Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards Thermal-Hydraulic Phenomena Subcommittee

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Tuesday, December 5, 2006

Work Order No.: NRC-1346

Pages 1-424

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	+ + + +
6	SUBCOMMITTEE ON THERMAL-HYDRAULIC PHENOMENA
7	+ + + +
8	TUESDAY,
9	DECEMBER 5, 2006
10	+ + + +
11	The meeting was convened in Room T-2B3 of Two White
12	Flint North, 11545 Rockville Pike, Rockville,
13	Maryland, at 8:30 a.m., Dr. Sanjoy Banerjee, Chairman,
14	presiding.
15	MEMBERS PRESENT:
16	SANJOY BANNERJEE Chairman
17	SAID ABDEL-KHALIK ACRS Member
18	THOMAS KRESS ACRS Member
19	JOHN D. SIEBER ACRS Member
20	GRAHAM B. WALLIS ACRS Member
21	
22	
23	ACRS STAFF PRESENT:
24	RALPH CARUSO
25	
ļ	I

1	ALSO PRESENT:
2	STEPHEN BAJORK
3	BUTCH BURTON
4	JOSEPH KELLY
5	JOHN MAHAFFY
б	MARINO di MARZO
7	CHARLES MURRAY
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	1

	3
1	C-O-N-T-E-X-T
2	AGENDA ITEM PAGE
3	Introduction
4	Opening Remarks 6
5	Overview of TRACE Development 6
6	TRACE Model Revisions
7	Assessment Results
8	Trace Momentum Equation
9	Anonymous Letter
10	PI Group Ranging
11	Adjourn
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	1

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:31 a.m.
3	CHAIRMAN BANNERJEE: The meeting will now
4	come to order. This is a meeting of the Advisory
5	Committee on Reactor Safeguards, Subcommittee on
б	Thermal Hydraulic Phenomena. I am Sanjoy Banerjee,
7	Chairman of the Subcommittee. The subcommittee
8	members in attendance are Tom Kress, Graham Wallis,
9	Michael Corradini who seems to be absent and Jack
10	Sieber. Said Abdel-Khalik is participating via video
11	conference for this meeting.
12	The purpose of this meeting is to review
13	the continuing development of the TRACE thermal
14	hydraulic computer code. The subcommittee will hear
15	presentations by and hold discussions with
16	representatives of the NRC staff, the contractors,
17	regarding these matters.
18	The subcommittee will gather information,
19	analyze relevant issues and facts and formulate
20	proposed positions and actions as appropriate for
21	deliberation by the full committee. Ralph Caruso is
22	the designated federal official for this meeting.
23	The rules for participation in today's
24	meeting have been announced as part of the notice of
25	this meeting previously published in the Federal
ļ	I

(202) 234-4433

5 1 Register on November 15th, 2006. A transcript of the 2 meeting is being kept and will be made available as 3 stated in the Federal Register notice. It is 4 requested that speakers first identify themselves and 5 speak with sufficient clarity and volume so that they can be readily heard. 6 7 We have no received any requests from members of the public to make oral statements or 8 9 written comments. So I think with that, we can now 10 proceed with the meeting and I'll call upon Mr. Bajorek of the NRC staff to begin. 11 12 DR. BAJOREK: Good morning, Dr. Bannerjee. I'm going to start off in a minute. My name is Steve 13 14 Bajorek from the Office of Research, but in order to 15 give just a brief introduction, Butch Burton, our Branch Chief, is going to speak for just a few 16 17 moments. Thanks, Steve. As Steve 18 MR. BURTON: 19 mentioned, my name is Butch Burton. I serve as the 20 Chief of the Code Development Branch in the Office of 21 Research. Some of you may remember me from awhile 22 back from my license renewal work. Others I haven't 23 had the opportunity to meet but I hope to meet you 24 shortly. 25 I wanted to talk briefly about meeting

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

objectives and some introductory remarks. What we hope to accomplish today is to bring the subcommittee up to speed on some of the recent activities that the staff's been engaged in with regard to the development of the TRACE code and we'll also touch briefly on the graphical user interface work that we've done with our SNAP code.

Steve Bajorek and Joe Kelly will provide 8 the lion's share of the information in those areas. 9 10 Joe will also be talking about some of the developmental work we've done with regard to some of 11 12 the constitutive models. Throughout the presentation, one of the things that we'd like to get from you all 13 14 as subcommittee members is to identify topics for 15 future meetings. We recognize that this is going to really provide sort of an overview and status of our 16 work, but as we go through, it would be very helpful 17 to us if you would identify areas of particular 18 19 interest or concern that you'd like to have a more fuller discussion on in the future. 20

Also, as you're aware, it's been almost a year now that you received the latest of several issues and concerns that were submitted to you all anonymously. We responded to you all last March that we would be addressing those and this is really our

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

1 first opportunity to do that. And in order to do 2 that, we've asked Professor Mahaffy from Penn State 3 University to come and join us and he'll be giving a 4 presentation responding to some of those issues and 5 concerns. Also as we were preparing for this briefing, we were informed that there were some issues 6 7 with regard to the momentum equations and their development and application. So Dr. Wallace, we hope 8 to address some of those issues for you today also. 9 And again, Professor Mahaffy will be discussing those. 10 Finally, we'll also be providing 11 а 12 discussion to you with regard to some of the scaling distortion issues that have been of issue and concern 13 14 recently. A little bit of history; as many of you know, TRACE development really began in the mid to 15 The driver for that was at the time we had 16 late `90s. several thermal hydraulic codes, TRAC-P, TRAC-B, 17 RELAP-5, all of which were being developed, assessed, 18 19 maintained, in parallel as well as a neutronics code and in the mid-`90s there was a decision that for 20 efficiency sake, we would try to consolidate those. 21 22 The work has progressed more slowly than we would have liked and there have been a number of reasons for 23 24 that, some of which is that some of these legacy codes 25 had challenges that we had not anticipated and that we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

had to deal with.

1

2 We have a relatively limited staff to address some of the developmental issues. In fact, in 3 4 terms of the actual staff, lead staff on this, we 5 really have five people. In addition to Steve Bajorek, who provides overall technical direction, we 6 7 have Joe Kelly, who is basically the lead in model development; Joe Stoddermeyer, who is involved with 8 deck development and numerics; Chris Murray who is 9 involved with configuration control and has developed 10 a number of tools to help with efficiencies, and 11 12 Chester Gingrich, who is our lead with the graphical user interface work. 13

14 In addition to those leads, we had a very 15 limited support staff of junior engineers who have really been coming on very nicely and very recently, 16 and when I say recently, within the last couple of 17 months, we've brought on new staff, primarily folks 18 19 out of school but some with some experience and we're 20 hoping to develop them over the next couple of years 21 to join our staff which will allow for much more in-22 house work, much more of the work to be done in-house 23 with the associated reduction in resource and 24 commitments.

MEMBER WALLIS: Butch, can I ask you

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	9
1	something now?
2	MR. BURTON: Certainly.
3	MEMBER WALLIS: We recommended in our
4	research report that TRACE becomes the tool for the
5	agency. We recommend TRACE should actually become the
б	mature code used by the agency all over the place and
7	we wanted to see it mature and you say it's going to
8	be universal documentation in 2007, but what was sent
9	to us to review seemed to be a hodgepodge of all kinds
10	of stuff. What I want to review is a draft final
11	document, not a hodgepodge of stuff which I have to
12	figure out - not even dated. I don't even know
13	whether some of the documents are old or new or what
14	they are. That's not very helpful to us.
15	MR. BURTON: We understand, and let me
16	respond to that. We are right now we are working
17	very hard to try to get an executable version of the
18	code to NRR by the end of this year, basically by the
19	end of this month. And in doing so, and in working
20	with some of the other problem areas, the
21	documentation has fallen behind but we have made a
22	commitment to try to get some of the supporting
23	documentation, including the theory manual, the
24	assessment report, things like that, we expect to have
25	that issued by March of 2007.
Į	I

(202) 234-4433

(202) 234-4433

10 1 But you are correct, what you initially 2 received was not the most organized and comprehensive 3 version of the documentation. But as you'll see 4 during our presentation here, that is going to be our 5 -- has been and will continue to be a priority for us and we hope to have all of that together by the end of 6 7 March. And in terms of future topics, again, as you listen to the presentation, if that is an issue that 8 9 you would like for us to get into, you know, in further detail, at that point, we would be more than 10 happy to do that. 11 12 Well, when you say MEMBER WALLIS: "issue", is it going to be issued in final form and 13 14 how can you have -- I mean, you're going to have a 15 peer review and an ACRS review. Is this going to be issued for public comment or something or when is it 16 17 going to be final? Okay, well, let me go back to 18 MR. BURTON: 19 some of the initial issues that you had brought up in 20 your review of the research program earlier. We 21 recognize and we agree that the documentation is 22 absolutely essential even to support the peer review 23 and that's why you see in the one bullet about the 24 peer review being conducted and it's going to be done 25 in later 2007 and early 2008.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	MEMBER WALLIS: But suppose the peers
2	come back and say there's a problem with it? You
3	can't issue a code for use and then have the peers
4	tell you that parts of it are no good.
5	MR. BURTON: Okay. One of the things that
6	we'll be discussing today is some of the assessment
7	results and one of the things we recognize that in
8	terms of the chronology of how these things are
9	unfolding, it may not be the way we would like, but
10	the NRR staff, they have been looking for the TRACE
11	code to support some of their reviews for the advanced
12	the certification reviews, specifically for ESBWR.
13	So we have really tried to prioritize our work in
14	order to support them in what they need. So what we
15	plan to do is to provide to them an executable version
16	of the code with the user guide. And the user guide
17	actually is in pretty good shape at this point. As
18	we get the documentation together, we are going to
19	provide them with the support that they need in you
20	know to answer questions, things like that as we get
21	the documentation together. I don't want to steal
22	Steve's thunder but we do have plans to provide that
23	support. Later on, and you're right, you know, as
24	they perform the peer review, if there are areas that
25	need to be addressed, we will certainly address them
I	I

(202) 234-4433

1 but what we plan to provide to the NRR staff to 2 support their review is a code that we have been able 3 to go through. We know where the strengths are with 4 the code and we also know where the problem areas are 5 with the code. And in our discussions, in our consultations with NRR, as long as they can understand 6 7 where it works and where there's still areas for 8 improvement, they can deal with that. That's sort of 9 the understanding that we've reached with them. But 10 we know that we are playing catch up with the documentation. That's why we really tried to schedule 11 the complete the schedule the completion of the 12 documentation along with the peer review, provide the 13 funding and the resources we need to support that over 14 15 the next year or so and again, we think that all of 16 that will come together appropriately a little bit 17 later on. But some of the issues and concerns that 18 19 you're raising are valid and in the presentation we 20 will try to address those. 21 MEMBER SIEBER: How valid is the 22 information that you folks provided us on this tape or 23 This has a user's manual, has a theory this CD. 24 manual, has a source code and a bunch of other 25 Can I rely on this or should I believe documents.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	13
1	that I've wasted some of my time reading it or how
2	should I interpret this?
3	MR. BURTON: Boy, you all are really ahead
4	of here, but Steve, did you want to speak to that?
5	DR. BAJOREK: I think the best way to
6	describe the documentation right now is a preliminary
7	draft that we're working on so that we can begin this
8	peer review in the first quarter or thereabouts in
9	2007. The documents that you have now is the best
10	document that we have available right now to represent
11	the theory manual, the state of the assessment, the
12	user guide and some of the other issues that we hope
13	to deal with today, which are related but not directly
14	do not direct impact the
15	MEMBER WALLIS: Well, can I ask you about
16	that? I turned to theory manual and what I got was
17	something from LANL dated July 2000, which said
18	nothing about the integration of RELAP into TRAC. It
19	was all about TRAC. It said nothing about TRACE
20	whatsoever and it said it didn't have the capability
21	to model BWRs. And it's nothing like the final
22	version. Why did we get something that's six years
23	old?
24	DR. BAJOREK: When we first set up this
25	meeting, our objective and goal was to have that
I	I

(202) 234-4433

1 theory manual in draft from some time in November. As 2 Butch mentioned, in order to get the code in a 3 releasable form by the end of December, we did run 4 into some problems over the last quarter of this year. 5 Most of the staff has been working to resolve that problem in order to meet NRR's objective and goal to 6 7 be able to assess the ESBWR. 8 CHAIRMAN BANNERJEE: What were these 9 problems? 10 DR. BAJOREK: As I'm going to describe, what we are attempting to do is to run some 500 11 12 different assessment cases all with a frozen code. As we go through this rather large assessment matrix, 13 14 we'll invariably find some cases which fail, some in 15 which we aren't satisfied with the results and that causes us to stop, go back, change the code and then 16 17 redo the assessments. We thought we had it. We thought we had it pegged back in August or September. 18 19 There were a couple of cases notably I think it was 20 UPTF, for ECC Bypass that was suddenly giving us some 21 very peculiar results. I think that Joe Kelly is 22 going to talk a bit about the wall and the frictional 23 drag models today and he noted that there were some 24 problems as they were being applied in the down comer. 25 We've been making those changes. We think at this

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	15
1	point, we're very close. We think that now we're
2	going to be able to get all of the assessment in the
3	state that it is producing reasonable results and that
4	all of these cases run through. We feel that our
5	primary goal is to make sure that when we present the
6	code to NRR, it's reasonably robust, that all of those
7	highly ranked processes, especially for ESBWR are
8	well-represented in the code and are giving us
9	reasonably good assessment. But that has held us up.
10	I think that in the overall approach that
11	many people take to code the code development,
12	documentation slips behind because you're always
13	waiting to get that final model fixed. Until you are
14	satisfied with that, in some cases, there's the
15	feeling that it's not worth writing up some of the
16	models because you may well have to change those.
17	CHAIRMAN BANNERJEE: Do you document quite
18	well inside the code itself?
19	DR. BAJOREK: I would say that right now,
20	most of that documentation is within the code itself
21	and in the developer's draft sets of notes. Our goal
22	between now and February, March, April when we hope to
23	have that complete, is to get all of that updated into
24	a completely new theory manual.
25	Now, the 2000 education that was put out

(202) 234-4433

(202) 234-4433

16 1 be NANL, some of those sections will still apply. The 2 two sections in which we are making major revisions, 3 the section that discusses the closure models will 4 essentially be entirely rewritten. At least 75 5 percent of those have been changed and we'll talk about some of the reasoning behind that as we go on 6 7 with the presentations today. There have been some additions in some of 8 the sections that talk about the code feature. 9 The section on the field equations has been revised 10 substantially. But at this point, even though we have 11 12 made those revisions, they weren't in the shape that we could release to this committee in time for this 13 14 meeting. 15 MEMBER WALLIS: It seems to me you need 16 a peer review now because the way it's presented is really to the insider, who knows the history of these 17 codes and what's going and you really need to present 18 19 it in a way that the outside world can understand. 20 We hope to have it --DR. BAJOREK: 21 MEMBER WALLIS: But some expert who is 22 not in the field but knows a lot about fluid mechanics 23 and computation, looking at this thing, doesn't decide 24 it's some strange animal but actually says that it's 25 a useful thing.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	DR. BAJOREK: We agree. we see this as
2	the document that's going to begin the peer review.
3	We expect to give this to a peer review committee and
4	we expect them to find some things that they don't
5	like, some problems and deficiencies that eventually
6	need to be corrected. Our view of the code
7	development process is that you need to start
8	somewhere. We need to issue the code. We need to
9	identify what we think are the problem areas, begin
10	this process of the external and the peer review, and
11	then continually improve the code over the future to
12	address some of those things that both we, you and the
13	peer review committee see as being the most vital
14	things that we need to get correct.
15	CHAIRMAN BANNERJEE: You know, in the old
16	days when all these codes were being developed, the
17	peer review group which was then the Advance Code
18	Review Group, went hand in hand with development. I
19	don't recall how useful they were but for some of the
20	constituted equations of closure relationships I think
21	they were very useful. Why was that process stopped?
22	DR. BAJOREK: I guess I really can't
23	answer that one. since I've been with the NRC, that
24	part of the process has not been there.
25	CHAIRMAN BANNERJEE: But it seems at least
	I

(202) 234-4433

	18
1	that you carried a group of pretty eminent fluid
2	dynamitists and computational people along with you
3	and depending on how much time they put in, you've got
4	valuable feedback or maybe less valuable feedback
5	because it was done on a continuous basis. So you
6	were never sort of introverted; whereas here there's
7	always a possibility that you become introverted, you
8	pick your own favorite correlations or whatever. I'm
9	not saying that's what you do, but without actually
10	subjecting it to some external sort of criticism.
11	What Graham is saying is the peer review should be, I
12	think, I don't want to paraphrase it, a part of the
13	process and not just something done right at the end.
14	MEMBER WALLIS: I'm also thinking it's
15	too bad that George Batchler isn't around any more but
16	you've got to be able to respond to the sort of
17	criticism that he would give you even though it may
18	not be appropriate. It may be that he's being too
19	persnickety and academic and all that kind of stuff
20	but you still have to respond to the sort of thing
21	that a guy like that would have said about some
22	aspects of this. And there are still people like him
23	around. I think you ought to invite some of them to
24	comment.
25	CHAIRMAN BANNERJEE: Well, in particular,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	19
1	his counterpart you might think of as Andy Akrovous.
2	And Andy is now retired, living happily now in
3	Stanford, left City College. He works at more than
4	normal
5	MEMBER WALLIS: So he knows that the West
6	Coast is more congenial than the East.
7	CHAIRMAN BANNERJEE: Right, but
8	nonetheless, it's people like that you want involved
9	who are not part of the sort of mafia here, you know,
10	who only talk to each other and write their little
11	equations or large equations or whatever, follow their
12	own numerical methods and hope for the best.
13	DR. BAJOREK: All I can say is, your point
14	is well-taken. We believe that with the issue of the
15	code and this documentation, we can start to integrate
16	that process into our code development. We'd be
17	interested in your suggestions on people who could do
18	this task.
19	We've talked about some names among
20	ourselves. We don't want to mention them here in this
21	meeting just to avoid any contracting difficulties.
22	CHAIRMAN BANNERJEE: One of the things
23	with the previous peer review group that you had was
24	that they were not so-called industry insiders. You
25	know, they were not Los Alamos people or Idaho people,

(202) 234-4433

or people who have been in this and doing the thing. They were people like Garrett Burkhoff or Peter Lacks, you know, Abe Duckler or like that and I think you should strive for that same level of people rather than somebody who's written a quote in Idaho and make conjoin. You know, keep those -- really make it a peer review, I mean, an external review.

8 DR. BAJOREK: Okay, we will certainly 9 attempt to try to accommodate that. As far as the individual makeup, we'll have to work on that. 10 Ι would have to think that when it comes to getting 11 12 people who are working on these codes, we may have a question or a problem with independence in that a lot 13 14 of the people who are in the business of this large 15 LOCA code development have either scale some 16 association with the NRC or some of the people that we regulate and we have to make sure that we keep those 17 18 two groups apart in this case.

19 MEMBER WALLIS: Let me ask you, who are 20 You talked about NRR. This code is going the users? 21 to be available outside? I mean, it's going to be 22 available to anybody who wants them for free? 23 DR. BAJOREK: It will be made publicly 24 available, yes. 25 So it might be used in a MEMBER WALLIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

course in a university? And you don't want to students to say, "How can you do that", when they see certain parts of this document. It's got to be something that is robust when it gets into those sorts of hands.

BURTON: Yeah, let me speak to a 6 MR. 7 couple of issues that you've raised. First of all, 8 you are absolutely right, the peer review of the code 9 has to be better integrated right from the beginning. 10 A big part of this -- and to speak more broadly to some of the things that you're bringing up is that the 11 12 code has to be credible with the users. And right now, for many folks RELAP-5 is the code of choice. 13 14 And just internally amongst the staff, we've discussed how are we going to market the code and kind of 15 16 overcome those what we call barriers to entry.

And a big part of that is the credibility of the code. It's got to be able to do what RELAP-5 does at least as well, if not better and more user friendly, a number of different issues, but the credibility issue is key to integrating this into both the staff as well as people beyond the NRC. And one of the -- we do have user groups.

24 We have the -- if you're familiar with the CAMP 25 Program, the Code Application Management Program,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

(202) 234-4433

1 which involves primarily, actually RELAP-5 users all 2 over the world. And we meet twice a year and what we found at the last meeting which was in November, is 3 4 that they are starting to exercise the TRACE codes. 5 they're doing a lot of comparisons between RELAP-5 and TRACE and in many instances, they're finding favorable 6 7 results, not in all, but that's also one of the ways that we begin to get the code into user's hands and to 8 9 begin to get feedback and areas for improvement, identified bugs to be fixed, things like that. 10 But, yeah, our intention over the next year or two is to 11 12 really market the code, but in order to be able to it credibly, do have 13 market we to have that 14 documentation in place and we do need to have the peer 15 And we do recognize that one of the weak review. areas is it would have been much better to integrate 16 that peer review right from the beginning and have it 17 all along. We weren't able to do it for this version 18 19 for a number of reasons, but as we begin to develop subsequent versions, Version 6, 7 and 8, we want to 20 21 try and integrate the peer review right from the 22 And the issue is identifying those people beginning. 23 that are truly independent and have the technical 24 expertise that can really add value to that. 25 I want to make sure we do DR. BAJOREK:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 keep the code in context. Our primary user for TRACE 2 and really any of the tools that we develop over here is NRR and other groups within the agency. 3 Their 4 mission is to be able to use this code to do audit 5 calculations of the Westinghouse, the AREVAs, the GE's their applicants in order to look at new and advanced 6 7 plants and changes to those conventional plants. 8 So our marching orders are generally to 9 try to make sure that we can be -- we can supply the 10 tools that they need in order to do their regulatory functions. It is not our goal to produce the best, 11 12 state of the art LOCA tool so that it can be used at universities or by the international groups. 13 We'd 14 like to do that. In fact, we do have this code in use 15 at a few universities and we'd like to encourage that, 16 that actually --What's the difference 17 CHAIRMAN BANNERJEE: DR. BAJOREK: The difference is that the 18 19 applicant's code and their analysis is the analysis of 20 record. We like to try to maintain rigor, that is 21 about consistent with what the applicants are 22 providing but we do not -- we don't feel that we are 23 required to lead the state of the art. We want to 24 make sure that our models capture the important

25 phenomena and can handle the features which are

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 necessary for some of the plants, you know, some of 2 the new things which are in the advanced plants. This 3 helps us ask the right questions to the applicants. 4 It helps us understand whether their codes, which 5 represent the analysis of record, truly capture the phenomena. So there is a -- kind of a gray area in 6 7 how far we can actually advance this code to be the state of the art compared to where the industry and 8 9 our applicants, applicants to the staff go. 10 MEMBER WALLIS: I think you need a careful introduction to this code, and the code is 11 12 going to be tuned with these 500 assessments and that's going to be proof of the pudding that with its 13 14 defects that it still works for your needs, but it may 15 well not work for oil wells or biochemical reactors or a whole lot of other things for which people would 16 like to use a code like this because it's been very 17 much focused your applications. 18 19 DR. BAJOREK: Well, these codes, I think

you can say that about TRACE, RELAP, the various flavors of TRAC. They're semi-empirical in nature. No matter how detailed you want to make your numerics, your nodalization, various features, you ultimately have to go back to the closure relations for heat transfer, wall friction, interfacial friction. Those

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1are based on mainly subscaled experiments and because2of that there are going to be uncertainties associated3with your analysis.4MR. CARUSO: Steve?5DR. BAJOREK: Yes.6MR. CARUSO: One area that I don't know7if you're thinking about this but as we go to more8risk informed regulation, the risk analyses are9founded upon analyses, reactor analyses about how the10machine actually behaves, not how risky it is, but how11the water flows and how the heat gets transferred.12And is it your intent that this code will be used to13support probabilistic risk assessments? Because if14that's the case, then it has to be much more realistic15maybe than you're describing.16DR. BAJOREK: It certainly has to be17realistic. And we're working in that direction. I18think it's mainly to the degree at which we really19consider this to be the state of the art that we have20to be careful, that's all.21CHAIRMAN BANNERJEE: What do you mean by,22you said that two or three times that it won't be23necessarily state of the art.24MR. CARUSO: What won't it do? And will25people who are trying to remodel the behavior of the	ĺ	25
 with your analysis. MR. CARUSO: Steve? DR. BAJOREK: Yes. MR. CARUSO: One area that I don't know if you're thinking about this but as we go to more risk informed regulation, the risk analyses are founded upon analyses, reactor analyses about how the machine actually behaves, not how risky it is, but how the water flows and how the heat gets transferred. And is it your intent that this code will be used to support probabilistic risk assessments? Because if that's the case, then it has to be much more realistic maybe than you're describing. DR. BAJOREK: It certainly has to be realistic. And we're working in that direction. I think it's mainly to the degree at which we really consider this to be the state of the art that we have to be careful, that's all. CHAIRMAN BANNERJEE: What do you mean by, you said that two or three times that it won't be necessarily state of the art. 	1	are based on mainly subscaled experiments and because
4MR. CARUSO: Steve?5DR. BAJOREK: Yes.6MR. CARUSO: One area that I don't know7if you're thinking about this but as we go to more8risk informed regulation, the risk analyses are9founded upon analyses, reactor analyses about how the10machine actually behaves, not how risky it is, but how11the water flows and how the heat gets transferred.12And is it your intent that this code will be used to13support probabilistic risk assessments? Because if14that's the case, then it has to be much more realistic15maybe than you're describing.16DR. BAJOREK: It certainly has to be17realistic. And we're working in that direction. I18think it's mainly to the degree at which we really19consider this to be the state of the art that we have20to be careful, that's all.21CHAIRMAN BANNERJEE: What do you mean by,22you said that two or three times that it won't be23necessarily state of the art.24MR. CARUSO: What won't it do? And will	2	of that there are going to be uncertainties associated
5DR. EAJOREK: Yes.6NR. CARUSO: One area that I don't know7if you're thinking about this but as we go to more8risk informed regulation, the risk analyses are9founded upon analyses, reactor analyses about how the10machine actually behaves, not how risky it is, but how11the water flows and how the heat gets transferred.12And is it your intent that this code will be used to13support probabilistic risk assessments? Because if14that's the case, then it has to be much more realistic15maybe than you're describing.16DR. EAJOREK: It certainly has to be17realistic. And we're working in that direction. I18think it's mainly to the degree at which we really19consider this to be the state of the art that we have20to be careful, that's all.21CHAIRMAN BANNERJEE: What do you mean by,22you said that two or three times that it won't be23necessarily state of the art.24MR. CARUSO: What won't it do? And will	3	with your analysis.
6MR. CARUSO: One area that I don't know7if you're thinking about this but as we go to more8risk informed regulation, the risk analyses are9founded upon analyses, reactor analyses about how the10machine actually behaves, not how risky it is, but how11the water flows and how the heat gets transferred.12And is it your intent that this code will be used to13support probabilistic risk assessments? Because if14that's the case, then it has to be much more realistic15maybe than you're describing.16DR. BAJOREK: It certainly has to be17realistic. And we're working in that direction. I18think it's mainly to the degree at which we really19consider this to be the state of the art that we have20to be careful, that's all.21CHAIRMAN BANNERJEE: What do you mean by,22you said that two or three times that it won't be23necessarily state of the art.24MR. CARUSO: What won't it do? And will	4	MR. CARUSO: Steve?
if you're thinking about this but as we go to more risk informed regulation, the risk analyses are founded upon analyses, reactor analyses about how the machine actually behaves, not how risky it is, but how the water flows and how the heat gets transferred. And is it your intent that this code will be used to support probabilistic risk assessments? Because if that's the case, then it has to be much more realistic maybe than you're describing. DR. BAJOREK: It certainly has to be realistic. And we're working in that direction. I think it's mainly to the degree at which we really consider this to be the state of the art that we have to be careful, that's all. CHAIRMAN BANNERJEE: What do you mean by, you said that two or three times that it won't be necessarily state of the art. MR. CARUSO: What won't it do? And will	5	DR. BAJOREK: Yes.
8risk informed regulation, the risk analyses are9founded upon analyses, reactor analyses about how the10machine actually behaves, not how risky it is, but how11the water flows and how the heat gets transferred.12And is it your intent that this code will be used to13support probabilistic risk assessments? Because if14that's the case, then it has to be much more realistic15maybe than you're describing.16DR. BAJOREK: It certainly has to be17realistic. And we're working in that direction. I18think it's mainly to the degree at which we really19consider this to be the state of the art that we have20to be careful, that's all.21CHAIRMAN BANNERJEE: What do you mean by,22you said that two or three times that it won't be23necessarily state of the art.24MR. CARUSO: What won't it do? And will	6	MR. CARUSO: One area that I don't know
9 founded upon analyses, reactor analyses about how the machine actually behaves, not how risky it is, but how the water flows and how the heat gets transferred. And is it your intent that this code will be used to support probabilistic risk assessments? Because if that's the case, then it has to be much more realistic maybe than you're describing. DR. BAJOREK: It certainly has to be realistic. And we're working in that direction. I think it's mainly to the degree at which we really consider this to be the state of the art that we have to be careful, that's all. CHAIRMAN BANNERJEE: What do you mean by, you said that two or three times that it won't be necessarily state of the art. MR. CARUSO: What won't it do? And will	7	if you're thinking about this but as we go to more
10 machine actually behaves, not how risky it is, but how 11 the water flows and how the heat gets transferred. 12 And is it your intent that this code will be used to 13 support probabilistic risk assessments? Because if 14 that's the case, then it has to be much more realistic 15 maybe than you're describing. 16 DR. BAJOREK: It certainly has to be 17 realistic. And we're working in that direction. I 18 think it's mainly to the degree at which we really 19 consider this to be the state of the art that we have 20 to be careful, that's all. 21 CHAIRMAN BANNERJEE: What do you mean by, 22 you said that two or three times that it won't be 23 necessarily state of the art. 24 MR. CARUSO: What won't it do? And will	8	risk informed regulation, the risk analyses are
11the water flows and how the heat gets transferred.12And is it your intent that this code will be used to13support probabilistic risk assessments? Because if14that's the case, then it has to be much more realistic15maybe than you're describing.16DR. BAJOREK: It certainly has to be17realistic. And we're working in that direction. I18think it's mainly to the degree at which we really19consider this to be the state of the art that we have20to be careful, that's all.21CHAIRMAN BANNERJEE: What do you mean by,22you said that two or three times that it won't be23necessarily state of the art.24MR. CARUSO: What won't it do? And will	9	founded upon analyses, reactor analyses about how the
 And is it your intent that this code will be used to support probabilistic risk assessments? Because if that's the case, then it has to be much more realistic maybe than you're describing. DR. BAJOREK: It certainly has to be realistic. And we're working in that direction. I think it's mainly to the degree at which we really consider this to be the state of the art that we have to be careful, that's all. CHAIRMAN BANNERJEE: What do you mean by, you said that two or three times that it won't be necessarily state of the art. MR. CARUSO: What won't it do? And will 	10	machine actually behaves, not how risky it is, but how
 support probabilistic risk assessments? Because if that's the case, then it has to be much more realistic maybe than you're describing. DR. BAJOREK: It certainly has to be realistic. And we're working in that direction. I think it's mainly to the degree at which we really consider this to be the state of the art that we have to be careful, that's all. CHAIRMAN BANNERJEE: What do you mean by, you said that two or three times that it won't be necessarily state of the art. MR. CARUSO: What won't it do? And will 	11	the water flows and how the heat gets transferred.
14 that's the case, then it has to be much more realistic maybe than you're describing. 15 DR. BAJOREK: It certainly has to be 17 realistic. And we're working in that direction. I 18 think it's mainly to the degree at which we really 19 consider this to be the state of the art that we have 20 to be careful, that's all. 21 CHAIRMAN BANNERJEE: What do you mean by, 22 you said that two or three times that it won't be 23 necessarily state of the art. 24 MR. CARUSO: What won't it do? And will	12	And is it your intent that this code will be used to
15 maybe than you're describing. 16 DR. BAJOREK: It certainly has to be 17 realistic. And we're working in that direction. I 18 think it's mainly to the degree at which we really 19 consider this to be the state of the art that we have 20 to be careful, that's all. 21 CHAIRMAN BANNERJEE: What do you mean by, 22 you said that two or three times that it won't be 23 necessarily state of the art. 24 MR. CARUSO: What won't it do? And will	13	support probabilistic risk assessments? Because if
16DR. BAJOREK: It certainly has to be17realistic. And we're working in that direction. I18think it's mainly to the degree at which we really19consider this to be the state of the art that we have20to be careful, that's all.21CHAIRMAN BANNERJEE: What do you mean by,22you said that two or three times that it won't be23necessarily state of the art.24MR. CARUSO: What won't it do? And will	14	that's the case, then it has to be much more realistic
17 realistic. And we're working in that direction. I 18 think it's mainly to the degree at which we really 19 consider this to be the state of the art that we have 20 to be careful, that's all. 21 CHAIRMAN BANNERJEE: What do you mean by, 22 you said that two or three times that it won't be 23 necessarily state of the art. 24 MR. CARUSO: What won't it do? And will	15	maybe than you're describing.
18 think it's mainly to the degree at which we really 19 consider this to be the state of the art that we have 20 to be careful, that's all. 21 CHAIRMAN BANNERJEE: What do you mean by, 22 you said that two or three times that it won't be 23 necessarily state of the art. 24 MR. CARUSO: What won't it do? And will	16	DR. BAJOREK: It certainly has to be
<pre>19 consider this to be the state of the art that we have 20 to be careful, that's all. 21 CHAIRMAN BANNERJEE: What do you mean by, 22 you said that two or three times that it won't be 23 necessarily state of the art. 24 MR. CARUSO: What won't it do? And will</pre>	17	realistic. And we're working in that direction. I
<pre>20 to be careful, that's all. 21 CHAIRMAN BANNERJEE: What do you mean by, 22 you said that two or three times that it won't be 23 necessarily state of the art. 24 MR. CARUSO: What won't it do? And will</pre>	18	think it's mainly to the degree at which we really
21 CHAIRMAN BANNERJEE: What do you mean by, 22 you said that two or three times that it won't be 23 necessarily state of the art. 24 MR. CARUSO: What won't it do? And will	19	consider this to be the state of the art that we have
you said that two or three times that it won't be necessarily state of the art. MR. CARUSO: What won't it do? And will	20	to be careful, that's all.
23 necessarily state of the art. 24 MR. CARUSO: What won't it do? And will	21	CHAIRMAN BANNERJEE: What do you mean by,
24 MR. CARUSO: What won't it do? And will	22	you said that two or three times that it won't be
	23	necessarily state of the art.
25 people who are trying to remodel the behavior of the	24	MR. CARUSO: What won't it do? And will
	25	people who are trying to remodel the behavior of the

(202) 234-4433

	26
1	plant know when they go places they're not supposed to
2	go with this code?
3	DR. BAJOREK: Yes, we're going to try to
4	be very explicit in what the code can be used for and
5	what it can't be used for.
6	MR. CARUSO: I mean, if you hand it over
7	to a PRA person who doesn't understand even what heat
8	is just about, they'll just run the computer code and
9	they'll believe the numbers the way they believe the
10	numbers that come out of their PRA calculations. So
11	if the code is telling them something which is
12	physically impossible because it's been driven beyond
13	its capabilities, what are they going to do with this?
14	DR. BAJOREK: Hopefully, they aren't using
15	it in that type of a manner. We think there is some
16	maturity that needs to be there on the part of the
17	user in order to apply a code like this. So hopefully
18	they aren't using it as a black box.
19	MR. CARUSO: The history of the other code
20	shows that they are misapplied.
21	DR. BAJOREK: Hopefully, yes.
22	CHAIRMAN BANNERJEE: Well, I suppose some
23	of this will become clear as we go on, right, what are
24	the limitations and where it can be applied, where it
25	can't be applied. Though I must say that it's hard to
I	I

(202) 234-4433

	27
1	read about the code when the last document we can
2	reference is in the year 2000.
3	DR. BAJOREK: We agree, we agree.
4	CHAIRMAN BANNERJEE: So I don't know how
5	much feedback you really want from us if we don't have
б	an up to date document to review. I think you will
7	get much better feedback once we have your draft
8	manual or whatever, manual. Anyway, why don't we
9	MEMBER WALLIS: Well, I would try writing
10	the
11	MEMBER SIEBER: Well, let me ask just a
12	couple more questions. If some vendor were out there
13	writing this code and wanting to submit it to the NRC
14	for approval as a code of record, you would require of
15	that vendor more than you're requiring of yourself; is
16	that correct? For example, I understand you don't
17	plan to do V and V.
18	DR. BAJOREK: I'm sorry, I couldn't hear.
19	We have a plan to do V and V?
20	MEMBER SIEBER: Yeah, do you?
21	DR. BAJOREK: Yes, we do, yes. There's a
22	rigorous procedure that's used to put models into the
23	code to check those out and then these some 500 cases
24	then represent, you know, a test then of the code and
25	the
	I

(202) 234-4433

	28
1	MEMBER SIEBER: And so you'll be able to
2	determine from that work what the range of
3	applicability of the code is. Will you be able to
4	meet most of the other requirements that you would
5	place on others to qualify this as a code of record?
6	DR. BAJOREK: Yes, we think so. I think
7	the big difference is if a let's say an applicant
8	were to take TRACE and want to use this for their
9	safety analysis, they would have to submit this to NRR
10	and it would have to go through the rigorous type of
11	code review that has been done for the other
12	evaluation models. Now, at this point, we hope to get
13	a lot of that same type of questions, raising of the
14	issues, from the peer group but TRACE will have not
15	gone through that formal application process to
16	designate it as an evaluation model that an applicant
17	would typically do.
18	MEMBER SIEBER: But it will be documented
19	that you did the work, right?
20	DR. BAJOREK: Yes.
21	MEMBER SIEBER: Okay, I think that's
22	important because if you intend to put this code out
23	as an available public document and people begin to
24	use it, you end up with a problem. I think if
25	something goes wrong whatever application that
ļ	I

(202) 234-4433

	29
1	somebody might make of that, you have an obligation to
2	do a rigorous job of authenticating your code.
3	MR. CARUSO: I have seen licensees take
4	NRC codes, misapply them and then file Part 21 reports
5	against the NRC for the code because they claim that
6	the code was deficient because it didn't work in the
7	application they wanted, although the NRC that
8	developed it said it wasn't intended for that use.
9	MEMBER SIEBER: Well, I guess my
10	MEMBER ABEL-KHALIK: Can I ask a question?
11	Excuse me. I'd like to go back to the issue of being
12	state of the art. Let's say you're going to be 100
13	percent successful in your plans and the question then
14	is, if I were to compare the capabilities of your
15	completed code against the capabilities of the codes
16	that we had when you started in the mid-`90s or late
17	`90s as you state, are there any advancements beyond
18	the capabilities of the collection of codes that were
19	available at that time?
20	DR. BAJOREK: There are in terms of the
21	model corrections that we've made to TRACE and some of
22	the newer refinements we've put in there to model the
23	advanced codes, I mean, excuse me, the advanced
24	plants. I believe about a year ago, we had a
25	presentation to describe the modeling for condensation
	I

(202) 234-4433

(202) 234-4433

processes. These were some models that were not in the code previously and give us the ability to model things like the PCC heat exchangers in plants like the ESBWR and some of the drywell processes that go on the ESBWR scenarios.

However, you should keep in mind that the 6 7 code consolidation process that began in the late `90s 8 was to consolidate the features of the TRAC-B, the 9 TRAC-P, the RELAP and the RAMONA. It was not intended 10 to improve upon the constituent models. The idea was to consolidate those features, put them into a new 11 code, originally called TRAC-M, that gravitated or 12 evolved into TRACE, and once we have everything into 13 14 that code, now being TRACE, that is when we would 15 start to improve those constituent models based on deficiencies and problems we see in the code and 16 17 things that we've learned from tests that we've done at Oregon State, Penn State in the RBHT program, UCLA 18 19 in the sub-cooled boiling.

We think we have a fairly good ides on what those models and problem areas are in the code. That's going to be the next step. But I think I would not characterize the main intent of the consolidation process to improve those individual models. That's coming up.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

	31
1	CHAIRMAN BANNERJEE: Thank you.
2	DR. BAJOREK: Which did you want to
3	MR. BURTON: I think we're well into it
4	now.
5	DR. BAJOREK: Okay. Okay, let me just
6	sort of to finish off maybe things we haven't touched
7	on. One of the things that we do want to hear from
8	the committee are what are those topic areas that you
9	feel are most important within development of some of
10	the codes like this. You've made it very clear, you
11	don't have the documentation, but if you did have that
12	in front of you right now all together, the assessment
13	manual itself is over 1600 pages, the theory manual
14	probably not quite that size. There's
15	MEMBER WALLIS: I don't really need 900
16	pages. If I don't like the first 20, then I begin to
17	say what am I doing with this document, you know.
18	CHAIRMAN BANNERJEE: To give you an idea
19	for CATHARE, I can get a pretty good idea of what's in
20	the code, out to solve it and almost everything useful
21	in about 20 pages and they write peer reviewed papers
22	so they have to have that discipline.
23	MEMBER WALLIS: Yeah I was going to
24	suggest that someone try to write that sort of short
25	document which explains what the code is and what it
l	

(202) 234-4433

	32
1	does and what it sets out to do.
2	DR. BAJOREK: Well, Ralph, I think I've
3	sent e-mails to Ralph that I think what might serve
4	this committee best I the long run is really a series
5	of technical papers, those articles six to 15 pages
6	that either go into some of the details or describe a
7	particular phenomena and how it's modeled, how it's
8	assessed. You know, I agree with that. I think
9	that's the most efficient use of your time.
10	MEMBER WALLIS: Yeah, but if you
11	described what does TRACE do, how do you it's
12	designed to analyze reactor transients, amongst other
13	things. Okay. So what's a reactor look like? It
14	looks like this and we're going to divide it up into
15	various control volumes which we call nodes and they
16	look like these various shapes, and we're going to
17	write some equations which approximate what happens in
18	those control volumes.
19	But then if you start writing down a whole
20	lot of differential equations with grad divs and
21	scrolls and things in them, that's nothing to do with
22	how you model the control volume. So I immediately
23	have a it's a disconnect between what I think
24	you're applying it to and what you're writing down as
25	a fundamental theory. Now, that's a very fundamental
	I

(202) 234-4433

	33
1	thing and I'm sort of surprised it's still there like
2	that, that someone hasn't clarified what's going on.
3	CHAIRMAN BANNERJEE: Well, the message
4	anyway is that things which are not incredibly wrong,
5	I mean, 900 pages is hard to digest but I think you
6	can put it together in much shorter documents which we
7	can read, or any reviewer can read. So you could see
8	the sort of thing that CATHARE has done. They've
9	published in decent journals, I wouldn't say they're
10	outstanding. I would prefer to see you publish in a
11	little bit higher quality journals like <u>Journal of</u>
12	Fluid Mechanics or Physics of Fluids, but if worse
13	comes to worse, <u>Nuclear Engineering and Design</u> will
14	do. It must be properly peer reviewed and not by your
15	buddies and not just by the editor, you know. It
16	should go out and be peer reviewed and then that would
17	be fine, if it gets through that at least. That's the
18	first minimal set of requirements.
19	DR. BAJOREK: Okay, two other things that
20	we want to take care of in this meeting. This
21	committee has received several anonymous letter
22	raising some concerns in TRACE. John Mahaffy is here
23	today to talk with you about some of those and
24	hopefully resolve the issue.

Another issue that we've --

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

2 give to these anonymous letters? It seems to me 3 there's a great deal of attention given to anonymous 4 letters, perhaps more so than to comments from this committee.

DR. BAJOREK: No, I don't think that's 6 7 necessarily true. We take the committee's comments very seriously and we try to address those as best we 8 9 The anonymous letter I think originally when we can. 10 put this together it came across as like an So I think from the beginning, there's 11 allegation. been a treatment of this that has been somewhat 12 13 special.

14 MEMBER WALLIS: Maybe if I want to effect 15 you guys, I should go away and write an anonymous 16 letter, which I've never done in my life and never intend to do. 17

18 CHAIRMAN BANNERJEE: Maybe it is your 19 anonymous letter that they located.

20 MEMBER KRESS: You could change your name 21 to anonymous and they'd think you were great there. 22 CHAIRMAN BANNERJEE: Okay, carry on. 23 DR. BAJOREK: Okay, and finally, what we 24 would like to talk about is the issue of, I think it's 25 been termed pi group ranging. This was an issue, a

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

1 concern that was raised originally back in the time of 2 AP1000 review. There are a number of different scaling evaluations that were proposed in almost 3 4 across the board. Everyone said, well, if pi group 5 is between .5 and 2, it was acceptable outside, it was There really wasn't a basis for that. 6 unacceptable. 7 We want to talk about that issue, propose а 8 methodology that helps to define, you know, what is 9 that acceptability for --10 MEMBER KRESS: You're going to convert those numbers into some sort of level of uncertainty 11 12 associated with the thing, is that the approach? DR. BAJOREK: More like a level of impact. 13 14 one way what happens when you look at the In importance and the range, acceptable range of the pi 15 group, you start really getting into CSAU. You want 16 to know whether -- if something is totally deficient, 17 you know, a scaling group maybe it's three 18 or 19 something that you would have said, but if you put it 20 in your model and if you put it in your code, or if 21 you look at it in an experiment, did it really have an 22 What Marino di Marzo is going to describe impact. 23 this afternoon is a way of developing a relatively 24 simple model for the process, doing a ranging of those 25 important scaling parameters determine whether the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433
	36
1	things which are within
2	MEMBER KRESS: So a sensitivity analysis
3	on the pi groups.
4	DR. BAJOREK: I think that's probably the
5	best way of describing it.
б	MEMBER KRESS: That might work but you'd
7	have to do that for each case almost.
8	DR. BAJOREK: But that's why I mean why
9	you're starting to get closer to CSAU, okay, but we'll
10	move into that.
11	MEMBER WALLIS: You've got to be careful
12	about taking these pi groups too seriously. I mean,
13	if you have say a pipe connected to a vessel, a
14	dimensionalist group is the length of the pipe
15	compared with the damage of the vessel, right?
16	Okay, now suppose that I have a pipeline
17	running across Canada transferring oil from Alaska to
18	Winnipeg or something, it doesn't make much sense to
19	take that length and compare it with the size of the
20	vessel that's going into and say I've got a pi group
21	but you can. It doesn't make sense to try to
22	duplicate that in an experiment, that sort of ratio
23	and yet it is a pi group. So you've got to be careful
24	that you've picked the right sorts of parameters to
25	measure the scaling to make some sense.
	1

(202) 234-4433

	37
1	CHAIRMAN BANNERJEE: Well, I guess when
2	the idea of pi groups was developed, it was to see the
3	effect of these non-dimensional groups on some
4	specific parameters such as core inventory of coolant
5	or something like that which had the most impact. So
6	what I hope will be addressed in your meeting will be
7	how these facilities because they always relate it
8	to facilities, and the use of facilities to provide a
9	data base to validate and allow for scale-up using
10	quotes and we've always had a great deal of concern
11	with these facilities which are not full height, in
12	particular and have severe distortions and the reason
13	for that has been different phenomena are important in
14	different transients, different parts of transients.
15	So we didn't see easily how some sort of one-quarter
16	or one-third height facility could meet the
17	requirements for all phases of the accident. Could be
18	one and pi groups sort of showed us that this didn't
19	happen as well if you did it right. So I'd like to
20	see the arguments because all the NRC facilities, as
21	I can see, are quite distorted.
22	MEMBER KRESS: The other thing is with
23	sensitivity analysis, one quite often sees each say pi
24	group, if you're doing those, done one at a time. I'm
25	pretty sure that the sensitivity of one pi group will

(202) 234-4433

	38
1	depend on the value of another pi group. And you have
2	to figure out some way to deal with them as a group.
3	We'll wait to see what Professor di Marco tells us.
4	DR. BAJOREK: Okay.
5	MEMBER ABEL-KHALIK: I'd like to just
6	backtrack for a moment, if I may and so that I can
7	understand the process by which this development is
8	working. The people who are developing the models,
9	are they the same people who are doing the coding?
10	DR. BAJOREK: In some cases they are. In
11	general, however, the people who are developing the
12	models are giving that suggested coding over to a
13	person who is a little bit better at the software and
14	they put those models into the TRACE code.
15	MEMBER ABEL-KHALIK: Now, is this transfer
16	process from a model developer to a coder, documented?
17	DR. BAJOREK: Joe or Chris, I guess I'd
18	have to ask you guys as to how the documentation is at
19	that particular step.
20	DR. KELLY: Joe Kelly from Research and
21	the first thing I would say is that well, when I
22	give my presentation on the constitutive models, I can
23	talk about that a little bit more, but we didn't
24	really we don't have a lot of model development
25	work going on. It's been more model remediation.
ļ	

(202) 234-4433

5 In some cases, I have gone ahead and done the coding myself and then handed it off to someone 6 7 else to do the testing. In other cases, I've written 8 a document explaining what I thought the model should 9 be and why I thought it should be that way and then 10 handed that off to а junior co-developer for implementation and that was just a matter of being 11 12 more effectively using my time, and then the other staff member would do the implementation and the 13 14 testing.

15 So was it documented at that time, yes. Has that document necessarily been kept in an archive, 16 What would then be archived would be what the 17 no. person that did the implementation. He would prepare 18 19 a software design and implementation document. And 20 that would capture some of what I gave him but then 21 also the programming details and the testing that he 22 did when he put the model into the code.

23 MEMBER ABEL-KHALIK: But isn't there a 24 standard QA process for large code development that 25 requires sort of a paper trail from -- you know, even

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

me.

	40
1	though you call it minor tweaking in the models, it is
2	still a modification of the model to the point where
3	somebody writes lines of code and making sure that t
4	his process is done as the model developer wants it to
5	be done. And it just seems kind of too ad hoc to me,
6	the process by which this code is being developed.
7	DR. BAJOREK: As we go along, the notes
8	are retained. We keep these on a website that
9	MEMBER WALLIS: I support what SAID is
10	saying. I have some experience with the TRAC code.
11	The TRAC code evolved and then trying to figure out
12	what it was and why things were in it the way they
13	were was almost impossible because there wasn't this
14	paper trail.
15	MR. MURRAY: This is Chris Murray from the
16	NRC Research and I'm the code maintainer, so I have a
17	close hand with the QA process. If you want to see
18	our QA process, it is documented. There is an LO
19	number we can, you know, send you to see what that is.
20	There are actually two code QA documents that sort of
21	govern the development of the TRACE code. The first
22	is a general software quality assurance for thermal
23	hydraulics codes that was written by I think Frank
24	Odar back in 1999 or 2000.
25	One of the aspects of that document

1 dictates that for each code we develop a code specific 2 OA plan and that document exists. It was written by Vince Musoe and Simon Smith back at the time this 3 4 process started. And that sort of outlines how we go 5 through a development process from the developer writing a software requirements document to then -- in 6 7 a test plan, to then writing a software design and 8 implementation document and submitting all those to 9 NRC for review at each step in the process. 10 And once the coding has been developed, that comes into the code custodian, that's me. 11 Ι 12 review to make sure all the necessary pieces are Part of that they write a sort of HTML web 13 there. 14 page that describes the model or the change that was If it's a new model, then there's some 15 made. 16 description usually and in some cases, you know, when Joe mentioned about writing these model descriptions 17 that's part of the package and usually just a link to 18 19 the pdf or something like that. But there's a summary 20 of th update, what changes were actually made in each 21 sub-routine with a description of what changes were whether any model or 22 rather documentation made, 23 changes that needed -- had needed to be made and then 24 describe what the verification testing was and what 25 the test results were for those -- for that particular

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

41

	42
1	update.
2	And that all goes onto a TRACE development
3	website. It's an internal sort of website that only
4	our contractors and NRC staff have access to and you
5	can see the whole history from Day 1 Version 3 of
6	TRAC-M through Version 4.1 or 2.9 something for TRACE
7	at this point. You know, some thousand some updates
8	or whatever. And so there is a clear history and all
9	of those updates do go into a version control system
10	so you can go back and see exactly what changed from
11	step to step. And we've presented on that before.
12	some of the new members may not be aware of that
13	process but that and the validation side of VNV
14	comes in from that assessments.
15	MEMBER WALLIS: I wasn't trying to say
16	that you were doing a bad job but I was saying how
17	important this job was and it had to be done right.
18	MR. MURRAY: I was trying to address the
19	other gentleman's comments.
20	MEMBER WALLIS: All right.
21	DR. BAJOREK: I'm going to go through
22	we've actually done a pretty good job of racing ahead
23	for some of the some of the slides I have here but
24	let me just hit on a couple of these briefly. Just in
25	terms of the code development process, up until about
ļ	I

(202) 234-4433

43 2003/2004 most of the work had been going 1 into 2 consolidating the code. At that time it was called 3 TRAC-M, modernizing, going from older versions of 4 FORTRAN to FORTRAN-90, making it -- setting the code 5 up so it would be easier to change and maintain in the 6 future. 7 MEMBER WALLIS: How -- what does 8 consolidation mean? If you're consolidating RELAP 9 with TRAC, is it that they have exactly the same basis in which case there's not much consolidation required 10 or if they have something fundamentally different 11 12 about how they're based, I'm not sure how you consolidate it. 13 14 DR. BAJOREK: Well, the first --15 I don't understand what MEMBER WALLIS: 16 consolidating two codes means and just what kinds of 17 things do you have to do to consolidate? DR. BAJOREK: Well, there's two things 18 19 that need to go on. First you need to consolidate all 20 of the features and things that one code can do into a common platform, TRACE, okay. 21 22 But they have the same MEMBER WALLIS: 23 base but then some can do some things and some can do 24 others. You can just sort of incorporate all of the 25 things they can do into this new code, by adding them

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	in presumably, but if they have something which is
2	fundamentally different about how they solve things or
3	how they formulate things, I don't know how you
4	consolidate that. Is there no problem of that type?
5	Is it just adding in another correlation or something?
6	DR. BAJOREK: No there was a selection
7	process they had to go through in order to come up
8	with models for TRACE. In most cases, those models
9	did come from the TRAC series of codes. However, they
10	did have to be implemented in a way that they could do
11	the
12	MEMBER WALLIS: Can you give an example
13	of how TRACE is better than TRAC, because of something
14	that came from RELAP?
15	MR. MURRAY: TRACE species tracking, TRACE
16	species tracking was one aspect, I think that TRAC
17	didn't have that RELAP had on multiple non-condensible
18	gases, modeling non-condensible gases.
19	MEMBER WALLIS: Add-on things.
20	MR. MURRAY: There is add-on. You know,
21	TRAC only had the concept of a T component and RELAP
22	had sort of a branch with multiple side junctions.
23	And that was something
24	MEMBER WALLIS: TRAC has multiple side
25	junctions?
	I

(202) 234-4433

	45
1	MR. MURRAY: Now, a single cell can have
2	more than one side junction. That's something that
3	RELAP had that TRAC didn't have.
4	MEMBER WALLIS: Maybe that should be said
5	up front in the documentation. So TRAC had the
6	ability to handle multiple junctions that RELAP did
7	not have?
8	MR. MURRAY: No, RELAP did but TRAC did
9	not.
10	MEMBER WALLIS: Okay. And what do they
11	do with weird shaped junctions? Was one better than
12	the other?
13	MR. MURRAY: I think we'll get into that
14	later.
15	MEMBER WALLIS: Later on.
16	CHAIRMAN BANNERJEE: Let's avoid it right
17	now.
18	MEMBER WALLIS: Okay, I'm just trying
19	I'm still not quite sure. It looks as if it was very
20	easy. You simply said something that RELAP could do,
21	multiple gases or something which stick it into TRAC
22	and everything is easy.
23	CHAIRMAN BANNERJEE: A lot of this
24	correct me if I'm wrong, Steve, was associated with
25	the fact that you wanted the final product to be able
Į	I

(202) 234-4433

	46
1	to run on decks and so on that had been generated say
2	for RELAP-5 in the past, so you
3	MEMBER WALLIS: So it's input.
4	DR. BAJOREK: There's a lot of work had
5	gone on to developing those facility models and plant
6	models with RELAP. We needed to be able to preserve
7	that. So TRACE had to be able to largely take those
8	legacy decks as we call them, read those in and still
9	be able to do the simulations, incorporate all of the
10	features.
11	CHAIRMAN BANNERJEE: Are these mainly
12	legacy decks with RELAP-5 or were there some with TRAC
13	as well?
14	DR. BAJOREK: Some with TRAC as well.
15	Some of the TRAC-B decks had a different format than
16	what TRAC-M or TRACE now uses. So there was a
17	conversion process that had to be done for some of
18	those TRAC-B decks. That, however, was less onerous
19	and difficult than porting over the RELAP decks.
20	Now most of the work for doing that
21	conversion of the decks is done with the SNAP input
22	processor or the SNAP graphical user interface, as
23	I'll talk about later. That's actually proven to be
24	fairly difficult to get everything to translate over
25	from RELAP over to TRAC or to TRACE, excuse me.
	I

(202) 234-4433

We have a project ongoing right now, where we are taking the plant decks that NRR is most interested in and we are running that through SNAP, then running TRACE calculations in order to make it more of a turnkey operation, so that the users, the analysts in other places of the agencies don't have to become experts in SNAP or TRACE in order to do their jobs.

9 CHAIRMAN BANNERJEE: Can you give us a 10 rough idea of what fraction -- you were showing this 11 what fraction of this went into say program, 12 developing something that allowed you to -- things like SNAP and what fraction went into actually doing 13 14 the closure relationships or making sure they were 15 compatible, bringing them together?

What amount of effort went into the numerical part, so let's say the physics, the numerics and the pre and post processing. So if you took those broad categories, how would you have split this and some of it, I imagine, into validation and assessment as well. Make that five.

DR. BAJOREK: In terms of just the overall weighting and resources, I think if you go back to pre -2000 --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

CHAIRMAN BANNERJEE: Put the slide back up

(202) 234-4433

25

1

2

3

4

5

6

7

8

	48
1	because your slide vanished.
2	MALE PARTICIPANT: That's all right, he'll
3	get it. They're all together.
4	DR. BAJOREK: Thank you. I think if you
5	go back to the 1998 to 2003, it was virtually all
б	divided between software development for TRACE and the
7	rest of it probably in the development of the SNAP
8	processing. It's basically a software project.
9	CHAIRMAN BANNERJEE: And what do you mean
10	by software development for TRACE?
11	DR. BAJOREK: Modifying the code, doing
12	that conversion to FORTRAN-90, updating the structure,
13	really putting the code together. Okay, assessment
14	and applications at that time were there were some
15	going on but that effort was fairly small, so
16	CHAIRMAN BANNERJEE: You started with
17	TRAC, right?
18	DR. BAJOREK: Right.
19	CHAIRMAN BANNERJEE: In 1990 there was a
20	FORTRAN-90 version of TRAC. Okay, so why did you have
21	to do so much work with FORTRAN 90 at this point?
22	TRAC already existed, right?
23	DR. KELLY: TRAC existed but at that point
24	it would have been in FORTRAN-77 and also would have
25	had a lot of stuff in it to make it work on a CRAY
	I

(202) 234-4433

	49
1	computer, which by the time we started this program
2	really didn't exist any more. The consolidation, it's
3	kind of foggy here but there's really two things. It
4	depends on which code you're talking about.
5	TRAC-P and TRAC-B shared the same base
6	code. Now, to give boiling water reactor capabilities
7	to TRACE what we would do is actually import a model
8	from TRAC-B, something like for example, the jet pump,
9	and basically, just bring the coding over and then, of
10	course everything did have to go into FORTRAN-90
11	because at that point everything was in 77 or even
12	earlier, but for RELAP-5 and ROMONA, that was
13	something different. I'll talk about ROMONA first.
14	That was a thermal hydraulics code and an neutronics
15	code all built together. Instead what we did was
16	incorporate the capability. We took a modern reactor
17	kinetics code, that's the PARCS code, and built an
18	interface between TRACE and PARCS so that we could run
19	the two concurrently.
20	That allowed us to recover the capability
0.1	

doing three dimensional kinetics 21 of reactor 22 simultaneously with the thermal hydraulics. For RELAP 23 the idea was not to bring RELAP models and stick them inside of TRACE, but to make the TRACE code have the 24 25 same calculational capabilities as the RELAP-5 code.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	Up until the time of this consolidation, TRAC-P was
2	the agency's large break LOCA analysis code. RELAP-5
3	was the agency's small break LOCA analysis code. And
4	that was pretty much the division between the two.
5	Well, you know, some of the models are
6	different but a lot of it is, you know, very similar.
7	And so the idea is, if the TRAC models are good, they
8	should be able to do a small break LOCA just as well
9	RELAP-5. It turns out some of the models weren't so
10	good and you'll see some of that when you see my
11	presentation.
12	And so as we went through the assessment
13	process, we've tried to identify which models needed
14	to be replaced. In some cases, we may take a model
15	direct you know, constitutive model directly from
16	RELAP or another code, like for example, CATHAR, and
17	bring that into the TRACE code. And so I'll talk a
18	little bit more about that when I get to my
19	presentation.
20	CHAIRMAN BANNERJEE: CATHAR made a
21	significant effort to make the equations hyperbolic
22	which you don't seem to have done. Why did you make
23	that decision?
24	DR. MAHAFFY: Can I make a comment on
25	that?
I	

(202) 234-4433

	51
1	If you look at CATHAR and how they made it hyperbolic,
2	there's not a strong physical basis to begin with, all
3	right. There's some mathematical tricks that
4	mathematically say it's hyperbolic. If you go back to
5	the old paper by Bruck Stewart and Bur Windruff I
б	think was involved in it at one point, what they
7	showed was for the size of meshing that you use
8	typically in reactor safety and well below that, it's
9	not a practical issue. So that rather than put some
10	non-physical terms in there to please some
11	mathematicians, we just left it as is.
12	We had not seen throughout the history of
13	this code and its predecessors, problems with the non-
14	hyperbolicity simply because of the numerical
15	implementation.
16	CHAIRMAN BANNERJEE: Yeah, CATHAR, of
17	course, in some areas is physical.
18	DR. MAHAFFY: Yes, but
19	CHAIRMAN BANNERJEE: Did you incorporate
20	all the physical ones?
21	DR. MAHAFFY: The one zone where it's
22	definitely physical is if you're looking at what
23	happens in horizontally stratified flow, right, and we
24	have that. That's there.
25	MEMBER WALLIS: You have no mass term for
ļ	I

(202) 234-4433

	52
1	instance?
2	DR. MAHAFFY: We do not use that at mass
3	term. We've addressed that here before and I'll talk
4	about it later on.
5	CHAIRMAN BANNERJEE: Is this something
6	which let me there is no not invented factor
7	showed, right?
8	DR. MAHAFFY: This we have tried to be
9	inclusive of, you know, everything that is appropriate
10	balancing it with time considerations and level of
11	effort for this.
12	DR. MAHAFFY: So if you release a bubble
13	in in an invicit (phonetic) fluid, you'd get an
14	infinite acceleration in your code?
15	MEMBER WALLIS: If the bubble has no
16	mass.
17	DR. MAHAFFY: Well, a bubble does have
18	mass but
19	MEMBER WALLIS: No, it doesn't
20	necessarily. It may have a very, very, very, very,
21	very, very low mass.
22	DR. MAHAFFY: It's very small. No, you're
23	right, you'll get the wrong accelerations. No, I'll
24	concede that. You still have value terms that
25	interplay.
l	

(202) 234-4433

	53
1	MEMBER WALLIS: Well, I want to go back
2	to my question about consolidating. When I read this
3	TRAC, I find in the numerical methods there's a
4	mysterious W which is a weighting factor for some sort
5	of averaging which is presumably twiddled. Then
6	there's a mysterious beta which is some sort of a
7	weighting factor to make things more or less implicit
8	in handling velocity. There's a SETS method, which is
9	somewhat difficult to follow. There are various other
10	things like conserving convected momentum and stuff.
11	Is that all comparable with RELAP or did RELAP do it
12	some other way and why did you choose this way rather
13	than the RELAP way?
14	DR. MAHAFFY: The SETS method is exists
15	in both codes. In RELAP they call it nearly implicit.
16	In TRAC, I'm the guy that invented that circa 1978, so
17	I
18	MEMBER WALLIS: So the betas and the W's
19	are also in RELAP, are they?
20	DR. MAHAFFY: I can't attest to that. I'd
21	have to go back and look at their documentation to see
22	how much of that
23	MEMBER WALLIS: But there's nothing in
24	TRAC that tells you why it's done this way. They
25	simply say this is it. They don't have a sort of a
ļ	I

(202) 234-4433

	54
1	paper trail that says the beta was put in and this is
2	some sort of a pedigree for using this beta approach
3	which is verified in some way.
4	DR. MAHAFFY: If you read deeply enough
5	into the TRAC documentation, if you go back to the
6	Journal of Computational Physics article on SETS what
7	you will find is that beta is you can regard it as
8	semi-empirical. It is there simply because it makes
9	the behavior of the code more robust in certain
10	situations when boiling is present.
11	MEMBER WALLIS: There are questions asked
12	and if I read the document, it says beta is there,
13	okay, when the nodes are all in a straight pipe and
14	all the same size, maybe you can handle it with a
15	certain W and beta and so on, but if the nodes have
16	different sizes, there's no explanation about how you
17	then start weighting your averaging. So there's a
18	whole lot of questions I have about this stuff and we
19	can't spend all the time. But did this come from
20	RELAP or did it come from TRAC or is it
21	DR. MAHAFFY: Most of that stuff is from
22	the TRAC side of the
23	MEMBER WALLIS: No insight that you got
24	from how RELAP does this stuff?
25	DR. MAHAFFY: Oh, no, I understand what
l	I

(202) 234-4433

1 RELAP does. RELAP's near implicit method is based --2 and this is something I tried out circa 1978, RELAP's 3 flavor of this methodology is driven by the fact that 4 you have the virtual mass terms in your momentum 5 equation and that forces you to order your equations in a certain way if you're going to solve them 6 7 smoothly. Once you remove the virtual mass terms or 8 neglect to ever put them in, then the particular 9 formulism have in that you sets is from а 10 computational standpoint more efficient. That's what drives that. If you would like to pass on your 11 12 specific questions after reading through that --No, I'm just trying to 13 MEMBER WALLIS: 14 figure out how you took these two codes and 15 consolidated them and preserved the best features of 16 both and I got the impression that you simply went with TRAC. 17 That probably is the 18 CHAIRMAN BANNERJEE: 19 Your developer was from TRAC and therefore, truth. 20 you went with TRAC. 21 MEMBER WALLIS: That's the answer. 22 I don't need any more. That's the answer. I just 23 need to know that, that's all. 24 DR. KELLY: Okay, at the time -- this is 25 Joe Kelly again. At the time that we started this

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

55

	56
1	program, I was the team leader, so I can address how
2	we made those decisions. We had three options
3	available to us. One was starting with a brand new
4	code, writing it from scratch and then trying to bring
5	in the best of all of the extent codes.
б	Option number two was start with RELAP-5
7	and then build into RELAP-5 everything we needed to do
8	to consolidation. And number three would have been
9	starting with TRAC-P. My favorite was starting with
10	a new code because I didn't want to live with the
11	problems that
12	MEMBER WALLIS: So you started with TRAC.
13	It's all based on TRAC.
14	CHAIRMAN BANNERJEE: You wanted to start
15	with
16	DR. KELLY: Right, right, and for good
17	reasons that path wasn't followed. There was very
18	high risk and a potential for a much higher cost. So
19	that brings us to using either RELAP-5 or TRAC as a
20	base. And at that time well, there is three
21	reasons why we selected TRAC over RELAP-5 at least to
22	the best of my memory, okay, because this was a few
23	years ago now.
24	The first is that TRAC had a working
25	three-dimensional capability; whereas in RELAP 5 at
I	

(202) 234-4433

that time, the three-dimensional capability was very much experimental and completely untested. Whereas in TRAC it had existed from the beginning of the TRAC code and had been well-assessed during the time of the CSAU program.

The second one was that the numerics in 6 7 TRAC were much more robust than in RELAP-5 as far as 8 -- especially with the SETS method when you want to 9 run with time steps that are beyond the KARANT 10 (phonetic) limit which you really need to do for small break LOCA or for these passive plants. So those were 11 and the third had to do with 12 the two reasons, leveraging funding, if you will because the Department 13 14 of Energy and Naval Reactors had already committed to 15 do the modernization of the one-dimensional components 16 in the TRAC code. So we could build upon their effort 17 and only have to fund the modernization of the threedimensional. 18

So as best I can recall, those were the three primary reasons that we selected TRAC instead of RELAP-5 as a starting point.

22 CHAIRMAN BANNERJEE: Let me ask you, Joe, 23 RELAP was more sort of used for small break LOCA's, 24 right? Yet, you say that the TRAC methodology 25 numerically was more robust for the small break LOCAS.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	58
1	Is today RELAP-5 used in industry still more for the
2	small break LOCAS than TRAC?
3	DR. KELLY: Well, you said "used in
4	industry", so I can address that from one particular
5	standpoint because I worked for Siemens for awhile
6	before it became Framatome and then AREVA. They have
7	their own version of RELAP-5 called S-RELAP-5 and it's
8	descended from RELAP-5 Mod 2.5 whereas the current NRC
9	code is 3.3, I believe. They've had that code in-
10	house and done their own development work over a
11	number a fairly large number of years. And they're
12	responsible for doing the assessment and making sure
13	that the code works. Then, as you know, they did a
14	best estimate large break submittal and did the you
15	know, the end certainty methodology, et cetera, and
16	presented it here. Likewise, they have an evaluation
17	model approach for small break LOCA.
18	Now, I assume at some point that will
19	become a best estimate but an evaluation model is both
20	the code and how the code is applied. And then how
21	the code is applied is a lot of different assumption
22	about what occurs in the transient and what the
23	initial states of the plant are and that was approved
24	by NRR as well.
25	So it's different. You know, the RELAP 5s
	I

(202) 234-4433

	59
1	are different.
2	CHAIRMAN BANNERJEE: You mean the solution
3	methodology used in S-RELAP is different from the
4	RELAP 5 or
5	DR. KELLY: To the I don't think it has
6	the nearly implicit scheme. They have they've
7	modified they've had the code in-house for 15 years
8	or something. So over that period of time, it has
9	grown up in their own environment, and you know, the
10	development paths have been different since that point
11	in time.
12	CHAIRMAN BANNERJEE: What sort of scheme
13	do they use now numerically?
14	DR. KELLY: I know there's
15	CHAIRMAN BANNERJEE: I should know, but
16	I've forgotten, it was so long ago they came out.
17	DR. KELLY: I know they still have the
18	semi-implicit. I don't remember if there's any kind
19	of partially implicit scheme at all. I simply don't
20	remember. It's you know, when I was there, I
21	worked on the assessment of the physical models for
22	large break LOCA and I don't remember the numerics,
23	I'm sorry.
24	CHAIRMAN BANNERJEE: Anyway, so
25	historically, whether for better or worse, you picked
	1

(202) 234-4433

	60
1	TRAC and that's what was done. And therefore, the
2	basic structure of the code and numerical schemes are
3	to a large extent what was in TRAC-P at that time.
4	DR. KELLY: Yes.
5	DR. MAHAFFY: Can I interject something
б	here? The key word that I just heard was structure
7	and that's not the case. Understand that we have been
8	using an evolutionary programing approach. TRAC was
9	a convenient place to start but we were operating
10	under three guidelines from on high. The code had to
11	be easy to read, easy to maintain and easy to extend.
12	Neither RELAP5 nor TRAC were particularly easy to
13	read, okay. You're nodding your head, you've been
14	there and tried to do that. Have we succeeded
15	completely, no, but it's a lot easier. I can give
16	examples of graduate students mucking around in these
17	various codes and I can tell you TRACE is a lot easier
18	for a novice graduate student to work with. But, you
19	know, this code has evolved. As you've noted, I'm an
20	old TRAC developer. This is not TRAC any more. It's
21	something else. Inside the data structure is totally
22	different. The computational flow is different. You
23	will recognize bits and pieces of code if you really
24	knew it. They're still there but it's part of what
25	Joe talked about. You know, do you write a new code
ļ	

(202) 234-4433

	61
1	from scratch or do you evolve a new code? And we went
2	with the evolution. I think in terms of verification
3	capabilities, it's proven to be a pretty good course.
4	DR. BAJOREK: Okay, I'm going to try to
5	move ahead quickly here to get us back on schedule.
6	Since about 2003, to answer your original question, it
7	has moved more towards assessment in terms of where
8	most of our resources that fixing those models which
9	you're finding deficient. In the future, we thing
10	more of that work is going to be on the model
11	development and assessment end of things, kind of
12	getting back to where we really want to be in making
13	the code better.
14	What it's applicable to
15	CHAIRMAN BANNERJEE: Do you want to go
16	back to that previous slide?
17	DR. BAJOREK: Do I want to?
18	CHAIRMAN BANNERJEE: Let's get the answer
19	to the question in my mind at least. In the early
20	days, you spent a lot of time making a sort of
21	software so that different decks could run on the same
22	code, RELAP could be used on TRAC, I mean, TRACE and
23	so on. And that sort of finished, when about 2000?
24	DR. BAJOREK: About 2003.
25	CHAIRMAN BANNERJEE: Oh, 2003.
I	1

(202) 234-4433

	62
1	DR. BAJOREK: 2003.
2	CHAIRMAN BANNERJEE: Now, you've got a
3	code which has sort of got a
4	DR. BAJOREK: Now, we essentially at
5	that time we had what I like to think of as basically
6	a new code and then we need to assess that to see how
7	well it works. Notice one thing that is
8	CHAIRMAN BANNERJEE: It's not frozen
9	though.
10	DR. BAJOREK: Not necessarily frozen
11	because we were continually finding things that needed
12	to be fixed. One of the things that you'll note that
13	was absent really from the CSAU work that was done in
14	1989, 1990 up through 2003. There was virtually no
15	assessment done on TRAC which was the base for this
16	for much of what we were working on.
17	So when we started the initial assessment,
18	2002, right about the time the consolidation was
19	completed, we found many models that needed to be
20	fixed in order to make the code run with the
21	assessment matrix, which now has grown to where it
22	needs do to TRAC-P, TRAC-B, RELAP all of those cases
23	simultaneously.
24	At that time is when we found that, hey,
25	many of the models, many of the closure models, that
	I

(202) 234-4433

	63
1	had been put into TRAC-M and TRACE needed to be
2	revised and that's kept Joe Kelly very busy here over
3	the last two, three, four years. I think that
4	CHAIRMAN BANNERJEE: That's post-2003.
5	DR. BAJOREK: Post-2003. Today with
6	revision of many of those models, completion of much
7	of the assessment and keep in mind there was a lot of
8	deck conversion that had to be done for the assessment
9	cases as well, we're now at the point where we can do
10	the assessment, look at the models, go back and see
11	whether they are good enough in order to move forward.
12	So I would say that at this point, most of our
13	resources are being spent on assessment, maybe 60, 70
14	percent, the remainder on SNAP development,
15	refinement, and fixing the models in TRACE as we find
16	those to be problematic.
17	CHAIRMAN BANNERJEE: When is the code
18	going to be frozen in some version or has it already
19	been frozen now?
20	DR. BAJOREK: We have frozen it a couple
21	of times over the last couple of months. By the end
22	of this week, actually I think the team, we're going
23	to meet and hopefully agree upon what we call the next
24	release candidate and send it through this batch of
25	500 assessments. When we did that last month, we
	1

(202) 234-4433

	64
1	found a couple of problems that needed to be fixed.
2	We are hoping that with this next round of revisions,
3	the code can be rigidly frozen. That is what will
4	become TRACE 5.0 and then we can completely move on to
5	finishing the documentation.
6	CHAIRMAN BANNERJEE: Now, will you have
7	gone through the verification procedure that the
8	equations in the code are actually the equations that
9	are supposed to be there, independent verification and
10	this sort of stuff? This was an issue raised in one
11	of the anonymous letters.
12	DR. BAJOREK: The line by line review type
13	of procedure?
14	CHAIRMAN BANNERJEE: Yes.
15	DR. BAJOREK: Yes, we've done much of
16	that. I can't say we've
17	CHAIRMAN BANNERJEE: Is there a sort of QA
18	document, a procedures document that you followed?
19	What sort of controls do you have for people to say,
20	yes, this has been done other than your word for it?
21	DR. BAJOREK: Oh, as far as a written
22	guide, I
23	CHAIRMAN BANNERJEE: Or just a log or
24	whatever. I mean, do you have some record that this
25	verification procedure has occurred?
ļ	I

(202) 234-4433

	65
1	DR. BAJOREK: I don't believe there is
2	any.
3	MR. MURRAY: I mean, a lot of that was
4	captured on that website that I was mentioning
5	earlier. You know, step by step, as we've gone
б	through and involved this code from the TRAC-P days,
7	every time that we've, you know, a programming
8	structure, a data structure change is made to
9	underline numerics, that's gone through John has
10	gone through a rigorous verification process that's
11	documented through either the HT summary pages that
12	are in our website or you know, some of the
13	documentation that we supplied that is on that CD that
14	was mentioned a little earlier, there's an SQA
15	documentation directory that contains, you know, as
16	much of that documentation as exists.
17	CHAIRMAN BANNERJEE: Perhaps one thing
18	that would be helpful would be for somebody to put
19	this all together in some form that it's in one place
20	so anybody coming in can look at it and see that all
21	the verification exercises or whatever you've done is
22	there and that it's something which stands up to
23	scrutiny.
24	DR. BAJOREK: Okay.
25	MEMBER WALLIS: The user will get the
I	1

(202) 234-4433

	66
1	source code so the user can look at the details and
2	will the user be clear when he looks at a piece of the
3	code which is supposed to do something about what's
4	going on in that part of the code?
5	DR. BAJOREK: I think in the past we have
6	released
7	MEMBER WALLIS: A source code
8	DR. BAJOREK: It's not a blanket release.
9	MR. MURRAY: Repeat the question once
10	more, I'm sorry?
11	DR. BAJOREK: Will the user get the source
12	code?
13	MR. MURRAY: The users generally get the
14	source code when we release the code to
15	MEMBER WALLIS: The user wants to know
16	how you handle some particularly difficult aspect of
17	the numerics or something, then this user can to go
18	part of the source code and look at it and figure out
19	that what you're doing there is
20	MR. MURRAY: That is true.
21	MEMBER WALLIS: And there is some
22	description in the theory manual which goes along with
23	it so he can check that one is consistent with the
24	other?
25	MR. MURRAY: I mean, that will be the

(202) 234-4433

	67
1	intent.
2	MEMBER WALLIS: In the
3	CHAIRMAN BANNERJEE: That is the intent.
4	MEMBER WALLIS: because it didn't run
5	when solving certain problems, people would insert
6	things to make it work without explaining what they
7	were doing and then it became very difficult to figure
8	out.
9	MR. MURRAY: That's always a challenge, I
10	think, to always get people to document why something
11	was done. It's very easy and historically, people
12	have added comments that say what they've done. It's
13	saying why they've done something and what the
14	implications that are always a challenge in any
15	software development and certainly we strive to always
16	capture that answer those whys, either in the
17	theory manual itself, the user manual, the user
18	documentation, the code itself or the code software,
19	you know, quality assurance documentation.
20	DR. BAJOREK: That's one of the issues
21	that we have taken very seriously though, is where do
22	we go from here with respect to the documentation in
23	our assessment. We've taken a lot of pains over the
24	last couple of years to really automate the entire
25	process. We want to get out of this mode of making
I	1

(202) 234-4433

	68
1	changes to the code, assessment them some day and then
2	documenting them some day further downstream, where by
3	that time the code developers may have come up with
4	some better ideas. We think we've arrived at a
5	procedure now where the theory manual, our draft
6	versions, the assessment report, the input decks are
7	all put on to, I guess what I would describe as a data
8	base. The user could check out the input decks, make
9	his changes, check those back in. When he does all of
10	this and if he runs a new code, there are automatic
11	the software will automatically change figures in the
12	report. The theory manual is there so that as we make
13	changes, we can very quickly go to that theory manual
14	now and update it with those models as they change.
15	Our goal is that once we get past TRACE
16	5.0, and this initial glut of information, as we make
17	changes to TRACE and it evolves into 6.0, 7.0, the
18	time frame for turning around the theory manual, the
19	assessment and everything that's associated becomes
20	very short. So you know, if a new user picks up a
21	TRACE Version 6.0, in a year or two, he's going to
22	know very quickly what were those changes in the
23	theory manual, what does 6.0 do that was different
24	than 5.0 because he's going to have that assessment
25	readily available to him. But at this point, it's
Į	I

(202) 234-4433

(202) 234-4433

	69
1	you know, we have the process in place and it's a
2	matter of freezing the code, which we hope to do this
3	month and then completing the documentation which our
4	target is the is early part of 2007.
5	MEMBER WALLIS: I know it's assessed with
6	what's been done in the past but when you're
7	evaluating something like ESBWR, we have just
8	thinking out loud, there's a chimney in there and
9	there may be sort of bubbles of a size that's never
10	really been assessed before in the chimney. Are you
11	going to just run TRACE as a black box or are you
12	going to modify parts of it to handle a new geometry
13	like that or something or what? What are you going to
14	do?
15	DR. BAJOREK: No, it's not going to be run
16	as a black box. I was looking ahead here in terms of,
17	because I do have
18	MEMBER WALLIS: What sort of thing do you
19	do when you get a new thing like that which is
20	different from a previous design?
21	DR. BAJOREK: One of the later
22	presentations are going to outline that in a little
23	bit better form. We're going to come out with this
24	assessment report which for better purposes, I would
25	refer to as a generic assessment report manual. That
I	I

(202) 234-4433

	70
1	would include virtually all of the processes that
2	people have indicated are highly ranked in the various
3	parts for large break and small break. Okay, that's
4	where you'll find assessments for reflood, heat
5	transfer, mixture level swell and the likes. We will
6	also be producing documents for ESBWR, EPR and any of
7	the other advanced reactors that come along which we
8	refer to as applicability reports. In those
9	documents, we would document the things like for ESBWR
10	as an example, things like Puma, Panda, Giraffe.
11	MEMBER WALLIS: Maybe are you going to
12	say to use this code for the ESBWR you have to change
13	certain lines in the code?
14	DR. BAJOREK: No.
15	MEMBER WALLIS: No?
16	DR. BAJOREK: No.
17	
18	MEMBER WALLIS: No? Well, how did it
19	take maybe TRACE doesn't handle the bubble size
20	that we expect in ESBWR. How do you do it then? It
21	must change something if it can't handle it.
22	DR. BAJOREK: We have done that assessment
23	using two different types of tests to look at the
24	bubble size and behavior in large diameter pipes.
25	MEMBER WALLIS: You feel it's already in

(202) 234-4433

(202) 234-4433

	71
1	trace.
2	DR. BAJOREK: Yes.
3	MEMBER WALLIS: Well, there must be some
4	questions which come up which are not, perhaps,
5	already answered in Trace. Then you're going to have
6	to produce modifications to the code or is that never
7	going to happen?
8	DR. BAJOREK: If we
9	MEMBER WALLIS: Suppose they change the
10	design of the EBSWR, suppose the core catcher has
11	certain features in it that they want to model with
12	TRACE. You're going to have to put in some new lines
13	of code, presumably.
14	DR. BAJOREK: Well, the core catcher would
15	be dealing with a severe accident and I believe that's
16	all external to the code.
17	MEMBER WALLIS: Well, I mean, I'm just
18	trying to think, there must be some situations which
19	you haven't assessed which come up with new designs.
20	DR. BAJOREK: If they change the design
21	and it arises in processes or capabilities that the
22	code doesn't have, we would fix the code and we
23	revise it.
24	MEMBER WALLIS: You would revise the
25	code.
I	I NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433
	72
----	--
1	DR. BAJOREK: We would revise the code.
2	MEMBER WALLIS: You hand out to the user
3	something to a new code or you hand them some
4	bulletin which says change certain lines using
5	DR. BAJOREK: We would let's say they
6	change something in ESBWR that added a new process and
7	we had to change the code substantially, we would come
8	out with a TRACE Version let's say 5.1 that had that
9	new model in there. We would repeat certainly all of
10	the assessment that goes along with ES
11	MEMBER WALLIS: It wouldn't be like
12	upgrades. I mean, you can upgrade Microsoft stuff.
13	They just send you stuff all the time and say it's
14	going to improve your code. You have no idea if it
15	will or if it won't, but they do it all the time.
16	You're not going to do that sort of thing.
17	DR. BAJOREK: No, we would be rerunning
18	the assessments, starting with the ESBWR series of
19	tests that we've put together. We would run all of
20	the we'd try to run all of the generic assessments,
21	okay.
22	CHAIRMAN BANNERJEE: That's a big job.
23	DR. BAJOREK: It is a big job. One thing
24	to keep in mind is because of the automation and new
25	techniques available, we've been able to speed that
I	I

(202) 234-4433

	73
1	up. Turning around some of these integral tests, in
2	the past, may have taken you months to do. We can do
3	that in a couple of weeks now. We can turn around
4	this 500 set assessment in under a month. You know,
5	there's always going to be a couple of cases that you
6	have to scratch your head and work at a little bit,
7	but
8	MEMBER WALLIS: And the figure of merit
9	is also automated in some way?
10	DR. BAJOREK: Not all of them. We're
11	working on that but in many cases the things like the
12	scatter plots, the things that we do to judge the
13	merit of the code are also automated so that we get
14	most of that on the rerun of those simulations.
15	There's still some work that we'd like to do to try
16	fully automate that, but that's going to be work for
17	the future. But that is one, I think, very important
18	feature about what we have been doing over the last
19	couple of years is that we aren't thinking that 5.0 is
20	going to be frozen in time for the next 10 or 15
21	years. We expect new plants to come into the agency.
22	We expect people to uprate and modify their
23	conventional plants that maybe we need to look at new
24	range of conditions. And we want to be able to
25	address that very quickly.
ļ	

(202) 234-4433

	74
1	So if things come out that require a 5.1,
2	we're going to be very we're going to be very able
3	to change the code and the documentation so that a
4	user knows what its applicability are and how good the
5	code works with those changes. When we come out with
6	the
7	MEMBER WALLIS: You have five people
8	doing all this?
9	DR. BAJOREK: No, it goes beyond five. We
10	have a number of people with contractors to help us
11	with the assessments at this case at this point,
12	excuse me. We're bringing in a number of new people
13	in the agency.
14	MEMBER WALLIS: I'm thinking about
15	Fluent. (phonetic) Fluent is a few miles from my
16	house and they have hundreds of people.
17	CHAIRMAN BANNERJEE: They only have 20
18	people doing the development.
19	MEMBER WALLIS: During the real
20	development, okay.
21	CHAIRMAN BANNERJEE: The rest do sales and
22	marketing.
23	MEMBER WALLIS: And customer relations
24	and stuff.
25	MR. CARUSO: Do the transients that you're

	75
1	listing here include stability transients for ESBWR?
2	DR. BAJOREK: At this point, no, but we
3	are working on that. We have a project going on where
4	we're looking at the Peachbottom Turbine trip,
5	Ringhals turbine trip, we're currently assessing a
6	series of integral tests that have been done using the
7	Puma facility to investigate stability. So TRACE 5.0
8	I would not say is ready for doing BWR stability but
9	we would complete that assessment in one of the
10	subsequent versions.
11	MEMBER WALLIS: It's not ready for that
12	yet?
13	MEMBER KRESS: Is NRR evaluating NRR is
14	reviewing ESBWR stability as we speak, correct?
15	DR. BAJOREK: I believe that's correct.
16	MEMBER KRESS: Are they using Romona for
17	that?
18	DR. BAJOREK: I think they are using the
19	LAPUR code.
20	CHAIRMAN BANNERJEE: That's just a
21	linearized
22	DR. BAJOREK: At this point
23	CHAIRMAN BANNERJEE: Why don't you do
24	fluorogeam. I mean, Graham's point was that ESBWR may
25	have fluorogeam related instability because of the
I	1

(202) 234-4433

	76
1	large size of the chimneys. Now, in principle, we
2	know that I know this from oil/gas pipelines, that
3	if you have a fine enough nodalization, you can
4	actually see slug formation and capture severe
5	slugging without doing anything else. What it means
6	is, if you've got the right equations and the type of
7	fluorogeam transition, is captured within those
8	equations, then simply by going to fine enough
9	nodalization you should be able to resolve some of
10	these, not all of them, but certainly slug flows you
11	can.
12	Now, with BWR chimneys, whether you do get
13	fluorogeam oscillations because the experiments show
14	if you look at the Ontario Hydro Experiments,
15	correlated void fraction oscillations which go over
16	long lengths of pipe. And whether this is actually
17	going to be seen in the ESBWR we don't know, but we'd
18	like to be able to use something like TRACE with a
19	very find nodalization if you see it or not.
20	DR. BAJOREK: Right now, well, right now
21	with TRACE, we would I think we would venture
22	cautiously that TRACE PARCS coupled should be able to
23	do stability. However, because we haven't completed
24	our assessment in that work, we would say that you
25	could use it but you would have to use it with a lot
Į	I

(202) 234-4433

	77
1	of caution. We're focusing our work
2	CHAIRMAN BANNERJEE: Without the added
3	mass, I don't know if would give the right thing.
4	MEMBER WALLIS: Well, we're reduced to
5	believing or not GE's version of it?
6	MEMBER KRESS: And Dr. Marsh Leuba.
7	CHAIRMAN BANNERJEE: But he does
8	linearized analysis.
9	MEMBER KRESS: Well, that's the
10	independent chair.
11	DR. BAJOREK: Our development is often at
12	the direction or needs defined by our stakeholders,
13	NRR in this case. They've made it very clear they
14	want TRACE to be able to do large and small break
15	analysis for ESBWR. They have not made stability a
16	priority and because of the amount of work that we
17	have to do just to do that large and small break LOCAs
18	for conventional plants, we have not made stability a
19	priority at this point.
20	MR. CARUSO: What about ATWS? What about
21	ATWS for ESBWR? Does it do ATWS for ESBWR?
22	DR. BAJOREK: ATWS.
23	MR. CARUSO: ATWS, Anticipated Transient
24	without Scrap.
25	DR. BAJOREK: We've actually used an
	I

(202) 234-4433

	78
1	earlier version for TRACE to do some investigation in
2	that area. It actually worked fairly well in
3	comparison to codes like MAP that we're trying to do
4	similar predictions. So, yes, we could use this code
5	for ATWS.
6	CHAIRMAN BANNERJEE: Then stability is
7	probably important. Stability probably that's in
8	there, right?
9	MEMBER WALLIS: Also one stakeholder is
10	the public and it would really help to reassure the
11	public if you had a code which you could run
12	independently to check something which is handed to
13	you by General Electric.
14	DR. BAJOREK: Uh-huh. Okay, but with
15	respect to applicability for 5.0, we feel it's going
16	to be adequate for conventional PWRs, BWRs, ESBWR,
17	large and small break LOCA.
18	MEMBER WALLIS: It's our major jobs in
19	the future of this committee, the ACRS is going to be
20	assessing new designs. And it would be very helpful
21	if you could actually run this code when questions
22	come up about the performance of these new designs.
23	DR. BAJOREK: Okay.
24	CHAIRMAN BANNERJEE: Now, you have EPR
25	there which is we don't know exactly what it will
ļ	I

(202) 234-4433

	79
1	be but for sure it will look quite different in terms
2	of its reliance on reflux condensation, on control
3	cool-down of the secondary site, the lap of
4	accumulators, at least the versions I've had a quick
5	look at.
6	DR. BAJOREK: Yeah.
7	CHAIRMAN BANNERJEE: This is quite a
8	different plant. We'll have four trains of emergency
9	cooling which is something else, but how will you be
10	able to handle some of these new phenomena which you
11	don't see in the conventional PWRs?
12	DR. BAJOREK: Jumping ahead a little bit,
13	there are going to be two other documents that are
14	going to be produced in our directorate that would
15	accompany the generic assessment manual, and ESBWR
16	applicability document that would look in some of its
17	unique features in its assessment. We're also
18	planning one for EPR. Because of those features that
19	you just mentioned, we are doing some added assessment
20	to look at steam generator performance in reflux
21	condensation. Now, at this point, we don't think
22	there is a reason to believe that TRACE is not
23	applicable to EPR. Now the range of conditions over
24	which we want to apply the code may be somewhat
25	different than conventional plants but because we have
I	

(202) 234-4433

	80
1	not started the design certification, we don't have
2	all the information available to us to really define
3	that range but we've started that assessment looking
4	at some very elementary scaling considerations in EPR
5	to try to characterize where we think they're going to
б	be with reflux condensation and flow patterns and the
7	hot
8	CHAIRMAN BANNERJEE: You get flooding,
9	right, roughly and hold up in these tubes if you're
10	flooding velocity is exceeded at the inlet?
11	DR. BAJOREK: Yes, we should. We do a
12	good a pretty good job on the situations where we do
13	see flooding, in some of out other assessments, in
14	some of the other small break assessments.
15	CHAIRMAN BANNERJEE: So it's in the steam
16	generator tubes.
17	DR. BAJOREK: Yes. Yeah, if we look at
18	tests like ROSA, semi-scale where there was reflux
19	condensation, it doesn't look too bad. Now, of
20	course, it's difficult to characterize some of those
21	because it does come from integral tests.
22	CHAIRMAN BANNERJEE: Yeah, there are some
23	separate effect tests.
24	DR. BAJOREK: Which is why our newer
25	assessment is trying to use those separate effects
I	I

(202) 234-4433

	81
1	tests to try to really focus in on some of those
2	models, so you rule out the compensating error
3	question that you can have when you're looking at only
4	at
5	MEMBER WALLIS: About performance, if you
6	have a falling film in a pipe and you then you get
7	flooding. Then there's a jump in behavior completely.
8	I mean, when the pressure drop may increase by orders
9	of magnitude.
10	CHAIRMAN BANNERJEE: And that's the issue
11	that
12	MEMBER WALLIS: Can you get a sudden
13	I don't know if TRACE can handle these sudden changes
14	in behavior like that.
15	DR. BAJOREK: That's why we're doing that
16	assessment.
17	MEMBER WALLIS: I'm just looking at the
18	time. Are you going to be here till lunchtime?
19	DR. BAJOREK: I certainly hope not but
20	I'll speed this up no matter how long it takes.
21	(Laughter)
22	We want to make sure that users are aware
23	of what it's applicable to and where you do need to be
24	careful. Okay. Westinghouse 2-Loop plants, BNW, AP-
25	1000, we recommend additional assessment before we
	I

(202) 234-4433

	82
1	would apply the code.
2	MR. CARUSO: There are rumors that AP-
3	1000s that are going to be ordered are not going to
4	look quite like the ones that were certified.
5	Geometry is going to change. So what is the staff
6	planning to do to provide what what
7	CHAIRMAN BANNERJEE: What's going to be
8	certified?
9	MR. CARUSO: What are the TRACE people
10	doing to insure that the staff that's going to
11	evaluate those changes is prepared to do that?
12	DR. BAJOREK: We will communicate with our
13	colleagues in NRR and NRRO and when those changes
14	come, we'll make any modifications necessary but until
15	they come in, I guess we can't try to anticipate
16	things that haven't happened yet.
17	CHAIRMAN BANNERJEE: I guess what Ralph is
18	saying is that even small changes because these flows
19	are so dependent on gravity, can have very significant
20	effects on cooling. So would TRACE be able to handle
21	and assess these, because even small piping changes
22	can lead to a big change.
23	DR. BAJOREK: Sure. You're dealing with
24	gravity heads and very small resistences.
25	MR. CARUSO: Are you also going to provide
I	

(202) 234-4433

	83
1	the ability in TRACE to model head loss through sump
2	screens in the AP-1000 when that gets reviewed?
3	DR. BAJOREK: That's merging two different
4	meetings together. That's sump screens, I think
5	are clearly unfair at this point. But no, we are
6	MEMBER WALLIS: It doesn't apply to sump
7	screens.
8	DR. BAJOREK: It does not apply to sump
9	screens.
10	MEMBER WALLIS: Okay.
11	DR. BAJOREK: Unless someone develops a
12	correlation and gives us an adequate head loss through
13	those sump screens. Good. We do have a plant model
14	for AP-1000 and we have been talking with NRR about
15	getting that plant model and the additional assessment
16	prepared here over the next year so if and when those
17	changes do come to AP-1000 in another year or two, we
18	have it done beforehand and it doesn't become some
19	type of a fire drill. Yes, we're looking ahead on
20	that.
21	MEMBER SIEBER: I they change portions of
22	the deign that are important, doesn't that decertify
23	the
24	MR. CARUSO: They have to go through
25	rulemaking.
ļ	I

(202) 234-4433

	84
1	MEMBER SIEBER: Pardon?
2	MR. CARUSO: They have to go through
3	rulemaking, but I've heard that some things that were
4	thought to fit in the building will not fit in the
5	building, so they have to choose between, you know,
6	rulemaking and the alternative which is unpleasant.
7	CHAIRMAN BANNERJEE: Make the building
8	bigger.
9	MR. CARUSO: That's non-trivial, that's
10	rulemaking as well. It won't fit.
11	CHAIRMAN BANNERJEE: How did it fit before
12	in the designs?
13	MR. CARUSO: You know, on paper it fits,
14	but it
15	DR. BAJOREK: We've talked about our paper
16	here quite at length. The message I just want to
17	leave you with on this is that we're taking this very
18	serious. We're going to freeze the code.
19	Documentation is becoming our priority. We expect to
20	have
21	MEMBER WALLIS: I don't understand this.
22	I would think you'd have to develop your theory before
23	you did any code writing at all. And you shouldn't
24	have difficulty figuring out what the theory is.
25	DR. BAJOREK: The theory is developed.
	I

(202) 234-4433

Í	85
1	It's there in sets of notes, internal documentation.
2	It's just not in the format that we could hand it to
3	a peer review group or even to this committee in a
4	format that you'd be satisfied with. We think we're
5	still a few months away from that.
6	CHAIRMAN BANNERJEE: Are we almost done?
7	DR. BAJOREK: I think we are. We're
8	getting fairly close.
9	MEMBER WALLIS: We went through this so
10	quickly here. What are we doing?
11	DR. BAJOREK: Peer review.
12	CHAIRMAN BANNERJEE: Maybe it's worth
13	spending a little time on
14	DR. BAJOREK: We are going to start the
15	peer review in 2007. We're going to ask this group,
16	which is yet to be defined, give us a critical review
17	of the models, comment on the assessment, the matrix,
18	what they see there. Comment on the documentation,
19	its clarity, thoroughness, ease of use.
20	CHAIRMAN BANNERJEE: Can we make at
21	least can I make a suggestion, that trying to put this
22	together that we have some interactions in ACRS and
23	whoever is doing this, so that you get some
24	suggestions as well from us.
25	DR. BAJOREK: Yes.

(202) 234-4433

	86
1	MEMBER WALLIS: That's much better than
2	you coming up with a final version and us writing a
3	long critique of it, much better if there's more
4	interaction along the way.
5	DR. BAJOREK: We would like that
6	CHAIRMAN BANNERJEE: We've always tried in
7	our peer review groups at least in thermal hydraulics,
8	not to have too many National Lab and internal people.
9	Even if you look back at the CSAU group, you know,
10	when it was put together, Graham and I were on it and
11	Neil Todreas and people, and we lived through that, so
12	there is no problem. So there's a it shouldn't
13	give the appearance of being too inbred.
14	MEMBER WALLIS: It's not just that.
15	It's that you're often more it's more effective to
16	have someone from outside because they help you to
17	avoid mistakes which you sort of develop blinkers
18	about. So you want to invite people who may appear to
19	be critical but actually are really being very
20	helpful.
21	DR. BAJOREK: Well, it helps. It gets a
22	fresh look on the situation because we start to focus
23	on some things. They may have some fresh ideas, so
24	that would be good. So we are
25	CHAIRMAN BANNERJEE: One of the big ideas
I	

(202) 234-4433

	87
1	around right now which seems to be getting some
2	traction is this idea of plug and play. And the
3	chemical industry has been developing this called a
4	keep open (phonetic) framework, where you can plug
5	various components in and the backbone is ASPEN or
6	HISYS, which in this case could be your TRACE code.
7	But ultimately, where you need some 3-D stuff they put
8	in whatever it the qualified 3-D code or a stress
9	analysis code. This is something that in the forward
10	thinking, you might want to think about.
11	MEMBER WALLIS: So we don't get a break
12	until 11:15, is that
13	CHAIRMAN BANNERJEE: 11:15, you need now?
14	MEMBER WALLIS: So half time.
15	CHAIRMAN BANNERJEE: All right, let's take
16	a break for 10 minutes, then we'll start you, Joe?
17	DR. KELLY: Sounds good.
18	CHAIRMAN BANNERJEE: All right, so let's
19	see. We'll reconvene at 25 to 11:00.
20	(A brief recess was taken.)
21	CHAIRMAN BANNERJEE: Okay, we're back in
22	session.
23	DR. KELLY: Okay, as you know by now, I'm
24	Joe Kelly. And I'm going to be talking about the
25	upgrades that we've made to the constitutive models in
I	I

(202) 234-4433

	88
1	TRACE. And this is just I'll start with a very
2	brief introduction, telling you just a little bit of
3	an overview of what we have changed. Then we'll talk
4	about two models in particular, two-phase wall drug
5	and interfacial drag. On two-phase wall drag it's
6	broken really into three parts; annular flow which is
7	the reason we did this to begin with. Then bubbly
8	slug, some corrections for the effects of long
9	nucleation, interfacial drag models, we changed them
10	from vertical pipes for rod bundles and then for
11	horizontal stratified flow and I had the foresight to
12	realize I wasn't going to be able to talk about all of
13	that in two hours, so for this one I was only going to
14	present results only. Hopefully, I'll get somewhere
15	close to that before we have to stop, and then the
16	future plans.
17	What I'm going to tell you on this slide
18	is two things; what we intended to do and what we did
19	and they are somewhat different. As we were winding
20	down the consolidation program, it became obvious that
21	the ESBWR was going to be submitted. And so we had to
22	take a look at that and decide what in TRACE would
23	most likely need to be changed in order to be able to
24	have a credible calculation of the ESBWR, and it was

condensation with non-condensible gases, both for the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

1 PCCS tubes and for the containment walls. 2 So we put a new model into the code for 3 that and I've presented that here on a couple of 4 occasions in the past. But other than that, the plan 5 was to retain the legacy models from the TRAC-PF1 code Then, go through a very 6 that we inherited. 7 comprehensive PERT based assessment process for all 8 the applications of interest and all the highly ranked 9 make one complete pass through that phenomena, Then review the results of the 10 assessment. assessment, identify the models where you think you 11 12 had problems and prioritize those for the model improvement needs. 13 14 Then as you go down your priority list, 15 either develop or select a literature (phonetic) model to make that needed improvement. 16 Then repeat the assessment and cycle back through this until you've 17 managed to meet at least all of the high priority 18 19 Well, that's what we planned to do. phenomenon. It 20 didn't work out that way. And the reason is that very early in the code assessment process, either the code 21 22 would not able to complete the transient, it would 23 simply roll over and die or the accuracy would be so 24 poor there was no point in even continuing. And a lot 25 of those -- well, sometimes it's the input model,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

89

	90
1	about 50 percent of the time and sometimes it was
2	because the physical model was just so poor.
3	MEMBER WALLIS: This code has been used
4	for decades, hasn't it?
5	DR. KELLY: Not so much Mod 2. Mod 1 was
6	and there's some history there. Mod 1 is the code
7	that was used for the CSAU and as part of the CSAU it
8	was reviewed basically by this committee and there
9	were a lot of, you know, recommendations on models
10	that needed to be improved and that's what was done
11	for Mod 2. Almost all of the physical models got
12	changed between Mod 1 and Mod 2.
13	MEMBER WALLIS: That made everything
14	worse.
15	DR. KELLY: Well, this code was never used
16	very much and certainly was not assessed very much.
17	It was kind of put on a shelf until we dusted it off
18	for the AP-600 and then for the code consolidation
19	program.
20	So the result of this was that the model
21	remediation I don't want to really call it
22	development because in a lot of cases it wasn't. It
23	was just fixing things that were broken, but had to be
24	done in parallel with the code assessment process. So
25	you're always, you know, chasing your tail.

(202) 234-4433

	91
1	You know, by the time I got one model
2	fixed, I had a list of two or three others that, you
3	know, there was always a continuous backlog. And in
4	the end, we've changed about 75 percent of the models
5	in the code. If you had asked me when we began what
б	we would have changed, I might have gone with 20
7	percent. There is no way I would have guessed we
8	would end up here.
9	CHAIRMAN BANNERJEE: Seventy-five percent
10	is all models or you're just talking about some
11	specific types of
12	DR. KELLY: Seventy-five percent of the
13	constitutive models, like the heat transfer
14	correlation, a wall drag model, that kind of thing,
15	not the numerics. I'm just dealing with the physical
16	models.
17	CHAIRMAN BANNERJEE: No, no, I realize
18	that but that's a lot.
19	DR. KELLY: It's incredible. And as a
20	result of that, and this is you know, comes down to
21	me being a bottleneck, I haven't gotten the
22	documentation finished. I have started it, but again,
23	every time I finish one model and I start to work on
24	the documentation, something else breaks and I have to
25	go off on it. But we're very near the end of that
Į	

(202) 234-4433

Í	92
1	process now. You know, there's very few little things
2	that we have to fix, do the assessment one more time
3	and then I'm 100 percent on documentation.
4	MEMBER WALLIS: But TRAC's been approved
5	before these original models were replaced for various
6	accident analyses? Have we been relying on a rather
7	weak read for a long time here?
8	DR. KELLY: Well, you actually mean the
9	TRAC P-F1 card?
10	MEMBER WALLIS: TRAC is TRAC, really, it
11	seems to me TRAC is TRAC and you can't just have
12	different mods which are so different that you have to
13	replace 75 percent. This is telling me something
14	about the state of the art, isn't it, if you have to
15	change 75 percent of the models in a code?
16	DR. KELLY: Well, what happened, remember
17	Mod 1 is the code that was used for CSAU. That's the
18	code that existed at the time of all of the large
19	experimental programs.
20	MEMBER WALLIS: Well, weren't its
21	physical models essentially the same as Mod 2?
22	DR. KELLY: No, that was Mod 2 did
23	it made some improvements to the numerics, like the
24	set scheme, but the other thing, Mod 2 replaced almost
25	100 percent of the physical models from Mod 1.
	I

(202) 234-4433

	93
1	MEMBER WALLIS: They must have put in
2	worse ones if you then had to
3	DR. KELLY: In some cases, yes.
4	MEMBER WALLIS: Okay.
5	DR. KELLY: Now, I've discussed the
6	reflood model here before and what I said was it was
7	well-intentioned and that was the case. They tried
8	to build a lot of, you know, physical insight into it
9	but they didn't realize that it really wouldn't work
10	in a computational framework because of some of the
11	things that it was based on.
12	So this is how we got to where we are
13	today. This is just a very quick list of some of the
14	main models that have been changed in the code. The
15	first that we had to work on was what's called the
16	interim reflood model and it reason it's called
17	interim is that we never intended to do this. We
18	intended to develop a new reflood model based upon the
19	experimental results from the RBHT program. but at
20	the time that we started doing the assessment and the
21	existing model was so poor that we couldn't complete
22	the assessments, we had to come up with a fix and that
23	became what's known as the interim reflood model?
24	MEMBER WALLIS: What's the problem with
25	these models that they were tuned to different
	I

(202) 234-4433

ĺ	94
1	systems, than the systems to which you wished to apply
2	them, that maybe they were based on some simpler
3	system like straight pipes in university labs instead
4	of real reactors or something?
5	DR. KELLY: In this well, in this case
6	the fundamental flaw with this model, the flow regimes
7	in it were based on distance down stream of a quench
8	front and all of those distances were computed based
9	upon a criteria for a capillary jet breakup which is
10	actually the wrong phenomenon. This is the idea of,
11	you know, how do you get from inverted annular to
12	disbursed flow and when you have breakup and that's
13	not really the governing phenomena in what we have
14	because we have a situation where the vapor generation
15	rate is increasing expedentially as the liquid
16	saturates in that core. But so they used this
17	capillary breakup model and it depended upon the
18	velocity of the jet of course, to give you all these
19	links. Well, if any of you have looked at a
20	calculation and looked at the core inlet velocity in
21	a gravity reflex situation, it oscillates like crazy
22	both in reality and even more so in the code.
23	Well, that velocity is now what's giving
24	you these links, so all these links are doing all
25	these crazy things and it's just, you know, like I
	I

(202) 234-4433

	95
1	said it was well-intentioned. We were trying to build
2	a more fundamental level of physics in the code but it
3	was a fundamentally bad idea.
4	And when I say reflood model, it's not one
5	model. There's actually about 20 different
6	constitutive models that have to work together,
7	because you have interfacial drag, interfacial heat
8	transfer, wall heat transfer and all the different
9	regimes.
10	So the next one, and this one we did plan
11	to do once the ESBWR became evident and that was a
12	model for a condensation with non-condensible gas.
13	The first thing I did was check the existing model
14	against some of the Berkeley PCCS experiments. It was
15	very poor so we developed a new one.
16	Interfacial heat transfer, this is
17	primarily direct contact condensation. I mean, there
18	are other models in it, but the ones that gave us
19	trouble were primarily those. And those were either
20	replaced or in some cases the implementation of it was
21	fixed. And the reason we had to do it was excessive
22	condensation in both the co-legs of LOFT and CCTF, for
23	example, during the accumulator injector period in
24	LOFT we had odd pressures and the co-leg that was sub-
25	atmospheric and that doesn't happen. We had flow
I	I

(202) 234-4433

	96
1	coming in the break and you know that's not right.
2	Two-phase wall drag and interfacial drag,
3	those are the ones I'm going to talk about today and
4	I'll show you the motivation for those.
5	MEMBER WALLIS: Earlier on we talked
б	about flooding and if you've done an experiment on
7	flooding, you can go from a situation of smooth
8	falling film with essentially no interfacial drag and
9	then it becomes disrupted and it bounces all over the
10	place and you're interfacial drag goes up by orders of
11	magnitude. I'm not sure how you would predict
12	something like that.
13	CHAIRMAN BANNERJEE: They just back it out
14	from the flooding correlation.
15	MEMBER WALLIS: But then
16	DR. KELLY: In TRACE we don't try to do
17	that from any kind of fundamental. We build in CCFL
18	correlations. You specify this
19	MEMBER WALLIS: So you assume it's
20	already started then, it's already happening. You
21	don't have the smooth falling film in there at all
22	because CCFL assumes it's already flooded.
23	DR. KELLY: Right.
24	MEMBER WALLIS: Whereas it may, before it
25	floods actually be in regime where there's very little

(202) 234-4433

	97
1	interfacial drag.
2	DR. KELLY: Uh-huh. And we do that. I
3	will show the results of one. It's actually for the
4	UPTF hot reg.
5	CHAIRMAN BANNERJEE: The don't they
6	just back out the interfacial drag? Well, they do it
7	even for just it reflects more if they back it out.
8	MEMBER WALLIS: Yeah, that's right.
9	DR. KELLY: Yeah, I think that's right for
10	the
11	MEMBER WALLIS: At least one vendor does
12	that, too. They fudge the interfacial drag to fit
13	flooding.
14	DR. KELLY: Well, that's what I do for the
15	hot lag, but for most case most and steam
16	generators tubes are different but for most of the
17	places where we worry about CCFL is like in a tie
18	plate and so that's very geometry specific.
19	MEMBER WALLIS: It's a local phenomenon,
20	it's not
21	DR. KELLY: Right. Okay, now I'm going to
22	start the details of the presentation, talking about
23	two-face all drag. And the first thing you have to
24	ask yourself is after all these years, why on earth
25	would I be talking about two-face wall drag? And the
Į	I

(202) 234-4433

	98
1	reason was that when I went into put in a PCS, PCCS
2	condensation model, I needed at least a pretty good
3	prediction of the film fitness because that's the
4	primary characteristic dimension, at least if you're
5	not Nogadessylis (phonetic).
6	And this is the result using
7	MEMBER WALLIS: I think that's
8	unbelievable.
9	DR. KELLY: This result there?
10	MEMBER WALLIS: That's unbelievable. I
11	mean, NURSOL (phonetic) is so basic.
12	DR. KELLY: I'll show you why on the next
13	slide.
14	MEMBER WALLIS: It's so wrong.
15	CHAIRMAN BANNERJEE: Blue is the NURSOl
16	solution.
17	MEMBER WALLIS: No, NURSOL is the red
18	one.
19	DR. KELLY: This is a fine film. This is
20	a pure steam condensation face.
21	MEMBER WALLIS: He's reduced the
22	viscosity of an order of magnitude.
23	CHAIRMAN BANNERJEE: So why should the
24	TRACE be different from NURSOL at least for laminar
25	flow?
	1

```
(202) 234-4433
```

	99
1	DR. KELLY: Oh, the equations I hope
2	you can see the equations better than I can. Here's
3	why. Remember, we don't this is not a CFD code.
4	We don't resolve laminar and turbulent viscose shear
5	stresses. Instead we use constitutive models, in this
6	case wall drag.
7	MEMBER WALLIS: And you use some kind of
8	a mixture average to something or other, too?
9	DR. KELLY: Here it is. If you figure out
10	what the frictional pressure gradient is in TRACE,
11	using the old model before I changed it, okay, it has
12	two components, one to the vapor, one to the
13	MEMBER WALLIS: It has wall drag due to
14	the vapor?
15	DR. KELLY: Yes, always. The best thing
16	you can say about this model is it's correct at the
17	limits, alpha equals zero and alpha equals one and
18	that's about it but this is what was in fact
19	MEMBER WALLIS: It would depend on which
20	fluid is on the wall and things like that.
21	DR. KELLY: That's reality. This is what
22	the fluid was.
23	MEMBER WALLIS: Okay, okay.
24	
25	DR. KELLY: Okay. This is also what REROC
ļ	

(202) 234-4433

	100
1	(phonetic) was, it's what COBRA TRAC was, et cetera,
2	et cetera. You have to look
3	MEMBER WALLIS: You mentioned reality.
4	I have to go back to something I picked up in your
5	user's guide. It says the purpose was to develop
б	solutions to real and hypothetical transient
7	scenarios. Does that mean that these hypothetical
8	scenarios are all unreal? I didn't understand that
9	statement.
10	MR. MURRAY: Well maybe you should
11	maybe you should say known in an hypothetical.
12	MEMBER WALLIS: That's different from
13	real and hypothetical, yeah. Anyway that's
14	DR. KELLY: Yeah, the
15	MEMBER WALLIS: I'm astonished, you see.
16	This is the problem with TRAC from the beginning.
17	People putting something just out of the air. This
18	sort of a correlation here makes no sense. It has no
19	basis in reality whatsoever.
20	DR. KELLY: And when we did COBRA TF, the
21	very first versions, we borrowed this straight from
22	TRAC.
23	MEMBER WALLIS: But who would invent
24	something like that? I don't think it's ever been
25	used anywhere except in TRAC.
ļ	I

(202) 234-4433

	101
1	DR. KELLY: Well, it's also in RELAP. I
2	can't tell you about CATHARE because I don't remember.
3	So this is actually one of the reasons I looked at it
4	in TRAC because they had to fix it in RELAP. So
5	anyway what supposedly makes this two-phase is using
6	a friction factor based upon a mixture of viscosity.
7	And you know, this just isn't very good. For annular
8	flow, this term, even though it exists, is really
9	negligible and you see this term and it comes to an
10	effective liquid two-phase multiplier of just one
11	minus alpha to the minus one power. And as you know,
12	this should be square down here.
13	Now, when your void fractions are 95
14	MEMBER WALLIS: If mu "G" is zero, that
15	gives you an infinite thing on the right-hand side,
16	and you take it to the minus one, you get zero. So if
17	mu "G" is zero, the mixture of viscosity is zero even
18	if the bubbles are in the goopiest liquid imaginable.
19	It makes absolutely no sense.
20	DR. KELLY: Couldn't agree with you more,
21	which is why it's gone, it's history.
22	MEMBER WALLIS: Yeah, but you see, that's
23	a problem I have is that, is this the way all the
24	codes were before you came along?
25	DR. KELLY: Pieces of some codes. So this
I	

(202) 234-4433

	102
1	is what we have now and you know, I've wrote it in
2	terms of a liquid two-page multiplier here, just for
3	recognition and here's the
4	MEMBER WALLIS: Well, the problem is
5	those guys never had peer review. Must be something
6	like that. How could something like that be used?
7	DR. KELLY: Well, you know wall drag
8	wasn't very if you did a PER (phonetic) and looked
9	at highly ranked phenomena, wall drag really wouldn't
10	show up. You'd typically have form analysis and
11	things like grid spacers, area changes, but about the
12	only place wall drag is significant, really is in the
13	steam generator tubes. But for most, you know, TRAC,
14	at the time of the CSAU, its application was large
15	break LOCA. It didn't really matter.
16	MEMBER WALLIS: Because there were no
17	long straight pipes in reactors.
18	DR. KELLY: Right, the pipes tended to be
19	like
20	MEMBER WALLIS: Except in steam
21	generators.
22	DR. KELLY: Right.
23	MEMBER WALLIS: Okay.
24	DR. KELLY: Especially, long small
25	diameter straight pipes.
ļ	I

	103
1	MEMBER WALLIS: So you could be way off
2	and it didn't matter.
3	DR. KELLY: Right. It was unimportant.
4	That's not the case if you're trying to predict the
5	film on the inside of a condenser tube. So for the
6	two-phase multiplier, one minus alpha to the minus
7	two, and you do the math and you know, it's a very
8	simple formula.
9	MEMBER WALLIS: You're going back to
10	Martinelli.
11	DR. KELLY: Right.
12	CHAIRMAN BANNERJEE: So you're just going
13	back to Martinelli.
14	DR. KELLY: Yes. Then for the friction
15	factor, this is friction factor versus Reynolds
16	number. Hey, if it's a good idea, you might as well
17	recycle it, you know. Something that's simple and
18	gives a good answer is a lot better than something
19	complex that's shaky. So this is friction factor
20	versus Reynolds number. What is normally used for
21	pipes in TRACE is the Churchill correlation and there
22	you see the laminar and turbulent behavior.
23	MEMBER WALLIS: Well, what's your
24	definition of a Reynolds number?
25	DR. KELLY: The Reynolds number here for
ļ	I

(202) 234-4433

	104
1	the annular flow regime
2	MEMBER WALLIS: Is base on the liquid
3	viscosity.
4	DR. KELLY: is, yeah, the liquid
5	viscosity and the liquid mass flows and you can
6	rewrite that as, you know, four times the flow rate
7	per unit surface area.
8	MEMBER WALLIS: So if there's no liquid
9	there at all, there's no friction.
10	DR. KELLY: Right. Well, there's ramp
11	from you know, annular flow to single phase vapor.
12	You have to try to cover all those possibilities. So
13	once the
14	CHAIRMAN BANNERJEE: This assumes the wall
15	is wet.
16	DR. KELLY: Yes, I'm talking about annular
17	flow at the moment.
18	CHAIRMAN BANNERJEE: Yeah, post-CHF it
19	will go to go to gas.
20	DR. KELLY: That's actually one of it
21	didn't used to, it does now. Now, it looks to see
22	where quench fronts are. Between the quench fronts
23	where the wall is dry it puts all of the drag onto the
24	gas phase. Above and below it puts it on the liquid
25	phase. So, for
I	I

(202) 234-4433

	105
1	CHAIRMAN BANNERJEE: Is this two Churchill
2	or which Churchill is this? I've never
3	DR. KELLY: I don't remember
4	MEMBER WALLIS: Winston.
5	DR. KELLY: but when you get the
6	documentation I can guarantee the reference will be in
7	there. But, you know, it's a approximate it has
8	like three different things that go together and it
9	gives you the shape through the transition region.
10	CHAIRMAN BANNERJEE: By why pick this? I
11	mean, there are 900 correlations. What did this do
12	for you that was
13	DR. KELLY: I didn't pick Churchill.
14	That's the one that was in TRAC and what it does do,
15	though, is it covers laminator transition and
16	turbulent.
17	MEMBER WALLIS: This was also in RELAP
18	you said?
19	DR. KELLY: I don't know about the
20	Churchill correlation.
21	MEMBER WALLIS: But the previous slide
22	you said that alpha, that was in RELAP, too.
23	CHAIRMAN BANNERJEE: It's only to give you
24	one correlation through the laminar and turbulent
25	regions.
I	

(202) 234-4433

DR. KELLY: Right, but for annular flow, 2 there's no evidence that you have this. If you look 3 at, you know the book by Huling, Hall, Taylor 4 (phonetic), Duckworth's calculations, et cetera, you get this nice smooth shape and so the smooth shape is what I implemented in TRACE and I did it by using a power wall weighting or just a laminar and turbulent. 8 So this black line is what we actually use for the 9 annular flow regime.

And so this new TRACE model, if you do it 10 as a two-phase multiplier, and this really is phi with 11 12 alpha square, so it's phi sub L but not with the square, prodded against liquid fraction, and I have 13 14 some upflow data and downflow data and then what the 15 model would be and so it, you know, obviously, I took it from this kind of thing, so it looks pretty good. 16 But it also gives an excellent comparison 17

against falling film fitness data. This blue line --18 19 well, this is non-dimensional film thickness against 20 the film Reynolds number.

21 MEMBER WALLIS: This is for a non-22 disturbed film, it's not post-CCFL.

23 DR. KELLY: Right, this is a simple 24 falling film on a wall. But the blue line was 25 calculated by TRACE. There are about 500 data points

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

6

7

	107
1	there from, you know, Shannon Abel (phonetic).
2	There's some
3	MEMBER WALLIS: And if the old TRACE had
4	done it, it would have been off by a huge amount.
5	DR. KELLY: Yes.
б	CHAIRMAN BANNERJEE: Well, the low
7	Reynolds numbers you have the nozzle solution, right?
8	DR. KELLY: Exactly. And this is what I
9	showed before. It's a pure steam condensation case.
10	Obviously, you're starting the tube here, coming down
11	this way. That's the old solution. This is what
12	falling film would give you and this is what we get in
13	TRACE and this is what you expect because there is
14	some interfacial shear and
15	MEMBER WALLIS: I wonder what TRAC-G has
16	done to something like this. Has TRAC-G got the same
17	kind of glitches in it that the told TRAC had?
18	DR. KELLY: I know they put in a model for
19	condensation and non-condensible gases but I can't
20	speak to whether
21	MEMBER WALLIS: Well, they've got a model
22	in the ESBWR.
23	DR. KELLY: But I haven't reviewed it, so
24	I can't say. I really don't know.
25	MEMBER KRESS: As best I recall, it had
I	I

(202) 234-4433
	108
1	the old model that he showed first.
2	MEMBER WALLIS: The old model?
3	MEMBER KRESS: Yes.
4	MEMBER WALLIS: Like that, so the
5	MEMBER KRESS: With the void fraction in
6	it and the gas flow and liquid flow because we
7	discussed that and had a large objection to it one
8	time.
9	MEMBER WALLIS: This is why you guys have
10	to have your own code.
11	DR. KELLY: Well, we now met what I wanted
12	to do was get it to work for annular flow, so I could
13	do the
14	MEMBER WALLIS: That was a simple
15	problem, though.
16	DR. KELLY: Well, you can't do that but
17	now we come to the bubbly slug flow regime and the
18	first thing we could do is just keep the model that's
19	there because remember, we're trying not to change
20	physical models unless we have to. And I had to
21	change the one for annular flow. Well, looking at the
22	legacy model, just looking at the formulation, I know
23	that it gives drag to both phases when it shouldn't.
24	And I can look at a two-phase multiplier and know that
25	it's going to under-predict the wall drag. I can do
	I

(202) 234-4433

	109
1	that just by looking at it.
2	So I know it's wrong and about where you
3	would have to fair this into the annular flow, you
4	could be off by a factor of five or 10 on the wall
5	drag. So I didn't I knew it was going to be
6	inconsistent and I didn't want to have to build in a
7	ramp between the two when I knew this wasn't that
8	good. So I thought, okay, let's replace it.
9	Plan B, you can get a two-phase multiplier
10	from the literature and the one that most people
11	recommend these days is by Friedel. One problem with
12	this, or one serious problem, it's based on flow
13	quality. That's great for a steady state, you know,
14	co-current up-flow test. For transient situations,
15	it's meaningless for counter-current flow and for a
16	case closer to the pool boiling. It's also a very
17	complicated function of mass flux pressure and
18	diameter and I'd still end up with something that was
19	inconsistent with the annular flow model and have to
20	ramp it in somehow or other.
21	So what I decided to do was seek a two-
22	phase multiplier if it's a function of void fraction.
23	CHAIRMAN BANNERJEE: These are all sort of
24	steady state things in the literature, right?
25	DR. KELLY: Uh-huh.
I	

(202) 234-4433

	110
1	CHAIRMAN BANNERJEE: But what happens if
2	you have a rapid change in flow like in a large break
3	LOCA?
4	DR. KELLY: Well for wall drag I'd have to
5	say fortunately, it's not important.
6	CHAIRMAN BANNERJEE: For what?
7	DR. KELLY: For wall drag, I'd have to say
8	fortunately it's not important.
9	CHAIRMAN BANNERJEE: It's not important.
10	DR. KELLY: But for other models, that's
11	a concern. You know, you tend to use fully developed
12	steady state data to do an a model and is that
13	applicable in a rapid transient and
14	CHAIRMAN BANNERJEE: Would be like people
15	added mass terms, right?
16	DR. KELLY: Well, but I'm talking about if
17	you're using say DDIS (phonetic) bolt for heat
18	transfer, you know, does that apply if you don't have
19	a transient term on it? It's not perfect but it's
20	probably not bad, but the key to that is you do the
21	assessments for that particular application and you
22	have to demonstrate that you cover the full range, you
23	know, as best you can.
24	So anyway an example of a wall drag model
25	that fits that is Lockhart-Martinelli.
ļ	

(202) 234-4433

	111
1	MEMBER WALLIS: I don't quite understand
2	that. If you're trying to model, say a falling film,
3	it doesn't know what the gas is doing, it doesn't know
4	what the void fraction is. It just only knows what
5	its thickness is.
6	DR. KELLY: Uh-huh.
7	MEMBER WALLIS: So why should void
8	fraction have anything to do with a falling film?
9	DR. KELLY: Well
10	MEMBER WALLIS: And the pipe could be
11	infinitely wide and it's still a falling film on the
12	wall. The void fraction is one.
13	DR. KELLY: Uh-huh.
14	MEMBER WALLIS: So I don't see why you
15	need a void fraction to model a falling film. Maybe
16	in this case bubbly slug but if you look at some
17	simple thing like the previous slide, it doesn't make
18	sense.
19	DR. KELLY: Well, except that void
20	fraction is what the code solves for. That's one of
21	the primary independent variables in the code. And so
22	you have to then convert that void fraction you know,
23	just through geometry, into a film thickness, but you
24	also have to allow for the possibility of interfacial
25	friction.
ļ	1

(202) 234-4433

1 For example, in the PCCS condensers you 2 have co-current downflow. And so then you're solving 3 the two-fluid momentum equations along with mass and 4 energy. And it's the -- it's gravity, interfacial 5 friction and wall drag that combine to give you the film thickness. 6 7 You know, I could just write what the film thickness is for Nusselt. Now in some codes you'll 8 see Nusselt use for a condensation model. But then 9 you have to review all the assumptions that went in to 10 generating Nusselt, like no interfacial shield. 11 12 What I just said is MEMBER WALLIS: untrue in this business about the film on the wall 13 14 because of the way file square is defined, it's based 15 on the pipe being full and if the pipe is humongous

16 then you have sort of infinity over infinity. By the 17 time you've done it, you get back to a falling film if 18 you do it right.

19 DR. KELLY: Right, exactly. So for bubbly 20 slug I wanted to see, you know, if I could come up 21 with a two-phase multiplier that was a function of 22 So step one, go get some data. void fraction. 23 MEMBER WALLIS: Looks like a Martinelli 24 plot. 25 It is in effect. DR. KELLY: It's the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	113
1	two-phase multiplier versus the liquid fraction. This
2	is some 80 vatic steam water data from Furrell and
3	McGee. The dotted blue line is Lockhart-Martinelli.
4	And the black line is the one that goes through the
5	data. And the exponent here is minus 1.72. So it's
6	very close to minus 2.
7	That was Step One was going and getting
8	some data and looking at it. I looked at more data
9	than this but this was the one that had the most
10	points.
11	MEMBER WALLIS: This is a log plot.
12	DR. KELLY: It's log on the vertical axis
13	one and 10/20, and it's linear on the liquid fraction.
14	CHAIRMAN BANNERJEE: It's got quite a
15	deviation at the
16	DR. KELLY: At those points, yeah.
17	CHAIRMAN BANNERJEE: Yeah.
18	DR. KELLY: But, you know, that's you
19	know, any experiment
20	CHAIRMAN BANNERJEE: It's bubbly flow,
21	right/
22	DR. KELLY: Pardon me?
23	CHAIRMAN BANNERJEE: That's bubbly flow.
24	DR. KELLY: No, this is yeah, you're
25	right. That's bubbly flow there. And I had some
I	l

(202) 234-4433

	114
1	other data that, you know, in other places fitted
2	better or worse. But at any rate, this looks pretty
3	good. And one of the things down here is quite often
4	the pressure drop is not very large the frictional
5	pressure drop.
6	CHAIRMAN BANNERJEE: It's hydrostatic.
7	DR. KELLY: Right, so the error becomes
8	very large.
9	CHAIRMAN BANNERJEE: These are for
10	vertical tubes?
11	DR. KELLY: Yes.
12	MEMBER WALLIS: Well, in vertical slug
13	flow the wall friction could be negative.
14	CHAIRMAN BANNERJEE: Yeah.
15	MEMBER WALLIS: Because it's holding up
16	the film around the bubbles.
17	DR. KELLY: Yeah.
18	MEMBER WALLIS: And you can't plot
19	negative on this plot, so it's not there. You can't
20	plot it on a log scale.
21	DR. KELLY: Well, the one thing I didn't
22	in the when I showed the pressure gradient, I
23	went ahead and squared the velocity. In the code,
24	it's the absolute value of the velocity times the
25	velocity. So you get the direction in it. But, of
	1

(202) 234-4433

115 1 course, we would only get negative wall drag if the 2 liquid was falling down. 3 MEMBER WALLIS: Well, it is around the 4 bubbles. 5 DR. KELLY: Right, but we don't really go to that scale. And slug flow is something you don't 6 7 really see in reactors either with the exception of 8 steam generator tubes. 9 CHAIRMAN BANNERJEE: Well, I think you 10 will see them in the ESBWR because their not quite 11 slug. 12 DR. KELLY: Caps. They're annular. 13 CHAIRMAN BANNERJEE: 14 MEMBER WALLIS: Right, yeah. 15 DR. KELLY: You have big vapor structures maybe 60 millimeters in diameter, that kind of thing 16 17 but you won't have slugs that are a meter. 18 They're unstable, those MEMBER WALLIS: 19 slugs are unstable. CHAIRMAN BANNERJEE: Well, at that size, 20 you won't get slugs. 21 22 Right. DR. KELLY: 23 CHAIRMAN BANNERJEE: If you would argue 24 you can't get slugs in large pipes. 25 You can if you make it --MEMBER WALLIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	the first one is a slug but then after that
2	DR. KELLY: That's true.
3	MEMBER WALLIS: You can make one, make it
4	in static liquid, but once the liquid gets disturbed,
5	you won't get any more.
б	DR. KELLY: So Step one was get some data
7	and see if it made any sense for you to continue.
8	Step two was going to the literature and seeing if you
9	could find some models, and I found two; one for up-
10	flow and one for down-flow. For up-flow
11	MEMBER WALLIS: It's like going the
12	Bible, you just go to the right chapter and verse and
13	you can find a correlation that you want.
14	DR. KELLY: Yeah. But it was surprising
15	in the realm of two-phase multipliers, almost all of
16	them are correlated versus flow quality and they get
17	to be very, very complicated. You don't see any of
18	them that look like this and the reason is
19	MEMBER WALLIS: You don't see any that
20	look like that?
21	DR. KELLY: Not as a function of quality,
22	none that are this simple.
23	MEMBER WALLIS: You've never read my
24	book?
25	DR. KELLY: Well, okay, but even then it's

(202) 234-4433

	117
1	more details than this.
2	MEMBER WALLIS: I've got a whole pile
3	where the experiment from one to two, I think,
4	depending on your model.
5	DR. KELLY: Yeah, but the point is, if
6	it's void traveling it can be very simple. If it's
7	quality, it can, and that's because the fundamental
8	dependence is really on the void fraction. And if
9	you're correlating against quality, what you first
10	really have to do is translate the quality to void
11	fraction and then correlate it.
12	MEMBER WALLIS: So you had to go to Japan
13	to find the correlations that you wanted?
14	DR. KELLY: Well, those were the two I
15	found in the literature.
16	MEMBER WALLIS: But there are hundreds of
17	literatures, so why did you pick those two?
18	DR. KELLY: Well, these are the two I
19	found that
20	MEMBER WALLIS: It was the closest to
21	what you wanted, right?
22	DR. KELLY: Because they were correlated
23	in terms of void fraction instead of quality and
24	that's what I was looking for.
25	CHAIRMAN BANNERJEE: I want to ask you a
I	

(202) 234-4433

	118
1	little bit about this approach, you know, sort of this
2	is a `50s way of doing things and the `50s way
3	basically says that you have flow through a pipe with
4	a friction factor without one phase or the other. And
5	then you take sort of a ratio and then you get that.
6	Now, that was done because you knew nothing about the
7	true liquid velocities and things like this. Now,
8	your code is producing a liquid velocity for you,
9	right and a
10	DR. KELLY: A cross-sectional averaged.
11	CHAIRMAN BANNERJEE: Yeah, cross-sectional
12	average liquid velocity, a cross-sectional average gas
13	velocity.
14	DR. KELLY: Right.
15	CHAIRMAN BANNERJEE: And a void fraction
16	as well. Now, is there nothing that is a little bit
17	more mechanistic that correlates with those liquid
18	velocities than this?
19	DR. KELLY: Here it is.
20	CHAIRMAN BANNERJEE: Right.
21	DR. KELLY: That's all it is. All I was
22	doing
23	CHAIRMAN BANNERJEE: But now how is the
24	friction factor
25	MEMBER WALLIS: Because VL is related to
ļ	

	119
1	JL buy one minus alpha.
2	DR. KELLY: This is your normal single-
3	phase liquid friction factor.
4	CHAIRMAN BANNERJEE: Yeah, but shouldn't
5	that be
6	DR. KELLY: That's all it is.
7	CHAIRMAN BANNERJEE: a range .005 or
8	something?
9	DR. KELLY: Yeah, that's all it is and
10	this is what we use.
11	MEMBER WALLIS: Well, if you use that,
12	you get two instead of 1.75 if you assume the same
13	friction factor for the two cases.
14	DR. KELLY: Except
15	MEMBER WALLIS: If you assume a RLYS
16	(phonetic) number dependence, then you can get a
17	different
18	DR. KELLY: Yeah, exactly.
19	MEMBER WALLIS: So it's gone back to the
20	`50s as my colleague says. This is the most
21	elementary thing you've been teaching to students for
22	a long time, but it's very, very, very simplistic.
23	DR. KELLY: It's also
24	CHAIRMAN BANNERJEE: All right, so that's
25	effectively what you're doing and it works.
ļ	I

(202) 234-4433

	120
1	DR. KELLY: Yeah, and it works and it's a
2	lot more correct than what was there before.
3	CHAIRMAN BANNERJEE: Sure. Depending on
4	which phase is wetting the wall. You have to know
5	that.
б	DR. KELLY: Right, that switch is there,
7	too.
8	CHAIRMAN BANNERJEE: Yeah.
9	DR. KELLY: Now, I thought this looked
10	pretty good. Any time I can take a model in the code
11	and simply it and get a better answer, I'm all for
12	that. Well, I made the mistake of looking at more
13	data.
14	MEMBER WALLIS: That's right, well, you
15	should always do that.
16	DR. KELLY: In particular, I looked at
17	data where the wall with wall nucleation.
18	CHAIRMAN BANNERJEE: That would, of
19	course, be quite different, yeah.
20	DR. KELLY: And that's what this is. So
21	again, the two-phase multiplier versus the liquid
22	fraction. This covers actually three different
23	pressure levels.
24	MEMBER WALLIS: Now, are they actually
25	measuring void fraction in this test or are they doing
	1

(202) 234-4433

	121
1	it for energy balance?
2	DR. KELLY: Yes, no, they measure the void
3	fraction with a gamma densitometer. And actually it
4	was very hard to find pressure drop tests where they
5	measured the void fraction.
б	CHAIRMAN BANNERJEE: Who did this work?
7	DR. KELLY: This was be Ferrel and Byland.
8	It was and the other one was Ferrill and McGee. I
9	think it was North Carolina State. I think that's
10	right but this was in the `60s.
11	MEMBER WALLIS: All the good work has
12	been done in the `60s. We know that.
13	DR. KELLY: We can't afford to buy a gamma
14	densitometer these days.
15	CHAIRMAN BANNERJEE: I know how to make
16	them very cheap.
17	DR. KELLY: Okay.
18	CHAIRMAN BANNERJEE: I'll do it for you.
19	DR. KELLY: So it had three different
20	pressure levels between four and 17 bar.
21	MEMBER WALLIS: So now your x-axis is
22	liquid fraction, it's not void fraction. It's the
23	other way around.
24	DR. KELLY: Right, and that's what was on
25	the previous one.
I	I

	122
1	MEMBER WALLIS: When you think you've got
2	all liquid, you've got a little bit of bubbles on the
3	wall, that's when you get this big error on the right-
4	hand side there.
5	DR. KELLY: Right, this is about a factor
6	of four.
7	MEMBER WALLIS: Well, it's a bigger
8	when we get to the end there, it's yeah, I guess
9	it's a log scale, it's always a factor of four.
10	DR. KELLY: Yeah, right. And you see
11	there's a little bit of a mass flux effect. This is
12	like at 500 and this is about 1700. And you
13	MEMBER WALLIS: So it's down with max
14	flux?
15	DR. KELLY: Pardon me?
16	MEMBER WALLIS: The correction goes down
17	with max flux, increase in max flux?
18	DR. KELLY: Uh-huh.
19	MEMBER WALLIS: It's just it's hard to
20	read it. Okay.
21	DR. KELLY: Yeah, I'm sorry about that.
22	They looked great on the computer screen.
23	MEMBER WALLIS: That's all right, I can
24	see it now.
25	DR. KELLY: But so what I did was
	I

```
(202) 234-4433
```

	123
1	introduce a correction factor, one plus the correction
2	factor for nuclear boiling and this is where we get
3	off on a little bit shakier ground but if you want to
4	try to match that data, you have to do something and
5	I did compare this to Friedel and the previous model
6	is more accurate than Fridel.
7	MEMBER WALLIS: Now, is this because they
8	have an error in the acceleration pressure draw? To
9	get this friction thing, you have to take away gravity
10	and acceleration, don't you?
11	DR. KELLY: Yeah, I actually reduced this
12	data and I
13	MEMBER WALLIS: Putting in the void
14	fraction?
15	DR. KELLY: Well, no they reported the
16	void fractions from a gamma densitometer. Okay.
17	CHAIRMAN BANNERJEE: But not the wall void
18	fraction, just the overall, right?
19	DR. KELLY: Just the overall, the cross-
20	section average.
21	MEMBER WALLIS: So then you took way the
22	acceleration pressure drop. Was that a big effect?
23	DR. KELLY: In this case it was it
24	wasn't a factor of four. It was more 10, 20 percent
25	kind of number, okay. I don't know the physical
ļ	I

(202) 234-4433

	124
1	phenomena that causes this.
2	CHAIRMAN BANNERJEE: Probably wall
3	roughness, right?
4	DR. KELLY: Well, maybe.
5	MEMBER WALLIS: It also stirs things up
б	and increases it.
7	DR. KELLY: That's what I believe. You
8	know, if you go and like read Collier's textbook, you
9	talk about sub-cool boiling and wall roughness. Well,
10	maybe but I don't have the plot to show you but one
11	of the plots I made when I was looking at this was I
12	colored the points as to whether they were sub-cooled
13	or saturated. Sub-cooled points laid right on top of
14	the saturated.
15	MEMBER WALLIS: But to makes ships slide
16	through the water better, they put bubbles through the
17	hull and it decreases the friction. When you put
18	bubbles in your boiling tube, it increases the
19	friction.
20	DR. KELLY: Confined versus internal
21	versus external.
22	MEMBER WALLIS: Well, I don't know.
23	DR. KELLY: But I think this is what you
24	were talking about. If you had nuclear boiling going
25	on, you have bubbles that are, you know, if you will,
I	I

(202) 234-4433

125 1 in the boundary layer, moving out into the center of 2 the pipe. Stirring things up. 3 MEMBER WALLIS: 4 DR. KELLY: Stirring things up in a high 5 velocity liquid. MEMBER WALLIS: Stirring momentum 6 7 transversely. 8 DR. KELLY: Exactly. That's what I think. 9 I --10 MEMBER WALLIS: Does this have a turbulent flow? 11 DR. KELLY: Yeah, because the mass flux is 12 13 there. 14 MEMBER WALLIS: If it was laminar, it's not going to be laminar for long with all those 15 16 bubbles. 17 DR. KELLY: Right, but now, these are pretty mass flux. 18 19 MEMBER WALLIS: Now, is this sub-cooled 20 boiling at the end there or is that -- sub-cooled sort 21 of shakes things around without actually --22 In this region, up to about DR. KELLY: 23 here, some of these points are sub-cooled, some of 24 them are saturated. 25 They appear and go appear MEMBER WALLIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	126
1	and go, so they really stir things up presumably.
2	DR. KELLY: But you know, just like when
3	you're trying to explain why heat transfer is so good
4	in nuclear boiling, the bubble departs and the liquid
5	rushes in behind it, well, that would effect all drag
б	as well. That's what I think is going on here but
7	this wasn't a fundamental, you know, investigation
8	into how to model wall drag. It was just trying to
9	quickly get over a problem that TRACE had. So what I
10	did was develop an empirical model using the data from
11	this one source because that was the only source I
12	had.
13	You ask if this was laminar. The mass
14	fluxes are relatively high. The lowest is about 500
15	kilograms unit square per second going up to close
16	2,000.
17	MEMBER WALLIS: Everything you do, of
18	course, is in SI units?
19	DR. KELLY: Yes.
20	MEMBER WALLIS: That's true, that's a
21	true statement?
22	DR. KELLY: Yes.
23	MEMBER WALLIS: So when you
24	DR. KELLY: Well, bar, I should put MPA,
25	but you know, I use those two. Occasionally, I'll
l	I

(202) 234-4433

	127
1	give the English units in quotes but
2	MEMBER WALLIS: What is G then? G is
3	DR. KELLY: Mass flux.
4	MEMBER WALLIS: Milligrams per square
5	meter per second?
6	DR. KELLY: Yes. So these are pretty
7	high. And these tubes were like they were like
8	three different diameter tubes. They were around a
9	half inch to three-quarter inch. So this is highly
10	turbulent flow. One of the reasons for that is you
11	have to get it to these kind of mass fluxes or wall
12	drag is not large enough to measure.
13	CHAIRMAN BANNERJEE: So when you had no
14	boiling, everything worked and Lockhart-Martinelli
15	worked well
16	DR. KELLY: Yeah, slightly different than
17	Lockhart and Martinelli.
18	CHAIRMAN BANNERJEE: Yeah, whatever, close
19	to it, and now, you've got boiling, so you would think
20	you'd use something like Martinelli-Nelson, right,
21	because have of that quality. And the line there is
22	what, Lockhart-Martinelli still or
23	DR. KELLY: Yes.
24	CHAIRMAN BANNERJEE: But that shouldn't
25	apply to a boiling system exactly because there is
I	I

(202) 234-4433

	128
1	additional, as you say, turbulence generated by
2	boiling. But there is Martinelli-Nelson, right,
3	where he has this series of curves for different
4	DR. KELLY: Yeah, again, but that's going
5	back to correlating in terms of mass flux and then you
6	end up with either you know, tables or very
7	complicated models. Now, I compared this simple, you
8	know, Lockhart-Martinelli type model.
9	CHAIRMAN BANNERJEE: Diabetic, I mean
10	DR. KELLY: Adiabatic flow. I compared
11	that against Friedel for both the adiabatic and the
12	diabatic case. This simple model did a better job
13	than the two-phase four multiplier that everyone is
14	recommending using. Now, I
15	MEMBER WALLIS: But if you talk to Tom
16	Handratti (phonetic), he doesn't use anything except
17	his models, so you'd better use his, now see what
18	happens there.
19	DR. KELLY: Well, I used one of his models
20	in the code and in one case I tried using one and it
21	didn't work. But so I developed a relatively simple
22	empirical model for that correction factor and I used
23	the bubble departure diameter that came from Levy, but
24	you'll notice a lot of it is the function of the void
25	fraction. It has a maximum of about 50 percent void
ļ	

(202) 234-4433

	129
1	and goes to zero
2	MEMBER WALLIS: This is surface tension,
3	Saul Levy has surface tension and bubble up the wall.
4	DR. KELLY: Yeah, there's a surface
5	tension and a wall shear stress. Okay. Yeah.
6	MEMBER WALLIS: Okay, I remember that.
7	It goes back a long way, late `50s or something.
8	DR. KELLY: Yeah, so this gave me this
9	resolved the mass flux effect.
10	MEMBER WALLIS: What have people been
11	doing since the `50s? They've been just screwing
12	everything up?
13	DR. KELLY: Well, I was at a presentation,
14	I don't remember what the conference was but Professor
15	Hewitt was talking and he was talking about pressure
16	dropping pipelines. And he started out and he showed
17	the HEM model and he showed the comparative data and
18	you know, it looks reasonable. It has the right
19	trends.
20	And then he said, then along the way, we
21	thought about this, whatever this phenomena was, and
22	you know, it kept getting bigger. And as it went
23	through time, it got bigger and bigger and bigger,
24	until the correlation covered, you know, several
25	slides. And then he showed performance and accuracy
I	1

(202) 234-4433

	130
1	versus time. Accuracy versus time went down as the
2	models got more and more complicated.
3	And I don't remember exactly what his quip
4	was, but it was basically like the more and more we
5	learn, the less we knew.
6	MEMBER WALLIS: It's like students in
7	universities, they can do they can do less math
8	when they graduate than when they came in.
9	DR. KELLY: I can't do math at all any
10	more. So at any rate, when you put this in and you
11	compare it against the data. Now, again, this is the
12	data that it was developed from, it's very accurate.
13	It had nearly a zero average error and an RMS error
14	MEMBER WALLIS: That's what bothers me a
15	bit about just using this Ferrill volume, I mean,
16	there's a lot more data out there.
17	DR. KELLY: You'd be surprised
18	MEMBER WALLIS: It's a lot of work to
19	collect it and test it all, validate against it.
20	CHAIRMAN BANNERJEE: Is this in that tube,
21	this data?
22	DR. KELLY: Yes.
23	MEMBER WALLIS: Straight tube?
24	DR. KELLY: And it's surprising how little
25	pressure drop data there is where the void fraction is
I	1

(202) 234-4433

131 1 measured. 2 I thought there was CHAIRMAN BANNERJEE: 3 some --4 DR. KELLY: There's a whole lot of 5 pressure drop data --MEMBER WALLIS: Well, it doesn't matter 6 7 because you're going to calculate the void fraction in 8 TRACE and then you're going to feed it back into it. 9 DR. KELLY: Right. 10 CHAIRMAN BANNERJEE: Isn't there some 11 Canadian data that -- I know they used neutron 12 I don't know if -densitometers. Maybe but I didn't find it 13 DR. KELLY: 14 when I looked. 15 MEMBER WALLIS: Yeah, but you'd have to have measured the void fraction in order to test the 16 17 model because now you've got the model, you can predict the void fraction and complete the loop and 18 19 just test -- compare friction pressure draw. 20 DR. KELLY: And when we have an 21 application where wall drag becomes a high priority 22 phenomenon, we'll do exactly that. But now, remember, 23 I got it to work for films in condenser tubes and 24 that's what I wanted to do. And then along the way, 25 I just went ahead and improved the model from what was

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	there before because I considered it a glaring
2	deficiency. I did not do this work because wall drag
3	and bubbly slow was giving us any trouble.
4	But you mentioned that we could use the
5	void fraction and compare the data. Well, you can
6	only do that if you interfacial drag models are any
7	good. And so now we're making a change. We're going
8	to talk about interfacial drag and we had basically
9	two problems with the legacy models that we inherited,
10	accuracy and unphysical oscillations. And I'm going
11	to show you examples of both of those.
12	I know these are hard to read up here.
13	This is calculated versus measured void fraction and
14	this is some steam water pool data of Berringer and
15	you'll notice one point
16	MEMBER WALLIS: What do you mean by pool
17	data now?
18	DR. KELLY: It's steam bubbling up through
19	a pool. The liquid isn't flowing.
20	CHAIRMAN BANNERJEE: It is a level swell.
21	DR. KELLY: In effect, yes.
22	MEMBER WALLIS: The bubbles are usually
23	bigger than you think.
24	CHAIRMAN BANNERJEE: But drift flux does
25	a pretty
I	1

	133
1	MEMBER WALLIS: And they follow each
2	other. They get caught in each other's wakes and
3	things.
4	DR. KELLY: That's where we're headed.
5	MEMBER WALLIS: But you know, boiling data
6	usually gives you a higher velocity of bubbles than if
7	you just take something out of an air/water data.
8	That's what I think you're showing here, isn't it?
9	The void fraction is less.
10	DR. KELLY: Well, let me answer that as we
11	go through this.
12	CHAIRMAN BANNERJEE: Yeah, but this was
13	using the interfacial drag models in
14	DR. KELLY: From the old code, the models
15	we inherited. And this is steam water pool. You see
16	it consistently over-predicts. And then there's this
17	very funny bump in here once you go above about 10
18	percent in the data and so
19	CHAIRMAN BANNERJEE: It's transition, I
20	guess.
21	DR. KELLY: Exactly.
22	MEMBER WALLIS: Those are bigger bubbles,
23	bigger bubbles.
24	DR. KELLY: Well, remember, this is the
25	code model not the data. This is calculated versus
I	1

(202) 234-4433

	134
1	measured. So we should be lying right along this
2	line.
3	MEMBER WALLIS: So what's the basis of
4	the calculation?
5	CHAIRMAN BANNERJEE: It's an interfacial
6	drag correlation.
7	DR. KELLY: The one that was existing in
8	the code and I'm going to show you a part of it but
9	I'm not going to go through the details because I
10	don't want to spend all the presentation time
11	CHAIRMAN BANNERJEE: Then you eventually
12	get to drift flux base.
13	DR. KELLY: Right, because I'm going to
14	throw this model away. This is just showing you why
15	I'm doing the work.
16	MEMBER WALLIS: Well, the real question
17	is, what's the bubble rise velocity?
18	DR. KELLY: We're getting there. This one
19	is void fraction versus elevation. This is for a rod
20	bundle. You know the other was for what a six-
21	centimeter pipe and this is for a rod bundle. It's
22	basically just a it's like a low pressure boil-off
23	type condition. And two things to notice in this, one
24	is a large over-prediction in this bubbly, slug
25	whatever kind of area and in this part you'll notice
I	

(202) 234-4433

	135
1	the void fraction level is out at 75 percent. The
2	wasn't calculated with TRACE. It was done on a
3	spreadsheet but I put the TRACE
4	MEMBER WALLIS: Usually that results
5	because of a C1 or something that once you get a high
6	void fraction it's all dominated by that distribution
7	coefficient that Novack has that
8	DR. KELLY: Yeah, we'll get to that.
9	MEMBER WALLIS: But we're there already,
10	though.
11	DR. KELLY: Yeah, the reason this is flat
12	here is because it comes from the spreadsheet
13	solution. That actual models in TRACE oscillated so
14	badly that I didn't know what value to put here. If
15	you take that same calculation and I show you one of
16	those elevations versus time, it looks like that, and
17	yeah, there are some oscillations in the data but
18	they're not this big. So I had two problems. One was
19	accuracy and the other was unphysical oscillations.
20	This shows how you get at least the
21	oscillation problem. I took those models
22	MEMBER WALLIS: One way to get
23	oscillation is just to have a flow regime map where
24	the computer can't make up its mind and it goes into
25	annular and it says annular is unstable, you'd better
	I

(202) 234-4433

	136
1	go back to slug and it says slug is unstable, you'd
2	better go to annual, and so it just hops around
3	between the two forever.
4	DR. KELLY: Uh-huh, and in effect, what
5	was done this in interfacial friction coefficient
6	versus void fraction and it's a log linear scale.
7	MEMBER WALLIS: Three orders of
8	magnitude?
9	DR. KELLY: Yes.
10	MEMBER WALLIS: This is like a materials
11	plot.
12	MEMBER KRESS: Or a PRA.
13	CHAIRMAN BANNERJEE: PRA.
14	MEMBER SIEBER: It's not that bad.
15	DR. KELLY: And you know, it comes up and
16	hits the peak about right. There's this funny, you
17	know, transition here. But what's really the problem
18	is this
19	MEMBER WALLIS: This is predicted, this
20	curve here?
21	DR. KELLY: Yeah, that's what you get
22	using the old TRAC-PF-1 models and they use a linear
23	interpolation of a drag coefficient between a void
24	fractions of 50 and 75 percent. So this is a linear
25	interpolation from whatever they would calculate here
	I

(202) 234-4433

	137
1	to here, to an annular floor model. I won't mention
2	what annular floor model.
3	MEMBER WALLIS: What's going on here?
4	You said interfacial friction coefficient of 10^4 .
5	DR. KELLY: Yeah.
6	MEMBER WALLIS: It doesn't make sense to
7	me.
8	DR. KELLY: Well, it's not the point that
9	the
10	MEMBER WALLIS: CF is 10^4 .
11	DR. KELLY: Well, in other slide I'll show
12	you what the interfacial drag coefficient is. This is
13	not the .005 number. Okay, it has the interfacial
14	area for unit volume built into it.
15	CHAIRMAN BANNERJEE: Plus you have a form
16	drag here.
17	MEMBER WALLIS: Even so.
18	DR. KELLY: But at any rate, the problem
19	here is there's three orders of magnitude and they're
20	doing a linear interpolation which means the minute
21	you move onto that ramp, this changes by orders of
22	magnitude. So it's exactly what Professor Wallis
23	said, the code would say, okay, I'm a void fraction of
24	75 percent, it has to be annular flow. The annular
25	flow drag is so low it couldn't support the liquid.
	I

(202) 234-4433

	138
1	The liquid falls down and goes oh, I'm in bubbly slug,
2	you hit it with this huge one. You throw the liquid
3	up and keep going back and forth.
4	MEMBER WALLIS: Which is actually what
5	happens
6	CHAIRMAN BANNERJEE: Which is actually
7	MEMBER WALLIS: Actually what happens in
8	the pipe.
9	DR. KELLY: Yeah, but this is for
10	different reasons, okay.
11	MEMBER WALLIS: It happens in the pipe.
12	CHAIRMAN BANNERJEE: It has turbulence.
13	MEMBER WALLIS: It slides down the wall
14	until it's unhappy and then it gets all mixed up and
15	it goes up and then it comes back down again and
16	DR. KELLY: But we're not doing slug
17	tracking, we're doing, you know, volume and time
18	average equations.
19	MEMBER WALLIS: If you had this fine
20	nodalization my colleague talked about, you'd probably
21	capture all that. You've got all these transients
22	that look like slug flow bubbles.
23	CHAIRMAN BANNERJEE: That's what happens
24	in GE chimneys. They're right in this regime, 60 to
25	75.
	I

(202) 234-4433

	139
1	DR. KELLY: Yeah, I have some data that
2	I'll show later in the presentation and then we can
3	talk a little bit
4	CHAIRMAN BANNERJEE: It would be nice to
5	do a chimney calculation with TRACE with fine
6	nodalization.
7	MEMBER WALLIS: Slug annular transition
8	is very interesting because, in fact, you've got two
9	regimes in the pipe at the same time. And trying to
10	model it with one is fraught with some difficulty.
11	DR. KELLY: And what's been done in the
12	past in all of these codes is you say I think I know
13	this one, I think I know this one. Let's do some kind
14	of interpolation between them. And I'm not going to
15	much of
16	MEMBER WALLIS: Part of it's been the
17	pressure to deliver something. You have to do
18	something so you assume you interpolation because you
19	have to get on with the problem, deliver something to
20	the NRC.
21	DR. KELLY: And in this case, the linear
22	interpolation causes a problem.
23	MEMBER WALLIS: Are you going to
24	interpret it in your paper or
25	CHAIRMAN BANNERJEE: He's going to change
ļ	I

(202) 234-4433

	140
1	the model.
2	MEMBER WALLIS: He's going to change it
3	anyway. He's going to change it anyway.
4	CHAIRMAN BANNERJEE: He's going to use the
5	slides.
6	MEMBER WALLIS: But you seem to be
7	changing so many things here.
8	DR. KELLY: Yeah, and I never intended to,
9	but you know, if you look at void traction in a rod
10	bundle, at a low pressure boil-off condition, this is
11	what you see in AP-1000 during the passive cooling
12	phase. If you look at this, how large this error is
13	then
14	MEMBER WALLIS: Well, this is why we do
15	large-scale experiments in order to get our feet on
16	the ground properly.
17	DR. KELLY: This is a huge error in
18	inventory and in a small break LOCA, whether it's you
19	know, a passive plant that's depressurized or not,
20	inventory is that name of the game.
21	MEMBER WALLIS: Where does all the water
22	go when you get that difference?
23	CHAIRMAN BANNERJEE: Out the break.
24	MEMBER WALLIS: Always out the break?
25	DR. MAHAFFY: Where else? There's nowhere
ļ	I

(202) 234-4433

	141
1	to go.
2	DR. KELLY: So
3	MEMBER WALLIS: Why didn't you take
4	pictures instead of this sort of
5	DR. KELLY: I should have but these are my
6	cartoons and they're not very good but they give you
7	an idea. These are the four flow regimes that we
8	basically consider. I'm going to take about these
9	three because these are the three I changed.
10	CHAIRMAN BANNERJEE: Where is churn
11	annular which is a huge flow regime?
12	DR. KELLY: Yeah, that's kind of between
13	these and that's I'll talk about that transition as
14	well but that's where we don't know much.
15	CHAIRMAN BANNERJEE: That's what will
16	happen in the chimneys.
17	DR. KELLY: And I'll show you how well we
18	do or don't in just a few slides. I showed you the
19	basic two problems with the legacy models, accuracy
20	and oscillations. So to improve the accuracy, I'm
21	going to implement a drift flux base interfacial drag
22	model. So for dispersed bubble regime a simple
23	turbulent model, for the slug or Taylor cap bubble
24	regime, the Kataoga-Ishii and for rod bundles, a mono
25	Bestion, this was actually an early Catar model that
ļ	I

(202) 234-4433

was published in the open literature so I could use it.

And then for my transition, rather than do 3 4 linear weighting, I'm going to use a power wall 5 weighting scheme and I'll show you that in a minute. Step one is you have to take a drift flux model and 6 7 turn it into an interfacial drag coefficient. So this 8 gives you an idea of what the interfacial drag 9 coefficient is. Bring this relative velocity squared 10 over here and you get the force per unit volume, the 11 interfacial drag force per unit volume. So it's just 12 IC times V relative square. In other words, it has the density and it has the interfacial area inside it. 13

14 So the first thing I did, and I'm not the 15 only one that's done this, but I basically copied some other work. I equate it to the buoyancy force and 16 that gives me the interfacial drag coefficient as a 17 function of void function and relative velocity. 18 19 Well, that doesn't help me because I don't know the 20 relative velocity but I can get the relative velocity. 21 Drag force is what, per MEMBER WALLIS: 22 unit volume of the stuff or per unit volume of the 23 pipe or what? 24 DR. KELLY: Per unit volume of the --25 yeah, the flow area.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

142

	143
1	MEMBER WALLIS: The pipe.
2	DR. KELLY: The pipe, right.
3	MEMBER WALLIS: Okay, so if I'm thinking
4	about one bubble, I have a lot of difficulty figuring
5	that out because I have to have one minus alpha or
6	something in there to get the force on the one bubble.
7	DR. KELLY: Right.
8	MEMBER WALLIS: Okay, that's why it looks
9	a little funny here.
10	DR. KELLY: Right. So yeah, this is a
11	buoyancy force in a pipe. Well, what I want to do now
12	is express that relative velocity in terms of the
13	drift flux model. Well, the first thing you have to
14	realize is that in a code like TRACE, the velocities
15	that we talk about which we normally just say are
16	velocities, are actually void weighted velocities.
17	They're actually void and density weighted because
18	alpha times rho times V equals the mass flux and it's
19	really alpha rho V you know, at cross-sectioned
20	averaged. So the little vertical lines means these
21	are void weighted. That's what you get form a TRACE
22	calculation if you look at the velocities.
23	CHAIRMAN BANNERJEE: You can take the
24	densities to be uniform across the pipe.
25	DR. KELLY: Right.
Į	I

(202) 234-4433
	144
1	MEMBER WALLIS: Why does density come
2	into it at all?
3	CHAIRMAN BANNERJEE: It's the way the
4	equations are set up. They separate the what
5	happens is you should have products of averages equal
6	to averages of products. It comes to that. This
7	is fabric averaging basically.
8	DR. KELLY: Right.
9	MEMBER WALLIS: But that means that when
10	you have a VG with a bar it's not the average velocity
11	of the gas.
12	DR. KELLY: Right.
13	MEMBER WALLIS: This is getting very
14	confusing.
15	CHAIRMAN BANNERJEE: It's void.
16	MEMBER WALLIS: Yeah, but it gets
17	something which has sort of strange poles when you go
18	to extremes and things that don't make sense, right?
19	CHAIRMAN BANNERJEE: I haven't looked at
20	that.
21	DR. KELLY: So then what you do is you go
22	to you can show from a drift flux model
23	MEMBER WALLIS: This now, I understand
24	what you mean by real and hypothetical scenarios.
25	DR. KELLY: Well, this is the area

```
(202) 234-4433
```

	145
1	averaged velocities that people talk about in the
2	drift flux model.
3	MEMBER WALLIS: You know, there are some
4	bogus theories about this now based on false averages
5	that you've got to be careful about.
6	DR. KELLY: I'm trying.
7	MEMBER WALLIS: And I think you're doing
8	a good job but you've got to be careful about these
9	different sorts of averages and things.
10	CHAIRMAN BANNERJEE: This ground has been
11	covered by a number of people including the KATAR
12	people.
13	DR. KELLY: Right.
14	MEMBER WALLIS: You're relearning it all,
15	though.
16	CHAIRMAN BANNERJEE: It's not relearning
17	but it's
18	DR. KELLY: Fortunately, I spent two years
19	working there and I learned a few things while I was
20	there. So when you plug this in, you get the
21	interfacial drag coefficient as a function of void
22	fractions and the drift flux velocity and then the
23	second term over here, which is the ratio of the
24	cross-sectional average velocity to the relative
25	velocity in the code. That second term in TRACE we
	1

(202) 234-4433

	146
1	define it as a profile slip factor so going here
2	MEMBER WALLIS: What on earth does that
3	mean?
4	DR. KELLY: It means, if you ignore this,
5	you see we have something that's a function of a drift
6	flux velocity. The second term which we've you
7	know, it's TRACese, if you will, is going to bring in
8	the distribution coefficient or distribution
9	parameter, a C sub zero and that's how this is done.
10	This comes out of a paper by Ishii and
11	Mushima that relates the two and you do the algebra,
12	this is what it ends up being as a function of c sub
13	zero alpha and the individual phase velocity as the
14	TRACE computes.
15	CHAIRMAN BANNERJEE: Let me ask you a
16	question, here. This approach is quite similar to
17	what is done in other codes. How does your final
18	product that comes out of this compare with say KATAR
19	and things like that?
20	DR. KELLY: It should be very well,
21	this should
22	CHAIRMAN BANNERJEE: Is it identical?
23	DR. KELLY: It's not identical to KATAR
24	because they don't do the C sub-zero thing exactly.
25	They correlate they don't correlate C sub-zero.
I	I

(202) 234-4433

	147
1	They have a different distribution. They have their
2	own distribution parameter that they use. In earlier
3	versions of KATAR, they did it exactly this way.
4	CHAIRMAN BANNERJEE: Why do they use a
5	different distribution coefficient?
6	DR. KELLY: I don't know. It's not one
7	CHAIRMAN BANNERJEE: Do they have a
8	different data base or what?
9	DR. KELLY: Well, theythey don't use a
10	distribution coefficient in the Zuber-Findley
11	definition, okay. They use a let me see, let me go
12	to
13	CHAIRMAN BANNERJEE: They use it
14	DR. KELLY: In this relative velocity that
15	you multiply this coefficient by, there's like a c
16	sub-one multiplying the liquid velocity, it's
17	something like that. They correlate that C sub-one.
18	So it's not direct you can't take the KATAR
19	correlation, the most recent one, and turn it, and go
20	back and do a hand calculation like you can with the
21	drift flux philosophy.
22	CHAIRMAN BANNERJEE: Let me ask a more
23	general question. KATAR has been through this
24	exercise in enormous detail and with all their
25	verification, validation stuff like that. And they

(202) 234-4433

	148
1	have a list of closure relationships and so on. How
2	you're coming up with a set with an independent
3	assessment. How does your set and theirs compare at
4	the end of the day? And if there are differences, why
5	are there differences, different data sets?
б	DR. KELLY: And
7	CHAIRMAN BANNERJEE: They're smart guys
8	and they've been looking at it a long time.
9	DR. KELLY: Yeah, I considered using the
10	drift flux correlation from KATAR in this but there
11	were some questions as to whether we could or not, you
12	know, whether it was proprietary information because,
13	remember KATAR is co-funded.
14	CHAIRMAN BANNERJEE: It's all published.
15	DR. KELLY: Not the details. One of the
16	models that I am going to use is the Bestion model for
17	rod bundles and that was from an earlier version of
18	KATAR that was published in <u>Nuclear Engineering and</u>
19	Design. But the models in the more recent KATAR
20	version are not published in the open literature or
21	they may give you part of the model. You know, like
22	they would say they might show you the drift flux
23	and they's show the C sub-one in it, but then not give
24	you the correlation for C sub-one.
25	CHAIRMAN BANNERJEE: So for example, have
	I

(202) 234-4433

	149
1	you seen the lecture that Bestion gave at the NRC
2	here?
3	DR. KELLY: No, did not.
4	CHAIRMAN BANNERJEE: I have the text if
5	you want and all the tables and stuff. It seemed that
6	he had every correlation
7	DR. KELLY: He might, I don't know.
8	CHAIRMAN BANNERJEE: that was used in
9	KATAR there and all the methodology.
10	DR. KELLY: But at the time that I was
11	doing this, I had to go into the KATAR code to pull
12	out the details of the model.
13	MEMBER WALLIS: There's someone you
14	should have on your peer review.
15	DR. KELLY: That would be a very good
16	idea, if Dominique is available.
17	MEMBER WALLIS: And how about this idea
18	which we've floated several times including in our
19	research report that we need more international
20	cooperation on these things, both in the code
21	development and in the test facilities because they're
22	expensive. Is that something which we can make happen
23	or are you going to be working sort of independently
24	the way you appear to be doing now?
25	DR. KELLY: Well, in test facilities, we
ļ	I

(202) 234-4433

	150
1	certainly are trying to do it. And for example, we
2	participate in the ROSA program and that's a very
3	important one because they do things like the cooling
4	the cool-down transients in the steam generators.
5	So that would be very important when we start working
6	on the
7	MEMBER WALLIS: Well, I get the
8	impression that you plus Bestion might be a very good
9	combination rather than both of you working
10	independently
11	CHAIRMAN BANNERJEE: Team, yeah.
12	DR. KELLY: All right, I have worked with
13	Dominique before and I really did enjoy it.
14	CHAIRMAN BANNERJEE: Especially on the
15	constitutive equation side and then on the numerical
16	side they've got some really top people as well. I
17	mean, they wrote it fully implicit to start with back
18	in `79 or whenever they started this thing.
19	DR. KELLY: Yeah, and which worked well
20	for the one decomponents but not for 3-D. Then they
21	actually implemented sets for the 3-D vessel.
22	CHAIRMAN BANNERJEE: The 3-d, you know,
23	frankly, I think the 3-D stuff or any 3-D stuff is
24	going into extremely detailed questioning.
25	DR. KELLY: Multi-region.
	I

(202) 234-4433

	151
1	CHAIRMAN BANNERJEE: But some of this
2	stuff is okay, I think.
3	DR. KELLY: Yeah, I would welcome
4	MEMBER ABEL-KHALIK: Can I ask a related
5	question to the two questions that were just asked?
6	You have said earlier that you have changed roughly 75
7	percent of the constitutive relations in the code.
8	And have you just simply purged the code, purged these
9	correlations out of the code?
10	DR. KELLY: You mean, as opposed to
11	leaving them in with a switch?
12	MEMBER ABEL-KHALIK: No, as opposed to
13	giving the user options to use different constitive
14	relations. And the reason I'm asking is presumably
15	some of the constitive relations that you have
16	discarded or sort of judged to be inadequate may still
17	be available in the vendor codes of record. Is that
18	correct?
19	DR. KELLY: It's correct that some of
20	those models may still be in a vendor code but
21	MEMBER ABEL-KHALIK: Okay, so
22	DR. KELLY: now, what I did what I
23	did, depended upon the model. If, for example, the
24	way the wall drag was done was so wrong that we took
25	it out but we took it out in stages. We left it in
ļ	I

(202) 234-4433

for awhile with a switch, so we only applied the new wall drag model if it was flagged as a PCCS-2 and then gradually as we went through the assessment, we expanded that.

5 One of the reasons that we don't do what you're suggesting or what I think you're suggesting is 6 7 something called the user effect. And if you go to the international standard problems, one of the things 8 they did were blind calculations. So they would run 9 10 test, lock up the data, give the initial and boundary conditions to all the participants and have 11 12 them run the various different codes. And what you found by looking at the code results was often that 13 14 the differences between calculations with the same code were much larger than differences between the 15 codes and the reason was attributed to something 16 called the user effect. And sometimes that's from 17 geometry modeling. You know, if some people just make 18 19 a mistake or they choose to do something differently, 20 but it's also sometimes from selecting different 21 models and if you give the users a lot of flexibility, 22 they'll use it.

23 MEMBER ABEL-KHALIK: But my question 24 originated from a different perspective. Presumably 25 you're developing code so that the NRC can have an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

(202) 234-4433

152

independent capability of evaluating calculations that are done by the vendors. And let's say at the end of the day, you have a large difference between what the NRC codes predict and what the vendor predicts. Now, how do you go about the process of finding out who's right and who's wrong or where the differences come from?

8 DR. KELLY: Okay, you know, that's the job 9 of NRR but we would assist them in. But I can tell you what I would do. And if you find a difference, 10 then you -- you know for a particular transient, and 11 12 you look at where that difference occurs and when it occurs, you know, is it a certain component at a 13 14 certain time caused by a certain phenomena that's not being modeled well in one of the codes or the other. 15

Then you go to the assessment basis for both codes and you try to find the assessment that was done for that phenomena in that range of conditions and then it's that which proves which of the two models was superior or not, which one was right and which one you shouldn't believe.

Now, I can't speak to that because I don't work at NRR and I don't know that they've had to do that yet or if they've made a decision based on that. MEMBER WALLIS: I'm not sure they know

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

154 1 how to do it because you had difficulty yourself doing 2 it, figuring out why the codes were giving different 3 results. And they'd have to have your kind of 4 expertise and I don't think they have it. So it's 5 going to be a mystery to them why the two codes give different answers. 6 7 DR. KELLY: Well, of course, yeah, but of 8 course, we are available any time they come to us and 9 I mean, that's our job is to support NRR. ask. And 10 if, you know, they were to come and say, "We ran, you know, Code X on this new plant and we got this answer, 11 12 is completely different, which should yours we believe", then we would spend some time with them to 13 14 straighten it out. 15 Well, then there's the MEMBER WALLIS: specter of running TRACE on the old plants and finding 16 17 out that something that was approved before now is in 18 question. Yeah, well, you know, for most 19 DR. KELLY: 20 of what was approved before was done very 21 conservatively. So as our models get more accurate 22 and their comparisons get more realistic, what you 23 should discover is that there historically was a very 24 large margin. That margin is steadily being eroded by 25 power upgrades and you know, things being taken off

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	line so they can be repaired. And that's one of the
2	reasons that the codes need to have a much higher
3	accuracy than they used to have.
4	MEMBER WALLIS: Let me go back to an
5	earlier question; does RELAP have all these things
6	that you've corrected here which were like the old
7	TRACE before it was corrected?
8	DR. KELLY: It has some and that's why I
9	knew where to look in TRACE.
10	MEMBER WALLIS: But should we assume that
11	if RELAP ran these things you've indicated here, it
12	would give the same kind of inaccurate answers.
13	DR. KELLY: Well, for example, for the
14	film condensation, it had exactly the same. I say
15	had, and at the time of the SBWR submittal, we were
16	going to be using RELAP-5. And my job at that time
17	was to look at PCCS condensation with RELAP-5 and
18	sure enough, the same thing, the liquid films, you
19	know, fall several meters a second which is completely
20	unphysical. And it was because of alpha you know
21	the one minus alpha rho V squared and the pressure
22	drop. That one minus alpha when that alpha goes to
23	one, doesn't work.
24	MEMBER WALLIS: You're getting me
25	concerned here, because I've been on this committee

(202) 234-4433

	156
1	longer than I thought I would be, and at times along
2	the way we have approved vendor codes, which when you
3	look at the if you could get ahold of it, the
4	documentation, that is about as shaky as the stuff you
5	presented here, and yet they presented most of the
б	comparisons and stuff and they made a case for
7	themselves and eventually we got persuaded but it may
8	be that if we had the sort of knowledge you have now,
9	we'd have been much more critical.
10	DR. KELLY: You know, for me, you have to
11	look at the intended application and what's important
12	for that application and that's why you do the PIRT
13	based assessment and you have to do a good job of
14	that.
15	MEMBER WALLIS: Well, there has to be
16	someone with the sort of knowledge you have looking at
17	the problem. You can't just have ACRS looking at what
18	a vendor gives us and we can't just have NRR saying
19	well, it looks okay to me compared with a few
20	experiments.
21	CHAIRMAN BANNERJEE: But the vendor also
22	gives it to NRR who presumably asks you for some
23	discussion of detailed points.
24	DR. KELLY: Well, now a days, NRR
25	actually runs the vendor codes and compares them
ļ	I

(202) 234-4433

	157
1	sometimes to experiments that are not part of the
2	vendor's assessment base as well as doing a cross-
3	comparison to either RELAP-5 or TRACE.
4	MEMBER WALLIS: When they do a cross-
5	comparison with RELAP-5, it's still got these old
6	glitches in it. What's the value of this comparison
7	if it has these errors of an order of magnitude that
8	you showed with this falling film?
9	DR. KELLY: Well, but I corrected
10	CHAIRMAN BANNERJEE: But that's very
11	specific.
12	MEMBER WALLIS: It's a very specific
13	thing, right.
14	DR. KELLY: Yeah, and that specific one
15	I've corrected in RELAP-5.
16	MEMBER WALLIS: But you've corrected 75
17	percent, of a large, very large number of model.
18	DR. KELLY: Right, but there was a
19	difference between TRAC-PF-1, Mod 2 and RELAP-5 and
20	the difference was TRAC-PF-1 Mod 1 was modified
21	extensively as a result of reviewer comments.
22	MEMBER WALLIS: It was tuned.
23	DR. KELLY: No, it was all the models
24	were completely changed basically. And then the code
25	was pretty much put on a shelf because large break
	I

(202) 234-4433

	158
1	LOCA was not an you know, a focus at the time.
2	MR. CARUSO: It was not reassessed.
3	DR. KELLY: Right, exactly. And wasn't,
4	you know, used by the international community very
5	much either.
6	MEMBER WALLIS: So what screwed it all up
7	was the reviewer comments?
8	DR. KELLY: Well, that's what the code
9	developers would say but I don't believe that. What
10	the problem for me is, is that the level of effort was
11	not continuous. You know, it doesn't have to be a
12	huge level of effort but it has to be continuous. You
13	have to build a talented team, keep it together.
14	MEMBER WALLIS: But you have some people
15	in management who believe that it's all over, that
16	these codes were mature, nothing has really happened
17	since the `70s or something. We don't need to do any
18	more work on them.
19	MR. CARUSO: Closure.
20	MEMBER WALLIS: How do you change that?
21	DR. KELLY: Show them the ACRS comments
22	from 1993 when you guys reviewed applying RELAP-5 to
23	AP-600 for the first time.
24	MR. CARUSO: Closure is the word. That's
25	what they like.
I	I

(202) 234-4433

	159
1	DR. KELLY: We're not dealing, very
2	obviously, in terms of errors in the third significant
3	digit.
4	CHAIRMAN BANNERJEE: Joe, we are going to
5	need to finish in about 15 minutes. You've got
6	DR. KELLY: I can actually
7	CHAIRMAN BANNERJEE: a whole bunch of
8	slides on interfacial drag, I see.
9	DR. KELLY: Right.
10	CHAIRMAN BANNERJEE: Why don't you pick
11	out the ones that you think are the most important.
12	DR. KELLY: Right, I can do that. So, I
13	won't go through the details of these models but
14	they're pretty simple. Instead I'll show you some of
15	the results. There is one kind of major point in
16	here that threw me for awhile. If you're going to use
17	a dispersed bubble flow regime and then transition to
18	either a slug or a seal cap bubble, depending upon the
19	tube diameter, basically, you have to have some
20	transition criteria, and this plot shows void traction
21	versus a non-dimensional gas superficial velocity and
22	that is for air/water pool data. And you'll notice
23	down here, this is very well fit by a churn turbulent
24	model. This is pretty well fit by a cap bubble model
25	but you have to get from here to there and back again.
	I

(202) 234-4433

160 1 And what I did was a very simple linear interpolation 2 of a drift flux velocity between 20 and 30 percent 3 void fraction. 4 MEMBER WALLIS: What's the X axis here? 5 DR. KELLY: The X axis is a nondimensional gas velocity. 6 7 MEMBER WALLIS: How is it made nondimensional, with surface tension? 8 9 DR. KELLY: Basically by a bubble rise 10 velocity. MEMBER WALLIS: It's a surface tension 11 thing. 12 Yeah, it's this. 13 DR. KELLY: 14 MEMBER WALLIS: Yeah, it's that. 15 DR. KELLY: The sigma G delta rho of a rho 16 squared of a quarter power. CHAIRMAN BANNERJEE: Single bubble rise 17 velocity. 18 19 DR. KELLY: Right. It works great for I checked it on some other air/water data. 20 this. Tt. 21 worked great, but again, I looked at more data and it 22 doesn't work so great. If you look at steam/water 23 date, now, this is some the old Wilson bubble rise 24 data. Void fraction again, versus non-dimensional gas 25 The black diamonds are the data. velocity. You'll

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	161
1	notice it's very well fit by the cap bubble flow
2	regime. It's not fit at all by the dispersed bubble
3	regime and if you follow the red line, that's the
4	transition that I proposed based on air/water data.
5	CHAIRMAN BANNERJEE: That's quite high
6	pressure data, isn't it?
7	DR. KELLY: Yes, this is four megapascals
8	and it's a 10 centimeter pipe. Okay, so this is fit
9	by cap bubble even down at void fractions, you know,
10	below 20 percent. When you think
11	CHAIRMAN BANNERJEE: How much was the
12	pressure in the previous data that you showed?
13	DR. KELLY: This is atmospheric.
14	CHAIRMAN BANNERJEE: The ratio is quite
15	different.
16	DR. KELLY: Yeah, but I looked at other
17	air/water data and the 20 to 30 percent void kind of
18	fit, because, you know, once you get up above 20, 25
19	the bubble densities are so high, the bubbles coalesce
20	and you go to cap bubbles. For steam, these are
21	adiabatic tests but it's still you seem to be
22	getting things that are cap bubbles at void fractions
23	where you don't expect it.
24	And this is steam water pool data over a
25	range from atmospheric up to, I think that's four
ļ	I

(202) 234-4433

162
megapascals and you see the same kind of thing. I
showed this well, I would have showed this earlier.
Now we fit in the cap bubble regime very well using
the Kataoka-Ishmii model. This portibation comes
about when we're transitioning to the dispersed bubble
which you think you ought to do at wall void
fractions.
MEMBER WALLIS: Is this porated water?
DR. KELLY: In these cases, probably not.
MEMBER WALLIS: Well, I'm just saying if
there's some sort of conglomeration of these bubbles
and it depends on how they're made and what their
original size is. It may depend on the water
chemistry as well as the other things.
DR. KELLY: Right, well, I came up with
two explanations for why they might work like cap
bubbles. The first came out of the paper of Zuber and
Findley, because they presented the distribution
parameter and said it works great for all of this data
but these other three tests it doesn't work so well.
MEMBER WALLIS: If you put a few drops of
dishwashing detergent in there, you'll get a
DR. KELLY: Yeah, but I think it's this
because if you go into the lab and set up a boiling

experiment, and I remember very clearly being in

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 Professor Dhir's lab looking at this sub-cool boiling 2 experiment, and you just look at -- you know, you have water flowing up, your nucleation starting and you're 3 4 in sub-cool boiling regime. You see these little 5 bubbles. They're about .2 millimeters in diameter. They're almost perfectly spherical. 6 There can be a 7 lot of them. The void fraction can be 20, 30 percent okay, but there are these beautiful little bubbles. 8 9 Then you get to the point, the elevation where you've reached Tsat in the liquid and it's like an explosion 10 11 occurs. 12 MEMBER WALLIS: At low pressure, yeah. DR. KELLY: Yeah, but all of a sudden the 13 14 bubble radius goes from these .2 up to about four 15 millimeters, just bang, over a very short axial 16 distance. 17 MEMBER WALLIS: Also they get caught in each other's wakes which helps to increase their 18 19 speed. 20 But, you know, all of that DR. KELLY: 21 happens in air/water data. What I think is happening 22 here is flashing. The bubbles are growing because 23 they're basically at that point in a super-heated 24 liquid environment. And you have that interfacial 25 area, that's where the vapor generation is, is at the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

163

	164
1	bubble surface. And the bubbles rapidly get large and
2	act more like cap bubbles rather than spherical
3	bubbles.
4	Well, at any rate, I had these, you know
5	this model worked great for air/water data. Didn't
6	work for steam/water data. So what I did for sub-cool
7	two-phase flow
8	MEMBER WALLIS: You haven't got any
9	Russian stuff in here? There's all kinds of Russian
10	Ludwin Soff (phonetic) and all sorts of people did
11	work on this kind of stuff. I remember Criara
12	(phonetic), we had to go to them to get correlations
13	that worked for some of these the flashing bubbles.
14	I don't remember all the names but there was
15	DR. KELLY: Some of the void fraction data
16	that I have in pools, I think is Russian, but this is
17	Wilson, which was Allis-Chalmers, I think. I mean,
18	we're going back aways and I'm not sure where this was
19	from, but by using different transitions, I got much
20	better
21	MEMBER WALLIS: So what parts of the
22	reactor circuit does this apply to?
23	DR. KELLY: Well, this is for pipes, not
24	for rod bundles.
25	MEMBER WALLIS: And what parts of the
I	·

(202) 234-4433

	165
1	reactor circuit does it apply to?
2	DR. KELLY: Anything vertical.
3	MEMBER WALLIS: Are there many vertical
4	pi-pipes in reactors that are of any length?
5	CHAIRMAN BANNERJEE: SBWR.
6	DR. KELLY: Not too many but we actually
7	use this for horizontal as well.
8	MEMBER WALLIS: See, that's another
9	concern with all of these codes, is you can perfect
10	these correlations for a well-defined situation but
11	then in real geometry of a real reactor system,
12	there's all kinds of stuff and the shapes are not
13	straight vertical pipes.
14	DR. KELLY: That's true.
15	MEMBER WALLIS: So it's again a great
16	leap to take these correlations and methods and apply
17	them to any part of reactor circuit.
18	DR. KELLY: Well, you asked about the SBWR
19	chimney
20	MEMBER WALLIS: Yeah, but that's because
21	we have a concern about that, yes, but you see that's
22	another question I have about all these codes is yes,
23	you can twiddle them as much as you like but then
24	you're going to apply them to everything.
25	CHAIRMAN BANNERJEE: But those are also in
I	

(202) 234-4433

	166
1	very large pipes and
2	DR. KELLY: That's the point here. See,
3	this is a half meter diameter pipe and it's hard to
4	find the
5	CHAIRMAN BANNERJEE: Is that the Ontario
6	hydro data?
7	DR. KELLY: Not this, this is Wilson
8	bubble rise. It's steam water pool, so the water is
9	not moving here. You're bubbling
10	CHAIRMAN BANNERJEE: Now that you've
11	developed this correlation, it would be a good cold
12	test. You've got the Ontario hydro data now.
13	DR. KELLY: We've done that. You're
14	talking about the one case where they reduced the
15	inventory in the loop and keep pumping the flow around
16	and have void fraction as function of time.
17	CHAIRMAN BANNERJEE: Well, they have
18	pressure drop void fraction and for different
19	pressures. I'd have to look at the report again but
20	it's quite a lot of data.
21	DR. KELLY: That may be different than
22	what we have. What we have as part of the TRAC-B
23	assessment, they presented an assessment against some
24	Ontario hydro data. It was a void fraction in large
25	diameter pipe, but it was presented as void fraction
I	

(202) 234-4433

	167
1	versus time and there was really one part and there's
2	about five different plateaus on it where they
3	operated at five different inventory levels. And we
4	do have that as part of our assessment.
5	CHAIRMAN BANNERJEE: How did that agree
6	with the
7	DR. KELLY: It agreed
8	CHAIRMAN BANNERJEE: Was it a large pipe?
9	DR. KELLY: Yeah, it agrees oh, darn
10	it.
11	CHAIRMAN BANNERJEE: Because that's what
12	GE is using for the for the
13	DR. KELLY: I pressed wrong. It agreed
14	very well in here. Okay, up to void fractions on the
15	order of 60 some percent.
16	MEMBER WALLIS: Now, this is your new
17	version you're showing us here.
18	DR. KELLY: Right.
19	CHAIRMAN BANNERJEE: And then up to the
20	70, 75?
21	DR. KELLY: Up in here rounded 80 percent,
22	the data would have been 70 and we predict 80. And
23	that doesn't sound that bad but
24	MEMBER WALLIS: Well, doesn't C $_{\circ}$ say you
25	can't get above a fraction with one over C $_{\circ}$ or
ļ	I

(202) 234-4433

	168
1	something, you can't get above a void fraction with a
2	$C_{_{ m o}}$ the way you have it in there. You can't get above
3	a void fraction of one over $C_{_{ m o}}$, I think. So if $C_{_{ m o}}$ is
4	1.2, there's no way you're going to predict above .85.
5	DR. KELLY: Well, let's see
6	CHAIRMAN BANNERJEE: But C _o is of course,
7	not going to be 1.2 in churn annular.
8	MEMBER WALLIS: Well, I don't know what
9	he's got for I don't know what he's got for
10	DR. KELLY: Yeah, this is how we
11	transition in. The bubble slug model is going to go
12	to zero pretty rapidly in here. And if you remember
13	that profile slip factor, we don't let it get lower
14	than .05. That's the reason for this inflection. For
15	these conditions, that meets that annular flow model
16	and
17	MEMBER WALLIS: That annular flow doesn't
18	have any C_{o} in it, does it?
19	DR. KELLY: Right, no.
20	MEMBER WALLIS: It's a different thing
21	all together, different basis all together.
22	DR. KELLY: Right. They cross over at a
23	void fraction of about 9 percent for those conditions
24	and what we do is a power-law weighting of the two and
25	we get this curve in between. So we'll be doing this
Į	1

(202) 234-4433

	169
1	and transitioning to annular in here.
2	MEMBER WALLIS: Now, what you're doing
3	here is very interesting. It reminds me of a large
4	number of Ph.D theses that were done at one time
5	comparing different models and things like that and
6	somehow or other, yours is going to be better than all
7	these other ones.
8	DR. KELLY: Well, in this case, I'm using
9	literature based models. I'm not developing a new
10	model. I'm just putting literature models into the
11	code.
12	MEMBER WALLIS: A few selected ones which
13	the most sort of robust or something.
14	DR. KELLY: Right, right, I try a lot of
15	them. You know, I built this into a spreadsheet where
16	I could quickly put a model in and try it out against
17	a lot of data and also try out different transition
18	schemes and that's what I came up with for rod
19	bundles.
20	CHAIRMAN BANNERJEE: This is why I was
21	saying, it would be worth doing a comparison with
22	another comprehensive set if you could access it and
23	see what the differences are, if any.
24	DR. KELLY: Yeah.
25	CHAIRMAN BANNERJEE: I mean, maybe in
I	I

(202) 234-4433

	170
1	effect you are the same.
2	DR. KELLY: Yeah, well, this worried me
3	when I did this comparison because there was a
4	consistent trend.
5	MEMBER WALLIS: You know, for 40 years
6	I've seen things like this and you find that you get
7	some Russian paper and he's got a wonderful
8	correlation of everything and everything works fine.
9	And then you see someone else's paper and it seems to
10	look with the same data and everything else and it
11	correlates on some other scheme all together. This
12	has been going on forever. And so I'm just wondering
13	how is it that yours is going to somehow be so robust
14	that it isn't going to be subject to the same problem,
15	that when you apply it to something else, it doesn't
16	work and all that stuff.
17	CHAIRMAN BANNERJEE: With some new data or
18	some different situation, clearly it may or may not
19	work.
20	MEMBER WALLIS: So the stuff you want to
21	apply it to is what's most appropriate to the
22	application you have in mind.
23	DR. KELLY: Yeah. Now, what I want to say
24	is about this section because this bothered me. And
25	when we ran the Ontario hydro test, the one test that
l	

(202) 234-4433

	171
1	we got the data from GE from, we compared very well
2	except for one data point which was up in this region
3	and okay, 70 percent versus 80 percent doesn't sound
4	like that big an error.
5	MEMBER WALLIS: The bubbles are going
6	slower than you predict, is that right?
7	DR. KELLY: Let's see, we're predicting
8	too much water, so we're saying the water is going too
9	slow, so the liquid fraction has to be too high. And
10	what that
11	MEMBER WALLIS: The void fraction is too
12	high so the bubbles are hanging around too long and
13	they move too slowly.
14	DR. KELLY: Well, our void fraction
15	this is the calculated. The calculated is under-
16	predicting.
17	MEMBER WALLIS: The real one is higher.
18	DR. KELLY: Right, so what that means is
19	that
20	MEMBER WALLIS: The bubbles are going
21	slower then?
22	DR. KELLY: In reality. We have too much
23	slip, if you will. The reason this is of concern to
24	me you know, 70 to 80 percent for a lot of things,
25	that's close enough but what we're really talking
I	I

(202) 234-4433

	172
1	about is 20 versus 30 percent.
2	MEMBER WALLIS: In terms of liquid
3	fraction, that's huge.
4	DR. KELLY: It's a 50 percent error. And
5	if this is what and the void fraction versus
6	elevation is pretty much constant in the chimney.
7	MEMBER WALLIS: But here the error is
8	there's more than a factor of
9	DR. KELLY: You know, axially.
10	MEMBER WALLIS: two in liquid
11	fractions.
12	DR. KELLY: Oh, great.
13	MEMBER WALLIS: Are you silenced now?
14	DR. KELLY: I dropped the battery out.
15	That's what you get when you're up here, but so what
16	I did you know, we have the Thermal-Hydraulic
17	Institute. Actually, we're kind of between contracts
18	now. We're finishing off a contract. So there is
19	I have a task order in place at Purdue University to
20	first go through the data, you know, try to establish
21	a data base of large pipe diameter data that we can
22	compare the interfacial drag models to. And it turns
23	out they had just built a facility, I don't remember
24	what it was for, but someone else paid for it and we
25	ended up with very large diameter pipe, close to a
I	I

(202) 234-4433

	173
1	foot in diameter and a very large pump and they can
2	get their air supply from the wind tunnel. So we can
3	go up into this regime in a pretty large pipe.
4	CHAIRMAN BANNERJEE: How long is the pipe?
5	DR. KELLY: I think it's about 30 feet
6	long. It's however long the airport building out at
7	Purdue University is.
8	MEMBER WALLIS: Well, oil wells have a
9	and gas wells have big pipes that are very long, all
10	kinds of data there, all kinds of void fractions.
11	It's not so easy to get hold of though is the problem.
12	DR. KELLY: Yeah, so, you know, their
13	first task, which they're working on now, is to try to
14	find whatever data they can in large diameter pipes
15	and the reason is, to look at these conditions for the
16	
17	MEMBER WALLIS: The other thing to do is
18	to run a full scale test and take the answers you get.
19	CHAIRMAN BANNERJEE: There's not going to
20	be steam water high pressure.
21	DR. KELLY: No.
22	CHAIRMAN BANNERJEE: That was the beauty
23	of the Ontario hydro data and you should my
24	suggestion would be if those data are good, because
25	they had beautiful gamma densitometers, and they had
I	I

(202) 234-4433

	174
1	two gamma densitometers, I think, and it was very well
2	instrumented.
3	DR. KELLY: Well, I'll have to see you
4	know, all I have are the literature papers and the
5	very short section from the TRAC-G assessment.
6	CHAIRMAN BANNERJEE: Right, and they had
7	also the fluctuations in the void and the
8	DR. KELLY: Well, remember they're running
9	this through a pump. They're running a two-phase
10	mixture through a pump.
11	CHAIRMAN BANNERJEE: Right, right.
12	DR. KELLY: And they have to infer the
13	inlet conditions to that pipe by assuming HEM flow
14	coming out the pump.
15	CHAIRMAN BANNERJEE: Well, whatever it is
16	they have the data, yeah.
17	MEMBER WALLIS: But it develops in a
18	short distance they claim.
19	DR. KELLY: Uh-huh, so to go ahead and
20	finish this up, I talked about oscillations earlier,
21	with the power wall weighting. This is the answer.
22	MEMBER WALLIS: Is that the right answer?
23	DR. KELLY: Yeah, you'll see in just a
24	second. What I did for rod bundles and this is where
25	I took the Bestion model, notice how very simple it
	I

(202) 234-4433

175 1 is. It looks like a slug flow model with the 2 exception that it has the gas density in the denominator, not the liquid density. 3 4 MEMBER WALLIS: Whoa, wait a minute. 5 What is this? KELLY: This is the model that 6 DR. 7 Dominique Bestion developed --8 MEMBER WALLIS: Describing a bubble. 9 DR. KELLY: -- for --10 MEMBER WALLIS: That's got no density at all. 11 For rod bundles, it works. 12 DR. KELLY: That's baloney, baloney. 13 MEMBER WALLIS: 14 I mean, if rho G goes to zero, this goes to infinity. 15 It makes absolutely no sense at all. DR. KELLY: Well, but rho G doesn't go to 16 17 zero, it goes to --The bubble, the density 18 MEMBER WALLIS: 19 of the bubble doesn't matter, you can fill out the 20 rest of the sentence. DR. KELLY: No, I mean, I know what you're 21 22 saying is that it should be --23 MEMBER WALLIS: There's a big different. DR. KELLY: You think it should be a 24 25 liquid density.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

176 1 MEMBER WALLIS: Unless you've got a 2 density ratio of 1,000 or something, it doesn't matter whether it's a million. Density cannot effect bubbly 3 4 flow at all. 5 DR. KELLY: I don't know why this works. 6 There are questions --7 MEMBER WALLIS: Probably because the whole model is wrong and you should be using rho G v 8 9 G squared and using some other kind of a model based 10 on the gas drag on something. It's the only way this could make sense if you're holding up droplets with a 11 12 big gas or something. Yeah, that's what it --13 DR. KELLY: 14 MEMBER WALLIS: Are you sure this isn't 15 This isn't a typo somewhere? a typo? 16 DR. KELLY: Yeah. 17 CHAIRMAN BANNERJEE: Show us what happens. DR. KELLY: Okay. The other -- this is 18 19 the drift philosophy. The other part is the 20 distribution parameter. 21 MEMBER WALLIS: This must be a steam 22 water at high pressure. DR. KELLY: Most of the data was at low 23 24 pressure but I'm going to show you both. 25 If I go to something like MEMBER WALLIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	177
1	a distillation plant from
2	CHAIRMAN BANNERJEE: Wait, wait, let him
3	show the data.
4	MEMBER WALLIS: with very low gas
5	density, I'm going to get an enormous velocity.
6	DR. KELLY: This is on the order of meters
7	a second.
8	MEMBER WALLIS: Yeah, but if I make rho
9	G very small.
10	DR. KELLY: I'm talking about one
11	atmospheric
12	MEMBER WALLIS: Like we'll do fractions
13	of an atmosphere because of distillation of the sea
14	wall or desalination or something, you're going to get
15	
16	DR. KELLY: Well, this is an empirical
17	model, so this is not this is empirical, not you
18	know
19	MEMBER WALLIS: But no one is going to
20	believe it.
21	CHAIRMAN BANNERJEE: Well, let's see the
22	data.
23	DR. KELLY: Okay, for the distribution
24	parameter, it was initially developed with a constant
25	factor of 1.2. I first put it into TRACE using the
I	I

```
(202) 234-4433
```

	178
1	one suggested by Ishii which goes from 1.2 to one as
2	you go towards the critical point. But then as we
3	were doing data comparisons, there was a
4	recommendation by Coddington and Masian it's a pretty
5	recent paper, to use C sub zero equal one for rod
б	bundles. When you do that, this is what you get.
7	This is at basically BWR conditions. Five
8	megapascals, mass fluxes from 700 to 1500, heat fluxes
9	typical of a boiling water reactor. This is
10	calculated void fraction versus measured. This was
11	TRACE calculations using C sub zero from the issue
12	model and this is using C sub zero set to one.
13	MEMBER WALLIS: That's using his bogus
14	velocity?
15	CHAIRMAN BANNERJEE: What about low
16	pressure?
17	DR. KELLY: Yeah. Getting there. And you
18	can see that the average error and RMS error are
19	greatly improved by going to C sub zero equals one.
20	That looks pretty good.
21	MEMBER WALLIS: This goes for void
22	fraction of zero, the gas density matters are the void
23	fraction of zero when there's no gas there at all?
24	That makes absolutely no sense.
25	DR. KELLY: I don't know why that works

(202) 234-4433

	179
1	but it works fairly well.
2	CHAIRMAN BANNERJEE: Next slide.
3	DR. KELLY: This is at low pressure boil-
4	off conditions. This is two different flex C set
5	cases. One is at 20 psi, the other is at 40 psi and
6	you have void fraction versus elevation. Obviously,
7	this is where boiling starts. These are decay heat
8	levels, yo know, like five percent kind of power so
9	there's really no sub-cool boiling. And so the data
10	taken with DP cells are the red diamonds and when you
11	see this kind of behavior, this is where a grid spacer
12	is. That's why these two values, for example, on the
13	data are low relative to the other values of the data.
14	The dash blue line is the Bestion model
15	with you know, C sub zero basically equal to 1.2 and
16	the black line is when C sub zero equals to one, and
17	it fits the data quite well.
18	MEMBER WALLIS: Did Bestion apply to
19	anything else?
20	DR. KELLY: It's only applied to rod
21	bundles. We put in a the old TRAC model used the
22	same correlations for tubes and rod bundles. We knew
23	rod bundles behaved differently so we put in, you
24	know, this model for rod bundles. And then this is
25	high pressure boil-off at THTF, four and a half
I	I

(202) 234-4433
	180
1	megapascals but you know, the lift was almost
2	stagnant. And again, the red diamonds are the data
3	and they well-fit with C sub zero equaled to one.
4	CHAIRMAN BANNERJEE: Was this model
5	published in his <u>Nuclear and Design Paper?</u>
6	DR. KELLY: Yes.
7	CHAIRMAN BANNERJEE: Strange it go
8	through. I wonder who reviewed it.
9	DR. KELLY: And that takes us to
10	horizontal stratified flow and here I'm going to show
11	results only. What we did
12	MEMBER WALLIS: If you put a bubble in an
13	air water tank it goes with a velocity of five meters
14	a second as I calculate from this?
15	CHAIRMAN BANNERJEE: It comes under the
16	square root.
17	MEMBER WALLIS: There's no way. I mean,
18	it goes I took the square root of a thousand and I
19	got 30. Five meters a second, I mean, we know that it
20	goes to the velocity, which is you know, there's all
21	kinds of plots of bubble velocities.
22	DR. KELLY: Yeah, around 20 centimeters.
23	MEMBER WALLIS: Twenty centimeters a
24	second. So there's something really very peculiar
25	going on here. It is a good note to quit so we can
Į	I

(202) 234-4433

	181
1	get over this.
2	CHAIRMAN BANNERJEE: No, no, I think we
3	should finish this.
4	DR. KELLY: I'm actually almost finished.
5	MEMBER WALLIS: Okay.
6	DR. KELLY: IN TRACE
7	MEMBER WALLIS: Are you going to tell us
8	anything more fantastic?
9	CHAIRMAN BANNERJEE: It's not his fault.
10	DR. KELLY: And you know, when you look at
11	horizontal flow, these are basically the type flow
12	regimes people talk about. Again, I'm idealizing them
13	with cartoons. In TRACE we really only model
14	stratified smooth and then what I call a normal flow
15	regime. And then similar to KATAR or RELAP 5, we
16	interpolate between the normal regimes and a fully
17	stratified and that interpolation factor becomes if
18	you will, the interfacial drag for the regimes in
19	between. The reason I looked at this was poor
20	accuracy for high pressure conditions, large
21	oscillations and a loft in CCTF in the lags and
22	problems with ESBWR horizontal vent clearing.
23	Looking at co-current stratified flow, the
24	TPTF facility, this is well, JAEA and Japan used to be
25	JARED (phonetic). It's an eight-inch diameter pipe
I	1

(202) 234-4433

and what you have is calculated versus measured void fraction. This is at four different pressure levels from three megapascals to 8.6 and this is TRACE before I changed the model. You'll notice it consistently over-predicts.

After we changed the model, it does a 6 7 pretty good job. For counter-current flow in a PWR 8 hot leg, we looked at the looked at the UPTF data. 9 This is a full scale facility, so this hot leg is full 10 scale, 36 inches or something in diameter. Here's a simulator for the steam generator. You have the 11 reactor vessel over here, providing a steam source. 12 You establish a steam flow. 13 Then you turn on the spray to model a fall-back from the steam generator. 14 15 So you have liquid flowing counter-current.

There's one thing that's not prototypical for USPWR and that's the hutze, which is the hot -they have hot leg ECCS in Germany and this is where this --

20MEMBER WALLIS:The hutze, I thought it21was a huftze with an F.

DR. KELLY: It's H.

23 MEMBER WALLIS: It's an H? I thought an
24 F instead of a T. I never -- maybe I got it wrong.
25 It's hutze.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

22

	183
1	DR. KELLY: So this does effect the CCFL,
2	if you will, that occurs here but that was the best
3	data the we had to look at.
4	MEMBER WALLIS: So you're saying that the
5	counter-flow flooding is a natural consequence of the
6	drag model, it's not something which is an
7	instability?
8	DR. KELLY: Well, what I'm doing here is
9	the transition which is basically a Titel (phonetic)
10	Ductworth type criteria which does have to do with an
11	instability but I also built in a CCFL model into the
12	transition.
13	MEMBER WALLIS: Oh, so you also built it
14	in.
15	CHAIRMAN BANNERJEE: You don't put it
16	through Tao I (phonetic) and VGJ or anything like
17	that.
18	DR. KELLY: Not directly. It's the
19	you've determined a fraction of a stratification
20	factor if you will and you use that factor to do
21	actually a log ramp between interfacial drag for
22	stratified and non-stratified flow. This, again, was
23	just an improvement to the model that was already
24	there.
25	CHAIRMAN BANNERJEE: Yeah, I should tell
ļ	I

(202) 234-4433

1 you something which has been recently found. It's 2 just been published in the International Journal of Multi-Phase Flow for Stratified Flows. Rad Isha at 3 4 Imperial, I think wrote a paper where they took just 5 the usual stratified flow equations, yours must be with normal 6 some version of it, whatever is 7 interfacial drag. And they did a very find 8 nodalization so they were looking for oil/qas 9 pipelines. And they were able to develop slug flow 10 naturally. KELLY: By having instabilities 11 DR. 12 propagated. CHAIRMAN BANNERJEE: Automatically and the 13 14 slugs died automatically. So if they got it to fine 15 enough nodalization, they modeled a 30-kilometer 16 pipeline and they had many, many measurement locations and Jeff Shubert (phonetic) is doing it right now. 17 They were able to predict the slug -- the severe slug 18 19 distribution, everything just from the equations. 20 They didn't have to put in any flow regime 21 transitions, nothing. Sort of interesting. 22 Well, it gave the non-MEMBER WALLIS: 23 uniform void fraction in the pipe then. 24 CHAIRMAN BANNERJEE: Yeah. Well, when 25 there's slug, here's slug.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

184

	185
1	MEMBER WALLIS: But these guys tried to
2	predict a void fraction which is the same all along
3	the pipe going to these codes.
4	CHAIRMAN BANNERJEE: They just gave that
5	inlet conditions.
6	DR. KELLY: Yeah, and let it develop as a
7	function of time and space. Yeah, of course, we're
8	using nodes that are on the orders of meters long.
9	CHAIRMAN BANNERJEE: Well, this is one of
10	the things that Jeff was telling me. He said the
11	current state of the art is that they can use for a 30
12	kilometer pipeline nodes which are like this. How is
13	it that they're able to do it and we can't do it?
14	DR. KELLY: They're modeling one pipe and
15	not a reactor system.
16	CHAIRMAN BANNERJEE: A pipe, I mean, it
17	doesn't seem that different. They have terrain
18	changes. They have all sorts of things coming in and
19	out and
20	MEMBER WALLIS: But the fine nodalization
21	is somewhat different isn't it? Still, the length of
22	the node to its diameter is reasonable. It's not a
23	tiny little slice.
24	CHAIRMAN BANNERJEE: It's of the order of
25	the pipe diameter.
ļ	I

(202) 234-4433

	186
1	MEMBER WALLIS: Yeah, but it's not a
2	slice, yeah.
3	DR. KELLY: Yeah, you know, I'm not saying
4	we shouldn't look at that for the next generation.
5	But remember what I'm trying to do here is fix
6	something that's broken as quickly as possible so the
7	assessment can continue.
8	MEMBER WALLIS: So your next slide shows
9	that works, right?
10	DR. KELLY: Yeah.
11	MEMBER WALLIS: You were able to make it
12	work.
13	DR. KELLY: Yeah, so this is a flooding
14	plot, J sub G non-dimensional square root, J sub L.
15	This is actually the Richter model is the black line,
16	which is the sum of those is equal to 0.7 if I
17	remember right. The red
18	MEMBER WALLIS: It's empirical, right.
19	DR. KELLY: Yes, the red squares and
20	triangles are the data. You'll notice they follow
21	this line quite well until this point and this is the
22	no flooding point where all the liquid just comes down
23	from the steam generator into the vessel. This is the
24	results in blue of TRACE with the previous models. At
25	15 megapascals, at least there's some flooding, okay,

(202) 234-4433

	187
1	but at the three megapascals almost all the points
2	allow no water coming back into the vessel at all. It
3	was pretty bad. When I changed the model, I then get
4	a pretty good comparison, not perfect but certainly
5	much improved.
б	MEMBER WALLIS: Well, it's about as
7	perfect as you can get.
8	DR. KELLY: Well, if you you know, each
9	one of like this point corresponds to this point in
10	the data because the way the tests are run are by
11	establishing a steam flow, then turning the water on
12	and seeing how much water collects in the vessel.
13	MEMBER WALLIS: This is from a smooth
14	interfacial drag model? No.
15	DR. KELLY: You use a smooth interfacial
16	drag but what controls it is the interpolation to the
17	normal bubbly type flow regimes.
18	MEMBER WALLIS: Oh, that's what controls
19	it.
20	DR. KELLY: Right.
21	MEMBER WALLIS: Well, that's not what
22	happens in reality.
23	DR. KELLY: No, but that's what I had to
24	work with.
25	MEMBER WALLIS: But you can make your
	1

```
(202) 234-4433
```

	188
1	predict, but I think your physical model doesn't
2	describe why it floods in reality.
3	DR. KELLY: Yeah, I built the CCFM model
4	into the transition criteria.
5	MEMBER WALLIS: I mean, I can make an
б	annular model predict bubbly flow by fiddling the
7	coefficients. It's not necessarily a very good model
8	that way.
9	DR. KELLY: I tried to look for wavy
10	stratified models and in particular I used one from
11	Hanratty and when I put that in, I couldn't get the
12	counter-current flow at all. You know, it just always
13	held the water up. So that's what we did, at least
14	what I can show you today in the time I had in order
15	to do TRACE 5.0. But looking beyond 5.0, we know
16	where some of the models aren't terribly good and
17	where we should spend some time and in some cases we
18	already had done experimental programs and we just
19	haven't had time to generate a model or select a model
20	using that data to go into the next code version.
21	So one thing that we've already started
22	doing is putting a component model in TRACE for the
23	ESBWR suppression pool to try to account at least in
24	the first order for the thermal mixing for the
25	thermal stratification and mixing in the suppression
11	

(202) 234-4433

	189
1	pool. So it will have a bubble plume model and a
2	turbulent buoyant plume model in it.
3	MEMBER WALLIS: That's a tough one
4	actually.
5	DR. KELLY: That's a very tough one, but
6	anything is better than complete mixing. We did have
7	an experiment as part of the Thermal Hydraulic
8	Institute with one-tenth sector model and an extensive
9	thermal couple cage in it. So we have some data to
10	use on that.
11	MEMBER WALLIS: Don't they say they get
12	100 percent condensation or something in this?
13	DR. KELLY: A hundred percent
14	condensation, yes, but that
15	MEMBER WALLIS: Is that realistic?
16	DR. KELLY: Well, 100 percent up to
17	whatever the partial pressure is above the interface.
18	That's I think that's realistic. The question
19	though is, what is the temperature of the water at the
20	interface. And that has to do with how much of the
21	tank participates in the mixing process.
22	And we ran two sets of experiments at
23	Purdue. One we good the PUMA facility and put a
24	thermal couple cage into their suppression pool, and
25	just quickly ran some tests in that. And so if we ran
I	1

(202) 234-4433

1 those tests with pure steam coming in, then it would 2 depend upon whichever vent is cleared, but say we're just talking about the top vent, basically all of the 3 4 water above the top vent mixed. It was pretty much 5 complete mixing. Now, we're not the same lateral scale as the ESBWR but that's what we saw. 6 7 If you added just half a percent, you 8 know, mass fraction of air to that, what you get is a 9 bubble plume because the bubbles don't -- I mean, the air doesn't condense. The bubble plume is very 10 effective at mixing it. With that very small air 11 12 fraction, it mixed the entire suppression pool in the PUMA facility. When we did the 1/10th sector, we saw 13 14 exactly the same thing. And so which in retrospect 15 makes sense because you use bubble plumes to break up thermal stratification in reservoirs. 16 So there will be a very simple model, it 17 will be better than complete mixing. 18 The next one is 19 interfacial drag in rod bundles. We have two new data

20 sources. One is the RBHT. We ran a series of

interfacial drag tests in that, just, you know,

22 basically boiling water and measuring the drag, the 23 void traction, actually measuring delta Ps and 24 inferring void fraction from that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

But over and above that, there's a new

(202) 234-4433

21

25

191 1 data source that was made available to us as part of 2 an international standard problem and it's boiling 3 water reactor -- actual real boiling water reactor 4 bundles. 5 MEMBER WALLIS: This RBHT is the Penn 6 State? 7 DR. KELLY: Yes. 8 MEMBER WALLIS: That's all low pressure? 9 DR. KELLY: Yes. 10 MEMBER WALLIS: And they get their -they assume it's all a constant uniform pressure or --11 that's --12 DR. KELLY: I don't know. I haven't 13 14 looked at how they -- when I do it, I'll start with 15 the raw data and make sure, you know --16 MEMBER WALLIS: Do you know whether they 17 measured the pressure of they system? 18 DR. KELLY: Yes. 19 MEMBER WALLIS: Things like that, which 20 we raised when we read their report? Okay. DR. KELLY: You know, and I will check my 21 22 answers to their answers as to when I infer what the 23 void fraction is. But this is actual BWR conditions. 24 Heat fluxes, pressures and mass fluxes, it's the best 25 data set we've ever had.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	192
1	CHAIRMAN BANNERJEE: Where was that taken?
2	DR. KELLY: It was taken in Japan, I
3	believe it's funded by NUPEK (phonetic). It's
4	proprietary data, so we can't release it but we can
5	use it.
6	CHAIRMAN BANNERJEE: It's in reactor data?
7	DR. KELLY: Actually no. They took a rod
8	bundle and they put it inside a CAT scan machine, so
9	it's an electrically heated rod bundle, full eight by
10	eight and they put it inside a CAT scan machine to get
11	sub-channel distributions, which we're not worried
12	about, but they also had three other gamma
13	densitometers so you have area average values for the
14	void fraction at four different axial elevations.
15	It's the best, most productive data we've ever had, so
16	we want to use it. The new re-flood model, again,
17	using the RBHT data and the post-CHF data from UCLA,
18	the
19	CHAIRMAN BANNERJEE: What is the post-CHF?
20	We haven't heard about that.
21	DR. KELLY: It's the first program was
22	just on a flat plate, but we have a little three by
23	three rod bundle with a refrigerant and what we're
24	going to try to do, I'm not sure we're going to be
25	successful, but what I want to do is not do reflood
	I

(202) 234-4433

Í	193
1	test but do steady state, low quality film boiling
2	test and if you remember back 20 some years ago,
3	Renaveld and others developed a hot patch technique.
4	Well, you can do that on a tube, but as we've looked
5	at in one of the previous presentations, film boiling
6	in a rod bundle in a tube is very different. And so
7	what we want to do is in effect, put a little hot
8	patch at the beginning of these rods and that's one of
9	the reasons for using a refrigerant, by having a very
10	short high heat flux region, at the beginning of a
11	rod, you can trip it into post-CHF and stay at film
12	boiling conditions down stream of that even though
13	you're at low powers.
14	CHAIRMAN BANNERJEE: But with the
15	refrigerant, is this V.J. Dhir's program?
16	DR. KELLY: Yes, it's one we're funding
17	through the Thermal Hydraulic Institute. Now, it
18	hasn't been funded for awhile, so it just started back
19	up and I don't have results yet. I don't know if it's
20	going to work but I wanted to try it because that
21	would give a steady state film boiling data in a rod
22	bundle and that greatly enhances your ability to
23	generate a constitutive model from it.
24	The next one is looking at grid spacer
25	effects, both how it effects convective heat transfer

(202) 234-4433

	194
1	and what it does to drop diameters model like what's
2	in COBRA TF but using our RVHT reflood and drop
3	injection test data. Sub-cool boiling, we ran an
4	experiment at low pressure at UCLA and we haven't had
5	a chance to go back and use that data yet and finally
6	critical flow in an orifice and
7	CHAIRMAN BANNERJEE: Going back to the
8	sub-cool boiling, we had a presentation a few years
9	back from UCLA and at that point we raised the
10	question as to how this very detailed modeling and
11	experiments was going to find its way into TRACE. And
12	you guys, I seem to remember, said that you were
13	looking into this and that was two or three years ago.
14	So where are we on this now, same point?
15	DR. KELLY: Now, we're in almost the same
16	point and that's because I have been doing this other
17	stuff. I haven't had a chance to get through that.
18	CHAIRMAN BANNERJEE: Is this just a lack
19	of manpower or is it
20	DR. KELLY: It has
21	CHAIRMAN BANNERJEE: What's the real
22	problem here?
23	DR. KELLY: We've had two problems. One
24	is lack of co-developers if you will, people that know
25	how to program, what two-phase, what two-fluid models

(202) 234-4433

Í	195
1	are and what, you know, something about two-phase
2	flow. So we've had a lack of people to do code
3	development. We've also, and this is just as serious
4	a problem. We've had a lack of analysts and those
5	are both capabilities that we're trying to develop.
б	CHAIRMAN BANNERJEE: What's needed here is
7	to take the data and the models and translate it into
8	a form which properly can go into your quote
9	"structure" if I remembered that.
10	DR. KELLY: Right, uh-huh.
11	CHAIRMAN BANNERJEE: That's true of a lot
12	of these things, with these experiments that are being
13	done. You can analyze these experiments and then you
14	have to cast it in a way that it will go into the
15	code, into the structure of the code through your
16	constitutive equations or whatever.
17	DR. KELLY: Right, exactly.
18	CHAIRMAN BANNERJEE: And that step, I
19	thought somebody was going to take. If you can't take
20	it here, that should be part of the task of the
21	researchers because I see that they're doing beautiful
22	work on single bubbles or 10 bubbles or having lovely
23	correlations which are detailed based on these. But
24	eventually it has to get into the code.
25	DR. KELLY: Right.
	I

(202) 234-4433

	196
1	CHAIRMAN BANNERJEE: And maybe their job
2	should be to get it into that form.
3	DR. KELLY: The problem has been that most
4	of the people that do good experiments and have good
5	knowledge about two-phase fundamentals, don't
6	understand the codes, and so if you just task them to
7	do a model, more often than not, that model won't work
8	in a two-fluid framework which means someone that does
9	understand it, has to work with them very closely.
10	They don't have to necessarily do it, but they have to
11	supervise it and we haven't been able to do that.
12	CHAIRMAN BANNERJEE: That's part of your
13	contract to these people is they should involve some
14	people who know fluid monitor. It's not rocket
15	science, I mean, ultimately, they can figure it out.
16	DR. KELLY: Yeah, what we're now well,
17	once we get passed this 5.0 release, and I get the
18	documentation done, I have two to three new staff that
19	are going to be working with me and that's how they're
20	going to learn. We're going to work our way through
21	this. And things that we don't have time to do, we're
22	going to do just what you said except someone like me
23	will like be on the student's thesis committee to make
24	sure
25	MEMBER WALLIS: What good does it do to
ļ	1

(202) 234-4433

	197
1	have someone develop a model which is not compatible
2	with the framework of TRACE
3	DR. KELLY: It doesn't.
4	MEMBER WALLIS: in analyzing that
5	data?
6	CHAIRMAN BANNERJEE: You write a paper in
7	Journal of Heat Transfer and graduate.
8	MEMBER WALLIS: That's right, that's what
9	they do.
10	DR. KELLY: Which is why we're not really
11	going to be doing very much
12	MEMBER WALLIS: And just doing
13	experiments doesn't really help unless they focus on
14	the parameters which are most important for TRACE in
15	some way.
16	DR. KELLY: Well, and that's what
17	MEMBER WALLIS: There has to be that
18	connection.
19	DR. KELLY: The experiments that we
20	started, were because of a need that arose when we did
21	RELAP 5 for AP600 and has such terrible results on
22	void fraction in the core, et cetera. And the intent
23	was always for basically me or someone like me you
24	know, to work with the experiments and get the data
25	into the code in a timely fashion. We never imagined
I	I

(202) 234-4433

	198
1	we'd have as much problem with extent models in TRACE
2	as we did.
3	MEMBER WALLIS: If you look at the RBHT,
4	they didn't measure interfacial drag at all. All they
5	did was measure pressure drop.
6	DR. KELLY: Right.
7	CHAIRMAN BANNERJEE: Could they measure
8	void fraction?
9	MEMBER WALLIS: No, they didn't measure
10	void fraction. They inferred from the pressure drop
11	some assumptions about how all these different
12	components work together and that was a long way from
13	getting a good measure.
14	CHAIRMAN BANNERJEE: Did they have some
15	device, I remember way back, some sort of shadow graph
16	device where they put
17	DR. KELLY: That's for droplets.
18	CHAIRMAN BANNERJEE: Droplets, the
19	dispersed flow regime, right?
20	DR. KELLY: Yeah, and that works pretty
21	well to get droplet diameters.
22	CHAIRMAN BANNERJEE: Have you got that
23	data as well?
24	DR. KELLY: For droplet diameters in a
25	reflood.
I	I

```
(202) 234-4433
```

	199
1	CHAIRMAN BANNERJEE: Yeah, have we been
2	able to use that data?
3	DR. KELLY: Only in assessment. We
4	haven't used it in model development yet and that's
5	because we've been trapped in this cycle of model
6	remediation, which we're finally about to, you know,
7	finish and do the documentation and then this is where
8	we're going to be working next with the exception
9	you'll notice the others down here at the bottom, we
10	know there are going to be applications like EPR
11	coming up. There will be phenomenas such as reflux
12	condensation that may be very important for that
13	reactor that we haven't had to worry about yet. So
14	we've generated some, you know, systems data on
15	facilities like OSU and we're going to see how TRACE
16	does on it.
17	CHAIRMAN BANNERJEE: But there is
18	historical data in this area.
19	DR. KELLY: Right, and we'll look at that,
20	too. So reflux condensation now goes up onto the
21	assessment matrix and we have to assess the code
22	against it and see if it works. If it's a significant
23	deficiency, then we look at the data that we have and
24	see if we can develop a model from it.
25	CHAIRMAN BANNERJEE: One of the things
ļ	I

(202) 234-4433

Í	200
1	that, Joe, is going to be not just the single or few
2	tube behavior because probably there is data on that,
3	but it's going to be the distribution in these plant
4	and what goes in there. It's going to be a
5	complicated 3-D problem to assess. I don't know how
б	you're going to do that.
7	DR. KELLY: Yeah, I know. Some tubes have
8	a forward flow, some backwards.
9	CHAIRMAN BANNERJEE: I asked this question
10	at the tripartite meeting and of the French and
11	Michael Reacreaux came and said, "You know the answer
12	to this of course, which is that we can't do it". You
13	know, that's the reality that you have to do it.
14	MEMBER WALLIS: You've got critical flow
15	in here. Is critical flow in good shape?
16	DR. KELLY: The TRACE critical flow model
17	works pretty well, but what it doesn't
18	MEMBER WALLIS: I mean, there was this
19	strange Mahaffy paper saying that it depended on
20	downstream conditions and things. That's all been
21	fixed, has it?
22	MR. MURRAY: That was a bug that was fixed
23	back in 2002.
24	MEMBER WALLIS: But there's no data on
25	the paper. I mean, it has been fixed?

(202) 234-4433

	201
1	DR. KELLY: Yeah.
2	MEMBER WALLIS: But TRAC for all that
3	time predicted critical flows depended on downstream
4	pressure, up until 2002?
5	DR. MAHAFFY: Well, the simple answer is
6	yes. It was a question of how you well, careful.
7	The biggest issue was actually the downstream
8	nodalization of your break component. There was a
9	slight dependence on pressure. And it became more
10	important in various configurations, but we've wiped
11	that out.
12	MEMBER WALLIS: You wiped it out, okay.
13	DR. KELLY: The reason this is on here,
14	the model works pretty well, but it doesn't work great
15	for very thin orifice plates because there's a
16	thermal non-equilibrium thing or lack of, you know,
17	going to equilibrium. And the become very important
18	in experimental facilities. Like if you're trying to
19	model ROSA and do one of their small break
20	experiments, they're inventory driven, so if you don't
21	get the break flow right, you can't look at all the
22	other phenomena that you wanted to look at. And so
23	what the Japanese have done is put in a special
24	critical flow model for their thin orifice places that
25	they use in ROSA and that's the first one I'll look at
ļ	I

(202) 234-4433

	202
1	is the possibility of just plugging in so that when we
2	use you know, when we try to do their integral
3	effects test, we can use a model that gets us a better
4	answer for the break flow.
5	CHAIRMAN BANNERJEE: Okay, thanks, Joe.
6	We're going to
7	(Applause)
8	CHAIRMAN BANNERJEE: Anyway, we are
9	running well behind schedule as usual. So let's take
10	a break for what, an hour, and come back at quarter to
11	2:00. And Steve, you and John Mahaffy and DiMarzo
12	need to figure out how you can finish in some
13	reasonable time.
14	DR. BAJOREK: I think we've jumped ahead
15	on a few of these issues and talked about them. What
16	I'm going to do is go through some of the assessment
17	very quickly, try to get through this with hopefully
18	a minimum of questions, you know, so we can just
19	summarize some of the main points.
20	Joe has gone into some of our planned
21	development. I think I can cut back on that. We do
22	want to get to John Mahaffy's presentation talking
23	about some of the issues on the momentum equation.
24	CHAIRMAN BANNERJEE: Right, so we'll try
25	to move quickly to that. I'm sure that Graham will be
	I

(202) 234-4433

	203
1	very anxious to
2	MEMBER WALLIS: I didn't say anything
3	about momentum. I said, how do you go from
4	differential equations to control volumes? That's my
5	first one.
б	CHAIRMAN BANNERJEE: Now we're going to
7	adjourn this, all right.
8	(Whereupon, at 12:46 p.m. a luncheon
9	recess was taken.)
10	CHAIRMAN BANNERJEE: The meeting will now
11	come to order. We are on Item #3.
12	Stephen, you are on, but you are not going
13	to do assessment results now?
14	DR. BAJOREK: What I'm going to do to try
15	to get us back onto schedule is to talk briefly on the
16	assessment, and then jump to some of the use of TRACE,
17	or some of the work that we're doing to make sure that
18	this is the tool that the agency can use in the
19	future.
20	There are two presentations that have gone
21	around. You have all of the overheads and the slides
22	for this.
23	What I have done in the PowerPoint is to
24	merge the two to hit only what I think are the more
25	important features.
	I

```
(202) 234-4433
```

	204
1	MEMBER WALLIS: You have consolidated the
2	two?
3	DR. BAJOREK: Yes.
4	CHAIRMAN BANNERJEE: It hasn't taken three
5	years, right?
б	DR. BAJOREK: Yes, it was consolidated.
7	One of the things I wanted to try -
8	MEMBER WALLIS: Let me turn out these
9	lights.
10	ASSESSMENT RESULTS
11	DR. BAJOREK: What I wanted to do in the
12	presentation on assessments is talk about our
13	assessment matrix, how we've changed it, expanded it
14	over the last couple of years.
15	The two points that I want to make sure do
16	come across is that by and large we are following the
17	CSAU process. We have taken a look at the processes
18	that have been published for large break and small
19	break PIRTs, and we've arranged our assessment matrix
20	to hit all of those processes which are highly ranked.
21	We have selected tests that cover both a
22	broad range of phenomena and a broad range of scale.
23	Earlier today Joe talked about some of the
24	developmental assessment, where we are looking at a
25	lot of single tubes type of data.
	1

(202) 234-4433

	205
1	Where we think that the real acid test of
2	the code then comes when we start to apply it toward
3	full height bundles, full height test faciities, and
4	a range of integral test facilities -
5	MEMBER KRESS: Bethsy is is one to 100?
6	That seems enormous.
7	DR. BAJOREK: Bethsy is - the information
8	I had listed is one to 100. I thought it was closer
9	to one over 48.
10	CHAIRMAN BANNERJEE: No, that's ROSA.
11	DR. KELLY: ROSA would be one over 48, and
12	I think one over 100 is about right for Bethsy.
13	Bethsy is full height, but that's volume.
14	MEMBER WALLIS: Full height? Okay.
15	Because it's huge otherwise.
16	DR. KELLY: Right, it's full height, full
17	pressure.
18	MEMBER WALLIS: Okay, that's what it says.
19	DR. BAJOREK: These are volume scales here.
20	CHAIRMAN BANNERJEE: The yellow means of
21	course they are not full height, right?
22	DR. BAJOREK: No, these are going from
23	small volume scale to larger. The couple of
24	facilities that were noted here in the lighter color
25	are from our own test programs.
ļ	I

(202) 234-4433

	206
1	MEMBER WALLIS: What's this LWR test
2	facility you have over here?
3	DR. BAJOREK: No, this is just to represent
4	the full-scale light water reactor. It's not a test
5	facility until you realize that UPTF is essentially a
6	full scale vessel.
7	But one of the things that we have done
8	over the last couple of years is, we've tried to learn
9	some of the lessons of not assessing a code like TRAC
10	PF1-MOD2. And what we have done is, we've looked at
11	the code. When we have the models in there that we
12	think are correct, we've gone through the assessment
13	matrix.
14	As Joe Kelly pointed out, when we went
15	through that assessment matrix the first time we found
16	numerous deficiencies. These had to go back into the
17	model and development stage. In some cases we had to
18	go back to the test programs that we've been running
19	at the Thermal Hydraulics Institute; develop improved
20	models; put them back in TRACE, and go back through
21	the assessment again.
22	In the process of automating things, we
23	have gone through this loop actually numerous times,
24	and it's only now that we feel we have enough fidelity
25	in the models, enough accuracy in the models, and
I	I

(202) 234-4433

207 1 replaced the ones that are truly bad, so that we can 2 start to release this code to real applications. 3 We think in the long run, since this is 4 intended to be a best estimate realistic code, we are 5 going to develop uncertainty methods, implement those in the TRACE as well, so that we can run numerous 6 7 applications for a full scale application in order to 8 examine the model and sensitivities, so it isn't just 9 one calculation that is done, but we see some of the impact of being off in some of those thermal hydraulic 10 models. 11 MEMBER SIEBER: Has any reviewer assessment 12 activity sent you back to the PIRT itself? 13 14 DR. BAJOREK: Not yet, no. 15 That's a possibility, MEMBER SIEBER: though, correct? 16 17 DR. BAJOREK: It's a possibility. I'm 18 trying to think in case of a new reactor, say EPR, 19 where reflux condensation, which is one of those 20 things which are important in the PIRT, but now it 21 becomes emphasized in there. 22 So in each one of these new applications 23 there is a PIRT process that is followed to try to 24 identify which models are going to be more important, 25 accentuated in that application, and then we start to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	208
1	target the assessment, and we are going to make sure
2	that the code -
3	MEMBER WALLIS: Well, you have all these
4	models that you fix up for things like interfacial
5	drag. It could be ways to fix up the momentum bounds
б	for Ts. That would be something that's in the code
7	itself. Is that maybe the sort of thing you are
8	thinking about? Because all of those things have an
9	influence on the answer.
10	DR. BAJOREK: That's true.
11	Show a little bit of a difference on what
12	has been done over the last couple of years as opposed
13	to how some of the assessment had been done in the
14	CSAU and throughout the `90s. Typically if we use ECC
15	bypass as an example, most previous assessment when
16	they would choose the code would focus on one of the
17	Test 6 simulations. UPTF looking at ECC bypass, this
18	was uniform injection in each of the three intact
19	loops that flow with bypass go out the broken loop.
20	We've expanded that to take a look at all
21	of the test cases in the Test 6 series, because some
22	plants do wind up with asymmetric injection because of
23	their safety systems. We've expanded that to take a
24	look at a series of tests, Test 7 in UPTF, in which
25	there was asymmetry in the injection.

(202) 234-4433

	209
1	Test 5 is one which had very, very high
2	subcooling. You wouldn't really expect that in somie
3	of the plant calculations. However, we found this one
4	to be very useful because it really puts a premium on
5	getting your condensation models correct in the up or
6	downcomer. So we focused on this, and added in Test
7	21, which is a direct vessel injection test.
8	One reason I wanted to bring this one up,
9	and there is another one in the package looking at a
10	reflood test -
11	MEMBER WALLIS: Excuse me, but when you
12	bottle this downcomer, it's a three-dimensional model,
13	is it?
14	DR. BAJOREK: Yes.
15	MEMBER WALLIS: With radial nodes?
16	DR. BAJOREK: In the downcomer itself you
17	would not have radial nodes. You would have radial
18	nodalization going across the vessel -
19	MEMBER WALLIS: It's just circumferential
20	and axial.
21	DR. BAJOREK: Circumferential and axial.
22	CHAIRMAN BANNERJEE: But it's not really a
23	three-dimensional model. It's something close.
24	DR. BAJOREK: Really, the way the downcomer
25	is modeled, it's two-dimensional.
	I

(202) 234-4433

	210
1	MEMBER WALLIS: It's a nodalization of the
2	downcomer, but it's not really 3-D.
3	DR. BAJOREK: Three theta, whereas you take
4	advantage of other aspects of a 2-D type nodalization
5	within the -
6	MEMBER WALLIS: It doesn't model, for
7	instance, the ECCS fluid say impinging on the inner
8	wall and running down or anything like that?
9	DR. BAJOREK: No, volume average.
10	Now partly because of those types of
11	concerns, the reason I wanted to bring this overhead
12	in here is we do want to try to rule out the user
13	effect inasmuch as possible.
14	So we've taken a look at our conventional
15	models for PWRs and BWRs, and we've applied that
16	nodalization to the test facilities as much as we
17	possibly could.
18	So we look at the lower plenum in a plant
19	model, it would look very much like the lower plenum
20	in downcomer in a UPTF.
21	Also in the package, if we take a look at
22	- I'm going to jump ahead, okay - the core
23	nodalization which is shown here, using RBHT as an
24	example, the axial nodalization, the way we would
25	model the core in a plant is very much like we would
ļ	I

(202) 234-4433

	211
1	apply that model in all of the test simulations that
2	we've performed.
3	And that would be our recommendation for
4	anyone setting up a model. That way we're at least
5	staying very close to the assessment base.
6	What we've done for each of these
7	simulations, we would go, in the case of UPTF, we
8	would define figures of merit. In this case we're
9	looking at the penetration time. We are looking at
10	the filling rate, in this case of the lower plenum.
11	And we'd also be looking at the condensation
12	efficiency, what we predict and what we measure.
13	This is an example of one of the UPTF
14	cases.
15	MEMBER WALLIS: Is this is the sort of
16	switching where the staff to start with it's all held
17	up, and then it comes down as fast as it goes in?
18	DR. BAJOREK: Yes. Well, not exactly.
19	MEMBER WALLIS: More or less?
20	DR. BAJOREK: Not exactly. Some of it is
21	still being swept out
22	MEMBER WALLIS: That's why it's slightly
23	curved.
24	DR. BAJOREK: - during the penetration
25	period.
I	I

(202) 234-4433

But rather than focusing solely on a single test, we've run a relatively large number of these in order to characterize how well the code is doing.

5 Now you can see in this case we've predicted that lower plenum fill rate generally within 6 7 plus or minus 20 percent. In comparison to the work 8 that had been done for CSAU, the penetration time, 9 that ratio of predicted to measured was 2.76, meaning it was predicted relatively late. We think we are 10 getting that about correct in TRACE now. 11

12 The filling rate TRAC-PF1-MOD2 was about a point five in the CSAU study. Here we think we're 13 14 getting things about right, without a significant bias 15 There are problems. We see in some cases as a group. if we have injection done asymmetrically, the code 16 17 does tend to want to sweep, flow in the opposite side of the downcomer out, excessively, when compared to 18 19 the data.

20 looked Now we've at these various 21 simulations, and for the most part the code is doing 22 the right thing in that it tends to bypass that loop 23 close to the break, while those loops far away from the break on the other side of the downcomer tend to 24 25 do the penetration.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	213
1	CHAIRMAN BANNERJEE: most sensitive to
2	which correlation? There must be 100 of them being
3	exercised, but which one actually gives you the most
4	effect on the results?
5	DR. BAJOREK: I would have to venture that
6	it would be the drag on the droplets that are
7	entrained within the downcomer.
8	CHAIRMAN BANNERJEE: What about the
9	correlation that says how many droplets had changed?
10	There must be some correlation like that, right?
11	DR. BAJOREK: There is a correlation in
12	there that accounts for that. As to which one is
13	having the largest effect, I really don't know.
14	CHAIRMAN BANNERJEE: So let's say how the
15	droplets enter in. Where does that correlation come
16	from? Is it from something like this? Or something
17	completely different? Like is it from annular flow
18	correlation for entrainment?
19	Maybe Joe can speak to it.
20	DR. BAJOREK: That's been a recent topic.
21	MEMBER WALLIS: it's not clear to me that
22	bypass is a result of droplets being entrained anyway.
23	It's more a macroscopic slushing out of stuff.
24	DR. KELLY: What I saw when I looked at
25	these tests the last time was that the elevation where
	I

(202) 234-4433

	214
1	the cold legs and hot legs were, the void traction was
2	fairly low, on the order of 40 percent.
3	And it was below that that it was in the
4	annular flow regime. But it was, as Steve said, it's
5	primarily the interfacial drag model that holds the
6	water up, because the velocities are on the order of
7	a couple of hundred meters per second, because it's a
8	pretty low pressure steam being blasted through the
9	downcomer to go into the cold leg.
10	MEMBER WALLIS: Don't you get a lot of
11	oscillations in this downcomer?
12	DR. BAJOREK: Some tests, yes.
13	MEMBER WALLIS: Because I mean they already
14	did tests on downcomer, fifth scale or something. I
15	looked at those; I was there. And we had all sorts of
16	thermocouples and things. And there was a tremendous
17	amount of unsteady flow going on in there.
18	DR. BAJOREK: That's true. And that is
19	especially true if the water coming in is subcooled.
20	Some of these tests were nearly saturated.
21	MEMBER WALLIS: It would collapse and all
22	kinds of stuff.
23	CHAIRMAN BANNERJEE: In comparing these, it
24	is interesting to see how much makes it down, how much
25	goes out, but do you have more detailed data, like how
I	1

(202) 234-4433

	215
1	much is - what the void fraction distribution looks
2	like?
3	I don't remember UPTF now.
4	DR. BAJOREK: Well, there is information on
5	the global mass distribution, how much is in the lower
6	plenum, how much is in the downcomer, how much
7	remained in the cold legs, and where that penetration
8	occurred.
9	By looking at thermo-couples which were
10	embedded in the core barrel and the vessel wall.
11	They really inferred where the penetration
12	was occurring from the thermo-couple information as
13	opposed to a direct measure.
14	MEMBER WALLIS: Did you compare with those
15	CREARI tests?
16	DR. BAJOREK: No, we haven't done that.
17	That is part of our looking at the assessment damage,
18	in that when we have a limited amount of resources to
19	spend on certain problems we have tried to look at
20	that full scale first and then expand to lower
21	subscale tests.
22	CREARI I think was one-fifth and one-
23	fifteenth.
24	MEMBER WALLIS: But there is a lot of data
25	on the variation of temperatures and void fractions
I	

(202) 234-4433
	216
1	and things at say different places over time, which
2	you could also compare with your predictions. A lot
3	of detail as well as the macroscopic penetration rate,
4	if you want to do that.
5	Of course you may just want to get the
6	answer you want, and if the details don't match we
7	don't care.
8	DR. BAJOREK: Well, we want to make sure
9	that the code is not scale dependent, and in the long
10	range it's likely we will look at some of those tests.
11	But in order to get the code out and
12	finished, if we had to make a choice between something
13	at part scale versus full scale for UPTF -
14	MEMBER WALLIS: Not to mention the
15	phenomena of changing much, though, between pretty big
16	and really big. There's not much that can change.
17	ADMINISTRATIVE JUDGE PEACOCK:
18	CHAIRMAN BANNERJEE: I guess my question
19	would be, are you getting the right answers for the
20	right reasons in terms of the mechanisms? So I don't
21	know what you have to do to do your own internal due
22	diligence about this.
23	Because I would say that if you were
24	getting this type of result because the phenomena your
25	code was predicting was similar to what you saw in the
	1

(202) 234-4433

	217
1	experiment, that's really wonderful.
2	But if you were getting it due to say some
3	mechanism which wasn't really what was then the
4	experiments, but you got the right results anyway,
5	that would be more of a concern.
6	So I would ask you to look at everything
7	from that point of view.
8	DR. BAJOREK: What we try to do is not
9	focus on a single figure of merit.
10	CHAIRMAN BANNERJEE: Right.
11	DR. BAJOREK: I mean you can't just look at
12	the penetration time. You've got a CCFL breakdown.
13	As I mentioned, we tried to look at three things: when
14	you start to get the penetration; how quickly you fill
15	the lower - what's the penetration rate; and what's
16	the condensation efficiency.
17	Now in earlier versions of the code -
18	CHAIRMAN BANNERJEE: And why are you
19	getting the bypass.
20	DR. BAJOREK: And why you are getting - in
21	earlier versions you may get one of two fo those
22	parameters correct, and the other one would be way
23	off. Like I remember one of the earlier versions, the
24	bypass time and the filling rate weren't all that bad,
25	but the condensation efficiency was 1.0, and we knew
Į	I

(202) 234-4433

218 1 that wasn't correct, compared to what the experimental 2 data was. When we fixed that, well, we were off on 3 4 the other two. It was really the refinement of 5 several models before you simultaneously get all of your figures of merit correct. And we are sensitive 6 7 to that, and that's why we try to look at several 8 things within not only the context of what was 9 measured in there, but in taking a look at things like the interfacial drag, where the bypass occurs, things 10 that the code is predicting that you could make some 11 engineering judgment on, but you may not necessarily 12 13 have a -14 CHAIRMAN BANNERJEE: For example if in this 15 most of the bypass was occurring due to case entrainment of CROPS, that's what the code was 16 17 predicting, and that's what experiments somehow were doing, that's fine. 18 19 But say most of the bypass was predicted 20 by the code as drops. In experiments it was some 21 periodic slushing phenomenon that was getting it out. 22 Then you've got the right result for the wrong 23 reasons. 24 And I think that there is no way we can 25 ever go into every experiment and look at it in the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	219
1	same detail as you can obviously. So every time you
2	show us something like this, we'd like to be reassured
3	that you've got that answer because you've got the
4	right mechanism. It's didn't come due to some other
5	mechanism.
6	DR. BAJOREK: We agree.
7	MEMBER WALLIS: Because for example you can
8	fudge the condensation efficiency with a correlation
9	and make the points come closer to a line. It doesn't
10	mean to say you've really fixed the right mechanism.
11	DR. BAJOREK: And what we've found is that
12	when we have made adjustments in those models
13	affecting one, when we do make that mistake, and
14	correct one model and not think about something else,
15	it pops up in some of these other figures of merit.
16	So we are looking at all of those
17	simultaneously, and we're not just looking at the
18	global results only. We are looking at the details.
19	MEMBER WALLIS: What you are plotting here
20	is a penetration rate which is the slope of the line
21	that you showed on the previous graph?
22	DR. BAJOREK: Yes.
23	MEMBER WALLIS: Which is not a straight
24	line, though, so what is the - is it the average
25	penetration rate or something?
	I

(202) 234-4433

	220
1	It's a curve; it's not a straight line.
2	So what is the penetration rate there? Which one -
3	the slope doubles when it goes up from the bottom to
4	the top.
5	DR. BAJOREK: We've relied on some
б	evaluations that had been done during the 2-D/3-D
7	program.
8	MEMBER WALLIS: What is the penetration
9	rate here?
10	CHAIRMAN BANNERJEE: Is it the average of
11	this? Or what are you taking?
12	DR. BAJOREK: We look at the time after
13	penetration occurs until the time just before the
14	lower plenum is filled. So it's the average filling
15	rate during oh approximately 55 and 75 seconds here.
16	MEMBER WALLIS: Because the TRACE
17	prediction is actually about double the rate at the
18	end as at the beginning.
19	DR. BAJOREK: This is - this is some
20	nodalization question here.
21	MEMBER WALLIS: No, no, just the slope of
22	that curve, the rising curve. The slope is a lot
23	bigger at the top than the bottom.
24	DR. BAJOREK: Yes, but we are looking at
25	that average over this evaluation period.
	I

(202) 234-4433

	221
1	CHAIRMAN BANNERJEE: Now, for each of
2	these, do you write up a little report just to
3	describe what it was you found, from the viewpoint of
4	the phenomenon, and then more detailed results? How
5	do you document these?
6	DR. BAJOREK: Each one of the assessments
7	we've tried to standardize this format. We describe
8	the facility itself, what those experiments were. So
9	the reader can be informed about what was going on.
10	We describe the TRACE model then, and
11	hopefully from this we can see how it changes from one
12	facility to the next, or how it's standardized when
13	you have similar phenomena.
14	We have the assessments shown, then
15	compare the code predicted results to the measure.
16	And then there is a section that performs basically an
17	evaluation of that comparison, describes what went
18	right, what went wrong, tries to identify if there is
19	a sensitivity in the code, let's say to subcooling,
20	and comments on those simulations.
21	So that somebody who is interested in ECC
22	bypass can go through there and make a conscious
23	decision as to whether the code is doing a reasonable
24	job for the right reasons, or whether I have a model
25	that if I have very high subcooling, there is
	I

(202) 234-4433

	222
1	something I want to be -
2	MEMBER WALLIS: Look at this again here,
3	your trace curve is continuous. The data says that
4	stuff goes into the low plenum and comes out again, it
5	sloshes in and out in a very dramatic way. I mean
6	there are times when it is actually coming out as fast
7	it went in; the down part of those spikes.
8	So there is something going on here about
9	it going in and out of the lower plenum which isn't
10	being modelled at all by TRACE.
11	DR. BAJOREK: Well, these tests were
12	measured with I think roughly four DP cells at the
13	bottom of the lower plenum. There was a lot of
14	motion, a lot of sloshing going on.
15	I think what we were picking up in the DP
16	cells, there is a lot of that sloshing motion.
17	MEMBER WALLIS: Picking up some momentum
18	rather than some gravity; is that what you mean?
19	DR. BAJOREK: Yes. In fact, I think you
20	see it down here. As soon as you turn on the test,
21	you do start to see an offset -
22	MEMBER WALLIS: No, but I'm talking about
23	the big oscilations.
24	DR. BAJOREK: You are talking about these?
25	MEMBER WALLIS: Right.
I	I

(202) 234-4433

	223
1	DR. BAJOREK: Yes.
2	CHAIRMAN BANNERJEE: Would it could be
3	partly gravity, partly momentum.
4	MEMBER WALLIS: Right.
5	CHAIRMAN BANNERJEE: I guess the broader
6	issue is, is there discussion of the qualitative
7	phenomena seen in the experiments, and whether there
8	is similar qualitative phenomena in your calculations.
9	There is qualitative and quantitative in
10	this case, and the quantitative aspect of it, you
11	know, sometimes you can get a few things right, but
12	because you can adjust things, or even if you are not
13	adjusting things it could be just some completely
14	wrong reason.
15	Jeff Hewitt has a famous talk about this.
16	Have you ever heard this? It is how you can change
17	the models over incredibly wide range of results, and
18	if you know the answers, you can always get the right
19	answers. This is a talk he gives.
20	So taking that into account, and some of
21	them are due to completely the wrong mechanism, you
22	know. So the issue is really, are you getting that
23	result due to the right mechanism or not?
24	MEMBER WALLIS: And do you care?
25	CHAIRMAN BANNERJEE: We care.
ļ	

(202) 234-4433

1 DR. BAJOREK: We think we are now getting 2 the right results for about the right reasons. We try write that up 3 in the assessments. Are we to 4 successful in doing that for every single simulation? 5 Probably not. But we try to do as thorough a job as we can in describing how well the code is actually 6 7 performing for that particular task.

8 MEMBER WALLIS: Another obvious question 9 is, what's the rate at which you are adding the ECC? 10 Is that TRACE slow at the top there putting it all in? 11 In which case, comparison with the code doesn't really 12 tell you very much. It's simply saying it all gets 13 down. It's not telling you something percentwise. 14 It's just saying it all gets down.

DR. BAJOREK: That's why for this particular - these particular tests, our interest is really on this part of -

MEMBER WALLIS: It's not all getting down. 18 19 DR. BAJOREK: - down there. Once you are 20 out here, and the steam flow is gradually decreasing 21 in these tests, and you've got CCFL penetration, and 22 you've filled the lower plenum, we really don't care. We could have cut this off at about 80 seconds and not 23 24 really have lost much information in terms of how well 25 the code is behaving.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	225
1	We talked about this. We try to go
2	through, and this is an example of some of the reflood
3	test results, we've expanded the test matrix. Instead
4	of just taking a look at one or two tests, we now look
5	at a very broad range of conditions that look at
6	pressures -
7	MEMBER WALLIS: D we have those?
8	DR. BAJOREK: Yes, you do. Page nine.
9	It's in there. I am skipping through this.
10	MEMBER WALLIS: Slide 18. Yours is 10.
11	Your numbers aren't the same?
12	DR. BAJOREK: No, not on this one, no.
13	But comparing the things that were
14	measured in the test, in this case the code is in red.
15	MEMBER WALLIS: This is remarkably good for
16	a very messy phenomena.
17	DR. BAJOREK: Thank you.
18	CHAIRMAN BANNERJEE: Is this pre-test or
19	post-test?
20	DR. BAJOREK: No, this is all post test.
21	In fact SEASET was run in the last `70s. Most of
22	these tests have been in a way almost a standard type
23	fo problem for reflood behavior.
24	MEMBER WALLIS: But Joe Kelly has massaged
25	the code a lot to make it fit these tests, hasn't he?
I	I

```
(202) 234-4433
```

	226
1	I mean he had a lot of concern about the model and he
2	kept adjusting it.
3	DR. BAJOREK: Well, let's jump one more.
4	This is kind of what we started with.
5	MEMBER WALLIS: This is after Joe fixed it?
6	DR. BAJOREK: This is before.
7	MEMBER WALLIS: This is before, but what we
8	see on this -
9	DR. BAJOREK: This was a 2001 report that
10	was done basically with the reflood model in TRAC-PF1-
11	MOD2. It was renamed TRAC-M at about that time. We
12	really hadn't changed any of the physical models.
13	MR. CARUSO: It's conservative.
14	DR. BAJOREK: It's conservative. It's not
15	realistic. Would you say that's conservative? At the
16	upper elevation?
17	MEMBER WALLIS: Which one are they going to
18	show us?
19	DR. BAJOREK: Well, if you were a vendor,
20	you'd want to see this one, and you probably wouldn't
21	get to look at this one.
22	The point is, this is really the state of
23	the code reflood before the interim reflood model.
24	Okay?
25	MEMBER WALLIS: 1600 degrees K is pretty
I	I

(202) 234-4433

	227
1	bad, isn't it?
2	DR. BAJOREK: It's very bad. It's very
3	bad. But the point I want to make is, that's what we
4	started with a couple or three years ago.
5	There have been numerous changes to the
6	reflood model. We are still looking at that.
7	CHAIRMAN BANNERJEE: Now you have been over
8	this, but can you in a nutshell tell us again what is
9	the major change that you have to make?
10	Is there one controlling phenomenon that
11	was really wrong?
12	DR. BAJOREK: Oh, I don't know if there was
13	one that was very wrong. The model was very, very
14	sensitive to that oscillatory flow rate.
15	I think a large part was the inverted
16	annular behavior near the clench front.
17	CHAIRMAN BANNERJEE: You mean the
18	precooling due to it?
19	DR. BAJOREK: How that inverted annular
20	column broke up, and what was the key transfer that
21	occurred, and how it affected the downstream
22	development at that point.
23	MEMBER WALLIS: Is it really inverted
24	annual, or is that just what people think it is?
25	DR. BAJOREK: I think that's what the old
ļ	I

(202) 234-4433

	228
1	model -
2	CHAIRMAN BANNERJEE: Well, I guess in
3	gravity reflood, whatever, you were getting these
4	oscillations. So this tongue was being made and
5	broken, made and broken, all the time, right?
б	DR. BAJOREK: Yes, so I think when you were
7	getting that downward flow on the gravity reflood, the
8	code may have been thinking it had been in an invert
9	breaking that up and giving us different dynamics.
10	CHAIRMAN BANNERJEE: Now how did you fix
11	it? You still have oscillations.
12	DR. BAJOREK: We still have oscilations.
13	We still have a lot of work to do in the reflood
14	model.
15	In your handout which we won't be able to
16	get to in the interests of time, we were looking at
17	some of the CCTF simulations. And we think we have
18	identified why those aren't in agreement, between the
19	code and the data. That's grounds for future work.
20	But one of the reasons we're satisfied
21	with TRACE 5.0, and feel it can be publicly released
22	at this time is because we think it does a reasonable
23	job for most of these assessment, and those places
24	where it does have some problems and deficiencies, we
25	can identify them.
I	1

(202) 234-4433

	229
1	CHAIRMAN BANNERJEE: Where are the problems
2	and deficiencies?
3	DR. BAJOREK: I'll get to that in just a -
4	CHAIRMAN BANNERJEE: Who didn't get a
5	chance to tell us what was the new deficiency in the
6	TRAC-M, though?
7	DR. KELLY: Well, actually Steve did a
8	pretty good job of that.
9	CHAIRMAN BANNERJEE: It was oscillation?
10	DR. KELLY: Because they were using an
11	inward velocity to tell them the lengths of the
12	inverted annular. So just like you said it would go
13	away, which meant everything would be treated as
14	droplets, swept out of the bundle, and the bundle
15	would sit there and fill back up and throw all the
16	water away.
17	MEMBER WALLIS: When you model these tests
18	you have to model the rest of the system, not just the
19	bundle?
20	DR. BAJOREK: Not for this particular test.
21	This is a relatively simple separate effects test, so
22	it's just the bundle.
23	The point I do want to leave you with on
24	this -
25	MEMBER WALLIS: Don't the oscillations
ļ	1

(202) 234-4433

	230
1	depend on the rest of the system as well?
2	DR. BAJOREK: Yes.
3	MEMBER WALLIS: How do model that?
4	DR. BAJOREK: In CCTF and STCF, we modeled
5	the entire system for that test.
6	MEMBER WALLIS: But for select CSET you
7	don't have to do that?
8	DR. BAJOREK: No, this was a forced
9	flooding test.
10	MEMBER WALLIS: It's forced, okay.
11	DR. KELLY: But even with that the Banerjee
12	M model had these oscillations that threw the water
13	away.
14	DR. BAJOREK: Yep. As we go through and do
15	the simulations, we don't just look at the cladding
16	temperature. This was typical of what some
17	assessments had done in the past.
18	We are looking very closely at the heat
19	transfer coefficients that are predicted by the code.
20	We have been able to either get those from the
21	experimental data, or we have been doing some work to
22	actually develop those from our data for the newer
23	tests.
24	But we are also taking a look
25	simultaneously at things like the bundle mass, its
I	

(202) 234-4433

	231
1	distribution, and the overall clench profiles.
2	That was TRAC-M. Problems, improvements:
3	We aren't going to claim at this point that TRACE 5.0
4	is perfect. We think there are a number of things
5	that we would like to fix in the near future.
б	Joe did a nice summary earlier on where we
7	think some of the model improvements are going to come
8	from.
9	If we take a look at all of these tests in
10	mass, where we have - some of our biggest concerns are
11	with the core reflood model, and its lack of space or
12	grid models.
13	If we look at the details fo some of those
14	experiments - we don't have time to look at those - we
15	don't capture the local behavior that occurs
16	downstream of the grids.
17	This is due to the convective enhancement,
18	the droplet breakup, and in some cases, early rewed of
19	the grid spacer itself.
20	So when we look at some of the CCTF and
21	SETF experiments, we expect with TRACE right now to
22	overpredict some of those temperatures at the higher
23	elevations. And we think that when we get in the
24	spacer grid models, and are able to model the
25	phenomena that they would impact, we would be able to
	I

(202) 234-4433

	232
1	improve those considerably.
2	We want to put in the spacer grid models
3	in TRACE 6.0. We already have the capability of
4	adding in a third field, which will give us the
5	capability of modeling not only the gas field, the
6	continuous liquid field, but having a separate droplet
7	field.
8	That is going to give us a distinctive
9	advantage then at being able to model droplet breakup
10	higher into the core, and droplet entrainment, the
11	entrainment both in the core and in the upper plenum
12	for those tests like UPTS 10 and 10-B where you need
13	to know what that distribution is.
14	If we took at all of the tests gravity and
15	forced reflood, we can probably say at this point our
16	carry over, how much of that liquid -
17	MEMBER WALLIS: Is overpredicting it?
18	DR. BAJOREK: It's overpredicting it.
19	MEMBER WALLIS: But I would think that the
20	drop breakup mechanism would break them up smaller and
21	make them carry over even more?
22	DR. BAJOREK: It would break them up and
23	evaporate them.
24	MEMBER WALLIS: Well, they'd either
25	evaporate or carry over. But they certainly would be
ļ	

(202) 234-4433

	233
1	carried up as steam or water.
2	DR. BAJOREK: Well, we're hoping they'd be
3	carried up, break up the droplet, increase the
4	interfacial area, evaporate and drop the steam
5	temperatures, which are too high right now.
б	When you look at some of the tests like
7	SCTF, there is too much water in the upper plenum and
8	being generated in the steam generators.
9	MEMBER WALLIS: Once you've dropped the
10	steam temperature, though, the steam is simply
11	carrying up whatever didn't evaporate.
12	In that case smaller drops would carry
13	move to the upper plenum. Yes.
14	DR. BAJOREK: Yes.
15	Downcomer, interfacial and wall models, I
16	left that on there. This has been one of those last
17	things that we've had to pin down. We've seen some
18	problems there, and we are going to look at those in
19	more detail.
20	And curve robustness. We are somewhat
21	plagued with transients going out, going in very small
22	time steps. We know we've got to fix that if we're
23	going to be able to use this code to do the 59, 94, or
24	124 simulations which are typical of the best
25	estimates statistical approach.
	I

(202) 234-4433

	234
1	CHAIRMAN BANNERJEE: Come again with
2	robustness? I just didn't quite get what the problem
3	is.
4	DR. BAJOREK: If we run 500 simulations, we
5	will find that there are going to be a handful that
6	will stop. A lot of time the analysts can get around
7	that by taking some creative liberties with the time
8	step, making it small before they are getting it
9	through.
10	We want to be able to run all of these
11	cases, all of the plant calculations, without having
12	to nurse it through.
13	MEMBER WALLIS: It doesn't reverse the time
14	when it stops, doesn't actually go backwards, it just
15	stops.
16	DR. BAJOREK: It just stops, yes.
17	MEMBER WALLIS: What is that due to, in
18	general?
19	DR. BAJOREK: It can be several different
20	things.
21	MEMBER WALLIS: Something blows up? Some
22	matrix which is singular or something, something odd
23	happens, and it just can't go any further?
24	DR. KELLY: A good example is if for some
25	reason in say a downcomer where you would have a
	I

(202) 234-4433

	235
1	level, the condensation rate gets very high for
2	awhile, and a solid wall of liquid hits another
3	boundary, and then you get a pressure spike, and
4	that's called water packing and so on.
5	MEMBER WALLIS: I'm just curious about
6	that. In the preamble to this TRAC thing that I tried
7	to read, it said they could model water hammer. Is
8	that true? I really doubt that
9	DR. MAHAFFY: This is John Mahaffy. There
10	is historical precedent for that. There were some
11	calculations done by what was then called CAMA in the
12	Netherlands using TRAC to look at water hammer
13	phenomena in various odds and ends trains of piping
14	and reactor systems, where you'd have a flow, you'd
15	slam a valve closed and look at it.
16	They actually surprised me. They did
17	better than I expected.
18	The reason really is, when you think about
19	the phenomena with the shock waves and the
20	rarefactions, you'd normally think you really want a
21	good set of fully conservative mass energy momentum
22	equations.
23	But that kind of thinking comes from kind
24	of ideal gas situations in shock tubes. When you are
25	dealing with shock waves going through water where the
Į	I

(202) 234-4433

	236
1	density doesn't change, you can get away with a lot
2	less and still get good answers.
3	MEMBER WALLIS: You need a pretty small
4	time step?
5	DR. BAJOREK: Oh, certainly, you have to.
6	You are following the shock wave. You got to resolve
7	it.
8	Most of the assessment work that we've
9	been looking at has been generic in its applications.
10	It covered the highly ranked phenomena and the PIRT.
11	As I mentioned, we do have test series to
12	take a look at those tests which are most important to
13	ESPWR, to focus in on phenomena that we know is
14	important in that plant, and what we expect is going
15	to be important in a plant like EPR.
16	So we are trying to look ahead.
17	CHAIRMAN BANNERJEE: Well, ESPWR, there is
18	no - GIRAFFE is full height or not?
19	DR. BAJOREK: GIRAFFE is pretty much full
20	height, yes.
21	CHAIRMAN BANNERJEE: And is now actively
22	being used?
23	DR. BAJOREK: I don't believe so, no.
24	MEMBER WALLIS: it's a giraffe.
25	CHAIRMAN BANNERJEE: So all these - the
I	I

(202) 234-4433

	237
1	rest of the stuff - you are not involved with PONDA
2	anymore, right?
3	DR. BAJOREK: Not presently, no.
4	CHAIRMAN BANNERJEE: There is a new set of
5	requirements being planned for PONDA?
6	DR. BAJOREK: There is a new set of
7	experiments. I believe the NRC has decided not to
8	participate in that.
9	CHAIRMAN BANNERJEE: Right. So all you
10	have are these PUMA experiments which are reduced
11	height, right?
12	DR. BAJOREK: Reduced height. We have
13	several different types of tests in PUMA, and GIRAFFE
14	we use proprietary.
15	CHAIRMAN BANNERJEE: You know one of our
16	major concerns is this chimney. How are you going to
17	address that?
18	DR. BAJOREK: Well, in terms of the
19	assessment.
20	CHAIRMAN BANNERJEE: Well, to be sure that
21	your code works.
22	DR. BAJOREK: We can shoiw you the
23	assessment against the Ontario Hydro. There may be
24	some additional Ontario Hydro tests that we ought to
25	be looking at.
I	I

(202) 234-4433

	238
1	CHAIRMAN BANNERJEE: Well, they may be the
2	right diameter, but they are not -
3	DR. BAJOREK: Not necessarily the full
4	height.
5	CHAIRMAN BANNERJEE: The full height, and
6	then they are not part of the system. And the sort of
7	thing that was worrying us was, you get fluourogime
8	type oscillations which actually cover the whole
9	chimney.
10	DR. BAJOREK: Well, one of the things that
11	I would suggest is that as we get closer to audit
12	calculations of ESPWR, we come in and we talk to you
13	about the assessment and phenomena in ESPWR, and how
14	TRACE performs against those.
15	And I don't think we're prepared right
16	today to really look at the results and comparisons
17	for Ontario Hydro or for the interval tests.
18	MEMBER WALLIS: When we look to GE's work
19	on stability they had a Courant number which was not
20	right for the chimney. And this really spread out the
21	void fraction variations as you remember. There's
22	artificial diffusion numerically. Does TRACE have the
23	same problem, or does the SEASETS method prevent this
24	diffusion.
25	CHAIRMAN BANNERJEE: The differencing would
	I

(202) 234-4433

	239
1	give us the diffusion.
2	MEMBER WALLIS: It was very noticeable in
3	the GE results, that Courant number was way off, and
4	htye came in with a certain perturbation, and it just
5	attenuated itself as it went up the pipe with no
6	mechanism to create it except the numerical diffusion.
7	DR. BAJOREK: I haven't seen those results.
8	MEMBER WALLIS: You haven't seen those?
9	CHAIRMAN BANNERJEE: Well, part of it was
10	they very crudely normalized the chimney.
11	But even if the code was capable of having
12	these fluorogime-related oscillations in void
13	fraction, it couldn't sustain them because it was so
14	crudely -
15	MEMBER WALLIS: But even without that they
16	couldn't sustain the perturbation in void fraction.
17	DR. BAJOREK: One of the things that the
18	ACRS -
19	CHAIRMAN BANNERJEE: It could go back to
20	EPR? So ROSA of course is full height, full power,
21	everything is right.
22	DR. BAJOREK: Well, CSET was full height.
23	APEX is quarter height. But we're using this
24	basically as a separate effects facility where we can
25	have some more detailed measurements as the steam
Į	

(202) 234-4433

	240
1	enters the uphill part of the steam generator.
2	MEMBER WALLIS: This is being done now, you
3	said?
4	DR. BAJOREK: Some of those tests have been
5	done, and we still have - we have some plans for doing
6	some additional tests in 2007, yes.
7	CHAIRMAN BANNERJEE: In the plenum of the
8	steam generator, you mean the inlet plenum or what?
9	DR. BAJOREK: What we've done is we've
10	taken the flow from - it boils off the intact side,
11	steam generator; blocked off that part; brought that
12	steam into the hot leg, and let it go into the faulted
13	side steam generator, the one that we are doing the
14	measurements, with DP cells in both the uphill and the
15	downhill side, where we can have collection tanks to
16	see what is the split of condensation on the uphill or
17	the downhill side.
18	We could range it then over a variation of
19	Reynolds numbers, inlet Reynolds numbers, which are
20	somewhat consistent with EPR, where we expect it to
21	be.
22	We'd also like to be able to put in some
23	noncondensables, because what is kind of interesting -
24	oh, actually one of our Bethysi tests -
25	MEMBER WALLIS: Is it normally done so it
	1

(202) 234-4433

	241
1	will accumulate in the steam generator?
2	DR. BAJOREK: Yes. We see that in one of
3	the Bethysi tests, and also one of the ROSA tests. I
4	don't have it listed up here at this point, but when
5	they had this rapid depressurization of the secondary
б	side of the steam generator, they started to collect
7	noncondensibles, which I think came out of solution
8	into the steam generator tubes, that actually reduce
9	some of the condensation.
10	MEMBER WALLIS: These are hydrogen? What
11	are the noncondensibles?
12	DR. BAJOREK: In our test?
13	MEMBER WALLIS: In a real reactor. I guess
14	in the real reactor.
15	DR. BAJOREK: Real reactor it'd be
16	hydrogen.
17	MEMBER WALLIS: What are they in the APEX,
18	noncondensibles? What are they?
19	DR. BAJOREK: Nitrogen air.
20	MEMBER WALLIS: Nitrogen? Is this air in
21	the water?
22	DR. BAJOREK: In the tests that we're
23	running we're putting it in.
24	MEMBER WALLIS: You're putting it in?
25	DR. BAJOREK: We would put that in.
ļ	I

(202) 234-4433

	242
1	They suspect that in the ROSA and the
2	Bethysi tests where they saw those phenomena it was
3	nitrogen coming out of solution.
4	CHAIRMAN BANNERJEE: We have no full height
5	facilities of our own, non-potentially our own.
6	DR. BAJOREK: Potentially yes. One of the
7	things that we want to try to do is to perform some of
8	the assessment with TRACE as it is right now. We want
9	to see how well the models behave.
10	If the models are poor, they're getting
11	the wrong answers for the wrong reasons, or even the
12	right answers for the wrong reasons, then we have good
13	justification to propose to our management to go to
14	the Thermal Hydraulic Institute and set up separate
15	effects test in order to focus in on the phenomena.
16	But we're finding that if we were to just
17	simply say, we need resources to run some tests,
18	because we think a model is bad, we aren't going to be
19	very successful.
20	CHAIRMAN BANNERJEE: It's good to have ROSA
21	data anyway, right?
22	DR. BAJOREK: Yes, we have the ROSA data.
23	We have already obtained this - well, we have the
24	reports for FLECHT-SEASET trying to get that
25	electronically.
I	

(202) 234-4433

	243
1	We have this data in house.
2	CHAIRMAN BANNERJEE: Wait and see.
3	DR. BAJOREK: Yes.
4	One of the issues that was raised in the
5	ACRS letter was that we needed to do things to try to
6	make TRACE an integral part of the agency tool box.
7	In looking at this over the last year, one
8	of the things - a couple of things we realized is that
9	when the users in NRR or any of our other offices try
10	to use TRACE, they are kind of in a time bind. They
11	need to have an answer in several weeks, and they
12	don't have that opportunity to convert decks, set up
13	plant models, in some cases learn code. So what we've
14	attempted - what we are trying to do now is to make
15	this much easier for new users.
16	We have started training workshops. We
17	had one last year, it was either April or May. We
18	plan to continue those at one to two per year. I
19	think last year we had something like 30 or 40 new
20	users; have a hands-on workshop to use TRACE and SNAP,
21	and step through how you would set up, use and -
22	MEMBER WALLIS: Now, I've already gotten an
23	NRR, and I want to use TRACE to model ESPWO. What I
24	would want from you would be a TRACE code which
25	already has all the input stuff, and all the special
Į	I

(202) 234-4433

	244
1	stuff I need for ESPWO. So there's an absolute
2	minimum of stuff I need to put in myself. I wouldn't
3	have to put in the geometry of ESPWO, or something
4	like that. I want it to be there already.
5	I can start asking questions about, what
6	happens if this pressure is higher than that, or this
7	temperature - play with it. But I don't want to have
8	a lot of time putting in information.
9	DR. BAJOREK: That's what we're trying to
10	make easier. NRR, I took the responsibility of
11	setting up the ESPWO model. We also, we've taken that
12	and been using it.
13	But what we want to try to be able to do,
14	whether it's ESPWR or any other -
15	MEMBER WALLIS: Well, have you figured out
16	how to nodalize and all that stuff, and I won't have
17	to fiddle with that?
18	DR. BAJOREK: We would do that. We would
19	do the nodalization. We would have the plant decks,
20	NRR, or any other stakeholders then are free to go do
21	some of those sensitivities, or explore some of those
22	questions - what if I have a different type fo noding
23	here? What if I change my initial suppression pool
24	temperature, or what if I have a higher resistance in
25	this line than I may have anticipated?
Į	I

(202) 234-4433

	245
1	MEMBER WALLIS: They can go to some line in
2	the code and put in a different coefficient of heat
3	transfer, can they do that?
4	DR. BAJOREK: I hope not.
5	MEMBER WALLIS: You hope not?
6	DR. BAJOREK: We want to try - they can put
7	in loss coefficients and things like that.
8	MEMBER WALLIS: Well, I've got this one
9	minus alpha for the 1.75 or 1.8 or 1.92. I want to
10	change that and see how sensitive it is to that. I
11	can't go into the code and do that?
12	DR. BAJOREK: No, you can't.
13	CHAIRMAN BANNERJEE: That is a Joe Kelly
14	thing. It's a Joe Kelly decree.
15	DR. BAJOREK: You'll have Joe mad at your
16	too.
17	DR. KELLY: But what we are going to do,
18	and Steve alluded to this earlier, when we start doing
19	the uncertainty methodology, we will provide as input
20	multipliers on a number of physical models.
21	But then a user can set those multipliers
22	to do exactly those kind of sensitivity studies you
23	are talking about now.
24	Would they be on every physical model?
25	No. But they will be on the ones that were judged of
I	1

(202) 234-4433

	246
1	high importance in the PIRT for the various
2	transients.
3	DR. BAJOREK: Right. You'd look at the
4	CSAU. You may want to arrange heat transfer
5	coefficient in the core. You really don't want to go
6	and arrange heat transfer coefficient everywhere
7	within the system.
8	So what we are - our plans are, when we
9	merge this with uncertainty methodologies, is to set
10	it up so the user can go and put multipliers on
11	various models and various correlations.
12	But no, he will not have the flexibility
13	of pulling out one correlation, dropping in another.
14	CHAIRMAN BANNERJEE: Yes, I guess what you
15	are trying to avoid is what commercial CFD codes do,
16	where they have user defined subroutines. So if I
17	wanted to go in and change a correlation in fluid, I
18	can do it in 10 minutes or 10 hours.
19	DR. BAJOREK: It was in the assessments
20	that we saw. You get one right or wrong based on
21	what's in the code. You didn't get that assessment
22	correct, because instead of using the recommended
23	model for interfacial drag, I used my own.
24	That's somewhat deceiving. What we are
25	trying to do, by freezing the code and limiting user
I	I

(202) 234-4433

	247
1	access, is to make it consistent with the overall
2	assessment, so you see how that model package is doing
3	not only in the particular assessment, but in any of
4	the other types of assessments in which it may have
5	played a role.
6	CHAIRMAN BANNERJEE: I think you have a
7	completely different objective from a commercial CFD
8	code.
9	DR. BAJOREK: Right.
10	CHAIRMAN BANNERJEE: Where you actually
11	have to qualify it and assess, so that's fine.
12	One of the things I wanted to ask you,
13	though, is a lot of these designs, even if they are
14	certified, like say AP 1000 or whatever, even small
15	changes in these designs can make a big change in the
16	answer, because they are gravity driven.
17	So are you going to give NRR - I guess
18	this is like Graham's question - the AP 1000 thing all
19	properly nodalized and stuff like that, and then they
20	can play with it to see what these changes which a
21	vendor might make will do to it?
22	DR. BAJOREK: We are working on that now.
23	In fact we've been talking with the NRO office about
24	AP 1000 in anticipation of potential changes.
25	What we are going to do is resurrect our
ļ	

(202) 234-4433

	248
1	AP 1000 model, make it consistent with the other
2	assessments on how we nodalize things, or how we think
3	it should be nodalized to AP 1000; make that deck
4	consistent with the final set of information that
5	Westinghouse gave us and the design certification; do
6	additional assessment for core makeup tank, so we know
7	how exactly we should be modeling those with TRACE
8	5.0, and then give that model to the users if they
9	want to apply it either for audit calculations or
10	additional -
11	MEMBER WALLIS: Now is one of the users
12	someone like the Union of Concerned Scientists, where
13	they can get TRACE and they can ask their questions
14	with TRACE? Someone who might want to check out how
15	robust it really is, in order to get some confidence
16	in it. Someone who perhaps is more critical than you
17	guys might be.
18	No, I don't think that's possible.
19	DR. BAJOREK: Maybe more critical than you
20	guys might be.
21	MEMBER WALLIS: More self critical. I mean
22	you are self critical; you do a good job at that.
23	You get some public credibility if you
24	give something to someone who is dubious. I mean he
25	could say, gee whiz, everything is fine. That's
I	I

(202) 234-4433

(202) 234-4433

	249
1	wonderful.
2	MEMBER SIEBER: Or they could get in there
3	and do some mischief too.
4	CHAIRMAN BANNERJEE: They get object code,
5	right?
6	MEMBER SIEBER: Right. Licensees are more
7	likely to go to their reactor vendor. That's what
8	they're doing now, and that's how they audit their
9	safety analysis.
10	DR. BAJOREK: Well, if the Union of
11	Concerned Scientists would like to run the code, we
12	have some assessments -
13	MEMBER WALLIS: Well, it's the National
14	Academy of Science, maybe they could get a subgroup,
15	and say, run this code and see if you believe it.
16	CHAIRMAN BANNERJEE: We suddenly get 30
17	reactors, the concerns, the National Academy might -
18	MEMBER WALLIS: Might want to do it.
19	CHAIRMAN BANNERJEE: - want to do it.
20	DR. BAJOREK: To make it easy for them to
21	use, we are continuing the develop the SNAP tool. One
22	of the things I like to do is ask some of the people
23	who are newer why they call these things card images
24	to the input data. Some people don't know.
25	A more efficient for newer people to use
	I

(202) 234-4433

the code and learn the input is by a menu-driven structure that is built into SNAP. So as people are setting up a model they put the input into the volume, the length and arrays, and things like that, and SNAP automatically puts this into the right format, allows them to do the nodalization.

7 It gets around a lot of the confusion and headache that was typical of setting up code models in 8 9 So along with the plant model they'll have the past. 10 a SNAP mask so that when they start to look at the plant model, they are able to make changes in 11 efficient fashion, and not have to stumble on inputs 12 that change in one part of the input structure, and 13 14 you forgot about something else elsewhere. It's to make life easier for them. 15

16 MEMBER SIEBER: SNAP is а front end 17 process. Do you have an equivalent back end process? DR. BAJOREK: SNAP actually does both the 18 19 front end and the back end, so there is a way of 20 visualizing the results.

21 We have initiated a project. We've talked 22 with NRR. They've indicated which plants they are 23 most interesting in seeing -

24 MEMBER WALLIS: Well, let me ask you about 25 input decks. Suppose I want to model the primary

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	251
1	circuit of a PWR. I have the big pipes coming out of
2	pumps and going into cold legs and stuff.
3	When you develop an input deck, do you say
4	this is a pipe of a certain length? Do you put in the
5	bends? Do you put in the details of the geometry, or
6	just say it's a pipe with a certain volume and a
7	certain length?
8	I'm missing some of the physics of how you
9	do that.
10	DR. BAJOREK: For example if it's a hot
11	leg, you have to define how long it is, how many cells
12	you need to have it -
13	MEMBER WALLIS: But suppose you say it has
14	a bend in it. Does the TRAC know that a bend, which
15	is a bit steeper than another bend, makes some
16	difference?
17	DR. BAJOREK: Yes.
18	MEMBER WALLIS: It does?
19	DR. BAJOREK: There is input there to tell
20	where the cell changes elevation, and what should be
21	the orientation.
22	MEMBER WALLIS: When it changes direction,
23	does that appear in there?
24	DR. BAJOREK: I'm sorry?
25	MEMBER WALLIS: When the cell changes
ļ	I

(202) 234-4433
252 1 direction in going around a bend, does that appear in 2 TRAC? 3 DR. BAJOREK: Yes. 4 MEMBER WALLIS: It does? 5 DR. BAJOREK: Yes. MR. CARUSO: If I recall, AP 1000 has these 6 7 unique sort of curved -8 DR. BAJOREK: The corkscrew pressurizer? 9 MR. CARUSO: No, not the pressurizer, the 10 cold legs go back into the vessel work curved; they weren't straight. 11 DR. BAJOREK: Actually a conventional plant 12 They are curved in AP 1000, 13 has an elbow there too. 14 but there are other conventional plants where there is 15 actually a 40 or 50 degree elbow going into the 16 vessel. 17 DR. KELLY: But we don't try to solve three-dimensional momentum equations in the pipes. 18 19 Those are 1-D momentum equations, and elbow comes in 20 pretty much in two ways, the one Steve alluded to, and 21 it changes your elevation change per unit length run 22 of the pipe. But the other is, you input a loss coefficient for the elbow. 23 24 MEMBER WALLIS: There is nothing about the 25 flow regime, and we know that when stuff goes around

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	253
1	a corner it centrifuges the liquid.
2	DR. BAJOREK: Not yet.
3	MEMBER WALLIS: None of that is in there at
4	all?
5	DR. BAJOREK: Not yet, no. There is
6	nothing like that.
7	But we are working with NRR -
8	MEMBER WALLIS: What I miss in this whole
9	literature when you present these codes is a
10	discussion of the kind of nodes you have, and what
11	things happen in them which you are not modeling.
12	CHAIRMAN BANNERJEE: It's coming, right?
13	MEMBER WALLIS: Is that going to be in your
14	documentation eventually?
15	CHAIRMAN BANNERJEE: Isn't John going to
16	talk about that?
17	MEMBER WALLIS: Is it going to be in the
18	documentation? It's going to be a fair presentation,
19	saying these are the kinds of things we're modeling;
20	these are the aspects of them which we are modeling;
21	and these are the things which we are not modeling,
22	but which really happen.
23	Are you going to present things like that
24	in your documentation? Because I didn't see any of it
25	now.
	I

(202) 234-4433

	254
1	CHAIRMAN BANNERJEE: Honesty is great. You
2	can get away with everything if you just say what you
3	can't do.
4	MEMBER WALLIS: That's right, and then
5	people will make it more credible. Otherwise people
6	will say, well, how about this? And how about that?
7	And why didn't they do that?
8	CHAIRMAN BANNERJEE: The problems you often
9	have, at least you'd have with me or with equivalent
10	people, is if you claim too much.
11	You know we know what these codes can do
12	more or less. They can't be everything. So that's
13	fine. I think we should clearly say what it can do
14	and what it can't do, and what it does badly, and
15	where model dimension effects are important.
16	It doesn't mean that the code is not
17	useful, but you may as well acknowledge it up front.
18	DR. BAJOREK: Okay.
19	MEMBER WALLIS: That's the whole problem.
20	You say here are some differential equations. You
21	write them down as if they were Navier Stokes
22	equation, everyone believes them. And it gives the
23	impression that this is some sort of an exact
24	representation of the physics, whereas we know that
25	there are all sorts of things that are not
Į	

(202) 234-4433

	255
1	represented.
2	Just make a clean breast of it at the
3	beginning, and it would help.
4	CHAIRMAN BANNERJEE: Are you almost done,
5	Steve?
б	DR. BAJOREK: I think so.
7	One of the things in comparison to the
8	past, we think we have a very large exhaustive
9	assessment matrix. Even though code is not going to
10	be perfect, we think we have enough information in our
11	assessment matrix to help us identify where there are
12	deficiencies, where there are problem areas you should
13	be aware of.
14	We want to use that then as a means of
15	prioritizing model changes to the code; where we need
16	to make improvements.
17	We think that we have automated the
18	process. We think that in the future we are not going
19	to get into this situation of having the documentation
20	lag by months or years. We are going to be able to
21	turn this around.
22	MEMBER WALLIS: What makes you think that
23	the future will be any different from the past?
24	MR. MURRAY: There have been a lot of - in
25	terms of maintaining the documents, there have been a
I	1

(202) 234-4433

	256
1	lot of I'd call more mechanical or technical glitches
2	with the documents and how they are stored
3	electronically; a lot of equations coming over from
4	Macintosh to PC have gotten jumbled; and have made it
5	difficult for us to have a developer update the
6	document at the same time.
7	And once we have a framework for the
8	documentation that we feel comfortable in, I mean as
9	a code caretaker, I view it as may job to ensure that
10	when a code update comes in, I better see some
11	concurrent documentation that comes in at the same
12	time that really updates that.
13	And I have been - because of some of the
14	other technical glitches, we have to sometimes make a
15	tradeoff on progress versus completeness. And that's
16	not going to be a problem in the future that I see.
17	DR. BAJOREK: Then finally, with respect to
18	bringing this code into agency use, we are trying to
19	go that last step, making sure there are plant input
20	decks available, there is tools like SNAP available,
21	so that a new user can get the training, and he has
22	the things available in order to process his input and
23	output in an effective manner.
24	MEMBER WALLIS: Do you have experience with
25	training people?
	I

(202) 234-4433

	257
1	DR. BAJOREK: With training people?
2	MEMBER WALLIS: You say you are going to
3	have training workshops.
4	DR. BAJOREK: We have been conducting re-up
5	training for several years.
6	MEMBER WALLIS: But that's the code you are
7	throwing away. So how about TRACE workshops?
8	DR. BAJOREK: We had the training workshop
9	back in April.
10	MEMBER WALLIS: And there is evidence that
11	people learn quickly and effectively?
12	DR. BAJOREK: What would you say would be
13	suitable evidence?
14	MEMBER WALLIS: That they can use it after
15	so many days or hours or weeks or years and get the
16	same answers that Joe Kelly gets.
17	DR. BAJOREK: Hopefully they leave the
18	workshop with a - being able to use it.
19	MEMBER WALLIS: But do they? Is there ever
20	an instance when they can't?
21	MR. CARUSO: Success would be if they came
22	to us for a power upgrade with a TRACE calculation.
23	MEMBER WALLIS: Yes. Success would be if
24	they used it and they came to us with the results.
25	MR. CARUSO: There's power upgrades coming
	I

(202) 234-4433

	258
1	up, Susquehanna and Hope Creek this summer. If they
2	came to the committee with a TRACE calculation, that
3	would be success.
4	CHAIRMAN BANNERJEE: That might be - if not
5	that, something like that would be a good objective.
6	MEMBER WALLIS: But the real thing would
7	be, if we asked them in the morning and they came in
8	the afternoon.
9	CHAIRMAN BANNERJEE: That sounds a little
10	ambitious.
11	DR. BAJOREK: That may be, but we think
12	that within about the first quarter of this year we
13	are going to have that capability - not turning it
14	around in the very morning. But there will be no
15	excuse not to use TRACE to look at those types of
16	audit calculations.
17	MEMBER WALLIS: Now the brief experience
18	that fluent has is that you have to have a lot of
19	customer service; you have to hold the hands of your
20	customers, who are always having trouble using the
21	code.
22	And unless you have that, you can't be in
23	business.
24	CHAIRMAN BANNERJEE: That's of course
25	Fluent's business.
l	I

	259
1	MEMBER WALLIS: Not just saying that we
2	have Fluent. Without the customer service, it
3	wouldn't work.
4	CHAIRMAN BANNERJEE: And charging them at
5	least \$250 an hour, at least \$500.
6	MEMBER WALLIS: But you are going to have
7	the customer service NRR, presumably. And you have to
8	probably dedicate some people to doing that. I don't
9	think you have the people.
10	CHAIRMAN BANNERJEE: These guys are
11	actually trying to make a code which works. Fluent's
12	objective is a little different. It is how much
13	money.
14	DR. BAJOREK: I don't want to go there.
15	MEMBER WALLIS: You are being much too
16	cynical.
17	DR. BAJOREK: We try to work closely with
18	NRR. We don't just throw this code over the wall and
19	let them suffer the consequences.
20	MEMBER WALLIS: Well, I wouldn't
21	underestimate the amount of interaction you are going
22	to have to have with them as they use it.
23	CHAIRMAN BANNERJEE: I have a slightly
24	different question. You guys have been supporting
25	quite a bit of research, and at least eventually that
	I

(202) 234-4433

	260
1	research needs to make its way into TRACE or something
2	equivalent.
3	One of these is the interfacial area. So
4	what we haven't heard right now from you is, and maybe
5	we can hear later, we don't have time today, what is
б	your five-year plan for this code if you like? When
7	are we going to see all this work with interfacial
8	area, work that VJ and company are doing on boiling
9	and
10	DR. BAJOREK: We put together -
11	MEMBER WALLIS: all that sort of stuff.
12	DR. BAJOREK: We put together a roughly a
13	five year plan about a year ago. First goal is to get
14	5.0 out. Beyond that versions which we might refer to
15	as 6.0 or 7.0, to turn on the droplet field; make
16	improvements to the other constituent models; make use
17	of the data from UCLA for subpool boiling; RBHT for
18	reflood; a number of those models that Joe Kelly
19	talked about this morning.
20	Beyond that, a version like 8.0, more four
21	to five years out, is when we would take advantage of
22	that information from Purdue to put in the interfacial
23	area track.
24	So we have thought about that, but at this
25	point we are trying to go full speed ahead to 5.0 on
I	

(202) 234-4433

Í	261
1	this.
2	CHAIRMAN BANNERJEE: I think what you are
3	trying to do is fine. But we have never even heard
4	from some of these programs, like Ishii has been
5	happily working away on interfacial area for the last
6	10 years I think and never appeared in front of ACRS
7	to tell us what he's been doing. And you guys have
8	been funding him, presumably because of TRACE.
9	So I think even if you don't appear with
10	a version of TRACE with this stuff in it, we'd like to
11	know where you are.
12	DR. BAJOREK: And that's something that we
13	can rectify, and present the status of the work at a
14	future ACRS meeting. But at the moment we don't have
15	a contract for the Thermal Hydraulic Institute. We
16	are issuing a new RFP pretty soon, and we'll see how
17	the contractor is.
18	MEMBER WALLIS: But we have already -
19	DR. BAJOREK: Generated data for certain -
20	well, that contract is ending now.
21	MEMBER WALLIS: Can we at least get the
22	status of that?
23	DR. KELLY: Yes, and as Steve said, that's
24	probably going to make its way into TRACE 8.0, and
25	that's when having an elbow in a pipe will make a
	I

(202) 234-4433

262 1 difference, because there will be a model for what 2 happens to the interfacial area as a two-face flow goes through the elbow. And then downstream of the 3 4 elbow, it has to recover. 5 It turns out it recovers fairly quickly, 6 at least from the data we've taken so far. But yes, 7 that's showing you the progress in the program is certainly something we could plan for a future 8 9 meeting. We'd be happy to. CHAIRMAN BANNERJEE: Right, it doesn't have 10 to be that you have new work done. Where does it 11 stand right now? 12 13 DR. KELLY: Okay. 14 DR. BAJOREK: That is something we'd like to do, and I think several of us are actually anxious 15 16 to start looking at those programs, and looking at 17 other model improvements once we get the 5.0 workout. 18 MEMBER WALLIS: Have you got it documented, 19 as you are closing out the old contract, have you got all this stuff well documented? 20 DR. KELLY: Yes, we get annual reports from 21 22 the Institute as well as individual data reports from 23 each test series, and those are archived. 24 MEMBER WALLIS: Okay. So it won't be lost? 25 DR. KELLY: No.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	263
1	MEMBER WALLIS: Maybe we should make this
2	one of the programs that the ACRS reviews. We review
3	three or four as you know, the history of the ones
4	we've looked at every year. Instead of looking at the
5	ones you tell us to look at, maybe we should look at
6	this one because we're curious about it.
7	DR. BAJOREK: I keep suggesting - well,
8	Bill Shack isn't here today - I wanted to suggest the
9	chemical effects program as one to look at.
10	MEMBER SIEBER: He'll be here tomorrow.
11	DR. BAJOREK: Okay.
12	CHAIRMAN BANNERJEE: We've already looked
13	at it some in the past. But you know we've looked at
14	UCLA work. We've worked at Penn State work. And
15	we've been generally quite happy with what we've seen
16	in the past.
17	It's this effort which has been going on
18	for a long time, and which we are quite interested in,
19	because we'd like to see the progress, and we haven't
20	seen it at all. And potentially it has a high impact.
21	DR. BAJOREK: Okay. So with that I'd like
22	to turn it over then to -
23	MEMBER WALLIS: So you say you are going to
24	schedule a presentation on Ishii's work?
25	DR. BAJOREK: If you would like that, we'll
I	

(202) 234-4433

	264
1	try to work that in.
2	MEMBER WALLIS: Yes, that would be good.
3	DR. BAJOREK: Because Joe mentioned that is
4	going to have to wait until we do get the contract.
5	CHAIRMAN BANNERJEE: But even if you don't
б	have the contract, I mean whatever has been done up to
7	now you can talk about that.
8	DR. BAJOREK: Okay. Even if you don't have
9	the contract, I mean whatever has been done up to now.
10	You can talk about that. I mean even if Ishii doesn't
11	come up, because it doesn't cover his travel, you guys
12	can tell us.
13	MEMBER WALLIS: Now are you held up by this
14	continuing resolution business in awarding these
15	contracts? Is that part of the fall out of Congress
16	taking forever to get through its budgeting process?
17	DR. BAJOREK: Yes, and no. I don't think
18	that that will hurt us on 5.0, but when it comes to
19	making progress with some of the future enhancements
20	that we want to make, the SNAP, the Thermal Hydraulic
21	Institute, dealing with advanced reactors, a lot of
22	that assessment, any model development that might be
23	associated with that, that could get impacted by the
24	continuing resolution.
25	CHAIRMAN BANNERJEE: I should turn the
	I

(202) 234-4433

	265
1	chairmanship over to you .
2	TRACE MOMENTUM EQUATION
3	CHAIRMAN BANNERJEE: John, are you going to
4	now delve into the momentum equation?
5	MEMBER WALLIS: Is someone going to tell us
6	how you go from differential equations to finite
7	control volume?
8	DR. MAHAFFY: That is the purpose of this
9	talk, the momentum equation was singled out because
10	it's more complicated.
11	MEMBER WALLIS: It's more difficult.
12	MEMBER WALLIS: But even with something
13	that is a scalar like energy, if you have funny shaped
14	nodes of different sizes and shapes, then there is a
15	question about how you do upwind differencing and so
16	on, and how you do some of this averaging with the
17	betas and the Ws and -
18	DR. MAHAFFY: The betas and the Ws are,
19	that's really not finite volume. That has to do with
20	your time leveling.
21	MEMBER WALLIS: Well, ridiculous averages -
22	if you have a small node and a big node, to take some
23	average which is independent of the ratio of the size
24	of these nodes doesn't seem to be right
25	DR. MAHAFFY: I'll talk about that a little
I	1

(202) 234-4433

	266
1	bit as we go through what I'm about to show you.
2	MEMBER WALLIS: Maybe I should just be
3	quiet and listen to what you have to say
4	DR. MAHAFFY: Well, no, don't be quiet.
5	Because what you have to say is very important.
б	Part of your problem with the
7	documentation is that I haven't really shifted on full
8	time to rewrite the documentation on the fuel
9	equations. So that anything you want to contribute in
10	terms of structure or content to the fuel equations
11	section of the documentation you are certainly
12	welcome.
13	Just as an aside, while I'm up here, and
14	waiting, in terms of Ishii's work, as we speak I have
15	a graduate student sweating, putting in some of
16	Ishii's results in a version of TRACE. It's something
17	not funded by the NRC. This is internal money from my
18	laboratory. Just for fun to see what happens.
19	So that information will be available to
20	the NRC as they move forward and try to make
21	additional plans. It's just a massive thesis; it is
22	nowhere near a complete piece of work.
23	CHAIRMAN BANNERJEE: Enlighten me a little
24	bit about this, John, because in most fuel codes,
25	where they use some sort of Euler or LaGrangian

(202) 234-4433

	267
1	approach, the equation for the problem is a density
2	function for the drops or whatever.
3	It's effectively an interfacial area
4	equation. Because this usually is written in a way,
5	let's say F is the probability density function
6	between a certain velocity and a certain spatial
7	location. So you write the usual type of equation,
8	with a sink and a source function for coalescence
9	break up, collisions, et cetera.
10	And this has been used in Williams work
11	was done in `59. So what is so new about this? This
12	is used in coats like Fluent or god forbid StarCD and
13	everywhere else
14	DR. MAHAFFY: There is nothing particularly
15	new. Joe Kelly can talk to you about the things they
16	did in COBRA in the late 1970s with droplet fields.
17	All of this is well established. All we are doing is
18	trying to take the results of experiments that Ishii
19	did to come up with appropriate source and sink terms
20	in your area transport equations.
21	CHAIRMAN BANNERJEE: That's all it is
22	DR. MAHAFFY: That's the bottom line.
23	There is no whiz bank technology in terms of the fuel
24	equations. In fact, what we're doing, the droplet
25	field is implemented right now in a yet-to-be version
I	1

(202) 234-4433

	268
1	of TRACE. The updates are still in the holding bin.
2	That is not implemented as a single droplet field.
3	You can put - if you want to spend enough
4	hours waiting for your computer to come back, you can
5	put in 20 or 100-droplet fields. And what we are
6	doing with the -
7	CHAIRMAN BANNERJEE: But that's in an
8	Eulerian context?
9	DR. MAHAFFY: That's in a Eulerian context.
10	We're not doing anything - we are not trying to
11	superimpose LaGrangian calculations here. These are
12	Eulerian interfacial area and associated mass
13	equations with your whatever field.
14	But with minor modifications, that now can
15	be changed so that those fields are not droplets but
16	they are bubbles. And with a little bit of extra work
17	there you can have some bubbles, you can have some
18	droplets, and track as many of these as you want.
19	CHAIRMAN BANNERJEE: The problem with that,
20	it's a little digression, is that the areas are
21	vectors in a sense. So if the area is normal to the
22	flow, or parallel to the flow, they have a different
23	effect in terms fo something like drag.
24	So this is why I wanted this whole subject
25	aired, before we go too far with this
Į	

(202) 234-4433

269 1 DR. MAHAFFY: That is another level of 2 resolution. I don't see us getting there in a 3 reasonable way. It's just some kind of an average 4 effect. 5 CHAIRMAN BANNERJEE: Right. With drops and bubbles I can understand how you can do this. But 6 7 with a generalized area, whether it's parallel to the 8 flow, or normal to the flow, you are going to have a 9 slightly different - so this is why it's better to 10 talk to us early than late DR. MAHAFFY: This is why 11 I tell my 12 students right now that two-faced flow is a great field to get into, because I can guarantee there is 13 14 still a lifetime left of research left to do. 15 MEMBER WALLIS: Right DR. MAHAFFY: All right. First, getting 16 17 somebody to pay for it. MEMBER WALLIS: It will come back. 18 All 19 this nano bio. 20 DR. MAHAFFY: Yes. 21 Let me draw you a volume, and we are going 22 to do a momentum equation here. 23 One thing to notice -24 MEMBER WALLIS: So this is all one 25 dimensional? It's all going in one direction

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	270
1	DR. MAHAFFY: We are going to do it in a
2	generic way so that you can interpret it as one
3	dimensional or three dimensional, and we are going to
4	have to talk around the issues of what happens if your
5	pipe is bad.
6	MEMBER WALLIS: What about going into a
7	lower plume, say, where there is a huge change in
8	geometry?
9	DR. MAHAFFY: Yes, I've got a little bitty
10	abrupt area change in this. I'm pointing at the wrong
11	thing.
12	MEMBER WALLIS: Also I have a problem when
13	you say, the center of the volume. I don't quite know
14	where to draw A1 and A2
15	DR. MAHAFFY: A1 and A2, these are my flow
16	boundaries.
17	MEMBER WALLIS: They go through the center
18	of gravity or the center of volume of the volume, and
19	they are perpindicular to the flow, so you know which
20	way the flow is going and all that
21	DR. MAHAFFY: We can talk around the issue
22	of perpindicular. In this case I've drawn them as
23	perpindicular, and we will work in that sense.
24	If you get into the case, in TRACE there
25	are two modes for sort of non-straight one-dimensional

(202) 234-4433

	271
1	flow. The traditional TRAC approach is that let us
2	say at area two, when you tack on the next volume,
3	there is a bend there, and it moves into another
4	volume, and you've got to think about what that then
5	means.
6	If it were RELAP-5 - or excuse me, RELAP-5
7	bends here at the corners. In TRACE it actually bends
8	here at the center plane.
9	MEMBER WALLIS: Okay, in this pair you've
10	drawn this little tapered thing
11	DR. MAHAFFY: I was just trying to draw
12	some generic -
13	MEMBER WALLIS: So that taper, we continue
14	that taper back. Is Al, where is Al? How do I know
15	where A1 is in that cone that's coming in
16	DR. MAHAFFY: It's where it's drawn.
17	MEMBER WALLIS: How do I know where to put
18	it in evaluating my - it's somewhere? It's just
19	somewhere?
20	DR. MAHAFFY: What's happened - good
21	question - what I was trying to say before we wandered
22	off on this train is that in TRACE you have to think
23	about two different classes of volumes, because we
24	have a staggered mesh.
25	There is a set of volumes I haven't drawn,
I	I

(202) 234-4433

	272
1	and -
2	MEMBER WALLIS: I think you should draw the
3	whole volume.
4	DR. MAHAFFY: There is another - what you
5	do is, you follow this taper on out here -
6	MEMBER WALLIS: That's the J volume, that
7	thing.
8	DR. MAHAFFY: And that's my J volume, and
9	that is a mass volume.
10	Al is running through the geometric
11	center, in terms of distance, not in terms fo volume
12	weighting.
13	MEMBER WALLIS: Just in terms fo distance
14	DR. MAHAFFY: That's the way we think of
15	it.
16	MEMBER WALLIS: But it makes a difference
17	DR. MAHAFFY: Only when you get to the
18	level fo CFD.
19	MEMBER WALLIS: What happens if A1 cuts A3?
20	I can ask an infinite number of questions
21	DR. MAHAFFY: That's right, and we can get
22	into infinite amounts -
23	MEMBER WALLIS: Well, you see, that's the
24	problem I have, I see these very simplistic
25	definitions, and I can think of about 10 questions
I	

(202) 234-4433

	273
1	right away about how do you do it.
2	CHAIRMAN BANNERJEE: I guess what would be
3	useful John is to - unfortunately we don't have a
4	board here - maybe you could just sketch - because
5	it's a staggered mesh, what would be notionally a mesh
6	where you show the staggered mesh as well
7	DR. MAHAFFY: You want me to draw something
8	up here?
9	CHAIRMAN BANNERJEE: Yes, if you just draw
10	this.
11	MEMBER WALLIS: I understand that for a
12	straight pipe. I understand the Js and the J plus
13	ones.
14	CHAIRMAN BANNERJEE: Since it's a staggered
15	mesh, just to show the other mesh
16	DR. MAHAFFY: We can do that. It's not
17	directly relevant.
18	One thing I want to address, Graham, is
19	that as you see how the equations develop, there is
20	not anything in there that talks about exactly where
21	A3 is. If A3 overlaps -
22	CHAIRMAN BANNERJEE: You can do it without
23	A3 now.
24	DR. MAHAFFY: We could do it without A3.
25	MEMBER WALLIS: But if I have ECC injection
I	I

(202) 234-4433

1I want to know -2DR. MAHAFFY: Okay. So let's work in -3CHAIRMAN BANNERJEE: Forget the A3 for the4moment.5DR. MAHAFFY: I'm going to draw you a6similar picture. These are two of my mass-energy7values. And I'm going to write some center point8here. I'm going to be vague about that. We tend to9think about it geometrically -10MEMBER WALLIS: Yes, but the user needs to11know where to put it.12DR. MAHAFFY: If you look at what's done in13TRACE, what it says is that this point is halfway14along whatever this axis is.15MEMBER WALLIS: So it's a curved pipe, it16follows what? It follows the metal17DR. MAHAFFY: If it's a curved pipe, we18will talk about this briefly, you could think of me19going into some very odd new coordinate system. It20was a curved coordinate system.21MEMBER WALLIS: Well, suppose it comes in22DR. MAHAFFY: Where is the middle?23MEMEER WALLIS: Where is the middle?24DR. MAHAFFY: Where is the middle?		274
3 CHAIRMAN BANNERJEE: Forget the A3 for the 4 moment. 5 DR. MAHAFFY: I'm going to draw you a 6 similar picture. These are two of my mass-energy 7 values. And I'm going to write some center point 8 here. I'm going to be vague about that. We tend to 9 think about it geometrically - 10 MEMBER WALLIS: Yes, but the user needs to 11 know where to put it. 12 DR. MAHAFFY: If you look at what's done in 13 TRACE, what it says is that this point is halfway 14 along whatever this axis is. 15 MEMBER WALLIS: So it's a curved pipe, it 16 follows what? It follows the metal 17 DR. MAHAFFY: If it's a curved pipe, we 18 will talk about this briefly, you could think of me 19 going into some very odd new coordinate system. It 10 MEMBER WALLIS: Well, suppose it comes in 11 in the X direction and goes out in the Y direction. 12 DR. MAHAFFY: Where is the middle?	1	I want to know -
4 moment. 5 DR. MAHAFFY: I'm going to draw you a 6 similar picture. These are two of my mass-energy 7 values. And I'm going to write some center point 8 here. I'm going to be vague about that. We tend to 9 think about it geometrically - 10 MEMBER WALLIS: Yes, but the user needs to 11 know where to put it. 12 DR. MAHAFFY: If you look at what's done in 13 TRACE, what it says is that this point is halfway 14 along whatever this axis is. 15 MEMBER WALLIS: So it's a curved pipe, it 16 follows what? It follows the metal 17 DR. MAHAFFY: If it's a curved pipe, we will talk about this briefly, you could think of me 19 going into some very odd new coordinate system. It 10 MEMBER WALLIS: Well, suppose it comes in 11 in the X direction and goes out in the Y direction. 12 DR. MAHAFFY: Where is the middle?	2	DR. MAHAFFY: Okay. So let's work in -
5DR. MAHAFFY: I'm going to draw you a6similar picture. These are two of my mass-energy7values. And I'm going to write some center point8here. I'm going to be vague about that. We tend to9think about it geometrically -10MEMBER WALLIS: Yes, but the user needs to11know where to put it.12DR. MAHAFFY: If you look at what's done in13TRACE, what it says is that this point is halfway14along whatever this axis is.15MEMBER WALLIS: So it's a curved pipe, it16follows what? It follows the metal17DR. MAHAFFY: If it's a curved pipe, we18will talk about this briefly, you could think of me19going into some very odd new coordinate system. It20MEMBER WALLIS: Well, suppose it comes in21MEMBER WALLIS: Well, suppose it comes in23DR. MAHAFFY: Where is the middle?	3	CHAIRMAN BANNERJEE: Forget the A3 for the
 similar picture. These are two of my mass-energy values. And I'm going to write some center point here. I'm going to be vague about that. We tend to think about it geometrically - MEMBER WALLIS: Yes, but the user needs to know where to put it. DR. MAHAFFY: If you look at what's done in TRACE, what it says is that this point is halfway along whatever this axis is. MEMBER WALLIS: So it's a curved pipe, it follows what? It follows the metal DR. MAHAFFY: If it's a curved pipe, we will talk about this briefly, you could think of me going into some very odd new coordinate system. It was a curved coordinate system. MEMBER WALLIS: Well, suppose it comes in in the X direction and goes out in the Y direction. Where is the middle? DR. MAHAFFY: Where is the middle? 	4	moment.
 values. And I'm going to write some center point here. I'm going to be vague about that. We tend to think about it geometrically - MEMBER WALLIS: Yes, but the user needs to know where to put it. DR. MAHAFFY: If you look at what's done in TRACE, what it says is that this point is halfway along whatever this axis is. MEMBER WALLIS: So it's a curved pipe, it follows what? It follows the metal DR. MAHAFFY: If it's a curved pipe, we will talk about this briefly, you could think of me going into some very odd new coordinate system. It was a curved coordinate system. MEMBER WALLIS: Well, suppose it comes in in the X direction and goes out in the Y direction. Where is the middle? DR. MAHAFFY: Where is the middle? 	5	DR. MAHAFFY: I'm going to draw you a
8 here. I'm going to be vague about that. We tend to 9 think about it geometrically - 10 MEMBER WALLIS: Yes, but the user needs to 11 know where to put it. 12 DR. MAHAFFY: If you look at what's done in 13 TRACE, what it says is that this point is halfway 14 along whatever this axis is. 15 MEMBER WALLIS: So it's a curved pipe, it 16 follows what? It follows the metal 17 DR. MAHAFFY: If it's a curved pipe, we 18 will talk about this briefly, you could think of me 19 going into some very odd new coordinate system. It 20 MEMBER WALLIS: Well, suppose it comes in 21 MEMBER WALLIS: Well, suppose it comes in 22 DR. MAHAFFY: Where is the middle?	6	similar picture. These are two of my mass-energy
 9 think about it geometrically - 10 MEMBER WALLIS: Yes, but the user needs to 11 know where to put it. 12 DR. MAHAFFY: If you look at what's done in 13 TRACE, what it says is that this point is halfway 14 along whatever this axis is. 15 MEMBER WALLIS: So it's a curved pipe, it 16 follows what? It follows the metal 17 DR. MAHAFFY: If it's a curved pipe, we 18 will talk about this briefly, you could think of me 19 going into some very odd new coordinate system. It 20 was a curved coordinate system. 21 MEMBER WALLIS: Well, suppose it comes in 22 in the X direction and goes out in the Y direction. 23 Where is the middle? 24 DR. MAHAFFY: Where is the middle? 	7	values. And I'm going to write some center point
10MEMBER WALLIS: Yes, but the user needs to11know where to put it.12DR. MAHAFFY: If you look at what's done in13TRACE, what it says is that this point is halfway14along whatever this axis is.15MEMBER WALLIS: So it's a curved pipe, it16follows what? It follows the metal17DR. MAHAFFY: If it's a curved pipe, we18will talk about this briefly, you could think of me19going into some very odd new coordinate system. It20MEMBER WALLIS: Well, suppose it comes in21MEMBER WALLIS: Well, suppose it comes in22DR. MAHAFFY: Where is the middle?	8	here. I'm going to be vague about that. We tend to
11 know where to put it. 12 DR. MAHAFFY: If you look at what's done in 13 TRACE, what it says is that this point is halfway 14 along whatever this axis is. 15 MEMBER WALLIS: So it's a curved pipe, it 16 follows what? It follows the metal 17 DR. MAHAFFY: If it's a curved pipe, we 18 will talk about this briefly, you could think of me 19 going into some very odd new coordinate system. It 20 was a curved coordinate system. 21 MEMBER WALLIS: Well, suppose it comes in 22 in the X direction and goes out in the Y direction. 23 MAHAFFY: Where is the middle?	9	think about it geometrically -
12DR. MAHAFFY: If you look at what's done in13TRACE, what it says is that this point is halfway14along whatever this axis is.15MEMBER WALLIS: So it's a curved pipe, it16follows what? It follows the metal17DR. MAHAFFY: If it's a curved pipe, we18will talk about this briefly, you could think of me19going into some very odd new coordinate system. It20was a curved coordinate system.21MEMBER WALLIS: Well, suppose it comes in22in the X direction and goes out in the Y direction.23Mere is the middle?24DR. MAHAFFY: Where is the middle?	10	MEMBER WALLIS: Yes, but the user needs to
 13 TRACE, what it says is that this point is halfway 14 along whatever this axis is. 15 MEMBER WALLIS: So it's a curved pipe, it 16 follows what? It follows the metal 17 DR. MAHAFFY: If it's a curved pipe, we 18 will talk about this briefly, you could think of me 19 going into some very odd new coordinate system. It 20 was a curved coordinate system. 21 MEMBER WALLIS: Well, suppose it comes in 22 in the X direction and goes out in the Y direction. 23 Where is the middle? 24 DR. MAHAFFY: Where is the middle? 	11	know where to put it.
14along whatever this axis is.15MEMBER WALLIS: So it's a curved pipe, it16follows what? It follows the metal17DR. MAHAFFY: If it's a curved pipe, we18will talk about this briefly, you could think of me19going into some very odd new coordinate system. It20was a curved coordinate system.21MEMBER WALLIS: Well, suppose it comes in22in the X direction and goes out in the Y direction.23DR. MAHAFFY: Where is the middle?	12	DR. MAHAFFY: If you look at what's done in
 MEMBER WALLIS: So it's a curved pipe, it follows what? It follows the metal DR. MAHAFFY: If it's a curved pipe, we will talk about this briefly, you could think of me going into some very odd new coordinate system. It was a curved coordinate system. MEMBER WALLIS: Well, suppose it comes in in the X direction and goes out in the Y direction. Where is the middle? DR. MAHAFFY: Where is the middle? 	13	TRACE, what it says is that this point is halfway
16follows what? It follows the metal17DR. MAHAFFY: If it's a curved pipe, we18will talk about this briefly, you could think of me19going into some very odd new coordinate system. It20was a curved coordinate system.21MEMBER WALLIS: Well, suppose it comes in22in the X direction and goes out in the Y direction.23Where is the middle?24DR. MAHAFFY: Where is the middle?	14	along whatever this axis is.
17DR. MAHAFFY: If it's a curved pipe, we18will talk about this briefly, you could think of me19going into some very odd new coordinate system. It20was a curved coordinate system.21MEMBER WALLIS: Well, suppose it comes in22in the X direction and goes out in the Y direction.23Where is the middle?24DR. MAHAFFY: Where is the middle?	15	MEMBER WALLIS: So it's a curved pipe, it
18 will talk about this briefly, you could think of me 19 going into some very odd new coordinate system. It 20 was a curved coordinate system. 21 MEMBER WALLIS: Well, suppose it comes in 22 in the X direction and goes out in the Y direction. 23 Where is the middle? 24 DR. MAHAFFY: Where is the middle?	16	follows what? It follows the metal
19 going into some very odd new coordinate system. It 20 was a curved coordinate system. 21 MEMBER WALLIS: Well, suppose it comes in 22 in the X direction and goes out in the Y direction. 23 Where is the middle? 24 DR. MAHAFFY: Where is the middle?	17	DR. MAHAFFY: If it's a curved pipe, we
<pre>20 was a curved coordinate system. 21 MEMBER WALLIS: Well, suppose it comes in 22 in the X direction and goes out in the Y direction. 23 Where is the middle? 24 DR. MAHAFFY: Where is the middle?</pre>	18	will talk about this briefly, you could think of me
21 MEMBER WALLIS: Well, suppose it comes in 22 in the X direction and goes out in the Y direction. 23 Where is the middle? 24 DR. MAHAFFY: Where is the middle?	19	going into some very odd new coordinate system. It
in the X direction and goes out in the Y direction. Where is the middle? DR. MAHAFFY: Where is the middle?	20	was a curved coordinate system.
 Where is the middle? DR. MAHAFFY: Where is the middle? 	21	MEMBER WALLIS: Well, suppose it comes in
24 DR. MAHAFFY: Where is the middle?	22	in the X direction and goes out in the Y direction.
	23	Where is the middle?
25 MEMBER WALLIS: When I go into the lower	24	DR. MAHAFFY: Where is the middle?
	25	MEMBER WALLIS: When I go into the lower

(202) 234-4433

	275
1	plenum, I come down the downcomer, and then I go out
2	horizontally. How do I draw the middle of something
3	which has a kink like that?
4	DR. MAHAFFY: If you're in the vessel,
5	that's different, because you really do have a three
6	dimensional cell structure, and the cells have a -
7	MEMBER WALLIS: In the lower plenum
8	DR. MAHAFFY: Yes. I mean if you look at
9	the vessel in TRACE, you have a very clearly defined
10	geometry of your cells. There is no ambiguity there.
11	MEMBER WALLIS: I'd need to see the cells
12	that you have in the lower plenum to understand that.
13	DR. MAHAFFY: What happens - let's finish
14	this one.
15	CHAIRMAN BANNERJEE: Yeah, why don't we go
16	one thing at a time.
17	DR. MAHAFFY: Let's do one thing at a time.
18	So here's what I've done for a momentum
19	cell.
20	MEMBER WALLIS: So it's all one
21	dimensional. You know where to draw the
22	perpendiculars, right
23	DR. MAHAFFY: Yes. I'm working in one
24	dimension here. What I'm going to do to finesse this
25	is say, okay, you believe there is a bend in there,
ļ	I

```
(202) 234-4433
```

	276
1	I'm going to construct some kind of distorted -
2	CHAIRMAN BANNERJEE: But let's go forward
3	with this.
4	DR. MAHAFFY: Okay. So this is where we
5	are -
6	MEMBER WALLIS: And there is no W power
7	when you do the averaging?
8	DR. MAHAFFY: If you are interested in Ws,
9	that's another lecture, and that has to do with your
10	choice of time differencing, time leveling.
11	MEMBER WALLIS: But as I read the
12	instructions, it says that there is a Y J plus a half,
13	which isn't just the average; it's a W J plus a half
14	of Y J.
15	DR. MAHAFFY: That's a particular -
16	MEMBER WALLIS: It doesn't appear in here
17	DR. MAHAFFY: No, that's the SETS method.
18	MEMBER WALLIS: That's something else
19	altogether?
20	DR. MAHAFFY: That has to do with your
21	choice of time leveling in the SETS method, all right?
22	That has nothing to do with your breaking up of space
23	for finite volumes.
24	MEMBER WALLIS: I have a problem here,
25	because this Y J plus a half, which is defined in the
ļ	

(202) 234-4433

	277
1	SETS method is different from the J plus a half value
2	you are going to use in this balance that you are
3	going to talk about?
4	CHAIRMAN BANNERJEE: Let him finish this.
5	Because what you are going to do is convect, let's say
6	a property like density or enthalpy is put at the
7	center.
8	DR. MAHAFFY: It's at the center here.
9	CHAIRMAN BANNERJEE: All pressure
10	DR. MAHAFFY: All thermodynamic variables
11	are at the centers fo what I'm calling my mass and
12	energy variables.
13	CHAIRMAN BANNERJEE: So H, P and Rho are
14	there?
15	DR. MAHAFFY: Yes.
16	CHAIRMAN BANNERJEE: And the flow rate
17	DR. MAHAFFY: Flow rates are here. The
18	proper term is velocities.
19	CHAIRMAN BANNERJEE: The velocities.
20	CHAIRMAN BANNERJEE: So what is Row in this
21	J plus a half finding?
22	DR. MAHAFFY: Well, that's the interesting
23	question. You have to define - that comes to the
24	heart of your definition of your differencing scheme,
25	and how you are deciding your order of accuracy and
	I

```
(202) 234-4433
```

	278
1	your differencing scheme.
2	CHAIRMAN BANNERJEE: So now, that's not at
3	the center of mass of this, it's at the center of the
4	G coordinate?
5	DR. MAHAFFY: Yes, it's at the center of
6	the G coordinate.
7	CHAIRMAN BANNERJEE: So if you think about
8	that upstream node as a mixing volume, the density or
9	enthalpy or pressure, is it supposed to represent
10	whatever is for that full volume
11	DR. MAHAFFY: I'll address this here as we
12	move through the approximation, but we are, within
13	TRACE, and this gets to your worry about publishing in
14	journals, we do not publish anything we do in TRACE in
15	any respectable fluid dynamics journal, because it is
16	first order accurate space.
17	CHAIRMAN BANNERJEE: Tell us what you do
18	then
19	DR. MAHAFFY: First order accuracy
20	basically says that, yes, in effect what I'm assuming
21	is -
22	MEMBER WALLIS: Engineering journal? I
23	don't understand why it's not publishable in an
24	engineering journal.
25	DR. MAHAFFY: Oh, you go to any fluids
I	

	279
1	journal, and they talk about their requirements for
2	publication of both numerical methods developed and
3	computations using a numerical in that, that they do
4	not want you to use first order methods.
5	There is an exception to that.
6	MEMBER WALLIS: You can publish it in other
7	journals which are engineering based and utility
8	based.
9	DR. MAHAFFY: As I said, SETS was published
10	in 1982 in the Journal of Computational Physics, and
11	that was before people got off of first order methods,
12	and into higher order methods, and so it was perfectly
13	acceptable then.
14	But -
15	CHAIRMAN BANNERJEE: Let's carry on from
16	this point.
17	DR. MAHAFFY: Yeah, this point, think of it
18	as a geometric center. There is a density here, and
19	at first order one way of interpreting what the first
20	order method of approximation is, I assign a value
21	here, and I'm going to treat it as if it's constant
22	over this entire volume.
23	And I assign some values here, and I'm
24	going to treat them as being constant over this entire
25	volume. That is, in terms fo kind of modern numerical
I	I

(202) 234-4433

	280
1	methodology, I'm choosing a basis function here.
2	MEMBER WALLIS: But then when you have the
3	other volume, which is the composite of the two, it's
4	got two pieces of volume, it's different
5	DR. MAHAFFY: It's got two pieces, and you
6	will see me do that in some of the integrations I go
7	through.
8	I've got a density that is constant over
9	
10	MEMBER WALLIS: But how do you work out a
11	d rho dV or something if it's not constant throughout
12	the volume?
13	DR. MAHAFFY: I'm doing an integration.
14	CHAIRMAN BANNERJEE: More problematic is
15	with the pressure, right, when you want to drive the
16	flow across the boundary.
17	DR. MAHAFFY: Yes.
18	CHAIRMAN BANNERJEE: I may accept the
19	density and the enthalpy being uniform, but what word
20	would the pressure -
21	DR. MAHAFFY: What I'm going to do, and you
22	will see me do it, is that I am going to sit down and
23	I am going to look at an integral over this volume of
24	a void fraction times the gradient of a pressure, DV.
25	MEMBER WALLIS: But I know that if I didn't
I	

(202) 234-4433

	281
1	have the void fraction there, this would be the same
2	as the integral PDS. But if it was averaged with an
3	alpha in there, I'm not quite sure what it is
4	DR. MAHAFFY: Well, and you fit the one
5	point of what we do. We take this alpha and we pull
6	it out, with some mean sense -
7	MEMBER WALLIS: How do you pull it out
8	DR. MAHAFFY: It's one of these things,
9	it's this business that everybody does, and you will
10	see me do it here, at some point in any of these
11	methods you talk in a low voice very quickly so people
12	don't hear you -
13	MEMBER WALLIS: It's unacceptable
14	DR. MAHAFFY: - and you say, the average
15	of the sum is equal to the sum of the averages, or the
16	average of the product is equal to the sum of the -
17	MEMBER WALLIS: But we know that's not true
18	DR. MAHAFFY: We know that's not true.
19	MEMBER WALLIS: So the question is, how
20	good is it?
21	DR. MAHAFFY: The question is, how good is
22	it.
23	CHAIRMAN BANNERJEE: Okay, let's see what
24	you do. You pulled out the alpha
25	DR. MAHAFFY: Yeah, we pulled this out.
I	

(202) 234-4433

	282
1	I'm going to show you this integral in a minute. But
2	what happens if, if you look at this -
3	MEMBER WALLIS: Which volume are you going
4	to integrate it over now?
5	DR. MAHAFFY: I'm going to integrate it
6	over this volume?
7	MEMBER WALLIS: So what are you going to do
8	about that slice of wall there, where it says
9	perpindicular up there?
10	DR. MAHAFFY: Oh, that is just part of the
11	integration.
12	MEMBER WALLIS: But you don't know what the
13	pressure is up there?
14	DR. MAHAFFY: That's the key.
15	MEMBER WALLIS: That's the key
16	DR. MAHAFFY: The fundamental assumption,
17	and I'll talk to this later or we can talk to it now,
18	I told you what my assumption is. I told you that
19	I've assumed that the pressure is constant over this
20	entire volume.
21	My first order of approximation basis
22	function tells me that over this entire volume, I've
23	got a constant pressure.
24	MEMBER WALLIS: That is very untrue though.
25	You have a pressure recovery

(202) 234-4433

	283
1	DR. MAHAFFY: That's right. That's right,
2	and we'll talk about what it means.
3	CHAIRMAN BANNERJEE: Anyway, you assume
4	that pressure is acting on those walls.
5	MEMBER WALLIS: I thought that wall goes
6	with the downstream volume and not the upstream
7	volume?
8	DR. MAHAFFY: This wall is going with this
9	volume, right?
10	MEMBER WALLIS: But we know that when a jet
11	comes out of a hole, the pressure near the jet is the
12	pressure upstream pressure, not the downstream
13	DR. MAHAFFY: Absolutely true. But you know
14	it's more complicated than that. And I'm running out
15	of space to go up, but if you think about it, I've got
16	a jet coming out of here, and it follows some
17	trajectory, and there's a reattachment point if you
18	will, right?
19	And the hole -
20	MEMBER WALLIS: There's a vortex up in the
21	corner or something.
22	DR. MAHAFFY: I've got some recirculation
23	pattern here in the corner. And if I knew this
24	profile, and I made some assumptions about what my
25	density was doing, I could make a pretty decent
I	

(202) 234-4433

	284
1	estimate of what my pressures were all the way along
2	this line, just playing some games with Bernoulli's
3	equation.
4	But I don't know what that reattachment
5	point is. This is a problem that we're not going to
6	resolve at the level that we do finite volume work in
7	trays.
8	MEMBER WALLIS: Now you've got two phases,
9	too. So the liquid is on the wall, the gas isn't.
10	But somehow the gas knows what the pressure is on the
11	wall? I mean there are all sorts of questions like
12	that.
13	DR. MAHAFFY: You can ask the questions,
14	and what I'm telling you is, if you want to resolve
15	the questions in terms of what's going on in the
16	pressure profile along this wall, you've got to be
17	doing a full up -
18	MEMBER WALLIS: You see, it would really
19	help me in your preamble to this whole code if you'd
20	draw things like this and explain what's going on so
21	we could see what kind of assumptions are being made.
22	Then we'd know what's going on.
23	When it's presented as sort of
24	differential equations, and it's obviously true, that
25	really doesn't help me very much
ļ	I

(202) 234-4433

	285
1	DR. MAHAFFY: Well, we admit that the
2	differential equations are only true to a point too.
3	MEMBER WALLIS: But the differential
4	equation doesn't apply to a control volume. So it's
5	a huge bridge there that's missing
6	DR. MAHAFFY: No, and I'll try to bridge
7	it.
8	MEMBER WALLIS: All right, and I better be
9	quiet and see what you do.
10	DR. MAHAFFY: No, keep talking. But my
11	problem is, I'm not taking notes fast enough.
12	MEMBER WALLIS: There will be a transcript
13	DR. MAHAFFY: There'll be a transcript, and
14	we'll work from that.
15	But what I'm trying to tell you, if I
16	could do CFD, okay, I'd be okay. And this people
17	talked earlier about state of the art, and does the
18	NRC try to do the state of the art.
19	If you want to know what the state of the
20	art is right now, it's the Neptune project, where
21	people are trying to set up to do full up two phase
22	CFD for an entire reactor and a reactor transient.
23	And they are honest enough to tell you
24	that it's going to be 20 years in the future before
25	they can do one of these things, both in terms of the
I	I

(202) 234-4433

	286
1	development of the physical numerical model set that
2	goes into the software, and in terms of the computer
3	hardware that will let you solve all that mess. It's
4	a long horizon item.
5	We're here wanting to finish this story.
6	And if you'd like, it's probably a good idea in the
7	manual, if we are going to start drawing these
8	pictures, what we can do is talk about some
9	approximations here.
10	If you think about it, my first order
11	assumption, where I've got this constant pressure over
12	this entire volume, that is going to induce the lease
13	losses.
14	MEMBER WALLIS: Then there is nothing to
15	change the momentum of the fluid going through there,
16	too. It's okay.
17	CHAIRMAN BANNERJEE: The put a loss factor
18	on it.
19	DR. MAHAFFY: That's exactly what we do.
20	Because we have no physically based model to tell you
21	what this pressure profile is here, as we go through
22	this detached zone of the flow -
23	MEMBER WALLIS: You put in a loss factor
24	DR. MAHAFFY: - we put in a loss
25	coefficient.
	I

(202) 234-4433

	287
1	MEMBER WALLIS: But the loss coefficient
2	has nothing to do with these differential equations.
3	It's a macroscopic -
4	DR. MAHAFFY: It's a macroscopic
5	engineering correction.
6	CHAIRMAN BANNERJEE: You know, to move it
7	forward, I think what we will do today is, we will go
8	forward and try to understand what you do, without
9	necessarily saying - we are not going to comment too
10	much.
11	I understand exactly what you are doing,
12	for better or worse.
13	MEMBER WALLIS: You understand? I don't
14	understand. This loss factor, if I look at the
15	differential equation, it has an FI and a FW in it.
16	Once you've integrated a differential equation -
17	presumably the loss factor is some kind of an integral
18	of FW in there. Otherwise it's not in the equation at
19	all.
20	DR. MAHAFFY: If you want to be physical
21	about it.
22	MEMBER WALLIS: Oh, I want to be physical
23	about it. So this FW or something, that's where the
24	loss factor would come from, as a pseudo integral FW?
25	DR. MAHAFFY: This is something -
I	1

(202) 234-4433
	288
1	CHAIRMAN BANNERJEE: For a single phase
2	case it would just be FW.
3	DR. MAHAFFY: If you want to really talk
4	about this in one more level of detail, we could have
5	started - I'm one step beyond Navier-Stokes equations
6	here. And what I've trying to capture is the idea
7	that - you see I don't have my stress tensor in here
8	at all any more.
9	What I am telling you is that in TRACE and
10	in all of its cousins in reactor safety, all the way
11	on through KATAR, you do not worry about certain
12	aspects -
13	MEMBER WALLIS: Well, does the loss factor
14	come from the delta P, the grad P, or from the FW, or
15	some combination of those
16	DR. MAHAFFY: The loss factor -
17	CHAIRMAN BANNERJEE: This is an integral of
18	an average solved equation. So the gradients are
19	gone. FI and FW are the interfacial drags -
20	MEMBER WALLIS: Gradients haven't gone
21	because they are multiplied by an alpha. So your loss
22	factor is some kind of - it's a combination of the
23	grad P term and the VFW term
24	DR. MAHAFFY: The less factor, really, the
25	best way to look at it is physically is that I simply
ļ	

(202) 234-4433

	289
1	have not gotten the pressures at the wall correctly.
2	MEMBER WALLIS: Okay, so the grad P, that
3	term is not properly -
4	DR. MAHAFFY: That's the best way to think
5	about it, because if - it's influenced by other things
6	that are happening with the detached flow and whatnot.
7	AS you are probably well aware, there is
8	a classic way to derive the loss coefficient for an
9	abrupt expansion. It's a simple integration momentum
10	equation, like I've done here, but what you do is, you
11	assume that along this wall the pressure is equal to
12	the pressure here, in the narrow part of my flow
13	channel.
14	And if you assume any kind of flow like
15	this, that's a decent assumption. And if this thing
16	is perpindicular to my centerline, it's a really good
17	assumption.
18	CHAIRMAN BANNERJEE: You use the mechanical
19	energy and the momentum equation.
20	MEMBER WALLIS: And the distribution of
21	alpha has nothing to do with it
22	DR. MAHAFFY: No, alpha is -
23	MEMBER WALLIS: Alpha is inside the
24	integral here. So that has nothing to do with it
25	DR. MAHAFFY: It's going to have an effect,
I	I

(202) 234-4433

	290
1	too.
2	MEMBER WALLIS: So that's also captured in
3	the loss coefficient somehow
4	DR. MAHAFFY: And you think of that as,
5	it's probably your two phase multiplier on your loss
6	coefficient, all right?
7	CHAIRMAN BANNERJEE: You had a question,
8	now if you introduce the A3 there, what happens, in
9	the previous slide?
10	MEMBER WALLIS: I'm not sure I want to have
11	anything to do with that. I just have problems with
12	the integral you have written down there, how that
13	turns into momentum balance for a control volume. Is
14	that actually going to appear somewhere eventually?
15	DR. MAHAFFY: Yes.
16	MEMBER WALLIS: Because you have got all
17	these integral signs in all these slides, but you
18	don't have anything that tell me how to evaluate J1,
19	J2 and all that stuff.
20	DR. MAHAFFY: Well, that comes down towards
21	the end.
22	MEMBER WALLIS: Still all differential
23	equations. And that really isn't what you're
24	analyzing. You are analyzing control volumes
25	DR. MAHAFFY: Yeah, but look what happens.
I	

(202) 234-4433

	291
1	As I told you, the purpose of this exercise is to deal
2	with the volume integration, the finite volume
3	methodology. I am not trying to deal with your choice
4	of time level.
5	MEMBER WALLIS: Why don't you just start
6	with the volume? Why do you start with differential
7	equations? Start with the volume balance of some
8	sort.
9	DR. MAHAFFY: The differential equation is
10	basically here.
11	MEMBER WALLIS: I know. Then you integrate
12	it to get a volume.
13	DR. MAHAFFY: I integrate it over my
14	volume.
15	MEMBER WALLIS: And you've got something
16	which you could have got most of the terms by writing
17	them down.
18	DR. MAHAFFY: That's right.
19	MEMBER WALLIS: And then you've got some
20	other terms.
21	DR. MAHAFFY: Which terms do you want to
22	talk about.
23	MEMBER WALLIS: Well, I don't know, because
24	I don't see the results yet.
25	DR. MAHAFFY: Okay, all right.
ļ	I

```
(202) 234-4433
```

	292
1	So we start - all I've basically done
2	here, I've basically done a volume integral over an
3	differential equation -
4	MEMBER WALLIS: You've taken an initial
5	equation -
6	DR. MAHAFFY: This was your divergence
7	term, and I've turned it into a surface integral.
8	This is your integration, your pressure. This is
9	momentum transfer due to the phase change. This is
10	your basically your sheer stress at the interface.
11	This is your washer stress contribution.
12	And down here we've got gravity.
13	MEMBER WALLIS: So the A3 would appear in
14	that second interval?
15	DR. MAHAFFY: The A3 is right here, and you
16	can see down here what I do is, now say, okay, this is
17	a -
18	MEMBER WALLIS: And this is a vector
19	equation?
20	DR. MAHAFFY: This is a vector equation as
21	written now.
22	MEMBER WALLIS: And you are going to turn
23	it into a scalar equation of some sort
24	DR. MAHAFFY: We don't get there with this
25	derivation, but if you think in terms of the alignment
I	1

(202) 234-4433

	293
1	of the primary axis, yes.
2	But here is the term that we sum over
3	three different areas. There could be 10 different
4	areas here that are leaking, we'll run them in.
5	Okay, now what I do, it's a classic
6	maneuver, I'm trying to convert this to a form that we
7	normally use in TRACE, and part of that is processing
8	the mass equation. And this is -
9	MEMBER WALLIS: And if I have this hufta
10	thing, or the hutze or whatever it is, momentum comes
11	in at an angle and then it's diverted along the pipe.
12	This is an external force that changes the momentum.
13	If I just drew your box here I wouldn't have that.
14	The fact that I have a hutze dynamics is
15	different, isn't it?
16	DR. MAHAFFY: You've lost me on that one,
17	but go ahead.
18	MEMBER WALLIS: Well, the direction of the
19	momentum that affects the flow depends on whether
20	there is a hutze in there or not. And if you just
21	draw a control volume it doesn't tell you whether
22	there's a hutze.
23	DR. MAHAFFY: What I haven't done, really -
24	
25	CHAIRMAN BANNERJEE: Next picture, you can
I	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	294
1	have another one.
2	DR. MAHAFFY: I have some entry here, but
3	it may be because the pipe is coming in like that.
4	MEMBER WALLIS: There may be a hutze in
5	there or something that determines it, and that's an
6	integral of a pressure on a surface of some sort
7	DR. MAHAFFY: Yes.
8	CHAIRMAN BANNERJEE: The problem is, you
9	are trying to take very 3-dimensional things and
10	trying to make them one dimensional.
11	MEMBER WALLIS: That's one of the problems
12	DR. MAHAFFY: Anyway, we are going to
13	process in some mass equations here to convert from a
14	fully conservative form of the momentum equation to a
15	nonconservative form, all right?
16	That's what I'm doing here, okay.
17	MEMBER WALLIS: Make the substitution
18	DR. MAHAFFY: These are the mass equations,
19	on two different volumes that are adjacent. It's hard
20	to read the font, but it's integrating over the right
21	side and the left side. That's what we go in here -
22	MEMBER WALLIS: Then you combine these two
23	in some way?
24	DR. MAHAFFY: And we are going to do that.
25	I'll just change some notation. This is a repeat of
	I

(202) 234-4433

	295
1	what I wrote before, but instead of showing some
2	integrals, I've started putting bars over things.
3	I'm going to rearrange the mass equations,
4	and I'm going to solve for my mass fluxes at the right
5	face and the left face of my momentum cell;
б	mathematical games, that's all we're doing here.
7	I'm going to look at this business of
8	averages, and this is where I say that, okay, we are
9	going to make some assumptions about the average of a
10	product being the product of averages, and I note that
11	this doesn't always work.
12	If you are thinking single phase flow, and
13	you look at a momentum flux in an integral sense with
14	a standard fully developed turbulent profile, what
15	will happen is that this assumption will give you
16	about a two percent error roughly.
17	MEMBER WALLIS: So you are going to take
18	the average of grad P in there? These are all average
19	things now, are they
20	DR. MAHAFFY: Yeah, the average bar - I've
21	just dropped the bars, and in dropping it, in places,
22	we are basically saying average of product -
23	MEMBER WALLIS: I don't think under average
24	grad P, though. You are going to turn it into a
25	surface interval.
Į	

(202) 234-4433

	296
1	DR. MAHAFFY: You are going to do that.
2	MEMBER WALLIS: But you can't average it
3	first. You've got to take the interval, grad P -
4	DR. MAHAFFY: We'll go down and do that in
5	a minute.
6	MEMBER WALLIS: But you've already averaged
7	it here. It looks to me.
8	DR. MAHAFFY: I'm going to back off that,
9	all right. I'm going to take this product and re-
10	express -
11	MEMBER WALLIS: Go back to the interval and
12	re-express that.
13	DR. MAHAFFY: We'll do that in a minute.
14	MEMBER WALLIS: Maybe you should leave it
15	as interval PDV.
16	DR. MAHAFFY: We can do that.
17	So -
18	MEMBER WALLIS: On the pressure, are both
19	phases the same?
20	DR. MAHAFFY: The pressure on the left side
21	of the momentum volume is different than the pressure
22	on the right?
23	MEMBER WALLIS: On both phases, the liquid
24	and the gas. Are the liquid and gas at the same
25	pressure?
I	

```
(202) 234-4433
```

	297
1	DR. MAHAFFY: Yes. Two phases -
2	MEMBER WALLIS: Which they don't have in
3	the bubble.
4	DR. MAHAFFY: Yes.
5	Okay, so this basically, we're changing
6	the notation. You got to be honest about this, even
7	if you are in single phase flow. I've made a mistake
8	here with this product business if I'm in laminar
9	flow.
10	You can do the derivation and you will
11	find that this guy is getting a near result from a
12	momentum transfer that's about 25 percent low for any
13	momentum flux turn.
14	CHAIRMAN BANNERJEE: Most of this is what
15	Bird, Stewart and Lightfoot were, you take the
16	profile, and you can get injectors and all sorts of
17	things.
18	MEMBER WALLIS: That's just for single
19	phase. And that's for straight pipes
20	DR. MAHAFFY: When we're doing these kinds
21	of averages, again, these are the mass equations here
22	that I'm going to be doing -
23	MEMBER WALLIS: Do you have some simple
24	examples showing that this works? I remember George
25	Batchelor was very critical of this stuff. And he had

(202) 234-4433

	298
1	some examples, an exact solution to a single bubble,
2	showing that this gave all the wrong answers.
3	Have you faced that sort of criticism and
4	got answers to it? Because I think you have answers
5	to it.
б	DR. MAHAFFY: We've got answers to it in
7	that it all boils down for a bubble to how you choose
8	this little fellow up here, okay.
9	If you choose that right, you will get the
10	right bubble rise in a vertical standpoint of liquid.
11	MEMBER WALLIS: But I mean there is the
12	classic thing, if you take a bubble in a pipe and you
13	simply hit it with a hammer, the bubble moves three
14	times the distance of the pipe or something. You
15	would never predict that from here.
16	CHAIRMAN BANNERJEE: He doesn't even have -
17	(Simultaneous voices)
18	MEMBER WALLIS: So a lot of classic
19	problems, which the hydrodynamicists like.
20	CHAIRMAN BANNERJEE: You oscillate this -
21	MEMBER WALLIS: That doesn't work
22	DR. MAHAFFY: No, if I've got to oscillate
23	a bubble, if I've got to rapidly accelerate a bubble,
24	it's not there.
25	We talked about this last time -
I	

(202) 234-4433

	299
1	MEMBER WALLIS: There should be a
2	discussion about the fact that it doesn't matter,
3	because it's only when you have acceleration bigger
4	than a certain order of magnitude that this term is
5	bigger than the drag force, or matters at all
6	DR. MAHAFFY: That's right.
7	MEMBER WALLIS: And even in a flashing flow
8	through a nozzle, the drag force usually tends to
9	dominate the added mass term.
10	CHAIRMAN BANNERJEE: It doesn't in near
11	critical flow.
12	MEMBER WALLIS: Well, that's what I'm
13	talking about, too. Unless you have an orifice or
14	something, very rapid.
15	DR. MAHAFFY: There are very limited
16	exceptions. This is something, NRC is very PIRT
17	based. If at some point virtual mass becomes a
18	critical phenomena, in some kind of analysis, then we
19	go back and we install it in this case, and we use it.
20	MEMBER WALLIS: So what you are doing is,
21	you are combining these in a way that you can actually
22	combine the differential equations to use a continuity
23	equation with an overall momentum equation to get an
24	equation of motion. Is that it
25	DR. MAHAFFY: That's what we're doing. We
I	

(202) 234-4433

	300
1	are headed for an equation of motion.
2	MEMBER WALLIS: You can do that at the
3	differential level without integrating anything
4	DR. MAHAFFY: Yes. And what happens is,
5	when I combine everything in here with my mass
6	equation into my momentum flux terms, I get a revised
7	summation over my three momentum flux terms here, and
8	you will see that it simplifies into a rather curious
9	form. It appears in trays. There is in effect your
10	on axis V delta V term, and here is the contribution
11	from the momentum being injected from your sidelight
12	here, your area three phase.
13	MEMBER WALLIS: So you are playing with the
14	momentum flux?
15	DR. MAHAFFY: Yes.
16	MEMBER WALLIS: And you are assuming that
17	the vaporization all occurs at the velocity of each
18	phase. Therefore, this is as irreversible as possible
19	essentially?
20	DR. MAHAFFY: Yes, this comes in just from
21	the way I've substituted -
22	MEMBER WALLIS: Because in reality the
23	phases have the same velocity at the interface, where
24	the evaporation occurs. There is no reversibility due
25	to evaporation in reality
	I

(202) 234-4433

	301
1	DR. MAHAFFY: The reality here, there is a
2	difference between reality and what really happens.
3	MEMBER WALLIS: Say that again
4	DR. MAHAFFY: Yeah.
5	MEMBER WALLIS: Say that again.
6	CHAIRMAN BANNERJEE: For the public record
7	DR. MAHAFFY: It's on the record already,
8	folks. There is a difference between reality and what
9	actually happens in TRACE, RELAP or any of a number of
10	codes, and it's right here.
11	I tried to capture what you just said in
12	this term. We have got a velocity at the interface
13	that's being transported across.
14	MEMBER WALLIS: That's the velocity at the
15	interface, there?
16	DR. MAHAFFY: Yeah.
17	MEMBER WALLIS: Oh.
18	DR. MAHAFFY: This is not a velocity of a
19	gas. It's not a velocity of a liquid as written.
20	MEMBER WALLIS: But we need to know what it
21	is.
22	DR. MAHAFFY: But to be fair, if you look
23	at any of these codes, what they will end up doing is,
24	for that velocity at the interface, if it is boiling,
25	that will be set to the liquid velocity. It will be
I	

(202) 234-4433

	302
1	set to the vapor velocity.
2	And if it's condensing - I'm doing this
3	backwards - yeah, in this case on the vapor side. If
4	it's condensing it's going to be set to the vapor
5	velocity.
6	MEMBER WALLIS: I think some codes,
7	actually I've seen them, have one where it's the
8	average velocity of the phases at the interface
9	DR. MAHAFFY: You can do that.
10	MEMBER WALLIS: I can do it, but I mean I
11	don't know whether it's good or not, but some codes do
12	it.
13	DR. MAHAFFY: What it amounts to, if you
14	think about it, if I choose the extreme as depending
15	on the direction of my phase change, either going with
16	the bulk liquid or the bulk gas philosophy, what I am
17	doing is I'm basically saying there is a portion of
18	this integrated pure stress at the interface that I am
19	not going to account for. I'm subsuming it into this
20	change in usage of the velocity.
21	Now people don't do that correctly, I'll
22	admit that. But the basic idea is that if you look at
23	what's going on here, there is enough uncertainty in
24	that that whatever happens here is small potatoes.
25	MEMBER WALLIS: Condensation on the drops
ļ	I

(202) 234-4433

	303
1	in the flow pulls the boundary there in, retards
2	separation and reduces the drag. And that is not
3	necessarily in your code.
4	Okay, so this looks like a Bird, Stewart
5	and Lightfoot type of thing.
6	DR. MAHAFFY: What we've done is, we've
7	come up with - this is a set of surface integrals now
8	combined with the results of volume integrals that
9	tell me what these surface momentum fluxes transfer
10	to.
11	And when I take - if I take what I've
12	gotten here, okay, and I start combining these with
13	some similar terms, okay, this guy was already present
14	in my original equation, and now I'm taking these two
15	that have appeared because I've folded in my mass
16	equation.
17	And I look at it. And yes you can argue
18	about details, or the means of this or that, but
19	basically what I've ended up with is an expression of
20	what -
21	MEMBER WALLIS: That's what Bird, Stewart
22	and Lightfoot do at the differential equation.
23	DR. MAHAFFY: You do it at the differential
24	equations. I'm just doing it rigorously within the
25	context of the finite volume formalism that we've
ļ	

(202) 234-4433

	304
1	ended up with.
2	And a similar thing will happen now as I
3	deal with the momentum transfer due to phase change.
4	All these terms come together into a single term that
5	looks like this.
6	So we've got a rated phase change times
7	the difference between the interface and the bulk
8	velocity of the gas.
9	MEMBER WALLIS: Which is all charged to the
10	vapor in evaporation and charged to the liquid in
11	condensation.
12	DR. MAHAFFY: Right, one of the reasons you
13	go with these extreme interpretation, where keep on
14	condensing, if I am taking vapor away, and I set this
15	to the gas velocity, what that is doing for me is that
16	if I botch my interfacial drag, at least by the act of
17	removing vapor, I'm really not affecting the mean
18	velocity of this mass. And that's really a decent
19	physical assumption in terms of what's going on there.
20	So I combine all of these things, and I
21	end up with a set of equations that look like this.
22	I've got my time derivative here.
23	MEMBER WALLIS: And the gas and the liquid
24	all have to be going in the same direction. And it's
25	still one dimensional is it
	I

(202) 234-4433

	305
1	DR. MAHAFFY: Well, there is nothing that
2	said the gas and the liquid are moving in the same
3	direction, no. But what I'm telling you what my
4	momentum transfer terms look like. This is my main
5	long access transfer term. This is what is coming in
6	from the side.
7	Here is the action of my pressure, and I
8	haven't faced up to that yet, and the rest of my
9	assorted terms.
10	CHAIRMAN BANNERJEE: These are still all
11	vectors, right?
12	DR. MAHAFFY: These are still vectors.
13	They'll be vectors all the way to the end here.
14	Now, here's where - I've got the words
15	here, we talked about this earlier, the fundamental
16	constant pressure over a volume assumption in our
17	first order approximation.
18	One other thing we do do -
19	MEMBER WALLIS: Wait a minute, the second
20	term there, the VG2 minus VG1 is simply the flow rate
21	through the thing times its change in velocity
22	DR. MAHAFFY: Yep.
23	MEMBER WALLIS: Doesn't it allow it to have
24	a different flow rate out than it has in? Because
25	really the momentum out is affected by a change in
	I

```
(202) 234-4433
```

	306
1	flow rate out from in. Here you've simply got the
2	flow rate times a change in velocity
3	DR. MAHAFFY: That's right.
4	MEMBER WALLIS: - there's a change in flow
5	rate.
6	DR. MAHAFFY: Think about what's happened.
7	Think in terms of the differential equations -
8	MEMBER WALLIS: Just think of this A3.
9	This A3 is giving in some momentum
10	DR. MAHAFFY: Yes.
11	MEMBER WALLIS: And that means - and then
12	some mass, so there is more mass going out than comes
13	in. I would think that has to appear in that second
14	term somehow; there is more mass coming out than going
15	in.
16	DR. MAHAFFY: It's done here.
17	You know you need to go through it, and
18	that's one of the reasons I went through this step by
19	step -
20	MEMBER WALLIS: It doesn't seem right
21	DR. MAHAFFY: It may not seem right, but
22	that's why we went through all these steps.
23	MEMBER WALLIS: It still doesn't look right
24	DR. MAHAFFY: That part of it is. There
25	are other bits and things where you may want to -
I	I

```
(202) 234-4433
```

	307
1	MEMBER WALLIS: AC is what
2	DR. MAHAFFY: AC is the area at the center
3	of my momentum cell, at the J plus one half position.
4	MEMBER WALLIS: So you are really saying
5	that the flow rates in and out are characterized by
6	the flow rate in the middle.
7	DR. MAHAFFY: Yep. Think about what
8	happens when you go in the differential form from a
9	fully conserved momentum, to a motion equation. And
10	you go to this V del V formulation. This looks an
11	awful lot, if you think about it, like our old friend
12	V del V.
13	MEMBER WALLIS: And it's assuming that
14	things aren't changing too rapidly. I mean if stuff
15	comes in as steam and goes out as liquid, you are in
16	all kinds of trouble.
17	DR. MAHAFFY: In principal it's taken care
18	of down here.
19	MEMBER WALLIS: Okay.
20	DR. MAHAFFY: The face change terms were in
21	the derivation, and they all ended up down in this
22	term.
23	Okay, so we've talked about constant
24	assumptions. One thing we haven't talked about, it's
25	kind of a basis function, is because we can have
I	I

(202) 234-4433

	308
1	discontinuous changes in area -
2	MEMBER WALLIS: So this is delta AC. AC is
3	a vector?
4	DR. MAHAFFY: Yep. Area.
5	MEMBER WALLIS: So I need to know where to
6	draw it.
7	DR. MAHAFFY: In principal, if I've
8	constructed my coordinate system right, this dot
9	product is really just the product of the magnitudes
10	of these two vectors.
11	MEMBER WALLIS: Where is AC in your figure
12	on the left here? Is it the area of the inside? It's
13	the outside?
14	DR. MAHAFFY: It's the area right here.
15	MEMBER WALLIS: Why is not the big one,
16	going to the outside? What isn't it the big one at
17	that boundary, the one that goes -
18	DR. MAHAFFY: Oh, from here to here?
19	MEMBER WALLIS: Yes.
20	DR. MAHAFFY: Because there is no flow here
21	or here.
22	MEMBER WALLIS: It's just simply the area
23	of the middle that you are talking about
24	DR. MAHAFFY: It's the area available to
25	flow.
I	I

(202) 234-4433

	309
1	MEMBER WALLIS: Is that what it has to be
2	DR. MAHAFFY: Yes.
3	MEMBER WALLIS: I thought it was simply the
4	area of the middle of the volume
5	DR. MAHAFFY: This area across -
6	MEMBER WALLIS: Suppose I had a slightly
7	tapered ball, then I'd draw it half way up that,
8	wouldn't I?
9	DR. MAHAFFY: Yes, you would. But I've got
10	a discontinuity.
11	MEMBER WALLIS: Suppose I didn't have a
12	discontinuity; I just had a taper. Then it would be
13	the actual physical area, wouldn't it
14	DR. MAHAFFY: Yep. This is where my
15	momentum -
16	CHAIRMAN BANNERJEE: - assumption.
17	MEMBER WALLIS: I think there is some
18	assumption there.
19	CHAIRMAN BANNERJEE: I don't know if -
20	MEMBER WALLIS: I'm not sure we're making
21	much progress.
22	CHAIRMAN BANNERJEE: I think probably what
23	is worth doing is writing down all the assumptions,
24	and reach the point that you reach, and -
25	MEMBER WALLIS: Have it peer reviewed.
I	I

(202) 234-4433

	310
1	CHAIRMAN BANNERJEE: - and have it peer
2	reviewed.
3	MEMBER WALLIS: Because it's got to be
4	robust. And it may well be that it is.
5	CHAIRMAN BANNERJEE: And it's okay if it's
6	first order because you are making certain
7	approximations, it seems to me that it has some effect
8	on accuracy, but if it's adequate, who is going to
9	complain
10	DR. MAHAFFY: This is how we got there.
11	CHAIRMAN BANNERJEE: But I think it needs
12	to be written out in a way which can be looked at by
13	somebody or some group of people and they can say,
14	okay, given these assumptions, given the objective of
15	reaching this accuracy level, everything is okay.
16	And I think that is all that needs to be
17	done here. And the next step that you haven't taken
18	yet is to actually take it from a vector form, that
19	one can follow what you are doing I think, with the
20	velocity becoming a scalar form, where despite the
21	fact the velocity is changing direction - I guess that
22	is something which you want to discuss
23	DR. MAHAFFY: What you end up doing to get
24	to the scalar form is that you assume that on the
25	average this vector is aligned with the center line of
Į	I

(202) 234-4433

	311
1	your glove. And then you go from something that, by
2	the time you get to the bottom line, each of these
3	vectors, this vector ir orthogonal to this vector - or
4	not orthogonal, it's parallel -
5	CHAIRMAN BANNERJEE: Let's say the center
6	line if it was curving now, let's say, then the
7	velocity vector is continuously changing, so you've
8	got something like a centrifugal force obviously
9	DR. MAHAFFY: But think about the
10	centrifugal force; that's a good point.
11	CHAIRMAN BANNERJEE: I mean it would act on
12	the walls of the pipe.
13	DR. MAHAFFY: It's acting on the walls, and
14	where it ends up - we were actually talking to
15	somebody who has done two-phase flow simulations in
16	helical heat exchangers, and it's an interesting
17	problem.
18	What happens is that you are going to end
19	up - this is all along the primary direction, so your
20	centripetal force terms don't feed into this momentum
21	equation per se, except that what happens is they
22	impact this little character here, and they also cause
23	you to introduce terms that look like terms in
24	horizontally stratified -
25	MEMBER WALLIS: What is the primary

(202) 234-4433

	312
1	direction in something like a Y junction?
2	DR. MAHAFFY: You have to pick one.
3	MEMBER WALLIS: That's the whole problem we
4	had with Retrend. Retrend tried to do it, and they
5	got into all sorts of difficulties. And they actually
6	had examples which claim they gave the wrong answer.
7	It's very simple examples, like just flow around a
8	bend. They had a bend which behaved like a pump.
9	Which didn't really make any sense. That's what they
10	predicted.
11	CHAIRMAN BANNERJEE: Up to this point,
12	everything you've done, within the limits of the
13	assumptions you've made - averaging and first order
14	everything - in some way is completely okay.
15	Now you have to move down to this point,
16	and I think that's where I get lost. Up to the other
17	point I'm with you.
18	DR. MAHAFFY: You get lost beyond this
19	equation?
20	CHAIRMAN BANNERJEE: I can write the
21	equation, but I don't know I can tell those vector
22	equations into scalars. I can take a dot product
23	itself and write a kinetic energy equation. That
24	actually makes sense.
25	MEMBER WALLIS: So you are with this
I	1

(202) 234-4433

	313
1	business of the flow at the middle times the velocity
2	difference?
3	CHAIRMAN BANNERJEE: Well, it's not with
4	it, I simply think that it's a set of approximations
5	you've made by averaging all of those volumes. They
6	lead to -
7	MEMBER WALLIS: The problem is - I've
8	learned this - that when you average two different
9	things, you are making two different assumptions in
10	those equations.
11	When you combine them to get something
12	new, the thing you get sometimes has a completely
13	spurious thing, which is simply a result of value
14	average.
15	CHAIRMAN BANNERJEE: Yes, distribution
16	coefficients are being ignored.
17	MEMBER WALLIS: Right. Then you start
18	treating that as if it's real.
19	CHAIRMAN BANNERJEE: But if you write down
20	the assumptions, within those assumptions, you have to
21	be consistent. So you've come up with something.
22	You've made an assumption that your distribution
23	coefficients are like turbulent flow flat essentially,
24	I think, assumed some things regarding the
25	distribution of density, pressure, ends up being those
I	1

(202) 234-4433

	314
1	control volumes.
2	And you have come to a conclusion based on
3	those assumptions. You can write that down probably
4	four or five of them.
5	But now you are going from a vector
6	equation to a scalar equation, the only way I know how
7	to do it is to take a dot product itself. There is no
8	other way to do it that I know of.
9	So if you do that, what happens? You get
10	a mechanical energy equation, correct
11	DR. MAHAFFY: Right.
12	CHAIRMAN BANNERJEE: Where would you go
13	from there?
14	DR. MAHAFFY: Well, it's not fully
15	developed. I didn't finish it before this meeting,
16	and I wanted to go through the momentum side anyway.
17	The file that I gave to Ralph on the end
18	of this, in fact, we can scroll down and see, I've
19	actually gone through the same derivation based on the
20	kinetic energy arguments, and you end up at roughly
21	the same point.
22	CHAIRMAN BANNERJEE: But you have got an
23	equation which we are agreeing to, let's say. Now you
24	can take your dot product or whatever of that
25	DR. MAHAFFY: We can do the dot product of
I	

(202) 234-4433

	315
1	that on the center line.
2	One thing - let me back off and address
3	this question of a Y more seriously.
4	If you wanted to do a Y, and I'll be
5	blunt, TRACE cannot do it right now, because it only
б	admits one side junction with an angle other than 90
7	degrees. This is just a limitation in the code that
8	we've never had high enough priority to fix.
9	If I had to do a Y junction, here's what
10	would happen. This character here would be zero. As
11	would be my A1, and I would have two flavors of side
12	junction coming in with these terms that would be
13	vector quantities, and I would treat the angles with
14	respect to my primary direction for my V2, my V $\!\!\!\!$
15	center, in an appropriate way.
16	MEMBER WALLIS: I really think that term is
17	wrong.
18	CHAIRMAN BANNERJEE: You have to check it
19	DR. MAHAFFY: You can check the math. I
20	believe it does drop out correctly. I've been through
21	this derivation from a number of different angles.
22	MEMBER WALLIS: I think it has to do with
23	the way you're averaging. And then you hit something
24	spurious about it, because you are letting the
25	velocity in the middle be something which then isn't
I	I

(202) 234-4433

316 1 really there. And then it's typical, assuming that 2 the velocity in the middle is typical of the velocity 3 going in and coming out in that second term, and it 4 isn't. 5 CHAIRMAN BANNERJEE: And it could be more the one on the left hand side. 6 7 DR. MAHAFFY: Take a look at this, and I'd 8 appreciate any comments you want to send to me. 9 Obviously you want to think about it in a little more 10 depth. MEMBER WALLIS: This is actually the basis 11 of TRACE? 12 DR. MAHAFFY: This is -13 14 CHAIRMAN BANNERJEE: The vector equations 15 seems right. MEMBER WALLIS: No, but this equation with 16 the VGC and the VG2 minus VG1 -17 DR. MAHAFFY: Yep, that is the basis. 18 19 CHAIRMAN BANNERJEE: And you've just done 20 this now into a scalar equation. That's all DR. MAHAFFY: And we turn this into a 21 22 Think of it as dotting everything scalar equation. 23 into a unit vector along the center line. 24 CHAIRMAN BANNERJEE: Dot Z 25 DR. MAHAFFY: Yep. That's what happens.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	317
1	CHAIRMAN BANNERJEE: As long as it's a
2	straight pipe. All right. And as long as that A3, I
3	don't know what you do with that. But leaving that
4	term out -
5	DR. MAHAFFY: Well, again, if it's not a
6	straight pipe, I redefine my coordinate system.
7	CHAIRMAN BANNERJEE: That's where you start
8	to lose me.
9	MEMBER WALLIS: What if it's a T
10	DR. MAHAFFY: If it is a T, then there is
11	a combination of two straight pipes, and this
12	particular thing I'll do in the primary side of my T,
13	and this term right here takes care of the
14	contributions from the T side junctions to the flow in
15	the primary side of the T.
16	MEMBER WALLIS: Why does it only go to the
17	VT1 in there?
18	DR. MAHAFFY: It has -
19	MEMBER WALLIS: Suppose all the gas comes
20	in the side, then it has no effect? Well, we could go
21	on like this for far too long.
22	CHAIRMAN BANNERJEE: Yes. I mean what is
23	the concrete action coming out of this? I think one
24	action is that we are very interested. It's a look at
25	your handout. Sends you comments. And we do that at
ļ	I

(202) 234-4433

	318
1	least up to the point of this one last shocker,
2	because we haven't really had the time or perhaps the
3	energy to go through the rest.
4	And Mary, you haven't even developed the
5	scalarization of this vector equation
6	DR. MAHAFFY: No. Everything you see here
7	has been pulled together fresh since somebody sent me
8	an email, what was it, last Wednesday.
9	MEMBER WALLIS: So I need to see this
10	really in the form of a draft final document rather
11	than a set of slides, because I think there is more to
12	it that you just presented here.
13	And I'm very concerned about this, because
14	here we are, this is the foundation of your whole
15	code, and we are still arguing about whether it's
16	valid or not.
17	This should have been resolved years ago.
18	DR. MAHAFFY: It was.
19	MEMBER WALLIS: If it had been resolved,
20	perhaps, and we're revisiting it, then we don't know
21	how it was resolved. So maybe you should document how
22	it was resolved.
23	DR. MAHAFFY: It goes back to the peer
24	review process. Everything in TRACE, as you say, went
25	through the code review group, and was peer reviewed
I	I

(202) 234-4433

	319
1	at the time.
2	Did they miss something? Perhaps. This
3	is my attempt at cross-checking it from a completely
4	different direction and getting the same answer.
5	MEMBER WALLIS: I assume I'm a fairly
6	typical representative, a fairly knowledgeable
7	mechanics person with some experience. And I assume
8	that somebody else with my similar experience would
9	look at this in the same way. It has to be credible
10	for those kinds of people.
11	CHAIRMAN BANNERJEE: From a macroscopic
12	controlled volume point of view, most people would
13	appeal to, say, the macroscopic balances and something
14	like Bird, Stewart and Lightfoot, where you, let's say
15	have a bend. You have it coming in; you have it going
16	out. So then you dot your velocity with your area,
17	which is a bend on each side, and you get a force on
18	the bend.
19	MEMBER WALLIS: It doesn't look like this,
20	though.
21	CHAIRMAN BANNERJEE: I don't know if it's
22	been done for a two-phase flow, but for a single phase
23	flow -
24	MEMBER WALLIS: But then you've got the
25	force on the bend. There is no force on the bend in
	1

(202) 234-4433

	320
1	this equation.
2	CHAIRMAN BANNERJEE: You'd get the force on
3	the bend. But that's all right. You may say, I don't
4	care about the force on the bend
5	DR. MAHAFFY: Well, I do care about it, but
6	that goes back to something I said up front, and that
7	is, that we have varied all of the effects of the
8	force of the bend inside these engineering loss
9	coefficients that you can think of as being hidden off
10	down here in our F sub W.
11	MEMBER WALLIS: If you look at Bird,
12	Stewart and Lightfoot, when they analyze a monometer,
13	where the momentum on one side is the opposite
14	direction from the other, and there is a bend, they
15	are very careful not to use any momentum equation;
16	they use an energy equation, because they don't know
17	how to do it with the momentum equation
18	DR. MAHAFFY: I understand that.
19	CHAIRMAN BANNERJEE: They use a mechanical
20	energy.
21	MEMBER WALLIS: Yes, they don't know how to
22	do it with momentum.
23	DR. MAHAFFY: You probably don't remember,
24	but the last time that I was in front of this
25	subcommittee, what I said was that when you are in

(202) 234-4433

	321
1	one-dimensional modeling of fluid flow within a piping
2	system, the correct approach is to talk in terms of
3	the kinetic energy equation rather than in terms of
4	the momentum equation because your momentum really is
5	not a meaningful quality until you nodalize that thing
6	up to a full three dimensions with a CFD solvent.
7	And that's why I went on beyond this with
8	a kinetic energy derivation which is not really
9	finished.
10	CHAIRMAN BANNERJEE: But I think we have
11	seen various points we could have tried this kinetic
12	energy derivations, and with certain assumptions about
13	distribution coefficients, that they are flat, they
14	will begin to start looking like momentum equations -
15	DR. MAHAFFY: That's right.
16	MEMBER WALLIS: - with loss factors and
17	with force terms. These force terms sort of get stuck
18	into loss factors. And but it will be good if it was
19	systematized, put down so that we understand what
20	assumptions go in. Maybe they have to be flat
21	distribution coefficients. So then you get rid of
22	these VQ terms of V squared and stuff, okay. Whatever
23	it is. But let's get these assumptions straight. Get
24	all the equations straight. So we at least know under
25	what circumstances the equations work.
ļ	I

(202) 234-4433

(202) 234-4433

	322
1	There could be circumstances they don't
2	work, in which case we know at least what their
3	limitations are.
4	So if there are very bad distribution
5	coefficients, they are probably wrong. It doesn't
6	matter. We assume they're flat. And we move from
7	there.
8	But it would be good if we got it all
9	down. I think this is a good start. You've started
10	to move in this direction. And we just need to finish
11	the job.
12	And we need to probably ourselves look it
13	over, give you some feedback. But it needs to get
14	finished.
15	DR. MAHAFFY: Well, like I said, January is
16	my month to write all this up in the documentation of
17	the field equations.
18	CHAIRMAN BANNERJEE: Once we've got this
19	done, and at least our committee has taken a look at
20	it, you've got our feedback, and then I think the next
21	step will be when we get the whole document down it
22	will be peer reviewed.
23	MEMBER WALLIS: This VG2 minus VG1, is that
24	part essential to TRACE?
25	DR. MAHAFFY: This?
I	I

	323
1	MEMBER WALLIS: That term, I was having
2	trouble with, is that essential to TRACE
3	DR. MAHAFFY: Yes, that is your V del V
4	term in your motion equation. If you look at that,
5	this is difference -
6	MEMBER WALLIS: It's a V del V, but when I
7	integrate it, I have to get the velocity in - I have
8	a different mass flow going in than coming out. When
9	I actually do the control volume balance, I don't get
10	a VGC. I have VG going in squared if you like, and a
11	VG going out squared. I have a different formulation.
12	CHAIRMAN BANNERJEE: You're looking at it
13	from the physics point of view.
14	DR. MAHAFFY: Again, go back to the Bird,
15	Stewart and Lightfoot, wherever you want to go, or do
16	it by hand yourself, purely, go to single phase flow
17	to do a simple problem -
18	MEMBER WALLIS: Well, VGC is what, the
19	average of VG2 and VG1?
20	DR. MAHAFFY: No.
21	MEMBER WALLIS: What is VGC
22	DR. MAHAFFY: That is the velocity -
23	MEMBER WALLIS: But my computation scheme
24	only calculates it at certain points
25	DR. MAHAFFY: It calculates it here, here,
Į	I

(202) 234-4433
	324
1	here -
2	MEMBER WALLIS: So VG2 and VG1 are averages
3	DR. MAHAFFY: VG2 and VG1 are averages,
4	because we have yet to determine -
5	MEMBER WALLIS: So they really aren't
6	defined except in terms of the VGCs on the other side
7	of them.
8	DR. MAHAFFY: That's right.
9	MEMBER WALLIS: So that term doesn't mean
10	anything to me yet until I see it related to what you
11	actually use.
12	DR. MAHAFFY: Not until I specify an
13	averaging technique. But within the context of my
14	derivation, it still stands as a meaningful number
15	added at the edge of a volume.
16	CHAIRMAN BANNERJEE: VG1, let's say, is
17	notionally an average between VGC and whatever is
18	upstream of one, and VG2 is notionally an average of
19	between VGC and something which is -
20	DR. MAHAFFY: Let me be very explicit about
21	what it is. It's in some of the words -
22	MEMBER WALLIS: This V del V thing is only
23	true if you don't add mass along the way
24	DR. MAHAFFY: Yes, and what I'm trying to
25	tell you, based on the derivation, this is the
ļ	I

(202) 234-4433

	325
1	adjustment to it if you add mass along the way. Okay?
2	You've got to go through the derivation.
3	You've got to do the derivation.
4	MEMBER WALLIS: We are spending much too
5	much time on this.
6	CHAIRMAN BANNERJEE: Can we then -
7	MEMBER WALLIS: I'm very nervous that what
8	you are going to get as a critique is something that
9	you don't like.
10	CHAIRMAN BANNERJEE: That's okay.
11	MEMBER WALLIS: No, it's not okay. Because
12	I want to sign off that this is a good code, and it's
13	based on something that -
14	CHAIRMAN BANNERJEE: We'd all like to sign
15	off that this is a good code. But do you want to
16	finish up, John before moving on to the anonymous - do
17	you have anything more to say on this one
18	DR. MAHAFFY: Well, we wandered around this
19	quite a bit. I've got some specific comments. But
20	they really aren't - they are details you can look at
21	and talk about what's going on.
22	Because if you look, there is a step
23	between where my derivation ended and what actually
24	happens in TRACE. TRACE says, G, I've got an alpha
25	rho G here, an alpha rho G here, and they cancel out,
	I

(202) 234-4433

	326
1	because TRACE originally came from a finite
2	difference, rather than a finite volume derivation for
3	these terms.
4	You will see something similar in the
5	gravitational force terms.
6	So there are some things there that we
7	need to talk about.
8	The other thing you need to know, it's in
9	words in this, if you go back and look at it, I didn't
10	talk to you about the basis functions for the
11	velocities, and there rather than assuming velocity is
12	constant over the volume, because we are admitting the
13	possibility of discontinuous changes in area, what we
14	take as the product of area and velocity, the
15	volumetric flow, is constant over some volume stretch.
16	We used that - if you want to get back -
17	we haven't even gone into the whole issue of upwinding
18	and whatnot. But when I actually need to get a
19	velocity here, I'm consistent with upwind
20	differencing. So what I'm going to do is, I'm going
21	to use the velocity upwind that's actually calculated
22	to generate the velocity at this position. And I'm
23	going to use my constant volumetric flow rate to go
24	from a velocity at this position to a velocity there.
25	That's my interpolator.
ļ	I

(202) 234-4433

	327
1	A similar thing going from the velocity
2	here, which is calculated, to this edge of my momentum
3	velocity thing.
4	CHAIRMAN BANNERJEE: Provided there is no
5	inflow in between, right?
6	DR. MAHAFFY: Yep.
7	CHAIRMAN BANNERJEE: All right, John, I
8	think we need to either take a short break, or how
9	long do you have?
10	MEMBER WALLIS: Let me ask you about this
11	anonymous thing.
12	ANONYMOUS LETTER
13	CHAIRMAN BANNERJEE: The anonymous thing.
14	We need to do that. Do you want to do that?
15	MEMBER WALLIS: We need to do that. That's
16	something you need to resolve. But I don't have an
17	interest in whatsoever.
18	DR. MAHAFFY: I have been told by the NRC
19	that this was an item that was directed from higher
20	levels.
21	MEMBER WALLIS: But do we need to worry
22	about it on this committee? I mean you guys are
23	resolving it somehow.
24	MR. CARUSO: In a letter we used to
25	transmit this to them, we asked them to tell us how we
	I

(202) 234-4433

	328
1	were to resolve it.
2	MEMBER WALLIS: I see.
3	MR. CARUSO: So we have to we asked for
4	it, so
5	CHAIRMAN BANNERJEE: Why don't we go
6	forward until 4:30, see if we can resolve this by
7	then, then we'll take a break.
8	MEMBER WALLIS: Well, we have an hour and
9	a half scheduled for anonymous letter. I don't think
10	it's worth anything like that.
11	CHAIRMAN BANNERJEE: No, let's do it for 20
12	minutes.
13	DR. MAHAFFY: I've got eight slides here,
14	all right?
15	MEMBER WALLIS: Good
16	DR. MAHAFFY: Okay, in the anonymous
17	letter, there are some fairly direct statements. One
18	says, the approach in the code does not in any way
19	represent a solution of any kind for the EOS. The
20	approach is not mathematically correct. The
21	linearization of the EOS, and does not represent any
22	correct or reasonable engineering approximation.
23	MEMBER WALLIS: What is EOS?
24	DR. MAHAFFY: Equation mistake. And he
25	breaks this up into three different categories.

(202) 234-4433

	329
1	MEMBER WALLIS: I think they are talking
2	about how you represent the thermodynamic tables
3	DR. MAHAFFY: No, what he is talking about,
4	let me be very specific about what happens. Here is
5	what being contested. At the very end of a time step,
6	after the stable - and this is only true for SETS.
7	Remember the TRACE - well, it actually has three
8	methods, but you only see two of them right now.
9	There is the SETS method, and the semi-implicit
10	method, in terms of your time leveling, that we
11	haven't dealt with.
12	This is not relevant for semi-implicit,
13	number one. If you choose to run the code in a semi-
14	implicit mode, what's being discussed here doesn't
15	happen. It's only in SETS. After you have completed
16	the stabilizer, mass and energy equations, what
17	happens is that the natural solution of those
18	equations is to give you values for the products down
19	here that I'm outlining, alpha rho G, et cetera.
20	That's what naturally comes out of the conservation
21	equations in SETS form.
22	We would like to retrieve from that, from
23	the standpoint of really flow regime stability, a void
24	fraction. As a sidelight, we could get pressures and
25	temperatures, but we choose not to. They would only

(202) 234-4433

	330
1	be used as initial gases in the next time step.
2	What we use as initial gases instead are
3	the new time pressures and temperatures we get from
4	the semi-implicit.
5	So we are going through here. We are
6	trying to get ourselves a void fraction, and yes at
7	the same time, we're getting estimates for changes in
8	temperature and pressure.
9	And here is what's happening. We set up
10	an equation set here, so I've got four functions of
11	four unknowns. And as you know, the method of choice
12	for this, since these are nonlinear expressions, is to
13	go to a generalized Newton solution procedure.
14	So that's what happens. I go in here, and
15	I generate a Jacobian matrix, based on my partial
16	derivatives of each of these functions that I've
17	written now.
18	MEMBER WALLIS: Excuse me, what does the
19	EOS have to do with this?
20	DR. MAHAFFY: Well, this is an EOS. It
21	then - this is the expression - I've chosen my
22	independent variables -
23	MEMBER WALLIS: That's where the EOS comes
24	in.
25	DR. MAHAFFY: Yeah. This is the equation
ļ	1

(202) 234-4433

	331
1	that stayed here.
2	MEMBER WALLIS: Was that the beta form?
3	CHAIRMAN BANNERJEE: No, it's how he solves
4	it.
5	MEMBER WALLIS: It's how you solve it, okay
б	DR. MAHAFFY: And all I've done is, I've
7	gone in here, and I've set up, this is a class Newton
8	information. I've defined my function. So I'm
9	saying, this as-of-yet to be determined product is
10	equal to this number, right.
11	This is some expression I'm getting
12	through changing pressures and temperatures and void
13	fractions.
14	CHAIRMAN BANNERJEE: But all you are trying
15	to find there is the void fraction, right
16	DR. MAHAFFY: All I really care about is
17	the void fraction. I will get changes in pressure and
18	temperature that I can use, too.
19	CHAIRMAN BANNERJEE: so go ahead
20	DR. MAHAFFY: So this is it. This is a
21	Jacobian for Newton iteration. I think you should
22	recognize that. And these will be my changes over the
23	iteration. Here's my right-hand side.
24	These are my residuals.
25	CHAIRMAN BANNERJEE: And you try to drive
I	

(202) 234-4433

	332
1	it to zero? You iterate to zero
2	DR. MAHAFFY: We don't.
3	CHAIRMAN BANNERJEE: You just do one step
4	DR. MAHAFFY: All we do is a one shot.
5	What we've done is, first of all, let me talk about
б	the verification process for this particular
7	operation.
8	CHAIRMAN BANNERJEE: Why is he saying what
9	you are doing is wrong, though? Even if you just take
10	one step.
11	DR. MAHAFFY: I'll try to get to that. But
12	I think most people will agree that a Newton iteration
13	is a well established way to solve nonlinear
14	equations.
15	When this was originally implemented in
16	TRACE, this was done as a full up iteration. And part
17	of the verification process, we did really two things,
18	and this is fairly standard within the way I operate.
19	Number one, these Jacobian elements were
20	generated in two different ways. They are obtained
21	think of it as analytically.
22	CHAIRMAN BANNERJEE: All by perturbation
23	DR. MAHAFFY: Okay, but every time I do a
24	Jacobian anywhere, I always do a second backup with
25	perturbation, and check to make sure that the two
	I

(202) 234-4433

	333
1	answers match. That's been done.
2	The other thing that was done was that
3	during Newton iterations, the procedure through the
4	iteration was observed in a number of representative
5	cases, and you could see the classic quadratic
б	convergence of the Newton iteration going on.
7	So we had confirmation that the Jacobean
8	was okay, and that the Newton iteration was behaving
9	the way it should.
10	As we worked with this over a period of
11	months, what became obvious was there was really in
12	this case no advantage to going more than one
13	iteration. That first change in void fraction was all
14	you really needed to get things to a reasonable
15	approximation and quit.
16	So that's why right now there is just the
17	single shot linearization out of it, just as RELAP-5,
18	there is a single shot. It does the first in what
19	would be a series of Newton iterations, and it's stops
20	on the full equations set. This is just a local.
21	Now, here's an alternative way of doing
22	things. And this is part of I think the assertion
23	that things were incorrect.
24	The author of the letter went through an
25	example where in effect he worked on an inverse
I	1

(202) 234-4433

	334
1	problem, and in a very simple example, which was
2	single phase ideal gas flow, and in the inverse
3	problem, basically, okay, well, we had this equation
4	of state. We're going to invert the equation of state
5	eventually.
6	What I'm going to show you eventually is
7	that for this equation of state, if I go through the
8	linearization that I just showed in a generic sense,
9	I get a matrix equation like this. This delta rho and
10	delta rho E is another way of expressing that function
11	F.
12	And I solve this matrix equation, and this
13	is the answer I get, analytic solution to the problem
14	for one iteration.
15	CHAIRMAN BANNERJEE: That's exact
16	DR. MAHAFFY: Well, it's an exact solution
17	to my first iteration. It turns out because of some
18	linear behaviors it is an exact solution.
19	MEMBER WALLIS: This delta rho E minus E
20	delta rho is the same thing as rho delta E is it
21	DR. MAHAFFY: This guy here if you think
22	about it, from basic calculus, all that is is rho
23	delta E, yes.
24	MEMBER WALLIS: And you cancel the rhos,
25	and you've got delta E over CV, which is a first law
Į	I

(202) 234-4433

	335
1	DR. MAHAFFY: That's right. That's what it
2	should be.
3	I'm leaving it in this term, because the
4	author of the letter chose to think in terms of
5	independent variables are the product of rho E and
6	rho.
7	MEMBER WALLIS: Okay
8	DR. MAHAFFY: I'm trying to preserve a
9	consistency here.
10	So now here is the analogy, in a simpler
11	form I admit to what was going on in the letter. I've
12	gone in now and I've inverted that equation of state
13	now. And I've said, okay, my pressure is a function
14	of density, and the product rho e is equal to this.
15	And I invert my temperature, and here is
16	what it is, as a function of rho E and rho.
17	And now all I do is a Taylor series
18	expansion here.
19	MEMBER WALLIS: And you get the same answer
20	DR. MAHAFFY: And I get the same answer.
21	MEMBER WALLIS: No surprise
22	DR. MAHAFFY: No surprise.
23	MEMBER WALLIS: What's the problem
24	DR. MAHAFFY: I don't know.
25	CHAIRMAN BANNERJEE: He comes up with a
	I

	336
1	form of - I just read it which is a bit different from
2	what he gets using your form, right, your
3	linearization?
4	DR. MAHAFFY: He's got a difference.
5	CHAIRMAN BANNERJEE: Yeah, he's got a
б	difference. And why is that
7	DR. MAHAFFY: I did not - that's why I went
8	- I treated the problem a little bit different with
9	simpler algebra.
10	CHAIRMAN BANNERJEE: But if you did his
11	problem?
12	MEMBER WALLIS: Did you demolish his point
13	somehow?
14	CHAIRMAN BANNERJEE: If you did it his way,
15	do you get the same result as he does
16	DR. MAHAFFY: I did not do it in exactly
17	his way because I was -
18	MEMBER WALLIS: You have to sort of
19	demolish his argument as well as reinforcing his own.
20	CHAIRMAN BANNERJEE: Yeah, I think more
21	like if you could treat his argument - his final
22	result is right, right? There is no question about
23	that
24	If all he did was your stuff, he would be
25	wrong.
l	I

```
(202) 234-4433
```

	337
1	DR. MAHAFFY: One of two things have
2	happened. Either there was an error in his algebra -
3	well, there are three possibilities, but the third I
4	don't believe.
5	Either there was an error in his algebra,
6	or there is a relationship between thermodynamic
7	derivatives in his more complicated way of
8	manipulating things was not folded in to get a
9	collapsed resolve.
10	The third possibility I don't believe.
11	There is an underlying assumption in the letter that
12	has to do with the relationship between Jacobians and
13	linearization made for Cs, in a system of equations
14	and an inverse system equations.
15	I have a vague recollection fo seeing a
16	theorem somewhere on that subject, but you'd have to
17	have that in hand to actually complete the argument on
18	the other side.
19	But my first response, without even going
20	through this exercise I did here, is that we have done
21	a classic Newton linearization of the problem as we
22	have defined it. It is a correct Newton method.
23	MEMBER WALLIS: It's not a problem of
24	equation of state. I mean is he questioning your
25	Newton iteration of products? Or what is he
	I

(202) 234-4433

	338
1	questioning?
2	DR. MAHAFFY: That becomes a little vague.
3	CHAIRMAN BANNERJEE: I don't have a
4	printout of the letter. I have it on my computer
5	DR. MAHAFFY: There is a general statement
б	that what we've done is mathematically incorrect. If
7	you read the three specific assertions, it says the
8	approach in TRAC TRACE is not correct and cannot lead
9	to a correct analytic solution.
10	He's right, okay. We are not getting an
11	analytic solution. We are iteratively solving a
12	nonlinear problem. We are not generating analytic
13	solutions. There is no doubt about that. We are not
14	trying.
15	The correct linearization by use of
16	implicit function theory leads to the correct
17	solution. Well, if you've got the inverted equations
18	of state, I don't argue that point.
19	MEMBER WALLIS: But it says the approach in
20	TRAC TRACE is not correct. Something specific which
21	is not correct that he fingers
22	DR. MAHAFFY: No, there is an example with
23	a specific instance for an ideal gas equation of state
24	where some things don't -
25	CHAIRMAN BANNERJEE: I'm getting the letter
	1

(202) 234-4433

	339
1	up.
2	DR. MAHAFFY: What I've tried to do is go
3	through the example that was presented in a cleaner
4	format. I reduced the equations so they were easier
5	to follow and produce in terms of Jacobian matrices
б	and whatnot, and you've seen the answers I've got.
7	CHAIRMAN BANNERJEE: He seems to recognize
8	what you are doing in this letter. Writes these
9	derivatives down for an ideal gas.
10	Can we get a printout of this letter that
11	we can distribute? I have it on my computer.
12	MR. CARUSO: Sure, I'll print it out.
13	CHAIRMAN BANNERJEE: Okay, why don't we
14	take a break now, and we print it out, and we just
15	return to it after that.
16	So let's take a 15-minute break until 20
17	to 5:00, and then we go over this letter.
18	(Whereupon at 4:24 p.m. the
19	proceeding in the above-
20	entitled matter went off the
21	record to return on the record
22	at 4:47 p.m.)
23	CHAIRMAN BANNERJEE: Okay back in session.
24	So John, have you got a copy of this as
25	well?
	I

(202) 234-4433

	340
1	DR. MAHAFFY: Yes, sir, I have a copy in
2	front of me.
3	CHAIRMAN BANNERJEE: All right. We want to
4	consider it some more and get your views on it.
5	Do you want some time to read it
6	DR. MAHAFFY: No, I've read it. And what
7	happened, basically if you look at it, he's done the
8	problem from two different directions and obtained on
9	his bottom line two inconsistent answers.
10	My attitude was, while he's introduced
11	some functional relationships here in setting the
12	problem up here that were needlessly complicated. So
13	to cut down the potential of error, what I did was, I
14	cast the problem using the ideal gas equation to state
15	specifically, in a simpler more direct form, which is
16	what you see in the presentation.
17	And I went through, solved the problem,
18	and got consistent answers.
19	CHAIRMAN BANNERJEE: Right. But then what
20	has he done in order to get a different answer
21	DR. MAHAFFY: And once I had solved the
22	problem from a slightly cleaner perspective, I decided
23	not to go through a find a specific error in his -
24	CHAIRMAN BANNERJEE: If there is one
25	DR. MAHAFFY: I've solved the same problem.
ļ	I

(202) 234-4433

	341
1	I've just cast it in the form of variables that are a
2	little easier and less prone to errors.
3	MEMBER WALLIS: Can you find in his
4	document here a specific place where he says that
5	something is erroneous, that something done one way
6	gives one answer, and done another way gives another
7	answer, and these are incompatible?
8	Is there some bottom like that
9	DR. MAHAFFY: What happens is that he gets
10	expressions for delta P and delta T, okay. His
11	equations 19 and 20, all right. And then he goes
12	through and, using the inverted form of the equation
13	of state, he comes up with another set of expressions
14	for delta P and delta P that are 32 and 33, okay.
15	And then the idea is here, well, let's
16	inspect these results.
17	MEMBER WALLIS: Does it matter what these
18	equations are? I mean the method is still the same,
19	isn't it?
20	DR. MAHAFFY: No, the approach here, it's
21	a useful cross check in that his first approach is the
22	total analogy to the TRACE approach. He is going to
23	sit down and start with an equation fo state in which
24	the independent variables are pressure and
25	temperature, and he is going to derive, based on all
I	

(202) 234-4433

	342
1	the expressions present, some change in pressure and
2	change in temperature.
3	MEMBER WALLIS: Right
4	DR. MAHAFFY: From the Newton type
5	linearization, and that's the end point down there.
6	MEMBER WALLIS: But there is something very
7	different here. In node 19 he's got this N + 1, which
8	is the next step or something? Is that what delta P
9	N plus 1 means is the change in pressure from now
10	until the next time; is that what that means?
11	CHAIRMAN BANNERJEE: It comes from the
12	solution of 12 and 13.
13	DR. MAHAFFY: No, it's the change in
14	pressure, change in the Newton pressure estimate, all
15	right. Starting with whatever my current -
16	MEMBER WALLIS: So N + 1 is the number of
17	iterations, N, or something?
18	DR. MAHAFFY: $N + 1$ is the time step level.
19	MEMBER WALLIS: And delta P at time N + 1
20	ahead of now, is that what that means
21	DR. MAHAFFY: N + 1 designates where I am
22	located in time in my discrete solution to the partial
23	differential equations. And what he is saying here is
24	that I had some guess at my Newton pressure. Whatever
25	it may be, that was my guess that I used to generate
I	1

(202) 234-4433

	343
1	certain numbers here, including the derivatives that
2	are written, as I say, in a form that I consider to be
3	overly complicated, so that all this delta P is given
4	my last guess at Newton pressure here is how I change
5	it to get a better value of Newton pressure consistent
6	with the values of Newton density and Newton density
7	times Newton energy that have come out of my
8	stabilizer equations.
9	So again, the problem at hand is, I know
10	the Newton density, I know the Newton product of
11	density and energy, and I want to infer from that a
12	Newton pressure and a Newton temperature.
13	MEMBER WALLIS: It would seem to be a
14	trivial matter. Just by using thermodynamics.
15	CHAIRMAN BANNERJEE: No, I think what he is
16	saying is, if you look at equations 19 and 20, then
17	what you have in there in the square brackets is,
18	let's say rho bar minus rho - whatever -
19	MEMBER WALLIS: That's the delta rho then?
20	CHAIRMAN BANNERJEE: No, that is the
21	quantity you are trying to drive to zero, right. And
22	rho E over bar minus rho E they are trying to drive
23	that quantity to zero.
24	DR. MAHAFFY: Yes.
25	CHAIRMAN BANNERJEE: And what he is saying
I	

(202) 234-4433

	344
1	is, it's not entirely clear. If you look down a
2	little further on page 412, he says the numerical
3	values for the density and internal energy are most
4	likely the values from the previous time step
5	DR. MAHAFFY: And that is incorrect.
6	CHAIRMAN BANNERJEE: Okay, so the same is
7	true for all the other state properties on the right-
8	hand side of the equations above. Thus as noted in
9	previous notes, the Newton solution in the codes will
10	depend on whatever is told in these locations in the
11	codes.
12	No attempt is made to update these values
13	even once. That is I think the crux
14	DR. MAHAFFY: Those statements are entirely
15	incorrect, okay.
16	CHAIRMAN BANNERJEE: I guess that is the
17	crux of his argument. If you do what he is saying
18	there, that you don't update those values, then you
19	will get the wrong answer.
20	DR. MAHAFFY: Well, it's not that you get
21	the wrong answer.
22	CHAIRMAN BANNERJEE: Or you won't get as
23	good an answer, whatever.
24	DR. MAHAFFY: What's really interesting is
25	that really the only discrepancy between the two

(202) 234-4433

	345
1	equations are his assumptions of the initial gas
2	values, and the values at which certain derivatives
3	are evaluated.
4	CHAIRMAN BANNERJEE: Well, I guess if you
5	want to clear up this matter, you have to deal with
6	those statements that he makes.
7	DR. MAHAFFY: Well, let's clear this up
8	directly. Let's go in and look at equation 19, and
9	let's compare that to equation 32, okay.
10	If you look at that term by term, you'll
11	have to look at equation 18 to see what this D is, and
12	you will see - or actually look at 17, that gives you
13	a better direct comparison - if you look at 17, that
14	compares directly to the denominator term in equation
15	32.
16	As you go through and you interpret each
17	of these terms here, the only difference is between
18	equation 19 and 32 are the assumed time levels at
19	which the initial guesses are made.
20	CHAIRMAN BANNERJEE: Exactly.
21	MEMBER WALLIS: What is this delta rho bar
22	then in 32? How does that relate to rho bar minus rho
23	PT?
24	DR. MAHAFFY: That's what it is.
25	MEMBER WALLIS: So it's the same equation
	I

(202) 234-4433

	346
1	DR. MAHAFFY: It's the same thing. If you
2	look at these equations they are the same. It's just
3	why they are written differently, I don't know. The
4	only fundamental difference between them is -
5	MEMBER WALLIS: A plus sign instead of a
6	minus sign?
7	DR. MAHAFFY: Well, I think there was a
8	minus sign hidden out there that is hard to tell, at
9	the very - right after the equals in 19, I believe
10	there is a minus sign, that is blurred into the divide
11	by in the one over D.
12	MEMBER WALLIS: But it still doesn't look
13	quite - because inside the square brackets you've got
14	two terms that add in one case and are subtracted in
15	the other. Yet they looked at the same form. So I
16	don't quite understand that.
17	CHAIRMAN BANNERJEE: I guess equations 32
18	and 33, which he claims are the correct linearized
19	equations, have to be compared with 19 and 20.
20	MEMBER WALLIS: That's right.
21	CHAIRMAN BANNERJEE: Which he claims are
22	the equations which are used in the quote. But then
23	he has the further point he makes that the Newton
24	solutions - I'm not quite sure what is meant by the
25	previous times -
Į	

(202) 234-4433

	347
1	MEMBER WALLIS: Looks like the same
2	equation.
3	DR. MAHAFFY: Let me clarify that for you.
4	First of all, if you kind of ignore old
5	time/new time evaluation, equation 19 is equivalent to
6	equation 32 -
7	MEMBER WALLIS: Except for the signs
8	DR. MAHAFFY: Well, if you dig deeper,
9	Graham, what you will see is that that sign is made up
10	for -
11	MEMBER WALLIS: Oh, I see, it's CP minus -
12	DR. MAHAFFY: Yeah, that wasn't written
13	down in an orderly way.
14	MEMBER WALLIS: Okay, you're right. I take
15	back what I said.
16	DR. MAHAFFY: Those things are consistent,
17	and you'll see a similar consistency -
18	MEMBER WALLIS: Looks like the same
19	equation, it's just that you are evaluating things at
20	different times.
21	CHAIRMAN BANNERJEE: If you are
22	DR. MAHAFFY: And the crux of the matter is
23	that he is making an assumption that to get the
24	derivatives that are used in the Jacobian and the
25	initial gas at pressure and temperature, we are
I	I

(202) 234-4433

	348
1	backing all the way off to old time quantities.
2	And that particular - first of all,
3	depending on your time step size as to how good, bad
4	or indifferent that particular starting point is.
5	MEMBER WALLIS: He seems to be concerned
6	about whether or not you are converging to the answer.
7	CHAIRMAN BANNERJEE: No, you know what he's
8	saying, that delta rho E over bar and delta rho -
9	whatever he calls over bar -
10	MEMBER WALLIS: Should be implicit.
11	CHAIRMAN BANNERJEE: - should be found at
12	the new time step.
13	MEMBER WALLIS: It's implicit.
14	CHAIRMAN BANNERJEE: Yeah, it's found from
15	the whole Jacobian.
16	MEMBER WALLIS: That's what he's saying.
17	CHAIRMAN BANNERJEE: It should be found.
18	MEMBER WALLIS: He's talking about how you
19	converge.
20	CHAIRMAN BANNERJEE: So what you should be
21	solving for is delta P N plus 1, delta -
22	MEMBER WALLIS: In terms of delta rho and
23	delta rho E.
24	CHAIRMAN BANNERJEE: Rho bar and plus one,
25	it should be delta rho bar E. That's what I don't
	I

```
(202) 234-4433
```

	349
1	know. Let's get it clear what he is alleging. All
2	the quantities, delta P, delta B, delta rho bar, delta
3	rho E, delta rho E bar, should all be found at N plus
4	one from the Jacobian -
5	MEMBER WALLIS: This is simply
6	thermodynamics. They should be related at the same
7	time.
8	CHAIRMAN BANNERJEE: They should be found,
9	and they should be plugged in, and you get everything
10	correct.
11	MEMBER WALLIS: How does this differ from
12	19?
13	CHAIRMAN BANNERJEE: But what he's saying
14	is that delta rho bar and delta rho E bar are not
15	being found from the Jacobian and being updated; they
16	are old time step values. That's how I read it.
17	That when you take your famous Jacobian,
18	go back to your Jacobian -
19	DR. MAHAFFY: Which one do you want, this
20	one?
21	CHAIRMAN BANNERJEE: No, not that one.
22	DR. MAHAFFY: This one?
23	MEMBER WALLIS: It doesn't help us until we
24	say, where - when you evaluate -
25	DR. MAHAFFY: Yeah, it's not -
I	

(202) 234-4433

	350
1	CHAIRMAN BANNERJEE: Let's get back to this
2	one. Alpha doesn't end here.
3	Instead of delta P, delta TG and CL is
4	just T he's got.
5	DR. MAHAFFY: All of these elements to the
б	extent if we - let's go back even to look at our
7	function, these quantities - this quantity, this
8	quantity, this quantity, these are all evaluated in
9	the initial guess using results for the new time void
10	fraction, new time pressure, new time pressure
11	obtained from the semi-implicit step.
12	So they are not simply old time
13	quantities. They have been updated by evaluation of
14	the semi-implicit equations in the SETS method already
15	to something that is new time level.
16	MEMBER WALLIS: When you are driving
17	something to zero, do you want to drive to zero the
18	change from the old time to the new time, that's what
19	you want to drive to zero, isn't it?
20	CHAIRMAN BANNERJEE: But if you go back to
21	your Jacobian there you've got, now let's replace that
22	delta alpha by a delta rho bar, and delta TG let's say
23	by delta rho E bar, and let's call delta T delta T,
24	delta P delta P.
25	Now you have got a vector of four. And
ļ	

(202) 234-4433

	351
1	you have a square Jacobian of 16 elements.
2	He is saying you should be solving for
3	that vector all the deltas altogether
4	DR. MAHAFFY: But he is saying more than
5	that.
б	CHAIRMAN BANNERJEE: And he's saying you're
7	not.
8	DR. MAHAFFY: Well, what I'm not doing is
9	using an inverted equation of state, which would give
10	me basically my pressure as a function of density, and
11	internal energy per unit volume. And I'm not.
12	MEMBER WALLIS: Does that have anything to
13	do with it? I think it's just a question of when you
14	evaluate these delta rhos, isn't it?
15	CHAIRMAN BANNERJEE: He said that all of
16	them must be found together at the new time stages
17	DR. MAHAFFY: They are all found together.
18	If you look at this, this is a fully consistent Newton
19	iteration.
20	MEMBER WALLIS: So your rho bar minus rho
21	PT is the same thing as his delta rho bar N + 1 $$
22	DR. MAHAFFY: No, no.
23	MEMBER WALLIS: Look at 19 versus 32. The
24	only thing at issue is this delta rho bar N + 1 being
25	equivalent to what you call rho bar minus rho P comma
	1

(202) 234-4433

	352
1	T, and I have to know what you mean by rho bar minus -
2	CHAIRMAN BANNERJEE: At which status step.
3	MEMBER WALLIS: Yes, when you evaluate that
4	DR. MAHAFFY: Okay. The rho bar is the
5	result - it's a new time result from a slightly
6	modified set of flow equations, the stabilizer mass
7	and energy equations. And that is evaluated at a time
8	level N + 1.
9	CHAIRMAN BANNERJEE: And rho bar E - and
10	rho E bar?
11	DR. MAHAFFY: Rho E bar is again stabilizer
12	mass and energy equations. It's a number.
13	MEMBER WALLIS: And what is rho PT?
14	CHAIRMAN BANNERJEE: Those are just
15	equations of state values.
16	DR. MAHAFFY: Those are evaluated -
17	MEMBER WALLIS: When is P and T evaluated
18	DR. MAHAFFY: They are evaluated also at a
19	new time.
20	MEMBER WALLIS: So everything is at new
21	time just the way his is?
22	DR. MAHAFFY: It's coming out of a slightly
23	different way of evaluating the flow equations. So
24	they are not going to be exactly the same values as
25	you get once you've solved this coupled set of
	1

(202) 234-4433

	353
1	equations.
2	So although these are formally from a
3	numerical standpoint at the new time level, because
4	the equations that generated them were different,
5	their values aren't going to be the final values of
6	basically pressure, temperature, et cetera that are
7	consistent -
8	CHAIRMAN BANNERJEE: Because they're just
9	coming out of this predictive step; not the corrective
10	step?
11	DR. MAHAFFY: Yes.
12	CHAIRMAN BANNERJEE: Okay, I think that
13	resolves really the issue. What - and is there much
14	of a difference between what these values would be
15	coming out of the predictive step compared to out of
16	the corrective step?
17	DR. MAHAFFY: If there are, we have time
18	step control; it drops the time step size.
19	MEMBER WALLIS: Well, presumably they are
20	converging to the same thing.
21	CHAIRMAN BANNERJEE: Yes, I guess that's
22	his issue. And he, instead of saying it's coming out
23	of the predictive step, he's saying it's coming out of
24	the -
25	DR. MAHAFFY: He thinks it's coming out of
I	1

(202) 234-4433

	354
1	the old time, and it's not.
2	CHAIRMAN BANNERJEE: So I think we should
3	clarify exactly what we're doing here. This is really
4	up to you guys to answer it. But if what we have said
5	today is correct, then I think we should write that
6	down, and we should show how much if any the error is.
7	I mean the error could be very small.
8	In any case, if as you say if it doesn't
9	converge, you would - the Newton-Raphson in one
10	iteration doesn't converge anyway.
11	MEMBER WALLIS: It may overshoot and all
12	kinds of things.
13	The thing that bothered me, though, is
14	that you said these rho bars and rho PT came from
15	something else.
16	DR. MAHAFFY: Think of it as a corrector
17	step on a set of -
18	MEMBER WALLIS: On some other equations
19	DR. MAHAFFY: It's the same flow equations.
20	What happens is, in one case, in a semi-implicit flow
21	equations, let's look at the semi-implicit mass
22	equation, the density is being fluxed in the
23	divergence term, del dot rho V. The densities are
24	evaluated at the old time level.
25	When you go to the stabilizer equation,
ļ	I

(202) 234-4433

	355
1	your corrector, that density now is evaluated at the
2	new time level. Everything else is the same.
3	That's how you perturb the equations, and
4	that's how you introduce stability into the system.
5	MEMBER WALLIS: Can you program a simple
б	example of your equation and his, and show what
7	difference it makes?
8	DR. MAHAFFY: I suppose we could.
9	MEMBER WALLIS: I suspect it's going to
10	make almost no difference.
11	CHAIRMAN BANNERJEE: Here you solve the
12	whole Jacobian together without splitting it in two.
13	What you are doing is, you are splitting the Jacobian
14	into two parts, right?
15	DR. MAHAFFY: The Jacobian is what it is
16	for the system of equations as I've chosen to define
17	it with my choice of variables.
18	The one point I want to make, it's right
19	here on my last slide, okay, he has selected, it's
20	cherry picking, he selected a problem for which he can
21	get a quick answer.
22	He's picked a problem where it's single
23	phase, ideal gas. He's saying I know my - his
24	particular inverted form of the equation is state, so
25	it's easy. I don't have to invert a matrix at all.
ļ	I

(202) 234-4433

	356
1	I just generate a matrix. I know what the
2	coefficients are. I'm done.
3	The point I want to make -
4	MEMBER WALLIS: It's a different answer
5	from what you would get to the same simple problem
6	DR. MAHAFFY: No, if you look at it, from
7	the standpoint -
8	MEMBER WALLIS: Because you use the single
9	phase gas the same way he does, you get the same
10	answer?
11	DR. MAHAFFY: As long as we start with the
12	same initial gas, as long as the perturbation is off
13	the same base point, then we get the same answer. We
14	won't.
15	CHAIRMAN BANNERJEE: Let me ask you a
16	question. Instead of this four by four inversion to
17	get each of these four quantities, at every point, is
18	a fairly trivial exercise. I mean you are not doing
19	the Jacobian of the whole system
20	DR. MAHAFFY: No, that's right, it's only
21	a pointwise solution.
22	CHAIRMAN BANNERJEE: A pointwise solution.
23	So why did you choose not to do that? Because was it
24	just because -
25	DR. MAHAFFY: Yes, I'll give you the exact

(202) 234-4433

	357
1	answer to that, to do a rigorous multi-iteration
2	Newton scheme, what has to happen is that on each
3	iteration after the first I have to go back and
4	evaluate my entire equation of state to get my
5	derivatives of pressure, temperature. I did that.
6	The equation of state, relatively
7	speaking, is fairly expensive.
8	CHAIRMAN BANNERJEE: If you could do that
9	at time step N that wouldn't matter. The elements of
10	the Jacobian could be done at time step N; there is no
11	issue with that.
12	DR. MAHAFFY: I normally call that
13	Newton-Raphson.
14	CHAIRMAN BANNERJEE: Yes, the first
15	iteration of the Newton Rafson.
16	DR. MAHAFFY: You can lock your Jacobian
17	and proceed with your iteration.
18	CHAIRMAN BANNERJEE: Everybody loves that.
19	MEMBER WALLIS: It's a step forward
20	DR. MAHAFFY: But let me tell you the
21	practical implications of that. That particular
22	approach to nonlinear equation solution works well
23	when you don't have a high degree of nonlinearity.
24	Unfortunately, we have this thing called
25	the saturation line in two-phase load problems. And
	I

(202) 234-4433

	358
1	the equation of state is very, very nonlinear -
2	MEMBER WALLIS: When you cross that
3	DR. MAHAFFY: Yes, and as you know, it's
4	one of our salvations in two-phase flow, things tend
5	to ride the saturation line fairly closely. For a
6	large percentage of the time in these practical
7	problems that we solve, we are operating at a highly
8	nonlinear area there.
9	CHAIRMAN BANNERJEE: The derivatives have
10	to be taken along the saturation -
11	DR. MAHAFFY: And so, if I wanted to do it
12	right -
13	CHAIRMAN BANNERJEE: You'd have to take the
14	derivatives along the saturation line
15	DR. MAHAFFY: I'd want to do that. But -
16	MEMBER WALLIS: Well, I would like you to
17	get an explanation which would satisfy the critic,
18	convince him that you have done it right.
19	CHAIRMAN BANNERJEE: It may be that if you
20	explain what you have done and why. Because I can see
21	why, if there is an issue with the saturation line,
22	then the old time step values at N of the Jacobian
23	could be somewhat misleading.
24	MEMBER WALLIS: Could lead to some sort of
25	oscillation, where you jump over and back across the
ļ	

(202) 234-4433

	359
1	saturation line.
2	DR. MAHAFFY: You can fix that.
3	CHAIRMAN BANNERJEE: You can fix that
4	DR. MAHAFFY: You can fix that. But the
5	critic is in a fairly narrow perspective on this. His
6	- if you look at it, the two different pairs of
7	answers really only different in the evaluation point
8	for the elements of the matrix. And -
9	MEMBER WALLIS: Then you should explain
10	that.
11	DR. MAHAFFY: And I am going to concede
12	that in the ideal gas form of this, what he is doing
13	is formally, number one, faster, and number two, more
14	accurate in some sense, okay.
15	Within the order of accuracy of
16	everything, it's not significant in terms of what is
17	going on in the linearization, but it's certainly
18	faster; if I have access to an inverted form of the
19	equation of state.
20	Here's the point I want to make up here.
21	CHAIRMAN BANNERJEE: Clearly you don't have
22	access to that.
23	DR. MAHAFFY: I could get it, but it
24	doesn't matter, and let me show you why.
25	Let's go to the full two-phase flow

(202) 234-4433
	360
1	problem. I am going to write my functions again, but
2	I'm now going to write them as functions of void
3	fraction, rho G, rho GEG, rho L, rho LEL. Okay?
4	And if you look at it, it's a whole lot
5	simpler. I mean this guy here is a primary variable.
6	I don't have to access the equation of state for it.
7	This guy is fine. There is a combination there. I
8	still have nonlinearities because I have a product of
9	alpha and rho G, so it's not a simple linear equation
10	that is just going to drop out.
11	But there is something more important. If
12	you look at this expression here, look at the number
13	of unknown variables. I've got one, two, three, four,
14	five of them.
15	CHAIRMAN BANNERJEE: Don't you need T
16	somewhere in that?
17	DR. MAHAFFY: No.
18	MEMBER WALLIS: Those are not all
19	independent variables though, are they
20	DR. MAHAFFY: Yes.
21	MEMBER WALLIS: How do you now know rho L
22	if you know P and T?
23	CHAIRMAN BANNERJEE: If you know P and T -
24	DR. MAHAFFY: Here's what's going on, okay,
25	when I set up my Jacobian at the beginning, embedded
	I

(202) 234-4433

	361
1	in that is a primary assumption in TRACE, RELAB 5 and
2	most other places, and that is, pressure of the liquid
3	equal pressure of the gas. It was there. You didn't
4	notice it go by, but it was there.
5	MEMBER WALLIS: So if I know P and T, don't
6	I know rho G, rho L, or EG and EL?
7	CHAIRMAN BANNERJEE: Only along the
8	saturation -
9	DR. MAHAFFY: It depends on how you arrange
10	your equation of state.
11	MEMBER WALLIS: Well, if, along the
12	saturation line, if I know P and T I still -
13	CHAIRMAN BANNERJEE: If you know P and T -
14	DR. MAHAFFY: It's just a question of, with
15	an equation of state I am totally free to select my
16	independent variables and my dependent variables.
17	It's just a question of how I generate my tables.
18	MEMBER WALLIS: Is this all relevant? We
19	are talking about simply the difference between 19 and
20	32, it seems to me, which would seem a very simple
21	matter to resolve without getting complicated.
22	DR. MAHAFFY: Well, the differences there
23	are trivial, and I will concede in that example -
24	MEMBER WALLIS: Well, the differences are
25	trivial, but he says the approach doesn't begin to

(202) 234-4433

	362
1	have any basis whatsoever in mathematics or
2	engineering. Now that is a pretty strong statement.
3	DR. MAHAFFY: I'm trying to tell you in a
4	quiet way that he's wrong.
5	CHAIRMAN BANNERJEE: You must write a reply
6	DR. MAHAFFY: If you would like, if the NRC
7	would like me to contribute a letter, that's fine.
8	This is my reply in Vugraphs.
9	MEMBER WALLIS: Isn't the cure to say that
10	19 and 32 essentially are the same thing
11	DR. MAHAFFY: That's right.
12	MEMBER WALLIS: There may be some slight
13	difference, but the difference doesn't make any
14	difference -
15	DR. MAHAFFY: That's correct.
16	MEMBER WALLIS: - to how you approach the
17	answer. That's all you need to say. You don't need
18	to get involved in a big complicated -
19	CHAIRMAN BANNERJEE: No, I think he's
20	making a mistake in page 412 here in - which starts
21	with, the numerical values are most likely the values
22	from the previous time step. They're not.
23	MEMBER WALLIS: You are saying that that is
24	not true.
25	DR. MAHAFFY: That is not true.
ļ	I

(202) 234-4433

	363
1	MEMBER WALLIS: Well, in that case you have
2	found the answer then.
3	CHAIRMAN BANNERJEE: Well, then, I think
4	you need to rebut this. Or if not you - you should
5	supply - at least we would suggest that you supply the
6	staff with what is actually being done and how this is
7	factually incorrect.
8	DR. MAHAFFY: Well, it's more than that.
9	And that's why I had this last slide -
10	MEMBER WALLIS: I also object to the ACRS
11	being the vehicle for resolving this. I don't know
12	why -
13	CHAIRMAN BANNERJEE: Because the letter
14	came to you.
15	MEMBER WALLIS: I don't know why the letter
16	doesn't go to the staff.
17	CHAIRMAN BANNERJEE: But it came to you, so
18	it came to you. You're on the spot.
19	MEMBER WALLIS: Not necessarily. I just
20	give it to the staff and say, tell me how to resolve
21	this thing.
22	CHAIRMAN BANNERJEE: Well, that's what you
23	did. So now we are trying to get it solved.
24	MEMBER WALLIS: The person to resolve it is
25	the creator of it, who is presumably John.
Į	

(202) 234-4433

	364
1	CHAIRMAN BANNERJEE: He's going to
2	DR. MAHAFFY: That's the resolution.
3	CHAIRMAN BANNERJEE: Can we suggest a
4	course of action here? One is, you may have something
5	to add to it, but from an overall point of view, if we
6	look at the crux of the matter, which is the
7	statements following equation zero twenty, then if
8	there are factually incorrect, that's the first thing
9	that should be rebutted.
10	And then in brief the true procedure that
11	is followed should be outlined in two or three
12	sentences, and it could be I think shown that what you
13	are doing is if not exactly the truth or what it
14	should be, very close to it.
15	And if you have something more to show us
16	and add, that's fine.
17	DR. MAHAFFY: Well, it's just this bottom
18	line. Even if - go ahead, Tom.
19	MEMBER KRESS: What's missing is the
20	statements you made that the values are determined
21	from the predicted equation. And somewhere that's
22	missing in here.
23	DR. MAHAFFY: In these presentations, I
24	don't know if I put it in words or simply intended to
25	say it, which I did say, so it's on the record, but
ļ	I

(202) 234-4433

	365
1	this final point I want to make is simply, even if you
2	can work from an inverted equation of state, it does
3	not simplify the problem when you go to two-phase
4	flow. I've still got a nonlinear set of equations
5	I've got to solve through the production of a Jacobian
6	and inverting a Jacobian matrix.
7	More than that, the matrix becomes five by
8	five instead of four by four.
9	MEMBER WALLIS: Does this matter? If you
10	could show that there is no essential difference
11	between 19 as you use it and his 32? Then that would
12	resolve it, wouldn't it? You don't need to broaden
13	the conversation to this matter about inverted
14	equations of state and stuff. That doesn't really
15	matter, does it?
16	DR. MAHAFFY: Well, it does in that the
17	author of the letter is suggesting an approach where
18	you deal with an inverted equation of state,
19	simplifying things.
20	CHAIRMAN BANNERJEE: Yes, but I don't think
21	he is hanging his hat on it. I mean he is using that
22	as an alterative. You can do it either way, but he
23	offers that as one possibility. I don't think we have
24	to rebut that.
25	DR. MAHAFFY: That's fine.
	I

(202) 234-4433

366 1 CHAIRMAN BANNERJEE: The main point though 2 is that you do have to rebut the point that he's no basis in mathematics or 3 saving that it has 4 engineering 5 DR. MAHAFFY: This is my rebuttal up on the 6 screen right now, okay. That is what a Newton 7 iteration is about. It is mathematically well 8 established. And that is what we used. 9 MEMBER WALLIS: I think he agrees with 10 that, doesn't he? CHAIRMAN BANNERJEE: I think he's more 11 turning on the equation 19 and 20. 12 MEMBER WALLIS: Right. At what time do you 13 14 evaluate - and how do you evaluate these changes in 15 rho and in rho E. MR. CARUSO: What's done in the code 16 17 DR. MAHAFFY: This, right here. This is what's done in the code. 18 19 MEMBER WALLIS: That's so general that it 20 doesn't really - it's not debatable. It's an obvious 21 statement. 22 CHAIRMAN BANNERJEE: His statement is that 19 and 20 are what is done -23 24 MEMBER WALLIS: Claims they're not going to 25 It's not the way to converge on an converge, I think.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	367
1	answer.
2	MR. CARUSO: I agree.
3	CHAIRMAN BANNERJEE: Who is going to take
4	the responsibility for doing this? I mean we've had
5	this meeting. We've had this discussion. This
6	discussion has been -
7	MEMBER WALLIS: It's not us.
8	CHAIRMAN BANNERJEE: - is this now a
9	matter of which we have anything more to do with?
10	MR. CARUSO: I don't think so. I think the
11	staff understands what we've asked them to do.
12	DR. BAJOREK: It seems like what needs to
13	be done here is, John needs to write this rebuttal,
14	write some text around his notes, submit it to the
15	staff. Unless somebody can suggest, or there are
16	objections, they feel that there is a safety issue
17	associated with this, or there is a larger uncertainty
18	that we don't feel is there, then we would provide
19	this to the ACRS, and that should close the issue.
20	CHAIRMAN BANNERJEE: And let's keep it
21	short.
22	MEMBER WALLIS: So we are supposed to
23	evaluate whether or not this is a sufficient rebuttal?
24	MR. CARUSO: We asked to hear their
25	response, and then we'll decide what to do with that.
	I

(202) 234-4433

	368
1	CHAIRMAN BANNERJEE: I think we may not
2	have the wisdom to decide whether it's a sufficient
3	rebuttal, but we can give our opinion.
4	The letter came to you. Then it was sent
5	then to -
6	MEMBER WALLIS: To Rick Ransom. I'm not
7	sure that I ever read it, simply an anonymous email
8	that I passed on to the staff, because I don't read
9	anonymous emails.
10	CHAIRMAN BANNERJEE: It was sent by Larkins
11	then to the EDO.
12	MEMBER WALLIS: That's right.
13	CHAIRMAN BANNERJEE: The EDO then passed it
14	on to the staff. And Larkins presumably asked for a
15	response or something.
16	MR. CARUSO: The committee would like to be
17	informed of your disposition.
18	CHAIRMAN BANNERJEE: So I mean you don't
19	have to come back to us for an opinion.
20	MEMBER WALLIS: What bothers me is the lack
21	of definitiveness about the rebuttal. The rebuttal
22	should be so clear that it's obvious to anybody that
23	it's the answer to the question.
24	MR. CARUSO: That is why it needs to be
25	written down.
	I

```
(202) 234-4433
```

	369
1	MEMBER WALLIS: It needs to be written
2	down, absolutely clear, and it needs to avoid
3	extraneous discussion. It seems to me the issue is
4	whether or not 19 is in some way flawed compared with
5	32.
6	CHAIRMAN BANNERJEE: It doesn't seem to be.
7	Maybe it's an approximate.
8	MEMBER WALLIS: It's 19 and the next one.
9	There is a pair of these equations, 19 and 20.
10	CHAIRMAN BANNERJEE: I mean obviously this
11	is a much more complicated situation than a perfect
12	gas, so some approximation to 19 and 20 in terms of
13	what time step is used would be perfectly acceptable,
14	and I think that needs to be clarified.
15	MEMBER WALLIS: It seems to me that there
16	is a basic question. If you are using a slightly
17	different approximation, it would be useful to have
18	sort of an example that shows that it doesn't matter.
19	CHAIRMAN BANNERJEE: That would really nail
20	the coffin properly, if you could find your way to
21	doing that.
22	DR. MAHAFFY: A day out of my life. Easy
23	for you to say.
24	CHAIRMAN BANNERJEE: Day out of my life.
25	MEMBER WALLIS: What is the consequence, if
ļ	I

(202) 234-4433

	370
1	you are wrong, what would be the consequence? He
2	doesn't sort of tell us, if you do it your way you
3	lead to nonconvergence or oscillations or instability.
4	It doesn't in any way address the consequences of
5	being what he calls wrong; it just simply says it's
6	wrong. Is it wrong enough to make any difference?
7	DR. MAHAFFY: Let me tell you, this is
8	related to a different discussion we had maybe a
9	couple of meetings ago. One of the things that we
10	have done with SETS over the years, on and off, I
11	think the last time I did a thorough study of it was
12	probably six years ago, because we have both a semi-
13	implicit and an assessed numerical methodology, it's
14	easy to take certain test problems -
15	CHAIRMAN BANNERJEE: If you would speak
16	into the mike?
17	DR. MAHAFFY: Yes. We can take test
18	problems in two-phase flow, let's say we're going to
19	do an Edwards blowdown for a simple example, and I'm
20	going to run an Edwards pipe blowdown experiment
21	simulated with my SETS method turned on, including
22	whatever I'm doing here with my void fraction at the
23	end of the time step. And I can run the same
24	calculation with a semi-implicit methodology.
25	MEMBER WALLIS: Which would be the way that
Į	I

(202) 234-4433

	371
1	this person suggests you do it
2	DR. MAHAFFY: It's just two different
3	methods.
4	MEMBER WALLIS: Can you do it his way
5	DR. MAHAFFY: What I'm telling you is, I'm
б	going to do one method that doesn't involve this
7	approximation.
8	MEMBER WALLIS: Is that the way that he
9	suggests you should do?
10	DR. MAHAFFY: No.
11	MEMBER WALLIS: Unless you address his
12	contention, you haven't answered it.
13	CHAIRMAN BANNERJEE: I'm not suggesting you
14	do a full calculation. I'm not suggesting that you
15	take one time step or something, and take some subset
16	of points.
17	I mean what he is asking is that the full
18	Jacobian be solved altogether as opposed to being
19	split into two parts, or whatever you are doing right
20	now.
21	Can it be done just like that?
22	MEMBER WALLIS: Is that a true statement,
23	that what he's asking is that the full Jacobian be
24	solved rather than being split apart? Is that a true
25	statement?
ļ	

(202) 234-4433

372 1 DR. MAHAFFY: The problem you've got in 2 that situation, it goes to my last slide, what I'm 3 telling you is, in a two-phase problem, if void 4 fraction is even important, and therefore being 5 generated by this step, his approach is a non-starter. You have to use this approach with a Jacobian that 6 7 gets inverted -8 CHAIRMAN BANNERJEE: I'm not saying to do 9 an analytical inversion. But I'm saying, just invert the Jacobian, it's a five by five Jacobian. 10 MEMBER WALLIS: There's nothing about two-11 12 phase flow in his critique. DR. MAHAFFY: That's right. 13 14 MEMBER WALLIS: So why complicate it by 15 talking about rho G and rho L? He's using two equations, not four or five. 16 17 CHAIRMAN BANNERJEE: The approach he's taking depends on the fact -18 19 MEMBER WALLIS: Just address the simple 20 question he's asking. When you have these two 21 equations, single phased flow, he's claiming that 22 yours is not the appropriate approach. Just answer 23 that question; that's all. 24 DR. MAHAFFY: I'll give you the direct 25 The direct answer to that is that if answer to that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	373
1	it is single phase flow, ideal gas or otherwise, and
2	I work it in TRACE, this step isn't even done.
3	Because this step is only used to predict void
4	fractions that are not zero or one. There is no
5	simple way to work in the scheme that he is doing
6	things within the context of what's trying to be done
7	in TRACE. It's not part of the problem.
8	MEMBER WALLIS: I think we may have
9	contributed all we can to this, and it's really up to
10	you to sort it out.
11	DR. MAHAFFY: That's fine.
12	CHAIRMAN BANNERJEE: Sorry, John.
13	We're a little over time.
14	MEMBER WALLIS: He's going to be quick, he
15	said.
16	DR. di MARZO: This is an old problem that
17	was left over of I guess a year ago.
18	CHAIRMAN BANNERJEE: You have a lot of
19	slides.
20	DR. di MARZO: I'll chop off a bunch of
21	them.
22	CHAIRMAN BANNERJEE: Ninety percent of
23	them.
24	MEMBER WALLIS: You've got one minute
25	according to the schedule.
I	I

	374
1	PI GROUP RANGING
2	DR. di MARZO: The problem is the range of
3	acceptable distortion of integral test facilities.
4	The state of the art, or shall I say, the way we have
5	been doing it in the past is to dismiss the whole
6	issue with a very simple statement. We get to the Pi
7	group, and we will accept whatever is smaller than two
8	and larger than one half. That has been what has been
9	done in the past.
10	And the question that arose is, what is
11	the basis for that? And the answer is none.
12	So what we are trying to do here is to put
13	some basis to some alternative method to clarify that
14	issue.
15	And I'll do one example, because the other
16	one is probably off time, but we'll see how it goes.
17	I'm going to talk about AP600, but I'll make some
18	reference also to a P1000 as I go along.
19	The first things that we do is we talk
20	about the transients. We talk about the phase that we
21	are going to select. And then we are going to talk
22	about the figure of merit. Look at some results, and
23	then look at the relationship between what's down here
24	and what was done for a AP600, namely, the actual
25	scaling report that Sanjoy and Marcus Ortiz and Larkin
I	

(202) 234-4433

	375
1	put together.
2	Now, the premise of all this is that you
3	have to have a system that we would say behaves
4	globally, in other words, where there are parameters
5	such as for example pressure and inventory that
6	controls the behavior of the system. That is the
7	hypothesis at the basis of all this.
8	If you have a system where local phenomena
9	control and override completely the behavior of the
10	system, this cannot -
11	MEMBER WALLIS: How do you identify the
12	most challenging trend here?
13	DR. di MARZO: I'm getting there.
14	So that's the first thing. You've got to
15	have a globally -
16	MEMBER WALLIS: I have a problem right
17	away. It may be that if the Pi groups aren't quite
18	matched, that the CMTs will drain - at completely
19	different times in this scenario. You've got a
20	completely different scenario. The answer will be
21	completely different.
22	DR. di MARZO: Yes.
23	MEMBER WALLIS: Now, this means the
24	difference between a Pi group being 1.8 and 1.9
25	difference from what it should be makes all the
I	I

(202) 234-4433

	376
1	difference in the world to the transient.
2	DR. di MARZO: Absolutely.
3	MEMBER WALLIS: How are you going to show
4	that?
5	CHAIRMAN BANNERJEE: That is the issue he
6	is trying to address.
7	DR. di MARZO: Let me proceed stepwise.
8	The first thing that you do, looking at all the design
9	basis that you have in front of you, all the
10	transients that you have in front of you -
11	MEMBER WALLIS: How do you know that until
12	you know the ones that are the most sensitive to
13	scaling?
14	DR. di MARZO: Let's analyze the process.
15	The first thing that you do here is that you have done
16	a scaling of experimental facilities. You have run
17	your tests. You now are in possession of internal
18	test facility data. At this point of the process.
19	So there has been a PIRT. There has been
20	a design of the facility. So at this point in the
21	design basis space, the first question that you ask
22	is, what is the most challenging plant.
23	CHAIRMAN BANNERJEE: Based on the
24	experiments?
25	DR. di MARZO: Based on the experiments,
I	

(202) 234-4433

	377
1	but you can also argue two points. Brake elevation is
2	one of the characteristics that you are going to
3	examine; and second is the relative position of the
4	brake with respect to ECCS and vessel.
5	Okay, so -
6	CHAIRMAN BANNERJEE: What about size?
7	DR. di MARZO: First, this too - size is
8	also -
9	MEMBER WALLIS: The code might predict a
10	completely different most challenging transient.
11	DR. di MARZO: Yes, but the problem is
12	this. You look at your data, and within the data you
13	start asking the first question. Which transient has
14	the brake at the lowest possible elevation?
15	Second question you ask: Is the brake in
16	any way between the vessel and the EECS?
17	Those are the two characteristics you look
18	at. You also look at all the data you have, and you
19	look at the behavior, the physical behavior of the
20	system, to determine if there are those issues that
21	you are tracing, if there are specific phenomena that
22	occur or do not occur.
23	Remember, at this point you are basing
24	your information on integral facility, and you do not
25	know exactly how good they are yet. But out of all
ļ	I

(202) 234-4433

	378
1	this information -
2	CHAIRMAN BANNERJEE: Let's back up a
3	little. Well, if you want you can go first.
4	MEMBER WALLIS: You are going to address Pi
5	groups. I think you need to tell me what you are
6	trying to decide here. I don't see what this has to
7	do with deciding whether a Pi group has to be with
8	half to two.
9	DR. di MARZO: We haven't gotten there yet.
10	MEMBER WALLIS: What question are you
11	asking before you start?
12	DR. di MARZO: The objective of
13	representation is to address that question, but we
14	haven't got to the Pi group at all.
15	CHAIRMAN BANNERJEE: You are trying to pick
16	the worst transient.
17	DR. di MARZO: Yes. Now I have in front of
18	me a body of experiments that have been conducted -
19	CHAIRMAN BANNERJEE: But in reality this is
20	not the way it was done.
21	DR. di MARZO: The way it's done is, you
22	have done a scaling report. You have done a design of
23	the facility. You have identified all the transients
24	you want to run for the design basis. You have run
25	all these tests.
I	I

(202) 234-4433

	379
1	CHAIRMAN BANNERJEE: You also have run the
2	code.
3	DR. di MARZO: You have run the code.
4	CHAIRMAN BANNERJEE: For the full-scale
5	system.
6	DR. di MARZO: And for all the facilities.
7	MEMBER WALLIS: Your scaling was used to
8	design the facilities in the first place.
9	DR. di MARZO: That is correct. Now you
10	are at this point -
11	CHAIRMAN BANNERJEE: So you can just say
12	it's an iterative process.
13	DR. di MARZO: It's an iterative process,
14	exactly. And at this point of the game you are. So
15	once you have identified what is your most challenging
16	transient, based on all this information, and you have
17	identified within that transient which is the most
18	critical portion of that transient, what is that?
19	It's typically when you are going for low
20	pressure injection, for example, in the AP600, then
21	therefore is when you achieve the minimum inventory,
22	because that means core coolability or so you have
23	identified that phase of the transient. At this point
24	you make assumptions, and you basically do a one node
25	representation of the system. It depends, if you can;
ļ	I

(202) 234-4433

Í	380
1	or two nodes; or whatever is called for.
2	CHAIRMAN BANNERJEE: The idea behind - if
3	you are talking about top down scaling -
4	DR. di MARZO: Yes.
5	CHAIRMAN BANNERJEE: - the idea is to
6	divide the system into some minimum number of nodes
7	which are interconnected -
8	DR. di MARZO: Exactly.
9	CHAIRMAN BANNERJEE: - which capture the
10	overall behavior.
11	DR. di MARZO: The overall behavior, that's
12	exactly right. In this particular case one node is
13	sufficient -
14	CHAIRMAN BANNERJEE: For this part of the
15	transient.
16	DR. di MARZO: - for this part of the
17	transient.
18	So I'm trying to do that, and this is
19	irrelevant, because as you say it depends on what
20	portion of the transient you are actually looking at.
21	For this particular portion of the transient that we
22	are looking at, which is the depressurization from
23	opening of a ADS-1 to IRWST injection basically.
24	CHAIRMAN BANNERJEE: Through accumulators
25	and everything?

```
(202) 234-4433
```

	381
1	DR. di MARZO: Accumulators and everything.
2	You are looking at a double-ended
3	guillotine break on the DVI line. That is the
4	transient that we are looking at.
5	CHAIRMAN BANNERJEE: I would say what you
6	are doing should be split up a bit more. Right up to
7	accumulator, then through accumulators to -
8	DR. di MARZO: You will see how it comes
9	out that way.
10	CHAIRMAN BANNERJEE: It seems very broad
11	brush.
12	DR. di MARZO: It's very broad, but it's
13	basically the transient that goes from opening of ADS-
14	4 to IRWST injection. That is what is down here.
15	You have conservation statement for mass
16	and energy. Momentum is not considered.
17	MEMBER WALLIS: This is P over RT, it's a
18	perfect gas or something.
19	DR. di MARZO: You use R, which is
20	basically ZR, and you correct, essentially. It's a
21	corrected equation of some intermediate values.
22	And then you basically - B is the volume
23	of the system. W is the volume of the liquid. So
24	that V minus B is basically the volume of the vapor
25	space.
	I

(202) 234-4433

	382
1	And then you add - so the mass in the
2	vapor space and the mass in the liquid space.
3	What you have here is the flow rate of the
4	areas discharge.
5	MEMBER WALLIS: Are you going to conserve
6	momentum at some point here?
7	DR. di MARZO: No, there is no conservation
8	of momentum.
9	MEMBER WALLIS: I hope not.
10	DR. di MARZO: There is the brake vessel
11	side. There is the brake DVI side. And there is the
12	flow incoming from the DVI intact side.
13	For conservation - so you are right, the
14	conservation of mass, with all those terms, that I
15	have highlighted there, which should come out like
16	this.
17	And what you do is, for simplicity now,
18	the problem is this, in order to make this thing
19	transparent, and you will see later on what it means,
20	you need to make it as simple as possible. So you
21	start dropping all terms that are 10 percent or less.
22	The change in mass of the vapor during that transient
23	accounts for less than 10 percent of the total change
24	in mass of the system, because you are basically
25	emptying the system. So there is a lot of liquid that
I	I

(202) 234-4433

	383
1	was there and is not there.
2	MEMBER WALLIS: The change in density
3	doesn't matter, even though the pressure may change -
4	DR. di MARZO: Change of density is
5	tremendous, but the amount of liquid that the system
б	loses through that transient is ten times more than
7	the change of mass that is in the vapor space.
8	MEMBER WALLIS: No, I'm thinking about the
9	change of density in the liquid is quite significant
10	when you drop in temperature.
11	DR. di MARZO: Also.
12	MEMBER WALLIS: But you don't seem to have
13	that in there.
14	DR. di MARZO: You don't. You don't. You
15	just take a constant density at the middle.
16	So you have a very simple conservation of
17	mass.
18	MEMBER WALLIS: Well, less than 10 percent,
19	you're talking about the vapor space.
20	DR. di MARZO: Vapor space.
21	MEMBER WALLIS: I'm talking about the
22	change in rho L.
23	DR. di MARZO: There is also that one, but
24	I didn't consider that.
25	MEMBER WALLIS: It doesn't matter? Because
I	I

```
(202) 234-4433
```

384 rho L is very different at 600 degrees than it is at 1 2 200. DR. di MARZO: Yes, but you will see in the 3 4 assumption that I make here, I'm assuming that the 5 reference enthalpy and for all the reference density are for liquid at the average transient temperature. 6 7 The temperature does change tremendously from 8 beginning to end, but we take an average temperature, 9 changing because the pressure is much more 10 significant, you will see in a few slides what I am trying to say. 11 12 For conservation of energy, same thing. You write the conservation of energy from the liquid 13 14 space accounting for the vapor generation. The vapor 15 generation goes in the mass of vapor, and then goes out at the vessel side of the break, because that is 16 17 totally vapor, we know from the data. It goes out at the ADS as totally vapor, and goes out at the DVI side 18 19 of the brake with some -- which is about one third. 20 MEMBER WALLIS: The flow rate depends on 21 the pressure. 22 DR. di MARZO: Yes. 23 MEMBER WALLIS: You're putting that in. 24 DR. di MARZO: Yes, absolutely. 25 So you write that. With this term written

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

385 1 out from the equation of state this way. 2 So now you have conservation of mass and 3 conservation -4 CHAIRMAN BANNERJEE: Where is the heat 5 going out with the vapor? DR. di MARZO: This is the - heat is the 6 7 vapor generation -(Simultaneous voices) 8 9 DR. di MARZO: This is the vapor 10 generation, and the vapor generation are three terms relative to the mass of vapor that's in the system. 11 The vapor leaving on the brake side -12 CHAIRMAN BANNERJEE: I mean for the energy 13 14 part. 15 DR. di MARZO: This is the latent heat of vaporization applied to all these terms. 16 17 CHAIRMAN BANNERJEE: Going out of the brake, where is -18 DR. di MARZO: The brake flow rate is in 19 20 One vessel side, so VB lambda would be the two parts. 21 energy going out of the brake from the vessel side, 22 and then from the DVI side you have VB -- the flow 23 rate from the broken DVI line times the quality of 24 that flow. 25 CHAIRMAN BANNERJEE: Now, I'm saying the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	386
1	top equation, where is the energy going out of the
2	brake?
3	DR. di MARZO: Your writing the equation
4	for this control void.
5	CHAIRMAN BANNERJEE: You're only writing
б	for the liquid?
7	DR. di MARZO: Only writing for the liquid.
8	CHAIRMAN BANNERJEE: All right.
9	DR. di MARZO: All you have is the vapor
10	generation here. The vapor generation -
11	CHAIRMAN BANNERJEE: I'm sorry, I thought
12	you wrote for the whole thing. Conservation of energy
13	only for the liquid?
14	DR. di MARZO: Only for the liquid.
15	The equivalent condition you write
16	artificially this way. That's basically this number
17	here, to give you a sense, in this particular
18	transient is nine. So the changing temperature
19	compared to the changing pressure is not significant.
20	That's why I used an average temperature for the
21	transient, which gives some distortion for the
22	solution of that.
23	So conservation of mass, conservation of
24	energy.
25	MEMBER WALLIS: So are you evaluating Pi

(202) 234-4433

	387
1	groups, or are you evaluating a very simplified model
2	of blowdown?
3	DR. di MARZO: We are looking at a very
4	simplified model of blowdown, but I will show that
5	that fits exactly in the Pi group. But that's not the
6	point. Once I have this tool, I can show you a lot of
7	other things which turn out to be very clarifying with
8	respect to
9	CHAIRMAN BANNERJEE: This is some very simple
10	model of blowdown.
11	DR. di MARZO: So you take this, you put it
12	in here -
13	MEMBER WALLIS: So it's approximately
14	exponential relaxation -
15	DR. di MARZO: Yes. The important thing
16	is, this is the famous compliance of the system.
17	You've got two parts to it. You've got the compliance
18	on the vapor space, and then you've got the thermal
19	compliance, basically the stored heat which figures in
20	the heat capacity of the system.
21	This capacity is the heat capacity of the
22	liquid, plus the heat capacity of the metal masses.
23	So the metal masses are in here in how the system
24	responds -
25	CHAIRMAN BANNERJEE: So there is some
ļ	I

(202) 234-4433

	388
1	approximation to this?
2	DR. di MARZO: Correct, but keep in mind
3	this term.
4	Okay, so what we do from this is we
5	eliminate the time, because time is not a problem. We
б	just talk in terms of inventory and pressure. So when
7	you do that, you come down in this form. I'll give
8	you all these terms in a second.
9	But what is very important is that the
10	rate of change of inventory with pressure is a bunch
11	of terms here that's -
12	CHAIRMAN BANNERJEE: Can you hear him when
13	he goes to the board?
14	DR. di MARZO: - that scales the system.
15	And then there is this term, where the heat capacity
16	of the system is embedded in here.
17	Now look at this portion of the equation.
18	Here are all your potential distortion of the process.
19	Here are all your scaling parameters, the size and so
20	forth.
21	The terms in the order are the flow group,
22	which basically is the injection from the intact DVI
23	line; the brake vessel side; the brake DVI side; the
24	ADS flow.
25	And then the energy associated with this

(202) 234-4433

	389
1	group; the energy associated with this; the energy
2	associated with that group; and finally the energy
3	associated with that group.
4	MEMBER WALLIS: These are constants
5	throughout the transient?
6	CHAIRMAN BANNERJEE: He's assumed them to
7	be.
8	DR. di MARZO: Yes.
9	MEMBER WALLIS: He's assumed them to be
10	constants throughout the transient.
11	CHAIRMAN BANNERJEE: Just to keep it
12	simple.
13	DR. di MARZO: To keep it simple.
14	The power, in the power you have core
15	power, and then you have PRHI, which has a significant
16	role in this transient that you have to model in
17	there.
18	MEMBER WALLIS: I'm not quite sure about
19	this. You said the first one you've got the flow out
20	the brake or something?
21	DR. di MARZO: This is the net inflow.
22	MEMBER WALLIS: Yes, but on the right hand
23	side you have the flow out the brake?
24	DR. di MARZO: No, this is the flow from
25	the DVI line, intact DVI line, this is the flow out of
ļ	

(202) 234-4433

Í	390
1	the brake -
2	MEMBER WALLIS: - that depends on the
3	system pressure. It's not a constant thing.
4	DR. di MARZO: Sure, this thing would be
5	modeled -
6	MEMBER WALLIS: They are all variable with
7	time.
8	DR. di MARZO: These are all variables.
9	MEMBER WALLIS: So your Pi groups are all
10	varying with time.
11	DR. di MARZO: We haven't gone to Pi groups
12	yet. Let me - they all vary with time; that's
13	absolutely correct. And I'll show you how they do
14	that.
15	CHAIRMAN BANNERJEE: Well, with pressure in
16	this case.
17	DR. di MARZO: Pressure. Time is
18	eliminated. And the volume group, which is this group
19	here - okay, so let's go back to this equation.
20	You've got the energy associated with the
21	net inflow; the power group. You have the net inflow.
22	You have the volume group.
23	CHAIRMAN BANNERJEE: But these groups can
24	be functions of P and W.
25	DR. di MARZO: Absolutely.
	I

(202) 234-4433

	391
1	I calculate, I show just for the sake of
2	argument how this thing is with respect to data. And
3	I plug it here, let's say normalize pressures against
4	the data.
5	MEMBER WALLIS: How did you get - go back
6	to the previous slide. How did you get these groups?
7	DR. di MARZO: No, I did this ratio -
8	MEMBER WALLIS: No, no, you go back to the
9	other side.
10	DR. di MARZO: I wrote them all out, and
11	that's what they came out analytically.
12	MEMBER WALLIS: Yeah, but now how did you
13	pick all these values?
14	DR. di MARZO: How will I pick all these
15	values in the actual calculation.
16	CHAIRMAN BANNERJEE: Okay, so you just -
17	what are you doing in the next slide?
18	DR. di MARZO: Okay, I'm calculating this
19	equation now. I have all the information. I have a
20	starting point and I calculate everything.
21	(Simultaneous voices)
22	DR. di MARZO: If I want, there is a time.
23	But then it is in other words, I can solve the
24	equation one against the other.
25	The only time parameter is the PRHR at
I	I

(202) 234-4433

392 1 this point. All the rest is pressure related. If I 2 have the pressure I have the flow rate. So I can step 3 forward in pressure and solve. Or I can use time and 4 solve both equations. 5 CHAIRMAN BANNERJEE: You are showing us some slides, your slide -6 7 DR. di MARZO: I can solve this set of 8 equations. Let's look at in time, and then I can 9 eliminate time to simplify my thing in the end. 10 MEMBER WALLIS: But now you have a curve showing -11 12 DR. di MARZO: I have a curve to show you how it compares -13 14 CHAIRMAN BANNERJEE: But to get that solid 15 line you have to make some assumptions -16 DR. di MARZO: Absolutely. 17 CHAIRMAN BANNERJEE: - regarding various things. 18 19 DR. di MARZO: Absolutely. I have to get 20 the PRHR contribution. And I get that out of data. 21 CHAIRMAN BANNERJEE: So say you let's 22 integrated the DW, DT and dp/dt. 23 DR. di MARZO: Yes. 24 CHAIRMAN BANNERJEE: Okay, so you 25 integrated the DPDT. How do you get QC, QB, well CC

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	393
1	you can get, the DW, DV -
2	DR. di MARZO: Okay, this I get from the
3	data, PRHR. QC I get from my ANS curve.
4	The initial condition I know. These flows
5	are a function of the pressure, so I get discharge
6	flow basically.
7	CHAIRMAN BANNERJEE: How do you get that?
8	DR. di MARZO: If it's a single phase it's
9	just a normal discharge flow, critical flow. If it's
10	two phase I use homogeneous models.
11	CHAIRMAN BANNERJEE: So you use some
12	combination of data and initial conditions.
13	DR. di MARZO: And initial conditions, then
14	I use all the discharge flows -
15	CHAIRMAN BANNERJEE: All the curve shows is
16	that your model of a single node is not bad.
17	DR. di MARZO: It's not that bad. That's
18	beside the point.
19	Now let's see what we can do with this
20	model; that's the important point. Which in the case
21	can be a three-node model or whatever you come up
22	with.
23	But once you have it, consider it, the
24	first thing you ask is, who is important? Which of
25	these groups are relevant to the trajectory or what
Į	I

(202) 234-4433

	394
1	the system does? That's the first question you ask.
2	MEMBER WALLIS: Rho V over rho L isn't very
3	big.
4	DR. di MARZO: Rho V over L isn't very big.
5	I don't even look at it. And VG is not very
6	important. Okay, so that's a one over there.
7	The only one that matters are FG and then
8	that sum.
9	Okay, so these are absolute values, okay.
10	With - so let's examine the first term, which is that
11	net inflow group, which is this black line here. It
12	starts very high, because as soon as you open the
13	brake, a lot of water leaves. It's negative initially
14	meaning -
15	MEMBER WALLIS: It's the outflow group.
16	DR. di MARZO: - your outflow. This
17	recoup which basically reduces a little bit your flow
18	is the initiation of accumulator. This is ADS-2, ADS-
19	3. At this point the accumulator flow is pretty large
20	and manages to flip into positive -
21	MEMBER WALLIS: When it's less than one you
22	are actually filling the system?
23	DR. di MARZO: Exactly. You are getting
24	very close when it is positive, and more than one you
25	refill. In other words the accumulator are about to
l	I

(202) 234-4433

	395
1	refill at this point. Unfortunately, they drain. So
2	as soon as the accumulator is empty, this thing goes
3	back to negative. There is only the CMT, which is a
4	much lower flow, able to replenish the system. And at
5	this point IFWC activates.
6	CHAIRMAN BANNERJEE: The what?
7	DR. di MARZO: The IFWC, the low pressure -
8	the red line is the power line, is the energy plus the
9	power associated with this.
10	MEMBER WALLIS: It's a bit problematic to
11	me. You've got a dw/dp.
12	DR. di MARZO: That would be -
13	MEMBER WALLIS: - think of how p is
14	changing as well as how w is changing.
15	DR. di MARZO: Yes.
16	MEMBER WALLIS: If I had dw/dt I wouldn't
17	have to do that. I could just think about how w is
18	changing.
19	DR. di MARZO: Okay, pressure decreases,
20	right? Inventory decreases. So we are looking at
21	this dw/dp as a positive quantity. The larger it is,
22	it means that the inventory is losing with respect to
23	pressure. So if this is a large number, you are
24	losing more inventory than pressure.
25	MEMBER WALLIS: Suppose I eventually get a
I	

(202) 234-4433
	396
1	state where the pressure is almost constant, and I am
2	filling, then dw/dp isn't very useful.
3	DR. di MARZO: No, no, pressure drops.
4	MEMBER WALLIS: Dw/dp isn't useful to me -
5	CHAIRMAN BANNERJEE: Once it gets to
6	saturation -
7	DR. di MARZO: Pressure drops continuously,
8	because you keep on opening stuff.
9	MEMBER WALLIS: It keeps on dropping?
10	DR. di MARZO: It keeps on dropping until
11	it reaches IFWC.
12	CHAIRMAN BANNERJEE: Forcing it to drop.
13	DR. di MARZO: I want it to drop. The
14	problem is, I don't want to lose inventory while I
15	drop pressure too much; otherwise I am cold, and am
16	unable to cool. So it's a race between inventory and
17	pressure that I am having here.
18	So I'm losing pressure but I'm also losing
19	water.
20	MEMBER WALLIS: That's what the whole idea
21	of ADS is is to depressurize without losing too much
22	water.
23	DR. di MARZO: The question is, what makes
24	this number large. Because if this number is large,
25	I'm having a problem.
	I

(202) 234-4433

	397
1	So at this particular point, the way this
2	is set up -
3	CHAIRMAN BANNERJEE: So have you put the
4	areas on top -
5	DR. di MARZO: This is gone. This is gone.
6	And basically you can see this number is always
7	negative, never makes it to one. This term here, as
8	I said, goes positive and negative. When it's
9	negative, it makes this term very large, which we
10	don't like. When it's positive, it fights against
11	one. Once it gets above one, you are refilling.
12	So in light of that, look at what's
13	happening. Here you are about to refill essentially,
14	but you lose the accumulator. The important thing is
15	that the term in the denominator never make it to
16	really much of it, they go from point one to one. So
17	it's significant, but not enormous compared to what
18	this is.
19	MEMBER WALLIS: Well, it's different, if
20	they are close to one, you've got a denominator that
21	is zero, and that's pretty important.
22	DR. di MARZO: No, it's a negative term,
23	this thing is negative, always negative.
24	MEMBER WALLIS: EG plus PG minus one is in
25	the denominator. When it gets to one you've got
	1

(202) 234-4433

	398
1	infinite -
2	CHAIRMAN BANNERJEE: No, go back to the -
3	MEMBER WALLIS: You're only in trouble if
4	DP is zero.
5	DR. di MARZO: Exactly.
6	MEMBER WALLIS: But you see it gets up
7	close to one.
8	DR. di MARZO: It gets up close to one
9	here.
10	MEMBER WALLIS: Which is not very nice.
11	DR. di MARZO: It's not very nice.
12	MEMBER WALLIS: Because I'll have a big dw.
13	DR. di MARZO: You are correct. That is
14	because of the PRHR and the core power.
15	Actually, the reason why it goes up is
16	because there is a tremendous amount of heat released
17	by the - the stored heat that is dumping.
18	MEMBER WALLIS: Now, all these saw-tooth
19	things are due to various events happening?
20	DR. di MARZO: Yes, these ADS-1,
21	accumulator starts, ADS-2, ADS-3, ADS-4, and then the
22	end. These things are just changing of sign, the way
23	it's plotted.
24	MEMBER WALLIS: Why does this help me
25	rather than just plotting inventory and pressure and
I	1

(202) 234-4433

	399
1	things like that?
2	(Simultaneous voices)
3	DR. di MARZO: This number here in all the
4	times, is zero point zero something, so it's not
5	important. This is not important.
6	CHAIRMAN BANNERJEE: I think, Marino, we
7	know how to derive the Pi groups. The main thing is,
8	what do they mean?
9	DR. di MARZO: Okay. Once we get up to
10	this point, and we are only the important one.
11	These are the parameters that affect that transient,
12	according to the simple analysis.
13	These are the Pi that came out of your
14	analysis.
15	MEMBER WALLIS: These Pis are varying with
16	time.
17	CHAIRMAN BANNERJEE: These are what we got
18	10 years ago.
19	DR. di MARZO: Ten years ago.
20	CHAIRMAN BANNERJEE: All right.
21	DR. di MARZO: This is how they would be
22	related to these things.
23	MEMBER WALLIS: Simply the ratio of flows
24	makes a sensible thing.
25	DR. di MARZO: These are exactly the
Į	I

```
(202) 234-4433
```

	400
1	definitions of the Pis as they were from your analysis
2	compared to what I have here. There are only three
3	Pis in this phase.
4	MEMBER WALLIS: They seem to be the ratio
5	of heat transfers or flows; is that what they are?
6	DR. di MARZO: Yes.
7	MEMBER WALLIS: I could write them down at
8	the beginning pretty well.
9	DR. di MARZO: Yes, sure. But the problem
10	is this, once you get to this point, you have a tool
11	that enables you to calculate what - the change in
12	this parameter corresponds to the change in the figure
13	of merit.
14	CHAIRMAN BANNERJEE: That's the new thing.
15	What is the figure of merit?
16	DR. di MARZO: Okay, the figure of merit is
17	the minimum vested inventory at the moment at which
18	you inject. Now instead of saying, I'm going to put
19	the range on the parameter, I'm going to put the range
20	on the figure of merit, and I'm going to say, if the
21	facility exhibits a figure of merit ten percent more
22	than what it should be in the nominal case due to the
23	distortion, I will call that acceptable yet
24	nonconservative, because more water showing is
25	nonconservative.
I	I

(202) 234-4433

	401
1	On the other case if it shows 20 percent
2	less than what it should be at nominal case, I would
3	consider it acceptable and conservative.
4	So let's look at how do this thing behave.
5	On the one hand I have the 10 percent minus 20
6	percent, which is defined from the impact on the
7	figure of merit.
8	On this scale I have the point five two,
9	which was the original stipulation for this discharge.
10	So you've got - of those parameters, you've got some
11	parameters such as the brake flow and the accumulator
12	flow that are clearly amplified. In other words if
13	you go by point five oh two you are really wrong, way
14	wrong, because these things are going to span the
15	range of the affect immediately.
16	CHAIRMAN BANNERJEE: The way we took it, we
17	integrated the accumulator flow so it doesn't really
18	matter.
19	DR. di MARZO: It doesn't matter, but we
20	said -
21	CHAIRMAN BANNERJEE: You can't be wrong on
22	the total accumulator flow, because there is only so
23	much water in the accumulator?
24	DR. di MARZO: No, this is the brake flow
25	rate
l	

(202) 234-4433

	402
1	CHAIRMAN BANNERJEE: Brake flow is
2	different, yeah.
3	DR. di MARZO: So you ave going from point
4	five to two. That's what we used to do. And these
5	two parameters would be completely inaccurate.
6	MEMBER WALLIS: So you are saying you need
7	a much narrower range?
8	DR. di MARZO: Much narrower.
9	MEMBER WALLIS: I suppose it's to duplicate
10	the transient. But in order to validate a code, it's
11	a very different question.
12	DR. di MARZO: No, what I'm saying is at
13	this point, if your facility happens to have a
14	distortion on this parameter that is like -
15	MEMBER WALLIS: Point five.
16	DR. di MARZO: – point five, you're going
17	for trouble.
18	MEMBER WALLIS: Well, then you will get a
19	very much different minimum inventory than you will
20	get -
21	DR. di MARZO: Yes, but this differentiates
22	between your parameter. Before they were evenly
23	consider, point five, two. Now I know which one are
24	amplifying, which one are venting, for example, these
25	two, you can do whatever you want. If your facility
I	I

(202) 234-4433

	403
1	is distorted on these, you are not going to make much
2	fo a different.
3	CHAIRMAN BANNERJEE: I thought CMT flow was
4	very important.
5	DR. di MARZO: Exactly, that's the first
6	thing that came about. In the DVI brake, it's a large
7	brake; it's a four-inch brake. Accumulator saved the
8	day. The CMT doesn't do much.
9	If you are going for a small brake like a
10	two-inch brake or something like that, this would be
11	completely different.
12	MEMBER WALLIS: So if you are not looking
13	at the worst transient, CMT does help you.
14	DR. di MARZO: Exactly.
15	CHAIRMAN BANNERJEE: - to the conclusion
16	that the CMT was very important.
17	DR. di MARZO: In the two-inch.
18	(Simultaneous voices)
19	MEMBER WALLIS: - when it drains. It
20	drains at different times depending -
21	DR. di MARZO: Exactly.
22	(Simultaneous voices)
23	DR. di MARZO: But this transient is the
24	fast transient, is the big guillotine break. So the
25	first thing you learn is the converters are extremely
I	I

(202) 234-4433

	404
1	important. CMT is not important in that.
2	CHAIRMAN BANNERJEE: The accumulator it has
3	a fixed volume. So in a way if you scale the
4	accumulator correctly -
5	DR. di MARZO: You have to scale it
6	correctly, yes, sure.
7	CHAIRMAN BANNERJEE: It's part of the
8	equation because it is going to lose all its water
9	anyway.
10	DR. di MARZO: You have to have the orifice
11	right. And so the brake.
12	There are quantities among those that have
13	a mixed behavior, for example, the subcooling. The
14	subcooling is distorted in that the facility has no
15	subcooling you are going to have problems. If the
16	facility has less subcooling you are okay, in the
17	range stipulated.
18	CHAIRMAN BANNERJEE: What do you mean by
19	subcooling? IRWST?
20	DR. di MARZO: The temperature of the
21	accumulator for example in subcooling, or temperature
22	of the injection. Brake flow quality, same thing.
23	There are parameters that -
24	MEMBER WALLIS: So you seem to be saying
25	there is no magic number, point five to two.
I	I

(202) 234-4433

	405
1	DR. di MARZO: Absolutely.
2	MEMBER WALLIS: You should look at the
3	sensitivity of things to the distortion.
4	DR. di MARZO: Exactly. And this is a tool
5	that will help you get some ideas of who to look for
6	and -
7	MEMBER WALLIS: So you are suggesting that
8	the ACRS should never in the future accept arguments
9	about Pi groups being between point five and two?
10	DR. di MARZO: Absolutely.
11	MEMBER KRESS: Well, I have a problem with
12	that, and it goes like this. What the purpose of the
13	integral experiments are is to validate the code. Now
14	it's not to reproduce the results you might get in a
15	real transient.
16	So I'm not sure this addresses the
17	question, are you validating the code correctly.
18	CHAIRMAN BANNERJEE: It could be, but then
19	it goes back to Graham's original question. If you
20	got a distortion in the facility, a big distortion, in
21	one parameter that is very important -
22	MEMBER KRESS: You may be on a different
23	flow regime or something. That's where it would
24	matter, I think.
25	DR. di MARZO: Or it could be a transient
Į	1

(202) 234-4433

	406
1	that is going completely in another direction.
2	CHAIRMAN BANNERJEE: Where it could matter
3	for example is if you got IRWST coming in too early.
4	So in that case -
5	MEMBER WALLIS: The whole scenario changes.
б	You are not really validating the code.
7	MEMBER KRESS: But I don't see how we
8	address those issues here.
9	CHAIRMAN BANNERJEE: I guess the real
10	issue, Marino, I agree with Tom, is whether you get
11	qualitatively different phenomena occurring.
12	MEMBER WALLIS: That's right.
13	DR. di MARZO: But gives you simply an
14	indication of where to look.
15	MEMBER KRESS: Okay, I would agree that
16	that is possible.
17	DR. di MARZO: It's nothing concluded, just
18	an instrument to go and search.
19	MEMBER WALLIS: So there is nothing in your
20	analysis that says that when you get a distortion of
21	more than X percent, the CMTs drain at a completely
22	different time, you get a completely different
23	scenario, you can't do that. But if you run the code
24	you can do that presumably.
25	DR. di MARZO: Right, absolutely. So you
I	I

(202) 234-4433

	407
1	can analyze now the facilities. For example
2	analyze the facilities that were used during that
3	process. And you find that these two are doing
4	reasonably well, or for example, in the brake flow
5	rate, was way distorted.
6	CHAIRMAN BANNERJEE: We knew that already.
7	DR. di MARZO: We knew that already.
8	MEMBER WALLIS: The only good experiment is
9	in Italy.
10	CHAIRMAN BANNERJEE: And Japan.
11	DR. di MARZO: When you go for the
12	accumulator again -
13	MEMBER WALLIS: Isn't SPES in Italy?
14	DR. di MARZO: SPES was in Italy.
15	MEMBER WALLIS: So I put them together, and
16	said, you have a lot of flow on the accumulator and a
17	lot of flow on the brake, so they kind of compensate.
18	Remember, there was an issue all the time.
19	How do you know you are going to have -
20	CHAIRMAN BANNERJEE: You never emptied OSU
21	properly because you had such a large accumulator.
22	DR. di MARZO: Yes, but the problem is, the
23	combination of the two wasn't extremely bad. The only
24	one you could rely exactly in the range as defined was
25	ROSA, which is what we used.
ļ	I

(202) 234-4433

	408
1	MEMBER WALLIS: Well, look at all your
2	conclusions. None of them is perfect for all cases.
3	DR. di MARZO: None of them.
4	MEMBER WALLIS: None of them.
5	DR. di MARZO: Okay? So that's basically
б	what the tool does. It's a very simple tool. It's a
7	back-of-the-envelope tool. But it points you - first
8	of all, dispels the fact that you can use a point five
9	two across the board. That cannot be done.
10	CHAIRMAN BANNERJEE: What did you come to,
11	that you should be much more sensitive on brake flow
12	and accumulator flow for this study?
13	DR. di MARZO: You can do it for more than
14	one transient, clearly. You can do it for more than
15	one phase within the transient. You can do it as much
16	as you want. But the same methodology would apply as
17	appropriate, and it will give you information.
18	MEMBER WALLIS: Tell us about TRACE. I
19	thought we were here to evaluate TRACE.
20	DR. di MARZO: No, that's what I started
21	with saying -
22	MEMBER WALLIS: So you are just a sideshow
23	of some sort.
24	DR. di MARZO: It's a delayed show.
25	CHAIRMAN BANNERJEE: How many years after?
I	I

(202) 234-4433

	409
1	DR. di MARZO: One and a half, two maybe.
2	For SBWR, Gee did the analysis. So I'm
3	reporting that analysis. But I want to show you a
4	different way. They did something similar to this.
5	First of all let's look at the margin.
б	You have AP600 margin of this kind. This is the
7	elevation of the top of the active fuel, and this is
8	the minimum vested inventory when IWSP injects.
9	If you look at an SBWR, this is top of
10	active fuel, this is how much you have when -
11	MEMBER WALLIS: It never gets uncovered?
12	DR. di MARZO: No, when GDCS injects,
13	that's basically where you are.
14	MEMBER WALLIS: We knew that already. At
15	least we were told that by the vendor.
16	DR. di MARZO: So in doing the same
17	approach, you can be much more lenient, because you
18	have that kind of now I will show you the TRACEs
19	for those two.
20	But before I do that, let me show you
21	this. GIRAFFEE at a very high GDCS injection compared
22	to Plank, GIST at a very low GDCS injection. This is
23	another of the facilities that GE wanted to use to
24	support their data, code validation.
25	CHAIRMAN BANNERJEE: Where is the facility?
I	I

(202) 234-4433

	410
1	DR. di MARZO: I think it's in Japan, too.
2	MR. CARUSO: San Jose.
3	CHAIRMAN BANNERJEE: Is it operational
4	still?
5	(Simultaneous voices)
6	MEMBER WALLIS: So it's irrelevant?
7	DR. di MARZO: But they reported it.
8	GIRAFFEE on the other end had a larger ADS flow, a
9	very low brake flow. Okay?
10	Now if you have a large ADS flow, and you
11	have a low brake flow, that means that you bias your
12	discharge toward the vapor, which in terms of the
13	trajectory equation means that you are losing more
14	energy and less mass, which means that you end up with
15	more water in the end.
16	This means on the other hand that you are
17	going to recover, once you hit the minimum base of
18	inventory faster in GIRAFFEE and slower in GIST
19	compared to Plank.
20	MEMBER WALLIS: So what is the gist of all
21	this?
22	CHAIRMAN BANNERJEE: The gist is better
23	than GIRAFFEE.
24	DR. di MARZO: That's what you're getting.
25	MEMBER WALLIS: So what is the conclusion
I	I

(202) 234-4433

	411
1	in terms of this?
2	DR. di MARZO: The coordinates are
3	different.
4	MEMBER WALLIS: Yeah, and the minimum is
5	different.
6	DR. di MARZO: And the minimum is
7	different, because this one I said had that problem,
8	is venting more vapor than liquid.
9	(Simultaneous voices)
10	MEMBER WALLIS: And what is the actual
11	SBWR?
12	CHAIRMAN BANNERJEE: This thing, that's the
13	calculated one.
14	DR. di MARZO: So that's totally
15	irrelevant. This is top of active fuel down here.
16	MEMBER WALLIS: That's right. That's the
17	whole message they try to convey is that it doesn't
18	matter, you'll never get down there.
19	CHAIRMAN BANNERJEE: But in a way it does
20	tell you -
21	DR. di MARZO: It gives you insights in
22	what is going on, and that's basically what all this
23	means. It's an extremely simple tool. It's a tool at
24	the level of PIRT, if you wish.
25	CHAIRMAN BANNERJEE: Well, tell me what you
I	I

(202) 234-4433

	412
1	have done which is more than what the simple scaling
2	analysis, is this like a perturbation analysis on the
3	scaling or what?
4	DR. di MARZO: No, if you do the scaling
5	analysis, at the beginning of the scaling analysis you
6	design your facility and so forth. When you come out
7	of a scaling analysis, you come out -
8	CHAIRMAN BANNERJEE: The sort of scaling
9	that leads to these Pi groups, which is a top down
10	scaling.
11	DR. di MARZO: Right. When you come out of
12	the scaling, you come out basically with values of the
13	Pi group, but you do not come out with the impact of
14	that Pi group on the figure of merit. In other words,
15	you know that something is distorted by 10 percent, 20
16	percent, 100 percent, but you have no clue, no direct
17	information as to how much that affects your minimum
18	vessel limit.
19	CHAIRMAN BANNERJEE: So to put it in a
20	nutshell, the contribution here would be that you show
21	how perturbation of a Pi group may affect your figure
22	of merit?
23	DR. di MARZO: Exactly.
24	CHAIRMAN BANNERJEE: And you have a
25	relatively simple equation to do that. What you could
l	I

(202) 234-4433

	413
1	do is, you could take the eventual results that came
2	out of whatever scaling analysis it is -
3	DR. di MARZO: Exactly.
4	CHAIRMAN BANNERJEE: I'm trying to think of
5	a methodology.
6	DR. di MARZO: It's one step beyond what
7	you need. You had the other equations. I'm just
8	using them as a transfer function -
9	CHAIRMAN BANNERJEE: You are doing the same
10	thing for GE, and you can do the same to AP1000.
11	DR. di MARZO: But this is the key to solve
12	the question, what is the acceptable range for the
13	distortion is not a blanket you can't do that. You
14	should do something like this.
15	CHAIRMAN BANNERJEE: You should write it up
16	- my suggestion and we should get others - in a way
17	where you make the relationship between - what you've
18	really got is a reduced set of original equations. We
19	had 19 Pi groups, whatever they were -
20	DR. di MARZO: On this page you had only
21	three.
22	CHAIRMAN BANNERJEE: No, we eventually got
23	them down to three.
24	DR. di MARZO: Yes.
25	CHAIRMAN BANNERJEE: And then you really
I	

(202) 234-4433

	414
1	would like to show how these directly affect your
2	figure of merit.
3	DR. di MARZO: Correct.
4	CHAIRMAN BANNERJEE: And get ea simplified
5	equation for that. But you should write it in a
6	generalized methodology that you can do it whichever
7	system you're looking for.
8	DR. di MARZO: For example, I'll give you
9	another corollary for this, AP1000, in AP1000 - first
10	of all, there is a problem in general. When you look
11	at this situation, people are scaling ADS-4 with
12	power. Okay? Power turns out to be one of the major
13	dominant parameter in this portion of the transient.
14	So it is proper to scale ADS-4 with power for the long
15	term portion of the transient.
16	MEMBER WALLIS: Well, initially it's just
17	stored energy that is going out there.
18	DR. di MARZO: Correct. Let me finish the
19	thought. If you scale power with ADS-4 you end up
20	with an ADS-4 like an AP1000, much bigger than what
21	you are going to need. Therefore you end up with a
22	lot of entrainment which is what they'll end up with.
23	CHAIRMAN BANNERJEE: And you get your co-
24	inventory down?
25	DR. di MARZO: Yes, and that's a self-
I	I

(202) 234-4433

415 1 inflicted injury that if that - if you look at this 2 you understand. second thing which is even more 3 The 4 significant, Graham, is that if you try to correct 5 stored heat with power, which is something that always people do - remember the old facility they tried to 6 7 correct - you are trying to change this term, when 8 stored energy is in here. So the only conceivable way in which you 9 could do that is if you had power modulated on system 10 pressure, so stored energy is released when pressure 11 goes down and temperature goes down is not a fixed 12 value that you correct with, because it doesn't make 13 14 any sense. 15 Functionally one is a constant down here, and the other is a multiplier up here. 16 17 MEMBER WALLIS: It's not a constant though. The thing that concerns me with all of this is that 18 19 these Pi groups are varying throughout the transient, so I'm not quite sure how you say that they are 20 21 adequate or not. 22 CHAIRMAN BANNERJEE: They have be to 23 calculated. 24 DR. di MARZO: They have to be calculated. 25 In other words you would have to have a pressure

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	416
1	senser or a temperature senser, and on that basis put
2	in the stored heat.
3	But you cannot say I'm going to increase
4	power -
5	MEMBER WALLIS: No, I'm saying, how can you
6	say that ROSA has a Pi group which is unacceptable or
7	something when it varies throughout the transient.
8	CHAIRMAN BANNERJEE: You have to look at
9	each part of the transient.
10	MEMBER WALLIS: But how are you going to
11	have say a point nine two for ROSA AP-1 when it varies
12	throughout the transient.
13	MEMBER KRESS: Let me ask a similar
14	question.
15	What I see he has here is a simplified
16	replacement for the code itself.
17	DR. di MARZO: No, you can't compute with
18	this.
19	MEMBER KRESS: You could compute the
20	impact.
21	DR. di MARZO: Exactly.
22	MEMBER KRESS: With the code. I don't know
23	why we don't do it that way.
24	DR. di MARZO: We are accused of vicious
25	circle at that point.
	I

```
(202) 234-4433
```

	417
1	MEMBER WALLIS: Where does point eight two
2	come from, though? Is it at the beginning of the
3	transient or the end?
4	DR. di MARZO: This is the scaling body.
5	MEMBER WALLIS: But where does it come
6	from? You've got an FG or something, which varies
7	throughout the transient.
8	DR. di MARZO: No, these numbers come from
9	the scaling analysis that you have.
10	MEMBER WALLIS: But your Fgs and all those
11	things varied throughout the transient.
12	DR. di MARZO: Absolutely, but these are
13	the values that you get from the original scaling
14	analysis.
15	MEMBER WALLIS: Which is something else
16	altogether?
17	DR. di MARZO: Which is something else
18	altogether. Then you modify a parameter with a
19	multiplier for -
20	CHAIRMAN BANNERJEE: See, this is - for
21	scaling analysis you use for these Pi groups should be
22	readily accessible or somehow obvious for each phase
23	of an accident.
24	DR. di MARZO: Yes.
25	CHAIRMAN BANNERJEE: With some very simple

(202) 234-4433

418 1 assumptions so you get a rough and ready answer. But 2 you could, as Tom was saying, do the same thing using 3 a code. I mean you would get better numbers -4 DR. di MARZO: Better numbers, but the 5 problem with the code is that they can say, wait a minute, you are using these to validate the code. 6 So 7 the code up to today you cannot use, because you 8 haven't validated on the basis yet. Remember, we went 9 into that predicament. 10 So the idea here is to generate a very simple clue if you should say methodology to guide you 11 in deciding whether your facilities are good enough to 12 then perform the assessment. 13 14 CHAIRMAN BANNERJEE: Т think ΜΡ were talking at a time when we had much less confidence in 15 16 code. Because we were getting all these the 17 oscillations which wouldn't give you - I mean the code was bombing out. All sorts of thing. 18 19 DR. di MARZO: If you have the code 20 reasonably fast, and you are reasonably confident, 21 that's a very good way to go too. 22 MR. CARUSO: How do you decide what the 23 acceptable impact is? 24 DR. di MARZO: That's arbitrary. That's 25 arbitrary, but it is definitely better than defining

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	419
1	the other part of the deal. And the way I did that
2	was to say if the facility ends with more water, it's
3	not conservative, right. If the facility ends with
4	less water is conservative.
5	Now you have to put some values, so I
6	said, arbitrarily, 10 percent on this side, 20 percent
7	on that side.
8	There anything can be, it depends on the
9	match.
10	MEMBER WALLIS: Why is nonconservative ever
11	acceptable? It's misleading. It makes you think -
12	MR. CARUSO: I seem to remember that there
13	were points during the long-term cooling phase in
14	AP600 where you had to get the number right. It
15	wasn't a matter of conservative or nonconservative.
16	It had to be right.
17	CHAIRMAN BANNERJEE: But remember, this is
18	not for the purpose of computing anything, in the
19	sense of predicting anything. This is simply to tell
20	you which of the parameter you can range without too
21	much -
22	DR. di MARZO: In a facility.
23	CHAIRMAN BANNERJEE: - in a facility, or
24	how much distortion you can allow on that parameter,
25	and which parameter on the other hand you should be
I	I

(202) 234-4433

	420
1	extremely careful, because if they are off a little
2	bit they can cause a lot of damage.
3	MEMBER KRESS: It would certainly be a good
4	guide on how to design your experiment.
5	DR. di MARZO: Exactly. Then you go to the
6	code and you say, I want to do a sensitivity analysis.
7	Which parameter should I range? You know which
8	parameter you should range - those two, the amplifying
9	one. And then if you have time, the mixed one, and
10	then if you still have time, you can range more.
11	But at least you start shooting -
12	CHAIRMAN BANNERJEE: Yeah, it narrows down
13	the analysis that you need to do.
14	MEMBER KRESS: Could you do this for a new
15	reactor design other than ESPWR or EPR? Could you do
16	this for a gas reactor that you don't have any test
17	data for?
18	DR. di MARZO: No, you have to have test
19	data. Because remember the original hypothesis a
20	system that is globally controlled. So for example if
21	you look at ACR, that won't fit.
22	CHAIRMAN BANNERJEE: No, no, I did the
23	scaling for ACR.
24	DR. di MARZO: Yeah, but the problem is, if
25	when you run pipe you get something down there
	I

(202) 234-4433

	421
1	happening.
2	CHAIRMAN BANNERJEE: You can't do it with
3	one volume.
4	DR. di MARZO: Exactly.
5	CHAIRMAN BANNERJEE: You have to do it with
6	multiple -
7	DR. di MARZO: You have to figure out
8	exactly how to handle that. Remember the discussion,
9	top down, bottom up, right. If you can lead top down
10	to bottom up, yes.
11	MR. CARUSO: So you don't use this to
12	design the test facilities, you use this to evaluate
13	them after they've been built.
14	DR. di MARZO: You'll make a mistake if you
15	use this to design the facility, because what you put
16	in here is this, and what you don't put in it -
17	CHAIRMAN BANNERJEE: No, but in the sense
18	that Ralph is saying that if you want to have a
19	certain range of flow rates and friction factors.
20	I'll tell you one of the things that was
21	surprising that came out of the ACR was the resistance
22	in the ECC lines became a very important factor you'd
23	never think of before you do the scaling. Strange.
24	DR. di MARZO: But you can play with this
25	kind of a methodology, you can essentially extract
ļ	I

(202) 234-4433

	422
1	information that you can then use to guide you in then
2	doing the proper analysis. But you don't shoot in the
3	dark.
4	It's the same thing in AP600 for example.
5	We killed ourself on the two-inch brake which turned
6	out not to be the most dramatic brake.
7	CHAIRMAN BANNERJEE: We did DVI as well.
8	DR. di MARZO: It was very instructive, but
9	it wasn't it.
10	CHAIRMAN BANNERJEE: We also did the DVI
11	brake.
12	DR. di MARZO: The DVI brake was the real
13	thing. So if you get something like this to start,
14	you hit the most problematic one first, and then given
15	enough time you hit everything else. But at least you
16	go to the heart of the matter immediately as opposed
17	to just chancing it out.
18	And this is back of the envelope; this
19	doesn't take much.
20	CHAIRMAN BANNERJEE: I think you should
21	write it up in some systematic way; show that it's
22	applicable to different - not just a one-shot deal.
23	Write the methodology out in a way that other people
24	can use.
25	DR. di MARZO: For example, in AP1000 we

(202) 234-4433

	423
1	used this to tell you that entrainment was the issue.
2	Because when we played entrainment here, it popped out
3	immediately that that was enormous; that was a huge
4	problem. Instead, change the quality of ADS because
5	of entrainment, and those numbers flew out the window.
6	So you know that entrainment is key.
7	MEMBER WALLIS: You have fellow, Banerjee,
8	as a reference here. Why is that there?
9	DR. di MARZO: It was done a year ago, a
10	year and a half ago.
11	MEMBER WALLIS: Is that there as an okay
12	reference? Have you now supplanted this work? Is
13	your work better than his in some ways, or what is it?
14	DR. di MARZO: I had the date in which -
15	(Simultaneous voices)
16	MEMBER WALLIS: But is your work simpler
17	than his or better than his? How does your work
18	compare with that work?
19	CHAIRMAN BANNERJEE: Well, I'm better, I
20	would say.
21	DR. di MARZO: His was much more accurate.
22	CHAIRMAN BANNERJEE: Are we done for today?
23	Or do you have more questions?
24	MEMBER WALLIS: We can go into a little
25	discussion if you would like. But we can get off the
I	I

(202) 234-4433

	424
1	record, though.
2	CHAIRMAN BANNERJEE: Can we go off the
3	record.
4	(Whereupon at 6:21 p.m. the proceeding in
5	the above entitled matter was adjourned)
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
ļ	I