Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor SafeguardsThermal Hydraulics Subcommittee

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Thursday, February 16, 2006

Work Order No.: NRC-881

Pages 1-211

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	THERMAL HYDRAULICS SUBCOMMITTEE
6	+ + + +
7	MEETING
8	+ + + +
9	ROCKVILLE, MARYLAND
10	+ + + +
11	THURSDAY
12	FEBRUARY 16, 2006
13	+ + + +
14	
15	The Subcommittee met in Room 2TB3 at Two
16	White Flint North, 14555 Rockville Pike, Rockville,
17	Maryland, at 8:30 a.m., Graham B. Wallis,
18	Subcommittee Chair, presiding.
19	PRESENT
20	GRAHAM B. WALLIS Subcommittee Chair
21	RICHARD S. DENNING Subcommittee Member
22	THOMAS S. KRESS Subcommittee Member
23	WILLIAM J. SHACK Subcommittee Member
24	SANJOY BANERJEE ACRS Consultant
25	

		2	2
1	NRC STAFF		
2	RALPH CARUSO	Designated Federal Official	
3	MICHELLE EVANS	RES	
4	TOM HAFERA (by t	eleconference) NRR	
5	ERVIN GEIGER	RES	
6	SHANLAI LU	NRR	
7	MIKE SCOTT	NRR	
8	ROBERT TREGONING	RES	
9	MATT YODER	NRR	
10			
11			
12	OTHER PRESENT		
13	TOM ANDREYCHEK	Westinghouse	
14	MAURICE DINGLER	WOG	
15	ANNE P. FULLERTO	N Naval Surface Warfare Center	
16	BRUCE LETELLIER	LANL	
17			
18			
19			
20			
I	1	NEAL R. GROSS	
	COL (202) 234-4433	JRT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 (202) 234-443	3

		3
1	A-G-E-N-D-A	
2		Page No.
3	Opening, GRAHAM WALLIS, Subcommittee Chair	3
4	Possible Downstream Effects on Fuel	
5	TOM HAFERA (NRR)	4
6	Throttle Valve Clogging Testing:	
7	Overview, Technical Program, and	
8	Results, ROBERT TREGONING (RES)	29
9	BRUCE LETELLIER (LANL)	33
10	Coatings Transport Testing: Overview,	
11	Technical Program, and Results	
12	ERVIN GEIGER (RES)	126
13	ANNE FULLERTON (NSWC)	127
14	Closing, MICHELLE EVANS (RES)	179
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
ļ	1	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:31 a.m.
3	CHAIRMAN WALLIS: Please come into
4	session. Good morning. This is the third day of our
5	meeting on sump screens. We have an extra
б	presentation early this morning about downstream
7	possible downstream effects on fuel, or the way that
8	fuel bundles are organized, the shapes, and the
9	passageways, and all that sort of thing.
10	Mike Scott is going to make the
11	introduction.
12	MR. SCOTT: Good morning. What we'd like
13	to do is shed a little additional light, both from the
14	NRC staff and from the industry, regarding the
15	question of what happens with debris going downstream
16	from strainers, especially in consideration of the
17	fact that the staff is pushing the industry to enlarge
18	its strainers.
19	So, we'll start off with Tom Hafera, of
20	the NRR staff. Tom, unfortunately, got snowed in up
21	in Pennsylvania by this blizzard we got over the
22	weekend, so he couldn't be here personally, but he is
23	on the phone.
24	And so, Tom, if you hear me okay, if you'd
25	please share perspective with us on that issue I'd

(202) 234-4433

	5
1	appreciate it.
2	MR. HAFERA: Okay, Mike, thank you.
3	Yes, the staff has been working with the
4	owners group contacts, reviewing the WCAP, regarding
5	downstream facts, and the WCAP does address, it has a
6	chapter and appendix specifically related to
7	downstream effects in the reactor vessel.
8	We also had a contractor help us develop
9	staff guidance, and we issue a draft paper for how the
10	staff is going to review the issues associated with
11	downstream effects in and we have a tendency to say
12	the fuel, but it's actually the vessel. You take
13	vessel as a whole.
14	So, we've done a lot of work ahead, but at
15	the same time we still have some issues associated
16	with the WCAP. We've identified those, and we have
17	some ongoing discussion with those.
18	Critical things to keep in mind with
19	downstream effects in the reactor vessel, not only do
20	you have to identify your source term, in terms of how
21	much debris is going to penetrate through the screen,
22	whatever the new screen design is, but each most
23	reactors have, and particularly all PWRs are open
24	course, and most reactor designs have openings outside
25	the fuel assembly region that provide significant
Į	1

(202) 234-4433

openings that will provide flow, or at least maybe not necessarily flow, but at least a path for the water to go and get to the fuel and cool the fuel through emersion.

5 Distinct issues -- but also, you know, other issues are, if you -- hot leg breaks and cold 6 significantly 7 leq breaks are going to behave differently, because your low pressure point in the 8 9 system, in a cold leg break, is at the inlet side of the core, essentially, and on the hot leg break your 10 low pressure point is at the outlet side of the core. 11 12 So, for evaluating effects for a cold leg break, the flows at the bottom of the vessel are very low, you 13 14 are going to get probably a high degree of settlement, 15 if not complete settlement, but at the same time you won't compact any debris, so you probably won't create 16 any significant head loss there. 17

For hot legs, on the other hand, you are going to have high flow through the core, the debris will all pass through -- either pass through the core or the bypass paths, and then go back to the containment floor where it has an opportunity again to either settle or be captured.

If you think dynamically in terms of hot leg breaks, the best example I can think of is I hand

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

1 drew an electrical circuit modeling the flow paths, so 2 you end up with very multiple flow paths and multiple 3 resistances through the system. You use your 4 fundamental centrifugal pump curve with a system head 5 loss curve, you recognize that if you increase the resistance at the bottom of the core to infinity, all 6 7 that essentially does will create flow, increased flow 8 through the other core paths, and probably the most 9 significant one is you can -- if you are injecting cold leg into the cold leg, and you increase the 10 resistance on the core inlet to infinity, it will just 11 12 back up flow backwards through the loop, and it will end up dumping into the hot leg onto the top of the 13 14 core, and, therefore, you will still keep the core 15 under water and it will probably cool. 16 Now, there are some questions in regard

17 to, you know, how does debris interact in high boric acid concentration, and boron precipitation, 18 and 19 operators -- there's operator actions associated with 20 flushing the core out periodically, so that could also 21 be effective in flushing debris out, obviously. So, 22 are a number of other issues, there and we've 23 discussed these with the WOG, well, we've identified 24 these with the WOG, and there's ongoing discussion. 25 So, right now our position is, there are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

8 1 some issues with downstream effects, and how does the 2 particulates and fibers interact in the vessel, but at 3 the same time we don't see it -- we haven't identified anything that would want us to stop putting in larger 4 5 strainers. We don't necessarily feel that this would -- because you are on the discharge side of the 6 7 centrifugal pump, and taking centrifugal pump theory and plastic fluid mechanics, it really doesn't appear 8 9 to be something that would cause a catastrophic 10 failure. And, I think one of the best examples I 11 12 heard of was, one of the people I'm working for, or working with, with Reactor Systems, explained to me, 13 14 you know, the TMI core melted and relocated and then 15 resolidified, so it had areas of complete blockage. 16 But, at the same time when they put water back in there it cooled, and it found a way to cool itself. 17 So, it's a pretty gross -- pretty -- you don't 18 19 necessarily need a real highly technical or exact 20 method to get this water in there, the water will find 21 a way. 22 And so, we are working on that, and we 23 think we've got -- we think we've got a path of 24 success. Even as late as last week, I discussed this

with Mo Dingler and Tim Andreychek, we felt that the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

fuels people -- and I also discussed this a little bit with the Framatome guys last week, the fuels people believe we've identified those areas that need to be investigated a little farther, and we think we've got a path going forward to give us the answers that we need.

7 MR. SCOTT: A point to emphasize here is 8 that the staff's expectation is that the industry in 9 evaluating its modifications to increase the size of 10 the strainers will consider downstream effects, such 11 as, and including, those related to inside the vessel 12 and the core. So, nobody puts in a MOD without having 13 done that analysis.

CHAIRMAN WALLIS: Can I ask a question?

15 You mentioned the head from the centrifugal pumps, now are there some locations of the 16 break where the actual driving head for flow through 17 the core is not from the pumps, it's from natural 18 19 conflection of the head in the downcomer or something, 20 because of where the break is? The pump doesn't 21 necessarily always pump through the core.

22 MR. HAFERA: That's correct, Dr. Wallis. 23 Again, that was as I explained, the difference between 24 a cold leg break and a hot leg break, and you have to 25 recognize that the fluid dynamic differences in a cold

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	leg break, the majority of your flow will,
2	essentially, bypass the core and go back out around
3	the downcomer or annulus region and out the break.
4	However, you know, the flow is still
5	still goes into the there's an amount that will go
6	down the downcomer into the and then back up
7	through the core based on gravity and the differential
8	water levels. And again, if you think of it in terms
9	of an electrical circuit, and you say to yourself,
10	okay, that's my flow characteristic with no debris
11	whatsoever, and I say to myself, okay, now I have a
12	resistance at my bottom core plate, or my bottom fuel
13	screen, if I take that resistance and change it to
14	infinity what does that do to the entire system.
15	Well, it creates a higher resistance at the bottom of
16	the core, it causes back pressure into your cold leg
17	injection that will, essentially, force flow backwards
18	through the reactor coolant pump through the steam
19	generators, into the hot leg, and then dump onto the
20	top of the core.
21	And, your pumps, your pump discharged head
22	can easily overcome that, because that's only about a
23	60 foot head. So, there's really not and again, if
24	you block the bottom of the core you still have
25	alternate flow paths, in particular, the B&W designs

(202) 234-4433

	11
1	have flow holes and slots, the Westinghouse designs
2	have flow holes through the baffle, and the shield
3	the thermal shield area, that still provide large,
4	very large, in relation to the screen hole size, flow
5	paths to get water into the core region.
6	CHAIRMAN WALLIS: It looks to me as if we
7	really need a subcommittee meeting on this subject, to
8	clarify all these issues. You talked about complete
9	settlement at the bottom of the vessel, well, there
10	may be enough debris to fill that area, that volume,
11	and if you are going to then rely on dumping on top of
12	the core, I'm not quite sure how it works out when you
13	have debris-laden material dumped on top of the core.
14	You may well be right that everything is
15	fine, but I think we need to have a proper technical
16	discussion of it.
17	MR. HAFERA: Bill, don't characterize as
18	everything may be fine, I would much more I would
19	rather characterize it as, it has to be analyzed based
20	on the screen design chosen by the utility and the
21	vendor.
22	You are correct, depending upon the screen
23	design, depending upon the amount of debris, that has
24	to be evaluated, in terms of how much debris is
25	actually going to build up in the bottom of the
I	

(202) 234-4433

	12
1	vessel, or how much debris will actually build up on
2	top of the core. And then, once that is evaluated,
3	and the WCAP has that methodology in it how to do that
4	evaluation, and then once that evaluation is done most
5	likely, the most likely success path then is to look
6	at when does it occur, in terms of probably, you know,
7	it's going to be hours most likely, it's going to be
8	on the order of hours after the onset of
9	recirculation, and if you say to yourself, well, just
10	as an example, I say three hours in, three hours after
11	the onset of recirculation, I reach a point where my
12	debris load is approaching something that I consider,
13	you know, not good, well then I have to initiate hot
14	leg recirculation faster, which all plants have as
15	part of their emergency operating procedures for boron
16	precipitation control.
17	So again, to characterize is to say it's
18	okay, well, I wouldn't go that far. I would say it
19	needs to be evaluated. It needs to be evaluated using
20	good engineering judgment, and it needs to be robust,
21	and most likely it will it may, it may result in
22	changes to your emergency procedures in terms of, you
23	may change from, say, a plant may right now under
24	existing circumstances go to hot leg recirculation
25	eight hours after recirculation for boron
	I

(202) 234-4433

(202) 234-4433

1 precipitation control. Well, they may need to change 2 that to five hours. They may need to change that to 3 three hours. But again, for them to find that out 4 they are going to have to do a robust evaluation, and 5 that has to be looked at, and it's part of the factors that need to be considered are, what's the screen 6 7 design chosen, what's the amount of debris that's 8 going to bypass, what are the characteristics of the 9 debris that are going to bypass, and what are the other system interactions associated with downstream 10 effects, and how does that all fit in. 11 I think we probably have 12 CHAIRMAN WALLIS: to move on, but I do have a comment. I find it 13 14 difficult for this subcommittee to reach any 15 conclusion about whether or not you are on a success 16 path when we have to wait for evaluations of every 17 possible incident in every possible reactor with every 18 possible change to the screen. This is really rather 19 difficult for us to get hold of. 20 That is correct also, and MR. HAFERA: 21 that's why -- and our approach has been, because a lot 22 of that is -- and it goes even -- the next step even 23 goes farther, and that is, a lot of that is plant 24 specific. So, you really cannot, from a generic 25 standpoint, evaluate it, and say, yes, this is going

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

to be okay, or this is not going to be okay. The only thing you can do from a generic standpoint is outline the methodology that you are going to use, what the critical parameters are that you need to identify and include in your evaluation, to make sure that that methodology is done the right way and is robust.

7 And, essentially, that's what the WCAP at At this point, we are not sure it 8 least aims to do. 9 does or doesn't do that, but that's where our 10 discussions with the owners group and the fuel vendors and people are headed, because we recognize from our 11 12 perspective it's more advantageous for us to get a single approved methodology that then all the plants 13 14 could use, rather than trying to evaluate 60 million individual plant-specific configurations. 15

16 DR. DENNING: You know I hear that, but I 17 think that there's no reason why you couldn't take an I mean, we heard yesterday or the day before 18 example. 19 about active screen designs in which it sounds like 20 there's a very large fraction of fiber that's going to 21 pass through the screens. I'd like to see an example 22 of the cold leg break and have somebody run through 23 and tell us how much material is really passing 24 through that system, and see an analysis.

I don't think that we're going to feel

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

(202) 234-4433

15 1 comfortable until we see that analysis and get a 2 chance to get into the details of the assumptions, like the entrainment of fibers or particulate in the 3 4 upper plenum if you stagnate up there, and some 5 indication of how much mass we are really talking about winding up in the system. 6 7 So, I hear you saying you can't do a 8 generic analysis, but we certainly could see some 9 example analyses in the area -- in the regimes in which we think there could be the most problems. 10 MR. HAFERA: Yes, I agree. I agree that 11 12 would be a good thing, and I think we are headed in that direction, we are just not there yet, because 13 most plants have not completed their downstream 14 15 effects analysis as of yet. MR. SCOTT: If I could, I'd like to ask Mo 16 Dingler to show you a couple of slides that he's 17 brought in to illustrate --18 19 CHAIRMAN WALLIS: Can we thank Tom first? 20 MR. SCOTT: Certainly. 21 CHAIRMAN WALLIS: All right, thank you, 22 Tom. MR. SCOTT: Tom, if you'd stand by, we may 23 24 have additional questions for you. 25 MR. HAFERA: Sure.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	MR. DINGLER: I'm Mo Dingler from Willow
2	Creek and represent the owners group also.
3	There is some discussion last couple days
4	of what a fuel assembly was, and the bottom of the
5	grid, so we wanted to show, and we worked these up
6	late last night, so it will be the first, and Tom will
7	do this, we are still working through some of the
8	issues, so I'll give you a high level here.
9	We wanted to show you what the core looks
10	like, the bottom. This is where most of the flow will
11	come up through.
12	CHAIRMAN WALLIS: So, it's coming in from
13	the bottom, and it's going through something called a
14	protective grid.
15	MR. DINGLER: That's what I call the P
16	grids.
17	CHAIRMAN WALLIS: Which looks something
18	like a screen.
19	MR. DINGLER: Right, and these openings
20	are about the size the same size we talked
21	Wednesday about.
22	CHAIRMAN WALLIS: And, if that screen gets
23	blocked we are told the flow will go somewhere else?
24	MR. DINGLER: This is a diagram of some of
25	the alternate flow paths.
I	

(202) 234-4433

	17
1	CHAIRMAN WALLIS: But, in normal
2	operation, not much flow goes that way. It's designed
3	to go through the protective grid, presumably.
4	MR. DINGLER: There, but there is still
5	even during ops some of this.
6	CHAIRMAN WALLIS: There is some of it, but
7	it's not the main flow path.
8	MR. DINGLER: The main flow path comes
9	down the cold leg, up through this way, and here is
10	the hot leg.
11	So, when these a lot of plants have
12	these openings, the B&W, the upflow plants have the
13	openings right here.
14	CHAIRMAN WALLIS: Now, we have experiments
15	on how rod bundles behave in the normal operation. I
16	don't know if we have experiments on how they behave
17	when the main flow path is blocked and the flow is
18	coming in through these other passageways.
19	MR. DINGLER: I can't speak for that, Dr.
20	Wallis.
21	MR. CARUSO: Mo, you are not showing how
22	the flow that goes up the side of the baffles gets
23	into the core. It comes up through the
24	MR. DINGLER: Right here.
25	MR. CARUSO: through the flow nozzles
I	I

(202) 234-4433

	18
1	themselves, into the core which is open to the side.
2	MR. DINGLER: The core is right here, so
3	in other words you've got some of it going through the
4	baffle barrels and that is right through in here.
5	So, you have openings all the way up
6	through here.
7	CHAIRMAN WALLIS: So, it comes in from the
8	outside and has to somehow get to the middle of the
9	core?
10	MR. DINGLER: Correct. It comes up,
11	here's the core plate, it comes up and there's the
12	protective grids are right here for normal ops to keep
13	threading down
14	CHAIRMAN WALLIS: Right.
15	MR. DINGLER: and then we've got the
16	flows that will come parallel and up through this.
17	MR. CARUSO: So, you are saying you are
18	talking about bypass flow between the bottom bracket
19	on each fuel assembly. The assemblies sit in a grid,
20	and you are saying that between two assemblies on
21	those flat faces on each side, okay, the bottom
22	nozzle, excuse me
23	MR. DINGLER: On this is the bottom
24	nozzle.
25	MR. CARUSO: on that bottom nozzle

(202) 234-4433

	19
1	there's another one right next to it, and there's this
2	tiny little gap between the two of those, and you are
3	saying that there's bypass flow up through that gap.
4	MR. DINGLER: There is some, but what I'm
5	showing
6	CHAIRMAN WALLIS: What you are showing is
7	a bigger flow.
8	MR. DINGLER: is much more flow, I'm
9	saying the core is right here, and assume it's all
10	blocked, the flow will come up and it will go out here
11	in the baffle barrels and through openings.
12	CHAIRMAN WALLIS: It will come up,
13	essentially, on the outside of the core, around the
14	core.
15	MR. DINGLER: That's the outside of the
16	core.
17	CHAIRMAN WALLIS: And, somehow it has to
18	percolate into the middle.
19	MR. DINGLER: That's correct.
20	CHAIRMAN WALLIS: Someone has to analyze
21	that kind of a situation, presumably.
22	MR. DINGLER: That's correct.
23	MR. ANDREYCHEK: If I may, this is Tim
24	Andreychek from Westinghouse. There's typically an
25	angular gap on the order of an order of an inch, an
	I construction of the second se

(202) 234-4433

	20
1	inch and a half, for the upflow plants that provides
2	a flow path.
3	Under normal operating conditions, that
4	provides cooling flow to keep the baffle barrel region
5	at acceptable temperatures. It provides a fairly
6	large flow area in that circumferential gap to provide
7	flow.
8	There are, I want to call them pressure
9	relief holes up the height of the baffle barrel at
10	certain locations, that provides for flow to go back
11	into the core, should the bottom nozzles become
12	blocked.
13	DR. BANERJEE: How big are these holes?
14	MR. ANDREYCHEK: They are on the order of
15	approximately two inches.
16	DR. BANERJEE: And, the barrel?
17	MR. ANDREYCHEK: The baffle barrel gap is
18	about an inch and a half angular gap that runs around
19	the periphery.
20	MR. DINGLER: What we are saying is, we
21	are still working with the staff now.
22	CHAIRMAN WALLIS: You are showing me a
23	figure, and you are saying that's probably what
24	happens, but I don't see any kind of code calculation
25	of what happens.
I	

(202) 234-4433

	21
1	MR. DINGLER: And, I wasn't between
2	6:30 last night and 10:00
3	CHAIRMAN WALLIS: Yes, but it seems to me
4	something like that might be needed. I mean, if you
5	are going to really technically convince us, you might
6	have to have a
7	MR. DINGLER: We are not arguing that.
8	CHAIRMAN WALLIS: whatever your
9	appropriate code is that you are going to use for
10	this.
11	MR. DINGLER: Yes, we are not arguing, I'm
12	not here to present all the detail technically, late
13	last night
14	CHAIRMAN WALLIS: See, it's not good
15	enough to just talk about the problem.
16	I agree that there could be some flow that
17	way, but we need to know how much it is, and whether
18	it's enough, and so on.
19	MR. CARUSO: Can I ask a question?
20	CHAIRMAN WALLIS: Yes, Ralph.
21	MR. CARUSO: If you have holes that
22	communicate from the bottom of the lower plenum up
23	through the baffles, the baffle region, and then into
24	the core, that are on the order of an inch, an inch
25	and a half in size, why do you bother installing
ļ	I

(202) 234-4433

1 debris screens on the bottom of the fuel, okay, to try 2 to catch debris during normal operation to avoid having it come up into the core region? 3 If you 4 already have these other inch and a half holes all 5 over the place that provide lots of bypass flow into the core region, why do you need debris screens on the 6 7 bottom of the fuel bundles? MR. DINGLER: I guess to simply it a, s the 8 9 head loss up this way is much lesser than through here, so the flow goes up through -- most of the flow 10 goes up through here at this point, during normal ops. 11 12 I guess Ralph's question DR. BANERJEE: is, if you get this cross flow, and it brings debris 13 14 in, it will just deposit it in an outer ring, and the inner fuel --15 The reason why those debris 16 MR. CARUSO: 17 screens are there is because people don't like to have debris get on their fuel during normal operation, and 18 19 cause damage to the fuel during normal operation. 20 So, the vendors have been very good at 21 designing these debris screens to trap all that 22 debris, to make sure that it doesn't get up into the 23 fuel during normal operation. It would defeat the 24 purpose of installing those debris screens to have a 25 parallel flow path, with holes an inch, an inch and a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	23
1	half in diameter, that allow debris to flow up around
2	into the baffle region, and then get into the core
3	from the side. That defeats the entire purpose of
4	installing debris screens.
5	MR. ANDREYCHEK: The debris path is a
6	torturous path, and you are talking about 98 percent
7	or so of the flow going up through the core. That's,
8	basically, a leak flow for normal operating conditions
9	to keep the baffle barrel region cool.
10	And, the reason the holes are there is to
11	provide, during an upset condition where you
12	depressurize the reactor quickly, pressure release
13	yield implode or explode the baffle barrel region.
14	You know, it's not a main flow path under normal
15	operating conditions.
16	CHAIRMAN WALLIS: So, I think what you are
17	saying is that you need much less flow at this time
18	after a LOCA when you want to cool the core and
19	maintain a normal operation. So, having what used to
20	be a 2 percent flow path now becomes an adequate flow
21	path.
22	But again, we'd have to see that. We'd
23	have to see
24	DR. BANERJEE: Except now the fuel acts as
25	the debris screen in cross flow, and the fuel will
l	I

(202) 234-4433

	24
1	take out the debris in the outer region.
2	CHAIRMAN WALLIS: So, what happens to the
3	middle of the core?
4	I don't know, if you are going to cool it
5	from the top, I don't know what CCFL looks like when
6	you have debris in there. So, there's a lot of
7	interesting technical questions here.
8	MR. DINGLER: We understand that.
9	CHAIRMAN WALLIS: You've indicated that
10	there may be ways to cool the core, which may be
11	perfectly satisfactory, but these are all maybes at
12	this point.
13	MR. DINGLER: Based on the investigation
14	we have done so far, some plants will have more
15	challenges. As you heard, with the active sump
16	screen, some have very have very little.
17	CHAIRMAN WALLIS: So, is there going to be
18	a WCAP or something that addresses these in technical
19	terms, rather than just sort of saying you've got to
20	calculate all these things, but actually gives a lot
21	of example calculations?
22	MR. DINGLER: As Tom says, we are working
23	with the staff, and one section gives a generic
24	evaluation for it, this is you had a lot of
25	discussion on proprietary information, just on the
I	

(202) 234-4433

	25
1	normal between the two fuel vendors that we have,
2	proprietary becomes very commercialized, and we are
3	working through some of those issues.
4	CHAIRMAN WALLIS: I think that's for
5	existing plants, how about something like the AP 1000,
6	are we going to have to revisit that and have
7	calculations of this kind of way of cooling the core?
8	MR. SCOTT: Yes, this is unresolved for AP
9	1000.
10	MR. DINGLER: I think that should be
11	addressed with the AP 1000 folks, I'm not prepared to
12	answer that.
13	CHAIRMAN WALLIS: You have a new reactor,
14	so you can make the calculation for that, it's not
15	going to be plant specific, or is it going to be,
16	again, plant specific, because the debris is plant
17	specific, even in an AP 1000.
18	MR. DINGLER: I can't answer that, because
19	I don't even worry about an AP 1000, I'm worried about
20	existing plants.
21	CHAIRMAN WALLIS: Some people must be
22	worrying must be thinking, nobody ever worries in
23	this business, thinking about it.
24	MR. DINGLER: Thinking about it, I'm not
25	even thinking about AP 1000 right now.
I	I

(202) 234-4433

	26
1	The other one is, I guess the next slide
2	is
3	CHAIRMAN WALLIS: Are we going to have
4	these slides available to us, or are they proprietary?
5	MR. DINGLER: You've got them right in
6	front of you.
7	CHAIRMAN WALLIS: We have them somewhere,
8	oh.
9	MR. DINGLER: Yes.
10	The next one was just to show that there's
11	plants that have more bypass, others are going to have
12	more challenges.
13	And, as Tom said, in other words,
14	dependent on that I wanted to give you a perception,
15	the last slide is the free volume of lower plenum.
16	It's based on reactor vessel design and reactor vessel
17	size, really what we should say is, we've got between
18	300 to 375 cubic feet of free space down there to
19	settle. In other words, I'm not here to say that all
20	I'm just giving you a perspective that the lower
21	plenum can act as a source of debris collection, and
22	give you a sense of the volume. That's all I'm here to
23	say.
24	CHAIRMAN WALLIS: That's useful, thank
25	you. That's good.
Į	I

(202) 234-4433

	27
1	MR. SCOTT: Is that it?
2	MR. DINGLER: That's all I have, yes.
3	CHAIRMAN WALLIS: We have to compare it
4	with the numbers we've heard already, about the amount
5	of debris, don't we?
6	MR. DINGLER: That's correct.
7	CHAIRMAN WALLIS: And, we are going to
8	hear in the next presentation about bypass screen
9	bypass?
10	MR. SCOTT: The next one is throttle valve
11	clogging.
12	CHAIRMAN WALLIS: The throttle valve
13	clogging study is really about screen bypass so far,
14	or is it going to talk about we'll find out.
15	MR. SCOTT: Before we go on, Tom Hafera is
16	still on the phone, do you all have any other
17	questions for Tom?
18	MR. HAFERA: Hey, Mike?
19	MR. SCOTT: Yes.
20	MR. HAFERA: I guess I'd like to just add
21	one other thing before I answer questions, and that
22	is, listening to some of that discussion, I think it
23	sounds like some critical ideas were identified, but
24	things that have to be recognized, you know, you can
25	do a quick back-of-the-envelope calculation, Q is
ļ	I

(202) 234-4433

	28
1	equal to M dot delta H, and you can determine what
2	type of flow rates are needed, you know, recirculation
3	doesn't happen until at least 30 minutes after reactor
4	trip. So, if you take a 3,000 megawatt core, and you
5	use 30 minute decy heat, and your delta H is
6	determined by your sump pool temperature, and
7	saturation conditions for containment pressure, you
8	can do a quick calculation and you find out that you
9	can handle decy heat at that time by about 200 gallons
10	per minute. So, it is, it's a very small amount of
11	water that needs to be added to the core to maintain,
12	you know, to remove decy heat.
13	The other thing to recognize, and I heard
14	some discussion, you know, you talk about differences
15	between normal operation and post LOCA, you know,
16	normal operation your reactor coolant pumps are
17	running, they are 90,000 gallon per minute pumps, so
18	you are pumping a lot of water through the core, very
19	high velocity, that's what your fuel screens are for.
20	Post LOCA, your fuel, you know, your flows
21	are extremely low, and again, if you talk about a cold
22	leg break, where, essentially, you are cooling the
23	core via natural circulation, you actually have
24	you'll have a circular flow within the core, in terms
25	of, you'll have upflow in the center, and you've
	I

(202) 234-4433

(202) 234-4433

	29
1	actually have downflow on the outside, and what that
2	you have to keep that in mind, too, because that
3	prevents you from building up the debris bed, because
4	you have eddies and flows that really mean you don't
5	get a consistent you know, you don't have like
6	laminar flow where your flow vectors are all in one
7	direction. It just doesn't happen that way.
8	MR. SCOTT: Yes, I think the committee,
9	although they are certainly interested in the
10	conceptual the concepts like you are talking about,
11	they want to see the results of the analyses.
12	DR. KRESS: We want to see some trace
13	calculations.
14	DR. BANERJEE: Not trace, how does trace
15	get those eddies that you are talking about?
16	MR. HAFERA: I'm sorry, Dr. Wallis, I
17	couldn't hear you.
18	DR. KRESS: Dr. Wallis is no longer with
19	us, this is he couldn't take anymore this is the
20	Co-Chairman, Dr. Kress, talking.
21	Never mind what I said.
22	MR. SCOTT: Do you all have any questions
23	for Tom?
24	DR. KRESS: No.
25	MR. SCOTT: Okay.
I	1

(202) 234-4433

	30
1	Tom, we are going to go ahead and go into
2	the research presentations. If you want to continue
3	to listen in, you are welcome to.
4	MR. HAFERA: Okay.
5	MR. SCOTT: And, thank you very much for
6	phoning in.
7	MR. HAFERA: Thank you.
8	DR. DENNING: WE ought to really thank Mo,
9	too, for being brave enough to
10	DR. KRESS: Mo, thank you, we appreciate
11	it.
12	So, Rob, you are up next.
13	MR. TREGONING: Yes, this is back on the
14	original schedule.
15	The next presentation is going to be on a
16	test program to look at throttle valve clogging, but
17	as you are going to see it's more of a surrogate for
18	clogging in general under certain flow conditions,
19	restricted flow conditions within that may occur in
20	some places within the ECCS system.
21	As co-presenters, myself and Bruce
22	Letellier from Los Alamos. The objective of this work
23	on slide two was to evaluate the effect of insulation
24	debris on blockage. We wanted to look at where, to
25	some extent, but it was really just a more qualitative
l	I

(202) 234-4433

1 assessment of where, there was no quantitative or no 2 rigorous study of where that was applied during this 3 project. And, we wanted to evaluate these effects on 4 surrogate HPSI throttle valves.

Motivation, we talked a little bit about this yesterday, the throttle valves are one possible source of performance degradation, due to flow restrictions. I think as Bruce mentioned, it's one of the smaller clearance areas, typically, within the ECCS system. So, it's a potential trap for debris.

Also, prior to this program there was really little information on the severity of nuclear valve degradation due to these blockage phenomena.

14 This is a two-phase effort, as Dr. -- as 15 Professor Wallis mentioned. Phase I, which we weren't prepared to discuss in depth today, although we can 16 certainly field questions and bring that into the 17 discussion, was a scoping study to examine the 18 variables that affect the amount of debris which can 19 20 pass through the sump screen or sump strainer screens. 21 That's a bit of an alliteration I'm not ready to 22 handle yet this morning. That work is being 23 completed, and it's documented in NUREG/CR-6885, so 24 that was Phase I of this study.

And then, what was done is based on some

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5

6

7

8

9

10

25

	32
1	of the ingested debris characteristics in Phase I that
2	were measured and observed. Those same
3	characteristics were then ingested into a closed loop
4	to measure blockage within the throttle valves, and
5	that's Phase II of the program.
6	The presentation today is going to focus
7	primarily on Phase II. We did provide a brief
8	overview on this topic in the July meeting, but today
9	is obviously going to be much more extensive, in that
10	most of the testing, in fact, all of the testing, has
11	been completed.
12	The regulatory use I can go through
13	quickly. Again, this is to aid in the staff's
14	evaluation of the generic letter responses, and,
15	specifically, we are hoping to use the data to at
16	least determine variables that are important to
17	consider when determining if ingested debris is a
18	problem, and it may lead to blockage in some of these
19	regions downstream of the ECCS strainers.
20	DR. KRESS: Now, that particular throttle
21	valve, it's totally blocked, there's two of those,
22	right? It depends on which sed loop you are in?
23	MR. TREGONING: At least.
24	DR. KRESS: At least.
25	If they all get blocked, then you
l	I

(202) 234-4433

	33
1	completely block the ECCS flow to the core in all the
2	units?
3	MR. LETELLIER: Under high pressure
4	injection, you may, but there are multiple injection
5	paths, and we talked a little bit about that.
6	DR. KRESS: But, each ingestion path has
7	a valve like this of some kind in it.
8	MR. LETELLIER: Yes.
9	DR. KRESS: So, each of those valves might
10	possibly get blocked.
11	MR. TREGONING: It is conceivable,
12	certainly, although blockage is one of the things we
13	didn't investigate in this project. We just were
14	looking for the onset of blockage. We didn't evaluate
15	any, you know, post blockage operator action that
16	could be taken, potentially, to alleviate the blockage
17	concerns, you know, cycling the valve or things like
18	that.
19	I mean, there may be some things that the
20	operator could do that could clear it out, yes. We
21	didn't look at that in this program at all.
22	Quickly, status, before I turn it over to
23	Bruce. The testing is complete. We have an initial
24	NUREG/CR that we are preparing for publication. We
25	are still reviewing it. We are planning to have a
I	I

(202) 234-4433

	34
1	final version ready for publication in March. We'll
2	be sending it to Ralph some time in the near future
3	for your review as well.
4	And, with that, I'd like to turn it over
5	to Bruce, and he's going to go into more of the
6	technical details associated with the testing and the
7	results.
8	MR. LETELLIER: Very briefly, I'd like to
9	acknowledge the team members at Los Alamos, Crystal
10	Dale and Pratap Sanisdavan, and also our graduate
11	student at the University of New Mexico, Felix Carles,
12	who did most of the real work.
13	You might say I'm just the pretty face,
14	but then I know things will vary.
15	The questions that you asked, Dr. Kress,
16	about the operation of the HPSI system are very
17	relevant. Rob explained a couple of the reasons that
18	we chose the HPSI throttle valve gap in order to
19	examine the phenomenology of potential blockage.
20	One is simply that it's one of the
21	smallest identified internal gaps that you can find,
22	but on the other hand it also has some of the higher
23	velocities. And so, if we are able to observe onset
24	of blockage under those conditions, then, perhaps,
25	there's motivation to look further into other areas of
ļ	I

(202) 234-4433

	35
1	the core, like the fuel channels and the spray
2	nozzles, et cetera.
3	But, as you said, there are multiple
4	injection paths, and I'm not I'm not the systems
5	expert, but there are at least four to sometimes 12 of
б	these paths, depending on how many levels of pressure
7	systems that the plant has in their ECCS cooling.
8	So, I would say four is the minimum.
9	There are other plants that have fewer than that,
10	perhaps. There are plants that have as few as two
11	injection paths.
12	The purpose of these valves is twofold.
13	They are, basically, there to balance the flow into
14	the core, but also to throttle the high pressure
15	pumps, so that they don't experience a run-out
16	condition during the accident.
17	Just a few other background numbers, there
18	are no set specifications for what constitutes a
19	throttle valve. The designs and applications vary.
20	They are typically globe valve type of designs,
21	between one and four inches in diameter, with two
22	inches being the most common. So, you see a diversity
23	of industrial products that are applied for this
24	function.
25	And, that made it challenging for us, how
	1

(202) 234-4433

	36
1	to initiate this project. We had a couple of options.
2	We refer to the figures now.
3	Option number one was simply to procure
4	and test multiple industrial valves, but that's
5	problematic because it would require repeated
6	calibration of the system, and these valve bodies are
7	impossible to inspect. It would be very difficult.
8	It does have the advantage of exactly matching
9	inservice equipment.
10	We chose the second option, actually,
11	which was to fabricate a surrogate valve chamber with
12	a flexible geometry, where we could swap out the
13	internal details of the flow path and also give us a
14	chance to inspect and to clean the valve between
15	tests.
16	Our objective there was to match the
17	nominal dimensions of the valve, and the tolerance,
18	and also the flow path complexities, but not
19	necessarily to endorse any single industrial product.
20	The pump selection that we used for our
21	study was intended to have a HPSI-type design, and be
22	capable of matching the initial delta P and flow
23	conditions of the LOCA transient.
24	Obviously, at an academic setting, we are
25	not able to match the total delta P capacity of the
ļ	I

(202) 234-4433

	37
1	HPSI, but we want to be on the initiation condition of
2	the transient. And, one of the objectives was to give
3	us some at least some margin for increasing
4	pressure and decreasing flow in the event of blockage.
5	If you think about what would happen in
6	the plant as the throttle valve would block, if it was
7	a very severe blockage the HPSI pumps would continue
8	to push up to the full system pressure.
9	DR. KRESS: Now, you are going to design
10	to match the flow in delta P.
11	MR. LETELLIER: Initial delta P.
12	DR. KRESS: Yes, but you are not going to
13	match the actual pressure.
14	MR. LETELLIER: That's correct, not the
15	absolute pressure.
16	DR. KRESS: Is that a problem or not?
17	MR. LETELLIER: I don't think so. We made
18	that judgment very early, that the driving force for
19	lodging, and clearing, and extruding debris would be
20	based on the differential pressure across the valve.
21	DR. KRESS: I was thinking that the
22	characteristics of the blockage may depend on the
23	pressure, if it blocks.
24	MR. LETELLIER: They may. We could
25	discuss that in detail.
I	I

(202) 234-4433

	38
1	As we'll see, we were able to identify
2	some evidence of the onset of blockage and the
3	velocities with which it approaches the valve, and the
4	randomness of the orientation, its relative sizes are
5	all very important.
6	MR. TREGONING: Can you give an example of
7	where you think the absolute pressure might be
8	important with respect to the characteristics?
9	DR. KRESS: It might have something to do
10	with the nature of the debris. It may have different
11	characteristics.
12	MR. TREGONING: So, it might change the
13	morphology of the debris.
14	DR. KRESS: The morphology.
15	MR. TREGONING: Okay, understand.
16	MR. LETELLIER: The local forces on the
17	debris are only a function of its surrounding
18	differential, so that's the reason that we pursued the
19	path.
20	For debris types, we chose the three usual
21	suspects, our reflective metallic fragments,
22	fiberglass shreds, and calcium silicate.
23	The sizes that we tested in the surrogate
24	valve were those sizes proven to pass through
25	prototypical sump screen configurations, and that was
I	I

(202) 234-4433

	39
1	Phase I of the project.
2	DR. BANERJEE: No NUKON?
3	MR. LETELLIER: That is the fiberglass.
4	DR. BANERJEE: Oh.
5	MR. LETELLIER: NUKON is a trade name,
б	common trade name, for fiber insulation.
7	The sizes, we did have some quantitative
8	information for, however, the quantities and the rates
9	could only be studied parametrically. That's some of
10	the issues regarding the current or future sump screen
11	designs, and what the fraction of debris that might
12	pass through.
13	And, it also it requires some estimate
14	of debris transport and generation in the vicinity of
15	the break.
16	So, we studied it parametrically. It was
17	very much an exploratory effort to look at what
18	phenomena might exist that leads to the onset of
19	blockage and, perhaps, accumulation.
20	DR. KRESS: So, when you say
21	parametrically, I would have envisioned that if you
22	keep increasing quantity and rate being produced in
23	blockage, and you say that's the you don't have
24	that is that the kind of thing you were thinking
25	of?
ļ	I

(202) 234-4433

	40
1	MR. LETELLIER: Well, you'll see, we were
2	never actually successful at completely blocking the
3	valve. In fact, the limiting factor was the size of
4	our two-inch lines, and how much debris we could
5	physically pack into the introduction chamber. You'll
6	see a schematic in just a moment.
7	MR. TREGONING: But, you are correct, we
8	were looking for conditions that would lead to at
9	least partial blockage. So, the initial test plan,
10	the very few tests we did initially that looked at
11	very small quantities of RMI debris, we saw quickly
12	that we needed to up those quantities in order to get
13	blockage in many conditions, and we modified the test
14	matrix accordingly at that point.
15	MR. LETELLIER: Next slide, please.
16	I think you'll see that some of the debris
17	charges that we passed through the valve would not be
18	considered prototypical. They were very highly
19	concentrated slugs of material.
20	DR. KRESS: Did you introduce this mixture
21	of debris all at the same time?
22	MR. LETELLIER: We will talk about the
23	matrix, but the answer is yes, we studied various
24	combinations and various quantities of the three
25	debris types.

(202) 234-4433

	41
1	So, this next slide shows a schematic of
2	the apparatus. The business end is the high pressure
3	pump on the floor, down to the lower right. The
4	surrogate valve body is elevated about five feet off
5	the floor, and this debris insertion manifold is the
6	combination of valves that let's us introduce debris
7	under pressurized flow. So, there's a combination of
8	valves we'll look at in detail, so that we can switch
9	them over and add debris to the flowing system.
10	DR. KRESS: Is it a positive displacement
11	pump?
12	MR. LETELLIER: It is actually an impeller
13	type pump, it's an eight-stage impeller. We could
14	look at the performance curves, but it basically has
15	a peak pressure of about 485 psi, and a
16	DR. KRESS: I was wondering what that did
17	to the debris? You were introducing it
18	MR. LETELLIER: Downstream of the pump.
19	DR. KRESS: Downstream.
20	MR. LETELLIER: At this point here.
21	DR. KRESS: Okay.
22	DR. BANERJEE: I guess there's a settling
23	tank, right?
24	MR. LETELLIER: The large flow is a
25	reservoir of water, and you are correct, it provides
ļ	I

(202) 234-4433

	42
1	an opportunity for settling. We have debris capture
2	at several points, at a trap in the flowing pipe,
3	there would typically be buckets with sieves.
4	We are trying to achieve a mass balance.
5	We know how much we put in, and we'd like to know
6	where the remainder resides.
7	There are also screens, mid-flow screens,
8	within the flume, and also a fine-mesh screen just
9	upstream of the pump.
10	DR. KRESS: So, you are not trying to
11	recirculate stuff that might get
12	MR. LETELLIER: That's correct. We have
13	talked about looking at the effects of debris
14	ingestion on the test pump, but our immediate
15	objective was to allow it to survive the test
16	campaign.
17	DR. KRESS: Yes, that's a good idea.
18	MR. LETELLIER: That is, obviously, the
19	most expensive piece of the system.
20	Diagnostics, we included flow meters just
21	upstream of the pump at this point, thermocouples
22	upstream of the pump, and also downstream of the
23	valve, just to monitor well, the reason we have two
24	is to monitor the differential temperature across the
25	test apparatus, and, in fact, the pump does
ļ	

(202) 234-4433

	43
1	consistently heat the flow about ten degrees between
2	the inlet and the outlet, at flow rates of 75 gpm.
3	The primary measurement of interest are
4	the differential pressures across the valve body at
5	these locations.
6	So, let's look at a photograph.
7	MR. TREGONING: Do you want to mention the
8	downstream flow meter at all, just as a potential
9	another potential trap?
10	MR. LETELLIER: The one we took out?
11	MR. TREGONING: Yes.
12	MR. LETELLIER: Initially, we actually had
13	our flow meter downstream of the valve in this long
14	section here. We were mostly concerned about the
15	hydraulic flow regime, so we could get a good
16	consistent measurement.
17	However, it would consistently foul with
18	the debris. These were impeller or turbine type
19	flow meters, with a triangular strut arrangement.
20	And again, the debris loadings are large
21	slugs of concentrated debris. Had we fed it in a more
22	dilute quantity, perhaps, it wouldn't have been an
23	issue, but we did have evidence of trapping on sharp-
24	edged obstructions.
25	So, the photograph makes this a little
ļ	

(202) 234-4433

	44
1	more realistic. The pump is again on the floor, with
2	the debris introduction manifold at this level, and
3	the valve body is the aluminum milled the insets
4	provide more detail of the valve body.
5	You can see the direction of the flow path
б	is an under/over type arrangement, it comes into the
7	lower cavity, passes through the throat, and out
8	through the outlet.
9	At this point, you can see the manifold
10	with the four separate valves that let us control
11	isolate the flow, so that we could introduce debris to
12	the top, so all the pressurized flow continues in the
13	bottom. And, after we've introduced the desired
14	quantity and types, then we can valve it over and
15	flush the lines.
16	All of these tests were conducted when we
17	introduced the debris, both valves, 1, 3 and 4, were
18	completely open, so we had a parallel flow path during
19	the test, so there was no possibility to trap debris
20	in cavities.
21	The next slide shows the internal details
22	of the surrogate valve. Again, you can clearly see
23	the under/over flow path, with the lower chamber. The
24	valve seat, this valve is shown in the fully closed
25	position, so the points of contact are here at the
I	1

(202) 234-4433

	45
1	ring and the stem.
2	We designed this valve body to be able to
3	put in different combinations of the ring and the
4	stem, and the three configurations we tested are shown
5	to the left. We have a shorthand nomenclature. At the
6	top is the five degree small, which describes the
7	contact angle of five degrees from the vertical and
8	the diameter, which is smaller than the large one.
9	MR. TREGONING: It's a complex
10	nomenclature system that was developed for this
11	testing.
12	MR. LETELLIER: I'm sorry, I'd have to
13	look in the report to say exactly what the diameter
14	is. We chose these configurations based on a survey
15	of commonly available industrial globe valves, and
16	again, because there's no set specification the plants
17	might employ any variety of these.
18	MR. CARUSO: Does the NUREG document
19	explain the basis for picking these particular ones?
20	I know it's based on the survey, but, I mean,
21	somewhere you looked at how many are of this type and
22	how many are this type, and said, well, because most
23	of them are this type this is what we are going to
24	test?
25	MR. LETELLIER: The explanation is very
	I

(202) 234-4433

	46
1	brief. At the onset of this study, we had informal
2	discussions with the industry at various workshop
3	settings. We asked for the staff's advice on specific
4	information. And, in the end we simply looked in the
5	catalogs. We looked at what was available for these
6	flow rates and delta P applications.
7	MR. CARUSO: And, some one person made a
8	decision that this is the typical typical
9	configuration?
10	MR. TREGONING: Well again, typical is
11	probably too strong a word. What we tried to do is
12	get something that was within the ballpark,
13	essentially, of the types of contact areas and stem
14	dimensions that would be
15	MR. CARUSO: Who made that decision, was
16	that research or was that you guys?
17	MR. LETELLIER: It was primarily our
18	recommendation on the contractor, on LANL's side, and
19	it obviously has been reviewed by the staff.
20	We don't have any contradictory evidence
21	to cause us to change our choices at the moment.
22	As we get into the test metrics, you'll
23	see that our characterization of the valve will be
24	very familiar to the plan engineer, and they will be
25	able to look and see, what are my valve loss
I	

(202) 234-4433

	47
1	coefficients? Does this make sense to me?
2	DR. KRESS: When you change
3	configurations, you change both the stem and the seat,
4	is that correct?
5	MR. LETELLIER: That's right. They are
6	made in pairs.
7	DR. KRESS: Those are the only two things
8	you change.
9	MR. LETELLIER: That's right.
10	This configuration gives us a couple of
11	choices for inspection. You can take off the lower
12	plate, without removing the throat, to actually change
13	out the internals we take off the top head and remove
14	the flow path.
15	There is
16	DR. SHACK: There was some discussion
17	yesterday that these valves are set to balance flow.
18	How did you choose your valve openings?
19	MR. LETELLIER: That is true, to my
20	present level of understanding, that some plants
21	balance and lock these valves in position. Other
22	plans can actually actuate them remotely, or manually,
23	during the accident sequence.
24	We chose our flow gaps, we chose a range
25	of flow gaps, in order to achieve the delta P and flow
	I

(202) 234-4433

	48
1	that we wanted to have.
2	DR. BANERJEE: Is this flow gap the
3	critical thing, or is it the whole combination of up
4	stream chamber, where you might get vertical motions
5	and things?
6	MR. LETELLIER: There is clear evidence in
7	the data that we look at that it is a combination.
8	It's an integrated system.
9	Obviously, the gap, as measured
10	perpendicularly to the ring in this manner, that
11	controls the flow path area, but the details of the
12	internal flow dictate how much the debris is entrained
13	and how much will reside in the cavity.
14	DR. BANERJEE: Good.
15	Now, those cavities are typical?
16	MR. LETELLIER: Yes, to the best of our
17	ability. We tried to match the adjacent volumes and
18	the flow path complexity.
19	There is a typographical error, you want
20	to change this annotation to 45 large at the bottom,
21	and it simply means that the diameter of the two large
22	stems are identical, but the angles are not.
23	DR. KRESS: Now the active through the
24	gap you go to was a and an annulus for going to the
25	outlet, and is the designs in the mentioned event

(202) 234-4433

	49
1	critical?
2	MR. LETELLIER: On the outlet side?
3	DR. KRESS: Yes, on the outlet side, on
4	Figure 2, the annulus.
5	MR. LETELLIER: Through the upper chamber?
6	DR. KRESS: Yes.
7	MR. LETELLIER: One of the problems with
8	testing, studying this type of phenomena is, it's very
9	difficult to determine exactly where the debris may
10	have been lodged. We can test delta P flow across the
11	system, but once we take it apart it may have moved,
12	whether it was initially trapped in one location or
13	another.
14	To my knowledge, any of the debris that
15	was recovered was from the lower chamber, and once it
16	had passed through the gap it was easily flushed out.
17	There may have been small quantities
18	lodged in the upper cavity as well.
19	MR. CARUSO: Did you get any debris in
20	that upper balance chamber at all?
21	MR. LETELLIER: That was the question that
22	Dr. Kress was just asking.
23	MR. CARUSO: Oh, I'm sorry.
24	MR. LETELLIER: That's what he just asked.
25	MR. CARUSO: I thought he was talking
I	I

(202) 234-4433

	50
1	about the outlet.
2	DR. BANERJEE: Do you do some calculations
3	of the streamlines and the fluid dynamics of this
4	valve before you happily put stuff into it?
5	MR. LETELLIER: No, we have not.
6	DR. BANERJEE: It seems an obvious thing
7	to start with.
8	MR. LETELLIER: We have offered to do
9	that, but instead chose to go to the data.
10	Now that we have evidence of loading in
11	the chamber and trapping in the throat, we could use
12	a CFD analysis to reduce that data and understand why
13	it happened.
14	DR. BANERJEE: Because otherwise you don't
15	know that you have anything similar between valves, or
16	what are the controlling phenomena, what's going on.
17	MR. LETELLIER: Part of the difficulty
18	with that is the diversity of designs in the industry.
19	DR. BANERJEE: Yeah, but it's cheap to run
20	a computer calculation, rather than doing an
21	experiment, if you can actually show that the two
22	correspond.
23	MR. LETELLIER: Yes, I agree, that that
24	cross comparison is useful.
25	DR. BANERJEE: Because this is a bit ad

(202) 234-4433

	51
1	hoc.
2	MR. LETELLIER: I absolutely agree that
3	that calculation would be of benefit. But, on the
4	other hand we would have dozens of designs
5	DR. BANERJEE: Sure, run them all, it
6	takes you what, an hour or two?
7	MR. LETELLIER: no.
8	DR. BANERJEE: I'll do it for you.
9	MR. LETELLIER: The run time is incidental
10	compared to the set up, having the geometries.
11	DR. BANERJEE: There are, of course, now
12	you can scan these in from SDL files and CAD files.
13	I don't think you should make a big issue of that, it
14	is really fairly easy to do nowadays.
15	MR. LETELLIER: I would love to do it if
16	we had a cooperative vendor to provide the geometry
17	files it would not be a huge effort.
18	DR. BANERJEE: Yes, if you have the CAD
19	files it's fairly trivial to set up the mesh.
20	MR. LETELLIER: That's true.
21	MR. TREGONING: But, I'd agree with Bruce,
22	I mean, we could have done it first, but it seemed
23	pointless if we were going to go through this
24	experimentation and even in the surrogate condition
25	when we are trying to create blockage, even if we

(202) 234-4433

	52
1	couldn't create blockage in those conditions, you
2	know, it would have served very little purpose at that
3	point.
4	DR. BANERJEE: Yes, maybe, but this really
5	points to the point that Graham was making, that, you
6	know, it would be nice to do some pre-experiment
7	predictions and see how well you did, because
8	eventually the science, I mean, this is not all ad hoc
9	stuff that you are doing continuously.
10	MR. TREGONING: It is science. I would
11	say that blockages is prone to some of the same issues
12	that we've been dealing with over the last day, day
13	and a half, you are going to see that in the data.
14	It's a very stochastic, non-linear process to try to
15	predict.
16	DR. BANERJEE: But, even that was science.
17	MR. TREGONING: Yes, I would agree.
18	MR. CARUSO: What is the black pad on the
19	12 o'clock position on the picture of the ring?
20	MR. LETELLIER: I believe that this is
21	actually one of our shims, and I'll explain the test
22	matrix. We needed to calibrate the percentage of
23	blockage, and so we actually used epoxy to introduce
24	a rubber gasket, in essence, blocking part of the
25	flow.
Į	I

(202) 234-4433

	53
1	We did experience some technical
2	difficulties during the course of testing. We
3	occasionally would score the face and have to
4	remachine them. That was part of the benefit of this
5	design, is we could remanufacture the replacement
6	parts at minimal cost.
7	DR. SHACK: Did you actually try a hard
8	face, I mean, or is this just stainless steel?
9	MR. LETELLIER: These are these are
10	hardened stainless steel, but I'm not familiar with
11	the industrial quality that's used in the plant. It
12	was not our intention to study erosion, and, in fact,
13	our apparatus has only a few tens of hours of service
14	life, compared to a plant condition.
15	DR. SHACK: That's why I was surprised at
16	the wear in the title.
17	MR. TREGONING: Again, we were looking for
18	anecdotal evidence, again, just within these valves,
19	but you are right, they weren't hard faced in any way,
20	so we wouldn't claim that that had any particular
21	applicability.
22	MR. LETELLIER: This next slide itemizes
23	the measurements that were taken and what parameters
24	we were interested in. We were interested in a
25	spectrum of debris characteristics, the types, the
I	

(202) 234-4433

	54
1	three insulation products, their size, their shape
2	relative to the throat opening, how much mass we
3	introduced at one time, and at what rate we introduced
4	the debris.
5	DR. KRESS: When you say size, is that a
6	distribution?
7	MR. LETELLIER: Clearly, the one exception
8	is the RMI, as surrogate debris we actually had
9	regularly shaped square and rectangular strips of 1/8
10	and $1/4$, and $1/4$ by $1/2$ inch aspect ratios.
11	The shredded insulation was blender
12	processed, as we've already discussed, and it was of
13	sizes representative of those that can pass, have been
14	shown to pass, through a sump screen.
15	And incidentally, when we talk about
16	penetration through a sump screen, it's very important
17	to distinguish between the clean configuration and the
18	partially-blocked configuration. All of our tests
19	were done with nominally clean sump screens.
20	We also looked at the shape of the debris,
21	the location, and the mass that was recovered at
22	various points. The RMI oils, for example, showed
23	clear signs of creasing and bending, as it was
24	extruded through the valve.
25	We changed out the stem geometries and a
ļ	I

(202) 234-4433

	55
1	range of gap settings.
2	DR. SHACK: Bruce, you mentioned, you have
3	no sump screen in here, did you pre-filter the debris
4	through a sump screen, so that the stuff you had you
5	knew would pass through a sump screen, or is this just
6	blender processed?
7	MR. LETELLIER: It's simply blender
8	processed, and the the size distribution of what's
9	able to pass through the screen looks very much like
10	the debris that we introduce. However, the total
11	quantity that passes through is less.
12	DR. SHACK: Okay, and you know that from
13	the previous work.
14	MR. LETELLIER: That's right.
15	So, we were able to avoid that
16	complication of pre-sieving.
17	We conceived this design in exactly the
18	way you suggest, with debris introduced in the
19	flume,it would pass through a screen, through the
20	pump, and through the valve. And, our primary concern
21	was the pump.
22	MR. TREGONING: Well, and the other down
23	side of that, you can't it's harder to quantify
24	what gets through, so it's harder to make it a
25	systematic
	I

(202) 234-4433

	56
1	MR. LETELLIER: Yes, you have to catch it
2	in order to quantify the penetration.
3	DR. SHACK: Right.
4	DR. BANERJEE: Your pump was not typical
5	of the ECCS pumps, right?
б	MR. LETELLIER: It was typical in its
7	design, but not in its capacity. It was able to it
8	was able to achieve the flow rates of 75 to 100
9	gallons per minute that you might expect in a HPSI
10	line, but the pressure was limited to about 485 psi.
11	Just for point of reference, in the clean
12	configuration the delta P across the HPSI valve in
13	service is between 20 and 200 psi, so we are easily
14	able to initiate the sequence, but not to achieve the
15	maximum delta P from the event of blockage.
16	To continue, we monitored the water
17	temperature upstream and downstream, the gauge
18	pressures across the valve, and the flow rates. Most
19	of the data were collected at 75 gpm.
20	DR. BANERJEE: Is there a way to
21	characterize what you are seeing, or are you going to
22	tell us about that.
23	MR. LETELLIER: That's the next bullet,
24	the key parameter was the valve loss coefficient. We
25	struggled initially to decide on a metric, minimal
ļ	I

(202) 234-4433

ĺ	57
1	level of detectable pressure loss, minimum amount of
2	flow path area. In fact, there is no criteria in the
3	industry for degraded performance. They install, test
4	and operate these valves as if they are completely
5	clean, and in pristine condition.
б	So, the best we could do was characterize
7	the performance of our particular apparatus, and we
8	chose the valve-loss coefficient as a good indicator
9	that's proportional to blockage. It's a very simple
10	relationship from first law energy balance in the
11	lower left, that if the elevations are the same, and
12	the velocities are the same before and after the
13	valve, you can attribute any delta P to the body
14	itself, and that's the coefficient K.
15	In the appropriate units of gpm and psi,
16	it has a simplified expression that we use commonly.
17	Alternatively, a plant engineer may be
18	more familiar with the CV or the flow cap coefficient,
19	which is a reciprocal square root.
20	DR. KRESS: It's the same thing, just a
21	different
22	MR. LETELLIER: Exactly, and we prefer to
23	have something that was directly proportional to the
24	delta P.
25	We've discussed most of the debris

(202) 234-4433

ĺ	58
1	characterization already. The NUKON was pre-shredded
2	as supplied by the vendor, and then blender processed
3	on site. The calcium silicate that we used was
4	coarsely crushed, I'm told, by a forklift at the
5	vendor.
6	DR. BANERJEE: It's not a lead shredder.
7	MR. LETELLIER: No, and we also sieved it
8	on site.
9	DR. SHACK: How big was the truck?
10	MR. LETELLIER: In order to improve the
11	consistency of our size distribution, we pre-sieved it
12	to a couple of size gradations.
13	Did we intentionally remove the fiber?
14	MR. TREGONING: Usually.
15	MR. LETELLIER: So, we took out the fiber
16	binder.
17	MR. TREGONING: Well, intentionally, is
18	too strong a word, quite often the fiber binder would
19	be in clumps and it would be removed by the sieves.
20	MR. LETELLIER: But, if there were any
21	remnants that got through, we didn't go through and
22	pick them out, certainly.
23	DR. SHACK: Right.
24	MR. LETELLIER: And, the debris loadings
25	were parametric, we'll look at those amounts as we go.

(202) 234-4433

	59
1	The broad overview of our experimental
2	approach was first and foremost to establish the
3	baseline loss coefficient for our clean configuration
4	over the range of gap openings and flows that we're
5	interested in.
6	Our loss coefficients were then calibrated
7	to a known known obstruction, in terms of blockage
8	area, using simulated shims, and I'll show you the
9	calibration curve next.
10	So, eventually, we can relate a change in
11	K to some physical proportionality of blockage.
12	DR. KRESS: Just percent of the gap area
13	blockage, is that
14	MR. LETELLIER: Essentially, yes, and we
15	recognize that there is internal structure to the
16	flow. We were not able to look at various locations,
17	it was a very difficult test to do, to epoxy the shims
18	in place and actually set the valve tightly against
19	it.
20	In most cases, our data are reported in
21	terms of the percent increase in the loss coefficient,
22	compared to the clean configuration. And,
23	occasionally, we do report them in terms of a
24	conversion to the equivalent blockage area.
25	So, in order to implement the experimental
Į	I

(202) 234-4433

	60
1	approach, the test metric included three components,
2	the baseline tests, the shim tests, and then a series
3	of debris introduction tests.
4	The debris effects were examined in three
5	series or three phases. Initially, we introduced them
6	one at a time, the so-called single debris test of
7	various quantities, and then next in combinations of
8	two component mixtures and then three component
9	mixtures, also in various orders of introduction. And
10	finally, we looked at the potential for gradual or
11	continuous accumulation in the third series.
12	The figure that illustrates the
13	quantitative data are for the shim test calibrations.
14	We tested one, two, three, four, five we tested
15	six discreet fractions of valve blockage, all at 75
16	gpm.
17	DR. BANERJEE: You mean valve openings.
18	MR. LETELLIER: No, actually, these were
19	all for constant volumetric flow of 75 gpm, and so
20	that predetermined the proportion of the valve that we
21	could block.
22	DR. BANERJEE: Well, I'm a little confused
23	by what you mean by block, that's all, is it the valve
24	opening which is changed?
25	MR. LETELLIER: If you imagine a fixed
I	I

(202) 234-4433

61 1 valve opening that we simply -- we glued or epoxy 2 adhered a rubber shim, so that it physically prevents 3 flow from passing through a portion of the annular 4 gap. 5 DR. BANERJEE: What was the reason for doing that? 6 7 MR. LETELLIER: So that eventually we 8 could interpret our data, which are measured 9 conveniently in terms of a valve loss coefficient, we could relate that to a physical configuration of 10 debris. 11 12 So, you are interpreting DR. BANERJEE: that as some percent blockage looking at that line 13 14 there. 15 MR. LETELLIER: Yes, at least we've made 16 the connection. It's possible to interpret it that 17 way. So, these shims were put 18 DR. BANERJEE: 19 sort of uniformly, or were they just blocking one area 20 of the valve, or how did you place them? 21 MR. LETELLIER: I was about to mention 22 that we understand that there are complex internal 23 structures in the flow, but we didn't have the luxury 24 of randomizing the percent of blockage for the 25 calibration tests. They were all place contiguously on

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	one side of the valve.
2	If we would go back to the
3	DR. BANERJEE: Go back to that diagram.
4	MR. LETELLIER: The schematic?
5	DR. BANERJEE: Right.
6	MR. LETELLIER: If you'd jump back to
7	that.
8	So, we do have, obviously, eddies,
9	internal flow during this bend in the flow. And, at
10	the moment I'm not prepared to describe whether the
11	shims were placed on this side of the gap or this
12	side.
13	DR. BANERJEE: But, they were placed on
14	one side of the gap.
15	MR. LETELLIER: Yes, at about 90 degrees.
16	CHAIRMAN WALLIS: I'm sorry, I've been
17	out, are you just going to talk about valve blockage
18	today, that's all?
19	MR. LETELLIER: Yes.
20	CHAIRMAN WALLIS: Because the most
21	interesting part of your report, I found, was the
22	bypass of the screen. Aren't you going to talk about
23	that at all? Is anyone going to talk about that
24	today?
25	MR. TREGONING: We hadn't planned on it,
I	I

(202) 234-4433

	63
1	just because that
2	CHAIRMAN WALLIS: That's the more
3	interesting part.
4	MR. TREGONING: Apparently, we thought
5	this was the most interesting.
6	CHAIRMAN WALLIS: Can you bring that to
7	the full committee. I mean, you sent us the report,
8	we are very interested in it.
9	MR. TREGONING: Okay. If you have
10	questions, we'd be happy to answer them.
11	CHAIRMAN WALLIS: We're excited to hear
12	about it.
13	MR. TREGONING: No, and the reason we
14	didn't focus on it is because that work has been
15	completed for well over a year. I guess I assumed
16	that
17	CHAIRMAN WALLIS: Well, we didn't know
18	about it.
19	MR. TREGONING: okay, I guess I had
20	assumed that there may have been a prior presentation.
21	We can certainly put together some of the salient
22	points for the
23	CHAIRMAN WALLIS: I'm sorry to interrupt,
24	but I needed to know that.
25	MR. LETELLIER: Just a thumb nail sketch
I	I

(202) 234-4433

	64
1	of the penetration study, I mentioned before you
2	returned that all of our penetration tests were
3	conducted in a clean configuration. So, if we
4	introduced a charge of debris, it did not have the
5	benefit of a previously established bend.
6	CHAIRMAN WALLIS: Yes.
7	MR. LETELLIER: The calcium silicate was
8	very difficult to retain any of that mass, 95 to 99
9	percent passes through easily in the sizes we tested.
10	The RMI is problematic. It's difficult to
11	introduce it against the debris without confounding
12	that with a transport transportability, and we
13	tried different mechanisms, resuspension from the
14	floor, dropping it directly in front of the screen,
15	but in general penetration fractions are very
16	sensitive to the relative size, and on the order of 30
17	to 40 percent
18	MR. TREGONING: Tops.
19	MR. LETELLIER: maximum penetration.
20	CHAIRMAN WALLIS: It's not close to zero.
21	MR. LETELLIER: That's true.
22	MR. TREGONING: But again, these were
23	relatively elevated flow rates to remove some of the
24	difficulties with having debris either settling out or
25	accumulating at the bottom of the screen.
I	I

(202) 234-4433

	65
1	We didn't want the debris to interact
2	during those tests, so the flow rates were higher than
3	might be expected in the modified designs.
4	CHAIRMAN WALLIS: And, what about
5	fiberglass?
6	MR. LETELLIER: I am thinking on the order
7	of 15 percent blockage, somewhat less.
8	MR. TREGONING: NUKON was very sensitive
9	to processing, that's where you saw quite a bit of
10	description between leaf shredding and blender
11	process. We had a much higher percentage of blender
12	process NUKON that would get through, it's finer,
13	obviously.
14	CHAIRMAN WALLIS: Right, do we know what
15	the sizes are in the LOCA?
16	MR. TREGONING: I'm sorry?
17	CHAIRMAN WALLIS: Do we know what the
18	sizes are from a LOCA?
19	MR. TREGONING: In terms of whether
20	CHAIRMAN WALLIS: Whether it's a leaf
21	shredder or blender process.
22	MR. TREGONING: I'll let you take that
23	one.
24	CHAIRMAN WALLIS: There's probably some
25	MR. TREGONING: Distribution, certainly.
I	1

(202) 234-4433

	66
1	CHAIRMAN WALLIS: there's got to be
2	some standard size distribution from a large LOCA or
3	something. You didn't make any calculation.
4	MR. LETELLIER: Of course we do not have
5	calculations for that, we do have evidence from the
6	air jet tests that were done for the boiling water
7	reactor studies that show us a range of sizes between
8	individual fibers, to small clumps, up to shreds of
9	two inches and larger, to partial blankets.
10	For practical reasons, we've chosen the
11	leaf shredder approach as giving a visual
12	representation of the small shreds.
13	CHAIRMAN WALLIS: Yes, a guy off the
14	street could have told you you get something between
15	small fibers and large chunks, you have to get some
16	kind of a quantification, and the problem is, if you
17	are going to just have numbers like 30 percent,
18	something, transmission through the screen, someone
19	can just take that and use it, and it may be
20	completely inappropriate. You've got to have
21	something that's scaled or related to
22	MR. LETELLIER: The distributions in size
23	from experiment, they are available, and we tend to
24	focus on the transportable sizes, at least under flow
25	velocities typical will fill up. The partial blankets
	l

(202) 234-4433

are, perhaps, not as much a concern, unless they degrade in turbulent flow.

3 Now, the other piece to your question was, 4 how representative is blender processed material, and, 5 in fact, during the integrated tank testing done at UNM, where we had a 1/10th scale plant containment 6 7 sump, we have evidence that the debris -- piles of debris in the leaf shredder configuration actually 8 9 degrade slowly over time. It's possible to build very uniform mats out of individual fibers, and that's our 10 motivation for blender processing. The details will 11 12 vary, as we've learned.

DR. BANERJEE: You have no way, if I remember the report, to characterize your vendor process stuff, because if you drive the glomerate or something, right? You didn't give any distribution of sizes or anything.

18 MR. LETELLIER: That's correct, we have 19 not. Due to the difficulties of forming uniform beds 20 for the purpose of head loss testing, UNM and LANL 21 started implementing the blender.

22 When PNNL adopted that approach, they 23 recognized that they needed something that was much 24 better controlled, and they developed the R4 metric 25 for screen penetration, as something proportional to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

67

	68
1	the degree of separation between fibers.
2	DR. BANERJEE: So then, it gives you a
3	measure, but it doesn't tell you what the physical
4	size of the things are.
5	MR. LETELLIER: That's correct.
6	DR. BANERJEE:
7	CHAIRMAN WALLIS: If you follow the
8	guidance that came out, I think that it's very crude.
9	I mean, it said that you assume half of it is shredded
10	and half of it is 4x4 clumps or something, it's
11	something very, very crude, if I remember from the
12	guidance that we looked at. That would, perhaps, lead
13	to very conservative predictions.
14	MR. LETELLIER: It does. the proportion
15	of fine material is intentionally over estimated, and
16	it's assumed to be 100 percent transportable.
17	CHAIRMAN WALLIS: Right.
18	MR. LETELLIER: And, in fact, the
19	degradation component of even the large has been
20	CHAIRMAN WALLIS: This doesn't help you
21	very much, because it means that whatever they assume
22	is 40 to 50 percent if it gets to the sump anyway, and
23	gets to the screen anyway.
24	MR. LETELLIER: Right.
25	CHAIRMAN WALLIS: Which may turn out to be

(202) 234-4433

	69
1	very conservative. I just don't know.
2	Okay, thank you. I've made you digress.
3	DR. BANERJEE: I just wanted to go back to
4	what you are doing with the shims. If I understand
5	the reason for doing that, it's to get a way to
6	interpret the data you get with blockage.
7	Now, let me ask you, in reducing the flow
8	area why did you choose shims rather than just opening
9	and closing the valve, change the flow that way?
10	MR. TREGONING: We did both, actually.
11	The baseline test did exactly that. We didn't show
12	that, because they are rather rote, but and if you
13	look at one of the concerns and one of the genesis
14	behind the shim test is, we had a question whether if
15	we had nine uniform flow through the value if the
16	correlation between valve area and the K increase
17	would change.
18	Actually, we don't show the spot here, but
19	when we did the shim test and compared it with the
20	more uniform valve opening test, with respect to this
21	plot, you know, delta K increase versus low blockage,
22	they actually end up lying pretty close to one
23	another.
24	So, the shim test, at least as we've been
25	able to demonstrate, provided confirmation that the
ļ	I

(202) 234-4433

Í	70
1	more simplistic test was not an unrealistic measure of
2	what the blockage was.
3	DR. BANERJEE: You looked at the effect of
4	non-uniform flow through the data.
5	MR.LETELLIER: Essentially, that's right.
6	Thank you, Ralph.
7	DR. KRESS: Those look like the same curve
8	to me.
9	MR. TREGONING: These are different
10	valves.
11	DR. KRESS: I know, but they look like I
12	would have drawn the same line to the data.
13	CHAIRMAN WALLIS: It's just area, isn't
14	it? I mean, this is
15	MR. LETELLIER: Yes, they are pretty
16	consistent.
17	CHAIRMAN WALLIS: this one over here
18	MR. LETELLIER: Yes, this was a
19	calibration where we intentionally introduced the non-
20	uniform blockage.
21	CHAIRMAN WALLIS: Reduced the area, all
22	right.
23	MR. TREGONING: Although, I will before
24	we get off of this, some of the apparent consistency
25	is due to scale as well. I think the biggest
	I

```
(202) 234-4433
```

	71
1	differences are down at the lower percentage increases
2	of K, the more lower valve blockages around 10 to 15
3	percent, where your K increases are on the order of 20
4	to 30 percent.
5	DR. KRESS: Yes, and that's the level that
6	we don't care much about, right?
7	MR. TREGONING: Well, but you are going to
8	see in the testing that that's the level that we tend
9	to be in for most of the test results.
10	CHAIRMAN WALLIS: Is this curve a theory?
11	MR. TREGONING: No.
12	CHAIRMAN WALLIS: It could be a theory
13	which simply says that the area is
14	DR. KRESS: What's the form of the
15	equation?
16	DR. BANERJEE: I guess they were looking
17	at whether just changing the shape of the area
18	CHAIRMAN WALLIS: That's the easiest
19	problem to solve, tell us what to do with the
20	difficult ones.
21	MR. LETELLIER: One other purpose for
22	conducting this test is to quantify our minimum level
23	of detection for this system. How sensitive are we in
24	terms of blockage effects, and through this and other
25	studies we'd like to say we have a detection threshold

(202) 234-4433

	72
1	of about 5 percent blockage and no less.
2	As I said earlier, there is no performance
3	standard for degraded performance. These valves are
4	assumed to be clean when they are operable.
5	DR. KRESS: Do you have K values for real
6	valves out there, just to compare and see if you are
7	close?
8	MR. LETELLIER: I don't have them in front
9	of me. We did compare them in terms of the CV metric,
10	the reciprocal square root.
11	MR. TREGONING: Yes, that is information
12	we've tried to get, even getting the K information for
13	real valves is not you know, it's not an easy
14	exercise. You have to do a good bit of digging.
15	CHAIRMAN WALLIS: What about number two,
16	based on the propensity for NUKON to transport, I
17	thought you told me earlier when I asked you this, the
18	fiberglass lesser 95 percent of the CalSil one,
19	but sometimes most of the fiberglass was cored, and I
20	think you said
21	MR. LETELLIER: The statement also
22	CHAIRMAN WALLIS: 15 percent went
23	through or something, but you said it was sensitive to
24	processing, so if it was chopped up this propensity
25	for NUKON to transport is when it's really chopped up
Į	I

(202) 234-4433

	73
1	fine, is that it?
2	MR. TREGONING: Read the whole line.
3	CHAIRMAN WALLIS: Oh.
4	MR. TREGONING: This is combining the
5	screen penetration results with the propensity to
6	cause blockage.
7	CHAIRMAN WALLIS: No, it says based on the
8	propensity for NUKON to transport and penetrate the
9	screen.
10	MR. TREGONING: Right, keep going.
11	CHAIRMAN WALLIS: That's a statement in
12	its own right.
13	MR. TREGONING: Yes, but it's a
14	conditional clause of which
15	CHAIRMAN WALLIS: Well, I don't know.
16	MR. TREGONING: you know, read what
17	follows.
18	CHAIRMAN WALLIS: No, but it says you
19	are saying already that it's highly likely the NUKON
20	will go through the screen. Therefore no, it
21	stands on its own, doesn't it?
22	MR. LETELLIER: This is it is intended
23	to be a combined judgment, based on both its
24	penetration potential and its retention potential in
25	the valve.
Į	

(202) 234-4433

	74
1	CHAIRMAN WALLIS: Yes.
2	MR. LETELLIER: And, you'll see that as we
3	look through the data, that NUKON does tend to
4	accumulate in the valves.
5	MR. TREGONING: And, just to explain it,
6	CalSil was certainly much more likely to penetrate.
7	However, CalSil by itself
8	CHAIRMAN WALLIS: That is true, I don't
9	think the NUKON is flexible enough and there's enough
10	pressure.
11	DR. BANERJEE: And, the CalSil would
12	happily carry on into the reactor, right, block the
13	little holes there?
14	MR. LETELLIER: But, in combination with
15	other debris types the CalSil does become an important
16	contributor, and we'll see that.
17	MR. TREGONING: Right, you'll see that
18	later.
19	DR. BANERJEE: Well, eventually it will
20	catch on the NUKON, right?
21	MR. TREGONING: It could catch on other
22	seeds that might be there before it.
23	MR. LETELLIER: In general, and not
24	surprising, the higher the loading and the larger the
25	debris sizes resulted in a proportional increase in
Į	

(202) 234-4433

	75
1	the valve loss coefficient. There were no surprises
2	there.
3	However, there is variability in the data.
4	For an equivalent mass loading, the valve
5	loss coefficients were typically higher for reflective
6	metallic chards than they were for an equivalent mass
7	of NUKON, I think simply because if you are able to
8	lodge a fragment of RMI that obstructs a very large
9	area immediately, and then the proportional mass of
10	NUKON is simply smaller.
11	CHAIRMAN WALLIS: I wasn't here earlier,
12	but it seems to me clear, you can put the valve in a
13	position where it is almost closed, where it is bound
14	to catch everything.
15	MR. LETELLIER: Yes.
16	CHAIRMAN WALLIS: Then you build up a huge
17	plug in the pipe. Is that not something that can ever
18	happen?
19	MR. TREGONING: Well, but again, normally
20	the way and again, my understanding of how these
21	valves are set, is they are normally set with a higher
22	gap than your screen penetration or mesh sizes, with
23	the idea that
24	CHAIRMAN WALLIS: When they are open?
25	MR. TREGONING: yes, when they are open
ļ	I

(202) 234-4433

	76
1	and operating.
2	CHAIRMAN WALLIS: My question is, if you
3	open and close them, and you've got some debris there
4	which doesn't open and close fully, then you have flow
5	through a very small aperture.
6	DR. BANERJEE: But, yesterday they told us
7	that there's some minimum.
8	CHAIRMAN WALLIS: Does that mean it can't
9	be closed completely?
10	DR. BANERJEE: No, apparently, that's not
11	the way they are operating.
12	CHAIRMAN WALLIS: It will be closed at
13	some point. Who told us that yesterday?
14	MR. LETELLIER: Typically, these are
15	they are not intended to be actuated during the
16	accident sequence. Some plants are physically locked
17	in place and cannot be actuated, some plants can be
18	actuated if blockage is perceived, or if they need to
19	rebalance the flow injection paths.
20	CHAIRMAN WALLIS: If they are blocked, you
21	just open them wide and clear it out.
22	MR. LETELLIER: Perhaps.
23	MR. CARUSO: Are these manual valves
24	usually, or do they have motor operators on them?
25	MR. LETELLIER: My impression is that
ļ	I

(202) 234-4433

	77
1	typically they are manual, and I have heard of some
2	pneumatic actuation.
3	MR. CARUSO: They are set and left. As
4	far as I know, they are usually set and left.
5	MR. TREGONING: Yes.
6	MR. LETELLIER: Yes, they serve two
7	primary functions, to balance the flow and also to
8	throttle the pump, to prevent run out.
9	If it were completely wide open, then the
10	pump would have no back pressure to work against.
11	The plants have anecdotally, they have
12	recognized the potential for first of all, I think
13	their primary concern is erosion and loss of function
14	for that valve, so they have started to I know of
15	plants that have introduced orifice plates downstream
16	of the valve to take to burn off some of the head,
17	so that they can relax the gap opening inside the
18	throttle valve.
19	CHAIRMAN WALLIS: What is the typical
20	velocity, just a number, through the gap opening?
21	MR. LETELLIER: I knew you would ask that.
22	CHAIRMAN WALLIS: Ten meters per second,
23	one meter per second.
24	MR. LETELLIER: We tend to think in terms
25	of the volumetric flow.
I	I

```
(202) 234-4433
```

	78
1	CHAIRMAN WALLIS: All right.
2	MR. LETELLIER: The dimensions are
3	typical, the flow rates are set to be nominally 75 gpm
4	or less. The velocities are tens of feet per second.
5	CHAIRMAN WALLIS: What's the Reynolds
6	number in pipes?
7	MR. LETELLIER: I don't have that
8	information.
9	DR. KRESS: I was wondering if there was
10	a FROUDE number for debris that you change the nature
11	of the debris just to do the turbulence, before it
12	ever gets that.
13	CHAIRMAN WALLIS: FROUDE number is for a
14	different field altogether. You are talking about a
15	FROUDE number?
16	DR. BANERJEE: A fraud number.
17	CHAIRMAN WALLIS: That's for lawyers.
18	DR. KRESS: Any way, I was wondering if
19	the debris has the ability to change its nature before
20	it ever gets to that.
21	MR. LETELLIER: It is possible, and I
22	think in the power plant situation that's most likely
23	to occur within the pump itself, and those details we
24	are not able to reproduce, internal flow.
25	However, the FROUDE number, fraud number,
	I

(202) 234-4433

	79
1	is actually important for the blender processing,
2	where we are intentionally trying to separate the
3	debris from itself.
4	DR. BANERJEE: But, the velocity is pretty
5	high.
6	MR. LETELLIER: Yes.
7	DR. BANERJEE: That's the main thing.
8	MR. LETELLIER: As we said, for the size
9	of opening within the internal RCS this probably
10	experiences the highest velocities, which introduces
11	the possibility for self-scouring. If a blockage
12	starts to accumulate, the velocity will increase, and
13	we show evidence of that potential.
14	MR. TREGONING: In some of these tests you
15	see that happen.
16	MR. LETELLIER: Another aspect of the HPSI
17	system
18	CHAIRMAN WALLIS: How abrasive is CalSil?
19	How abrasive is CalSil? It's pretty soft, isn't it?
20	MR. LETELLIER: Well, yes and no, it's a
21	calcium silicate. It could be considered
22	CHAIRMAN WALLIS: So, it has some hard
23	edges too?
24	MR. LETELLIER: Yes.
25	DR. BANERJEE: But, it's not like sand.
25	DR. BANERJEE: But, it's not like sand.

(202) 234-4433

	80
1	MR. LETELLIER: It is not a hard silica
2	type of sand.
3	Steve Unikewicz could probably help us
4	describe the metrics for how we would assess the
5	abrasive qualities of CalSil. It has not been tested
6	from that perspective.
7	Another aspect of the HPSI system
8	performance is the extremely high capacity for delta
9	P. If these valves were almost blocked, you could
10	experience 2,400 psi, which might have the potential
11	to extrude the debris simply, or, alternatively,
12	permanently compact it and press it in place.
13	We don't have that amount of margin. We
14	can test the initial conditions at about 350 psi, up
15	to a maximum of 485 to 500.
16	CHAIRMAN WALLIS: So, that was my concern,
17	if you had a valve that were closed, not quite closed,
18	if it ever go that, and they you said it would build
19	up this plug of debris, and then you tried to get flow
20	and you got 2,200 psi compressing the debris.
21	MR. LETELLIER: Right.
22	That's one of the phenomena we were aware
23	of, and we chose our pump to have some margin to
24	investigate that, within our safety limits.
25	The very last bullet describes some of the
I	

(202) 234-4433

1 random variability that you are going to see in the 2 data points. First of all, we worked very hard to minimize the electronic noise to less than 3 percent 3 4 of the mean signal, but the data jump around within 5 factors of two to five, and the very random nature of the flow is my explanation for this. The self-6 7 interaction of the debris, with the internal structure the flow, the debris size relative to those 8 of 9 internal eddies, the random orientation as it arrives at the gap, for example, and simply the number of 10 debris elements in a unit mass. We are typically 11 12 testing ten grams, 25 grams, maybe 50 grams of material, but that is a discreet number of 13 RMI 14 fragments. 15 A couple of photographs to show you what

debris looks like when we open the chamber, and, Dr. 16 Wallis, you'll find the schematic on one of the 17 earlier pages, number seven, that shows you the lower 18 19 chamber. That's what we are looking at here, as we 20 pull out the internals. You can see $1/4 \ge 1/2$ inch 21 strips of RMI. This test would have experienced an 22 increase in K value, but I cannot tell you whether the 23 fragments were lodged in the throat at under flow. DR. BANERJEE: They probably have dropped 24 25 down when you took it out.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

81

	82
1	MR. LETELLIER: Yes.
2	MR. TREGONING: That's one possibility.
3	MR. LETELLIER: And, similarly, you can
4	see the yellow deposits of fiberglass that are in the
5	bottom cavity.
6	DR. BANERJEE: They are deposits?
7	MR. LETELLIER: The quality of this
8	photograph is not extremely good, but you can see the
9	granularity that represent the sort of largest flocs
10	or agglomerations here. These are composites of
11	multiple strands.
12	MR. CARUSO: Did you see any on the
13	seat, and on the disk, on the RMI testing, did you see
14	any impacts or evidence that the RMI, you know, had
15	gotten larger and deformed?
16	MR. LETELLIER: Scoring?
17	MR. CARUSO: Scoring at all?
18	MR. LETELLIER: Scratching?
19	I don't think that I could say we have
20	direct evidence of that. As I said, just the
21	manipulation of the valve in some cases led to
22	scoring. When we would tighten it down to the seat,
23	if we would go past that point, if there were any kind
24	of abrasive material like calcium residue we would
25	score the machined face.
I	I

(202) 234-4433

	83
1	CHAIRMAN WALLIS: It's grinding in the
2	valve.
3	MR. LETELLIER: Yes, right.
4	We did experience that and we
5	intentionally took the opportunity to test or see if
6	we could determine the effect of K, because we had
7	good baseline information in the pristine condition,
8	and we were not able to discriminate those kind of
9	minor damage conditions.
10	The next slide begins our presentation of
11	data for the single debris series.
12	CHAIRMAN WALLIS: All right, so how did
13	these pieces get into the valve, you dropped them in
14	somewhere and flow them up to it, and some of them go
15	through?
16	MR. LETELLIER: On slide number six, it
17	will show you the manifold.
18	CHAIRMAN WALLIS: You drop them in, and
19	then I was just wondering, how many pieces could
20	you go up to 60 here, under what conditions could you
21	get, say, 300 pieces in there, keep on dropping pieces
22	in, some of them get stuck.
23	MR. LETELLIER: Well, first of all, keep
24	in mind that the axis on the figure, that is the
25	number of pieces that were recovered from the chamber.
I	1

(202) 234-4433

84 1 We would typically introduce them in batches of 50 to 2 100 grams, which is a nice handful of RMI. 3 That was our metric for the debris loading. 4 5 CHAIRMAN WALLIS: What happens in the path, this thing is running for some time, maybe 6 7 thousands of pieces go through, I don't know. MR. LETELLIER: 8 Perhaps, that's true, but distributed over time. 9 10 CHAIRMAN WALLIS: Right. If there is some way for them to get 11 12 trapped in there, they can build up, I just don't 13 know. 14 MR. LETELLIER: We will look at that 15 question at the very last series, under the 16 accumulation potential. 17 CHAIRMAN WALLIS: Let me ask, the pieces of RMI that are trapped, were they larger than the 18 19 gap, all of them, or were there some smaller ones? 20 MR. LETELLIER: That's a loaded question. 21 On edge, they are all smaller, but in aspect ratio 22 they are all bigger. 23 CHAIRMAN WALLIS: It depends which way 24 they try to get through the gap. 25 MR. LETELLIER: It just depends on which

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	way they are oriented.
2	MR. TREGONING: Well, and again, most of
3	these things post test you saw a lot of crumpling of
4	the RMI debris, so there was some variability in terms
5	of how it would crumple that would affect the
б	dimensions as well.
7	CHAIRMAN WALLIS: Usually, once they get
8	held up against the gap, they stay there, because of
9	hydrostatic dynamic forces, then they maybe fall down
10	when you turn off the flow.
11	MR. TREGONING: Yes, right.
12	CHAIRMAN WALLIS: And, you can imagine
13	them sort of flying off, and some of them get stuck in
14	the position where they are held against the wall,
15	others go through.
16	DR. BANERJEE: Are these small pieces, or
17	they were all large pieces?
18	MR. LETELLIER: They were all uniform size
19	of either $1/4$ inch square or $1/4 \ge 1/2$ inch strips.
20	CHAIRMAN WALLIS: This is what you fed in.
21	MR. LETELLIER: This was our prototypical
22	chard or fragment of RMI.
23	MR. TREGONING: And again, those sizes
24	were picked based on the earlier screen penetration
25	work, where those were some of the biggest pieces of
ļ	

(202) 234-4433

	86
1	RMI that we could get through.
2	MR. CARUSO: How thick were they?
3	MR. LETELLIER: 15 mls, we can look in the
4	report for the exact number.
5	MR. CARUSO: Very flexible.
6	MR. LETELLIER: They are very think, very
7	flexible. Our graduate student desperately hoped we
8	could reuse this material, just to avoid the tedium of
9	cutting more source material, but, in fact, most of
10	them were folded.
11	DR. BANERJEE: By the time they got
12	through they were crumpled.
13	MR. LETELLIER: That's correct.
14	CHAIRMAN WALLIS: But, you could do a
15	calculation of the pressure it would take to crumple
16	it enough to drive it through the gap.
17	MR. LETELLIER: We could have done that,
18	yes.
19	CHAIRMAN WALLIS: Take it as a beam that's
20	loaded in.
21	MR. LETELLIER: Yes.
22	So, the first data figure shows the
23	introduction of batches of RMI as a single debris
24	type. The plots are designated by symbol, designating
25	the different stem types, the 45 degree angle with the
I	

```
(202) 234-4433
```

	87
1	large diameter
2	CHAIRMAN WALLIS: Go back to my previous
3	question. When you've got this 65 or whatever it is,
4	the point over there, what fraction is that of the
5	amount of stuff you put in? That's a handful, 65 must
6	be a pretty good handful. Do you put in a few
7	handfuls, it's a fairly large fraction of what you put
8	in?
9	MR. LETELLIER: No, it's less easily
10	less than half, I'm going to guess 20 percent.
11	CHAIRMAN WALLIS: Half, that's a big
12	fraction, I would say 5 percent is a big fraction if
13	you are dealing with a lot of debris.
14	MR. LETELLIER: Yes, that's true.
15	It is a surprisingly large number of
16	fragments.
17	CHAIRMAN WALLIS: But, if you are
18	comparing it with half, that tells me it's a lot.
19	MR. TREGONING: Again, of this size RMI
20	debris, which again, was the maximum size that we put
21	in.
22	CHAIRMAN WALLIS: If you put in three
23	handfuls, and one handful got stuck, that's a pretty
24	good measure, something like that, is that it? If you
25	put in five handfuls, and one handful got stuck.
Į	1

(202) 234-4433

	88
1	MR. LETELLIER: That's probably
2	reasonable.
3	DR. BANERJEE: SO, when you got a
4	percentage increase in K, did your flow stay the same,
5	too?
6	MR. LETELLIER: We did not control the
7	flow from that point of view. We preset the gap size
8	to achieve the initial condition, and we measured the
9	delta P, and we also measured the flow rate, which
10	would tend to decline.
11	DR. BANERJEE: Would decline.
12	MR. LETELLIER: Yes, with increased
13	blockage. So, we had both terms of the equation, we
14	had the flow rate and the delta P as the data point.
15	DR. BANERJEE: So, you only show the delta
16	P here, but the flow rate goes as the square root of
17	no, I guess it was proportional to the K.
18	MR. LETELLIER: We are presenting the K
19	factor, the loss coefficient, which has both. It's
20	the ratio.
21	MR. TREGONING: But, most of the time, not
22	all of the time, the delta P drop dominates, I think,
23	in many of these tests, because the blockage is in
24	many cases, were still partial, so you are still able
25	to get plenty of flow through the valve.
	I

(202) 234-4433

89 1 MR. LETELLIER: As we speculated, the velocities will increase to maintain a special plant 2 3 condition where the pumps have so much excess 4 capacity. 5 CHAIRMAN WALLIS: I would like to see where we are with this presentation. We had some 6 7 extra presentations earlier, so that's the reason we 8 are behind. 9 MR. TREGONING: We have been going about 10 an hour, though, I think. MR. LETELLIER: We are taking our share of 11 12 the time. CHAIRMAN WALLIS: You are taking your fair 13 14 share, so if you finish by 10:30 or something, at that 15 time we could take a break, and we just set back the 16 other presentations? 17 MR. LETELLIER: Sure. CHAIRMAN WALLIS: After the break. 18 19 MR. CARUSO: We have one more 20 presentation. 21 CHAIRMAN WALLIS: We have one more 22 presentation, then there's the sum up and so on. 23 It looks as if we are supposed to finish 24 by 11:00, maybe we'll finish by about 12:00. 25 Okay, sorry to interrupt you. Go ahead.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	MR. LETELLIER: That's not a problem to
2	finish within that time.
3	One trend of interest to note in this
4	figure, if you focus on the solid square symbols,
5	which represent the smaller diameter five degree stem,
6	they are all in the lower percentages of pipe loss
7	coefficients.
8	This goes back to the questions of
9	internal flow. For some reason, this configuration
10	performs much better in all cases as we go through,
11	you will see that the smaller diameter channels the
12	flow in some way that tends to clear the debris better
13	than the others.
14	That's not what I would have expected,
15	because there's more shoulder room in the cavity in
16	the dead eddies, but, nonetheless, the data are very
17	clear in that regard.
18	DR. BANERJEE: Just say it again, so that
19	I follow what you said.
20	MR. LETELLIER: The square solid symbols
21	represent the smaller diameter five degree, the
22	shallow angle stem, which has a smaller diameter so
23	the flow path is more tightly centered in the cavity,
24	in the chamber.
25	DR. BANERJEE: And, is the chamber smaller

(202) 234-4433

	91
1	too?
2	MR. LETELLIER: No.
3	DR. BANERJEE: No, the chamber is the same
4	size.
5	MR. LETELLIER: Same size, fixed
6	dimension, and yet we consistently show less debris
7	retention and a lower impact in terms of
8	DR. BANERJEE: If there is a bigger
9	chamber and a smaller stem area, you get less debris
10	retention.
11	MR. LETELLIER: In our case, for
12	MR. TREGONING: The interesting point is
13	that the blue square right around there where we found
14	40 some odd pieces of debris in the chamber after the
15	test, yet there was no increase in there was no
16	measurable degradation in the valve loss coefficient.
17	What could be happening with that big
18	shoulder, there could be eddies that are created, or
19	maybe the shoulder is even serving as a debris
20	blockage point.
21	CHAIRMAN WALLIS: It may be that it aligns
22	differently.
23	MR. TREGONING: It's causing it to trap in
24	the
25	CHAIRMAN WALLIS: And, this is a little
	I

(202) 234-4433

	92
1	bit heavier, the heavier material gets thrown out of
2	the vortices, so if that's thrown out of the vortices
3	it could be that if you have large vorticle structures
4	it could be that they are oriented as they flow
5	towards the gap, if they are oriented more in the
6	direction of going through it than across it.
7	DR. DENNING: You didn't tell us how you
8	set the gap, though. There's a standard gap size that
9	you have for each of the three different
10	configurations? How did you do that?
11	MR. LETELLIER: During our initial
12	characterization of each pristine valve, we calibrated
13	the physical gap dimension to the flow rates and the
14	pressure drops. And so, when we are ready to
15	initialize a test we can return to that physical
16	setting, in terms of a thread count. There's actually
17	a fiducial measurement block where you can use a
18	micrometer to reproduce the valve setting.
19	DR. DENNING: But, the flow areas, what
20	are the relative flow areas for those different
21	MR. CARUSO: What we are wondering is, for
22	each of these points, what's the geometry of the flow
23	path?
24	DR. DENNING: Yes.
25	CHAIRMAN WALLIS: Is it the same area?
Į	I

(202) 234-4433

	93
1	MR. LETELLIER: First of all, we have to
2	have a common understanding of flow area, and it's
3	always measured perpendicular to the flow across
4	CHAIRMAN WALLIS: The narrowest part.
5	MR. LETELLIER: across the narrowest
6	aspect of the flow channel.
7	The gap settings, obviously, we
8	CHAIRMAN WALLIS: Is that how you define
9	your K, or is the K based on something else? What
10	area is K based on?
11	DR. BANERJEE: Let's go to the next slide
12	defining the K.
13	CHAIRMAN WALLIS: It's based on Q?
14	MR. LETELLIER: K is simply delta P over
15	Q squared.
16	CHAIRMAN WALLIS: So, if you change the
17	area, the K changes.
18	MR. TREGONING: Yes, the baseline K can
19	certainly change.
20	CHAIRMAN WALLIS: My word, it's the sixth
21	significant figure.
22	MR. LETELLIER: Yes, very accurate.
23	CHAIRMAN WALLIS: That's amazing.
24	DR. BANERJEE: The smaller valve,
25	actually, the seat is shorter, that hole is smaller.
I	

```
(202) 234-4433
```

	94
1	MR. LETELLIER: Yes, both the ring, which
2	I'm showing here, and the stem, are both changed as a
3	mated pair.
4	DR. BANERJEE: You show the diagram there.
5	MR. CARUSO: Are you showing there that
6	diagram is a 45S 45L configuration.
7	MR. LETELLIER: Yes.
8	MR. CARUSO: And, the 5S and the 5L
9	configuration, is that the whole side of that stem
10	there, is that the entire seating surface, so it's got
11	a much larger seating surface?
12	MR. LETELLIER: It does, yes, it has a
13	much longer flow path.
14	MR. CARUSO: A longer flow path.
15	MR. LETELLIER: So, the geometry is very
16	different for these things. I don't know how the
17	changes with K the same K with a 45L has a
18	different flow length than a 5S and a 5L.
19	CHAIRMAN WALLIS: Sure.
20	MR. CARUSO: And, that would be
21	interesting to know, because that might tell you how
22	it is that some debris gets through and some doesn't.
23	CHAIRMAN WALLIS: Since nobody knows
24	what's happening, we can talk about this forever.
25	MR. LETELLIER: All of those aspects are
I	

(202) 234-4433

	95
1	quantified in the data report, as part of valve
2	characterization.
3	DR. BANERJEE: I think if we go back to
4	the data, it was quite interesting.
5	CHAIRMAN WALLIS: The data is interesting,
6	but the explanation is speculative.
7	MR. LETELLIER: Yes.
8	DR. BANERJEE: You have to start
9	somewhere.
10	CHAIRMAN WALLIS: It's very interesting
11	data to report on.
12	MR. LETELLIER: The next slide, Figure No.
13	16
14	DR. BANERJEE: One thing that you don't
15	show is the you had another S, there were two S's
16	in that diagram you showed us, there was a 45S.
17	MR. TREGONING: That was a typographical
18	error, as Bruce mentioned earlier, it should have been
19	a 45L. The seat area is the same size.
20	DR. BANERJEE: So, you had only one S.
21	MR. LETELLIER: Large and small, two
22	diameters, two different contact angles.
23	This next figure, perhaps, answers the
24	question your original, most recent question. It
25	presents the RMI single debris data in terms of the
I	I

(202) 234-4433

	96
1	gap size, and here we've done the geometry to convert
2	the stem setting to the cross sectional flow area, and
3	they are in the range of 1/16 to 1/8 inch in gap cross
4	section, and you can convert that to an annular area
5	to compute volumetric flows.
6	DR. BANERJEE: So, you show similar
7	trends.
8	MR. LETELLIER: It does. This is simply
9	an alternative presentation of the same data. We are
10	now
11	DR. BANERJEE: Oh, okay.
12	MR. LETELLIER: we are converting this
13	to be explicit in terms of the gap size.
14	CHAIRMAN WALLIS: Once you are above one,
15	it's not clear it's statistically significant.
16	MR. LETELLIER: Above one?
17	CHAIRMAN WALLIS: Once you are above one,
18	it looks as if below one it's less likely to block,
19	but, you know, four, and eight, and ten, are not
20	statistically different.
21	MR. LETELLIER: Keep in mind that the
22	symbols represent different quantities of debris in
23	combination with each stem.
24	CHAIRMAN WALLIS: So, some of the points
25	shouldn't be compared with some of the other points.
I	I

(202) 234-4433

	97
1	MR. LETELLIER: That's right.
2	You need to focus your eyes on a single
3	group of symbols.
4	DR. BANERJEE: So, all the S's still lie
5	below, right?
6	MR. LETELLIER: Yes.
7	DR. BANERJEE: The 5S group.
8	MR. LETELLIER: Yes, all the 5S's are
9	below the threshold of detection.
10	This presentation also gives you an
11	impression of the relative size of the debris
12	fragment. Remember, the RMI are discreet dimensions,
13	and the gap can be a range, a continuous range. And
14	so, we are increasing the actually, as we proceed
15	across the figure to larger ratios, we are physically
16	reducing the gap. We are closing the valve.
17	CHAIRMAN WALLIS: 10g means gallons per
18	minute or something?
19	MR. LETELLIER: No, the units are gap
20	size.
21	CHAIRMAN WALLIS: In grams, or what's 10g?
22	MR. TREGONING: 10g is the mass of loading
23	of the RMI, so that was 10 grams.
24	CHAIRMAN WALLIS: But, the flow rates are
25	different for all of these experiments? I don't know
I	1

(202) 234-4433

	98
1	what to say then.
2	MR. TREGONING: No, they are all
3	nominally.
4	CHAIRMAN WALLIS: They are all the same
5	flow rate.
6	MR. TREGONING: 75 gpm.
7	CHAIRMAN WALLIS: Nominally, but they
8	change slightly as you go up in K, right, but that's
9	not the first order of it.
10	MR. TREGONING: Pressure is certainly much
11	more sensitive.
12	CHAIRMAN WALLIS: So, this could be
13	presenting increase in pressure drop.
14	MR. TREGONING: Yes. In many cases there's
15	a direct correlation.
16	CHAIRMAN WALLIS: Well, it's the same flow
17	rate, that's what it is. We are talking about a
18	difference between five and 50. Okay.
19	MR. LETELLIER: You are exactly right, the
20	previous figure is more
21	MR. TREGONING: Let's not go backwards.
22	MR. LETELLIER: Let's move ahead to the
23	single debris NUKON tests, which we have more limited
24	data. It shows a positive correlation, as we
25	increased the mass of the loading in a charge, a slug
Į	

(202) 234-4433

	99
1	of debris, we tend to have higher amount of retention,
2	a higher percent increase in K.
3	DR. DENNING: But now, the 5S valve still
4	is by far the best.
5	MR. LETELLIER: Now shown as diamonds,
6	it's by far the best.
7	There's actually
8	DR. DENNING: There's something weird
9	going on.
10	MR. LETELLIER: I agree, I'm not prepared
11	to say that it's anomalous, but I think it is
12	interesting, and it's worthy of it's worthy of
13	comparison now to the actual plant configurations,
14	what do the valves look like, why could this be
15	atypical compared to plant performance.
16	Although the data are sparse, these are
17	reasonably well behaved trends. The X is for the 45
18	large stem show a nice proportionality, as do the 45
19	large and the 5 large.
20	CHAIRMAN WALLIS: This mass of NUKON, is
21	that the amount that gets stuck in the valve now?
22	MR. TREGONING: No, that was the amount
23	that was introduced at the beginning of the test, that
24	was the charge.
25	MR. LETELLIER: Yes, these are the amounts
ļ	I

(202) 234-4433

	100
1	introduced.
2	DR. BANERJEE: But, you do have a measure
3	of how much was stuck, from a post test exam, right?
4	MR. LETELLIER: Yes.
5	The RMI pieces are easy to count.
6	CHAIRMAN WALLIS: The other graphs were
7	for based on the amount that got stuck.
8	MR. LETELLIER: That was for RMI, which is
9	easy to count.
10	CHAIRMAN WALLIS: Right.
11	MR. LETELLIER: For the NUKON, it's much
12	harder to recover all of the residue, but we do save
13	and dry that. It's reported.
14	MR. TREGONING: The mass loadings, and
15	there's legends where the amounts was the mass
16	introduced.
17	CHAIRMAN WALLIS: Yes, those are the ones,
18	I can see that.
19	MR. TREGONING: Yes.
20	MR. LETELLIER: Moving on to the two
21	component mixtures, just some overview observations.
22	CHAIRMAN WALLIS: I don't know how to
23	translate RMI pieces to grams.
24	MR. LETELLIER: Yes.
25	CHAIRMAN WALLIS: Okay, sorry.
Į	

(202) 234-4433

	101
1	MR. LETELLIER: 50 grams is a handful.
2	CHAIRMAN WALLIS: 50 grams is a handful?
3	Okay, 50 grams is a handful.
4	MR. TREGONING: I don't think that
5	conversion factor is going to be sufficient for Dr.
6	Wallis. That is in the report. We do I just can't
7	pull the number off the top of my head.
8	CHAIRMAN WALLIS: No, you don't have this.
9	MR. TREGONING: No, like I said, we'll be
10	submitting the report shortly.
11	MR.LETELLIER: Some overview observations
12	of two component mixtures. Compared to single test
13	single debris tests, the CalSil-RMI mixtures were the
14	only combination that exhibited a clear increase in K,
15	compared to introducing them by themselves.
16	The other pair-wise combinations were not
17	as evident.
18	DR. BANERJEE: CalSil-RMI, that's a weird
19	one.
20	MR. LETELLIER: Given that you have RMI
21	lodged in the valve, it was effective that
22	accumulating CalSil
23	DR. BANERJEE: But, the CalSil is so
24	small.
25	MR. LETELLIER: But again, this RMI is

(202) 234-4433

	102
1	bent, so there's plenty of trapping pockets, you know,
2	DR. KRESS: Yes, but I would have thought
3	NUKON combination with CalSil would have been a bad
4	combination.
5	CHAIRMAN WALLIS: Yes, you would have
6	thought.
7	DR. BANERJEE: That's the danger of
8	engineering judgment.
9	MR. LETELLIER: We would have thought as
10	well. The data are admittedly sparse in that regard.
11	It deserves further comparison, but it's clearly
12	evident in the information that we do have.
13	The mixtures of fiberglass and RMI, and in
14	the CAlSil-NUKON, they did not differ significantly
15	from the analogous separate tests, except for one
16	exploratory case where we've literally packed the
17	chamber with CalSil-NUKON to what you might consider
18	to be an unrealistically high we physically could
19	not fit anymore into the chamber, and in that case
20	MR. TREGONING: It was unsieved, though,
21	I think that was the other key component. So, it
22	still had binder in the CalSil, as well as there was
23	some initial clumping.
24	MR. LETELLIER: So, page 19 shows mixed
25	RMI-NUKON.
I	I

(202) 234-4433

	103
1	CHAIRMAN WALLIS: Where's the one that
2	showed the clear increase in K? That's a single test.
3	MR. TREGONING: Yes, there was only a test
4	or two of that RMI-CalSil mixture, so that
5	CHAIRMAN WALLIS: With this kind of stuff
6	it's difficult to conclude anything from one test,
7	right?
8	MR. LETELLIER: We would agree. That's
9	why we noted that as an exception and have not
10	presented it.
11	CHAIRMAN WALLIS: You presented your test
12	on this figure here, conclude what you want to
13	conclude, if you are basing it all on one test.
14	DR. BANERJEE: But, you don't show the
15	small stem.
16	MR. LETELLIER: On the previous slide for
17	the small stem?
18	DR. BANERJEE: No, I mean
19	DR. SHACK: On the mixed debris test, you
20	don't seem to have tested the small stem, or at least
21	it's not on this graph.
22	CHAIRMAN WALLIS: It's not on this graph.
23	This is a funny trend, because if the valve opening is
24	zero you'd expect a percent increase in K to be
25	infinite, or huge.
ļ	I

(202) 234-4433

104 1 MR. LETELLIER: No, it's a percent 2 increase. 3 CHAIRMAN WALLIS: A very tiny opening 4 would get blocked up. 5 MR. LETELLIER: No, this is a differential, 6 it's a comparison of the clean 7 configuration, you essentially have a ratio of zero 8 over zero. 9 CHAIRMAN WALLIS: That's what I mean, 10 that's what I mean, though, a very small gap, which has trapped all the debris, would surely give you a 11 figured percent increase. 12 No, because that graph --13 MR. LETELLIER: MR. TREGONING: But, that gap in the clean 14 15 condition would have had high K initially. 16 CHAIRMAN WALLIS: You are talking about 17 percent increase. MR. TREGONING: Right, compared to the 18 19 baseline of the clean condition. 20 CHAIRMAN WALLIS: If it traps all the 21 debris, a percent increase you'd think would be --22 Yes, that's why engineering DR. BANERJEE: 23 judgment is bad, that's what you would have been 24 thinking, and I would have thought. 25 CHAIRMAN WALLIS: I'm still thinking. Ιt

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	depends, I think, on the experiment, and how much
2	stuff you put it, for how long, it's a very small gap.
3	If you put in enough stuff for long enough it's going
4	to fill the pipe and everything else, and it won't let
5	anything through, and that's sort of the limiting
6	case.
7	MR. TREGONING: Potentially.
8	CHAIRMAN WALLIS: And, then, it's going
9	then you are going to apply your 2,200 pair size,
10	squash all that stuff.
11	Well, that's my engineering judgment.
12	DR. BANERJEE: How long were these tests
13	run for?
14	MR. LETELLIER: These tests, from the time
15	the debris are introduced to the time it passes
16	through, is only a few seconds. It literally is
17	flushed through the valve.
18	DR. BANERJEE: It's introduced as a pulse.
19	MR. LETELLIER: It's introduced as a
20	pulse.
21	DR. BANERJEE: And, when you have the very
22	small gap openings, do you, basically, capture all the
23	RMI there that goes through?
24	MR. LETELLIER: No.
25	MR. TREGONING: We had question earlier
Į	1

	106
1	for Dr. Wallis, 10 to 30 percent, less than 50 percent
2	certainly, even in the most cases with the highest
3	amount of capture.
4	CHAIRMAN WALLIS: I think actually that
5	what I said was probably reasonable, because I can
6	take your black diamonds and extrapolate, and it's
7	increasing, it's increasing K going up, as you go down
8	in the valve opening. The points that are .05 are all
9	for different kinds of valves from the other ones, so
10	you can't extrapolate anything based on just looking
11	at the data here, because different valves are the
12	different flow rates.
13	MR. LETELLIER: It's critical to keep in
14	mind what configuration you are looking at.
15	CHAIRMAN WALLIS: Why did you do that?
16	Why didn't you test the same valve at three flow
17	rates?
18	MR. TREGONING: There's a range of
19	settings there's a range of settings and gap sizes
20	out in the plants, we wanted to at least look at that
21	range.
22	CHAIRMAN WALLIS: But, you are doing
23	science here as well, you are trying to understand.
24	DR. BANERJEE: They are not.
25	MR. TREGONING: The initial objective was
l	I

(202) 234-4433

	107
1	just to determine if we could get blockage in these
2	configurations.
3	MR. LETELLIER: Under representative plant
4	configurations.
5	Now that we
6	CHAIRMAN WALLIS: Well, I guess if someone
7	else brings in a different valve then you have to test
8	it. There's no theory of anything, no predictive
9	capability. If someone changes the opening in the
10	valve then they have to do an experiment.
11	MR. LETELLIER: No, let me say first that
12	now that we have evidence of potential blockage, this
13	is the time to understand it to drive the system.
14	CHAIRMAN WALLIS: This is like the ICET
15	test, you are just trying to see if something happens,
16	and then you are going to go and make it quantitative
17	later.
18	MR. LETELLIER: That was our initial
19	objective, to see if it was possible
20	CHAIRMAN WALLIS: Right.
21	MR. LETELLIER: to block.
22	DR. BANERJEE: Now, coming back to this
23	question of the valve opening, when you have very
24	small valve openings, you have a much higher velocity
25	through there, right?
	1

(202) 234-4433

	108
1	MR. LETELLIER: Yes.
2	CHAIRMAN WALLIS: You have the same
3	pressure, you have the same velocity.
4	MR. TREGONING: For a given flow rate.
5	CHAIRMAN WALLIS: Ah.
6	DR. BANERJEE: Given the flow rate is
7	constant.
8	MR. LETELLIER: That's what's critical to
9	the plant, is to maintain flow.
10	DR. BANERJEE: So then, if you have a
11	piece of RMI or something, potentially, you could
12	deform it because of the higher forces due to the
13	velocity head, and, perhaps, that's the effect,
14	speculating. You see what I mean, let's say you get
15	a piece that comes up against that gap, and you have
16	over five velocities, so, potentially, it could
17	deform, whereas at a low velocity just sit there and
18	sort of hang out.
19	CHAIRMAN WALLIS: So, what controls the
20	flow rate in this then, you say it's all the same
21	flow, in the plant what controls the flow rate? You
22	run the pump, and doesn't this control the flow rate,
23	this valve?
24	MR. LETELLIER: It does, the power plant
25	actually has an enormous capacity for delta P, for
I	I

(202) 234-4433

1 driving the system --2 CHAIRMAN WALLIS: But, that would mean you 3 would have to run the pump at a different speed or 4 something? You've got a pump curve, the flow rate you 5 get depends on the setting of the valve, doesn't it? These are independent variables, you can't say we are 6 7 going to keep the valve opening -- the flow rate 8 constant to vary the valve opening. 9 LETELLIER: These are typically MR. 10 constant speed pumps that rely on the valve throttle. CHAIRMAN WALLIS: So, you have a pump 11 curve, so as you change the valve opening you change 12 the flow, which is the problem with the low flow rate, 13 14 the small clearance, you also get a low flow rate. 15 DR. BANERJEE: Well, your pump cover is

like this, right, so here --16

17 CHAIRMAN WALLIS: I don't know what my 18 pump cover is like.

19 DR. BANERJEE: -- well, let's assume it 20 looks like a normal pump, okay, it's kind of flattish 21 and it falls off. If you are in the flat portion --22 CHAIRMAN WALLIS: Then you've got a 23 constant flow rate? 24 DR. BANERJEE: -- more or less. 25 CHAIRMAN WALLIS: But, when you throttle

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

109

	110
1	down you are in the other part.
2	DR. BANERJEE: I don't know where they
3	are.
4	CHAIRMAN WALLIS: Anyway, that's another
5	that's the engineering study of this.
6	We don't want to interrupt you anymore.
7	We've made the point, I think.
8	MR. LETELLIER: Let's move on to the
9	overview for three component mixtures, slide 20. In
10	this case we are introducing all three of our debris
11	types in different sequences, in order of
12	introduction, and find that in this case there are
13	apparent increases in valve blockage compared to the
14	analogous single debris tests by themselves. But, no
15	particular order of introduction seems to give us
16	marked differences.
17	CHAIRMAN WALLIS: I'm sorry, I want to go
18	back to this. You did all these tests at constant
19	flow rate?
20	MR. LETELLIER: They were initialized at
21	the same flow rate, and then they were measured.
22	CHAIRMAN WALLIS: I would want to go back
23	to NRR and say, in the plant how does the flow change
24	as you change the valve opening. Then you could
25	figure out, perhaps, something a bit more realistic in
	I

(202) 234-4433

	111
1	relation to the real problem?
2	MR. LETELLIER: We have been asking and
3	searching for those reality checks, if you will.
4	CHAIRMAN WALLIS: You were aware of this
5	then.
6	MR. LETELLIER: I wouldn't say that,
7	actually. We have not gotten all of the information
8	that we needed to make the best possible choice of
9	flow conditions and valve geometries.
10	CHAIRMAN WALLIS: This seems to be a
11	problem then, getting them you guys are doing
12	research, you need to have access right away to the
13	necessary information.
14	MR. LETELLIER: It's not that we haven't
15	tried, the staff has pursued all avenues to obtain
16	more quantitative information. Largely, it comes from
17	anecdotal discussions with the industry reps.
18	CHAIRMAN WALLIS: But, the rule of thumb
19	is that half of what you hear anecdotally is wrong.
20	MR. LETELLIER: And, half right.
21	DR. BANERJEE: But, don't they have specs,
22	tech specs, and things which give this stuff?
23	MR. LETELLIER: Flow rate is a technical
24	specification, but the particular valve design is not
25	specified uniquely.
	I

(202) 234-4433

	112
1	DR. BANERJEE: Right, but they provided
2	whatever it is, it's documented, enormous piles of
3	stuff of there's.
4	MR. TREGONING: I think we've reached a
5	clear limitation if we you know, and especially
6	given the time constraints that we've got, you know,
7	if we want to have a more in-depth presentation on
8	throttle valve performance how the specs, what
9	information we have, versus we don't have, I suggest
10	we either defer that either to the next May committee
11	meeting or set up a separate subcommittee meeting.
12	CHAIRMAN WALLIS: Well, we are going to
13	probably have a meeting on downstream effects anyway,
14	correct?
15	MR. TREGONING: It sounds like that was
16	potential.
17	MR. CARUSO: We are scheduled to have
18	another meeting like this in June, so that might be a
19	good time to
20	MR. TREGONING: Potentially, I mean, so if
21	that's a topic that we want to pursue, we could I
22	would offer
23	CHAIRMAN WALLIS: I'd like to see the NRR
24	timeline that says by a certain time we will have
25	resolved this issue, by a certain time we will have
I	I

(202) 234-4433

	113
1	resolved that issue, and this issue, and depending on
2	what happens in these tests we are going to have
3	various piles, we are going to go on.
4	At the moment, it seems higgledy,
5	biggledy, I mean, they are going to present something
б	to us in June, maybe something in September, maybe we
7	are going to say it's not good enough.
8	DR. BANERJEE: I think maybe the
9	downstream effects meeting should be earlier than
10	June.
11	CHAIRMAN WALLIS: As soon as possible, as
12	soon as possible.
13	MR. LETELLIER: Moving quickly through the
14	accumulation test, which was one of the more
15	interesting studies, it addressed a lot of the
16	questions you've raised about long-term accumulation
17	in a plant environment. This plant this test was
18	conducted over a period of three hours, with
19	sequential introductions of debris, at 15 minute
20	intervals, and the trace of data on slide 23 you can
21	see how the system responds to that in terms of delta
22	К.
23	We did see a steady increase, or rather,
24	a loss of performance over time, but each sequence or
25	each addition of debris did not necessarily give you

(202) 234-4433

	114
1	a measurable effect. So, in the broad picture,
2	there's evidence of accumulation, but it's not
3	deterministic in terms of the next incremental
4	quantity.
5	CHAIRMAN WALLIS: It seems to clear itself
6	to some extent.
7	MR. TREGONING: In some cases you saw
8	that.
9	MR. LETELLIER: It does.
10	MR. TREGONING: Yes.
11	CHAIRMAN WALLIS: From like a screen,
12	where it typically goes up and keeps on going up.
13	MR. LETELLIER: In this case, if we had
14	time to examine the pump curve you would see that the
15	differential pressures are increasing, and our pump
16	does have some capacity for that.
17	Also, the velocities are increasing, so it
18	self-scours, it tends to weaken any kind of mechanical
19	debris lodging and
20	CHAIRMAN WALLIS: Do you see evidence of
21	self-scarring at the end of the test?
22	MR. LETELLIER: What I'm saying is, the
23	velocities increase, so that there's the potential for
24	that explanation for this behavior.
25	CHAIRMAN WALLIS: Oh, that's a hypothesis.
	I

(202) 234-4433

	115
1	MR. LETELLIER: Yes.
2	DR. DENNING: Well, is it hypothesis or is
3	it pretty much clear that somehow the blockage must be
4	reduced? I mean, isn't it clear the blockage
5	MR. LETELLIER: It is clear that the
6	blockage was reduced, and it is a fact that both the
7	delta P and the velocities are increasing. So, if you
8	can speculate about the physical mechanics of what
9	occurs.
10	And finally, just the overview summary.
11	Just to recap, the screen the penetration rates and
12	the quantities were parameterized in this test for
13	various reasons. We did want to challenge the system
14	to the point of blockage. We were never able to do
15	that because of the limited volume of the chamber, the
16	debris chamber.
17	We had to do this because presently and
18	possibly there never will be a predictive capability
19	for debris generation transport and arrival times.
20	Also, there are sump screen and LOCA
21	specific dependencies that led us to choose a
22	parametric approach.
23	Our choice of a surrogate throttle valve
24	chamber proved to be effective for investigating these
25	phenomena. There's clearly room for improvement. For
l	

(202) 234-4433

	116
1	example, once the debris blockage occurred, I could
2	not tell you if it was physically trapped in the
3	throat or lodged in the chamber. But, we did achieve
4	a minimum blockage detection of about 5 percent of the
5	flow area, and again, there is no performance
6	standard, no standard for degraded performance. The
7	plant engineer will not tell you, is this acceptable.
8	We were simply characterizing the sensitivity of our
9	system.
10	DR. BANERJEE: But, if you get a 200
11	percent change in K, it goes as a square root with K,
12	the flow rate, so it's roughly
13	CHAIRMAN WALLIS: That's not so bad.
14	DR. BANERJEE: yes, who cares.
15	MR. LETELLIER: But again, that represents
16	a degraded flow condition, and the plant will not tell
17	you, the vendors will not tell you, am I safe, is this
18	acceptable.
19	DR. BANERJEE: That's a separate issue,
20	but your flow is going to drop by I mean, if you
21	change this by 200 percent, your flow will go with the
22	square root.
23	CHAIRMAN WALLIS: Depending upon your pump
24	cover.
25	DR. BANERJEE: Yes, if your pump cover is
I	

(202) 234-4433

	117
1	on the flat part.
2	MR. LETELLIER: That's correct.
3	DR. BANERJEE: So, it's not a big deal.
4	DR. DENNING: No, but what I think that
5	potentially is a big deal, I mean, we size the system
6	to you know, obviously, there's redundancy in this
7	kind of stuff, but, you know, I mean, I was asking
8	myself, you know, is it a big deal or isn't it a big
9	deal to see this, and I think that these are big
10	enough that one worries.
11	DR. BANERJEE: But, they should be
12	evaluated.
13	CHAIRMAN WALLIS: But you might fail to
14	meet some success criteria.
15	DR. DENNING: You might fail to meet a
16	success criteria.
17	DR. BANERJEE: On the surface the flow
18	will drop by
19	CHAIRMAN WALLIS: I'm trying to remember
20	what you said about the first bullet, there's no
21	predictive capability. Do you remember what you said?
22	MR. LETELLIER: No, sir.
23	CHAIRMAN WALLIS: I thought you said there
24	never will be. Did you say there never will be?
25	MR. TREGONING: I don't think he said
I	

(202) 234-4433

118 1 never will be. We'd have to go back and look at the 2 transcript, but I think he said --3 CHAIRMAN WALLIS: I don't need to look at 4 the transcript. 5 MR. TREGONING: -- not likely. 6 MR. LETELLIER: I did say perhaps. 7 CHAIRMAN WALLIS: So, what you meant to 8 say, if you said it never will be, was that it's 9 unlikely there will be? 10 MR. LETELLIER: I said perhaps there never will be a truly predictive --11 CHAIRMAN WALLIS: No, I missed the --12 MR. LETELLIER: -- capability. 13 14 CHAIRMAN WALLIS: -- perhaps, okay. 15 MR. TREGONING: It's an important omission, though. 16 17 MR. LETELLIER: But, there are obvious reasons why we had to parameterize it in this study. 18 19 conclude, all debris combinations То 20 except CalSil alone showed evidence of a blockage 21 potential. We are not judging severity, but we have 22 demonstrated that the phenomena exists, it can't 23 happen. There is clear evidence of accumulation 24 25 longer-term tests, and also corresponding over

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	evidence of self-cleaning by whatever physical
2	mechanism.
3	Our test blockage regimes did not exercise
4	the full range of our test pump, and, obviously, they
5	could not exercise the full range of the HPSI system.
6	DR. BANERJEE: I think you don't mention
7	one interesting thing you found, which was that the
8	upstream chamber to the stem configuration has an
9	effect on the results, and that seems to also hold for
10	CalSil, if I remember by just looking at the curves.
11	CHAIRMAN WALLIS: Now, if these things are
12	blocking the flow area, and if you go to higher
13	pressures than you have, and that distorts this
14	material and jams it into the gap, then we might
15	speculate that it would be difficult to close the
16	valve if you wanted to.
17	DR. DENNING: I don't think you want to
18	close the valve.
19	MR. LETELLIER: We have never intended
20	CHAIRMAN WALLIS: You never want to close
21	the valve?
22	DR. DENNING: Then you have total flow
23	blockage.
24	CHAIRMAN WALLIS: I don't know.
25	DR. DENNING: It would just exacerbate the
I	

(202) 234-4433

	120
1	problem.
2	CHAIRMAN WALLIS: You never want to close
3	the valve.
4	DR. DENNING: This particular valve, I
5	don't think you do.
6	DR. BANERJEE: Aren't there any blocked
7	valves after this is captured? There must be some
8	blocked valves or something, somewhere.
9	CHAIRMAN WALLIS: Some other valve in
10	series with this one, the shut-off valves.
11	DR. BANERJEE: Yes, but even if you look
12	at NUKON, the 5F series show a much lower percentage
13	increase in K. So, what you saw with RMI you see with
14	NUKON as well. So, it seems that there's something
15	interesting if you look at those diamonds and those
16	triangles.
17	DR. DENNING: It is dramatic.
18	DR. BANERJEE: What?
19	DR. DENNING: It is dramatic.
20	DR. BANERJEE: It's pretty dramatic, yes.
21	DR. DENNING: Particularly, since it's
22	kind of counter intuitive to me.
23	DR. BANERJEE: Yes, in fact
24	DR. SHACK: Big shoulders give you a place
25	to trap stuff.
ļ	1

	121
1	DR. BANERJEE: Yes, but
2	DR. SHACK: Instead of the valve itself.
3	DR. BANERJEE: Until you saw the results,
4	maybe, as I said, in a pre-experiment CFD calculation
5	you are a part of that, but without that I wouldn't
б	CHAIRMAN WALLIS: I'm not sure that CFD
7	can predict the orientation of these particles.
8	DR. BANERJEE: No, but it can get the
9	vortice.
10	CHAIRMAN WALLIS: But, it treats them as
11	spheres or something, which is completely wrong.
12	DR. BANERJEE: Whatever, but it doesn't
13	matter, it gives you the qualitative picture, and what
14	we look at is
15	CHAIRMAN WALLIS: Well, if you accelerate
16	an object, and acceleration is the only thing
17	happening, it tends to orient itself so the entire
18	mass is maximum. In other words, they will cross the
19	flow.
20	So, if you accelerate it very rapidly,
21	it's trying to turn across the flow, that may have
22	something to do with it.
23	DR. BANERJEE: But, what you see is,
24	generally, even in turbulence, that particles get
25	thrown out of vortices, which is why you get these
	I

(202) 234-4433

streaky structures. Turbulence doesn't actually mix, it's acting as a very good separator, and that's probably what you are seeing, is some segregation in the vortices.

5 DR. DENNING: I think now the \$64 question is, I think this was exploratory, now there are 6 7 results in, and so there's a question to research, and 8 then there may be questions to NRR, you know, what 9 does it mean, where do we go from here, do we now have 10 to have a predictive capability here to analyze this. Does it mean more? So I guess I'd ask Ralph, I mean, 11 12 what's your interpretation, where do we go from here, is there more research that's required now because 13 14 things have come up, or this is kind of what you 15 expected anyway.

MR. TREGONING: Yes, I think, you know, the next step is clearly to -- again, this was a surrogate generic study that was meant as a scoping study. The next step clearly is to look at these results and try to see how applicable they are, with consideration of plant specific or actual valve designs.

23 So, that's clearly the next step, and 24 that's something that we'll be certainly looking at 25 with interfacing or interacting with the industry

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	about.
2	DR. BANERJEE: And, whether these types of
3	pressure loss I mean, flow losses
4	CHAIRMAN WALLIS: I'm trying to think of
5	what it is
6	DR. BANERJEE: can be lived with or
7	not.
8	CHAIRMAN WALLIS: what it is you folks
9	would we have three hours of the full committee
10	meeting on these topics.
11	MR. TREGONING: Is that how long we are
12	scheduled for?
13	CHAIRMAN WALLIS: Three hours.
14	MR. TREGONING: Okay.
15	DR. KRESS: Total.
16	CHAIRMAN WALLIS: And, that means that
17	there may be up to two hours for presentation of these
18	research results, and I think it's important that you
19	present the committee sort of the results, not a lot
20	of not a lot of spending time describing the
21	history or how you shred it and all that, that might
22	come up. The thing is, what's the message, yes, we
23	have found something, we found an effect, we've got
24	some idea of what causes it, but, you know, here are
25	the gaps in our knowledge or something like that, so
I	1

(202) 234-4433

	124
1	we can see where you are and, perhaps, give some
2	advice about what needs to be done.
3	MR. TREGONING: For the main committee, we
4	would certainly focus on significant findings and
5	results, and some of the main themes. We could do
6	this globally for every research program, or we could
7	try to focus on
8	CHAIRMAN WALLIS: I would like you to do
9	it for the one that we didn't get to talk about today,
10	the bypass and the screen, give us an overview of that
11	one.
12	MR. TREGONING: So, for main committee, a
13	little bit more detailed overview with respect to the
14	bypass study, but
15	CHAIRMAN WALLIS: And, more concentration
16	on results and implications, and where do we go from
17	here.
18	MR. TREGONING: Do you want us to cover
19	all of the research areas in main committee or focus
20	on chemical effects?
21	CHAIRMAN WALLIS: Well, I think everything
22	we heard at this subcommittee from my point of view
23	was interesting, and the one that probably, from my
24	point of view, needs not quite so long attention is
25	the ability to predict the chemistry, but even that's
ļ	I

(202) 234-4433

	125
1	very interesting, the fact that you can predict the
2	chemistry, it's all important.
3	MR. TREGONING: Okay. We'll certainly
4	take that under consideration that's what we'll
5	plan to do then for main committee.
б	CHAIRMAN WALLIS: The fact that you can
7	predict the chemistry is maybe the most optimistic of
8	all the stories we've heard, so that's a good one to
9	put forward.
10	DR. SHACK: The other thing that seems
11	strange here is, the 45L, where you have the most
12	tests, seems to give you the most scatter. I mean,
13	I'm not sure that if we just ran more tests everything
14	would have an order of magnitude variation. That was
15	particularly more scattered for some reason.
16	MR. LETELLIER: The 45L has a much shorter
17	flow path length. As you raise it above the ring,
18	then the flow geometry changes much more rapidly than
19	in the shallow angles. It's a much longer valve
20	contact surface, actually.
21	MR. TREGONING: But, if you look at the
22	data, a lot of times we saw this with 45L, it's almost
23	like a bifurcation occurs, where
24	DR. SHACK: Well, I'm looking at the mixed
25	RMI-NUKON one, where I go from 5 percent to 55
I	I

(202) 234-4433

	126
1	percent, and, you know, it's just stacked up.
2	MR. TREGONING: Even there, I mean
3	DR. SHACK: Well, there's those two, and
4	then there's the two up there.
5	MR. TREGONING: Right, so in many cases
6	with the 45L we saw, again, almost a bimodal or
7	bifurcation type of behavior.
8	DR. SHACK: Oh, I see, you are saying it
9	either does or doesn't.
10	MR. TREGONING: You reach these
11	configurations where you start to get accumulation,
12	and then they become just very efficient catchers at
13	that point. In some ways it's analogous to what you
14	see across or it may be analogous to what you see
15	with respect to head loss through a bed, where you
16	DR. SHACK: Well, of course now, with the
17	mixture one you've got three points spread.
18	MR. TREGONING: Yes, the mixture one is
19	spread
20	CHAIRMAN WALLIS: Yes, be careful about
21	going bimodal and getting anything into that.
22	MR. TREGONING: Well again, I don't want
23	to over sell it, but it is interesting that not only
24	for these for at least these tests, but you see it
25	in a lot of the debris tests
Į	I

(202) 234-4433

	127
1	CHAIRMAN WALLIS: We can take bets on when
2	you do the next black diamond test, where it's going
3	to be.
4	MR. TREGONING: We've got a pretty good
5	range here.
6	CHAIRMAN WALLIS: I think we should stop
7	and have a break. I was hoping we could take a break
8	earlier, but we'll take a break until 11:05, and then
9	we will hear the next presentation, which is due to
10	take about an hour. We hope to finish by noon. I
11	think some committee members have to leave. We are
12	taking a break now, 15 minutes, 11:05.
13	(Whereupon, at 10:50 a.m., a recess until
14	11:04 a.m.)
15	CHAIRMAN WALLIS: The last, but not least,
16	is a discussion of the transportability of coatings
17	debris.
18	MR. GEIGER: Yes, thank you, sir.
19	CHAIRMAN WALLIS: Please, go ahead.
20	MR. GEIGER: Good morning. My name is
21	Ervin Geiger. I'm with the Office of Nuclear
22	Regulatory Research, Division of Engineering
23	Technology, until the 19th of this month anyway when
24	the name changes.
25	I'm new to the NRC, this is the first time
	I

(202) 234-4433

I've had the opportunity of speaking to this group. I'm the Project Manager, I'm the NRC's eye for this transport research.

4 My previous experience has been 30 years 5 in the nuclear industry working for Bechtel Power, and I'm a Mechanical Engineer by training. 6 I've been 7 involved in a number of initial plant designs back in the '70s, I started in '75, so '75 through '85 I did 8 9 a number of nuclear plant designs. And after that, when the construction sort of went into maintenance 10 work, primarily in steam generator replacements on 11 PWRs, and as part of that we did a lot of studies on 12 some blockage, where we'd replace the insulation on 13 14 the primary piping, the mainstream piping, and steam generators, we did a lot of evaluations on transport 15 16 to the sumps, and that's how we selected the types of insulation. A lot of times we selected the RMI 17 because that wouldn't transport to the -- as much as 18 19 the blanket, where we felt there was plenty of margin 20 in the sumps we chose blanket, because of its thermal 21 efficency, if installation and also ease and 22 maintenance.

23 With me is Anne Fullerton, from the Naval 24 Surface Warfare Center in Carderock, Maryland, and 25 they are -- that's the lab that's actually doing the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

	129
1	conducting the testing for us. I'll let Anne say
2	a few things about her experience.
3	MS. FULLERTON: Thanks, Ervin.
4	Like Ervin said, I'm from the Naval
5	Surface Warfare Center, Carderock Division. I work in
6	the Special Projects Group of the Maneuvering and
7	Control Division, and somebody said yesterday, what do
8	like these projects here have to do with the Naval
9	Surface Warfare Center, how is that like a ship?
10	That's a very good question. But to us
11	CHAIRMAN WALLIS: Well, if a ship ever
12	turns into a lot of debris it might
13	MS. FULLERTON: That's about it, which is
14	an even bigger problem.
15	So, to us, it's just another hydrodynamics
16	problems, and in the Special Projects Group we tend to
17	do a lot of different kinds of research, mostly in
18	support of ship design, but some things that are more
19	of just the hydrodynamics problems. So, to us, this
20	was interesting. It was something we could do, and we
21	were happy to help out.
22	I've been at the Naval Surface Warfare
23	Center for about a year. Previous to that I was at
24	Stevens Institute of Technology. I was a graduate
25	student there, so I have a Ph.D. in Ocean Engineering,
ļ	I

(202) 234-4433

	130
1	where I did other problems related to hydrodynamics.
2	So, that's a little bit about my background.
3	MR. GEIGER: Okay, thank you.
4	The purpose of the study was just to study
5	the behavior of debris coatings debris in water,
6	whether it was stagnant water or moving water, as it
7	would be in a containment or in a LOCA.
8	CHAIRMAN WALLIS: Do you worry about how
9	they react when they come near objects? I mean, if
10	they are flowing in the containment building, they go
11	down staircases, and around walls and all kinds of
12	things.
13	MR. GEIGER: This study involved primarily
14	how it behaves in still water, in other words, when it
15	landed on the surface how quickly it
16	CHAIRMAN WALLIS: So, how they behave in
17	a pool maybe.
18	MR. GEIGER: How they behave in a pool,
19	and then also under flow conditions, actually, with a
20	steady stream flow, we didn't look at turbulences or
21	anything, we just looked at flow rates, so one
22	direction was flow.
23	CHAIRMAN WALLIS: Some of these flows on
24	floors may be fairly shallow streams.
25	DR. BANERJEE: How fast were the flows,
I	I

(202) 234-4433

	131
1	were they turbulent? I mean, were they
2	MS. FULLERTON: No, they weren't that
3	fast.
4	MR. GEIGER: They were not that fast, no.
5	CHAIRMAN WALLIS: What was their Reynolds
6	number?
7	MS. FULLERTON: We didn't calculate the
8	Reynolds number. The tank was about 30 feet long,
9	with a three foot by three foot cross section, and the
10	fastest we went was about one foot per second.
11	CHAIRMAN WALLIS: So, it's a high Reynolds
12	then.
13	DR. BANERJEE: Very high Reynolds.
14	MS. FULLERTON: Yes.
15	DR. BANERJEE: Very turbulent.
16	CHAIRMAN WALLIS: Unless you smooth it
17	very carefully at the inlet, in which case it might
18	not develop.
19	MS. FULLERTON: Yes.
20	DR. BANERJEE: Most likely it was very
21	turbulent.
22	MR. GEIGER: Most likely further down,
23	yes.
24	DR. BANERJEE: No, one foot high
25	MS. FULLERTON: Three feet high.
I	

(202) 234-4433

	132
1	DR. BANERJEE: three feet high.
2	CHAIRMAN WALLIS: It's a really high
3	Reynolds number.
4	DR. BANERJEE: It's a very high Reynolds
5	number.
6	MR. GEIGER: Actually, when we get into it
7	we'll show you some diagrams of what it looks like.
8	It's kind of a unique setup that we had because of the
9	facilities they had. It was rather interesting.
10	DR. BANERJEE: The reason we ask is
11	settling
12	MR. GEIGER: Settling, yes.
13	DR. BANERJEE: is very dependent on the
14	turbulence.
15	MR. GEIGER: Yes, I understand.
16	And again, you know, we had discussed a
17	number of times what the reasons for these studies
18	are, and this is, again, a safety evaluation, it
19	considers all of the unqualified coatings in a
20	containment, plus the qualified failed coatings in the
21	containment to transport to the sump during a loss of
22	coolant accident.
23	So, what we are trying to do is to see how
24	conservative this assumption is, and historically a
25	number of nuclear plants have not experienced failures
I	

(202) 234-4433

	133
1	in the coatings. Initially, the plants had what we
2	considered qualified coatings. They did a DBA test,
3	temperature, radiation, and pressure, but those were
4	all the initial tests, and they verified that over
5	those conditions the coating will stay on the wall.
6	Of course, these days there have been plants where the
7	coating is actually failing prematurely, and there's
8	a lot of studies to look into why this is happening.
9	Of course, this was not part of this study. What we
10	were looking at is what happens to these coatings when
11	they actually end up on the containment floor, and
12	then how are they transported, if they are
13	transported.
14	The information gathered from these tests
15	will aid in assessment of the response to GL 2004-02,
16	and further, some of this information we gathered can
17	actually be used to look at the sump screens, and come
18	up with parameters for seeing how the flows will
19	affect or maybe affect the design of the sump screen,
20	so it could be used for that.
21	CHAIRMAN WALLIS: So, are you going to
22	I don't think you are going to show us how it can be
23	actually used to make plant-specific predictions.
24	MR. GEIGER: Well, the data we gathered is
25	very generic in nature, as to how so, what we did
ļ	I

(202) 234-4433

(202) 234-4433

	134
1	was, we studied if a coating landed on a surface,
2	and the different types of coatings, what would
3	happen, how long would they stay on the surface, would
4	they sink, and if they sink while the stream is
5	moving, how long it took them to actually reach the
6	bottom, and then what would happen when they did that.
7	So, that was all
8	CHAIRMAN WALLIS: So, you think all this
9	could somehow be put together to provide a method for
10	predicting what happens in a containment?
11	MR. GEIGER: Yes. These could all be, you
12	know, contribute to that sort of an evaluation.
13	The testing is complete in the lab, and
14	the data is now being analyzed and evaluated. We took
15	an awful lot of data, so it's taking quite a while to
16	put it all in a format that we are sure we can present
17	it.
18	The NUREG is scheduled to be published
19	some time this fall, fall of 2006, so we are moving
20	pretty well along with it.
21	DR. BANERJEE: You looked at qualified and
22	unqualified.
23	MR. GEIGER: Yes, we did.
24	CHAIRMAN WALLIS: But, your sizes, they
25	are like flakes, they are not the tiny little
I	I

(202) 234-4433

	135
1	particles that we heard about yesterday.
2	MR. GEIGER: Well, they range, yes, and I
3	will pass we tested what we did, the concept for
4	the testing was, it's a not plant-specific test. We
5	are looking at gathering, you know, just establishing
б	certain parameters on behavior of these coatings, that
7	then could be applied in a number of ways. Okay, it's
8	just basically a study of what happens to coating
9	chips different types of coating chips, sizes, and
10	densities. So, we looked at we studied
11	DR. BANERJEE: Inside the ZOI or outside
12	the ZOI?
13	MR. GEIGER: Anywhere.
14	DR. BANERJEE: Anywhere.
15	MR. TREGONING: Primarily, outside the
16	ZOI, I mean, within the ZOI assumptions are made that
17	it's particulate.
18	MR. GEIGER: Yes, what we studied is, we
19	did the the assumption is that in the ZOI, the
20	paint is basically small, micron size, right, okay, so
21	we didn't study those because when we did this
22	facility we didn't have the capability anyway, it
23	really wasn't the intent to study that, because all
24	those particles are assumed to go to the sump, it
25	would be entrained, so what we are looking at is
ļ	I

(202) 234-4433

	136
1	larger particles that were outside the ZOI but maybe
2	on the floor from previous failures, or could be
3	washed off the walls and structures by spray. So,
4	that was really the intent of this study.
5	MR. TREGONING: And, the concern now is
6	with ECCS, there's a very conservative assumption that
7	says any unqualified coatings, or previously qualified
8	coatings that have visual evidence of degradation, are
9	assumed to fail. So, that can be a very large coating
10	loading potentially that needs to be designed around.
11	So, transportability was obviously an obvious question
12	for these, and those failures are expected to be
13	larger size than just particulate.
14	DR. BANERJEE: Yesterday we heard from the
15	industry, right, about the experiments they've been
16	doing.
17	MR. TREGONING: Well, yes.
18	DR. BANERJEE: So
19	MR. TREGONING: Initiating. These are
20	complimentary, because they are looking at more
21	failure mechanisms and failure amounts. These are
22	looking at transportability.
23	Did you want to say something, Matt?
24	MR. YODER: Yes. As I said yesterday,
25	this testing is confirmatory testing.
	I

(202) 234-4433

	137
1	CHAIRMAN WALLIS: You have to identify
2	yourself for the record.
3	MR. YODER: I'm sorry, Matt Yoder, from
4	NRR.
5	This is confirmatory testing, so as I said
6	yesterday, if the licensee were to take exception to
7	the position the staff has and they were to try to
8	assume some debris characteristic size of a chip, and
9	then try to save it, that would not transport, or
10	would only transport X distance in their containment.
11	This is the testing that the staff would
12	use to inform our evaluation of that.
13	DR. BANERJEE: And, in fact, in this pre-
14	testing, if I recall, it didn't measure the particle
15	size.
16	MR. YODER: Again, the testing you are
17	referencing was just of unqualified coatings.
18	DR. BANERJEE: Yes.
19	MR. GEIGER: And, that wasn't transport
20	testing, that was just to see if it failed.
21	DR. BANERJEE: Yes, I realize what it was,
22	so this is complimentary.
23	MR. GEIGER: Yes, this is complimenting
24	that, yes.
25	MR. TREGONING: But again, Matt had a good
ļ	I

(202) 234-4433

	138
1	clarification. This is intended, primarily, for
2	informing the staff on the evaluations.
3	MR. GEIGER: So to continue, we studied
4	five different coating systems, and I will discuss
5	them in the next few slides, and we brought some
6	samples we'll pass around to show you what we did.
7	We studied the three sizes ranging from
8	two inch down to 1/64 inch in size, and the debris
9	shapes were random. We had randomly generated the
10	shapes in a commercial blender, and we tested curled
11	chips, flat chips, and some we did temperature curing
12	to
13	CHAIRMAN WALLIS: So, you chopped up these
14	sheets of paint and then you somehow segregated them
15	into the different groups by not by picking out
16	each one.
17	MR. GEIGER: By chipping and sieving.
18	MS. FULLERTON: No, we used sieves.
19	MR. GEIGER: So, the samples were
20	manufactured by applying the coatings to a
21	polyethylene sheet, and letting it cure, and then it
22	was peeled off, and then broken into sections and
23	shipped to us.
24	DR. BANERJEE: So, this was almost like a
25	parametric study, not necessarily what you expected
I	1

(202) 234-4433

	139
1	would happen in the steam environment at LOCA
2	conditions.
3	MR. TREGONING: Yes, this is totally
4	parametric. All the testing was not was done at
5	room temperature water, so it was not done at LOCA,
6	under LOCA pool conditions.
7	DR. BANERJEE: But we haven't seen a
8	report on this yet.
9	MR. TREGONING: You are not even going to
10	see data on this.
11	MS. FULLERTON: No, we just finished this
12	at the end of January.
13	MR. GEIGER: We just finished the testing.
14	MR. TREGONING: This is as fresh as fresh
15	can be.
16	MR. GEIGER: We are anxious to see, you
17	know, we are anxious to get it out to everybody, so we
18	are working diligently on it.
19	The chips, as they were applied, there's
20	a range of specific gravities, and they range from one
21	for the alkyd to about 2.6 for zinc epoxy system, and
22	we studied different thicknesses, these were applied,
23	we have a one coating system for 1 to 3 mls, and then
24	we also have a six-coat epoxy which we studied, which
25	is a much thicker chip, and then we studied it in
I	1

(202) 234-4433

	140
1	water velocities where we had stagnant water in a
2	stagnant pool, and then we had velocities up to one
3	feet per second.
4	So, Anne is going to pass around the
5	samples.
6	DR. BANERJEE: There are all sorts of
7	alkyds, right?
8	MR. GEIGER: Oh, yes, there are.
9	DR. BANERJEE: Each manufacturer does a
10	different one, correct?
11	MR. GEIGER: There's many formulations, so
12	we couldn't really and that's why this is
13	parametric, because there's so many formulations of
14	epoxy, the alkyds, the zincs, so that it would be
15	pretty much impossible to study them all. So, what we
16	did was, I mean I think the primary mechanism that's
17	involved is the specific gravities, as to how readily,
18	you know, it sinks, and then the shape factor, and
19	just the thickness, which is part of shape factor, so
20	those will contribute quite a bit to the
21	characteristics of how it will flow.
22	MR. TREGONING: And the size, those were
23	the principal variables.
24	MR. GEIGER: And the size, thank you.
25	MR. TREGONING: So, yes, we couldn't test
I	I

(202) 234-4433

	141
1	everything, so we tried to span the range of
2	DR. BANERJEE: So, you took some
3	representative alkyd and
4	MR. TREGONING: yes, it was certainly
5	representative, and again, it would have had a density
6	similar to most, or specific gravity similar to most
7	other alkyds.
8	MR. GEIGER: And, we picked the
9	manufacturer that we found was used quite a bit in the
10	plant, and this was all unqualified. The alkyd was an
11	unqualified coating.
12	DR. BANERJEE: So, let me try to
13	understand this, because if I was in industry, I would
14	try to take my piece of alkyd or something, do a
15	little test on it, see how much came off, and then
16	have some characterization of particle size.
17	MR. GEIGER: Correct.
18	DR. BANERJEE: And then, you would have
19	some sort of relationship that I could use to find out
20	how much would get to my screen. Is that the whole
21	because they don't seem to be doing that part of the
22	testing, they are only doing
23	MR. GEIGER: No.
24	DR. BANERJEE: how much falls off,
25	right?
	I

```
(202) 234-4433
```

	142
1	MR. GEIGER: Right.
2	DR. BANERJEE: At the moment, that's what
3	they seem to be doing, unless they are doing also some
4	transport stuff, I don't know.
5	MR. YODER: Matt Yoder, let me I think
6	what you see is for a study like what you've been
7	referencing for the past couple days, the EPRI report,
8	where they have some rough idea of the particle size
9	you expect, to make some kind of analysis, and that
10	may or may not include testing to say that those
11	particles will transport or not. And, the staff would
12	use this testing to say whether we found that credible
13	or not.
14	DR. BANERJEE: All right.
15	MR. TREGONING: There has been prior
16	transport testing of coatings that have been done
17	historically, so this isn't the only study of its
18	kind, by any stretch of the imagination. And, I think
19	a lot of the plants, as Matt said, once they get their
20	loading they would use CFD with some assumptions to
21	determine really what transports or not.
22	MR. CARUSO: Quick question. Which one of
23	these samples is the highest density?
24	MS. FULLERTON: That's the zinc.
25	MR. GEIGER: The zinc, it has a silver
ļ	1

(202) 234-4433

	143
1	packing.
2	MS. FULLERTON: Yes, that one.
3	MR. GEIGER: Yes, that's it, yes.
4	MR. CARUSO: This is the highest density?
5	MR. GEIGER: Yes.
6	MR. CARUSO: And the stuff that
7	MS. FULLERTON: That's the alkyd.
8	MR. GEIGER: I was going to label them,
9	I'm sorry, I didn't have a marker.
10	And, let me just clarify, as to exactly
11	how this information will be used is up to NRR. Okay,
12	we are presenting some data and NRR is going to use
13	that to evaluate the submittals.
14	CHAIRMAN WALLIS: You could have a contest
15	for designing the chip which will go the furthest,
16	like a paper airplane, because some of these might, if
17	launched the right way, go quite a way.
18	MR. GEIGER: Potentially, yes.
19	So, we tested an alkyd, and zinc primer,
20	and then with an epoxy two epoxy topcoats, the
21	nomenclature, ALK is the alkyd, the zinc primer has
22	the ZE, then we had an epoxy primer, and the epoxy
23	topcoat, which is the E2, and we had an epoxy that was
24	six coats, now that's not a qualified coating system,
25	but we were trying to replicate the maintenance in the
ļ	I

(202) 234-4433

	144
1	plant where they applied a lot of coats.
2	DR. BANERJEE: So, do these float like
3	leaves, do they get wet?
4	MS. FULLERTON: The latest one does, the
5	one that looks like a garbage bag when you see it, the
б	other ones mostly sink.
7	DR. BANERJEE: They sink.
8	MS. FULLERTON: Yes.
9	DR. BANERJEE: So, you gently put them on
10	the surface.
11	MS. FULLERTON: Yes, we did yes, a
12	couple different tests, but yes.
13	MR. GEIGER: Okay.
14	Then we tested an epoxy sealer with a
15	surfacer and two epoxy topcoats, which is typically
16	used on a concrete surface, so there's five coating
17	systems we used.
18	And, the specific gravities ranged from
19	about 1.0 to, like I said, 1.58 for the zinc epoxy
20	system. So, I mean, and those are a combination, you
21	know, we checked the entire volume to see the weight,
22	it wasn't the individual components.
23	CHAIRMAN WALLIS: So, what you passed
24	around is one inch to two inch, is that right?
25	MR. GEIGER: Yes well, those are
	I

(202) 234-4433

ĺ	145
1	actually
2	CHAIRMAN WALLIS: Bigger.
3	MS. FULLERTON: One to two inch.
4	DR. BANERJEE: What is this ultra think
5	stuff?
6	MR. GEIGER: That's the alkyd.
7	MS. FULLERTON: Alkyd.
8	MR. GEIGER: That's the alkyd, and that
9	typically comes from, it's equipment furnished by
10	manufacturers.
11	We tested one inch to two inch size chips,
12	and then we tested one sample of $1/8$ and $1/4$ size
13	chips.
14	CHAIRMAN WALLIS: What is typical of the
15	containment?
16	MR.GEIGER: The containment, well, as you
17	can see, some of these are pretty brittle, and if you
18	look at the pictures of the containment, they tend to
19	come off in sheets, but I think
20	CHAIRMAN WALLIS: Those are the thick ones
21	in there, in the containment?
22	MR. GEIGER: Yes, the two coat
23	typically, the zinc and the epoxy, the two-coat epoxy
24	was typical in the picture.
25	CHAIRMAN WALLIS: So, they might come off
I	I

(202) 234-4433

	146
1	in sheets, as you say.
2	MR. GEIGER: They may come off not in
3	large sheets, but from photographs I have seen, you
4	know, they start to curl and peel, but they are rather
5	brittle, so if they would fall I imagine they would
6	break into different types of shapes.
7	MR. CARUSO: All these tests were done at
8	room temperature, right?
9	MR. GEIGER: Yes.
10	MR. CARUSO: You didn't do any tests at
11	higher temperatures?
12	MR. GEIGER: No, we didn't, no. We did
13	presoak some at 140 degrees, so we did that. We took
14	some samples, before we put them in the water, we
15	presoaked them at 140 to see if they would change
16	their shapes or anything like that.
17	DR. BANERJEE: I have a question.
18	Obviously, for the lighter things, if you put them on
19	the surface, surface tension will have a very
20	important effect on the wetting characteristics. And,
21	obviously, if you have surfactants and things in the
22	water, this will start to effect things.
23	So, did you look at, at least in broad
24	terms, whether the wetting characteristics might
25	change with containment-like water, compared to just
I	1

(202) 234-4433

	147
1	normal water? Whether it floats or not really will
2	depend on how it is wetted in the early stages.
3	MR. TREGONING: Yes, there's a lot of
4	conditions that will determine whether
5	DR. BANERJEE: Yes.
6	MR. TREGONING: it floats or not,
7	including how agitated the surface of the pool is.
8	DR. BANERJEE: Sure.
9	MR. TREGONING: As it fills up, or even as
10	something is traveling over the surface of pool, so we
11	didn't look specifically there were no measurements
12	of surface tension, for instance, done on these tests,
13	and there were no
14	MS. FULLERTON: Actually, there were.
15	MR. TREGONING: Oh, I'm sorry, I'll just
16	be quiet then.
17	MS. FULLERTON: That's okay.
18	MR. GEIGER: We measured surface tension
19	in the tank, and, of course, we didn't mix any
20	chemicals, there was just tap water, it was tap water.
21	DR. BANERJEE: So, at least you knew
22	whether there were surfactants, whether there were
23	monolayers, and that sort of stuff.
24	MS. FULLERTON: That's correct, and there
25	are a few different tests done. We did a time to sink
ļ	I

```
(202) 234-4433
```

	148
1	test, and Erv will talk about it a little bit more,
2	but we did some tests where we placed the paint chips
3	on the surface and saw how long it took for them to
4	sink. And, we also did some tests where they were
5	placed just under the surface, and we measured the
6	terminal velocity of the chips. So, there are
7	different, a few different measurements, so that there
8	would be something, you know, including the effects of
9	surface tension.
10	MR. GEIGER: We did some pre-wetted.
11	DR. BANERJEE: Well, the Navy should know
12	about surface tension.
13	MS. FULLERTON: That's right, we do a lot
14	of other things with surface tension.
15	MR. GEIGER: We did the mixture, and the
16	mixture was the definition was, basically, it had
17	to be between 10 percent and 25 percent chips smaller
18	than a $1/4$ inch, and that was the ranges, and the rest
19	would be larger chips.
20	We did two types of testing. We did what
21	I said, I mentioned, about quiescent zinc testing,
22	where we had a vertical acrylic tank, and I said we
23	measured the surface tension, and then what we did
24	was, the test, we did a time to sink test and a
25	terminal velocity test. The time to sink test was, it
ļ	I

(202) 234-4433

	149
1	consisted of dropping the coating chips from a
2	distance of one foot above the surface onto the
3	surface, and then timing how long it would take for it
4	initially to sink, and then for the remainder to sink
5	to the bottom.
6	CHAIRMAN WALLIS: You must have had a lot
7	of orientation with the chip?
8	MR. GEIGER: Yes, but it was random.
9	MS. FULLERTON: We had to make it random,
10	because it definitely did make a difference how it
11	fell.
12	CHAIRMAN WALLIS: The terminal velocity,
13	these things don't fall just like a sphere, I mean,
14	they
15	MS. FULLERTON: They have no sideways
16	component, right.
17	CHAIRMAN WALLIS: Do they hit the wall of
18	the tank, it looks like a pretty small tank.
19	MS. FULLERTON: No, no, we would put them
20	in the middle of the tank, and if they did hit
21	DR. BANERJEE: It's a flume.
22	MS. FULLERTON: No, that's in the second
23	one.
24	MR. GEIGER: We did a quiescent
25	MS. FULLERTON: It's lab space, and
Į	

(202) 234-4433

	150
1	there's the
2	DR. BANERJEE: This was a stirred tank or
3	a quiescent?
4	MR. GEIGER: This is quiescent, this is
5	totally still, yes.
6	And then, we did the transport test, which
7	was in a flume, where we measured the tumbling
8	velocity which consisted of initially placing the
9	chips on the bottom and then increasing the flow rate
10	until the chips initially started moving, we called
11	that the incipient tumbling velocity, and then we
12	cranked it up to see 80 percent of bulk tumbling
13	velocity.
14	DR. BANERJEE: Did you put any on the
15	surface of the flume, like the water surface?
16	MR. GEIGER: We initially were going to do
17	that, but from the quiescent testing we saw how they
18	behaved, so we knew that, you know, if you put them on
19	like the alkyd, if you put it on the surface, it
20	all went to the end.
21	MS. FULLERTON: It would just all go to
22	the end.
23	DR. BANERJEE: It would what?
24	MS. FULLERTON: It would just stay on the
25	surface.
	I

```
(202) 234-4433
```

151 1 MR. GEIGER: It would stay on the surface 2 and transport. 3 MS. FULLERTON: So, we knew what would 4 happen. 5 MR. GEIGER: The heavier chips, most of them, even on the quiescent test, we put them on the 6 7 surface, they very quickly broke the surface and sank. 8 There were some, occasionally one would remain. 9 DR. BANERJEE: But, the reason is in a quiescent tank they would sink a lot faster than in a 10 11 turbulent flow. 12 MR. GEIGER: Sure. Right. 13 MS. FULLERTON: 14 DR. BANERJEE: So, did you do some 15 experiments in the flume where you put --16 MR. GEIGER: Yes, we put them right on the 17 surface, yes. 18 MS. FULLERTON: They were --19 MR. GEIGER: That's the other one, that's 20 the steady state transport test, where we took --21 where we came up with the tumbling velocity, and then 22 we used that as a factor for selecting a -- well, we 23 tested it at the tumbling velocity and a lower 24 velocity, right? 25 Lower velocity, yes. MS. FULLERTON:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	152
1	MR. GEIGER: So, we tested what the
2	transport was at those, at the tumbling velocity. We
3	put them in just introduced them just below the
4	surface, and studied the way it went.
5	DR. BANERJEE: All right.
6	MR. GEIGER: Okay.
7	And then
8	MS. FULLERTON: So, they still had about
9	three feet to fall, maybe a little less, 2-1/2 feet.
10	MR. GEIGER: And, we selected 0.2 feet per
11	second, because actually we got very encouraging
12	results from the tumbling velocity test as to what it
13	really took to move these, so we initially were going
14	to do it at 0.1 feet per second, but then, you know,
15	we felt pretty comfortable using that higher, to try
16	to get an upper range.
17	So, that's the quiescent test.
18	So, that, basically, is the facility.
19	MS. FULLERTON: There's a camera over here
20	that was used to record the images, this is a
21	tensiometer up here to measure the surface tension.
22	CHAIRMAN WALLIS: Surface tension doesn't
23	change much, does it?
24	MS. FULLERTON: Yes, this is a pipe that
25	was one foot, we dropped the chip one foot from above
I	I

(202) 234-4433

ĺ	153
1	the surface, so that we were consistent in putting the
2	paint chips in.
3	DR. BANERJEE: Okay.
4	MR. GEIGER: Transport testing, and we can
5	go to the next slide and she can explain it.
6	DR. BANERJEE: You didn't use your model
7	basin, huh?
8	MR. GEIGER: Part of it.
9	MS. FULLERTON: We considered a lot of
10	options, because this is something a little different
11	than we do. You know, we needed a smooth bottom. We
12	needed it to be very clean, and we needed to be able
13	to see in from the sides so that we could take the
14	images to track the particles.
15	CHAIRMAN WALLIS: So, you dropped a dry
16	chip in from one foot?
17	MS. FULLERTON: Yes.
18	CHAIRMAN WALLIS: There's almost no place
19	in a containment where a dry chip is going to fall
20	from one foot.
21	MS. FULLERTON: Presoaked, right, they
22	were presoaked chips.
23	CHAIRMAN WALLIS: It was presoaked.
24	MS. FULLERTON: Right. The time to sink
25	test, I believe, were all presoaked.
I	

```
(202) 234-4433
```

	154
1	CHAIRMAN WALLIS: Presumably, in reality
2	they'd fall from 30 feet or something.
3	MR. GEIGER: Well, that's true.
4	MR. TREGONING: But then, they'd end up
5	MR. GEIGER: terminal velocity.
6	CHAIRMAN WALLIS: I mean, with water, yes.
7	DR. BANERJEE: You never know.
8	MR. GEIGER: Okay. This is the transport
9	tests. This is the diagram. So, we had a 30 foot
10	long flume, and we had a filtering system and
11	segregation system at the end, so that we could see
12	what portion of the fragments actually floated to the
13	end and what entrained in the middle, and then what
14	transported along the bottom.
15	And, these are two views of the flume
16	itself. Actually, one of the water tanks that they
17	have out there is circulated water, channels with
18	and the technician could go out on that platform and
19	actually place the chips in the bottom or drop them at
20	the top. And, this is an end view so you can see.
21	Do you want to explain a little bit about
22	this?
23	MS. FULLERTON: Sure, just a little bit
24	more.
25	What we did have was, we had ordered a 30-
ľ	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

1 foot long acrylic tank, so that we would have access 2 to the side, and originally we were planning on making 3 more of a stand-alone apparatus that we would just 4 have piping and a pump that we'd be able to set up the 5 currents that we would need inside the tank. And then, we decided we already had a circulating water 6 7 channel that was capable of this feed range that we 8 were looking for, so we took the acrylic, the smallest 9 tank in this schematic here, and we actually suspended 10 it in the circulating water channel, so we could control the velocity from the channel, but we were 11 able to put our cameras under water to look along the 12 side. And, we had access to the top part, we were 13 14 able to keep it clean and smooth and recover the paint 15 chips from it. 16 So, that was how we set it up. 17 DR. BANERJEE: You just put it into one of your basins. 18 19 MS. FULLERTON: Yes. 20 MR. GEIGER: How accurate was your flow 21 control inside? 22 MS. FULLERTON: I think it was -- it's 23 within a tenth of a foot per second. 24 CHAIRMAN WALLIS: You tested all these 25 different things.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

155

156 1 MR. GEIGER: Yes, the next three slides I 2 just put in here to give a feeling for how many 3 different tests we actually ran, because you see all 4 the chip sizes we ran, and we ran five different 5 samples, dry and presoaked, we did a terminal velocity 6 test, and also for the large epoxy-based systems we 7 did -- we tested an oven cure, where we oven cured it 8 for 48 hours at 120 degrees and --9 CHAIRMAN WALLIS: These velocities are all 10 one particle at a time? Well, one -- a batch. 11 MR. GEIGER: Yes. 12 MS. FULLERTON: We would track one particle at a time. 13 CHAIRMAN WALLIS: Throw in a batch of 14 15 chips to measure the velocity, or just one? 16 MS. FULLERTON: Into the transport flume, 17 we would put in --CHAIRMAN WALLIS: Into the plexiglas tank. 18 19 MS. FULLERTON: -- oh, we would put not 20 just one at a time. The time to sink we would drop 21 one at a time. 22 CHAIRMAN WALLIS: One at a time. 23 MS. FULLERTON: The other, the terminal 24 velocity, we would put as many as we could without 25 having them touch each other.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

157 1 CHAIRMAN WALLIS: So, there's a group of 2 them. MS. FULLERTON: There's a group of them, 3 4 yes, but we were able to --5 CHAIRMAN WALLIS: Were you able to relate that to how one falls? 6 7 MS. FULLERTON: We were able to track them 8 separately. 9 CHAIRMAN WALLIS: Did you relate that to 10 how one falls? MR. GEIGER: There was only a group --11 12 CHAIRMAN WALLIS: Did they touch each other? 13 MS. FULLERTON: No, well, and if they did 14 15 we would ignore it, because the point of the testing 16 was just to see if the behavior of one individual 17 chip, and not how it interacted with other chips. So, we were always careful to try to make sure that they 18 19 wouldn't interfere with each other. 20 MR. GEIGER: So, this is like for the 21 quiescent test, the different tests we ran, and then 22 the tumbling velocity test, and again, we ran the 23 incipient and the bulk. 24 For the steady state again --25 CHAIRMAN WALLIS: If you dropped two

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	158
1	chips, one behind the other, one is in the wake of the
2	other one, they do interfere with each other.
3	DR. DENNING: You are sure that they
4	weren't close enough that I mean, you dumped them
5	together, I mean, you would expect bubbles.
6	MS. FULLERTON: Well, for the time to sink
7	test, they are all on the surface, so I suppose if one
8	moved over and was close to the other one, but they
9	were varied apart. With the time to sink, we did try
10	to wait a long enough time that it wouldn't be in the
11	wake of another chip.
12	CHAIRMAN WALLIS: Yes, I can see that.
13	MS. FULLERTON: But, I suppose it's
14	possible, yes.
15	CHAIRMAN WALLIS: When they are falling.
16	MS. FULLERTON: Right.
17	CHAIRMAN WALLIS: Terminal velocity test,
18	were groups of them or one at a time?
19	MS. FULLERTON: Well, it would be one
20	group at a time. I guess to clarify, so you would put
21	like say five large chips on the surface and let them
22	fall. And, if it moved over, you know, presumably,
23	they are all separated.
24	CHAIRMAN WALLIS: So, there are very few
25	chips.
ļ	1

(202) 234-4433

	159
1	MS. FULLERTON: There are very few chips,
2	right.
3	MR. TREGONING: And, the tumbling velocity
4	test, obviously, all the chips were introduced on the
5	floor before flow was started.
6	CHAIRMAN WALLIS: Okay.
7	MR. GEIGER: Okay. Now, Anne will
8	describe how the software they used, and the
9	methodology they used, to actually run the tests.
10	CHAIRMAN WALLIS: Do you have any results
11	to show us?
12	MS. FULLERTON: No, not at this time.
13	MR. GEIGER: We do have some
14	MR. TREGONING: Just observations.
15	MR. GEIGER: we have some observations.
16	MR. TREGONING: Again, these tests were
17	just completed, you know, a week or so ago.
18	CHAIRMAN WALLIS: So, we don't know if
19	they made any sense in terms of interpretation yet?
20	MR. TREGONING: We are still making sure
21	that we understand that as well.
22	MS. FULLERTON: Okay.
23	So, as Erv said before, we used a blender
24	to get the size chips that we were looking for. Then
25	we used sieves to segregate them into size classes.
	I

(202) 234-4433

	160
1	Then we would also before each test we would take
2	an image of the sample on a contrasting sheet of paper
3	underneath, and we used some chip sizing software to
4	get the average chip area, the major and minor axis,
5	and a few other characteristics about the chips.
6	Then, when we actually
7	DR. BANERJEE: So, how did you
8	characterize it? I mean, you have an area and the
9	perimeter, is that what you did?
10	MS. FULLERTON: We have an area and a
11	major and minor axis, so the smallest axis and the
12	largest axis.
13	DR. BANERJEE: So, you didn't measure a
14	perimeter, because in
15	MS. FULLERTON: But, we could, we have the
16	images.
17	DR. BANERJEE: in a regularly-shaped
18	device
19	MS. FULLERTON: Right.
20	DR. BANERJEE: there's an issue as to
21	how you characterize it.
22	MS. FULLERTON: Right.
23	DR. BANERJEE: So, if you got the
24	perimeter and the area you'd get a fractal dimension
25	for it.
I	1

(202) 234-4433

	161
1	MS. FULLERTON: Right.
2	DR. BANERJEE: Maybe you can use that.
3	MS. FULLERTON: We could use that.
4	DR. BANERJEE: Yes.
5	MS. FULLERTON: And, we have the images,
6	so we could, you know, go back and get the perimeter
7	from those images.
8	DR. BANERJEE: Yes.
9	MS. FULLERTON: Basically, the point of
10	the sizing software was to make sure that what we had
11	in the sieves was what we thought we had, you know,
12	that would make sure that we had what we were looking
13	for.
14	Slide 17 has a histogram, just a
15	characteristic histogram for 100 chips for an E3C time
16	to sink test. That was the one that has the white one
17	with the ridges on it, so it's just an area histogram,
18	and major axis histogram.
19	We also used some different
20	CHAIRMAN WALLIS: So, the one which is
21	2600 square millimeters is a pretty big chip.
22	MS. FULLERTON: Right, and there's only a
23	few of those, so there were some larger.
24	CHAIRMAN WALLIS: So, when you say you got
25	them in the range of one to two inches, this is really
I	I

(202) 234-4433

	162
1	a five-inch chip or something, isn't it?
2	MS. FULLERTON: It could be, I don't think
3	so. I mean, it had to pass
4	CHAIRMAN WALLIS: Maybe I'm wrong.
5	MS. FULLERTON: it had to pass through
6	the sieve.
7	CHAIRMAN WALLIS: Okay, okay.
8	MS. FULLERTON: One axis of it has to be
9	one or two inches. It's possible the other axis was
10	bigger.
11	CHAIRMAN WALLIS: All right.
12	MR. GEIGER: It does represent the random
13	size in the plant.
14	MS. FULLERTON: Right, and, you know, we
15	could have made them all squares, but we were trying
16	to make them as irregular and random as possible.
17	We also used some software to track the
18	chips, so during the transport testing we had four
19	cameras, two looking above, two looking from the side,
20	and we also actually had an extra camera at the end,
21	which was looking at the capturing device at the end
22	of the filtration system.
23	DR. BANERJEE: They have to be in your
24	field of you, were you moving the whole group of
25	cameras with the chips?
ļ	I

(202) 234-4433

	163
1	MS. FULLERTON: No, the cameras were
2	fixed, but looking at different places within the
3	tank, so that we would be able to capture them.
4	And, we had two cameras right at the
5	starting line, or whatever you want to call it, and
6	making sure that when we would introduce the chips
7	that they were always in that we had marked off a
8	certain area.
9	CHAIRMAN WALLIS: It's just like a ski
10	race, isn't it, you start them
11	DR. BANERJEE: You have your basin
12	structure, you move the cameras, you know
13	MS. FULLERTON: With a carriage, right.
14	DR. BANERJEE: Yes.
15	MS. FULLERTON: But, in the actual basin
16	that we used, the circulating water channel, the whole
17	point is to keep the model fixed and move the water
18	past it, so there's not that kind of a thing there.
19	DR. BANERJEE: Okay.
20	MS. FULLERTON: If we wanted to use one of
21	the bigger basins
22	DR. BANERJEE: Yes.
23	MS. FULLERTON: it's not really good
24	for this kind of test.
25	MR. TREGONING: It would have been over
	I

(202) 234-4433

	164
1	kill for this test.
2	MS. FULLERTON: Yes.
3	So, we would take these images of the
4	chips and use this chip tracking software, which would
5	calculate the area of each chip.
б	So, what we would do is, find the center
7	of each chip and track every frame. We would use a
8	camera that took 30 frames per second, and from that
9	we are able to get the velocity of each chip.
10	So, we'll go on to the movie now. This is
11	from the quiescent tank. Now, we can track both
12	components of that velocity, too.
13	DR. BANERJEE: It's falling leaves.
14	MS. FULLERTON: Right, and you definitely
15	see a lot more of that in the larger chips than you do
16	with the smaller chips.
17	CHAIRMAN WALLIS: But, they are in a tank,
18	so it doesn't affect the wall repelling them that
19	would keep them from going off on a long trajectory
20	sideways, which they might do in a big tank. I don't
21	know.
22	MR. GEIGER: They are sort of coming down
23	in the middle.
24	CHAIRMAN WALLIS: I know they are, but
25	that's because they are it could be because they
ļ	I

(202) 234-4433

	165
1	are in the tank.
2	MR. TREGONING: If there directional flow
3	and other things associated with your actual
4	conditions, yes, that could dramatically affect how
5	far they transport.
6	CHAIRMAN WALLIS: No, I mean if there's no
7	flow at all, and if there's something, a wall effect
8	which repels them, I'm just hypothesizing that.
9	DR. BANERJEE: Well, there will be a wall
10	effect. Were these all in the center, more or less?
11	MS. FULLERTON: Pretty much, yes, they
12	didn't get very close to the wall.
13	MR. TREGONING: Can you characterize that,
14	what was
15	MS. FULLERTON: Measurement?
16	MR. TREGONING: What is the frame to view
17	of the this is a one to two inch chip, so it looks
18	like
19	MS. FULLERTON: Yes.
20	MR. TREGONING: you've got about, what,
21	a six inch
22	MS. FULLERTON: It's about it's
23	probably not even that, it's probably more like four
24	inches.
25	MR. TREGONING: And, what was the
I	I

(202) 234-4433

	166
1	dimension of your tank again?
2	MS. FULLERTON: It's about one foot by one
3	foot.
4	DR. BANERJEE: Yes, so if it's toward the
5	center it will be minimized.
6	MS. FULLERTON: Right.
7	DR. BANERJEE: But, if it gets near the
8	wall, obviously, there will be an effect.
9	MS. FULLERTON: Right, but then it would
10	be out of the camera view, so we wouldn't be able to
11	track it.
12	MR. TREGONING: Did you notice that during
13	any of the time to sink test?
14	MS. FULLERTON: Most of them, because we
15	were dropping them in the center, so
16	CHAIRMAN WALLIS: These are ones going
17	down one after the other, so they are falling through
18	the wake of the other one, which is sharing vortices.
19	MR. TREGONING: No, this is a repetitive
20	loop.
21	MR. GEIGER: There's two different chips
22	here, I think.
23	CHAIRMAN WALLIS: You watch the same one
24	time, after time, after time?
25	MS. FULLERTON: There are two chips, two
I	1

```
(202) 234-4433
```

	167
1	different chips, but it's
2	CHAIRMAN WALLIS: There are two that look
3	different. But, it just keeps on repeating and
4	repeating?
5	DR. BANERJEE: It is two chips following
6	each other.
7	MR. TREGONING: We can't lock up the ACRS
8	computer with ABI files, so that's why it's relatively
9	small.
10	CHAIRMAN WALLIS: But, you see what we are
11	getting at, is that if there are two, then one is in
12	the wake of the other one.
13	MS. FULLERTON: Right. Yes, this is
14	played at half speed.
15	MR. TREGONING: So, they are actually
16	coming faster than this. You can see the smaller ones
17	are
18	CHAIRMAN WALLIS: So, it's interesting,
19	they do want the fall flat, they don't want to go, you
20	know, sideways.
21	MS. FULLERTON: Sideways, right, unless
22	they hit the surface sideways, then they'll go
23	straight down.
24	DR. BANERJEE: But, that's a very unstable
25	configuration to actually go straight down.
I	I

(202) 234-4433

	168
1	MS. FULLERTON: Right.
2	DR. BANERJEE: A small perturbation will
3	take
4	CHAIRMAN WALLIS: They will move across
5	the flow.
6	MS. FULLERTON: Well, these are also the
7	E3C, which has the ridges.
8	CHAIRMAN WALLIS: Those were accelerated
9	through a valve, that's different.
10	MR. TREGONING: Oh, okay, apparently.
11	MS. FULLERTON: So, Ervin, I don't know if
12	Ervin mentioned it or not, but for the quiescent
13	testing we also did an experiment with thermal cure on
14	some of the chips, to see if that would change any of
15	the characteristics.
16	So, for all except the alkyd sample we
17	heated them in an oven, one for two weeks at 150
18	degrees, and one for two days at 120 degrees, to see
19	if there were any effects. There were no significant
20	effects, all the effects were within the standard
21	deviation of all of the other testing. So, that was
22	the only information we collected with that thermal
23	cure was for the quiescent testing.
24	DR. BANERJEE: What happens if you wet the
25	alkyd, would it sink?
I	I

(202) 234-4433

Í	169
1	MS. FULLERTON: Yes.
2	MR. GEIGER: No, no.
3	DR. BANERJEE: Like sometimes leaves, they
4	will sink.
5	MS. FULLERTON: No, when they were dropped
6	onto the surface they were not, yes.
7	MR. GEIGER: We also did like on the
8	epoxies, some of them we did a curl we heat curled
9	them and put them on a drum or something to get them
10	to to try to get them so we could study the shape
11	effects.
12	CHAIRMAN WALLIS: They were dry when they
13	landed, wouldn't they, or were they not dry when they
14	landed?
15	MS. FULLERTON: They are dry when they
16	when we introduce them.
17	MR. GEIGER: They don't soak up water.
18	MS. FULLERTON: No.
19	So, we would take the water out and
20	separate them, and then put them in. So, there would
21	be some water on them, but not it wasn't like they
22	were in a water mix.
23	DR. BANERJEE: Is the alkyd's true density
24	higher than water?
25	MS. FULLERTON: It's just about the same.
I	I

	170
1	MR. GEIGER: The manufacturer says 1.15
2	specific gravity, we measured about one.
3	DR. BANERJEE: Okay, so that explains
4	that.
5	MS. FULLERTON: So
6	CHAIRMAN WALLIS: Heavier samples fall
7	faster is not being contentious, is it?
8	MS. FULLERTON: No, stating the obvious.
9	MR. TREGONING: We have general agreement
10	with that.
11	MS. FULLERTON: And, the alkyd didn't sink
12	when we dropped it on the water. We covered that.
13	So, we have another movie of the tumbling
14	velocity tests, these were when we would replace the
15	chips along the bottom of the tank and then slowly
16	increase the speed of the flow.
17	CHAIRMAN WALLIS: Are they being picked
18	up?
19	MS. FULLERTON: To see what velocity
20	MR. TREGONING: You see them lifting.
21	MR.GEIGER: These are two views, from the
22	top
23	MS. FULLERTON: And from the bottom.
24	CHAIRMAN WALLIS: Now, once they are
25	picked up and get oriented around, then they could
I	I

(202) 234-4433

	171
1	shoot up to the surface, couldn't they?
2	MR. GEIGER: Well, I don't think
3	MS. FULLERTON: That didn't
4	CHAIRMAN WALLIS: You never saw that?
5	MS. FULLERTON: Not to the surface, some
6	would get
7	CHAIRMAN WALLIS: But, they do shoot up
8	some ways.
9	MS. FULLERTON: some would get
10	suspended, especially the lighter ones, the alkyds.
11	MR. GEIGER: If you look at it this way to
12	see how some of them lift up, they just kind of go
13	along the top.
14	DR. BANERJEE: It depends on the specific
15	gravity and the size. What's happening is that the
16	turbulence, which is catching it in an ejection
17	CHAIRMAN WALLIS: They seem to get their
18	back end picked up, so the lift that picks them up,
19	and then now you see it on the right there.
20	MR. CARUSO: What samples are these?
21	MS. FULLERTON: These are the E6, which is
22	an epoxy.
23	CHAIRMAN WALLIS: Once it gets lifted up
24	
25	MR. CARUSO: What specific gravity?
ļ	1

(202) 234-4433

	172
1	MS. FULLERTON: I think it was 1.75.
2	DR. BANERJEE: Pretty dense.
3	MS. FULLERTON: Yes.
4	DR. BANERJEE: So, the smaller if you
5	made them smaller, did they get entrained up further?
6	MS. FULLERTON: The smaller ones, yes,
7	would get entrained, more than the larger ones.
8	CHAIRMAN WALLIS: Did it come back down
9	again, I think that the condition for one lying on the
10	ground to be picked up is a rather different condition
11	for one in the flow to land, because I noticed that
12	once they get off the bottom they get across the flow,
13	and the force on them goes up tremendously.
14	MS. FULLERTON: Sure, they orient
15	themselves.
16	CHAIRMAN WALLIS: So, whether or not they
17	will come down and settle is quite different.
18	MS. FULLERTON: Getting picked up, and
19	also
20	DR. BANERJEE: The wall structures, you
21	know, the ejections will take them off, and what
22	brings them down are the sweeps.
23	MS. FULLERTON: Yes.
24	DR. BANERJEE: So, what you see, the
25	lighter particles will get I mean, not lighter, but

(202) 234-4433

ĺ	173
1	the smaller
2	MS. FULLERTON: Smaller, right.
3	DR. BANERJEE: they will go higher, and
4	then if they come down they'll come down with a sweep.
5	MS. FULLERTON: Right.
б	DR. BANERJEE: Real fast. So, you know,
7	the wall structures
8	CHAIRMAN WALLIS: This is a turbulent
9	flow.
10	DR. BANERJEE: There are periodic
11	ejections scaled with the wall sheer, so you can
12	probably find the frequency with which this would
13	happen.
14	CHAIRMAN WALLIS: I think they are very
15	unlikely to come down just so that they land and stay
16	in sort of a protected little boundary there.
17	MS. FULLERTON: Some of them would.
18	DR. BANERJEE: It will, because
19	CHAIRMAN WALLIS: Well, they have to land
20	just right. If they land on the tip, then the force
21	is going to blow them away.
22	MR. CARUSO: And, the surface has to be
23	relatively flat.
24	CHAIRMAN WALLIS: Right.
25	MR. TREGONING: But, this is very smooth.
	I

(202) 234-4433

	174
1	MS. FULLERTON: Yes, it was very smooth.
2	DR. BANERJEE: In reply to Graham's
3	question, if you depending on the level of
4	turbulence you have, these can actually the sweeps
5	can go right to the surface I mean, the ejection,
б	so you could take them almost up to the surface,
7	depending on how turbulent the flow was.
8	MS. FULLERTON: It would be very rare to
9	see any of that, that went up to the surface.
10	DR. BANERJEE: You had
11	MS. FULLERTON: No, that was the highest,
12	some of them are much lower. The alkyds were much
13	lower, more like .3 feet per second, the curl chips
14	were lower, it was easier to pick up a curl chip
15	because you already have some of the area in some
16	cases oriented in the direction of the flow. So, it's
17	easier to pick them up.
18	MR. CARUSO: What velocity is this?
19	MS. FULLERTON: This I think is about one
20	foot per second.
21	MR. CARUSO: One foot.
22	MS. FULLERTON: Yes.
23	CHAIRMAN WALLIS: And, is it changing, or
24	there will be just different ones picked up because of
25	the turbulence?
	I

(202) 234-4433

	175
1	MS. FULLERTON: It is changing very
2	slowly, so we would start out at a lower speed and
3	slowly increase, and we are measuring velocity at the
4	same time, water velocity.
5	CHAIRMAN WALLIS: Why did you call this
6	pick-up velocity or entrainment velocity?
7	MR. TREGONING: It's just an historical
8	term.
9	CHAIRMAN WALLIS: It's misleading.
10	MR. TREGONING: It is, it's a bit
11	misleading, but it's an historical term.
12	DR. BANERJEE: There's a huge literature
13	on this area.
14	CHAIRMAN WALLIS: I would want to know
15	what happens to them after they are picked up, do they
16	ever if they are picked up at one foot per second,
17	do they ever land again?
18	MS. FULLERTON: Yes.
19	CHAIRMAN WALLIS: They do, do they land
20	and stay?
21	MS. FULLERTON: They do well, very
22	not very many of them, most of them would get
23	transported to the end, and end up on the screen once
24	they get picked up.
25	MR. GEIGER: At this velocity.
ļ	

(202) 234-4433

	176
1	MS. FULLERTON: At this velocity, right.
2	CHAIRMAN WALLIS: Okay.
3	Well, you are going to sort all that out.
4	MS. FULLERTON: Right. We have to we
5	have a lot of data to go through.
6	MR. TREGONING: Again, there were other
7	tests where they injected paint into the flow with a
8	certain velocity, and those test are more illustrative
9	in terms of what the transport distances are like
10	before settling occurs, or I'll say should be more
11	illustrative.
12	CHAIRMAN WALLIS: I guess most of the
13	literature with regard to rods and spheres, and it's
14	flat shapes are not that often studied, it's sort of
15	interesting.
16	MS. FULLERTON: Yes, it is. I did a
17	little bit with sediment transport, and this is a lot
18	definitely much bigger than I had ever dealt with
19	before. But, not quite a ship.
20	CHAIRMAN WALLIS: So, you did do sediment
21	transport?
22	MS. FULLERTON: No, it was on just on
23	estuarine circulation.
24	Some preliminary observations, again, very
25	preliminary. The flat ALK debris had the lowest
1	•

(202) 234-4433

	177
1	tumbling velocity, so that was about .3 feet per
2	second. The E6 and the zinc had larger tumbling
3	velocities. Again, these are the heavier chips, so
4	that's pretty obvious. In general, the curled chips
5	had lower tumbling velocities than the same debris
б	flat chips, because they are having more of their area
7	into the flow, and very little transport at the .2
8	feet per second, which was the lower velocity that we
9	tested. Most chips did not make it all the way to the
10	end, except for the ALK, more of that transported in
11	general.
12	SO, in summary, the testing is complete.
13	We just finished it about two weeks ago. We are in
14	progress for data analysis, and the report will be
15	available from NRC in fall, 2006.
16	CHAIRMAN WALLIS: So, you are doing the
17	usual thing, doing the tests and then trying to figure
18	out what it means.
19	MS. FULLERTON: That's right.
20	MR. GEIGER: Mostly to make sure we have
21	all our data, you know.
22	CHAIRMAN WALLIS: Well, for the report you
23	want to have it right, and I would hope that you were
24	actually trying to plug some data and think about it
25	while you are doing the testing.
ļ	1

(202) 234-4433

	178
1	MR. TREGONING: No, we did, of course we
2	did that.
3	MS. FULLERTON: Right, we had to do that
4	for especially for the tumbling velocity, because
5	that's what we tested at the following week.
б	MR. TREGONING: We modified the matrix
7	fairly significantly, based on some of the initial
8	results from both the time to sink and the settling
9	velocity.
10	DR. BANERJEE: Typically, what was the
11	I mean, just is there a correlation between
12	let's say in the quiescent tank, between the area of
13	your flake and the settling velocity, in rough terms?
14	Can you give us some preview of this? Say the same
15	material, the same
16	MS. FULLERTON: So you are asking, the
17	smaller chips are sinking quicker or slower?
18	CHAIRMAN WALLIS: I would think it's about
19	the same.
20	MS. FULLERTON: It's about the same, but
21	there is the sideways component.
22	CHAIRMAN WALLIS: Mass goes as area, and
23	drag goes as area, so you don't think it's the same.
24	DR. DENNING: The sideways components are
25	the bigger.
l	I

(202) 234-4433

179 1 MS. FULLERTON: The bigger chips, the 2 sideways component is bigger, which gives us --3 CHAIRMAN WALLIS: It's like going down a 4 half pipe. 5 MS. FULLERTON: Right. MR. GEIGER: The smaller chips we are 6 7 doing that a lot faster. 8 CHAIRMAN WALLIS: Yes, well you may want 9 to correlate the frequency. DR. BANERJEE: Well, the drag goes with 10 the area, right? 11 12 CHAIRMAN WALLIS: And the weight goes with 13 the area too. 14 DR. BANERJEE: But then, the sideways 15 motion. 16 CHAIRMAN WALLIS: It might make a difference. 17 DR. BANERJEE: It's worth understanding 18 19 that. 20 So, this is very CHAIRMAN WALLIS: fundamental stuff, and we have to -- somebody has to 21 22 figure out how to apply it. 23 MS. FULLERTON: Right. 24 DR. BANERJEE: One thing that you can do 25 relatively easy is to put a little turbulence into

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	180
1	your quiescent tank with a moving grid.
2	MS. FULLERTON: Yes.
3	DR. BANERJEE: There's a huge and
4	beautiful set of experiments done by Faeth and
5	General Fluid Mechanics, where they look at the effect
6	of turbulence on settling velocity. It's homogenous
7	turbulence, and I think that would be interesting for
8	you to read.
9	MS. FULLERTON: Okay, sounds good.
10	DR. BANERJEE: There's two papers, that's
11	F-A-E-T-H.
12	MS. FULLERTON: F-A-E-T-H.
13	CHAIRMAN WALLIS: How much spread is there
14	in the results? Is there a lot of statistical
15	variation if you take, say, 100 flakes that look
16	similar and do a test of terminal velocity, is it a
17	pretty narrow distribution?
18	MS. FULLERTON: For the tumbling velocity?
19	CHAIRMAN WALLIS: Right, or for anything.
20	MS. FULLERTON: Well, and we did about, I
21	think, 50 chips for each for the tumbling velocity.
22	The quiescent testing, there was more
23	I think a higher deviation from the average for the
24	larger chips than for the smaller chips, and we
25	thought that maybe that had something to do with that
	I

(202) 234-4433

	181
1	sideways component that was a little bit different.
2	But, we got pretty consistent results for we had
3	good repeatability. We tested many, many chips.
4	CHAIRMAN WALLIS: Any other questions?
5	Thank you very much.
6	MS. FULLERTON: Thank you.
7	CHAIRMAN WALLIS: Do we have a wrap up now
8	from the RES?
9	MR. TREGONING: Quick wrap up.
10	CHAIRMAN WALLIS: Then we go for lunch.
11	MS. EVANS: Okay. My name is Michelle
12	Evans. I'm from the Office of Research. I'm a Branch
13	Chief in the Division of Engineering Technology.
14	I just want to summarize what you heard
15	with regard to the research in the last day and a
16	half, talk a little bit about where we are headed, and
17	maybe how the committee could help us.
18	First of all, I'd like to thank the
19	committee for the opportunity to present our research
20	over the last day and a half. We appreciate the
21	opportunity for your dialogue, and incites, and
22	questions.
23	Research invested a significant amount of
24	resources in this research over the past year.
25	Several of the things that you heard about yesterday

(202) 234-4433

were just implemented, or initiated, in the last year. the ICET testing yesterday, and also the downstream effects throttle valve work that you heard about today, those tests were -- that research has been going on for a few years. However, the rest of this research was initiated about a year ago.

7 At that time, management had made decisions about the scope of the research that we 8 9 would move forward with, and the basis for the scope was a balancing of the need to move forward on the 10 designs by the industry, how research could best 11 12 support NRR in their review of licensee submittals, what the NRC's role is in the research versus what 13 14 industry's role is in conducting related research, 15 also balancing the resources and the timing of 16 everything.

17 So, about a year ago there was a decision made to fund this research, and to move forward with 18 19 the idea that it would be completed in the spring of 20 this year, but that decision was revisited in the fall 21 of 2005, and again additional resources were made 22 available to complete the scope of the testing that 23 you've heard about in the last day and a half here, to 24 complete it by April.

CHAIRMAN WALLIS: You wanted to finish

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

	183
1	this work by now.
2	MS. EVANS: We want to finish what you've
3	heard about.
4	CHAIRMAN WALLIS: And, it looks as if
5	quite a bit of the work is, in fact, raising more
6	questions, rather
7	MS. EVANS: True.
8	CHAIRMAN WALLIS: than resolving
9	issues.
10	So, is it finished?
11	MS. EVANS: Is it finished? This scope
12	will end
13	CHAIRMAN WALLIS: Are you going to cut it
14	off before you've really solved the problem?
15	MS. EVANS: No. The scope of work we've
16	laid out, we still intend to finish what we had laid
17	out in April.
18	CHAIRMAN WALLIS: Yes.
19	MS. EVANS: And, I understand additional
20	questions may have been raised.
21	Our intent is to be done with this current
22	research and to allow the industry to move forward
23	with what they are doing, come forward with their
24	submittals, and once we see those and NRR has had the
25	opportunity to review what comes forward, there may be
ļ	1

(202) 234-4433

	184
1	a need to do additional research, but we are not at a
2	point right now where we are committing to do that.
3	We have looked internally in the Office of
4	Research and NRR staff-wise at, you know, potentially,
5	we've got a wish list on additional research that
6	could be useful, but there are no commitments at this
7	point that we would do any of that until, you know
8	the need may arise, but at this point we are not
9	moving forward with any additional research.
10	I think we've got commitment to meet again
11	with the committee to talk more about the results of
12	the research. I believe we've got a June subcommittee
13	meeting. We'll come forward then with any additional
14	significant findings and results over the next couple
15	months.
16	There's also a Chemical Effects Peer
17	Review, which we will be wrapping up in the next month
18	or so, so we'll be at a point to present that to you
19	in June.
20	CHAIRMAN WALLIS: Can I ask you something
21	now?
22	MS. EVANS: Yes.
23	CHAIRMAN WALLIS: We heard this morning
24	about the flow paths through the core.
25	MS. EVANS: Right.
ļ	

(202) 234-4433

	185
1	CHAIRMAN WALLIS: Are you doing any
2	research, have you done any research on what would
3	happen if you got debris in the core?
4	MS. EVANS: No, we haven't.
5	CHAIRMAN WALLIS: Do you plan to do any?
б	MS. EVANS: We've looked at the need to,
7	you know, and the thought of doing that has entered
8	into discussion, yes.
9	We have a budget process where we look at
10	what may be on the horizon in '07-'08, and, yes, that
11	is definitely an area that may need additional
12	research. But, no, we haven't committed to do that at
13	this point.
14	As you heard, the WOG and industry,
15	they've got their approach that they are working
16	through, and NRR staff is working with them to
17	understand that.
18	So, at this point is there a clear need?
19	No, but is there potential? Yes.
20	CHAIRMAN WALLIS: Do you get involved in
21	reviewing the WOG guidance, or work, whatever we call
22	it, the WOG work that we saw on what to do with the
23	debris in the core, did you folks review that at all,
24	or it just went to NRR? Did you review it from the
25	point of view of saying, when they say calculate this,
ļ	

(202) 234-4433

	186
1	did you review it from the point of view of what's to
2	say you ought to be able to calculate what they
3	suggest you calculate?
4	MR. TREGONING: Shanlai Lu is going to
5	elaborate a little bit on that.
6	CHAIRMAN WALLIS: This is an NRR problem,
7	it's not an RES problem, so it's not something that
8	RES has been doing, reviewing the WOG.
9	MR. LU: The WOG is planning to submit a
10	report to us, that's not here yet.
11	CHAIRMAN WALLIS: What you've seen is a
12	draft.
13	MR. LU: Yes, what we saw was just draft,
14	and it's coming in.
15	MR. SCOTT: It's coming in this month,
16	right, I think by the end of February.
17	MR. LU: Yes, by the end of February they
18	are going to have us our review from the NRR side.
19	So, I think we probably will talk to Rob and Michelle,
20	once we have more questions about that.
21	MS. EVANS: At this point, as far as the
22	committee goes, and what we've presented, you know,
23	information on our research, we are looking for the
24	committee to give your view on the credibility of what
25	we did and told you about over the last day and a
I	

(202) 234-4433

	187
1	half.
2	We do understand that there
3	CHAIRMAN WALLIS: Do you want a grade on
4	credibility? That's a dangerous thing to ask for.
5	MS. EVANS: Well, we are very interested
6	in the incites that the committee has to offer, so,
7	yes, we would accept a review on credibility. We also
8	would
9	CHAIRMAN WALLIS: I think more the issue
10	is adequacy.
11	MS. EVANS: Okay.
12	We also understand that things may be
13	missing, there may be areas we haven't touched on, and
14	like I said, we also internally have identified
15	potential future research also. But, at this point in
16	time the decisions were made to, you know, allow the
17	industry to proceed down the path that they are
18	heading with the submittals, and additional decision
19	on additional research be made at a later time.
20	MR. SCOTT: At the appropriate time, I'd
21	like to present a few closing remarks.
22	CHAIRMAN WALLIS: Sure, maybe now is the
23	time.
24	MR. SCOTT: Okay.
25	We also would like to thank you all for
ļ	

(202) 234-4433

	188
1	the opportunity to present our views and what's going
2	on with the issue, and to hear your views and
3	perspectives on GSI-191.
4	We would like to, and are happy to,
5	facilitate your continued review. We are ready and
6	willing to meet with you at an appropriate time to
7	discuss follow-on issues, including the downstream
8	effects. As Michelle mentioned, and as was discussed,
9	we are expecting a WOG report on downstream effects,
10	and we'd be happy to discuss the staff's review of
11	that at an appropriate future time.
12	You asked, Dr. Wallis, a couple days ago,
13	how you can help in this area, and we've kicked that
14	around a little bit. We have some thoughts.
15	First of all, as I think Michelle referred
16	to also, we would greatly appreciate the committee's
17	perspectives on the chemical effects issues, as
18	clearly was brought out again and again this week,
19	these are very complex issues, and we would appreciate
20	your input on those.
21	Would like to address one remark that you
22	made a little earlier today, regarding the NRR dates
23	for issue resolution. Please remember that the
24	process that we've presented to you is a process that
25	involves, rather than research providing sufficient
Į	1

(202) 234-4433

189 1 information by itself to resolve the issue by a date certain, research has provided perspective, and is 2 3 providing perspective for the staff. The staff also 4 expects that the industry will provide the information 5 in addition to what research has provided sufficient to resolve the issue. 6 7 So, when the industry submits its responses to the requests for additional information 8 9 that we are sending out to them regarding the generic letter, we will have that information from research in 10 hand provide additional perspective 11 to and 12 confirmation for the staff's review. We did not expect, and this process has 13 14 not been developed to have research take the whole 15 burden on. CHAIRMAN WALLIS: You folks have sketched 16 17 out all the strategy. I'm just thinking about Does history show that given a complex issue 18 history. 19 like this, with a whole lot of interacting, not very 20 well understood phenomena, does history show that 21 relying on industry to solve it works? 22 I remember when we were dealing with 23 LOCAs, the Agency actually made a commitment to do the 24 fundamental work so that we understood what was going 25 on and could make the right decision, and there have

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	190
1	been other examples where the Agency has said, we've
2	got to take the lead because it's too disbursed to go
3	out to the industry and so on.
4	But, in this case you seem to be always
5	saying, well, it's up to industry to solve it, come
б	back, and we're going to somehow judge it. Does
7	history show that that approach works?
8	MR. SCOTT: I'm going to dodge that issue
9	a little bit, but I would say that if industry
10	CHAIRMAN WALLIS: I'm thinking of the
11	record, because someone might read the transcript to
12	get the answer to this.
13	MR. SCOTT: I don't have the answer to it.
14	CHAIRMAN WALLIS: No.
15	MR. SCOTT: But, I would add the
16	following, and I think Michelle referred to it as
17	well. If the industry submittals come in, and we
18	identify in our review of those submittals that there
19	is an issue with the way that we've gone through this,
20	then that may need to necessitate a change in course.
21	So, we are not going to be, you know,
22	fixed on this to the end, unless the approach works,
23	clearly.
24	One more point I'd like to make is, we
25	would appreciate the committee's support for what the
ļ	I

(202) 234-4433

	191
1	staff believes to be a prudent course of action
2	regarding enlarging the strainers. We recognize that
3	these are very complex issues that are going to take
4	a long time to resolve, and the uncertainties are
5	large and are likely to remain so for some time. The
6	staff believes that the enlargement of the strainers
7	at this time in parallel with the continued
8	development of information by research and by the
9	industry that this is a prudent activity to undertake.
10	We expect, and have communicated to the
11	licensees, that as they make modifications to their
12	strainers that they will fully assess downstream
13	effects, such that the installation of larger
14	strainers does not inadvertently cause a problem with
15	downstream effects.
16	And, that concludes my remarks, subject to
17	your questions.
18	CHAIRMAN WALLIS: Well, the issue of
19	enlarging strainers, the prudent course of action,
20	presumably, has to be taken in the framework of
21	understanding of the NRC's philosophy and methods for
22	ensuring public safety, not just within the sort of
23	technical judgment of people like the ACRS.
24	So, it seems to me that we can certainly
25	tell you something about what's involved with
ļ	

(202) 234-4433

(202) 234-4433

192 1 enlarging strainers, but in terms of what's the 2 prudent course of action we may be getting outside the 3 terrain in which we are comfortable and confident to 4 maneuver. 5 MR. SCOTT: I understand that. Some of the remarks that were made earlier today and yesterday 6 7 led us to believe there were some concerns in that 8 area, and we're trying to address those. Well, I think that the 9 DR. DENNING: 10 concern is -- relates to downstream effects, and what we've heard today, or the last few days, indicates 11 12 there really has not been enough research that examination of downstream effects at this time. 13 We 14 haven't seen the evidence, and we hear things like, 15 well, there are going to be plant-specific, and we'll review what the industry provides, and this type of 16 17 stuff, I don't think that that is a prudent way to go forward. 18 19 I think that you ought to be looking at 20 some examples today to see if we really understand 21 what implications are of potentially large the 22 loadings of material passing through the screens with

larger screen areas. That seems -- I mean, and I
don't speak for the Advisory Committee clearly here,
but it certainly seems like enlarging the screens is

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	193
1	a very good idea, relative to many of the other
2	concerns that we have, but the one area that hasn't
3	been, I don't think, adequately looked at before one
4	could answer that question is the downstream effects.
5	MR. SCOTT: One point I didn't make, but
6	should, is that the staff's technical adequacy audits
7	that we will be doing on the industry's work will
8	provide an opportunity to focus on just the same thing
9	you talked about.
10	CHAIRMAN WALLIS: I think there's going to
11	be a tradeoff, that you have too big a strainer it's
12	probably bad for downstream effects, and if you have
13	too small a strainer it's bad for NPSH. How do you
14	make the decision, it has to be based on some kind of
15	a measure of success, or some measure of risk, or
16	something, where you see one going down, one going up,
17	and somewhere there's a minimum of some kind of value
18	of something.
19	MR. SCOTT: Yes.
20	CHAIRMAN WALLIS: Now, has the Agency ever
21	tried to address it that way, I don't think you have,
22	I haven't seen any kind of a prospective on what's the
23	increased risk of this versus the decreased risk of
24	that, and how does it all balance, and this is how we
25	are going to make a decision.
	I

(202) 234-4433

	194
1	MR. TREGONING: But, wait a minute, I
2	mean, that's one way to solve it, is trying to
3	optimize it, and there may be an optimal screen size.
4	CHAIRMAN WALLIS: How else would you do
5	it, when you've got to trade off things against one
б	another?
7	MR. TREGONING: Well, you can have a non-
8	optimized design that still may satisfy the regulatory
9	requirements that are again, there's quite a
10	CHAIRMAN WALLIS: So, how are you going to
11	decide what those requirements should be then?
12	MR. TREGONING: Well, we are not changing
13	the requirements to meet 5046 as part of this
14	exercise.
15	CHAIRMAN WALLIS: The core remains
16	MR. SCOTT: That's the whole basis for the
17	success criteria for this entire exercise that we're
18	undertaking.
19	CHAIRMAN WALLIS: well I think
20	MR. TREGONING: To ensure that we can meet
21	5046.
22	CHAIRMAN WALLIS: you may be trading
23	off uncertainties, too, in which case it is a
24	tradeoff.
25	DR. DENNING: Should we do some summary?
ļ	

(202) 234-4433

	195
1	I mean, there are some summary statements I'd
2	certainly like to make.
3	CHAIRMAN WALLIS: I think we can have some
4	summary statements now. What I would really like from
5	you and Sandra, I've got some from Tom, maybe I'll get
6	some more, is some written stuff, which I can which
7	will help me to write a report or a position of at
8	least the subcommittee. I guess it would be very
9	appropriate to give some final remarks now.
10	DR. DENNING: Okay.
11	Well, let me say that with regards to
12	things we heard on the first day, I have serious
13	concerns, and I'll talk about those a little bit more,
14	in terms of the regulatory approach, not because I
15	think it's being driven by an industrial approach that
16	I don't think is the right way to go forward, and so
17	I'll comment a little bit more on that later.
18	With regards to the last day and a half,
19	I have been very impressed by the research that is
20	going on. I think that almost uniformly the things
21	that I heard are important things and the quality of
22	the research is excellent, but it is done, and to
23	think that we are bringing it to a conclusion in April
24	to me just seems premature.
25	One of the reasons that I think that it
	I

(202) 234-4433

	196
1	isn't done is that, I think that my greatest concern
2	about the approach that I see to closure, as it now
3	exists in the industry's mind, and I think in NRR's
4	mind, is one in which there's a lot of post testing,
5	as we get down to this last stage of the overall
б	analysis, and you look at what happens at the screen,
7	what I heard was an integral post test approach idea
8	as to how to do that, and I think that that integral
9	proof test, without a real understanding of
10	phenomenology and without models is very difficult to
11	support technically. And, I think that the importance
12	of the research that we have going on is that it does
13	give NRR the ability to make to ask the right
14	questions of industry.
15	I think at the moment, because we haven't
16	really brought the research together, we don't really
17	have models, and when I say models I don't want to
18	imply that I think that we can have first principle
19	models for all of these things, but I do think that we
20	have to take the results that we are getting and
21	develop models of some degree, because without those
22	I don't think you have an understanding, or we can't
23	we don't really have a technical understanding of
24	what's going on.
25	So, the value of the research, obviously,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

is to provide tools to NRR. I don't think that those 1 2 tools have been really drawn together. I think that 3 we are on our way to doing that, but I don't think we 4 are there, and I don't think we are going to be there 5 for another nine months from what I'm hearing. So, I think there's a lot of analysis of the experimental 6 7 work that's been done, a lot of putting it together 8 with interpretive tools, so that NRR has the right 9 tools to challenge what is presented to them by 10 industry. That includes on the chemical effects side 11

difficult problem of bringing that into the 12 the pressure drop. Now again, I don't really believe that 13 14 we are going to have a correlation where you are going to dump in some chemical effects and come up with a 15 modification to a head loss correlation, but you are 16 going to have to have some quantitative understanding 17 of its impact, so that you can get -- can develop 18 19 alternatives, technical alternatives, like the removal 20 of TSP, perhaps, control of amount of aluminum, those types of things. But, in order to be able to develop 21 22 those as technical alternatives you are going to have 23 to have some quantitative drawing together of these results on the chemical side. 24

And again, I heard things that I thought

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	198
1	were definitely headed in the right direction, but the
2	thought that one could that we are ready by April
3	to do that, we definitely didn't hear that.
4	I guess the final thing I would say is,
5	and maybe I am repeating myself, and that is that we
6	need some perspective on these downstream effects, and
7	I think that just taking some cases and having either
8	research or NRR personnel run through some cases, and
9	see how much debris are we really talking about
10	downstream in the screens, and where does it wind up,
11	and what happens in cold leg breaks versus hot leg
12	breaks, that we've got to do some of that thinking in
13	advance and not waiting for an audit of an industry
14	analysis.
15	CHAIRMAN WALLIS: Thank you.
16	Sanjoy, would you like to give some
17	closing remarks?
18	DR. BANERJEE: Sure.
19	Just a few things. First, I think that we
20	should divide the problem into before the strainers
21	and after the strainers, and my impression is, we know
22	quite a bit about what happens before the strainers
23	and, perhaps, even when they get on the strainers, but
24	not that much after the strainers. And, both are
25	important problems.
ļ	I

(202) 234-4433

I feel a little uncomfortable with letting industry come and do their testing, and then we 3 examine these tests and say are they good enough or 4 not good enough.

5 I think we should sort of interact with them, even at this stage, to give them some feedback 6 7 as to whether it's likely to be adequate or not, 8 because if they have done all these tests with all 9 these screens, what they are really doing is they are 10 taking pieces of screen, taking а particular situation, a particular flume, looking at the dropout, 11 12 perhaps, trying to get some benefit for the near field effect, whatever it is, it's a pretty ad hoc approach, 13 14 and it could be that when we examine these later down 15 the line we'll find it's not adequate, in which case they've spent a lot of money doing plant-specific 16 work, even making modifications to plants, which may 17 turn out to be inadequate, or to lead to another set 18 19 of problems.

20 So, I do think that they have been doing 21 -- they have been going this course for 30 years now, 22 or whatever, some period of time, the issue is, is it 23 such a big problem that they need to immediately 24 increase these areas? Is it such a big safety issue? 25 And, I can't judge that. If that's felt that it is

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	200
1	such a big safety issue, then, of course, we should do
2	whatever we can based on our judgment today to take
3	care of this.
4	But then the understanding should be clear
5	that this may not be the answer, you know, that
6	eventually they make these MODs, they increase the
7	area, but that may lead to a whole new set of
8	problems, which we need to take care of in the future.
9	So, I would just feel a little more
10	comfortable if there was some more time, I don't think
11	the problem is going to be solved completely, but it
12	could be that there are some innovative ways to take
13	care of this. I imagine you can think of several,
14	which is other than just increasing the screen area.
15	It might be able to take care of both problems, and it
16	might be a design solution, rather than a solution
17	which is based on analysis.
18	So, my sense of this problem is that we
19	are still some ways from resolving it. I do feel
20	there is need for more research, particularly, after
21	the screens, if you like. I do feel that you made
22	very good progress on some areas of research, which
23	can support NRR.
24	I'm particularly happy with what I saw on
25	the chemical analysis part, the modeling there, and a
	I

(202) 234-4433

	201
1	little bit more work there I think would be very
2	helpful to just close that out in a nice way.
3	I think you are making very good progress
4	on the studies you are doing on blockage, probably the
5	answer you will get is one that nobody will like, that
6	there's no way to actually handle the chemical effect
7	without having a very high pressure loss, however big
8	the screen is, if it covers the whole screen,
9	unfortunately, I think it's going to be clogged. So,
10	one will need to take care of the chemical effects in
11	some other way.
12	But, you know, without saying there's any
13	guidance, one way might be to remove the aluminum
14	ladders, or scaffolding, or whatever. The other way
15	might be to find a new buffer, other than
16	trisodiumphosphate. Who knows, I don't know the
17	answers, I'm just throwing these out.
18	So, there may be innovative ways to take
19	care of these problems, so that and you've
20	identified this very nicely I think. So, I'm just
21	I feel a little bit uncertain about going ahead and
22	just examining what industry submits, and saying is it
23	good enough or not to meet the safety goals that we
24	have, because first I don't think we have enough
25	information to make that judgment very well right now,
ļ	I

(202) 234-4433

	202
1	second I think getting that information isn't a long
2	way off, and we could probably get a better, more safe
3	design eventually, and NRR might have an easier job in
4	handling this in the future if we just were a little
5	bit more cautious on this, and took a little more
6	time.
7	So, that's my view.
8	CHAIRMAN WALLIS: Thank you.
9	Well, I don't think I'm going to give you
10	a definitive judgment. I agree in many ways with what
11	my colleagues have said, and I have spoken out during
12	the meeting here. You can read the transcript.
13	It would appear that we have a long way to
14	go in terms of a technical understanding, an ability
15	to predict things, quite a few things associated with
16	this problem.
17	We are continually finding new
18	information, which indicates that we didn't have it
19	before, therefore, we would previously be making
20	decisions based on something other than information,
21	and some of this new information includes significant
22	surprises, which indicates that we are not towards the
23	end of a research program.
24	I feel that the downstream effects,
25	particularly, what happens in the core, are an
Į	

(202) 234-4433

	203
1	important issue. I'm surprised it hasn't been
2	addressed with the same kind of vigor and questioning
3	that the sump screen blockage is being addressed with.
4	I suspect that when we do begin to
5	investigate downstream effects, we may find the same
6	kind of lack of information, and the same kind of
7	unexpected results in some areas, that we've been
8	finding with the screens.
9	And so, if I were making a decision on
10	this matter, I'd be very nervous about making any
11	decision at the moment, and what I would look for, I
12	think I've said this at times in the proceedings here,
13	is what I would try to look for would be a way around
14	the problem which was less subject to uncertainty,
15	where I could be clear that I knew what I was doing.
16	Now, I'd invite my colleagues to send me
17	written statements, which I can use helping guide the
18	full committee. The full committee is going to, I
19	understand, give you a letter, and then we'll be
20	responding to what we see as the stated things. It
21	won't be a prescription for what you ought to do, or
22	a decision on the size of strainers or something like
23	that. It's going to be a much more preliminary type
24	of judgment, I think, saying this is where you are,
25	clarifying the situation, rather than saying it's
ļ	I

(202) 234-4433

1 clear to us what you ought to do or where you ought to go, because I don't think it is clear just what he 2 path should be, and there seems to be a hope that 3 4 giving it to industry, and having 69 plants all submit 5 different ad hoc experiments and calculations, is the 6 right way, and that seems to me a very big risky thing 7 to attempt to do. Now, maybe if industry can get together as 8 a group and solve some of these problems, that would 9 But, I would be very nervous to 10 be a step forward. 11 have an individual plant, with the resources they 12 have, come up with a really convincing answer to the question, what should we do. 13 14 MR. SCOTT: Can I make a couple of 15 clarifying remarks, Dr. Wallis, or a couple of points? One, regarding the point you just made, of 16 course, the individual plants are not 69 of them 17 contracting people to do testing. They settled on 18 19 five vendors, and the vendors are doing the testing, so it's not like there are 69 different sets of tests 20 21 involved. 22 But, by the time that CHAIRMAN WALLIS: 23 they -- they are going to interpret those for their 24 plants.

MR. SCOTT: Correct.

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 204

(202) 234-4433

25

	205
1	CHAIRMAN WALLIS: So, I guess, there are
2	different tests, but there may be some things which
3	are so plant specific that they will actually require
4	plant-specific tests.
5	MR. SCOTT: Yes.
6	CHAIRMAN WALLIS: I mean, the plant that
7	has acres of aluminum is going to be very different
8	from all the other plants, if it has that. I expect
9	by now they don't have it anymore, but there may be
10	some plants which, because of the way the architect
11	engineer has arranged things, that you just cannot do
12	something with what's in the sump, for instance. There
13	may be some solutions which are not available to some
14	plants, and by the time you put together all these
15	things you may end up with a lot of quite a few
16	rather unique situations.
17	MR. SCOTT: Well, maybe tech staff can
18	correct me if I state this wrong, but I would say that
19	we're going to have 69 plant-specific solutions based
20	on five basic approaches provided by the vendors.
21	CHAIRMAN WALLIS: And, I think that's part
22	of my colleagues nervousness, is whether those basic
23	tests are going to be general enough and have so
24	that they can be used for different somewhat
25	different situations from the tests.
Į	I

(202) 234-4433

	206
1	MR. SCOTT: Which brings me to another
2	clarifying remark Dr. Banerjee made regarding
3	observation or, let's say, waiting on the industry to
4	come forth with test results. The staff is not doing
5	that. The staff is out while the industry is doing
6	the testing observing the tests. We have a number of
7	trips that have happened in the past several weeks,
8	and a number more on the horizon. So, we are not just
9	waiting for them to send something in, just to clarify
10	that.
11	DR. BANERJEE: Yes, I know that you are
12	watching these tests, I'm more concerned that
13	implicitly almost agrees with this approach, because
14	part of it, you see, at least in my view, is that
15	approach is fraught with a great deal of difficulty in
16	terms of acceptability, because they are taking little
17	pieces of the screen, or whatever, putting it in the
18	flume, and then putting some stuff, which is
19	depositing out, hopefully they don't ask for too much
20	near field effect credit, but that, when you take it
21	to a real situation, imagine the top hat strainers
22	now, there are a whole area of these, so you've taken
23	a little piece of screen and you've tested it, but
24	there are all sorts of potential blocking effects
25	which occur.
	I

(202) 234-4433

	207
1	To give you an example, when you stack the
2	strainers in the design that went into Vermont Yankee,
3	they did testing of one clean strainer. Okay. When
4	you stack them the stuff gets in between, and it
5	builds up a bed. So, they used the approach velocity
6	for a clean strainer to get the pressure velocity.
7	As you build up the bed, your approach
8	velocity completely changes. So, they submitted the
9	calculations based on the approach velocity for a
10	clean strainer, but in reality it was the
11	circumference and the approach velocity was up by a
12	factor of ten. So, when you actually take the real
13	configuration it's very different from doing a little
14	test on this sort of thing, and they have no way to go
15	from that test to the full scale system. So, where is
16	the bridge, you know, and the way they do it, if you
17	look at their you have to actually read their
18	reports to understand what they have done.
19	So, for Vermont Yankee we did that, we
20	went back to every report and we read it. Otherwise,
21	it's very difficult to understand what they are doing,

relevant. You almost are saying, okay, if you do

and it's a very dangerous thing to say even implicitly

that these tests actually are going to be even

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

22

23

24

25

208 1 these tests, we are observing them, it's going to be 2 okay. 3 You know, maybe I'm interpreting it wrong, 4 but there is a whole lot more than testing a little 5 piece of thing and saying this is the pressure 6 velocity. 7 MR. SCOTT: You are probably not going to find this a highly satisfying answer, but we don't --8 9 I mean, I agree with what you just said, however, we expect the industry to provide that bridge, and we 10 will look at it and see if we agree that it is 11 adequate. 12 DR. BANERJEE: And, there will be 69 13 14 different bridges for 69 different plants. 15 MR. SCOTT: Five different bridges with variations. 16 DR. BANERJEE: No, there will be pretty 17 big variations, because the way they put those top 18 19 hats, and if you take a top hat it will make a big 20 difference, and each plant will have a different way 21 of doing it, of course. 22 So, I think this is a very, very dangerous 23 approach. MR. LU: Well, in terms of scaling, I 24 25 think you have a very valid point, I agree 100 percent

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 with your point there. That's the reason we raised 2 the issue last March when we first saw the test, and 3 at my recommendation the staff started to have tours 4 to look at the vendors testing as early as we can, and 5 actually that's what we have been doing during the 6 past year, to make sure that all five vendors are 7 doing the right tests and following the right 8 procedures. 9 In terms of scaling, you have a valid point, that's exactly what we have been after the 10 11 industry to provide that bridge, and what we are 12 looking for is that five vendors, now it all depends, if you want to take the credit from the near field 13 14 sediment, most of them -- actually, some of them are 15 dumping out all the debris on the strainer surface. 16 So, if those are scaling issues, some plants have to address that. And, they are looking for answers from 17 the five vendors to address those issues 18 19 CHAIRMAN WALLIS: I think we are going to 20 have to stop. We are not as a subcommittee now trying to solve the problem for you by discussing it with 21 22 you, but --23 MR. SCOTT: May I make one more clarifying 24 remark, please? 25 CHAIRMAN WALLIS: Yes. You can make

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

209

	210
1	another clarifying remark.
2	MR. SCOTT: Okay. Final one, I promise.
3	What I wanted to emphasize here, the
4	remark was made, or there was a statement regarding
5	whether the staff believes that the enlargement of the
б	strainers is the final answer to the problem.
7	We certainly do not at this point take
8	that position. We fully recognize that as we get
9	smarter and as the industry gets smarter on this
10	issue, that there may need to be additional changes.
11	So, we are not by any means at this point saying that
12	the installation of larger strainers is the end of the
13	problem.
14	CHAIRMAN WALLIS: I am trying to think of
15	what letter the committee will write. What I'm
16	anticipating is that we will write a letter which is
17	not wordy, and it will have some very crisp statements
18	about how we think you are going in various areas, and
19	there may be just three or four sentences, and those
20	that will be memorable, and recognizable by the
21	reader, rather than having our usual letter where we
22	have a couple of crisp sentences and a lot of
23	explanation.
24	That's my anticipation at the moment, and
25	i may be completely wrong.
I	I

(202) 234-4433

	211
1	Thank you all very much, it's been a very
2	interesting and useful meeting on a very important
3	problem. Thank you. We'll now close.
4	(Whereupon, the above-entitled matter was
5	concluded at 12:35 p.m.)
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	