2 NU	Official Transcript of Proceedings JCLEAR REGULATORY COMMISSION
Title:	Advisory Committee on Reactor Safeguards Subcommittee on Material, Metallurgy, and Reactor Fuels
Docket Number:	(not applicable)
Location:	Rockville, Maryland
Date:	Friday, January 19, 2007

Work Order No.: NRC-1399

Pages 1-292

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	SUBCOMMITTEE ON MATERIALS, METALLURGY
6	AND REACTOR FUELS
7	+ + + +
8	FRIDAY,
9	JANUARY 19, 2007
10	+ + + +
11	
12	The meeting was convened in Room T-2B3 of
13	Two White Flint North, 11545 Rockville Pike,
14	Rockville, Maryland, at 8:30 a.m., Dr. J. Sam Armijo,
15	Chairman, presiding.
16	SUBCOMMITTEE MEMBERS PRESENT:
17	J. SAM ARMIJO Chairman
18	WILLIAM J. SHACK ACRS Member
19	MARIO V. BONACA ACRS Member
20	DANA A. POWERS ACRS Member
21	JOHN D. SIEBER ACRS Member
22	SAID ABDEL-KHALIK ACRS Member
23	J. SAM ARMIJO ACRS Member
24	
25	
	I

1	NRC STAFF PRESENT:
2	JENNIFER UHLE
3	RALPH MEYER
4	HAROLD SCOTT
5	ALSO PRESENT:
6	MIKE BILLONE
7	BERT DUNN
8	ROBERT MONTGOMERY
9	MITCH NISSLEY
10	DAVID MITCHELL
11	PAUL CLIFFORD
12	ODELLI AMANPOUR
13	CHUCK PATTERSON
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	3
1	<u>CONTENTS</u>
2	PAGE
3	Introduction, Chairman Armijo 4
4	<u>Revision of Embrittlement Criteria, 10 CFR 50.46</u>
5	Introduction, Jennifer Uhle 6
6	Technical Background and Conclusions, Dr.
7	Ralph Meyer 9
8	Test Procedures and Results, Dr. Mike
9	Billone 43
10	Background on Industry Position, Robert
11	Montgomery
12	Application to Current Fleet:
13	Bert Dunn
14	Mitch Nissley
15	Chuck Patterson
16	Staff Response to Industry Comments, Dr. Ralph
17	Meyer
18	
19	
20	
21	
22	
23	
24	
25	
	1

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:34 a.m.)
3	CHAIRMAN ARMIJO: Good morning. The
4	meeting will now come to order.
5	This is a meeting of the Advisory
6	Committee on Reactor Safeguards, Subcommittee on
7	Materials, Metallurgy and Reactor Fuels.
8	I am Sam Armijo, Chairman of the
9	subcommittee. Subcommittee members in attendance are
10	Mario Bonaca, Dana Powers, Bill Shack, and Jack Sieber
11	and Said.
12	The purpose of the meeting today is to
13	discuss the results of activities in the Office of
14	Research related to the development of revised LOCA
15	criteria for reactor fuel. The subcommittee will hold
16	discussions with representatives of the NRC staff,
17	their contractors, and representatives of the nuclear
18	industry regarding these matters.
19	The subcommittee will gather information,
20	analyze relevant issues and facts, and formulate
21	proposed positions and actions as appropriate for
22	deliberation by the full committee.
23	Ralph Caruso is a designated federal
24	official for this meeting.
25	The rules for participation in today's
	I

(202) 234-4433

	5
1	meeting have been announced as part of the notice of
2	this meeting previously published in the <u>Federal</u>
3	<u>Register</u> on December 21st, 2006.
4	A transcript of the meeting is being kept
5	and will be made available as stated in the <u>Federal</u>
6	<u>Register</u> notice.
7	It is requested that speakers first
8	identify themselves and speak with sufficient clarity
9	and volume so that they can be readily heard.
10	We have received requests from various
11	industry representatives to speak, and they are
12	included in the agenda for the meeting. We have
13	received no other request for oral presentations.
14	Our first speaker of the day will be
15	Jennifer Uhle from the Office of Nuclear Regulatory
16	Research.
17	DR. SHACK: Mr. Chairman, I should note
18	that I have a conflict of interest since Mike Billone
19	and I work at the same great national laboratory.
20	MR. CARUSO: One other comment. We have
21	a speaker phone set up with a bridge line. So I would
22	ask people to be especially attentive to speaking up
23	so that the people on the phone can hear you.
24	CHAIRMAN ARMIJO: All right. Could you
25	let us know who is on the phone?
	I

(202) 234-4433

	6
1	MR. CARUSO: Is there anyone on the phone
2	right now? If you are, could you introduce
3	yourselves?
4	MR. OZER: Odelli Ozer, EPRI.
5	CHAIRMAN ARMIJO: Okay. EPRI is on the
б	phone.
7	Okay. Well, Bill, you're welcome to stay.
8	I don't know what your limitations are, but I'm sure
9	you do. Okay. Thank you very much.
10	Jennifer.
11	MS. UHLE: Thank you.
12	Good morning. My name is Jennifer Uhle.
13	I'm the Deputy Division Director for Materials
14	Engineering in the Office of Research at NRC.
15	On behalf of the office, I'd like to thank
16	the subcommittee for taking the time to meet with us
17	today to discuss the results of our high burn-up fuels
18	research program. We'll be talking, as you have just
19	indicated, we'll be talking about the revised
20	emergency core coolant system acceptance criteria for
21	5046.
22	As most of you know, loss of coolant
23	accident is one of the design basis accidents that
24	licensees are required to analyze as part of the
25	regulatory process. Some of you in the audience, as
	I

(202) 234-4433

	7
1	well as on the committee, have invested a lot of time
2	in the thermal hydraulic models required to analyze
3	this accident. Yet in the end we mainly rely on two
4	figures of merit to determine the adequacy of the ECCS
5	systems, and that's primarily peak cladding
6	temperature, maximum clad oxidation.
7	So for more than 30 years we've been
8	relying on the famed 2200, 17 percent values as to
9	determine the appropriateness of or the adequacy of
10	the ECCS systems. About ten years ago we realized
11	that these values may not be appropriate for the
12	higher fuel burn-ups that have been licensed.
13	So we began a research effort in 1996 to
14	determine these burn-up effects, and today we'd like
15	to present those results to you.
16	From the beginning this program has been
17	done in cooperation with our international partners,
18	as well as the U.S. industry. At the same time we
19	maintained our neutrality by analyzing the results
20	independently. We have faced some difficulties in
21	obtaining irradiated fuel rods and access to hot cells
22	in which to do the testing. We are aware that more
23	data would be desirable, but we feel we have adequate
24	database to support a modification to the rule, and
25	we'd like to go forward.
Į	I

(202) 234-4433

	8
1	In fact, we have all of the data that we
2	said we would have in our research plan that the
3	subcommittee and committee had previously reviewed.
4	There is a need for a rule change since we
5	know that the regulation does not directly consider
6	high burn-up fuel effects. Although we are managing
7	that issue through our regulatory process, the rule
8	should be more specific with regard to the burn-up
9	effects.
10	In addition, the current rule is written
11	in a very material, specific manner such that
12	licensees wishing to use newer and better fuel clads
13	must receive an exemption from renewal. Fortunately,
14	this additional burden has not inhibited the licensees
15	from adopting the new materials, but we believe that
16	it's best to move the rule forward in a more
17	performance based manner so that this inhibition does
18	not exist.
19	In our first presentation, Dr. Ralph Meyer
20	from the Office of Research will summarize the
21	research results and propose a way in which these
22	results could be incorporated into the regulatory
23	process.
24	And then Mike Billone from Argonne
25	National Lab, Dr. Billone, will then present the
ļ	

(202) 234-4433

Í	9
1	results in detail supporting Dr. Meyer's presentation.
2	I want to stress that we are not
3	presenting the final rule language. That is the
4	purview of NRR. We will be trying to summarize our
5	research results in a manner that will facilitate
6	everyone's understanding so that we have put in terms
7	of some numbers to give you an idea of how perhaps
8	this will go forward in the future, but this is not
9	the final rule language.
10	And we're hoping that at the end of the
11	meeting today, after we hear from the committee or
12	hear questions and your comments, as well as the
13	industry's presentations and member of the public
14	questions and comments, that the subcommittee will go
15	forward to the full committee supporting our belief
16	that we can move this research result over to NRR in
17	the form of a research information letter to support
18	the proposed rulemaking for the revised criteria.
19	We're hoping to send over the RIL in March
20	31st, 2007. So we're looking forward to pursuing that
21	goal.
22	So with that I'd like to turn the meeting
23	over to Dr. Meyer from the Office of Research.
24	DR. MEYER: Good morning. Do we have a
25	laser pointer here?

(202) 234-4433

So it was 33 years ago that the Atomic Energy Commission had the biggest hearing that I think it ever had to come to these rules for emergency core cooling system, ECCS, performance. It involved the peak cladding temperature and the oxidation limit that Jennifer mentioned.

7 clear Two things were from the Commission's opinion, which was written and issued on 8 9 December 28, 1973. One was that they wanted to retain ductility in the fuel rod cladding after the LOCA 10 11 transient, and two was that they adopted very simple 12 temperature and oxidation limits, notwithstanding the fact that the phenomena were very complex, and they 13 14 understood the complexity of the phenomena at that 15 It involved diffusion in the metal. time. There were discussions of adopting the square root of DT limits, 16 criteria based on the alpha thickness, the beta phase 17 thickness. All of these things were understood and 18 19 developed, and in the end they settled on these very 20 simple empirical criteria.

21 So we've used the same approach in trying 22 to accommodate burn-up and alloy effects. There are 23 additional complexities from the burn-up process and 24 from using the niobium alloy additions. They are 25 complex effects. We understand them only

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	11
1	approximately, but I believe we can characterize them
2	empirically using a simple form very similar to what
3	was done originally.
4	DR. POWERS: Ralph, you talk as though
5	there's something good about preserving these
6	surrogates for ductility. Is there a reason to write
7	the rule that says preserve ductility post LOCA or
8	post design basis accident event?
9	I mean, why have these figures that are
10	related to ductility? Why not just write the rule
11	that says, "Preserve ductility"?
12	DR. MEYER: The question is why did we use
13	ductility instead of some other measure? Is that the
14	question?
15	DR. POWERS: No.
16	DR. MEYER: I'm sorry. I have a hearing
17	problem which I'm going to get fixed soon, but it's
18	not today. I'm not sure I really understood the
19	question.
20	DR. POWERS: Well, we put in 2,200 degree
21	clad temperature, 17 percent oxidation, and those have
22	become the goals and people worry about them and
23	agonize about them. They've forgotten largely that
24	the idea was to preserve ductility in the post LOCA
25	environment.
I	I

(202) 234-4433

	12
1	DR. MEYER: Right.
2	DR. POWERS: And so what I'm asking is why
3	continue to do that. Why not just say we want the
4	cladding to have some ductility when you recovered
5	from an event, a design basis event, and please show
6	us that that is the case.
7	Why put in more parameters or a different
8	set of parameters or things like that?
9	MS. UHLE: Can I answer that? This is
10	Jennifer Uhle from Research.
11	Again, we're not going to be presented
12	rule language here. Even if the ultimate rule were
13	completely performance based as you've indicated, the
14	Agency would still have to determine an appropriate
15	set of values by which to ascertain that a particular
16	ECCS system was adequate to maintain the ductility,
17	and so if it goes in that direction to be completely
18	performance based, then these values then would be in
19	some form, in a reg. guide or something like that.
20	So if we can perhaps postpone your
21	question to a later date when NRR has absorbed the
22	information we are giving them and interactive with
23	OGC, as well as the public, about the best way for the
24	rule language, I think you'll hear today what we
25	believe are the phenomena behind what is necessary to

(202) 234-4433

	13
1	maintain ductility.
2	Does that answer your question?
3	DR. POWERS: Nope.
4	MS. UHLE: Come on. That was a perfect
5	answer.
б	(Laughter.)
7	DR. MEYER: The purpose of the 2,200 limit
8	and the 17 limit, they were derived specifically to
9	insure that there was ductility, and the test at the
10	time showed that if you remained below those limits
11	that you would have ductility after a LOCA temperature
12	transient in the steam environment.
13	DR. POWERS: Yes.
14	DR. MEYER: Okay? I still don't
15	understand the nature of your question.
16	DR. POWERS: It's a philosophical
17	question, and you only get yourself locked up into a
18	material specificity as long as you put these
19	parameters in the rule. If you'd say, "Here's what
20	the rule is intended to do. Please do this," and tell
21	me the details during the evaluation, and I've got
22	this body of research behind me that tells me the
23	things to look for, you get out of that problem.
24	DR. MEYER: Well, I think you'll find that
25	that is about what is going to happen because what

(202) 234-4433

	14
1	we're going to show you are some criteria that work.
2	They involve parameters that are measured for any
3	alloy in this zirconium, tin, niobium family, and then
4	you figure out limits, which would be reviewed.
5	How much of the details go into the actual
6	regulation and how much of the details go into the
7	reg. guide have not been established, but certainly
8	this regulation would have to have a reg. guide to
9	describe the kind of tests that need to be done in
10	order to get the right characterization of the
11	materials property.
12	DR. POWERS: I mean, the reason for asking
13	the question is you look at the research program in a
14	different fashion. If you look at it as a body of
15	information that the regulator has, and the licensee
16	as well since it's public information, that tells him
17	the kinds of effects to look for in the system, that's
18	one thing.
19	If you look upon the body of research as
20	the justification for particular parameters and things
21	like that, that's quite a different thing. And I
22	would argue that the size and quality of the database
23	is different between the two.
24	Well, I think, in fact, that we have done
25	both. We will identify the phenomena that need to be
	I

(202) 234-4433

	15
1	looked at because we believe we know the major
2	phenomena that affect the ductility, and we have made
3	enough measurements that we believe we can adequately
4	characterize the three cladding types that are
5	currently forming the majority of the cladding used in
б	U.S. plants.
7	So I think we have both of that in here,
8	and I think you'll see it that way when we present it.
9	DR. POWERS: Good.
10	DR. MEYER: Shall I go on?
11	DR. POWERS: Please.
12	DR. MEYER: Okay. Let's start by just
13	reviewing the basics, and we'll move quickly.
14	So during a loss of coolant accident, the
15	cladding will go through a temperature transient. It
16	goes up, and it comes down after the reflow occurs
17	from the ECCS systems.
18	If you're looking at a location on the rod
19	close to a balloon, you will see that somewhere in the
20	vicinity of 800 degrees Centigrade, the cladding
21	softens. It swells up. It pops; it ruptures, and
22	because of the larger surface area, there is a small
23	reduction in the temperature because of the extra
24	cooling, and then the temperature can then continue to
25	go on higher. So we know about ballooning and
ļ	

(202) 234-4433

1 rupture. We know about oxidation that generally takes 2 place after ballooning and rupture, and we know about 3 quenching, which eventually comes in and cools it all. 4 What I really want to focus on are these 5 other processes that go on just about at the same Just about at the same time you get ballooning 6 time. 7 and rupture, you get a phase change in this material. 8 It goes from a hexagonal crystal structure which we 9 will call alpha phase -- it's always called the alpha 10 phase ___ and it changes to a bi-center cubic structure, the beta phase. 11 12 Now, oxidation is going on on the surface, but at the very same time and at the very same 13 14 temperature region, diffusion of oxygen in the metal becomes significant, and so you now have oxygen 15 beginning around here to diffuse in substantial 16 17 quantities into the metal, and it is that oxygen that 18 ends qivinq the dominant effect on up you 19 embrittlement. 20 And then eventually when you quench, you 21 go back through the phase change and it all changes 22 back to an alpha form. 23 This is the regulation that's currently on the books and a clarification that occurred in 1998 in 24 25 an information notion. So we've already talked about

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	17
1	the temperature limit of 2,200 degrees Fahrenheit,
2	which is 1,204 degrees Centigrade, and we'll switch
3	and talk for the rest of the time in Centigrade
4	degrees, and we'll probably slough over the four
5	degrees and just call it 1,200 degrees Centigrade.
б	You really calculate temperature and time
7	during a LOCA calculation. So you basically have a
8	time limit that corresponds to the accumulation of 17
9	percent oxidation on the surface of the cladding.
10	The oxidation is calculated. We call it
11	an ECR, equivalent cladding reacted. That's just a
12	measure of percent oxidation that's calculated in the
13	safety analysis, and you assume that there's one-sided
14	oxidation pickup away from the balloon. This is
15	oxygen moving in from the oxide that's built up on the
16	surface, and two-sided oxidation in the balloon
17	because after the balloon ruptures, steam gets inside
18	and oxidizes the ID of the cladding in the vicinity of
19	the rupture.
20	So that's the way the analysis is done
21	today. As of 1998, we informed the industry that 17
22	percent should be understood to be the total
23	oxidation, that is, the sum of the corrosion that took
24	place during normal operation and the amount that
25	occurs during the transient.

(202) 234-4433

	18
1	So, in effect, you're subtracting from 17
2	percent the corrosion thickness, which can be
3	significant.
4	So the heart of the subject that's going
5	to have to do with where the oxygen is, and here is a
6	schematic of the oxygen concentration on and in a
7	piece of Zircaloy that has been oxidized in steam.
8	You have an oxide layer that builds up on the surface.
9	This is in weight percent, but it's not drawn to
10	scale. The oxygen diffuses into the metal, which is
11	beta phase at high temperature.
12	As the oxygen diffuses into the metal, it
13	quickly exceeds the solubility limit in the beta phase
14	and forces that beta material to convert back to an
15	alpha phase, and we call it the oxygen stabilized
16	alpha phase. So at high temperature, you have a small
17	region of oxygen stabilized alpha and a beta phase out
18	here.
19	And as time goes on, the oxygen stabilized
20	alpha layer grows and the beta layer shrinks. Now, if
21	you cool it back down to room temperature, you can see
22	these phases in the microscope, and I'll show you that
23	on the next picture, but that's why we've labeled this
24	prior beta, because after you cool down it has all
25	gone back to alpha, but you can still see what was in
	1

(202) 234-4433

	19
1	the beta phase at high temperature.
2	So here you have on the surface an oxide
3	layer. You have this oxygen stabilized alpha layer.
4	And you have the bulk of the material in the prior
5	beta phase.
6	So keep that in mind as we go through the
7	rest of the discussion.
8	Now, these are the equations that we'll be
9	using, and I won't show a lot of equations in the
10	presentation, but the oxidation rate, the weight gain
11	goes as the square root of time. So these are
12	parabolic kinetics. The K term here is temperature
13	dependent, and like a lot of these high temperature
14	processes, it's thermally activated with an activation
15	energy. R is the gas constant. This is a very common
16	Arrhenius type temperature dependence.
17	ECR, equivalent cladding reacted, is a
18	sort of artificial term that has been used from the
19	beginning in analyzing the accidents. You assume that
20	all of the oxygen consumed, that is, all of the weight
21	that has been gained, is in the oxide, ZrO_2 , ignoring
22	what has diffused into the metal.
23	So if you just use that construct, then
24	the ECR is simply a geometrical relation between
25	weight gain and the thickness of the clad, and we will
ļ	

(202) 234-4433

	20
1	most frequently be using a two-sided oxidation
2	equation, and that's the equation that we use.
3	Cathcart and Pawel have the coefficients
4	A and Q to plug into this, and when you put it all
5	together and boil it down, this is the practical
6	equation that we normally use.
7	Now, that's for weight gain. Cathcart and
8	Pawel had other equations. They had equations for
9	oxide layer thickness, alpha layer thickness, and for
10	the sum of those. All of them have the same parabolic
11	kinetics. The same Arrhenius type temperature
12	dependency coefficients are a little different, and
13	we've stuck with the weight gain just as was done
14	before to try and keep this in the same formalism as
15	we had in the original rule.
16	So now what I want to do is to talk about
17	the different mechanisms that cause embrittlement, and
18	they're related to this oxygen diffusion into the
19	metal. The first two mechanisms were understood
20	originally when the rule was written, and they have to
21	do with the beta layer, embrittlement by the oxygen,
22	and beta layer thinning. You can see this on the next
23	slide where I've shown that the well, just for
24	starters, the outside layer and the oxygen stabilized
25	layer are brittle.
	I

(202) 234-4433

	21
1	So you get no ductility out of those at
2	all. You get ductility only out of this prior beta
3	layer, and the prior beta layer itself is only ductile
4	when the oxygen concentration is below about .6 of a
5	percent. So there can be a portion of the prior beta
6	phase that is brittle, and so this is what we have to
7	deal with.
8	So it was found empirically after
9	discussing all of these things that if you kept the
10	temperature below 2,200 Fahrenheit and the oxidation
11	below 17 percent, that you would have a large enough
12	prior beta region with a low oxygen content so that
13	the sample would behave in a ductile way.
14	And that's where the 2,200 and 17 percent
15	numbers come from.
16	Now, around 1980, Chung and Kassner at
17	Argonne and then later Letsuga and co-workers at the
18	Geri (phonetic) Lab in Tokai found that there was some
19	special behavior that was going on inside the balloon
20	beside the simple oxidation process.
21	Now, as you know, when you oxidize
22	zirconium in steam the zirconium takes the oxygen, but
23	it releases hydrogen. They have some free hydrogen,
24	and usually a small percentage of that hydrogen is
25	also absorbed into the zirconium.
ļ	I

(202) 234-4433

1 It turns out inside of the balloon a lot 2 of hydrogen was being absorbed in the balloon region because that released hydrogen in there wasn't getting 3 4 swept away very effectively by the steam. So you 5 developed very high bands of hydrogen concentration. These are 3,000 ppm of hydrogen above and below the 6 7 center of the balloon, and here you see at the center of the balloon the oxygen concentration calculated as 8 9 an ECR using average values as would be done according 10 to the regulation. This had about 18 percent 11 oxidation. 12 So here's a case, and these are real data. These are data from high burn-up BWR rods where you 13 14 have kept the oxidation in the balloon no higher, 15 well, infinitesimally higher than specified by the regulation. Yet you have this huge amount of hydrogen 16 that gets absorbed into the cladding. 17 This leads to

18 embrittlement of the balloon, and we see this over and 19 over again, and it occurs even if you're living inside 20 of the regulatory limit.

So we discussed this the first time with this committee in 2003, referred to it at that time as a ductility singularity because the balloon, even when you follow all of the rules, the balloon is not going to be ductile.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	23
1	Now, the next mechanism of cladding
2	embrittlement that really is the main burn-up effect
3	has to do with hydrogen enhanced beta layer
4	embrittlement. We'll just go ahead and look at the
5	data while I talk.
6	These data are fresh zircaloy for and
7	you can see this is ductility. It's going to zero,
8	somewhere around 14 percent. We can talk about zero
9	being zero or being one percent or two percent.
10	Once we get down to about one or two
11	percent on a mechanical test, the material has lost
12	its ductility.
13	And here is for the very same cladding
14	type, high burn-up PWR cladding type from the H.B.
15	Robinson plant. You can see the ductility is being
16	lost much lower than 14 percent, somewhere down around
17	eight percent.
18	What is happening here is that the
19	hydrogen that was absorbed into the cladding during
20	normal operation has affected the diffusion rate and
21	the solubility of oxygen into the beta phase. The
22	fusion rate through the alpha phase and the solubility
23	limit in the beta phase are both probably affected by
24	the hydrogen and result in higher oxygen concentration
25	in the beta phase and, therefore, more loss of
Į	I

(202) 234-4433

	24
1	ductility.
2	Another embrittlement mechanism is related
3	to the oxidation break-away process. We had shown
4	this committee pictures of the Russian cladding at an
5	earlier time. We came across this effect a few years
6	ago in the Eastern European literature. We got some
7	of the Russian E110 cladding into the laboratory,
8	tested it, and found that the oxide that was forming
9	during steam oxidation would break up and then it
10	would allow hydrogen to be absorbed very rapidly into
11	the cladding, and this hydrogen, in turn, would have
12	the effect that I just talked about. It would
13	accelerate the oxygen embrittlement process.
14	Now, what's happening here is that ZrO_2
15	can exist in several crystalline forms. The one that
16	normally forms on the cladding surface is black and
17	shiny, and it's relatively protective. So hydrogen
18	can't go through it very readily. It's a tetragonal
19	phase, and it's what we normally see when we oxidize
20	in steam at high temperatures.
21	Another form that is actually
22	thermodynamically stable at some of these temperatures
23	is gray when it first appears, and it's cracked, and
24	it's a monoclinic form, and it lets the hydrogen in.
25	Let me show you some data. These are old
	I

(202) 234-4433

(202) 234-4433

1 data from Leistikov and Schanz in the 1980s. They did 2 this work in Karlsruhe. It's a huge study of 3 oxidation of Zircaloy 4 in steam. I know this is a 4 little bit fuzzy, but they went from temperatures 5 ranging from 600 degrees Centigrade all the way up to 1,600 degrees Centigrade, and they went out to 25 6 7 hours in their annealing time. 8 And what you see here is as you look at 9 each of these weight gain versus time curves is that a time comes when the rate increases rather abruptly. 10 This is when the break-away process takes place and 11 where the oxidation accelerates rapidly. 12 Along with that you would have rapid 13 absorption of hydrogen. When you get up to 1050 --14 15 let me see where 1050 is. Ten, fifty is right here. 16 That's the last one where you see a little bit of 17 break-away, and at 1100 you see no break-away anymore, 18 and Ι think that the tetragonal phase is 19 thermodynamicly stable above 1,100 degrees Centigrade, 20 and it just won't switch to the monoclinic phase, but 21 below that it can switch. 22 And whether it switches or not depends on 23 some things that we know about now, but weren't known 24 a few years ago. What we've done is taken the times

that correspond to the break-away process and plotted

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

them on this next slide.

1

2 And so for Zircaloy 4, you'll see that the break-away process is starting as low as about 25 3 4 minutes at а temperature around 1,000 degrees. 5 There's another broad minimum that's almost that low, over around 750, 800 degrees, and then this strange 6 7 temperature around 900 where it seems to be fairly 8 stable and we don't understand why that takes place. 9 But what we do know is that all of the zirconium alloys that we've tested, and we tested a 10 11 lot of them, they all show this break-away phenomenon 12 eventually at one time or another. The worst one that we've tested is the Russian E110 cladding, which had 13 14 a break-away at about less than ten minutes, and most 15 of them were higher than this.

This, by the way is old zircaloy. It's zircaloy from the 1980s which had a rough surface and which broke away at an earlier time than the later stuff did.

20 The factors that we found mostly from 21 studying the Russian alloy that affects this are the 22 condition and the allow ingot surface impurity 23 content. What you're dealing with here basically is 24 crystal growth on a substrate, and it's sensitive to 25 what the substrate looks like. If the surface is very

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	27
1	rough, it tends to grow the monoclinic form much
2	easier than if the surface is smooth.
3	There may be some surface contaminant
4	effects as well. We've found that if you etch smooth
5	cladding that it will tend to make it worse and
б	probably picking up something from the etchings on the
7	surface.
8	The other things that seems to make a
9	difference is the impurity content in the starting
10	material.
11	The Russians were using an
12	electrolytically refined zirconium which is very pure,
13	and they were getting this effect. But they had
14	bought an ingot from Sayzus in France that had the
15	standard spun zirconium process to get the zirconium
16	alloy, and they made tubing out of that. And that
17	tubing behaved substantially better than the standard
18	E110 tubing.
19	This was done in a program that Kerchottof
20	ran for us under the joint program that the NRC ran
21	with IRSN in France and eventually with additional
22	support from Tuvell, the Russian manufacturer.
23	And we have some general understanding of
24	why that takes place, and it has to do with in the
25	niobium alloys, niobium like zirconium has a very high

(202) 234-4433

5 And what we think is that the calcium that 6 comes in from the CROL process probably 7 counterbalances that and so that it behaves more 8 normally when you have the good impurities present, 9 and so the trick seemed to be to use spun zirconium 10 and have a nice poly surface on the cladding and the break-away process is suppressed. 11

So that was a fairly interesting episode, but it did tell us that we need to be careful to look out for break-away because it is possible within the normal range of manufacturing things to either get an ingot that you might think is really nice because it's very pure or to do something to the surface that could affect us.

So it's easy to test to see the result, and we don't have to get involved with any manufacturing processes.

And then finally, the sixth thing that we realized was that you can get oxygen diffusing into the metal from the inside diameter even away from the balloon in high burn-up fuel because keep in mind you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

	29
1	have a huge oxygen source inside the cladding, the
2	fuel, UO ₂ . And uranium, plutonium, zirconium oxides,
3	you know, they're all about the same location on an
4	Ellingham diagram, and so the oxygen can move fairly
5	freely.
6	We found some earlier test data that
7	showed that you could get this kind of pickup from the
8	${\tt UO}_2$ fuel if you had contact, good, intimate contact
9	between the fuel and the cladding.
10	Now, what happens at high burn-up is that
11	after a while you get an interaction between the fuel
12	and the cladding, and you get bonding, and the bonding
13	layer that develops is nearly pure ZrO_2 . You can see
14	it in the samples. We see it in our high burn-up
15	samples. When you run them through a high temperature
16	transient with steam on the outside only you get an
17	alpha layer on the inside that's just about as big as
18	the one that you had on the outside.
19	And so it's quite clear that what we're
20	dealing with is like a diffusion couple where you have
21	the metal on the inside sandwiched between oxide on
22	the OD from steam and corrosion and oxide on the ID
23	from the bonding layer and any fuel that's bonded to
24	it, and now you heat this up during a high temperature
25	transient, and oxygen diffuses in from the ID at
-	

(202) 234-4433

	30
1	approximately the same rate that it diffuses in from
2	the OD.
3	And so the indication is very strong that
4	we should be accounting for ID oxygen ingress even
5	away from the balloon region.
6	So here are a set of criteria that are
7	close in form to the original criteria, but which take
8	into account most of the phenomena that I just
9	discussed. These work in the laboratory and would be
10	the criteria that we would recommend be looked at for
11	possible use in the regulation.
12	We'd stick with the same temperature limit
13	that's in the current regulation. We have indications
14	from our data that once you get above about 1,200
15	degrees Centigrade the oxygen solubility in the beta
16	phase increases pretty significantly, and so since
17	that number is well ingrained in current regulatory
18	process and sine it's related to something that we
19	want to avoid, we just stayed with that number and
20	used the time limit to account for the rest of the
21	variables.
22	So what works for us is to make sure that
23	the calculated oxidation is less than the measured
24	oxidation corresponding to the transition from ductile
25	to brittle behavior, and subtracting from that
	I

(202) 234-4433

	31
1	something a little larger than the measured or
2	expected corrosion thickness on the high burn-up fuel
3	expressed also as an ECR value.
4	CHAIRMAN ARMIJO: What's the basis for the
5	1.2? Why do you do that? Is that hydrogen?
6	DR. MEYER: It's simply empirical. Mike
7	is going to show you the data and show where this came
8	from.
9	It depends most strongly on the
10	temperature transient, on heat-up rates and cool down
11	rates. You could have several different I mean you
12	can imagine a number of different transients that will
13	have different heat-up rates and cool-down rates, and
14	so this is sort of a middle of the road value.
15	CHAIRMAN ARMIJO: That's not alloy
16	dependent at all?
17	DR. MEYER: I can't say it's not alloy
18	dependent because we don't have high burn-up data yet
19	on the other alloys, but I'm going to show you some
20	examples where I think its alloy dependence is less
21	important than you might initially suspect.
22	Okay. So we're going to calculate the ECR
23	with the Cathcart-Pawel equation all the time. I'll
24	come back to this matter of the two-sided oxygen
25	pickup in a minute, and then we've also measured this
	I

(202) 234-4433

	32
1	minimum break-away time, and we're quite sure that if
2	you don't exceed that time for the temperature that
3	you're above 650 that you won't have a break-away
4	problem.
5	So we can come back to any of these you
6	want to, but let me first give you some examples just
7	to show how this plays out.
8	So here is ZIRLO, the Westinghouse
9	cladding. This is the current stuff, 17 by 17 belt-
10	polished, standard ZIRLO. We measured the
11	unirradiated transition, the transition from brittle
12	to ductile, from ductile to brittle behavior at 19
13	percent, just a little higher than the 17 percent
14	that's in the rule.
15	And this is just an example. We took an
16	arbitrary case where we had 40 microns of corrosion
17	for the 17 by 17 geometry. That's about four percent
18	in ECR terms, and we multiplied the four percent time
19	1.2, subtract it from 19, and get 14.2.
20	Okay. I'll come back to that thought in
21	just a minute.
22	This number is just in here for
23	calibration purposes. Had this transient gone
24	immediately up to 1,200 degrees, stayed there for 190
25	seconds, and come back down, you would have gotten the

(202) 234-4433

	33
1	14.2 percent. I just wanted to give you that number
2	in reference to something on a subsequent slide.
3	And then here is the measured break-away
4	time for that material.
5	Here is the numbers for M5, and you know,
6	it's the same current material, the same arbitrary
7	case of 40 microns. It's just a very minor difference
8	in the measured ECR for the unirradiated material.
9	The limit in this case would be 15.2, and here is the
10	break-away time.
11	Now, this one is going to be a little bit
12	more interesting. This is zircaloy, real material,
13	current material, 17 by 17 belt-polished, low tin
14	zircaloy measured in the laboratory right at 17
15	percent.
16	Now, we have a de facto corrosion limit
17	that's used in safety analyses of 100 microns, and
18	zircaloy can get that much corrosion on it if you push
19	it hard enough. And so I've taken this example right
20	at the limit. So this would be what I call a worst
21	case zircaloy example, and the 100 microns is about
22	ten percent ECR, and you multiply that by 1.2,
23	subtract the 12 from 17, and you get five percent, a
24	fairly small number.
25	Also look at this. If you could take that

(202) 234-4433

	34
1	cladding up to 1,200 degrees instantaneously and leave
2	it up there, it would only be up there for 24 seconds
3	to get to five percent. With this limit, you would
4	never quite get up to 1,200 degrees Centigrade in a
5	real reactor transient because they don't go up
6	instantaneously.
7	DR. POWERS: Let me ask you a question
8	about this
9	DR. MEYER: Yeah.
10	DR. POWERS: Cathcart-Pawel.
11	DR. MEYER: Right.
12	DR. POWERS: Which figures prominently in
13	all of your discussions.
14	DR. MEYER: Yes.
15	DR. POWERS: When I look at this report
16	from Argonne of a variety of experiments, they're very
17	nice, and they say, "Well, we measured this and then
18	we compared it to what we would have calculated using
19	Cathcart-Pawel.
20	DR. MEYER: Yeah.
21	DR. POWERS: And in some cases there's
22	extraordinary agreement. In some cases there is
23	extraordinarily systematic under prediction
24	DR. MEYER: Yes, exactly.
25	DR. POWERS: by Cathcart-Pawel.
	I

(202) 234-4433

	35
1	DR. MEYER: Yeah.
2	DR. POWERS: When I think about Cathcart-
3	Pawel, what he did, they did, was they measured a
4	bunch of stuff. They took their measurements,
5	converted them into some sort of parabolic rate
б	constants, took the logarithm of those, plotted them
7	in a straight line, fitted it to a straight line.
8	That means that there's some uncertainty
9	in their predictions. What I don't know is what the
10	magnitude of that uncertainty is. Do we understand
11	that?
12	DR. MEYER: I don't want to answer that
13	question. Maybe Mike will answer that question. What
14	I want to say is that we're using Cathcart-Pawel
15	equation simply as a variable transformation for time,
16	and we're fully aware that for some of these alloys
17	there are substantial differences between the true
18	weight gain and the calculated weight gain. We are
19	simply using it as a parameter against which to
20	correlate empirically the ductility measurements.
21	For example, as 1,000 degrees Centigrade,
22	the Cathcart-Pawel oxidation predictions are much
23	higher than the measured values for oxidation of M5,
24	for example.
25	Now, you might not want to use that
I	I

(202) 234-4433

	36
1	Cathcart-Pawel equation in calculating the metal water
2	heat for your thermal hydraulic analysis, although I
3	think in all cases the Cathcart-Pawel would be
4	conservative. So it would not be nonconservative to
5	use it.
6	But for our purposes this discrepancy
7	between the calculated weight gain and the true weight
8	gain does not in itself lead to any error in what
9	we're doing.
10	MS. UHLE: This is Jennifer Uhle from the
11	staff. Ralph, you had on your I think fourth or fifth
12	slide an indication that provided you are using the
13	same oxidation kinetics reaction to reduce the data,
14	and in the calculation of the percent ECR, and that's
15	why it doesn't enter into our adding a specific error.
16	DR. MEYER: I don't think I have a slide
17	on this, but the situation was almost exactly the same
18	originally
19	MS. UHLE: Ralph, you do.
20	DR. MEYER: with Baker-Just. The
21	Hobson's data were analyzed with calculated weight
22	gains, not measured weight. He didn't measure them at
23	all, and so if you reduce the data using Baker-Just
24	and then when you turn around and make a calculation,
25	you should use Baker-Just. So Baker-Just was written
ļ	I

(202) 234-4433

	37
1	into the original rule in Appendix K of Part 50 for
2	that reason.
3	And it's the same here. We are analyzing
4	the data that way, and they should be used with the
5	Cathcart-Pawel equation when you turn around and make
6	a prediction.
7	MS. UHLE: The slide I'm referring to is
8	Slide 8.
9	(Pause in proceedings.)
10	DR. MEYER: Should I go on?
11	CHAIRMAN ARMIJO: Sure.
12	DR. MEYER: Now I want to point out
13	something that is kind of neat. This isn't a picture
14	of a real test, but I just want to use this as an
15	example just as a side calculation here.
16	In a typical LOCA you would expect that
17	the maximum oxidation would occur in the balloon node
18	in the calculation, in your safety analysis
19	calculation of the LOCA. You would expect the maximum
20	oxidation to occur in the balloon node because here
21	you have oxygen in the calculation coming in from both
22	sides. So you assume two-sided oxidation in a
23	licensing calculation.
24	And, furthermore, the cladding is thin,
25	and you take that into account in running the
Į	I

```
(202) 234-4433
```

	38
1	analysis.
2	At a different location you would probably
3	find the peak cladding temperature node because you
4	had additional cooling down here. So generally you
5	find the maximum oxidation in the balloon and the peak
6	cladding temperature somewhere outside of the balloon.
7	And so I've taken an artificial case where
8	I've said let's put the peak cladding temperature at
9	about the limit and put the maximum oxidation at about
10	the limit and just assume for the purpose of the
11	example that the balloon is running 50 degrees cooler
12	than the hot spot.
13	Okay. So now if I run the calculation at
14	1,150 degrees Centigrade until I get 17 percent ECR,
15	it takes 366 seconds. If I now slip up on the rod
16	here and ask what has happened to the ECR in 366
17	seconds, it has gotten 15 and a half percent,
18	providing I've assumed double-sided oxygen pickup,
19	which would be appropriate for this rod, which is a
20	high burn-up rod.
21	So 15 and a half percent, 17 percent are
22	fairly close numbers, and the point that I want to
23	make is that whether you're doing two-sided oxygen
24	pickup away from the balloon in the peak temperature
25	node or whether you're doing two-sided oxygen pickup
I	I

(202) 234-4433

	39
1	in the balloon where you have a slightly lower
2	temperature, you're going to get about the same
3	number, about the same answer.
4	With the information that we now have
5	about the loss of ductility in the balloon due to the
6	additional hydrogen absorption, it seems to me that
7	continuing to do detailed calculations in the balloon
8	is not particularly meaningful because we can run the
9	calculation and the balloon is going to have lost the
10	ductility anywhere.
11	So if you were to give us a piece of a
12	high burn-up fuel rod taken out of a reactor, I think
13	we could make a very good prediction of whether it
14	would be brittle or ductile after running it through
15	a given LOCA transient just by looking at the two-
16	sided oxygen pickup away from the balloon and
17	forgetting the balloon.
18	Now, okay. Let me go on and give you my
19	last slide and then we'll see if we want to go back
20	and dig into any of these things again.
21	So now we're going to say that we believe
22	that the current operating reactors are safe with
23	regard to the LOCA analysis even though the 50.46
24	limits on the books are not doing the job well because
25	of several things.
I	I

(202) 234-4433

	40
1	First of all, temperature limits are the
2	same. So there's no change there. We are subtracting
3	the corrosion thickness from 17 percent in response to
4	the information notice in 1998. So even though it's
5	not in the rule, it's being done.
6	Seventeen percent turns out to be
7	conservative for all temperatures below 1,200 degrees
8	Centigrade, and I think this was known originally. If
9	you look at the transition ECR at 1,200, 1,100, 1,000,
10	the transition slips up a few percent each time. So
11	particularly for cases like that worst case zircaloy
12	example that I put up where you had a low limit of
13	five percent, if you're making the subtraction and not
14	even getting up to 1,200 degrees Centigrade in the
15	transient by staying under the limit, there would be
16	a little conservatism there.
17	And now finally, although we are not for
18	the present licensed cases, we are not accounting for
19	oxygen that diffuses from the inside diameter of the
20	cladding from the bonded fuel away from the balloon.
21	We are doing the calculation in the balloon, and as I
22	showed you in the example, you get about the same
23	answer whether you're doing the calculation with two-
24	sided oxidation in the balloon or outside the balloon.
25	Now, there's some urgency about revising
	I

(202) 234-4433

the criteria now because you can imagine some cases where if the rule were interpreted strictly or somebody forgot to take into account one of the things that's being done up here, you could have a case that satisfied the rule and did not produce the desired result.

We have two cladding types that have been approved for use in U.S. reactors which at the present time require license exemptions because the language of the present rule does not cover those two, and we'd like to fix that situation.

12 It is not a stretch of the imagination to think of manufacturing changes that could be made, 13 14 particularly in this time when there is concern about 15 the security of supply, where manufacturers are 16 setting up alternate fabrication areas and buying materials from all over the world on the market that 17 you could get a cladding that had poor break-away 18 19 performance if you weren't looking for it. And there is a test in our criteria that takes account of that. 20 21 And also, I know there's a desire the 22 committee itself has talked about trying to get these

50.46(a) rulemaking, which involves the transition
break size definition.

criteria resolve before moving forward with the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

23

1

2

3

4

5

1 We're painfully aware that we don't have 2 as many data as we would like to have. It is simply 3 not going to be possible within the next couple of 4 years to get a lot more data. We do have a few pieces 5 of high burn-up ZIRLO and high burn-up M5 which we are going to test within the next weeks before the report 6 7 is finished. They have fairly low corrosion on them. 8 So I don't expect there's going to be any surprising 9 result from those tests. 10 We do not have available more heavily corroded high burn-up samples of ZIRLO or M5, nor do 11 12 we have a hot cell at the present time where we could do those tests. So we are limited in that way, but on 13 14 the other hand, we have learned an awful lot from the 15 work that we have done, and I think that we could make 16 a rule change now that would be infinitely better than 17 the rule that's on the book, still have some uncertainties in it which could be confirmed in three 18 19 to five years in the following phases of the local 20 work that would continue. 21 That's al I planned to present. If you 22 have any further questions, I'll take them before we 23 move on. 24 CHAIRMAN ARMIJO: Any questions from the 25 sub committee?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	43
1	DR. SHACK: In your current operating
2	reactors, your 17 percent is being calculated by
3	Baker-Just.
4	DR. MEYER: Not all the time because the
5	1988 rule change that allowed the best estimate
6	calculations, the reg. guide for that actually
7	mentions Cathcart-Pawel. So generally Cathcart-Pawel
8	or Baker-Just are being used right now rather than any
9	alloy specific best estimate models.
10	CHAIRMAN ARMIJO: Okay. If there's no
11	more questions, let's move on. Our next speaker is
12	Mr. Billone, ANL.
13	DR. BILLONE: I'm Mike Billone from
14	Argonne, and do we have any experts in getting my
15	presentation up? Let's see.
16	Okay. I'm going to present the data we've
17	generated and then try to close the loop with what
18	Ralph just presented, maybe not as definitively.
19	And so I've divided the presentation up
20	into three parts. You perhaps have two parts by now.
21	The first part will be our data on as fabricated and
22	prehydrided cladding alloys. I'd like to acknowledge
23	Dr. Yuen Yan who generated most of this data and Tania
24	Burtseva for the careful characterization she's done
25	pre-test and post test on this material.
Į	I

(202) 234-4433

	44
1	Okay. What we looked at are the effects
2	of high burn-up, mainly hydrogen, the effects of
3	hydrogen on post quench ductility. And to perform a
4	baseline we did a lot of work with as fabricated
5	cladding alloys. Our based alloys for the program are
6	Zry-4, Zry-2, modern Zry-4s or 2, ZIRLO and M5.
7	We did work on prehydrided cladding
8	alloys, specifically Zry-4, focusing on the most
9	embrittling temperature was 1,200 degrees C. as a
10	surrogate for high burn-up effects, and then we did
11	testing of actual high burn-up Zry-4, 1,200 degrees
12	C., with plans to test ZIRLO and M5, and these are de-
13	fuel cladding tests in the temperature range of 1,000
14	to 1,200 degrees C.
15	At a lower temperature range, in
16	particular, 800 to 1,000 degrees C., based on the
17	schematic Ralph showed you, there's break-away
18	oxidation eventually at some time, hydrogen pickup and
19	embrittlement. So we have kind of divided our work up
20	into 1,000 degrees to 1,200 degrees C. for classic
21	embrittlement, and then the embrittlement due to
22	break-away oxidation.
23	Now, what's new since I was here last July
24	well, not last July; July 27th, 2005 and had a
25	long presentation, we discussed the importance of
ļ	1

(202) 234-4433

	45
1	small break LOCAs and data on break-away oxidation as
2	a possible limit, more stringent than the kind of ECR
3	limits we were placing based on high temperature.
4	So we generated break-away oxidation and
5	for as fabricated cladding alloys and what is reported
6	is Zry-4 and ZIRLO in the draft that you have. Since
7	that time we've also done Zry-2 cladding, and I'll
8	present those results.
9	So we have finished three out of the four
10	claddings we had planned. M5, there is published data
11	on break-away oxidation for M5.
12	Another issue that came up was the effects
13	of cooling rate and quench temperature and possible
14	enhancement in ductility just depending on how you
15	cool the sample from your peak temperature, and we
16	looked at the effects of quench temperature in the
17	range of 600, 700, 800 degrees C. versus just cooling
18	without quench at all, and those effects on ductility.
19	So that's new data since that summer.
20	We refined our interpretation of data for
21	prehydrided and high burn-up Zry-4. Our colleagues at
22	CEA in conjunction with AREVA and EVF did some very
23	excellent scientific work showing in quite vivid
24	detail what happens to hydrogen and oxygen within that
25	prior beta layer during slow cooling versus rapid
I	I

(202) 234-4433

	46
1	quench, which helped us to understand our
2	phenomenological results a lot better.
3	We generated a draft LOCA NUREG report.
4	It's still in draft form. We're still adding data in
5	different points, and that data is January 9th, 2007.
6	That's in ADAMS. It also has an ANL number. It will
7	eventually have a NUREG number.
8	Another big change since this date,
9	actually precedes it by one day, is effectively our
10	alpha-gamma hot cell facilities where we were doing
11	this work with fuel for defueled cladding has been
12	closed to programmatic work effective July 26th. That
13	was a temporary closure, and then January 13th, 2006
14	was the more permanent.
15	The word "more permanent" sounds like an
16	oxymoron, but it's currently not available to us. So
17	we've moved our operations to a beta-gamma cell, which
18	means we can't bring fuel in there, but we can still
19	test defueled cladding as we've been doing the
20	ductility.
21	It has been a lot of work to move
22	everything out of the alpha-gamma hot cell facility
23	boundaries. If you think of this room as the actual
24	hot cells and then you move out to the empty spaces
25	between the hot cells and the boundaries of the hot
	I

(202) 234-4433

	47
1	cells and then you go upstairs, which shares a common
2	nitrogen system, an air conditioning system, a fire
3	alarm system, the alpha-gamma hot cell facility
4	boundaries are much, much larger than the cells
5	themselves, and we basically had to move all of our
6	labs and all of our equipment out of those boundaries.
7	So we've made a lot of progress, but it
8	has taken time, in reestablishing our capabilities for
9	sample preparation of high burn-up fuel, pre and post
10	test characterization, and actually testing of
11	defueled cladding samples, and that's just coming
12	together now.
13	So that's what's new or what's different.
14	Let me talk about the structure of the report, and
15	I'll try to parallel that in my presentation. Section
16	1 is introduction. Ralph gave you some of the heart
17	of the introduction.
18	Two is a description of the cladding
19	alloys, geometry, chemistry, surface roughness as best
20	we know them that we've used in our program, and I
21	tried to give you a fairly detailed description of our
22	testing methods, how we oxidized samples, how we
23	quenched samples, how we performed the ring
24	compression test, how we interpret data.
25	There's a lot in there about temperature
I	I

(202) 234-4433

48 control and temperature monitoring, which is extremely 1 2 important. 3 In Section 3, we present our results for 4 as clad fabricated cladding alloys. Actually as far 5 as the program is concerned, the modern Zry-4 17 by seven Zry-4, ZIRLO, and M5, along with the ten by ten 6 7 Zry-2, which we finally got around to testing, formed 8 the heart of our program. We added E110. You need a 9 bad alloy in this bunch. Otherwise if your screening 10 tests don't screen out the bad alloy, there's

And we also wanted to try to understand why M5 behaves so well at 1,000 degrees C. oxidation and E110 was so poor.

something wrong with your screening tests.

Now, our high burn-up fuel is not of this particular design. We have Limerick high burn-up BWR fuel, which is nine by nine, slightly large diameter and thicker wall than the ten by ten Zry-2. So we have done several testing on that s to generate baseline data for what the high burn-up fuel is that we have.

We've done a lot of work with 15 by 15 Zry-4, which is the design for the H.B. Robinson high burn-up Zry-4 that we have.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

We also have some 15 by 15 M5 not for data

(202) 234-4433

11

25

49 generation, but for kind of validation. So if you get results for thin wall 17 by 17 M5, you want to check and make sure that wall thickness doesn't somehow 3 4 alter the results because you're accounting for wall thickness. So you run a few quick tests with M5, 15 by 15 thicker wall at the same conditions as the 17 by 17. Again, in two temperature ranges we looked for high temperature embrittlement in the range of 1,000 to 1,200 degrees C., along with the effects of quench. The new studies of break-away oxidation. 12 That matrix of tests, I don't know how long Leistikov and Schanz had to do that work, but the '80s were a 14 glory period, and it probably was cladding of the The test matrix gets really extensive if you 1970s. want to cover the whole temperature range of 800 to, let's say, 1,025 degrees C.

What they did was they went in increments 18 19 50 degrees C. When you look at the unusual of 20 behavior and the two minimums, if they studied 950 and 21 1,000, you don't know if 975 is worse or not. Plus 22 break-away is an instability phenomenon. You could 23 run one test and the material looks good. You can run it under the same conditions and the material will 24 25 pick up hydrogen.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

7

8

9

10

11

13

15

16

17

	50
1	So you get into a lot of tests. So we
2	kind of focused our range on where the oxidation rate
3	would be highest, where the hydrogen generation rate
4	would be highest, and once you hit break-away,
5	hydrogen pick-up would be relatively rapid, and that's
6	950 to 1,025, and then just to confirm whatever
7	minimum time we got up here, we ran at 800 to make
8	sure that we didn't pick up any hydrogen at that time,
9	the 800.
10	So we did not study every degree C. in
11	this range. That was the approach we took.
12	That's all in Section 3. We did look at
13	the effects of surface conditions because of our work
14	with E110, which is an unstable alloy. So if it's
15	scratched, it behaves worse. If it has got a rough
16	surface it behaves worse, and we're just conscious of
17	the possibility, and we found that for the modern
18	cladding alloys that we looked at the scratches seemed
19	to have very little effect, scratches as deep as 20
20	microns, 25 microns; had very little effect on the
21	break-away time of stable alloys, which was
22	encouraging. It was something I was concerned about.
23	Section 4 is prehydrided alloy
24	DR. POWERS: Let me ask you
25	DR. BILLONE: 17 by 17 Zry-4, until we
	I

(202) 234-4433

	51
1	ran out of that material, and then a lot of results
2	for the Robinson baseline material, the 15 by 15 Zry-
3	4.
4	DR. POWERS: Mike, let me ask a question.
5	DR. BILLONE: Yes.
6	DR. POWERS: More out of curiosity than
7	any substance here, as long as I've got you.
8	You spend a lot of time in the report
9	discussing about belt sanded, belt sanded, belt
10	sanded.
11	DR. BILLONE: Right.
12	DR. POWERS: But I don't recall ever
13	seeing any of the details about what belt sanded
14	means.
15	DR. BILLONE: What belt polished means.
16	DR. POWERS: It must mean some grit was
17	used at some size, and what is that grit?
18	DR. BILLONE: I think it varies from
19	vendor to vendor, and it's more appropriate for the
20	vendor to answer. I think it's silicon carbide in
21	some cases. Typically alumina or silicon carbide are
22	acceptable candidates for belt polishing.
23	I don't know the details as to whether
24	there's a slight change in surface chemistry when you
25	do that or whether there's some cold working
	I

(202) 234-4433

	52
1	DR. POWERS: Oh, I'm sure there's some
2	cold working.
3	DR. BILLONE: I know, but I don't have
4	I basically have what we can measure, is we can
5	measure the surface roughness.
6	DR. POWERS: Right. Good. The other
7	thing that arises as you read through your report,
8	especially when you're talking about irradiated fuel,
9	is you say, gee, you know, fuel at the top of the core
10	is different than fuel at the bottom of a core.
11	DR. BILLONE: Right.
12	DR. POWERS: And PWR fuel likes to do
13	weird and perverse things with boric acid. Does that
14	affect your results at all?
15	DR. BILLONE: Basically what we look for
16	is certain corrosion layer thicknesses and hydrogen
17	content because we knew in the end we were going to
18	try to interpret our results that way.
19	For the BWR fuel that we had, other than
20	having some tenacious crud still attached to the OD,
21	we found very little variation. We basically looked
22	from the core mid-plane for our test samples, and we
23	found very little variation in corrosion layer
24	thickness. In this case I'm talking about the oxide
25	layer plus the crud layer. It was fairly uniform
ļ	I

(202) 234-4433

	53
1	because the coolant temperature is uniform.
2	You get the biggest variation and
3	again, we only have one type of high burn-up fuel from
4	one plant. So we were not able to look at variations
5	from plant to plant. But, of course, with PWR fuels,
6	Zry-4 anyway, you get quite a significant gradient in
7	oxide thickness and hydrogen.
8	Beyond that I don't know.
9	DR. POWERS: Okay. So you don't know of
10	small levels of boron incorporated in the oxide will
11	do anything to you.
12	DR. BILLONE: No, I suspect not, but I
13	don't know.
14	DR. POWERS: I have no reason to think so
15	either.
16	DR. BILLONE: We test what we get. Okay.
17	DR. POWERS: Similarly in your report
18	DR. BILLONE: Go ahead.
19	DR. POWERS: you propose your
20	prehydriding. It was a rather fascinating discussion
21	in your difficulties in getting uniform hydride, but
22	you develop a work-around, but you never comment very
23	much. I mean, I suspect that high temperatures,
24	hydrogen is fairly mobile, and yet in your experiment
25	you couldn't homogenize the hydride very much. Did
ļ	I

(202) 234-4433

	54
1	you ever sort that out?
2	DR. BILLONE: Yeah, there's two parts to
3	your question. One is in the actual prehydriding
4	operation, which is done at the lower temperatures,
5	like 360 degrees C. to 400 degrees C., and that's very
6	much of an art, and what you're reading and what I
7	wrote is about all you're going to read because
8	everybody else's method is proprietary basically.
9	DR. POWERS: Well, I was fascinated by it.
10	DR. BILLONE: But the decision I had to
11	make was do I live with the non-homogeneity in the
12	prehydrided material or do I homogenize? In the alpha
13	phase it's easy. At 400 degrees C. for 72 hours you
14	can homogenize that hydrogen. But you're usually in
15	an argon atmosphere with some oxygen impurity,
16	moisture impurity, nitrogen impurity. So you're going
17	to be changing the surface, fine oxide and maybe
18	nitriting of the surface depending on your impurity
19	levels in that annealing process.
20	So I chose to go with the samples which
21	had variations in hydrogen content. That's part of
22	the question. Given that those samples had axial and
23	circumferential variations, I thought taking it up to
24	close to 1,200 degrees C. I know across the radius of
25	the cladding I wasn't talking about across the
ļ	I

(202) 234-4433

(202) 234-4433

radius. Beta has a very high affinity for hydrogen, and that hydrogen essentially homogenizes in the beta 3 phase rapidly across such a short distance, which is 4 like .6 millimeters.

5 But during a test that's 100 seconds because there wasn't enough time for the hydrogen to 6 7 homogenize in a circumferential direction and the 8 axial direction, and I know some people are very upset 9 about that data. They don't like the data, but I think rather than criticizing the data, we should find 10 an explanation for why hydrogen diffuses slower in the 11 presence of increased oxygen rather than to say the 12 data are impossible. 13

14 So it was interesting. It was a side 15 discovery maybe. What it has significance for with high burn-up fuel, of course, you have a hydride rim 16 near the outer surface of the cladding, and the 17 hydride density decreases as you move to the inner 18 19 surface. That's across the radius and you expect that 20 to homogenize when you form the beta phase, but you 21 have edge rods. You have corner rods. You have rods 22 which do not have a symmetric temperature distribution 23 So you could get gradients, and we do around them. 24 find gradients in our H.B. Robinson rods and hydrogen, 25 and it's just interesting to note that during short

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

	56
1	time tests, 100 seconds, 150 seconds that hydrogen may
2	not homogenize. So if you have 400 ppm here and 700
3	ppm there, that sample may be very brittle.
4	Okay. Section 5 is post quench and post
5	oxidation ductility. We didn't quench all of the
6	samples. I'll explain why, of high burn-up Zry-4.
7	Six, I know we end up with the conclusion
8	that there's no way of preserving ductility in the
9	balloon region, and I show a lot of results here that
10	are of interest, but the only ones I'll show today are
11	basically the hydrogen pickup after I think back last
12	July when I was here and brought two samples that we
13	had, interval samples that are ballooned and burst.
14	One was ramped and held for one second at 1,204
15	degrees C., nd it picked up about three at the time
16	I didn't know that, but it picked up about 3,000 ppm
17	of hydrogen.
18	And the other sample was held for two
19	minutes or 120 seconds and then picked up a lot of
20	hydrogen, al from this secondary hydriding. So this
21	is more confirmation of why we don't think we can
22	preserve ductility in the balloon region.
23	However, there is some discussion, and I
24	know I mean, strength is not a dirty word. The
25	fact is that if you are at a low oxidation level, you
	I

(202) 234-4433

(202) 234-4433

	57
1	have a very significant fracture toughness of the
2	material. It's brittle if you were going to do a
3	ductility test, but if you whack it with a hammer as
4	I did then, that material is very resistant to any
5	kind of fragmentation.
6	If I let the oxidation continue in the
7	presence of the hydrogen, then the strength of the
8	material goes down. The toughness of the material
9	goes down, and I can take it in my hands and just
10	easily snap it or I could tap it with a hammer.
11	So you have to think beyond ductility in
12	the sense that you may still want to limit the
13	oxidation level in the balloon region to retain some
14	strength, but you don't have a chance at retaining
15	ductility.
16	Now, this is all we really initially
17	promised, and so the heart of the data is Section 3
18	through Section 6. We thought in Section 7 that we
19	would again, you have to realize that our data goes
20	out independently to industry and to licensing or
21	research and licensing and NRC, and for them to
22	independently assess the data and the application of
23	the data.
24	We thought we would take a shot at this in
25	modifying what was in Information Notice 9829, really

(202) 234-4433

	58
1	testing it. Actually the word is "testing." Does it
2	really work? Is it adequate? Does it mean that F
3	factor times the corrosion layer to make our data?
4	So that's really the spirit in which we
5	did the empirical criteria for embrittlement, plus
6	included the beyond this, we included the break
7	away oxidation, but up to this point is data
8	generation with some mechanistic explanation of why
9	the data behaves the way it does, and I'm still
10	revising this part.
11	Okay. Ralph gave you some good
12	background. Let me try to elaborate on it. As far as
13	post quench ductility for cladding oxidized in the
14	higher temperature regime, Ralph's schematic shows
15	oxide alpha and beta layers. I've got the same
16	schematic.
17	Following quench the beta goes to alpha.
18	We call it prior beta. Embrittlement, al of our
19	testing, we either test it at room temperature. If we
20	had adequate ductility, we said we were done up to
21	high UCR values. If we found embrittlement at low ECR
22	values, we retested 135 degrees C., which is kind of
23	where the reactor is just following quench of the
24	core.
25	And embrittlement at that temperature, if
	I

(202) 234-4433

	59
1	you're going to squeeze a ring, for example, at 135
2	degrees C., it seems to occur in zircaloy for a beta
3	layer oxygen content somewhere around .55 weight
4	percent. You can call it .6 if you'd like, and if you
5	look at the solubility, how much oxygen can the beta
6	layer handle?
7	This is just for understanding. If you
8	take as fabricated Zry-4, the oxygen solubility is
9	low. It's .24 at 1,000 degrees C., which means you
10	can oxidize that for a long period of time and you're
11	never going to get that beta layer brittle. At 1,000
12	degrees C. you'll probably break away and pick up
13	hydrogen before you embrittle the beta layer with
14	oxygen.
15	And it goes up to about .57 weight percent
16	for 1,200 degrees C. So this is just right at the
17	border where if you oxidize to about 17 to 20 percent
18	oxidation level, you will get embrittlement at 135
19	degrees C.
20	Now, we're interested in hydrogen because
21	of high burn-up. If you look at prehydride in Zry-4,
22	the oxygen solubility at 1,200 degrees C measured
23	increased from about .6 to 1.1 percent, which is well
24	above that with 600 weight parts per million hydrogen.
25	It's not that much different with 300 weight parts per
Į	

(202) 234-4433

	60
1	million hydrogen.
2	So hydrogen, what it's going to do is
3	let me go to my figure. This is the figure Ralph is
4	showing hydrogen will do two things. Right at this
5	boundary is the solubility limit of oxygen in the beta
6	layer. If you add hydrogen to the material and all
7	hydrogen in this material will go to the beta layer,
8	which has the high affinity, then this value will go
9	from about .57 to about 1.1.
10	At the same time, the long time solution
11	will go from this level to this level. Basically, the
12	hydrogen will increase your concentration gradient,
13	drive oxygen into that beta layer faster and the long
14	time solution will be significantly higher oxygen
15	level.
16	So that's what we know about the effects
17	of it. In addition to increasing the oxygen content,
18	the rate at which we pick up oxygen and your steady
19	state rate of oxygen, your solubility limit.
20	We do notice that there's an intrinsic
21	hydrogen induced embrittlement above and beyond just
22	increasing the oxygen. It's low, but it's very
23	significant. It takes us from samples that we thought
24	should be brittle to just above the ductility
25	criterion.
Į	I

(202) 234-4433

	61
1	So embrittlement rates the concentration
2	gradients in that beta layer will increase with
3	temperature, which will drive that boundary condition
4	up and with hydrogen, and the diffusivity of oxygen in
5	the material loss will also increase with temperature.
6	So in terms of embrittlement, increasing
7	the temperature, increasing the hydrogen content, all
8	push you in that direction.
9	We switched to break-away oxidation.
10	Ralph mentioned that at high temperature the oxide is
11	black by appearance in the tetragonal phase. It
12	transitions to the low temperature oxide monoclinic
13	gray phase, which is what you see in reactor fuel rods
14	that you pull out of the reactor.
15	The weak monoclinic oxide cracks give an
16	increase in oxygen and hydrogen pickup, and it's
17	strange. The tetragonal phase is I'll call it meta-
18	stable below 1,150 degrees C. because you can grow
19	this phase and it will appear without any monoclinic
20	oxide as low as 950 and even lower.
21	DR. POWERS: Well, you call it meta-
22	stable. I don't think it's meta-stable. It's
23	stabilized by the non-stoichiometry.
24	DR. BILLONE: It's stabilized by the non-
25	stoichiometry, and it's also stabilized by growing
	I

(202) 234-4433

	62
1	under compressive stress.
2	DR. POWERS: Okay. So it's an epitaxial.
3	DR. BILLONE: Yeah. I'm thinking of a
4	very layman term rather than a usually when we talk
5	about ZrO_2 , it's just very hard to measure the oxide
6	phase transformation temperature because it's very
7	hard to form it and grow it without some non-
8	stoichiometry and without some stress.
9	So that's why in the literature you'll see
10	1,100 to 1,150 as a phase transformation temperature,
11	but the statement is there's a lot of uncertainty.
12	The important thing for our work is if you just forget
13	this here. Initially at high temperature you will
14	grow the tetragonal phase. As the temperature gets
15	lower, below this limit, you get farther away from
16	that, and as you drive the material more towards ${ m ZrO}_2$
17	stoichiometric, then you're driving it towards the
18	monoclinic phase.
19	But what seems to be important is how this
20	oxide layer breaks up. The precursor to break-away
21	stability is a very wavy boundary that I'll show you
22	between the oxide and the metal. That means you've
23	got regions of alternating tensile and compressive
24	stress, and that precedes the break-away, the
25	transition to the weak monoclinic phase and the

(202) 234-4433

	63
1	cracking, and so the instability starts at the metal
2	oxide surface and then propagates outward and then
3	propagates axially and circumferentially.
4	Okay. This picture Ralph showed. Let me
5	go back a second. Let me try this. This came out a
6	little too dark. Sorry about that.
7	These are two samples just for fundamental
8	understanding. These are two samples of HBR type 15
9	by 15 low ten, Zry-4 oxidized at the same temperature
10	to the same oxidation level. One is as fabricated,
11	and these were quenched at 800 degrees C; the other,
12	that's 600 weight parts per million hydrogen.
13	This sample without hydrogen as expected
14	at well below the saturation level of oxygen, this
15	sample is extremely high ductility at room temperature
16	and 135 degrees C. The sample with the hydrogen is
17	extremely brittle.
18	The metallography doesn't tell you much.
19	The oxide layer is about the same. The alpha layer is
20	about the same, and the thickness of the beta layer is
21	about the same.
22	What's different about these two materials
23	is this one has a lot more oxygen inside here due to
24	the hydrogen that you've added to the material.
25	CHAIRMAN ARMIJO: Can you discern any
Į	I

(202) 234-4433

	64
1	hydrides from your metallography of these?
2	DR. BILLONE: You never can see hydrides
3	in the beta phase. Our French colleagues have shown
4	hydrides under certain slow cooling situations. If
5	you rapidly quench, you kind of freeze the hydrogen
6	CHAIRMAN ARMIJO: Too small?
7	DR. BILLONE: you freeze the hydrogen
8	in.
9	CHAIRMAN ARMIJO: In solution?
10	DR. BILLONE: In solution basically. If
11	you slow cool to room temperature, like from 800
12	degrees C. to temperature, that gives time for very
13	small hydrides to precipitate, and those have been
14	observed at CEA.
15	So basically the quenching process kind of
16	freezes the hydrogen into sort of the low oxygen beta
17	phase at that temperature and then it's frozen and you
18	don't see that it's hydrides.
19	Okay. To support my point as to one of
20	the things we do beyond just taking pictures, this is
21	extremely brittle. If it's brittle it should show up
22	in micro hardness, which is making small indents
23	across the radius and correlating that with a diamond
24	point hardness.
25	So just for fundamental understanding, I'm
Į	1

(202) 234-4433

	65
1	just showing you the beta phase of the as fabricated
2	material, and the lower the hardness valued, the
3	higher the ductility. So it makes sense that this
4	material, which only goes up to at this boundary about
5	.57 weight percent of oxygen, that this would be
6	ductile, whereas the red curve is for the prehydrided
7	sample. The oxygen content is gone from about .57 to
8	1.1. The hardness has increased significantly, and
9	then you've driven in more oxygen through the
10	concentration gradient and the overall hardness has
11	increased.
12	These are room temperature values.
13	CHAIRMAN ARMIJO: You said the oxygen
14	gradient follows those curves?
15	DR. BILLONE: Approximately, yes.
16	CHAIRMAN ARMIJO: Okay.
17	DR. BILLONE: But basically this would be
18	another way of looking at the effect of what the
19	hydrogen does to the material.
20	CHAIRMAN ARMIJO: But I thought you said
21	that the hydrogen would be uniform across the
22	DR. BILLONE: Hydrogen is uniform across
23	the material, but you have oxygen diffusing from this
24	side and oxygen diffusing from that side. So the long
25	time solution would be flat at the solubility limit.
I	I

(202) 234-4433

	66
1	You get embrittlement way before that.
2	Okay. This is really more conceptual
3	because I don't have enough data to do this plot, but
4	basically we have data from Chung and Kassner, 1979,
5	on what the oxygen solubility limits in the beta phase
б	are. Those are the numbers I gave you, .24 at 1,000
7	degrees C., .38 at 1,100 and .57 at 1,200 degrees C.
8	If we say that when the average oxygen
9	concentration gets up to about .55, that represents
10	this slide. So the point there is in order to
11	embrittle as fabricated materials, you've really got
12	to go to about 1,200 degrees C. to eventually
13	embrittlement. It may take a while to get it.
14	However, if you add hydrogen to the
15	material, and this is some CEA-AREVA-EDF data, based
16	on a very different technique than this one, and this
17	is 320 weight parts per million, 320 weight parts per
18	million hydrogen, and this is 600, the only two data
19	points I really have.
20	And so basically the oxygen content does
21	increase; the solubility limit does increase with
22	hydrogen, and so I've just given you kind of a cosign
23	function fit to that.
24	CHAIRMAN ARMIJO: There are no other data
25	in the literature to help you fill out that curve?
I	

(202) 234-4433

	67
1	DR. BILLONE: No published data yet. What
2	I don't have is data at 1,100 degrees C. and 1,000
3	degrees C. So I just basically assumed the same
4	difference just for illustrative purposes.
5	So certainly 1,100 degrees C. is benign as
6	far as embrittlement. As fabricated eventually if you
7	put enough hydrogen in it, you know, it's going to
8	become brittle at a lower ECR value, and a little
9	later, the 1,000 degrees C. would come in. So this is
10	just supposed to help you get a feeling for, again,
11	this solubility limit is your boundary condition for
12	diffusion, and the higher you go in hydrogen content,
13	the higher that boundary condition, the faster the
14	diffusion rate early on.
15	And it's your long time solution of what
16	you would flatten out to do this.
17	Okay. Break-away oxidation is kind of
18	fun. It's tedious, and it's easy to see. Again, this
19	is darker than what I am looking at on my screen, but
20	if you take a rough surface, HBR type cladding at
21	1,000 degrees C. oxidation and steam, if you go for
22	3,600 seconds you essentially pick up about 60 ppm of
23	hydrogen. You see a black tectragonal oxide layer,
24	which is protective. This sample is not in break-
25	away. If I take it another 30 minutes to 5,400
I	I

(202) 234-4433

	68
1	seconds, the sample is completely gray. I've picked
2	up 2,100 weight parts per million hydrogen, and you're
3	way past the break-away oxidation time.
4	It took us a surprisingly long time, and
5	I'll show you the results, to find out at 3,800 second
6	was the break-away time. We started here. We started
7	backing up. Then we started going forward, but
8	anyway, we were fortunate to catch this sample just
9	prior to break-away.
10	And what it looks like, what I wanted to
11	show you is just prior to break-away the break-away
12	time is 3,800 seconds. Is it my eyes or is it this?
13	Oh, well, I will proceed. It looks much better on the
14	computer screen than it does up here.
15	But 3,600 seconds, I did want to show you
16	the wavy boundary between this is the alpha layer.
17	This is the oxide layer, which is too dark to see,
18	unfortunately, and it's this kind of waviness that's
19	a precursor to break-away, and so 200 seconds later,
20	this oxide layer out here actually did break away.
21	DR. POWERS: That was one of the really
22	intriguing things in your data report, because you
23	have excellent photographs in there
24	DR. BILLONE: Right.
25	DR. POWERS: of the waviness.
ļ	I

(202) 234-4433

	69
1	DR. BILLONE: Much better quality than was
2	showing on the screen.
3	DR. POWERS: And so you're naturally
4	provoked to say, gee, when you get a waviness it's an
5	instability of some sort. What's driving the
б	instability?
7	DR. BILLONE: Well, I think I can explain
8	it after the waviness occurs, which I'm calling the
9	precursor. If you look at the peaks and valleys of
10	that waviness, again, you need compressive stress and
11	hypostoichiometry to stabilize the tetragonal phase at
12	this temperature. And I forgot how it goes, but in
13	part of the curve you have compressive stress. In the
14	other part I'm sorry. In part of this region you
15	have compressive stress at the metal surface and then
16	you're developing tensile stresses, which in the other
17	part of the surface. You have alternating tensile and
18	compressive stresses.
19	The oxide is growing with a higher volume
20	than the metal, and it tends to cause a compressive
21	stress at that boundary if it's a flat boundary. If
22	it's a wavy boundary, you're going to get alternating
23	tensile and compressive stresses.
24	And eventually that waviness will turn
25	into monoclinic oxide formation at that surface which
I	I

(202) 234-4433

	70
1	will propagate throughout the material, but as far as
2	explaining the precursor, that I can't do.
3	DR. POWERS: Well, I mean, it sounds
4	like
5	DR. BILLONE: Going from the flat surface,
6	the flat interface or the smooth interface to the wavy
7	one, I don't know.
8	DR. POWERS: Sufficient compressive stress
9	on it, it's relieving itself by buckling.
10	DR. BILLONE: Yours is as good as mine.
11	There are experts that maybe can explain it better
12	than I can.
13	CHAIRMAN ARMIJO: Mike, I'm going to have
14	to you've got 36 slides here and you're on Slide 6.
15	We're supposed to take a break around 30 minutes.
16	DR. BILLONE: All right. I'll do it. I'm
17	going to skip some of those slides.
18	Just very quickly, break-away transition
19	from modern cladding alloys, belt polished, 15 by 15,
20	Zry-4, 95 degrees C. is about 5,000 seconds. You can
21	hardly see it here, but there's a gray streak in the
22	black matrix, which is the beginning of the break-
23	away.
24	And for ZIRLO, I think you can see the
25	yellow patch that forms on the outer surface.

(202) 234-4433

	71
1	All right. I have a speech on weight
2	gain, ECR, and post quench ductility. Let me hold
3	that for questions in the interest of time.
4	I do want to show you one slide as to why
5	the CP ECR, or any kind of ECR or any kind of weight
6	gain, is really a measure of what you're throwing
7	away. It's a measure of your embrittled oxide layer,
8	and it's a measure of your alpha layer.
9	If we do a calculation of isothermal
10	conditions, like 1,200 degrees C. or 1,100 degrees C.,
11	and we look at the function of increasing weight gain
12	or ECR, if we look at the build-up of average oxygen
13	content in the beta layer, this would be what you
14	would start with as fabricated. This is your
15	solubility limit. So this is the equilibrium solution
16	over a long time.
17	And if you look at the fraction between
18	the average oxygen minus the initial oxygen divided by
19	that, there seems to be for Zry-4, anyway, a
20	correlation with the ECR up until you get to high ECR
21	values, and then you're slowly approaching saturation.
22	So it may be not a total coincidence of blind luck
23	that when we correlate our post quench ductility data,
24	this parameter, for Zry-4, that in a way we are also
25	correlating to the embrittlement mechanism, which is
ļ	I

(202) 234-4433

	72
1	the oxygen build-up.
2	Okay. One important point is to if I
3	poke you with the laser I'm sorry one important
4	point as to why we use CP ECR, there are alloys, in
5	particular the M5, which have lower weight gain, and
6	we just got data on the ten by ten Zry-2. Zry-2
7	behaves the same as Zry-4, but the Zry-2, ten percent
8	of the inner wall is a zirconium alloy. It's not Zry-
9	2, and that oxidizes much slower than the outer wall,
10	giving you a net decrease in weight. So the open
11	circles are the new data we've got for Zry-2.
12	CHAIRMAN ARMIJO: Whoa, whoa, whoa, whoa.
13	You're saying the liner on the inside oxidizes slower?
14	DR. BILLONE: Yes, and that was actually
15	pointed out to us by EDF and Nicholas in the back
16	room, circa 2000 or 1999. I can't remember when, yes.
17	CHAIRMAN ARMIJO: Pure zirconium generally
18	doesn't.
19	DR. BILLONE: Well, at 1,200 degrees C.
20	it's about the same. At 1,000 degrees C., and I don't
21	have the details of what's in there. There's some
22	small amount of oxygen in the zirconium liners, some
23	iron, but it's really a different alloy, and we notice
24	a dramatic difference.
25	The point about these slow this really
I	I

(202) 234-4433

	73
1	means that your oxide layer is growing very slowly,
2	and as a matter of fact, the difference in time
3	between this point and this point where there was
4	actually a decrease is about 600 seconds, and the
5	reason we don't correlate to measured weight gain is
6	that you may have almost no change in weight gain over
7	a five, six, seven, 800 seconds, whereas you do have
8	diffusion of oxygen into the beta layer. You have
9	continued embrittlement.
10	So we correlate much better, our ductility
11	data correlates much better to the temperature time
12	calculated value than this measured parameter here.
13	All right. The trouble with ECR and
14	then I'll move on to actual data. I apologize for the
15	long introduction is ECR and weight gain are
16	totally insensitive to how much hydrogen you have in
17	the material. The red points are prehydride in
18	materials with that level of hydrogen. Basically
19	oxide growth doesn't care what hydrogen is in the
20	metal, a very limited effect on the alpha layer and
21	the beta layer thicknesses and oxygen contents.
22	And so we have to keep that in mind if
23	we're going to use that as a metric for embrittlement.
24	We have to be a little bit careful because these blue
25	points are ductile, and these red points are highly
	I

(202) 234-4433

(202) 234-4433

	74
1	brittle, and so we need to be a little bit clever in
2	how we handle this because ECR does not include the
3	effects of hydrogen.
4	Okay. Let's skip test methods unless you
5	have questions and get into data.
6	CHAIRMAN ARMIJO: I did have a question on
7	your test methods.
8	DR. BILLONE: Which is probably the best
9	way for me to proceed is to ask.
10	CHAIRMAN ARMIJO: but you compress these
11	little ring specimens
12	DR. BILLONE: Right.
13	CHAIRMAN ARMIJO: after oxidation, and
14	I know that historically that's what was done.
15	DR. BILLONE: Not the way we do it, but go
16	ahead.
17	CHAIRMAN ARMIJO: Well, you do it better,
18	but
19	DR. BILLONE: Oh, of course we do it
20	better.
21	CHAIRMAN ARMIJO: But I wanted to know is
22	there a length effect on your samples? Do you use
23	these eight millimeter wide rings?
24	DR. BILLONE: Our Russian colleagues have
25	studied that and we've studied that. In the range of
ļ	I

(202) 234-4433

	75
1	maybe seven to 20 millimeters the answer is no.
2	CHAIRMAN ARMIJO: Okay. So it's fairly
3	insensitive to that.
4	DR. BILLONE: The maximum load that you
5	would reach obviously
6	CHAIRMAN ARMIJO: Sure.
7	DR. BILLONE: is the stiffness. It
8	obviously is, but the ductility that seems to be
9	independent of the length within that range. So we
10	haven't found a length effect, but again, doing
11	screening tests we are very careful to keep as much
12	the same as possible, and what you're varying is
13	oxidation level or alloy. So we fix it at the eight
14	millimeters and try not to have that as a variable.
15	CHAIRMAN ARMIJO: And you cut your sample
16	to avoid edge effects, you know, oxidation from the
17	sides of your
18	DR. BILLONE: No, we don't have the end
19	effects in the samples.
20	Okay. So in the interest of time I'm
21	going to run through these quickly, but again, you
22	mentioned the ring. That's too dark. Well, that was
23	easy.
24	CHAIRMAN ARMIJO: I didn't mean to do
25	that.
I	

(202) 234-4433

	76
1	DR. BILLONE: No, no, that's Chapter 2,
2	and I will go back if you have any questions.
3	Basically the two types of mechanical
4	tests that we run are the ring tests that we talked
5	about just now, and then a limited number of bend
б	tests with the balloon and burst cladding, where
7	there's some information and data on that in Chapter
8	6 of the report.
9	That's where we got the idea that if you
10	hold for one second at 1204 degrees C. given our LOCA
11	temperature history that we use, it takes about I
12	think it's 21 Newton meters to break the sample as a
13	bending moment, and then if you hold it for an extra
14	two minutes and oxidize more, it drops down to about
15	12, and if you held it longer, that bending moment
16	keeps decreasing.
17	Okay. Let me try to go through some of
18	the data. I showed it in July and I'll show the data
19	points that we've added.Basically, our goal if we'd
20	look at 1,000 degree C. was to oxidize two-sided up to
21	20 percent ECR, and what we found is that at 1,000
22	degrees C. as long as you haven't gotten into break-
23	away, what I said was true, that we don't embrittle
24	the alloys. The Zry-4 levels off at about three
25	percent offset strain. Zry-2 we only took up to 17
	I

(202) 234-4433

	77
1	percent ECR, but that was 14 percent offset strain,
2	and again, the ZIRLO and the M5 are ductile up to
3	those levels.
4	The E110 tubing due to break-away we
5	couldn't take the break-up very high. We couldn't
6	take it beyond seven percent ECR without hydrogen
7	embrittlement of material.
8	So 1,000 degrees C. is benign. We don't
9	have hydrogen in it. It's benign if you don't do
10	break-away oxidation. You just can't pump enough
11	oxygen into that beta layer to embrittle the material.
12	Alloys oxidized at 1,100 degrees C. are
13	even more benign. At 1,100 degrees C. you don't
14	experience break-away oxidation. So as long as you
15	don't have hydrogen, this is all as fabricated alloys.
16	Basically sine you don't have break-away you can't
17	pump enough oxygen in to embrittle. All you can do is
18	let it go for a long time until that beta layer almost
19	disappears or thins, and that's way beyond 20 percent
20	ECR.
21	CHAIRMAN ARMIJO: What's your strain where
22	you could find brittle or non-brittle? Is it two
23	percent?
24	DR. BILLONE: It's two percent and based
25	on there's two kinds of measurements we do. One is
ļ	I

(202) 234-4433

	78
1	a and sorry about the scale. This is load and this
2	is displacement. If you take as fabricated material
3	and you just compress the ring to get plastic
4	displacement, and in these kinds of tests, this is the
5	initial loading curve or thickness of the ring, and
6	usually you don't have the luxury of stopping a test
7	because you run it to failure and you get a big load
8	drop.
9	But if we stop with about two percent
10	plastic strain maybe it's 20 percent plastic
11	strain. Sorry if we stop at this point and
12	actually program the machine to unload, you unload at
13	a less stiff or more compliant rate, lower rate, than
14	we would if we just took this green line and moved it
15	over here.
16	So what is the error? What is the error
17	involved in using this initial loading curve, which is
18	all we're going to know for the tests that we're going
19	to run from now on.
20	We took every cladding material we had,
21	and we compressed them all two millimeters, and we
22	found that the difference between actually measuring
23	the change in diameter and determining it from this
24	type of approach is .2 millimeters or less. So .2
25	millimeters divided by about ten millimeters outer

(202) 234-4433

79 1 diameter gives you your two percent uncertainty. 2 So below two percent offset strain we're not saying the material is necessarily brittle. 3 We're 4 saying we're in the region which we can't tell, and 5 most of our tests we stop after the first significant load drop, get through-wall crack, and then measure 6 7 what we call the permanent strain, which is literally 8 the change in diameter of the material. So you don't 9 go through this uncertainty. 10 So we do both approaches. So for permanent strains, our criterion is one percent. 11 Below one percent material is brittle. 12 Let me say it another way. One percent or above, the material is 13 14 ductile for direct measurement, and if we're going to 15 use the indirect approach of the load displacement 16 curve, we say above two percent, greater or equal to 17 two percent strain is ductile. Below two percent we're not sure. 18 19 Okav. I did want to emphasize this again 20 about measured versus calculated ECR since we went 21 through this before, but this is our offset strain

22 data determined from the load displacement curve.
23 This is measured ECR. Everything is fine with Zry-4
24 when the measured and calculated weight gains are
25 about the same and, therefore, the ECR is about the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

same.

1

2

3

4

5

6

7

8

The oxide layer on M5 at 1,000 degrees C. grows very slowly and almost stops at 1,000 degrees C., and so the weight gain, even though I'm increasing my time, these tests are run at the same. These data points correspond to roughly the same time. This point here and that point there at the same time, but the weight gains are very different.

9 So between these two data points you have 10 about six to 700 seconds with almost no change in 11 weight gain. So if I look at the ductility, it looks 12 like, oh, my God, I hit a wall, and it suddenly 13 becomes instantly brittle. The fact is there's a lot 14 of test time at 1,000 degrees C. between this point, 15 this point, this point and that point.

16 And so what I say correlates better, although Harold has criticized me. 17 He says that It is what it is. What correlates better 18 correlates. 19 is to ignore the physical weight gain and just use the Cathcart-Pawel predicted ECR, and when you plot Zry-4 20 and M5 on the same scale, then they come down to about 21 22 the same high temperature strain.

And that precipitous drop is deceiving that you see on the previous page. It's just that the physical weight gain there doesn't really reflect for

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

80

1 М5 the oxygen diffusion into the metal. It's 2 literally just the oxide layer slows down in growing. 3 Okay. Eleven hundred degrees C. when I 4 said it was more benign, the Zry-4 is the black curve. 5 The ZIRLO is the green curve, and it does what I said it should do. When you get saturation of oxygen in 6 7 that beta layer, then as you increase time, the beta 8 layer just starts to thin, but it's still thick 9 enough, and there's almost no change in ductility of 10 the material, and the ZIRLO behaves comparable to that. 11 12 M5, we had one point which when you get to a point like this you want to double check. It looked 13 14 like it dropped to a brittle level at about 18.8 15 We ran a test for a higher temperature percent ECR. 16 а higher time. We tested it at room time, 17 temperature, and we also stopped the test right after the crack, tested at elevated temperature, and the 18 19 material is brittle. 20 So this data point here is a lot higher 21 quality than that data there. So M5 does get out to 22 20 percent ECR at 1,100 degrees C. 23 I have some D110 results. We got some 24 pretty good results when we polished machine and 25 polished E110, and we got results that are almost

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

81

	82
1	comparable to the allied results that you had at 1,100
2	and 1,200.
3	We couldn't save the alloy at 1,000
4	degrees C. It was too vulnerable to break away
5	oxidation, but in the report there are some E110 data.
6	All right. If we go to 1,200 degrees C.,
7	again, we are doing all of our tests and most people
8	in the world do their test at room temperature. It's
9	easy, but the way we set the program up is if we got
10	low ductility values of like nine percent to 11
11	percent at room temperature we would retest at 135
12	degrees C.
13	One of the alloys we tested at room
14	temperature, 100 and 135, but in general for 1,200
15	degrees C. you very quickly generate your first data
16	set and say, well, forget this. We're going to go to
17	the more prototypic temperature, which the criteria
18	are based, and it doesn't take that much more time.
19	So if I look at our database and I take
20	the minimum ductility points, not the average, and
21	then that's where whoever receives the data are free
22	to come up with their own numbers. The curves I'll
23	show you flatten out, but basically for the materials
24	we studied, the ECR for modern materials, the ECR
25	ranges from 17 percent to 20 percent, and the new data
I	I

(202) 234-4433

	83
1	would be the Zry-2 data, ten by ten. Zry-2 is not in
2	the report yet or maybe it is. Maybe it is on the Web
3	version, but you're in the range of 17 to 20 percent
4	ECR, with the exception of this cladding of the
5	1970s, '80s, and '90s, which doesn't behave as well.
6	We took E110 up to 13 percent ECR, and it
7	was quite ductile, and that's machined and polished
8	E110.
9	Okay. This is just the enhancement with
10	temperature. This is the room temperature data for
11	offset strain versus the 135 degree C. data, and you
12	can see there is a significant enhancement that's
13	worth testing at that temperature.
14	Just to show you that we also have
15	permanent strain, which is the direct measurement of
16	the change in diameter of the material before the test
17	and after the test, and that's really what we use to
18	determine the transition ECR.
19	So if I go to 17 percent I've got
20	essentially data points right at about one percent
21	strain, which is our limit, and if I go to a higher
22	ECR I've got one above and one below, and actually
23	this has got two data points above and one below. So
24	about 17 percent is what we picked, but really more
25	based on permanent strain even though we show a lot of
ļ	I

(202) 234-4433

	84
1	offset strain data.
2	Okay. Zry-4 is Zry-4 is Zry-4. Well, not
3	true, not in terms of what we're measuring. So if we
4	compare modern 17 by 17, belt polished, smooth
5	surface, modern 15 by 15, these are different vendors,
б	materials, and then the older, rough surface, and the
7	rough surface may have nothing to do with why it
8	behaves poorly. You could see that the older material
9	embrittles much more, a lower ECR, about 14 percent.
10	This is the 17 by 17 Zry-4 data, and actually that
11	comes down pretty close to the 15 by 15 Zry-4, but at
12	lower ECR, this material has more ductility, and Zry-2
13	that we have just tested falls in between these two
14	curves and come s out to about 19 percent.
15	Okay. That is again this is ZIRLO room
16	temperature versus the elevated temperature, 135
17	degrees C., and permanent strain. We have already
18	hammered that one.
19	Okay. The idea was to compare the modern
20	alloys to Zry-4 in our study. So always we'll have a
21	plot of the Zry-4 data and, for example, ZIRLO, and
22	you can see basically that the ZIRLO has higher
23	ductility than the Zry-4 and comes down kind of close,
24	but it's the difference between 17 percent and about
25	18 or 19 percent in terms of transition ECR, and this
	I

(202) 234-4433

	85
1	is our two percent criterion.
2	M5, we already saw this. That's the
3	temperature relation. What I want to look at is this
4	one. This is M5 compared to Zry-4, and M5 at 20
5	percent has exactly one percent permanent strain, and
6	a little higher than two percent offset strain. So M5
7	is ductile, right at the limit of 20 percent ECR.
8	Okay. From a metallurgical point of view,
9	all of these samples are quenched at 800 degrees C.
10	That was our test protocol. There really should be no
11	difference in as fabricated alloy behavior whether you
12	quench at 800 or you cool to room temperature if
13	oxygen is basically immobile, below 800. The fusion
14	is so slow there's nothing really that's going to
15	happen. Your phase changes have already happened.
16	Oxygen doesn't move around. So basically we did a
17	limited number of tests that we varied our procedure
18	and instead of quenching at 800, we slow cooled.
19	The results are kind of interesting in
20	that at 17 percent ECR, this is one data point; this
21	is another data point. Slow cooled are the open
22	circles, and there's another one you can't see in
23	here.
24	Within the scatter of the data, there was
25	actually no effect of slow cooling versus quench.
I	I

(202) 234-4433

There is a possible enhancement at 13 percent ECR, but this curve is changing so rapidly that if you put enough data points on it, this may have no effect whatsoever.

5 So possible enhancement at lower ECR values, Zry-4 by sow cooling. 6 The ZIRLO data points 7 were slow cooled. We don't understand why, but they They still were ductile, 8 fell below the trend curve. 9 but when you got up to 17 percent ECR, the slow cooled 10 and the quenched samples were all in the same range.

And for M5 we saw absolutely no effect of slow cooling versus quench. It's hard to distinguish the points. This would be slow cooling, and these two would be quench.

15 So the issue is cool rate and quench temperature really comes up for the hydrided materials 16 and for as fabricated materials, it doesn't seem to 17 matter. Our CEA colleagues actually guench from the 18 19 oxidation temperature very rapidly. We cool at a 20 certain rate to 800 and then quench, or we cool and 21 then continue to cool at room temperature. It doesn't 22 seem to be a significant difference in databases.

23 CHAIRMAN ARMIJO: In doing this work did 24 you look at varied strain rates to see the sensitivity 25 to strain rates?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

	87
1	DR. BILLONE: We only did one test where
2	we varied the strain rate for one material. We
3	increased the strain rate by a factor of ten and we
4	saw a decrease in ductility with a factor of ten
5	increase in strain rate, and at the time when we
6	presented this the sponsors and the partners were more
7	interested in, given the size of the test matrix,
8	fixing the strain rate, fixing the temperature at the
9	135 degrees C. and then getting into studying the
10	effects of hydrogen as soon as possible.
11	CHAIRMAN ARMIJO: Was there a basis for
12	picking the strain rate that says, "Hey, this is
13	closer to the kind of strain rates or loadings we
14	might see in"
15	DR. BILLONE: No, we're not trying to
16	simulate any kind of loadings. This is closer to
17	Hobson's strain rate back in 1973.
18	CHAIRMAN ARMIJO: So just sticking with
19	that.
20	DR. BILLONE: He did slow strain rate and
21	very fast strain rate tests, and the Commission only
22	used the slow strain rate data. They do not use the
23	high strain rate data. So it's partly tradition.
24	DR. ABDEL-KHALIK: Let me just try to
25	understand one thing here. You have a lot of data on
	I

(202) 234-4433

88 1 measured ECR, and yet you elected to set all of that 2 aside in favor of using this empirically predicted 3 value. 4 DR. BILLONE: Right. 5 DR. ABDEL-KHALIK: And that's presumably 6 biased by what? By the need to retain the 17 percent 7 rate? 8 DR. BILLONE: Oh, no, no, no. 9 DR. ABDEL-KHALIK: Or what? First of all, for Zry-4 10 DR. BILLONE: there's hardly any difference between the measured and 11 the predicted. 12 DR. ABDEL-KHALIK: I understand. 13 14 DR. BILLONE: In the back of our minds we 15 know that vendors who are doing these calculations don't have the luxury of measuring weight gain. 16 Ι mean, basically they calculate it, and ultimately for 17 a hypothetical LOCA you need to come up with a scheme 18 19 in terms of something you can calculate. 20 DR. ABDEL-KHALIK: Well, why not correlate 21 your own data based on the actual measurements? We did. 22 We got severely DR. BILLONE: 23 criticized the last time we came here in July 2005 24 because we preferred weight gain at that time for a 25 particular alloy like Zry-4 because if there's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	variations from test to test and the test strain, it
2	works a little bit. The temperature changes a little
3	bit. That would be captured by the measured ECR,
4	which would reflect the temperatures.
5	But the message was that ultimately have
б	this material be usable by vendors and by NRC. You
7	needed really to present it in terms of something you
8	can calculate.
9	DR. ABDEL-KHALIK: You have sort of really
10	valuable information.
11	DR. BILLONE: It is, but then when we ran
12	into the M5 example where knowing that weight gain was
13	really a measure of what you're kind of throwing away
14	as brittle, it's a measure of the oxide layer
15	thickness and to some extent the brittle alpha layer
16	thickness, and when we saw the dramatic difference
17	with M5 in the fact that we extend the test 700
18	seconds at 1,000 degrees C., yet no change in measured
19	weight gain and get a significant decrease in
20	ductility. It no longer made sense to continue to use
21	measured weight gain under all conditions.
22	So the idea of switching to this is
23	diffusion processes like oxygen diffusion into the
24	beta layer and through the beta layer. It has got an
25	exponential of minus Q over RT, and it goes to the
ļ	

(202) 234-4433

	90
1	square root of time, and this parameter on the bottom
2	also has a square root of time and an exponential
3	DR. ABDEL-KHALIK: But clearly, there must
4	be something else going on whereby your measured ECR
5	for M5 is significantly different than what this
6	empirically predicted value is.
7	DR. BILLONE: Yeah. What's going on seems
8	to have nothing to do with the mechanism of
9	embrittlement, which as long as you can keep the
10	oxygen concentration a the edge of the beta layer up
11	around .57, .6, you will drive that much oxygen into
12	the material over time. As time increases, you can
13	drive more oxygen. It doesn't matter whether the
14	oxide layer is 30 microns or 40 microns. It doesn't
15	matter that it has stopped growing and it may be 30
16	microns.
17	So there's a disconnect. For Zry-4 it's
18	all in harmony, but for other alloys, even for Zry-2
19	with the zirc liner it doesn't work as well to
20	correlate to measure ECR. It's all in the report, and
21	the point is you're all free to assess the quality of
22	the data using that because within an alloy class like
23	within one lot of Zry-4, there should be a correlation
24	between the predicted and the measured.
25	As a matter of fact, when that gets more
I	I

(202) 234-4433

	91
1	than ten percent different, we build a new test train.
2	We use that as a metric for the quality of our test
3	train and our benchmarking.
4	DR. ABDEL-KHALIK: Thank you.
5	DR. BILLONE: Okay. I'm not moving fast
6	enough, but let's see where we are.m
7	CHAIRMAN ARMIJO: Yes, we're way behind
8	schedule, but we're going to eat into the break a
9	little bit.
10	DR. BILLONE: We don't want me to be
11	responsible for that.
12	CHAIRMAN ARMIJO: Yeah, I'd like you to
13	move along.
14	DR. BILLONE: I think this is important.
15	So I do want to pause a little bit. Ralph, gave you
16	some background data from Leistikov and Schanz, and
17	what I think was 1970 standard means rough surface,
18	may have had etching involved in processing the
19	material. A very extensive study, and they found
20	minimum break-away oxidation time at 1,000 degrees C.
21	Before we started our program we did the
22	literature search, and that break-away was about 1,600
23	seconds based on weight gain and about 1,800 seconds,
24	which are much lower numbers than I am going to be
25	showing you for more modern alloys, but based on
I	I

(202) 234-4433

	92
1	picking up 200 ppm of hydrogen, it was a little bit
2	later.
3	There is published data by AREVA, CEA,
4	EDF, Mardon, <u>et al</u> ., on modern low tin for 17 by 17.
5	That's belt polished, and they got very high break-
6	away times at 1,000 degrees C. It showed it in terms
7	of hydrogen pickup that it was about 5,400 seconds.
8	So you're talking 1,800 seconds for '70s
9	cladding in this particular test and significantly
10	higher for the more modern cladding.
11	There was also results presented for 17
12	M5, which showed break-away times very large relative
13	to what we think of as LOCA relevant times, and this
14	was significant to us because we put M5 last on our
15	list of priorities because there was always some data
16	that showed extremely high break-away times.
17	we had our own results for E110 tubing and
18	cladding and the ANL modified E110 as background, and
19	based on the results I already showed you at 1,000
20	degrees C., although all the samples were ductile at
21	20 percent ECR and 1,000 degrees C., we did notice
22	that the ZIRLO picked up 100 weight parts per million
23	of hydrogen. It turns out the inner surface was just
24	into break away oxidation. We got some hydrogen
25	pickup, but 100 ppm did not affect the ductility at
I	1

(202) 234-4433

1

2 So that's the background going into our 3 study. Again, Ralph showed you this curve meaning e 4 would have to search a little bit. This is a curve 5 for Zry-4 based on their data. If we wanted the minimum oxidation time, we'd have to be kind of clever 6 7 about it in searching, and the cleverness is basically you start at 1,000. You find out what your minimum 8 9 time is, drop your temperature ten or 15 degrees C. If the sample is black and there's no hydrogen pickup 10 11 at that test time then you're okay and drop it a 12 little further. And as you keep getting lower minimums, 13

And as you keep getting lower minimums, you keep using that as your metric for the next test. So at best we explored between about 1,025 and 950 and also ran the test at 800.

Okay. This is the sample that we had tested for about 3,400 seconds. It's not part of our break-away oxidation test, but this is our ZIRLO sample. You can see the outer surface has got the precursor to break away as most alloys do. It has got the weighted boundary.

The inner surface, if you've got a better view of it. You can actually see gray on the surface of the inner surface and some cracked oxide. You

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	94
1	don't pick up much hydrogen, but you pick up about 100
2	ppm, and again, 100 ppm at room temperature was not
3	enough to affect the ductility.
4	So anyway, a couple of things about our
5	reported numbers. We're reporting times from the
6	beginning of the temperature ramp starting at 300
7	degrees C. at the end of the hold time. The ramp time
8	is about 75 seconds, which is trivial to numbers like
9	4,000 and 5,000 seconds.
10	The cooling time is only about 20 seconds
11	from 1,000 degrees to 800 degrees C. We're not
12	including that.
13	As I say, our approach was to try to find
14	the minimum break-away time at 1,000 degrees C., move
15	up a little and then down a little to see whether the
16	alloy was okay at those temperatures at that
17	particular time.
18	Now, our criterion for break-away
19	oxidation you can argue with, but I want to point out
20	a couple of things. We chose 200 weight parts per
21	million hydrogen pickup. It's very hard to exactly
22	hit 200 because when break-away starts, it's an
23	instability phenomenon and your hydrogen takes off on
24	you.
25	So break-away is an instability phenomenon
	I

(202) 234-4433

	95
1	with rapid hydrogen pickup following break-away.
2	Generally in life you learn to stay away from
3	instability phenomena, and the embrittlement is
4	definitely due to the hydrogen pickup. You don't pick
5	up enough oxygen to embrittle that material all by
б	itself.
7	And we also confirmed that the ductility
8	is retained for these alloys when you test it at 135
9	degrees C. when you do have 200 ppm.
10	Now, for every test that we ran, we had
11	rings cut to run ring compression. So samples that
12	pick up 500 ppm hydrogen, 1,000 ppm hydrogen, we
13	didn't test those, but if someone would like to
14	contest the 200 ppm criterion and say, well, gee, I
15	think it's brittle at 300, let us know and we could
16	just squeeze those rings so that it would be very
17	trivial.
18	So the testing sequence for us was to
19	start with the Zry-4 because we had the baseline data
20	for that. We had no data for ZIRLO published in the
21	literature of break-away oxidation, and then we moved
22	to the ten by ten Zry-2. That work has been
23	essentially completed, and then five would be last on
24	our list just based on the published data being so
25	high for break-away.
ļ	

(202) 234-4433

	96
1	Okay. Just quickly time. We call this
2	rough surface material. We don't know the surface
3	chemistry of this material. It's our baseline
4	material for a high burn-up Zry-4. We don't know why
5	it breaks away earlier. We do know it has a much
6	rougher surface. The surface chemistry might be
7	different, but at about 985 degrees C. long time
8	temperature it breaks up at about 3,800 seconds, which
9	is better than Leistikov's material but low compared
10	to the values I'll show you.
11	We wanted to compare a modern 15 by 15
12	Zry-4. We also ran out of 17 by 17 Zry-4. So we had
13	no choice. So we used the 15 by 15 Zry-4, which is
14	belt polished, and again, at the same temperature we
15	get a break-away time of 5,000 seconds. That's
16	comparable to the Mardon results at 5,400 seconds.
17	So the belt polishing seems to have an
18	effect, and whatever subtle changes in chemistry that
19	may have been made from 1970s to the modern day seem
20	to help on this.
21	We also explored temperatures in this
22	range with a second test train.
23	So that's our Zry-4 results, and if I want
24	to plot it, you can see for the rough surface cladding
25	at 3,600 seconds we got almost nothing. At 3,800
	I

(202) 234-4433

	97
1	seconds we got nothing for one sample and got high
2	hydrogen content for another, and then, of course, if
3	you go beyond that, you get extremely high hydrogen
4	pickup.
5	The point about break-away oxidation, and
б	I think it's a no brainer, you kind of want to stay
7	away from this, and what's good enough if you're below
8	the 200 ppm hydrogen pickup, you at least know you
9	have ductility. You may have ductility at 250, but
10	who's talking? Who wants to quibble about 100 seconds
11	out of 5,000 seconds or 4,000 seconds?
12	The belt polish material did pick up
13	hydrogen more slowly, and this is about the 5,000
14	second point.
15	Okay. Quickly, we're fortunate enough our
16	furnace has a window. So instead of just arbitrarily
17	running test times, you can look for patches of gray
18	that may form, which means the transition has already
19	started, and for this particular belt polished
20	material at break-away, 5,000 seconds, we cut a two
21	millimeter ring for hydrogen analysis in the center or
22	
	wherever this gray region is, and we cut eight

24 But the outer surface is -- I can't see 25 it. I don't know what you can see -- is cracked. The

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	inner surface is a precursor to break-away, but it's
2	not in break-away. So those are the kinds of results
3	that we're looking for.
4	Okay. So let's summarize. All right.
5	For ZIRLO, we had a test matrix where we started at
6	1,000. We went up to 1,015 and then we went down.
7	What we found was that 970 degrees C. plus or minus
8	five that's the variation circumferentially around
9	our sample we got what we think is the minimum
10	break-away time from about 3,000 seconds. So it
11	actually breaks away earlier at this temperature than
12	it does at 1,000 degrees C.
13	What was encouraging though is we machined
14	a 20 micron deep scratch in the material, and that
15	scratch did cause local break-away oxidation to occur
16	in the region of the scratch, but the hydrogen pick-up
17	was negligible.
18	So at 2,600 seconds with a 20 micron
19	scratch the material was good and without the scratch
20	at 3,000 seconds it had already picked up exactly 200
21	ppm of hydrogen.
22	And the sample was ductile, but again,
23	we're stopping at that 200 ppm point. It did better
24	at 950 and it did better at 800 degrees C., but all we
25	did was basically one test at each of these to make
Į	

(202) 234-4433

	99
1	sure that we didn't have a lower minimum time.
2	Okay. Metallography confirmed that we had
3	outer surface break-away oxidation, and one of the
4	ricks that picked up about 175 ppm of hydrogen with a
5	lot of variation of hydrogen, as much as 440 ppm
б	locally, that had five percent ductility at this test
7	temperature.
8	In all, we conducted 17 tests, and so
9	rings are available with this range of hydrogen
10	content for ring compression ductility tests if
11	someone is interested.
12	Again, too dark. I'm not going to show
13	metallography today.
14	Okay. We just finished our testing at
15	1,000 degrees C. and we're up to 5,000 seconds for
16	Zry-2 with the zirconium inner liner, and we don't
17	have any break-away that we've observed, no hydrogen
18	pick-up for the Zry-2. We've got other tests planned
19	to investigate it, but we really don't expect any
20	surprises with this material.
21	CHAIRMAN ARMIJO: Do you have any estimate
22	of what the break-away would be if it was just Zry-2
23	with no liner?
24	DR. BILLONE: No, we don't have any
25	such well, we could do that. We could weld the
I	I

(202) 234-4433

	100
1	material.
2	CHAIRMAN ARMIJO: I'm just saying that,
3	you know
4	DR. BILLONE: We do.
5	CHAIRMAN ARMIJO: there's some older
6	material around.
7	DR. BILLONE: No, no. I'm sorry. We do.
8	In 2001 we did a whole series of one-sided oxidation
9	tests of Zircaloy-2, high burn-up and as fabricated.
10	So the liner wasn't involved. It was just outer
11	surface, and we didn't know we were doing break-away
12	oxidation tests at the time, but basically I can tell
13	you the outer surface based on that data is certainly
14	greater than 3,000 seconds and less than 6,000
15	seconds.
16	CHAIRMAN ARMIJO: They're similar.
17	DR. BILLONE: Similar. Okay. All right.
18	I don't know if you want to take a break right now.
19	I want to switch to prehydrided material. A coffee
20	break?
21	CHAIRMAN ARMIJO: Probably we should do
22	that. Let's take a
23	DR. BILLONE: And then I'll figure out how
24	to.
25	CHAIRMAN ARMIJO: Yeah, because you've got
	I

(202) 234-4433

ĺ	101
1	a lot of material in the next session. We're going to
2	try and wrap up the test procedures. Let's get back
3	here at 11:15.
4	DR. BILLONE: Okay.
5	CHAIRMAN ARMIJO: Okay.
6	(Whereupon, the foregoing matter went off
7	the record at 11:05 a.m. and went back on
8	the record at 11:21 a.m.)
9	CHAIRMAN ARMIJO: Okay. Let's come to
10	order.
11	DR. BILLONE: Okay. I think I can go
12	faster with my jacket off.
13	CHAIRMAN ARMIJO: Okay. Roll up your
14	sleeves, Mike, and let's go.
15	DR. BILLONE: We're into Chapter 4 of the
16	NUREG report, which is prehydrided materials, and
17	again, everything I have presented to you so far is
18	directly applicable to fresh cladding put in the
19	reactor. It also serves as a baseline for everything
20	else I'm going to show you in terms of baseline data.
21	So now let's look at prehydrided Zry-4
22	where before we oxidize the samples we're going to put
23	hydrogen in them and then we're going to do post
24	quench ductility tests at 135 degrees C. Our target
25	temperature is 1,200 degrees C.
	I

(202) 234-4433

	102
1	Again, Dana mentioned this point. With
2	prehydriding we had an initial campaign. God, I think
3	it was like June 2004, in which the samples had
4	circumferential and axial gradients in hydrogen. The
5	furnace had small gradients, and we took those samples
6	and decided to fix the oxidation level and cut samples
7	with different hydrogen contents. So we did something
8	that no one else has done. Instead of having every
9	sample at 600 ppm, we had a variety of hydrogen
10	levels, and we just fixed the oxidation level so we
11	can map out the embrittling effects of hydrogen at a
12	fixed oxidation level.
13	But, again, during the short time tests of
14	100 to 150 seconds, the gradients did remain in those
15	directions, not through the wall of the cladding,
16	which we couldn't measure, but in these larger, longer
17	directions circumferential and axial.
18	In the second campaign, which was more
19	recent, we reduced the gradient significantly, but we
20	did generate a hydride rim where we went above about
21	300 ppm of hydrogen.
22	So we haven't mastered this art, but we
23	take what we can get out of each sample.
24	Let me summarize the results for Zry-4,
25	and again, this is going to be data that we're going
ļ	I

(202) 234-4433

	103
1	to use to plan the in-cell test and also to help
2	interpret the in-cell test.
3	The data I'll first give you is all
4	samples are standardly quenched to 800 degrees C. At
5	five percent fixed ECR for the H.B. Robinson type Zry-
6	4 you don't quite get to 1,200 degrees C. and I'll
7	show you in my next plot. You get to in one case
8	1,180 and 1,190. It means you're picking up the five
9	percent in the ramp, and most of your oxidation is
10	occurring at less than 1,200 degrees C.
11	However, from 600 ppm of hydrogen and five
12	percent ECR with this peak temperature, you embrittle
13	at that level of hydrogen. So lower hydrogen levels,
14	you're ductile; higher hydrogen levels, you're
15	brittle.
16	All right. If you increase the six
17	percent ECR, we only had one set of samples at 450
18	weight parts per million. The sample was brittle at
19	450 weight parts per million and six percent ECR. So
20	we just increased the oxidation level by one percent,
21	and the hydrogen level was decreased by 150 ppm and
22	the sample was still brittle with quench.
23	When you go up to 7.5 percent, we had data
24	sets for modern cladding and the older cladding, and
25	both seem to embrittle at about 375 plus or minus 25
Į	I

(202) 234-4433

	104
1	weight parts per million hydrogen at seven at a half
2	percent CP ECR. When I show you the data, maybe the
3	17 by 17 is more like 400 and maybe the 15 by 15 is
4	more like 350, but within the scatter we can't really
5	tell.
6	And then this cladding which is a better
7	cladding in the as fabricated condition we took up to
8	ten percent ECR, and we get embrittlement at about 300
9	ppm of hydrogen, and that's all with quench. I'll
10	just show you the results graphically. Stop me if
11	something is not clear.
12	But this, as I say, is an unusual study.
13	This is the 15 by 15 at cladding at five percent ECR
14	where you're less than or equal to 1,190 seconds
15	throughout the transient, and the effects of hydrogen
16	are essentially nothing as fabricated, nothing about
17	250 ppm, and then when you get above 300 ppm, you
18	start to see the effects of the hydrogen.
19	So interpolating these two values,
20	brittle, ductile, you come up with about 600 ppm as
21	the transition.
22	DR. POWERS: You show curves on all of
23	your data plots.
24	DR. BILLONE: Trend curves. They're not
25	calculated by some program.
I	1

(202) 234-4433

	105
1	DR. POWERS: They're just French curve
2	DR. BILLONE: Artistic.
3	DR. POWERS: Artistic.
4	DR. BILLONE: Renditions. We're trying to
5	get the trend which we think is kind of a reverse S
6	shape where oxygen has a little effect and then a more
7	dramatic effect and then levels off. They're not best
8	estimate and they're trend curves we've put on there
9	because we want to add data to these curves for slow
10	cooling and quench and other temperatures to get
11	comparison.
12	Okay. I hope the blue shows up. The open
13	blue circles are the 17 by 17 Zry-4 which based on as
14	fabricated data should be a lot better than the 15 by
15	156, and of course, it is at the intermediate hydrogen
16	contents. We don't have enough data, but by about 420
17	ppm of hydrogen that Zry-4 is brittle. This is a big
18	extrapolation between this point and this point, but
19	you come up by about 375.
20	So is it better? I don't know. We would
21	need more data. We're out of material. We can't
22	answer that question, but certainly increasing the
23	oxidation level decreases the hydrogen at which
24	embrittlement will occur.
25	So you increase the oxidation level.
I	I

(202) 234-4433

	106
1	Yeah, I know how to say that, but I'm not going to say
2	"right."
3	And then we did ten percent, which is this
4	curve here. I've also plotted the seven and a half
5	percent for the same cladding, which is 17 by 17 Zry-
6	4, and if you follow the trend of this data, this is
7	brittle. This is ductile. So about 300 ppm is the
8	crossover.
9	This is kind of useful if you're thinking
10	of the effects of hydrogen as a function of burn-up
11	because I show you fresh cladding results. If I just
12	show you high burn-up results, 600 weight parts per
13	million hydrogen, that's sort of the end point, and
14	you learn nothing about the transition. So this kind
15	of helps give you a clue.
16	If you map the corrosion layer growth as
17	a function of burn-up and the associated hydrogen as
18	a function of burn-up, you have some idea of what the
19	effects of that hydrogen is from the beginning of
20	operation to end of operation.
21	All right. At the last ACRS subcommittee
22	meeting, it was mentioned the effects of quench
23	temperature or quench temperature may have a
24	significant effect on ductility following quench. So
25	we ran two types of tests. We did a lot of tests
	1

(202) 234-4433

107 1 where we cooled to room temperature without quench for 2 samples oxidized in this range, five to seven and a 3 half percent. 4 I'll show you in the graphs. There was a 5 small but very significant enhancement in ductility. A couple of percent is enough to kick you from brittle 6 7 to ductile, and the results were very, very flat in the sense that they didn't -- they nosedived, but they 8 9 nosedive and level off at a ductile level, and 10 basically there was an increase or a fixed ECR. The increase in hydrogen to cause embrittlement was about 11 12 180 weight parts per million. That's a lot. So there's something that's happening 13 14 during slow cooling where the extra hydrogen doesn't 15 seem to contribute to the embrittlement. CHAIRMAN ARMIJO: Now, what is the reason 16 17 why someone would say, well, you ought to slow cool Is there a system issue? 18 versus quench? 19 DR. BILLONE: Oh, no, it's not that. It's 20 a practical issue in that our in-cell tests, we have 21 to run several slow cooled tests to map out the 22 ductility because we're not guaranteed more than one 23 quench before the thermocouples pop off. 24 So the motivation for running the slow 25 cooled test is to help us interpret the in-cell test

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	108
1	with high burn-up cladding.
2	CHAIRMAN ARMIJO: But I read in one of the
3	handouts or some of the earlier material though that
4	the CEA had an issue. They tested
5	DR. BILLONE: I've got their graph.
б	CHAIRMAN ARMIJO: Right, and they seem to
7	prefer a slow cooling compared to a quench. That's
8	what I got.
9	DR. BILLONE: When I get to their graph,
10	why don't I explain that?
11	CHAIRMAN ARMIJO: Okay.
12	DR. BILLONE: And this is an experimental
13	issue, but it also relates to a LOCA issue in the
14	sense that calculated wetting temperatures I'm
15	using "quench" synonymous with when the water actually
16	wets the cladding surface and you get rapid cooling,
17	and I'm just talking about at what temperature does
18	rapid cooling occur, and does it matter in terms of
19	ductility?
20	It shouldn't matter in terms of oxygen
21	moving around, but it turns out it has a huge impact
22	on what hydrogen does, and so you're bounding. You've
23	got two cases. You've got a CEA case where they
24	initially quench from like 1,200 degrees C. rapidly,
25	argon quench from 800 degrees C., and then the other
ļ	I

(202) 234-4433

	109
1	extreme is just don't quench at all.
2	And since that time we've been looking at
3	intermediate quench temperatures because usually, I
4	mean, calculated ones I don't have I'm not an
5	expert in thermal hydraulics, but you see cases shown
6	with 400 degrees C. wetting temperature, 500 degrees
7	C., and so where the 800 came from, it looks like a
8	reasonable upper bound of LOCA quench temperatures,
9	but it may not doing all of the tests with 800
10	degrees C. quench may not allow you to take full
11	benefit of some of the not annealing, but some of the
12	good effects that could happen during cooling.
13	CHAIRMAN ARMIJO: Okay.
14	DR. BILLONE: So we're trying to quantify
15	this. Okay. The six percent sample that was brittle
16	with 800 degrees C. quench was ductile. We got a
17	little more hydrogen with slow cooling, and the seven
18	and a half samples, the embrittlement hydrogen content
19	increased from about 375 to 550 weight parts per
20	million. So that's quite a significant swing in how
21	much hydrogen it takes to embrittle a sample when you
22	slow cool it.
23	We also looked at 600, 700 and 800 because
24	the CEA results which I'll show you showed a very
25	significant enhancement in ductility if you quench at
I	I

(202) 234-4433

	110
1	600 or 700. However, those results I'll show you are
2	from extremely slow cooling rates from 800 to 600 to
3	700. So when I end up showing you the argon cooling
4	rate and the CEA cooling rate, basically what you have
5	are two bounds. Ours is faster than a LOCA would
6	cool. The results are very much slower.
7	So for testing these three temperatures,
8	we did seven and a half percent ECR, but we used a
9	very aggressive heating rate, a very fast heating
10	rate. We allowed it to go to 1,216 degrees C. for a
11	few seconds, and that turned out to have a very
12	embrittling effect on the material.
13	So 300 weight parts per million hydrogen
14	we expected to be ductile at all of these quench
15	temperatures based on previous stuff, but just because
16	of the aggressive heating rate and the higher
17	temperatures, it was brittle for the two quench
18	samples, 700 and 800, and ductile for no quench or
19	slow cooling.
20	Six percent we talked about, and we
21	already know it was brittle for 800 degrees C. quench.
22	Seven hundred degrees C. quench, new data. Six
23	hundred degrees C. quench, all brittle. Something is
24	happening between 600 degrees C. and maybe 200 degrees
25	C. in terms of hydrogen coming out of the solution
l	

(202) 234-4433

	111
1	such that the slow cooled sample was ductile, but the
2	quench at these temperatures were brittle.
3	So in our work with our cooling rates,
4	which are relatively fast, we have seen no enhancement
5	of ductility for quench temperatures greater than or
6	equal to 600 degrees C. I expect that the difference
7	between these tests and the slow cooling with no
8	quench means that somewhere below 600 degrees C. there
9	should be an enhancement in ductility. We haven't
10	mapped that out.
11	Let me show you the CEA results, and let
12	me remind you well, let me show you some results
13	and get off the words. First of all, in terms of
14	temperature, this is our typical temperature history
15	of heating very, very fast to about 1,100 degrees C.,
16	and then to avoid overshoot, we slow it down to a
17	couple of degrees C. per second on the average for the
18	last 50 degrees C. to get to 1,200.
19	We cool faster than a LOCA. If you take
20	the temperature here and the temperature there and the
21	time, there's two things that are different. A LOCA
22	cooling would have a different curvature, but on the
23	average, if you're interested in how much time you
24	spend, and this is an average of 13 degrees C. per
25	second cooling rate. The CEA cooling rate is less

(202) 234-4433

	112
1	than a tenth of a degree C. per second.
2	So the amount of time that the CEA samples
3	spend at these temperatures is much, much greater than
4	the amount of time that our samples are, and it seems
5	to matter most in going from 800 to 700 to 600.
6	Okay. Quickly, that's the effects of slow
7	cooling, and it's better shown on permanent strain,
8	which is what we use, but I'll show it on offset
9	strain.
10	We had some high, in the 700s, 720 to 780,
11	weight part per million hydrogen samples, which I
12	insisted were going to be brittle. They had to be.
13	It's too much hydrogen. But when you cool them
14	without quench, they have this. These are all
15	ductile, and with your eye back there, you say, "Well,
16	gee, there's not much difference between these two."
17	But it's the difference between dropping
18	well below our criterion and being a couple of percent
19	above.
20	Okay, and this is the higher ECR in which
21	we had no noticeable difference for triangles versus
22	the circles, meaning quench at 700 to 800, but again,
23	you see the same trend. The slow cooled samples are
24	all essentially ductile when you give hydrogen time to
25	come out of solution.
ļ	I

(202) 234-4433

	113
1	CHAIRMAN ARMIJO: Is there pretty good
2	agreement on the mechanism that's going on?
3	DR. BILLONE: Yeah, it's just I don't feel
4	free to show CEA results. We had a June meeting
5	yes, yes. I'm sorry. The simple answer is yes, but
6	it's not Argonne data. It's CEA data.
7	CHAIRMAN ARMIJO: What is the mechanism?
8	DR. BILLONE: Well, based on observation,
9	hydrogen does two things when it's frozen into this
10	beta layer. First of all, at temperature it allows
11	more oxygen to get in and causes more hardening.
12	There seems to be a hardening above and beyond that
13	based on hydrogen in solution in the beta phase. So
14	if you cool rapidly and freeze that hydrogen in
15	solution, the observation is your ductility drops off
16	very rapidly with increase in hydrogen content.
17	If you cool without quench and you keep
18	slowing down the lower the temperature and you get
19	enough time, some of that hydrogen certainly can
20	diffuse short distances and leave regions of ductile
21	material and then they form on the edges between the
22	brittle and the ductile material. It doesn't matter.
23	They're not big hydrides. I mean, they're
24	very, very, very, very small, and it's just simply my
25	impression is if they come out of solution

(202) 234-4433

	114
1	CHAIRMAN ARMIJO: Like a precipitation
2	hardening phenomenon?
3	DR. BILLONE: Let's call it that.
4	CHAIRMAN ARMIJO: And then coarsening and
5	getting less brittle.
6	DR. BILLONE: That would be the best way
7	of doing it. I'm just basing this on the excellent
8	imaging that CEA has done to
9	CHAIRMAN ARMIJO: Which you'd see by
10	transmission microscopy. You'd look for these things
11	and the function of quench rate and stuff like that.
12	DR. BILLONE: They've used it all.
13	CHAIRMAN ARMIJO: Okay.
14	DR. BILLONE: Basically.
15	CHAIRMAN ARMIJO: Okay. As long as
16	DR. BILLONE: But it's their data. It's
17	not Argonne data. So I'm not going to show it, but
18	the mechanistic understanding comes from the work done
19	in France.
20	Okay. So I don't know if you could see
21	it, but this is their data. Again, they go up much
22	faster than we do in temperature between 1,100 and
23	1,200 degrees C. They're going up at ten degrees C.
24	per second, and so they're essentially isothermal in
25	terms of very fast ramp, and they're one-sided

(202) 234-4433

	115
1	oxidation tests, different cladding, thinner wall, 17
2	by 17, but essentially they put 600 ppm of hydrogen in
3	it, which is their standard. Usually it means 550 to
4	650, but you always get the nominal value reported.
5	And they held it for 50 seconds at 1,200
6	degrees C. Their standard procedure is after holding
7	it at 1,200 degrees C., they rapidly cool, and when
8	they do that, they get direct quench. They get
9	extremely brittle. This is offset strain versus
10	weight gain, but the weight gain is close to the ECR.
11	This tells you more.
12	The important thing is when they rapidly
13	cool from 1,200 degrees C. It's brittle. When they
14	rapidly cool from 800 degrees C., even though this
15	time is very long and their big furnace has 1,200 to
16	800 samples are still brittle. So this is the argon
17	quench temperature, but at a much longer time and it
18	seemed to have no effect at this level of hydrogen.
19	Where they noticed the biggest effect, and
20	again, the cooling rate is slowing down even more, is
21	C and D are where they quenched, and again, you're not
22	picking up anymore oxygen at this point. You're too
23	low in temperature. So the only thing we can think of
24	is hydrogen and/or something else is moving around,
25	but they got significant enhancement in ductility with

(202) 234-4433

	116
1	very, very slow cooling and intermediate quench
2	temperatures of 600 and 700.
3	So, in summary, they didn't see any
4	difference whether they did it their way, which is to
5	quench from 1,200 rapid cool or our way, quench from
6	800. They saw a huge difference when they allowed it
7	to sit between 800 and 700 for a long period of time
8	and then quench, and then an even longer period of
9	time between here and here.
10	So those would be your data extremes. The
11	Argonne data would tend to be conservative because of
12	the cooling rate. This would tend to be optimistic.
13	The real answer is going to lie in between, but in
14	terms of us trying to bound data, I think we've got a
15	reasonable bound of data if your quench temperature is
16	600 degrees C. or above.
17	There remains that question if the quench
18	temperature is 400 or 300 do you get a little extra
19	margin to work with.
20	Well, I must have had something profound
21	to say. That ends the section on the prehydrided
22	cladding, and we're going to go into the high burn-up
23	cladding.
24	I have some very good metallography in
25	this section, but it's not showing up very well on the
I	I

(202) 234-4433

	117
1	screen. So you may only see the SEM results.
2	All right. The second part is the work we
3	did with high burn-up Zry-4, which is oxidation,
4	cooling or cooling with quench, and ring compression,
5	and then the LOCA interval tests we did with Zry-2,
б	high burn-up Zry-2.
7	Okay. Let me remind you of something.
8	The pretest data we had available for planning these
9	tests, which were conducted in January 2005, of course
10	we had the temperature history for as fabricated and
11	prehydrided materials. We had the embrittlement
12	thresholds of 600 at this ECR level and 375, and
13	that's a quench. We had no idea of the effects of
14	slow cooling at the time we ran these tests.
15	So in picking our high burn-up samples, we
16	had a preference for testing high burn-up samples with
17	550 to 600 weight parts per million. We felt if we
18	went above that level, we wouldn't have any chance of
19	both getting the 1,200 degrees C. and preserving any
20	ductility.
21	And when you run a set of tests, you'd
22	like to get ductile to brittle transition. So we had
23	to be very careful in planning these tests to try to
24	make sure the combinations of hydrogen and oxidation
25	level were such that we could bracket the transition.
	I

(202) 234-4433

Í	118
1	You learn something if every sample is
2	brittle, but you don't learn enough to justify the
3	cost of running the test. So we were very careful in
4	selecting fuel rods, and within a fuel rod, the
5	location for sectioning samples. We had already
6	characterized some edge right next to the corner rods,
7	which have more water on one side than another is one
8	way of saying it, and the fuel mid-plane looked good.
9	It was about 70 micron corrosion layer for these rods
10	and about the right hydrogen level.
11	And if we go .7 meters above the mid-plane
12	of the fuel column, you're up to your 100 microns for
13	these test rods and about seventy-fifty weight parts
14	per million hydrogen, which we felt was too high. We
15	didn't think we'd see any ductility at that level.
16	There were also atypical regions as you go
17	around the circumference, which was very, very dense
18	hydrides and very high hydrogen concentrations over
19	part of the cross-section. Usually you don't see
20	that.
21	We were worried about that because the
22	prehydrided results, hydrogen did not homogenize. It
23	started out highly nonuniform and would end up highly
24	nonuniform in relatively short time tests.
25	So instead of edge rods, we selected
ļ	1

(202) 234-4433

	119
1	interior rods, slightly lower burn-up, but burn-up is
2	not significant at all. These are all the same
3	exposure time to the coolant, roughly the same
4	hydrogen pickup in the corrosion layer. So the
5	difference between 64 and 67 is trivial.
6	So we selected those, and we sampled
7	sections from near the mid-plane, and we also wanted
8	to do some sampling sectioning for a look at integral
9	sample, which was about 300 millimeters long. So we
10	cut some pieces for testing and characterization, .3
11	millimeters and .7 millimeters roughly above the mid-
12	plane, but we're focused mainly on the mid-plane.
13	And we targeted three to ten percent CP
14	ECR with an embrittlement expected at five to six. We
15	also had an extremely short window to conduct the in-
16	cell tests. Forty year old hot cell equipment breaks
17	down. You have to pick the moment that it's working.
18	You also have auditors coming in as we found out who
19	can close you out at any day.
20	So we could not do the scientific thing
21	where you run one test, take six months to analyze it,
22	decide on the next test. This had to be a one-shot
23	deal. You pick your ECR levels, boom, boom, boom.
24	You oxidize, boom, boom, boom. You recompress, boom,
25	boom, boom. You do your metallography.
I	

(202) 234-4433

I'm trying to explain why I didn't pick 2 the perfect test matrix, but basically going into it, 3 this is the kind of temperature history I've showed 4 you. These are the kind of ECRs. The three percent is now shown, but clearly you are not going to be hitting 1,200 degrees C. at three percent and, you 6 7 know, just probably make it a five.

So that's what we had for bare cladding 8 9 going into these tests. We're not testing bare 10 cladding. We're testing corroded cladding, as I'll show you in a minute, and we had these results that 11 12 we've already looked at. So we don't need to look at them again. 13

14 So let me tell you what we tested. Let's 15 look at the corrosion layer and the hydrogen content at the mid-plane. For the first rod, for the two-16 sided oxidation test about 70 microns, which was 17 consistent with corrosion layer. 18

19 It didn't change that much when you went 20 up about .3 meters. It was only 74 microns, but the 21 big jump was between .3 and .65 meters in which we 22 jumped from 74 to about 95. Round this off to 100 if 23 you'd like.

So if you think of Ralph's presentation 24 25 where you need to account for this corrosion in the

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

	121
1	ECR, I'm just letting you know we're talking about
2	samples of 5.3, 5.6, 7.1 percent, different than his
3	numbers because this is very thick walled, 15 by 15
4	cladding. The thicker the wall the less the percent
5	oxidation for a fixed oxide thickness.
6	We looked at the fuel cladding bond. We
7	do metallography generally with the fuel in place.
8	Then we de-fuel, and then we test. In some cases
9	early in the program we do metallography after we
10	defuel to make sure none was still there.
11	But if you go around the circumference and
12	over the length, we looked and there was complete
13	bonding of the cladding inner surface around the
14	circumference. It was on the order of ten microns,
15	and based on our experience with Limerick BWR and
16	early TMI-1 PWR, the oxide bond definitely remains
17	after nitric acid defueling of cladding. Nitric acid
18	basically dissolves the ${\tt UO}_2$ and other stuff in there
19	and it leaves the ZrO_2 bond as is.
20	The bond is mostly $2rO_2$ with some UO_2 in
21	solid solution. And we got what we wanted. We got
22	normal distribution of hydrogen. So we felt pretty
23	good at this point in going about our test.
24	Useless. I don't know if you can see in
25	your package.
ļ	

(202) 234-4433

122 1 CHAIRMAN ARMIJO: Let's see if we can see 2 it. 3 DR. BILLONE: Well, I don't know what 4 happened here, but anyway, this is the fuel cladding 5 bond. This all came out too dark. CHAIRMAN ARMIJO: This is awful. 6 7 CHAIRMAN ARMIJO: Did you find any cesium 8 in your bond layer? 9 DR. BILLONE: Any cesium? 10 CHAIRMAN ARMIJO: Yeah. DR. BILLONE: We found regions of cesium, 11 12 but not dominant. CHAIRMAN ARMIJO: Okay, but that --13 14 DR. BILLONE: Mostly at the end of cracks, 15 radial cracks in the pellets like in BWR fuel. There was a build-up of fission products and bond, and 16 that's where we found the cesium. 17 That's great metallography, but you'll 18 19 have to either get it from the report or something. 20 It's not showing up well on the screen. 21 It comes out pretty well on DR. POWERS: 22 the viewgraphs. 23 DR. BILLONE: Okay. This is the typical 24 hydride morphology with concentrated hydrides near the 25 oxide surface, and then this would be the higher

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	elevation. Hopefully you can see it in your package,
2	but it's a denser hydride structure.
3	CHAIRMAN ARMIJO: How much hydrogen was
4	that at the higher elevation?
5	DR. BILLONE: Pardon?
6	CHAIRMAN ARMIJO: How much was that?
7	DR. BILLONE: About 740 weight parts per
8	million, as opposed to 550.
9	CHAIRMAN ARMIJO: Yeah, it makes a
10	difference.
11	DR. BILLONE: I'm glad I spent all of that
12	time pasting those metallography
13	CHAIRMAN ARMIJO: Well, the handouts are
14	pretty good.
15	DR. BILLONE: Okay. Good. All right.
16	When we presented these results on February 10th, 2005
17	in this room, it was strongly suggested and very
18	wisely by EPRI that we really needed to verify our
19	temperatures. We were basing our temperature history
20	on their cladding with no oxide layer, and yet we were
21	testing cladding which had a 70 micron corrosion layer
22	on the outside, ten micron bond.
23	What that does is it slows down the heat
24	of oxidation initially when you're heating up. So
25	whatever boost in temperature you were getting from
Į	I

(202) 234-4433

	124
1	the heating rate of oxidation, since this is an
2	exothermic process, you're losing some of that. And
3	that was very wise.
4	So this is a case where we did the thermal
5	benchmarking we needed probably five months after we
6	ran the test and then helped us interpret the data.
7	So what are the effects of the bond then
8	corrosion layers? As I said, they slow down the
9	exothermic reaction. You expect a decrease in
10	temperatures during the heat ramp.
11	We did run a thermal benchmark where we
12	welded two thermocouples to the bare surface. We
13	ended up 1,200 degrees C., grew 37 micron oxide
14	layers, cooled down, and then ramped up again with the
15	same parameters. So the first ramp is bare cladding.
16	The second ramp is with let's round it off and say 40
17	microns oxide layer on the ID and OD.
18	And I don't want to go into it, but if you
19	go through the thermal analysis, this really gives a
20	lower bound than what your ramp temperatures are
21	because it slows down the net heating rate, meaning
22	that surface with the ten micron layer on the ID has
23	a lot more heative (phonetic) reaction and would
24	dominate.
25	So we feel like we've at least got a
	I

(202) 234-4433

1 reasonable lower bound the water temperature is in, 2 and what happens is that initial high temperature peak decreased by about 40 degrees briefly, and then our 3 4 long time temperatures, time to reach hold temperature 5 was not affected. It was a small decrease, about five degrees C. in hold temperature. 6 7 So mainly what this affected -- and these are the benchmark results where the blue is the bare 8 9 cladding. We took it up to here to grow the oxide layers, and then we cooled, and then we went back and 10 then we re-ramped with the same control parameters, 11 12 and so that 40 degrees is right here. The net effect was a shift downward of 13 about .7 percent in ECR. Instead of five we're at 14 15 4.3, and that was the primary effect. So this was all done with a different test 16 17 train, and so basically correcting for small differences in test trains. This is the thermal 18 19 history we deduced which we think is a reasonable lower bound in here and excellent over here. 20 This is 21 basically what we ran our in-cell tests at. 22 This is what we used to recalculate ECR 23 for our test times and to interpret data, and you 24 notice the same rapid cooling rate. 25 For two-sided tests we had samples Okay.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

of this that were cooled without quench. We're trying to map out the ductility now knowing that that would be an upper bound. So if one of those samples were brittle, there was no sense repeating the test for quench. You want to quench something that's ductile to see the transition.

7 So in this range basically we have high ductility for 8 the low ECRs. We had low but 9 significant ductility for intermediate ECRs, and then for the 9.3 percent, the sample was brittle, and if 10 11 you interpolate the ductile to brittle transition, 12 it's 8.3 percent. If you're modest, you call it eight percent because you know you don't have that much 13 14 accuracy in your interpolation.

15 compare results did with We our One of the points of this is 16 prehydrided samples. 17 does every vendor have to go test high burn-up cladding when he has a new alloy. That would be very, 18 19 very expensive. So how good is prehydriding as a 20 surrogate?

And we looked at the prehydrided samples. I'll show you. I got excellent agreement between the prehydrided and high burn-up samples for the slow cooled samples.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

As far as oxidizing and quenching, we did

(202) 234-4433

25

	127
1	have one sample left. We took it to seven and a half
2	percent ECR. It had 700 and surprise, surprise. It
3	was extremely brittle. We didn't know the hydrogen
4	content at the time we did it.
5	So we at least know for Zry-4 highly
6	corroded, you just can't go for that. You have to be
7	below seven and a half percent with quench at 800
8	degrees C., and the results are consistent with those
9	for prehydrided material, but you don't have a whole
10	range of results for high burn-up.
11	If I have to take all of this data and
12	give you a best estimate, it would be that if our high
13	burn-up samples have been quenched at 800 degrees C.,
14	they would have embrittled at about five and a half
15	percent CP ECR. It means I'm pretty sure they would
16	be ductile at five percent. I know they'd be brittle
17	at six percent. So pick a number in between, and it's
18	five and a half.
19	Those are the words. This is a test
20	matrix. Okay. Graphs are worth showing. Basically
21	this sample and this sample were highly ductile. This
22	one didn't fail at all. So that's why I'm drawing an
23	arrow up.
24	This one was very ductile, and it wasn't
25	until we got from 4.3 percent to about 6.4 percent
I	I

(202) 234-4433

	128
1	that we saw a significant decrease in ductility, but
2	surprisingly it kind of flattened out, and I really
3	expected this sample here to be brittle.
4	This is one that is quenched. This one is
5	slow cooled.
6	So where does the eight percent come from?
7	It comes from 8.3 and 9.3, sort of a linear
8	extrapolation of where do you cross the two percent
9	line.
10	Okay. Let me just talk about one point
11	because I hadn't showed you low displacement curves.
12	This point is very difficult to tell how ductile it
13	is, and this sometimes happens when we test. You
14	don't get that sharp load drop in a highly ductile
15	material.
16	So we first ran this test, and I was
17	convinced that the sample would be brittle. So I had
18	the operator stop the test right here and it was not
19	a through wall crack. We have another sample. We ran
20	it all the way through the end. You could hear a
21	crack at the end, but in fact, it could have cracked
22	anywhere, gradually cracked, anywhere along the way.
23	So maximum would be 53 percent offset
24	strain for that point, which is kind of our test
25	limit, and there is a little load drop. Minimum would
I	I

(202) 234-4433

	129
1	be somewhere up here, and if I do take a 50 percent
2	load drop, which most of our load drops are when it
3	actually cracks, that's how I come up with the 37
4	percent.
5	The point is the sample is highly ductile,
6	and without the sharp load drop I can't be precise
7	about
8	CHAIRMAN ARMIJO: Is that possibly a crack
9	right at that
10	DR. BILLONE: Well, the outside is brittle
11	and the corrosion layer is brittle. You can get a
12	crack part way. Yeah, it is a crack.
13	CHAIRMAN ARMIJO: Okay.
14	DR. BILLONE: It just wasn't through wall.
15	It wasn't all the way through the wall. It wasn't all
16	the way through the wall, and it will initiate under
17	the inner surface, at the inner surface under the
18	loading plate basically.
19	Okay. When I want to compare prehydrided
20	samples to high burn-up samples, I should be
21	conscious, we should be conscious that there is a
22	difference in the heating rate, and that if anything,
23	we're being more aggressive in heating, the blue curve
24	which is the prehydrided samples.
25	Obviously, if you were looking at long

(202) 234-4433

	130
1	ECR, long times, it wouldn't be so important. If
2	you're down where we're going to do the comparisons
3	between five and seven and a half percent, if
4	anything, I would expect the blue, the prehydrided to
5	be a little worse, be a temperature higher for a
6	longer period of time, pick up more oxygen.
7	But for the slow cooled samples, the
8	agreement I would call remarkable. Basically now I've
9	combined data between 470 and 720 weight parts per
10	million hydrogen because it seems they have a gradual
11	effect when you slow cool, and then our high burn-up
12	samples you've seen. So these are two high burn-up
13	samples. I'm showing the real stuff which is
14	permanent strain. It's a more accurate measure, and
15	one percent is our limiting criteria, and basically
16	this is the agreement for the slow cooled between the
17	high burn-up stuff and the prehydrided stuff.
18	So you can be your own judge. I call that
19	excellent, and if anything, if you want to draw a line
20	here and say, "Gee, it's a little bit higher," just
21	remember that the blue samples were exposed to a
22	higher temperature for a longer time.
23	So that's encouraging. Well,
24	metallography, we're not going to do that.
25	CHAIRMAN ARMIJO: We can look at the

(202) 234-4433

	131
1	handout.
2	DR. BILLONE: Okay.
3	CHAIRMAN ARMIJO: You can just explain it.
4	DR. BILLONE: Basically there was a lot of
5	interesting things learned about the behavior of high
6	burn-up cladding and particularly oxidation behavior.
7	We started out with a 70 micro corrosion layer. By
8	the time we examined it, it wasn't 70 microns. Some
9	of that corrosion layer actually dissolved in the
10	metal. A lot of it flaked off during cooling and
11	during handling. So this is not 70 microns that
12	you're looking at.
13	This scale is only 30 microns here, but
14	with SEM we could distinguish the remaining corrosion
15	layer. The high temperature steam grown oxide layer,
16	and we notice that this is about, oh, ten to 12
17	microns less than you would predict for bare cladding,
18	and ten to 12 microns less than what the inner surface
19	oxide layer is.
20	So it clearly shows that as far as oxide
21	layer growth and heat of oxidation, this corrosion
22	layer is not transparent. It does slow down the
23	growth of this layer. However, the alpha layer, which
24	is more important is about the right thickness, the
25	same thickness as for bare cladding.
	I

(202) 234-4433

As a matter of fact, if you took this corroded sample and you heated it in a vacuum, the metal would steal oxygen from the oxide and reduce the oxide, and you would grow the alpha layer and you have enough to do it.

6 So whether there's team here and a bare 7 surface, steam in a corroded surface, I don't know 8 about the next statement, but vacuum and a corroded 9 surface like that, you will get a growth of an alpha 10 layer, which in turn means that you're pumping oxygen 11 into the beta layer probably at the same rate for this 12 picture as for bare cladding.

So, again, if you're talking measured weight gain, it's not going to be meaningful. If you're talking what's important.

Okay. That was SEM. This is the same type of picture in terms of metallography, and you get to see a little more of the corrosion layer.

19 Okay. The inner surface, again, the ID 20 oxide is close to what you would predict. There was 21 a ten micron oxide layer, bond layer here. It is gone 22 by this time. It's most likely dissolved in the 23 The alpha layer is about the same as on the metal. OD, and this is what you would kind of predict for 24 25 bare metal.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

133
Okay. So those are our two-sided tests.
There's only a couple of points I want to make about
the one-sided test that we ran. After generating
those, the request was that, gee, you guys need to get
to 1,200 degrees C. faster so that you're really
running a 1,200 degree C. test.
So the way to do that is to plan one-sided
oxidation tests where five percent ECR you actually
are at 1,200 degrees C. for a longer period of time,
whereas two-sided you never even reach 1,200.
We had run tests back in 2001 like that
for different purposes and they served our purposes at
that time. We did a much better job of benchmarking
bare and preoxidized cladding before we went in cell
to run the test.
However, what we learned, we should have
known but we velocewood that the only thing that

15 to run the tes 16 Ho 17 known, but we relearned, that the only thing that would -- if you get steam leakage inside the sample 18 and the oxidation near the ends results in hydrogen 19 generation, that is why we flowed some argon purge 20 21 through. The problem is once you lose that semi-22 protective bond layer, once it dissolved, then you lose hydrogen from the sample into the purge. 23 And so basically the tests weren't perfect 24

25 in that we had hydrogen loss from high burn-up Zry-4

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

	134
1	through the inner surface following reduction of the
2	fuel cladding bond layer. The inner surface did form
3	a visible alpha layer. The oxide was reduced by the
4	metal during oxide reduction. As a matter of fact,
5	when we compressed the rings, they cracked from the
6	inner surface to the outer surface. There was enough
7	embrittlement from the bond layer at the inner surface
8	not to embrittle the whole cladding, but to initiate
9	the crack which then grew through.
10	And basically it taught us that we really
11	need to account for oxygen pickup from the cladding
12	inner surface. These were defueled samples. So we're
13	just looking at the effects of the ten micron oxide
14	bond, and that ten microns of oxide bond, the oxygen
15	definitely ends up in the metal.
16	As far as how much fuel would contribute
17	to that, that's a more complicated issue.
18	Okay. This is our thermal benchmark, but
19	what I want to do is just compare heating rates. This
20	is our one-sided test to get to about five percent
21	ECR. You're here on the temperature curve for the
22	one-sided test, and for the two-sided test at about
23	six percent ECR you got there at lower temperatures.
24	So that was the point of these tests, and we ran them
25	from about five percent ECR.
I	I

(202) 234-4433

	135
1	The most useful information we got out of
2	it is the following. What's happening to the hydrogen
3	doesn't affect the oxide layer growth, and so if I
4	look at one-sided tests, we're now able to grow much
5	thicker oxide layers.
6	If I look at the outer surface oxide
7	layer, which is the only one I'm really growing, it,
8	again, never seems to catch up with what the predicted
9	value is for bare cladding. It's always lagging by
10	about ten to 12 microns in this range. If you go to
11	very, very high times, it might catch up.
12	So the corrosion layer, you know, it's
13	protective, partially protective. It decreases the
14	oxide growth rate initially. You lose something, and
15	then it probably continues at the same rate as you
16	would expect, but when you integrate over that rate,
17	you're still about 11 to 12 microns behind.
18	Okay. I can actually see this. So maybe
19	you can. I'm not showing you the oxide layer. This
20	is the alpha layer on the OD of the cladding of that
21	test sample. Again, there was a fuel cladding bond
22	layer here. We, with help from our colleagues from
23	IRSN predict about 100 seconds that bond would be
24	completely reduced. So this is a test time. This is
25	the 174 seconds of test time.
ļ	I

(202) 234-4433

1 So we don't really know. The alpha layer 2 could have been bigger at the 100 seconds because what happens is that a limited oxygen source, you grow the 3 4 alpha layer. The oxygen continues to diffuse into the 5 beta layer, and eventually the alpha layer disappears, as everyone knows who has prepared this material. 6 7 Okay. We had two data points that I never 8 showed you before that were from a lower grid span 9 that actually ended up with 550 weight parts per million from the one-sided test, and these are the 10 11 results you've seen for the two-sides with slow 12 cooling. These are the results at the -- now, this is by calculating CP ECR assuming that you only have 13 14 oxygen on the OD of the cladding, and there is an 15 indication certainly that the results are lower in terms of ductility. As a matter of fact, at seven 16 17 percent you're brittle.

And there are two reasons for this: that you picked up additional oxygen from the inner surface that is not accounted for in this parameter, and also you have to allow for the fact that you heated at a faster rate to get there.

23 So that's what we learned from our one-24 sided test. I think I can do the balloon region very 25 quickly because we're going to try to say there's no

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

136

	137
1	hope for saving ductility in the balloon region.
2	Basically without showing the curves, our
3	LOCA program is that you heat at five degrees C. per
4	second from 300 degrees C. to burst. These are
5	pressurized samples, or you continue on generally to
6	1,200 degrees C.
7	You hold at 1,200 degrees C. for one to
8	300 seconds, and you control the cooling. This is
9	different than the oxidation test. This is a higher
10	thermal mass sample.
11	Control cooling at three degrees C. per
12	second from 1,200 to 800, and then you quench at 800
13	or you slow cool without quench.
14	Again, we're going to look mainly at
15	hydrogen. You have a burst opening. You have steam
16	leakage in. The steam oxidizes with cladding away
17	from the burst opening. Hydrogen is released.
18	Hydrogen is trapped. Hydrogen is absorbed by the
19	metal.
20	How fast does it happen? No one seems to
21	know. My answer is fairly fast because if I take just
22	this ramp up, this ramp down and essentially no hold
23	time, at the thinnest region of the cladding, eight
24	percent ECR and the hydrogen peaks are already at
25	2,800 weight parts per million. If I hold for 120
I	

(202) 234-4433

	138
1	seconds, which is a higher ECR, the hydrogen peaks are
2	about the same, and if I hold for 300 seconds, they
3	are about 4,000, all extremely high.
4	And this is for out of cell, unirradiated
5	cladding. Embrittlement curls relatively early, but
6	again, bending strength decreases as the oxidation
7	level decreases. Also, whacking you with a hammer,
8	that's much more liable to shatter at high oxidation
9	levels. It's very hard to whack it and make it
10	shatter at the low oxidation levels.
11	We did run four in-cell tests for high
12	burn-up Zry-2. They're all conducted with fuel
13	cladding and high burn-up, cladding and fuel.
14	We were able to confirm in the balloon and
15	burst region you do get two-sided steam oxidation.
16	You have an ID oxide layer and OD oxide layer, but
17	again, the big news was whatever bond layer you had on
18	there was long gone in the balloon region, and so you
19	picked up about 300 ppm due to secondary hydriding.
20	So there is a difference here, and let me
21	just go quickly through this.
22	DR. POWERS: Mike.
23	DR. BILLONE: Yes.
24	DR. POWERS: Let me ask a question. In a
25	real reactor accident
Į	I

(202) 234-4433

	139
1	DR. BILLONE: Yeah.
2	DR. POWERS: you would balloon. Steam
3	would enter the balloon region. Then you would get a
4	competition between the reaction of that steam with
5	the clad and with the fuel.
6	DR. BILLONE: I'm not sure at that
7	temperature you'd get much with the fuel at 1,200
8	degrees C. I'll have to check it.
9	DR. POWERS: I think, yeah, you would.
10	DR. BILLONE: I mean, it's not my area of
11	expertise. That's why I'm not certain. Go ahead.
12	DR. POWERS: The reason I think that there
13	might be some is that Oak Ridge did some experiments
14	primarily for fission product release.
15	DR. BILLONE: Right.
16	DR. POWERS: And whatnot, and they seemed
17	to get quite a lot of expansion of the fuel. They'd
18	drill a hole in the clad. They didn't balloon it.
19	They'd just drill a hole.
20	DR. BILLONE: Right.
21	DR. POWERS: And, you know, the oxidant
22	would enter into that region and things would foam up
23	on them and whatnot. So they were getting, you know,
24	quite a lot of reaction with the fuel.
25	DR. BILLONE: Yeah, it was hard to tell
l	

(202) 234-4433

	140
1	because our ballooning strain was like 50 percent, 40
2	percent. We had a lot of volume in there, and
3	either
4	DR. POWERS: Well, you may be getting so
5	much volume the fuel reaction just
б	DR. BILLONE: The fuel reaction and the
7	cladding, you couldn't see it.
8	DR. POWERS: Yeah, you couldn't see it,
9	and that's probably a good point.
10	DR. BILLONE: As a matter of fact, the
11	ballooning strains were almost identical for the as
12	fabricated cladding with no fuel, just zirconium
13	pellets and the real stuff. It was remarkable, the
14	ballooning not remarkable. There's an explanation,
15	but that same internal pressure. They burst at about
16	the same temperature with about the same maximum
17	strength.
18	So I don't know about the steam fuel
19	reaction. It just didn't show up in our test with
20	such a large
21	DR. POWERS: Yeah. I mean, you're
22	probably right. It could be able to be compared to
23	the volume you'd get.
24	DR. BILLONE: Okay. Just quickly showing
25	you profiles, the red is oxygen content. So at the
I	I

(202) 234-4433

	141
1	center of the burst region you get the most oxygen.
2	Approximately multiply this by two and a half to get
3	ECR, but it's 2.85 actually, but these are the
4	hydrogen peaks, and again, this is a one second hold
5	time and a fairly low ECR. So you only spent one
6	second at 1,204 degrees C. Most of your oxidation
7	it doesn't matter, but most of your oxidation was at
8	a lower temperature. Released steam was picked up by
9	the metal.
10	CHAIRMAN ARMIJO: This is hold time
11	after
12	DR. BILLONE: There's a five degrees C.
13	per second temperature ramp, and then almost
14	instantaneously you cool it at three degrees C. per
15	second and quench.
16	CHAIRMAN ARMIJO: I just wanted to know
17	how much time after the balloon bursts.
18	DR. BILLONE: Oh. The balloon bursts at
19	about 750 degrees C.
20	CHAIRMAN ARMIJO: Okay.
21	DR. BILLONE: So you take 1,200 minus 750
22	divided by five.
23	CHAIRMAN ARMIJO: I can do the math.
24	(Laughter.)
25	DR. BILLONE: About 800.
	1

	142
1	Yeah, there's enough time. I mean, it's
2	basically between the 800 and the 1,204 that you're
3	getting all of your oxidation, but it's not much. I
4	mean, we thought maybe this was a long time effect,
5	and then if
6	CHAIRMAN ARMIJO: The longer you hold
7	them.
8	DR. BILLONE: At a 300 second hold time we
9	did get a little bit more, but not significantly more.
10	All right. This is the same curve, only
11	now I'm showing you hydrogen pickup where I've
12	renormalized to kind of the weight of the cladding
13	after burst but prior oxidation, and I converted
14	oxygen to ECR. I think maybe Ralph showed a plot like
15	this, but again, the same hydrogen peaks.
16	I should make the point that essentially
17	the center of this burst region is embrittled by
18	oxygen. It had got very low hydrogen, but these
19	intermediate regions are also brittle by a combination
20	of oxygen and hydrogen. They seem to be stronger, but
21	they are brittle.
22	Now, the reason for high burn-up fuel, we
23	didn't get a near zero minimum. So for high burn-up
24	fuel, again, we try to keep the blue as the same.
25	It's the hydrogen. It's about 2,000 ppm at the center
	I

(202) 234-4433

	143
1	of the burst region, which was a surprise to us.
2	So this material really is from edge to
3	edge. It's about minus 50 to plus 50, is the extent
4	of the ballooning where the strain is above two
5	percent, and it's pretty much all brittle in that
6	region.
7	And, again, Ralph showed you this picture
8	that we like to show. We got a lot of that data in
9	this region here and some of it in here for the
10	hydrogen analysis, but the fact is in handling the
11	room temperature the sample broke in three places.
12	Two of them we wanted to cut out anyway.
13	So the only place we got to section it was
14	D. Mother Nature and handling it broke it at those
15	locations.
16	Okay. So that takes me through Chapter 6
17	quickly, and Chapter 6 has got a lot more Section
18	6. I'm sorry. Section 6 has a lot more information
19	about ballooning strains and what burst openings look
20	like.
21	Bottom line is we don't think we can
22	really preserve any ductility there. The best you can
23	do is have some kind of limit if you want it to have
24	some strength, and also I should mention out Japanese
25	colleagues pull in the axial direction, and what we've
I	

(202) 234-4433

	144
1	done is some bend tests, and it always tends to be a
2	clean break across the weakest part, which is usually
3	the center of the burst region, sometimes a little
4	above and below the burst region, but within basically
5	the balloon.
6	So if we're worried about fuel dispersal
7	and you've got a bunch of these rods next to each
8	other and there's really no place for them to go, if
9	there's just a clean break across here, it's just
10	something to think about. It's hard to imagine what
11	would even if it were a three inch long balloon
12	what loading would actually smash and fragment all
13	three inches.
14	Okay. I have a short presentation coming
15	up on Section 7. It's short because I wrote it this
16	morning, but that's where we try to sit back and look
17	at the data we generated and test the existing
18	criteria for embrittlement and just apply an F factor
19	because the current criteria gives you slightly too
20	much margin.
21	And so let's
22	DR. ABDEL-KHALIK: Can I ask a question?
23	DR. BILLONE: Please ask me a question
24	before I do that because that's
25	DR. ABDEL-KHALIK: If you put up Slide No.

(202) 234-4433

(202) 234-4433

	145
1	40 that shows the oxygen and hydrogen concentration
2	distributions. The one before that. Right there.
3	DR. BILLONE: Yeah.
4	DR. ABDEL-KHALIK: Is there anything we
5	can learn from this spatial spacing of the oxygen and
6	hydrogen peaks?
7	DR. BILLONE: Sure. This is where the
8	cladding is the thinnest, and so it's supposed to
9	steam for the same amount of time as this thicker
10	cladding. The percent oxidation is less.
11	So the oxide layer may be the same here on
12	the ID and OD, the oxide layer, as it is here, but
13	this is much thinner because of the large ballooning
14	strain.
15	DR. ABDEL-KHALIK: I'm talking about the
16	location of the hydrogen peak.
17	DR. BILLONE: The hydrogen peak is
18	simply
19	DR. ABDEL-KHALIK: Relative to the center
20	of the balloon.
21	DR. BILLONE: In the report, preceding
22	each of these is a picture of the ballooning strain,
23	and essentially these hydrogen peaks occur just
24	outside the ballooning region where steam can't get to
25	but hydrogen can.
ļ	1

```
(202) 234-4433
```

	146
1	DR. ABDEL-KHALIK: So it's just related to
2	the geometry of the ballooning.
3	DR. BILLONE: It's just related to what
4	happens to the hydrogen. Hydrogen is a much smaller
5	molecule and it can travel further up and down the rod
6	in any gap area, and the gap area would be created by
7	when I say "outside the balloon region" I mean
8	strains of less than two percent. It's not like it's
9	zero.
10	So, yeah, it's depending on where the
11	steam can get to, and the steam can obviously by
12	here the steam is just oxidizing the outer surface of
13	the cladding also, but this oxidation generated
14	hydrogen that's migrated there, and as long as it's
15	bare surface, it can get in easily.
16	DR. ABDEL-KHALIK: Thank you.
17	CHAIRMAN ARMIJO: Mike, when you go
18	through this part, somewhere along the line either
19	yourself or Ralph, if you would just kind of present
20	your ideas of how someone would use if someone
21	wanted to come in with a new alloy, brand new alloy,
22	and he said, "Okay. Look. What do I have to do to
23	meet these criteria from a test standpoint and from an
24	analysis standpoint?" I'd like you just to kind of
25	somewhere in your talk just to go through the steps
l	I

(202) 234-4433

	147
1	that you would see would be required and what
2	ductility numbers would have to be satisfied.
3	DR. BILLONE: Yeah, I'm going to.
4	DR. MEYER: I would like to do that from
5	one of the next to last slides that I showed. So I
б	could do that
7	CHAIRMAN ARMIJO: Yeah.
8	DR. MEYER: probably when he's
9	finished. Maybe we could go back to that.
10	CHAIRMAN ARMIJO: Okay. Great.
11	DR. BILLONE: Yeah, but as far as this
12	phenomenon, I can't see an alloy that would be
13	resistant to it.
14	CHAIRMAN ARMIJO: I can't either, but I'm
15	just saying, you know, what kind of
16	DR. BILLONE: I mean, this is like
17	whatever criteria you write, we could certainly give
18	criteria for the bulk of the rod. The three inches or
19	less of ballooned area is not something that can be
20	protected by ductility criteria.
21	CHAIRMAN ARMIJO: Unless you can stop
22	ballooning, this game is over.
23	DR. BILLONE: You have to stop burst.
24	CHAIRMAN ARMIJO: Stop the burst, right.
25	DR. BILLONE: Some countries, right?
ļ	I

```
(202) 234-4433
```

	148
1	CHAIRMAN ARMIJO: That's tough to do.
2	DR. BILLONE: All right. Now I have a
3	brief section, believe it or not.
4	Okay. Humbly, I have to repeat again up
5	through Section 6 of the NUREG really what we
б	committed to do is providing all of you with the data.
7	This is, as I say, an attempt on our part to do what
8	you all will be doing, and this is just some of our
9	ideas on what might work in applying the data.
10	And we've got to get the slide show, don't
11	we?
12	Okay. Let's do break-away oxidation first
13	because if you have comments, this is a good time to
14	make the comments.
15	Break-away oxidation, again, tends to be
16	a phenomenon. Everyone studies 1,000 and 1,050 and no
17	one studies 1,025. So I'll pick 1,025. It's a
18	phenomenon that occurs less in 1,025 and all alloys
19	we've tested except E110. Russians have done
20	extensive testing at 1,100 degrees C. It breaks away.
21	So put old fashioned E110 off to the side.
22	So during minimum time, a performance
23	based test, this is just to determine minimum time for
24	break-away oxidation. It's not so easy. We believe
25	it should not be based on the weight gain increase but
l	I

(202) 234-4433

	149
1	the minimum time to pick up 200 ppm of hydrogen
2	because we know ductility is retained for that level
3	of hydrogen for these low temperatures.
4	We also know break-away is an instability
5	phenomenon. You don't want to mess with it too much
6	and push it too high. It's most likely dependent on
7	the alloy, and not every Zry-4 made by everybody is
8	going to break away at the exact time, and certain
9	Zry-4 versus M5 versus ZIRLO are different.
10	On impurity content, particularly near
11	surface impurity, and surface finish, we can never
12	really separate these two because when you polish and
13	when you machine and polish, you're sort of polishing
14	out impurities as well as smoothing the surface.
15	CHAIRMAN ARMIJO: You don't have a
16	variable of material heat treatment, for example,
17	whether it's stress relieved, solution annealed?
18	DR. BILLONE: We have a variety of
19	material, but generally the details of the fabrication
20	rare not provided to us.
21	CHAIRMAN ARMIJO: Okay. So if somebody
22	wanted to do that, he'd check with his
23	DR. BILLONE: Zircaloy-2 which we've
24	tested is recrystallized annealed.
25	CHAIRMAN ARMIJO: Right.
I	I

(202) 234-4433

	150
1	DR. BILLONE: Zircaloy-4 is
2	CHAIRMAN ARMIJO: Stress relief.
3	DR. BILLONE: So we have that weighing.
4	The M5, I believe and please correct me I
5	believe that's stress relieved and the ZIRLO, I can't
6	find it published, but I I'm sorry. M5 is
7	solution, recrystallized anneal, and the ZIRLO I don't
8	know, but I assume it's made like Zry-4. I just don't
9	know the answer.
10	So it's not a variable in our test. Each
11	material is
12	CHAIRMAN ARMIJO: Whatever was delivered.
13	DR. BILLONE: Right. So, again, let's
14	summarize the results because the idea is you do
15	performance based tests. Initially we thought you
16	just do it 1,000 degrees C. It's the worst
17	temperature, and then you're finished, and now I'm not
18	so sure because we've got a significant difference.
19	Anyway, for the old fashioned Zry-4, I
20	remind you it's 3,800 seconds. They're belt-polished.
21	We got improvement to 5,000. With Zry-2 we've only
22	tested at 1,000 EC and it's greater than 5,000
23	seconds. Belt-polished ZIRLO break-away times are
24	greater than or equal than 3,000 seconds at 970
25	degrees C. and for M5, Argonne tested up to 4,100
Į	I

(202) 234-4433

	151
1	seconds previously at 1,000 degrees C, and CEA tested
2	and found break-away at 6,400 seconds.
3	So if we tested M5, we would be in between
4	this and probably close to 6,000 seconds, and the
5	E110, depending on how you count time, counting the
6	ramp time would be 700 seconds.
7	CHAIRMAN ARMIJO: Was there a time and
8	temperature that you would pick as saying, okay, this
9	is what you have to pass?
10	DR. BILLONE: I thought I could do that by
11	just picking 1,000 because I thought it was most
12	susceptible temperature for break-away and oxidation
13	is higher and so hydrogen generation is higher, but
14	it's alloy dependent, and it's dependent on a lot of
15	variables.
16	CHAIRMAN ARMIJO: So you're going to have
17	to find that for each different alloy, explore?
18	DR. BILLONE: Maybe one could pick a more
19	limited number of tests within the range of 950 to
20	1,000 and one test at 800 to confirm. Since it is
21	more complicated than I originally thought, the
22	original idea was to go in and do tests at 1,000
23	degrees C They were going to be fine, but you
24	needed to double check above and below, and that
25	didn't work out because 1,000 degrees C. wasn't always
ļ	I

(202) 234-4433

	152
1	the minimum time for break-away.
2	So I don't know how this will be worded,
3	but it's certainly performance based tests and it
4	would be alloy dependent.
5	I didn't mention it, but there were two
6	valleys, minimum break-away times for Zry-4. They are
7	pretty close to phase transition temperatures,
8	although I can find no relationship between phase
9	transition and break-away oxidation. Coincidentally
10	they are, and that's why you've got to tell the person
11	doing the LOCA calculation; you've got to tell them
12	when you start the clock in counting time.
13	We picked 650 for EC as a reasonable time
14	because all phase transitions are completed basically
15	and all of the alloys by 650 degrees C. Oxidation is
16	extremely slow. We know it's 650 if you hold it for
17	a long time. It takes something like four hours to
18	get up to 200 ppm of hydrogen. So we figured it was
19	behind.
20	Now, could it be 700? Could it be eight?
21	I don't know if it makes a difference.
22	DR. MEYER: Could I jump in here a minute?
23	DR. BILLONE: Sure.
24	DR. MEYER: Because at the last minute I
25	put in the slide of the old Leistikov and Schanz
	I

(202) 234-4433

paper, and I did that and you'll notice that there were some -- now, you won't see the yellow lines on 3 the black and white copies, but up on the slide I had 4 highlighted 600 and 700 degrees, the 600 and 700 degree traces, and 650 is the number that we had chosen and we realized that this might be somewhat arbitrary.

However, when you go up to 700 degrees and 8 you look at that accelerated oxidation after the 9 10 break-away, you see that the oxidation rate is pretty high, and by 25 hours, which I know is too long, but 11 12 in the time period of the testing it was catching up with some of the oxidation levels for the much higher 13 14 temperature test.

15 So I think this goes back to the statement that at 650 and below the oxidation rate is so low 16 17 that you don't worry about it. Above 605 after break-18 the oxidation picks away, rate up pretty 19 substantially, and so somewhere not far above 650, 20 you're into this region where you're both susceptible 21 to break-away and where the oxidation rates are rapid 22 enough that the hydrogen absorption would be quite 23 high.

24 So that's the best we can do, I think, on 25 this choice of 650 at the moment, and perhaps the

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

7

	154
1	committee or someone else can help us refine that
2	number, but it looks like a number if you stay below
3	it, you're okay.
4	DR. ABDEL-KHALIK: Would it make sense to
5	tie this number to an operator action specified by the
6	emergency operating procedures? I mean, for PWRs,
7	operators are instructed to enter into the Cl
8	procedure at 1,300 F, which is about 700 C., and that
9	way you have a criterion that you can not only check
10	with codes, but you can also check in terms of
11	response of operators on the simulator.
12	DR. BILLONE: It goes way beyond me.
13	DR. MEYER: Well, somebody else can maybe
14	jump in here, but is it 12? I think some of the PWRs
15	have operating procedures that kick in at 1,200, which
16	is 650 and where they take actions to reduce
17	temperature in the secondary side and thereby shorten
18	the period of time that these temperatures would hang
19	up in a small break LOCA.
20	If you need further discussion on that, it
21	will have to come from someone who really understands
22	what I just said.
23	CHAIRMAN ARMIJO: Well, I'm still trying
24	to figure out are we trying to determine the minimum
25	time and the minimum temperature where break-away
	I

(202) 234-4433

	155
1	oxidation occurs? And you've said 650 is probably
2	nothing will happen in a lifetime.
3	DR. MEYER: Four hours.
4	CHAIRMAN ARMIJO: Yeah, and so somewhere
5	between 650 and 1,025, there could be break-away as a
6	function of time.
7	DR. MEYER: You don't want break-away to
8	occur during the LOCA transient at a temperature
9	that's high enough that you will get rapid loss of
10	ductility at times and temperatures below the normal
11	limits for
12	CHAIRMAN ARMIJO: So the alloy developer
13	has got to check that to make sure that he doesn't
14	have a material that has a lo break-away temperature
15	or a short break-away time for any given temperature.
16	So in order to qualify a new material to meet these
17	criteria, he's got to explore that by testing or
18	something. That's what I'm trying to get at.
19	How could I use what would I have to do
20	to
21	DR. BILLONE: That would have to be part
22	of the performance testing. Being more specific is
23	challenging.
24	CHAIRMAN ARMIJO: I'm kind of jumping
25	ahead to when somebody is writing a rule. We're
I	

(202) 234-4433

	156
1	getting into very complicated
2	DR. MEYER: Well, we have a good counter-
3	example in this Russian E110 cladding because it
4	breaks away 500 to 700 seconds, which is a very short
5	period of time, and that won't protect you from the
б	consequences of break-away, the embrittling
7	consequences of break-away during a typical PWR small
8	break LOCA. And so that's not good.
9	CHAIRMAN ARMIJO: Okay.
10	DR. BILLONE: And you can certainly easily
11	screen out a bad alloy, but, yeah, we haven't gotten
12	far I haven't gotten far enough to thinking through
13	how to conduct the tests. I mean, we found a way to
14	do it economically at Argonne because we were short on
15	time, this searching method starting at 1,000.
16	CHAIRMAN ARMIJO: Okay. Well, it's
17	something to think about.
18	DR. BILLONE: You come out with a totally
19	new alloy that I've never I wouldn't know what to
20	say about that. It's a phenomenon. It happens. You
21	want to stay away from it. One way of doing it is
22	this way: determine the minimum time for break-away
23	oxidation and the local relevant temperature and stay
24	below that. That's one way to do it. It may be as
25	I say, is it too
l	I

(202) 234-4433

	157
1	CHAIRMAN ARMIJO: But those kinds of
2	instructions would be more like a reg. guide rather
3	than a rule.
4	DR. BILLONE: Yeah, yeah.
5	CHAIRMAN ARMIJO: Because it's way too
6	complicated for a rule.
7	DR. BILLONE: yeah, that's Ralph and his
8	role.
9	CHAIRMAN ARMIJO: Well, we'll talk about
10	it later.
11	DR. BILLONE: Let me get in trouble with
12	the next slide. Okay. All right. Let's go to the
13	higher temperature regime. In terms of trying to
14	determine okay. I'm okay. This is fresh cladding.
15	I'm not in trouble yet.
16	What we basically recommend is performance
17	based tests are exactly what we did, determined
18	ductile brittle transition at 1,200 degrees C. I
19	recommend two-sided steam oxidation tests because
20	these are controlled. The temperature is easy to
21	measure, the weight gain with reasonable heating and
22	cooling rates and quench at 800, which we found to be
23	not important, but we might as well do it.
24	Limit LOCA time, temperature such that the
25	CP ECR during the transient is less than or equal to
l	I

(202) 234-4433

	158
1	whatever limit you find out.
2	The approach is conservative for Tmax, but
3	the LOCA Tmax being less than 1,200 degrees C. So
4	that's another performance test, and these are the
5	examples of the results that we got for the claddings
6	we tested.
7	I mean, one could ask for more and one
8	could ask for 1,000 and 1,100, but 1,200 would be the
9	most. Whatever your limit is, it would be the most
10	embrittling condition to test for.
11	So with the oxygen and hydrogen induced
12	embrittlement, we want to test the subtraction of the
13	corrosion layer recommended, and information notice
14	9,820. We doubt strongly that it will be so brilliant
15	back in 1998 that they're going to hit it right on the
16	nose. So we include an F factor times the corrosion
17	layer just to see what empirically that would turn out
18	to be.
19	And we needed it to account for cooling
20	rate effects, quench temperature, and possible alloy
21	effects to determine what margin, what transient ECR
22	are you allowed.
23	So the idea is with this approach and
24	testing it is whatever your calculated local
25	temperature history is, you do what you already do.
I	I

(202) 234-4433

	159
1	You calculate a transient ECR, assuming bare cladding,
2	taking no credit for slowing down the oxide, and you
3	do it with the Cathcart-Pawel model. If you do a
4	Baker-Just you would even be more conservative.
5	You've already determined this for fresh
б	cladding. This is a straightforward calculation based
7	on your corrosion level, and F is the undetermined
8	factor. So we're going to use the complete data set
9	for HBR cladding, ductilely dated for high burn-up
10	Zry-4 with 70 micron corrosion level to try to
11	determine what F is for this corrosion level, and the
12	results we're going to use, and actually we're showing
13	you the fresh cladding is only good up to 14 percent
14	ECR. The corrosion level varied a little bit from
15	sample to sample, 5.3 to 5.6.
16	Unfortunately, it makes a difference
17	whether you use the 14.3 or the 5.3 or the 5.6 in
18	determining the F factor.
19	So what are you allowed? Well, if you
20	slow cooled, you're allowed about eight percent for
21	the transient ECR because that's where high burn-up
22	samples went brittle. I mean, your LOCA is not going
23	to be slow cooled, but just to give you an example.
24	As I said, if we had quenched the high
25	burn-up samples, I know the answer would be greater
ļ	

(202) 234-4433

	160
1	than five, and by the way, what's in parentheses here
2	is since we don't include cooling for our ECR
3	calculations as generally small, it's .2 percent ECR
4	of cooling.
5	So this five percent that we've been
6	quoting is up to the end of the heating ramp, and for
7	very rapid cooling, there's only a small increase in
8	ECR.
9	So I know the answer is between five and
10	six, 5.2 and 6.2, which means we're going to test this
11	model assuming that if we had quenched the high burn-
12	up samples and we had only gone to 5.5 percent ECR, we
13	would just cross the threshold from ductile to
14	brittle, and that's pretty much the best I can narrow
15	that down.
16	So what do you get for F for all of these
17	conditions, including slow cooling? You get F of 1.3
18	plus or minus .3, assuming your quench is at less than
19	or equal to 800 degrees C.
20	All right. Let's take advantage of some
21	conservatism in our calculations, and I'm missing an
22	important figure. I forgot to put it in this morning,
23	but is the 1.5 to 1.6 too conservative, which comes
24	directly out of our data, for quenching 800 degrees
25	C.?
ļ	

(202) 234-4433

	161
1	The LOCA cooling rates that we've looked
2	at are slower than the ANL cooling rates. Additional
3	oxidation, meaning oxide layer growth, occurs during
4	cooling with little change in average oxygen content
5	in the beta layer. That means little change in
б	embrittlement. It implies that you actually get a
7	little boost from cooling slower than we do. You get
8	a higher ECR value, and you would get a decreased F
9	value.
10	So let me give you examples and see if
11	they fit in with those of you who do thermal
12	hydraulics.
13	If I take from the peak temperature down
14	to about 800 degrees C. and I cool at five degrees C.
15	per second, I get an increase in the total amount of
16	ECR to calculate. My F factor drops down to 1.4.
17	It's beautifully shown in the graph, which is on the
18	Web, but it's not on the machine right now, and this
19	is supposed to be three degrees C. per second. Please
20	make this correction for me. It was like the last
21	thing I typed before I rushed over here. Three
22	degrees C. per second and the F factor would drop down
23	to 1.3.
24	So depending on where you quench, if
25	you're going to quench at less than 600 degrees C. and
	I

(202) 234-4433

	162
1	your cooling rate is in this range of three to five
2	degrees C. per second, then I would expect 1.2.
3	That's where the 1.2 comes from, plus or minus .2. In
4	other words, it would include the five degrees C. per
5	second cooling value of the 1.4, the slow cooling
6	value, which is about one, and that's about the best
7	I can nail that down right now.
8	I do recommend that new alloys, in
9	particular, that prehydrided allies, the oxidize and
10	quench, determine if the F factor is alloy dependent.
11	I mean, it's a personal recommendation.
12	Before we do our in-cell test with ZIRLO
13	and M5, certainly with ZIRLO, we definitely want to
14	prehydride it, run the same test, baseline data, see
15	where we are and to help us plan the in-cell test.
16	CHAIRMAN ARMIJO: For Zircaloy-2 and
17	Zircaloy-4, can you say that the F factor is pretty
18	much the same?
19	DR. BILLONE: I can say it's the same
20	because it won't matter because the Zircaloy-2 BWR
21	cladding grows like a ten micron oxide layer. So it's
22	a low number times 1.5 or 1.4, and it doesn't matter.
23	CHAIRMAN ARMIJO: It doesn't matter, yeah.
24	DR. BILLONE: It's the same. It's really
25	the BWR cladding that it matters.
ļ	I

(202) 234-4433

	163
1	DR. MEYER: I think that's an important
2	point, and it also applies to the M5 and the ZIRLO.
3	The real critical one is the Zircaloy-4 with the very
4	heavy corrosion layer, but as you go to fuel cladding
5	that corrodes less and less, the subtraction factor is
б	smaller and smaller, and the errors in the F term
7	become less and less important.
8	So I think
9	DR. SHACK: Unless somebody wants to drive
10	their cladding harder and harder.
11	DR. BILLONE: Yeah, I mean, the Spanish
12	drives ZIRLO very hard. So it's got 80 to 100
13	microns.
14	CHAIRMAN ARMIJO: They will.
15	DR. BILLONE: I would assume they would.
16	CHAIRMAN ARMIJO: They will.
17	DR. BILLONE: But one of my last comments,
18	again, let me emphasize that particularly sine I've
19	seen data for prehydrided M5. I haven't seen it for
20	ZIRLO. I wouldn't want to go into the test of the
21	high burn-up material, which is very precious. We
22	have a limited supply without a fundamental baseline
23	That will help us pick up our test times
24	on ECR to try to bracket the ductile and brittle
25	transition, and that pretty much is the end of my
ļ	

(202) 234-4433

	164
1	presentation, and thank you for your patience because
2	it was long.
3	CHAIRMAN ARMIJO: Ralph, did you want to
4	make some wrap-up comment?
5	DR. MEYER: Well, the only thing I would
6	do if you insist is to go back to your question about
7	what would be the test that one would perform and do
8	you want me to put that slide back up?
9	CHAIRMAN ARMIJO: Yeah, we gained 15
10	minutes, and I want to use it productively.
11	(Pause in proceedings.)
12	CHAIRMAN ARMIJO: This is it, huh?
13	DR. BILLONE: Sorry.
14	DR. MEYER: Okay. I think the answer to
15	your question is what do you do to test a new alloy to
16	see if it's LOCA behavior is great or not so good.
17	CHAIRMAN ARMIJO: Or, Ralph, let's say
18	some manufacturer discovers a wonderful new heat
19	treatment and he's really happy with it. Maybe it's
20	messing up something else, and how would he check to
21	make sure that he hasn't shot himself in the foot with
22	regard to LOCA?
23	DR. MEYER: Okay. With regard to the
24	LOCA, I think it's fairly simple. You need to test
25	for the embrittlement threshold at 1,200 degrees C.,
ļ	I

(202) 234-4433

	165
1	1,204 degrees, 2,200 degrees Fahrenheit.
2	CHAIRMAN ARMIJO: That's a test, not just
3	an analysis.
4	DR. BILLONE: That's a test. You go in
5	the laboratory and you measure it. So the way that we
6	would try and apply these criteria for a new alloy
7	that we haven't seen before, as long as it's within
8	the family of zirconium-tin-niobium and those other
9	things that we put in there, I think the first thing
10	you do is you go in and measure the embrittlement
11	threshold of 1,200 degrees in fresh material, and you
12	get a number, and we've shown you numbers for all the
13	current cladding types, and it's going to be a number
14	somewhere around 17 to 20 percent.
15	Then you need to know what your corrosion
16	behavior is during irradiation, and you know that
17	because that's
18	CHAIRMAN ARMIJO: You shouldn't be in the
19	business unless you've got that.
20	DR. MEYER: because you do that in the
21	normal process of developing an alloy.
22	And then the only other thing that you
23	need to do is to check for break-away oxidation and to
24	get a number for the minimum time to break away
25	oxidation, and if that minimum time is significantly
I	1

(202) 234-4433

	166
1	longer than the time you're going to hang up during a
2	small break LOCA, then you won't have a break-away
3	problem.
4	Now, there are some fine structure that
5	could be seen with the prehydrided tests which Mike
6	has suggested. I personally thank you for just
7	checking, just for a screening test that you wouldn't
8	have to have the prehydrided results to look at either
9	the break-away or the adjusted oxidation limit.
10	So those are the three tests. We have a
11	bad apple in the basket with the old Russian cladding,
12	and they pick it up right away, and I think they give
13	you the benchmarks that you need for all of these.
14	There's somebody behind you who wants to
15	comment.
16	MR. MONTGOMERY: I'm just waiting for you
17	to be done, Ralph.
18	DR. MEYER: I'm done.
19	MR. MONTGOMERY: Mr. Chairman.
20	CHAIRMAN ARMIJO: Yes, please.
21	MR. MONTGOMERY: I have a question.
22	CHAIRMAN ARMIJO: You have to identify
23	yourself. Say your name.
24	MR. MONTGOMERY: Oh, I'm sorry. My name
25	is Robert Montgomery. I'm with EPRI and a tech.
I	

	167
1	The question here is you didn't mention
2	anything about the 1.2 factor.
3	DR. MEYER: The 1.2 factor. Yeah. Well,
4	Bill Shack raised a good point. My presumption was
5	that the only cladding that was going to develop high
6	corrosion, that is, up near a ten percent ECR which we
7	see at 100 microns of corrosion on the thin cladding,
8	if you're going to have that much corrosion, you might
9	want to look more carefully at the F factor.
10	It's hard for me to imagine that you're
11	going to develop new alloys that will have that kind
12	of corrosion behavior, but if you had an old one that
13	you're pushing and it's not
14	CHAIRMAN ARMIJO: You should trade to
15	cell?
16	DR. MEYER: then you might want to look
17	more carefully at the F factor.
18	MR. MONTGOMERY: Well, the F factor brings
19	in the effects of the transient time history. It also
20	brings in the effects of the alloy and things of that
21	nature and the effect of hydrogen.
22	DR. MEYER: Yes. Definitely there's room
23	for refining this process with regard to the F factor
24	and the transient time history. I, frankly, don't
25	know how to do it since we're trying to develop
ļ	I

(202) 234-4433

	168
1	criteria that you can apply broadly to any small break
2	or large break LOCA, but I would say that it's a
3	possibility.
4	MR. MONTGOMERY: So you don't expect then
5	as an outcome of this process to have a procedure
6	established that would define how one would get to an
7	F factor for a particular cladding alloy.
8	DR. BILLONE: Could I comment on that?
9	DR. MEYER: I don't know the answer. I
10	guess it depends on the kind of comments that we get.
11	DR. BILLONE: No, but if you run I
12	mean, obviously we're trying to find out what the
13	transient ECR that you're allowed. This is Mike
14	Billone from Argonne.
15	You could run a series of prehydrided
16	tests to directly determine the allowable transient
17	ECR for different hydrogen levels, correlate that back
18	to what your corrosion layer thickness is and the
19	corresponding hydrogen content, and you could
20	either a hole different approach than Ralph is
21	showing you you could just stay with the
22	prehydrided data and forget the subtraction or you can
23	use it to determine an F factor for your alloy without
24	ever testing irradiated material because you know the
25	oxide layer thickness for your operating material.
ļ	I

(202) 234-4433

	169
1	You should have a hydrogen pickup that you've already
2	determined for that material.
3	So then you go in the lab with prehydrided
4	material. That is one way to do it for new alloys.
5	DR. MEYER: We actually have a small
6	difference of opinion
7	DR. BILLONE: We disagree on this.
8	DR. MEYER: about the hydriding because
9	I think when you look at the figure where he compared
10	the prehydrided results with the real thing that the
11	difference was it was small but it was significant,
12	and it is significant enough that it could make a
13	difference on the F factor.
14	The thing that sticks in my mind is that
15	we have been regulating for the last eight years with
16	basically a subtraction with an F factor of one, and
17	we have good information on the cladding type that
18	develops the most corrosion in our U.S. plants. That
19	factor of one is not quite good enough, and we also
20	have unlimited data set and we all know the reasons
21	that we haven't been able to move faster with that.
22	So my opinion is you pick a general number
23	like 1.2 and you stick with it until you can develop
24	a better database. It's certainly better than 1.0.
25	DR. ABDEL-KHALIK: Excuse me. The two
I	I

(202) 234-4433

	170
1	quantities on the right-hand side, you indicated that
2	both of them are experimentally measured.
3	DR. MEYER: That's correct.
4	DR. ABDEL-KHALIK: Unirradiated ECR.
5	DR. MEYER: Well, one of them is measured.
6	The corrosion thickness is measured from your end
7	reaction.
8	DR. ABDEL-KHALIK: How about the
9	unirradiated ECR?
10	DR. MEYER: And this one you measure from
11	tests in the laboratory.
12	DR. ABDEL-KHALIK: If that's the case,
13	doesn't that penalize the M5 alloy right off the bat?
14	DR. MEYER: Why is that?
15	DR. BILLONE: No, it helps it.
16	DR. ABDEL-KHALIK: I mean, based on the
17	data that was shown earlier, the measured ECR for M5
18	was considerably lower than the calculated value.
19	DR. BILLONE: Oh, I'm sorry.
20	DR. MEYER: You're looking back at the
21	corrosion layer. It's a hard concept to explain
22	adequately, but the embrittling process is a
23	consequence of diffusion in the metal, not of
24	oxidation process on the surface. Give it some oxygen
25	on the surface and it will diffuse into the metal
Į	

(202) 234-4433

	171
1	according to its own kinetics.
2	Now, it turns out that those kinetics are
3	in the same ballpark as the kinetics that describe the
4	oxidation process, and so we just use one of those
5	equations instead of using straight time. It
6	simplifies things.
7	DR. BILLONE: Excuse me.
8	DR. MEYER: It's similar to what was done
9	in the past, and it doesn't penalize M5 at all int hat
10	respect.
11	DR. ABDEL-KHALIK: Did you want to say
12	something?
13	DR. BILLONE: Yeah, I just wanted to
14	clarify that that last term goal, the ECR corrosion,
15	you're not using any correlation at all, like
16	Cathcart-Pawel. It's just
17	DR. ABDEL-KHALIK: No, I'm talking about
18	the ECR unirradiated.
19	DR. BILLONE: That's about 20 percent.
20	DR. MEYER: And the fact that we use the
21	Cathcart-Pawel weight gain equation, which for M5 over
22	predicts corrosion at lower temperatures, but it's
23	only used as a correlating parameter.
24	DR. SHACK: Well, I think it could work.
25	I mean, you could give with one hand and taketh away
ļ	I

(202) 234-4433

Í	172
1	with the other. I mean, if you did it on measured
2	ECR, then his limit would be eight percent instead of
3	20 percent.
4	DR. BILLONE: Right.
5	DR. MEYER: That's true.
6	DR. SHACK: And then he could correlate
7	against measured and he'd have a limit of eight
8	percent. He can correlate with Cathcart-Pawel and
9	have a limit of 20 percent. It changes the numbers,
10	but, in fact, the limits on the fuel or the cladding
11	and its real use haven't changed at all.
12	DR. MEYER: Sam, someone else wants to
13	comment.
14	CHAIRMAN ARMIJO: Oh, yes.
15	MR. DUNN: Bert Dunn, AREVA.
16	I think we should recognize that what
17	we're talking about here is an irradiated ECR
18	determined at 1,200 degrees C and at last for that
19	thick the implied cladding there isn't a difference in
20	the kinetic at 1,200 degrees C.
21	DR. BILLONE: That's right.
22	MR. DUNN: The difference in the kinetic
23	is at 1,000 degrees C.
24	So that helps M5. The point is still
25	valid for some other alloy, you know, that we haven't
I	I

(202) 234-4433

	173
1	dreamed up yet maybe.
2	Thank you.
3	CHAIRMAN ARMIJO: Any other questions?
4	Well, one o'clock. I'm really proud of
5	you guys. We'll recess and come back after lunch at
6	2:00 p.m.
7	(Whereupon, at 1:00 p.m., the meeting was
8	recessed at 2:00 p.m.)
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
ļ	I

	174
1	AFTERNOON SESSION
2	(2:02 p.m.)
3	CHAIRMAN ARMIJO: Ladies and gentlemen,
4	we're ready to start, and we're going to resume the
5	session.
6	The order of the speakers is going to be
7	changed a little bit from the handout. The first
8	speaker will be Mr. Robert Montgomery of Anatech,
9	followed by Mr. Dunn of AREVA, Mr. Nissley of
10	Westinghouse, and Mr. Patterson of GNF. Robert, if
11	you're here. Where's our first speaker?
12	MR. MONTGOMERY: Thank you, Mr. Chairman.
13	Sorry I'm late. I had a battery problem.
14	Okay. I'm beginning to echo like you did,
15	Ralph. I can hear myself.
16	All right. Well, first I'd like to thank
17	the subcommittee for giving me the opportunity to
18	present the industry comments on the ANL NUREG report
19	and on the NRC research proposal on their revision of
20	the embrittlement criterion 10 CFR 50.46.
21	My name is Robert Montgomery. I am a
22	consultant to EPRI. I work for a company called
23	Anatech Corporation, and I will be summarizing the
24	industry comments on what we saw this morning.
25	As the Chairman indicated, there will be
ļ	I

(202) 234-4433

	175
1	also presentations made by AREVA, Westinghouse and GNF
2	summarizing their individual comments as well.
3	A short outline of what I plan on talking
4	about today is first I'd like to give some background
5	on the industry support that we've provided to NRC and
6	Argonne in the program, and that was summarized this
7	morning. Then I'll go through some of our concerns
8	with the proposed technical basis to revise the 10 CFR
9	50.46, Paragraph B criteria.
10	Then briefly, I'll kind of summarize some
11	of the data we think is needed to try to understand
12	the phenomena and to support more relevant criteria
13	development, and then finally some conclusions.
14	The industry has been collaborating or
15	working with NRC on the testing of high burn-up fuel
16	under LOCA conditions. It has primarily been through
17	a group that EPRI manages called the Fuel Rod
18	Reliability Program. The Working Group 2 that is a
19	subgroup of that program that is made up of industry
20	representatives, both from the utilities as well as
21	the fuel vendors, and basically that's the focal point
22	for the interactions with NRC on fuel licensing
23	issues.
24	We've been doing that for regulation
25	related issues. We go through NEI, and then directly

(202) 234-4433

	176
1	with Research on research topics like LOCA and RIA.
2	And I said, the members include both U.S. and
3	international utilities, fuel vendors, and NEI.
4	Specifically, the program has been
5	involved with the Argonne testing since 1998. A
6	little parenthetical there. We've pretty much had
7	limited input since about 2005, but primarily the
8	input has been on providing the fuel. You can see
9	that the industry has provided the irradiated fuel to
10	the program that has been used, as Mike talked about
11	today, the H.B. Robinson fuel for PWRs, the Limerick
12	fuel, and even the M5 and ZIRLO cladding that's been
13	provided or will be provided.
14	In addition to providing the fuel, we've
15	also provided analytical support to the program,
16	helping define some of the test conditions,
17	particularly related to the LOCA integral test, and
18	also help understand the data to some degree in the
19	mechanical property area.
20	With regards to the specific objectives of
21	the program to develop a technical basis to modify or
22	revise the embrittlement criteria, the industry
23	overall is supportive of that effort and the
24	objectives of that to revise it. We feel that the
25	revision to a performance based concept or performance
l	

(202) 234-4433

(202) 234-4433

based approach is a good one, and we like the concept, and we also feel that by revising the existing regulations we can start to look at ways to get new cladding advances taken care of without the need for a rule exemption, so that we can go through that process.

7 So those are the benefits we see of going through the revision. Now, in 2005, there was a 8 status review and discussion of the technical basis to 9 support the revision, and at that time in 2005 we were 10 supportive of that technical basis. However, it was 11 a qualified support. We felt that the data still 12 wasn't complete enough to really support the approach 13 14 that was being discussed at that time and really to talk about it here today as well. 15

And so we echoed those at a full ACRS 16 17 meeting in September, that we were supportive of it. However, there were areas where we thought that more 18 19 data was needed to really give our full support. And 20 these areas were we thought that there needed to be 21 more data that supported the approach. So completing 22 some of the ANL tests that were talked about at that 23 time, both recompression tests and integral tests on 24 LOCA samples, the LOCA integral tests, and also some 25 clarification on how these data would be used, some of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

the questions that came up this morning. What would be the test conditions one would use to test different types of cladding? And then how also it would be applied.

5 Specifically, some of the questions that 6 we had or some of the areas we thought was needed is 7 summarized here, and those included, like I said, 8 recompression tests, and we had requested at that time 9 the recompression tests be completed on irradiated 10 samples from H.B. Robinson that had been quenched.

And that actually didn't turn out to be the case. However, Argonne was able to add some additional prehydrided samples evaluating the effect of quench. So there is some information that came about. It still may not be fully complete yet though.

In addition to the recompression tests on the H.B. Robinson cladding, we were also expecting to see recompression tests on prehydrided and irradiated ZIRLO, M5 and Zry-2 material. That was not completed at this time and has not been completed at this time. Integral LOCA tests on irradiated PWR cladding, to confirm the overall LOCA behavior, that

was part of our qualified support that hasn't been completed at this time yet.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

At the 2005 ACRS meeting, we requested

(202) 234-4433

25

	179
1	that some justification be provided to support the
2	balloon region, and now that has been provided. It's
3	a strength based justification to disposition the
4	balloon region.
5	As I said, we were looking for test
6	definitions and protocols on how to go about
7	establishing the criteria for particular alloys.
8	Those procedures and protocols have not been defined
9	at this time.
10	And then finally, the confirmation that
11	using in-reactor corrosion as an adequate surrogate
12	for the effect of hydrogen. More data was developed
13	in the last year, but it still appears to be
14	incomplete because of the number dependencies that
15	I'll talk about here in a few moments.
16	So that was kind of a summary of what we
17	were expecting to see in the new report that was just
18	issued. Some specific concerns I'd like to talk about
19	are the F factor and then the double-sided oxidation.
20	As we saw this morning, the effect of the
21	radiation through the hydrogen and corrosion is now
22	being addressed by a factor of the F factor, and the
23	F factor basically is a multiplier that multiplies on
24	the corrosion thickness to account for the effects of
25	hydrogen content, cooling path, quench temperature and
ļ	I

(202) 234-4433

	180
1	phased transformation temperature and other variables
2	that we may not actually know at this time on the post
3	quench ductility behavior.
4	Our feeling is that the F factor is really
5	not a complete factor that can address all of the
б	impacts of these variables in a single factor, that
7	it's a much more complex factor than a single number.
8	In addition, it's really not clear how to
9	apply a single factor for a wide variety of LOCA
10	transients that might have different cooling path,
11	different heating path, different quench temperatures,
12	et cetera, et cetera.
13	So the feeling is that trying to use one
14	single F factor would be too bounding or too
15	conservative, and as a result, we need more data.
16	DR. POWERS: Let me ask you a question.
17	Are you casting this in terms of an F factor embodied
18	in the rule or an F factor in a regulatory guide that
19	says, "Do it this way and the staff is happy, or come
20	to us with a different way"?
21	MR. MONTGOMERY: Let me see if I
22	understand your question. Are we concerned about an
23	F factor in the rule versus an F factor in the reg.
24	guide?
25	DR. POWERS: If the F factor, just
ļ	I

(202) 234-4433

181 1 exactly as it has been portrayed, recognizing that 2 they haven't exactly solidified on that, but suppose 3 it was just exactly that way and the regulatory guide 4 said, "This is a mechanism of analysis acceptable to 5 the staff, but if you want to bring to us something else, we'll be glad to look at it." 6 7 MR. MONTGOMERY: What we're expecting is a recipe or procedure by which one would come in. I 8 think Dr. Armijo mentioned it earlier. There needs to 9 be some sort of specification of how an alloy would be 10 tested in some fashion. 11 I mean this would be the 12 DR. POWERS: staff saying, "Here is a recipe. You can use this or 13 14 use something else. If you use this, we understand it, and it's acceptable to us, but if you want to use 15 something else, we'll certainly listen to you." 16 I believe we're receptive 17 MR. MONTGOMERY: to that approach in general. The specifics of 18 19 defining the F factor, I think, still need to be 20 better defined, but if it's in the req. quide where 21 deviation can then be accepted --22 What I'm asking is it's DR. POWERS: 23 defined exactly as it is now, the 1.2 or maybe it's 24 the 1.3 plus or minus .3. It's exactly that way, no 25 more, no less, in a regulatory guide.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	182
1	MR. MONTGOMERY: Oh, the F factor is
2	specified in the regulatory guide.
3	DR. POWERS: Yeah.
4	MR. MONTGOMERY: I see.
5	DR. POWERS: And the staff says you can
6	use this or you can come to us with some other
7	definition and we'll look at the technical basis for
8	it.
9	MR. MONTGOMERY: I think in general we
10	would I mean, it's hard to say at this point, but
11	in general it would be acceptable of that.
12	CHAIRMAN ARMIJO: As compared to being in
13	a rule where there's no
14	MR. MONTGOMERY: Right. If the options
15	are in a reg. guide or a rule, we certainly want it in
16	a reg. guide, not in a rule.
17	MR. NISSLEY: Mr. Chairman.
18	CHAIRMAN ARMIJO: Comment?
19	MR. NISSLEY: Yes. I'm Mitch Nissley.
20	I'm with Westinghouse
21	Dr. Powers, I think that's a reasonable
22	suggestion. I guess the one point I would like to
23	make is that in terms of practical applications when
24	you go into a licensing arena and you know what is
25	expected and what is acceptable, you have a small

(202) 234-4433

	183
1	risk. If you have a position that one feels is
2	technically sound but has not yet been run through the
3	mill, if you will, you have assumed a significant
4	regulatory risk, and if you're trying to get a new
5	alloy introduced into the marketplace that improves
6	the performance in our plants, you may elect to take
7	an unnecessarily conservative single factor rather
8	than running the risk of delaying the introduction of
9	your material.
10	So I just wanted to make a comment on the
11	practical matter related to that.
12	DR. POWERS: It's true, but you see, this
13	is an unbounded thing. We could have 15 feet worth of
14	topical reports from Argonne describing tests, and I
15	could still stand up and say we need additional data.
16	It's an easy thing to say and
17	PARTICIPANT: It's true.
18	DR. POWERS: it's true. It would be
19	accurate. Nobody would criticize me. The question
20	is: at what point do you say, okay, I'm not going to
21	have your new alloy? I have no samples of it. In
22	fact, I have a hard time getting samples of alloys
23	that we do have, and it's okay. I don't have a hot
24	cell to test them in anyway.
25	You know, at what point do you stop
I	I

(202) 234-4433

Í	184
1	collecting data and say, "Okay. Here's a method
2	that's acceptable to the staff"?
3	Now, if you've got a specific thing that
4	you want to look at in detail, you know, and it
5	requires some modification of this F to be 1.12321 pi
б	over 16 or something like that. Then they can do the
7	in depth experimentation there, but otherwise it's
8	unbounded. I mean, there are too many alloys or too
9	many things to worry about and insufficient capacity
10	to carry it out.
11	MR. NISSLEY: This is Mitch Nissley again.
12	I think what we should do is defer to a
13	later slide that Mr. Montgomery unless you want to
14	MR. MONTGOMERY: It's the next slide.
15	MR. NISSLEY: Okay.
16	MR. MONTGOMERY: No, it'll be just a
17	minute. Sorry.
18	Mitch is going to point out that there's
19	a second slide in here that talks a little bit more in
20	detail about our concerns about the F factor, and how
21	we think the data is still incomplete in terms of
22	trying to define that.
23	The second concern is with regards to the
24	double-sided observation away from the balloon region
25	or fuel rods that have had a closed gap, that is,

(202) 234-4433

	185
1	irradiating fuel at higher burn-up.
2	The major impact on that is that it will
3	reduce the allowable transient time by about a factor
4	of two, and there really doesn't appear to be a
5	sufficient technical basis to make that at this point,
6	based on the limited amount of data that Argonne has
7	provided us to date.
8	We feel that we need additional post
9	quench ductility data from interval LOCA experiment
10	samples which have had fuel in them, which have had
11	the possibility of ID oxygen uptake, and then we can
12	then evaluate the consequences or the effects of the
13	ID oxygen uptake.
14	Now, let's just talk a few minutes
15	about
16	CHAIRMAN ARMIJO: Robert, specifically
17	what types of fuel rods that need to be tested that
18	haven't been tested?
19	Now, we have integral tests on BWR rods.
20	MR. MONTGOMERY: Yes.
21	CHAIRMAN ARMIJO: Do we have integral
22	tests on the PWR rods? Are those the ones that are
23	closed gap that you're talking about?
24	MR. MONTGOMERY: Those would be more
25	applicable because they had the bonding effect that
I	

(202) 234-4433

	186
1	was talked about this morning. The LOCA experiments
2	on the BWR fuel, the bonding wasn't there, and so you
3	didn't see the effect that strongly, and there were no
4	recompression or post quench ductility tests done on
5	those samples to quantify the effect.
6	So even though that process may have
7	occurred in the Limerick samples in terms of some
8	oxygen uptake, we don't have any mechanical property
9	tests to tell us the consequences.
10	CHAIRMAN ARMIJO: But what you're calling
11	for is for tests that were in the original plan that
12	have just been delayed because of hot cell problems
13	and things like that?
14	MR. MONTGOMERY: Yes.
15	CHAIRMAN ARMIJO: Okay. Not new tests
16	that were never \setminus considered in the plan.
17	MR. MONTGOMERY: In the planning process
18	we've talked about a number of different types of
19	tests. We talked about ballooning, tests that were
20	single sided oxidized which were balloon tests that
21	were like the ones that Mike talked about this
22	morning, the LOCA integral tests.
23	And we also discussed tests where they
24	didn't pressurize them. They just ran them through an
25	oxidation train. You have to look and see if the ID
ļ	I

(202) 234-4433

	187
1	oxygen uptake effect would occur and the consequences
2	of it. We talked about that in the 2005 meeting even.
3	CHAIRMAN ARMIJO: Okay.
4	MR. MONTGOMERY: So there is an appearance
5	in the way the approach is being carried out here that
б	let me find out where I'm at here there's an
7	appearance of stockpiling of some conservatisms with
8	regards to the embrittlement criteria that we're
9	considering, the revision that we're considering.
10	First, there's some historical
11	conservatisms already built in the existing criteria
12	as defined, and those are the requirement to retain
13	post accident or post quench ductility after the
14	accident, some sort of ductility.
15	A body of data
16	DR. POWERS: Why is that a conservatism?
17	MR. MONTGOMERY: Well, there's a body of
18	data that's out there now that shows that the ECR
19	limit to retain ductility is about half the detail
20	needed to survive quench and also the post quench
21	loads that occur, say, after the accident. So there's
22	data out there to suggest that ECR limit based on
23	ductility is conservative with regards to its
24	strength, maintaining sufficient strength during the
25	accident to survive the accident, any loads that would
Į	I

(202) 234-4433

	188
1	occur after the accident.
2	So that we feel that there's some
3	conservatism in that particular requirement.
4	Secondly, defining ductility based on ring
5	compression tests, those are very aggressive tests,
б	especially empty ring tests. They're very aggressive
7	tests in terms of mechanical property definition, and
8	there is some conservatism built into this particular
9	testing technique as well that enhances or enforces
10	the ductility requirement, to define the ductility
11	requirement.
12	So these are historical. We accept them.
13	They're there, and already imbedded into the existing
14	criteria.
15	Now, with the new proposed revisions,
16	there are some new conservatisms being added in.
17	First is that we're looking at oxidation of high burn-
18	up fuel at 1,200 degrees C. High burn-up fuel by
19	definition if you're going to have less reactivity
20	work and as a consequence have less peaking factor.
21	Its operation at 1,200 degrees C.; you won't see
22	operation at 1,200 degrees C. during a LOCA accident.
23	So defining criteria at that temperature
24	level adds some conservatism.
25	The second additional conservatism is the
I	

(202) 234-4433

	189
1	application of this F factor for hydrogen effects
2	which high temperature quench, and I'll talk about
3	that in a little bit more detail.
4	And, thirdly, the double-sided oxidation
5	away from the balloon region is a conservatism. The
6	data isn't strongly suggests that the oxygen uptake
7	from the ID is as embrittling as the corrosion
8	process, the high temperature corrosion process from
9	the ID.
10	So treating that equally is a
11	conservatism.
12	CHAIRMAN ARMIJO: But you don't deny that
13	it happens, right? I mean, you see it's happening.
14	The oxygen is being
15	MR. MONTGOMERY: There is some oxygen
16	uptake, yes, and I'll talk about that, but is it
17	happening at the same rate and the same amount as the
18	OD? Because in double-sided oxidation you're assuming
19	they're the same. So that's the question.
20	So as I said already, the F factor is a
21	function of the hydrogen content, the fine design,
22	which is the alloy basically. The accident time-
23	temperature history and that time-temperature
24	history, what I mean by that is the heat up and
25	cooling rates and the quench conditions.

(202) 234-4433

The Argonne data showed that at quench temperatures below about 600 C. you do get an improvement in F factor, and there's also data that suggests slower cooling rates below one degrees C. per second or so, lower than what Argonne has used, also improved the F factors.

7 In addition to the uncertainty or the difficulty in using a single value based on the 8 9 complicated function that comes in from the hydrogen effects and the temperature effects, there's also how 10 does one define an F factor from prehydrided material. 11 12 There has to be a conversion factor from hydrogen to corrosion to basically estimate the equivalent steady 13 14 state ECR for a given hydrogen content, and in doing 15 that, that becomes now dependent on the alloy hydrogen pickup fraction, the Pilling-Bedworth ratio for that 16 particular alloy in terms of how the oxide rose. 17 There is some dependency on that density, the outside 18 19 density for different alloys, and also the oxidation 20 uncertainty. We know there's some uncertainty with 21 regard to the oxidation rate.

22 So the consequence if we look at the F 23 factors that are available in the literature, most of 24 these are from F factors that are derived from the 25 data presented in the Argonne report. Some of these

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

are also beta available in the literature from CEA primarily, the french data from experiments conducted in their labs.

And in doing that, I've used the same 4 5 definition of F that was presented this morning by Dr. Billone, and that is that the F is defined as the 6 7 unirradiated ECR limit, and that is basically the 8 fresh cladding material, that 17 percent type number, 9 then looking at a 20 percent type number, minus the brittle 10 ductile transition ECR limit for the irradiated or prehydrided material, depending on which 11 12 type of material we're talking about, divided by the steady state pre-trained in corrosion ECR, and that 13 14 has been converted by -- for the irradiated samples, 15 there are two irradiated samples on here. Those are 16 the ones that Mike presented this morning, and that is the quenched sample and the slow cooled sample here, 17 the rest of these are all for prehydrided 18 but 19 So in defining the ECR steady state for material. 20 prehydrided material, there was an assumption made 21 that that was used on what the pickup fraction was for 22 that cladding alloy and what the Pilling-Bedworth 23 ratio is, and that then goes into the calculation of F. 24

And so we have here plotted F factor

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

(202) 234-4433

191

192 1 versus hydrogen content and some data here. This data 2 includes cladding that is being cooled down and 3 quenched at very high rates or rates faster than one 4 degrees C. per second and quenching temperatures of 5 800 C. or samples that have been quenched directly from 1,200 C. In addition samples that have been 6 7 cooled very slowly, less than one degrees C. per second either then quench or just allowed to cool all 8 9 the way to room temperature, and we had different alloy types. Our basically wall thickness, these are 10 all Zry-4, 17 by 17 and 15 by 15, and then as I 11 12 pointed out, there's two samples on here that are from irradiated specimens. 13 14 And what we see is that if you put all of 15 the data on here, you basically have a nice fruit You have some apples, oranges, bananas, 16 salad. There's really no clear trend here in terms 17 grapes. of behaviors, but you do see, as was pointed out, 18 19 there is an effect of the quenching temperature at 20 quench temperatures that are high and what we've kind of defined as unrealistic, you have higher F factors. 21 22 And then for slow cooling condition, this 23 is all a group of data from the slow cooled condition, 24 you have lower F factors.

CHAIRMAN ARMIJO: Is this al Argonne data

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	193
1	that you're plotting or does that include some French
2	data?
3	MR. MONTGOMERY: It does include some
4	French data. The Argonne data or I should it's
5	easier for me if I point out the French data. The
6	French data are all of the purple symbols. Everything
7	else is argonne data.
8	CHAIRMAN ARMIJO: The blues are also low.
9	Are those Argonne data?
10	MR. MONTGOMERY: These are Argonne slow
11	cooled, prehydrided specimens. Our one is slow cooled
12	and one is quenched. No, they're both slow cooled,
13	both slow cooled.
14	Now, you see some error bars on there.
15	DR. POWERS: Yes.
16	MR. MONTGOMERY: The error bars in terms
17	of the hydrogen content, that's what was the range of
18	the measurements that were quoted for the different
19	samples, and if you see for the CA data they want
20	I was not provided any variation in the hydrogen
21	content. So I did not put an error bar on there for
22	that.
23	The variation in F is an estimate.
24	They're not one standard deviation or anything, but
25	they're an estimate based on what uncertainty I have
ļ	

(202) 234-4433

	194
1	in either the steady state ECR value for the
2	prehydrided specimens or the measured transient ECR.
3	There's some uncertainty. You saw Mike show this
4	morning that he measured the pretransient or the
5	transient threshold by about half a percent, .5 or
6	five percent plus or minus a half of a percent.
7	So that goes into this variation here in
8	terms of the variation in the F factor. It's just to
9	give you a rough idea of how these can vary for any
10	one point. It's not a hard and fast one sigma
11	variation at this point. It's just estimated based on
12	what information was available in terms of the
13	uncertainty for the different measurements or the
14	uncertainty in estimating the pretransient corrosion.
15	CHAIRMAN ARMIJO: Just to make sure I
16	understand that chart, you say it's tested at
17	unrealistic quench temperature. You really mean after
18	an unrealistic quench temperature, but it was tested
19	at 135, and everybody agrees that that is a good test
20	temperature.
21	MR. MONTGOMERY: That's correct, Sam.
22	That's correct, Dr. Armijo. That is it was quenched
23	at an unrealistic quench temperature.
24	CHAIRMAN ARMIJO: Right, and so we have
25	Argonne data and French data on both sides of the

(202) 234-4433

(202) 234-4433

	195
1	curve. So there's general agreement that the cooling
2	rate is very important or the quenching temperature is
3	very important.
4	MR. MONTGOMERY: Yes. Quenching
5	temperature and cooling rate has an effect, and you
6	can see it appears to be somewhat important.
7	DR. POWERS: Of course, I don't understand
8	that at all. First of all, I don't know what a
9	realistic quench temperature is.
10	CHAIRMAN ARMIJO: Well, that was where I'm
11	getting to. Which one can you count on? I mean, do
12	you know enough bout the LOCA event that you can say
13	I'm really sure that for this plant, approximately
14	quench temperatures and cooling rates are down here or
15	up there. It's a system issue.
16	MR. MONTGOMERY: Yes, and there will be a
17	presentation after me that will talk a bit about the
18	quench temperature assessment and what would be a more
19	realistic quench temperature versus what we see in the
20	data here.
21	DR. POWERS: Well, I thought earlier we
22	had seen a discussion that said it really doesn't
23	matter whether I let the furnace cool down to 800, 700
24	or 600. I get kind of the same number. It's only
25	when I let it drift down for very long times that I
	I

(202) 234-4433

	196
1	get any difference at all.
2	MR. MONTGOMERY: I heard that as well.
3	This is the database though. So I think the point
4	here is that in a very complicated function of these
5	various test variables and the amount of data we heard
6	this morning suggests compared with this data, it
7	suggests that we need more evaluation and
8	understanding of the data before we make any global
9	statements about what the dependencies are.
10	DR. POWERS: Well, the next thing that I
11	heard is, yes, everything you've said, you've brought
12	it to your Zry-4 data and all of this is true. But
13	the fact of the matter is that the modern alloys all
14	have a very big term, if multiplied by the 1.4. So
15	why do I care? C times F.
16	MR. MONTGOMERY: F times yeah. Yes.
17	DR. POWERS: If the C is small, why do
18	MR. MONTGOMERY: As long as we're looking
19	at as long as we look at this, and F is a very
20	complicated function, it's hard to determine which one
21	of these goes down faster. You see?
22	DR. POWERS: No, that
23	MR. MONTGOMERY: Which one of these is
24	going down quicker. Is the bottom, the denominator or
25	the numerator going decreasing to
I	1

(202) 234-4433

	197
1	DR. POWERS: Ralph is going to tell me
2	1.2. Mike is going to tell me it's 1.3, and I think
3	what I've learned is that if I have a decent alloy I
4	want to introduce, I don't care. That's one of them.
5	I'll take whichever one will make them happy because
6	what I multiply them by is ten microns. I don't care.
7	I care if it's 100 microns. Then I get
8	really agitated over whether it's 1.2 or 1.3.
9	CHAIRMAN ARMIJO: You wouldn't want that
10	alloy anyway.
11	MR. MONTGOMERY: But if we looked at an
12	alloy that has a different hydrogen pickup rate.
13	DR. POWERS: You haven't told me anything
14	to do about hydrogen pickup, right? They told me to
15	use F times how much corrosion I get during the
16	MR. MONTGOMERY: Well, as long as F is
17	1.3, then I think, yeah, the debate is a difficult
18	one. I mean, if we're down here
19	CHAIRMAN ARMIJO: You're arguing about
20	units.
21	MR. MONTGOMERY: Yes, but the question is
22	is the database sufficient to really say that F is
23	down here or could we end up in this area. That's the
24	question that we still haven't answered and that we're
25	looking to try to answer.
Į	I

(202) 234-4433

	198
1	DR. POWERS: The regulator is happy with
2	1.2. I don't have a very big, normal operation
3	corrosion problem. Why am I not happy with 1.2? If
4	a regulatory is happy with two and I have low amount
5	of corrosion during normal operation, I'm still happy.
6	I mean, if I'm trying to sell Zircaloy-4 in the
7	marketplace, I may have a little more heartburn here,
8	but if I'm selling M5, I'm real happy and if it's M-
9	7.232, I probably am just ecstatic. They can pick ten
10	if they want to.
11	MR. MONTGOMERY: Okay. Well, one of the
12	things that I should point out is that coming into
13	this meeting this morning F was 1.5 and not 1.2. So
14	we're learning a little bit here today also.
15	CHAIRMAN ARMIJO: Well, keep negotiating
16	because it sounded like we're arguing over something
17	that doesn't mean much. That factor may be
18	technically something that should be in there, but it
19	has no impact on the development of a material or the
20	qualification of
21	MR. MONTGOMERY: It depends, I think,
22	partly on the procedure that's defined. If it's
23	defined that F is going to be 1.2 or is it a recipe
24	that gets defined?. I think that's part of the issue.
25	CHAIRMAN ARMIJO: Could be, could be.
Į	I

(202) 234-4433

	199
1	MR. NISSLEY: This is Mitch Nissley from
2	Westinghouse.
3	The second presentation after this I'll be
4	giving is focused on the practical implications
5	applying this method in the industry today, and I
6	think you will see that there are some rather
7	substantial consequences. Even at the end of the day
8	there's no real impact on safety margins, but there
9	are practical implications that are quite costly.
10	CHAIRMAN ARMIJO: Okay. Well, let's go on
11	and we'll hear that later.
12	MR. MONTGOMERY: All right. So changing
13	gears in terms of the F factor, now I want to talk a
14	few minutes about the double-sided oxidation
15	requirement. We feel that this exaggerates the whole
16	of the ID oxygen uptake. First let's just talk about
17	the fact that we're going to assume the weight gain is
18	the same on both the ID and the OD.
19	Without an ID oxide formation, basically
20	really the ID oxide dominates the weight gain. It's
21	about 85 percent of the weight gain is from the
22	formation of the oxide, and we're not forming an oxide
23	on the ID. We're just absorbing oxygen into the metal
24	from an alpha layer, a preexisting ID oxide layer
25	that's forming an alpha layer.
I	

(202) 234-4433

1 The question then becomes is there 2 sufficient amount of ID oxide layer to warrant a 3 double-sided consideration throughout the entire 4 transient. We saw data. Mike showed some data this 5 morning that said that there is a limited oxygen 6 source out there, and it could stop creating or 7 putting oxygen in the system as the ID oxide is absorbed and then that alpha layer could actually go 8 9 away after some period of time.

To have additional oxygen coming from the 10 11 fuel, there will have to be fuel cladding contact, and 12 that's data that's been presented and talked about in the Argonne report, basically looked at from the late 13 14 '70s and early '80s. There is some data created that 15 suggests tat, and the MAP crews actually has a correlation that tries to account for the oxygen 16 uptake into the cladding from the reaction of the 17 uranium and zirconium alloys. 18

19 The data that's been presented so far is 20 not really clear on what conditions we can expect 21 during a LOCA. The information from the three LOCA 22 integral tests on the Limerick fuel don't show a clear 23 indication that this is actually happening and that double-sided 24 would warrant usinq oxidation 25 requirement.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	201
1	CHAIRMAN ARMIJO: But I don't understand
2	that. The only time you're going to have double-sided
3	oxidation is if you have a burst of a balloon, right?
4	MR. MONTGOMERY: No. That's not what has
5	been talked about this morning.
6	MR. SIEBER: That's not what he said.
7	CHAIRMAN ARMIJO: That's not what you
8	said.
9	MR. MONTGOMERY: That's right.
10	CHAIRMAN ARMIJO: So your issue is if
11	MR. MONTGOMERY: Say I'm one meter away
12	from the balloon region.
13	CHAIRMAN ARMIJO: Okay.
14	MR. MONTGOMERY: Which is where the peak
15	cladding temperature more than likely is going to be
16	in this event now because of the cooling effect of the
17	balloon. With that position the proposal on the table
18	is to use double-sided oxidation at that point,
19	considering that the ID oxygen source is the ID oxide
20	pretransient corrosion that's there from the bond
21	layer.
22	CHAIRMAN ARMIJO: And your argument if the
23	gap is closed, the only source of oxygen is either
24	this bond region or the fuel, but there will always be
25	a an oxide on the ID.
I	I

(202) 234-4433

	202
1	MR. MONTGOMERY: Yes.
2	CHAIRMAN ARMIJO: It's a very thin oxide.
3	MR. MONTGOMERY: But the very thin oxide.
4	So does that warrant double-sided, considering double-
5	sided oxidation throughout the entire accident, which
б	is what we're talking about, the proposal this
7	morning.
8	CHAIRMAN ARMIJO: Okay. I understand.
9	MR. MONTGOMERY: Okay. I would just point
10	out that during a LOCA event it's more than likely
11	that there's a gap between the fuel and the cladding
12	because the thermal contraction of appellate, the
13	cladding also retracts away because the pressure has
14	dropped, you know, on the outside. So there could be
15	a gap open. So considering that the fuel is a source
16	of oxygen, may not be appropriate because there is a
17	gap there and it's not in intimate contact with the
18	cladding necessarily.
19	That's why we feel that as the next slide
20	has, we feel that currently the results from the
21	integral tests that have been conducted to date are
22	inconclusive and that we need some additional data
23	from integral tests where fuel and cladding are in the
24	same sample together, to give some indication, to give
25	some information on the possibility of this effect.
Į	I

(202) 234-4433

So like I said, the results from the current data set that's been provided from the Argonne program is inconclusive. There doesn't appear to be a clear indication that inner surface oxygen uptake in the balloon region is going on sufficiently to warrant a double-sided oxidation requirement.

7 There may be some data that we can get out 8 of the NSR irradiated test. We should go and try to 9 look for that, and currently there's been no test, no 10 ring compression test or post quench ductility test on high burn-up LOCA integral specimens 11 these to investigate what could be happening to the post quench 12 ductility due to the effect of ID oxygen uptake. 13

14 DR. POWERS: I understand the ID oxygen 15 The concept as I understood it, and I have to uptake. admit I kind of glanced and glossed over that whole 16 17 thing, is that we have got a hyperstoichiometric fuel with some saturated -- with a molybdenum oxide 18 19 equilibrium going on, and that if we get hot enough on 20 the order of 1,000 degrees Centigrade, that we will 21 get certain partial pressure of oxygen in there, and 22 oxygen will react with the inside of that the 23 Am I correct in that? cladding. 24 CHAIRMAN ARMIJO: No, I don't think that's 25 I heard that all of the oxygen of what I heard.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	204
1	interest was coming from the bonded layer, and that
2	was more than enough oxygen.
3	DR. POWERS: Sam, you've got to create the
4	bond.
5	CHAIRMAN ARMIJO: Well, that happened
6	during normal irradiation and high burn-up.
7	DR. BILLONE: Normal irradiation, and Dana
8	is correct on that. During normal irradiation you're
9	burning up uranium. So your oxygen to metal ratio is
10	increasing. Even if you had stoichiometric UO $_{\scriptscriptstyle 2}$ and
11	pressed it against zirconium metal, zirconium has such
12	a high affinity for oxygen. It will take some of that
13	oxygen away, but in terms of normal operation and how
14	the bond forms, it's depending on linear heat rating
15	and it's dependent on burn-up as to when you get a
16	complete bond, but the mechanism is
17	DR. POWERS: Whether or not we get some
18	oxygen in there.
19	CHAIRMAN ARMIJO: You get oxygen. There's
20	no question.
21	DR. BILLONE: Just one comment on Robbie's
22	remarks. What hasn't been demonstrated or what we
23	have seen so far in our local integral test is the
24	bond is very strongly attached to the cladding. It
25	moves out with the cladding, and it takes some of the
Į	I

(202) 234-4433

	205
1	fuel with it.
2	Now, how much fuel does it take? It's
3	hard to quantify. It could be we've seen chunks of
4	fuel attached to the bond, and we've seen particles of
5	fuel. So it's difficult to quantify, and I think
6	Robbie and I could agree that assuming double-sided
7	oxidation would bound that effect, it would be
8	conservative. The point is it's too conservative.
9	MR. MONTGOMERY: That's right.
10	DR. BILLONE: But we don't have it
11	quantified.
12	CHAIRMAN ARMIJO: But we all know at
13	least
14	
15	MR. MONTGOMERY: We need some data to
16	justify it.
17	DR. MEYER:
18	While you're on this subject let me point out that the
19	fuel particles that Mike talked about being stuck to
20	the bonding layer have all been etched away before
21	these tests were run. So if these tests show some
22	limitation of the oxygen supply, that doesn't
23	necessarily say that if the fuel particles were still
24	present that you would have such a limit.
25	I've seen four sources of data that are

(202) 234-4433

	206
1	very relevant to this and in all cases when you have
2	bonding, you see an alpha layer, an oxygen stabilized
3	alpha layer that is roughly the same size on the OD as
4	the ID, and I think that's clear evidence that it's
5	the same and not some conservative bound.
6	MR. MONTGOMERY: I don't think we
7	disagreed that you need fuel in NO_2 , zircaloy contact
8	to have oxygen uptake. That's not the argument here.
9	The question is: is there sufficient amount of
10	contact during a LOCA event where the fuel is
11	retreating from the cladding and the cladding is
12	moving away from the fuel to support a double-sided
13	oxidation requirement throughout the whole event. Is
14	there sufficient oxygen coming from these sources to
15	support that?
16	If the oxygen is less, significantly less,
17	then this would be bounded. If it's not the data
18	suggests that it's not a if there's sufficient
19	oxygen, then the data does suggest that double-sided
20	oxidation is reasonable.
21	CHAIRMAN ARMIJO: I guess I heard Mr.
22	Billone say that the oxygen source was the bonded
23	material that stays with the cladding and is attached
24	to the cladding. He wasn't claiming oxygen coming
25	from any other source.
I	1

(202) 234-4433

	207
1	MR. MONTGOMERY: But he hasn't run those
2	tests yet. So we don't know the answer.
3	CHAIRMAN ARMIJO: He has run one, one
4	test, two tests.
5	DR. BILLONE: No. Most of the data I
6	showed you are from cladding samples that have the
7	bond where the fuel was etched out. So it wasn't even
8	present. We've run three tests, LOCA interval tests
9	with the fuel in it, and we wanted to run a fourth.
10	It was proposed at the last meeting, I guess, the same
11	day the hot cells got shut down while I was sitting
12	here, but that test will be run, and that's basically
13	the worst case is to take a one foot long excuse
14	the units sample filled with fuel and weld the ends
15	and expose it to steam oxidation, and then do ring
16	compression and metallography and micro hardness to
17	see how much oxygen you pulled in from the ID.
18	It can be done. We can also use the
19	samples we've already generated to do that from
20	Limerick. It would have to be done at Oak Ridge.
21	MR. MONTGOMERY: You can do that from the
22	Limerick samples?
23	DR. BILLONE: Yes. It's just that we
24	can't cut them right now in our hot cells, but they
25	can be cut at Oak Ridge, and we can take your proposal
ļ	I

(202) 234-4433

	208
1	and actually do that.
2	CHAIRMAN ARMIJO: Well, I haven't looked
3	at a lot of PWR fuel, but I have looked at a lot of
4	BWR fuel, and the bonding is definitely there. The ID
5	oxide is definitely there. The bonding is highly
6	variable at least in the BWR. So it's kind of hard to
7	say 100 percent of that would clearly be conservative,
8	but I don't think it's necessarily accurate.
9	DR. BILLONE: No, for the Limerick BWR
10	fuel we tested it was 57 gigawatt-days per metric ton,
11	and the bonding was not there were gaps, areas in
12	which the fuel cladding gap so that you could run the
13	circumference n other areas of complete bonding.
14	CHAIRMAN ARMIJO: Right.
15	DR. BILLONE: And that's primarily due to
16	the lower system pressure. You're not squeezing the
17	cladding of the fuels fast.
18	MR. MONTGOMERY: And in those samples,
19	there wasn't a strong and there wasn't really an alpha
20	layer at all on the ID of those samples.
21	DR. BILLONE: No, because they were run
22	for 300 seconds, and by that time you've gone past
23	that point.
24	MR. MONTGOMERY: And basically indicating
25	that there was a limited amount of oxygen on the ID,
I	I

(202) 234-4433

	209
1	and if we had assumed double-sided oxidation in that
2	case, you would have well over estimated the amount of
3	oxygen that would have been absorbed in that sample.
4	DR. MEYER: Not necessarily, because there
5	were fuel particles attached to the bonding layer
6	before he etched them off of there.
7	MR. MONTGOMERY: Well, the alpha layer was
8	gone though. So that meant the
9	DR. MEYER: Because he started out with a
10	limited
11	MR. MONTGOMERY: The oxygen source
12	stopped.
13	DR. BILLONE: The integral tests, we
14	didn't etch any fuel. So we've got to separate the
15	discussion.
16	CHAIRMAN ARMIJO: Okay. These are the
17	issues.
18	MR. MONTGOMERY: Yeah. Okay. So I'm just
19	about near the end here. Our overall concerns are
20	kind of a lack of data, as you've kind of got the
21	picture, and also we feel that there has been a lack
22	of opportunity for the industry and the public to
23	really review and evaluate the data. We feel that we
24	need more time to review and understand the Argonne
25	test data and their evaluations of that data in
I	I

(202) 234-4433

210 1 relationship with other data and experience that we 2 have out there available. 3 And I've pointed out already that we feel 4 that there's some additional need for tests and data 5 acquisition. Data acquisition would be things like 6 oxygen distribution measurements or how to do 7 distribution measurements to try to help us answer 8 some of these key technical questions that we talked 9 about today. 10 In addition, there does appear to be an appearance of a rush to rulemaking without cause on 11 We don't see that there's any safety 12 this issue. concern here with our current evaluation methods that 13 14 are used in analyzing the LOCA, as well as in the 15 design basis of existing operating plants. We feel that there's a possibility here 16 17 that we could impose by going forward with the current technical basis, we could impose criteria we've had 18 19 with excessive conservatisms that end up becoming 20 costly to implement on the industry. That's kind of 21 our overall concerns. 22 I've indicated that we would like to see 23 additional data. Here's some examples of the type of 24 data that we think is needed to help us move forward. 25 Again, we're talking about additional recompression

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	211
1	tests to help us understand this F factor or whatever
2	other variables we might need to use if that is not
3	the appropriate one on all the different alloys.
4	Looking at quench temperatures, including
5	relevant quench temperatures, cooling rates, and
6	hydrogen content in the range of irradiated fuel.
7	In addition, we'd like to see some
8	integral LOCA tests on PWR cladding. We have some
9	data on BWR claddings, but we don't have any on PWR
10	claddings to confirm the overall LOCA fuel behavior
11	for that type of fuel, and from these, we also feel
12	that we can use these types of tests, also include
13	looking for the effects of the double-sided oxidation
14	and try to assess the consequences of using or
15	requiring double-sided oxidation away from the
16	ballooned area.
17	Just to give a feel for what else other
18	people are going out there, here is kind of a time
19	line schedule of additional data that have become
20	available, and I won't talk much about the top line
21	because that's really the Argonne program
22	continuation, but we also have the integral LOCA tests
23	that can go on in Oak Ridge, but they're probably not
24	going to start until about 2008.
25	Is that still current, Mike?
ļ	I

(202) 234-4433

	212
1	DR. BILLONE: 2007.
2	MR. MONTGOMERY: Okay. So the last
3	quarter of 2007.
4	We also have data coming from the Halden
5	program. There's a LOCA program going on in Halden
6	looking at the effects of high burn-up fuel behavior
7	during a simulated LOCA event. There will be an
8	additional test later this year and a second test in
9	the end of 2008 that should provide more information
10	for us to understand these different phenomena.
11	In addition, there will be some LOCA
12	quench tests in the Japanese program on advanced
13	alloys, the M5 and ZIRLO. Those will be starting in
14	the middle of this year and running for about two
15	years where we'll be getting some data on the LOCA
16	behavior of the quench and the quench behavior of
17	advanced alloys.
18	And finally, the CA program has separate
19	effects tests going on looking at post quench
20	ductility as well as quench behavior of advanced
21	alloys and Zry-4 looking at the effects of quench,
22	quench temperature, cooling rates. That will also
23	become available in the next two years.
24	CHAIRMAN ARMIJO: Are the data from these
25	tests available to the NRC, all of them, or you know,
I	I

(202) 234-4433

Í	213
1	if somebody holds them proprietary they're not going
2	to do
3	DR. BILLONE: Of free lines, yes.
4	MR. MONTGOMERY: I think everything but
5	the bottom line, and the bottom line, some of that
б	would become available. I can't speak to the CEA for
7	sure, but the rest of that would all be available.
8	CHAIRMAN ARMIJO: Who's paying for the
9	Halden work? Is that
10	MR. MONTGOMERY: The Halden group.
11	DR. POWERS: U.S. is a partner in Halden.
12	CHAIRMAN ARMIJO: U.S. is. Yeah, I know
13	that.
14	MR. MONTGOMERY: The Halden program.
15	CHAIRMAN ARMIJO: So NRC gets that.
16	MR. MONTGOMERY: yes.
17	DR. POWERS: What's remarkable is I don't
18	see anything from the U.S. industry on this.
19	CHAIRMAN ARMIJO: Well, there's some U.S.
20	people who are members of the Halden program, some
21	manufacturers in the U.S.
22	MR. MONTGOMERY: Yes. We're providing the
23	fuel for the top two lines. So there is contribution
24	to the Argonne program. The M5 and ZIRLO is U.S.
25	industry fuel. The Oak Ridge test will be performed
	I

```
(202) 234-4433
```

	214
1	on fuel that the U.S. industry provided, and as Dr.
2	Armijo said, the industry does participate in the
3	Halden program. EPRI is a member, as well as the fuel
4	vendors.
5	The NSR, the Japanese test, I can't speak
6	to you right now, the source of the M5 and the ZIRLO.
7	Some of that could be provided from the U.S., and the
8	CA data is being sponsored by the AREVA as well as
9	EDF.
10	MR. NISSLEY: This is Mitch Nissley.
11	Westinghouse has provided some additional
12	data on ZIRLO performance in the 800 to 950 degrees C.
13	range to the NRC this week at their request. This was
14	some data we already had available. We've provided
15	that informally.
16	We're also planning to conduct additional
17	testing here in the coming months. As you'll see,
18	industry would really like to work with the NRC to
19	reach a consensus on the additional data needs, and
20	Westinghouse does plan to perform additional testing
21	and supply that data to the NRC.
22	MR. MONTGOMERY: My last slide here is our
23	conclusion is based on what we've heard this morning,
24	that there's really more work that's needed to support
25	a possible revision of the embrittlement criteria.
I	1

(202) 234-4433

	215
1	It's a bit maybe premature to be thinking about
2	exactly how to make that revision at this time. The
3	technical basis is not complete yet.
4	Finally, we feel that in support of this
5	we would like to suggest a series of stakeholder
6	workshops where the industry would come ready to talk
7	in more detail about the types of tests we feel are
8	necessary and needed to help move forward in this
9	area, and so we're willing to talk about that at a
10	future date.
11	DR. POWERS: What I still don't quite
12	understand does the industry want to come forward
13	and discuss how a reg. guide should be written or how
14	a regulation should be written?
15	MR. MONTGOMERY: I think we're ready to do
16	both.
17	DR. POWERS: I mean, I think I can write
18	a regulation right now, and I guarantee you I don't
19	need anymore data to write a regulation.
20	CHAIRMAN ARMIJO: But that regulation
21	probably wouldn't include that level of detail on the
22	F factors and things like that.
23	DR. POWERS: Of course not.
24	CHAIRMAN ARMIJO: It would be a general
25	statement.
I	I

(202) 234-4433

	216
1	DR. POWERS: It would be a statement of
2	what I consider safe, okay, as part of defense in
3	depth. Now, you see the NRC has the option of saying,
4	"Okay. Here's our safety criterion. You meet it.
5	And, by the way, here's a method that's acceptable to
6	us to meet it."
7	You're free to use that if you want to or
8	do it any way you want to.
9	MR. MONTGOMERY: Well, our efforts here
10	are to try to insure that as a safety criteria that
11	first it meets the requirements of protecting the
12	health and public safety, but then second is one that
13	is also meetable, that can be met without too much
14	burden.
15	CHAIRMAN ARMIJO: Well, this is
16	anticipated burden. We haven't heard what the actual
17	burden would be, and I guess AREVA or Westinghouse
18	MR. MONTGOMERY: I believe there is some
19	discussion about the burden coming up after I speak.
20	CHAIRMAN ARMIJO: Okay. Any further
21	questions?
22	DR. POWERS: Well, I mean, I think it's
23	somewhat important for people to understand we're on
24	a pathway to revise 50.46. this is one part of it.
25	I can almost assure you that there is absolutely no
I	I

(202) 234-4433

	217
1	interest in going through the pain twice.
2	And so there's some reason to get on with
3	revising the regulation. The reg. guides, you know,
4	they percolate around and get changed regularly.
5	They're much easier to change. That overstates the
б	ease with which they can they are easier to change
7	than regulations. They are not easy to change.
8	And so when you put up 2009 before we get
9	data, 2011 before we understand that data, those are
10	essentially saying, okay, this part of the regulation
11	is going to remain an anachronism while all of the
12	rest of it changes, and that's probably a fairly
13	unpalatable thing right now.
14	CHAIRMAN ARMIJO: Well, you know, if it's
15	meeting or if its doing its job, the existing
16	regulation is doing its job right now or else we
17	should be doing something else.
18	DR. POWERS: It's not.
19	CHAIRMAN ARMIJO: Well, the question is
20	the fuel out there in an unsafe potentially likely
21	to fail in an unanticipated way? I don't think so.
22	DR. POWERS: The problem is, Sam, that the
23	regulation is written for zircaloy and ZIRLO and
24	people want to use other alloys, and so they have to
25	come in for an exemption request.
	I

(202) 234-4433

	218
1	CHAIRMAN ARMIJO: That's a price they pay
2	in lieu of
3	DR. POWERS: It's a price the agency also
4	pays because they have to take manpower aside and look
5	at the thing and say, "Yeah, here we've done all of
6	this stuff," and whatnot.
7	MR. MONTGOMERY: But there would also be
8	a price to pay both in the industry and within the
9	agency with regards to criteria if we end up with
10	criteria that are overly burdensome in some fashion.
11	CHAIRMAN ARMIJO: Okay. Well, we've heard
12	those views. Let's move on to the next speaker.
13	MR. MONTGOMERY: Thank you.
14	CHAIRMAN ARMIJO: It will be Mr. Dunn,
15	Bert Dunn of AREVA.
16	MR. DUNN: Okay. My name is (pause)
17	DR. POWERS: You need the viewgraphs to
18	figure that out, huh.
19	MR. DUNN: Okay. My name is Bert Dunn,
20	representing AREVA.
21	I have a presentation that was going to
22	talk about the expected transient of a LOCA, the
23	variation in the famous F factor that we've got here
24	now, et cetera. There's been a couple of questions
25	come up that I'd like to offer some of my insights
ļ	I

```
(202) 234-4433
```

into.

1

2

3

4

5

6

7

8

9

219

And I guess the first one would be on rule
versus reg. guide. In this area, we will need both at
about the same time. If you wrote a rule that just
said you need to maintain post LOCA ductility that
was the 50.46 rule you would then need some time
for implementation, and you would have to have fairly
quickly a reg. guide that would be this is what we
want to do.

Now, it might be a little bit easier to do 10 11 that, but I don't know that we gain too much by doing The reason we have 50.46 is that we were all 12 that. getting hauled all over the place in the early '70s 13 14 talking about this on this plant, this plant, this 15 plant, this plant, and so it does serve the utility and the vendor and the people trying to get here to 16 17 have fixed numbers that you can count on. The reg. quide is a little less fixed than the rule. 18

But by the same token you don't really 19 complicated things within the rule. So that's that. 20 21 Someone said earlier today that the lack 22 of having a generic cladding within the rule has not 23 blocked any plants from going forward with а 24 preferable or a better cladding by one of the advanced 25 claddings. That's not really true. The utilities, at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	220
1	least one that I can tell for sure, and I believe
2	there's two, have made the decision not to pursue the
3	advanced cladding until such time as they're not at
4	risk for having to go in with an exemption.
5	What the utility doesn't like about an
б	exemption is that an exemption opens it when you
7	get an exemption, you wind up open to additional
8	regulatory activity that you hadn't planned on. So
9	it's a risk event.
10	Some utilities view it as a high risk and
11	utilities view it as a relatively low risk. What
12	we've been able to get to move to M5 cladding, for
13	example that is the cladding I'm talking about
14	are utilities where that has been relatively important
15	for them to get the low corrosion rate. We may see a
16	few more come on in a couple of years.
17	We would like to have everybody on M5 at
18	this particular time.
19	A test procedure for doing the break-away
20	oxidation. It's been a long time since I've worried
21	about how much it costs to build a heater rod, but one
22	consideration could be something like a small break
23	LOCA test or a boil-down test or perhaps a level of
24	water already established. You may have here it could
25	be Hoprider's rig at Penn State. You would get all of
ļ	I

(202) 234-4433

your information at one time because if you do a boildown test, every portion of that rod is going to be hotter and hotter and hotter as you go up. There 4 could be some set-up difficulties, transient difficulties that might do that, but you know, so I think those can do.

7 AREVA is doing very well with testing with 8 prehydrided cladding, et cetera, like that. Now, 9 we've got a substantial program to deal with M5 in 10 that fashion, and while I'm on that subject, I did want to introduce or there have been questions about 11 cooperation and stuff like that. We've had two or 12 three meetings with Mike. We've brought the people 13 14 from the CEA program on the cladding to Argonne. 15 We've sat down. We've spent an informal day.

16 The purpose of those meetings was to give Mike the information that we had so that he could 17 learn what he needed for his program, so that he could 18 19 then ask us specifically for it, and then we would go 20 forward and see whether or not or try to get that 21 released, and we have provided a lot of information to 22 the program.

23 So I think it's an international company. 24 It's not the U.S. -- we're not owned in the U.S., I 25 guess, and it's certainly not the Lynchburg office

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

5

6

	222
1	that's providing most of the source of information,
2	but AREVA has been providing a great deal of
3	information, and we will continue to do that.
4	It may surprise things, but AREVA wants
5	the rule to be right and the reg. guide, too. Some
6	people don't give vendors credit for that. Some
7	people just say vendors want to keep things cheap.
8	Okay. Finally, the way I measure things
9	in terms of are we there yet is to look at a learning
10	curve, and I ask myself how frequently am I learning
11	something? If I'm learning something new, I'm not
12	sure I want to stop the process and say I've done it
13	all. Okay?
14	Two years ago I stood up here and said
15	we're still learning some things that are new, and we
16	need to slow down a little bit and make sure we get
17	the tests.
18	Okay. Well, here we are a year and a half
19	later. There's two new items that we didn't know
20	about or weren't considering two years ago. That's
21	the ones Robbie mentioned, the ID source of oxygen
22	migration into the prior beta region and the potential
23	effect of quench temperature or LOCA transient on the
24	thing.
25	So knowing what I want to say, don't write
I	

(202) 234-4433

1 a rule, but if you do start writing the rule now or if 2 you do start going on this process, let's go slow so 3 that we have an opportunity to figure out whether 4 we've got all of the phenomena we need to toss in 5 there or maybe we take Dr. Power's recommendation: write the rule very general and give ourselves a lot 6 7 of time to finish a req. guide and let the req. guide 8 develop more slowly. That may be better. 9 Now I'll stop with the general stuff and 10 qo on. What I want to do is talk about making a rule. If we pursue it now, and this is colored by the fact 11 that we're afraid that the one F factor will get 12 Now I'll show you a little bit about that. 13 picked. 14 We're afraid that it will be too specific 15 and not general enough. It would rely on, I think, 16 immature data. Some of this information has just hit. 17 It hasn't been out there for peers to talk about it a We haven't fought over it, you know, and you 18 lot. 19 know, we need to do that. Most likely it would embody 20 excessive conservatism. Now, obviously there I just say retain a 21 22 little bit of ductility. So I'm talking here about 23 req. quide or rule. The value of this normalization for 24 Okay. 25 the existing corrosion or for the hydrogen, one thing.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

223

	224
1	As mentioned in Ralph's equation, that ECR corrosion
2	is today a surrogate for hydrogen. Okay? There can
3	be a few other effects in there, but the best we would
4	understand it right now is that it's just serving for
5	hydrogen.
6	I want you to know that because I'm going
7	to make a request later on that will differ from Dr.
8	Meyer.
9	F is going to vary with the importance of
10	hydrogen to the material. Cooling rate, quench
11	process, possibly. We have Argonne and we have CEA
12	getting different results. We don't know exactly why.
13	And the phase change kinetics. We're talking about
14	transients that take 100, 200, 300, 400 seconds. The
15	last time I looked at phase change kinetics, it's on
16	the time frame of ten to maybe as much as 100 seconds.
17	DR. POWERS: Maybe even longer.
18	MR. DUNN: Yeah. So we're messing around
19	with what the beta fraction is in the cladding at the
20	same time we're doing this. We ties all three of
21	those. I'm not sure we understand that well enough
22	yet.
23	Okay. There is the proposal, and I'm
24	going to talk about some experimental results that I
25	did. That's going to be on the quench, not that I
ļ	I

(202) 234-4433

	225
1	did. A survey that I did. That's going to be on the
2	cool down and quench rates.
3	And then I've done some calculations of
4	some F factors to show you what the variation might
5	be.
6	Okay. Mike presented this slide. I'm not
7	going to go through it again in too much detail, but
8	we have very rapid or 800 degree quench data, and then
9	in this area we have stuff that was slow cooled down
10	to 700 degrees and then quenched, and we have some
11	stuff up here that was slow cooled down to 600 degrees
12	and then quenched, and then finally we got a couple of
13	data points out here where it was slow cooled all the
14	way down to room temperature.
15	Now, if you take this data and you draw
16	some reasonable lines through there with a French
17	curve or the same type of line that Mike was drawing,
18	you can kind of compute what the F factor might be
19	for, and I did that.
20	Okay. From the CEA data, if we do 1,200
21	or 800 degree quench, we would come up with an F
22	factor of 1.6. Now, that's been tossed around fairly
23	effectively this morning. I think most people agree
24	with that.
25	If we do a room temperature quench, we

(202) 234-4433

	226
1	come up with a factor of .9. We do a six or 700 or
2	500 degree quench, we're not exactly sure where the
3	lower bound is going to be, but it would be .7. So
4	there's quite a variation from just the EA data.
5	Now, if we do Mike's stuff, you won't get
6	that much variation. Okay? CEA cools at less than a
7	degree per second on the way down to the quench
8	temperature. Mike cools at 13.
9	In a few minutes I'll show you my
10	recommendation, which is six. Now, six gets us in
11	that time frame where we can start talking about the
12	kinetics of the base range becoming important.
13	Someone asked about the material. If I
14	take M5 as we know it today based on the Argonne data,
15	apply a hydrogen correction to that that's a linear
16	interpolation of what Zry-4 does, but just use the M5
17	hydrogen content, which will give you an idea. We
18	have never measured hydrogen over 80 ppm in M5 from
19	operations. The F factor would be .7 for that
20	material. So it can be a fairly strong dependence,
21	material dependence on this type of a factor.
22	Okay. It's made up of the reduced
23	corrosion. M5 does have corrosion. We typically
24	would measure maybe 20 or 25 microns of corrosion.
25	DR. SHACK: But isn't that directly
I	1

(202) 234-4433

	227
1	accounted for in the ECR corrosion term?
2	MR. DUNN: No. I'm getting there. We get
3	low corrosion, but then if we did that, if we just
4	took the corrosion and compared that to Zry-4, for
5	example, the two corrosions, we would get one fourth,
6	one third what Zry-4 develops, which should put us in
7	the 200 to 300 ppm range.
8	Our pickup fraction is about one-third of
9	what Zry-4 is. That's what gets us under M2 about 80.
10	All right. And here I'll say if we can design a clad
11	that has a pickup fraction of one-third of Zry-4 and
12	do that for a certain reason, we can also design a
13	clad that has a pickup fraction of twice what Zry-4
14	had.
15	Now, that's one of the things that I want
16	to do here is make sure that we get the flavor that
17	there are some changes around in here, and we are
18	going to have to be testing, if you will, to decide
19	which way those go because of reg. guide, the rule or
20	what have you.
21	Finally, just again, the main point here
22	is that it's all over the place. This is Mike's
23	public H.B. Robinson number or one of the H.B.
24	Robinson numbers.
25	DR. POWERS: I think his number as I
I	I

(202) 234-4433

	228
1	recall was 1.3 plus or minus .3, right?
2	DR. BILLONE: Yes. The plus is a plus
3	1.3, which would be Baker data as it is. I'm sorry.
4	The 1.6 factor can come out of the
5	calculation for our heating and cooling rates, and
б	then went on to argue that if the heating rate were
7	slower, you can go from 1.6 to 1.4 to 1.3 to one.
8	But, yeah, taking our data as is without
9	using any rationalization, the number is 1.5 to 1.6.
10	MR. DUNN: Well, we asked the question
11	what is the appropriate quench temperature. Okay?
12	This question first got raised, I think, last summer
13	at Argonne when we first saw the CEA data and people
14	were saying, "Well, we need to know what the quench
15	temperature is. Tell us what the cooling rate and the
16	quench temperature is."
17	Well, the cooling rate is anywhere from
18	zero to almost infinity, depending on what part of the
19	transient you're talking about. As we start to turn
20	down on any LOCA, it's cooling at zero. We've just
21	matched the ability to keep up with the decay heat,
22	and it gradually increases as the plant refloods or
23	refills with water, and you have this type of a
24	culture in general.
25	If we look at the calculations, they'll
I	I

(202) 234-4433

	229
1	vary a little bit over the place. If I go look at
2	loft, it will jump around and vary and then we have
3	our quench here, but we can make some argument by
4	maybe looking at that whole process or looking at what
5	the rate is down in this area.
6	It changes with the type of transient
7	you're looking at. Whether you're looking at a large
8	break or a small break. It changes with whether I'm
9	trying to calculate things. This is a problem for
10	maybe the analysts as to whether it's a best estimate
11	work or deterministic work and what I might force to
12	consider in doing it.
13	So I've got two large breaks up there.
14	One is a plant that cools relatively early and
15	quickly. That might be representative of VMW decision
16	plant with vent valves in place. So vent valves
17	enhance the flooding rate, and we get a lot of water
18	in there really quick.
19	The verpa (phonetic) light line would be
20	perhaps representative of a four loop plant. A
21	standard Westinghouse four loop or a combustion plant
22	or something like that, and it's going to take a
23	little bit longer to get there.
24	I worked all of this in a and then the
25	yellow in here, the small break I worked all of
I	1

(202) 234-4433

1 this into a clad, quench and cooling rate predictor, 2 and it is not just based on prediction. It's a survey 3 of experiments, and I'll get that to the source data 4 in just a minute.

5 I suggested a cooling rate of six degrees 6 C. per second, with the highest quench temperature of 7 600 degrees C. and the shortest cool down time being 8 at 200 seconds. And the thing is I've got an equation 9 that goes with this that you can plug these numbers 10 into and you can actually see the transient, see the 11 caricature of the transient. It's a caricature.

12 For the large break LOCA, small break LOCA we give 250 degrees C. for the quench, and here we're 13 14 about 1,000 seconds. Now, that 250 degrees C. is 15 nominally the range of saturation temperatures that we 16 see because what happens with the small break is a 17 mixture level is in the reactor, and it's just gradually rising, and so you're going to go from just 18 19 a little bit. You're going to build up some steam 20 cooling, and then where you're really going to hit the 21 temperature drop is as you get very close to that 22 quench frame -- I mean the mixture, mixture height. 23 Now, this is what I looked at when I

24 looked at NUREG 1230, which is a compendium of data25 and testing and supported best estimate LOCA. That

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	231
1	included FLECHT, FEBA, SCTF and CCTF and deterministic
2	and best estimate LOCA predictions. It also
3	supported, the work was supported by a paper from
4	Kansas State from is Steve still here? I guess he
5	has left. Steve Bajorek and Mr. Peterson.
6	There, in that paper, they were talking
7	about quench. We were talkinga bout material
8	differences and corrosion differences, and I allowed
9	for that.
10	Now, you get about potentially a 100
11	degrees effect in going from stainless steel to Zry-4,
12	and I actually wasn't able to observe quench
13	temperatures above 500 degrees C., but most of those
14	tests are done not with a zirconium based alloy.
15	I also had some work from Penn State that
16	helped in looking at that.
17	Just a couple of real quick this is
18	FLECHT, three different test temperatures, and you can
19	see everything is down below the well, this one
20	does have a couple at 600 there, but most of these are
21	down in that 500 range. So I guess I lied to you a
22	few minutes ago when I said I never observed anything
23	was over 500.
24	DR. POWERS: Have you looked at all of the
25	quench experiments that have been underway at
	1

(202) 234-4433

	232
1	Karlsruhe?
2	MR. DUNN: AT where?
3	DR. POWERS: At Karlsruhe.
4	MR. DUNN: No, I did not look at those.
5	I want to add one more consideration here,
6	and a great deal of these experiments I think
7	everything I looked at or a lot of it does not have
8	the appropriate amount of stored energy inside the
9	heater element. So it's quenching quicker than it
10	should.
11	If we actually did nuclear pellets there,
12	we would get a lower temperature quench.
13	And here's, again, some stuff. This is
14	CCTF. Now we can see the quench temperature running
15	along in here. Now, in this case these quench
16	temperatures up here at 700 or so, that's actually K.
17	So that's really down at about 450.
18	But I just wanted to show you that I
19	looked at a fair number of things. Okay, and now it's
20	time to get off the podium.
21	The conclusions are that F can be a
22	complicated item. It is going to vary with alloy.
23	It's going to vary with hydrogen, and I don't think we
24	understand how it interacts relative to the cooling
25	rate. We should resolve the difference in cooling
I	

(202) 234-4433

	233
1	effect between CEA and Argonne, and I think we're
2	trying to do that. There's work going forward to look
3	at that, but it's not there yet.
4	The adequacy of corrosion to correlate the
5	hydrogen effect on ductility should be confirmed.
6	This is where I'll differ with Dr. Meyer. We should
7	do a prehydrided testing to confirm that, in fact, for
8	this particular alloy, the corrosion is the
9	appropriate surrogate. We shouldn't just assume one
10	number for F times the corrosion because there's
11	differences in pickup fractions. There may be
12	differences in how the hydrogen interacts with the
13	material.
14	ID action and uptake, I just think that's
15	a little bit early. Ralph said four tests. I don't
16	know where those four are. I had thought this morning
17	that there was one test. Well, I thought two days ago
18	there was one test, and yesterday we were talking
19	about there's apparently a couple others where we
20	think the interior alpha layer went away.
21	I think we ought to make that a little bit
22	more robust, and we ought to answer this question of
23	is it just 1,100 degrees Fahrenheit or more. Okay?
24	There's a paper somewhere that say sit can't happen
25	for cladding temperatures below 1,100 degrees.
	I

(202) 234-4433

	234
1	Okay. The amount of conservatism to
2	achieve one number suitably bounded may very well be
3	excessive, and Mitch is going to show us a bit more on
4	that.
5	And I guess I'm just making a plea for a
6	little bit more data, a little bit more time to let
7	thoughts mature, let people bounce things back and
8	forth between their ears and get these things, until
9	the learning curve starts to go down a little bit.
10	Thank you very much for your time.
11	CHAIRMAN ARMIJO: Okay.
12	DR. POWERS: You caution prudence and
13	aging these things in a cask is one of the things that
14	I think ought to be done a lot with these data. So I
15	can't argue with you. The problem I keep coming back
16	to is you've got a fudge factor called F here, which
17	is the function of a lot of things that we think we
18	know and presumably another raft of things.
19	I mean, in a previous life I used to worry
20	about the tactic phase transformations of these
21	obscure things that exhibit hysteresis and undoubtedly
22	that has some bearing on these things.
23	And I'm sitting here saying I could make
24	a lifetime of several people to sort out this F
25	factor, which is probably not the right even
I	I

(202) 234-4433

	235
1	functional form for this dependence and whatnot. But
2	I ask you a question. How accurately do you have to
3	know it in a generic sense since we don't have a
4	specific?
5	MR. DUNN: I would answer
6	DR. POWERS: Hugh may have a specific
7	alloy. Ralph doesn't.
8	MR. DUNN: My biggest concern is not
9	necessarily F or picking a number for it. I would
10	like very much for F to be picked in a reg. guide, for
11	example, if we're going to go with that. Our biggest
12	concern though is have we discovered the phenomenon.
13	Have we put that all together?
14	Two years ago we wouldn't have said quench
15	rate was important, and we see the CEA stuff. Quench
16	rates are important to CEA. The cooling rate is
17	wrong.
18	You know, I just believe that we do need
19	to not be learning quite as rapidly as we're learning
20	today, and I'm not talking about small stuff. It's
21	the ID source of our oxygen. We need to look at that.
22	We need to find out and understand it.
23	I don't disagree there isn't a source
24	there. I mean the process of getting down in the
25	clad, there's a creep-down process. It's going to
l	

(202) 234-4433

	236
1	change from one type of fuel designer to another
2	designer. We vary internal pressures in the fuel. So
3	one guy is going to creep down at 35 gigs. Another
4	guy is going to creep down at 45 gigs. The creep rate
5	of the cladding is a little bit different depending on
6	ZIRLO and M5 are not going to have the same creep
7	rate. The build-up and the return to offset is not
8	going to occur at the same time, so what have you.
9	CHAIRMAN ARMIJO: There are a lot of
10	variables in the system, and I was kind of surprised
11	that the system, the cool-down rates from the events
12	that you showed weren't used to guide the experiments
13	so that they were done without getting the
14	conclusion of quench from high temperature, of very
15	fast quench, is totally unrealistic.
16	MR. DUNN: When we go back to Chung and
17	Kassner, for example, we see that, you know, the beta
18	quench I call it a beta quench. It's probably
19	wrong but the high temperature quench down there is
20	established as conservatism, and you know, when we
21	justified M5, we just did quench tests.
22	And with quench tests, you're going to
23	come in at 25 or 30 percent ECR before you shatter the
24	cladding, or actually the way we do them is we test
25	them with about a two psi over pressure afterwards to
I	I

(202) 234-4433

(202) 234-4433

	237
1	see if they leak gas.
2	And you'll get 25, 30 percent ECR before
3	you do that. So we had plenty of room. So it was
4	fine to quench right off the top. Why after this
5	summer we didn't switch to something like 600 or so or
6	get some criticism of that work that I put together,
7	I can only tell you it's out there. I sent it to
8	people, and we haven't had a tag of course, we
9	haven't done it a lot since last summer because we got
10	our cells. Everybody has been worried about where
11	we're going to do the test and stuff. I'd like to see
12	it considered. I didn't do it for nothing.
13	Mike?
14	DR. BILLONE: Just historically, this 800
15	C. number was, as I showed you for as fabricated
16	materials, it didn't matter. We're only discovering
17	this for hydrided materials, high burn-up materials,
18	and it was proposed a long time ago with EPRI and
19	partners, and we also sent out a request. It had
20	different names, fuel reliability group for input for
21	small break LOCAs, and we decided that 800 was
22	bounding, and no one was concerned at that time. So
23	we picked 800.
24	CHAIRMAN ARMIJO: That's before people
25	knew about hydrogen and people knew about the quench.
ļ	

(202) 234-4433

	238
1	DR. BILLONE: Right.
2	MR. DUNN: Well, I think we knew about
3	hydrogen, but we won't worry about the quench
4	interaction because I
5	DR. BILLONE: Yeah. We didn't realize
б	that you could get a little bonus. You can get some
7	extra ductility by quenching hydrided or high burn-up
8	samples at lower quench temperatures.
9	We have done some work since. We had a
10	meeting in Argonne, a very good meeting in June of our
11	industrial partners. NRC was a program review
12	meeting, and that's where the slide that Bert showed
13	that the CEA data was presented. You have to keep in
14	mind that they have a large furnace, as I said, and
15	when they say less than one degree C. per second
16	cooling, it was less than a tenth of a degree C. per
17	second from high temperature, 800, and it got slower
18	and slower and slower and slower.
19	CHAIRMAN ARMIJO: Well, maybe that
20	exaggerates the benefit of the cooling. Is that what
21	you're saying?
22	DR. BILLONE: Yes, yes.
23	MR. DUNN: It might. It might. It's
24	clearly going to mix us up in that phase change
25	kinetics a little bit more with a more realistic cool
	I

(202) 234-4433

	239
1	down temperature.
2	DR. POWERS: One thing I'm sure you do not
3	want to do is provoke the thermal hydraulicists to get
4	involved in defining what your cool-down rate it
5	because this cooling is extraordinarily complicated
6	because as you bring water in it, you get little
7	droplets that go flying up there, and life gets very
8	complicated very quickly on this cooling process.
9	Now, there are some experiments, quench
10	experiments, that I've written some notes here to go
11	back and look at because I didn't pay any attention at
12	the time and what the cool-down rates are and things
13	like that.
14	MR. DUNN: Can I have your note
15	afterwards?
16	DR. POWERS: What did you say?
17	MR. DUNN: Will you share your note with
18	me?
19	DR. POWERS: Oh, yeah, absolutely, yeah.
20	MR. DUNN: Okay. Thank you.
21	DR. POWERS: Yeah. I mean, the guys that
22	do that are very free with those data.
23	MR. DUNN: Yeah, that Penn State paper is
24	worth looking at, too.
25	DR. POWERS: Yes.
	I

	240
1	MR. DUNN: It's about that thick.
2	DR. POWERS: Well, the type of report that
3	sits around in draft is about this thick. But he does
4	have all of his data in there.
5	CHAIRMAN ARMIJO: Okay. Well, thanks a
6	lot.
7	MR. DUNN: Okay.
8	CHAIRMAN ARMIJO: Our next person up is
9	going to be Mr. Nissley from Westinghouse.
10	(Pause in proceedings.)
11	MR. NISSLEY: I'm Mitch Nissley. I'm with
12	Westinghouse Electric Company. I'm going to follow up
13	with Westinghouse's contribution to the industry
14	comments.
15	There's been a lot of questions over the
16	last hour or so about if I can get out of town with a
17	1.2 F and my corrosion is relatively low. Shouldn't
18	I declare victory and go home?
19	The main pat of my presentation is to try
20	and portray some of the realities of the consequences
21	of fully embracing the proposal as written. I will
22	say that the proposal has actually evolved somewhat
23	from what was published on ADAMS. What industry has
24	been talking about back and forth over the last two or
25	three weeks, we've had a number of telecoms in the
	I

(202) 234-4433

	241
1	EPRI working group. We had an all day preview
2	yesterday, and we've had some preconceptions of what
3	would be presented today based on what was in that
4	draft reg guide, and we acknowledge that there have
5	been adjustments made, in particular, the F factor has
6	been reduced from what we thought it was going to be.
7	We have not had time as an industry group to fully
8	talk through what that means. It's certainly in the
9	direction we would like it to go, but we have not
10	really had a chance to talk through that.
11	I'm also going to discuss our positive
12	outcomes of the Argonne program; additional concerns
13	Westinghouse has. They're similar to other ones, but
14	I'm going to present them with a slightly different
15	spin.
16	Essential consequences to the industry.
17	I think this is really what the question has been over
18	the last hour, is what's the big deal. I'm going to
19	address that from a PWR perspective. Dr. Patterson
20	from GNF will have some slides following mine where he
21	will address the BWRs.
22	I have a few slides on consideration of
23	realistic reactor physics. This is really aimed at
24	looking at the physical burn-down of UO_2 fuel, and its
25	ability to produce power as a function of burn-up and

(202) 234-4433

(202) 234-4433

	242
1	what the consequences of that are for its ability to
2	achieve the high kinds of temperatures that have been
3	tested to date in the high burn-up test programs.
4	And I have a few risk informed comments at
5	the end of the presentation. It comes with a program.
6	Argonne and the NRC have essentially confirmed that
7	this interim use of IN 98-29 for the last eight years
8	is a suitable LOCA criterion for irradiated fuel. It
9	has closely approximated the effects of hydrogen on
10	embrittlement in Zircaloy type claddings.
11	Going to the future, I think it is a very
12	important enabler for the introduction of new and
13	advanced alloys. If we would have been required to
14	obtain high burn-up claddings and test them prior to
15	introducing them into the reactor, number one, there's
16	some risk that while you think the alloy will perform
17	well at high burn-up, it might not. But I think that
18	NRC has done substantial work to show that you can
19	approximate high burn-up effects by prehydriding the
20	cladding, and that has come up with an effective
21	screening technique for advanced alloys so that you
22	can really assess the acceptability from the LOCA
23	perspective very early in the development program and
24	not wait ten years to get meaningful how each cell
25	works. So I think that's a significant contribution.
Į	I

(202) 234-4433

These are the concerns I said I would comment on with a little different twist. The first one is similar to the calculation Mike Billone showed this morning or I believe, no, it was Ralph Meyer. Sorry.

Based on the draft NUREG that we saw, we 6 7 anticipated an F factor on the order of 1.5 or 1.6, and I went through and did a shorthand calculation 8 9 just to show this was similar to Dr. Meyer's use of the 100 micron Zry-4 design limit. One hundred 10 microns or four mils is effectively a design limit at 11 least for Westinghouse fuel for all of our cladding 12 13 types.

For such a design limit and with our 17 by 15 17 cladding thickness, which is 22 and a half mils, and if we use the theoretical Pilling-Bedworth oxide to metal ratio of 1.56, you go through the MAP and you get 17 percent oxidation at a design limit acceptable corrosion level without any transient.

20 So I wanted to put this simple calculation 21 here just as an example. If you use a large F factor, 22 you've got no room to work with with curb design 23 limits on fuel.

Another thing that hasn't been discussed in a lot of detail. I do think that the two-sided

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

oxidation is real if you have good, hard contact, and if you're at 1,200 degrees C. I think the data supports that.

4 However, one of the back-up references 5 that was cited, this Hoffman and Politis ASTM paper, in there they concluded that you needed a temperature 6 7 of at least 1,100 degrees C. and power cladding bonding in order to get the two-sided oxidation. 8 At 9 1,100 degrees C. their paper cited that with the thin oxide layer they could go an hour before that layer 10 would even start to dissolve. 11

12 If you got much above 1,100 degrees C. that layer dissolved very quickly. So in that paper, 13 14 now, that's another area of uncertainty, but what that reference cited is that if you are below 1,100 degrees 15 C., which I tend to present you would be for high 16 burn-up fuel with pellet cladding bonding, you will 17 not be anywhere close to 1,100 degrees C, 18 and 19 therefore there's no need to account for double-sided 20 reaction.

Essential consequences to the industry. I think this slide -- that we might want to have a little back and forth on this -- is part of my presentation was aimed at supporting that there's really no safety issue here. The plants are fine

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

	245
1	today. I think Dr. Meyer did an effective job of
2	getting that out of the way very early in the day.
3	So I think what we have here is a
4	situation where it's recognized that there should be
5	some changes to the regulations, but if we make them
6	wholesale and if we make them quickly, that there will
7	be a significant impact on the entire industry.
8	Now, that sounds maybe over dramaticized,
9	but there will be a significant resource diversion and
10	cost, and I really don't think there's any real safety
11	benefit.
12	For the vendors, we will have to relicense
13	our evaluation models. Our evaluation models
14	currently do not address IN 98-29 within the framework
15	of the approved evaluation models. The assessment of
16	98-29 is done outside of the evaluation models in
17	accordance with the NRC guidelines.
18	So once this becomes a rule, it would
19	appear to me that you would have to make that an
20	inherent part of your evaluation model so that you
21	would have to relicense it.
22	The use of Cathcart-Pawel is also not in
23	all evaluation models. So the use of Cathcart-Pawel
24	to do ECR calculations will need to be relicensed.
25	Wherever we end up on two-sided observation and based
	I

(202) 234-4433

	246
1	on my prior comment, I don't think we really need to
2	go there. Again, it would require a relicensing
3	action.
4	So the vendors will have to relicense all
5	of our evaluation models as I see it today unless
6	there's some kind of a really creative regulatory spin
7	on this that's not apparent to me.
8	I put in here a potential need for
9	additional hot cell testing. I put that in because it
10	was not clear to me from the information in the draft
11	NUREG what was going to be required to derive F. I
12	think the proposal was put forth this morning that I
13	think more or less eliminates that as a concern, but
14	that was not clear from the draft NUREG that was made
15	available to industry.
16	Licensees, I think, have the lion's share
17	of the work here. Okay? I don't see any way around
18	this. If you have a new 50.46 criteria, if you're to
19	demonstrate compliance, which is what you're required
20	to do by law, you will have to use these relicensed
21	evaluation models and every PWR in the country will
22	have to have updated analyses. They will have to
23	update their technical specifications to reference
24	these new evaluation models, which are part of the
25	bases, and they will have to update their FSARs.
I	I

(202) 234-4433

	247
1	A lot of cost. In my opinion, no real
2	safety benefit.
3	There's a potential for increased fuel
4	cycle costs. I showed on that previous calculation
5	that this was really coming from the F factor point of
6	view, but that F factor is too large, and you have
7	design limits of four mils or 100 microns. You may be
8	discharging at the discharge fuel in the future, but
9	right now it will be perfectly acceptable due to the
10	conservatisms that are contained in the proposal.
11	If we discharge fuel assemblies that have
12	plenty of capability left in them, we're increasing
13	the spent fuel also, which is really not a good idea
14	in anybody's mind.
15	The next one is also related to fuel cycle
16	economics. While our PWRs currently use ZIRLO for
17	those who are supplied by Westinghouse. There are
18	instances during a fuel shuffle where an assembly may
19	be damaged or something like that, where you have to
20	do what's called an emergency core redesign. What
21	you're doing is you're coming up with a revised
22	loading pattern. You can't afford to wait till the
23	fuel fabricator makes another assembly and ships it
24	out to you. You do the best with what you have, and
25	I mean, this is really done in real life.
I	1

(202) 234-4433

You look for the Zry-4 assembly or the 2 whatever in your spent fuel pool that has the most 3 reactivity left in it, and you'll come up with a new 4 loading pattern that will support your energy requirements for that cycle, and that's not something that' done on a wholesale basis, but that can really save your skin and save your outage time if you have 8 damaged assemblies during shuffling.

If there's a need to introduce -- I'll 9 show you in a minute about this physical burn-down 10 11 effect. Currently that's really not generally in the 12 plant technical specifications as something that is a limit as a function of burn-up. It's just recognized, 13 14 you know, that that exists and you can take credit for 15 the high burn-up.

I believe that with the new requirements 16 that you will have to do these explicit analyses as a 17 function of burn-up, and in doing so you will have to 18 19 a explicit burn-down credits at certain times in life, 20 and once you've done that, that will be part of your 21 licensing basis, and there's a potential there that 22 that will put in overly conservative peaking factor 23 limits that may reduce operational flexibility.

24 I'm not saying this is a guarantee, but 25 one of our vendor participants in the working group

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

6

7

	249
1	meetings pointed that out as a real concern on his
2	part.
3	And finally we have the NRC. Who's going
4	to review all of this? Okay. This is going to be
5	every PWR in the U.S., every PWR EM in the U.S., and
6	they're going to have to review and approve all of
7	this.
8	Okay. Now, I'm not saying this isn't the
9	right thing to do at some point in time, but to do the
10	rule change quickly without, if you will, a roll-out
11	plan or a phased in way of accomplishing this, this is
12	a huge amount of work to get to the same place where
13	we are today. But I really can't interpret it any
14	other way.
15	DR. SHACK: Well, half of those bullets at
16	least would be true for any change in 50.46(b), you
17	know, whether it's the one that's currently proposed.
18	Any change would involve most of these.
19	MR. NISSLEY: If we codified the IN 98-29,
20	for example, we'd have this.
21	DR. SHACK: You'd have that.
22	MR. NISSLEY: And we'd have this.
23	DR. SHACK: And you'd have the review.
24	MR. NISSLEY: Yeah, we'd have this.
25	DR. SHACK: Now, you're going to trade the
ļ	I

(202) 234-4433

	250
1	penalty off with the benefit of being able to license
2	your new advanced fuel and thoughts and potential
3	value of one versus the other?
4	MR. NISSLEY: Well, I made the comment
5	earlier about creative regulatory, you k now, ways of
6	rolling this out. There's a way to grandfather
7	plants, and as I thought through that, I thought,
8	well, if you grandfather them where they are today,
9	what if I got somebody who wants to do an extended
10	power up rate in 2009? Is it still grandfathered or
11	does he have to not do all of this?
12	I'm not a regulator, but that looks to me
13	like quicksand a little bit. So I wish I had a sharp
14	answer to that.
15	The next few slides are going to focus on
16	consideration of realistic reactor physics. Current
17	fuel in the U.S. is limited to five weight percent
18	Uranium 235. In practice, you really don't want to
19	build it any higher than 4.95 because of the
20	manufacturing problems and things like that.
21	If you limit you fuel to five weight
22	percent, it runs out of gas, and it starts to run out
23	of gas around halfway through life, around 30 gigawatt
24	days per metric ton.
25	Once it starts to burn down in terms of
I	1

(202) 234-4433

	251
1	its achievable power levels, achievable peak cladding
2	temperatures and the corresponding transient oxides
3	drop off dramatically, and that comment is valid for
4	all break sizes, both large and small breaks.
5	The important conclusion from this, high
6	burn-up fuel limited to five weight percent cannot
7	approach 1,200 degrees C. without violating the limits
8	for the fresher fuel in the core, and let me show you
9	some core physics calcs and a sample LOCA calc to back
10	that up.
11	This is depletion calculations for a free
12	loop PWR to support an extended power up rate. The
13	plot shows achievable tin power versus burn-up. The
14	first cycle fuel are the curves that go through or the
15	clouds that go, of course, from zero burn-up out here
16	to about 25 or about 20, 25.
17	The ones that start here and go down are
18	second cycle fuel, and in this case the third cycle
19	fuel you can see is way down here with a maximum
20	relative power of 0.8. Okay? This fuel is pretty
21	big. It has been way around that.
22	We talked about, again, I want to come
23	back to the idea of the two-sided observation. The
24	Hoffman and Politis paper cited a threshold of 1,100
25	degrees C., that below that it did not really appear
ļ	I

(202) 234-4433

	252
1	that it could occur due to the thin oxide layers.
2	The draft NUREG cites incipient bonding in
3	PWRs at about 30 gigawatt-days and complete bonding at
4	about 50 gigawatt days.
5	Okay. If I go out to 30 gigawatt-days, I
6	already have a good ten percent reduction in
7	achievable tin power by the time I reach incipient
8	bonding. Ten power in power is about 100 degrees C.
9	worth of reduction in ECT. So you're already well on
10	your way to getting out of town on ECT.
11	If I go out to 50 gigawatt-days, on this
12	particular plot or this particular loading pattern,
13	I've got I don't know more than 50 percent
14	reduction. I put in here 20 percent reduction for one
15	simple reason. This is a typical loading pattern.
16	I'm not trying to say I'm bounding everything. Okay?
17	And the 20 percent is based really on
18	where these rods were. If I had a different loading
19	pattern where I was pushing the fuel harder, even
20	harder, I could shift the second cycle assemblies a
21	little further out here, and so I didn't want to go
22	for this whole benefit. I was really only taking
23	credit for the reduction down to about here.
24	CHAIRMAN ARMIJO: What would be your
25	typical just ballpark hydrogen numbers for the second
I	

(202) 234-4433

	253
1	cycle fuel at the end of a on the chart, and also
2	for your highest burn-up? Would it be a couple of
3	hundred ppm?
4	MR. NISSLEY: I'd like to ask Dave
5	Mitchell to comment on that please.
6	MR. MITCHELL: Well, at the end of the
7	second cycle, you're going to be running probably
8	around 40 microns.
9	MR. NISSLEY: Your name, again.
10	MR. MITCHELL: David Mitchell,
11	Westinghouse.
12	At the end of the second cycle, typical
13	ZIRLO fuel would be running maybe around 40 to 45
14	microns.
15	CHAIRMAN ARMIJO: Oxide.
16	MR. MITCHELL: Of oxide thickness. So
17	that would be probably around 400 ppm of hydrogen or
18	so.
19	CHAIRMAN ARMIJO: And then the highest
20	burn-up would be in the 600 range? Would that be
21	reasonable?
22	MR. MITCHELL: Six to 700, somewhere in
23	that range.
24	CHAIRMAN ARMIJO: Okay, but it couldn't
25	get hot. That's your argument.
	I

	254
1	MR. MITCHELL: Yes.
2	CHAIRMAN ARMIJO: Okay. So from a
3	temperature standpoint, if you try to integrate
4	temperature and hydrogen in the cladding, it's not
5	clear that the highest risk from a LOCA or largest
6	amount of loss of ductility might come from the second
7	cycle fuel rather than the high burn-up fuel.
8	MR. NISSLEY: I believe that to be true.
9	I think if you get out past if you get out past
10	about 50,000 megawatt days or so, it's bad, and you
11	know, we talked about extending perhaps out to 70 or
12	75,000. People have done fuel cycle cost
13	calculations. I mean you can put at most a couple of
14	assemblies in there that are going to you can't put
15	a lot of assemblies in play and have to get there or
16	you're not going to meet your energy requirements.
17	You just can't do it.
18	One last point. You see a curve here,
19	which I haven't talked about. That curve was put in
20	on this plant for the purposes of doing the IN 98-29
21	assessment. Okay? And what we did was we put in our
22	core reload process, which is something we do every
23	cycle to check our safety limits and things like that,
24	to make sure that our limits remain applicable.
25	You want to build in a lot of cushion
I	I

(202) 234-4433

	255
1	there. So if I have a different cycle design, net
2	cycle, if I take that right down to where these
3	numbers are, I might have to do a reanalysis or
4	something like that.
5	So in a high burn-up LOCA analysis, you're
6	not going to really want to take credit for this. You
7	want to leave yourself a lot of fat so you don't
8	nobody wants to do cycle specific LOCA analysis except
9	maybe a vendor.
10	Okay. What I wanted to illustrate here is
11	this is a little different spin on the power
12	capability versus burn-up concept. This is a typical
13	four-loop PWR, core to core symmetry, the way these
14	things are usually calculated and unless you've really
15	done something bad to your core design.
16	Fresh fuel is indicated as the dark red,
17	and I'm probably color blind. So if I get the colors
18	wrong forgive me. This color here is also fresh fuel.
19	What you can see is you've got a very limited number
20	of fuel assemblies that are leading a core at this
21	point in time with relative powers in the order of 1.4
22	to 1.5, and that's assembly power relative to core
23	average.
24	The other fresh assemblies as in the range
25	of 1.1 to 1.4. Okay? That's these guys.

(202) 234-4433

	256
1	The highest power of the once burned
2	assemblies is at a relative power of 1.2. Okay. So
3	you can see the fresh assemblies are really carrying
4	the load for this cycle.
5	My once burned assemblies that are out
6	near core periphery due to leakage considerations and
7	things like that are going to have relatively low
8	powers, and in this case my twice burned assemblies
9	are all on the periphery, and they have relative
10	powers less than 0.4. Okay? So this stuff is
11	effectively dead
12	It is helping you out from reduced you
13	know, if you're going to have leakage, you want these
14	assemblies to be absorbing as much of those neutrons
15	coming out as possible. You don't want fresh fuel out
16	here that's doing the leakage.
17	The other thing is these assemblies are
18	dead enough. You don't want to put them inside in the
19	inner region to the core or you're really ruining your
20	fuel cycle economics. You don't want dead assemblies
21	towards the core.
22	CHAIRMAN ARMIJO: That would b ea
23	misloading error, but if you did, how much power could
24	you get out of it, if you put the twice burned
25	surrounded by the highest reactivity fuel?
I	1

(202) 234-4433

	257
1	MR. NISSLEY: If you put it, say, right
2	there, that would be well, number one, you'd create
3	massive gradients across these assemblies.
4	CHAIRMAN ARMIJO: Right.
5	MR. NISSLEY: I would imagine early in the
6	cycle you could get that up to something around this
7	level or maybe a little higher. I don't think you
8	could hit a one.
9	CHAIRMAN ARMIJO: Nobody would do it on
10	purpose.
11	MR. NISSLEY: But you can destroy these
12	assemblies.
13	MR.SIEBER: In terms of your control
14	MR. NISSLEY: Yeah, you'd be wasting fuel
15	right and left.
16	MR. SIEBER: You're just wasting neutrons
17	when you do it.
18	DR. POWERS: You just don't like any rod
19	to have a high work. You move some in there.
20	MR. NISSLEY: Okay. Now, in current LOCA
21	analyses, you know, you have to consider peaking
22	factors up to the tech spec limits, and there's all
23	kinds of requirements on how you perform calculations
24	even with realistic methods.
25	My next slide, I'm going to show you a
I	I

(202) 234-4433

	258
1	refresh assembly, one of these guys, but with the
2	power bumped up to be consistent with tech spec
3	limits. I'm going to show another assembly, which
4	will be a once burned assembly with a relative power
5	in this range, and I'm going to show another assembly
6	that is once burned out here near the periphery and
7	has a relative power right about this number. I think
8	it's about a .6 or something like that.
9	Did I lose that figure? Oh, there it is.
10	Okay. Two points here. One is this is
11	out of a design basis accident analysis. In this
12	particular methodology we look at variations in axial
13	power distribution. This is a relatively well behaved
14	shape. It's not extremely so it's a reasonable
15	axial power shape like you would have in base load
16	operation.
17	However, that hot assembly has been bumped
18	up to a higher level than calculated in that core
19	physics distribution. This is the average type
20	assembly once burned that I talked about, and this is
21	a once burned peripheral assembly with a relative
22	power of about .6.
23	Okay. Even with a power of .6, you saw
24	all of those twice burned assemblies were less than
25	.4. This is more or less a mono-transient. There's
ļ	

(202) 234-4433

	259
1	almost no heat up here. Even with the relative power
2	of 1.1, you're under 600 degrees C. It's only that
3	hot assembly with the power bumped up that starts to
4	get up relatively high.
5	Now, again, this is a relatively favorable
6	because in this particular analysis or this particular
7	case I've used a well behaved shape like you would get
8	in a normal core depletion. This is like a realistic
9	axial power shape but with the peaking factors bumped
10	up to that noticeable margin for the hot assembly up
11	to the limit.
12	The core average fuel once burned is way
13	down here, and I used once burned on a the periphery,
14	and it's very, very benign.
15	A few comments on risk informed
16	considerations. I know there's currently a fair
17	amount of uncertainty in what's going to happen with
18	50.46(a). I know the committee sent a letter to the
19	Commissioners and the staff tat they are currently
20	trying to figure out how to deal with.
21	The large break LOCA as we currently think
22	of it is beyond the transition break size in that
23	draft rule.
24	The current PCTs and observations that we
25	get for large break LOCAs would be dramatically
Į	1

(202) 234-4433

	260
1	reduced if one implemented the optional 50.46(a). The
2	reason for that is that you do not have to take the
3	single failure. We can use realistic power shapes.
4	You do not have to take loss of off-site power
5	assumptions. So any plants that are currently close
6	to the LOCA limits with the fresher fuel, recognizing
7	that the high burn-up fuel is very, very, very benign,
8	you would generate even more margin with a realistic
9	considerations that are embodied within the draft
10	50.46(a).
11	With regard to small break LOCA in the
12	U.S. for PWRs, all the current small break evaluation
13	models still use Appendix K requirements. Nobody has
14	licensed a realistic analysis yet for small break
15	LOCA.
16	One of the main features of Appendix K
17	from a small break perspective is the decay heat
18	requirement, the 1971 plus 20 percent. There was a
19	petition for rulemaking back in the early part of the
20	decade that was looking at relaxation and the Appendix
21	K decay heat requirement.
22	The NRC put out a regulatory information
23	letter, 0202, and it had a number of attachments to it
24	with supporting information, and they looked at the
25	reductions in PCT and oxidation for small break that
l	

(202) 234-4433

	261
1	would be realized just from a change to a realistic
2	decay heat, and they were getting estimates on the
3	order of 500 to 1,000 degree reduction.
4	From a realistic LOCA response, what you
5	currently see in an FSAR for design basis analyses
6	have huge amounts of margin in them, and I believe I
7	showed you in that one example large break calculation
8	that even using more or less an upper bound for the
9	high burn-up fuel in terms of relative power, it was
10	more than 1,000 degrees, less limiting than the fresh
11	fuel.
12	I think the real message here is we've
13	done a lot of testing at 1,200 C. with high burn-up
14	fuel. The double-sided reaction is also a limit that
15	I k now of to a very high temperature like that, and
16	you just can't get there.
17	So in summary, yes, we believe the test
18	program and the NRC's interpretation. The data has
19	yielded positive results for NRC and the industry.
20	They've confirmed some of the NRC interim requirements
21	in the information notice. That was a positive
22	finding.
23	They also have put out a framework for
24	moving forward with advanced claims. We voiced some
25	concerns and we've had some dialogue about what do you

(202) 234-4433

	262
1	do in regulatory space with this.
2	I hope I've given some insights into some
3	of the real consequences of what this will mean to the
4	industry if we move forward in a rapid basis and
5	impose these recommended changes without some careful
б	thinking of how to roll this out in a way that
7	industry, the vendors, utilities, and the NRC, how we
8	can handle this.
9	The day this becomes law, it would seem to
10	me people have to be in compliance. How are you going
11	to prepare to do that and recognizing the fact that
12	there's really no significant safety benefits from
13	doing this.
14	So this is, you know, what we've been
15	struggling with and why we've been, you know, raising
16	questions on why we're moving fast so forward. Do we
17	understand this sufficiently to move forward at this
18	time?
19	CHAIRMAN ARMIJO: Okay. Any questions?
20	DR. BILLONE: Mitch, just help me out on
21	one thing, on fuel management.
22	MR. NISSLEY: Yes.
23	DR. BILLONE: How you reload the core.
24	There's nothing NRC doesn't regulate fuel
25	management. The utility can juggle fuel around any
	1

(202) 234-4433

	263
1	way it wants as long as it meets its tech specs; is
2	that correct?
3	MR. NISSLEY: Correct.
4	DR. BILLONE: So in principle, you could
5	take a one or twice burned rod and put it in the
6	center of the core. I mean, there's nothing that
7	would stop you from doing that.
8	CHAIRMAN ARMIJO: Oh, yeah.
9	MR. CLIFFORD: Paul Clifford, NRR.
10	I was just noting that there's a few
11	mechanical design limits that would often limit how
12	you burn a high burn-up assembly towards the analyte.
13	DR. BILLONE: Thank you.
14	MR. NISSLEY: I'd like to recognize Odelli
15	Amanpour.
16	MR. AMANPOUR: Odelli Amanpour, Southern
17	Nuclear Core Analysis.
18	Typically the way fuel management is done,
19	you have to have the burn-up limits met. In other
20	words, there was a question earlier whether or not a
21	fuel assembly with a higher burn-up can be placed
22	inside the fuel on the periphery. Yes, that is
23	possible, but you still have to meet the burn-up, and
24	if you put the fuel assembly in that are of the core,
25	that has higher peaking factor. It would definitely

(202) 234-4433

	264
1	push that fuel assembly to go outside the 60 to 062
2	thousand megawatt-day.
3	So there are speed breakers built into
4	the
5	CHAIRMAN ARMIJO: Right. The only point
6	I was trying to make, you wouldn't do it's
7	physically possible to do it in error, a mistake, a
8	big mistake, or if you were doing an experiment and
9	you went to the NRC; somebody was interested in
10	driving fuel to high burn-up, and that was an idea.
11	You'd have to review that, approve it, get exemptions
12	for a lot of your tech spec limits, and maybe you
13	would do it. You know, it doesn't make any sense, but
14	it's feasible to do it, but it would be, my guess,
15	mostly a mistake. So I just don't think there'd be
16	any incentive to do it.
17	MR. NISSLEY: I would agree.
18	CHAIRMAN ARMIJO: Okay. If there are no
19	other questions, we'll have Mr. Patterson from GNF.
20	MR. PATTERSON: I am Chuck Patterson from
21	G.E., Global Nuclear Fuel.
22	What I'd like to do is discuss the
23	potential effects of the change on BWR. We typically
24	are a bit less sensitive to LOCA events than a PWR in
25	most of the reactor types. There is one type, a BWR-2
I	I

(202) 234-4433

5 The proposed changes appear -- and this is 6 based on what was available as of last week -- that 7 they will affect the BWR-2s and depending on what's 8 assumed for F factors and possibly the ID oxidation, 9 it might also affect some of the other types of 10 reactors.

11 Our assessment is that this effect is due 12 not so much to the method, but into the conservatisms 13 that are inherent to it, inherent to the proposal.

14 Here is a summary of where we are with the 15 current regulations and what we show here is the calculated ECR in a LOCA event based on the number of 16 17 plants of a given type. So we have the BWR-6s with on 18 the order of one percent ECR; the same for the fives 19 and the fours. The threes are here, and the BWR-2s 20 are here. These right now are designed to comply with the 17 percent clad oxidation and the 1,200 C. peak 21 22 cladding temperature, and so they're already affected. 23 Here is a specific example of a BWR-2 24 where this is exposure on the X axis and the Y axis is 25 the maximum linear heat generation rate, and early in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

266 1 life through around 30 to 40,000 megawatt days per 2 ton, the operation is constrained by the peak cladding 3 temperature. 4 At this point a ballooning and perforation is then calculated to be a limit, and so the two-sided 5 oxidation becomes the dominant factor, and so the 6 7 power is reduced to keep this below the 17 percent. As burn-up increases, the factors that affect the 8 9 operation in the threes and the fours and the other reactor types dominate, and the power comes down due 10 to the nuclear, thermal, and mechanical constraints. 11 12 And so the actual operating power then is the locus of the lower bounds of these curves, and 13 14 what we think will happen is that if the F factor goes up, this will come down and the total energy under 15 this curve will also go down. 16 In the region that is limited by cladding 17 temperature, as I mentioned earlier, the expected 18 19 effect depends on what is assumed for the F factor. 20 Now, earlier on we talked about the oxidation being on 21 the order of ten microns, which is not a bad 22 assumption, ten to 20 microns on a best estimate 23 basis. But when this is translated into licensing 24 space, all of a sudden we're working at the 95th 25 percent, and the 95th confidence bounds and the 95th

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	267
1	percentile, and it's more like 50 to 70 microns.
2	So we really are sensitive to the values
3	that are assumed for the F factor.
4	We're a bit concerned about the F factors
5	for the Zry-2 because the work that was done is
б	primarily on the Zry-4 with almost ten times the
7	amount of hydrogen. This is the material that was
8	used in test was 70 and the Zry-4 was 600 to 800.
9	the other thing is that the quench
10	temperature and I almost hate to mention this
11	because if you ask me a question I won't be able to go
12	in deeper. We'll need a thermal hydraulicist, but the
13	argument is that the minimum temperature for film heat
14	transfer is around 600, as during the cooling phase
15	the temperature change will be slowed to 600 and then
16	at that point the rapid punch can occur.
17	And so the 800 C. quench temperature on
18	which the F values are based is bounding, but it also
19	bounds the region in which the base transformations
20	are happening and the diffusion rates are still pretty
21	high. So we think that overstates what the effect
22	might be.
23	Knowing this range here, the ID oxidation
24	is really not a factor because a BWR is a semi-free
25	standing design. You just don't have the hard pellet
I	I

(202) 234-4433

	268
1	clad contact, and we don't have the ID oxidation.
2	As you move to the higher burn-up region,
3	the oxidation becomes limited, and until the F is one,
4	we're looking at a half to one kilowatt per foot,
5	depending on where the exposure, one kilowatt per foot
6	towards the higher burn-ups and a half towards the
7	point of the oxidation becomes dominant.
8	The potential effect here, I don't know
9	whether it's going to affect us or not. We already
10	are considering in the twos the effect of two-sided
11	oxidation. We are somewhat concerned on the threes.
12	We don't know how on the fours we don't know how
13	that will behave. We're concerned because the rods
14	that were tested with fuel in them, which were down at
15	the point 57,000 megawatt days per ton lot average,
16	which was almost equal to the point of assuming full
17	bonding, really didn't show any stabilized or any of
18	the alpha on the inside. There were nodules of alpha,
19	but it wasn't the same as what you get on the water
20	side.
21	So we think that this might also be a
22	conservatism. We really don't know how it will affect
23	us.
24	Now, we talked about this. The ductility
25	limits seemed to be based on or they were based on the
I	I

(202) 234-4433

	269
1	Zry-4. Mike showed us earlier today some Zry-2
2	results which were encouraging. We mentioned the
3	lower hydrogen concentration. A large concentration
4	for us is on the order of 200 ppm, maybe 300, and as
5	I mentioned, this is something that has really not
6	been observed.
7	We do have bonding, but even after the
8	pellet is in placed, the amount of oxygen is
9	transferred into the rods that were tested really
10	didn't lead to an ID oxide phase comparable to what
11	happened on the outside surface.
12	There are some Zry-2 tests in here, but
13	the thing that really wasn't stated in the discussion
14	of how an F factor is derived is you need a test of
15	irradiated material with the hydrogen and all the
16	other things that contribute to the loss of ductility
17	on the assumption that zirconium based alloys are all
18	the same or maybe the 1.2 is okay, but this is a
19	conservatism that may come to hurt us.
20	I think that the biggest factor for us is
21	that the change in hydrogen which leads to the F
22	factor for BWR is really not a monotonic function.
23	It's not a scaler times burn-up or oxidation. We find
24	that we can have oxide that follows a normal parabolic
25	relationship and hydrogen that increases at a faster
ļ	I

(202) 234-4433

	270
1	rate. And so we're concerned that we can probably
2	live with the 1.2, but maybe that another method was
3	a better approach where hydrogen is explicitly treated
4	in the formulation independent.
5	That's what I had to present. I
б	deliberately didn't put a summary or conclusion slide.
7	As I said, I think we have margin. I think we're
8	going to be effective, and the conclusion is really in
9	the details of what will emerge.
10	Any questions?
11	CHAIRMAN ARMIJO: Any questions from the
12	committee?
13	DR. BILLONE: May I make one comment? I
14	think the big difference between an 800 degrees C.
15	quench and, say, 500 degrees C. quench is not so much
16	all of the phase changes you people are talking about.
17	I think it's the redistribution of hydrogen
18	MR. PATTERSON: Yes.
19	DR. BILLONE: in the material. I think
20	most of the phase change for Zry-4 is completed by 800
21	to 750. That's Zry-4. It doesn't include all of the
22	alloys, and I don't think what you're seeing in these
23	CEA and Argonne test results, comparing no quench to
24	quench is really phase changes in the material. I
25	think it's hydrogen migration, based on the results
ļ	

(202) 234-4433

	271
1	that CEA has presented.
2	It doesn't mean that there isn't a
3	difference. I just want to make a point that
4	MR. PATTERSON: Oh, that's one complement.
5	The other is the rate at which things move around.
6	Going from 800 to 600 can have a big effect on your
7	mobility.
8	DR. BILLONE: No, but oxygen is much
9	larger than hydrogen, and oxygen diffusivity and
10	mobility is extremely slow, below 800.
11	MR. PATTERSON: That's my point.
12	DR. BILLONE: Yeah, okay.
13	MR. PATTERSON: Thank you.
14	CHAIRMAN ARMIJO: Dr. Meyer?
15	DR. SHACK: How about a break?
16	CHAIRMAN ARMIJO: Well, we could have a
17	break. All right. Why don't we take a break for
18	about 15 minutes? So it will e 4:35.
19	(Whereupon, the foregoing matter went off
20	the record at 4:21 p.m. and went back on
21	the record at 4:38 p.m.)
22	CHAIRMAN ARMIJO: Okay. Are we ready to
23	resume our meeting?
24	Ralph, would you care to?
25	DR. MEYER: Yes. I have several comments
	1

(202) 234-4433

272 1 that I would like to make with reference to the 2 industry presentations that have just been made. First of all, regarding the status of the 3 4 research, we have had a formal research plan for this 5 work dating back to 1998, updated in 2003, and frequently reviewed by both the committee and our 6 7 industry partners. Work like ring compression tests 8 on prehydrided and irradiated ZIRLO and M5 integral 9 tests with PWR rods and the testing of adequate surrogates has always been planned for what we refer 10 to as Phase 2 of this program, most of which requires 11 12 an alpha-gamma hot cell, which as you know is unavailable to us now, and we hope to do in the Oak 13 14 Ridge Laboratory in a few years. 15 It has always been our plan and openly so to try and bring the ductility information in early so 16 that we could address the issues with the criteria in 17 50.46. 18 19 There was another slide given early on and 20 echoed in part in subsequent presentations by the 21 industry about stockpiling conservatisms, and I want 22 to address each of the three areas that were listed in that slide. 23 One was oxidation at the 1,200 limit, and 24 25 I simply want to point out that this is not different

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	273
1	from what has always been done. The 17 percent number
2	was derived from data at that temperature limit, and
3	the numbers which we have current measured, which, by
4	the way, are in almost all cases a little bit higher
5	than 17 percent, are done at the same basis.
6	A second concern about conservatisms has
7	to do with the F factor. The F factor of 1.2 that we
8	have suggested is said to introduce more conservatism
9	into the analysis, and I want to point out that that
10	is really only true for Zircaloy-4 for which we have
11	a full set of data.
12	If you look at the example that I
13	presented for ZIRLO, for example, the current
14	regulatory procedure would take, for 40 microns of
15	corrosion, would take the 17 percent limit and
16	subtract four percent, giving you a limit of 13
17	percent.
18	In the proposed limit for ZIRLO, you would
19	start with 19 percent, subtract 4.8 percent and get
20	14.2 percent. So, in fact, when these numbers are
21	applied to ZIRLO, you get a slightly higher limit
22	instead of a lower limit.
23	Similarly, for Zircaloy-2, if you had
24	gee, I don't know what number. I think I took the
25	I'm sorry. I've made a slight mistake in doing my own
Į	I

(202) 234-4433

	274
1	hand calculation here, but the point is you would be
2	subtracting a number from you currently subtract
3	a corrosion based number from 17 percent, and say that
4	were a big number like ten percent. If you then
5	subtracted 1.2 time ten percent from the current
6	number, which we now get as 19 percent, you come out
7	at the same seven percent.
8	So it's basically a wash in some of these
9	cases, and although for Zircaloy-2 it is not.
10	The third item which most everybody talked
11	about as introducing additional conservatism was the
12	matter of double sided oxygen penetration away from
13	the balloon region, and this, in fact, has a very
14	small impact on the analysis because everyone is
15	already doing doubled-sided oxidation penetration in
16	the balloon.
17	And you saw the example I presented. The
18	balloon is slightly cooler, but it has a thinner wall,
19	and put that together and compare it to a two-sided
20	calculation away from the balloon and you get very
21	similar results. So I don't think there is any impact
22	of significance on doing the two-sided calculation.
23	What this does, in fact, is bring realism
24	back into the analysis. So instead of running a very
25	complicated calculation in the balloon where you have
Į	

(202) 234-4433

(202) 234-4433

275 to take the wall thinning into account and replacing it with a calculation outside of the balloon where you don't have to do that and you don't have to worry about such other things as axial fuel relocation, you get an answer that is approximately the same and would not result in a major impact on the plants. Now I want to talk just very briefly about

the F factor itself and the magnitude of it. You've 8 seen data that showed that the F factor could be 1.3 9 In other words, it could be one or 10 plus or minus .3. ranging up to 1.6. An F factor of one corresponds to 11 the current regulatory position using the information 12 notice from 1998, and after considering the various 13 14 heating and cooling rate effects that might occur, we selected 1.2 as a good average number, which I think 15 is very reasonable and not overly conservative. 16

And one final comment then is about the 17 18 two-sided oxygen penetration, and the hydrogen 19 It's a very good point, that some of the absorption. 20 cladding materials absorb less hydrogen for a given amount of steam oxidation, and this term is a hydrogen 21 22 surrogate.

23 It is also possible that the sensitivity 24 of hydrogen might be different in these alloys. We 25 have not tested it. I would be very reluctant to base

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

1 that test on prehydrided material without confirming 2 it as an adequate surrogate, but nevertheless, we do 3 have the one set of data, and that's all we have to go 4 on at the present time.

There was one other technical comment about the data of Hoffman and Politis and this 6 threshold of 1,100 degrees Centigrade, with the 8 suggestion that you would not get any oxygen pickup on 9 the idea of the cladding at lower temperatures.

The Hoffman and Politis test involved 10 putting unirradiated pellets 11 of 0, inside of unirradiated tubes of zircaloy and then annealing them 12 So you did not have in that case an 13 under pressure. 14 intimate bond between UO_2 , which was the oxygen source 15 in the cladding, until you created that bond in the 16 short time of the experiments.

17 In the case of real fuel rods, you have that bond already created and intimate contact between 18 19 the fuel and the cladding, and in the four tests that 20 I referred to, one of them was the Hoffman and Politis One of them was Hobbin's (phonetic) work on the 21 work. 22 power coolant mismatch test in PBF, and then one of 23 the observations was on the Limerick integral test 24 that we've done at Argonne, and the fourth observation 25 was on the Robinson one-sided test. In each of these

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5

7

	277
1	cases you saw significant stabilized alpha layers on
2	the ID of the same magnitude as the alpha layers on
3	the OD.
4	So those are the comments that I would
5	make, and I would now like to ask if Mike Billone has
6	anything he would like to say, unless there's some
7	discussion of this, of my comments.
8	CHAIRMAN ARMIJO: Is there any discussion?
9	Go ahead. Just give your name.
10	MR. MONTGOMERY: Robert Montgomery.
11	Just one comment, Ralph. You noted that
12	in the test plan, the original test plan, that
13	integral PWR tests were planned. My recollection was
14	that they were planned back in 1998, 1999, 2000 time
15	frame, and we actually were planning on doing those
16	types of tests even as late as 2005 with regards to
17	looking at the double-sided oxidation effect.
18	So I just should point out that, yes, that
19	it is correct that the ZIRLO and M5 data was an
20	additional program that was not part of the original
21	plan, but that the integral PWR tests were par of the
22	original plan.
23	CHAIRMAN ARMIJO: Thank you.
24	Mike.
25	DR. BILLONE: I have just one slide I'd
Į	1

(202) 234-4433

	278
1	like to show that was missing in the morning if that's
2	okay.
3	CHAIRMAN ARMIJO: Sure, sure. Is this in
4	a handout?
5	DR. BILLONE: No, it's the one that was
6	missing. It should have been my very last slide.
7	CHAIRMAN ARMIJO: Oh.
8	DR. BILLONE: Okay. I just wanted to show
9	the examples about to what degree are test results
10	conservative. How would they be relaxed if you had
11	different heating rates?
12	And where I got these numbers of F going
13	down from 1.6 to 1.4 to 1.3, depending on the cooling
14	rate, and now Bert has suggested six. So we might do
15	that.
16	And these are experiments that we can
17	actually do, but I'm going to tell you what my opinion
18	is right now of the outcome, that this is the
19	experimental heating rate we used, which seems to be
20	reasonable for a large break LOCA. It seems to be at
21	least upper bounding type rate. Most, if not all, of
22	your embrittlement and oxygen pickup is occurring
23	during this heating rate.
24	What happens during the rapid cooling is
25	you only get an increase in oxidation level of .2
I	I

(202) 234-4433

	279
1	percent, and however, in the beta layer where you're
2	looking for ductility basically what's happening is
3	phase changes. You're not getting extra oxygen in
4	there. You're getting some alpha stabilized by oxygen
5	that's precipitating out as recooling, and you keep
б	some beta. You're in a mixed phase regime.
7	So my contention is that this is faster
8	obviously than a LOCA cooling rate, and it calculated
9	ECR for the transient is 5.7 percent. If you went
10	down at five degrees C. per second my contention is
11	you'd pick up no extra oxygen in the beta phase. You
12	just have a little more redistribution. The
13	calculation would be 6.4 just to do this cooling
14	effect, and if you cooled it three degrees per second,
15	you'd get 6.9.
16	So the 1.6 F factor is just taking the
17	data literally as it is, not applying it to realistic
18	LOCA and saying, well, gee, you know, to make this
19	correlation work I need a factor of 1.6.
20	If I take into account what I think are
21	more realistic cooling rates, and again, I haven't
22	taken into account the conservatism in the high quench
23	temperature. I'm just looking at the calculation
24	that's involved. This corresponds to an F factor of
25	1.4. This corresponds to an F factor of 1.3.

(202) 234-4433

(202) 234-4433

	280
1	If I take into account that your quench
2	temperature might be below six hundred, and it seems
3	like most of the calculations are, I allow more
4	hydrogen to come out of this beta phase, precipitated
5	small hydrides, and I got the word "precipitation
б	hardening" wrong when I agreed. This is actually
7	allowing the material to soften by losing hydrogen.
8	CHAIRMAN ARMIJO: No, the way I was
9	talking is when you quench very rapidly, you'll form
10	very tiny GP zones, if you will, very tiny zones, and
11	if you then cool slowly, they'll grow and you'll get
12	less hardening by slow
13	DR. BILLONE: Okay.
14	CHAIRMAN ARMIJO: So we're in agreement.
15	DR. BILLONE: Okay. Sorry. I was afraid
16	I agreed to the wrong terms.
17	Anyway, this was the point, and the point
18	is that the reason that we have such fast cooling is
19	that we don't have very much thermal mass. We have a
20	21 millimeter sample. There's no fuel in it. If we
21	went to a three inch long sample with zirconium
22	pellets in it, we with our controller would control
23	the cooling rate to whatever you want. It's not so
24	bad to be linear as opposed to where we have the
25	issue is the amount of time that you're spending at
I	I

(202) 234-4433

	281
1	temperatures.
2	MR. SIEBER: These plots though are the
3	are plots of the way you conduct your test.
4	DR. BILLONE: Only this is the only plot
5	of how we had
6	MR. SIEBER: As opposed to the plot of
7	what the real LOCA temperature response is, which to
8	me would be more convincing if I saw the results of
9	the LOCA curve and then fit your test onto that curve
10	at the right rate. I think that that's one of the
11	areas at least in my mind where the disconnect sort of
12	is, is figuring out whether what you're testing and
13	what you're doing corresponds to what is actually
14	happening in the core, and arguments and your data
15	and your plots seem to reflect what went on during the
16	tests as opposed to what goes on in the core.
17	DR. BILLONE: May I just comment on that?
18	MR. SIEBER: Yes.
19	DR. BILLONE: I think in the spirit in
20	which we're generating these data we want to make sure
21	we're at least giving you a lower bound, realistic
22	lower bound on how much time we can spend at high
23	temperature or what oxidation level you can tolerate
24	as a function of burn-up or hydrogen content.
25	So I'm more concerned with the fact that
I	1

(202) 234-4433

we received initial criticism that we weren't rising to 1,200 degrees C fast enough to test the criteria. It turns out that I am very pleased that we weren't because I don't see any LOCAs going up instantaneously to 1,200 degrees C. It makes this part more relevant and probably I would call it bounding.

7 This is too fast, and all I care about 8 here is 800 degrees C. is the largest quench 9 temperature that you can calculate in any of your calculations in the world. then at least I know 800 10 degrees C. quench I'm being conservative. I'm going 11 12 to come out with a lower number. I can certainly We can quench at any temperature, but you 13 quench. 14 might want to think whether you want to end up 15 analyzing every rod in the core or whether you want some bounding results. 16

The point is that these kinds of rates, what's important here is how much time are you spending at higher temperatures to allow the hydrogen to at least go below this point.

So I'm just saying that the speculation is that if you want some relaxation with 1.6, if Bert's six degrees C. per second is really bounding in terms of how you're coming down towards 800 degrees C., then you're somewhere in here. This is five and this is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	283
1	three.
2	If a lower temperature is more realistic
3	than 600 degrees C., you guys can call it bounding.
4	We can run the test. It's very easy to do with
5	prehydrided material, and it's easy for us to control
6	these ramp rates, which are more relevant than this
7	ramp rate. This is a bounding, upper bound, 13
8	degrees C. per second cooling rate on the average from
9	here to here, which is much faster.
10	MR. SIEBER: Pretty fast.
11	DR. BILLONE: Which is much faster.
12	MR. SIEBER: Really fast.
13	DR. BILLONE: I'm just pointing out that
14	in deriving the F factor, this cooling effect is
15	important.
16	And the last comment is there's no
17	discontinuity of discrepancy between CEA data and ANL
18	data. ANL data is for 13 degrees C. per second. CEA
19	data is for less than a tenth of a degree C. per
20	second, slowing down to .01 degrees C. per second. In
21	other words, it's the same exponential curve, but just
22	stretch it way, way out.
23	So that maybe they pick up two and a half
24	percent ECR during their high temperature phase, and
25	they're up to six percent ECR in the cool.
ļ	I

(202) 234-4433

	284
1	MR. SIEBER: Those rapid cool-downs and
2	quenches are for large break LOCAs.
3	DR. BILLONE: Yes, yes. Well, as a matter
4	of fact, when we run our tests for break-away
5	oxidation, we don't even quench. We were trying to
б	thinking of applying it this morning.
7	So, I mean, is this point clear, that when
8	I give numbers like 1.2 plus or minus .2, I'm sort of
9	taking this curve, assuming that I've quenched at
10	lower than 600 degrees C. and trying to give you an
11	estimate. If I don't want to play this game, I just
12	way, okay, if you want to use that corrosion ECR
13	directly from the data, the F factor is 1.6 and I
14	quit.
15	But I know that there's some things that
16	happen during slower cooling that we use and during
17	lower quench temperatures. So I'll continue to
18	elaborate that in Section 7 in my report. I just
19	wanted to make this point clear, where I'm coming out
20	with these different numbers.
21	CHAIRMAN ARMIJO: Mike, what additional
22	things do you have to do to issue your report? Do you
23	have any other tests in progress, or is it just
24	basically editing?
25	DR. BILLONE: No. There's short time

(202) 234-4433

	285
1	tests, tests that won't take us much time that we just
2	never got to. We just finished a batch of two tests
3	which in the report have the squiggles and it says
4	"data to be inserted here." So let's not get into
5	those.
6	We haven't done prehydrided tests on
7	ZIRLO, which we've started prehydrided ZIRLO, and we
8	haven't done prehydrided tests on M5, but really what
9	everyone wants is the tests on the high burn-up ZIRLO
10	and M5.
11	So by this March 31st date, I'm fairly
12	confident that we could get some prehydrided data in
13	there which would add to Section 4. We're trying very
14	hard to get some high burn-up data. It would probably
15	only be one of the two alloys, which would just be
16	added to Section 5.
17	CHAIRMAN ARMIJO: Okay. So this report
18	will be held up until you finish the irradiated tests.
19	Is that your plan or are you planning to issue it
20	DR. BILLONE: I think the plan is whatever
21	we have before the end of March. The plan is to
22	finalized the report for the end of March.
23	MR. SCOTT: Could I interrupt? This is
24	Harold Scott.
25	Since I'm the manager of the program, it's
	I

(202) 234-4433

	286
1	more a function of what we in research are willing to
2	do and not to do than him. If Ralph and I can
3	convince our boss on my right to let us delay, then
4	we'll do these Studsvick (phonetic) irradiated
5	specimens, or if Mike is luck and everything works
6	fine at the lab, he can get them done in time, but we
7	haven't talked about this before. So I'm hesitant to
8	go too far.
9	It's milestone constrained, not
10	technically constrained. Is that unfair?
11	MS. UHLE: Well, this is Jennifer Uhle
12	from the staff and I am one of the many managers in
13	research, and I would say that it's a function of it's
14	not milestone restrained. It's a function of
15	technical adequacy and technical sufficiency, and that
16	comes in part from our opinion here in research. I t
17	comes in part from NRR's opinion. It comes from the
18	public's opinion as well as ACRS' opinion and, you
19	know, all of our stakeholders.
20	So if there's the decision that everyone
21	comes to consensus that there's a need for more data,
22	then we'll simply inform the Commission of that, but
23	I think that the research staff feels that there is
24	sufficient amount of data, and that is the research
25	position, but again, it depends on the consensus of
ļ	I

(202) 234-4433

(202) 234-4433

	287
1	everyone involved.
2	CHAIRMAN ARMIJO: Okay. I understand.
3	DR. BILLONE: I guess my last comment is
4	what you have in front of you edited is a better
5	version on ADAMS and even better version than I have.
6	CHAIRMAN ARMIJO: Yet to come.
7	DR. BILLONE: It's really a quantum leap
8	from what we had in 1973, and obviously we're going to
9	continue to generate data after this report is issued.
10	We're going to continue to generate data from now
11	until the data report is issued, but I yield to
12	Jennifer and Ralph and Harold and HRR on what is
13	enough.
14	MS. UHLE: This is Jennifer Uhle again.
15	I mean, the decision as far as the
16	rulemaking schedule is ultimately the Commission's
17	decision and, of course, the staff is going to propose
18	various options and certainly what the staff feels is
19	the best path forward, but also there is an
20	acknowledgement that the current regulation does not
21	consider burn-up effects as we've talked about
22	earlier, about the need to move forward. It's just a
23	matter of when exactly the appropriate time is.
24	CHAIRMAN ARMIJO: Okay. Thank you.
25	MR. DUNN: Mike, don't disconnect.
	I

(202) 234-4433

	288
1	This is Bert Dunn, AREVA.
2	Could I just ask one question?
3	DR. BILLONE: Yes, sure.
4	CHAIRMAN ARMIJO: Go ahead.
5	MR. DUNN: On the Studsvick samples, were
6	they cleaned so well that we won't learn anything
7	about ID sources from them or is there still enough
8	dirt on
9	DR. BILLONE: They most definitely have an
10	oxide bond on the ID. They weren't cleaned very well
11	at all, and we have to do additional cleaning to get
12	rid of the rest of them, the remnants of the fission
13	products. Those rates are very high. When we finish
14	cleaning, additional nitric acid cleaning, you will
15	always have the bond.
16	MR. DUNN: You're going to destroy the
17	CHAIRMAN ARMIJO: You are going to have
18	mixed feelings about taking more of that uranium off,
19	don't you?
20	DR. BILLONE: No mixed feelings at all
21	because we're in a beta-gamma hot cell where there
22	isn't supposed to be any. So no.
23	CHAIRMAN ARMIJO: From that standpoint,
24	but from an experimental experimentally, to Ralph's
25	point, if you take all of the uranium off that's
	I

(202) 234-4433

	289
1	bonded, you take away a mixed source of oxygen.
2	DR. BILLONE: I have no mixed feelings
3	because what you're left with is really residue,
4	various compounds from the nitric acid, uranium
5	dioxide interaction. It's not true fuel when you do
6	the defueling. You do the defueling of nitric acid
7	and you want to get rid of all of the fuel.
8	There are other tests that we have planned
9	in which we will leave the fuel in. Those tests will
10	be conducted at Oak Ridge, and there will be no nitric
11	acid treatment. That would be just as received, and
12	we'd be testing high burn-up as we receive the fuel.
13	But for where we have to do these tests,
14	which is a beta-gamma hot cell with very strict
15	limitations on what you can bring in there, what you
16	can leave in there, it will be the fuel and the fuel
17	cladding bond.
18	CHAIRMAN ARMIJO: Well, just to make sure,
19	will you consider those tests definitive if you've
20	etched off the uranium, the UO_2 ?
21	DR. BILLONE: Well, they're definitive in
22	the same way the results I presented are. In other
23	words
24	CHAIRMAN ARMIJO: No more definitive.
25	DR. BILLONE: No more definitive. It
	I

(202) 234-4433

290 1 would be a new alloy, and M5 and ZIRLO are new 2 relative to our testing program, and it would be very, 3 very valuable to have a companion data set for for 4 those alloys to go along with our zirc data set, but 5 also to really complete the picture, you really would like to have the prehydrided data to scope out where 6 7 you should test. You have a limited number of tests. 8 You pick the test time and you pick the test 9 temperature. To know where you are in terms of 10 embrittlement, it's really nice to have the prehydrided data available. 11 12 I don't think your DR. MEYER: expectations should be too high on the small pieces of 13 14 ZIRLO and M5 that we have because they have fairly low 15 corrosion on them. Could you say what the corrosion levels are, Mike, on the pieces that we got from 16 Studsvick? 17 DR. BILLONE: The corrosion on the M5 18 19 weren't given, but they're expected to be -- Bert, 20 help me out. Is it ten microns or 20? Is it 17, 15? 21 Something on the order of 15 to 20 microns, small. 22 MR. DUNN: I think we can confirm that. 23 I'd need to go back to Lynchburg. 24 DR. BILLONE: But the ZIRLO, we got four 25 specimens in the first shipment. There was another

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	291
1	shipment that you've arranged at Studsvick waiting for
2	us to receive it for the LOCA program with the higher
3	corrosion levels on the order of 50 microns. We do
4	have material coming from ZIRLO that's higher.
5	MR. DUNN: One comment back to Mike I
6	mean back to Ralph. If we look at our data for
7	corrosion, the highest we're getting is in the 20 to
8	22 micron range. There was maybe three spots that are
9	up at 30, and those are out of German reactors, which
10	are very high duty reactors. They're not U.S.
11	reactors, and other than that, what you got out of
12	Studsvick is what the material does.
13	Now, the stuff from North Anna will be
14	about the same.
15	DR. BILLONE: Yes.
16	MR. DUNN: You can't create something that
17	doesn't exist.
18	CHAIRMAN ARMIJO: Unless there's some
19	really pressing new issue
20	DR. BILLONE: No, no.
21	CHAIRMAN ARMIJO: I'm going to now
22	close these discussions, and now I'd like to ask the
23	committee members for their comments and also some
24	PARTICIPANT: You want to go off the
25	record at this point.
l	I

```
(202) 234-4433
```

	292
1	CHAIRMAN ARMIJO: Yeah, I think. I don't
2	know how to go off the record. Well, I'm going to go
3	off the record if I bang this thing, but I don't want
4	anybody to leave. That's what I'm afraid of, but I'll
5	do it anyway.
6	Off the record.
7	(Whereupon, at 5:10 p.m., the subcommittee
8	meeting was concluded.)
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	