've just 12 heard the Industry speak of. 13 CHAIRMAN ARMIJO: So you haven't made up 14 15 your mind yet? You haven't taken a position yet on 16 when you would apply interim criteria or whether you would wait until there is final criteria ready to go? 17 18 MR. MENDIOLA: We haven't had the highest 19 level of buy-in, I quess, is the best way to put it 20 among our management about that. Our position is to 21 staff's position. My branch's position -- let's try 22 it that way -- is to approach it with a -- just to the 23 design certifications and the COL applicants -- sorry, 24 my voice is changing -- and address the final criteria 25 on a -- address the final criteria on a schedule to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

148

	149
1	all plants for the deadline.
2	CHAIRMAN ARMIJO: But that schedule is yet
3	to be determined.
4	MR. MENDIOLA: Correct.
5	CHAIRMAN ARMIJO: Okay.
6	MR. MENDIOLA: That schedule is yet to be
7	determined.
8	CHAIRMAN ARMIJO: Okay. I think we know
9	where you stand. Paul, did you want to add anything?
10	MR. CLIFFORD: He is my boss.
11	CHAIRMAN ARMIJO: Okay, I got that. All
12	right. All right. So I think that's the best answer
13	we have right now on that, so any other questions from
14	the Committee? From the attendees? Industry?
15	Well, gentlemen, I think we are finished
16	for the day, and I'd like to thank the staff and
17	presenters from Industry, EPRI, Anatech, and also from
18	Dominion.
19	MEMBER SHACK: You don't even want to leave
20	a copy your LOCA slides?
21	CHAIRMAN ARMIJO: Believe me, we've got
22	a lot of LOCA slides. We can always have some more.
23	If you want to leave that, that would be fine. So
24	unless there's any other comments or questions. Okay.
25	MR. SISK: I want to pick up on the
I	1

(202) 234-4433

1 questions.	
2 CHAI	RMAN ARMIJO: Okay. There's a
3 question.	
4 MR.	SISK: Yes, this is Rob Sisk with
5 Westinghouse.	
6 CHAI	RMAN ARMIJO: Okay.
7 MR.	SISK: And I just want to clarify just
8 for completeness	of evaluation that when we talk about
9 a new plant we r	eed to make a distinction or
10 clarification b	between certified new plants and
11 uncertified new p	plants. 52.63 finality of design does
12 require some con	nsideration for how they're going to
13 implement these	SRP and these criteria for certified
14 designs.	
15 CHAI	RMAN ARMIJO: That's a very good point.
16 I think the Co	ommittees, this Committee or other
17 Committees, have	e asked that question before. Does a
18 certified plant	really that's going to be built, is
19 it subject to th	ne old criteria or the new criteria,
20 and that's somet	thing that the staff has to be made
21 clear. I think	many in Industry would assume that
22 certified is cer	tified, and that's it.
23 MR.	CARUSO: It depends on what we're
24 certifying.	
25 CHAI	RMAN ARMIJO: Well, assuming

(202) 234-4433

	151
1	MR. CARUSO: For some of the certified
2	designs, there was nothing certified about the fuel.
3	It was just the fuel was considered to be this product
4	line, and it would be dealt with in the future.
5	CHAIRMAN ARMIJO: You know, as long as I
6	have the NRR here, I could ask them the question.
7	MR. CLIFFORD: Yes, fuel design criteria is
8	a Tier 2 star requirement in the DCD process and
9	subject to change. It is kind of a gray area in how
10	you deal with something that was certified, you know,
11	with the understanding that this was in flux, but
12	ultimately, you want to make sure that the system that
13	is being designed, the actual hardware and the NSSS
14	design is capable of mitigating the consequences as an
15	end, whatever the acceptance criteria is.
16	MEMBER SHACK: I mean, this is a compliance
17	question, right? We have no new requirements here.
18	We're only arguing over what is necessary to
19	demonstrate that you've met those requirements.
20	MR. CLIFFORD: Well, you know, there's a
21	hurdle to jump when you go backfit. You know, when
22	you're going to send a Commission order to tell
23	somebody they need to change their license, that's a
24	big hurdle to, in a sense, forward fit. I know that's
25	not the correct term, but to address somebody before
l	I

(202) 234-4433

	152
1	they have a license issue is a much smaller hurdle.
2	CHAIRMAN ARMIJO: I totally agree with
3	you.
4	MR. DUNN: This is Burt Dunn from Areva.
5	It might help you all you know, the issue of rod
6	ejection accidents, et cetera, for the PWRs, at least,
7	has been very evidence for some period of time now,
8	and in the advanced reactors or the new reactors
9	coming down the street, at least for EPR, that's been
10	considered.
11	One of the things, a question asked
12	earlier, was won't you learn from these new ones.
13	Well, as it turns out, the EPR is designed with a
14	loosely coupled core. It's big, and the result of
15	that is much reduced rod work, so it's going to be
16	easier for us to comply with new regulations, and it's
17	probably true for various reasons across the new plant
18	spectrum.
19	CHAIRMAN ARMIJO: I don't know what the BWR
20	guys would do to just eliminate the rod drop accident,
21	but again a mechanical design might solve that problem
22	rather than all of this stuff.
23	MR. CLIFFORD: It's kind of a weird
24	situation, because, okay, say you say, "Well, you have
25	a design certification that doesn't need to comply,
	1

(202) 234-4433

	153
1	because it's already frozen. It's designed." Well,
2	two years from now, you issue final, and you do a
3	backfit. This backfit's going to be implemented years
4	before the plant starts up, anyways.
5	CHAIRMAN ARMIJO: Kind of mind boggling.
6	Well, it's something to think about, and I think it's
7	going to come up again, what the staff position is and
8	the Commission's position is on certified plants.
9	MR. CLIFFORD: We plan on writing a RIS,
10	and if nothing else, that will force management to at
11	least consider this and agree upon it before it gets,
12	you know, published.
13	MR. SISK: Rob Sisk, Westinghouse, again.
14	I do want to address I think the one question here
15	that goes across the board, whether it's operating
16	plant or certified design, we're talking about an
17	interim criteria here. There is a level of effort
18	that has to go into play every time we have to go back
19	and redo these analyses.
20	The question becomes do I have to do this
21	for a certified design one, two, three times, and the
22	question is when is the appropriate part? The same
23	for the operating plants that really have to consider
24	when the value in doing these analyses and how
25	frequently these analyses should be done in the
I	I

(202) 234-4433

	154
1	interim.
2	MR. CLIFFORD: You know, on a side note, I
3	mean, the staff has been criticized by the ACRS pretty
4	frequently when we've come in here with a power
5	uprate, and it says 280 calories per gram on it.
б	MEMBER SHACK: Well, I was just going to
7	warn you that that's going to continue.
8	MR. CLIFFORD: So, I mean
9	MEMBER SHACK: Don't resent that part of
10	the analysis.
11	CHAIRMAN ARMIJO: We want to have our cake
12	and eat it, too, so that's a problem. Okay, if there
13	are no other comments or questions, I think we've had
14	a good experience.
15	MR. SCOTT: This is Harold Scott from
16	Research again. I wanted to make the point that we've
17	tried to make sometimes in some of these other
18	meetings that you can either try to squeeze all of the
19	margin out of the criteria, or you can try to sort of
20	squeeze some of the analysis, and we don't think
21	enough effort has been put into the squeezing the
22	analysis part.
23	You know, I mean, we can probably
24	Robbie Montgomery and I can argue for years about
25	cracking and whether the failure criteria or the
	I

(202) 234-4433

	155
1	coolability criteria is X or Y or Z calories per gram,
2	but maybe it turns out that by some simple changes in
3	analysis, 3D kinetics, or even just the way they
4	operate the plants the rod worths aren't going to be
5	that high. Thank you.
6	CHAIRMAN ARMIJO: Okay. Well, with that,
7	we'll close the meeting, and I thank everybody for
8	their presentations.
9	(Whereupon, the foregoing matter was
10	adjourned at 1:37 p.m.)
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
ļ	1