Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor SafeguardsThermal Hydraulics Subcommittee Meeting

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Tuesday, February 14, 2006

Work Order No.: NRC-881

Pages 1-378

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	THERMAL HYDRAULICS SUBCOMMITTEE
6	MEETING
7	+ + + +
8	ROCKVILLE, MARYLAND
9	TUESDAY,
10	FEBRUARY 14, 2006
11	+ + + +
12	
13	The Subcommittee met in Room 2TB3 at Two
14	White Flint North, 14555 Rockville Pike, Rockville,
15	Maryland, at 8:30 a.m., Graham B. Wallis, Subcommittee
16	Chair, presiding.
17	
18	<u>PRESENT</u> :
19	GRAHAM B. WALLIS Subcommittee Chair
20	RICHARD S. DENNING Subcommittee Member
21	THOMAS S. KRESS Subcommittee Member
22	WILLIAM J. SHACK Subcommittee Member
23	SANJOY BANERJEE ACRS Consultant
24	
25	

		2
1	<u>NRC STAFF</u> :	
2	RALPH CARUSO	Designated Fed. Official
3	RALPH ARCHITZEL	NRR
4	DAVID CULLISON	NRR
5	MICHELLE HART	NRR
6	JON HOPKINS	NRR/DPR
7	WALT JENSEN	NRR
8	PAUL KLEIN	NRR
9	JOHN LEHNING	NRR
10	SHANLAI LU	NRR/DSS/SSIB
11	TOM MARTIN	NRR
12	ROBERT TREGONING	RES
13	STEVEN UNIKEWICZ	NRR/DCI/CPTB
14	LEON WHITNEY	NRR
15	MATTHEW YODER	NRR/DCI/CSGB
16	OTHER PRESENT:	
17	JOHN BUTLER	NEI
18	MAURICE DINGLER	WOG
19		
20		
21		
22		
23		
24		
25		
Į	l	

	3
1	AGENDA ITEM PAGE
2	WELCOME/OPENING REMARKS:
3	Graham Wallis 5
4	OVERVIEW OF GSI-191 RESOLUTION STATUS:
5	Tom Martin
6	Jon Hopkins
7	BULLETIN 2003-01/GENERIC LETTER 2004-02:
8	David Cullison
9	PILOT PLANT AUDIT PROGRAM & AUDIT STATUS:
10	Ralph Architzel
11	NEAR-FIELD EFFECT & PROTOTYPICAL HEAD LOSS TEST:
12	Shanlai Lu
13	CHEMICAL EFFECTS: STATUS & PLANS:
14	Paul Klein
15	REMOVAL OF TSP:
16	Michelle Hart
17	DOWNSTREAM EFFECTS:
18	Steve Unikewicz
19	INDUSTRY RESPONSE TO GL 2004-02:
20	John Butler
21	GSI-191 ACTIVITIES OF WESTINGHOUSE OWNERS GROUP:
22	Maurice Dingler
23	COATINGS:
24	Matt Yoder
25	
	I

		4
1	<u>AGENDA ITEM</u>	<u>PAGE</u>
2	MANAGEMENT PERSPECTIVE:	
3	Mike Scott	367
4	<u>ADJOURN</u> :	
5	Graham Wallis	377
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

	5
1	P-R-O-C-E-E-D-I-N-G-S
2	8:30 a.m.
3	CHAIR WALLIS: Good morning. The meeting
4	will now come to order. This is a meeting of the
5	Advisory Committee on Reactor Safeguards Subcommittee
6	on Thermal Hydraulic Phenomena. I am Graham Wallis,
7	Chairman of the Subcommittee. Subcommittee Members in
8	attendance are: Tom Kress, Will Shack and Rich
9	Denning. The consultant to the Committee is Dr.
10	Sanjoy Banerjee.
11	The purpose of this meeting is to discuss
12	the progress being made by the NRC staff in the
13	resolution of Generic Safety Issue 191, PWR Sump
14	Performance. Today we will hear a report from the
15	staff on the industry response to Generic Letter 2004-
16	02, as well as a report from NEI and the Westinghouse
17	Owners Group about their activities.
18	Tomorrow and Thursday, the staff will
19	present the results of its ongoing staff research
20	program associated with chemical interactions of
21	coolant and debris within the containment during the
22	loss of coolant accident.
23	The Subcommittee will hear presentations
24	by and hold discussions with representatives of the
25	NRC staff and other interested persons regarding these
ļ	1

(202) 234-4433

	б
1	issues. The Subcommittee will gather information,
2	analyze relevant issues and facts and formulate
3	proposed positions and actions as appropriate for
4	deliberation by the full Committee.
5	We understand that Dr. Shack has a
6	conflict of interest and will not be participating in
7	Committee deliberations on this matter. Ralph Caruso
8	is the designated federal official for this meeting.
9	The rules for participating in today's
10	meeting have been announced as part of the notice of
11	this meeting previously published in the Federal
12	<u>Register</u> on February 7, 2006. A transcript of the
13	meeting is being kept and will be made available as
14	stated in the <u>Federal Register</u> notice. It is
15	requested that speakers first identify themselves and
16	speak with sufficient clarity and volume, so that they
17	can be readily heard.
18	Who is going to speak first? I thought it
19	was it's not Mike Scott has had a remarkable
20	metamorphosis and is now on the NRC staff and is
21	appearing before us. I understand that he is not
22	going to speak first. So, please, go ahead and
23	introduce yourselves.
24	MR. HOPKINS: Yes, hi, I'm Jon Hopkins,
25	NRC/NRR Project Manager. I work with GSI-191. I
I	I

(202) 234-4433

would like to introduce some of the staff first that 1 2 will be presenting today. You've acknowledged Mike In the first row there 3 Scott over there at the table. 4 is Dave Cullison on the end, Ralph Architzel, Shanlai 5 Lu, Matt Yoder and Paul Klein. Right here to my left is Tom Martin, Division Director, and Tom has some 6 7 opening statements. 8 MR. MARTIN: Good morning. I'm relatively 9 new to this project. On one hand, I've been doing 10 other things in the Agency, as you may be aware of. I came back to NRR about six months ago. However, I 11 did point out to my staff that I was Chief of the 12 Generic Safety Issue Branch in 1995 when this issue 13 14 first surfaced and I guess --15 CHAIR WALLIS: Well, wait a minute. It's surface grant, first? 16 17 MR. MARTIN: Well, as a Generic Safety 18 Issue. 19 CHAIR WALLIS: Oh, but it's been around? 20 MR. MARTIN: It's been around a little bit 21 longer than that, but as a GSI-191. 22 CHAIR WALLIS: As a GSI-191. 23 MR. MARTIN: It resurfaced. 24 CHAIR WALLIS: Okay. 25 MR. MARTIN: Around 1995.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

7

	8
1	CHAIR WALLIS: Thank you.
2	MR. MARTIN: We do appreciate the
3	opportunity to share our activities with you on this
4	important topic over the next several days. I would
5	also like to report that we have made some significant
6	progress since we last met with the Committee, but
7	there are still some areas where the NRC and industry
8	are lacking knowledge of the phenomena involved.
9	We took your comments and questions to
10	heart and are continuing to make progress. We aren't
11	at the end of the road on this issue, however, we do
12	have a plan to get there and we're going to share that
13	with you today.
14	There is a question here that frequently
15	exists for the staff and that is at what point do we
16	have enough information to make a decision requiring
17	the industry to move forward with modifying their
18	systems? Sometimes we might not have all the answers,
19	but we do know enough to apply appropriate
20	conservatisms and make a decision with the best
21	information at hand. This is such a case. Sometimes
22	we refer to this as engineering judgment.
23	The PWR plants are now on track to
24	substantially enlarge their sump screens by the end of
25	2007 using an NRC-approved methodology. We believe
I	I

(202) 234-4433

	9
1	this is the right thing to do, we do now, because one
2	thing that is becoming more apparent is that the PWR
3	sumps are undersized. In many cases licensees are
4	increasing the size of their screens by about two
5	orders of magnitude.
6	Today, we will start by showing you the
7	staff's plan and the NRR perspective for addressing
8	the issues. The Office of Research will discuss
9	details of research in these areas tomorrow and the
10	next day, so we may ask you to defer questions in some
11	areas regarding research to those presentations.
12	We have carefully considered your previous
13	comments, particularly your letters of October and
14	December 2004. Many of your comments are addressed in
15	our presentations. We will also have staff present to
16	answer questions you may have if our presentations do
17	not specifically address your comments or questions.
18	We plan to update the Committee two additional times
19	this year and welcome your feedback.
20	I'm also sorry I'm not going to be able to
21	spend much time at these meetings, because I made a
22	commitment some time ago to attend a training class
23	this week. At thing point, I would like to turn the
24	floor back over to Mr. Hopkins.
25	CHAIR WALLIS: I have written comment on
I	

(202) 234-4433

1 your presentation. You and your introductory remarks 2 indicated that you were closer to resolution because 3 of the work that is being done. I'll be very 4 interested to find out from the presentations in the 5 next couple of days whether you are closer to resolution or further away. And then some of the new 6 7 information seems to indicate that some of the optimistic ideas of being able to predict things may 8 9 have been overly optimistic.

10 MR. MARTIN: How close we are to resolving this is a relative term. I would say that we have 11 made significant progress and we continue to make 12 significant progress. The industry has moved forward 13 14 with some substantial amount of testing as we have and we're anxious to share the results of that testing 15 16 with you.

However, at this point, I believe we do need to make a decision and move on with this issue to improve the overall operation of these plants.

20 CHAIR WALLIS: See more information may 21 make it more difficult to make that decision and I 22 think that's what we're going to try to find out in 23 the next few days whether more information is helping 24 or whether it's not. I hate to say muddying the 25 waters or clouding.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	MR. MARTIN: Well, we'll be interesting in
2	hearing your thoughts about it.
3	CHAIR WALLIS: That's what seems to be
4	happening in some of these experiments. Okay. We'll
5	move on. Thank you.
6	MR. MARTIN: Thank you.
7	MR. HOPKINS: Okay. Thank you. I'm going
8	to start off the presentation with a short recap of
9	history and summary of where we are. You know, in
10	2003, the NRC issued a bulletin. In 2004, we issued
11	Generic Letter on this. We issued a safety evaluation
12	on the NEI methodology in December of 2004. In
13	September of 2005, we got detailed licensee responses
14	to the Generic Letter and SE methodology.
15	And in September 2005 and January 2006, we
16	issued an Information Notice in Supplement 1 on
17	chemical effects specifically, trisodium phosphate and
18	Cal-Sil insulation. There will be more presentations
19	on these topics following.
20	These are the specific topics we will be
21	addressing today in our presentation. I would like to
22	mention that last week Thursday and Friday we had
23	public meetings with industry and vendors. There are
24	five strainer vendors here in the United States. At
25	the meeting it was presented that all plants plan to
I	I

(202) 234-4433

12 1 install or have installed new strainers. The smallest new strainer planned right now is 650 square feet 2 3 screen area. Again, there will be more in following 4 presentations. 5 CHAIR WALLIS: Now, I think, again, this is a question we're going to be after getting an 6 7 answer to in the next few days is yes, it's nice to 8 plan to install these strainers, but if new 9 information is coming in, which might change the kind of strainer you want to put in, you don't want to put 10 a new one in and then have to put another one in after 11 that because you've now found out that you've got new 12 information and your previous design wasn't quite what 13 14 you wanted. MR. HOPKINS: Yes, I understand. I think 15 16 that's what Tom was addressing in his response. 17 CHAIR WALLIS: Yes. 18 MR. HOPKINS: There are industry -- you're 19 referring also to some test programs going on now and 20 status of those will be specifically addressed. MR. SCOTT: Can I add something to that, 21 22 Graham? 23 CHAIR WALLIS: Yes. MR. SCOTT: As Tom Arden said, the staff's 24 25 perspective on that is that it is important that we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 make significant improvements to the plant in the 2 near-term recognizing that those improvements will be 3 made in parallel with the attainment of additional 4 knowledge and that it is possible that the result of 5 that knowledge will be the need to make additional modifications. And we recognize that it's not an 6 7 ideal situation, but the staff believes it is 8 important to move forward, at this point. 9 CHAIR WALLIS: But having a very big 10 strainer may not turn out to be a very good idea. MR. SCOTT: And this --11 CHAIR WALLIS: Previously, we thought the 12 bigger, the better, but that may not be true. 13 14 MR. HOPKINS: Okay. Well, and that's where the engineering judgment comes in that Tom also 15 referred to. 16 17 CHAIR WALLIS: Right. But again, we'll work 18 MR. HOPKINS: 19 through that in these presentations. 20 Yes, thank you. CHAIR WALLIS: 21 DR. BANERJEE: Is there going to be any 22 discussion of modeling efforts or it will be just 23 talking of experiments at this meeting? 24 MR. HOPKINS: Yes, there will be some 25 discussion of modeling.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

13

	14
1	DR. BANERJEE: Where will that be?
2	MR. HOPKINS: I believe Shanlai Lu under
3	near-field effects. Will you be discussing that or
4	can I have some help here?
5	MR. LU: Yes, at a very fine level.
6	DR. BANERJEE: At what level?
7	MR. LU: At a very fine level and we're
8	going to summarize the vendors past
9	PARTICIPANT: We can't hear you.
10	DR. BANERJEE: Can't hear you.
11	COURT REPORTER: Talk to the microphone,
12	please.
13	MR. LU: Okay. How do you do this?
14	Shanlai Lu from NRR/SSIB. Yes, I'm going to cover
15	give a summary of vendors testing and the modeling
16	approach, but at a very high level. The details of
17	the modeling and the correlation development will be
18	presented by Office of Research tomorrow and so you
19	will hear the details there.
20	DR. BANERJEE: So tomorrow?
21	MR.LU: Yes.
22	CHAIR WALLIS: Yes, I think tomorrow is
23	when we're going to do that one, yes. Maybe the
24	question is whether you can model something of the
25	experiments non-repeatable. That's one of my
Į	I

(202) 234-4433

	15
1	questions anyway.
2	DR. BANERJEE: Maybe it will shed some
3	light as to why they are non-repeatable.
4	CHAIR WALLIS: That's right. Okay. These
5	look like very interesting topics.
б	MR. HOPKINS: Thank you. And again, those
7	are just NRR's topics this morning. As Shanlai said,
8	Research will be presenting more.
9	This is a rather busy flow chart, but it's
10	to the shaded green area is essentially where we
11	are today. But it's to show you the path we have lead
12	out and how the Bulletin and Generic Letter reviews
13	lead ultimately to closure of GSI-191. As you can see
14	by the, roughly, green shaded block that says
15	industry/NRC testing, the results of that do lead into
16	our review of the Generic Letter responses and, if
17	necessary, additional NRC communication.
18	With that, I would like to go to the first
19	presenter or next presenter.
20	MEMBER DENNING: May I interrupt just a
21	second?
22	MR. HOPKINS: Yes.
23	MEMBER DENNING: One thing I don't see
24	here is an assessment of what the risk is. As I see
25	it, we're now in a position where there is a lot of
I	I

(202) 234-4433

uncertainty out here and the testing that has occurred over the last year has verified that there are some issues that we don't have a good handle on. And NRR has to decide can I continue to leave the situation the way it is? I mean, there are certain actions that have taken place at the plants already.

MR. HOPKINS: Yes.

8 MEMBER DENNING: And we have to ask the 9 question are those adequate in the short-term? Do we 10 have to qo ahead even with our lack of full understanding and, for example, put in the biggest 11 screens you can and move forward recognizing that in 12 the future you might have to come back and ask for 13 more or do you wait to see where the root research 14 leads and have a lot of confidence that the change 15 16 that is made is the proper one?

And in order to make those decisions, I 17 see risk assessment being a critical element. 18 I don't 19 see anything in here that says that we're refining now 20 our understanding of what the risk truly is here and 21 whether it's imperative that we move quickly, even 22 though that with the associated uncertainties we might 23 find out we have to go back and ask for more later. 24 Any comment on that? Is there a risk 25 element in NRR's decision process or do you think

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	17
1	you're going to resolve the issues to a level that we
2	wait just another few months and we're ready to put
3	everything to bed?
4	MR. HOPKINS: Donny, do you want to?
5	MR. HARRISON: Yes, this is Donny Harrison
6	from the PRA Branch. In a way, the answer is yes to
7	both your questions. The resolution for GSI-191 is a
8	deterministic resolution, but at the same time we're
9	right now in the process of refining some of the
10	earlier risks, perspectives I'll call them, on this
11	issue that date back to 1999. We're refining them
12	with some of the more recent information we have got
13	since and some studies that were done and published in
14	NUREG CRs over the last three years to give a
15	perspective of what the risk is related to some
16	clogging.
17	So that is something that we are doing
18	right now, but it's more of an informative process as
19	opposed to actually driving resolution. So the
20	resolution will actually be a deterministic
21	resolution.
22	MR. HOPKINS: I would say just to recap
23	some history, again, in the Bulletin and Generic
24	Letter, essentially, there is justification for
25	continued operation in there. And, you know, the
Į	

(202) 234-4433

18 staff considered risk when we established that amongst 1 2 that and if licensees want to go beyond the designated 3 end date of December '07, they also need to consider 4 risk. 5 Lastly, I think I need to say even though we sort of focus on modifying the strainers and making 6 7 them larger, there are also aspects of other 8 modifications, such as debris catchers or removal of 9 insulation or buffering agent changes or something 10 that can improve the situation that is just not strainer specific. 11 Okay. 12 In a way, we're doing this CHAIR WALLIS: We're having research come in tomorrow and 13 backwards. 14 tell us what the set of knowledge is and you're going 15 to tell us today how you're going to make decisions? It seems a bit backwards, but it will be interesting 16 17 to do it this way around. MR. HOPKINS: We're going to do the best 18 19 we can. 20 CHAIR WALLIS: Okay. I believe the next 21 MR. HOPKINS: Okay. 22 presenter is Dave Cullison. 23 MR. CULLISON: No. 24 MR. HOPKINS: No? 25 CHAIR WALLIS: No, we're talking about the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	screen.
2	MR. HOPKINS: Oh, my mistake. Okay. How
3	do we get to minimize?
4	CHAIR WALLIS: So while you're struggling
5	with this, are you going to, when you present your
6	work, refer to the research results or are they going
7	to be are you going to refer these research results
8	today or are you still struggling with the computer
9	that you can't answer my question? Is anybody
10	prepared to answer my question?
11	MR. HOPKINS: I'll answer your question.
12	I'm sorry, I will just
13	CHAIR WALLIS: Are you through
14	MR. HOPKINS: Yes.
15	CHAIR WALLIS: with the computer? I
16	was just wondering if your presentation today is going
17	to take account of the research results we're going to
18	hear about tomorrow? Are you going to refer to them
19	in some way or are you going to not?
20	MR. HOPKINS: For the most part, we're
21	going to try not to and just rely on tomorrow. But in
22	one area, chemical effects, Paul Klein, go ahead and
23	address the question.
24	CHAIR WALLIS: So he will talk about the
25	what you people
	1

	20
1	MR. KLEIN: Yes, we'll try to. Paul Klein
2	from NRR. We will discuss the high level of the
3	research results and how they affect our decisions.
4	CHAIR WALLIS: Good. Thank you very much.
5	MR. CULLISON: Good morning. I'm Dave
6	Cullison from the Safety Issues Resolution Branch at
7	NRR. I'll be presenting the Bulletin 2003-01 and
8	Generic Letter 2004-02 status. The purpose of this
9	presentation is to update the Subcommittee on the
10	status of the Bulletin and the Generic Letter.
11	On the Bulletin status, we have requested
12	that the Generic Communication Branch "globally" close
13	the Bulletin, which is we have done our reviews. All
14	but one plant has been issued a closure letter.
15	CHAIR WALLIS: Globally close means being
16	on the same planet?
17	MR. CULLISON: That's the phrase used to
18	close all of them.
19	CHAIR WALLIS: That's a phrase.
20	MR. CULLISON: They're all inclusive
21	phrase.
22	CHAIR WALLIS: Pretty big volume there.
23	MR. WHITNEY: It means to close the issue
24	broadly, based on individual closures
25	CHAIR WALLIS: Use the microphone.
l	I

	21
1	MR. WHITNEY: of the individual plants.
2	MR. CULLISON: Leon, use the mike.
3	MR. WHITNEY: I'm sorry. Leon Whitney,
4	Safety Issue Resolutions. It simply means that the
5	issue is to be closed based on closure at each
6	individual plant.
7	CHAIR WALLIS: Okay. So you it's very
8	plant-specific?
9	MR. WHITNEY: Yes, yes. There are plant-
10	specific closures that support the global closure.
11	CHAIR WALLIS: But until everyone has
12	approved, you haven't got a global closure then?
13	MR. WHITNEY: Excuse me?
14	CHAIR WALLIS: Until every plant has got
15	some approved way forward, you haven't got global
16	closure then?
17	MR. WHITNEY: Right. The branch issued
18	the global closure recommendation based on individual
19	closures at each plant.
20	MR. CULLISON: And just to refresh the
21	Subcommittee's memory, the Bulletin requested that the
22	licensees do one of two things. One is to confirm
23	compliance with 50.46 or to implement some
24	compensatory measures to reduce the risk while they
25	are resolving the issue. Davis Besse is the only
I	1

(202) 234-4433

	22
1	plant that took the first option and they confirmed
2	compliance with 50.46.
3	DR. BANERJEE: What does 50.46 mean?
4	MR. CULLISON: Long-term cooling
5	requirements, B5. The Safety Issues Resolution Branch
6	developed criteria used to evaluate the plant
7	responses and these are the criteria we use. We at
8	least have one ICM at each of the six categories. I
9	won't read these, but maybe in a minute.
10	CHAIR WALLIS: Now, you have all these
11	things here, but there must be a measure of how
12	effective they are. And there must be a measure of
13	how much they reduce risk or something, otherwise,
14	they're just going through a ritual.
15	MR. WHITNEY: Sir, Leon Whitney, Safety
16	Issue Resolution Branch, no, there was no prescribed
17	effectiveness measure. It was based on the judgment
18	of the reviewer.
19	DR. BANERJEE: You circulated to us some
20	audits of various plants, if I recall. The
21	documentation you have got.
22	MR. WHITNEY: The pilot audits?
23	DR. BANERJEE: Yes.
24	MR. WHITNEY: Okay.
25	DR. BANERJEE: Pilot audits, right. And
I	I

(202) 234-4433

	23
1	in those pilot audits there were many issues which
2	were closed or whatever it was.
3	MR. WHITNEY: Right.
4	DR. BANERJEE: Not resolved. Now, is that
5	some of those were fairly recent, I remember.
6	MR. WHITNEY: Right.
7	DR. BANERJEE: Those were coming in
8	January 2006. So how does that relate to what you're
9	telling us now?
10	MR. CULLISON: Because those are related
11	to the Generic Letter not the Bulletin. The Bulletin
12	had a separate set of actions and we were
13	DR. BANERJEE: Can you tell us what the
14	Bulletin had?
15	MR. CULLISON: Yes.
16	MR. WHITNEY: Let me explain, the purpose
17	of the Bulletin was to perform to establish a risk
18	bridge, if you will, to reduce risk in the interim
19	while the Generic Letter and SER fixes were being
20	established over about a three year period. So the
21	Bulletin went out. Licensees were to do interim
22	compensatory measures to reduce risk to form that
23	"risk bridge" for the time period until December 2007.
24	CHAIR WALLIS: Then there must have been
25	a measure by how much the risk was reduced surely?
I	I

(202) 234-4433

	24
1	MR. WHITNEY: No, there was not.
2	CHAIR WALLIS: So how can you increase it?
3	MR. WHITNEY: The criteria that was
4	established by NRR was to ensure that licensees did
5	one interim compensatory measure in each of these six
6	areas that were called out in the Bulletin.
7	CHAIR WALLIS: Well, the NRR must have
8	satisfied itself somehow that risk was being reduced
9	and had some idea of the order of magnitude of the
10	reduction.
11	MR. ARCHITZEL: Dr. Wallis, this is Ralph
12	Architzel
13	CHAIR WALLIS: Yes.
14	MR. ARCHITZEL: from the staff. I
15	would like to remind the Committee that we did have a
16	layoff.
17	CHAIR WALLIS: Yes, you did.
18	MR. ARCHITZEL: Yes, we did. It was
19	when the study was including operator recovery actions
20	when the Bulletin Interim Compensatory Measures tend
21	to enforce the existence of the recovery actions,
22	there was an order of magnitude reduction of the risk.
23	CHAIR WALLIS: Right.
24	MR. ARCHITZEL: When those factors were
25	considered.
	I

(202) 234-4433

	25
1	CHAIR WALLIS: Yes, I think you ought to
2	say that, because, well, to help to reassure the
3	public that you actually did achieve a big change in
4	risk.
5	DR. BANERJEE: Which measure gave the most
6	reduction in risk?
7	MR. WHITNEY: Again, as the reviewer of
8	the Bulletin, it would be difficult for me to say,
9	since we did not have a risk measure during these
10	reviews. We had to ensure that there was at least one
11	interim compensatory measure in each area and we
12	weren't measuring them by risk reduction explicitly
13	and individually.
14	DR. BANERJEE: But you had you said you
15	used engineering judgment. Which in your engineering
16	judgment reduced the risk most?
17	MR. WHITNEY: Well, obviously, if you can
18	delay switchover and/or avoid switchover, that would
19	be important. The next slide discusses the fact that
20	we established that each licensee had, and I'm getting
21	ahead of the slide, but to answer your question, for
22	small and some medium LOCAs, the ability to conduct an
23	aggressive cool down that puts them directly in
24	shutdown cooling without going switching over to
25	the recirculation mode.
ļ	I

(202) 234-4433

	26
1	For those small and medium LOCAs, that's
2	a 100 percent reduction in any risk, because you do
3	not enter the recirculation mode and you do not use
4	your sump.
5	DR. BANERJEE: And is there a risk then of
6	tunnel stresses in this cool down increase?
7	MR. WHITNEY: These are conducted within
8	the PCT limits of each individual reactor plant. They
9	are not outside of their design-basis.
10	CHAIR WALLIS: Now, you have responses to
11	sump clogging, the first item there, but some of these
12	plants have pretty porous screens and what might well
13	happen is what clogs and the debris catches in the
14	bottom of the vessel. Did they train how to respond
15	to that?
16	MR. WHITNEY: No, the operator actions
17	were on the order of identifying and coping within the
18	normal operation. For example, the containment spray
19	pumps, not all of them were necessarily needed in all
20	scenarios and the licensees would train their
21	operators to not operate one of two, for example, to
22	reduce the draw down on the RWST and to reduce the
23	wash down of debris towards the sump.
24	The downstream effects were not an ICM
25	to address downstream effects, I did not see in my
	I

(202) 234-4433

	27
1	reviews.
2	CHAIR WALLIS: Well, that seems to me is
3	an omission, because if you did clog the inside the
4	direct vessel, this would make it difficult to cool it
5	by any means.
6	MR. WHITNEY: And, sir, I guess I would
7	appeal to the JCO, the Justification for Continued
8	Operation, in the Generic Letter. This was beyond the
9	scope of this risk bridge to get plants to reduce risk
10	as possible until December 2007.
11	DR. BANERJEE: This was to consider debris
12	going into the vessel or downstream effects? Was that
13	beyond the risk bridge?
14	MR. WHITNEY: Yes, I did not recognize any
15	interim compensatory measure identified by licensees
16	that would address clogging of the, let's say, core
17	plates once it had been established that there is
18	clogging in the core plates. There was no measure for
19	that.
20	MR. LEHNING: This is John Lehning of the
21	NRC staff. Although the specific issue the items
22	in the Bulletin weren't specific to downstream
23	effects, there were several things like aggressive
24	cool downs that would avoid recirculation and that
25	would reduce risk of downstream effects as well as
	I

(202) 234-4433

	28
1	cleaning out the containment and other items like that
2	to reduce the amount of debris that could get through
3	the screens. So although it wasn't an explicit focus
4	on that, a number of those interim measures would also
5	have reduced that risk, too, yes.
б	MR. WHITNEY: Look at number 4 and number
7	5 on the current slide. Both of those would excuse
8	me, number 4. More aggressive containment cleaning
9	and increased foreign material control would
10	ultimately reduce to some degree any effect that would
11	happen at a specific reactor plant in that regard.
12	CHAIR WALLIS: Well, if you can avoid
13	recirculation all together, then you avoid the
14	problem. But I was looking at the first bullet.
15	MR. WHITNEY: But also you reduce the
16	amount of debris
17	CHAIR WALLIS: Yes.
18	MR. WHITNEY: in theory, to some
19	degree, and again this was not measured, this was not
20	quantified.
21	MR. CULLISON: Moving on to the next
22	slide. We have already mentioned some of these, but
23	these are some of the notable ICMs that were
24	implemented by all or some of the utilities. I'll
25	just give you a second to read those.
I	1

(202) 234-4433

29 1 CHAIR WALLIS: RWST refill is refill from 2 where? 3 MR. WHITNEY: It could be a boric acid 4 tank. Usually a normal refill, however, we had the 5 licensees identify all possible sources, such as spent fuel pool, borated and non-borated sources, so that 6 7 they could either refill the RWST or bypass the RWST in a direct injection mode. These weren't necessarily 8 9 high enough volumes at any given time relative to 10 decay heat. However, as a conservatism to refill the 11 12 RWST as soon as you go into recirculation meant that you would have a volume of water later in an event 13 14 that may have high value relative to the decay heat 15 level that you could inject. And I'm repeating myself, but we did identify multiple sources for this 16 17 refill and/or bypass of the RWST for direct injection. So you would be finding 18 CHAIR WALLIS: 19 ways to use other sources of water which exist on the 20 site now? 21 Absolutely. MR. WHITNEY: 22 CHAIR WALLIS: You wouldn't be putting in another tank? 23 24 MR. WHITNEY: No, we did not. I don't 25 remember any licensee installing extra tanks. They

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	did identify all possible sources and the line ups
2	that would be necessary to either inject into the
3	reactor coolant system or into the RWST for later use.
4	DR. BANERJEE: Eventually, they would have
5	to recirculate this water, right?
6	CHAIR WALLIS: Um-hum.
7	MR. WHITNEY: Yes and no. In number 1, if
8	it's a small enough LOCA, they may end up and shutdown
9	cooling mode and never enter recirculation. However,
10	for a large LOCA, yes, there would be no option. You
11	would have to attempt to use your sump and yes.
12	DR. BANERJEE: Why didn't people do the
13	first item before? Was there a reason?
14	MR. WHITNEY: No, they all what we did
15	was identify that this is in the standard PWR
16	procedures. We identified that the licensees had
17	trained their people properly, that they were there
18	was no site-specific hold on doing this, that, okay,
19	it is an accepted practice within PCT limits. And
20	some licensees may not have been as willing as others
21	and we talked to them at some length to ensure that
22	they understood, you know, okay, let's be frank.
23	Protect the core first, okay, and let's do this in
24	this interim.
25	We know we have a problem with sumps.
I	

(202) 234-4433

Let's emphasize to the operators that this does exist and is an option and should be pursued. So it isn't that it was an invention resulting from the issuance of the Bulletin. It's more a matter of emphasis and clarity and training to ensure that it will be conducted.

7 MEMBER DENNING: Is there a limit on how 8 much flooding you would allow of the containment? I 9 mean, in principle or in theory, rather, one could 10 fill the containment over the break location. Is that 11 -- are there limits as to why you wouldn't do that? 12 MR. WHITNEY: These efforts are conducted

13 in extremists.

14

MEMBER DENNING: Yes.

15 MR. WHITNEY: And there is -- this will be 16 something that will have to be decided by the TSC 17 organization and the plant management in a severe 18 accident situation.

19MEMBER DENNING: So well, at least that20you knew that the core was in distress that you might21then go to --

22 MR. WHITNEY: Would not normally do such 23 a thing. However, if you had a clogged sump and if 24 you knew that your core needed cooling, you would have 25 to make a judgment relative to the containment

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	equipment, the containment structure, etcetera. Now,
2	that is we're talking we're way out there at the end
3	of all options when these decisions would be made.
4	MEMBER DENNING: But you have gone through
5	accident management strategy or have the plants gone
6	through accident management strategies to determine
7	whether they would, indeed, attempt to fill above the
8	break?
9	MR. WHITNEY: Well, the question is
10	whether they would fill beyond the single volume of an
11	RWST and the answer is yes. Yes, they have considered
12	the ramifications as part of this Bulletin process.
13	CHAIR WALLIS: It is hard to fill above
14	the break if you don't know where the break is.
15	MEMBER DENNING: Keep filling.
16	MEMBER SHACK: Keep filling.
17	MEMBER DENNING: Yes, well, I don't know
18	what the implications are of that whether, you know,
19	what systems you ruin and so but hopefully we would
20	have examined these things before you get into the
21	situation in assessing what options are available to
22	you if you do get into the situation. So certainly
23	there ought to be thinking today not thinking when
24	suddenly you are in distress.
25	MR. CULLISON: Moving on. Now, we're
ļ	I

(202) 234-4433

	33
1	going to discuss the Generic Letter. The purpose of
2	the Generic Letter was to request licensees performing
3	an evaluation of the ECCS and CSS recirculation
4	functions and take appropriate actions and provide
5	information to the NRC.
б	In the Generic Letter we had requested
7	actions, that was to perform a mechanistic evaluation
8	using an NRC-approved methodology and implement any
9	modifications resulting from their analysis.
10	CHAIR WALLIS: Yes, now, this approved
11	methodology, does that include methods for calculating
12	what happens on the screen? And if so, isn't it
13	likely to be changed as a result of results of
14	research?
15	MR. CULLISON: Could very well be but
16	CHAIR WALLIS: So these guys are going to
17	do all their calculations and get it approved and then
18	Research is going to come along and say sorry, you
19	couldn't do it that way or what?
20	MR. CULLISON: Shanlai?
21	CHAIR WALLIS: Shanlai can answer that.
22	MR. LU: Shanlai Lu from NRR. And in
23	terms of head loss evaluation, I'm going to cover
24	that. I talk about that specifically in my
25	presentation, so I will address your comment at that
	I

(202) 234-4433

	34
1	time.
2	CHAIR WALLIS: Thank you.
3	MR. CULLISON: I have a couple of slides
4	here that just goes through the information requested
5	in the Generic Letter. I'm not going to read these.
6	This has been presented to the Committee before. One
7	thing I want to point out
8	CHAIR WALLIS: But it's interesting here.
9	I'm sorry. This is such an important problem. I
10	think we're going to ask you a lot of questions.
11	MR. CULLISON: Okay.
12	CHAIR WALLIS: You're saying here's the
13	letter that goes out to all the plants. Each
14	individual plant somehow has to figure out what to do
15	and come back with an answer. It's conceivable that
16	the problem could be global enough that the NRC, as a
17	result of its research or whatever information it has,
18	might have to itself define some of the
19	characteristics of the solution rather than rely on
20	all of these plants to come up with one.
21	And the NRC might legislate that certain
22	materials be removed, certain changes be made in all
23	plants or something. It's not always responding to
24	industry which is the appropriate answer.
25	MR. CULLISON: Well, that's true. We
I	I

(202) 234-4433

1 haven't reached that point, I don't think, on any 2 research of our reviews or anything that we're going 3 to start mandating the use or removal of any specific 4 material from containment. We are closely following 5 what industry is doing and what our own confirmatory testing is finding and if we see that need to be 6 7 necessary, you know, such an action would be 8 necessary, I believe we will take it. 9 But moving on, I just wanted to point out on this slide that the staff expects all actions to be 10 completed by December 31, 2007. The next slide just 11 has some of the specific information requirements in 12 the Generic Letter. The third sub-bullet, I just want 13 14 to mention, is the one that includes chemical effects. It's where the Generic Letter addresses chemical 15 16 effects in the information request. 17 DR. BANERJEE: You can't go so fast. 18 MR. CULLISON: Okay. 19 MEMBER DENNING: But, of course, Sanjoy, 20 this is just history. 21 Right. MR. CULLISON: 22 I mean, this is what the MEMBER DENNING: 23 request was. 24 MR. CULLISON: Right. 25 MEMBER DENNING: Now we're going to see

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

35

	36
1	what really the key
2	CHAIR WALLIS: We're building up to this.
3	It's an interesting part.
4	MEMBER SHACK: So this is what we asked
5	for.
6	MR. CULLISON: This is what we asked for.
7	All right. Another slide with the information
8	requests.
9	CHAIR WALLIS: So you didn't ask for
10	anything about bypass of debris in the screen?
11	MR. CULLISON: Excuse me? I didn't hear
12	the first part of the question.
13	CHAIR WALLIS: You didn't ask for anything
14	about what proportion of the debris is predicted to go
15	through the screen, bypass, downstream effects,
16	whatever you want to call that?
17	MR. CULLISON: Yes.
18	CHAIR WALLIS: I mean, you're asking for
19	them to predict the maximum head loss.
20	MR. CULLISON: Right.
21	CHAIR WALLIS: That they could calculate,
22	but maybe
23	MEMBER DENNING: But do they address
24	anything on downstream effects?
25	MR. CULLISON: Yes.
I	

	37
1	CHAIR WALLIS: It goes through the
2	MEMBER DENNING: Did you request
3	downstream?
4	MR. UNIKEWICZ: This is Steve Unikewicz,
5	Mechanical Branch for NRR. Yes, we did. We did ask
6	that question. We asked them to address how much
7	debris would bypass the screen, through their
8	openings, and also to address
9	CHAIR WALLIS: And you got responses to
10	that?
11	MR. UNIKEWICZ: Pardon me?
12	CHAIR WALLIS: Did you get responses to
13	the bypass question?
14	MR. UNIKEWICZ: We expected responses to
15	the bypass question, yes.
16	DR. BANERJEE: Which item was that here in
17	this list that you asked for downstream effects?
18	MR. CULLISON: On this slide it would be
19	one of them is the third sub-bullet, verification that
20	close tolerance sub-components are not susceptible to
21	plugging or excessive wear due to extended post
22	accident operation with debris laden fluid and the
23	second sub-bullet, the basis for concluding that
24	inadequate core or containment cooling would not
25	result due to downstream blockage.
I	I

(202) 234-4433

	38
1	CHAIR WALLIS: Well, if you don't have any
2	other information and you're being conservative, one
3	conservative assumption is all the debris forms on the
4	screen in the worst possible way. The other
5	conservative assumption is none of it forms on the
6	screen or it gets so chopped up that it goes through
7	it.
8	Now, those are such extreme limits, but
9	they are possible physical limits and somehow or
10	other, these plants have to steer away between these
11	Scylla and Charybdis.
12	MR. CULLISON: The last slide of the
13	information is we asked for information on any changes
14	they made to their licensing bases and any
15	programmatic controls instituted to give the
16	assumption that their analysis is valid.
17	Here are some of the what we found
18	during our review of the responses, that all PWRs are
19	upgrading or have recently upgraded their sump
20	strainers. As the sub-bullets say, 66 of the 69 are
21	replacing their existing sump screens and the other
22	three have done so in the recent past. However, much
23	of the information we requested in the Generic Letter
24	was not provided.
25	DR. BANERJEE: Before you move on

(202) 234-4433

	39
1	MR. CULLISON: Yes.
2	DR. BANERJEE: Now, these, I noticed that
3	in your pilot audits, these sump screens are very
4	different, right?
5	MR. CULLISON: Right.
6	DR. BANERJEE: I mean, some are Top Hats,
7	some are other things.
8	MR. CULLISON: Yes.
9	DR. BANERJEE: So these designs of these
10	sump screens which are used for replacement, they are
11	completely up to the plant.
12	MR. CULLISON: Right.
13	DR. BANERJEE: So are there any approved
14	designs or are they just whatever they want?
15	MR. CULLISON: Well, I guess the answer is
16	whatever they want. We are not mandating any specific
17	design or any specific material or any we have left
18	it up to the plants to resolve it and, also, taking
19	into account that each plant is different and one
20	design may not fit in another plant.
21	DR. BANERJEE: Right, right.
22	MR. CULLISON: So I think, as Jon
23	mentioned earlier, there's five vendors and each of
24	those vendors have their specific designs, but we have
25	allowed plants to put in the design of their choosing.
I	1

(202) 234-4433

	40
1	DR. BANERJEE: So are there a finite
2	number of designs or are there 66 designs for 66
3	plants?
4	MR. CULLISON: Well, there's probably
5	similarities between the design, but there may be 66
6	individual screens. I don't know that. We haven't
7	seen the final designs.
8	DR. BANERJEE: So all you have been told
9	is that they replaced the screens?
10	MR. CULLISON: Right, and they are going
11	to put in a screen of roughly some size. And that is
12	all we know right now.
13	DR. BANERJEE: So they didn't have to come
14	and say like we have to go to the Architectural Review
15	Board and say I'm making this change, can you approve
16	it before they did it?
17	MR. CULLISON: No.
18	DR. BANERJEE: They just did it?
19	MR. CULLISON: No, we're not specifically
20	approving the modifications.
21	DR. BANERJEE: I see.
22	MR. CULLISON: Prior to them being
23	installed.
24	DR. BANERJEE: And then you have to look
25	at it.
Į	1

	41
1	MR. CULLISON: Right.
2	DR. BANERJEE: And see if it was adequate
3	or not?
4	MR. CULLISON: Right. The assumption is
5	they are going to do the if they use their
6	analysis, that they are going to do that right thing.
7	And that's why we're doing audits to go back to see if
8	they properly used the methodology, you know, did
9	their analyses correctly and that their design is
10	fine.
11	CHAIR WALLIS: Well, I think you have got
12	to be very careful because some of the guidance they
13	have been given is to use certain assumptions, which
14	are supposedly conservative and it may well be that
15	that is not the case, that they are not conservative
16	when you look at recent information. You have got to
17	be very careful on evaluating this and this rushing to
18	put in some screens on the basis of partial
19	information.
20	MR. CULLISON: I understand.
21	MEMBER DENNING: You said NRR's current
22	position is that there is an approved methodology?
23	MR. CULLISON: Yes.
24	MEMBER DENNING: So that methodology is an
25	approved methodology and you comply with that and, in

(202) 234-4433

	42
1	your review, if they comply with that methodology,
2	then they pass the test.
3	MR. CULLISON: Yes.
4	MEMBER DENNING: That's true?
5	MR. CULLISON: That's why we approved a
б	methodology.
7	MEMBER DENNING: Yes. So now, there is
8	more data?
9	MR. CULLISON: Right.
10	MEMBER DENNING: What is NRR going to do
11	with that, review that and decide whether the approved
12	methodology really does provide an adequate basis or
13	at the moment is the presumption that this
14	experimental work that is going on now and theoretical
15	work is confirmatory?
16	MR. CULLISON: Well, our work is supposed
17	to be what is being done by Research is mainly
18	confirmatory, but we evaluate all the new information
19	that comes out and we will, if necessary, supplement
20	the safety evaluation to reflect any of this new
21	information if it changes what is an acceptable
22	approach for an analysis. If we need to change our
23	approved methodology, we will.
24	CHAIR WALLIS: But these guys are
25	replacing their screens. That means they are actually
	I

(202) 234-4433

	43
1	building things now. Is that right?
2	MR. CULLISON: That's correct.
3	CHAIR WALLIS: And you are still worrying
4	about whether or not you're going to change the
5	methodology?
6	MEMBER DENNING: Well, he wasn't. I was
7	asking.
8	MR. CULLISON: Yes.
9	MEMBER DENNING: I was worried about it
10	and I raised the question, right?
11	DR. BANERJEE: Well, he should be worrying
12	about it.
13	MEMBER DENNING: I think so.
14	MR. HOPKINS: Jon Hopkins here. I would
15	just mention that you are correct, essentially, and
16	that was what Dave said is true. That was on my
17	sort of busy flow chart slide.
18	There was this green-shaded block that
19	said industry NRC testing and it had a couple of
20	outputs, and one was to Generic Letter closeout which
21	Dave was going to try to get to, and the other was to
22	possibly supplement the safety evaluation or issue new
23	generic communications if necessary. At this time, we
24	don't see the need to supplement the SE or issue new
25	generic communications.
ļ	I

(202) 234-4433

	44
1	DR. BANERJEE: What sort of information
2	was provided?
3	MR. CULLISON: Oh, this slide will
4	DR. BANERJEE: Okay.
5	MR. CULLISON: provide some of the
6	would, I think, answer your question here. No plant
7	was able to completely answer the questions requesting
8	specific results of their evaluations. That's Section
9	D of the information request. Davis Besse came very
10	close. They were the most complete of the responses.
11	I just want to point out that the staff
12	does not feel that they didn't answer the questions
13	because they didn't want to or were withholding
14	information from the staff. They gave us the
15	information they had and this shows that the progress
16	wasn't what we had expected at the time they submitted
17	the responses.
18	CHAIR WALLIS: Well, how can you possibly
19	resolve an issue without addressing downstream
20	effects?
21	MR. CULLISON: I want to point out
22	okay, go ahead.
23	MR. UNIKEWICZ: I will answer that. The
24	reason I'm going to address this later on in my
25	presentation, but one of the reasons a few plants
	I

```
(202) 234-4433
```

addressed downstream effects is because it's an iterative process. Until you complete the design of your sump screen, it's difficult to predict what is going to come downstream. Now, once you predict what is coming downstream, you then do an assessment and you iterate back and decide what the optimal approach is going to be.

Another issue with that is there are only 8 9 so many bodies doing this work, so it does take time. 10 The choice right now has been for many of the licensees to try to address the screens at the moment 11 and then they will address the downstream equipment, 12 pumps, valves, things of that nature, after they 13 14 assess NPSH and as they assess their screen size and 15 screen openings and things of that nature.

That is what I suspect, that at least in the initial submittals they didn't completely address the answers because, quite frankly, back in September they weren't ready.

20 CHAIR WALLIS: But, you see, you have been 21 focusing on NPSH and screen blockage. If you put in 22 very big screens, a question of screen bypass may 23 become paramount.

24 MR. UNIKEWICZ: Well, I will disagree that 25 that's been the only focus, because we have been

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	46
1	talking about downstream for two years. So while you
2	may have been hearing a lot in many different forums
3	about NPSH, I respectfully disagree that we haven't
4	been talking in a lot of detail about all the
5	downstream equipment, including pump operation,
б	including vibration analysis, including the wear of
7	internal and wetted components. It just hasn't been
8	brought up, I will say, in that sort of depth because
9	it is truly, I will call it, a solid engineering part.
10	CHAIR WALLIS: Well, you have been talking
11	about it, but until you have a methodology for
12	prediction, you haven't really got anywhere.
13	MR. UNIKEWICZ: Our methodology is
14	standard engineering design practices. We have been
15	looking at wear of wetted components for many, many,
16	many years. It's a standard part of a good design
17	engineer's tool.
18	CHAIR WALLIS: Well, I guess we'll get to
19	this tomorrow, will we, where experiments have been
20	done about bypass material through the screen? We're
21	not going to address it today?
22	MR. UNIKEWICZ: I have a downstream
23	presentation. There is a presentation tomorrow on
24	some experiments that were done, yes.
25	CHAIR WALLIS: So what I'm trying to avoid
I	I

(202) 234-4433

	47
1	is the ACRS writing a letter which says you guys have
2	done all this stuff and recent research shows that you
3	have got to go back to square one. That is what I'm
4	trying to avoid having to do.
5	MR. CULLISON: I think these presentations
6	over the next few days will show that we don't want to
7	reset and start again.
8	CHAIR WALLIS: Okay.
9	MR. CULLISON: That we're progressing
10	toward the resolution.
11	CHAIR WALLIS: Well, you keep saying that
12	optimistically.
13	MR. CULLISON: We just want to make sure
14	you get the message, okay?
15	CHAIR WALLIS: You're going to convince
16	us, right?
17	MR. CULLISON: To convince you.
18	CHAIR WALLIS: Okay.
19	MR. CULLISON: Here are some of the
20	schedule challenges that we see. One is something we
21	have been alluding to or have been discussing already
22	this morning.
23	Due to the late start by industry for
24	doing their testing, licensees are still waiting for
25	the results. And also a process issue is license

(202) 234-4433

	48
1	amendments. Due to schedule slippage and late
2	submittals, we're concerned that our ability to review
3	and approve the amendments to meet the licensee's
4	schedules may be challenged.
5	And also, already five plants have
6	requested additional time to complete their corrective
7	actions with at least one additional request expected.
8	So far all these requests have been additional time to
9	complete their actions. They only go into the spring
10	'08 outage and, right now, we are considering criteria
11	for evaluating these requests.
12	MEMBER KRESS: Does the criteria involve
13	risk analysis?
14	MR. CULLISON: I am not developing yes,
15	we can include that. We'll take a look at whatever
16	criteria we're developing with the risk reflected.
17	CHAIR WALLIS: So you are after we have
18	heard from Research tomorrow, we don't hear from you
19	folks again, do we, until the full Committee meeting,
20	so we don't have a response to you from what we hear
21	from Research?
22	MR. UNIKEWICZ: Jon?
23	MR. CULLISON: Yes, that's correct. And
24	future staff actions
25	CHAIR WALLIS: I think that's a pity. Is
I	I

(202) 234-4433

	49
1	there some way you guys can be here tomorrow so you
2	can answer questions?
3	MR. HANNON: Yes. This is John Hannon.
4	NRR staff, yes, we can be in attendance tomorrow. No
5	problem.
б	CHAIR WALLIS: Thank you.
7	MR. CULLISON: Future staff actions.
8	Right now, we're developing a Commission Paper to
9	inform the Commission of the status of 191 and also
10	developing a Regulatory Issue Summary to update the
11	JCO. That's in the Generic Letter. This month we're
12	going to issue RAIs based on our review of the
13	September responses and we're meeting with you today
14	and the full Committee in March.
15	CHAIR WALLIS: So this is the last time we
16	meet with you before the full Committee meeting?
17	MR. CULLISON: That's correct.
18	CHAIR WALLIS: So anything that you need
19	to do to improve matters, you won't be able to do or
20	you will need to be able to fix some things up by
21	March, but we're not going to have another go with
22	this Subcommittee. And if, for some reason, we are
23	not happy, we just have to wait and see how you
24	resolve it by March? And, usually, if there is a big
25	issue
l	I

(202) 234-4433

	50
1	MR. CULLISON: Right.
2	CHAIR WALLIS: we like to have several
3	Subcommittee meetings until everyone feels that things
4	are in really good shape.
5	MR. CULLISON: Okay.
6	CHAIR WALLIS: Then we go to the full
7	Committee, which is a very public meeting and a letter
8	comes from it and we like to get the staff have
9	everything in good order before we have to write a
10	letter, because we don't like to write letters which
11	say things are not in good order. So I'm a little
12	concerned about the speed with which things go. Maybe
13	you'll do such a good job I won't have any concerns.
14	MR. CULLISON: You won't. We'll
15	completely convince you, buddy.
16	MR. SCOTT: Graham, Mike Scott, NRC staff.
17	If you all would like to have another Subcommittee
18	meeting, then we will certainly come and present to
19	you.
20	MR. CULLISON: Continuing on with the
21	slide. Ongoing chemical effects and coatings
22	confirmatory testing and we will be conducting audits
23	of selected plants. You have the reports from the
24	pilot audits and Ralph Architzel is going to discuss
25	those in his presentation.
	I

(202) 234-4433

ĺ	51
1	CHAIR WALLIS: These coatings confirmatory
2	tests are going to test, what do they call them,
3	approved coatings or the ones which
4	MR. CULLISON: Qualified?
5	CHAIR WALLIS: qualified coating. Are
6	you going to test the reality of the qualified
7	coatings in the plant?
8	MR. YODER: Matt Yoder, NRR. The
9	confirmatory coatings testing is testing qualified and
10	unqualified coatings, chips and the fluid velocities
11	of which they transport.
12	CHAIR WALLIS: Well, are you going to test
13	them in the condition they really are in the plants
14	where some plants may even have flaking qualified
15	coatings?
16	MR. YODER: The testing covers a range
17	from all the way down to like a $64^{ ext{th}}$ of an inch size
18	chip up through a 1 to 2 inch chip.
19	CHAIR WALLIS: No, I'm just wondering what
20	will come off in the plant.
21	MR. YODER: Well
22	CHAIR WALLIS: As coatings age in a plant.
23	MR. YODER: I will address that.
24	CHAIR WALLIS: You will address that?
25	MR. YODER: In my presentation later.
I	

	52
1	CHAIR WALLIS: Okay. Thank you.
2	MR. YODER: But the short answer is we
3	really don't have that data now, that's why that
4	confirmed core testing attempted to cover a range.
5	CHAIR WALLIS: Of size, yes.
6	MR. CULLISON: As I mentioned, we're
7	performing audits of selected plants. Right now,
8	we're looking at around eight audits and also we are
9	writing a temporary instruction to have the original
10	inspectors verify the installation of all the hardware
11	changes, identify the licensee responses.
12	MEMBER DENNING: Okay. I don't
13	understand. With regards to audits of selected
14	plants, is there in the long-term, will every plant
15	be audited
16	MR. CULLISON: No.
17	MEMBER DENNING: to determine whether
18	they have complied with the regulatory methodology?
19	That their solution is consistent with the approved
20	regulatory methodology? No? Just you just audit to
21	determine whether some of them have or am I missing
22	something? Have I misspoken?
23	MR. CULLISON: No. Mike?
24	MR. SCOTT: Mike Scott, NRC staff.
25	Although not every plant will be audited by NRR, there
I	I

(202) 234-4433

	53
1	is an instruction that we're developing now for use by
2	the regions and the resident inspectors to inspect
3	that the licensees have accomplished what their
4	submittals have stated that they were going to do.
5	MEMBER DENNING: But that's only a matter
6	of that their hardware is consistent with the
7	hardware. It's not an assessment of whether they
8	really have satisfied the pressure drop, the pressure
9	drops and this kind of stuff.
10	MR. CULLISON: No, it's not. Those are in
11	depth reviews of their how they exercise
12	methodology or did their analyses. We are one of
13	the things of the audit program is if we find
14	significant problems across the board, we will broaden
15	the audit program as necessary to give us the comfort
16	feeling that industry does know what they are doing
17	and they are using the methodology appropriately.
18	MR. HOPKINS: Yes, Jon Hopkins. I'll just
19	mention, of course, that we are reviewing each plants
20	Generic Letter response. One aspect of the audits is
21	we get the different designs. And as we mentioned
22	there is five strainer vendors and if we do roughly
23	eight audits, we can go more intense into each
24	strainer vendor. And so that was sort of getting to
25	the question of do we have a qualified strainer, which
I	I

(202) 234-4433

Í	54
1	the answer is no, the staff hasn't tried to qualify
2	any strainer. But through the audits, we can get into
3	more detail of the vendors.
4	MR. CULLISON: And that concludes my
5	presentation. I think Ralph Architzel is next.
6	DR. BANERJEE: This is a general question.
7	These audits you did were very interesting, in fact.
8	So there were certain open issues and so on in these
9	audits. Did this feedback into the process of the
10	changes they made or how was that made? Somebody, are
11	you going to answer that?
12	MR. ARCHITZEL: Well, I can during my
13	presentation.
14	DR. BANERJEE: Yes.
15	MR. ARCHITZEL: Ralph Architzel with the
16	staff. I can do that during the presentation.
17	DR. BANERJEE: All right.
18	MR. ARCHITZEL: If I don't answer it I
19	guess, up front trying to say did the issues and
20	findings in the well, let me go through the
21	presentation.
22	DR. BANERJEE: All right.
23	MR. ARCHITZEL: You have
24	CHAIR WALLIS: You're going to talk about
25	these pilot audits, I take it, at some point?
I	

(202) 234-4433

	55
1	MR. ARCHITZEL: Yes. This is this
2	presentation. How do you make it bold?
3	CHAIR WALLIS: Use the buttons, I
4	understand.
5	MR. ARCHITZEL: What's that?
6	PARTICIPANT: We're not going to view it?
7	CHAIR WALLIS: F5.
8	MR. ARCHITZEL: As I mentioned, my name is
9	Ralph Architzel and I was the team leader for the two
10	pilot audits that were distributed today by staff,
11	ACRS, excuse me. Leon Whitney was the team leader for
12	the or is the team leader for the Oconee audit and Dr.
13	Shanlai Lu is the team leader for the Watts Bar audit.
14	Those are the audits that have been to date.
15	I guess getting a little bit of history on
16	the audits and this was modeled somewhat to follow the
17	BWR closure. If you look at the BWR closure letter,
18	a similar path and they have just a Bulletin, but we
19	have a Generic Letter and a Bulletin. And
20	fundamentally, it was to examine, as Dave said, all
21	the Generic Letter responses, that's part of the
22	closure. They did all of the Bulletins and they did
23	about five audits.
24	So this was modeled and then there was a
25	memo addressing how all the plants fell into different
ļ	I

(202) 234-4433

	56
1	categories. In addition to the audits, there were
2	quite a few additional trips to strainer vendors. So
3	the model we have is similar to the BWR closure. And
4	it is a compliment to the Generic Letter response
5	reviews and, as mentioned also, there are inspections
6	that are going on, the actual physical modifications.
7	All right. The next slide. I'll go over
8	the pilot, some of our perceived benefits learned and
9	what we want to get benefits out of is to determine
10	the resource needs for future reviews, audits or
11	inspections. It was to feedback into the research and
12	testing programs what we learned, what are the areas
13	that we want feedback and try and focus those areas,
14	so that was an objective.
15	And then also to try and get better
16	responses. The pilots were intended to try and
17	enhance the responses by licensees by giving them
18	information of what we learned in the audits.
19	CHAIR WALLIS: Now, when they respond,
20	does someone check their analysis and what they do?
21	MR. ARCHITZEL: On the pilot, it's
22	different than the audits.
23	CHAIR WALLIS: Well, on the
24	MR. ARCHITZEL: The response, you mean the
25	Generic Letter responses, Dr. Wallis?
I	I

(202) 234-4433

	57
1	CHAIR WALLIS: Well, if you take one
2	little question certainly, what do they do about say
3	this thin bed effect? All right. Does someone go
4	into the response, either in the audits or in the
5	responses, and say how is this plant treating this
6	effect?
7	MR. ARCHITZEL: We do that in depth in the
8	audits.
9	CHAIR WALLIS: You do that.
10	MR. ARCHITZEL: And I think you could say
11	that
12	CHAIR WALLIS: You know how to do that?
13	What exactly is the embed effect?
14	MR. ARCHITZEL: Well, Dr. Lu is going to
15	talk about the
16	DR. BANERJEE: To the best of their
17	ability, at that time.
18	CHAIR WALLIS: Okay.
19	DR. BANERJEE: Yes.
20	MR. ARCHITZEL: There is a presentation on
21	how we handle that.
22	CHAIR WALLIS: Okay. There's going to be
23	a presentation on the technical questions like that
24	that someone has to make a decision about when they
25	audit or, you know, reevaluate a response?
ļ	I

(202) 234-4433

58 1 MR. ARCHITZEL: Well, there is a specific 2 one on the head loss aspect of it. On the other areas, I'm not saying we're going into that right now. 3 4 If you wanted it, it would be different. I'm not 5 going into each and every one and how we do it. We use basically the Guidance Report and the methodology. 6 7 CHAIR WALLIS: Well, I'm puzzled, because 8 the Guidance Report, as Ι remember it, was 9 It said that you should assume the bed inconsistent. 10 is homogeneous, that's conservative, and then on another page it said you should assume you have a thin 11 bed effect, that's the worst case. 12 Now, I'm not sure how you apply two widths of the --13 14 MR. ARCHITZEL: Well, in the actual 15 testing, when we started testing, we make sure that 16 they are --17 CHAIR WALLIS: So it's based on testing? Fundamentally, Dr. Wallis. 18 MR. ARCHITZEL: 19 CHAIR WALLIS: Yes. Someone else is going 20 to respond to that? 21 MR. ARCHITZEL: Yes. 22 Yes, I'm going to. MR. LU: In the next 23 presentation, I'm going to cover this part. 24 DR. BANERJEE: I have a more general 25 We got the staff responses to these audits, question.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

but we didn't get -- oh, at least your SE or whatever, but we never saw the -- any submission that came from the plant to you.

4 MR. ARCHITZEL: The reason you wouldn't 5 get that is because what goes into the Generic Letter response is when you ask for information, there was 6 7 ways you got to do it and you get it docketed and 8 that's what the Generic Letter response is. It did limited amounts of information. We're not allowed to 9 10 just broadly ask for information. The detailed 11 information, we did get their calculations, their test 12 reports, things like that that were all considered along the lines of audit records or inspection records 13 14 and they are not. They are supposed to be destroyed 15 after the audits, they are likely at your side and 16 you're looking at their records, so you did not get 17 that, that's correct. 18 So we only got your DR. BANERJEE:

19 response in some sense. So we don't know what you 20 were responding to.

21 MR. ARCHITZEL: You don't have the actual
22 calculations.
23 DR. BANERJEE: So it's very difficult to

24 see what was actually done.

MR. ARCHITZEL: Yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

	60
1	DR. BANERJEE: I mean, there's just a
2	description here. We got this and then it was okay,
3	it's not okay. We think it's good. We think it's
4	bad, something like that.
5	MR. ARCHITZEL: It's only what was
б	reflected in the audit report.
7	DR. BANERJEE: Yes.
8	MR. ARCHITZEL: Which is a typical
9	situation for an audit report or inspection. The base
10	documents are not provided for review at a public
11	ACRS. That's a standard approach.
12	DR. BANERJEE: Right. But you do have
13	I mean, if we want to actually evaluate in detail how
14	you did the sort of why you made a response saying
15	this is fine and this is not, so we can look into
16	that?
17	MR. ARCHITZEL: The truth is we're
18	supposed to destroy those records after the completion
19	of the audit, because they are not NRC records, so I
20	can't tell you. I'll turn around. There may be some
21	still in existence right now, but they are not
22	supposed to be. I guess the answer would be
23	CHAIR WALLIS: You can't destroy records.
24	Suppose there is an accident and the screen gets
25	clogged. Someone is going to want
ļ	

(202) 234-4433

	61
1	MR. ARCHITZEL: Well, no, no. The
2	licensee
3	CHAIR WALLIS: They will want to know how
4	it's designed. You want to know the results of all
5	these calculations.
6	MR. ARCHITZEL: Yes, the records are
7	available at the licensee's facility. Go back there
8	and look at those records.
9	CHAIR WALLIS: They are in a drawer
10	somewhere, but we can't see them?
11	MR. ARCHITZEL: You can see them just like
12	we can see them.
13	CHAIR WALLIS: Oh, we can see them? We
14	can see them?
15	MR. ARCHITZEL: Yes.
16	CHAIR WALLIS: So they are not destroyed?
17	MR. ARCHITZEL: If the licensee
18	PARTICIPANT: You can go to the plant.
19	MR. ARCHITZEL: You have to go to the
20	plant, because they don't make them public. They
21	don't submit them, so if you submit them, they can be
22	requested.
23	CHAIR WALLIS: So how can we
24	MR. ARCHITZEL: The information.
25	CHAIR WALLIS: How can ACRS review what
I	·

(202) 234-4433

	62
1	you have done without documents coming to us? I'm not
2	picking you apart.
3	MR. ARCHITZEL: Well, I've got two pilots.
4	What I could do is I'll check with the licensees and
5	if it's agreeable to them, we can give if it is
6	agreeable, but that would be is it something for us
7	to do or Ralph to do, maybe I'll take that as an
8	action.
9	DR. BANERJEE: Well, I think the real
10	problem here is if you want us to take a look at these
11	audits, presumably you want us to, otherwise why would
12	you send us these documents, you know, if you want
13	some feedback, we need to know what to give feedback
14	to. At the moment, all we have is the SEs which say
15	this is okay, this is not okay, this is okay. We have
16	no idea why it's okay, why it's not okay.
17	MR. ARCHITZEL: Okay.
18	DR. BANERJEE: I mean, we don't see the
19	methodology. We see maybe a consultant's report,
20	which says it's okay or it's not okay. So at the
21	moment, there's nothing we can say, other than say we
22	read them, but there's nothing substantive that we can
23	respond to.
24	MR. ARCHITZEL: Well, maybe I don't
25	know. I guess, that's maybe a question for us. Do we
I	

(202) 234-4433

	63
1	want you to actually look at and do the audit along
2	side of us or something like that and then say
3	DR. BANERJEE: Otherwise, we want a cart
4	load of paper, which has been sent to us, luckily in
5	a compact disk, and we have been going through this,
6	but a lot of the stuff which actually leads to the
7	stuff that you have sent us is not there. So there's
8	no way we can evaluate what has happened.
9	MR. ARCHITZEL: I don't have a good answer
10	at this meeting for that question, I guess.
11	CHAIR WALLIS: Well, the same is true
12	MR. LU: Maybe we can of pop to the
13	vendors or the licensee if you're comfortable with
14	disclosing that proprietary information, we can find
15	a way to deliver out to you.
16	CHAIR WALLIS: Well, I
17	MR.LU: If that's something we can follow
18	the process.
19	MR. ARCHITZEL: I guess I'm not even sure
20	that's appropriate. I guess I would say maybe an ACRS
21	Member wants to come along on one of the audits for
22	part of it, if that's how you normally do business.
23	Maybe that's a better way to do it.
24	CHAIR WALLIS: We don't want to have to do
25	any of those things. We want to get evidence from you
I	I

(202) 234-4433

	64
1	that satisfies us that the right thing is being done.
2	We don't want to do your job. It's absurd.
3	Now, there's another problem with the WOG
4	Report. The WOG Report, for example, has a whole
5	other description of the things that need to be done.
6	But until you see how those are done, again we don't
7	know how good the work is.
8	MR. ARCHITZEL: That report, that's going
9	to be discussed later by Steve.
10	CHAIR WALLIS: So we're going to discuss
11	that, too. But I'm just bringing it up, too, as we
12	get these things to review, but they don't really tell
13	us the essence of the calculation techniques and so
14	on. So we don't know whether it's any good or not.
15	DR. BANERJEE: I'll give you an example,
16	a concrete example. You have in one of these plants
17	these Top Hat strainers, okay. Just take that as an
18	example. These are stacked in a huge area of stacks.
19	I don't know how many of these.
20	MR. ARCHITZEL: I've got some pictures of
21	that.
22	DR. BANERJEE: Yes. In any case, there's
23	some testing done on a little piece of one or
24	whatever. How is that actually applicable to this
25	huge stack where you can have shielding effects,

(202) 234-4433

	65
1	you've got all sorts of complex deposition doing on in
2	there and you're going to use a little experiment to
3	say something about what happens in this big
4	MR. ARCHITZEL: There are also more module
5	experiments where it's not just the flat plate type
6	experiment. There is more than one type of testing
7	that's done by these vendors, including prototypical
8	testing of arrays and things like that or as best they
9	can do it.
10	DR. BANERJEE: Well, that would be
11	interesting to know, because that's not evident. All
12	we have seen there is a little piece of it and we have
13	encountered this problem before where we have noticed
14	that people have tested say one little strainer and
15	then they have stacked them all up and then they have
16	taken the single strainer data, use it for the stack
17	as it's piling up and giving the wrong approach along
18	with these
19	MR. ARCHITZEL: That specific one, Dr. Lu
20	will do. That one we do have a presentation today on,
21	that particular topic.
22	DR. BANERJEE: All right.
23	MR. ARCHITZEL: If I could move on, one of
24	the perceived benefits the program was to get staff
25	clarifications early on regarding the Generic Letter.

(202) 234-4433

	66
1	The pilot plants did get fee waivers for a license
2	amendment request, although hadn't necessarily made
3	any. If we could move on to the next slide.
4	CHAIR WALLIS: There's a fee waiver, too?
5	MR. ARCHITZEL: If they had a license
6	amendment. This was an incentive to the pilot plants.
7	There was only two pilot plants.
8	CHAIR WALLIS: Oh, it's for the pilot.
9	Okay.
10	MR. ARCHITZEL: So it wasn't generic.
11	This was if they had a license amendment to pilot
12	plants to get a fee waiver. There were only two
13	volunteers. We did discuss the Pilot Plant Program at
14	the industry workshop and it was completed before the
15	Generic Letter response. It's kind of important,
16	because we don't have the same criteria for filing for
17	pilots that we do for the audits. So it was a little
18	bit of a free-ride in a sense. Okay. And as
19	mentioned before, the audit plan is in place for the
20	remainder of the sample audits to be made.
21	This is redundant here. Go to the next
22	one.
23	MEMBER KRESS: How many total audits do
24	you plan?
25	MR. ARCHITZEL: There were eight. Well,
I	

(202) 234-4433

	67
1	not counting the pilots, there's eight at the moment.
2	It would be expanded. In addition to that, there is
3	very likely to be many more visits to actual strainer
4	testing of the particular designs, somewhat resource
5	limited there as to how many we can go to.
6	But that's a flexible number, because if
7	you begin to see problems, then you would expand the
8	sample scope. Whether it was with a particular vendor
9	design or in a particular area, there was a problem,
10	the intent was to expand the sample size.
11	CHAIR WALLIS: I am on page 6. You're on
12	page 7. When it says they have a chance to exercise
13	the approved methodology, they also do tests to see if
14	it works?
15	MR. ARCHITZEL: Well, in the sense of the
16	strainer tests.
17	CHAIR WALLIS: They do, so there was some
18	kind of comparison between the methodology and data
19	then?
20	MR. ARCHITZEL: They generally try and
21	prove in the testing
22	CHAIR WALLIS: They do?
23	MR. ARCHITZEL: that they predicted
24	head loss using the correlations typically comes out
25	much less than the excuse me, I mean the other way.

(202) 234-4433

	68
1	They tested the loss.
2	CHAIR WALLIS: Okay. So that's some
3	useful information to see, yes.
4	DR. BANERJEE: And it's all done in a
5	research lab called Alden Lab?
6	MR. ARCHITZEL: No, there's different
7	labs. It depends on the vendors, strainers.
8	DR. BANERJEE: Who orders an audit?
9	MR. ARCHITZEL: One audit was printed and
10	I've got some
11	DR. BANERJEE: Oh.
12	MR. ARCHITZEL: One was Fort Calhoun.
13	Excuse me, Crystal River audit was done with lab
14	testing at Areva, I mean, Alion in Chicago and some
15	others there. The Fort Calhoun strainer design is by
16	General Electric and they are using Fluid Dynamics.
17	DR. BANERJEE: Continuing with that.
18	MR. ARCHITZEL: In New Jersey, Continuing
19	Dynamics in New Jersey, Union, New Jersey, so we want
20	to observe that testing. The Watts Bar audit, I mean,
21	that was testing observed up in Alden Research Lab.
22	I've got some photos of some of that flume testing
23	that was done. We went to CCI in Switzerland. They
24	are a vendor for quite a fraction of the plants and we
25	observed the strainer testing done there. And then we
	I

(202) 234-4433

	69
1	also went to Canada and observed the strainer.
2	ACL has a number of designs and we
3	observed strainer testing being done for, I think it
4	was, the Darlington Plant. But we know the facilities
5	and what they use for that testing, so we have gone
6	and observed the strainer testing facilities as part
7	of these audit reviews.
8	DR. BANERJEE: Now, when they involve
9	materials like mineral, wool and things for which you
10	don't have data as to how much debris should be
11	generated or how they actually would behave in the
12	environment, what do they do? They take the closest
13	analog?
14	MR. ARCHITZEL: What you see in the
15	report, you read about that.
16	DR. BANERJEE: Yes.
17	MR. ARCHITZEL: Sometimes they try and say
18	it's very similar to fiberglass.
19	DR. BANERJEE: Right.
20	MR. ARCHITZEL: New fiberglass and the
21	last question, but how can you make that determination
22	to these differences and then the vendor will go off
23	to justify the comment and do additional testing to
24	try and defend the similitude. I mean, they have done
25	things like looked at is how's your Cal-Sil? The same
I	

(202) 234-4433

ĺ	70
1	as other Cal-Sils? They have done SCM photography of
2	the Cal-Sil to try and justify why their particular
3	Cal-Sil is the same as what was being tested.
4	DR. BANERJEE: Yes, that, it would be
5	useful to have that sort of information before we can
6	say it looks like you've done a good job or not. I
7	mean, or do something else.
8	MR. ARCHITZEL: Well, I'm struggling with
9	this comment about we document report what we have,
10	yet there's a lot behind that, because we've looked at
11	a lot more. I'm struggling with can we get that
12	information to you or is it even I'll take that
13	back.
14	DR. BANERJEE: Well, maybe it's selected
15	information. We have put in
16	MR. ARCHITZEL: Well, if you ask for it,
17	we'll get it.
18	DR. BANERJEE: Yes.
19	MR. ARCHITZEL: We'll try and get it if
20	the licensee it's up to the licensee, but we'll try
21	and get it for you for sure, if you would tell us what
22	you would like.
23	DR. BANERJEE: Yes.
24	MR. ARCHITZEL: Related to that.
25	DR. BANERJEE: Yes, if we get through your
	1

(202) 234-4433

	71
1	references here.
2	MR. ARCHITZEL: What I can't do is
3	guarantee you that we have it in hand at the moment.
4	We'll go out and get it if the licensee wants to give
5	it to us, I'm sure they will. But we have this
6	problem of it's their records. It's not our records.
7	And they have to voluntarily provide it and then the
8	understanding is you look at it and then you destroy
9	it as well. Okay.
10	Again, there were areas, obviously, that
11	the unknowns that were incomplete, so we didn't reach
12	conclusions, definitive conclusions in those areas and
13	you can see them listed here somewhere.
14	MEMBER DENNING: Which key plant-specific
15	issues were complete?
16	MR. ARCHITZEL: Thanks. There were
17	selected areas you could look at, debris
18	characterization or things like the mineral wall,
19	areas where you use Nukon and they tested Nukon.
20	Those areas were complete and they did head loss test
21	or an actual strainer where you've got the flat, you
22	know. There was a lot of areas where we did get value
23	on it doing these pilots. Okay?
24	DR. BANERJEE: I think it identified areas
25	you need more information.
I	I

(202) 234-4433

	72
1	MR. ARCHITZEL: Well, CFD, I mean.
2	DR. BANERJEE: Those audits, I would say.
3	MR. ARCHITZEL: Yes, I guess. I'm not
4	trying to say it was. There were some areas where the
5	characteristics and we could look at what they did and
6	reach agreement that that was a reasonable approach.
7	CHAIR WALLIS: Well, I don't know what you
8	mean by incomplete. I mean, does that mean that there
9	were huge gaps or just minor incompletions? I mean,
10	were there commas missing in the report or was the
11	whole basis of head loss in question? I don't know
12	what you mean by incomplete.
13	DR. BANERJEE: Well, if you read their
14	response, I think, in detail, you get a sense of it.
15	I mean, here you're just summarizing it.
16	MR. ARCHITZEL: Right.
17	DR. BANERJEE: But actually, the response
18	when they do say incomplete, there are several
19	paragraphs which gives you more of a feel for what
20	incompleteness.
21	CHAIR WALLIS: But you don't know what the
22	original document is.
23	DR. BANERJEE: Some of them are more
24	that's basically the problem.
25	CHAIR WALLIS: Right.
I	I

(202) 234-4433

	73
1	DR. BANERJEE: That we don't have the
2	original documents. But on the other hand, I mean, we
3	already got one cart load, so this will really be
4	another five cart load or something, so that we'll try
5	to select what we want, I think. Well, back to you
6	with that.
7	MR. ARCHITZEL: Yes, and I don't know what
8	the timing is. If you're looking at the pilots, it's
9	one thing. If you look at the audit, it's another and
10	it takes a while to produce them and get them to you.
11	CHAIR WALLIS: Well, do they look at lots
12	of different LOCAs in different places?
13	MR. ARCHITZEL: Yes.
14	CHAIR WALLIS: Because there's
15	MR. ARCHITZEL: We agreed
16	CHAIR WALLIS: debris transporters are
17	very specific, isn't it the one actually the size of
18	the hole is and where it is and
19	MR. ARCHITZEL: And the assumption is in
20	which methodology. Did they use the refined
21	methodology or based on methodology and we're looking
22	at that. So where the LOCAs are or what areas they
23	took for LOCAs. What pregenerated
24	DR. BANERJEE: Even the LOCA influence
25	MR. ARCHITZEL: Right.
I	I

(202) 234-4433

	74
1	DR. BANERJEE: is different for these
2	plats. They have asked for
3	CHAIR WALLIS: And it's a very global
4	assumption and they may be that they're focused
5	DR. BANERJEE: Only damages.
6	MR. ARCHITZEL: Well, it's very plant-
7	specific, too. I mean, on the one hand it's global,
8	but there's very plant-specific guidance, where to
9	take the breaks and what the size of the ZOI is. It's
10	very complicated.
11	CHAIR WALLIS: But the ZOI simply says
12	that insulation gets damaged or something. It doesn't
13	tell you the particle size as it doesn't
14	MR. ARCHITZEL: There's distribution of
15	particles.
16	CHAIR WALLIS: It does? It tells you how
17	much the fiberglass gets shattered and so on?
18	MR. ARCHITZEL: How much and which type
19	size and how much then erodes further in the pool.
20	CHAIR WALLIS: Okay. Okay.
21	MR. ARCHITZEL: All of those type numbers.
22	CHAIR WALLIS: So there's a lot of stuff
23	there then.
24	MR. ARCHITZEL: And then specific
25	licensees can go out there and are going out there.
I	1

(202) 234-4433

	75
1	And for the fraction, it's like the small and they are
2	doing testing to verify whether or not they need to
3	take the
4	CHAIR WALLIS: Yes, to be a transporter is
5	much more difficult. No one is going to release to
6	bring in the upper story of a reactor building and see
7	where it goes. But the realistic
8	DR. BANERJEE: But they have some CFD
9	calculations to actually see this drywall.
10	MR. ARCHITZEL: Well, that's for pool
11	transport. But for the containment transport, there's
12	assumptions that go with the fractionalization of it.
13	And they live with those assumptions or they try and
14	justify a different one, I guess. And the debris
15	the initial debris transport, which is logictry, the
16	Drywall Debris Transport Study well, actually we
17	have an appendix to the safety evaluation that went
18	into that fractionalization.
19	DR. BANERJEE: For example, for the first,
20	not Fort Calhoun, the other plant, I've forgotten the
21	name now, they have a ZOI which is 4D rather than 10
22	or something. And you guys said it's fine. But what
23	is the reason that you said that? That doesn't come
24	through clearly.
25	MR. ARCHITZEL: Are you talking about the
	I

(202) 234-4433

	76
1	first one, the coating ZOI data needed?
2	DR. BANERJEE: Yes.
3	MR. ARCHITZEL: With 4 versus the 10?
4	DR. BANERJEE: Yes.
5	MR. ARCHITZEL: What it is there, there
6	was no basis for the 10D ZOI.
7	DR. BANERJEE: Right.
8	MR. ARCHITZEL: In the Guidance Report.
9	DR. BANERJEE: But it was in guidance. I
10	mean, every
11	MR. ARCHITZEL: It was the default
12	position that you would take, so these licensees are,
13	one, analyzing the 10D for the coatings and, two,
14	saying also simultaneously analyzing the 4D or a 5D
15	ZOI for coatings and betting on the cone that that's
16	going to be demonstrated. You'll have a presentation
17	later by Matt talking about testing that's going on
18	right now to demonstrate a different ZOI.
19	So, yes, we identified that, because they
20	didn't have the basis in place yet, but we anticipate
21	it won't be a problem for them getting that basis on
22	that particular issue. If it is, they will use the
23	bigger one. They will use the bigger ZOI.
24	DR. BANERJEE: But it generates a lot more
25	debris, right?
	I

(202) 234-4433

	77
1	MR. ARCHITZEL: At 10D ZOI?
2	DR. BANERJEE: Yes, 10 versus 4.
3	MR. ARCHITZEL: To give you a feel, the
4	BWR is treated 80 pounds of coatings debris in the ZOI
5	using a different methodology. The type number you're
6	talking about is 6,000 pounds of or 1,000 pounds,
7	you know, quite a bit more coatings debris as a finite
8	particulate. For the PWR, it will come down quite a
9	bit when they get a smaller ZOI. So that particulate
10	load goes down significantly with a smaller ZOI.
11	DR. BANERJEE: Right. But so they have to
12	really justify using it.
13	MR. ARCHITZEL: And are presently doing
14	it. You're going to hear that aspect in a little bit
15	if I move later on there is discussion on the
16	that's an industry burden that was placed out there.
17	If they want to use a smaller ZOI, they can do it.
18	There's at least two. We heard that last week about
19	the ongoing testing that's being done by the industry
20	to demonstrate smaller ZOIs for coatings, for
21	qualified coatings.
22	DR. BANERJEE: Okay.
23	MR. ARCHITZEL: So we have been talking
24	this slide. Let me go on to some of the particular
25	findings.
ļ	

(202) 234-4433

DR. BANERJEE: Now, you use the margin for chemical effects or factor of fuel or something. That was a fairly sort of pulled out of a hat or was there some basis for it?

5 MR. ARCHITZEL: Well, going to the licensee whether they just said this is the largest 6 7 strainer they can put in and the resulting margin is a factor, too, or did they actually engineer a margin 8 9 in there? In the case at Crystal River, you can see 10 they fully encompassed their sump, so that is what you could put in the sump with the stacked, those Top Hat 11 12 strainers and the margin is what's left. And they had a significant margin still available for the chemical 13 14 effects.

We haven't passed judgment on that margin 15 That's what they are documenting is the margin. 16 vet. 17 And at Fort Calhoun, they've got problems because they are Cal-Sil and trisodium phosphate and that margin 18 19 may not be enough for them. And so they have actually 20 delayed the implementation of their sub-installation, 21 because of the uncertainties associated with both the 22 near-field effect and the chemical effects at the 23 moment. 24

24 So we don't know that the margin is 25 enough. We can't criticize it in the report, because

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	79
1	they don't have the information at this time in the
2	pilot form. This is just giving you some of the
3	things we did do on some of the audits. We did
4	evaluate computational fluid dynamics of the pool
5	transport.
б	The Crystal River use of that with Alion.
7	We actually ran the CFD with the licensee's input for
8	Fort Calhoun. That was in the appendix of one of the
9	reports. It is proprietary. I'm not going to go into
10	it now. We have purchased hardware and software for
11	future audits, so we can do CFD calculations.
12	CHAIR WALLIS: Now, CFD, this is for
13	debris transport. Is that what it is?
14	MR. ARCHITZEL: In the pool.
15	PARTICIPANT: In the pool.
16	CHAIR WALLIS: I don't understand CFD
17	working with particulates where this is a basis for,
18	you know, you calculate the flow field and you figure
19	out what the particles do in it. That's been fairly
20	well-established, but I can't imagine CFD dealing with
21	whatever you said was bundles of fiberglass.
22	MR. ARCHITZEL: Well, you treat
23	DR. BANERJEE: Well, there is sump
24	technical
25	CHAIR WALLIS: But it's so easily caught
	I

(202) 234-4433

	80
1	up on staircases and all kinds of things. I mean,
2	it's not
3	MR. ARCHITZEL: There are thing you can do
4	like intermediate interceptors and things like that,
5	but for fines by and large, you're not going to I
6	guess I could ask John. Do you want to ask that
7	question?
8	CHAIR WALLIS: Well, if you look at a
9	house that the fire department has just hosed down,
10	because there was a fire in it, the fiberglass
11	insulation is all over the place and stuck onto the
12	MR. ARCHITZEL: But there is different
13	CHAIR WALLIS: furniture and
14	everything. I mean, it's
15	MR. ARCHITZEL: Distribution is not all
16	the same size. There is a four side distribution,
17	three side. The fines are all going to go, but not
18	all of the smaller ones.
19	CHAIR WALLIS: Fines probably will go with
20	the water, right?
21	MR. ARCHITZEL: Right. But you model all
22	that and then you say what can settle, at what rates
23	can it settle and what areas can it settle with low-
24	flows and then you have the nice pretty pictures, but
25	it reduces your debris.
I	

```
(202) 234-4433
```

	81
1	CHAIR WALLIS: It's the worst scenario for
2	the core as the fines go with the water and nothing
3	else does.
4	MR. ARCHITZEL: Well, then you hope in the
5	core that there's enough bypass flow to flush it on
б	out and keep it going. So that's another issue
7	though.
8	DR. BANERJEE: I guess the real problem
9	you are facing here is that one assumption would be
10	that all the debris generated gets to the screen. If
11	that's not acceptable, then you have to do some CFD
12	and sharpen your pencils and hope that some of it
13	drops out, right? The problem, of course, is that
14	settling in a turbulent fluid is an extremely
15	difficult problem to handle, especially in the sort of
16	CFD that I have seen you guys are doing.
17	The explanation for the hindered settling
18	and turbulence of these fines or fibers is very poorly
19	treated. Now, we will take a look at this, but this
20	is one area that we really need to examine in some
21	detail to be sure that enough is getting to the
22	screens, you know, and not an artifact of the CFD that
23	they are happily settling it out.
24	MR. ARCHITZEL: Yes. And in that case,
25	that is our work, not the licensee's work. So you
Į	I

(202) 234-4433

	82
1	actually have
2	DR. BANERJEE: Right.
3	MR. ARCHITZEL: modeled off the work
4	NRC did to do that.
5	DR. BANERJEE: Yes. Now, Los Alamos did
6	some work for you guys.
7	MR. ARCHITZEL: Yes, they did.
8	DR. BANERJEE: Right.
9	MR. ARCHITZEL: That was what was
10	attached.
11	DR. BANERJEE: Which I have looked at the
12	little turbulence model there briefly. It's in one of
13	your audit reports, I think. It looks very primitive.
14	So we need to look at that.
15	MR. ARCHITZEL: Okay. As this is the
16	discussion of the Flow-3D that was done. A couple of
17	issues were identified such as the nonuniform spray
18	addition and the way to refuel cavity drainage was
19	actually modeled and the run-off coming down the
20	sides. Just some of the typical things, some of the
21	things that we're addressing in the report, you know,
22	imagine that.
23	Getting to somewhat particular designs
24	right now, I want to say Crystal River 3 was the first
25	pilot. You can see they are increasing significantly
I	1

(202) 234-4433

	83
1	in size, their screen, their strainers.
2	CHAIR WALLIS: Well, what are we looking
3	at in the picture?
4	MR. ARCHITZEL: The picture on the left is
5	the new sump at Crystal River 3.
6	CHAIR WALLIS: You mean what?
7	MR. ARCHITZEL: It's a sump pit. There
8	are Top Hat strainers on the left, okay?
9	CHAIR WALLIS: Those are all strainers?
10	MR. ARCHITZEL: As the existing sump. You
11	know it's an existing sump which is and this was a
12	box-type sump. What they have done is replaced,
13	inserted inside that sump with a trash rack on the top
14	a significant, you know, 1,100 or 1,200 square feet of
15	surface area strainers, that's what they have gone to
16	and it's installed at Crystal River.
17	That's not the only change they made.
18	They also if you look at the picture on the right,
19	what you see
20	CHAIR WALLIS: So they have actually
21	decreased the size of the pits, so the debris could
22	fill it up more readily.
23	MR. ARCHITZEL: Well, the
24	CHAIR WALLIS: There isn't much place for
25	it to settle out then.
I	I

(202) 234-4433

84 1 MR. ARCHITZEL: The debris would not have 2 been considered coming into the pit before, because it 3 would have been considered on the surface of that box 4 strainer. Yes, there would have been bypass, but it's 5 an open area inside that box, so the debris would not have been inside that pit. It would have been on the 6 7 surface of the previous strainer, so they've 8 significantly increase the surface area. 9 And for Crystal River, their analysis 10 shows, a key part of their analysis was that you 11 wouldn't get with all the debris they have got, you 12 wouldn't fill up that interstitial volume in that pit. So they have got -- they did an analysis. 13 The 14 quantity, form of the quantity is the debris still had a margin to not completely filling up the area within 15 the interstitial area within that pit right there. 16 DR. BANERJEE: You mean off these Top Hat 17 strainers, you're talking about? 18 19 MR. ARCHITZEL: Surrounding the Top Hat 20 strainers within that sump. 21 DR. BANERJEE: Right. 22 MR. ARCHITZEL: They are an RMI, mostly an 23 RMI plant, so it's not as difficult. I mean, this is 24 all somewhat plant-specific. 25 DR. BANERJEE: Right.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	MR. ARCHITZEL: They have mineral wall and
2	they're replacing the generators and their
3	pressurizers year after the date, but the mineral wall
4	is going to be gone, but right now they have analyzed
5	the mineral wall. They are taking that out, too.
6	DR. BANERJEE: You mean all RMI or what?
7	MR. ARCHITZEL: Well, essentially, they
8	are getting rid of the when they get rid of it,
9	there might be a little bit of fiberglass insulation
10	here or there. Some plants have an easier problem
11	than others when you have this type of situation. You
12	don't have a lot of Nukon fiber insulation that they
13	can handle that type of surface area and then, you
14	know, so it's not all they are not all the same out
15	there. Their plants aren't similar.
16	MEMBER DENNING: Yes, let me make sure I
17	understand this design here. Basically, the vertical
18	areas that we're seeing there is the primary flow area
19	that we're talking about, right? In other words, each
20	of these strainers.
21	MR. ARCHITZEL: These are concentric.
22	There's an inner and an they are annular type of
23	cylinders. The outer surface of each cylinder and the
24	inner surface are all perforated steel plate built.
25	So your flow area is everything around and inside.
	I

(202) 234-4433

	86
1	MEMBER DENNING: And inside.
2	MR. ARCHITZEL: Those Top Hat strainers.
3	In this case, that's the flow area and that's where
4	you get the 1,140 square feet.
5	MEMBER DENNING: Yes. And what you were
6	saying was that you won't fill up all the areas
7	internal and surrounding that?
8	MR. ARCHITZEL: All the debris gets
9	calculated to arrive at the sump screen. That's not
10	true of all strainers. It's true of this strainer
11	design at this plant.
12	CHAIR WALLIS: This is where you need to
13	know something about where the debris goes. Maybe the
14	coarse debris goes in one place and the fine debris
15	goes somewhere else.
16	MR. ARCHITZEL: Well, the fine debris is
17	going to pass through it until you get a filter bed.
18	If you get a filter bed, it's going to be on the
19	filter bed, you know.
20	CHAIR WALLIS: But you might not get a
21	filter bed over all the area.
22	MR. ARCHITZEL: It depends on the
23	accident.
24	CHAIR WALLIS: You may get it in parts of
25	the screens.
I	

(202) 234-4433

Í	87
1	MR. ARCHITZEL: Certainly, yes, we have
2	seen they are not uniformly covering and depending on
3	the breaks.
4	DR. BANERJEE: Yes, that's why I was
5	talking about the stack, do the calculation on the
6	stack. It could be that you take out the coarse stuff
7	and the fine stuff would go further downstream.
8	MR. ARCHITZEL: I've got some other slides
9	that show that you can get uniform coverage and other
10	testing shows you don't get. It's still nonuniform.
11	So you can have it both ways. For head loss
12	perception, a fine coverage in a thin bed type
13	coverage it is the more challenging head loss
14	situation. When you have massive amounts of debris,
15	you can still have open areas that reduce the head
16	loss.
17	CHAIR WALLIS: But can they bypass the
18	fines the screen?
19	MR. ARCHITZEL: There is an ability to
20	bypass. They have to look at it both ways. Yes,
21	there is a bypass area.
22	DR. BANERJEE: Screen effect, as you
23	called it.
24	MR. ARCHITZEL: The picture on the right
25	is just showing us some additional changes. It wasn't
I	

(202) 234-4433

	88
1	limited. One way to handle their debris, they did
2	install, which is, a perforated debris interceptor on
3	the right. You can see that. So they had a unique
4	containment design where all of the debris is
5	channeled in a certain direction. And you can get,
6	it's like not topped, the interceptor is not topped
7	during the actual
8	MEMBER DENNING: I don't really understand
9	that right hand. Could you kind of point out to us?
10	MR. ARCHITZEL: Well, if you look on the,
11	say the, left hand side, forget the right.
12	MEMBER DENNING: Yes.
13	MR. ARCHITZEL: You see all the LOCA. The
14	way they are contained, there are only certain exits
15	from the D-ring, they call it.
16	MEMBER DENNING: Yes.
17	MR. ARCHITZEL: And basically, they have
18	cut off an ability to go to the right, so the flow,
19	basically, if you look at the CFD, has to come around
20	one direction. It hits this flow interceptor and that
21	flow interceptor is going to take a lot of the heavy
22	debris and settle it and filter it out right there.
23	MEMBER DENNING: And the flow is going
24	from left to right?
25	MR. ARCHITZEL: Left to right. I don't
	I

(202) 234-4433

	89
1	know what the right
2	MEMBER DENNING: And this flow interceptor
3	is just a step?
4	MR. ARCHITZEL: No, it's actually
5	perforated plate and it's got a trash rec on the top
6	and the perforations are bigger and then the
7	perforations when you get to the strainer, so it's all
8	an engineered thing that goes into the CFD.
9	MEMBER SHACK: Well, what is the
10	dimension?
11	MR. ARCHITZEL: I think it's like, you
12	know, the flow might be 2 feet, so it's a 1.5 or
13	something like that. All right. So it is so not
14	to be a blockage point for flow, there is a clearance
15	on the top.
16	DR. BANERJEE: Here is a single Top Hat
17	strainer.
18	MEMBER SHACK: Yes.
19	MR. ARCHITZEL: So the idea here is just
20	it's not the only thing to do to change the strainer.
21	You can do other things to sequester debris and that's
22	how the CFD was used somewhat to sequester debris
23	remotely from the strainer.
24	CHAIR WALLIS: That might not be good.
25	You might catch all of the big flocs and then the

(202) 234-4433

	90
1	fines go over the top.
2	MR. ARCHITZEL: That would be considered.
3	CHAIR WALLIS: And they would go right
4	through the screen. I mean, there's so many variables
5	in this.
6	MR. ARCHITZEL: In the worst case, you
7	would want the debris to be caught, that's the idea.
8	I don't understand what
9	CHAIR WALLIS: Well, I see. You want it
10	and you don't want it.
11	MR. ARCHITZEL: Well, you don't want
12	what we don't allow is credit for filtration by the
13	accident building of a filter for the downstream. If
14	you look at these Top Hat strainers on the left, we
15	heard a presentation last Friday and that vendor, and
16	I'm not for these strainers, they could back it,
17	they've got a fine intermesh screen available. It's
18	not an option to take debris out on the inside. So
19	you can actually dress that thing with a strainer
20	design as well for some of the downstream effects.
21	DR. BANERJEE: What is the screen size on
22	these? I have forgotten.
23	MR. ARCHITZEL: It's up there, 1,140.
24	DR. BANERJEE: 1,140.
25	MR. ARCHITZEL: Oh, you mean the hole
I	1

(202) 234-4433

	91
1	size? They are like 1/8 th of an inch.
2	DR. BANERJEE: Yes.
3	MR. ARCHITZEL: Or somewhere in there.
4	PARTICIPANT: An eighth or a quarter.
5	MR. ARCHITZEL: Or a little smaller. Not
6	a quarter.
7	DR. BANERJEE: The point is
8	MR. ARCHITZEL: Eighth or smaller
9	typically.
10	DR. BANERJEE: correct that you could
11	take out the fiber or whatever which would form a map
12	to take out the particles in the early part and then
13	the particles would go through and go downstream.
14	CHAIR WALLIS: On the small fibers.
15	DR. BANERJEE: Yes, the small fibers.
16	MR. ARCHITZEL: As I mentioned, some of
17	the we did go to Alion before Crystal River and we
18	observed some of the head loss testing at the vertical
19	loop. One thing we did do was look at thin bed
20	testing in the upper left corner. You can see where
21	it was thin bed and Nukon and then they did put in the
22	simulated sink. You see some of the beds on the right
23	where yes, it's on the surface, some of the
24	particulate was on the surface and it would be more
25	yellow underneath.
I	I

(202) 234-4433

	92
1	One thing we did do Dr. Wallis, we
2	actually considered your sandwich comment and we did
3	a test where we it was similar to the one on the
4	left where you first put the Nukon down there and then
5	you put in the zinc and then they ran another and they
б	had a certain head loss, about 2 feet or something
7	like that. Then they stirred it all up and ran the
8	test again instead of doing it sequentially and ended
9	up with head loss of one-half of the
10	CHAIR WALLIS: One-half.
11	MR. ARCHITZEL: So it was definitely it
12	makes a difference the sequence of arrival.
13	CHAIR WALLIS: And I think you'll find
14	when we hear from PNL
15	MR. ARCHITZEL: The same kind of stuff.
16	CHAIR WALLIS: whatever they are called
17	now, PNL, NNL, that they can get a much bigger factor
18	than one-half depending on how they
19	MR. ARCHITZEL: Well, this was just the
20	one test situation.
21	CHAIR WALLIS: Yes.
22	MR. ARCHITZEL: I'm just trying to tell
23	you that the arrival on that particular test was a
24	factor or two different, depending on how you timed
25	the arrival.
ļ	I

(202) 234-4433

	93
1	CHAIR WALLIS: Right.
2	MR. ARCHITZEL: So we understand that
3	exists and yes, you'll hear more about that tomorrow.
4	There's another thing we observed, we did find some
5	things on some of these audits. The strainer on left
6	is an installed strainer. But one thing we noted is
7	when you take these flat bed assumptions and then you
8	actually see what really happens in a real strainer,
9	you see it's not uniform. It's not homogenous. You
10	do get these pass through holes and things like that.
11	And it complicates the use of a correlation.
12	Typically, your head loss would be less,
13	because of factors like this, but the head loss in
14	most of these strainers though is really pretty low.
15	Another thing we noted, I'll go to a little slide, and
16	if you'll look at the picture on the right that flume,
17	look at that type, the quantity of water that might be
18	in that pipe, we had some interesting observations
19	associated with backflush for the Crystal River
20	testing.
21	CHAIR WALLIS: What's the thing on the
22	left? It looks like a parking garage in D.C.
23	MR. ARCHITZEL: You're looking down from
24	the top at a strainer that is such a large flat plate
25	replacement strainer.
	1

(202) 234-4433

94 1 CHAIR WALLIS: And the groups in the 2 bottom? 3 MR. ARCHITZEL: The channel on either side 4 is a bunch of series of these and then you'll have 5 water on either side. At this point, it might be 24 inches down from the water level, so there is a drop 6 7 occurring right now. Because of head loss there is a very fine thin bed on this strainer at the moment that 8 9 you're looking at with a 24 inch. It's almost a 10 limiting drop, a 24 inch drop for that strainer. DR. BANERJEE: I guess the problem is to 11 take a purely correlation approach to this sort of 12 phenomena is going to be impossible. 13 14 MR. ARCHITZEL: We're not taking it for a 15 purely --16 DR. BANERJEE: And I quess that 17 correlation is -- yes, it's use correlation. 18 MR. ARCHITZEL: We've got an IRB. I'11 19 pass to comment for now, okay, and we can discuss in 20 a moment. CHAIR WALLIS: Well, it's an approved 21 22 engineering calculation or nothing. If it happens to 23 be a correlation, it's --24 DR. BANERJEE: Well, yes, but the problem 25 with the correlation is it's a static thing. Whereas

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	what's happening is a dynamic thing. It depends on
2	when things occur and so on, so what is transported in
3	what order. So it's not going to be a correlation.
4	It has to be a dynamic thing.
5	MR. ARCHITZEL: Well, we yes.
6	DR. BANERJEE: Yes, I think there is a
7	MR. ARCHITZEL: You say the licensees have
8	their own correlation because they do testing and they
9	verify their head loss through the testing. You may
10	be able to hear that this afternoon. Industry can
11	talk about what they perceive as the vendor-specific
12	correlation for the different strainer designs.
13	DR. BANERJEE: Right.
14	MR. ARCHITZEL: But the complex strainers,
15	basically, have lower head loss than correlation would
16	indicate the correlation.
17	CHAIR WALLIS: Have any of you guys
18	thought of pumping the stuff out of the sump and
19	cleaning it outside in another building and then
20	bringing it back in again? Does this have to be
21	inside the containment?
22	MR. ARCHITZEL: Nobody has a strainer
23	outside.
24	CHAIR WALLIS: No, they don't, but I mean
25	no one has ever tried to submit anything like that to

(202) 234-4433

	96
1	you?
2	MR. ARCHITZEL: There are active designs,
3	but that's all handled inside. There's three or four
4	plants with an active strainer design.
5	CHAIR WALLIS: And if you are stuck with
6	a very small sump, you know, if it weren't for
7	radiation and so on, you would simply fill the
8	building beside and pump the stuff out, clean it and
9	bring it back again.
10	MR. ARCHITZEL: I don't think you would
11	pump it outside and leave it outside.
12	CHAIR WALLIS: It's the radiation, some
13	radiation that's the problem.
14	MR. ARCHITZEL: Right. Nobody volunteered
15	that.
16	CHAIR WALLIS: Radiation, yes.
17	MR. ARCHITZEL: But it certainly is an
18	option that somebody could have done. They could have
19	had the filtration. If they had room, they could have
20	done an outside.
21	CHAIR WALLIS: Would you have to make that
22	another piece of it, an addition to the containment?
23	It would have to be contained.
24	MR. ARCHITZEL: Well, outside of the
25	containment.
ļ	I

	97
1	CHAIR WALLIS: Right. But outside the
2	existing containment, but another little containment,
3	yes.
4	MR. ARCHITZEL: Well, just like the ECCS
5	as you go outside, it's not the containment anymore,
6	but it's all contained.
7	DR. BANERJEE: Yes.
8	MR. ARCHITZEL: So it is. Similar to
9	that, you could do that.
10	CHAIR WALLIS: For the secondary.
11	MR. ARCHITZEL: There's no restriction
12	against doing it. Nobody has volunteered that.
13	CHAIR WALLIS: Okay.
14	MR. ARCHITZEL: It would take space and
15	things like that. Outside versus inside containment.
16	I think they think they can solve it inside, so they
17	don't look at that.
18	Let me go on. One thing I will mention
19	with the strainer on the left we did notice, we had a
20	previous criteria, but you could only because it's
21	a not fully submerged screen, you can only take half
22	the screen height and beyond that you get instability
23	where you can't get sufficient flow-through that
24	screen, so that was a criteria.
25	REI, as we did note, you have a situation
	I

(202) 234-4433

where you have downstream, even when you have a fully submerged screen, there can be the downstream portion or channel flow portion that can be vented. And if that's vented, you have a situation that you could have the same effect, because that can then drop this waterhead here and you can basically have air on the inside surface.

So we have asked that REI question to all 8 We are also 9 the plants that may have that situation. 10 examining to make sure they don't have sumps that are vented downstream, even if they are fully submerged. 11 12 To develop the full differential pressure, we want to make sure to have a full submerged sump and not a 13 14 vented inside type sump where it can fail due to just flow. 15

One thing I want to do here is -- I think if I can get off this slide, and I'll try and do this really quick, I mean, I just need a second.

CHAIR WALLIS: Are you going to --

20 MR. ARCHITZEL: Yes, just real quick. 21 I'll go through these movies real quick. But what I 22 want to do is show you, I'll try and go in order here, 23 these clips. And what we are seeing is some testing 24 we did observe. They have -- that's that strainer 25 that we just looked at from above with a thin bed on

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

19

	99
1	it. And that was just you didn't hear the audio,
2	but that little clip right there was turning off the
3	pump. So they had the limiting head loss on that thin
4	bed. Now, it's mostly fiber and a little bit of
5	particulate.
6	CHAIR WALLIS: I have no idea I'm looking
7	at here.
8	MR. ARCHITZEL: Well, you're looking at
9	the side. There might be eight of those strainers.
10	You're looking at one side of the strainer. This
11	strainer is more like a flat plate strainer. It's
12	covered with debris at the limiting amount right now,
13	with thin bed debris on that. This is just a
14	demonstration of a backflush situation we observed, is
15	all this is. So you, basically, got a uniform
16	coverage of debris.
17	MEMBER DENNING: Well, it looks like it's
18	heavier at the bottom. Is that an optical illusion?
19	MR. ARCHITZEL: No, that's not. There is
20	mostly uniform on this.
21	MEMBER DENNING: Yes.
22	MR. ARCHITZEL: There might be a little
23	bit more at the bottom.
24	CHAIR WALLIS: So where is this thin
25	debris?

(202) 234-4433

	100
1	MR. ARCHITZEL: All over the surface of
2	that and then every one of these plates as you go
3	trough with the clean side being on the inside of the
4	different plates.
5	CHAIR WALLIS: So it's on the surface?
6	It's behind the surface I'm looking at?
7	MR. ARCHITZEL: It's all on this surface
8	you're looking at.
9	CHAIR WALLIS: All that stuff is thin bed?
10	MR. ARCHITZEL: It's all covered. It's
11	uniformly covered. It's a perforated plate that's not
12	a complex shape. And what you just saw there was
13	stopping the pump.
14	CHAIR WALLIS: But this was put in that
15	flume that you showed us all?
16	MR. ARCHITZEL: Yes, it was in that flume.
17	PARTICIPANT: Could you run that again?
18	DR. BANERJEE: Well, we see backflushing
19	occurring?
20	MR. ARCHITZEL: Not yet. Not yet. This
21	is limiting debris loss case right there.
22	CHAIR WALLIS: Right.
23	MR. ARCHITZEL: And that was and this
24	video here, the next one, this is turn the pump off
25	and close the valve, so there's no backflush, right?
	I

```
(202) 234-4433
```

	101
1	And I showed you the pipe earlier. That screen turned
2	the pump off, closed the valve and came right back and
3	turned the pump on again, came right back to limiting
4	head loss. No change in the screen. No help at all.
5	Totally limiting head loss once again. All right.
6	DR. BANERJEE: But nothing fell off?
7	PARTICIPANT: Yes.
8	MR. ARCHITZEL: Nothing fell off when the
9	screen was gone. Now, the next one here is, I call it
10	lead, but basically now, at this time, they didn't
11	close the valve, so that length of pipe you saw that
12	had a or just a run-off pipe, not pump backflush,
13	but just the
14	DR. BANERJEE: Just to head back through?
15	MR. ARCHITZEL: A little bit of back and
16	a little bit when it caught a little bit, the whole
17	thing just came down.
18	DR. BANERJEE: It peeled off a piece?
19	MR. ARCHITZEL: Peeled off a piece. So
20	basically
21	CHAIR WALLIS: So you were lucky. Now,
22	you predict that.
23	MR. ARCHITZEL: We
24	CHAIR WALLIS: Pick out a piece that is
25	going to peel off.
	I

1 MR. ARCHITZEL: Well, hold on. Let me 2 just get the next one and then I'll 3 CHAIR WALLIS: No, but you see, that was 4 the point, you know. 5 MR. ARCHITZEL: What's that? 6 CHAIR WALLIS: You see the point I'm 7 making? 8 MR. ARCHITZEL: Well, let me make my point 9 first and then I'll talk about your's. 10 CHAIR WALLIS: True. 11 MR. ARCHITZEL: Okay. Now, you start the 12 pump off and what happened? That was just stopping 13 flow. Now, they started the pump up again and strip 14 clean the entire strainer. 15 CHAIR WALLIS: After you knocked off a 16 little piece? 17 MR. ARCHITZEL: A little piece. The whole 18 thing came off, never again to have a head loss. So 19 going from a limited head loss to no head loss at all 20 was very 21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now		102
3 CHAIR WALLIS: No, but you see, that was 4 the point, you know. 5 MR. ARCHITZEL: What's that? 6 CHAIR WALLIS: You see the point I'm 7 making? 8 MR. ARCHITZEL: Well, let me make my point 9 first and then I'll talk about your's. 10 CHAIR WALLIS: True. 11 MR. ARCHITZEL: Okay. Now, you start the 12 pump off and what happened? That was just stopping 13 flow. Now, they started the pump up again and strip 14 clean the entire strainer. 15 CHAIR WALLIS: After you knocked off a 16 little piece? 17 MR. ARCHITZEL: A little piece. The whole 18 thing came off, never again to have a head loss. So 19 going from a limited head loss to no head loss at all 20 was very 21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what	1	MR. ARCHITZEL: Well, hold on. Let me
4 the point, you know. 5 MR. ARCHITZEL: What's that? 6 CHAIR WALLIS: You see the point I'm 7 making? 8 MR. ARCHITZEL: Well, let me make my point 9 first and then I'll talk about your's. 10 CHAIR WALLIS: True. 11 MR. ARCHITZEL: Okay. Now, you start the 12 pump off and what happened? That was just stopping 13 flow. Now, they started the pump up again and strip 14 clean the entire strainer. 15 CHAIR WALLIS: After you knocked off a 16 little piece? 17 MR. ARCHITZEL: A little piece. The whole 18 thing came off, never again to have a head loss. So 19 going from a limited head loss to no head loss at all 10 was very 21 CHAIR WALLIS: Well, that's it. You see, 24 whimsical things can change from one extreme to the 25 other.	2	just get the next one and then I'll
5 MR. ARCHITZEL: What's that? 6 CHAIR WALLIS: You see the point I'm 7 making? 8 MR. ARCHITZEL: Well, let me make my point 9 first and then I'll talk about your's. 10 CHAIR WALLIS: True. 11 MR. ARCHITZEL: Okay. Now, you start the 12 pump off and what happened? That was just stopping 13 flow. Now, they started the pump up again and strip 14 clean the entire strainer. 15 CHAIR WALLIS: After you knocked off a 16 little piece? 17 MR. ARCHITZEL: A little piece. The whole 18 thing came off, never again to have a head loss. So 19 going from a limited head loss to no head loss at all 20 was very 21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what	3	CHAIR WALLIS: No, but you see, that was
 6 CHAIR WALLIS: You see the point I'm making? 8 MR. ARCHITZEL: Well, let me make my point first and then I'll talk about your's. 9 CHAIR WALLIS: True. 10 CHAIR WALLIS: True. 11 MR. ARCHITZEL: Okay. Now, you start the pump off and what happened? That was just stopping flow. Now, they started the pump up again and strip clean the entire strainer. 15 CHAIR WALLIS: After you knocked off a little piece? 17 MR. ARCHITZEL: A little piece. The whole thing came off, never again to have a head loss. So going from a limited head loss to no head loss at all was very 21 CHAIR WALLIS: Well, that's it. You see, whimsical things can change from one extreme to the other. 24 MEMBER DENNING: Now this is exactly what 	4	the point, you know.
7 making? 8 MR. ARCHITZEL: Well, let me make my point 9 first and then I'll talk about your's. 10 CHAIR WALLIS: True. 11 MR. ARCHITZEL: Okay. Now, you start the 12 pump off and what happened? That was just stopping 13 flow. Now, they started the pump up again and strip 14 clean the entire strainer. 15 CHAIR WALLIS: After you knocked off a 16 little piece? 17 MR. ARCHITZEL: A little piece. The whole 18 thing came off, never again to have a head loss. So 19 going from a limited head loss to no head loss at all 20 was very 21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what	5	MR. ARCHITZEL: What's that?
8 MR. ARCHITZEL: Well, let me make my point 9 first and then I'll talk about your's. 10 CHAIR WALLIS: True. 11 MR. ARCHITZEL: Okay. Now, you start the 12 pump off and what happened? That was just stopping 13 flow. Now, they started the pump up again and strip 14 clean the entire strainer. 15 CHAIR WALLIS: After you knocked off a 16 little piece? 17 MR. ARCHITZEL: A little piece. The whole 18 thing came off, never again to have a head loss. So 19 going from a limited head loss to no head loss at all 20 was very 21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what	б	CHAIR WALLIS: You see the point I'm
9 first and then I'll talk about your's. CHAIR WALLIS: True. MR. ARCHITZEL: Okay. Now, you start the pump off and what happened? That was just stopping flow. Now, they started the pump up again and strip clean the entire strainer. CHAIR WALLIS: After you knocked off a little piece? MR. ARCHITZEL: A little piece. The whole thing came off, never again to have a head loss. So going from a limited head loss to no head loss at all was very CHAIR WALLIS: Well, that's it. You see, whimsical things can change from one extreme to the other. MEMBER DENNING: Now this is exactly what	7	making?
10 CHAIR WALLIS: True. 11 MR. ARCHITZEL: Okay. Now, you start the 12 pump off and what happened? That was just stopping 13 flow. Now, they started the pump up again and strip 14 clean the entire strainer. 15 CHAIR WALLIS: After you knocked off a 16 little piece? 17 MR. ARCHITZEL: A little piece. The whole 18 thing came off, never again to have a head loss. So 19 going from a limited head loss to no head loss at all 20 Was very 21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what	8	MR. ARCHITZEL: Well, let me make my point
11MR. ARCHITZEL: Okay. Now, you start the12pump off and what happened? That was just stopping13flow. Now, they started the pump up again and strip14clean the entire strainer.15CHAIR WALLIS: After you knocked off a16little piece?17MR. ARCHITZEL: A little piece. The whole18thing came off, never again to have a head loss. So19going from a limited head loss to no head loss at all20was very21CHAIR WALLIS: Well, that's it. You see,22whimsical things can change from one extreme to the23other.24MEMBER DENNING: Now this is exactly what	9	first and then I'll talk about your's.
12 pump off and what happened? That was just stopping 13 flow. Now, they started the pump up again and strip 14 clean the entire strainer. 15 CHAIR WALLIS: After you knocked off a 16 little piece? 17 MR. ARCHITZEL: A little piece. The whole 18 thing came off, never again to have a head loss. So 19 going from a limited head loss to no head loss at all 20 was very 21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what	10	CHAIR WALLIS: True.
flow. Now, they started the pump up again and strip clean the entire strainer. CHAIR WALLIS: After you knocked off a little piece? MR. ARCHITZEL: A little piece. The whole thing came off, never again to have a head loss. So going from a limited head loss to no head loss at all was very CHAIR WALLIS: Well, that's it. You see, whimsical things can change from one extreme to the other. MEMBER DENNING: Now this is exactly what	11	MR. ARCHITZEL: Okay. Now, you start the
14 clean the entire strainer. 15 CHAIR WALLIS: After you knocked off a 16 little piece? 17 MR. ARCHITZEL: A little piece. The whole 18 thing came off, never again to have a head loss. So 19 going from a limited head loss to no head loss at all 20 was very 21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what	12	pump off and what happened? That was just stopping
15 CHAIR WALLIS: After you knocked off a little piece? 17 MR. ARCHITZEL: A little piece. The whole thing came off, never again to have a head loss. So going from a limited head loss to no head loss at all was very 21 CHAIR WALLIS: Well, that's it. You see, whimsical things can change from one extreme to the other. 24 MEMBER DENNING: Now this is exactly what	13	flow. Now, they started the pump up again and strip
16 little piece? 17 MR. ARCHITZEL: A little piece. The whole 18 thing came off, never again to have a head loss. So 19 going from a limited head loss to no head loss at all 20 was very 21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what	14	clean the entire strainer.
 MR. ARCHITZEL: A little piece. The whole thing came off, never again to have a head loss. So going from a limited head loss to no head loss at all was very CHAIR WALLIS: Well, that's it. You see, whimsical things can change from one extreme to the other. MEMBER DENNING: Now this is exactly what 	15	CHAIR WALLIS: After you knocked off a
18 thing came off, never again to have a head loss. So 19 going from a limited head loss to no head loss at all 20 was very 21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what	16	little piece?
<pre>19 going from a limited head loss to no head loss at all 20 was very 21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what</pre>	17	MR. ARCHITZEL: A little piece. The whole
20 was very 21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what	18	thing came off, never again to have a head loss. So
21 CHAIR WALLIS: Well, that's it. You see, 22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what	19	going from a limited head loss to no head loss at all
22 whimsical things can change from one extreme to the 23 other. 24 MEMBER DENNING: Now this is exactly what	20	was very
<pre>23 other. 24 MEMBER DENNING: Now this is exactly what</pre>	21	CHAIR WALLIS: Well, that's it. You see,
24 MEMBER DENNING: Now this is exactly what	22	whimsical things can change from one extreme to the
-	23	other.
	24	MEMBER DENNING: Now this is exactly what
25 happened. Basically, you had flow going through that	25	happened. Basically, you had flow going through that

(202) 234-4433

	103
1	kind of filter on top there. You turned off the flow.
2	MR. ARCHITZEL: When they got to the
3	limit, they kept on adding more and more. They were
4	trying to say their design is okay.
5	MEMBER DENNING: Yes, and they got the
6	limit.
7	MR. ARCHITZEL: They got to the limit. At
8	that point, when they are going to terminate the test,
9	they said let's try some backflow demonstrations.
10	MEMBER DENNING: Yes.
11	MR. ARCHITZEL: Is what the point was.
12	MEMBER DENNING: Now, the flow did turn
13	around somehow in this thing?
14	MR. ARCHITZEL: The first one, they closed
15	the valve when they turned the pump off, so there was
16	no backflow at all.
17	MEMBER DENNING: So there was no way to
18	MR. ARCHITZEL: It just stopped.
19	MEMBER DENNING: Right. Excellent.
20	DR. BANERJEE: It just stayed on the wall
21	then?
22	MR. ARCHITZEL: It just came to nothing,
23	the flow.
24	MEMBER DENNING: Right. Okay. Now, tell
25	me how.
	I

	104
1	MR. ARCHITZEL: And then they started the
2	pump up again and it came right back to the same head
3	loss.
4	MEMBER DENNING: Right. I understand
5	that. Okay. Now, what happens with this other case
6	where you're
7	MR. ARCHITZEL: They didn't close the
8	valve, so the volume of water that was in that pipe,
9	very small volume of water, was allowed to diffuse
10	back through the other side where gravity is weighing
11	down and that small amount of flow.
12	MEMBER DENNING: So there's a little bit
13	of flow going the other way through the screen now?
14	DR. BANERJEE: Reverse flow.
15	MR. ARCHITZEL: Right. Reverse flow.
16	MEMBER DENNING: Reverse flow.
17	MR. ARCHITZEL: Small, very small.
18	MEMBER DENNING: Small.
19	MR. ARCHITZEL: Reverse flow.
20	MEMBER DENNING: And we saw some of it
21	peel off as a result of that?
22	MR. ARCHITZEL: Right.
23	MEMBER DENNING: Right. But you're saying
24	then when they but there was a large sheet of it
25	that didn't peel off?
I	1

(202) 234-4433

	105
1	MR. ARCHITZEL: A lot.
2	MEMBER DENNING: Perhaps it was
3	DR. BANERJEE: It was teetering, ready to
4	peel off.
5	MEMBER DENNING: It was teetering?
6	MR. ARCHITZEL: Yes, it wasn't help up.
7	MEMBER DENNING: And then they turned the
8	pump on again giving the positive flow.
9	MR. ARCHITZEL: In the normal direction.
10	MEMBER DENNING: In the normal direction.
11	But when they did that, whatever delamination occurred
12	was such that it didn't just go poof back up against
13	the thing, it
14	MR. ARCHITZEL: It all fell off.
15	MEMBER DENNING: fell off?
16	MR. ARCHITZEL: Right, yes.
17	DR. BANERJEE: Well, it was almost like a
18	mat, I guess, which is slightly detached.
19	MEMBER DENNING: Yes, but the mat didn't
20	then just go back up again, which you could think it
21	might or it would have impacted the screen.
22	MR. ARCHITZEL: Well
23	CHAIR WALLIS: This is an important thing.
24	MEMBER DENNING: Yes.
25	CHAIR WALLIS: I mean, it shows slight
I	I

(202) 234-4433

	106
1	differences in the experimental technique and can make
2	a big difference to the result.
3	MEMBER DENNING: But I think that what the
4	point you're trying to make is that there might be
5	actions that one could take if you determine that
6	you're
7	MR. ARCHITZEL: Fall off.
8	MEMBER DENNING: if you haven't
9	MR. ARCHITZEL: Well, I guess the point I
10	was trying to make in the pilot audit, there were
11	significant actions taken by Crystal River. We
12	discussed this result with them. This isn't their
13	strainer, by the way.
14	CHAIR WALLIS: Well, you said there's a
15	problem with this. And if you have a little bit of
16	just if you have a little bit of chemical effects
17	gluing this stuff onto the screen, then it makes all
18	the difference in the world to this experiment.
19	MR. ARCHITZEL: Well, if you have any flow
20	at all.
21	CHAIR WALLIS: And all of these plants are
22	different.
23	DR. BANERJEE: Yes.
24	CHAIR WALLIS: And it's a very old
25	mystery.
l	I

(202) 234-4433

	107
1	DR. BANERJEE: And the strainers are also
2	different.
3	CHAIR WALLIS: And all the strainers are
4	different. It's a very messy field to predict
5	anything in.
6	MR. ARCHITZEL: What I was trying to do is
7	demonstrate that there is some value to the backflush.
8	CHAIR WALLIS: Yes.
9	MR. ARCHITZEL: In Crystal River's case,
10	they have a backflush. Most plants don't. They have
11	a backflush, a gravity feed backflush. They changed
12	their procedures after we discussed this to make it
13	permanent. They were going with their existing
14	procedures backflush with flow in the forward
15	direction. They changed their procedures to when they
16	do have or have to use it in their instant access
17	management strategies. When they're going to do that
18	backflush, they're going to make sure all flow is off,
19	so they get the head of water from the reactor
20	actually to allow them to backflush and get some flow
21	in the reverse direction because of that.
22	And they are also making permanent they
23	are actually getting some they designed a
24	differential pressure capability in the reverse
25	direction for their strainers. So they heard the
I	1

(202) 234-4433

	108
1	comment and they actually are addressing backflush in
2	a way that's positive towards this.
3	CHAIR WALLIS: Now, maybe this is a way
4	that yes. Maybe this is a very positive thing, if
5	it can be understood. It means that even if you clog
6	the strainers, there may be a very quick way to unclog
7	them.
8	MR. ARCHITZEL: If you have backflush.
9	Not all plants have it. And it wasn't required.
10	CHAIR WALLIS: Well, maybe you guys should
11	require it?
12	MR. ARCHITZEL: Well, it was your comment
13	years ago.
14	DR. BANERJEE: That is the chemical
15	effects tests, right, because this backflush might be
16	fine without, the chemical effects may not work.
17	MR. ARCHITZEL: Well, chemical effects may
18	be put to bed by backflush, depending on the timing,
19	that's maybe one thing you could do. I don't know.
20	I'm not at the end of that yet. We're not.
21	Anyway, I'll move on to Fort Calhoun real
22	quick. I'll try and move a little closer. The
23	difference for Fort Calhoun now they are going for
24	they actually were not as far along in their analysis
25	and things like that as Crystal River was.

(202) 234-4433

	109
1	CHAIR WALLIS: They had 56 square feet?
2	MR. ARCHITZEL: You can see the existing
3	strainers at Fort Calhoun.
4	CHAIR WALLIS: They only have 56 square
5	feet?
6	MR. ARCHITZEL: That's what this is.
7	CHAIR WALLIS: And how much of that
8	DR. BANERJEE: And did they have
9	fiberglass debris?
10	MR. ARCHITZEL: Yes, yes.
11	CHAIR WALLIS: They had these truckloads
12	of debris that we heard about in the presentation?
13	MR. ARCHITZEL: They have 50 percent clean
14	screens.
15	CHAIR WALLIS: That's by
16	MR. ARCHITZEL: That's our Reg Guide.
17	CHAIR WALLIS: I know. But I mean, I'm
18	just telling you that if you take a truck load of
19	debris and put it on 56 square feet, you've got it
20	pretty thick right now.
21	MR. ARCHITZEL: You put it right next to
22	that guy. That's the size of their strainers.
23	CHAIR WALLIS: Yes.
24	MR. ARCHITZEL: What they
25	DR. BANERJEE: How many of these did they
	I

```
(202) 234-4433
```

	110
1	have?
2	MR. ARCHITZEL: Two. One on the left and
3	one on the right.
4	DR. BANERJEE: Okay.
5	MR. ARCHITZEL: You see them both there.
6	DR. BANERJEE: These square feet?
7	MR. ARCHITZEL: No, no, no. It's a half
8	each and they could be 28 square feet on one and 20 on
9	the other.
10	CHAIR WALLIS: In total. We're allowed to
11	assume that half of them were blocked, so that's how
12	they met the regulations.
13	MR. ARCHITZEL: Yes. The head loss would
14	be and then there would be accidents today where
15	that would be sufficient. You know, how do you know?
16	CHAIR WALLIS: Yes.
17	MR. ARCHITZEL: GE. Fort Calhoun was
18	going with GE Passive Stacked-Disk Strainer design.
19	I'm going to pass something out for the members and
20	I'll just ask, these are proprietary, I don't want to
21	comment on them, but I just want you to look at them
22	and we can comment if you want.
23	MEMBER DENNING: Are you going to take
24	those back?
25	CHAIR WALLIS: Well, we can see.

(202) 234-4433

	111
1	MR. ARCHITZEL: No, you can keep these.
2	CHAIR WALLIS: We can see proprietary
3	stuff.
4	MEMBER DENNING: Yes.
5	MR. ARCHITZEL: Yes, you can see it, but
6	I don't want to comment in this meeting. We're not
7	closing the meeting?
8	CHAIR WALLIS: No, okay.
9	MEMBER DENNING: Yes.
10	MR. ARCHITZEL: And if you want to close
11	the meeting.
12	PARTICIPANT: Go ahead.
13	MR. ARCHITZEL: I just wanted to give you
14	a feel, but not get into these.
15	CHAIR WALLIS: Well, you won't get a feel
16	for the real.
17	MR. ARCHITZEL: This is the testing we
18	observe. Yes, you can these are all legitimately
19	submitted and stuff like that. They are all
20	MEMBER DENNING: We can keep these?
21	MR. ARCHITZEL: You can keep those.
22	MEMBER DENNING: But be controlled as
23	proprietary.
24	CHAIR WALLIS: Um-hum.
25	MR. ARCHITZEL: And I would rather not
	1

	112
1	discuss them during this meeting.
2	CHAIR WALLIS: So we can't say anything
3	about what we see?
4	MR. ARCHITZEL: Unless you close the
5	meeting, you certainly could.
6	CHAIR WALLIS: Okay.
7	DR. BANERJEE: So in some senses this is
8	a little bit like the Vermont Yankee stack, this right
9	here.
10	MR. ARCHITZEL: The stacked-disks are
11	DR. BANERJEE: It's a little different.
12	MR. ARCHITZEL: They were installed.
13	Those are PCI stacked-disks.
14	DR. BANERJEE: Yes.
15	MR. ARCHITZEL: I think, I'm not really
16	positive. We have PCI. I have some PCI displays. GE
17	did put stacked-disks in. They are similar in that
18	sense. These are rectangular versus
19	DR. BANERJEE: Yes, rectangular not
20	circular.
21	CHAIR WALLIS: Well, whatever the design,
22	if you're going to put a lot of area in a small space,
23	you've got to stack your strainers somehow.
24	DR. BANERJEE: Yes, then you have to be
25	very careful about the approach velocity you use.
I	

```
(202) 234-4433
```

	113
1	MR. ARCHITZEL: Yes.
2	CHAIR WALLIS: Well, I think you also got
3	to worry about big hunks of fiberglass clogging the
4	outside so nothing can get through between and get to
5	the plates.
6	MR. ARCHITZEL: Yes, you have bridging
7	concerns and things like that.
8	CHAIR WALLIS: Yes.
9	MR. ARCHITZEL: Bridging is observed
10	during this testing, all these tests. You do have
11	that going on also.
12	DR. BANERJEE: Yes. The concern here
13	would be that you wouldn't be able to use the approach
14	philosophy for the whole open area here, because as
15	you sort of fill up the interstitial spaces, the
16	limiting assumption is the approach philosophy to the
17	periphery of this, rather than to the faces
18	themselves.
19	MR. ARCHITZEL: Right. If you were really
20	doing a correlation and things like that.
21	DR. BANERJEE: Yes.
22	MR. ARCHITZEL: But if you see what they
23	are doing is using, you know, air from channel A or
24	actually doing prototypical testing with design loads,
25	so you're having the actual

(202) 234-4433

	114
1	DR. BANERJEE: Right.
2	MR. ARCHITZEL: again line.
3	DR. BANERJEE: We will wait, too.
4	MR. ARCHITZEL: But you do get some of
5	these, not like Crystal River where interstitial is
6	not, some of them would overwhelm or be in that
7	situation of having more debris that can go inside the
8	area of the strainers.
9	DR. BANERJEE: Yes. You can visualize the
10	situation where you fill up these interstitial spaces
11	if there is enough debris.
12	MR. ARCHITZEL: Right. Oh, there are
13	situations like that, yes.
14	DR. BANERJEE: All right.
15	MR. ARCHITZEL: Let me move on to, unless
16	the Committee wants more time, the Oconee audit for a
17	second. This is another plant which has Leon
18	Whitney was the team leader for this. And it's just
19	started where it's an RMI plant. They have large
20	quantities of not that much fiber and they are
21	putting in a fairly large 5,000 square foot pocket-
22	type strainer. It's installed at one of the units
23	right now, so they already have installed this.
24	But their analysis wasn't totally
25	complete. So the team is that audit has sort of
ļ	

(202) 234-4433

	115
1	been suspended right now. But just to tell you the
2	current status of it.
3	DR. BANERJEE: So if they had so much
4	RMI
5	MR. ARCHITZEL: This is an in-process
6	audit, by the way, so we're in first audit and not a
7	pilot any more.
8	DR. BANERJEE: Why do they need 5,000
9	square feet of screen?
10	MR. ARCHITZEL: They had it available.
11	DR. BANERJEE: I see.
12	MR. ARCHITZEL: They had the area
13	available. They could put it in and put questions to
14	rest. There's significant margins associated with
15	that design. But we don't have the analysis in place
16	to go over that one yet. We're going to look at that.
17	Well, I say significant margins might be challenged by
18	that comment with the unknowns I guess. But they are
19	not a Cal-Sil plant or anything like that, so the
20	chemical effects might not be that challenging.
21	CHAIR WALLIS: Well, let's look at the
22	first statement here. You've put a lot of RMI there
23	and maybe it's bigger size and it's more porous and so
24	it doesn't catch the fibers and particulate debris.
25	MR. WHITNEY: Actually, this is Leon
	I

(202) 234-4433

	116
1	Whitney, the phenomenon appears to be if RMI
2	encompasses a strainer, then the fiber that
3	approaches, and for that matter stickers and tags and
4	whatever, get trapped on the outer parts of this rough
5	metal pile
б	CHAIR WALLIS: Yes.
7	MR. WHITNEY: and you end up with
8	porous metal passages to the strainer and you actually
9	do not allow the formation of a bed to and,
10	therefore, you end up reducing the potential for head
11	loss.
12	CHAIR WALLIS: Yes, I
13	MR. ARCHITZEL: It's sort of like we said
14	you could make a complex surface part of the design
15	for some of these strainers, and the RMI basically
16	provides that complex surface. You can't take credit
17	for that, but it does
18	MR. WHITNEY: If it transports and there's
19	a lot of ifs, but if it transports and encompasses a
20	strainer, you could see this phenomenon, hence the
21	bed.
22	CHAIR WALLIS: That's what I was going to
23	say, but it might be that then you get channels
24	through the bed which are relatively high velocity
25	because there is nothing. You know, the rest of the
1	

(202) 234-4433

	117
1	bed has got fibers on it and this would be a real sort
2	of particle transporting pipeline.
3	DR. BANERJEE: Into the core.
4	CHAIR WALLIS: Right.
5	MR. WHITNEY: There is nothing about an
б	RMI encompassing a strainer that would stop
7	particulate.
8	CHAIR WALLIS: You see, once you get
9	MR. WHITNEY: Debris, yes.
10	CHAIR WALLIS: This is a generic problem
11	with strainers, is you get bypass or blow-through or
12	whatever you want to call it and it happens in the
13	experiments and we'll hear about it tomorrow. You
14	build up a bed or an RMI, whatever it is, and then
15	there are places where the fibers don't get caught or
16	something and the flow goes through.
17	So now, you haven't got all the area
18	effected. You have just got these little holes in the
19	bed through which stuff is going and you have to be
20	able to analyze that, presumably, if you're worried
21	about downstream effects.
22	MR. WHITNEY: We're not
23	CHAIR WALLIS: If you're only worried
24	about head loss, a hole is great, but a hole if you're
25	worried about downstream effects
	I

(202) 234-4433

	118
1	MR. ARCHITZEL: Well, you still have the
2	same size openings that you have already analyzed.
3	CHAIR WALLIS: Well, you do on the screen,
4	but the screen is a quarter inch and this stuff is
5	you know, the fines are there are fines that are
б	smaller than that.
7	DR. BANERJEE: 10 microns.
8	MR. ARCHITZEL: Well, they have already
9	analyzed that pass-through. They have to analyze that
10	pass-through.
11	CHAIR WALLIS: But you see how difficult
12	it is? When you have an RMI bed and it has got fibers
13	on it and the fibers are covering it, but they are
14	only covering 95 percent of it, then you have got
15	these holes, what are you going to do?
16	MR. ARCHITZEL: But that's the analyzed
17	condition for the downstream situation. You do it
18	with clean and you handle that downstream aspect and
19	that is what you
20	CHAIR WALLIS: Well, look at your one
21	where you backflushed and some of the stuff fell off.
22	Now, you have got effectively some area which is
23	clean. The rest of it is all covered with stuff,
24	presumably, if it doesn't all fall off.
25	MR. ARCHITZEL: But it has to flow-through
Į	I

(202) 234-4433

	119
1	that also, that opening.
2	CHAIR WALLIS: So now you have got your
3	effective areas is decreased by a factor of 10 or
4	something. Are you going to analyze that situation?
5	MR. ARCHITZEL: I guess so.
6	MR. LU: But, Dr. Wallis, you are right
7	there and, actually, the vendor conducted two tests
8	where another test is just no RMI and, you know, as a
9	blockage or a filter and they put the fiber and the
10	debris and the particulate right on the screen of the
11	surface, so that they have two cases.
12	But the specific statement there just to
13	state the phenomena, when you have combined RMI and
14	fiber debris together, it may reduce the total head
15	loss.
16	CHAIR WALLIS: No, I understand that.
17	MR. LU: They did have a bounding case to
18	evaluate the head loss due to the fiber and the
19	particulates, assuming it's 100 percent transportable
20	to the surface of the strainer.
21	CHAIR WALLIS: Well, I guess what I'm
22	saying is that not catching all the fibrous and
23	particulate debris may not be such a good thing if
24	there are certain areas of the screen which are
25	bypassing it. That's the only point I'm making. It's
I	1

(202) 234-4433

	120
1	really downstream effects I'm getting at and not head
2	loss.
3	MR. WHITNEY: Okay. Ralph, if you would
4	go back to the slide, please.
5	MR. ARCHITZEL: Oh, I'm onto the next one,
б	yes. Okay.
7	MR. WHITNEY: I would like to answer that
8	question in the sense that this is a 5,000 square foot
9	strainer. And, Ralph, please, go back to the slide.
10	By design, if fully engaged, the licensee requires the
11	vendor to have a 0.1 foot design head loss. Okay?
12	CHAIR WALLIS: Yes.
13	MR. WHITNEY: And if you can visualize a
14	pocket strainer, it basically is shaped like, say, a
15	shoe bag in each pocket. If the flows are very low,
16	the fibrous debris will tend not to lift to the top of
17	each pocket. And, yes, this 5,000 square foot
18	strainer design, regardless of RMI, will tend to have
19	pass-through by design because the upper part of each
20	pocket will evolve flow. And I'm agreeing with you.
21	I'm saying that this design has significant pass-
22	through of particulate.
23	MR. ARCHITZEL: I guess Dr. Wallis'
24	comment was basically maybe you got to take half the
25	strainer design and see what increase flows, does that
I	I

(202) 234-4433

	121
1	affect the downstream, and that's not an issue at the
2	moment in front of us.
3	CHAIR WALLIS: At the moment.
4	DR. BANERJEE: I guess the
5	MR. ARCHITZEL: We did it with clean
6	strainers. That was the issue.
7	DR. BANERJEE: Yes, it's like the Devil in
8	the Deep Blue Sea here. If you have everything caught
9	on the strainer, then your head loss goes up. If you
10	don't and the fines go through, you have got
11	downstream effects to worry about.
12	CHAIR WALLIS: But that's Scylla and
13	Charybdis.
14	DR. BANERJEE: Yes.
15	MR. ARCHITZEL: But the point, as I
16	understand the point, it was that when you're doing a
17	downstream evaluation, do you assess the increase flow
18	off the totally clean strainer because some of the
19	strainer may be blocked and preferentially flow
20	through the open area, and that's one I guess we'll
21	have to take that back. It hadn't been really that
22	hadn't been the focus of the way we have been looking
23	at downstream.
24	CHAIR WALLIS: So there are two questions
25	here or at least two. One is your ability to
ļ	I

(202) 234-4433

visualize or predict all the different kinds of things that can happen in terms of inhomogeneities and so on, and the other thing is if you can visualize enough of these possibilities, the next question is how deeply do you have to go in order to predict what happens with all these different possibilities? That seems to me to be something that --

MR. ARCHITZEL: And typically what we do 8 9 is take a bounding type of an approach, not always 10 bounding, there are cases where it's not bounding, try and address. You heard in the VY presentation where 11 you try and take individual bounding assumptions on 12 the different parts of the question. And in the end 13 14 you make an assumption that generally it's okay.

15 A lot of these strainers still have open 16 area with massive amounts of -- so they have low flow 17 issues, right. When they actually do their real test, the vertical surface is likely the same in the pocket 18 19 The VY strainers at the bottom were clean, strainers. 20 so the head loss is very low. The next one up, going up to this Watts Bar, it's currently ongoing. 21 BANERJEE: 22 DR. What is a Sure-Flow Stacked-Disk Strainer? 23 24 MR. ARCHITZEL: I will show you a picture 25 Well, actually, Shanlai has one in his

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

it.

of

1

2

3

4

5

6

7

(202) 234-4433

122

	123
1	presentation.
2	MR. LU: Yes.
3	MR. ARCHITZEL: So you will see that, a
4	picture of that coming up. We did go and observe
5	testing. This audit is starting out. Watts Bar is
6	using again, they said, Performance Contracting
7	Strainers, another one of the vendors. And then here
8	we're going to get those modification packages,
9	etcetera, coming in in the next week.
10	Perhaps Dr. Lu wants that might be a
11	good one, but you won't have our audit report for
12	awhile, so which one do you want to get if you wanted
13	to look at that? We are getting that information in
14	and we're getting a well, maybe even well, you
15	don't want to participate, so
16	CHAIR WALLIS: Well, you observed the
17	testing, didn't you?
18	MR. ARCHITZEL: We observed the testing
19	and we're starting the audit.
20	CHAIR WALLIS: Did you critique the
21	testing?
22	MR. ARCHITZEL: They will be in the I
23	guess there are some comments on the testing coming
24	up. Yes, there are critiques of the testing but
25	CHAIR WALLIS: So it looks like a pretty
I	

(202) 234-4433

	124
1	large facility over there.
2	MR. ARCHITZEL: That's a big flume. Now,
3	this is not, Watts Bar. This is open domain pictures.
4	We went in March of last year to watch testing at all
5	the research labs. This is the facility we looked at
6	for Watts Bar testing. They don't have a high fiber
7	case. This is a high fiber case plant, but it is
8	we got the slideshow on the public website and used a
9	couple of photos out of that slideshow.
10	DR. BANERJEE: Are these all the research
11	labs?
12	MR. ARCHITZEL: Alden is in Massachusetts,
13	Worcester, Mass., near Worcester. And you can see
14	they have a flow path that generates turbulence within
15	the flume, simulate turbulence of is there is a direct
16	path for that LOCA fluid to get into the sump area to
17	keep the stuff stirred up. You can see the flume on
18	the left, the actual page down here for a second.
19	This is a lead-in, my last slide here, to
20	Dr. Lu. If you see on the left the return flow path,
21	the strainer itself is coming out the end. It's in
22	the upper left area. You can't see the strainer too
23	well, but you can see the types and quantities of
24	debris. Now, this is
25	DR. BANERJEE: Maybe you can point to it
I	I

(202) 234-4433

	125
1	because on the
2	MR. ARCHITZEL: Where do you want me to
3	point?
4	DR. BANERJEE: There.
5	MR. ARCHITZEL: Here.
6	DR. BANERJEE: Yes, yes.
7	MR. ARCHITZEL: Since this is public
8	domain, I have got some videos I could give to you
9	that show what this looks like during a test, but this
10	would all be quantities of you got a small over
11	here at this end, this loop here is just the loop that
12	is associated with the turbulence level.
13	CHAIR WALLIS: Well, isn't that
14	concentration of debris?
15	MR. ARCHITZEL: Well, that's what I wanted
16	to talk about. That's what we're going to talk about.
17	The actual strainer here is a part module, a scaled
18	module down at this end. All this debris that you see
19	in this flume is the debris you would calculate to be
20	on that strainer scaled in this case, this plant, and
21	it's not all there.
22	DR. BANERJEE: Is it fiberglass or
23	MR. ARCHITZEL: It's a mix. It's whatever
24	they had, fiber. The reason you can't see through it,
25	there's also coatings debris and stuff like that, too.
I	1

(202) 234-4433

	126
1	In a lot of these tests you won't even be able to see
2	through the test at all because of the coating
3	surrogate.
4	CHAIR WALLIS: And this stuff is just
5	sitting there?
6	MR. ARCHITZEL: A lot of it, but you can
7	and I would almost like to show you the video, but I
8	would have to close the meeting. These are, like I
9	say, public domain. There is actually some fiber that
10	is keeping on transporting down to the left end. The
11	strainer, you will see a photo of the strainer. The
12	strainer is now encompassed with the fiber and this is
13	the question of the near-field that we're going to
14	talk about next.
15	CHAIR WALLIS: Well, as long as there is
16	no big bubbles or something forming to stir it up,
17	it's going to just lie there?
18	MR. ARCHITZEL: Right. There's some stuff
19	at the bottom that just lies there and doesn't move
20	along and there's others that does move along in this
21	particular test.
22	DR. BANERJEE: So you have characterized
23	the turbulence and everything, so you know how much is
24	being transported?
25	MR. ARCHITZEL: In a plant that had
ļ	I

	127
1	turbulence, they would use the turbulence.
2	DR. BANERJEE: Okay.
3	MR. ARCHITZEL: In others they wouldn't
4	use the turbulence part of it. They try and keep it
5	all mixed up in the beginning. This is showing you
6	the introduction of the coatings surrogate into that
7	test that we observed. And then this is the massing
8	on top of the strainer here, the mass of fiber that
9	didn't get on there.
10	Actually, we did have some foam. That was
11	interesting. They had foam. They thought foam
12	floating won't be any issue, but since it was close we
13	did find it. The foam actually caused a dam and got
14	air right through the strainer when we watched that
15	test.
16	So you do have to be a little careful
17	about the floating debris if you're very close to the
18	surface and you have this phenomena. It wasn't like
19	vortexing or anything like that.
20	CHAIR WALLIS: When you say foam, you mean
21	foam insulation not foam
22	MR. ARCHITZEL: Foam insulation was thrown
23	into the mix and it was to demonstrate there is no
24	issue, and the issue was that you actually could form
25	a dam from the water.
	I

(202) 234-4433

	128
1	CHAIR WALLIS: We raised that question
2	with another plant and they said that the foam
3	wouldn't go to the strainer because the strainer was
4	submerged when, in fact, there is flow to the
5	strainer. The foam can sort of wander around until it
б	gets near the strainer.
7	MR. ARCHITZEL: And if you
8	CHAIR WALLIS: Then it gets in the near-
9	field and it might do things.
10	MR. ARCHITZEL: If you don't have
11	sufficient submergence
12	CHAIR WALLIS: Right.
13	MR. ARCHITZEL: you can have a problem
14	with something like that.
15	CHAIR WALLIS: Right.
16	MR. ARCHITZEL: You can prevent the so
17	we learned things during the audit. We observed
18	things.
19	CHAIR WALLIS: So you are still learning
20	things.
21	MR. ARCHITZEL: Yes.
22	CHAIR WALLIS: That's good.
23	MR. ARCHITZEL: Anyway.
24	DR. BANERJEE: These are very interesting.
25	MR. ARCHITZEL: That completes my
I	

(202) 234-4433

	129
1	presentation. At this point, Dr. Shanlai Lu is going
2	to talk about
3	CHAIR WALLIS: Well, you went through all
4	these tests and all that. Did you learn enough to
5	make decisions from observing these tests?
6	MR. ARCHITZEL: We made some. Well, we
7	didn't have that type of criteria in these pilot audit
8	reports. We had more criteria that it looks like it's
9	generally okay or not enough information to make a
10	decision was the last category. The middle categories
11	are sort of might be okay type thing. The first one
12	was a pretty more robust answer that we think it will
13	be okay.
14	And there were areas in the back of each
15	report that characterized how we felt about the
16	different areas and some came out that we were very
17	comfortable with upstream effects in some of the
18	plants. I mean, in some we did make, as best we could
19	in a pilot, some type of conclusions.
20	DR. BANERJEE: The one thing you did show,
21	I think, is that if you consolidate this material on
22	a strainer or something and provided the chemical
23	effects and you even backflush it off, then it's
24	consolidated. It was out of the loop of consideration
25	in some way.
	I

(202) 234-4433

	130
1	MR. ARCHITZEL: Right.
2	DR. BANERJEE: So it doesn't re-entrain.
3	It's all sort of
4	MR. ARCHITZEL: And these loops will clean
5	up eventually. They will clean up and have crystal
6	clear water.
7	DR. BANERJEE: Yes, right.
8	MR. ARCHITZEL: And the head losses are
9	very low for the types of testing that has been
10	observed. I mean, the industry can tell you they have
11	very low head losses even with these large quantities
12	of debris.
13	DR. BANERJEE: Okay. So that backflushing
14	experiment was very interesting.
15	MR. ARCHITZEL: Well, that's a separate
16	issue. That's for the thin bed, which is another
17	controlling situation.
18	DR. BANERJEE: Yes. Once you have
19	captured everything in that thin bed and if you
20	backflush it off, it doesn't re-entrain very easily
21	and sort of capture stuff.
22	MR. ARCHITZEL: Yes, whether the ACRS
23	believes the thin bed or not, if it's isolated thin
24	bed and that's all of you have got and you get rid of
25	it, the head loss is low.
ļ	1

(202) 234-4433

	131
1	DR. BANERJEE: You have taken out the
2	particulates, too, in that thin bed.
3	MR. ARCHITZEL: And that's the controlling
4	case. Normally, it would be the controlling case
5	would be that thin bed. If you get a bigger debris
6	bed, it can handle a lot more and you don't have
7	nearly the head loss when you have much more
8	quantities of debris in a loop.
9	CHAIR WALLIS: I'm wondering where we are,
10	thank you, Ralph, where we are in time. Shanlai, are
11	you going to take a long time? We haven't done a
12	break yet and we have been going since 8:30.
13	MR. LU: Maybe we can do that after the
14	break because I have at least 40 minutes. It depends
15	on the questions, if you have a lot of questions.
16	CHAIR WALLIS: Well, we should probably
17	have a break now.
18	MR. LU: Yes, great.
19	CHAIR WALLIS: How long a break? Can we
20	have a break until 10:50? Is that something we can
21	handle?
22	PARTICIPANT: Yes.
23	CHAIR WALLIS: And then we'll try to catch
24	up. Well, we may have to go over this afternoon.
25	PARTICIPANT: Okay.

(202) 234-4433

	132
1	CHAIR WALLIS: It's quite anticipated,
2	this being so interesting.
3	PARTICIPANT: All right.
4	CHAIR WALLIS: So we'll see you. We'll
5	take a break now until 10:50.
6	PARTICIPANT: All right. Okay.
7	PARTICIPANT: Is that the only remaining
8	one out of this?
9	CHAIR WALLIS: Are you the only remaining
10	one?
11	PARTICIPANT: Yes, then we start chemical
12	effects.
13	(Whereupon, at 10:37 a.m. a recess until
14	10:50 a.m.)
15	DR. BANERJEE: Do we have this?
16	MR. LU: All right. Should we wait for
17	the other Members to come here or you want me to start
18	now or
19	CHAIR WALLIS: Yes. Please, start, yes.
20	MR. LU: Okay. All right. Shanlai Lu
21	from staff, NRR/SSIB, and the title of my presentation
22	is the Near-Field Effect and the Prototypical Head
23	Loss Test.
24	CHAIR WALLIS: Just a moment. John?
25	PARTICIPANT: Yes?
	I

(202) 234-4433

	133
1	CHAIR WALLIS: Well, I guess you're the
2	federal
3	PARTICIPANT: I'm the DFO until relieved.
4	CHAIR WALLIS: Yes, okay. Excuse me.
5	This is just one of those. Okay. Okay. All right.
б	DR. BANERJEE: I'm a DFO.
7	CHAIR WALLIS: You can't leave, John.
8	MR. LU: So the focus of my presentation
9	will be related to the head loss and I guess during
10	our last meeting with ACRS, we spent a lot of time
11	discussing correlations in head loss and the
12	evaluation methodology.
13	So this time we're I'm going to go over
14	that a little bit, just with one slide, because during
15	the past 15 months a lot of things have happened and,
16	actually, the current focus of staff's inspection or
17	the audit and the evaluation is a focus on the
18	vendor's prototypical head loss test. But I will go
19	over a little bit of history of what we did in terms
20	of SE.
21	CHAIR WALLIS: Thank you.
22	MR. LU: How we address the ACRS comments
23	here. Okay.
24	During our meeting with ACRS last time we
25	spent quite a lot of time discussing the validity of
1	1

(202) 234-4433

NUREG-CR/6224 head loss correlation and we got a lot of comments back and from the full Committee and the Subcommittee.

4 And before we release the final version of 5 the safety evaluation, and we had about three to four weeks before that after the full Committee meeting, 6 7 and we evaluated the ACRS comments and worked on this correlation, and then we revisited a lot of issues and 8 9 thinking about this correlation and why we want to 10 choose this or the NEI Guidance Report, what is their And we decided to revise the safety 11 positions. evaluation and the final version to incorporate the 12 ACRS comments. 13

14 This is just a summary of the position 15 there and we believe that NUREG-CR/6224 correlation is 16 not appropriate for many PWR LOCA debris types, 17 particularly for Cal-Sil. However, it's a useful tool for scoping analysis. The reason is very obvious. 18 19 That's probably the only tool available on the street for licensees or vendors or whoever are interested to 20 21 at least perform a scoping analysis before they come 22 back to full scale modular head loss testing. 23 So that is the position we took. We took

23 So that is the position we took. We took 24 the comments from the ACRS and we revised the staff's 25 position and that was December '04. Okay.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

	135
1	In January '05, we met with the industry
2	the second time after we the first time after we
3	released the final version of issued the final
4	version of the staff's evaluation, safety evaluation.
5	And we provided a path forward for the industry, which
6	is they can perform plant-specific tests to address
7	the head loss issue.
8	CHAIR WALLIS: While all this was going on
9	there was an NEI guidance document that came out.
10	MR. LU: Right.
11	CHAIR WALLIS: Which I think cited 6224.
12	MR. LU: Right.
13	CHAIR WALLIS: As the basic reference, and
14	I think you approved that guidance.
15	MR. LU: Well, this particular position
16	regarding that NEI Guidance Report and I think it's
17	very clear that we took a different position on that.
18	CHAIR WALLIS: So you have changed your
19	position on the Guidance Report, too?
20	MR. LU: That's right.
21	CHAIR WALLIS: Okay. Thank you.
22	MR.LU: That's correct. Okay. So right
23	after the January meeting with the industry last year
24	and we observed a trend from the industry, and
25	licensees and vendors are gearing up to perform plant-
I	

(202) 234-4433

	136
1	specific prototypical head loss tests to address the
2	head loss evaluation issue.
3	And at this point, based on the NEI
4	survey, all 69 PWR units plan to perform plant-
5	specific prototypical head loss tests. Okay. And
6	they are right now ongoing and there are five vendor
7	teams producing the test results and designing the
8	strainers for the 69 PWR units. And each vendor has
9	its own testing facility and testing program.
10	CHAIR WALLIS: This is very interesting
11	because NUREG-CR/6224 was based on an extensive test
12	program.
13	MR. LU: Right.
14	CHAIR WALLIS: And I think a lot of work
15	was done, a lot of careful consideration of various
16	things, and the result turns out not to be
17	appropriate. Now, you're going to have 69 plants
18	trying to develop their own equivalent of NUREG-
19	CR/6224?
20	MR. LU: Okay. I think I will address the
21	first part of the comment. The NUREG-CR/6224, yes,
22	it's was developed under the with quite a lot of
23	effort there, but the intention, original intention
24	from NRC, is to develop a confirmatory tool for staff
25	to evaluate the head loss, so to push a confirmatory

(202) 234-4433

tool to the point that it can be used to broadly evaluate head loss, taking into account the consideration of all type of PWR debris, all kinds of geometry of strainers.

5 I want to emphasize the shape of the strainer is so complicated, it becomes a difficult 6 7 process, as Dr. Banerjee just pointed out during the last presentation. And even one picture shows that 8 9 you have channeling effect going through the strainer debris bed, which if you go -- if you decided to go 10 for an analytical approach, it will be very hard to --11 12 you may be able to bound and actually you can bound that, but to go for that analytically, it will become 13 14 extremely difficult and harder to evaluate the 15 uncertainty.

The second part of your comment is I think 16 that's true, too, and I think -- and a lot of efforts 17 were put into that correlation development and Office 18 of Research has done a lot of work there and so that 19 20 is Los Alamos. That is the reason it can become a 21 useful tool for the industry and licensees to use that 22 tool as a scoping analysis tool and do a first shot of 23 scoping.

24 Okay. And, as Ralph mentioned, that we 25 conducted two pilot audits and we have two audits

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

138 1 ongoing. And, in addition to that, we also -- the 2 SSIB team and plus other staff, we visited all five 3 vendors' test facilities to evaluate their testing 4 procedures, their testing facilities setup and their 5 evaluation methodology, too. BANERJEE: Let me ask you one 6 DR. 7 question. Are there five test facilities now, each of 8 the vendors has one? 9 MR. LU: That's right. DR. BANERJEE: And are there differences 10 between these test facilities? 11 12 MR. LU: Okay. That's exactly what my first bullet is going to talk about that. 13 There are 14 significant differences among the five vendors. I 15 really don't want to address that in much detail because that is proprietary information. 16 That's the reason a lot of issues I want to talk about today is 17 really generic issues. But the key vendor testing 18 19 approach is very similar. 20 At a very high level, if you stay, you 21 know, 10,000 feet above the ground, you can see it's 22 all green there. But the way they are doing the 23 they use a reduced section of the testing is 24 replacement strainer design and put in а test 25 facility, a tank, a pool or a flume and they run the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	water through that one and then through a
2	recirculation loop, and they put this debris, all
3	kinds of debris, RMI, coatings, fiber and
4	particulates, everything at the strainer or upstream
5	of the strainer and measure the head loss.
6	Normally, they use the debris type
7	identified by the plant, so it becomes plant-specific,
8	and also they use the plant-specific approach,
9	velocity and the ECCS plus the containment spray pump
10	flow rate, specifically for that plant, to measure the
11	head loss. That is the common way they are conducting
12	the head loss there. Okay.
13	DR. BANERJEE: But let me ask you one
14	question. If they are taking a piece of a strainer
15	MR. LU: Right.
16	DR. BANERJEE: If there are effects due to
17	multiple pieces
18	MR. LU: Right.
19	DR. BANERJEE: how do they handle that,
20	because we have come across that in a previous
21	situation where there were stacked-disks.
22	MR. LU: Right.
23	DR. BANERJEE: Where they used the wrong
24	approach velocity.
25	MR. LU: Right. That is a valid question.
I	I

	140
1	Actually, I think on the fifth or sixth slide of my
2	presentation that is exactly the question we're asking
3	the licensees to address. That's in terms of the
4	scaling.
5	DR. BANERJEE: Okay.
6	MR. LU: So okay.
7	DR. BANERJEE: We'll wait for that.
8	MR. LU: Right. Okay.
9	CHAIR WALLIS: I think there is also the
10	question of the applicability of the test, and we're
11	going to hear tomorrow that Los Alamos did some tests
12	which we have seen before and talked about. And then
13	specific labs did some other tests, the same tests.
14	MR. LU: Right.
15	CHAIR WALLIS: The same tests.
16	MR. LU: Right.
17	CHAIR WALLIS: And it's the same test,
18	right?
19	MR. LU: Yes.
20	CHAIR WALLIS: And in some cases the
21	results were quite different. So are you going to say
22	that you're going to take the results from which lab
23	or are you going to say you're going to take the
24	results from Alion and say they were predictions of
25	what would happen further north? Do you see the
I	I

(202) 234-4433

141 1 problem? You're going to say a test in a lab in 2 Massachusetts now applies to a facility in Texas or 3 something. It's a valid question. 4 MR. LU: 5 MR. ARCHITZEL: Dr. Wallis, Ralph I just want to point out one thing. 6 Architzel. What 7 Shanlai has been talking about is the full article, 8 full scale type test. 9 CHAIR WALLIS: Right. MR. ARCHITZEL: There is another set of 10 tests, the vertical loop test and things, and that is 11 12 more what you're talking about. Some of these test facilities also have vertical loop tests, so you got 13 14 to be a little careful mixing and matching as per the 15 correlation. CHAIR WALLIS: Well, I understand that. 16 17 MR. ARCHITZEL: So what you're talking about now is more the vertical loop test. 18 19 CHAIR WALLIS: I understand that, but 20 these tests were very simple and, presumably, very 21 well-defined tests, whereas these plant tests --Yes, you would expect 22 MR. ARCHITZEL: 23 those to be. CHAIR WALLIS: -- are much less well-24 25 defined.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	MR. ARCHITZEL: Right.
2	CHAIR WALLIS: You would expect more
3	uncertainty in the plant than in these. You wouldn't
4	expect two national labs in fact we have even got
5	another one involved now that also does the same test
б	and getting different results.
7	MR. LU: Okay. Yes, that's one of the
8	issues actually I was planning to cover at the end of
9	my last slide, how we are going to use research
10	results.
11	CHAIR WALLIS: Yes.
12	MR. LU: And that is what you're looking
13	for, too.
14	CHAIR WALLIS: So you're relying on one
15	test to then be applied to the plant.
16	MR. LU: Right.
17	CHAIR WALLIS: And you have to then
18	somehow handle this business of, well, how predictable
19	are these phenomena if different labs get different
20	results? Are you going to put a huge range of
21	uncertainty on the results or something or how are you
22	going to handle that?
23	MR. LU: Okay.
24	MEMBER KRESS: Has there been a formal
25	scaling analysis of this phenomenon, scaling analysis
I	I

(202) 234-4433

	143
1	in the test compared to the actual prototypic size?
2	MR. LU: That is exactly actually,
3	since last March when the staff was introduced to this
4	near-field effect and the vendors decided and
5	licensees decided to take the credit of near-field
6	sediment, and our immediate response was what is the
7	scaling?
8	MEMBER KRESS: Yes.
9	MR. LU: How do you justify your scaling
10	is properly done, so that you can address this
11	settlement issue and can you conservatively predict
12	the debris transported to the strainer surface. That
13	is exactly you are asking exactly the question we
14	asked them last March, and I think that's the reason
15	I want to put this item here for discussion with you
16	guys. Okay.
17	DR. BANERJEE: I have a comment maybe.
18	You may cover this. It's that the variability that
19	Dr. Wallis is referring to always sort of would
20	indicate that there is some parameter in the problem
21	which is not being properly met. I mean, if you
22	believe in science and causality.
23	MR. LU: Right.
24	DR. BANERJEE: In this case a candidate is
25	the sequence in which things arrive at the strainer.
I	I

(202) 234-4433

	144
1	MR. LU: Right.
2	DR. BANERJEE: So the whole thing is sort
3	of a dynamical process.
4	MR. LU: Right.
5	DR. BANERJEE: Which I was, in fact,
6	mentioning to you before.
7	MR. LU: Okay.
8	DR. BANERJEE: So just a static sort of
9	correlation probably doesn't work in this case.
10	MR. LU: Yes.
11	DR. BANERJEE: I mean, it depends on
12	whether the fibers get there and then take out the
13	particles afterwards.
14	MR. LU: Right.
15	DR. BANERJEE: Will the particles go
16	through and then the fibers come? You know, all this
17	sort of stuff starts to matter.
18	CHAIR WALLIS: Or how well the fibers are
19	washed before they are used.
20	DR. BANERJEE: Right, and how they are
21	cooked, that the organic comes off or not.
22	CHAIR WALLIS: Which blender you use to
23	chop them up.
24	DR. BANERJEE: Right.
25	MR. LU: Yes.
	1

	145
1	DR. BANERJEE: How fine they are, in fact,
2	yes.
3	MR. LU: Well, I can respond to this
4	particular comment. Actually, that is exactly the
5	reason. Once we identified that the PNL test loop and
6	the liner loop produced different head loss data, and
7	then one of the issue we identified is the debris, the
8	introduction method and the limited preparation method
9	which can cause effectively two differences that is
10	observed by the PNL and the nano test comparison.
11	And we also observed from our Watts Bar
12	audit two, so we had established that. So that is one
13	of the issues I want to cover today. That is what
14	exactly we needed to have the licensee to respond.
15	Right now, we deal with each individual vendor team
16	and testing.
17	Some issues can be surfaced as, you know,
18	the common ground can be talked about publicly, but
19	some issues we deal with at the, you know, vendor to
20	NRC level in the proprietary information meetings, the
21	closed meeting there. And so going back to this
22	particular question, we are applying research results
23	to guide us and establish positions to require
24	licensees' reactions.
25	CHAIR WALLIS: So these two labs are
ļ	I

(202) 234-4433

	146
1	getting very different results. They are trying to
2	get the same results by trying to do it the same way
3	and, yet, there's difference in preparation or arrival
4	of the debris or something. In a plant, depending on
5	the plant and where the LOCA is and how big the
6	what the shape of the hole is in the pipe, you get
7	different all kinds of uncontrolled
8	MR. LU: That's right.
9	CHAIR WALLIS: things about how the
10	debris is broken up and when it arrived and all that.
11	MR. LU: You're absolutely right, right.
12	CHAIR WALLIS: So that is even more
13	difficult to predict than to predict that Atel will
14	get the same results as Los Alamos.
15	MR. LU: You are absolutely right.
16	CHAIR WALLIS: Okay.
17	MR. LU: I think that was one of the
18	issues.
19	CHAIR WALLIS: So you'll figure that out
20	somehow. You will figure that out somehow.
21	MR. LU: Okay. Yes. But I want to hit a
22	major issue we identified, commonly referred to as a
23	near-field effect. Not all the licensees or vendors
24	decided to take the credit, because some of the
25	licensees have an ample margin and they have very
	I

(202) 234-4433

	147
1	clean containment and they can just dump all the
2	debris, RMI, everything, right on top of the strainer.
3	They measure the head loss and then they have a factor
4	of 10 margin. So for those plants it's not an issue.
5	MEMBER KRESS: But do they dump it all?
6	MR. LU: What?
7	MEMBER KRESS: Is it homogeneous stuff?
8	MR. LU: No. Some of the plants were
9	doing like a bounding case. Instead of doing the
10	for example, the Oconee case. They measured that
11	fiber and the particulate first and then they dump the
12	and in another case they just dump the RMI first
13	and then that cause the filtration effect. But they
14	bounded both cases with different tests.
15	MEMBER KRESS: And you have enough data to
16	know that's a real bound?
17	MR. LU: Well, actually, I think the
18	vendors were doing that data to bound that one, doing
19	that type of test to bound that, to make sure that
20	they are not take credit of some odd effect introduced
21	by the testing procedures.
22	DR. BANERJEE: But what about the
23	preparation of the debris? How sensitive are the
24	results to that?
25	MR. LU: Okay. I think that's a valid
ļ	I

(202) 234-4433

	148
1	question. I'm going to address it on the sixth slide.
2	The real issue I want to point out, this is a very
3	significant issue here, is I want to focus on the
4	phenomena observed as a near-field effect. I'm going
5	to touch that part, too.
6	And the phenomena we observed or the
7	vendors observed is a large quantity of transportable
8	debris does not reach the strainer surface and settled
9	upstream from the testing module due to debris
10	agglomeration.
11	CHAIR WALLIS: Yes.
12	MR. LU: Okay. And that is what Ralph
13	just showed in the picture of the large flume and all
14	those debris, based on the current SE, staff's SE and
15	the NEI Guidance Report were supposed to be calculated
16	based on transport calculation. All those debris are
17	supposed to be on the strainer surface.
18	But instead of measuring the head loss of
19	all those debris on the strainer surface, vendors
20	consider the reality here and not all the debris will
21	reach the surface of the strainer because very high
22	concentration of the debris, even the transport of the
23	debris, tend to agglomerate.
24	Once it starts to agglomerate, it will
25	settle at the bottom of the tank and the head loss can
ļ	

(202) 234-4433

	149
1	be a factor for 20 to 40 times lower than the
2	prediction by the NUREG-CR/6224 correlation. So that
3	is a credible physical phenomenon I think the vendor
4	is trying to take the credit from. Some plants cannot
5	live without this. Some plants can live without this,
6	but some plants cannot.
7	So the application of this near-field
8	effect and the testing procedure will give some plants
9	much smaller strainer size or lower head loss than a
10	design following the NRC SE and the NEI Guidance
11	Report. So that is the major issue I want to point
12	out here and discuss with the Subcommittee here.
13	CHAIR WALLIS: Are we going to look at the
14	next picture? Yes.
15	MR. LU: Yes. Okay. If you remember,
16	Ralph just showed that last flume. It's about 30 feet
17	or 40 feet. I forgot what the length. And this
18	particular case was last March when we first
19	introduced the near-field effect, and you can see that
20	this is a PZI stacked-disk strainer. You were asking
21	what is the shape of the strainer that's or the
22	PZI.
23	DR. BANERJEE: The central pipe in the
24	middle there?
25	MR. LU: Yes, okay.
11	

(202) 234-4433

	150
1	CHAIR WALLIS: Can you see? They are
2	going to bridge it right across the gap there in some
3	places.
4	MR. LU: Right. These is we have the
5	issue related to this being that observation, test
6	observation trait, that's one of the issue we raised.
7	CHAIR WALLIS: So you have some areas
8	where there is no goop at all. Does it actually
9	clean?
10	MR. LU: Exactly.
11	CHAIR WALLIS: And in my figure I have got
12	here, the bottom right hand corner.
13	MR. LU: Okay. Here?
14	CHAIR WALLIS: There is a whole lot of
15	bubbles.
16	PARTICIPANT: Bubbles.
17	CHAIR WALLIS: What are those bubbles
18	from?
19	MR. LU: Okay.
20	CHAIR WALLIS: Where do they come from?
21	MR. LU: This test after they started
22	draining the tank, you will see the bubbles after
23	doing the test, the entire whole thing.
24	CHAIR WALLIS: Where do they come from?
25	Where do they come from?

```
(202) 234-4433
```

	151
1	MR. LU: It's submerged, entire the
2	strainer was submerged during the test. This is after
3	they start to drain at least half the water and you
4	can see the part of the strainer was
5	CHAIR WALLIS: But where do the bubbles
6	come from? Presumably, they are in the pool
7	somewhere, then they rise to the surface?
8	DR. BANERJEE: There bubbles, Graham?
9	MR. LU: Well, you mean the bubble here?
10	CHAIR WALLIS: On your figure.
11	MEMBER KRESS: Look on your
12	CHAIR WALLIS: Look on your figure.
13	MR. LU: Okay.
14	MR. ARCHITZEL: Dr. Wallis? Dr. Wallis,
15	one thing I would like to point out, some of the tests
16	we observed, and this may be one of them, they used
17	that recirculation of the energy. You call it the
18	stirring mechanism with all the
19	MR. LU: To introduce turbulence.
20	MR. ARCHITZEL: Yes. You saw those. It's
21	a simulation of turbulence scenario, so they had a lot
22	of flow in some of these tests that would have aerated
23	a lot of that article.
24	CHAIR WALLIS: But is that realistic then
25	to have bubbles like that?
	1

(202) 234-4433

152 1 MR. ARCHITZEL: Well, this -- not all the 2 tests were done there, but at least -- I'm not 3 positive, but there's a lot of air inside a lot of 4 that debris. 5 CHAIR WALLIS: You see, bubbles have a 6 potential for rendering stuff which would sink 7 buoyant. 8 MR. LU: Right. CHAIR WALLIS: And so it then floats to 9 the surface and drifts over to the strainer. 10 11 MR. LU: Right. 12 CHAIR WALLIS: And that is something that you don't want to happen. 13 14 MR. LU: Right. 15 CHAIR WALLIS: You want it to settle and 16 stay settled. DR. BANERJEE: Well, bubbles could be 17 formed if there was something raining on a surface, 18 19 right? 20 CHAIR WALLIS: Or there was chemical 21 effects. 22 That is exactly right. MR. LU: That is exactly what 23 they did and, of as part the 24 demonstration, they demonstrated to the NRC staff that 25 they can use the nozzles to inject water upstream of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	153
1	the testing flume to introduce a turbulence to
2	simulate the plant break flow a condition, and so that
3	might be the bubbles coming out from there.
4	CHAIR WALLIS: Some of the chemical
5	effects tests, they actually product hydrogen.
6	PARTICIPANT: Right.
7	MR. LU: Yes, we have trash cavity
8	insulator.
9	CHAIR WALLIS: I'm talking about the
10	chemical effects tests on the New Mexico.
11	MR. LU: Okay. Okay.
12	CHAIR WALLIS: Not the ones done near
13	Chicago.
14	MR. LU: Right. It will be covered by a
15	separate presentation. That's right.
16	CHAIR WALLIS: There was hydrogen
17	produced, I think, from the aluminum, was it?
18	MR. LU: Yes, the ICET 1 I think.
19	CHAIR WALLIS: Right.
20	MR. LU: Okay.
21	DR. BANERJEE: Can you just guide us
22	MR. LU: Okay.
23	DR. BANERJEE: through this picture a
24	little bit more?
25	MR. LU: All right. That's exactly what
I	I

	154
1	I'm intending to do and stop talking about chemical
2	effects. Here is the strainer and during the test,
3	the entire strainer is submerged, was submerged,
4	inside the water and then there is a pump suction
5	here, the suction line from here underneath the water.
6	MEMBER KRESS: Do you put that at the end
7	of the strainer?
8	MR. LU: Yes, the end of the strainer,
9	yes. The strainer surface has perforated holes and
10	then you can see the amount of debris settled on the
11	surface of the strainer is this much and that is the
12	purpose I want to show this picture.
13	DR. BANERJEE: I still don't completely
14	understand.
15	MR. LU: Okay.
16	DR. BANERJEE: Is this a stack of
17	strainers like three strainers stacked?
18	MR. LU: Yes, it's a stacked strainer of
19	PZI strainer, stacked-disk strainer, and the real size
20	is much
21	DR. BANERJEE: Looking at it sideways?
22	MR. LU: Yes.
23	DR. BANERJEE: Looking at it sideways?
24	MR. LU: You are looking at it from the
25	top, I'm sorry, from top of here is the flume.
	1

(202) 234-4433

	155
1	DR. BANERJEE: Okay. Looking at it from
2	the top.
3	MR. LU: You are looking at it from the
4	top.
5	DR. BANERJEE: Yes.
6	MR. LU: And then the tank is half
7	submerged, you know, drained, partially drained.
8	DR. BANERJEE: So now, the PZI strainer,
9	is there a central tube through the
10	MR. LU: Yes, it does, it does.
11	DR. BANERJEE: Where is that central tube?
12	MR. LU: And the central tube is you
13	cannot see here.
14	DR. BANERJEE: Okay.
15	MR. LU: It's underneath, inside of the
16	water, you know, here. So they take the water from
17	here and then run through that recirculation loop, but
18	pump back to upstream of the testing flume and it
19	comes back here.
20	MEMBER DENNING: Now, was that not
21	submerged?
22	MR. LU: Right.
23	MEMBER DENNING: We're looking at the top.
24	Was that never submerged?
25	MR. LU: No, no, no. For this particular
l	

	156
1	case it's submerged, and the reason I want to show
2	this one is that after it's part of the water is
3	drained, was drained, and then we were looking at the
4	debris loading, the purpose of showing this picture is
5	I want to show you how much debris you are going to
6	get actually through the testing on this strainer
7	surface. That is that little.
8	CHAIR WALLIS: But then the other stuff is
9	floating debris? There is kind of a scum all around
10	it?
11	MR. LU: Yes.
12	CHAIR WALLIS: The other stuff you see
13	there is
14	MR. LU: Yes, there is quite a lot of
15	buoyant debris which is exactly what Ralph mentioned
16	about, that we had a concern if the large strainer
17	submergence depth is too shallow, like you see some of
18	the licensees are part of their response they
19	mentioned only 3 inches, so we had a concern about
20	that. Buoyant debris may build up a higher dam and
21	cause the flow path for airflow, for the air to flow
22	directly into the strainer, but that is a separate
23	issue.
24	And the major issue I want to talk about
25	is the near-field effect, the debris loading on the
ļ	I

(202) 234-4433

	157
1	strainer. That is what this picture is about.
2	DR. BANERJEE: And what is this debris?
3	MR. LU: Okay. This particular one, they
4	have you can see here a little bit, yes, yellow
5	stuff and that's the fiber, Nukon fiber. And they
6	also dumped zinc powder, my understanding, zinc powder
7	as a surrogate material to model the coating chips.
8	Okay.
9	MEMBER DENNING: Now, we believe that
10	during the test, that that coverage was probably
11	uniform or relatively uniform? I mean, we see clear
12	parts of the screen here. Do you think that during
13	the test there were clear parts of the screen?
14	MR. LU: For
15	MEMBER DENNING: Are we merely looking at
16	this after the fact and the stuff has kind of washed
17	off of it?
18	MR. LU: This picture was taken after the
19	fact.
20	MEMBER DENNING: Yes.
21	MR. LU: Okay. And I personally don't
22	believe that you have a clean screen there during the
23	test.
24	MEMBER DENNING: Yes, I mean, during the
25	test.
	I

	158
1	MR. LU: But it may inside the if you
2	have bridging issue, then you may have the clean
3	screen at the center.
4	MR. ARCHITZEL: Yes. This is Ralph
5	Architzel. I wanted to make a comment on that. We
6	did observe a number of tests. It was certainly
7	when there was massive amounts, it was clearly
8	bridging where this thing that particular clear
9	opening is obviously sort of draining it open, but
10	others, and we could show you some photos offline
11	here, not now, because they might be proprietary
12	photos, after this meeting or separately.
13	There was massive amounts of clean areas
14	inside some of those strainers where it was bridged
15	and nothing came down. So there were significant
16	quantities of areas in some of this testing that were
17	absolutely clean on the inside.
18	MEMBER KRESS: Now, the flow is supposed
19	to go between those stacks and down and then through?
20	MR. LU: Okay. This is the top of the
21	flume, so the flume actually is in this direction. So
22	the water is flowing towards here.
23	MEMBER KRESS: Um-hum.
24	MR. LU: And then this strainer was
25	submerged and the flow can go through all directions
I	I

(202) 234-4433

	159
1	to approach this surface. Okay.
2	DR. BANERJEE: We are not seeing the main
3	surface area, which is into the board.
4	PARTICIPANT: Into the board.
5	MR. LU: Right, that's into the board.
6	Yes.
7	DR. BANERJEE: Right.
8	MR. LU: Okay. All right. The next
9	picture, that's about 10 feet away, upstream of this
10	strainer, the inside of the testing flume, that is how
11	much debris you can see at the bottom once they reach
12	steady state of the head loss. And we had a look and
13	they said if they dump all this debris on top of a
14	strainer and perform a head loss calculation using
15	NUREG-CR/6224, although we will still consider that
16	maybe or may have a significant uncertainty, the
17	measure of the head loss is about a factor of 120s to
18	140s.
19	CHAIR WALLIS: So you had zinc powder in
20	here?
21	MR. LU: Yes, we did.
22	CHAIR WALLIS: But your pH was around 7,
23	so there was probably no chemical effects on the zinc
24	powder.
25	MR. LU: You are absolutely right. This
I	

(202) 234-4433

	160
1	is another head loss test.
2	CHAIR WALLIS: Chemical effects of
3	MR. LU: No, it's not for chemical
4	testing.
5	CHAIR WALLIS: Duplicate the pH that is
6	actually in the pool itself.
7	MR. LU: Yes, no. This particular head
8	loss test was done to evaluate the head loss due to
9	normal debris. Okay.
10	DR. BANERJEE: Was all this debris dumped
11	in at one time or was it added gradually?
12	MR. LU: It was dumped at one time right
13	at the beginning of the test, and then they started to
14	stir and using that water jet above the testing flume
15	to stir the water, so that make it suspend. And then
16	after that, they turned off the spray on top of the
17	flume and then start to run the pump.
18	Visually, we could see that actually
19	settlement right at the spot. And so the question
20	here is this part of settlement and the debris
21	settlement due to the agglomeration, what is the
22	physical phenomena there and what is the driving
23	force? Is there any skinny issue related to that?
24	That is right now our focus at this point.
25	DR. BANERJEE: What was the preparation
I	I

(202) 234-4433

	161
1	for this? Did they shred it or how did they make the
2	debris?
3	MR.LU: My understanding is they shredded
4	it with the garbage disposal, right, and then make the
5	as a slurry and then they dump into make it wet
6	first, then dump into the flume. That is part of the
7	testing procedure's protocol and we have some
8	questions related to specifically that vendor.
9	MEMBER SHACK: And then in the flume they
10	start out with a well-mixed solution. They stir it
11	with their jets until they get what they think is a
12	uniform suspension of this stuff?
13	MR.LU: You are absolutely right. That's
14	they way they did that. But actually
15	MEMBER SHACK: And they
16	MR. LU: Sorry, go ahead.
17	MEMBER SHACK: What is the pump? What is
18	the velocity now it's being transported at?
19	MR. LU: That's exactly the question.
20	When we ask them how they designed this test regarding
21	the transport velocity inside the flume, and they
22	said, okay, we scaled strainer inside of this flume to
23	take into account the full ECCS flow, comparing this
24	scale based on surface of the strainer.
25	But in terms of velocity in the flume,
I	I

(202) 234-4433

1 there was no answer there. So right away my question 2 to them was did you do any scaling analysis to justify 3 your approach velocity upstream of the strainer as 4 representative of the containment in real plant 5 conditions at all. And if no scaling was done, how can I attest to this? You can take the credit off the 6 near-field settlement. And there was no answer there. 7 8 This was one case and then right after 9 that we performed another pilot audit, and we found 10 another one that was doing the similar thing, although they did not use the near-field effect as a term, but 11 12 they were doing the same thing. So we asked the same question and that's the reason we have some ongoing 13 14 interaction with the vendors and the licensees 15 regarding this particular issue. MEMBER KRESS: But if you're going to take 16 17 credit for something like this, you have to have a way to calculate agglomeration and settling in a turbulent 18 19 flowing field. 20 That's right. MR. LU: 21 MEMBER KRESS: And those things are 22 extremely difficult and it depends on --23 It becomes very difficult. MR. LU: 24 MEMBER KRESS: Yes, yes, and I don't --25 And it becomes very difficult. MR. LU:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

162

	163
1	However, I think, at this point, we have already posed
2	the questions. It's always easier to ask questions in
3	GSI-191. You can always ask a lot of questions.
4	MEMBER KRESS: Yes, we found that out on
5	this.
6	MR. LU: Right, yes. But I think they are
7	making I think every vendor team we visited, they
8	have they put their best player there and they are
9	doing the best they can do to the best of their
10	knowledge to try to address all of the issues.
11	And whether they can fully resolve this
12	issue to the certain degree to we were buying that
13	results and we are wait and see, but I think they are
14	actually we had the meeting last week and then they
15	are coming in to ask us our expectations. And so
16	that's the reason we are working with them and
17	identify the issues and see whether they can come up
18	with a good solution there.
19	MEMBER SHACK: Just off the top of my
20	head, I mean, your head loss would be controlled by
21	your mass per unit area of the strainer and that is,
22	presumably, they are scaling the debris in the
23	strainer size that way. The agglomeration is somehow
24	a density per unit volume.
25	MEMBER KRESS: Number density.
Į	I

(202) 234-4433

	164
1	MEMBER SHACK: Number, and I'm sure that
2	those two numbers, both of them don't scale from the
3	facility to the real world.
4	MEMBER DENNING: I think that you're
5	giving it more credit than it really deserves. I
6	think that basically what we're seeing is a concept
7	that is fatally flawed where the industry thinks that
8	they can do integral tests where they take into
9	account all of these processes and they do them
10	specifically for the amount of particulate, the amount
11	of fibrous material, they dump it in, they take a
12	fractional size of the screen and they think that they
13	are taking into account all of these effects.
14	They don't think like modelers, you know,
15	I mean, and so, I mean, I think the concept is just
16	fatally flawed. I mean, we talk about, well, have
17	they really given concept to scale and this kind of
18	stuff.
19	I don't think they are anywhere near that.
20	And then if you start to compound it with things like
21	pH and additives and what are the different rates
22	but, again, I think from what I'm hearing that the
23	vendors and the industry are thinking we can do these
24	proof tests, these integral proof tests, that are
25	applicable to my plant, because I'm going to take all
Į	I

(202) 234-4433

165 1 the debris and stuff like that from my plant. We're 2 going to stir it all up, mix it up. You don't have to 3 worry about, you know, these details about how 4 turbulent and stuff like that. I'm simulating my 5 plant. And I just think that the concept of 6 7 integral tests without the development of models -you see, early on we criticized their use of the 8 correlation for the debris bed, because we realized it 9

10 wasn't really a static thing, but I think it's worse 11 now where they are headed. I think they are not 12 thinking models at all, is my impression, and I have 13 seen things like this from the industry before.

MEMBER KRESS: If they are, indeed, relying on plant-specific prototypic tests to determine the head loss, I think you're absolutely right. How you run those test is going to be extremely important.

19 MEMBER DENNING: Well, you'll notice when 20 they are talking about head loss there, they are 21 saying we're going to take care of this near-field 22 Well, that's not part of understanding what effect. the head loss is for the debris on there. 23 That is an 24 integral concept and I just think it's hopeless if you 25 really scientifically try to do it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	DR. BANERJEE: They have to have a
2	framework to interpret these results. Otherwise, you
3	repeat them, change the conditions slightly, they are
4	completely different results.
5	MR. LU: Okay.
6	MEMBER KRESS: And that framework
7	DR. BANERJEE: Chop it differently.
8	MEMBER KRESS: The framework has to be a
9	model or something.
10	DR. BANERJEE: Yes, it has to be a
11	framework.
12	MR. LU: Okay.
13	CHAIR WALLIS: So what you're saying
14	perhaps is that the NRC needs to do more tests.
15	MR. LU: Okay.
16	CHAIR WALLIS: In order to get enough
17	knowledge to interpret this.
18	MR. LU: First, I don't think it's
19	hopeless. I think there is hope there. And the
20	second, the not all the licensees took the credit
21	of this near-field settlement, not all of them. And
22	some of the vendors are doing the testing.
23	They directly dump all the debris on the
24	strainer surface and they use a debris type reflecting
25	the plant-specific conditions. So for those plants
	I

(202) 234-4433

167 1 and licensees, I think that's my -- this issue may not be that significant. However, recognize that I agree 2 with your comments related to how -- what kind of 3 4 testing procedure needs to be established, and then 5 they need to come up with a good story to demonstrate their upstream flow velocity and that the testing 6 7 procedure is bounding or at least conservatively 8 developed. 9 I think there is a way to do that. Right 10 now, we are engaging with them and discussing specifically on a vendor-specific basis at this point. 11 12 I think they do some CHAIR WALLIS: chemical effects. They start of with boric acid. 13 14 There is a low pH. And then they dump in this, what is it, it's a type of phosphate or something. 15 16 PARTICIPANT: TSP, TSP. 17 MR. LU: Trisodium phosphate. Now, shouldn't that 18 CHAIR WALLIS: TSP. 19 be duplicated in this test? Isn't that what's really 20 happening in a plant? 21 MR. LU: Okay. Trisodium phosphate. 22 CHAIR WALLIS: Is that it? 23 24 MR. LU: Yes. Well, I think it will be in 25 the next presentation. We will address that and Paul

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	168
1	Klein will address this particular issue.
2	CHAIR WALLIS: Are they going do that in
3	these kind of facilities?
4	MR. LU: Right. Okay.
5	MR. KLEIN: We can get to that question in
6	the next presentation.
7	CHAIR WALLIS: Okay.
8	MR. KLEIN: But that is one of the major
9	questions we have for industry because, for the most
10	part, in a flume type test the approach that has been
11	offered thus far has been to test with tap water.
12	MR. LU: Okay. All right. So I think I
13	may want to skip this part very quickly, and we all
14	had a similar concern now, and multiple vendors and
15	licensees
16	CHAIR WALLIS: I mean, you told me they
17	are putting in new screens already.
18	MR. LU: Right.
19	CHAIR WALLIS: Based on these kinds of
20	tests and that it may be that you folks or we will
21	encourage you or something, and you actually decide,
22	no, you're going to go and do some chemical tests in
23	these facilities to confirm what you have already
24	done.
25	MR. LU: Right.
	I

	169
1	CHAIR WALLIS: And it may turn out there's
2	something that is quite different that happens and
3	they guys are stuck there with a half built modified
4	screen in their plant and it may not be appropriate.
5	MR. LU: That's
6	CHAIR WALLIS: New information.
7	MR. LU: No, that's the reason I think Tom
8	Martin right at the beginning, there is he
9	mentioned there is some challenges there and that we
10	are evaluating the licensees' progress and, at the
11	same time, we realize there is information, new
12	information coming in, but you have a valid point
13	there.
14	CHAIR WALLIS: But they all have chlorated
15	water to start with, don't they, isn't that true? All
16	plants have boron in the water.
17	MR. LU: That's right. You are right.
18	You are absolutely right.
19	CHAIR WALLIS: So they all have a somewhat
20	low pH to start with and they all have some kind of
21	buffering, do they?
22	MR. LU: Yes, but TSP, Cal-Sil plants, we
23	only identified six plants. The rest of other plants
24	I will leave the topic to Paul Klein.
25	CHAIR WALLIS: Yes, but they all have some
ļ	I

(202) 234-4433

	170
1	sort of buffering.
2	MR. LU: Yes. Okay. So what is the
3	regulatory actions we are taking at this point to
4	address this particular issue? We identified during
5	our pilot audit and we issued RAIs across the board to
6	almost all the PWR licensees, because we don't know
7	exactly how many number of plants are taking credit or
8	not. That is one issue. So we issue this RAI. At
9	the same time vendors is engaging with us to discuss
10	how they are supposed to address this issue. Okay.
11	All right.
12	Then you mentioned what exactly the
13	staff's expectations are, and then we were also asked
14	by the vendors what exactly you expect us to do to
15	address your questions about scaling. So right now,
16	we are in the process to develop our own knowledge and
17	the positions are based on the observations we had and
18	then pilot audits results.
19	So this is the several key, five, bullets
20	here for us to engage with industry and the vendors to
21	evaluate the testing procedures to ensure proper head
22	loss data obtained from this type of test.
23	CHAIR WALLIS: It seems to me that you
24	need a Reg Guide or something that specifies some sort
25	of properties of these tests that say you must do
I	1

(202) 234-4433

171 1 this, this, this and this. You must have a scaling 2 analysis or you must have whatever it is you need to 3 make a decision. 4 MR. LU: I think that is a valid point and 5 I think we are in the process to identify what we really need and require, and what the realistic time 6 7 frame for the vendors to take action based on our 8 requirement. And that's the reason we decided to 9 engage these vendors as early as we can. We don't want to get into the end of December '07 and tell some 10 of the licensees they need to repeat their test. 11 That is the purpose for me to talk about this today here, 12 13 too. 14 All right. Let me go through the other 15 five bullets here. First is proper testing debris If the hydraulic characteristic of the 16 material. debris should be very similar to the plant insulation 17 material, but if the licensee decides to take the 18 19 credit of the near-field effect, the surrogate 20 material needs to be more transportable than the 21 planned debris type. That is something they need to 22 evaluate. If the density is much higher than the 23 24 coating debris they evaluated from their containment, 25 and then it's readily to settle at the bottom of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	172
1	test facility before reaching the strainer, of course,
2	that surrogate material may not be right.
3	CHAIR WALLIS: I think if you have
4	chemical effects, you have got to be very careful
5	about using surrogate material.
6	MEMBER KRESS: Well, yes. I was going to
7	say it would be very important to have the proper
8	particle size distribution and shape factors, because
9	you're going to mix debris with particles.
10	MR. LU: Right.
11	MEMBER KRESS: And this is going to
12	involve the agglomeration by velocities that differ
13	between particles.
14	MR. LU: That's right.
15	MEMBER KRESS: And that's going to be due
16	to the turbulence and the settling and those are two
17	different phenomena.
18	MR. LU: Right.
19	MEMBER KRESS: So you got to have the
20	right shape factors, the right size distribution. You
21	got to have the right densities. You got to have the
22	right turbulence and you got to have something about
23	how that turbulence is distributed near the wall as
24	they settle out. And whether there are eddys that
25	reenter in, it looks like a very difficult thing to
ļ	1

(202) 234-4433

Í	173
1	model, I mean, or to even scale for a prototypic test.
2	MEMBER DENNING: Well, I have got to ask
3	the consultants and you guys. Do you really think
4	that you can? I mean, this test is not oriented
5	towards modeling. It's not oriented towards the
б	development of a model or understanding the physical
7	processes that occur. As I see it, these are integral
8	tests. Do you really think that that's a feasible
9	approach to go here?
10	As I see it, the only outcome of these is
11	that you do this prototypic kind of test, and that's
12	what they mean by prototypic here. You come out with
13	a head loss and it's acceptable or it's not acceptable
14	or some value. There is no model. It's not that
15	we're putting debris on in a certain way and we're
16	coming up with a model.
17	Is that a feasible way to go about a
18	problem that is complex like this? Can we really
19	determine the initial conditions and stuff like that
20	that are characteristic of Plant A and just dump it in
21	and stir it up and think that with a couple of tests
22	looking at different things, that that's the way or do
23	you have to go about it and develop a model that tries
24	to describe these processes in the near-field and in
25	the area
I	I

(202) 234-4433

	174
1	MEMBER KRESS: I think if you look at all
2	of his bullets, to me that's what they're asking for.
3	You know, they don't say it in so many words.
4	MR. LU: That's exactly it.
5	MEMBER KRESS: But if you look at those,
6	that's what
7	MEMBER DENNING: But if you look at the
8	character of the tests that are being performed,
9	that's why it seems to me somewhat hopeless. If you
10	think the NRC I think there is a basic approach
11	that is being taken here, a very integral kind of
12	approach, and now the NRC is coming in and saying,
13	well, now have you considered these scaling factors
14	and stuff like that?
15	MEMBER KRESS: The answer is going to be
16	no and they can't.
17	MEMBER DENNING: And you can't. That's my
18	concern.
19	MEMBER KRESS: I think you're right.
20	MR. LU: Okay.
21	DR. BANERJEE: I guess there are two or
22	three things that could be done. First of all, I
23	think the results may be insensitive to certain
24	things.
25	MR. LU: You are right.
I	I

(202) 234-4433

175 1 DR. BANERJEE: So in a problem like that 2 you want to get rid of the parameters which don't 3 affect the answer too much. Okay. So let's say as an 4 example you change very much the timing of the debris 5 introduction and nothing much changes in the results, then that's interesting to know, okay, or maybe 6 7 something changes. So what needs to be found is what are the 8 9 results if they are going to do these integral tests 10 more sensitive to? I suspect they are going to be more sensitive to the preparation of the debris 11 12 material itself because -- and probably the chemical effects, you know? 13 14 MEMBER KRESS: Well, if chemical effects 15 are important --16 DR. BANERJEE: Yes. 17 MEMBER KRESS: -- then that may make the timing important. 18 19 MEMBER DENNING: Introduction is 20 important. 21 MEMBER KRESS: Because it takes time for 22 chemistry to take place. MEMBER DENNING: We know that introduction 23 24 is important. If you put in the fibrous and the 25 particulate all together, you get quite a different

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	176
1	answer than if you put in a little bit of fiber and
2	you load it up with particulate.
3	DR. BANERJEE: Yes. I don't know what is
4	important here, but what I see sort of missing is the
5	simplest possible model, which is even used in the
6	chemical industry for a suspension which is filtered.
7	I can give you papers where people have written this,
8	you know, with fibers and particles. They have a
9	simple model which comes onto a wall, so everything is
10	taken care of in the proper sequence leaving aside
11	chemistry, so this looks like chemical reaction.
12	PARTICIPANT: Just the dynamic, just the
13	mechanical part.
14	DR. BANERJEE: Just the mechanical part.
15	We are even lacking that right now. I mean, they do
16	this for a filter plant and this is a reactor. You
17	aren't doing anything for that. I can give you a
18	reference.
19	MR. LU: That would be great.
20	DR. BANERJEE: Yes, you know?
21	MR. LU: We would like to get information.
22	DR. BANERJEE: The standard practice for
23	filtration.
24	MR. LU: Okay.
25	DR. BANERJEE: You know?
I	I

(202) 234-4433

	177
1	MR. LU: Okay. But I will address, Mr.
2	Denning, the comments about the hope of whether we can
3	resolve this issue. I think that can be resolved,
4	because you're really looking at the scaling of this
5	phenomena. It's a single phase, some debris. It's
6	multi-phase flow condition. It's no complicated than
7	AP-1000 head loss
8	DR. BANERJEE: First you will write the
9	equations.
10	MR. LU: Right.
11	DR. BANERJEE: Before you scale it.
12	MR. LU: And you are not really getting
13	into that. You round they around the GE, around
14	the PWR and plant facilities. They could do the
15	scaling properly to the degree we are satisfied. And
16	then for to address this transport, very low velocity
17	transport of debris, multi-phase, too, towards a
18	strainer, I don't think that's a dramatically
19	difficult problem, but it can be handled properly as
20	Dr. Banerjee just mentioned.
21	Some of the parameters may not be
22	sensitive, so it's up to the licensee or the vendors
23	to identify and simplify their test matrix, so that
24	they can address this. But there are certain issues
25	they cannot escape, is what is the velocity inside the
I	I

(202) 234-4433

	178
1	flume or upstream of the strainer. If it's a factor
2	of 10 away from that real pool condition, I don't see
3	is there any reason for us to take the position
4	that that is perfectly acceptable? Okay. All right.
5	So I think we have already discussed all
6	this and that is the the last bullet is about a
7	sufficient test matrix. That is exactly to address,
8	Dr. Banerjee, your questions, your comments about it.
9	Not all the variables are sensitive. Okay.
10	CHAIR WALLIS: But, you see, having a very
11	low velocity may be counterproductive, because it may
12	lead you to a thin bed effect, because it's only going
13	to be the very fine particles which, if you have
14	already got a thin bed, are going to clog up that thin
15	bed as they arrive. They are the only ones which are
16	going to arrive if you have very low velocities. So
17	you are going to be building up this stuff which we
18	know can clog a thin bed.
19	DR. BANERJEE: Unless they flocculate and
20	agglomerate.
21	CHAIR WALLIS: Well, flocculation is very
22	sensitive to chemistry, so anyway.
23	MR. LU: Okay.
24	CHAIR WALLIS: It's fascinating.
25	MR. LU: All right. Conclusions. And I
ļ	I

(202) 234-4433

1 think overall we should appreciate that the industry, 2 to applaud the effort to conduct so many prototypical 3 head loss tests other than relying on a correlation 4 across the board, everybody punching their calculators 5 to calculate the strainer size. I think they are moving towards the right direction and each vendor's 6 7 team are trying to address staff's comments as much as 8 they can to the maximum of their knowledge. And I 9 think we have hope. It's not hopeless condition or 10 situation.

But to resolve those issues, and we plan to follow-up with more vendors' head loss tests, I mean, maybe out of the scope of the audit we may just take a one day trip to another lab or whatever to just have a look at their current ongoing testing procedures and ensure that the testing procedures will produce conservative head loss results.

And then we are going to perform licensee 18 19 new strainer design audits, which will give us more 20 That will give us more in-depth review of confidence. 21 vendors' methodology and also licensees' calculation 22 of upstream, of the debris location, the selections. 23 And very important as, Dr. Wallis, you 24 made comments about how we are going to apply research 25 It's the one example. We identified test results.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

179

180 1 the difference between the nano and the UM head loss 2 test and the PNL test, and one of the issues was 3 related to the debris preparation, and also the timing 4 of the sequence of the debris arrival which was 5 factored into our questions to the licensees there. And as part of the confirmatory head loss 6 7 testing, we don't expect that NRC is going to resolve 8 all the issues. We are asking the Research to conduct 9 a test to identify the issues for us to ask valid questions instead of asking questions across the 10 board, and then we have a focus there. So that's 11 primarily the conclusion of my presentation. 12 So you have been saying, 13 CHAIR WALLIS: 14 and I think your colleagues have said, that by doing 15 more and more of these tests you will get more confidence in the way forward. It's quite conceivable 16 17 that the more tests you do, the less confidence you will get, because you will learn how difficult the 18 19 problem is and how susceptible to all these variables 20 we have been talking about. 21 MR. LU: Okay. 22 In which case you might CHAIR WALLIS: 23 need to take some alternate path to success. 24 MR. LU: Okay. I think, at this point, 25 research has done quite a lot of test for us, but a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	181
1	lot of responsibility and the experience came from
2	industry. We learned a lot. I will just pick up one
3	particular vendor. I don't want to name the vendor.
4	They have at the test facility, they have run the
5	test facility to run 2,000 for small scale head loss
6	test, 200 integral modular head loss test.
7	CHAIR WALLIS: Head loss on that?
8	MR. LU: Yes. Okay. So a lot of
9	experience is covered there and then if we rely on our
10	own limited project to conduct the research and that
11	would mean not have a we may not be able to cover
12	every single area we want to cover. I think the most
13	from valuable experience came from the industry and
14	the vendors and is a very key important part of our
15	decision making. We have to rely on researchers
16	results to support staff's decision making process.
17	DR. BANERJEE: Let me ask you a question
18	here. I looked through the material that Research has
19	sent us.
20	MR. LU: Okay.
21	DR. BANERJEE: I don't see there any
22	systematic approach at modeling, other than another
23	correlation being produced. What is that? I mean, do
24	you feel that this type of correlation is going to
25	serve your needs? There is only one thing on modeling
	I

(202) 234-4433

	182
1	which we have from RES. Do you need something a
2	little bit more sort of to address some of the issues
3	like we were discussing, a model which is a bit more
4	dynamic than just another correlation?
5	MR. LU: Okay.
6	DR. BANERJEE: That's all I have seen in
7	what was presented to us.
8	MR.LU: That's a good question and that's
9	a question we were asking us right at the beginning
10	what exactly we needed from Office of Research from
11	the PNL test loop. And the reason I'm focusing on
12	near-field effect and the prototypical head loss test
13	is because I think that's a significant issue. But
14	there are other part of approach, too, from the
15	vendors.
16	And some vendors they also decided to take
17	the correlation modeling perspective from that
18	approach to design the strainer. And they are
19	developing plant-specific debris-specific and the
20	velocity-specific range of the correlations to design
21	their strainer. Okay. Following the path of assuming
22	certain debris distribution on the surface of the
23	strainer and then calculate how much of the strainer
24	surface is above and conduct or correlate, you know,
25	the test, plant-specific test to come up with their
	1

(202) 234-4433

	183
1	own proprietary correlation to address that design.
2	And that's the part, I think, that will
3	play a role for us to make the decision and the new
4	correlation will help us. I don't think it will
5	resolve all the issues, because resolution relies on
6	the licensee to resolve that. But we can use that
7	tool as leverage to ask questions.
8	CHAIR WALLIS: And some of these tests
9	even with very simple constituents, they put in a
10	loop, the test is done, it's run for days.
11	MR. LU: Right.
12	CHAIR WALLIS: The pressure drop continues
13	to go up, never settles down.
14	MR. LU: Right.
15	CHAIR WALLIS: So what about time? Are
16	you going to apply your correlation? I mean,
17	something is going on there.
18	MR. LU: Right.
19	CHAIR WALLIS: Which is not in the
20	correlation time.
21	MR. LU: Right.
22	CHAIR WALLIS: And how are you going to
23	handle that kind of a situation, because it's there.
24	You know, it's
25	DR. BANERJEE: I guess we have been saying
I	I

```
(202) 234-4433
```

	184
1	this repeatedly that the correlation by itself is not
2	sufficient. There's more to this than just applying
3	a correlation.
4	MR. LU: But
5	CHAIR WALLIS: So there are more things in
6	that and they are dropped off in your correlation.
7	MR. LU: You are right.
8	CHAIR WALLIS: So there comes a point
9	where the engineering solution is to make a change.
10	Say no Cal-Sil or no TSP or no something or another,
11	because that at least makes the decision, you know, we
12	can go forward from there, you know, without having to
13	do endless and endless experiments which are liable to
14	interpretation.
15	Are you considering that kind of a
16	recommendation or are you just looking at more and
17	more tests and more and more trying to get out of it
18	by looking at data or correlations?
19	MR. LU: I think from the industry we
20	learn a lot. They actually have more practical
21	challenges than we do in terms of the removing of the
22	debris. Some of the plants decided okay, we're going
23	to do it. That's exactly what they said. And some
24	plants may not be able to afford to do that, because
25	of the, you know, radiation and other constraints.
I	

(202) 234-4433

	185
1	So if they decide not to do that, it's
2	more expensive for them and then they may opt to take
3	the direction of conducting prototypical head loss
4	test. That's the part and we may face the challenge
5	there. But I think that's the way it is.
6	CHAIR WALLIS: Well, but the PWRs are
7	going to probably go to higher power. They love to go
8	to extended power upgrade, right?
9	MR. LU: Right.
10	CHAIR WALLIS: Which might in some cases
11	involve putting in a bigger steam generator, a
12	different steam generator.
13	MR. LU: Right.
14	CHAIR WALLIS: In that case, you've got a
15	wonderful opportunity to take off the insulation
16	that's on the old one.
17	MR. LU: That's exactly a lot of plants
18	are doing that. I think Ralph mentioned that Crystal
19	River was planning to remove or replace their steam
20	generator. As part of process, they are going to get
21	rid of all the, you know, Cal-Sil or fiber debris and
22	then a mineral wall, I think that was mineral wall,
23	and I think that approach is exactly the industry is
24	considering and a lot of licensees are doing that.
25	CHAIR WALLIS: Now, does the fire barrier
ļ	I

(202) 234-4433

	186
1	material come off too in some way or is that not
2	involved in this part of a LOCA? Its in other rooms
3	and so on. There is various fire barrier stuff which
4	is put on cables and so on, which is of a fibrous or
5	of a plastery kind of nature. Does that come into
6	this?
7	MR. LU: Yes.
8	CHAIR WALLIS: The debris picture?
9	MR. LU: Well, if it's in the zone of
10	influence of the particular breaks analyzed in a lot
11	of these, Fort Calhoun was, and some material, if it's
12	included in the debris mix.
13	CHAIR WALLIS: Okay.
14	DR. BANERJEE: I have a question about
15	unqualified coatings. Now, these are taken into
16	account as well, right?
17	MR. LU: Yes, I think the coat, regulated
18	coating we have is a specific presentation prepared
19	for you. Okay. I don't know whether you have any
20	other questions.
21	CHAIR WALLIS: Well, I think we have to
22	thank you very much for your presentation.
23	MR. LU: Thanks.
24	CHAIR WALLIS: Now, we are behind. We
25	knew we were going to be behind, because this is such

```
(202) 234-4433
```

	187
1	a fascinating subject.
2	MR. LU: Okay.
3	CHAIR WALLIS: What I'm suggesting is that
4	we take a break now for lunch and then do the best we
5	can in the afternoon. And we may actually make
6	progress, because we may have already asked a lot of
7	the questions, which we would have asked in the
8	afternoon.
9	MEMBER DENNING: Just ask them over again.
10	CHAIR WALLIS: Well, no, no, we won't,
11	we've got the answers. See, we won't have to ask
12	them, because the staff knows all of the questions by
13	now.
14	DR. BANERJEE: What time do you want to
15	pick up then?
16	CHAIR WALLIS: Well, I just want to take
17	a break from 12:00 to 1:00 for lunch.
18	PARTICIPANT: That sounds good.
19	CHAIR WALLIS: I wondered if any, you
20	know, of the Committee Members had anything they
21	wanted to say, at this point? I think we have already
22	tried to summarize where we think things are and we
23	have asked the questions about whether this is a
24	feasible approach and so on. I'm sure we will come
25	back to that. Is there any more to raise that sort of
	I

(202) 234-4433

	188
1	an issue, at this time?
2	DR. BANERJEE: We have raised that.
3	CHAIR WALLIS: We have raised all of that.
4	DR. BANERJEE: Already.
5	CHAIR WALLIS: Okay. So we're ready to
6	take a break then?
7	DR. BANERJEE: Um-hum.
8	CHAIR WALLIS: No one from the staff wants
9	to say anything in five minutes? We'll take a break
10	until 1:00.
11	DR. BANERJEE: Well, we get five minutes
12	more for lunch.
13	CHAIR WALLIS: Yes.
14	(Whereupon, the meeting was recessed at
15	11:54 a.m. to reconvene at 1:00 p.m. this same day.)
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	

	190
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	1:00 p.m.
3	CHAIR WALLIS: Please, come back into
4	formal session. We're going to hear about chemical
5	effects now. I would invite Paul Klein to tell us.
6	MR. KLEIN: Thank you. Good afternoon.
7	I'm Paul Klein from Division of Component Integrity at
8	NRR. I would like to give you an update this
9	afternoon on the status and plans of chemical effects.
10	By way of outline today, I would like to very briefly
11	provide a description of chemical effects issue, talk
12	about the current status of where things are and we'll
13	try to highlight some of the more recent interactions
14	that the staff has had with both our own research
15	people and industry. We will discuss some of the
16	challenges associated with chemical effects and we
17	will describe our path forward.
18	We gave a presentation to the Subcommittee
19	in July of '05, at that time we provided a brief
20	history of chemical effects, so we won't repeat that
21	here, but it's clear that chemical effects is a more
22	recent issue than most that are involved with GSI-191.
23	In a broad sense, you can define chemical effects as
24	interaction between plant materials in the post-LOCA
25	containment environment that could produce chemical
Į	I

(202) 234-4433

191 1 products that contribute to head loss across the sump 2 screen or it could also affect components downstream 3 of the screen. Next slide, please. By way of a broad 4 5 overview, we think testing this date has produced some basic technical knowledge concerning chemical effects 6 7 and it may seem that it's not much progress, but if 8 you go back 15 months to December of '04, at that time 9 when ICET 1 was in progress, it was unknown that 10 chemical products would form in representative plant environments. 11 So over the subsequent 15 months, we have 12 found that chemical products do form in those type of 13 14 environments. We have learned about some of the 15 important parameters that effect product formation and we started to characterize the head loss for some of 16 these environments, in particular, trisodium phosphate 17 containing environments. 18 19 It is clear that additional testing is 20 needed to support licensee plant-specific chemical 21 effects evaluations and we're really, I think, at a 22 transition point in this whole process. Up to this 23 time, the NRC has been out in front of industry with 24 respect to head loss testing. We did a joint 25 screening test, the ICET test. The NRC has done some

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

192 1 head loss testing. Industry is now moving towards 2 doing head loss testing. 3 But overall, it is the licensee's responsibility to evaluate and account for head loss 4 5 from plant-specific chemical effects. And it's our responsibility to perform an independent review of 6 7 their evaluations and ensure that their actions sufficiently account for chemical effects. 8 Next slide. On the next few slides, I 9 would like to discuss some of the more recent activity 10 with respect to Research and then industry. If you 11 12 look at some of the research that's going on, and I should mention up front that Research has scheduled, 13 14 I believe, for the next day and a quarter with the Subcommittee, so that the intent here will just touch 15 16 highlights of the research and maybe the on 17 implications. But they will certainly be in a better position to provide details regarding some of the more 18 technical details of the tests and the results in the 19 20 following day and a quarter. 21 I've grouped the testing that has been 22 performed thus far into three different subsets. The 23

first bullet ICET and Bench Top Tests. These are more things that were intended to provide knowledge about formation of chemical products, where the products

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

193 1 were formed, some of the key parameters that might 2 affect their formation. 3 CHAIR WALLIS: If you read the summary or 4 the beginning of the ICET Report, the conclusion seems 5 to be we have found that some things happen, but now everything is plant-specific, nothing we have done 6 7 sort of is a predictive tool. We just found some 8 things happen. Now, it's up to the plants to each do 9 their own tests. That seems to be that conclusion. I think headed into the ICET 10 MR. KLEIN: tests it was a joint effort between the NRC and 11 12 industry. It was viewed as a screening test, so it was designed to look at whether chemical products 13 14 would form in representative environments. It was 15 recognized prior to those tests that we weren't going to try to characterize the head loss associated with 16 17 any of those products. And that if products were observed to form during those tests, that industry 18 19 would licensees would responsible or be for 20 characterizing the head loss consequences associated 21 with those. 22 That's right. So the fact CHAIR WALLIS: 23 that something happened is the significant result. 24 MR. KLEIN: Yes. 25 CHAIR WALLIS: But they didn't end up with

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	194
1	any kind of correlation or an equation or a predictive
2	method. They ended up with questions now to be
3	answered by individual plants.
4	MR. KLEIN: I think that's an accurate
5	characterization. In addition, following on the ICET
6	test
7	CHAIR WALLIS: Well, that's very different
8	from what we did with the LOCA question in the '70s or
9	something. The Government actually did a lot of work
10	which could then be used and this is a very different
11	approach. You're not trying to do this definitive
12	basic work at all.
13	MR. KLEIN: I think it would be very
14	difficult for us to do that, given the number of
15	combinations that exist out in industry, combinations
16	and materials and environments.
17	DR. BANERJEE: Are these at all
18	predictable on the basis of total dynamics?
19	MR. KLEIN: I plan to get to that at the
20	bottom part of this slide. The first two bullets
21	here, the ICET test and then the head loss tests, we
22	viewed as more things that were needed to be done. At
23	the same time, we recognized that it would not be
24	possible to run 69 ICET tests or however many you
25	needed to try and characterize the number of
I	I

(202) 234-4433

combinations that are possible.

1

2 asked Research to investigate So we 3 whether any commercially available programs could 4 predict what might form outside of the ICET test, such 5 that we could -- it would be more of swinging for the homerun, where you could input your individual plant 6 7 parameters and containment pool chemistry, so you could actually predict what might occur. 8 And I 9 believe you will hear more about this from them But I think at this point, there are enough 10 tomorrow. 11 limitations in the current programs that it would be 12 very difficult to use one of these programs as a stand-alone toll to predict what might happen in your 13 14 containment pool.

DR. BANERJEE: Can they help? Because, I mean, the chemical industry has been going around for a long time. And they seem to be able to predict things. What is unique about this that you can't do what say some people do, chemical engineers do, for chemical plants.

21 MR. KLEIN: I think they can provide 22 insight in response to your question. I don't know 23 that the database and the borated systems may be as 24 developed for some of these programs as some of the 25 other process environments for which are used, but I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

195

	196
1	think we ran into, and I'll discuss this in a few
2	slides and you'll hear more about it tomorrow, but I
3	think we also saw that there are limitations with
4	these programs.
5	DR. BANERJEE: Are these kinetic codes or
6	are they chemical equilibrium?
7	MR. KLEIN: Most of them are equilibrium
8	and understand some may have a kinetic option, but I
9	don't believe they are very well developed.
10	DR. BANERJEE: You mean that some of them
11	are.
12	MR. KLEIN: Finishing up on this slide.
13	The head loss tests were more confirmatory to support
14	our review of licensee responses and then the chemical
15	speciation we will touch on again in a couple of
16	slides.
17	Next slide, please. By way of status,
18	implications from the research results and this is a
19	little backwards in providing implications and then
20	you'll hear results tomorrow. But I think ICET taught
21	us a number of things. We did see from running these
22	five tests that variations in either insulation
23	materials or buffering agents can produce
24	significantly different chemical effects, can effect
25	the product that forms, the relative timing of product
ļ	I

(202) 234-4433

	197
1	formation. And it became apparent after observing
2	some of these ICET tests that following testing would
3	be needed to determine head loss consequences.
4	The middle pool, the chemical products
5	form at different times. We saw, for example, in ICET
б	3 almost instantaneous formation of calcium phosphate
7	when we introduced TSP into the ICET tank. And that's
8	important since plants gain significant NPSH margins
9	with time. So a chemical product that shows up
10	immediately is in a much different category than one
11	that evolves over 15 or 30 days.
12	And we also noticed that in some of the
13	tests we saw results that raised questions about
14	downstream effects. We saw in ICET 1 and 5, for
15	instance, that it would not be visible product at the
16	ICET thermal test temperature, but as we cooled the
17	fluid to room temperature, the product would form.
18	Next slide, please.
19	CHAIR WALLIS: Now, these deposits, the
20	calcium phosphate deposits that affected the flow
21	meter, this was a white powder or something, wasn't
22	it?
23	MR. KLEIN: Yes, it had a white color and
24	it had a consistency.
25	CHAIR WALLIS: It was very fine powder.
ļ	

	198
1	MR. KLEIN: Yes, so it was initially
2	observed in the tank. It was described as a white
3	floc that they could visually see the eddys in the
4	tank through the window, based on tracing the flow of
5	the floc material.
6	MEMBER KRESS: So these were turbine flow
7	meters?
8	MR. KLEIN: Yes.
9	MEMBER KRESS: So it deposited on the
10	turbine blade?
11	MR. KLEIN: Yes. Are we ready to move to
12	slide 7?
13	DR. BANERJEE: What are the concentrations
14	of trisodium phosphate, if you could tell me?
15	MR. KLEIN: All right.
16	DR. BANERJEE: The range.
17	MR. KLEIN: I don't recall off the top of
18	my head what range we used in ICET, but I know it was
19	based on plant input.
20	MR. TREGONING: This is Rob Tregoning from
21	Research. And Leon is here, so correct me if I'm
22	wrong. But it's 4 grams per liter, I believe, is the
23	TSP concentration at the end of the dissolution phase.
24	It's metered in over a certain time period, so you
25	don't have that amount initially, but at the end of
	I

(202) 234-4433

Í	199
1	the metering period, it's 4 grams per liter.
2	CHAIR WALLIS: What's it's form when it
3	comes in? Does it come in as a liquid or as a powder?
4	It comes out of a sack, doesn't it?
5	MR. TREGONING: The form, did we use it in
6	these tests?
7	CHAIR WALLIS: It comes out as a powder?
8	No in the plant.
9	MR. TREGONING: When used in the plant.
10	CHAIR WALLIS: It comes in as a powder out
11	of a sack?
12	MR. TREGONING: In the plants it's in
13	baskets.
14	MR. KLEIN: It's in baskets.
15	CHAIR WALLIS: It's a powder, isn't it?
16	MR. TREGONING: Yes.
17	CHAIR WALLIS: So it is some time before
18	it's dissolved to it's full
19	MR. KLEIN: Over time as it dehydrates.
20	So you typically get a block, I believe.
21	DR. BANERJEE: What are the dissolution
22	kinetics like then? How long?
23	MR. KLEIN: For TSP? We asked that
24	question of some of some of the plants with TSP and
25	Cal-Sil to describe how long it would take to dissolve
	I

(202) 234-4433

1 the TSP baskets and it varies depending on the break 2 and the number of trains in service, but we ran tests in the range of one to four hours just to have 3 4 representative rates for TSP addition within the head 5 loss testing. And we were trying to understand how that would affect calcium dissolution from calcium 6 7 silicate insulation. 8 Within the ICET test, I believe, and Rob, 9 correct me if I'm wrong, I think we metered it in over 10 a four hour period. MR. CARUSO: As the TSP dissolves out of 11 the box, you have a gradient of concentrations, very 12 concentrated right next to the baskets and much more 13 14 dilute. As it travels around, it interacts 15 differently depending on the concentration. CHAIR WALLIS: Well, unless it's actually 16 17 in particulate form and it gets caught in the screen, in which 18 case you would have а very strong 19 concentration on the screen. 20 MR. CARUSO: Yes. 21 CHAIR WALLIS: I'm not quite sure. In the 22 basket, it's what in granular form or something in the 23 basket? It's inside a screen. The basket is sort of 24 inside the screen. 25 MR. CARUSO: Yes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

200

	201
1	CHAIR WALLIS: Isn't it?
2	MR. CARUSO: Yes.
3	CHAIR WALLIS: And then it's just left
4	hanging there to dissolve by itself like a tea bag?
5	MR. CARUSO: Yes.
6	CHAIR WALLIS: Or is it shaken or
7	anything? It's just left there?
8	MR. KLEIN: I think typically they sit on
9	the container.
10	CHAIR WALLIS: Or a flume that comes out
11	of this thing, a concentrated TSP.
12	PARTICIPANT: It's stirred.
13	CHAIR WALLIS: Or is it a slurry? If it's
14	a slurry, it could get caught on the screen then you
15	would have a real reaction going on on the screen
16	itself. I don't know. It's just these kind of
17	questions that I think are so real.
18	DR. BANERJEE: Like how far are these
19	baskets from the screen?
20	MR. KLEIN: I think that's a plant-
21	dependent answer. It can vary.
22	DR. BANERJEE: But I mean, are we talking
23	real close or real far? I mean rough.
24	MR. KLEIN: Oh, I believe some plants have
25	TSP actually in their sump and some have baskets that

```
(202) 234-4433
```

	202
1	are located well away from the sump screen.
2	DR. BANERJEE: And when these dissolve, do
3	they actually dissolve or do they come out of the
4	slurry as Graham was asking? What happens to them?
5	MR. KLEIN: I think I have to be careful,
6	because I'm not an expert in TSP dissolution. My
7	understanding is that it is very readily dissolvable.
8	DR. BANERJEE: I see.
9	CHAIR WALLIS: Yes, but that's only if
10	it's mixed. And if you try and dissolve something
11	very readily, like sugar is very readily dissolved in
12	water, but if you take a bag of sugar and put it in a
13	sink at home, it will take a long time before it
14	dissolves. But if you stir it, well, even when you
15	put in your coffee, it goes to the bottom. It doesn't
16	dissolve until you stir it.
17	DR. BANERJEE: Does that flow through it,
18	in other words? I guess that's what is being asked.
19	Is it just sitting in stagnant?
20	CHAIR WALLIS: You're hoping it will
21	dissolve.
22	DR. BANERJEE: Or is it actually in
23	MR. KLEIN: I think
24	DR. BANERJEE: is it put into a flowing
25	stream?
ļ	I

(202) 234-4433

	203
1	MR. KLEIN: You know, in a post-LOCA
2	environment, you're going to have significant
3	turbulence and the basket itself is sitting still, but
4	the flow around it is going to be significant.
5	DR. BANERJEE: Okay.
6	MR. KLEIN: I mean, that's what you count
7	on to get the dissolution of the TSP.
8	DR. BANERJEE: So that is how it's
9	engineered, right?
10	MR. KLEIN: Correct.
11	DR. BANERJEE: So that you do get flow.
12	MR. KLEIN: Yes. And I think the number
13	of baskets is also plant-specific, so that you may
14	have dissolution more readily in some plants than
15	others.
16	DR. BANERJEE: So you get a plume
17	downstream of this basket as the flow goes through it?
18	MR. KLEIN: I would expect you would get
19	some by gradient from the basket outward as it
20	dissolves. Again, I'm not an expert in TSP
21	dissolution, so
22	DR. BANERJEE: So who is? Is there
23	somebody here that can speak to that? I mean, how
24	quickly it dissolves?
25	MR. KLEIN: You know, based on the
I	I

(202) 234-4433

	204
1	responses we have from industry, I would expect the
2	material to dissolve in most cases in an hour or less
3	depending on the size of the break again, but
4	certainly by four hours if it's a large break LOCA.
5	CHAIR WALLIS: When it dissolves it makes
6	sodium ions and phosphate ions? Is that what it does?
7	It gets ionized right away? There's a whole lot of
8	questions.
9	DR. BANERJEE: Well, it probably ionizes
10	right away.
11	CHAIR WALLIS: Yes. And interacts with
12	the boric acid? Is that its primary function?
13	MR. KLEIN: The primary function is to
14	buffer the pH or the solution above settling.
15	CHAIR WALLIS: So it probably interacts
16	with the boric acid then.
17	MR. KLEIN: Let me ask.
18	DR. BANERJEE: So what is the concern
19	here, if you don't have it, then you have a very
20	corrosive environment or is that the problem?
21	MEMBER KRESS: Well, if you don't have it,
22	you worry about iodine getting back into the
23	container. This sequesters the iodine.
24	CHAIR WALLIS: So it's designed to catch
25	the boron, but actually catches the calcium?
I	

(202) 234-4433

205 1 MEMBER SHACK: Yes, I mean, it's a pH 2 control that controls the iodine. 3 MEMBER KRESS: It keep the iodine. 4 MEMBER SHACK: The boric acid is kind of 5 incidental. It just makes it slightly acidic and you're just changing the pH. 6 7 CHAIR WALLIS: Okay. This is pretty acidic. 8 9 MR. KLEIN: It's the iodine chemistry 10 you're really worried about. CHAIR WALLIS: That's what you're worried 11 12 about in the long run. 13 MR. KLEIN: Yes. 14 DR. BANERJEE: So you can't get rid of it? 15 MEMBER KRESS: Well, you could maybe. Ι 16 believe there's some questions about whether, you 17 know, this is needed for the pH control. There are 18 other basis things. 19 MR. SCOTT: We do have a presentation 20 coming up to talk to you about one plant that is 21 proposing to remove TSP. That will be this afternoon. 22 Moving on, the reason we MR. KLEIN: 23 selected the --CHAIR WALLIS: Well, I think this is 24 25 important, as we said this morning. You can't just

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 throw TSP into а tank and hope that you are 2 duplicating happens what in а sump or in а 3 containment. Because near the basket different things 4 happen than far away from the basket and so on. So I 5 think we're cautioning against just assuming that any old experiment is going to duplicate what happens in 6 7 the plant. No one has shown us any details of how the 8 stuff hangs in baskets. Dr. Wallis, this is Shanlai Lu. 9 MR. LU: I just need to add one comment here. Related to the 10 transport and the localized dissolution of TSP, the 11 12 current approach, in my understanding actually, is assuming it's all dissolved, so it generates the 13 14 maximum amount of TSP count, the calcium phosphate. So that question actually is resolved as being an 15 16 engineering approach as a bounding case. 17 So the detail transport may not be an issue at this point, but, you know, Paul has more 18 19 detailed relation regarding that, I guess. 20 I was just going to disagree MR. KLEIN: 21 with the characterization through TSP and the tank 22 technique. I think we tried to meter it in in a 23 representative with that the best manner was 24 information we had from industry over the amount of 25 time it might take for TSP to dissolve in the plant.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

206

	207
1	And as part of the follow-on tests that
2	were done at ANL, we tried to understand the effective
3	of TSP dissolution rate on how that might effect how
4	much and how fast calcium would dissolve from Cal-Sil
5	and looked at dissolution rates of an hour or four
6	hours or without any TSP at all.
7	MEMBER SHACK: Or instantaneously, all the
8	TSP was instantaneously there.
9	DR. BANERJEE: And did that make a
10	difference the rate of dissolution?
11	MR. KLEIN: For the range of what we
12	thought to be representative of one to four hours, it
13	did not make much difference. If we assumed
14	instantaneous dissolution of TSP, it did seem to
15	actually less calcium dissolved in that case.
16	DR. BANERJEE: And why would that be?
17	Your conjecture?
18	MR. KLEIN: I think some of the conjecture
19	was that the as you dissolve TSP, the calcium that
20	dissolved would react with the TSP, so you could more
21	effectively dissolve the calcium from the Cal-Sil if
22	you had a constant TSP dissolution at the same time.
23	By adding all the TSP immediately, it seemed to
24	inhibit some of the dissolution of calcium.
25	DR. BANERJEE: What would be the

(202) 234-4433

208 mechanism? I mean, does it build up a protective layer or what happens? Why wouldn't it? So you expose the Cal-Sil to a high concentration of TSP that inhibits dissolution or the reaction, rather than if you slowly meter in the TSP. So is there a sort of barrier, physical barrier, to diffusion and the reaction or what? MEMBER SHACK: Well, actually, that will be discussed tomorrow to a greater extent, but you get two things. One, you're just changing the pH. The dissolution of the Cal-Sil is more rapid in a slightly acidic solution. As you add the TSP, you're driving the pH up, so typically you're slowing the dissolution down. You also do seem to get a much longer term effect that we have interpreted as, essentially, a coating of the Cal-Sil particles and that seems to give you a long-term inhibition over and above what you would expect simply from a pH effect. DR. BANERJEE: Okay.

21MR. KLEIN: Next slide. With respect to22some of the chemical speciation modeling --23CHAIR WALLIS: Excuse me. It seems to me

24 the best way to make calcium phosphate would be to 25 catch the Cal-Sil on the screen and then force the TSP

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

	209
1	to go through it, have a wonderful reactor right
2	there.
3	DR. BANERJEE: A fixed bed reactor.
4	CHAIR WALLIS: The reactor and you might
5	even get particulate TSP coming in to make particulate
6	Cal-Sil inside the bed.
7	MR. KLEIN: I think one of the lessons
8	learned from the ANL test is that calcium phosphate
9	seemed to be effective whether it was formed in the
10	pool and transported to the screen or whether Cal-Sil
11	arrived at the screen and then was transformed into
12	calcium phosphate while on the screen.
13	With respect to the modeling I think, and
14	I will provide a very high level overview, they did
15	some initial work with various programs, tried some
16	blind comparisons just using the pure thermodynamic
17	approach and they did not have very good agreement
18	with the ICET results in those circumstances.
19	When they went back with one of the
20	programs and refined the inputs used in some of the
21	data and observations from ICET, there was a broad
22	agreement with the results and better agreement for
23	the first days of the test. As you developed
24	passivation of some materials or you saw an influence
25	of one material on another, the modeling wasn't as
1	

(202) 234-4433

	210
1	effective in those cases.
2	DR. BANERJEE: What package was this?
3	What were you using?
4	MR. KLEIN: Which package?
5	DR. BANERJEE: Yes, for the model.
6	MR. KLEIN: You will hear more details
7	about this tomorrow, but I think they looked at four
8	different programs, OLI.
9	DR. BANERJEE: Sorry?
10	MR. KLEIN: OLI, Stream Analyzer, Freak,
11	EQ3/EQ6 and the fourth name escapes me. Maybe someone
12	in Research can help me, but, again, you will hear
13	more details tomorrow.
14	In general, although these programs may
15	provide some insights for environments outside ICET,
16	we don't think they are sufficient by themselves to
17	predict interactions, because they have limitations,
18	such as inability to deal with kinetics, in most
19	cases, need to suppress certain precipitation in order
20	to make the results more agreeable with ICET and
21	effects of one material on another model.
22	All right. The next slide, that sort of
23	moves us from some of the research results into more
24	interactions with the industry in the chemical effects
25	area starting with the Generic Letter 2004-02
	I

(202) 234-4433

responses. Overall, the responses provided limited 2 information concerning their chemical effects 3 evaluation strategy and plans for evaluating chemical 4 effects.

5 I think prior to September, the staff knew that licensees were not going to be in a position to 6 7 provide many answers in relation to chemical effects. 8 We expected some more details, however, concerning 9 their particular plant environments and their plans 10 for moving forward.

One of the things that they did provide in 11 12 the responses you see in the second bullet. Thev identified the environment that was most similar from 13 14 the ICET tests of their plant. And if you look at this table on the right side, you will see that, a 15 distribution of the five ICET tests and then the 16 17 number of plants that would fall into that category. And again, some of these plants you could move around 18 19 since no plant really fits in one category. They have 20 a variety of insulation materials and other materials. 21 When you say the ICET, the DR. BANERJEE: 22 environment most similar to the plant, it's ICET --

23 oh, I see. You mean the whole lot. One was close to 24 NaOH, Nukon as well.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. KLEIN: Yes.

25

1

	212
1	DR. BANERJEE: Okay.
2	MR. KLEIN: But you would read across.
3	For example, for the ICET 3, which was a trisodium
4	phosphate with a blend of insulation containing 80
5	percent Cal-Sil and 20 percent Nukon, there is six
6	units that would be closest to that particular
7	environment.
8	CHAIR WALLIS: But all Cal-Sils aren't all
9	the same, are they?
10	MR. KLEIN: We have heard that there's a
11	number of Cal-Sils that have gone into the plants over
12	time.
13	CHAIR WALLIS: Well, I understand there is
14	some variability in the chemical composition of those
15	Cal-Sils. Are we going to hear about that?
16	MR. KLEIN: You weren't going to hear
17	about that in this presentation.
18	CHAIR WALLIS: Well, it's something I have
19	heard about. Is it a concern for NRR that all Cal-
20	Sils are not quite the same?
21	MR. KLEIN: I'm not sure how to address
22	some of the unknowns like that that may exist, because
23	you have different heats of insulation materials that
24	are put into plants over time and I think what we
25	tried to do in the research test was to take material

(202) 234-4433

	213
1	that was representative from a given plant and put it
2	in the test, and that it does go back to the plant-
3	specific part of this issue.
4	It's important for each plant to
5	understand their particular mix of materials and how
б	they may differ from the ICET materials. We have sent
7	out RAIs in response to the Generic Letters that were
8	sent out this month. Next slide, please.
9	MEMBER DENNING: Is there any variability
10	in the Nukon?
11	MR. KLEIN: I would expect there to be
12	variability in just about every insulation material.
13	I mean, I don't know for sure, but are we ready to
14	move on?
15	CHAIR WALLIS: Yes.
16	MR. KLEIN: Okay. Just a status on some
17	of the other interactions that we have had with
18	industry. We continue to engage industry routinely
19	with public meetings to try and share information both
20	ways and to discuss ongoing plans. We had a public
21	meeting with industry last week to discuss a number of
22	topics.
23	Since the last time we have talked to you
24	in July, we also issued Information Notices 2005-26
25	and Supplement 1 related to some of the ANL test
	I

(202) 234-4433

	214
1	results with head loss of materials containing Cal-Sil
2	and TSP. We provided some feedback to industry on
3	their own WOG Test Plan and WOG in this case is
4	representative of all the industry. Staff has visited
5	to observe the ongoing tests. We expect to receive a
б	report from the WOG and we're
7	CHAIR WALLIS: Are these test tube type
8	tests or are they large scale tests like the ones we
9	saw this morning?
10	MR. KLEIN: These are smaller scale tests,
11	I believe, on the order of 120 to 150 milliliters.
12	CHAIR WALLIS: So they wouldn't address
13	the question such as what happens near a basket of
14	TSP?
15	MR. KLEIN: I think those tests are more
16	designed to look at dissolution and precipitation
17	using different industry materials. We're having
18	ongoing discussions with screen vendors who will be
19	responsible for performing head loss testing and we're
20	conducting audits. Next slide, please.
21	CHAIR WALLIS: Now, if TSP clogs up the
22	screen, why doesn't it clog up the basket? I mean, if
23	calcium phosphate clogs up the screen, why doesn't it
24	clog up the basket that has got the TSP in it? Isn't
25	there some sort of formation in there, too?

(202) 234-4433

	215
1	MR. KLEIN: I would expect you would have
2	dissolution of the TSP before you form sufficient
3	calcium phosphate to clog the basket.
4	CHAIR WALLIS: Well, conceivably, you
5	could get some goop formed in the basket, too?
6	PARTICIPANT: I think, you know, a TSP
7	basket is designed to allow things to pass out of it
8	as easily as possible.
9	CHAIR WALLIS: That's before, yes.
10	PARTICIPANT: So that you can get things
11	into solution. So even if you were to form some kind
12	of a calcium phosphate within that basket, I think it
13	would be easier for it to pass.
14	CHAIR WALLIS: Well, I want to know what
15	the basket is like. Is it a woven basket with holes
16	or something? What is it? It looks like a screen,
17	doesn't it?
18	PARTICIPANT: I can't speak to that.
19	CHAIR WALLIS: I don't have a good vision
20	of what you mean by basket. Does anyone have an idea
21	what a basket is in this context?
22	MR. UNIKEWICZ: Sure. I have seen maybe
23	60 or 70 of them. Generally, they look just kind of
24	what they sound like. They are typically square
25	baskets, 2 to 3 feet deep, sometimes holes on the
Į	

(202) 234-4433

	216
1	order of 3/4 inch to an inch around them. They are
2	open-topped. One of the operator actions normally is
3	to go around and to scrape the top with rakes to make
4	sure that everything
5	CHAIR WALLIS: So they must have fairly
6	large granules in there if it has such big holes in
7	the bottom.
8	MR. UNIKEWICZ: There are big holes in the
9	bottom. There's big holes in the top. There are
10	screens there meant just as we said, for water to go
11	through and pass through as quickly as possible.
12	CHAIR WALLIS: So once this stuff
13	dissolves, it falls out, presumably, as it gets
14	smaller?
15	MR. UNIKEWICZ: It will fall out onto the
16	floor, it will fall out into the solution. They are
17	typically very low to the floor, on the order of an
18	inch or two up off the floor as you walk around the
19	bottom level of the containment.
20	They are spaced three to four places
21	around depending on your plant, depending on a few
22	other configurations, so that they are in the major
23	flow paths as water comes down through. I mean, they
24	are open baskets with big wire strainers and,
25	structurally, they are held together with some plate
I	I

(202) 234-4433

217
steel.
CHAIR WALLIS: Thank you.
MR. KLEIN: Moving on. I think that the
biggest overriding challenge is developing a
sufficient understanding to ensure that licensee
actions sufficiently account for chemical effects.
Thus far, the NRC and industry tests have
been more general to date and they have provided basic
knowledge. There's many uncertainties that need to be
evaluated on a plant-specific basis. We have seen
that thermodynamic models, though they may provide
some insight, they do have inherent limitations in
their ability to model and predict species in these
environments.
And another challenge is, at this point,
there is no industry lead organization for assessing
plant-specific chemical effects head loss, so that
there will be each licensee will be pursuing plant-
specific testing with their own vendor.
CHAIR WALLIS: It seems to be very
difficult. It's like what we had this morning.
Everything is so plant-specific. Are you really going
to be able to evaluate what they submit to you and
their different arrangements of baskets and things?

Are you just going to accept that it makes no

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

||

Í	218
1	difference or how much detail are you going to have
2	them work out before they submit something to you
3	since the plants are so different?
4	MR. KLEIN: I think that that is one of
5	the challenges, making sure we have enough information
6	to evaluate them. But we seem to be focusing just on
7	plants with TSP. There are a number of other buffers
8	as well. If we go back to the slide that showed the
9	table, there is, approximately, 26 units with TSP and
10	more that do not have TSP. So I can't
11	CHAIR WALLIS: So what are these other
12	things that they have instead of TSP?
13	MR. KLEIN: Well, they have sodium
14	hydroxide or sodium tetraborate.
15	CHAIR WALLIS: That's in a solution, NaOH?
16	MR. KLEIN: That would be sodium hydroxide
17	would be added as
18	CHAIR WALLIS: The solution.
19	MR. KLEIN: part of the spray to buffer
20	the pH and sodium tetraborates in the ice condenser
21	plants frozen within the ice.
22	CHAIR WALLIS: Frozen in the ice. Is that
23	the $Na_2B_4O_7$?
24	MR. KLEIN: Yes.
25	CHAIR WALLIS: Okay.
I	I

	219
1	MR. CARUSO: Can all the vendors test with
2	TSP, because we have heard some stories that some
3	places are not allowed to test with it because they
4	can't get rid of it.
5	MR. KLEIN: I think one of the questions
6	the staff has for industry moving forward is that a
7	lot of the flume and larger scale testing to be
8	intended to be performed with tap water rather than a
9	representative plant environment, and that raises a
10	lot of questions in the chemical effects area on how
11	you can extrapolate those results from that
12	environment back to your plant environment.
13	MR. CARUSO: So how many of the vendors
14	can actually test with TSP?
15	MR. KLEIN: I don't know that TSP by
16	itself is very aggressive, but the question that you
17	might have is how many plan to do tests with
18	representative plant environments and we don't know
19	the answer at that point. That's one of the questions
20	that we're trying to have answered through the RAI
21	process.
22	CHAIR WALLIS: But you could state. You
23	could make it part of the specification for a test,
24	that it must reasonably reproduce the plant
25	environment. You could make that statement right up
I	I

(202) 234-4433

220 1 front, that you're not going to accept anything that 2 doesn't do that. You don't have to wait for them to 3 submit stuff. 4 MR. KLEIN: Well, we, in our plan, are 5 waiting for them to submit the -- we would intend to engage them up front of these tests. We expressed a 6 7 number of reservations at the public meeting last week and we intend to follow-up on those with industry to 8 9 make sure when they do get to head loss testing, that we're able to dialoque on some of these issues up 10 front rather than after the tests have been performed. 11 Paul, now correct me if I'm 12 MR. SCOTT: wrong here, but don't the RAIs also convey that 13 14 expectation? 15 The RAIs are intended to try MR. KLEIN: and get at some of the detailed plans for performing 16 17 chemical effects testing, yes. Including an 18 MR. Okay. SCOTT: 19 expectation that the testing they do be scaleable, if 20 you will, to plant conditions? 21 Well, the RAIs are questions. MR. KLEIN: 22 MR. SCOTT: I understand. 23 So we're not really laying out MR. KLEIN: 24 expectations within that process. 25 CARUSO: Is an expectation a MR.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

221 1 requirement? 2 KLEIN: We are laying out MR. 3 expectations, I guess, in the RAI process. We're 4 asking questions. 5 PARTICIPANT: For instance, an RAI might ask how does whatever material you're using, whether 6 7 you created it by using TSP and Cal-Sil or you made it dumping in calcium chloride and, you know, whatever 8 9 mix of chemicals, how does that surrogate, if you 10 will, match what was created in the ICET or what you 11 would expect to see in the real plant. 12 How can you justify that and how can you show that the size of the particle, the hydration, the 13 14 filterability, all those characteristics, are going to 15 perform the same way when you put them into a flume with tap water or whatever the testing medium is? 16 Which although it is a 17 MR. SCOTT: question, it also conveys, in my opinion at least, an 18 19 expectation that they will show that that correlation 20 or scaling exists or is visible. CHAIR WALLIS: Well, Ralph Architzel 21 22 showed us this morning these fairly large experiments 23 in Alden Research Labs and that's all with tap water. 24 MR. KLEIN: Yes. 25 CHAIR WALLIS: Is this removed to try to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

duplicate the real chemistry of the plant in those tests?

MR. KLEIN: 3 Most of the tests that I 4 understand that have been run thus far have not addressed chemical effects. 5 The few tests that I'm aware of where they tried to add a chemical surrogate, 6 7 we are discussing with the licensee and, in those cases, we have raised a lot of questions about whether 8 they are accurately assessing chemical effects when 9 they are adding a material to a completely different 10 environment. So I think the staff has serious 11 12 questions about the approach that some licensees have taken to --13

14 CHAIR WALLIS: It seems to me you 15 shouldn't just be reactive and I think we have said 16 this already. You wait for them to do something and 17 then they do something and then you scratch your head 18 and say, well, maybe that wasn't good enough because 19 you didn't do something else.

20 Why don't you lay out some clear 21 expectations ahead of time? 22 I understand it's --MR. KLEIN: 23 This is the way a fair CHAIR WALLIS: 24 engineering course is. You tell the students, you 25 know, you are going to be tested on your knowledge of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

222

	223
1	A, B, C, D and E and that's there and they expected to
2	be tested on those things, and you don't sort of say,
3	well, I'm sorry, but the exam is going to consist of
4	other things. And sorry but, you know
5	DR. BANERJEE: Maybe it's too early days
б	yet to lay those expectations out.
7	CHAIR WALLIS: To be specific.
8	DR. BANERJEE: Yes.
9	CHAIR WALLIS: You're just trying to find
10	out what happens?
11	DR. BANERJEE: Yes.
12	MR. KLEIN: If I can maybe answer in terms
13	of the whole process. You know, initially, we had a
14	joint program. We were trying to understand if
15	products would form. We went through that process.
16	We did observe that products are formed. Now, we're
17	trying to understand the head loss consequences
18	associated with that.
19	We have run some initial tests on our own
20	to try and get confirmatory information. Licensees
21	are also starting down a path to do their own testing.
22	We have been trying to engage industry along the way
23	to let them know what our expectations are, to discuss
24	some of the things.
25	We did comment on the WOG tests ahead of
Į	

(202) 234-4433

	224
1	time to try and raise some questions about what might
2	be done, but we agree. At some point it might be
3	better to lay out certain expectations. It's a very
4	dynamic process and we are working it.
5	Next slide, please. I think it's easy to
6	get pessimistic also when you start thinking about
7	chemical effects, but the purpose of this slide was to
8	point out that there are a number of options available
9	for addressing chemical effects. It isn't always a
10	matter of just trying to characterize what might be a
11	very bad chemical effect, that you might be able to
12	avoid it by changing plant materials or changing the
13	pH buffering chemical.
14	Industry has an initiative looking at
15	those options, we understand. There are things that
16	they could perhaps do to over-design the screen or to
17	use a screen backflush. We saw earlier this morning
18	that that appeared to be effective.
19	CHAIR WALLIS: But it might not be if the
20	chemical effects glue the material to the screen.
21	DR. BANERJEE: The problem with changing
22	chemicals and things is that you have all sorts of
23	effects, corrosion problems, this, that. I mean, it's
24	hard to put your finger on what happens when you
25	change something in that environment.
l	I

(202) 234-4433

	225
1	You know, it's not you might think,
2	well, get rid of the TSP or something and do something
3	else, but you would have to then follow through and
4	see that it doesn't affect something else completely,
5	corrosion. It's not obvious that you can do those
6	things so easily.
7	MR. KLEIN: I agree. Early on in ICET,
8	the first tests with TSP looked very favorable
9	compared to the sodium hydroxide tests and, at that
10	time, a lot of people thought switching to TSP might
11	be the answer.
12	DR. BANERJEE: Okay.
13	MR. KLEIN: So you can fool yourself.
14	DR. BANERJEE: Yes.
15	MR. KLEIN: But, you know, there are
16	there is also testing that can be done to evaluate
17	switches and we would expect that that would be done.
18	Another thing to keep in mind is that
19	plants tend to gain a lot of margin with time and,
20	thus far, we have talked a lot about calcium phosphate
21	because it does form very early, but most of the ICET
22	environments, the chemical products formed, they
23	evolved over time. And so they are from a margin
24	standpoint, that's a good thing.
25	Next slide. At this point, we're not
	I

(202) 234-4433

	226
1	planning to issue a design guidance to address
2	chemical effects or the associated head loss
3	consequences. I think it would be very difficult for
4	us to go out to all these potential mixtures of
5	materials, some of which we have tested, some of which
б	we haven't, and provide design guidance on how to
7	handle that.
8	So the licensees are responsible for
9	determining the plant-specific chemical effects and
10	accounting for that in their design. And our intent
11	is to rely on information from our own confirmatory
12	research work to evaluate these submittals.
13	CHAIR WALLIS: Are these submittals going
14	to be open to the public?
15	MR. KLEIN: Yes.
16	CHAIR WALLIS: They will have to.
17	Otherwise
18	MR. KLEIN: Generic Letter responses are
19	open to the public.
20	CHAIR WALLIS: With all the different
21	methods coming from all these different plants? Some
22	research student at a university could take 69
23	different plants and do some studies of it, what was
24	found there? It's all going to be open?
25	MR. KLEIN: Yes, the Generic Letter
ļ	I

(202) 234-4433

	227
1	responses are open to the public.
2	CHAIR WALLIS: Yes, but the solution, too,
3	the eventual submittal in terms of well, I guess
4	that's what it is. It's a submittal. I guess there
5	will be further submittals in the future, won't there,
б	about how they solved the problem? I guess all that
7	is going to be open, too. It's going to be very
8	interesting. They are going to mine for
9	MR. DINGLER: This is Mo Dingler from Wolf
10	Creek. While the Generic Letter responses will be
11	open to public, but it's like an audit plan. Most of
12	that data calculation is available at our plants and
13	really not submitted for public disclosures.
14	CHAIR WALLIS: So that won't be available?
15	It will be expurgated in some way?
16	MR. HOPKINS: Yes. Jon Hopkins here. It
17	won't be on the docket, that test data, if that's what
18	you're referring to. No, that is part of the staff's
19	audit.
20	CHAIR WALLIS: Well, that may be the crux
21	of the whole matter, isn't it? The evidence which is
22	behind the submittal may be the key thing. Okay.
23	MR. KLEIN: That is my final slide unless
24	there's additional questions.
25	CHAIR WALLIS: So you are going to be here
l	I

(202) 234-4433

	228
1	sticking with this problem when we see you again? We
2	don't want to have too many changes in personnel here.
3	We want to hold you guys accountable.
4	MR. KLEIN: This is just too much fun to
5	leave it.
6	CHAIR WALLIS: Okay. Thank you very much.
7	Very interesting. I think we even gained some time.
8	Let's move on. Who is next? Thank you. Go ahead
9	when you're ready.
10	MS. HART: Okay. Hi. My name is Michelle
11	Hart. I am from the NRR staff and I will be talking
12	about the impact on the design basis access dose
13	analysis of a proposal to remove TSP from the
14	containment.
15	As was noted before, there are six plants
16	that have both TSP and Cal-Sil in their containments.
17	One of those plants has proposed to temporarily take
18	TSP out of their containment for one operating cycle
19	in the meantime until a new buffering agent is chosen
20	and installed. This can cause some impacts on their
21	design basis dose analysis to show that they meet the
22	siting criteria and control room habitability, because
23	if you remove TSP without adding another buffering
24	agent, you lose pH control and potentially your sump
25	pH could drop below 7.

(202) 234-4433

	229
1	And in the alternative source term, both
2	NUREG-1465 and the Reg Guide for that imply that if
3	the pH is less than 7, iodine can re-evolve from the
4	sump water. Also, the iodine species assumption that
5	it's mostly particulate is predicated on the pH
6	remaining above 7. And any gaseous iodine removal by
7	sprays during the recirculation phase is dependent on
8	sump pH, as well, and that is in the Standard Review
9	Plan.
10	CHAIR WALLIS: So how rapidly does it
11	change when the pH is, say, 6? Is it a tremendous
12	effect or a little effect?
13	MS. HART: It's not a tremendous effect.
14	It is certainly less than what is currently done, so
15	that you would have to consider that there would be
16	extra iodine in that containment or less iodine is
17	actually removed by the sprays. And for the AST you
18	would have to assume that there is more gaseous
19	iodine, which could make a difference in your control
20	room habitability depending on your filter
21	efficiencies.
22	I did do a preliminary look. I use very
23	simplistic assumptions. I used the reference plant,
24	the plant that had come in for this change. I did a
25	LOCA dose calculation, only looked at the containment

(202) 234-4433

	230
1	release, and I did both the old source term TID-14844
2	or the AST source term.
3	I assumed, much as the plant is planning
4	to assume, that 100 percent of the iodine that would
5	have been removed is not removed, so it's 100 percent
6	iodine re-evolution just to not worry about what the
7	actual equilibrium that would be set up is since you
8	don't want to do too much research outside of this,
9	and that there would be no plate out in the
10	containment either.
11	For my purposes, that's what I assumed.
12	And for the AST, for lack of further information, I
13	just assumed that the old source term values of 91
14	percent elemental and 4 percent organic applied.
15	And the results showed that for this plant
16	it would be likely to meet the off-site dose, Part 100
17	or Part 50.67 for the new source term, but it was not
18	likely that it would meet the control room dose in
19	GDC-19. However, temporary compensatory measures,
20	such as KI and SCBA, would give enough credit, but
21	they would still meet the criteria.
22	DR. BANERJEE: What is KI and SCBA?
23	MS. HART: KI is potassium iodide, which
24	is a prophylactic to bring down your thyroid dose and
25	SCBA is self-contained breathing apparatus.
I	I

(202) 234-4433

	231
1	MEMBER DENNING: Let me make sure I
2	understand. So you took, effectively, 100 percent or
3	91 percent evolution for those two?
4	MS. HART: What I did is for both source
5	terms I assumed that there was no removal. So
б	whatever was released from the core is in the
7	containment atmosphere and ready to be released.
8	In the old source term, for example, it's
9	all released immediately and 50 percent of the iodines
10	that are in the core inventory are released to the
11	containment and 50 percent of that 50 percent plates
12	out, so it's effectively 25 percent. I assumed
13	instead that the 50 percent that was released from the
14	core is available in the containment atmosphere to be
15	leaked.
16	MEMBER DENNING: Now, for the AST you
17	didn't apply, so wouldn't the more logical assumption
18	have been that 5 percent is applicable to be released
19	for the AST?
20	MS. HART: For the AST, the iodine species
21	that are in the source term are now 95 percent
22	particulate.
23	MEMBER DENNING: Yes.
24	MS. HART: So I just assumed, because I
25	didn't know how much would actually re-evolve and turn
l	1

(202) 234-4433

	232
1	into iodine, I said, well, the old source term,
2	because there was no pH predication for that source
3	term, I just used that speciation.
4	MEMBER KRESS: That certainly ought to be
5	conservative.
б	MS. HART: Yes.
7	MEMBER DENNING: Oh, hugely conservative.
8	MS. HART: It would be very conservative,
9	yes. It didn't make a difference in the results for
10	this particular plant and for most plants it probably
11	wouldn't because the filters have the same filter
12	efficiency.
13	MEMBER KRESS: That's because most plants
14	were designed for this sole source.
15	MS. HART: Right, and the filter
16	efficiency is the same for most. In this particular
17	case, the filter efficiencies for the particulate and
18	the gaseous forms of iodine were the same, and it
19	would only apply to the control room dose, this change
20	in iodine species, considering that there would be no
21	other iodine removal in containment, natural or
22	otherwise.
23	MEMBER KRESS: I think this would make a
24	significant difference in your LERF value then, be a
25	surrogate for your death QHO, because you're going to
ļ	I

(202) 234-4433

	233
1	get a lot more iodine released.
2	MS. HART: Right, right.
3	MEMBER KRESS: At least.
4	MEMBER DENNING: You will get more
5	release, but it's not clear how much of the iodine
6	that's in the form of iodine is going to be evolved.
7	MEMBER KRESS: Well, but assuming it's
8	gaseous, you're not going to have the
9	MS. HART: It's not as easy to remove.
10	MEMBER KRESS: issue processes to
11	remove it and so it's going to get released and I
12	don't know how fast, but it's released.
13	MEMBER DENNING: You mean through these
14	assumptions. Is that what you're saying?
15	MEMBER KRESS: What's going to happen is
16	you're still going to get that aerosol and the iodine
17	probably coming out as an aerosol, yes. I mean, this
18	is going to go into their sumps and then it's going to
19	get released at some rate as an iodine. It's going to
20	be continued to be released from their containment.
21	MEMBER DENNING: If it's converted to the
22	full extent that it's converted from iodide to iodine.
23	MEMBER KRESS: Yes, it's going to be if
24	it's acidic.
25	MEMBER DENNING: Well, I don't think
l	I

(202) 234-4433

	234
1	MEMBER KRESS: I mean, if there is no
2	silver there to if there's not other things there
3	to it will come out if you don't have a pH control.
4	But it's a question of the rate coming out and how
5	fast it leaked from the containment and where it goes
6	from there, because the energy level is a lot lower
7	now and it's a late release, maybe a later release.
8	MEMBER DENNING: Yes. Of course, our real
9	problem here is we're in artificial DBA space.
10	MEMBER KRESS: Yes.
11	MEMBER DENNING: Is where we are.
12	MEMBER KRESS: Well, that's the
13	regulations. Does it meet the regulations?
14	MS. HART: Right, right. That's the
15	issue, is you
16	MEMBER KRESS: But if you look at it from
17	a risk standpoint, why, it still could increase the
18	risk.
19	MS. HART: It's something different.
20	Right. Yes, that's the issue here, is that through
21	all this looking at the chemical effects, if it's
22	determined that taking TSP out of the containment is
23	something you need to do, you still need to meet Part
24	100, and so we have these deterministic design basis
25	accidents set up.
	I

(202) 234-4433

	235
1	And so how does that impact that and that
2	is what I'm speaking to here. And I know that these
3	assumptions are overly conservative probably for what
4	is actually happening in the containment even without
5	TSP there, without pH control.
6	MEMBER KRESS: But it's a good place to
7	start, I think.
8	MS. HART: Right. It's just a preliminary
9	look and it's really the results that I came up
10	with are sort of borne out by the licensees'
11	preliminary results that they were talking about, that
12	they would still meet their off-site dose, but they
13	would need to do something to still meet their control
14	room dose.
15	And so my conclusion, short presentation,
16	loss of pH control negates some of the assumptions in
17	current design basis accident dose analyses that show
18	compliance with the siting criteria or control room
19	habitability, and plant-specific analyses are needed
20	for any plant that would like to remove TSP without
21	installing an appropriate buffering agent in its
22	place, and that temporary use of KI may be required to
23	meet GDC-19.
24	DR. BANERJEE: Are there any other effects
25	of the low pH, the acidic?
I	I

(202) 234-4433

	236
1	MS. HART: There are other effects. I
2	can't speak to those. Of course, there is the
3	corrosion issues and things like that and that is not
4	something that I was tasked to look at. I was just
5	purely looking at the impact on the dose analysis.
6	DR. BANERJEE: So are other people looking
7	at the corrosion issues and things?
8	MS. HART: That is my understanding, yes.
9	MEMBER DENNING: Is there any other
10	example of where we have allowed KI usage for
11	something like this?
12	MS. HART: We have used, allowed,
13	temporary use of KI in the control room if there is
14	something in the plant that can be fixed in a
15	reasonable time frame or there is an analysis that
16	they are reevaluating. It has to be on a temporary
17	basis with all the attendant procedures that go with
18	that. So if it's in a temporary time frame, because
19	KI is obviously it's not ideal. You should have
20	your plant designed correctly.
21	MEMBER DENNING: Well, the nice thing is
22	you don't have to take it if it's
23	MS. HART: Right.
24	MEMBER DENNING: If you don't get
25	MS. HART: You know, there are obviously
I	I

(202) 234-4433

	237
1	issues with taking KI, you know.
2	MEMBER KRESS: You know, if this were to
3	be brought before the ACRS, the first thing we're
4	going to ask is what is the effect on risk?
5	MS. HART: Right.
6	MEMBER KRESS: And this is not risk.
7	MS. HART: This is not risk and it's not
8	even a good, you know, proxy for risk.
9	MEMBER KRESS: My suspicion is that
10	probably if you met the QHO and early fatalities, you
11	probably still would.
12	MS. HART: Right.
13	MEMBER KRESS: You almost always meet the
14	QHO and late fatalities. This might put that part of
15	it in question.
16	MS. HART: Right, right. You know, these
17	overly conservative assumptions, even with those
18	applied to the design basis accident, it was still
19	below the Part 100 criteria.
20	MEMBER KRESS: Yes, which
21	MS. HART: So that's well below that.
22	MEMBER KRESS: But, you know, that's not
23	severe.
24	MS. HART: Yes. That's not a severe
25	accident.
I	

(202) 234-4433

	238
1	MEMBER KRESS: But it might not even
2	you know, I don't it might not even affect laden
3	answers.
4	MS. HART: It might not.
5	MEMBER KRESS: Because the iodine decays
6	away so fast.
7	MS. HART: It may not.
8	MEMBER KRESS: And it may not even affect
9	that but, you know, it would be nice to see a risk
10	analysis.
11	MS. HART: I
12	MEMBER KRESS: If you'll allow this.
13	MS. HART: Okay. Are there any further
14	questions?
15	DR. BANERJEE: Is TSP the main bad actor?
16	MS. HART: I don't know which one is the
17	limiting reactant in the reaction. I don't have that
18	information. The licensee decided that they would try
19	this tactic to by-step that whole issue. If you take
20	one of the reactants out, you're not worrying about
21	the chemical effects. And it doesn't necessarily have
22	an impact on the probability of the sump clogging up
23	in the first place.
24	DR. BANERJEE: Well, I guess this is a
25	broader question. Taking TSP out, does it actually
	I

(202) 234-4433

	239
1	solve the problem or not?
2	MS. HART: I don't believe that it
3	necessarily does. It avoids the chemical effects
4	issue, because then you do not have the interaction
5	between the Cal-Sil and the TSP. There may be
6	interactions between other chemicals that are already
7	there, but that is something that, you know, I
8	understand that they are still looking into.
9	DR. BANERJEE: Okay. Thanks.
10	MEMBER KRESS: When you did the Part 100
11	analysis with the old source term, did you allow any
12	credit for spray removal of the iodine?
13	MS. HART: I allowed no credit for any
14	removal of any kind.
15	MEMBER KRESS: None at all.
16	MS. HART: Right. So it was very
17	conservative.
18	MEMBER KRESS: Okay. Thank you.
19	MS. HART: Thank you.
20	CHAIR WALLIS: Thank you.
21	PARTICIPANT: Who is next?
22	PARTICIPANT: Downstream.
23	CHAIR WALLIS: Downstream effects. We're
24	catching up.
25	PARTICIPANT: Steve, do you have your
I	1

	240
1	handouts?
2	MR. UNIKEWICZ: I gave my two earlier
3	today. I put one on everybody's desk.
4	MEMBER DENNING: Yes.
5	DR. BANERJEE: What is this?
б	CHAIR WALLIS: It looks like this.
7	DR. BANERJEE: Downstream effects,
8	downstream effects. Ah, there it is.
9	PARTICIPANT: It's two sided. It makes it
10	difficult.
11	MR. UNIKEWICZ: That's what you asked for,
12	right? Let me see. We got five here. Gotcha. Okay.
13	MEMBER DENNING: Whenever you're ready.
14	PARTICIPANT: Do you have extra copies?
15	MR. UNIKEWICZ: I gave you a whole bunch.
16	MEMBER DENNING: You can go ahead.
17	MR. UNIKEWICZ: Okay.
18	MEMBER DENNING: Ready.
19	MR. UNIKEWICZ: Okay. All right. Good
20	afternoon. My name is Steven Unikewicz. I am with
21	the Division of Component Integrity and today I'm
22	going to at least give you an update of where we are
23	with the evaluation of downstream effects.
24	Now, a little bit of background. If you
25	recall, downstream effects really is an evaluation of
Į	1

```
(202) 234-4433
```

	241
1	all the emergency core cooling and containment spray
2	components downstream of the containment sump strainer
3	and for operation with the proposed LOCA fluids.
4	So really what we're looking at is an
5	evaluation of things just on the backside of the
6	strainer. It includes all the ECCS and CSS pumps,
7	valves, instruments, piping, heat exchangers, as well
8	as reactor vessel, fuel assemblies and all the
9	internals therein.
10	Now, understand this is part of an
11	integrated solution. You can't have a strainer
12	without looking at downstream and you can't look at
13	downstreams without looking at the strainer. So they
14	are really designed in conjunction with each other and
15	they need to be evaluated together.
16	Where are we today? Well, back from the
17	September responses, very few of them completed their
18	downstream effects evaluations. Part of that had to
19	do with people were in the midst of designing sump
20	screens. They were in the midst of looking at what I
21	will call the upstream piece of it.
22	Once you're done with that, it really
23	becomes an iterative process in order to evaluate the
24	downstream piece. And once you have decided what is
25	going downstream, you look at what's happening
	I

(202) 234-4433

	242
1	downstream, reevaluate what's happening on the
2	upstream and, again, you sort of iterate through it.
3	We have indications that, approximately,
4	50 percent of the licensees are planning modifications
5	to address at least their preliminary evaluations.
6	Now, these modifications are along the lines of hard
7	facing of wetted components, possibly replacing
8	valves, possibly installing orifice plates, a lot of
9	different things people are talking about. We have
10	heard of one or two people who are actually getting
11	ready to make those modifications. The expectation
12	would be those modifications will probably be done at
13	the same time as your sump screen modifications.
14	Another, approximately, 50 percent are
15	planning to do some sort of confirmatory testing to
16	validate their design assumptions. Now, this testing
17	is along the lines of looking at the coatings that
18	they are using and looking at the hardness of those
19	coatings with respect to, say, Stellite-6, Stellite-
20	12, 439 stainless, other different shaft materials.
21	There are some investigations going on to in-vessel
22	work, but primarily that confirmatory testing is
23	looking at hard faced components and how the material
24	that makes it past the screens interacts with those.
25	MEMBER KRESS: Those are almost all
ļ	I

(202) 234-4433

	243
1	Stellite, aren't they?
2	MR. UNIKEWICZ: Pardon me?
3	MEMBER KRESS: Are those almost all
4	Stellite?
5	MR. UNIKEWICZ: No, actually there are a
6	few people that are considering putting in, say,
7	Stellite-6 and Stellite-12 on some of it. Some of
8	them still have some stainless steel components
9	internal. So when you look at, you know, the
10	materials you have, say, from a latent debris
11	standpoint, you look at it and say, gosh, depending on
12	the concentration, how will it affect those
13	components?
14	Again, you hear that other parts are very
15	plant-specific. Well, this is very plant-specific
16	also. The other part that we have asked a lot of
17	questions is this is a very time-dependent type of
18	evaluation. Very early on in the scenario, you need
19	lots of water at a very high pressure. Later on in
20	the scenario, that may not necessarily be true.
21	So when you look at your evaluation, okay,
22	while you need to look at it spread over time, okay,
23	you're looking at it going on to research, maybe 10
24	hours into it on a small break LOCA, sometimes sooner
25	than that on a large break LOCA, but heat rates drop
I	1

(202) 234-4433

	244
1	sort of dramatically over time and you need to look at
2	what the ECCS system and the containment spray system
3	needs over time and that is variable. It is variable.
4	Now, most all, not all of them, refer to
5	a Westinghouse report, it's WCAP-16406, in their
6	September responses. In that the responses were all
7	say, in general, incomplete and in more terms they
8	were vague. And, again, part of that was they were
9	not far enough along in their evaluation of the sump
10	screens to be able to make a very good assessment of
11	downstream.
12	Now, some people did do that. Some people
13	made some conservative assumptions. They looked at
14	what they had and did make some statements that they
15	are going to hard face some components. They are
16	looking at replacing some valves, but by and large
17	that was few rather and not that many.
18	The recent RAIs we have issued go to those
19	points. We asked them very specifically how are you
20	using this WCAP? What portions are you using? What
21	portions are you taking exception to? The WCAP is a
22	rather large report. It does, for the most part,
23	address all the issues we called out in the Generic
24	Letter and all the issues we called out in our safety
25	evaluation.
ļ	I

(202) 234-4433

(202) 234-4433

	245
1	CHAIR WALLIS: But it's very discursive.
2	It seems to be all words. I mean, it says they have
3	been considering what happens to the debris while they
4	consider its density and its shape and so on. Okay.
5	But then there is no real analysis or it's all words,
6	isn't it? It says you have got to consider this,
7	these things.
8	MR. UNIKEWICZ: That's correct.
9	CHAIR WALLIS: But there is no indication
10	that we know how to do it.
11	MR. UNIKEWICZ: Well, that's part of the
12	normal design engineers toolbox and how do I evaluate
13	fluids going through my pumps, how they go through the
14	valves, how they affect the wear and operation of my
15	components. I'm not quite sure I fully understand
16	your question.
17	CHAIR WALLIS: Well, it sort of says what
18	you have got to do. You got to evaluate. I'm just
19	reading from it, evaluate potential for blockage due
20	to transfer of particulates into the core, blah, blah,
21	blah, blah, blah, compare with the limiting flow
22	velocity and low but, you know, it doesn't really
23	say that that works. I mean, you have got to make
24	some calculation of the velocities in the lower plenum
25	and figure out whether particulates go into the core.
Į	I

(202) 234-4433

	246
1	This isn't a trivial thing to do.
2	MR. UNIKEWICZ: Never said that it was.
3	CHAIR WALLIS: Well, it just says do it
4	and it doesn't tell you how difficult it is or
5	MR. UNIKEWICZ: Well, engineering work can
6	be difficult.
7	CHAIR WALLIS: I know.
8	MR. UNIKEWICZ: And these evaluations
9	CHAIR WALLIS: But I was wondering what it
10	contributes if all it says is you have to somehow
11	analyze all these things without giving indication of
12	how possible it is to do it.
13	DR. BANERJEE: Well, it does give some
14	sample calculations, right?
15	CHAIR WALLIS: It does give some sample
16	calculations.
17	DR. BANERJEE: Yes.
18	CHAIR WALLIS: But most of it is just
19	text, isn't it?
20	DR. BANERJEE: Yes. Most of it is text
21	and it's just very it's not very quantitative in
22	any possible way. So you don't have real guidance.
23	That's what you're saying. There are very few sample
24	calculations in it which give you
25	MR. UNIKEWICZ: Well, again, I would refer
	I

(202) 234-4433

	247
1	to a site's design control manual that does give
2	examples on how you address fluid through pumps, how
3	you address fluid through valves, how you address
4	brackish water, how you address salt water, how you
5	address waters of different densities and of different
6	constituents.
7	DR. BANERJEE: Well, let's talk about
8	reactant internals and fuel, Section 10 in WCAP.
9	MR. UNIKEWICZ: Okay.
10	DR. BANERJEE: Right? In this case what
11	you are worried about is how, say, particulate matter
12	might be held up in various parts of the core due to
13	maybe it passes through the screens. The guidance is
14	not quantitative as far as I can see as to how to do
15	that evaluation. I don't know how to do it. Maybe
16	the engineers in the plants do, but I would be very
17	surprised if they do. I can't see how they would.
18	MR. UNIKEWICZ: Do we have somebody from
19	the Reactor Branch here that would like to speak to
20	the vessel piece?
21	DR. BANERJEE: The fuel is a complex
22	thing. How do things get held up there?
23	MR. JENSEN: Hi. I'm Walt Jensen of the
24	Core Performance and Codes Branch, formerly Reactor
25	Systems. And, yes, I would well, we were asked not
ļ	I

(202) 234-4433

	248
1	to review the WCAP, but we looked through it and gave
2	comments and some of our comments were really like
3	yours. The guidance, we thought, were very general
4	and there wasn't really any specific means that one
5	would use to calculate what would happen in the core.
6	There was some discussion that some of the
7	material could be re-entrained in the lower plenum or
8	it could be swept into the core. I guess for a hot
9	leg break there would be a high velocity through the
10	core perhaps. But if a cold leg breaks, the coolant
11	will allow to style the break.
12	The core velocities would be much less and
13	the off-material would be entrained in the lower
14	plenum and then less would be swept into the core or
15	what happens into the core if material does get in the
16	core, especially material that is understandably
17	neutral and would be swept with the water. I'm not
18	really sure what would happen myself, but I can
19	declare it's boring.
20	Material that is entrained will be left
21	behind and areas, I guess, where it's boring may be
22	that's with lower flow around the grid supports.
23	Maybe more material would be deposited there. But so
24	far I haven't seen any detailed evaluation of what
25	would be in the core.
ļ	I

(202) 234-4433

(202) 234-4433

	249
1	DR. BANERJEE: Do you know how to
2	calculate what happens if you knew that? I mean, it's
3	even worse. I mean, even if we could estimate what
4	got into the core, and I agree with your statements
5	where they wave their hands about hot leg breaks and
6	cold leg breaks and all that stuff, but even let's say
7	you could estimate it, what the hell do you do with it
8	after that? Where does it go? Does it block stuff?
9	Does it not? All I see are these diagrams which to me
10	mean nothing.
11	MR. JENSEN: Those are all good points,
12	Dr. Banerjee. If there is very low materials that are
13	swept into the core, I think our task would be much
14	easier than if it's a lot of material.
15	DR. BANERJEE: Sure.
16	MR. JENSEN: When we try to determine what
17	is going to happen to it.
18	DR. BANERJEE: Yes. I agree that if there
19	was very little, perhaps it's not such a big problem.
20	So as a first order issue as to how much gets in, even
21	if that could be estimated, it would be helpful. But
22	once you estimate that, all I see are these little
23	diagrams with decision trees and things, and there is
24	no concrete guidance as to what to do.
25	MR. JENSEN: It's complicated further with
ļ	I

(202) 234-4433

1 the boric acid that we know will be concentrated 2 within the core from boiling for cold leg breaks, and operators are going to have to take or train to take 3 4 specific actions to keep the boric acid from being 5 concentrated and how will that affect what's going on the core with the material that 6 in is being 7 transported in? So, yes, it's quite a difficult 8 analytical problem. 9 CHAIR WALLIS: But also, they seem to make some very simple statements, so I think they say that 10 if a particle is smaller than the hole, it won't go 11 12 through -- it will go through. MR. UNIKEWICZ: Right. 13 14 CHAIR WALLIS: But I don't think that's 15 I think, I'm trying to remember always true. experiments I did fluidizing marbles and things and 16 trying to get them to flow. You get them bridging a 17 hole, which is bigger than themselves. 18 19 MR. UNIKEWICZ: Um-hum. 20 CHAIR WALLIS: They don't necessarily go 21 through a hole just because they are smaller than the 22 A group of marbles can bridge a hole, which is hole. 23 bigger than each one individually and then once it 24 builds up, gets some pressure behind it, it becomes a 25 structure, rather than, you know, something in a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

250

	251
1	fluid. So it's not necessarily true that if you have
2	say a quarter inch screen size that everything smaller
3	will go through.
4	MR. UNIKEWICZ: That's something
5	CHAIR WALLIS: Just try taking a riddle,
6	a servant serving some dirt or something, there's all
7	kinds of examples you can take from your own
8	experience. Particles can bridge holes bigger than
9	themselves.
10	DR. BANERJEE: Well, I have a direct
11	comment. 10.7 reactor internals and fuel here. It
12	says the immediate flow parts
13	CHAIR WALLIS: We're allow to quote from
14	it, by the way? I'm not sure we're allowed to quote
15	from it.
16	MR. UNIKEWICZ: No, you're not allowed to
17	quote from the WCAP.
18	CHAIR WALLIS: No matter what it says.
19	DR. BANERJEE: Okay.
20	CHAIR WALLIS: So even if it's a simple
21	statement.
22	DR. BANERJEE: There is a statement which
23	I find incredible. The first line is 10.12, 10.7 and
24	I don't see how anybody can find that credible.
25	MR. UNIKEWICZ: That's 10.7, Dr. Banerjee?
	I

(202) 234-4433

	252
1	DR. BANERJEE: Yes. The first line in
2	Section 10.7.
3	MR. UNIKEWICZ: Well, let me give you an
4	idea of where we're going with this particular WCAP,
5	so you have a better idea. Originally, the staff
6	received a copy of the WCAP in August 2005. It was a
7	copy for information.
8	CHAIR WALLIS: 10.7, this is incredible,
9	but if you read the rest of the paragraph, it refers
10	you back to Section 9.2, which is more it gives you
11	more detail. But anyway, we can't do it, because
12	we're not allowed to talk about this portion.
13	MR. UNIKEWICZ: Not yet anyways.
14	DR. BANERJEE: This is not a closed
15	session?
16	MR. UNIKEWICZ: I believe we will have
17	opportunity at a later time this year. Going forward,
18	what we see is we did provide comments to the
19	Westinghouse Owners Group in October. We have had
20	conference calls with them last month in January. We
21	expect to have some more this month and also next
22	month.
23	Skipping this slide, I'll come back. Some
24	other issues is earlier this week or the last week, I
25	should say, we were notified that the WOG is intending

(202) 234-4433

	253
1	to submit it as a Top 4 Report, hopefully some time
2	this month. At that point in time, it will be put on
3	the docket and we will be able to talk about it in
4	more open terms.
5	We expect at least their comments or their
6	responses back to our initial comments some time in
7	February or early March. Now, we're going to continue
8	to work with the WOG and we have been working with the
9	WOG over the last couple of months with our questions
10	to firm up some of the same questions that you also
11	have.
12	In very general terms, our questions and
13	our concerns with the WCAP is that it didn't fully
14	address wetted surface wear for pumps. It didn't
15	necessarily address post-LOCA pump performance, at
16	least in full detail to our satisfaction. Valve and
17	orifice wear needs some more work. The effects of
18	fuel and reactor internals of those things you just
19	mentioned.
20	CHAIR WALLIS: That is a major issue it
21	seems to me. Forget about everything else, that's
22	really worth consideration.
23	MR. UNIKEWICZ: Agreed. The settling of
24	debris in low flow areas. We had some discussions
25	with them about the bypass flow and by bypass flow, I
I	I

(202) 234-4433

mean, what falls out of the break versus what's being recirculated within the vessel. The changes in the post-LOCA fluid characteristics over time, again due to either settling within the vessel, due to filtering effects of the screens, a couple of things. Those areas still need to be addressed.

7 The effect of system operating line ups, 8 whether somebody, a plant decides to throttle back on 9 system flow, whether they decide to change system line 10 ups over time due to changing characteristics over the 11 course of an accident, these are the types of 12 questions that we have posed back to the Owners Group.

13 CHAIR WALLIS: Now, during this 14 recirculation phase, is the flow through the core 15 steady or is it subject to oscillations?

16 MR. UNIKEWICZ: It depends where the break 17 is. It depends on if there's bypass LOCA coming out 18 of the break.

19 CHAIR WALLIS: Well, if it's subject to 20 oscillations, then debris can be stirred up in a way 21 in which it wouldn't be stirred up if it were just a 22 steady flow.

23 MR. UNIKEWICZ: That's why we asked the 24 questions that we need to understand the line ups. We 25 need to understand how things are operating on that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	255
1	side of the fence, if you will.
2	CHAIR WALLIS: Well, how do they do this
3	settling of debris in low flow areas? Do they run
4	their code and predict the velocities? And they use
5	those to predict settling?
6	MR. UNIKEWICZ: One of the questions we
7	always ask is what are your flow velocities in your
8	piping systems. And typically, those run from 7 to 10
9	feet per second in most areas. In some areas it may
10	be more, some areas may be less. They need to we
11	have asked them to do plant walk-downs and they have
12	done plant walk-downs where there are bends, low flow
13	areas, dead legs, things of that nature to see what
14	things would settle out. And again, we're back to the
15	fundamental question of what does it take for sand and
16	dirt and dust to settle out of a moving stream.
17	CHAIR WALLIS: Well, what I'm getting at
18	is when they run their code to predict this even, very
19	often codes show fluctuations. And the velocity which
20	is said to be 1 foot a second may be on the average,
21	but it may actually have some peaks predicted by the
22	code of say 3 feet per second. These codes often
23	produce oscillations. Are you going to take the 3
24	feet a second or the 1?
25	MR. UNIKEWICZ: We would expect them to
	I

(202) 234-4433

	256
1	take the conservative number.
2	CHAIR WALLIS: Which is the highest flow
3	the code predicts.
4	MR. UNIKEWICZ: Unless they can show
5	otherwise.
6	CHAIR WALLIS: Even though it could be
7	just a numerical oscillation.
8	MR. UNIKEWICZ: Okay. I understand that
9	the highest number is not always conservative nor is
10	the lowest number always conservative. One needs to
11	consider both ranges of operation. Just as using a
12	pump analogy, running a pump run-out is not
13	necessarily conservative flow condition. Running at
14	shut-off head very well may be.
15	The expectation is if you're going to run
16	it, operate the pump at run-out, you need to evaluate
17	it out there. If you're going to operate that
18	particular component under throttle flow, it needs to
19	be evaluated there. And passing one does not
20	necessarily mean it's going to pass the other range.
21	DR. BANERJEE: I guess one thing in
22	response to your question, Graham, they refer to NEI
23	04-07, whatever that is.
24	MR. UNIKEWICZ: That is the NEI.
25	DR. BANERJEE: Right division one.
	1

(202) 234-4433

	257
1	MR. UNIKEWICZ: Um-hum.
2	DR. BANERJEE: To evaluate how to study
3	debris settling and laid out or whatever, so hold on.
4	I would like to discuss any ideas.
5	CHAIR WALLIS: Yes, isolate the
6	DR. BANERJEE: Are we not?
7	MR. UNIKEWICZ: Yes, of course.
8	DR. BANERJEE: Okay. So somebody is going
9	to tell us about this methodology on how to set this?
10	CHAIR WALLIS: Isn't that the one that we
11	reviewed a couple of days ago?
12	MR. UNIKEWICZ: The one you have reviewed
13	in a lot of detail.
14	PARTICIPANT: Yes, enthusiastically.
15	MR. CARUSO: Dr. Banerjee?
16	DR. BANERJEE: Yes?
17	MR. CARUSO: If you don't have a copy of
18	that, I can get you a copy.
19	DR. BANERJEE: All right. That would be
20	great.
21	MEMBER DENNING: Now, with regards to your
22	own review criteria, I can't remember what's in the
23	Regulatory Guide related to this, if anything. Is it
24	your intent to develop for this particular aspect
25	review criteria?
l	

(202) 234-4433

	258
1	MR. UNIKEWICZ: The acceptance criteria is
2	the ECCS must remain operable and must be able to
3	perform design basis functions. If over time those
4	design basis functions change, and I'll say for
5	instance, if early on in the scenario I'm required to
б	inject 900 GPM through my HPI pumps, then my
7	acceptance criteria is the pumps shall be capable of
8	providing that for such a period of time as it needs
9	to remain operable from the standpoint of providing
10	pump flow that the head is supposed to do and not
11	self-destruct.
12	Now, there have been instances where over
13	time due to wear and abrasion of internal components
14	where the pump will go into, I'll say, an unfavorable
15	vibration mode, okay, because it unbalances the forces
16	within the pump, under those long-term conditions that
17	would be an unacceptable condition. It must be able
18	to perform to its mission time.
19	One of the difficult parts that many of
20	the licensees have are truly defining their mission
21	times. That seems to be one of the challenges that we
22	struggle with all the time. Once you define your
23	mission time and once you define your operating line
24	up to get you there and what you are required to

produce from an ECCS and a CSS standpoint, that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	259
1	defines your acceptance criteria.
2	As long as my pump can continue to operate
3	and produce the amount of water or amount of fluid at
4	a particular flowing pressure, that constitute
5	acceptable operation.
6	MEMBER DENNING: But there are a number of
7	issue here, Mike, the clogging up of the lower plenum
8	and perhaps carrying into the core for certain LOCAs
9	coolability questions for the core that are non-
10	trivial issues. And what I'm hearing you say is that
11	the industry is going to have to look at those. Then
12	you will just review their analyses and determine
13	without any particular criteria beforehand whether you
14	believe that these various functions that have to be
15	performed will be performed. Is that what you're
16	saying?
17	MR. UNIKEWICZ: Well, the criteria is that
18	the core remains cooled
19	MEMBER DENNING: Yes.
20	MR. UNIKEWICZ: in a cool yes.
21	MEMBER DENNING: But that's such a
22	difficult issue to address without the staff that are
23	going to be in review mode having some criterias to
24	how they determine that.
25	MR. UNIKEWICZ: You are correct. It is
	1

(202) 234-4433

	260
1	not a simple answer. The component piece of stream of
2	a vessel, to me, is fairly well-defined. In fact, to
3	me, it's very defined. I will agree that the
4	challenge ahead of us, yes, is how we deal with the
5	in-vessel clogging, how we deal with the in-vessel
б	flow characteristics, because that will also play a
7	part in what do mechanical components have to produce
8	and have to deliver? Yes, that is the challenge ahead
9	of us.
10	CHAIR WALLIS: Well, this long-term
11	cooling, the vessel is just sitting there. It's a pot
12	that's boiling, isn't it? And the steam goes off and
13	you put water in.
14	MR. UNIKEWICZ: Hopefully it's not boiling
15	at this point in time, but possibly, yes.
16	CHAIR WALLIS: But it's evaporating. The
17	cool water is cooled by evaporation or by circulation?
18	MR. UNIKEWICZ: It's cooled by
19	circulation.
20	CHAIR WALLIS: It's not
21	MR. UNIKEWICZ: There's heat exchangers in
22	some of these loops.
23	CHAIR WALLIS: Aren't there some accidents
24	where it's actually boiling? It's actually sitting
25	there?
I	1

(202) 234-4433

	261
1	MR. UNIKEWICZ: Yes, there are some
2	scenarios, yes, sir.
3	CHAIR WALLIS: So the particles that get
4	in, they don't get out. They just accumulate?
5	MR. UNIKEWICZ: Yes, and that's one of the
6	in that report, they have some algorithms on what
7	they believe settling rate to be. We have some
8	questions along those lines.
9	CHAIR WALLIS: But if it's in the core
10	already, whether it settles or not, doesn't seem to
11	matter. It's just being stirred up in the core by the
12	boiling and everything.
13	MR. LU: Where heat
14	MR. UNIKEWICZ: Well, where it does matter
15	is it matters from an erosion standpoint of the other
16	throttle valves. It matters if the particles and the
17	constituents are in the bottom of the vessel, then I'm
18	not running them through my pump and I'm not running
19	them through my valves and I'm not running them
20	through my orifices, orifice, I'm not running them
21	through those other components.
22	So it's almost a law diminishing your
23	terms where there's a finite amount of material that
24	either ends up in the vessel or it ends up
25	recirculating through the system. If it recirculates
I	I

(202) 234-4433

262 1 through the system, my evaluation goes one way. If it 2 stays in vessel, my evaluation may potentially go another way. 3 4 And again, a lot of this is time-based. 5 Because once the reactor is shut down, my heat loads drop dramatically and they drop rather quickly. 6 So my 7 cooling loads drop rather quickly. But you are 8 correct, the in-vessel question is the key question 9 with respect to these evaluations. The rest of this 10 is, I'11 just say, solid mechanical engineering evaluation. 11 12 CHAIR WALLIS: Well, if we have these 56 pickup truck loads of debris we were told about once, 13 14 and one of them got to the core, that would be an 15 enormous effect, wouldn't it? I mean, if 2 percent of the debris that we were told about in one of these 16 17 presentations was fine enough to get to the core, that's a pickup truck load of debris in the core. 18 Can 19 you imagine that? 20 MR. UNIKEWICZ: And therein lies the 21 balance between sizing containment screens and looking 22 at the evaluations of the vessel and the other 23 components. 24 MR. LU: Steve, this is Shanlai Lu. Ι 25 want to add a little bit.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	263
1	MR. UNIKEWICZ: Sure.
2	MR. LU: In terms of the criteria from the
3	staff and relating to cooling, I think CFR 50.46 and
4	Appendix K relates to LOCA and also the cooling has
5	already been established and we have the criteria
б	there and I think that Walt can comment on that. We
7	had a lot of expectation what exactly needs to be the
8	meaning of the coolable geometry, that part.
9	And then in terms of the licensee's side
10	that the branch is to perform the core dumpster
11	evaluation and some of licensees is planning to take
12	the dumpster and sample from the integral head loss
13	test, which identifies concentration of the debris.
14	And the fuel is going to use up data to perform the
15	tests as part of their fuel pump transfer test to
16	determine the coolable geometry or the cooling or heat
17	transfer characteristics.
18	CHAIR WALLIS: Now, these spaces are very
19	good at catching debris and that's why to prevent
20	fretting you have some sort of debris catcher below
21	the core.
22	PARTICIPANT: Don't you mean the core
23	bottom nozzle?
24	CHAIR WALLIS: On the bottom nozzles.
25	What is that? Is that a screen type thing or what is
I	I

(202) 234-4433

	264
1	that?
2	DR. BANERJEE: There's three screens or
3	something, isn't there, Walt?
4	MR. JENSEN: It all depends on the vendor.
5	DR. BANERJEE: Yes.
6	MR. JENSEN: Yes, I'm not sure exactly
7	what they look like, but I think there's some holes
8	there, oblong holes.
9	CHAIR WALLIS: Well, they're very small.
10	They catch material which would otherwise get caught
11	in the spaces where the spaces are pretty small and
12	the flow passages and parts of the spaces are pretty
13	small. I imagine those holes are really quite small,
14	aren't they in those screens at the bottom of the
15	core?
16	MR. JENSEN: Yes, they are. They are
17	fairly small.
18	CHAIR WALLIS: Are they much smaller than
19	the screens in the sump? Are they the same or what?
20	MR. JENSEN: I don't know.
21	CHAIR WALLIS: You don't know?
22	MR. JENSEN: I can't give you that answer.
23	CHAIR WALLIS: But even if they are
24	MR. JENSEN: I think they are.
25	CHAIR WALLIS: much finer than the
I	·

(202) 234-4433

	265
1	screens in the sump, one might hypothesize that fines
2	get through the screen in the sump, but they get
3	caught below the pump.
4	MR. JENSEN: They are not that fine for
5	sure.
6	CHAIR WALLIS: Well, I don't know.
7	MR. JENSEN: No.
8	CHAIR WALLIS: No one seems to know.
9	MR. JENSEN: They are not. These are 10
10	micron particles you are talking about.
11	CHAIR WALLIS: No, I'm talking about
12	particles that go through a quarter inch screen, which
13	don't necessarily have to be a few microns. They
14	could be pieces of fiberglass or something.
15	MR. JENSEN: All right.
16	MR. UNIKEWICZ: Yes, and you are correct.
17	In older field designs, those screens were of a much
18	smaller nature. What the new field ones, some of the
19	new field designs are, I can't speak to that
20	specifically. I can speak to
21	CHAIR WALLIS: Well, it seems to be very
22	important to know. Isn't it?
23	MR. UNIKEWICZ: That's correct. And that
24	is part of
25	CHAIR WALLIS: That's one of the first
I	I

(202) 234-4433

	266
1	things I would want to know.
2	MR. UNIKEWICZ: That is one of the
3	investigations that the Westinghouse Owners Group is
4	still looking at, and that is the effect of the fuel.
5	Those fuel designs are certainly proprietary. They
6	can speak for them better than I, at least with the
7	newer designs. I don't have an answer to that. We'll
8	get you an answer though.
9	DR. BANERJEE: But in the old designs,
10	well, there were three levels, weren't there of
11	screens?
12	MR. JENSEN: I can't remember. I can tell
13	you later.
14	DR. BANERJEE: Yes.
15	CHAIR WALLIS: Do we have actual samples
16	of these things?
17	MR. CARUSO: The staff probably has them
18	somewhere.
19	CHAIR WALLIS: Probably has somewhere.
20	Because I think the staff has samples of pieces of
21	fuel designs and all that somewhere, because they have
22	been submitted by vendors at various times.
23	MR. UNIKEWICZ: I no longer have them. I
24	used to.
25	CHAIR WALLIS: But this would seem to be
	1

(202) 234-4433

	267
1	a very important issue and nobody knows the hole size
2	in these screens?
3	MR. UNIKEWICZ: I don't know the hole size
4	and I am confident that staff has the answer to that.
5	We just don't have the correct individual party here
б	to answer your question.
7	CHAIR WALLIS: Well, there's a lot of
8	study going on in Research about how downstream
9	effects now, about whether or not particles will go
10	through the screens. We're going to hear about that
11	tomorrow in sump screens. It seems to me you have got
12	to have equal effort to determine what happens to it
13	if it does go through. I mean, how much does it take
14	to block up the entry into the core?
15	MR. UNIKEWICZ: Again
16	CHAIR WALLIS: What happens if it does
17	block it up? Is the pressure enough to break through
18	or what? I don't know.
19	MR. UNIKEWICZ: I just don't see the
20	appropriate person here to answer that question.
21	MR. JENSEN: I think, Dr. Wallis, it's
22	going to be plant-dependent and it's some plants
23	CHAIR WALLIS: So you can't do anything
24	until you look at each plant?
25	MR. JENSEN: We didn't know what's in the

(202) 234-4433

	268
1	plant, what's coming into it and what's coming into
2	the core. It wasn't those we don't know yet.
3	DR. BANERJEE: And then some of these
4	plants at the bottom have a whole lot of tubes as
5	well, don't they? So a very complicated flow plots,
6	instrument tubes.
7	MR. JENSEN: Instrument tubes, yes.
8	DR. BANERJEE: Yes, yes.
9	MEMBER DENNING: Graham, I think that
10	we're going to want a presentation on what the fuel,
11	real fuel designs really look like in this regard and
12	what the potential is for clogging. And the question
13	is I don't think we want that at our full Committee
14	meeting.
15	CHAIR WALLIS: Well, are these guys going
16	to appear before the full Committee not knowing
17	anything about the size of these holes?
18	MR. JENSEN: I think they will.
19	MR. UNIKEWICZ: My co-presenter,
20	obviously, is not here today. He was meant to answer
21	these questions. I don't have an answer. We will get
22	an answer back to you on that. There was a co-
23	presenter on the staff. I don't have those answers.
24	I'm confident that he does.
25	CHAIR WALLIS: Why don't we worry about
I	1

(202) 234-4433

269 1 the thin bed effect. We have presentations, some 2 rather small amount of material was enough to cover 3 100 square foot screen or something. These are a 4 rather small amount of material. And I would think 5 would need a similar order of magnitude you 6 presentation about what happens in these screens at 7 the bottom of the core, so we know the kind of thing 8 we're dealing with. 9 MR. UNIKEWICZ: Okay. 10 CHAIR WALLIS: That's just to get an overall perspective on the problem. You need that 11 12 first. DR. BANERJEE: Well, the first order, if 13 14 your screens are going to be, let's say, in the order of 1,000 square feet, what is the flow area into the 15 16 core? Is that --MR. UNIKEWICZ: It will depend on location 17 of the break. It will depend on the particular 18 19 accident and accident scenario that we're dealing 20 with. CHAIR WALLIS: Well, no, no, no, you mean 21 22 the flow area at the bottom of the core. 23 DR. BANERJEE: Bottom of the core. 24 MR. UNIKEWICZ: Yes, but --25 CHAIR WALLIS: It's a geometrical thing.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	270
1	It doesn't depend on the
2	MR. UNIKEWICZ: That will vary from site
3	to site.
4	DR. BANERJEE: Right. Sure. But within
5	what order of magnitude are we talking about?
б	MR. UNIKEWICZ: Again, I would defer to my
7	colleague who is not present today.
8	PARTICIPANT: 50 square feet.
9	DR. BANERJEE: 50 square. Oh, that's good
10	enough.
11	CHAIR WALLIS: Well, it's like saying you
12	can't do anything about core safety, because there are
13	different designs.
14	DR. BANERJEE: No, but I think that's the
15	rock numbers, right?
16	CHAIR WALLIS: Surely you can make some
17	estimate of what happens.
18	MR. CARUSO: Six by six maybe nine by
19	nine.
20	CHAIR WALLIS: Yes, we'll find out.
21	MR. CARUSO: 200 bundles.
22	CHAIR WALLIS: You'll find out.
23	MR. CARUSO: I'll get you a number, yes.
24	CHAIR WALLIS: All right.
25	MR. UNIKEWICZ: Again, I'll defer to my
I	

(202) 234-4433

271 1 DR. BANERJEE: And it's much smaller than 2 the --3 MR. UNIKEWICZ: -- colleague to answer 4 those questions. 5 CHAIR WALLIS: Now, this becomes a target core report. It's still a proprietary thing? 6 7 MR. UNIKEWICZ: No, it becomes -- is 8 placed on the docket. 9 CHAIR WALLIS: So it sees the light of day 10 and then it's available for critique. UNIKEWICZ: Well, for opening 11 MR. It already has been and I'll say that 12 critique, yes. over the last number of months the Owners Group 13 14 representatives and the staff had lot of а 15 conversations. 16 CHAIR WALLIS: But surely on this matter, 17 which is likely to have some public interest, the more you can make open the better. 18 19 MR. BATEMAN: Steve, can I ask a question? 20 Is this -- what's the report going to be proprietary 21 or what a non-proprietary version? 22 MR. UNIKEWICZ: I would ask Mr. Andre Cic, 23 who is sitting right behind us, if he could answer 24 that. 25 I would defer to Mr. Dingler, at MR. CIC:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	272
1	this time to
2	MR. DINGLER: Would you go to the
3	MR. UNIKEWICZ: I saw you first.
4	MR. DINGLER: At this plant, it's planned
5	to submit proprietary with a Class 3 coming in, but we
6	can discuss that.
7	MR. CARUSO: So you will submit a redacted
8	version, at the same time?
9	MR. DINGLER: It's usually followed up
10	later with a Class 3.
11	MR. UNIKEWICZ: Any further questions?
12	MEMBER DENNING: Again a comment. I think
13	that the thing that seems to be so important about
14	this particular issue is that the answer for the rest
15	of the problem seems to be make those screens as big
16	as you can. And this seems to be a potential downfall
17	in that logic and that's why it seems so important
18	MR. UNIKEWICZ: That is correct.
19	MEMBER DENNING: that we understand it
20	better.
21	MR. UNIKEWICZ: Let's just say I think I
22	would rather characterize it as a balance. And the
23	balance is large screen versus can I survive and can
24	my downstream components survive and perform the
25	mission they are intended to? And the answer to that
	I

(202) 234-4433

	273
1	is sometimes large screen works and understand there
2	is also the active design. And the active design has
3	its own set of unique characteristics in that that's
4	where the downstream evaluation is becoming
5	extraordinarily critical.
6	In fact, that's where the downstream
7	evaluations dominate. The passive designs you find
8	the screens dominate the equation, if you will. On
9	the active designs the downstream evaluations
10	dominate.
11	CHAIR WALLIS: In the passive design, we
12	don't have much head available to flow stuff into the
13	core. You better not have much blockage.
14	MR. UNIKEWICZ: Depending on the
15	robustness of your equipment, you can always deal with
16	a little bit of pump degradation if necessary.
17	CHAIR WALLIS: Now, we heard that the risk
18	had been reduced, because there are lots of ways to
19	cool the core besides recirculation. But if you
20	actually go into some recirculation and your paths get
21	blocked into the core, that affects all these
22	alternative methods, doesn't it?
23	MR. UNIKEWICZ: And there are
24	CHAIR WALLIS: So in trying to protect the
25	sump screen, you may focus on the wrong end of the
ļ	I

(202) 234-4433

	274
1	problem.
2	MR. UNIKEWICZ: Well
3	CHAIR WALLIS: The first thing is to
4	protect the core screen no matter what. So let it
5	block the sump and then cool the core some other way.
6	MR. UNIKEWICZ: The first rule is yes,
7	protect the core. There are alternate flow paths.
8	Even if a sump screen were to block, there are other
9	flow paths for sump screens.
10	CHAIR WALLIS: But if the vessel screens
11	block, then you don't have that flow path.
12	MR. UNIKEWICZ: Again, I would defer to
13	the vessel people to answer that question more in
14	detail.
15	CHAIR WALLIS: So I think you need to
16	establish some sort of hierarchy of what needs to
17	happen here and not just keep studying things and
18	looking at what industry does. First of all, this has
19	got to work. And then this has got to work and so on.
20	And then assign, you know, some expectation.
21	DR. BANERJEE: Like LOCA, I guess, we need
22	a PIRT, right, or something?
23	CHAIR WALLIS: Okay. I guess you were
24	finished. Thank you very much for illuminating.
25	MR. UNIKEWICZ: Okay.
l	I

(202) 234-4433

	275
1	MEMBER DENNING: We'll take a break.
2	CHAIR WALLIS: Are we taking a break or
3	what's next? Where are we?
4	MR. CARUSO: Well, what I would like to do
5	is the industry representatives, Mr. Butler and Mr.
6	Dingler, are not available tomorrow. I would like to
7	take them next and then leave coating people for last.
8	MR. DINGLER: I'm available. I'm staying.
9	John won't be, but I will be.
10	MR. CARUSO: Okay. Well, what I would
11	like to do maybe is get you this afternoon and then
12	we'll go back to the staff.
13	CHAIR WALLIS: So
14	MR. CARUSO: We can take a break then we
15	can start with industry.
16	CHAIR WALLIS: So we're going to stay
17	beyond 5:30 probably.
18	MR. CARUSO: I think so.
19	DR. BANERJEE: So we'll take coatings
20	last, I guess?
21	CHAIR WALLIS: We'll take coatings last.
22	Is that okay with the staff?
23	PARTICIPANT: Yes.
24	PARTICIPANT: It's fine.
25	CHAIR WALLIS: It's okay for the staff to
I	1

(202) 234-4433

	276
1	stay late?
2	MR. SCOTT: How late did you have in mind?
3	CHAIR WALLIS: Midnight?
4	MR. SCOTT: Midnight? Sure, sure.
5	CHAIR WALLIS: Until it's over, until it's
6	over. All right.
7	PARTICIPANT: We'll leave at 7:20. I have
8	a train to catch.
9	CHAIR WALLIS: Okay. So we will take a
10	break until 3:00 and we're doing it now.
11	(Whereupon, at 2:43 p.m. a recess until
12	3:00 p.m.)
13	CHAIR WALLIS: We're ready to start again.
14	Is the transcript in order to start again?
15	COURT REPORTER: Yes, we're ready.
16	CHAIR WALLIS: Okay. Let's go. We'll
17	come back into session and we're very much looking
18	forward to hearing what NEI has to tell us about these
19	problems and their solution.
20	MR. BUTLER: And I'm very much looking
21	forward to telling you. Well, thanks for having me.
22	I'm John Butler. I'm the Senior Project Manager at
23	the Nuclear Energy Institute and I followed the GSI-
24	191 issue. The first two slides I'll go through very
25	quickly. You've heard some of this already in
I	

(202) 234-4433

5 But the GSI-191 issue does apply to all PWRs and the point here that has been addressed 6 7 several times this morning and we keep stressing it, 8 at least I keep stressing it, is that each unit is 9 unique in its design, in terms of its insulation materials, how that plays into the various debris 10 generation factors, chemical effects and other things, 11 the coatings, the containment design whether it is 12 compartmentalized, open, effects 13 transport, the 14 strainer design, they are all generally different.

And a very key factor that shouldn't be 15 forgotten is, of course, the NPSH requirements. 16 You will see later on with the proposed current sizing of 17 the strainers, there is quite a wide variation there. 18 19 NPSH will play a very big part in that. A plant that 20 has 16 feet of NPSH margin has a little bit more 21 latitude on its strainer size than a plant that has 22 been with something that is maybe less than a foot. 23 level So there's a hiqh of design

24 variation and that requires a plant-specific 25 resolution approach for each plant. That makes it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

277

	278
1	difficult in trying to put together a concise set of
2	industry guidance. It makes it difficult in
3	performing experiments, because you're trying to cover
4	a wide variety of conditions.
5	You've heard it before and you'll hear it
6	again and you'll continue probably to make comments on
7	it, but we have done things in many cases for lack of
8	a better approach in a conservative fashion, what we
9	believe to be a conservative fashion. We started
10	developing evaluation guidance following, I guess,
11	back in 2002, the issuance of the parametric
12	evaluation that was developed and performed by Los
13	Alamos for the NRC.
14	Our first evaluation guidance was really
15	guidance for plants to perform walk downs of their
16	containments to basically identify in more detail what
17	they have inside their containment as input to the
18	evaluation guidance. A key staff activity in 2003 was
19	the issuance of the Bulletin. The intent there was to
20	make sure that plants had compensatory actions in
21	place to address the risk impact of this GSI-191
22	during the period of time in which plants were working
23	to resolve the issue, developing an evaluation
24	guidance and actually implementing any modifications

25 that would come out of that.

(202) 234-4433

1 CHAIR WALLIS: Could you, just for the 2 record, explain what NEI's role is here? NEI doesn't 3 have its own engineers that produce these reports. 4 But you put together a team from industry or something 5 and facilitated? How does NEI work when it produces 6 a report like 02-01?

7 MR. BUTLER: In this case, it varies from 8 issue to issue, NEI's role is primarily a coordination 9 role and an advisory role. NEI has a Task Force of 10 representatives from the industry, utilities and the 11 vendors and AEs, who have worked to advise the rest of 12 the industry on how to proceed on this.

The WOG has had a very big role in this particular issue, in that they have been the, to a high degree, technical arm of the activity. So the WOG has been developing the evaluation guidance and it was reviewed by the Task Force and issued as an NEI guidance document. Did that answer your question?

19 CHAIR WALLIS: You don't have reviewers 20 from outside this industry group? You don't bring in 21 people from outside the industry when you write these 22 reports to get some kind of a different perspective on 23 them?

24 MR. BUTLER: Well, we have quite a range 25 of personnel on the Task Force.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	280
1	CHAIR WALLIS: Yes.
2	MR. BUTLER: I mean, I don't know what
3	benefit that would provide us to go outside of the
4	industry.
5	CHAIR WALLIS: Well, it's okay. I think
6	you've given a pretty good description of what
7	happens. Okay.
8	DR. BANERJEE: But NEI itself, does it
9	have how large is NEI in terms of permanent staff
10	and engineers and things? They are an organization
11	which is permanent there?
12	MR. BUTLER: Yes, yes, approximately,
13	total of all of NEI is probably 150 people.
14	DR. BANERJEE: Okay.
15	MR. BUTLER: But not all of them are
16	engineers, not all of them are project managers, like
17	myself, so NEI does not do the technical research
18	activities. That's either done by EPRI or
19	Westinghouse or the WOG's contractors or a range of
20	other contractors in the industry.
21	DR. BANERJEE: You subcontract our work?
22	MR. BUTLER: Yes.
23	MEMBER SHACK: How extensive was the
24	review of the compensatory actions that people have
25	taken? I mean, are they in the EOPs, the severe
I	1

(202) 234-4433

1 accident management guidelines? Have those really 2 been reviewed to see if, you know, they are really 3 suitable to minimize the need to do the recirculation? 4 MR. BUTLER: There was a WOG activity that 5 specifically looked at the range of compensatory actions that plants could consider. And as part of 6 7 that, they did look at the pros and cons of the 8 various compensatory actions. I think what you're 9 getting at, there are some clear cons to certain 10 actions that you might consider. Each plant took that WOG activity and 11 12 introduced their own plant-specific features that would, you know, come into play. 13 In some cases the 14 plants made a determination that it was not 15 appropriate for their plant to implement a particular 16 compensatory action, because of their features. 17 Whereas, another plant may have introduced or may have implemented a compensatory action, because there is 18 19 more favorable imbalance for them. 20 DR. BANERJEE: I quess what Graham's 21 question, the way I interpreted it, was --22 COURT REPORTER: Could you get closer to 23 the microphone, please? 24 DR. BANERJEE: Sorry. Do you have any 25 independent scientific evaluation of some of these

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

281

	282
1	things from somebody or some group outside the
2	industry or is it all sort of within the industry?
3	Because I guess the concern always is do you get too
4	introverted in looking at a problem? Are there
5	external scientifically expert people who take a look
6	at some of these issues sometimes or is it always
7	pulled together from the industry, of the industry and
8	back to industry?
9	MR. BUTLER: Well, first, I've got to
10	understand what you mean by industry, I mean.
11	DR. BANERJEE: Well, the industry people
12	who are working on, let's say, plant operators, the
13	vendors, the suppliers to the vendors, all these
14	people, is there some external group or somebody that
15	you turn to sometimes who don't have anything to do
16	with the stuff, but a good scientist to take a look at
17	this?
18	MR. BUTLER: Well, let me answer it this
19	way. I mean, the personnel that are brought in to
20	review different products varies. It's not always the
21	same group of people and the group of people within
22	the industry is not static, so that's always dynamic.
23	And a contractor who does work occasionally in
24	nuclear, I don't know if you would call him within the
25	industry or not. So it's hard to answer that
	I

(202) 234-4433

	283
1	question.
2	It depends upon the particular review area
3	as to who we would go to to do the activity or to
4	review the activity.
5	DR. BANERJEE: So to give you an example,
6	a sump screen blockage issue is a problem which is
7	similar to say filtration problems, particles. There
8	are people who are experts at this who have nothing to
9	do with this. They may be chemical industry people or
10	they may be academics who work on suspension flows or
11	I mean there are many very famous people who have
12	worked on this problem.
13	Is it I was just wondering if you ever
14	accessed these types of people who have nothing to do
15	with nuclear to give a view of is this the state of
16	the art, really, what's being done.
17	MR. BUTLER: In general, yes, we do do
18	that. In this particular case, I don't know that we
19	have done that. The reasons for that probably can be
20	attributed to the invariable constraints of time and
21	money.
22	DR. BANERJEE: It may save time and money
23	in the long-term in some ways, because there are
24	approaches to these problems, even if it's just the
25	modeling, which certainly is not being used here,
ļ	I

(202) 234-4433

	284
1	which are common in other parts of various industries,
2	nothing to do with nuclear.
3	MR. BUTLER: Understood.
4	CHAIR WALLIS: There's a lot of civil
5	engineers who deal with cleaning water
6	DR. BANERJEE: Yes.
7	CHAIR WALLIS: in all kinds of ways
8	cleaning out all sorts of debris.
9	MR. BUTLER: Sure.
10	CHAIR WALLIS: Okay.
11	MR. BUTLER: Shall I continue? Just very
12	briefly, the Generic Letter was issued back in
13	September of 2004. The schedule that that called for
14	was to have the evaluation completed by September of
15	2005. The actual evaluation methodology wasn't issued
16	until December of 2004, so plants only had, at that
17	time, nine months to complete their evaluations. They
18	did not, at that time, have, you know, completion of
19	the chemical effects activities, so there really
20	wasn't any evaluation guidance for that.
21	And the downstream effects didn't come out
22	until June or July of 2005. So the only point I'm
23	trying to make here is that it shouldn't be a surprise
24	that the evaluations weren't complete when plants
25	provided their September 2005 results. This is just
ļ	I

(202) 234-4433

285 1 graphically the schedule that plants have been working 2 on. 3 The evaluations, the majority of the 4 evaluations are complete, at this time, but I don't 5 want it to be interpreted as a static activity. This is going to continue to be an iterative activity. 6 7 These designs aren't going to be finalized, well, 8 until their input and I'm wondering then if they will 9 actually be considered final designs. But plants will look to continue with their modifications, even though 10 there will be some uncertainties left. 11 So at this point, the schedule has been 12 pretty firm. The staff has been very firm on their 13 14 expectations for closing out GSI-191, so plants have 15 no choice but to try to meet that schedule as best 16 they can. CHAIR WALLIS: Well, they said they have 17 to provide description of the evaluation methodology 18 19 to be used. What seems to have happened is that they don't have a whole lot of confirmed models for all the 20 21 phenomena, so what they are trying to do is do a lot which 22 plant-specific tests of are supposed to 23 represent more or less what happens in their plant. 24 Isn't that the way they are going, that 25 this evaluation methodology could say that sort of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	286
1	that the level of prediction doesn't exist and,
2	therefore, they are doing all these plant-specific
3	experiments. Is that what's happening?
4	MR. BUTLER: There will be plant-specific
5	qualification tests for the strainer designs. They
б	are each going to be different. In terms of the
7	source term that is used for qualifying that strainer,
8	the chemical soup that you would take into account,
9	the surface area, the approach velocities, there are
10	a lot of factors that are plant-specific that you have
11	no choice but to look at each plant's recipe
12	individually.
13	There is commonality among in how that
14	is performed. There is a limited number of vendors.
15	There's five strainer vendors that are assisting
16	plants, 69 plants, right now, so they are similar.
17	CHAIR WALLIS: I guess what I was saying
18	was if there were technical methods which were
19	established, it wouldn't matter really that there is
20	all this plant-specific stuff, because they simply put
21	the numbers in for their plant and out would come the
22	answer, but that doesn't seem to be the way it's
23	going. They are going to all do experiments and that
24	seems to indicate to me that they don't know enough to
25	be able to predict what would happen in their plant.
ļ	

(202) 234-4433

	287
1	So it's not a question of using something
2	like a handbook and just making some calculations.
3	They are all going to do experiments. And, as my
4	colleagues were saying this morning, this means that
5	a lot of attention has to be given to whether these
6	are appropriate experiments.
7	MR. BUTLER: There is no correlation that
8	can be applied to give you a good estimate of what the
9	head loss would be.
10	CHAIR WALLIS: So a lot of thought has to
11	be given to defining what is now going to be an
12	adequate convincing experiment. You worry about
13	scaling things and how big does this have to be, how
14	much stuff, does it have to represent all kinds of
15	chemical effects or only some and so on and so forth.
16	MR. BUTLER: Well, I don't want to give
17	you the impression that I am knowledgeable in strainer
18	design, but there are people who are who are involved
19	in the strainer qualification activities. What I do
20	know is that there are some key parameters that play
21	into what you would see from a flume test and those
22	are being taken into account.
23	I think one of the obvious realities from
24	these activities is that when you reduce the approach
25	velocity to a low enough point, a lot of these
ļ	I

(202) 234-4433

	288
1	uncertainties are still there, but there are a low
2	enough magnitude where they are not impacting the
3	final result. Shall I continue?
4	CHAIR WALLIS: Go ahead. Oh, yes. If
5	we're not speaking, you should be speaking.
6	MR. BUTLER: All right. The evaluation
7	guidance was issued back in December of 2004 along
8	with the staff SER, which did modify the utilization
9	of the evaluation methodology in some aspects. But,
10	generally, I think it can be said that the methodology
11	which focuses in on the debris generation and
12	transport aspects of the issue is a conservative
13	estimate, in some areas too conservative requiring
14	plants to go back and do some testing of their own to
15	try to reduce that conservatism, because they are
16	unable to deal with the results from that evaluation.
17	Skipping ahead, the two areas that the
18	evaluation guidance and NEI 04-07 did not address
19	adequately was the downstream effects, and that was
20	addressed in a separate guidance document that came
21	out in June or July, it was made available to the
22	industry in June or July of 2005, and then the
23	chemical effects. The ICET results filtered out
24	throughout 2005 with the Quick Look Reports and the
25	final reports. I think all that is out now and,
I	1

(202) 234-4433

	289
1	subsequently, the WOG performed some Bench Top
2	testings to provide input to the strainer vendors on
3	how they can address chemical effects.
4	This slide just very briefly talks about
5	the downstream effects WCAP, which was issued in June
6	of 2005. And I think, as was mentioned earlier, the
7	staff has had this, but it was provided for
8	information. I think the Westinghouse Owners Group is
9	reconsidering that and will be providing it to the
10	staff for review, so that it will get some additional
11	attention in the coming months.
12	CHAIR WALLIS: And I suppose we'll know if
13	it works when we find out if the plants can use it.
14	MR. BUTLER: Well, they are using it right
15	now. How they are using it in certain areas, as you
16	had noted, it provides general guidance and it's up to
17	the plant to perform the necessary more detailed
18	analyses and tests to fill in the blanks.
19	Chemical effects testing, which you
20	already have been briefed on, it just shows here the
21	schedule for those tests.
22	CHAIR WALLIS: Now, whose tests are you
23	referring to here? Are these the
24	MR. BUTLER: This was the joint
25	industry/NRC/LANL/University of New Mexico test.
Į	I

(202) 234-4433

	290
1	CHAIR WALLIS: An ICET type thing?
2	MR. BUTLER: Yes.
3	CHAIR WALLIS: But ICET just sort of threw
4	it back to you guys and said it's all plant-specific.
5	Now, you have got to go work it out.
б	MR. BUTLER: Each plant is unique, I
7	guess, as I pointed out. You got to live with that.
8	The recently completed activity of Westinghouse and
9	the WOG to look at chemical effects was a set of
10	separate effects tests that was documented in a soon
11	to be released WCAP. It's being finalized now and
12	we'll be providing that to the staff for information,
13	I believe.
14	But the output of this is sufficient
15	information, we believe, to allow the strainer vendors
16	to incorporate either the results, particular results,
17	directly to attest or to support justification for a
18	surrogate material in their testing.
19	CHAIR WALLIS: These are the Bench Top
20	Tests, so there aren't testing
21	MR. BUTLER: Correct.
22	CHAIR WALLIS: in test tubes or
23	something?
24	MR. BUTLER: All right.
25	CHAIR WALLIS: It's small scale, very
	I

	291
1	small scale?
2	MR. BUTLER: Very small scale, yes.
3	CHAIR WALLIS: And then, of course, we're
4	going to wonder how a lot of small scale separate
5	effects tests can be put together to give a
6	description of what happens in the real soup when all
7	kinds of things are happening together.
8	MR. BUTLER: It has been compared to the
9	ICET results which were, in effect, an integrated
10	test. And, you know, I don't have that information in
11	front of me, but I have been told it compared
12	favorably with that. This graphic here just stresses
13	the point that there was a lot of activity going on.
14	There is still a lot of activity going on.
15	My next few slides are going to very
16	quickly try to summarize some of the activities that
17	are going on in the industry to give you kind of a
18	snapshot in time of where the 69 PWRs are currently.
19	Back on January 19 th we issued a survey to
20	all PWR operators asking them to very quickly provide
21	information to us. We got that by January 30^{th} , so I
22	think that was a record for collecting information
23	from all PWRs. The result of that is that all 69
24	plants have completed their evaluations necessary to
25	determine whether or not a strainer modification is
ļ	I

(202) 234-4433

necessary. That is a key first step, as you might expect, because that turns on a lot of other activities.

4 Three units assessed that their current 5 strainers, which they had previously modified prior to GSI-191, were appropriately sized and they are 6 7 currently involved in confirmation activities to confirm that. So 66 units plan to replace their 8 current strainers and, actually, that is less than 66 9 now because some of the plants have already begun, 10 have already changed out their strainers. Crystal 11 12 That is one plant that the staff River is one plant. performed an audit on and I believe Oconee has 13 14 recently changed out one of their strainers.

15 CHAIR WALLIS: Now, when you say plan to 16 replace, does that mean that someday they will do it 17 or they actually have designs right now for replacing? 18 MR. BUTLER: They all have designs right 19 now and they are planning to replace.

20 CHAIR WALLIS: So they have the 21 specifications which they could give to someone who is 22 going to make these things? 23 MR. BUTLER: Yes.

24 CHAIR WALLIS: That is all being done?
25 MR. BUTLER: Subject for --

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 292

1

2

3

	293
1	CHAIR WALLIS: So they are already
2	committed to doing what they have designed?
3	MR. BUTLER: They have committed to put in
4	a new design. They have preliminary sizes subject to
5	refinement between now and when they are actually
6	installed, but yes.
7	MEMBER DENNING: And they are all relying
8	on five vendors. Is that true? We have heard about
9	five vendors.
10	MR. BUTLER: Yes.
11	MEMBER DENNING: And they all fit into the
12	five vendors?
13	MR. BUTLER: Yes. The five vendors are
14	shown on this slide. There is a team with the
15	Enercon, Alion, Westinghouse and Transco where Transco
16	is the actual company that builds the strainer with
17	Westinghouse, Enercon and Alion providing various
18	analytical testing services. And that is the Top Hat
19	design that you have heard a little bit about.
20	Framatome in conjunction with PCI has a
21	stacked-disk strainer. GE has both a passive stacked-
22	disk design and an active strainer and there are
23	plants that are utilizing both designs.
24	MEMBER DENNING: And there are some plants
25	that are committed to the active design?
	I

(202) 234-4433

	294
1	MR. BUTLER: There are plants with the GE
2	passive and plants with the GE active.
3	MR. ARCHITZEL: Ralph Architzel. I just
4	want to make one comment or correction. One plant did
5	not follow those vendors in the pre-installed design,
6	did their own design. So there is one plant with
7	existing designs.
8	MEMBER DENNING: Of the ones that are
9	already made?
10	MR. ARCHITZEL: Yes.
11	MEMBER DENNING: Okay.
12	CHAIR WALLIS: Well, I can see that a spec
13	for the screen should be based on sort of NPSH
14	requirements, that it should catch enough stuff and
15	not have a head loss which, you know, violates the
16	requirements for NPSH.
17	Is there any specification about how much
18	they are allowed to let through? I mean, I would
19	think that would have to be a design specification,
20	that it should catch 99.99 percent of the debris, but
21	at the same time it has got to meet the head loss
22	characteristics, you know, the NPSH requirement.
23	MR. BUTLER: It's an aspect of the design
24	that
25	CHAIR WALLIS: Requirements about how much

(202) 234-4433

	295
1	stuff it has got to interdict, you know, and stop
2	getting into the core. Is there any requirement on
3	that yet?
4	MR. BUTLER: Whether or not that is part
5	of the design spec that was given to the strainer
6	vendor, I cannot can't say.
7	CHAIR WALLIS: Well, it seems to me that's
8	one of the important things you have got to get there,
9	isn't it?
10	MR. DINGLER: Graham, this is Mo Dingler.
11	At Wolf Creek we have set the screen size opening to
12	reduce the amount that is bypassed based on our
13	downstream effects.
14	CHAIR WALLIS: Is there a specification
15	that says no more than a teaspoonful or a truckload or
16	whatever?
17	MR. DINGLER: We set hole open size and
18	then we're going to test to validate how much goes
19	through there.
20	CHAIR WALLIS: Well, you must have a
21	desired result.
22	MR. DINGLER: We have a desired result,
23	but it's not in the spec. It was separate from the
24	spec.
25	CHAIR WALLIS: Only a barrel load gets
I	

(202) 234-4433

	296
1	through or something?
2	MR. DINGLER: We put a percent of bypass
3	on there.
4	CHAIR WALLIS: Yes, you got
5	MR. DINGLER: Knowing what our total
6	debris is.
7	CHAIR WALLIS: A percent of bypass. Well,
8	if you're talking about these, I don't know how much
9	you want to take as a baseline, a truckload, it's
10	going to be a pretty small percent if it's truckloads.
11	MR. DINGLER: That's correct.
12	MR. BUTLER: There are as far as the
13	replacement strainers that are planned, the majority
14	of them are passive strainers of various designs.
15	Four units intend to install active strainers.
16	I just want to point out that even whether
17	it's active or passive, it's subject to change. Two
18	units in particular noted that while they are
19	currently going with the passive strainer, that their
20	preliminary design and sizing requirements to
21	accommodate their debris load was so large that they
22	are having to reconsider going with an active
23	strainer.
24	CHAIR WALLIS: Now, an active strainer was
25	something that scrapes off the debris as it forms on
	1

(202) 234-4433

	297
1	the strainer. Is that
2	MR. BUTLER: It's a motorized blade.
3	CHAIR WALLIS: And then it takes the
4	debris and puts it somewhere else, does it? It
5	takes
6	MR.BUTLER: It keeps it off the flow area
7	of the screen.
8	CHAIR WALLIS: But it doesn't do much
9	good.
10	MEMBER DENNING: Physically away.
11	CHAIR WALLIS: It doesn't do much good to
12	just drop it in the vicinity, does it?
13	DR. BANERJEE: Well, it's consolidated so
14	it may not
15	CHAIR WALLIS: So it might help, it might
16	help.
17	PARTICIPANT: If it dropped it low enough.
18	CHAIR WALLIS: But some of the numbers we
19	saw would actually fill up the whole room where the
20	screens are.
21	MR. ARCHITZEL: Dr. Wallis, Architzel
22	again. The design that is in front of the staff or
23	being used is sort of like a macerator pump and it
24	passes through the debris.
25	DR. BANERJEE: Passes what?
I	I

	298
1	MEMBER DENNING: Say it again. Explain.
2	MR. ARCHITZEL: It essentially chops up
3	the debris and passes it through.
4	CHAIR WALLIS: Passes it through the
5	screen, lets it go somewhere else?
6	MR. ARCHITZEL: Downstream.
7	CHAIR WALLIS: Does it go downstream?
8	That's an acceptable design? Might as well have no
9	screen at all.
10	MR. LU: Just adding one point. The GE
11	active strainer actually has a section of a
12	sacrificial passive part of this strainer, too. That
13	part can take a lot of debris load, so only a portion
14	of the debris is being chopped through the active
15	strainer surface.
16	CHAIR WALLIS: It's like a disposal in a
17	sink?
18	DR. BANERJEE: But is this chopped after
19	the screen or before the screen?
20	MR. BUTLER: I guess I need to point out
21	that the design of the active strainer is not to chop
22	up the debris, but that is a consequence, that some
23	portion will be chopped up and passed through, but
24	it's
25	MEMBER DENNING: It's not the intent.
I	1

(202) 234-4433

	299
1	DR. BANERJEE: Right, right.
2	MR. BUTLER: It's not.
3	DR. BANERJEE: The intent is still to
4	catch most of it, right?
5	MR. BUTLER: The intent is to keep the
6	debris away from the flow holes of the active strainer
7	and it does do that, but it's a natural consequence.
8	Some portion is caught by the blade and broken into
9	smaller pieces.
10	CHAIR WALLIS: But you wouldn't want to
11	chop it up. You would never want to chop it up and
12	let it go through the strainer.
13	MR. BUTLER: It's not designed to do that,
14	but that's a consequence of the movement of the blade
15	across the surface. It will happen.
16	CHAIR WALLIS: That's the whole purpose of
17	it. Okay. But it's just a blade, but it's not a
18	chopper. It's a scraper.
19	DR. BANERJEE: Is it a scraper?
20	CHAIR WALLIS: That's very different.
21	MR. BUTLER: It actually is not even in
22	contact with the surface. You're using
23	CHAIR WALLIS: But if it's sort of lifting
24	off blankets of stuff and depositing it, that's fine.
25	That's not chopping it up.
	I

(202) 234-4433

	300
1	MR. BUTLER: Right.
2	CHAIR WALLIS: I thought of it as scraping
3	off blankets of filtrate.
4	DR. BANERJEE: We better look at the
5	design. Maybe we ought to take a look.
6	CHAIR WALLIS: Well, I don't know. Maybe
7	we have to look at detailed designs. I'm not sure
8	we're the ultimate authority on what is allowed.
9	DR. BANERJEE: No, but we can take a
10	skeptical view instead, because it has a bearing on
11	what
12	MEMBER SHACK: That's designs in
13	installing backflushing systems?
14	MR. BUTLER: I don't know.
15	MEMBER SHACK: Is it a large number, a
16	significant fraction? Don't know?
17	MR. BUTLER: I don't know. It wasn't a
18	question that I included in the survey and offhand, I
19	haven't heard a lot of discussion about backflush, so
20	I suspect that it's a small number.
21	CHAIR WALLIS: You ought to make something
22	like a paper making machine that lays down the debris
23	and makes a sheet, takes the sheet and rolls it up and
24	puts it off in the corner somewhere. No, seriously,
25	that's the sort of thing that would be very good.
l	I

(202) 234-4433

	301
1	DR. BANERJEE: Then you would have to get
2	people from outside the industry to help out on this.
3	CHAIR WALLIS: It may be a good idea. So
4	these changes look dramatic.
5	MR. BUTLER: Yes, I'll just go to this
6	next slide here. This is the spectrum of sizes for
7	the estimated replacement strainers. Now, one point
8	I need to make on this slide is this is the total
9	screen area. So if you have multiple trains, if you
10	have two trains, you know, the size and strainer for
11	each train would be half of this size. But I just
12	wanted to have kind of a common basis for the total
13	amount of screen size you're installing in the plant.
14	DR. BANERJEE: Is it so much larger than
15	BWR because there is more debris around? Is that the
16	reason?
17	MR. BUTLER: There are multiple reasons
18	for
19	DR. BANERJEE: The steam generators, I
20	guess, have a lot of insulation here.
21	MR. BUTLER: There is certainly a greater
22	amount of debris that the evaluation methodology would
23	have you take into account. There are a number of
24	uncertainties that we're having to somehow take into
25	account, and I think the combination of those two

(202) 234-4433

	302
1	factors alone explains a lot of the difference in the
2	size.
3	MR. CARUSO: Without being specific, are
4	there any plant designs that cluster at one end of
5	this graph or the other?
6	MR. BUTLER: No, no. That is one of the
7	things I did look at and I didn't see a particular
8	design variation. There seems to be some utility or
9	company strainer/vendor combination factors that tend
10	to cluster sizes together. I think that's a
11	combination of how conservative they have been.
12	CHAIR WALLIS: Well, this is a rational
13	difference. It's not just a completely aleatory
14	thing. So randomly, depending on the assumptions they
15	make, they come up with a small screen or a big one
16	because there is more Cal-Sil in some plants and more
17	fiberglass. It's a rational thing.
18	MR. BUTLER: Some of those factors I will
19	go through in the next couple of slides here, but
20	variability is plant design has a big impact,
21	because a plant with 16 feet of NPSH margin that's an
22	all RMI plant is going to be a small strainer.
23	Whereas, a plant that has very little margin and a lot
24	of fiber has to have a much larger screen to keep the
25	pressure drop down.
Į	

(202) 234-4433

	303
1	The conservatism in methodology and
2	retained margin, however you want to call that, some
3	plants decided just to address margin by installing
4	the largest strainer they could fit into their
5	containment footprint or their strainer well, however
6	their design was.
7	So the size is not specifically tied to
8	what their evaluation methodology called for. It's
9	just that was bigger than what was called for and that
10	the additional cost by throwing on an extra module
11	while you have got a chance is not prohibitive, so go
12	ahead and do it.
13	CHAIR WALLIS: Unless it's
14	counterproductive.
15	MR. BUTLER: Unless it's
16	counterproductive.
17	CHAIR WALLIS: And causing too much
18	debris.
19	MR. BUTLER: And I suppose
20	CHAIR WALLIS: For certain LOCA.
21	MR. BUTLER: you could take a module
22	out if you needed to. So I have covered these slides.
23	There we go. As far as how people are going forward,
24	they have already scheduled when they are going to
25	install their strainers. Two units have already
I	1

(202) 234-4433

installed last year. 30 units are doing it in 2006, 33 in 2007 and one unit is doing it in the first quarter of 2008.

4 When this is scheduled to occur is highly 5 dependent upon how their outages fall out. Most plants are on an 18 month outage cycle, so they either 6 7 -- you know, they usually have just one opportunity and the window here between now and the end of 2007 to 8 9 install it, so they are doing it there. This shows you a little bit more detail on the installation. 10 Not surprisingly, because plants have fall outages, you're 11 12 seeing a peak in the fourth quarter of 2006 and the fourth quarter of 2007. 13

replacement 14 Beyond the strainer 15 activities, the survey that we sent out did ask some questions to get a little bit more information on what 16 17 plants are doing in other areas. There are a number problematic 18 of activities to reduce insulation 19 materials. I think as time goes on, that will occur 20 more and more. There are limitations on how quickly 21 these insulation materials can be removed. Both 22 factors of cost and radiological concerns limit how 23 quickly that can come out.

24 Certainly, as plants change out major 25 components that might have problematic insulation

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

(202) 234-4433

304

	305
1	materials, they are going to take care of those
2	problems as part of the change out, steam generator
3	change out, pressurizer change out. Those are going
4	to, you know, probably go with an insulation type that
5	is less problematic.
6	There are also a number of changes to
7	modify or reduce problematic coatings and latent
8	debris. Some plants are really upping their
9	activities to make sure that debris sources like tags
10	and other things that could come into play on a
11	strainer are addressed up front.
12	Containment modifications beyond strainer
13	installation that will be looked at are things like
14	debris transport, interceptors, changing the flow
15	path, moving debris preferentially to an area where it
16	can be isolated and not make it to the strainer. And,
17	of course, there are a number of activities that are
18	going on in the downstream effects area, both physical
19	modifications to the flow stream and a number of areas
20	where the testing is being performed.
21	CHAIR WALLIS: Yes. If you had a big
22	enough area, you would think you would have sort of a
23	settling tank before you went to the strainer.
24	MR. BUTLER: Well, that's one of the
25	things that I had wanted to mention several times
ļ	I

(202) 234-4433

1 today when people are making comparisons between what 2 is being tested and what will actually occur in a 3 plant. 4 Go through the scenario of this. There is 5 a period of time where you have got a fairly quiescent pool before you have started the strainer up where 6 7 those things are settling out. It's only 30 minutes 8 or more in the event when you start up the 9 recirculation pathway. So that is very different than 10 the way a lot of the tests are conducted, and I think they are conducted in a conservative fashion to move 11 12 a lot of this material toward the strainer.

But staff has raised some good points in 13 14 terms of agglomeration activities and making sure that the flow field is prototypic. So that's something 15 16 that the strainer vendors are going to have to 17 address.

As part of that, I quess we have already 18 19 noted that, that all plants are going to be doing 20 prototypic strainer testing or the vendors are going 21 that plant-specific to be doing taken into 22 characteristics. A number of plants identified plans 23 for plant-specific testing for debris generation and 24 transport.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

I don't have any details on that testing.

(202) 234-4433

25

My question was fairly general on whether or not anything planned, this would was and include 3 activities that have already been completed. So I 4 don't have all the information here, but just to make the point that a lot of activity is either underway or is planned.

7 The same thing applies for coating debris 8 generation and transport and I am aware of a number of 9 test activities in that area. And there are plans for plant-specific testing of downstream effects of debris 10 bypass and that is testing on particular components 11 12 and probably in the area of different field designs.

Some of the activities I have mentioned is 13 14 the WOG Chemical Effects Testing activity that was recently completed and the WCAP should be available 15 shortly, strainer qualification testing that you have 16 There is a WOG activity that will begin 17 heard about. any day now to look at alternate buffers to provide 18 19 plants with an alternative to their current buffers of 20 TSP or some hydroxide.

21 There is a couple of different coatings 22 tests that are looking at reducing the conservatism in the zone of influence for qualified coatings. The SER 23 24 modified the evaluation guidance to have plants assume 25 a 10D ZOI for qualified coatings unless testing could

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

	308
1	be provided to support a lower ZOI. So the intent of
2	this is to lower that conservatism.
3	MEMBER DENNING: You mentioned plant
4	I'm sorry, it's back under plant-specific testing.
5	You mentioned there on the bottom plans for plant-
б	specific testing for downstream effects. Are there
7	fuel vendor-specific tests that you're aware of?
8	MR. BUTLER: Certainly, things have been
9	discussed. I don't know how far they are in that
10	discussion, whether the tests are actually performed.
11	MEMBER DENNING: Okay. Thanks.
12	MR. BUTLER: So, in summary, a lot of
13	activity going on right now. Some of the limitations,
14	constraints, that we're dealing with in terms of
15	schedule kind of has forced a very conservative
16	application and resolution approach in certain areas,
17	but there are some key areas of certainty that we're
18	having to deal with, you know, through additional
19	testing.
20	And I imagine a lot of these activities
21	will continue well beyond the installation of the
22	strainers, so that if nothing else you can recover
23	some of the margin, basically recover operating margin
24	so you're not
25	CHAIR WALLIS: So how conservative are
Į	I

(202) 234-4433

	309
1	you? I mean, you wouldn't go to the extreme of saying
2	that we have got a little bit of Cal-Sil and we have
3	got a huge amount of fiber, that because we know there
4	is a thin bed effect, we're going to assume that the
5	whole all the Cal-Sil arrives first with a little
б	bit of fiber and covers everything with thin bed
7	before anything else happens?
8	You're not going to sort of assume that
9	kind of extreme case, are you?
10	MR. BUTLER: I wouldn't.
11	CHAIR WALLIS: You wouldn't? No, but, I
12	mean, I was just wondering what you mean by
13	conservative application of evaluation methodology,
14	because there are some things you could do by being
15	conservative, which might appear to be really extreme,
16	but they are not unimaginable.
17	MR. BUTLER: The balance, the problem with
18	this, one of the problems with this issue is trying to
19	be realistic, you know, because the combination of
20	conservatisms in each of the areas that you would look
21	at is so unrealistic that hardly anyone could live
22	with the result.
23	CHAIR WALLIS: So you have finding an
24	adequate level of conservatism is difficult.
25	MR. BUTLER: Yes.
ļ	I

(202) 234-4433

	310
1	CHAIR WALLIS: Because as soon as you give
2	up a little bit of conservatism, people can say, well,
3	you're not being conservative.
4	MR. BUTLER: Right.
5	CHAIR WALLIS: So I don't know how you
6	decide something like that.
7	MR. BUTLER: That's something that we have
8	struggled with and I know that the staff has struggled
9	with it, and this is a design basis analysis area
10	where, you know, you, you know, traditionally have to
11	be conservative and it's difficult to bring in risk-
12	informed aspects to that decision process.
13	DR. BANERJEE: Well, if you look at LOCA,
14	your peak clad temperature was what you wanted to
15	predict, right, as you want to predict the pressure
16	loss or whatever is available for NPSH. Yet, instead
17	of following a sort of methodology where you develop
18	a model to predict this and then sort of test it
19	against experiments and so on, you have taken a purely
20	experimental route where it's very hard to evaluate
21	whether you are being conservative or not.
22	You know, if you change a little bit in
23	the experiment, you will have a different result and
24	you can get very different results. So what seems to
25	be totally lacking is some framework to interpret
I	I

(202) 234-4433

1 these experiments as people have had in LOCA. If you 2 just tried to develop a correlation for the peak clad 3 temperature, it wouldn't be very easy. I don't think 4 you could do it.

5 So you are trying to develop a correlation or do a test which is pretty ad hoc. It will be like 6 7 doing an out reactor test or something on a small 8 scale. There is no scaling studies. It's really hard 9 to see how this all fits into the real thing. А 10 little test done here with some conditions and you're saying this is how this whole thing will behave in 11 reality. You know, I don't see that connection. 12 There is nothing to glue the two things together. 13

MR. BUTLER: This may not be an adequate response, but I will give it a try. The range of phenomena and variability of conditions that you're having to look at on this would make it, in my mind, almost impossible to come up with a correlation that could address --

20 DR. BANERJEE: I'm not saying a 21 correlation. I'm saying a methodology, which you 22 can't have a correlation for peak clad temperature 23 either. You have a LOCA code, right? Here the LOCA 24 code is based on certain scientific principles and the 25 correlations which enter are at a very different

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	312
1	level. It's like the settling velocity of a particle
2	or a fiber or whatever, things that you might be able
3	to know something about.
4	MR. BUTLER: Well, a lot of that is just
5	what we did in developing the evaluation guidance that
6	the staff subsequently reviewed. That does provide a
7	lot of guidance to plants in terms of the debris
8	source term that makes it to the strainer screen. It
9	does not tell you how to determine the head loss
10	across that screen. That is to be determined through
11	prototypic testing.
12	DR. BANERJEE: But it may depend on
13	various factors like which component is convected in
14	what way to the screens and which arrives first. You
15	know, the results can change a lot depending on a lot
16	of these things, and that is unfortunately the reason
17	why there is such uncertainty. If you do an
18	experiment in Los Alamos, then you do it in Battelle,
19	you get two completely different answers and those are
20	ostensibly the same tests.
21	MR. BUTLER: You will get a different
22	answer probably.
23	DR. BANERJEE: And by a factor of 10.
24	MR. BUTLER: If you do it 10 times, you
25	will get 10 different answers.
I	1

(202) 234-4433

	313
1	DR. BANERJEE: Well
2	MR. BUTLER: That's the part of the
3	CHAIR WALLIS: And, of course, when you
4	get a big spread in results, how many do you need
5	before you can evaluate an uncertainty? You certainly
6	can't get much of an uncertainty from two tests which
7	are trying to duplicate each other and dumped. It
8	doesn't give you much handle on the uncertainty. It
9	just tells you there is a difficulty duplicating the
10	test. It doesn't tell you that if you did another 10
11	you wouldn't get a much bigger range.
12	MR. BUTLER: Well, I mean, there has been
13	enough
14	CHAIR WALLIS: So we look at all these.
15	MR. BUTLER: head loss testing to tell
16	you the direction certain things go that
17	CHAIR WALLIS: Certain anomalies.
18	MR. BUTLER: More finely chewed debris,
19	whether you use a garbage disposal versus something
20	else to chop it up, is going to give you higher head
21	loss than, you know, less finely chewed debris. Which
22	is right, I don't know, but you certainly know how to
23	get higher head loss for your tests or lower head
24	loss. That is known. So that's it.
25	CHAIR WALLIS: Is it, because in some of
ļ	

(202) 234-4433

	314
1	these tests in Lab A and Lab B, Lab B's results are
2	bigger than Lab A's and sometimes it's the other way
3	around. So I don't think we know that well what it is
4	that makes the difference. We're finding out.
5	MEMBER DENNING: Since that's a difficult
6	question to answer, let me ask you another difficult
7	question. No, this may not be so difficult. NRR
8	talked a little bit about some alternative water
9	supplies, that type of thing, that one could consider
10	as potential to account for uncertainties.
11	Is there anything that the industry is
12	doing with regards to that? That is in case things
13	don't work in accounting for uncertainties, are they
14	considering things with alternative water supplies and
15	specifically developing CMGs that would be directed
16	towards the implementation of those things. Do you
17	understand what I'm saying?
18	MR. BUTLER: That was part of the set of
19	compensatory actions that I mentioned that the WOG
20	looked at and that plants have implemented. How far
21	they can go with that, there are a number of plant-
22	specific factors that have to be brought into account.
23	There are limitations on how much water you can put
24	into the containment without coming into other factors
25	like equipment operability.
ļ	I

(202) 234-4433

	315
1	MEMBER DENNING: Yes.
2	MR. BUTLER: And even structural concerns
3	with the containment.
4	MEMBER DENNING: So are you saying that
5	the plants already have CMGs that are relevant and
6	that there isn't anything else that will be done for
7	the future or, I mean, we're learning about some of
8	the difficulties of the overall problem for the long-
9	term, perhaps not just for interim things. And I'm
10	just wondering whether there was more that might be
11	provided in the long-term to handle the "well, what
12	if" cases in case the things that we think are going
13	to work don't really work.
14	MR.BUTLER: All I can say is it's an area
15	that has been looked at by plants. Like just about
16	everything else, you could always do more in any area.
17	I mean, making modifications so that you don't have a
18	limitation on the flood level, so that you can flood-
19	up to cover the top of the core.
20	MEMBER DENNING: Yes. I don't mean to
21	imply that's a good thing to do.
22	MR. BUTLER: Right.
23	MEMBER DENNING: Because I don't know the
24	answer, but it's obviously the kind of thing that one
25	could potentially do.
I	I

(202) 234-4433

	316
1	MR. BUTLER: One could potentially look at
2	a whole range of actions, yes.
3	MEMBER DENNING: But as far as you know,
4	industry doesn't really have plans right now to do
5	more in that area, that they are oriented towards
6	this?
7	MR. BUTLER: At present the attention is
8	focused on the modifications necessary within a design
9	basis space to keep the recirculation path open.
10	MR. DINGLER: This is Mo Dingler. Let me
11	answer that. Some of the changes that the WOG did
12	plans for implementing those as interim and as
13	permanent, so they may keep some of those like I
14	will just use an example.
15	Refilling the RWST tank. That may become
16	a permanent EOP or ERG. They are still looking at
17	that and what they are some of them, it may go away
18	because you're putting in bigger sump screens in that.
19	So each individual plant will look at what they
20	implemented and see which one they want to maintain as
21	more permanent or permanent and others that are not.
22	MEMBER DENNING: Thanks.
23	MR. BUTLER: I'm done.
24	CHAIR WALLIS: That's it? Okay. Thank
25	you. You have gained us a bit of time. Can we now
ļ	I

(202) 234-4433

	317
1	proceed with the WOG presentation?
2	PARTICIPANT: Yes, it's in the upper right
3	hand corner on the machine.
4	MR. DINGLER: Upper right hand corner?
5	PARTICIPANT: Hit escape.
6	PARTICIPANT: No, escape.
7	PARTICIPANT: Just minimize your window so
8	you can see the desktop.
9	MR. DINGLER: Okay.
10	PARTICIPANT: Is that yours?
11	MR. DINGLER: That's mine right there.
12	PARTICIPANT: F5.
13	MR. DINGLER: Thank you. I'm slow on
14	computers. I get told every time I test a computer,
15	I get in trouble. I'll go ahead and start. What I
16	want to do is give an overview of what the
17	Westinghouse Owners Group has done in GSI-191.
18	CHAIR WALLIS: Before you get started,
19	could you tell us the size of the holes in the bottom
20	of the fuel?
21	MR. DINGLER: The size of the holes in the
22	bottom of the fuel is either the same size or greater
23	than the openings in the sump screen on that for a
24	majority or for all plants that I know of. We had to
25	evaluate that as an Information Notice in '97/'98,
I	I

(202) 234-4433

	318
1	some time frame that it came out and we evaluated it.
2	And, also, there is bypass flow for a
3	majority of the plants, alternate flow paths. If
4	those P grids get blocked, some of the three loop down
5	flow plants will do a little more evaluation. They
6	have very little bypass flow or alternate bypass flow.
7	So there is alternate flow paths for a majority of the
8	plants.
9	CHAIR WALLIS: So some of these openings
10	would appear then to be bigger than some of the
11	passageways through the spacers?
12	MR. DINGLER: That is correct.
13	CHAIR WALLIS: So we might assume then
14	that some of the material might breach into the
15	spaces. I thought that these grids were put there to
16	prevent metallic material going in and rattling around
17	in the spacers to cause fretting, but apparently it
18	wouldn't catch everything.
19	MR. DINGLER: There is an ongoing battle
20	between normal operations and fuel leakers that
21	CHAIR WALLIS: Right.
22	MR. DINGLER: the Commissioners are
23	wanting us, as an industry, to minimize or eliminate
24	against the long-term LOCA efforts that's going on.
25	So we're running a conflict between which one is going
I	I

(202) 234-4433

	319
1	to come out and how we're going to settle it. I do
2	know a lot of plants, as Graham Wallis asked, was
3	has looked at bypass flow and decided the openings of
4	the sump screen, reducing the amount of fines by
5	debris interceptors, as John put in some modifications
6	to reduce the transport of that to minimize that
7	concern.
8	CHAIR WALLIS: Okay. Maybe you should go
9	back now to your presentation.
10	MR. DINGLER: To my presentation. What I
11	want to do is give you an opportunity or what the WOG
12	has been doing. I'm Mo Dingler or Maurice Dingler.
13	I work with Wolf Creek and I am also Chairman of the
14	Systems and Equipment Subcommittee that is responsible
15	for this issue.
16	What I want to do is go over the
17	activities. We have been involved actively since
18	1999. Some of us have been involved since '97. We
19	now represent all PWRs. As of the 1 $^{ m st}$ of the year,
20	the B&W fleet joined the Owners Group, so we have all
21	PWRs within the Owners Group at this point. There is
22	some discussion of whether we have to change the name
23	now. That is another issue, but that is ongoing.
24	We have done 10 major projects or are
25	planned. We have five completed and five ongoing. We
I	

(202) 234-4433

	320
1	have got over 20 man-years of effort so far and this
2	doesn't include what the B&W OG has done prior to
3	2006.
4	What I want to do is give you an overview
5	of the completed projects and also the current
6	projects. This is at a very high level on that. We
7	started out working on Generic Letter 97-04 and future
8	and involved the industry. We are participating in
9	the PIRT panels that was going on both for debris
10	transport for dries and ice condensers and also
11	containment coatings research back in the early days
12	on that. We also provided the summary of at-power
13	radiation dose surveys.
14	A lot of discussion going on about the
15	Bulletin and the potential ERGs and EPGs went on that
16	the WOG developed, approximately, 10 to 12 different
17	scenarios, both pros and cons. Plants implemented it.
18	We issued three volumes. One was the Westinghouse
19	Emergency Response Guidelines and one was the CE
20	Emergency Guidelines. These were focused on changing
21	our emergency procedures.
22	We did look at the SAMs and SAM says if
23	you lose something, put water in and we looked at
24	those and those were adequate of getting as much water

in to maintain core cooling. So we did look at that,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	321
1	but these are most of our EOPs and stuff like that.
2	Then the other ones, as John said, John
3	Butler says, that we provided input to the two NEI
4	documents, Condition Assessment, NEI 02-01, also, the
5	Plant Sump Performance Evaluation, NEI 04-07. Now,
6	some of the completed and also the completed one is
7	we did for the industry what was important to put in
8	the PRA, a generic template for modeling sump
9	blockage, what was the parameters to consider in
10	blockage and stuff like that.
11	Some of the probabilities we're still
12	looking at, adding and tweaking those values. Part of
13	the project was not to put probabilities on this, but
14	just give them what's important to consider in the
15	models.
16	Some of the current projects we got going
17	on is the chemical and corrosion products with the
18	ICET testing. We participated with EPRI and the NRC
19	in developing the test plan, commenting on the results
20	and stuff like that to develop the ICET Test Program
21	that was discussed today. Also, we gave some inputs
22	for a follow-on project and I will get to that in a
23	minute.
24	We looked at the downstream effects on
25	that and developed the methodology that was discussed
I	1

(202) 234-4433

	322
1	earlier on today. We have some comments to resolve
2	with the NRC ongoing on that and that's for fuel
3	blockage and that. Some of the discussion on that is
4	to look at sump screens, some plants decided a sump
5	screen size and then working around that for
6	downstream. Others has made an integral process of
7	you have this opening, this size of sump screen, what
8	is the downstream effects. So it's an integral
9	process of going on and working through those things.
10	We also just completed as of last week,
11	we issued the document. It was the methodology of
12	post-accident chemical effects on that. What we also
13	did as part of that is what we call bench testing or
14	small scale. We looked at developing a debris
15	particulate generator that would generate the mix for
16	the plant based upon their parameters, how much zinc
17	they have, how much aluminum they have, how much Cal-
18	Sil they have or calcium available to develop a plant-
19	specific issue.
20	We also validated that against the ICET
21	test and some of our projections the same as did the
22	filtration and the settling rate of that particulate
23	we produced in potable water, everybody says tap, I'm
24	a civil engineer, so it's potable water to me. Go in
25	and say did it settle at the same time as the is

(202) 234-4433

(202) 234-4433

	323
1	the filtration rate the same through a filter? We did
2	this and verification on that to make sure it was
3	there.
4	CHAIR WALLIS: Now, this path-specific
5	precipitant mix, presumably could depend on where the
6	pipe break occurs.
7	MR. DINGLER: That's correct.
8	CHAIR WALLIS: It's not as if it's
9	something that's unique to a plant. And if the break
10	occurs near a place where there is a lot of Cal-Sil,
11	you get Cal-Sil. There could be a break which occurs
12	somewhere else and you don't happen to have Cal-Sil in
13	that vicinity.
14	MR. DINGLER: That's correct.
15	CHAIR WALLIS: So there are quite a few
16	different mixes you can get in the same plant.
17	MR. DINGLER: Now, I'll speak for, let's
18	say, the six plants that have Cal-Sil. I think four
19	plants have Cal-Sil outside the bioshields. So we
20	have very little transport to it. A couple of plants
21	have them, approximately, 99, 98 percent all over, so
22	you've got a lot of stuff. So each one, you've got to
23	add in saying the generation is where is your break?
24	Is your break considered?
25	In other words, do you have to consider a
Į	

(202) 234-4433

	324
1	secondary break outside the bioshield? Then that Cal-
2	Sil may come in to effect. Other plants have safety
3	grade fan coolers. They won't necessarily have to
4	consider a secondary break outside the bioshield. So
5	those have to be factored in when you generate that.
6	Also, how much pH you have when your pH
7	becomes available. We talked about mission times. If
8	you run sodium hydroxide through the RHR heat
9	exchanger, it cools it down, so you have secondary
10	precipitate being formed, that's what we got to look
11	at. So all that is factored into the generator and
12	stuff like that.
13	MEMBER DENNING: Have you looked at the
14	vendor, the filter vendor plans for doing these tests?
15	And is it practical to add in chemistry into those
16	tests? And would you use this kind of guidelines to
17	say well, this is the chemistry that you ought to be
18	performing those tests under?
19	MR. DINGLER: We did a set of verification
20	against potable water against the ICET test
21	particulates, so the solubility and the filtration
22	were pretty much the same. I don't have the exact
23	detail in my head right now, but that's so we could
24	test with potable water. There is some discussion
25	ongoing with the NRC on that right now.
ļ	I

(202) 234-4433

	325
1	MEMBER DENNING: So you're saying that the
2	chemistry effects are not significant under those
3	conditions that you just talked about where you could
4	replace the chemistry with potable water?
5	MR. DINGLER: Well, the testing is potable
6	water, do the flume test and stuff like that. You
7	will find that the buffer, I've got one going on over
8	buffering. It depends on the buffering of you've got
9	aluminum hydroxides formed if you have sodium
10	hydroxide plants. You have calcium phosphate being
11	formed. You have TSP. Based upon what we're seeing
12	in the generation of those flocs, both of them are
13	treatment of water. They treat water, potable water
14	to clarify water, also that goes to those then,
15	properties.
16	We looked at the filtration and the
17	settlement duration both in the high-pH, low-pH
18	against what we generated in tap water or potable
19	water. We found out that they were pretty well
20	similar in properties. Does that answer your
21	question, Richard? I'm not sure.
22	MEMBER DENNING: Yes, it just surprises me
23	based upon what I have seen so far in chemistry tests
24	that it would not have a significant effect.
25	MR. DINGLER: We see it has significant
I	

(202) 234-4433

	326
1	effects of generation, but not necessarily in the
2	filtration and the settling rates.
3	DR. BANERJEE: But you see significant
4	effects in head loss, too?
5	MR. DINGLER: We're not
6	DR. BANERJEE: You haven't done anything?
7	MR. DINGLER: We haven't done head loss.
8	MEMBER DENNING: Oh, I'm sorry.
9	DR. BANERJEE: Yes.
10	MR. DINGLER: We have not done head loss.
11	MEMBER DENNING: That's what I
12	interpreted.
13	MR. DINGLER: Sorry.
14	MEMBER DENNING: Was that you were saying
15	it didn't affect the head loss.
16	MR. DINGLER: Yes, it affects head loss.
17	I mean, in other words
18	MEMBER DENNING: If it affects head loss,
19	does that then mean that when these tests are done by
20	the vendors that they are going to have to include
21	chemistry, realistic chemistry in those "head loss
22	tests?"
23	MR. DINGLER: Well, what I'm saying is it
24	affects the head loss. It affects the head loss by an
25	amount of how much is getting to your sump screen.
I	

(202) 234-4433

1 Based on the filtration, the filterability of these 2 particulates, we're seeing that we validated against 3 what was in the ICET test which was pH upper _ _ 4 integrated pH, integrated some temperatures in that, 5 that we saw that the filtration or the filterability 6 were pretty much the same, no matter what kind of 7 water we used. 8 MEMBER SHACK: You're saying that if you 9 aluminum hydroxides, for example, generate in 10 something that is tap water rather than for 2800 boric acid, then you're still getting something that looks 11 12 like ICET 1. 13 MR. DINGLER: That's correct, sir. Thank 14 Appreciate that. you. 15 MEMBER SHACK: Then the same with the 16 calcium phosphate, it's calcium phosphate. 17 MR. DINGLER: That's correct. 18 MEMBER SHACK: Thanks. MR. DINGLER: Any other discussion? 19 Some 20 of the current ongoing projects we have got right now 21 is some of the plants are about 10 units is looking at 22 qualification of lead blankets for shielding. The 23 title is a little misleading. If we leave lead 24 blankets in for shielding and work at power, does that 25 become a debris source?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

327

So we're looking at taking 500 degree F qualified blankets and less than 400 degree temperature blankets preventing a jet impingement test, a soak test and a limited debris characteristics evaluation, so plants understand if that becomes a debris source or not and they can leave it in at power.

Alternate buffer as you heard that we got 8 9 sodium hydroxide, TSP and Borax or sodium tetraborate. I remember, you know, Reagan and his Borax team, but 10 on that we saw that the Borax shows, let's say, about 11 12 half the amount of precipitants being formed in TSP and sodium hydroxide, approximately, I think one is 49 13 14 and one is 63 percent. So there is other agents out 15 there that we can provide the same buffering agent for The potential out there 16 PA-SEE and iodine catchers. 17 shows less debris chemical reactions going on. So we're looking at those as we speak right now. 18

19 In summary, WOG considers this a high 20 We have been coordinating this to support priority. 21 licensing and NEI and the NRC in resolution of the 22 As you can tell, we've got about over 20 GSI-191. 23 man-years on it already. Some of us have been 24 involved since '97. WOG actually since '99. And we 25 will be continuing and looking at ways to help resolve

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	329
1	this solution as we go forward.
2	I'll open up for questions.
3	DR. BANERJEE: I guess the question
4	Richard was asking about doing tests in these
5	facilities on head loss using appropriate chemistry,
6	are you planning any tests like that?
7	MR. DINGLER: The Owners Group is not,
8	because right now there is say there's five
9	different vendors and each one of those vendors have
10	slightly different sump screen configurations and
11	stuff like that.
12	DR. BANERJEE: So they will do the tests?
13	MR. DINGLER: We have asked and they will
14	be providing those tests for the individual licensees.
15	DR. BANERJEE: Okay.
16	MR. DINGLER: Since there is so many
17	different varieties, as Ralph Architzel said, there is
18	one plant that did their own design. The rest of them
19	are looking at the five vendors. And each one is
20	slightly different. Some one vendor may provide
21	one plant a square one. One might do a round one and
22	one stacked/raised and one is all over the place.
23	DR. BANERJEE: But these tests are done in
24	different flumes with different types of upstream
25	conditions and adding debris. Is there some
ļ	1

(202) 234-4433

	330
1	standardization of this going on?
2	MR. DINGLER: That
3	DR. BANERJEE: Do you leave it up to the
4	vendors to do whatever they feel like?
5	MR. DINGLER: I think our position is the
6	industry and the NRC was that we need to do testing
7	that represents our plants and flow velocities, what
8	do they call it, bulk velocities, getting to the sump
9	or approach velocities right near the sumps, whether
10	you have a screen that's in the sump pit itself or
11	screens that's on the floor, scaling and that, that's
12	ongoing discussions with each individual vendor,
13	licensees and the NRC.
14	DR. BANERJEE: So you're out of it?
15	MR. DINGLER: The Owners Group is out of
16	it, yes.
17	DR. BANERJEE: All right.
18	MR. DINGLER: I'm not out of it, because
19	I've got a plant, too.
20	DR. BANERJEE: Yes. But the Owners Group
21	is out of it?
22	MR. DINGLER: The Owners Group is out of
23	it.
24	MEMBER DENNING: But you do feel that they
25	would have to then add precipitants to represent the
I	1

(202) 234-4433

	331
1	precipitants that one would expect?
2	MR. DINGLER: That's correct.
3	MEMBER DENNING: Is that what you're
4	saying?
5	MR. DINGLER: Um-hum. You've heard some
6	talk about vertical head loss loops and that, get a
7	bump up, that's very good if you, in my opinion, this
8	is my opinion only, have uniform distribution across
9	there, that will probably give you a good figure. If
10	you don't have uniform distribution, that bump up may
11	not be correctly used. I think there was some
12	discussion on that and you saw some of the slides on
13	that.
14	So that's what makes these complex screens
15	a little more complicated is you may not or have
16	uniform distribution across the screens.
17	CHAIR WALLIS: Now, all these numbers are
18	PA-SEE- something or another.
19	MR. DINGLER: That's my nomenclature to
20	keep track of it for accounting purposes.
21	CHAIR WALLIS: Is that the name of the
22	program?
23	MR. DINGLER: Yes, that's the name of the
24	program.
25	CHAIR WALLIS: It's not the title of a
I	I

(202) 234-4433

	332
1	it's not the name of a report that goes with the
2	program?
3	MR. DINGLER: No, sir.
4	CHAIR WALLIS: It is not? It's not.
5	MR. DINGLER: Well, there is a title plus
6	a PA-SEE-183, that's the number that goes into the
7	program to track the costs and stuff like that.
8	CHAIR WALLIS: Well, I mean, so there is
9	a program?
10	MR. DINGLER: That is the program, yes.
11	CHAIR WALLIS: Okay. The thing I'm
12	wrestling with is you've described a lot of
13	interesting activities. I have no way of telling
14	whether the product of these activities is useful or
15	whatever until I see something. I don't want to be
16	involved as being the reviewer of your activities, but
17	somebody has to find out if all this product is
18	actually turning out to solve the problem.
19	MR. DINGLER: As we talked, in other
20	words, the NEI documents, NEI 04-07, was issued for an
21	SE and we received that. We are submitting the
22	downstream ones for an SE and we will be presenting
23	the chemical bench testing for information.
24	CHAIR WALLIS: So the useful products will
25	be subjected to a safety evaluation by the NRC?
ļ	

(202) 234-4433

333 1 MR. DINGLER: The downstream one will be 2 an SE and then the other one is more of a data report 3 and stuff like that, so that's for information. All 4 the other documents that's listed if a plant uses 5 them, it's open for audit reviews when they do the plant-specific. Like the lead blankets, 10 units for 6 7 participating on that, so that will be available for 8 them, the 10 plants. What we have heard from the 9 CHAIR WALLIS: 10 staff this morning was that they had a lot of RAIs and so on from the work which industry was doing. We have 11 12 heard from you that you are doing a lot of good activities, and presumably they will have questions 13 14 about those. 15 MR. DINGLER: Sure. I just don't know how we 16 CHAIR WALLIS: 17 evaluate whether or not these activities are solving the problem, since I haven't really seen the kind of 18 19 thing that I could apply criteria to to evaluate them. 20 PARTICIPANT: We have another meeting in 21 June to talk about technical stuff then. 22 It depends on what the DR. BANERJEE: 23 question is. Are we supposed to, I mean, take an overview of this and factor in these activities and 24 25 try to say yes, it's going in the right direction or

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	334
1	we should maybe think of something else or something
2	else? So in that case, we need to have some more
3	information. Is the SE enough? Is that what you're
4	asking?
5	CHAIR WALLIS: I'm just wondering what is
6	our role?
7	DR. BANERJEE: Our role?
8	CHAIR WALLIS: And I
9	DR. BANERJEE: To see where all these
10	pieces fit, I guess, and where it's going.
11	CHAIR WALLIS: Well, yes, I see a
12	situation having been described here, which is more
13	like a story, but that's not the basis for a technical
14	evaluation by me. I would have to look at some data
15	or something, some kind of model or some predictive
16	method or some tool to be used with sophistication and
17	all that kind of stuff and I haven't seen any of that.
18	So I'm not quite sure how I can contribute to this
19	except to say that there seemed to be an awful lot of
20	aspects to this story. And whenever I see a slide
21	from the staff, it seems to indicate there are a lot
22	of questions yet to be answered.
23	MEMBER DENNING: Well, let me you know,
24	there is a model, I think, that they are proposing.
25	Let me say what I think it is and, please, you can
	I

(202) 234-4433

	335
1	help me. The model goes like this. First of all, you
2	look at the zone of influence and you determine how
3	much debris is generated there. Okay. And there is
4	some more work that may be done on that.
5	Then you take that and you flow it down by
6	and there was some experimental work, but mostly
7	it's a lot of expert judgment on how it transports
8	down to the sump region. But so anyway, we have got
9	a very crude model and definitely the staff thinks
10	that's very conservative, you know. It's a little
11	hard to say, but it's not a very theoretical model.
12	It's very you know, and then you've got
13	the CFD analysis for the pool as far as carrying the
14	stuff in the near region. And then I think the old
15	model was then you used the correlations to tell you
16	what the head loss was going to be, but now, the
17	approach is you figure how much gets to the near
18	region and then you do these vendor-specific
19	experiments and it takes into account how much fall
20	out you have in the near region and how much goes on
21	to some simulated screen and you get the head loss.
22	Now, maybe there are a number of different
23	tests you do, because they are recognizing well, it
24	might make some difference for some things. But
25	that's the kind of so there's this at the very
l	1

(202) 234-4433

	336
1	end there's an experimental piece that's put in that
2	makes me uncomfortable. But I think that that's the
3	approach that I think industry is taking.
4	CHAIR WALLIS: That's correct.
5	DR. BANERJEE: And it also factors in or
б	will need to all these chemical processes that will go
7	on as it goes to the screens.
8	MEMBER DENNING: But what I'm hearing is
9	that well, maybe what you do is you have to say okay,
10	I can estimate how much precipitant there is going to
11	be and then when I put in my when I dump in my
12	amount of stuff that I'm going to dump in in that
13	experiment, you also dump in an appropriate amount of
14	precipitant material, so that it affects then
15	however
16	CHAIR WALLIS: Well, more chemicals or
17	something.
18	MEMBER DENNING: What's that?
19	CHAIR WALLIS: Something that's more
20	typical of what's actually there in the path.
21	MEMBER DENNING: Yes, chemistry wise.
22	Now, that's kind of I see the gross model that's
23	now being described.
24	DR. BANERJEE: Then there is another piece
25	to that besides the chemistry, which is how much
Į	

(202) 234-4433

	337
1	passes through that screen and where does that go?
2	MEMBER DENNING: Yes. And we haven't seen
3	what I would say is a model for that, although, you
4	know, as to how you do that piece of the analysis.
5	CHAIR WALLIS: We are going to hear
6	tomorrow from results of tests
7	MEMBER DENNING: Well, I guess
8	CHAIR WALLIS: that were done in New
9	Mexico.
10	MEMBER DENNING: Well, I think that the
11	staff understands how you do some pieces of it, like
12	when you've got little bits of debris that are going
13	into pumps and stuff like that and the impingement and
14	whether the material is hard enough not to erode. The
15	big thing that I see in that piece of it is how much
16	gets collected in various areas that could lead to
17	loss of coolability of the core. That still seems to
18	me to be a
19	DR. BANERJEE: So cooling.
20	MEMBER DENNING: Yes.
21	DR. BANERJEE: Loss of coolability and
22	loss of
23	MEMBER DENNING: Yes.
24	DR. BANERJEE: I guess the issue though is
25	that in each of these very, let's say, steps we
	I

(202) 234-4433

	338
1	haven't heard what are the key dominant phenomena. To
2	me it's not apparent what is important and what is
3	not. I don't know to begin with what you should be
4	trying to study. We know chemical is important. We
5	know fiber is important. We know particulates are
б	important. There isn't I'm used to seeing a PIRT
7	or something and then from that a scaling analysis.
8	I mean, if you go into the loss of coolant
9	analysis business, that's how they do things. There
10	is nothing equivalent to that being done here. There
11	seems to be no systematic approach of that nature
12	where people are trying to take each step in this
13	process, write down what is the important things and
14	then how to scale them properly, whether the
15	experiment is applicable or not to the model you are
16	developing.
17	There's this whole scaling applicability,
18	all this stuff, none of this is done. Sort of an ad
19	hoc mash.
20	CHAIR WALLIS: I'm thinking we may say
21	thank you very much, unless you have something else to
22	tell us at this time.
23	MR. DINGLER: I don't, no.
24	CHAIR WALLIS: Do any of your colleagues
25	from the WOG want to tell us anything more?

(202) 234-4433

	339
1	MR. DINGLER: I don't think so. I think
2	I'm the only one here right now.
3	CHAIR WALLIS: They don't want to be
4	subject to questions either.
5	MR. DINGLER: That's right. They don't
6	want the Chicago Massacre on Valentines Day.
7	CHAIR WALLIS: I think we should like to
8	finish up today with what's this, this is the
9	highlight of the whole day, this is the coatings.
10	MR. YODER: We've got some coatings.
11	CHAIR WALLIS: This is the autoclave
12	business.
13	MR. YODER: Not necessarily. What I'm
14	going to do is kind of lay out for you what testing is
15	ongoing and then some of the challenges we see. Okay.
16	We're ready to proceed?
17	CHAIR WALLIS: Yes, please.
18	MR. YODER: My name is Matt Yoder and, as
19	I said, we're going to go through some of the coatings
20	issues of GSI-191.
21	The primary issue here, and I think you
22	have heard from several of the speakers today, is that
23	the staff has taken a conservative position for the
24	zone of influence for coatings, for the debris
25	generation and the transport of coatings and that is
I	1

(202) 234-4433

	340
1	unqualified coatings and qualified coatings that have
2	been degraded or that are within that zone of
3	influence.
4	Now, the staff's guidance also says that
5	if plants would like to take exception to any of these
6	conservatisms, they can perform testing and try to
7	justify a different position.
8	CHAIR WALLIS: So the zone of influence
9	was made conservative by making it bigger than you
10	thought it was in terms of its diameter?
11	MR. YODER: That's correct.
12	CHAIR WALLIS: It wasn't in terms of its
13	direction or anything. It's still assumed to be a
14	sphere.
15	MR. YODER: That's correct.
16	MEMBER KRESS: Yes, but wasn't that sphere
17	developed by taking a jet and going out to the point
18	where it no longer does damage and
19	CHAIR WALLIS: And making it the same
20	volume, but it's not clear that a jet which is aimed
21	in a direction where the coatings happen to be or
22	whether you know, is going to be more or less
23	conservative than having a sphere which lets, you
24	know, the same volume be affected, but only in the
25	sphere.
I	I

(202) 234-4433

	341
1	MR. YODER: Well, the ZOI, the 10D ZOI is
2	loosely based on what was used for the BWRs, which was
3	the conical type of jet.
4	CHAIR WALLIS: These are conical, yes.
5	MR. YODER: And that was a 10D jet out to
6	that conical region, so this is really much more
7	conservative to that because this is a sphere of that
8	radius.
9	CHAIR WALLIS: But it has the same volume,
10	so it doesn't go out so far but
11	MR. YODER: No, this is actually a greater
12	volume than that.
13	CHAIR WALLIS: Okay.
14	MR. YODER: Yes.
15	MEMBER KRESS: And it just takes the
16	diameter out to the or the radius out to the point
17	of damage.
18	MR. YODER: Correct. Whereas, before it
19	was a cone, 10D, and then a cone out to that point.
20	CHAIR WALLIS: Right.
21	MR. YODER: Now, you're talking about a
22	sphere.
23	CHAIR WALLIS: But I thought it was a
24	sphere of the same volume as the cone.
25	MR. YODER: That's
I	I

```
(202) 234-4433
```

	342
1	CHAIR WALLIS: It actually doesn't go so
2	far?
3	MR. YODER: In the ANSI Jet Model, that is
4	how it is done.
5	CHAIR WALLIS: You know how good the ANSI
6	Jet Model is?
7	MEMBER DENNING: That's what the ANSI Jet
8	Model does, but you do it the way Tom explained it
9	where you go out and then you take that whole sphere?
10	MR. YODER: Correct.
11	DR. BANERJEE: It's typically 10 or 12
12	diameters? What is that, the break diameters?
13	MR. YODER: For coatings?
14	DR. BANERJEE: Yes.
15	MR. YODER: What we have laid forth in the
16	guidance is 10 pipe diameters.
17	DR. BANERJEE: Right.
18	MR. YODER: Now, I will talk about some of
19	the testing that's going on now.
20	DR. BANERJEE: 10 break diameters, right?
21	MR. YODER: Right, the diameter of the
22	pipe, the break pipe.
23	DR. BANERJEE: Yes.
24	MR. YODER: I will talk a little bit about
25	some of the testing that is ongoing to try to reduce
l	1

```
(202) 234-4433
```

	343
1	that.
2	CHAIR WALLIS: This is all kinds of
3	coatings now?
4	MR. YODER: Correct.
5	CHAIR WALLIS: Because of uncertainty
6	about qualified coatings?
7	MR. YODER: Well
8	DR. BANERJEE: Unqualified coatings.
9	CHAIR WALLIS: Qualified coatings, if they
10	are well-prepared and they are new, seem to be very
11	resistant to jets.
12	MR. YODER: That's correct. Within the
13	ZOI it would be any kind of coatings, qualified or
14	unqualified. And then outside of that zone of
15	influence, you would be talking about the unqualified
16	coatings or the coatings that were originally
17	qualified that have somehow become degraded through
18	whatever damage mechanism over time. Okay?
19	DR. BANERJEE: Let me ask one question on
20	this, too. There is an effect, obviously, of momentum
21	or other things, you know, mass transfer due to the
22	jet hitting certain regions. So within this 10
23	diameters, the velocity of the jet is taken into
24	account and outside it's not or in
25	MR. YODER: For

(202) 234-4433

	344
1	DR. BANERJEE: Let's say testing an
2	unqualified coating.
3	MR. YODER: Sure.
4	DR. BANERJEE: When you do it in an
5	autoclave, you have steam or whatever coming out.
6	MR. YODER: There would be no jet
7	impingement in that kind of testing. It would be
8	subject to spray like you would see in the bulk of the
9	containment, not necessarily that jet that you would
10	get from a pipe break.
11	DR. BANERJEE: Okay. That's good,
12	clarified.
13	CHAIR WALLIS: Now, when you do tests on
14	these things, you just direct a jet at them or
15	something for
16	MR. YODER: For zone of influence
17	testing
18	CHAIR WALLIS: If you're actually in the
19	containment, a jet goes out and hits the containment
20	and spreads along the wall in some ways and it's not
21	quite the same thing as just putting a coating in a
22	jet.
23	MR. YODER: That's correct.
24	CHAIR WALLIS: Okay.
25	MR. YODER: So I think the reason that a
I	1

(202) 234-4433

	345
1	sphere is used is because if you were to have some
2	pipe or a column or something directly in front of a
3	jet, you would then get spray out to the sides and in
4	all directions. So by taking a spherical area, you
5	kind of encompass all that.
б	CHAIR WALLIS: Right, that's the idea.
7	DR. BANERJEE: It would pretty well be
8	steam, right? It's not going to be
9	MR. YODER: It's going to be a two phased
10	jet. It's going to be steam and then
11	DR. BANERJEE: By the time it will
12	evaporate.
13	MR. YODER: Right.
14	DR. BANERJEE: Right?
15	MR. YODER: It will be
16	MR. ARCHITZEL: Super-heated.
17	MR. YODER: super-heated steam, so it
18	will expand as it comes from the pipe.
19	DR. BANERJEE: Right.
20	MR. ARCHITZEL: Mostly, liquid.
21	MR. YODER: Go ahead, Ralph.
22	MR. ARCHITZEL: Well, just to comment, I
23	think it's definitely two phased. It's mostly liquid.
24	DR. BANERJEE: Oh, is it? Well, it's
25	stated

(202) 234-4433

	346
1	MR. ARCHITZEL: There's a little bit of
2	steam in there, but it's coming out of the RCS so
3	fast.
4	CHAIR WALLIS: It's mostly liquid, mostly
5	liquid.
6	MR. ARCHITZEL: Mostly liquid.
7	DR. BANERJEE: I see. I didn't realize
8	that. Okay. Well, so there is an erosion effect as
9	well.
10	PARTICIPANT: Yes.
11	CHAIR WALLIS: You wouldn't want to be a
12	coating in that jet.
13	DR. BANERJEE: No. I wouldn't want to be
14	anywhere near that jet.
15	MR. YODER: Typically, what you see, I
16	will address this slide in a second, but since we're
17	talking about it, what you see in this kind of
18	testing, when you do see failures within that zone of
19	influence, within that jet, it is erosion type
20	failure. It's not coming off in big chips or sheets.
21	So that's also laid out in the staff's guidance, that
22	for that volume, that ZOI, you assume that those
23	coatings are failing as 10 micron particulate and then
24	they are going to transport.
25	CHAIR WALLIS: Now, they are only being
	I

(202) 234-4433

	347
1	bombarded by a two phase jet. They are not being
2	bombarded by pieces of reflective metal insulation?
3	MR. YODER: No.
4	CHAIR WALLIS: Because there's lots of
5	debris flying around in there for awhile.
6	MR. YODER: Well, you're talking about an
7	area in the immediate vicinity of a pipe break, so at
8	this point you're generating all of that kind of RMI
9	and all that kind of debris and you're not necessarily
10	impinging it onto that surface.
11	CHAIR WALLIS: But you are impinging some
12	of it on the surface.
13	MR. YODER: I would imagine that
14	CHAIR WALLIS: I mean, some of it.
15	MR. YODER: You might entrain some of the
16	surrounding materials.
17	MEMBER SHACK: Blow it into 10 micron
18	particles, I mean.
19	MEMBER KRESS: Yes, you have already got
20	it.
21	CHAIR WALLIS: But this is all the same.
22	MEMBER KRESS: You have got to cut it up
23	pretty little.
24	CHAIR WALLIS: Some of it is not so small.
25	MR. YODER: So testing that what we're
	I

(202) 234-4433

	348
1	aware of to date, as you heard earlier, two groups
2	have done some ZOI testing. We don't have the formal
3	data yet, but I can tell you that we received
4	presentations recently and you're talking about
5	reducing that conservative 10D ZOI down to something
6	like four or five pipe diameters for most coatings.
7	For the inorganic zinc coatings, they are
8	more porous in nature, so they tend to erode at lower
9	pressures. So for those kind of coatings, you're
10	talking about something more along the order of seven
11	or eight pipe diameters. So you actually end up with
12	a ZOI for epoxy type coatings and then a ZOI for the
13	inorganic zinc.
14	DR. BANERJEE: So the two industry groups,
15	they are with qualified and unqualified coatings?
16	MR. YODER: No.
17	DR. BANERJEE: Or they are only with
18	unqualified?
19	MR. YODER: Qualified coatings, testing
20	qualified coatings, because you assume that
21	unqualified coatings are going to fail regardless of
22	where they are in the containment.
23	DR. BANERJEE: But then you're testing the
24	unqualified.
25	MR. YODER: Yes. Well, that's the next
ļ	I

349 1 bullet here, is there is also -- obviously to say that 100 percent of the unqualified coatings fails is as 2 conservative as you can get, right? 3 So there is also 4 testing going on, being done by EPRI, where they have 5 subjected some actual plant samples of unqualified coatings to a DBA type autoclave test where they are 6 7 subjected to elevated temperatures and spray for a 8 period of time. And the idea was to quantify how much 9 actually fails. DR. BANERJEE: So this is outside the ZOI? 10 MR. YODER: Correct. That would be 11 12 coatings outside of the ZOI, ungualified coatings outside of the ZOI. 13 14 DR. BANERJEE: So are there ungualified 15 coatings potentially within the ZOI, too? MR. YODER: Yes, and those would have to 16 be considered in that debris term. 17 18 DR. BANERJEE: 100 percent? 19 MR. YODER: Correct. All right. 20 DR. BANERJEE: 21 CHAIR WALLIS: Well, I saw a table of 22 I'm not sure whether this is proprietary or results. 23 not, but it had sort of tables or entries of epoxy and 24 zinc and so on. 25 MR. YODER: Yes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	350
1	DR. BANERJEE: Alkyds.
2	CHAIR WALLIS: And sometimes alkyds,
3	sometimes 95 percent of it was torn off and sometimes
4	1 percent from what looked like almost the same
5	experiment. I just wondered if this is gathered in
6	the quality of the coatings or something. I don't
7	quite know how to take it when I have got very
8	different numbers
9	MR. YODER: Within
10	CHAIR WALLIS: in what looked like
11	similar
12	MR. YODER: this group that we're
13	referring to as unqualified coatings, you have got
14	CHAIR WALLIS: It looked like similar
15	experiments.
16	MR. YODER: a wide range of coatings.
17	CHAIR WALLIS: A very wide range.
18	MR. YODER: Right. These are anything
19	that haven't been through the rigor of the actual
20	testing, so they could be anything that came in on a
21	piece of equipment or something that was put in as a
22	repair in a plant without having the proper level of
23	QA. So there is a wide range of these coatings and
24	you would expect to see, you know, some of them will
25	perform much better than others.
I	I

(202) 234-4433

	351
1	DR. BANERJEE: And these were I
2	remember with pieces that industry sent or something,
3	there were 16 pieces that were stuck in autoclaves.
4	MR. YODER: That's correct. This testing
5	was performed on equipment, electrical cabinets and
6	pipe hangers and various pieces of equipment that they
7	were able to obtain from licensees. And I want to
8	also point out that, you know, the results of all the
9	all this testing that I'm talking about here is
10	still preliminary to the staff. We haven't performed
11	formal reviews of any of this.
12	And, you know, to the extent that I can,
13	I will try to tell you what the preliminary
14	indications are, but we will be reviewing these in
15	detail as we move forward with this process. The
16	other
17	CHAIR WALLIS: And all these things go
18	into the chemical soup.
19	MR. YODER: That's correct. Other testing
20	that we discussed this morning is the NRC sponsored
21	testing that attempts to look at the transportability
22	of the coatings. And, as I said this morning, we're
23	looking at both those unqualified coatings, because
24	they tend to be lower density, the alkyd type
25	coatings, and then also the qualified type coatings
ļ	I

(202) 234-4433

	352
1	that you would expect to see either in the degraded
2	state outside of the ZOI or failing from within the
3	ZOI.
4	Also alluded to this morning are some of
5	the key challenges that we see here is that really we
6	don't know how these things are going to fail outside
7	of that ZOI. Are they going to fail as the 10 micron
8	particulate? We have put that forth as guidance,
9	because that's going to give you the most
10	transportability.
11	So any licensee who would try to say that
12	the coatings won't transport, because they fail in
13	large enough pieces, that they are going to settle out
14	prior to making it to the sump, is going to have to
15	provide some kind of analysis, test data, perhaps the
16	same kind of autoclave data of their own specific
17	coating type in order to make that transport judgment.
18	MEMBER KRESS: When you say 10 microns,
19	are you assuming this is a sphere?
20	MR. YODER: Yes.
21	DR. BANERJEE: In the autoclave tests,
22	there were no I didn't see any measurements of
23	particle size for these coatings.
24	MR. YODER: They are
25	DR. BANERJEE: Are there any measurements

(202) 234-4433

	353
1	for these?
2	MR. YODER: As an appendix to that EPRI
3	report I believe there is some data
4	DR. BANERJEE: Yes.
5	MR. YODER: of the particles that were
6	captured on filters downstream.
7	DR. BANERJEE: Right, but did they size
8	those?
9	MR. YODER: I believe that general
10	observations were made.
11	DR. BANERJEE: Okay.
12	MR. YODER: I don't know. I don't know if
13	they attempted to do I don't believe that
14	DR. BANERJEE: No.
15	MR. YODER: a mass balance was
16	attempted to try to capture all of the material that
17	failed. It was more looking at the screen and then
18	making some measurements of what you could see on
19	those filters.
20	DR. BANERJEE: These's lots of pictures
21	but, yes, anyway, I didn't notice any numbers. Okay.
22	CHAIR WALLIS: These coatings, what are
23	they made out of typically?
24	MR. YODER: Well, as I said, the
25	unqualified coatings are a wide range of materials.
I	1

(202) 234-4433

	354
1	CHAIR WALLIS: There might be a powder of
2	some sort with some kind of a binder or something that
3	was with it.
4	MR. YODER: For the qualified coatings
5	you're typically talking about either an epoxy, self-
6	priming epoxy system, where you have two layers of an
7	epoxy type coating or you would have this inorganic
8	zinc primer that you have heard about with an epoxy
9	topcoat on it.
10	CHAIR WALLIS: What does the inorganic
11	zinc primer look like?
12	MR. YODER: It's got
13	CHAIR WALLIS: It has got zinc particles
14	in it, in a suspension?
15	MR. YODER: It's maybe 5, 10 percent fine
16	zinc particles with an ethyl silicate binder, so you
17	can think of it as kind of like a concrete. It
18	doesn't really behave. I guess when I say that, what
19	I'm referring to is if you look at the surface of this
20	stuff, it's very porous like the surface of concrete
21	would be.
22	CHAIR WALLIS: I'm just wondering if the
23	zinc particles are stripped of their coating, so you
24	have got a whole lot of zinc subject to chemical
25	effects, which is not protected by anything.
I	I

(202) 234-4433

	355
1	MR. YODER: That's part of the ICET that
2	was performed.
3	CHAIR WALLIS: Did they
4	MR. YODER: There was zinc in those tanks.
5	CHAIR WALLIS: But did they actually use
6	very finely divided zinc that was
7	MR. YODER: It was the same material that
8	we're talking about here where this inorganic zinc
9	primer is actually coated onto a surface.
10	CHAIR WALLIS: But was it broken up by a
11	jet?
12	MR. YODER: No.
13	CHAIR WALLIS: Then I think it would be
14	very different if it were broken up by a jet, so you
15	have got a cloud of tiny zinc particles, you know, in
16	a boric acid solution, because it hasn't yet been
17	buffered. I don't know what happens, but it's not the
18	same thing as having a coating in an ICET tank.
19	MR. BATEMAN: This is Bill Bateman. But
20	what you have to recognize though is that the jet hits
21	the epoxy. The epoxy is on top of the zinc.
22	CHAIR WALLIS: Yes, but everything gets
23	shattered, doesn't it?
24	MR. BATEMAN: Well, I think from the
25	results that we have seen Matt, I don't know if
I	I

(202) 234-4433

	356
1	you're going to get to that in your slides.
2	MR. YODER: Well, within that, within the
3	zone of influence, we would assume that all of that
4	coating is destroyed.
5	CHAIR WALLIS: Well, I think he is going
б	to say it doesn't get destroyed.
7	MR. YODER: Within that ZOI, whatever the
8	ZOI that we come to, if we take 10D as the staff
9	guidance says
10	CHAIR WALLIS: It doesn't disappear then.
11	It assumes some other form and you need to
12	MR. YODER: That's correct. It's going to
13	turn into a fine particulate.
14	CHAIR WALLIS: Okay.
15	DR. BANERJEE: This is your 10 micron
16	particle?
17	MR. YODER: That's correct.
18	DR. BANERJEE: Yes.
19	MR. YODER: Now, I think what Mr. Bateman
20	is referring to is in some of the testing, we have
21	seen that that top layer of epoxy will start to erode
22	and it will never make it down to the zinc.
23	CHAIR WALLIS: That's very different.
24	You're assuming it's all made into finely divided
25	particles.
Į	1

(202) 234-4433

	357
1	MR. YODER: That's correct.
2	MEMBER KRESS: When you do that, is one of
3	the particles pure zinc and one part pure epoxy and
4	another part is particle pure binder or is each
5	particle a mixture of those?
6	MR. YODER: Well, in this testing that
7	we're referring to, no attempt was made to capture the
8	particles after the fact, so it's hard to say. I
9	would imagine you would have fine pieces of epoxy,
10	fine pieces of zinc and maybe some that were some
11	combination.
12	CHAIR WALLIS: But if zinc is going to
13	react chemically with the fluid, it's going to do it
14	much more readily, presumably, if it's very finely
15	divided.
16	MR. YODER: I agree. It has a much higher
17	surface area after the break.
18	CHAIR WALLIS: Possibly very quickly.
19	DR. BANERJEE: Now, looking at these
20	unqualified coatings, if these are they are mainly
21	zinc chromate primer with an epoxy phenol, right?
22	That is about 60 percent or is that? Am I reading it
23	wrong? No, sorry.
24	Alkyds are there. So did you do any tests
25	with these in the zone of influence or only outside of
I	I

(202) 234-4433

	358
1	the zone of influence?
2	MR. YODER: Well, the testing let me
3	just restate this.
4	DR. BANERJEE: Yes.
5	MR. YODER: EPRI conducted the unqualified
6	coatings testing and that was only looking at
7	conditions outside of that ZOI, so it wouldn't be
8	subjected to any kind of a jet impingement at all.
9	CHAIR WALLIS: There were some preliminary
10	tests done before the ICET in which they just put zinc
11	in a bottle with some fluid and measured, rather
12	inconclusive results, but I think that there were
13	reactions.
14	MR. YODER: I'm unaware. We might have to
15	ask the people from research tomorrow.
16	CHAIR WALLIS: Yes, we'll ask them. Okay.
17	MR. YODER: The other point that I want to
18	make, and we have touched on it many times today, is
19	a lot of this testing is proprietary to one vendor or
20	to one group that is doing the testing, so it may be
21	difficult for the staff to take testing from Plant A
22	and apply that to Plant B who doesn't have the access
23	to that same report. So we may be able to draw
24	inferences and inform our judgment, but we can't
25	necessarily cross that balance to somebody else who
	I

(202) 234-4433

	359
1	doesn't have that same data.
2	So this is my last slide, the path forward
3	for coatings work. As we said, if a licensee chooses
4	to follow that staff guidance, we believe it is very
5	conservative and then they would be able to size their
6	strainers accordingly and provide enough margin, we
7	would be satisfied.
8	For a case where a licensee wants to vary,
9	you know, in the area of ZOI or the size of the
10	coatings debris or the amount that transports, we'll
11	be using this testing that we have been discussing
12	along with any plant-specific testing that might be
13	performed on plant-specific coatings to inform that
14	judgment and then make a judgment on whether we
15	approve of the methodology they are using.
16	DR. BANERJEE: How will they use the EPRI
17	data, because the EPRI data is very, very will they
18	use the EPRI data, let me ask first because
19	MR. YODER: Based on the original
20	submittals
21	DR. BANERJEE: Yes.
22	MR. YODER: I think at least a half
23	dozen plants, probably more, will use that EPRI data
24	perhaps to reduce the volume of unqualified coatings
25	that they have to use in their sizing of the strainer,
I	1

(202) 234-4433

	360
1	perhaps to look at the size of those particles also.
2	DR. BANERJEE: Because the EPRI data is
3	rather spotty. I mean, it's not a very wide sample,
4	because the number of samples sent to them weren't
5	that large. So at the end of it, there is wide
6	variability. I mean, when you say alkyds, it can be
7	anywhere from 54 percent to 12 percent or something.
8	MR. YODER: Right.
9	DR. BANERJEE: So what number will they
10	use?
11	MR. YODER: Well, I think that when the
12	staff performs that evaluation, we're going to look at
13	it on a plant-specific basis. So a licensee would
14	have to show either that they have alkyd X or take the
15	most conservative, meaning which alkyd failed the
16	most, and that would be staff's stance.
17	DR. BANERJEE: I see.
18	MR. YODER: Unless you can prove that you
19	have, you know, that more rigid alkyd or the more
20	better performing alkyd, then the staff would want you
21	to take a more conservative number.
22	CHAIR WALLIS: Part of your assumptions
23	relate to reality here. And if you assume that
24	coating gets all broken up into 10 micron spheres of
25	its constituents, then how it gets transported is
ļ	I

(202) 234-4433

	361
1	going to, you know, be how that sort of stuff would
2	get transported. But you may not be able to create
3	that kind of a mixture in a test because it isn't what
4	really happens.
5	So how do you do transport testing on a
б	hypothetical mix?
7	MR. YODER: Well, I can talk a little bit
8	about the
9	CHAIR WALLIS: I mean, if you're forced to
10	assume something, how do you test how it gets
11	transported
12	MR. YODER: Well, again, we'll
13	CHAIR WALLIS: if it's only an
14	assumption?
15	MR. YODER: We'll hear more from Research
16	in the days to follow, but let me talk a little bit
17	about the NRC sponsored testing.
18	What we attempted to do there was take a
19	range of coatings of various densities, unqualified
20	and qualified, and then take a range of sizes,
21	everything down from 164^{th} of an inch up through 1 and
22	2 inch chips, so that we can try to cover that gambit
23	in our confirmatory testing, so that when a licensee
24	comes in and says I have chips that are a half inch
25	based on testing that I performed and the analysis
I	I

(202) 234-4433

	362
1	that I performed, we have data to say whether or not
2	their transport analysis
3	CHAIR WALLIS: But these are now chips.
4	These are not the 10 micron particles.
5	MR. YODER: That's correct. The transport
б	testing, the confirmatory testing by the NRC is of
7	chips and the stance is that fine particulate is going
8	to readily transport.
9	CHAIR WALLIS: I would think it will. I
10	think 10 micron spheres would very readily transport.
11	MR. YODER: And that's the staff's
12	position.
13	CHAIR WALLIS: Right.
14	DR. BANERJEE: Well, your data also showed
15	that 10 is not necessarily conservative. There is
16	data down to 1 micron. There is a wide distribution.
17	MEMBER KRESS: There needs to be a
18	particle distribution.
19	DR. BANERJEE: Yes.
20	MR. YODER: I think in reality you will
21	see some distribution of particles from 1 to 1,000
22	microns or
23	MEMBER KRESS: I think in order to
24	evaluate this problem, you need to know what that is.
25	MR. YODER: Well, I think that the basis
	I

(202) 234-4433

	363
1	for the 10 microns is we
2	DR. BANERJEE: It's probably the average.
3	MEMBER KRESS: It may be a mean.
4	MR. YODER: It's a mean and we understand
5	the behavior of particulate on a fiber bed, so we can,
б	you know
7	MEMBER KRESS: Could you do something
8	arbitrary like call that the mean of a log normal
9	distribution and adjust the amount in each size so
10	that you get the total quantity, total mass, I mean,
11	something like that?
12	MR. YODER: Well, I know that the guidance
13	that we have given to some of the vendors when we have
14	gone to like some of the flume testing where they are
15	using chips of various sizes, that we want them to
16	characterize what is that range of chips and things
17	like what is the mean surface area of that chip,
18	things like that.
19	MEMBER KRESS: Yes.
20	CHAIR WALLIS: Well, what are the chemical
21	tests that are being done with these very finely
22	divided zinc particles if they are created?
23	MR. YODER: I'm sorry, was the question
24	what
25	CHAIR WALLIS: What chemical tests have

(202) 234-4433

	364
1	been performed with these zinc particles down to 1
2	micron size?
3	MR. YODER: You referenced testing of fine
4	particulate and I'm not aware of that.
5	CHAIR WALLIS: I think there were zinc
6	coupons. It's very different from
7	MR. YODER: That's correct.
8	CHAIR WALLIS: And zinc coupons did have
9	some reactions with some of the mixes, as I remember.
10	MR. YODER: That's correct.
11	MR. DINGLER: Dr. Wallis, this is Mo
12	Dingler. In our WOG testing we took zinc powder and
13	put it through the bench test, saw a very low reaction
14	at that time.
15	CHAIR WALLIS: You stirred it up with
16	what, boric acid?
17	MR. DINGLER: Yes, boric acid and then put
18	a buffer to it. We used zinc powder.
19	CHAIR WALLIS: You saw very little
20	reaction?
21	MR. DINGLER: In relationship to the head
22	loss and stuff like that. I can't remember the exact
23	details off the top of my head. That was in a
24	presentation last week and I think it's available if
25	they want to look at it, but we used zinc powder and
	I

(202) 234-4433

	365
1	put it through boric acid and both sodium hydroxide,
2	TSP and Borax.
3	CHAIR WALLIS: Okay. So that data is
4	something that, what, are you going to give it to us
5	or something? How do we get hold of it?
6	MR. DINGLER: That's in the WCAP we're
7	submitting to the staff.
8	CHAIR WALLIS: Which is now proprietary?
9	MR. DINGLER: No, it's a Class 3,
10	nonproprietary.
11	CHAIR WALLIS: So that will appear
12	eventually on a CD or something for us?
13	PARTICIPANT: Yes, before March.
14	CHAIR WALLIS: Before March?
15	PARTICIPANT: As soon as I get it.
16	CHAIR WALLIS: So we got a few more feet
17	of material to read?
18	PARTICIPANT: Probably.
19	CHAIR WALLIS: Okay. Thank you.
20	PARTICIPANT: Another cart load.
21	DR. BANERJEE: What is sponsored transport
22	testing? It's only chips, you said?
23	MR. YODER: That's correct.
24	DR. BANERJEE: Chips of what, paint and
25	things?

	366
1	MR. YODER: The testing I'm referring to
2	here is only transport of coatings, so chips of
3	DR. BANERJEE: Chips.
4	MR. YODER: alkyd paint, epoxy point,
5	zinc paint.
6	DR. BANERJEE: All right.
7	MEMBER KRESS: Are you calling them we
8	are with an open stream?
9	MR. YODER: It's actually and, like I
10	said, we'll get into all these details in the Research
11	presentation, but it's actually a plexiglass channel.
12	MEMBER KRESS: Channel.
13	MR. YODER: Yes.
14	DR. BANERJEE: Open channel?
15	MR. YODER: Yes.
16	CHAIR WALLIS: Okay. Thank you. Well, I
17	still have the same. I'm still in the same situation.
18	I have seen this description of a lot of stuff going
19	on. It sounds very interesting, but I don't have any
20	basis for evaluating it technically.
21	PARTICIPANT: Yet.
22	DR. BANERJEE: We'll see after tomorrow.
23	CHAIR WALLIS: Maybe after tomorrow we'll
24	have some tomorrow is all technical information,
25	isn't it?
I	I

(202) 234-4433

	367
1	DR. BANERJEE: And we have the day after.
2	CHAIR WALLIS: But it may not answer some
3	of the questions we had today.
4	MEMBER KRESS: We don't know how we're
5	going to summarize this. Oh, I'm sorry. Tomorrow
6	we'll hear from Bill Shack.
7	PARTICIPANT: And Mike Scott.
8	CHAIR WALLIS: Mike Scott wants to
9	reassure us.
10	MR. SCOTT: Well, one thing I'm sure of is
11	you'll still have questions after tomorrow.
12	DR. BANERJEE: Ralph, do you have the NEI
13	report on CDs?
14	MR. ARCHITZEL: Which NEI report?
15	DR. BANERJEE: The one that they referred
16	to.
17	MR. ARCHITZEL: The guidance document?
18	DR. BANERJEE: Yes.
19	MR. ARCHITZEL: I have that, yes.
20	CHAIR WALLIS: We have it somewhere on
21	near effect.
22	MR. SCOTT: What I would like to do
23	CHAIR WALLIS: Mike Scott, how long have
24	you been involved with this project?
25	MR. SCOTT: About two weeks.
I	

(202) 234-4433

	368
1	CHAIR WALLIS: Official weeks. Okay.
2	MR. SCOTT: So you can expect an in-depth
3	analysis from me.
4	MEMBER KRESS: You're going to give us a
5	new perspective as someone from
6	MR. SCOTT: That's right. A cold-bodied
7	reader. There you go. What I would actually like to
8	do is just clarify a couple of points that we may or
9	may not have made clear initially from a management
10	perspective.
11	This is the slide out of Jon Hopkins'
12	initial presentation that speaks to our path forward
13	for resolving the issue, and I was advised perhaps
14	that there was a misimpression that the staff is
15	standing pat on its safety evaluation and that we
16	don't anticipate changes to it.
17	While we have not identified the need for
18	changes, at this point, it is certainly correct to
19	state that we recognize that more information comes in
20	every day and if the results of the testing lead us to
21	revise the SE, we'll certainly do that. If the
22	testing leads us to issue additional generic
23	communications, we'll do that.
24	As you know, we just issued a supplement
25	to our information notice and there may be more of
I	

(202) 234-4433

	369
1	that to come. Not to say we're predicting the future,
2	but I just wanted to make the point that we're very
3	much open to the need to develop new documents or
4	guidance as things develop.
5	CHAIR WALLIS: Since you're on this
6	figure, when I noticed it before, I noticed that there
7	was no input to the ACRS. Somehow we come in from
8	outside and we magically
9	MR. SCOTT: Wait a minute, wait a minute.
10	Oh, okay.
11	CHAIR WALLIS: issue a review with no
12	input and this leads to closure.
13	MR. SCOTT: This slide was described by
14	Jon Hopkins as busy and it was busier before the dry
15	run took some of the boxes out of it, but we certainly
16	were making sure that we had your input to the
17	process, at least one input and we recognize
18	CHAIR WALLIS: What's puzzling to me is
19	how do we have most effectively give input to this
20	process? We can't do everything. We cannot possibly
21	do everything. What is the best role that we can have
22	to help you folks solve this problem?
23	MR. SCOTT: Why don't
24	CHAIR WALLIS: Besides keeping quiet,
25	which is not

	370
1	DR. BANERJEE: Or an option.
2	MR. SCOTT: Why don't we have that
3	discussion again after you hear the Research
4	presentations?
5	CHAIR WALLIS: Okay. Okay.
6	MR. SCOTT: Fair enough.
7	CHAIR WALLIS: And your folks are going to
8	be here or at least some of you are going to be here.
9	MR. SCOTT: Yes.
10	CHAIR WALLIS: I don't think you all have
11	to be.
12	MR. SCOTT: We're planning to have most of
13	the key players here for the presentations for
14	tomorrow and the next day. One other thing I would
15	like to do is kind of sum up management's perspective
16	on the path that we have taken. I think this has been
17	referred to, but I sort of laid it out in logic terms
18	here just to give you our views on how this is going.
19	We recognize, as you all do, that there
20	are many uncertainties on this issue and that some of
21	those uncertainties are likely to be difficult to
22	reduce or are going to take a significant amount of
23	time to reduce them. As you know, as you're going to
24	hear about more tomorrow, the staff and the industry
25	are doing testing to support reducing these
Į	I

(202) 234-4433

	371
1	uncertainties.
2	Nevertheless, in view of the complexity of
3	the issue, which we have all talked about, and the
4	staff's viewpoint that most of the existing strainers
5	are greatly clearly undersized, staff believes that
6	inaction until the uncertainties are resolved is not
7	appropriate. We believe action is needed now.
8	Therefore, we are pushing the industry, as we
9	discussed, to make the modifications to reduce the
10	vulnerabilities before December or before the end of
11	December 2007.
12	Our judgment is that the larger strainers
13	that the industry plans to put in, which have been
14	discussed, will not do harm and are highly likely to
15	reduce the risk. As you heard from Mo Dingler, the
16	strainer modifications that are going in are being
17	installed in conjunction with analysis of the
18	downstream effects, so that we're again, we're
19	anticipating that these strainers are highly likely to
20	help the problem.
21	Furthermore, once the strainers have been
22	modified, if we find from the results of the testing
23	that is ongoing that additional modifications are
24	needed or additional plant measures are needed, there
25	are various options that are available. So we believe
ļ	I

(202) 234-4433

	372
1	that the appropriate situation, given all these
2	factors, is for the strainer modifications to proceed
3	in parallel with continuing to reduce the
4	uncertainties on the issue.
5	CHAIR WALLIS: Well, how are you going to
6	show that these strainers, making the strainers much
7	bigger is going to reduce the risk of blocking up the
8	core with debris?
9	MR. SCOTT: I would say that a path that
10	is being taken, and those who have been at this a
11	little longer than me can jump in if they prefer, is
12	that we will show or the licensees will show that if
13	they are going to put a modification in that involves
14	a much larger strainer, that, number one, the larger
15	strainer will reduce or tend to positively influence
16	the differential pressure issue at the strainer and,
17	number two, it will not result in an uncoolable
18	situation in the core.
19	CHAIR WALLIS: Well, I have not seen any
20	prediction anywhere of how much debris gets to the
21	core. So how are you going to reduce the risk of
22	something which no one has yet predicted?
23	MR. SCOTT: Point taken and we'll get back
24	to you on that.
25	CHAIR WALLIS: I think that's a very
I	I

(202) 234-4433

373 1 important issue. It may have been a sleeper or something all along, but it's obviously something. 2 3 Unless we are so totally misled or misquided or 4 foolish, it seems --5 MR. HANNON: This is John Hannon of the I think you will hear some more about this 6 staff. 7 tomorrow. We have the results of the screen bypass test that do illuminate that subject plus we know from 8 the work that is being done with the GE active design 9 that roughly 30 percent of the debris that gets to the 10 strainer gets pushed through. 11 12 So there are some facts that we have at our disposal now on that subject. So we will be 13 14 continuing to evaluate that as we move forward to make 15 sure there is no adverse impact in the coolable. CHAIR WALLIS: 30 percent gets through. 16 You heard earlier that 17 MR. HANNON: Yes. it was ground, much of the material gets ground up 18 At least 19 and, on the average, about 30 percent. 20 that's the number that I recall from having the 21 discussion. 22 CHAIR WALLIS: Well, where does it go? 23 MR. HANNON: Into the downstream flow 24 path. 25 CHAIR WALLIS: Where does it finish up?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	374
1	MEMBER DENNING: Where does it finish up?
2	Does it then exit the reactor coolant system at some
3	point or does it accumulate in it?
4	DR. BANERJEE: This is the NEI guidance
5	has a way to evaluate that, right, where it goes? So
6	one has to take a look at that, at least we should
7	look at the guidance before. Is that what you are
8	saying, that that's the source term for the deposition
9	in various parts of the system?
10	MR. HANNON: That's correct. One of the
11	things that we'll also do is one of the plants that we
12	audit will be one of the active strainer designs.
13	That will be one of the issues we'll be looking at.
14	DR. BANERJEE: One of the things is that
15	they are doing experiments for each strainer design
16	for each plant. That's what we have heard more or
17	less. Perhaps they could also measure what gets
18	through, so we would have a number at least there.
19	MR. WHITNEY: It's very typical. This is
20	Leon Whitney. It's very typical during the strainer
21	test in the pools and whatnot to take grab samples of
22	what goes downstream. That is not missed. They do
23	take the samples. Now, how they deal with the issue
24	of where it goes, etcetera, is a separate thing, but
25	I didn't want you to think that they do not take the
	I

(202) 234-4433

	375
1	samples.
2	DR. BANERJEE: And do they find out how
3	much and what particulates are in those grab samples?
4	MR. WHITNEY: The samples are analyzed.
5	DR. BANERJEE: All right.
6	MR. WHITNEY: So, again, what
7	DR. BANERJEE: So they have that.
8	MR. WHITNEY: The conclusion of the
9	downstream issue is yet to be provided.
10	DR. BANERJEE: Um-hum.
11	MR. ARCHITZEL: I probably shouldn't be
12	saying this, but we had a position in the SE that you
13	can't credit the debris for forming a filter bed. So
14	another issue we found in the pilot audits was these
15	testings. I didn't mention all the issues we found.
16	One of the issues we identified was the credit during
17	the conduct of a test for the filtration of the fiber
18	bed you may have on that bed.
19	We would of course, if we're asking
20	them to evaluate downstream, we would ask them to look
21	at a semi clean strainer for that aspect of that
22	evaluation. So a lot of that data that is collected
23	will show a beneficial effect of filtration.
24	Unfortunately, we're going to hold them back from
25	crediting that when the
ļ	l

(202) 234-4433

	376
1	CHAIR WALLIS: Because
2	MR. ARCHITZEL: Because you would have a
3	low fiber type situation accident that has passed
4	through or at least behind it.
5	DR. BANERJEE: Well, so that means that
6	they will have a lot of stuff getting through the semi
7	clean strainers.
8	CHAIR WALLIS: It depends what arrives
9	first, too, doesn't it?
10	DR. BANERJEE: Yes.
11	MEMBER KRESS: You're saying there is a
12	range of accident sequences at a given plant depending
13	on where the LOCA occurs?
14	PARTICIPANT: Yes.
15	MEMBER KRESS: So you have to look at that
16	whole range of possibilities.
17	MEMBER SHACK: Yes. I mean, they
18	frequently have high fiber sequences, low fiber
19	sequences, you know, high particulate sequences, low
20	particulate sequences.
21	CHAIR WALLIS: Well, I would imagine that
22	the fines arrive first. They are with the water.
23	Isn't it hard to imagine that fiberglass would outpace
24	the water and it's rushed to the screen, but the
25	fine
I	I

(202) 234-4433

	377
1	MEMBER DENNING: Fibers will transport
2	pretty well.
3	CHAIR WALLIS: I mean, so they might
4	arrive with the water or later. The fines will
5	probably come with the water, presumably.
6	DR. BANERJEE: They would both come, I
7	would think, you know, some fiber and some particles
8	in there.
9	MEMBER KRESS: Probably finer than 10
10	micron. That's a lot of split there.
11	CHAIR WALLIS: I wasn't sure it was going
12	to be a study process. I think I raised this question
13	before. As the thing, as the accident progresses, you
14	get piles of fiberglass sort of stacking up on
15	staircases and here and there and everywhere, and then
16	it makes dams and you get these lakes and then the dam
17	breaks and there is a rush of fluid, which isn't a
18	steady process and it's you know, so it's not as if
19	it's just you just calculate everything as
20	happening in a nice, steady scenario. You would get
21	bumps and sudden surges and whatever.
22	MEMBER KRESS: Bumps and rises.
23	CHAIR WALLIS: I know.
24	DR. BANERJEE: Yes, but with these big
25	surface areas, likely most of the stuff is if it's
	I

(202) 234-4433

	378
1	captured and forms a thin bed or something, then there
2	would be a filtration effect. I guess what they are
3	saying is that they are not going to give credit for
4	that, because there are some scenarios where that
5	won't happen and you can get all the stuff going
6	through, at least the fines.
7	CHAIR WALLIS: Well, this is important.
8	MR. ARCHITZEL: Ralph Architzel one more
9	time. I would like to point out one vendor did come
10	in and talk about it. We will take engineered
11	solutions to fine mesh filters downstream or upstream,
12	so there is an option to reduce that term that doesn't
13	rely on the accident placing the fiber there. And I
14	guess we would be somewhat considering of the fact you
15	can't have inconsistent accidents.
16	You can have an accident that has tons of
17	debris and no fiber solely, so your term could go
18	down, but you can't assume a filtration bed there, but
19	you don't need massive amounts of particulate perhaps
20	in that second case either. It's difficult. We'll
21	have to evaluate that.
22	CHAIR WALLIS: Okay. We have probably
23	finished for the day, 5:00.
24	DR. BANERJEE: Good timing.
25	CHAIR WALLIS: We're ahead of the game.
ļ	I

	379
1	MEMBER KRESS: Yes.
2	CHAIR WALLIS: We didn't expect to be,
3	because we were behind and we were asking all the
4	questions. Maybe if there had been more answers, we
5	would have been here longer, because we could then
б	have gone back and questioned the answers. And,
7	certainly, if we had seen some data and graphs and
8	theories, we could have been here for a much longer
9	time.
10	MEMBER KRESS: Oh, we would have been here
11	forever. They have learned that.
12	DR. BANERJEE: I think tomorrow.
13	MR. SCOTT: Yes, wait for tomorrow. There
14	will be more tomorrow. Wait for tomorrow.
15	CHAIR WALLIS: Yes, everything is going to
16	be interesting tomorrow. Okay. We will see you folks
17	then in the morning. I hope you have a good sleep.
18	We're going to what is the right word?
19	MEMBER KRESS: Oh, recess.
20	CHAIR WALLIS: We're going to recess until
21	8:30 tomorrow morning.
22	(Whereupon, the meeting was recessed to
23	reconvene tomorrow at 8:30 a.m.)
24	
25	
ļ	I

(202) 234-4433