Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Subcommittee on Thermal Hydraulics OPEN SESSION
Docket Number:	(Not applicable for meetings)
Location:	Rockville, Maryland

Date: Wednesday, August 23, 2006

Work Order No.: NRC-1226

Pages 1-96

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	SUBCOMMITTEE ON THERMAL HYDRAULICS
6	+ + + +
7	MEETING
8	OPEN SESSION
9	+ + + +
10	WEDNESDAY,
11	AUGUST 23, 2006
12	+ + + +
13	ROCKVILLE, MARYLAND
14	+ + + +
15	
16	The Committee met at the Nuclear
17	Regulatory Commission, Two White Flint North,
18	Room T2B3, 11545 Rockville Pike, at 8:30 a.m.,
19	Graham B. Wallis, Chairman, presiding.
20	
21	COMMITTEE MEMBERS PRESENT:
22	GRAHAM B. WALLIS, Chairman
23	MARIO V. BONACA, Member
24	THOMAS S. KRESS, Member
25	OTTO L. MAYNARD, Member
I	1

		2
1		
2		
3	I-N-D-E-X	
4	AGENDA ITEM	PAGE
5	Introduction by Chairman Wallis	3
6	Strainer Design, Testing, and Analyses	
7	Enercon/Alion/Transco	79
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
	1	

	3
1	
2	P-R-O-C-E-E-D-I-N-G-S
3	(10:14 a.m.)
4	[Meeting in progress.]
5	MR. SMITH: We've done for, you know, our
6	bypass test survivor. It's a specific test. It's not
7	for demo. It is a bypass. Again, we do not do that
8	with the fiber-only. We do it for simulation, a one-
9	pass system where all flow is through a five micron
10	bag filter. So, you know, whatever gets through does
11	not come back around.
12	CHAIRMAN WALLIS: Are you in a position
13	that you can predict how much fiber bypasses the
14	screen in this first wave?
15	MR. SMITH: Yes. Yes. We don't
16	CHAIRMAN WALLIS: Do you have a theory?
17	MR. SMITH: We do not have a first wave.
18	We have a cumulative effect, because that's what we're
19	worried about.
20	CHAIRMAN WALLIS: And you call it, and
21	then in some way you have
22	MR. SMITH: We have data that we have
23	correlated together on the size of our strainer. We
24	test each of our clients for fiber, because not all
25	you know, some clients have mineral rules, some have,
1	·

(202) 234-4433

	4
1	you know, Nukon fibers, and there are other there
2	are different fibers out there we have tested. To
3	date we have tested mineral and Nukon.
4	CHAIRMAN WALLIS: And so you have a
5	predictive capability. You can say if you have a
6	certain area of screen and certain hole size, then
7	you
8	MR. SMITH: For our strainer, we are
9	predicting this is the quantity of material and this
10	is the characteristic. So in that
11	CHAIRMAN WALLIS: About how much of it
12	gets through?
13	MR. SMITH: We are down into small cubic
14	feet, you know, one cubic foot of glass.
15	CHAIRMAN WALLIS: For all the strainers or
16	per strainer?
17	MR. SMITH: Oh, this is for the complete -
18	_
19	CHAIRMAN WALLIS: Complete assembly in the
20	plant?
21	MR. SMITH: Yes. And I'll show you we
22	have another feature. We have a feature we have added
23	to our strainer, and we do a second. But I'll keep
24	going, and I'll
25	This is just a little filter picture here
Į	1

(202) 234-4433

	5
1	showing the beginning of our test. We introduced the
2	fiber in very small batches to allow it to accumulate
3	on the strainer module. In this we understand that as
4	you add little batches and little batches and little
5	batches that gives it opportunity to pass through.
6	And, again, in the real world you don't
7	know if all the fiber is going to hit it in one big
8	slug, or you're going to hit it in little trickle
9	streams. So we introduce it in the trickle stream
10	fashion, giving it the most opportunity to get
11	through.
12	This is a half-inch loading on it. You'll
13	see some non-uniform loading going on. There's still
14	clean surface area there, and we keep
15	CHAIRMAN WALLIS: It looks as if it's all
16	on the outside of the cylinder.
17	MR. SMITH: It has gone down the center as
18	well.
19	MR. ZIGLER: If you would look in here,
20	you would see portions of it. But the inside of the
21	cylinder would normally be the last one to do it,
22	because it has a tangential velocity vector on into
23	the surface of it. So it actually, in the inside
24	we see a lot of what we like to almost call it it's
25	a self-cleaning phenomena, and it's the only when
l	I

(202) 234-4433

	б
1	your inside gets filled in, but you finally clear this
2	last remaining area, which is the inside of it.
3	CHAIRMAN WALLIS: I don't understand the
4	design of your strainer. You have this can, and you
5	have something inside it, some kind of
6	MR. SMITH: Yes, let me I've got a
7	slide here.
8	CHAIRMAN WALLIS: shape. And fibers
9	can actually go inside the cylinder?
10	MR. SMITH: Yes. It's
11	CHAIRMAN WALLIS: They could fill the
12	whole cylinder, and they do.
13	MR. SMITH: They're concentric.
14	CHAIRMAN WALLIS: But if you fill the
15	cylinder, then it doesn't seem to really matter. They
16	can't get into it, so it doesn't matter
17	MR. SMITH: That's right.
18	CHAIRMAN WALLIS: how much area you
19	have inside. It just becomes limited presumably by
20	the outside.
21	MR. SMITH: Outside and down through the
22	center.
23	CHAIRMAN WALLIS: And when you showed us
24	these things completely buried in debris, presumably
25	the inside is full of debris and there's very little
ļ	I

(202) 234-4433

	7
1	flow that goes through there. So having all that area
2	doesn't help you, then.
3	MR. SMITH: It accumulates the debris.
4	MR. ZIGLER: But, again, just remember
5	that we are talking about a very, very highly porous
б	bed, because the beds are uncompressed.
7	CHAIRMAN WALLIS: But the effective area
8	of the screen is very different when it becomes
9	clogged.
10	MR. ZIGLER: Oh, absolutely. That's the
11	reason for that jump that you saw in the data.
12	Absolutely.
13	MR. SMITH: Yes.
14	CHAIRMAN WALLIS: As long as you just have
15	a little bit of fibers and all that area is useful
16	MR. ZIGLER: Right.
17	CHAIRMAN WALLIS: plug up the hole
18	inside
19	MR. SMITH: Dr. Wallis, we designed the
20	strainer with gaps and spacing between these to
21	accommodate the debris.
22	CHAIRMAN WALLIS: When you say 3,000
23	square feet of strainer, that's all these wiggles and
24	squiggles inside.
25	MR. ZIGLER: Absolutely.
	I

(202) 234-4433

	8
1	CHAIRMAN WALLIS: I mean, if you just look
2	at the outside of the cans, it's much less.
3	MR. SMITH: Oh, yes. Yes.
4	CHAIRMAN WALLIS: But that's what you're
5	really faced with when you have a heavy load. It's
6	the outside of
7	MR. SMITH: And we base the thickness, the
8	predicted debris load thickness on the surface area,
9	so that we're not just jamming it all in.
10	CHAIRMAN WALLIS: Base it on all the on
11	the superficial surface area of the cylinder, or the
12	area of all the inside?
13	MR. SMITH: The inside
14	CHAIRMAN WALLIS: So you have a .002
15	approach velocity based on all of the area
16	MR. SMITH: Right.
17	CHAIRMAN WALLIS: and maybe a .001
18	velocity based on the cylinders themselves or
19	something?
20	MR. SMITH: Exactly, yes. But as like
21	I say, we have sized the strainers, the gap, the
22	spacing between the gaps to accommodate the predicted
23	quantity of debris that's arriving.
24	MEMBER MAYNARD: More debris loading the
25	more debris you have in there, isn't it? The more
	I

```
(202) 234-4433
```

	9
1	modules of strainers that you put on
2	MR. SMITH: Exactly. Exactly.
3	MEMBER MAYNARD: So it's not limited to
4	just one
5	MR. SMITH: Well, going on with our fiber
6	bypass testing, again, most of the fiber bypass occurs
7	when the again, as I stated before on the first
8	the positing on the strainer. Fiber bypass
9	essentially becomes zero once that bed completely
10	forms. We have observed the bypass is proportional to
11	the strainer area and the approach velocity.
12	The quantity of bypass, you know, can be
13	significant. This is some bypass material we've got
14	we've collected, just to show some of the material
15	that has gone downstream of the perforated plate of
16	our strainer.
17	CHAIRMAN WALLIS: And got caught on
18	another strainer.
19	MR. SMITH: It's collected in a five
20	micron bag, a bag filter, we have a bag filter section
21	downstream. So it is collected, dried, weighed, and
22	characterized.
23	MR. ZIGLER: And, in fact, the filter is
24	very, very highly effective, that we have had to
25	change the procedure of doing the bypass testing by
	I

(202) 234-4433

	10
1	first putting in a five micron bag and letting the
2	water circulate for a considerable amount of time to
3	clean the water first and then we will put in the bag
4	that we were using for the test.
5	CHAIRMAN WALLIS: Now, when you say
6	"quantitative fiber bypass is significant"
7	MR. SMITH: It can be significant in
8	that
9	CHAIRMAN WALLIS: what does that mean?
10	MR. SMITH: We're talking here we've
11	seen a good amount of quantity from standard
12	perforated plate on bypass, and I wanted to go on, we
13	add a separate
14	CHAIRMAN WALLIS: Well, you say
15	"significant," but then you were telling me before
16	that only one or two cubic feet got through in the
17	MR. SMITH: That's with our secondary
18	feature.
19	CHAIRMAN WALLIS: Oh, with your secondary
20	feature.
21	MR. SMITH: Yes.
22	CHAIRMAN WALLIS: Oh, okay.
23	MR. SMITH: The next slide
24	CHAIRMAN WALLIS: Well, when you say
25	"significant," that means five percent gets through or

(202) 234-4433

	11
1	something, when it doesn't tell me what you mean by
2	"significant."
3	MR. SMITH: I have some data I can provide
4	you with.
5	CHAIRMAN WALLIS: Does one truckload get
6	through or
7	MR. SMITH: I provided the staff some
8	information on what we had the other day, so it's
9	not truckload, but it is a percentage, many cubic
10	feet.
11	CHAIRMAN WALLIS: Many cubic feet.
12	MR. SMITH: Yes, I could say that.
13	CHAIRMAN WALLIS: That's enough to make a
14	difference in the lower plenum of the reactor flume.
15	MR. SMITH: Yes, potentially. I don't
16	know I don't know the blockage issue of that the
17	fuel itself. We had a secondary feature.
18	MEMBER KRESS: The previous slide showing
19	it looks a little strange to me. It's like the
20	fiber had built up a layer and then broke off in
21	chunks.
22	MR. SMITH: Yes. This is in our bag.
23	CHAIRMAN WALLIS: This is in the bag.
24	MR. SMITH: If you dump the bag out. It
25	is
	1

(202) 234-4433

12 1 MEMBER KRESS: That happened in the bag, 2 you think? MR. ZIGLER: Oh, yes, it clumps up. 3 Ιt 4 looks like puff balls --5 MR. SMITH: Yes. MR. ZIGLER: -- of fiber. 6 7 CHAIRMAN WALLIS: And it felts, 8 presumably. Isn't it felt a little bit? It's --9 MR. SMITH: Excuse me? 10 CHAIRMAN WALLIS: It felts. It's like felt. It --11 12 Yes. MR. SMITH: The fibers attach --13 CHAIRMAN WALLIS: 14 MR. ZIGLER: It's because of the long 15 strands of fiber. I mean, the strands are pretty 16 large. It actually collects in our 17 MR. SMITH: bag downstream, and this is after we dried it, dump it 18 19 take some photos of it, we've got out, some 20 characterization on it. We've added our -- we have a 21 secondary feature we add that collects or entraps the 22 fiber after it gets through the holes within our 23 perforated plate. 24 This is basically a -- just a secondary 25 stainless steel knitted wire mesh material, it's very

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	porous, slide up inside of it. And, again, we've got
2	an inner and an outer tube here, so it's a cylinder
3	that goes inside. So all the fiber or the flow
4	passes through and then comes out this little wire
5	mesh secondary filter.
6	CHAIRMAN WALLIS: Looks like a way to
7	create high head loss.
8	MR. SMITH: We test all of our strainers
9	with this material in place. Okay? So it does add
10	some head loss, but it's not extremely high. But you
11	do pay a little bit on your head loss, but it does a
12	very nice job of collecting bypass of fiber. So we've
13	used that, and that then has gotten it down to that
14	less than a cubic foot or so. And this
15	CHAIRMAN WALLIS: One wonders if you
16	really need it to be so thick. I mean
17	MR. SMITH: We have
18	CHAIRMAN WALLIS: Do the fibers actually
19	penetrate much into this porous media?
20	MR. SMITH: It's pretty a loose, loose-
21	knit wire
22	CHAIRMAN WALLIS: Most of them are on the
23	surface.
24	MR. SMITH: Yes, they go down there just
25	a little ways.
	I

14 MR. ZIGLER: What happened, Dr. Wallis -and we have modeled this with the CFD and we can actually see it -- and the sense of what happens is that your flow stream now becomes basically slightly turbulent inside, and your flow stream in the hole, which before you had the hole, your fiber would have punched right through and then down on it. Now you have the surface right behind the hole on it, so that flow stream is not perpendicular anymore. It hits it and it becomes turbulent, so you don't have the capability, whatever little fiber gets deposited on the surface of the neck and doesn't transpose down. MR. SMITH: Okay. I have a few photos just showing some quantities of, you know, what came

17 CHAIRMAN WALLIS: That's quantity, or 18 that's just a sample?

through and without the --

19MR. SMITH: No, this was the quantity.20CHAIRMAN WALLIS: That's the quantity.21MR. SMITH: Yes.

22 CHAIRMAN WALLIS: So we should look at the 23 quantities and compare them here.

24 MR. SMITH: Yes. Yes. This is just a 25 quantity. This is before and after. It does a pretty

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

	15
1	nice job. And the big thing is
2	CHAIRMAN WALLIS: But the engineering
3	question is: can you predict it?
4	MR. SMITH: You
5	CHAIRMAN WALLIS: How much do you need to
б	catch before there's a problem downstream? And all
7	those kinds of questions.
8	MR. SMITH: We're still working with fuel
9	lenders on determining what the limitation is
10	downstream. And the thing to note is that this stuff
11	is more powdery form. It's more closer to that of a
12	particulate versus that of a
13	CHAIRMAN WALLIS: But the screens that
14	you're installing in plants have this bypass
15	eliminator in them?
16	MR. SMITH: Yes, sir.
17	Again, we show some of the some of the
18	material being strapped trapped on the surface of
19	our knitted mesh material. The things this is some
20	of our
21	CHAIRMAN WALLIS: I would think that the
22	chemical precipitants that they go through would
23	actually make a nice, thin bed on that bypass
24	eliminator.
25	MR. SMITH: Most all all particulate
ļ	I

(202) 234-4433

	16
1	has passed right through this in the past, and I know
2	recently it was passing right through it. At one
3	point it was
4	CHAIRMAN WALLIS: Even after a bed begins
5	to form on the bypass eliminator?
6	MR. SMITH: Oh, no, by itself.
7	MR. ZIGLER: By itself. There was a test
8	that was conducted with the bypass eliminator and
9	chemical precipitants
10	MR. SMITH: Yes.
11	MR. ZIGLER: with the WCAP chemical
12	precipitants by itself with no fiber, and there was no
13	head loss increases.
14	MR. SMITH: Yes, it was passing right
15	through. What we've seen this is, you know, some
16	of our data at this point in time. We've seen
17	standard perf plate, and the perf plate holes for our
18	our strainers have been in the 3/32 size perforated
19	plate hole with about a 27 to 30 percent open area.
20	We've got fibers ranging from around one
21	micron to three excuse me, 1,000 microns to 3,000
22	micros in length. It's kind of a little ball, little
23	puffs of stuff, and a little clumping going on. When
24	we run with our secondary filter we get 80 to 90
25	percent, based upon our observation and this is
Į	1

(202) 234-4433

	17
1	using a microscopic evaluation. Less than five
2	microns, almost all are shorter than 1,00 microns, and
3	it's displaying more of a particulate nature.
4	And we're using we're going after this
5	as if it is particulate in nature, and many people are
6	trying to approach this if it is particulate, it
7	won't bridge, it will pass through and pass through
8	downstream components that are we're concerned with
9	the fiber actually getting in there and bridging.
10	And that I believe is the success path
11	we're trying to get through here, is if you can show
12	these things are short enough in length that they
13	don't they transform from being a fiber material
14	into that of a particulate material.
15	CHAIRMAN WALLIS: Those 3,000 microns, is
16	that three millimeters?
17	MR. SMITH: Three millimeters, yes. I
18	mean, they're short, eighth inch. And then we get it
19	down we're running really short here, so and
20	that's the end of our slide show.
21	MEMBER MAYNARD: Quickly going back to the
22	module design, that feeds into a manifold. The water
23	then goes from there to the sump?
24	MR. SMITH: Yes. Yes, sir.
25	MEMBER MAYNARD: And I'm assuming that
ļ	

(202) 234-4433

	18
1	that's a gravity flow, and these are put in in a way
2	where that offload
3	MR. SMITH: We're all submerged at this
4	point, and so it is fully submerged. It is not
5	gravity, but you are all below the water level at this
6	point, and it's the head of the water driving it, you
7	know, to your pump located, you know, at a lower
8	elevation. And so and then, we run through the
9	calculations for internal losses and strainer head
10	losses.
11	CHAIRMAN WALLIS: So this is a very
12	interesting, descriptive presentation. It's not
13	really an engineering presentation. I mean, you
14	haven't said, "Here are the functional requirements
15	and specifications for a particular plant. Here's the
16	kind of debris that we handle. Here's the head loss
17	tolerable. Here are the various conditions throughout
18	the event, temperature and so on and so on. Here's
19	the chemistry. Here is our design. And here is the
20	proof that we're confident that it will work, because
21	we have adequate data and we have adequate means of
22	extrapolation and adequate means of predicting flow
23	patterns in the plant, and so on."
24	There's a tremendous amount of stuff in
25	the engineering of this that you haven't told us about
	I

(202) 234-4433

	19
1	at all.
2	MR. SMITH: When we were putting this
3	presentation together, we asked, you know, what agenda
4	to present. And we had an agenda from our past
5	CHAIRMAN WALLIS: Yes, but I'm just
6	wondering if it exists.
7	MR. SMITH: We have a lot of yes, we do
8	go ahead, Gil.
9	MR. SMITH: In the end of everything,
10	you're absolutely right, Dr. Wallis. We have what we
11	call the strainer certification calculation. And this
12	is where everything feeds in. This is where we come
13	in with our composite curve that you saw on it, what
14	we can then predict from that one using the 6224,
15	which is pretty decent, incidentally, from a
16	particulate standpoint, to extrapolate given
17	parametrics of energetics and cotese failed, cogene,
18	parametrics from CalSil, etcetera, etcetera, to
19	provide the client with not a single data point but
20	with a range of values that he can certify that that
21	strainer will work over a large range of events.
22	CHAIRMAN WALLIS: So when I'm up there
23	making a presentation to the Commission and some
24	Commissioner says is it my opinion that you guys are
25	really on top of the engineering and these things will
Į	I

(202) 234-4433

	20
1	work, I just have no nothing to say, because I
2	haven't seen anything. And just say they've described
3	what they've been doing to me, but I have no idea
4	whether it's going to work or not.
5	MR. SMITH: We have data that show it's
6	working.
7	CHAIRMAN WALLIS: You have it, but I
8	haven't seen it.
9	MR. ZIGLER: We would be glad to show that
10	to you, but it just
11	CHAIRMAN WALLIS: Maybe we need another
12	meeting. Maybe we need a technical we need another
13	technical meeting of some sort.
14	MR. SCOTT: Can I interject something?
15	Mike Scott, NRC staff. You all are as all of you
16	are currently in progress on this, right, you have not
17	identified the success path yet that gets you to the
18	end result that he's asking for.
19	MR. SMITH: Not for every topic, that's
20	correct. We're still wrestling with that.
21	MR. SCOTT: So had you been asked to come
22	in and provide that solution path, you're not prepared
23	to do it yet, and I'm assuming nobody is yet. We're
24	still working on this and are going to be for sometime
25	yet in the future.
	I

```
(202) 234-4433
```

I	21
1	MR. SMITH: We have partials and pieces,
2	you know. We tried
3	MR. SCOTT: Right.
4	MR. SMITH: to get through, you know,
5	the classical testing of head lossing head loss
6	testing, but to say we've bounded everything here, no.
7	CHAIRMAN WALLIS: We are usually asked for
8	our judgment on things and whether things are going
9	the right way and are you on the right track, and are
10	you solving the problem, and so on. And I can say,
11	yes, this description of stuff looks very interesting.
12	I mean, you're doing stuff which sounds as if it's
13	relevant. But I can't say much beyond that, because
14	I haven't seen technical results from it.
15	MR. SCOTT: And the staff is not ready to
16	reach a conclusion yet as to whether this will pan out
17	without an additional set of actions to be taken.
18	It's going to likely be iterative. And so, you know,
19	six months, a year from now, we're obviously going to
20	have a much better idea as to what's needed. But
21	it's
22	CHAIRMAN WALLIS: Everybody is going to be
23	iterative on these chemical effects, because they've
24	been showing more clogging than was desirable.
25	MR. ZIGLER: I go back to my opening
I	

(202) 234-4433

	22
1	slide, Dr. Wallis. Okay? We are looking at every
2	single step along the way
3	CHAIRMAN WALLIS: I understand that.
4	MR. ZIGLER: and we when we stumble,
5	we go back. And as I mentioned before, when we're
6	talking about the chemical issue over here we're
7	stumbling right down here. So we're now going back to
8	debris generation and doing chemical debris
9	generation, which is something which we haven't done
10	before.
11	CHAIRMAN WALLIS: This is your plan of
12	campaign. But until you actually fight the battle, we
13	don't know if it's going to work.
14	MR. ZIGLER: Absolutely. Eventually we'll
15	going through those do loops many times we'll
16	eventually
17	CHAIRMAN WALLIS: I understand that.
18	MR. ZIGLER: come down over here.
19	CHAIRMAN WALLIS: Right. I understand
20	that.
21	MR. SMITH: Yes, and we've gone through
22	those do loops with several types of classical
23	insulation debris that many clients cannot you
24	know, the strainer system could not tolerate it. And
25	in many cases, they have gone had to go back and
I	

(202) 234-4433

	23
1	remove certain types of insulation material in their
2	plant. So we've gone through this do loop on a couple
3	issues already.
4	MR.ZIGLER: Whether it's reducing debris,
5	putting in debris interceptors, etcetera, etcetera,
6	etcetera. But we have had campaigns, but the war is
7	not yet finished.
8	MR. SMITH: Right. We've had little
9	battles, but
10	MR. CHOROMOKOS: One last thing. I mean,
11	we came here with the intent of informing you of the
12	activities we're doing to address it. We didn't come
13	here with all of the addresses.
14	CHAIRMAN WALLIS: I understand that.
15	MR. BUTLER: Dr. Wallis, I'd also like to
16	point out that some of the details that you're looking
17	for are really the licensee's details. Intercon and
18	the other strainer vendors are contractors to the
19	licensees. If you're looking for that detail, we
20	really have to pursue getting the plants themselves to
21	present with their contractors.
22	MR. SCOTT: But not at this stage. It's
23	still premature for that.
24	MR. BUTLER: Correct.
25	MR. SCOTT: Because the battle is still
I	I

	24
1	being fought, as was said.
2	CHAIRMAN WALLIS: Okay. Well, maybe we
3	can ask the staff when they get up there how far along
4	they think things have come.
5	Do we have any more questions? I notice
6	it's time for our break. Ready to move on, have a
7	break? Okay.
8	MR. ZIGLER: And, you know, if you're ever
9	interested in seeing some of those tests, you're
10	welcome to participate.
11	MR. SMITH: Yes. We have several tests
12	scheduled for this fall, and so you all are welcome
13	to
14	MR. CARUSO: Is the staff observing your
15	chemical effects testing?
16	MR. SMITH: They just did this past week.
17	MR. ZIGLER: Thursday and Friday they were
18	there.
19	MR. SMITH: Yes.
20	CHAIRMAN WALLIS: Okay. Well, Gil, Aaron,
21	Rob, thank you very much. We will take a break.
22	We'll take a break until 10 minutes to 11:00.
23	(Whereupon, the proceedings in the
24	foregoing matter went off the record at
25	10:34 a.m. and went back on the record at
	I

```
(202) 234-4433
```

	25
1	10:53 a.m.)
2	CHAIRMAN WALLIS: Okay. Please come back
3	into session. Apparently we gained about an hour on
4	the previous presentation. Maybe we need to maybe
5	they can come back and give us data, then, in that
6	case.
7	We're looking forward to a presentation
8	from AREVA on this same topic. You have two hours
9	scheduled, but we'll see how it goes. We'll take a
10	break for lunch, if you need that much time.
11	MR. WILLIAMS: Okay.
12	CHAIRMAN WALLIS: Probably will. So we'll
13	probably interrupt your presentation. Maybe if we get
14	to a good point we'll you can point out to me or
15	I'll point out to you that we should take a break for
16	lunch. Go ahead.
17	MR. WILLIAMS: My name is Lee Williams.
18	I am the General Manager of Plant Engineering for
19	AREVA in the U.S. AREVA, for those that don't know,
20	is the former Framatome ANP.
21	Appreciate the opportunity to be here this
22	morning. I want to introduce my team. We have a team
23	put together including ourselves, and we do primarily
24	engineering. Alden Laboratory, represented by Dr. Stu
25	Cain on my left, is where we do the testing, and also
ļ	I

(202) 234-4433

	26
1	on my left, Jim Bleigh from Performance Contracting,
2	who does the strainer design itself and the
3	fabrication of the strainers. And we'll show you some
4	of those pictures as we go forward.
5	Also with me is Ken Greenwood, who is my
6	technical lead in AREVA. So we'll be sharing in this
7	presentation.
8	Just a couple of opening remarks. This
9	team that is put together we have done work we
10	were in this issue back in the BWR days back in the
11	middle '90s. And we've been heavily involved in the
12	upfront engineering for the PWRs as the previous
13	presentation talked about the generation, transport,
14	all facets of this, all the way through strainer
15	design and now up to installation and subsequent
16	followup testing.
17	One thing I want to point out is that, you
18	know, as we went forward many of the clients that we
19	had wanted to move forward to in order to meet the
20	NRC dates. So as things were developing, we were
21	developing test protocols and, as you will see, our
22	test protocol in some cases has evolved based on our
23	own client input, the NRC interaction which we've had
24	quite a bit of during the process, and our own
25	experiences and our own discoveries.
	1

(202) 234-4433

	27
1	CHAIRMAN WALLIS: Excuse me. Because of
2	the Framatome connection the French have had a lot of
3	experience with putting in bigger screens. Does this
4	give you a leg up in the work? Were you able to rely
5	on data and the design methods, and so on, from
6	France?
7	MR. WILLIAMS: Well, I mean, even at this
8	time EDF is actually increasing their screen sizes as
9	you know, usually it's the same kind of methodology
10	criteria that's being used in the U.S. We didn't
11	really have a lot
12	CHAIRMAN WALLIS: I think they started it
13	before we did, though, didn't they?
14	MR. WILLIAMS: It's very much about a
15	year earlier I think.
16	CHAIRMAN WALLIS: So you should have a leg
17	up on the competition here.
18	MR. WILLIAMS: Well, sometimes the
19	information is not directly applicable, as you well
20	know from France to the U.S. We did have some
21	information, but nothing that really I think
22	actually, as we got into it, I think we ended up
23	getting more information rather than direction, to be
24	perfectly honest with you.
25	And I think one of the things we want to
Į	I

(202) 234-4433

	28
1	emphasize here as before the resolution of this
2	issue needs to be addressed from a big picture
3	standpoint. It's got to be looked at in the
4	conservatisms as there are assumptions being made.
5	The testing approaches that are being used, the size
6	of screens that are being installed, very much like we
7	did with the boilers, and you'll see some references
8	to some protocol and decisions we made that basically
9	grew out of what was done and acceptable for the BWRs.
10	One of the things we want to note here
11	just very quickly, this is for the benefit of our
12	clients that we they were a little concerned about
13	the you know, we are representing a series of
14	clients of about 15 units. This information is
15	submitted for the information for the ACRS and the NRC
16	staff, but specific information on a plant basis
17	really is the responsibility of the licensee.
18	General topics and I don't know I
19	apologize up front, we we have set up our
20	presentation, Dr. Wallis, very much like the previous
21	one.
22	CHAIRMAN WALLIS: Well, let's go back to
23	the previous questions here. You say that it's all
24	the responsibility of the licensees to make their
25	case, which is true. But presumably you've set up an

(202) 234-4433

(202) 234-4433

	29
1	engineering base which enables them to make their
2	case.
3	MR. WILLIAMS: That is that is very
4	true.
5	CHAIRMAN WALLIS: That base has to be
6	validated and accepted and believed and so on. Once
7	that's done, then maybe it's easy for the licensees,
8	or much easier.
9	MR. WILLIAMS: Well, you have to
10	understand there is many aspects of this that come
11	into play. And not one vendor for one plant is really
12	handling each aspect. In other words, what I mean was
13	you have one group that did generation transport,
14	somebody else may be doing the screen design and
15	installation, somebody else may be doing bypass. So
16	it there is
17	CHAIRMAN WALLIS: There are different
18	consultants or vendors or something like
19	MR. WILLIAMS: Yes, absolutely.
20	MR. GREENWOOD: I think it's important
21	this is Ken Greenwood, AREVA. It's important to note
22	I think this the purpose of this, too, is more
23	directed towards the data tables later in the
24	presentation.
25	MR. WILLIAMS: As I started to say, we
ļ	

(202) 234-4433

	30
1	have set this up as a to focus more on the testing
2	with some overall general information previous to the
3	similar to the previous presentation, so your
4	comment about lack of data may obviously apply to us
5	also.
6	CHAIRMAN WALLIS: Well, there's going to
7	be a prize for whoever comes up with some data in
8	these presentations.
9	MR. WILLIAMS: Well, we have some data and
10	a couple of tables we'll walk you through. We'll go
11	from there.
12	Starting off with a facilities overview
13	for the test, Stu Cain will walk us through that.
14	MR. CAIN: Stu Cain, Alban Research
15	Laboratory. I'll just walk you through our test setup
16	very briefly. The flume setup that we have, you can
17	see on the right-hand side here a little bit better in
18	your handout. We have a flume that's 2.25 feet wide,
19	3-1/4 feet tall by almost 21 feet long. We have a
20	flow capacity that is a calibrated flow capacity of 10
21	to 120 gpm, and our pump is capable to a maximum of 30
22	feet of head. So we can go up to relatively high
23	heads.
24	We have return flow options for this loop.
25	A couple different options exist. We can return flow

(202) 234-4433

	31
1	directly to the upstream end of the flume. We can
2	also divert the flow to overhead spray nozzles. Now,
3	those overhead spray nozzles were designed to provide
4	agitation to the flume, provide kinetic energy to
5	suspend the material in the flume.
6	CHAIRMAN WALLIS: And they don't get
7	clogged up by bypass debris?
8	MR. CAIN: They do not, no. No. We have
9	a sufficiently large hole diameter on the nozzle. We
10	can change nozzle diameters. We can change the
11	vertical fall height of the water. We can also
12	submerge the nozzles to achieve different energy
13	levels.
14	CHAIRMAN WALLIS: Pretty cold water for a
15	sump.
16	MR. CAIN: Well, it's actually city water.
17	And if you saw our laboratory, you would realize
18	there's quite a stretch underground that the water has
19	to flow through to get to our facility.
20	Strainer pressure differentials were in
21	the range of about .02 feet to 12 feet, and, as you
22	said, the water temperature was 40 to 70 degrees
23	Fahrenheit.
24	Go ahead, Lee.
25	CHAIRMAN WALLIS: And when you do tests at
I	1

(202) 234-4433

	32
1	over this range of temperatures and then you apply
2	them to a sump at 200 and something, now there has to
3	be an equation or something which tells you how do you
4	take account of the changes in viscosity and
5	MR. CAIN: Yes.
6	CHAIRMAN WALLIS: So you use supply design
7	equations, then?
8	MR. CAIN: Yes. This is a picture of the
9	test facility. I'll just point out a few things on
10	this slide. This is the flume here. It's elevated
11	because we can run a couple different types of
12	configurations. We have a pit configuration or a
13	depressed sump configuration here.
14	We can mount off the back wall. We can
15	also mount vertically in the system. These are the
16	overhead spray nozzles. This is the overhead spray
17	manifold. This is the return piping. So we can send
18	it through a couple of different orifice plates here
19	for flow measurement back up to the spray nozzles or
20	to the front end of the flume.
21	CHAIRMAN WALLIS: These are all two by
22	fours that are holding it up?
23	MR. CAIN: It is, yes. Structurally
24	designed, of course.
25	MR. WILLIAMS: And we've had loading
I	

(202) 234-4433

	33
1	conditions where we've had to reinforce the
2	CHAIRMAN WALLIS: So you've gone away from
3	angle iron and all those kind of things. This seems
4	to be going back to the '30s or something.
5	MR. CAIN: Well, this flume actually is a
6	fairly old facility. It was pre-BWR testing. And
7	when we did the pit configuration we needed to raise
8	it up. It was on the floor originally, on
9	cinderblocks. Right here you can see and we'll
10	show pictures later on this is the location of our
11	bypass sampling. We have three isokinetic bypass
12	sampling ports where we can pull off bypass samples.
13	MR. WILLIAMS: One of the original
14	thoughts in building the flume, Dr. Wallis, was that
15	we were looking at the differences between BWRs and
16	PWRs, and one of the significant things we saw in many
17	of the plant configurations, that around the area of
18	the sump was a fairly quiet pool because of the, you
19	know, flows. And, therefore and you'll see the
20	range of flows that we're dealing with all the way
21	from 2,000 gpm to 19,000 gpm at the onset of recirc.
22	One of the original thoughts was, how much
23	credit can we take for the settling in and around the
24	closed-in area of the sump itself? And so our initial
25	test we had we were moving the started with the
ļ	I

(202) 234-4433

	34
1	debris somewhat spread across there, but as we got
2	input, not only from the NRC staff but looking at the
3	conservatisms with our client, we later the latest
4	test had the debris all moved up towards the strainer
5	itself as well as the as Stu said, the agitation of
6	those downward jets keeping things suspended.
7	So we the test methodology evolved,
8	because there really wasn't a standard protocol
9	established similar to what the BWRs had. So we we
10	evolved it and got better as we learned.
11	MR. CAIN: Just a couple of photographs of
12	strainer mountings in the flume. This is a pit
13	configuration, so this is a single module, and this is
14	you're looking at in a plan view. This is the pit
15	in here, and it's sitting down inside the pit.
16	MR. WILLIAMS: This is the floor level of
17	the flume itself, and this is to simulate the closed-
18	in edges of a pit configuration. You can see that the
19	Jim, you might want to take a minute and describe
20	what the module is, so Dr. Wallis has an understanding
21	of that.
22	MR. BLEIGH: Basically, we make a stacked
23	disk strainer, which is a series of nominally half-
24	inch thick disks with a face plate on both faces, a
25	disk rim around the perimeter. All of that is
ļ	

(202) 234-4433

5 So when you see those four bolts on the outside of those four bolts would be a gap rim, but on 6 7 the inside of those four bolts on the inside of this 8 cross and collar here is where a pipe is and a core 9 And the core tube has holes in it of different tube. 10 sizes that vary from the section end to the far end, and the purpose of the flow control holes is to create 11 12 uniform flow along the axial length of all of our strainers, so that the furthest disk from the suction 13 14 line is going to draw the same amount of water as the 15 nearest disk.

16 CHAIRMAN WALLIS: At least before it gets17 debris on it, yes.

MR. BLEIGH: Correct. You know? But that would assume non-uniform debris loading. If we have uniform flow to all surface areas, we're assuming that debris is going to collect, unless it's from a single direction, in a uniform manner.

CHAIRMAN WALLIS: So these are stacked
disks. So a lot of the area is between these layers.
MR. BLEIGH: That is correct.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

	36
1	CHAIRMAN WALLIS: And if it fills up with
2	debris in there, then your approach velocity perhaps
3	should be around the whole box rather than
4	MR. BLEIGH: Right.
5	CHAIRMAN WALLIS: based on the entire
6	area.
7	MR. BLEIGH: That's correct. And we're
8	testing these in both low fiber conditions where the
9	gaps are not filled in. We're also testing them in
10	completely buried submerged
11	CHAIRMAN WALLIS: You get them like the
12	ones we saw earlier this morning, where
13	MR. BLEIGH: Absolutely.
14	CHAIRMAN WALLIS: there's several feet
15	of fiber maybe above the whole thing.
16	MR. BLEIGH: Oh, absolutely.
17	CHAIRMAN WALLIS: All right.
18	MR. BLEIGH: And I think we have pictures
19	later in the presentation where we buried the strainer
20	with mixed debris of fibers and particulates.
21	MR. WILLIAMS: But to make a point that
22	you're right about the circumscribed flow here. That
23	was one of the areas things that we did going
24	forward, and the first plants we tested were extreme
25	low fiber plants, really circumscribed area, then
I	I

(202) 234-4433

becoming neglected because you had no material to fill 2 in the gaps. But as we got higher fiber plants, then 3 we evolved to running a suite of flow rates, including 4 the circumscribed flow area.

5 MR. BLEIGH: And one of the interesting things when we started the testing program that was 6 7 very limiting in terms of the size of prototype 8 modules we use is that for high fiber plants -- and 9 you might recall a year and a half ago they talked about 50 pickup loads of debris going to a screen, if 10 I make the screen too large for the physical size of 11 12 this flume, the entire flume is filled with debris.

So there is a limit in terms of how large 13 14 a prototype can be tested based on the design basis 15 that we're using. And so, you know, there was a number of variables that we had to balance to decide 16 17 what size screen are we going to use.

And as Stu was saying, this 18 MR. WILLIAMS: 19 is giving you -- is the flexibility that we built into 20 the flume.

21 And, again, the flume is MR. BLEIGH: 22 designed accommodate all to of the plant 23 configurations, whether it be a horizontal strainer, 24 a vertical strainer that's in a pit, or a vertical 25 strainer that's actually sitting on the floor. So in

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	38
1	this flume we're able to actually test all three
2	configurations.
3	CHAIRMAN WALLIS: Well, if it works with
4	this when it's buried in fibers, then, really, the
5	details of this are less become less important
6	MR. BLEIGH: That's correct.
7	CHAIRMAN WALLIS: as it's flowed
8	through all that fiber that's
9	MR. BLEIGH: That's correct.
10	CHAIRMAN WALLIS: covering everything.
11	You have all this area. Is that really because of
12	those thin bed effects, or something? Or why do you
13	need all of the area?
14	MR. BLEIGH: Absolutely. The
15	CHAIRMAN WALLIS: You only need it when
16	you have the thin layers on it, right? And chemical
17	effects or something. But once you're into the
18	submerged thing, it's a completely different regime.
19	MR. BLEIGH: Yes, that's correct. It's a
20	completely different
21	CHAIRMAN WALLIS: You wouldn't need to
22	have all of this area, presumably.
23	MR. WILLIAMS: I think we have to go back
24	to the evolution of how decisions were being made as
25	we went forward to start the test program. In many of
I	I

(202) 234-4433

	39
1	the plants, they look at not only you look at a
2	calculation of 6224 based on their debris loads, but
3	they also looked at space available.
4	Several of our plants said basically,
5	"Here's the footprint. Fill the space with as much
6	surface area as you can get, and we will basically
7	back our way into the solution."
8	CHAIRMAN WALLIS: So when you say 7,000
9	square foot of surface area, that's all the holes and
10	all these plates. How does that compare with the sort
11	of superficial area of the box?
12	MR. BLEIGH: It depends on the plant
13	design, because the larger the disk design, then the
14	difference in that ratio if it's not a large
15	CHAIRMAN WALLIS: It must be something
16	like an order of magnitude, isn't it?
17	MR. BLEIGH: No, it's not that bad.
18	CHAIRMAN WALLIS: It's not that bad?
19	MR. BLEIGH: No, it's like maybe twice.
20	CHAIRMAN WALLIS: Only that?
21	MR. BLEIGH: Right. I mean, you lose two
22	or three times. Again, it depends on the plant
23	arrangement.
24	MR. WILLIAMS: And it depends on the in
25	some plants we have an array arrangement, which is
I	I

(202) 234-4433

	40
1	over the sump pit itself. And then some plants, as
2	you similar to what you saw earlier, that had the
3	had a small area, and didn't have a sump pit at
4	all, and then we ran the strainers out around the
5	crane wall.
6	MR. BLEIGH: And as was mentioned in the
7	previous discussion, the flow ratio of these screens
8	are extremely slow. I mean, it's almost stagnant
9	water, you know, in and around the screen areas. And
10	so you don't get compression of the debris bed, you
11	know, near the screens.
12	MR. GREENWOOD: Okay. This slide here
13	shows what Jim is mentioned. Ken Greenwood, AREVA.
14	The plant design flow rates that we're dealing with
15	covers the illustrates the large disparity of plant
16	conditions that we had to deal with.
17	Plant design flow rates, as Lee had
18	mentioned, from 2,000 to almost 20,000 gpm. Approach
19	velocities excuse me, the screen approach
20	velocities were very low based on the large square
21	footage of the new plant screens. Again, you can see
22	the large range there. And the hole diameters, just
23	to make things consistent, roughly 3/64 to 3/32.
24	The testing parameters, which represent
25	the prototypes which were tested, flow rates were
l	I

(202) 234-4433

	41
1	scaled down based on the screen surface area, show 15
2	to 120 gpm, and the screen approach velocities here
3	are the same. Those were the intent of the scaling
4	was to to maintain the screen approach velocity.
5	So the area was based on debris loads and
6	other physical configurations, and then the flow rates
7	were determined based on maintaining consistent
8	approach velocities.
9	CHAIRMAN WALLIS: You are testing
10	essentially one module out of many modules, is that
11	what you're doing?
12	MR. GREENWOOD: That's correct.
13	MR. WILLIAMS: What would be done, Dr.
14	Wallis, is that we would come up with a preliminary
15	screen size that would go in the plant. And based on
16	that surface area and the plant flow rates at the
17	onset of recirc, the maximum flow rates, we would
18	establish a screen approach velocity, and then use
19	that as a scaling factor, and have that same approach
20	velocity in the flume test setup.
21	MR. GREENWOOD: Just one last thing on
22	that. The strainer hole diameters were also
23	maintained to the prototypes.
24	MR. WILLIAMS: That's correct.
25	MR. GREENWOOD: This is the list of
I	I

(202) 234-4433

	42
1	licensees that we're working with, the current status.
2	We've got six units fabricated and delivered. Nine
3	units are in fabrication now, and we actually have one
4	plant installed. And you'll see some pictures of that
5	later in the presentation.
6	MR. WILLIAMS: And we actually began
7	testing because of the schedule that many of these
8	plants had, some of these were starting to install as
9	early as this spring, with several of them this fall.
10	We started the test setup in late October/November
11	last year. Actually, in September.
12	MR. GREENWOOD: These are some of the
13	parameters that we found that affected the head loss
14	during the testing. I think you've heard about some
15	of this before. One of the things that maybe you
16	haven't heard was the overhead nozzles. Again, here,
17	this was our intent to keep the debris in suspension
18	as much as possible without introducing enough energy
19	to actually dislodge debris from the strainers
20	themselves.
21	CHAIRMAN WALLIS: When it says "debris
22	mix," it's also how you put it in, isn't it? I mean -
23	_
24	MR. GREENWOOD: Yes.
25	CHAIRMAN WALLIS: and the order in
I	

(202) 234-4433

	43
1	which you put it in, and things like that, can make a
2	difference.
3	MR. GREENWOOD: Yes. We have a slide to
4	address that. Next one?
5	Some of the observations early on the
6	tests included some of the miscellaneous type debris
7	of tags and labels, RMI, paint chips.
8	CHAIRMAN WALLIS: Where do they go?
9	MR. GREENWOOD: They just settle to the
10	floor.
11	CHAIRMAN WALLIS: Settle to the floor,
12	okay.
13	MR. GREENWOOD: Yes.
14	MR. BLEIGH: And they don't appear to have
15	width velocity to come up. They just go down and stay
16	down.
17	MR. GREENWOOD: Even when dumped
18	practically on top of the strainer, it just passes by
19	to
20	MR. WILLIAMS: I'll show you a couple of
21	pictures. We actually forced we did some testing
22	on paint chips in a low fiber condition, and the only
23	way we could get it to the strainer is actually
24	physically dump it and then shovel it onto the
25	strainer. It would not pick it up.
I	I

(202) 234-4433

	44
1	MR. GREENWOOD: The 6224 correlation was
2	a bounding in many cases used some of the initial
3	designs, and testing ones corrected for temperature
4	came in well below that.
5	CHAIRMAN WALLIS: This is because of non-
6	uniform distribution, presumably, rather than because
7	the correlation is way off? Or is the correlation way
8	off
9	MR. WILLIAMS: I think it is the
10	correlation that is developed based on flat plate
11	information, and now you've got complexity, a lot of
12	hydraulics going on in and around the strainer itself
13	that doesn't
14	CHAIRMAN WALLIS: I think it must be non-
15	uniform distribution, then, because if you have this
16	stuff uniformly distributed these are almost flat
17	plates you have. They're disks. They're almost
18	MR. GREENWOOD: Correct. I think the
19	difference is 6224 wasn't a vertical loop. Here
20	you've got the effects of gravity which can keep
21	debris away.
22	CHAIRMAN WALLIS: You'd expect it to be
23	reasonably uniform. You've probably got some
24	flowthrough or whatever you call it you know,
25	bypass the holes through the fiber bed and stuff and -
I	I

(202) 234-4433

	45
1	-
2	MR. BLEIGH: But in many of our thin fiber
3	bed tests, the screen is completely covered. We have,
4	you know, not perfect, but we have coverage of fibers
5	everywhere.
б	CHAIRMAN WALLIS: But you would expect
7	this correlation to do not too badly.
8	MR. BLEIGH: I think it's because of the
9	low flow rates and the fibers just not compressing
10	against the screen. It's at the screen, but it's not
11	compressing.
12	MR. GREENWOOD: We're at the very low end
13	of the 6224 correlation.
14	CHAIRMAN WALLIS: They have predictions
15	for no compression, too. It's probably in the laminar
16	region, isn't it? It's very, very
17	MR. GREENWOOD: Very much so.
18	CHAIRMAN WALLIS: So it should be linear.
19	It should be very straightforward.
20	MR. GREENWOOD: And the other thing is
21	that the amount of debris that you would put in for
22	the correlation would assume 100 percent accumulation.
23	In this case we would have much of the debris drop to
24	the floor below the strainer.
25	CHAIRMAN WALLIS: You'll have to have Gil
ļ	I

(202) 234-4433

I	46
1	look at why the NUREG didn't work, since he's the
2	first author on it.
3	MR. WILLIAMS: It works.
4	MR. GREENWOOD: And one last slide for me
5	is the geometry. This is some things that Lee had
6	alluded to before. Our testing protocol evolved over
7	the course of testing. You mentioned the debris
8	placement, use of overhead nozzles, which nozzles to
9	use and at what elevation to place the discharge,
10	again depended on a lot of that came from
11	experience as well as observations from the staff and
12	clients. But in the end, our maximum head losses seem
13	to be fairly consistent.
14	MR. WILLIAMS: We actually did some
15	sensitivities utilizing the change in debris placement
16	and flow rates and a couple of series of tests. We
17	found we got fairly consistent maximum head losses,
18	but as you might expect debris placement will
19	obviously have an effect on the time it took to get to
20	that maximum head loss.
21	CHAIRMAN WALLIS: So what are you going to
22	give the licensee for a correlation? This NUREG-1 is
23	very conservative. Do you have an AREVA correlation
24	or something? What are you going to give the licensee
25	to use as a design tool?
I	

(202) 234-4433

	47
1	MR. BLEIGH: We're giving them the
2	measured debris head loss, and we're showing how that
3	correlates to a NUREG calculation. And it's really up
4	to the licensee to decide, you know, how they want to
5	use the correlation and the two data points.
6	CHAIRMAN WALLIS: Is it far from the
7	correlation?
8	MR. BLEIGH: In some cases it is.
9	CHAIRMAN WALLIS: So they may wish to use
10	the data rather than the correlation.
11	MR. BLEIGH: That's
12	CHAIRMAN WALLIS: Or will you develop a
13	new correlation that goes through the data or
14	something?
15	MR. BLEIGH: I think that many of the
16	licensees are looking at the NUREG calculation as the
17	bounding condition for the plant. And so the testing
18	becomes confirmation that the calculation using NUREG
19	is bounding and conservative.
20	CHAIRMAN WALLIS: And the interesting
21	situation will be when they find that the conservative
22	one gives them too much pressure drop.
23	MR. BLEIGH: No, it is not.
24	CHAIRMAN WALLIS: It doesn't.
25	MR. GREENWOOD: I mean, as far as the
I	I

(202) 234-4433

	48
1	margin is concerned, we're given our clients have
2	given us you're allowed so many feet without
3	getting into the details of
4	CHAIRMAN WALLIS: Based on the NUREG.
5	MR. GREENWOOD: No, no, based on the NPSH
6	calculations.
7	CHAIRMAN WALLIS: Yes, but then whether or
8	not it's there is based on the NUREG calculation and
9	as I understand it, and you're showing that your
10	data all lie below it. Therefore, this is a
11	MR. BLEIGH: As an example, if we have two
12	feet from the client, and we add together clean
13	strainer head loss component to the debris head loss
14	calculation using NUREG-6224, maybe that's 1.5 feet.
15	CHAIRMAN WALLIS: But you measure as .2
16	feet or
17	MR. BLEIGH: And what we measure might be
18	.5 or 1 foot.
19	CHAIRMAN WALLIS: But the acceptability is
20	based on the NUREG. Acceptability of the design is
21	based on the NUREG, and you are simply showing that
22	it's conservative, it sounds like.
23	MR. BLEIGH: The testing is showing that
24	the NUREG calculation is conservative.
25	MR. WILLIAMS: But you've got to be
I	I

(202) 234-4433

49 1 careful, because there is -- there is questions being raised about the -- utilizing NUREG and certain, you 2 3 know, particulate to fiber --4 CHAIRMAN WALLIS: Right. 5 MR. WILLIAMS: That has to be shown in the 6 test. 7 MR. BLEIGH: Which was the whole purpose 8 of doing the confirmation testing at the plant-9 specific design basis. 10 MR. SCOTT: Mike Scott, NRC staff. As with any NUREG, the licensees are not required to use 11 12 that correlation, so it's not a regulatory acceptance criterion per se. And the SER allows for different 13 14 methods to be used if the licensee chooses and 15 justifies it. I think we actually had 16 CHAIRMAN WALLIS: 17 a staff presentation saying that the NUREG didn't apply to some situations. 18 19 SCOTT: It's not a comprehensive, MR. 20 perfect correlation, certainly. 21 MR. BLEIGH: Based on the limitations of 22 its initial research and development. 23 CHAIRMAN WALLIS: Okay. 24 MR. WILLIAMS: Going on with some basic 25 protocol information, the temperature, as you noted

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	50
1	earlier, Dr. Wallis, was ambient temperature used for
2	the test. And we would then do an evaluation to get
3	the corresponding viscosities, and the perfect
4	temperatures at the plant were outlined to us.
5	Again, many of these items that we've done
6	is completely consistent with how the BWR strainers
7	were tested and qualified.
8	I mentioned earlier that the scale
9	fraction forward of the test debris and test flow was
10	a function of the ratio of the strainer surface area
11	to the plant strainer surface area, where we would
12	maintain based on the flow rates in the flume a
13	consistent strainer flow velocity.
14	We also noted earlier we did some
15	sensitivity tests. Many of the tests had actually
16	used circumscribed flow area, but we did sensitivities
17	at higher flow rates also, just to determine what some
18	of the varying conditions would be.
19	Debris preparation this simply has some
20	pictures of, as you can see, the quantities of debris
21	we're dealing with. We weighed the debris dry. All
22	the insulation, both fibrous and RMI, was chopped,
23	cut, segregated, you know, in many different ways. In
24	many cases we even used put some through a food
25	processor.
l	I

(202) 234-4433

51 Water was added. We mechanically mixed, as you can see over on -- over on the right-hand side, and we'll talk a little bit about some of the surrogate material we utilized as was previous -- in the previous presentation. We were very careful about that based on size, density, and, you know, again, precedent with some of the other BWR evaluations. One in particular was a substitute for the zinc primer, because we were testing at Alden Laboratories in Massachusetts where the EPA has deemed

11 zinc a hazardous material, and it was extraordinarily 12 difficult to try to dispose of. So we came up with a 13 tin powder surrogate based on an evaluation between 14 that and the zinc primer.

15 Sequencing -- as you mentioned, it is an 16 important aspect. We came up -- again, this evolved over some period of time in terms of the order of the 17 debris. One of the things we didn't want to do is put 18 19 the RMI -- put the fibers in and then throw the RMI on 20 top, and that basically would then trap a whole lot of 21 fibers that couldn't -- that wouldn't have the 22 opportunity to make it to the screen. 23 So what we came up with was this type of

just a fundamental order, we would mix these constituents separately and thoroughly with mechanical

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

mixing in drums, and then add the material. And as 2 you'll see from our data chart, as I said, the first couple of tests we spread it out fairly uniformly, and 3 4 then subsequent tests we either put it between one and three feet in front of the strainer itself or actually on the strainer in many cases. 6

7 But we put the RMI in, put all of the 8 particulates in separately, and even if you put it 9 near the screen, as you know the particulates will Fibrous material would be next, and 10 tend to scatter. the latent fiber would be added, and then what we were 11 12 using for chemical precipitants -- we'll talk about it a little bit later, but we -- in the beginning of the 13 14 test, while the WCAP was being developed, we were utilizing manufactured chemical materials based on the 15 16 outputs. And we subsequently evolved to ICET 17 balancing those against the WCAP methodology, and we'll talk more in detail about what's going on there. 18 19 CHAIRMAN WALLIS: Well, suppose you're 20 doing particulate on fibers. You throw in all the

21 particulates, and you're running the test, and it's 22 going through the --

23 MR. WILLIAMS: At this point, when we 24 first add the test it is not running.

> Not going through the CHAIRMAN WALLIS:

> > **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

5

ĺ	53
1	loop yet.
2	MR. WILLIAMS: It's not going through the
3	loop. We don't have
4	CHAIRMAN WALLIS: So all this stuff is put
5	in before you before you start the pump? It's just
6	stirred up in there?
7	MR. WILLIAMS: Right. We layered in
8	there, and then mechanically agitated it and
9	CHAIRMAN WALLIS: Okay. Because there's
10	another sequence where you put in the particulates and
11	run the thing around. And then, you put in fiber
12	progressively and build up a bed, and then it catches
13	the particulates. It all takes time. You haven't
14	done that sort of sequencing where you're running the
15	loop while you're putting the stuff in?
16	MR. WILLIAMS: We did you know, we
17	did
18	MR. BLEIGH: Actually, it has been done
19	both ways, but we didn't see significant differences
20	in results.
21	MR. WILLIAMS: Because, you know, the PNNL
22	people had huge differences depending on the order in
23	which they put stuff in.
24	MR. BLEIGH: The order has an effect. We
25	you know, what we see, though, Dr. Wallis, is once
I	

```
(202) 234-4433
```

	54
1	we put this material in, that obviously the
2	particulate gets there if the material is, you
3	know, right in the vicinity of the screen. And then,
4	the you'd then build up a debris bed gradually as
5	you continue to run the test.
6	So, in essence, though, we didn't do it in
7	a separate condition, because to be honest with you we
8	had so many constituents of material to add in here
9	in many of these tests there was you saw some of
10	those barrels. There was sometimes 15 of those
11	barrels of different materials, particulates and
12	different fiber loadings, that had to be added.
13	MR. BLEIGH: I also think sequencing would
14	make a difference in a vertical pipe test as opposed
15	to an actual or more representative arrangement.
16	MR. WILLIAMS: What you see here is, this
17	was a very high fiber test, and you'll see this is
18	the overhead sprays. There's a mechanical mixing of
19	the debris, and you can see just huge amounts of
20	debris in some cases that, again, resulted from the
21	conservative debris generation during transport.
22	CHAIRMAN WALLIS: Now, the sump isn't
23	agitated like this in a plant. The sump is not
24	agitated like this in a plant.
25	MR. BLEIGH: No, this is occurs just
I	I

(202) 234-4433

	55
1	prior to starting recirculation.
2	CHAIRMAN WALLIS: So something is
3	different between this and what happens in the plant.
4	MR. WILLIAMS: Well, what we tried to
5	simulate, we knew in many cases the material had to
6	take a very torturous path to get to the sump, and we
7	knew there would be some there would be mixing and
8	tumbling and just a grouping of the materials before
9	it got to the sump, because it the material was not
10	right at the sump, you know, independently. So we
11	knew there was some mixing going on with the based
12	on the CFD analysis we ran in several units.
13	MR. GREENWOOD: One of the things that we
14	did there, too, was is that because you put in the
15	debris in sequence, by the time you got to the last
16	item you already had a large amount of the material
17	settling, because the pumps were not running. So an
18	attempt just prior to starting those pumps to lift the
19	fibers and things up to make them more susceptible to
20	being captured by the strainer itself, was one of the
21	main reasons for this mixing.
22	MR. WILLIAMS: And, again, the debris
23	introduction, we only use this protocol for the 3 to
24	15 feet in the first test series. Afterwards we went
25	within three feet of the strainer. And actually, in
I	I

(202) 234-4433

the first test series on the 3 to 15 we did some sensitivity tests where we shoveled everything that was in the flume on top of the strainer at the end of the test and doubled the flow to see what effect we would get.

So we did some -- you know, we tried to do 6 7 some bounding and conservative assumptions while still 8 maintaining, you know, the aspects of realistic 9 behavior of what was in the plan. And, again, the overhead nozzles in the later tests, one of the things 10 we actually submerged the nozzles, the nozzles were 11 originally put in in order to try to simulate a near 12 break energy in put into the area around the strainer. 13

14 But one of the things we had to be careful 15 about, as you heard in the previous presentation 16 there's a balance between the amount of energy you 17 impart to keep the material suspended as best you can, and if you go too high then you have a possibility of 18 19 actually dislodging the debris bed on the strainer 20 So we were balancing those two aspects of it. itself. 21 This gives you a little bit of an idea of 22 the types and differences of material. This is in a

-- one of the strainers in a pit configuration. 24 drained down after the test, and you can see this is 25 RMI that has gotten there. These are tags and labels.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

23

1

2

3

4

5

(202) 234-4433

We've

	57
1	This is fibers. This is some this is MIN-K, if I'm
2	not mistaken.
3	MR. GREENWOOD: The dark material is the
4	coating surrogate.
5	MR. WILLIAMS: The coating surrogate,
6	thank you. So you can see there's but in the area,
7	even after drain down, there is you can see the
8	gravity just pulls the material away from it.
9	CHAIRMAN WALLIS: There seems to be clumps
10	of stuff hanging off the edge of the
11	MR. WILLIAMS: There are. I mean, and it
12	does clump it tends to clump back up even after you
13	mechanically shred it up and put it in water. Then,
14	as it collects on the screen, it will tend to clump
15	back up.
16	MR. CAIN: And as we draw down the water
17	level, you can see as the water level is drawing down
18	the material slumping off and agglomerating as the
19	water level is brought down. So some of that and
20	it's catching on the support
21	CHAIRMAN WALLIS: You're trying to clump
22	off some of this stuff, because it's gathered on the
23	outside walls, will fall down.
24	MR. CAIN: Right. This isn't indicative
25	of what the strainer would look like under the
I	

(202) 234-4433

58 1 operating condition. So it would be fully inundated. 2 MR. WILLIAMS: And this is in the 3 operating condition. Again, this was -- this is the 4 kind of materials that -- and quantity of materials. 5 This whole pit is completely full. The strainer is down in this area. And one of the things that, you 6 7 know, caused us some problems from a visual standpoint 8 is that once you put in some of these particulate 9 materials that the water became so cloudy you didn't 10 have a picture. In this case, there is so much material 11 12 covering the strainer that you can't get a visualization. But this does give you an idea. 13 All 14 of the material is basically right here. What is back in this area has basically drifted there because there 15 was no driving force to keep it piled up in this area. 16 17 CHAIRMAN WALLIS: What's your bed thickness? Your bed thickness here is several feet, 18 19 presumably, and it has to filter through all that 20 stuff to get to the --21 It had to be, yes. MR. WILLIAMS: 22 It's anywhere from several MR. BLEIGH: 23 inches above the strainer, because submergings is 24 usually two or three inches, and at least it started 25 recirculation. And then, depending on whether you're

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	in front or behind the strainer or around the
2	strainer, it's a different thickness of debris bed.
3	CHAIRMAN WALLIS: So we might as well
4	design for flow through porous medium? And the
5	limiting factor here is presumably the flow through
6	all that stuff lying on top of the strainer rather
7	than
8	MR. BLEIGH: Right.
9	CHAIRMAN WALLIS: the strainer itself.
10	MR. CAIN: And the higher the velocity,
11	some more of that would compress and the higher the
12	head loss you'd expect.
13	CHAIRMAN WALLIS: But it doesn't compress
14	at all in your case, does it?
15	MR. CAIN: No. Our approach velocities
16	are so low
17	MR. BLEIGH: By controlling the flow in
18	every module, you know, we're not forcing debris to
19	compress against the shell of the screens and then
20	force that debris bed to become more blocking. You
21	know, experimentally, it would appear that there is a
22	target or a trigger point, and it can be different for
23	different kinds of debris mixes, where when you
24	finally start that phenomena of compressing the debris
25	bed it feeds itself, because once you start
ļ	I

(202) 234-4433

	60
1	compressing it, then it has to suck more and then that
2	forces more compression.
3	So the key is to keep whatever that
4	trigger point is of velocity at below a certain
5	point so the debris approaches the screen but never
6	really compresses it into
7	CHAIRMAN WALLIS: I think it is stable.
8	You could presumably envisage something where as it
9	begins to compress the pressure drop goes up. It
10	keeps on compressing, and eventually goes you know,
11	it that would be an unstable bed, I would say.
12	MR. BLEIGH: Right.
13	CHAIRMAN WALLIS: I don't think the
14	characteristics of fiberglass are like that. And
15	usually, you increase the flow, it compresses a bit
16	more.
17	MR. BLEIGH: Right. And it has a
18	compression factor
19	MR. WILLIAMS: That's what that's
20	exactly what we've seen. It's very interesting,
21	because in many of the plants we have these very high
22	fiber conditions, but we would run, you know, the thin
23	bed type test with much lower fiber. And as
24	consistent with the theory we saw and practice we saw
25	in the BWRs, we would get much higher head losses with
l	I

(202) 234-4433

	61
1	just the thin bed and the full particulate load than
2	we would in a condition like this. In many cases, a
3	condition like this gave you, you know, half a foot or
4	less of head loss.
5	CHAIRMAN WALLIS: Better to have the
6	particulate spread throughout a big
7	MR. BLEIGH: Exactly.
8	CHAIRMAN WALLIS: bed than it is
9	MR. BLEIGH: Normally speaking, the head
10	losses are better with a high fiber load than
11	CHAIRMAN WALLIS: And as long as you don't
12	somehow get the fibers of particulates in first or
13	something, so they make their thin bed right on the
14	screen.
15	MR. BLEIGH: But it appears that because
16	of the low compression bed that particulates, because,
17	again, we're using very small micron size particles to
18	represent the particulates, they are finding flow
19	paths very easily through a non-compressed fiber bed.
20	And so they're in recirculation.
21	CHAIRMAN WALLIS: I guess the grounds for
22	concern would be something like this. If you build up
23	your fibers, and then due to chemical effects which
24	take some time you have some particulates or gels or
25	something coming along later, which make a skin on top
I	I

(202) 234-4433

	62
1	of this thing, which then really does compress it
2	MR. BLEIGH: And I think that the key
3	point there is, are the particulates in the form of
4	small micron particles such as recirculating all of
5	the time through this test anyway?
6	CHAIRMAN WALLIS: Going right through the
7	fiberglass and everything.
8	MR. BLEIGH: It was just passing through.
9	Or is it more like a gel or a gelatinous mass it is
10	actually attaching to and staying on the surface. So
11	the form of the particulate is going to make a
12	difference.
13	CHAIRMAN WALLIS: Yes.
14	MR. WILLIAMS: This next photo, in one
15	plant's condition, and consistent with the NEI
16	guidance, if you have a very low fiber condition we
17	had a couple of plants that had literally no fiber
18	other than some small estimated latent fiber, so
19	and they wanted to test a very high paint failure
20	condition potential, so we came up with a method to
21	establish paint chips, essentially developed a
22	methodology to develop the chips themselves in
23	different size ranges. But because there was no fiber
24	we tested these in the flume near the strainer, just
25	not enough vertical velocity component to get it to
ļ	I

(202) 234-4433

	63
1	the strainer. So at the tail end of the test we
2	essentially shoveled everything on top of the
3	strainer.
4	What you see here is the strainer is
5	essentially in this area right here, completely buried
6	in chips. And we really did not get substantial head
7	losses at all, even in that condition.
8	CHAIRMAN WALLIS: That's because they are
9	pretty stiff chips, and if they were very fluffy like
10	leaves they would sort of layer, and then they might
11	really block everything up. I think because the chips
12	are hard
13	MR. BLEIGH: They really are. They're not
14	a very flexible chip.
15	MR. WILLIAMS: But certainly, fluid had a
16	tortuous path, even though they even if they were
17	hard because of the quantity they were talking about.
18	It wasn't a very easy pathway to the section line.
19	This is some of the data. And one of the
20	a couple of questions you may have here. The plant
21	names basically, we go Plant A, B, and C. I'm sure
22	that the plant clients themselves would offer which
23	ones that they would which category they came into.
24	But one of the things I want to point out
25	here on the test, you can see that we did a test

(202) 234-4433

	64
1	series for each one of the plants, up to five test
2	series, and there are several reasons for that. In
3	many cases, if it was high fiber, we were looking at
4	low fiber conditions as well as high fiber.
5	In many cases, because of the variation in
6	break locations, we had a couple different design-
7	based loading conditions in terms of one would be
8	particularly high in fiber, another would be
9	particularly high in, let's say, coating load or
10	something like that.
11	So we had several variations, and you can
12	see from the plant under the flow rates, the gpm, the
13	variations here, we made some also had some
14	conditions where we would test small break LOCAs.
15	Like in the in this condition, Plant B here,
16	Test 5, you can see that the flow rate is about half
17	of the first three tests. But that was because it was
18	a small break LOCA condition, and we wanted to
19	simulate that also, where they would have a lower flow
20	rate demand on the ECCS but a different debris
21	condition essentially estimated.
22	So what has this information here
23	there's the design test flows, circumscribed test
24	flows here, and which ones we ran those on. We gave
25	a description of debris placement where it was. As
I	I

(202) 234-4433

	65
1	you can see, it's all within three to five feet in
2	most cases. In some cases you'll see in the next
3	one it's on top of the strainer.
4	Whether we used overhead nozzles. Over
5	here is the screen areas that were actually estimated
6	for the plant, and then the testing screen area in
7	this column. Hole sizes varied from .095, as Ken
8	said, to .045. And I'll go to the next one, which has
9	this is the same chart with several more units
10	listed here, so you can see the variations in screen
11	sizes and hole sizes that we've tested.
12	This is a follow-on chart with, again,
13	starting back with Plant A, B, and C. This gives you
14	some head loss results at design flow rates, and then
15	the head loss results at circumscribed flow rates,
16	average test temperature, what termination criteria
17	were utilized, and we also looked at percent change of
18	head loss at termination as a one of the questions
19	that we were working with the clients on as if you
20	have a test termination criteria, which at some point
21	you do, how do you take that data and necessarily
22	extrapolate that if you're getting even small
23	increases in head loss at the time of termination.
24	CHAIRMAN WALLIS: I'm looking at maybe
25	it's the next slide. You've got Plant D. Debris
I	1

(202) 234-4433

	66
1	placement is within three feet of the strainer.
2	Plant G it's on top of the strainer.
3	MR. WILLIAMS: Right.
4	CHAIRMAN WALLIS: But on H it's 3 to 15
5	feet upstream of the strainer. These are all
б	different conditions. How is the NRC going to
7	evaluate these tests when they're all different?
8	MR. WILLIAMS: Well, one of the things
9	as I stated earlier, in the test I forget which
10	slide you're on here. Which one? Next one?
11	CHAIRMAN WALLIS: Why are they different
12	for different plants? I mean, the plants don't
13	deposit debris on top of the strainer or within three
14	feet or something.
15	MR. WILLIAMS: Well
16	CHAIRMAN WALLIS: How do you pick that
17	particular number there? I mean, why is Plant G
18	different from D and H? And how do you pick 3 feet,
19	15 feet, 1 foot, on top of?
20	MR. WILLIAMS: Well, in my cases, as I
21	said, there was an evolution where we started
22	spreading debris out in the first series of tests.
23	Those are very low fiber conditions, so it really
24	didn't make much difference whether it was on top or
25	near the strainer.
	I

(202) 234-4433

	67
1	We had questions working with the staff as
2	to, well, are you really giving too much credit for
3	gravity, because the material was settling too far
4	away from the strainer. So we began to move, you
5	know, testing material right at the strainer, and in
6	some cases we'd have a client that said, "I don't want
7	it on the you know, in front of the strainer. I
8	want it directly on top of the strainer." So that may
9	have been a preference for them to add even more
10	conservatism.
11	CHAIRMAN WALLIS: Well, a question I have,
12	how do you take the results, then, and use them in the
13	plant? I mean
14	MR. WILLIAMS: Well, that's something we
15	would be working with particular clients, how they
16	take this data and apply the data
17	CHAIRMAN WALLIS: Are the 15 feet data
18	better than the 3 feet data, better than the 1 feet,
19	or are they all the same, it doesn't make any
20	difference?
21	MR. WILLIAMS: Well, that's the thing
22	I mentioned we did some sensitivities in terms of
23	maximum head loss to determine how much effect you
24	would have, and what we saw was a very consistent
25	total maximum head loss under different conditions.
ļ	

(202) 234-4433

ĺ	68
1	Just the timing would be different. And, again, you
2	know, these are there are some questions. We're
3	working with clients that we may end up doing some
4	supplemental parametrics to look at some of these
5	based on some of these results.
б	CHAIRMAN WALLIS: This looks sort of
7	whimsical, the way it varies from plant to plant. And
8	it's based on
9	MR. BLEIGH: Well, this is not in the
10	chronological order of the evolution of the test.
11	CHAIRMAN WALLIS: As it evolved you
12	started bringing it closer to the strainer or
13	something?
14	MR. WILLIAMS: Yes, sir.
15	CHAIRMAN WALLIS: Okay.
16	MR. WILLIAMS: Yes, sir.
17	CHAIRMAN WALLIS: Go back to Plant H, and
18	put it on top of the strainer.
19	MR. WILLIAMS: We did an evaluation of
20	that plant as one of the plants that we basically
21	you saw the picture of the coatings. That plant
22	essentially had no fiber loading and the coating load,
23	and we did do that. We didn't do it as an official
24	test. We did it as a sensitivity.
25	CHAIRMAN WALLIS: Then filled up with
	I

(202) 234-4433

	69
1	coatings? That's the one when everything filled up
2	with coatings?
3	MR. WILLIAMS: Yes, sir. So we didn't
4	record that as part of the official test, but we did
5	a lot of sensitivities, you know, that weren't
6	necessarily official design basis tests to get some
7	information and utilized those as part of the
8	justification for why the results you see here are
9	conservative under certain plant conditions.
10	MR. BLEIGH: Basically, the concern from
11	the NRC staff after witnessing early tests was that we
12	don't see the debris collected on the screen. We're
13	seeing it in circulation and away from the screen.
14	And to address that concern we the testing protocol
15	changed to bring the debris at or as close to the
16	screen as we could basically get it, so that, you
17	know, the transport issues within the flume were taken
18	out of the question.
19	So it was just a change in protocol to
20	prove that even with the debris entered into the
21	system at the screen, you know, we're now measuring
22	head losses that in that view would be more
23	representative and more conservative than if we were
24	to leave it farther away from the screen.
25	CHAIRMAN WALLIS: But you're not going to
ļ	I

(202) 234-4433

	70
1	go back and redo the other tests with it on top of the
2	screen?
3	MR. BLEIGH: Well, some sensitivity tests
4	have shown it other than time it would not make
5	much difference.
6	MR. WILLIAMS: We have one plant series
7	themselves itself we did go back and retest for
8	other reasons, because of the reload changes and we
9	introduced the updated protocol in that test.
10	Okay. Ken?
11	MR. GREENWOOD: When we're doing our
12	testing we the intent was to try and include the
13	chemical precipitants in the test flume as one of the
14	particular debris. And prior to the issuance of the
15	WCAP we used the NUREG and ICET results to calculate
16	quantities of materials and the types of materials.
17	At that time and we'll talk a little
18	bit more about that later, but the surrogates were
19	selected from manufactured surrogates. They were not
20	produced as the WCAP suggests. And then later the
21	WCAP, once issued, was used to validate the
22	calculations, hand calculations if you will, that were
23	produced previously and showed that our quantities
24	were conservative.
25	MR. WILLIAMS: And conservative to the
	I

(202) 234-4433

	71
1	point of, in many cases, if we factored into the WCAP
2	we would have quantities in there in excess of 15 to
3	20 times that of what well, actually from a
4	volumetric standpoint.
5	Now, we understand that we've got to look
6	at the differences in the characteristics of the
7	generated versus the manufactured, but in terms of
8	volume in many cases we were 15 to 20 times that of
9	what you would expect at the plant, just to be
10	conservative.
11	MR. GREENWOOD: So as I mentioned, we were
12	introducing these chemical byproducts into the
13	strainer test itself using these manufactured
14	materials. And the that's all the same
15	information. So the chemical precipitant was oh,
16	I'm sorry, I'm on the I'm ahead one.
17	And in an attempt to try and place the
18	chemical precipitants at the tail end of the
19	introduction, they were added last, just prior to
20	starting the recirculation sump.
21	So this kind of illustrates how we came up
22	with the chemical effects, and I think yes, I don't
23	think we need to go through
24	MR. WILLIAMS: When you say "walk us
25	through the process here," we look at the WOG, the
	I

(202) 234-4433

72 1 ICET, and other industry data, and at the time, in 2 November -- October/November last year, we were 3 essentially utilizing mostly the ICET and other 4 industry data. Then, as we said, once we get the WOG 5 generator, then we're able to validate against that. 6 We then looked at plant-specific sump 7 parameters, and we selected an appropriate 8 manufactured material and basically it was sodium 9 aluminum silicate, but we were utilizing it from a 10 manufacturer standpoint, not from а generator standpoint. In essence, both are somewhat surrogates, 11 12 but, you know, we were trying to use that to integrate it into the overall head loss testing, as you can see 13 14 here. 15 So we do the flume testing with this introduction of the debris, in addition to the 16 17 chemical constituents, measured the head loss that qualifies the strainer, in cases -- we'll also talk 18 19 about that we collected downstream samples to get some 20 information about how the bypass -- what kind of material bypassed and the characterization of that 21 22 material. CHAIRMAN WALLIS: Well, it looks as if you 23 24 introduced these chemical precipitants before you 25 started the pump?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	MR. GREENWOOD: That's correct.
2	MR. WILLIAMS: Yes, sir.
3	CHAIRMAN WALLIS: Because in the real
4	plant hasn't the pump been running for some time, and
5	these things are forming in the sump as a result of
6	chemical reaction?
7	MR. WILLIAMS: That's probably true. It
8	may be much later
9	CHAIRMAN WALLIS: It may be some of the
10	last things that arrive. You've already built up your
11	bed. Then, the chemical precipitants come later, and
12	then simulate that.
13	MR. WILLIAMS: And what we were able to
14	see, though, you by when we layered the
15	materials, we put the chemicals in last, but we did do
16	it, as you said, prior to the pump.
17	CHAIRMAN WALLIS: Before you started the
18	pump. So you haven't built up the bed yet, so
19	MR. WILLIAMS: Right. But you would get
20	because we are in a closed loop, you would recirc
21	that material through. One of our termination
22	criteria is we had to run through five full volume
23	turnovers, so there was once the debris bed started
24	forming there was plenty of opportunity for those
25	particulates to accumulate within the debris bed.
	I

(202) 234-4433

74 1 MR. BLEIGH: Again, you have a high 2 percentage of these particulates in these debris beds 3 recirculating. And so the concept that you have 4 particulates being added to the debris bed after it 5 swarmed actually took place on all these tests, because of the recirculation of these particulates 6 7 once it passed the debris bed. CHAIRMAN WALLIS: Well, the worst thing --8 9 probably the worst thing is probably to have a fairly thin debris bed, and then keep making chemicals until 10 you plug it up. 11 12 Again, it would probably BLEIGH: MR. depend on what the form of that chemical --13 14 CHAIRMAN WALLIS: It looks like the thin 15 bed of -- having a big, fluffy bed with the chemicals 16 spread through it isn't so bad. It's just like the 17 particulates. MR. WILLIAMS: You have all kinds of --18 19 that's right. It appears -- I mean, just like any 20 other particulate in a large fiber debris bed, you 21 have a lot of flow paths that as long as the --22 CHAIRMAN WALLIS: All these people taking 23 out fiberglass insulation may be going the wrong way. 24 MR. BLEIGH: But there's no guarantee on 25 an actual accident condition to predict how much

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	fibrous debris will actually be generated and how much
2	actually transports to the screen, which is why we
3	continue to look at the entire range, you know, from
4	a thin bed of fibers all the way to the maximum fiber
5	condition postulated.
б	MR. GREENWOOD: Even for plants' predicted
7	high fiber loads, we would go back and look at the low
8	fiber conditions.
9	MR. WILLIAMS: Just information on the
10	again, we were testing using tap water and doing
11	the head loss results were adjusted based on dynamic
12	viscosities.
13	Just a quick word about some of the
14	surrogate materials we use. As I mentioned, the
15	inorganic zinc, which was giving us problems from the
16	EPA in the state we were testing, had a valuation to
17	use tin powder. From an epoxy standpoint, if we
18	weren't using chips in a low fiber condition, we would
19	simulate the epoxy powder using a walnut shell flour
20	arrangement.
21	Obsolete coating system as we had to
22	utilize current coating systems and we had coating
23	expert John Cavall and others evaluate, you know, the
24	relationship between those. And just for latent
25	debris we would use the SER recipe that was provided.
ļ	I

(202) 234-4433

	76
1	The chemical precipitants that were
2	utilized, the actual byproducts utilized or as shown
3	and these are coming from results from the ICET
4	test, and then subsequently confirmed by the WCAP.
5	These materials were we basically used the best
6	information we had available to come up with the
7	quantities of these materials and the type of these
8	materials.
9	Again, we did very plant-specific
10	evaluations, and this even varied to some degree. In
11	some cases, the plants themselves looked at the WCAP,
12	came up with a quantity, and gave us the quantity that
13	they wanted tested. In some cases, we did the
14	evaluation.
15	MR. CAIN: I'll take this one.
16	MR. WILLIAMS: Mr. Cain is going to talk
17	about penetration tests.
18	MR. CAIN: I'll just give you a quick
19	overview of our downstream sampling apparatus. Built
20	into the flume system downstream you'll see in our
21	next our next slide we have three isokinetic
22	sampling ports located in the six-inch diameter oh,
23	there it is conduit directly downstream of the
24	strainer. So the end of the flume is right here. The
25	strainer is immediately upstream of that. Our
I	

(202) 234-4433

	77
1	sampling ports are downstream of that.
2	We have three independent ports, each
3	discharging from the pipe. We actually had a vertical
4	air over water manometer board that we used to set the
5	proper velocity head in the ports to ensure that the
6	velocity at the entrance to the ports was equal to
7	the
8	CHAIRMAN WALLIS: That's how you sample
9	whatever gets through the screen, is that it?
10	MR. CAIN: That is correct, yes. And we
11	do it isokinetically, so that we know how much of a
12	volume we've taken off of the we've taken off of
13	the flow loop.
14	Here is the strainer. Okay. Downstream
15	of the strainer we have our pressure taps for head
16	loss. Downstream of that we have our isokinetic
17	sampling port. Now, the downstream piping is sized
18	such that the velocities in the downstream piping are
19	high enough to keep the material suspended and moving,
20	and to minimize preferential sorting of the material
21	based on size and density.
22	So we pull this off. We have our sampling
23	ports over here. We adjust the height of this. It's
24	a gravity-driven system. We adjust the height of this
25	to ensure that the velocities at the inlet ports are
I	

(202) 234-4433

	78
1	equal to the velocities in the tube. And we collect
2	our sample over a given amount of time.
3	We take 10 we take samples every 10
4	minutes during the first hour of testing and every 20
5	minutes thereafter until reaching our termination
6	criteria. And then, those samples are analyzed by an
7	external laboratory.
8	MR. WILLIAMS: As Stu said, we take the
9	samples and we basically want to see a time history of
10	the material that is getting through. And as we
11	discussed with the staff yesterday, one of the things
12	that we there's a difference between taking the
13	samples and how you utilize the data. We were looking
14	for a couple of trends.
15	Do we get the K function even with a low
16	fiber condition? I mean, there was questions raised
17	as to, well, does an integrated test when you're
18	doing a head loss and a bypass test at the same time,
19	is one contradictory to the other? You can basically
20	argue it both ways.
21	I think if you get a higher differential
22	pressure, you will be forcing more material through,
23	whereas if you did a separate test and you had lower
24	amounts of material then you're getting another set of
25	results. I mean, what we did was take enough samples
I	I

(202) 234-4433

	79
1	on the high fiber conditions and to samples in lower
2	fiber conditions, and we're essentially looking for
3	trends.
4	I think from a particulate standpoint,
5	when you utilize the WCAP I mean, the assumptions
6	that are made that 100 percent of particulates gets
7	through, that's going to be consistent.
8	We were looking at hopefully being able to
9	utilize the data on the fibers themselves, where we
10	would get information from the SEM evaluation such as
11	this, where we actually based on sample size we had
12	the fiber lengths and the diameters of the fibers that
13	penetrated, characterized, and so that we can use that
14	data for looking into how much blockage you could
15	potentially get in the you know, going towards the
16	fuel assemblies themselves.
17	We were getting very consistent results
18	with some of the stuff that Enercon/Alion was pointing
19	out to typically the largest fiber we would length
20	we would get, though, is about 2,000 microns, all the
21	way down to 100 microns. So, in essence, it has
22	almost started to look more like particulates than the
23	fibrous material themselves.
24	But we did get a distribution of sizes,
25	and so that does give us some information. We also
	I

(202) 234-4433

	80
1	saw a fairly loose correlation between the hole size
2	and the size of the material or fibers that would
3	get through the length of material excuse me,
4	the length of the fibers that would get through.
5	You would get more of the medium length
6	fibers with the smaller hole size than you would the
7	larger, so there was a somewhat loose correlation but
8	it was evident.
9	Last thing is termination one of the
10	last things, termination criteria. Very similar to
11	the BWRs and, again, we would use the increase in
12	the five-minute average is less than one percent and
13	head loss, and we had a calculated time based on the
14	flow rates of full five full volume turnovers of
15	the flume.
16	One of the things we also provide the
17	plants is information in order to do a data
18	extrapolation. What percent of change will you see in
19	that test termination, so that you can take a look at
20	that and see at what point in other words, if you
21	extrapolate that out, and what would you cut the pumps
22	back, and your NPSH margins become very large. And so
23	that gives you assurance that even with head loss
24	creep that you wouldn't exceed your NPSH allowable.
25	This just gives you an overview of the
ļ	I

(202) 234-4433

81 1 data acquisition system that we utilized. We were --2 this is flow rates. This is through the overhead piping to the upstream piping. 3 This is a head loss 4 curve that's being generated here. And what you see 5 in the blips here is when we were taking the bypass samples, the isokinetic bypass sampling, 6 showing 7 overall head loss here. 8 And then, we have a rate of change and a 9 five-minute average. This gives you flow rates down 10 here also, and this particular one was about 50 gpm in this part of the test. 11 12 Jim Bleigh of PCI is going to walk us through -- we thought it would be informative to see 13 14 some of the design drawings and some photos of the existing replacement strainers. As we said, our 15 strainers are ranging from 800 square feet to over 16 7,000 square feet. I don't know if we -- if you added 17 up all of the strainer square footage existing, I 18 19 don't know if you'd reach 7,000 right now. But --20 CHAIRMAN WALLIS: You're doing so well, I 21 don't think we need to take a break, do we? Just 22 continue to --No, I think we -- if we're 23 MR. WILLIAMS: 24 okay to do that. We're probably -- depending on the 25 questions, we're probably 10 minutes, 15 minutes from

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	finishing.
2	CHAIRMAN WALLIS: Okay. So you can go
3	away and bring your data after lunch.
4	(Laughter.)
5	MR. WILLIAMS: Okay. All right. Jim?
6	MR. BLEIGH: Okay. This is an arrangement
7	of vertical Shurflo strainers on a suction plenum that
8	basically partially covers the current sump opening.
9	Obviously, the part of the sump opening that is not
10	covered with strainers is covered with cover plate to
11	create the suction plenum below.
12	CHAIRMAN WALLIS: You are filling up the
13	sump with strainers.
14	MR. BLEIGH: No, this is actually on floor
15	level. And actually, the plenum is above the floor
16	level.
17	CHAIRMAN WALLIS: Oh, okay, okay.
18	MR. BLEIGH: And so actually this is
19	this particular client has a really high water level,
20	and so we're in submergence with lots of submergence,
21	and the sump pit is below. And this simply provides
22	the platform on which all of the modules can be
23	placed.
24	CHAIRMAN WALLIS: Okay.
25	MR. WILLIAMS: Yes. This was the kind of
I	

(202) 234-4433

	83
1	plant everybody wanted to have. They had 12 feet of
2	NPSH margin, no fiber. There was a
3	MR. BLEIGH: And the next two slides is
4	actually a picture in our factory of this arrangement,
5	so this is what it looks like assembled in our plant
6	prior to shipment.
7	MR. CARUSO: How do you decide whether to
8	stack the disks vertically or horizontally?
9	MR. WILLIAMS: It's just a matter of the
10	plant arrangement and the space provided by the client
11	in terms of how I put the most space of screens in the
12	space, an arrangement that they have provided.
13	MR. CARUSO: I was just thinking in a case
14	like this you could stack them either way. How did
15	you decide to do it this way?
16	MR. WILLIAMS: Well, this takes up less
17	floor space than going horizontal, more square
18	footage.
19	MR. BLEIGH: So the footprint is much
20	smaller this way than the other.
21	CHAIRMAN WALLIS: But the discharge pipe
22	just goes straight down?
23	MR. BLEIGH: Well, actually, it's just the
24	opening in the sump pit collects water out of the
25	suction plenum, and then the suction pipes are
I	

(202) 234-4433

	84
1	actually down int he
2	CHAIRMAN WALLIS: Well, it's full of
3	water. But there's a hole in the middle of these
4	things that
5	MR. BLEIGH: Correct. That's right.
б	CHAIRMAN WALLIS: And you see the pipe
7	coming out of the bottom, which goes straight down to
8	the sump pit.
9	MR. WILLIAMS: Right in this plenum, and
10	then it comes into the sump pit.
11	MR. BLEIGH: This core tube here goes all
12	the way down and interfaces with this base plate.
13	This is all open here sitting on the floor. So once
14	the water gets into the plenum area it will go towards
15	the sump and then spill over the sump into the sump
16	pit, and then it will be sucked by the suction line
17	there.
18	CHAIRMAN WALLIS: There is a plenum area
19	there. There is an enclosed plenum.
20	MR. BLEIGH: Yes, all of this is a closed
21	plenum.
22	MR. WILLIAMS: That's correct.
23	MR. BLEIGH: Everything that that sits on
24	is a sealed plenum.
25	MR. WILLIAMS: But to answer your
I	

(202) 234-4433

Í	85
1	question, in many cases the water level at the onset
2	of recirc demands whether or not, you know, it gives
3	you do you have this opportunity to stack like
4	this, or must you spread it out? And if you've only
5	got two feet of water level, in this case we probably
6	had five or six feet
7	MR. BLEIGH: This is like 4,600 square
8	feet of screens.
9	MR. WILLIAMS: This gives you a picture
10	of
11	MR. BLEIGH: From above what it looks
12	like.
13	MR. WILLIAMS: The big picture.
14	MR. BLEIGH: Okay. In the next
15	arrangement we have, again, a single sump arrangement
16	in a plant. There is no screen redundancy in the
17	sump, and so basically we have two trains connecting
18	to a sump cover. Each of these trains are the same
19	size, and they can draw water from either side into
20	the common sump and then to the through the ECCS.
21	This is a horizontal strainer.
22	MR. WILLIAMS: All right. This is the
23	other arrangement that you mentioned.
24	MR. BLEIGH: Right. And then, this is a
25	picture of this unit installed. This is the only unit
	I

(202) 234-4433

	86
1	that has been installed of our product so far. So you
2	basically have the pit over here, and the suction
3	pipes coming out and connecting to the end of the
4	strainers here, and then following along the outer
5	wall.
6	This is another horizontal arrangement in
7	a different plant. We have actually floor mounts.
8	The suction lines came to floor level and ended there.
9	This plant currently had existing like 25 square feet
10	per train as its existing screens. And when they
11	install ours they will have approximately 1,800 square
12	feet on each train. So it's a significant improvement
13	in the surface area.
14	This train is moving this way along the
15	outer wall. There wasn't room here with block you
16	know, maintenance activities during outages, and so
17	we're piping it over to this area where the same
18	number of modules will exist.
19	MR. WILLIAMS: There's just no two of
20	these footprints that seem to be alike, unfortunately.
21	MR. BLEIGH: This is actually another
22	horizontal strainer that connects to a cover plate on
23	a sump pit. It's a single train. There's not two for
24	this particular client. I think there's 14 modules
25	that go in one direction. Again, this pipe will work
I	

(202) 234-4433

	87
1	itself around and connect
2	CHAIRMAN WALLIS: Now, that central pipe,
3	is that the same diameter all the way through?
4	MR. BLEIGH: In this case, yes.
5	CHAIRMAN WALLIS: It just has different
6	hole sizes.
7	MR. BLEIGH: Right. So the hole sizes
8	near the suction end are going to be very small, and
9	then as we move this way the holes get larger. So
10	that, you know, at least in clean water, you know,
11	we're drawing the same water on this end as this end.
12	That way when the debris is collecting to the screen
13	it's collecting at the lowest flow rate possible.
14	CHAIRMAN WALLIS: This is a just a
15	Bernoulli effect, is that what
16	MR. WILLIAMS: Yes.
17	CHAIRMAN WALLIS: Okay.
18	MR. WILLIAMS: Absolutely.
19	MR. BLEIGH: This is not a terribly good
20	picture, but we've tried to give some idea this is
21	an existing screen in a plant, and this is the actual
22	plant I think that
23	CHAIRMAN WALLIS: The existing screen.
24	That's about the size of a person, is it?
25	MR. BLEIGH: Yes. This is the existing
I	

(202) 234-4433

	88
1	screen. And then, if you go to the next picture, this
2	is what's replacing those is this.
3	CHAIRMAN WALLIS: It's two orders of
4	magnitude bigger or something like that.
5	MR. WILLIAMS: It's probably closer to
б	ten.
7	MR. BLEIGH: It's quite a bit larger.
8	MR. WILLIAMS: Not ten orders of
9	magnitude, ten times.
10	CHAIRMAN WALLIS: Two orders of magnitude.
11	MR. WILLIAMS: Yes, ten times the size.
12	CHAIRMAN WALLIS: Sixty times as big or
13	something like that.
14	MR. WILLIAMS: Right. And we've gone
15	from, you know, less than 50 square feet to several
16	thousand.
17	CHAIRMAN WALLIS: It says on the last
18	page.
19	MR. BLEIGH: And this is what that
20	particular screen looks like assembled in our factory
21	before shipment.
22	MR. WILLIAMS: So, in summary, as I noted
23	before that this testing that we've done has evolved
24	over time based on some good input and interface with
25	the staff as well as the clients and our own
I	

(202) 234-4433

	89
1	evaluation of the results based on the PWR BWR
2	precedent.
3	The strainers are ranging from 25 to 75
4	times the existing stainer area, so you can see
5	there's a significant amount of area that is being
б	added in. Downstream effects evaluation are ongoing,
7	and we're continuing dialogue with the staff on how
8	those that information is going to
9	CHAIRMAN WALLIS: That's a pretty dramatic
10	change, isn't it?
11	MR. WILLIAMS: Absolutely.
12	MR. BLEIGH: Very, very dramatic.
13	MR. WILLIAMS: Absolutely. I was over in
14	engineering at Browns Ferry in the '90s when we
15	replaced the strainers. I had a total of 40 square
16	feet for four strainers. I had a common suction
17	header and had 40 square feet, and we ended up with
18	like, you know, 800 per intake per suction header.
19	CHAIRMAN WALLIS: EDF is doing about the
20	same thing, isn't it? They're developing the same
21	MR. WILLIAMS: Yes.
22	MR. BLEIGH: I would think so, yes.
23	MR. WILLIAMS: They actually I don't
24	know the exact numbers, but I actually think they're
25	even they may be even a little bit larger.
ļ	I

(202) 234-4433

	90
1	And that's all we have.
2	CHAIRMAN WALLIS: Why did we allow so much
3	time for all of these presentations? Must have been
4	Ralph.
5	So we're now three hours ahead or
6	something? No, not quite. I guess and we're going
7	to have lunch, so we're going to be two hours ahead.
8	GE is all we've got left today?
9	PARTICIPANT: Right. That's all we've got
10	left.
11	MEMBER KRESS: Let's take a long lunch.
12	PARTICIPANT: Do you think anyone wants
13	no, let's see, can we go
14	CHAIRMAN WALLIS: We're not allowed to go
15	ahead, are we?
16	PARTICIPANT: No, we're not allowed to go
17	ahead.
18	CHAIRMAN WALLIS: Well, we could have sort
19	of a roundtable discussion. Now, tell us what really
20	happened or something.
21	PARTICIPANT: We could do that, yes.
22	CHAIRMAN WALLIS: I don't think that
23	that's
24	PARTICIPANT: We could just discuss.
25	CHAIRMAN WALLIS: Yes. Everyone is going
I	

(202) 234-4433

	91
1	to be here anyway.
2	MEMBER BONACA: I had a question on the
3	chemical effects. I mean, do you have any preliminary
4	results? We heard from the previous vendor that they
5	had trouble, they have plugging, and they are
6	attempting to address it through different approaches.
7	I mean, what about your experience with chemical
8	compounds?
9	MR. WILLIAMS: Well, as I said, we we
10	used the manufactured chemicals as an integrated part
11	of the test. One of the things we did note is that in
12	one or two of the tests where the chemical constituent
13	was a large part of the overall particulate we did get
14	some substantial increases in head loss.
15	We're meeting with our client base, and
16	basically outlining some of the open issues and
17	discussing some resolution paths right now. I think
18	one of the things we probably need to do as an
19	industry a little bit better now is get our heads
20	together and get everybody going in the same direction
21	on this particular issue.
22	It's not necessarily conducive to have
23	five different, you know, screen vendors trying to
24	solve this problem independently of each other.
25	That's I think that's probably or hopefully what
I	I

(202) 234-4433

	92
1	we'll be looking at going forward as we're working
2	together.
3	CHAIRMAN WALLIS: It's all a work in
4	progress. And the real the real proof is that what
5	you come up with at the end is justifiable.
6	MR. WILLIAMS: Yes, that's correct.
7	CHAIRMAN WALLIS: And in a way, it's not
8	appropriate for us to look at the difficulties you may
9	have now that you're going to resolve. So it's
10	appropriate just to look at the finished product,
11	unless there's some really big surprises. Did you
12	have any big surprises?
13	MR. WILLIAMS: Any big surprises?
14	CHAIRMAN WALLIS: Well, middle sized.
15	(Laughter.)
16	Interesting surprises.
17	MR. WILLIAMS: We had a couple of
18	configurations set up with specific debris mixes, flow
19	a combination of flow rates, debris mixes. It
20	seemed like critical amount of fibers that we we
21	got some head losses that we were a little bit
22	unsuspecting.
23	Now, what we did, Dr. Wallis, every time
24	we went into a test we would do a prediction on 6224,
25	and then say, okay, that's kind of the upper bound
I	

(202) 234-4433

	93
1	target, and let's see where we land there. We had one
2	or two mixes that
3	CHAIRMAN WALLIS: See, this is the thing
4	which has characterized previous work. We had this
5	6224 correlation, and then Los Alamos did some tests
б	and found out that under some conditions you tugged
7	along and suddenly there was a big increase. And
8	then, people in the northwest did some tests and they
9	found that putting things in different orders and some
10	conditions gave you very different results.
11	And then, ANL did some things, and I think
12	in almost every case there was something which might
13	not have been anticipated which happened. And so
14	that's really the concern here is that have you
15	done enough have you covered enough of the
16	territory to find out the places where unusual things
17	tend to occur?
18	MR. WILLIAMS: We feel like we've done a
19	huge suite of varying debris mixes, flow rates, debris
20	placement. I mean, as you saw from our chart, you
21	know, we've had a we've got a large variation in
22	which we can look at the data and say, "What does that
23	tell us?" And it does tell us a couple of things.
24	CHAIRMAN WALLIS: And if there's one
25	anomaly in a hundred tests, then maybe the probability
ļ	I

(202) 234-4433

	94
1	of that occurring in the plant, you might it would
2	be rather small.
3	MR. WILLIAMS: That's correct. That's
4	correct.
5	CHAIRMAN WALLIS: Anyway, all this is
6	going to happen downstream somewhere when the smart
7	guys from NRC really look at the final design and
8	validation.
9	Can we take a break, or do we need to
10	revisit I'm just wondering if we're going to have
11	any more questions for these folks in the afternoon.
12	Maybe after lunch we'll have some more thoughts.
13	Okay. Can we take a break? Usually we
14	take an hour and a half? Well, do you want to take
15	a break until 1:30? Is everybody happy?
16	MR. BUTLER: Dr. Wallis?
17	CHAIRMAN WALLIS: Yes.
18	MR. BUTLER: The next presentation is GE.
19	It's going to be a closed session.
20	CHAIRMAN WALLIS: Yes.
21	MR. BUTLER: If that's going to be the
22	last session of the day, will there be a reconvene of
23	the people who are not
24	CHAIRMAN WALLIS: Should we let the people
25	go?
ļ	1

(202) 234-4433

	95
1	MR. BUTLER: Yes, that's what I'm
2	wondering.
3	MEMBER KRESS: I think they can.
4	CHAIRMAN WALLIS: Okay. So is it okay if
5	we come back at 1:30, or are you saying that you want
6	to come back earlier?
7	CHAIRMAN WALLIS: If it's a closed
8	session, will we be coming back at all?
9	CHAIRMAN WALLIS: Well, that's do you
10	want to ask any more questions this afternoon of these
11	folks, or can they go now?
12	MEMBER MAYNARD: Well, I think they can go
13	now. Again, all this is work in progress. I've
14	really been interested in their approach, in their
15	capabilities, and what they're doing. I don't have
16	any additional questions on that, so I from my
17	perspective, they can go.
18	CHAIRMAN WALLIS: Okay. So
19	MEMBER KRESS: I think so. You know, what
20	they're doing I think looks appropriate, and they're
21	covering the range. And I would just like to see what
22	the results are. And I don't you know, I can't ask
23	them any more until then.
24	CHAIRMAN WALLIS: Yes. Okay. So you
25	folks can leave, and thank you very much for being
l	I

(202) 234-4433

	96
1	here. And that also applies to
2	PARTICIPANT: Anyone who is not going to
3	be here for the GE section.
4	CHAIRMAN WALLIS: That applies to NEI,
5	too? Are you going to be here for the GE section?
6	You'll be here for that.
7	Okay. So we're going to take a break
8	until 1:30, and we will hear about the GE work then.
9	(Whereupon, at 12:12 p.m., the
10	proceedings in the foregoing matter went
11	off the record for a lunch recess.)
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
1	

97