Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards	
Subcommittee	Thermal-Hydraulic	
	OPEN SESSION	

- Docket Number: (not applicable)
- Location: Rockville, Maryland
- Date: Thursday, January 19, 2006
- Work Order No.: NRC-796 Pages 1-80/184-236/389-457

Closed Session: Pages 81-183/237-388

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

ĺ	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	SUBCOMMITTEE ON THERMAL-HYDRAULIC PHENOMENA
6	+ + + +
7	OPEN SESSION
8	+ + + +
9	THURSDAY, JANUARY 19, 2006
10	+ + + +
11	The meeting came to order at 8:30 a.m. in
12	room T2B3 of Building Two, White Flint North,
13	Rockville, MD.
14	<u>PRESENT:</u>
15	GRAHAM WALLIS CHAIR
16	VICTOR RANSOM ACTING CHAIR
17	RICHARD DENNING
18	THOMAS KRESS
19	RALPH CARUSO DESIGNATED FEDERAL OFFICIAL
20	SANJOY BANERJEE CONSULTANT
21	
22	
23	
24	
25	
	I

	2
1	A-G-E-N-D-A
2	INTRODUCTION
3	OPENING REMARKS, Amy Cuggage, NRR5 5
4	GE PRESENTATION ON ESBWR
5	BACKGROUND
б	David Hinds, GE
7	Bharat Shiralkar
8	David Hinds
9	Jim Han
10	MODEL BASIS AND UNCERTAINTIES 83
11	Bharat Shiralkar
12	Wayne Marquino
13	NRC STAFF PRESENTATION ON ESBWR
14	Ralph Landry
15	Veronica Klein
16	Peter Yarsky
17	Jose March-Leuba
18	Jay Spore
19	REGULATORY GUIDE 1.82
20	Mike Tschiltz
21	Marty Stutzke
22	Richard Lobel
23	Bob Dennig
24	Lou Quintana, GE
25	
ļ	I

	3
1	P-R-O-C-E-E-D-I-N-G-S
2	8:34 a.m.
3	ACTING CHAIR RANSOM: The meeting will now
4	come to order.
5	This is a meeting of the Advisory
6	Committee on Reactor Safeguard Subcommittee on
7	Thermal-Hydraulic Phenomena.
8	I'm Victor Ransom, Acting for Chairman
9	Wallis, who is Chairman of this Committee.
10	Subcommittee members in attendance are Tom
11	Kress, Richard Denning, Dr. Graham Wallis. He's been
12	delayed by bad weather but apparently he'll join us
13	later. And the consultant in attendance is Professor
14	Sanjoy Banerjee.
15	The purpose of this meeting today is
16	twofold. First we will review the analytical methods
17	to be used to evaluate stability scenarios for the
18	economic and simplified boiling water reactor, ESBWR.
19	Then we'll hear from the NRC staff about their plans
20	to revise Regulatory Guide 1.82 Revision 3 to reflect
21	some comments that the Committee provided in the fall
22	of 2005 concerning the proposed revision 4 to the
23	Regulatory Guide.
24	The Subcommittee will hear presentations
25	by and hold discussions with representatives of the
ļ	

(202) 234-4433

	4
1	NRC Staff, General Electric Nuclear Energy and other
2	interested persons regarding this matter.
3	The Subcommittee will gather information,
4	analyze relevant issues and facts and formulate
5	proposed positions and actions as appropriate for
6	deliberation by the full Committee.
7	Ralph Caruso is the Designated Federal
8	Official for this meeting.
9	The rules for participation in today's
10	meeting have been announced as part of the notice of
11	this meeting previously published in the Federal
12	Register on December 23, 2005.
13	Portions of this meeting will be closed
14	for the discussion of proprietary information.
15	A transcript of the meeting is being kept
16	and will be made available as stated in the Federal
17	Register notice.
18	It is requested that speakers first
19	identify themselves and speak with sufficient clarity
20	and volume so that they can be readily heard by the
21	hearing impaired as well as the normal people.
22	We have received one request from GE to
23	make a presentation related to the revised Regulatory
24	Guide, and that presentation will be heard after the
25	Staff discussion this afternoon.
	I

(202) 234-4433

	5
1	I'm looking forward to some of the
2	discussion. I'm sorry that Chairman Wallis is not
3	present. I think he has a lot of things that he would
4	go into. He's provided some comments to us in writing.
5	And we'll try to reflect those as much as we can.
б	We'll now proceed with the meeting. And I
7	call upon Ms. Amy Cubbage of the Office of Nuclear
8	Regulations to begin.
9	MS. CUBBAGE: Thank you.
10	I'm just going to provide a few opening
11	remarks this morning. The senior project manager in
12	charge of the ESBWR review for NRR.
13	This is just a background on the design
14	certification status before we get into the topic for
15	today.
16	After a roughly three year preapplication
17	review, GE submitted an application for final design
18	approval and standard design certification for ESBWR
19	in August, 2005. That application was accepted for
20	docketing on December 1, 2005. We're currently in the
21	process of issuing RAIs and we'll be issuing RAIs
22	through October '06. We're scheduled to issue an SER
23	with open items in October '07. And then we're
24	assuming it'll take us about 15 months to close the
25	open items identified in that safety evaluation and
I	I

(202) 234-4433

	б
1	issue a final design approval. And then an additional
2	12 months is required for the rulemaking process. So
3	we have a total nominal duration of 42 to 60 months
4	for design certification review.
5	Just listed some of the previous occasions
6	that the Committee has heard about ESBWR. In 2003 and
7	2004 there were meetings on TRACG LOCA application.
8	And then this fall GE provided an overview of the
9	ESBWR design to the full Committee.
10	And on December 2004 GE submitted a
11	typical report TRACG application for ESBWR stability
12	analysis. So that was submitted during the
13	preapplication phase. We have now completed our review
14	of that typical report and have provided you with a
15	draft safety evaluation report. So this morning GE
16	will be presenting the content of that typical report.
17	And then this afternoon the Staff will present their
18	review efforts and evaluation of that report.
19	So I'd like to introduce David Hinds from
20	General Electric.
21	Would you have any questions?
22	MEMBER KRESS: When is the full Committee
23	supposed to review this? Do you recall that?
24	MS. CUBBAGE: We had some discussion about
25	that this morning as the Staff was under the
ļ	

(202) 234-4433

	7
1	assumption that we had been bumped to March. But Ralph
2	has indicated to me this morning that we may be on in
3	February.
4	DESIGNATED OFFICIAL CARUSO: You're
5	currently scheduled to look at it in February,
б	February 9th, in three weeks. And we'll be talking to
7	the Staff about this.
8	MEMBER KRESS: And we'll write a letter
9	then on this application?
10	DESIGNATED OFFICIAL CARUSO: That's the
11	intention. That's what the Staff and GE hope that we
12	will do is write a letter.
13	MS. CUBBAGE: Right. And this review is
14	limited to the applicability of this code.
15	MEMBER KRESS: Just you have to build your
16	stability?
17	MS. CUBBAGE: Right. And we're not making
18	any judgments at this time on the design or the
19	stability of the design, just rather the applicability
20	of the method.
21	MEMBER KRESS: And it doesn't included
22	ATWS.
23	MS. CUBBAGE: It does not include ATWS. GE
24	submitted a typical report on ATWS just this week and
25	we met with them yesterday as a kickoff. We have not
I	·

```
(202) 234-4433
```

	8
1	started the review of the TRACG ATWS.
2	MEMBER KRESS: Will that be a separate
3	review and letter?
4	MS. CUBBAGE: It's a separate typical
5	report certainly from this effort. It's going to be
6	rolled into the design certification review process.
7	David?
8	MR. HINDS: Hello. Good morning. I am
9	David Hinds. I'm with General Electric, the ESBWR
10	Engineering Manager.
11	Glad to be here today to meet with the
12	ACRS to discuss stability, our methods related to
13	evaluating stability.
14	Just like to briefly introduce our team.
15	We have Bharat Shiralkar, who will be leading the
16	discussion today for at least the General Electric
17	portion and supported by Jim Shame, Wayne Marquino.
18	We also have Allen Beard and Louie Quintana from our
19	licensing department.
20	Again, Bharat will have the lead on the
21	presentation and, of course, the rest of the team's
22	here to answer as many questions as we can during the
23	presentation.
24	Again, thanks for having us here. And I
25	can turn it over to Bharat.
I	1

(202) 234-4433

	9
1	MR. SHIRALKAR: Good morning. Glad to be
2	back here again. The last time I think I met this
3	Committee was in January of 2004, years ago when we
4	talking low containment.
5	Today's topic is stability, ESBWR
6	stability and the methodology we're using. We try at
7	GE to analyze ESBWR stability.
8	MS. CUBBAGE: I'm going to get a lapel
9	mike. Is it there?
10	MR. SHIRALKAR: Should I sit down next to
11	the mike?
12	MS. CUBBAGE: Yes, and I'll get a mike for
13	you.
14	MEMBER KRESS: What does the E stand for?
15	MR. SHIRALKAR: Economic. But we go
16	prefer to go just by ESBWR.
17	This is the outline for my presentation.
18	I'll try to give us a little bit of background to
19	start with. And this is just to establish some common
20	terminology. At GE we trend to use certain
21	terminology that may not be universal, so I'd like to
22	kind of tell you a little bit about our terminology.
23	And also talk to you a little bit about starting up as
24	to why the ESBWR stability is so much more stable than
25	an operating plant in natural circulation. Just as a
Į	I

(202) 234-4433

	10
1	kind of a lead in because I think that question has
2	come up in the past and I'd like to sort of give you
3	a little background early of that before I get into
4	the main body of the report and start stepping through
5	the report. Okay.
6	After that I'll get through the LTR
7	licensing topical report purpose and scope, the
8	licensing requirements, the application methodology
9	which we'll try to be compliment with the CSAU
10	approach, phenomena identification and ranking, model
11	applicability. And at this point I have a few topics
12	that are proprietary. I would prefer to keep the flow
13	to make this part proprietary and then move back again
14	to a non-proprietary session if that's okay with you.
15	ACTING CHAIR RANSOM: It's okay.
16	MR. SHIRALKAR: Is that right? Okay.
17	ACTING CHAIR RANSOM: One comment I have
18	is that I think that there are quite a few questions
19	about how the Chan component and the TRACG vessel
20	nodalization is applicable or representative of the
21	ESBWR geometry. And maybe if somebody would go into
22	a little bit of that at the appropriate time, that
23	would be helpful.
24	MR. SHIRALKAR: Sure. You mean how we
25	represent the vessel and the channels and how they're

(202) 234-4433

	11
1	coupled together and so on?
2	ACTING CHAIR RANSOM: Right, and
3	particularly the module dimensional aspects of the
4	thermal-hydraulics as related to the neutronic
5	feedback.
6	MR. SHIRALKAR: Okay.
7	ACTING CHAIR RANSOM: And also cross flow
8	between the bypass regions.
9	MR. SHIRALKAR: All right.
10	ACTING CHAIR RANSOM: And the chimney.
11	MR. SHIRALKAR: I'll try to do that. And
12	we have Jim Shome who is more of an expert on the
13	details of TRACG so we can get him here to talk to you
14	about it in more detail if you need to.
15	So the proprietary session then I would
16	like to cover model biases and uncertainties, plant
17	parameters, initial conditions and how we combine the
18	uncertainties using a Monte Carlo process.
19	And then I have a final nonproprietary
20	session on plant startup. So if it's okay, I'll do
21	the proprietary section session in the middle and then
22	come back and nonproprietary session on the end.
23	Just to remind you again, the general
24	layout of the vessel. The flow comes down through a
25	downcomer and goes up through a fairly short core. The
Į	I

(202) 234-4433

core is shorter than the normal BWR core. It's three meters high instead of 3.5 meters. And then a tall chimney region, which is about 9 meters high including the upper plenum here at the top and goes through the separators. The steam exists through the dryers and the flow returns from the separator spillover back

8 So in concept it's not very different from 9 a regular BWR. The main difference is that we have 10 natural circulation driving the flow and we have this 11 large chimney region which doesn't exist in the BWR.

down to the downcomer.

We'd want to make the point that the chimney region itself is each chimney cell encompasses 14 16 bundle, a 4x4 array. So it gets the flow from 16 bundles and the bypass interstational region in between those bundles. So that's all flowing into like one chimney cell.

And then the chimney cells look like this.
They're partitioned and they're about 9 meters high.
Okay.

ACTING CHAIR RANSOM: What provision exists at the bottom of the chimney for cross flow? MR. SHIRALKAR: The chimney essentially rests on the top guide.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

ACTING CHAIR RANSOM: Is that sealed or is

(202) 234-4433

25

1

2

3

4

5

6

7

	13
1	it
2	MR. SHIRALKAR: No, it is not sealed. It
3	sits on it. But we expect very little cross flow
4	leakage between those regions as compared to the
5	resistance I mean, it's an open region. If you
6	look at the
7	ACTING CHAIR RANSOM: What are the
8	dimensions of the open region?
9	MR. SHIRALKAR: The gap you mean?
10	ACTING CHAIR RANSOM: Right.
11	MR. SHIRALKAR: It just sits on top of it
12	so I don't know what the gap would be. I mean, it
13	would be like millimeter. Whatever the unevenness of
14	that surface is, I guess.
15	ACTING CHAIR RANSOM: Well otherwise it
16	basically is sealed but it's just sitting on top then?
17	MR. SHIRALKAR: Yes, it's sitting there on
18	top of it.
19	ACTING CHAIR RANSOM: So each 16 unit
20	definitely feeds that chimney section then?
21	MR. SHIRALKAR: Yes. Yes.
22	I mean if you look at the resistance in
23	cross flow over here versus the opening over here, I
24	mean it's orders of magnitude different. I mean, so
25	the flow is going to go straight up here. There's very
I	

(202) 234-4433

	14
1	little gap at the top of this guide.
2	DR. BANERJEE: Have you done any
3	experiments with multiple chimney cells to see what
4	this
5	MR. SHIRALKAR: No, we have not. No. So
6	this is just based on relative resistances in the
7	lateral and the vertical directions.
8	DR. BANERJEE: So you have done
9	experiments with single chimneys?
10	MR. SHIRALKAR: We have not exactly with
11	single chimney, but we have done experiments with
12	circular pipe with about the same hydraulic diameter
13	of the chimney cell to look at void fraction in that
14	region.
15	DR. BANERJEE: And how was this pipe fed,
16	by sort of a bunch of channels?
17	MR. SHIRALKAR: No, it was fed by
18	actually it was fed by a single pipe. It was done in
19	Ontario, Ontario Hydro. That's a facility for testing
20	pumps. And they used one of the risers in that leg
21	and fed that with the flashing mixture and then they
22	measured the void fraction in that length.
23	DR. BANERJEE: What diameter was the pipe?
24	MR. SHIRALKAR: Fifty-one centimeters.
25	DR. BANERJEE: And what's the diameter of
I	I

(202) 234-4433

	15
1	the chimney?
2	MR. SHIRALKAR: This is about 60
3	centimeters in terms of the divot.
4	Okay. In terms of background, really
5	briefly the terminology and the types of instability
6	analyzed. I'd like to tell you a little bit about the
7	natural circulation performance of ESBWR and why you
8	get a much larger flow in natural circulation compared
9	to operating reactors. And then some comparisons with
10	operating plants. Now there are a lot of similarities
11	and there are some differences. And I'll touch upon
12	those.
13	We basically look at three types of
14	instability mechanisms. One is the simple channel
15	hydrodynamic oscillations in which you keep the power.
16	The power is constant. No power oscillations on the
17	channel. The pressure drop in the channel is
18	constant. So this is, if you will, a single channel
19	that is being driven by a CF channel, it's maintaining
20	constant pressure drop and power. And you're looking
21	at the possible hydrodynamic instability in this
22	channel.
23	This is not going to happen in a reactor,
24	instability of this kind, because the channels are
25	tightly coupled. But it's a very useful way for us to
	1

(202) 234-4433

	16
1	get a measure of the channel stability and in the
2	design process when you're designing a fuel in terms
3	of what the channel stability is.
4	Core-wide oscillations depend on the
5	neutronics fundamental mode and the flows and flux
6	oscillate in-phase. So if you really have flows all
7	across the core going up and down at the same time,
8	which means that the power is also going up and down
9	in-phase across the core and the $ riangle p$ is oscillating
10	across the core because the flow is oscillating, total
11	flow is oscillating. And this is exciting, what we
12	call the fundamental mode of the kinetics, the
13	neutronics. You have basically the normal power shape
14	of the reactor, then you have a critical reactor.
15	The regional oscillations, we call them
16	regional oscillations. They're also referred to as
17	out-of-phase oscillations. And these depend on the
18	channel hydrodynamics exciting higher modes of
19	neutronics. And this was first proposed by Jose March-
20	Leuba in about 981. And we have very good validation
21	that that in fact is what is happening for all these
22	regional oscillations.

And fluxes and flows in regions youoscillate out-of-phase.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

ACTING CHAIR RANSOM: Since each one of

(202) 234-4433

25

	17
1	these chimney regions and the corresponding core parts
2	are essentially coupled as a unit, you can also have
3	channel-to-channel oscillations, right?
4	MR. SHIRALKAR: That's right.
5	ACTING CHAIR RANSOM: Is that what you're
6	saying?
7	MR. SHIRALKAR: I mean that's what I call
8	the first that I referred to as individual channel
9	oscillations.
10	And you're absolutely right. We've also
11	looked at a possible mode where you have a group of 16
12	channels together with the chimney cell above it
13	whether that would oscillate. Okay.
14	So in a regional oscillation different
15	parts of the core oscillate out-of-phase. And the
16	total core in flow will be almost constant, which is
17	why we're more concerned about this kind of
18	oscillation because you get cancellation effects. You
19	could get local power peaks but which wouldn't be seen
20	on an average powering monitor because they'll be
21	canceling out in different regions. And this excites
22	higher or neutronic modes. And to give you an
23	example, higher modes of the
24	ACTING CHAIR RANSOM: One question that
25	bothered me a little bit in a looking at this is the
	I

(202) 234-4433

	18
1	core is divided into six regions, somewhat uniformly.
2	And
3	MR. SHIRALKAR: Six regions? You mean
4	nodalization. You mean TRACG nodalization?
5	ACTING CHAIR RANSOM: In terms of the
6	thermal-hydraulics you have an azimuthal nodalization
7	of the six angular sectors.
8	MR. SHIRALKAR: We'll talk about that
9	later, but yes go ahead and ask your question.
10	ACTING CHAIR RANSOM: All right. Well, I
11	guess my concern would be that's a rather course from
12	the standpoint of channel-to-channel oscillation?
13	MR. SHIRALKAR: Oh, yes. I mean,
14	normally
15	ACTING CHAIR RANSOM: Compared to, say,
16	the neutronics.
17	MR. SHIRALKAR: The sectors are not really
18	there for the core at all. The sectors are actually
19	there for the chimney. I'll talk about that later.
20	ACTING CHAIR RANSOM: All right.
21	MR. SHIRALKAR: I mean we can model
22	individual channels thermal-hydraulically. The vessel
23	is modeling basically the bypass region.
24	ACTING CHAIR RANSOM: Right.
25	MR. SHIRALKAR: So that just determines
I	

(202) 234-4433

	19
1	how the channels provide energy to that bypass. But
2	the channels can be located anyway you want as long as
3	they're coupled.
4	ACTING CHAIR RANSOM: Well, the only
5	problem with that is the boundary conditions for the
6	channel are the same within that sector, I believe.
7	MR. SHIRALKAR: That's true. Yes.
8	This is what a call a first harmonic,
9	azimuthal harmonic power distribution. What I've
10	shown is this is upper from a PANACEA code which looks
11	at every single channel in the core. Every box here
12	represents the axial shape of a given channel. Okay.
13	And so from the top to the bottom.
14	And you can see that this is a the
15	first harmonic is actually perturbation on top of the
16	fundamental. So you see here that some this region
17	is negative, this region is positive, this
18	perturbation. The negative and positive. The one I
19	have darkened are the maximum amplitude channels. So
20	you can see that these two guys are out-of-phase and
21	have about the same amplitude. So this is symmetrical
22	about this diagonal.
23	DR. BANERJEE: Is that the perturbations
24	you're showing?
25	MR. SHIRALKAR: Yes. The harmonic is
I	

(202) 234-4433

	20
1	basically perturbations that aren't fundamental.
2	And this mode is not critical so you won't
3	get it in steady state operation. Okay. But it has
4	subcriticality, in this case about .0058 in
5	Eigenvalue. But this mode can be excited by the
6	thermal-hydraulics during an oscillation, which means
7	that you have overcome the subcriticality of that
8	harmonic. The subcriticality then is like a damping
9	of the system. So that has to be overcome. The
10	neutronic damping has to be overcome by the thermal-
11	hydraulic to produce the oscillation.
12	ACTING CHAIR RANSOM: What does diagonal
13	correspond to?
14	MR. SHIRALKAR: It's one of the line
15	symmetry in the core. The core is typically loaded
16	symmetrically like octan symmetry. This is what we
17	calculate to be the line of symmetry for that
18	particular mode. There are a number of octagonal
19	modes to show you
20	ACTING CHAIR RANSOM: I mean, can it be
21	anywhere?
22	MR. SHIRALKAR: It's what's calculated.
23	Yes. It could be generally it turns out to be for
24	a typical BWR turns out to be like this and that way,
25	octagonal.
Į	I

(202) 234-4433

	21
1	ACTING CHAIR RANSOM: What does that
2	correspond to, the line of symmetry of the core
3	loading pattern or
4	MR. SHIRALKAR: No. It's the symmetry of
5	the harmonic, the harmonic mode that you calculate
6	from the neutronics.
7	ACTING CHAIR RANSOM: So does it
8	correspond to one of the sector lines in the vessel
9	nodalization?
10	MR. SHIRALKAR: It doesn't have to, but
11	we've chosen it to be the line of symmetry. I'll show
12	you that later on as we go along as to how that
13	corresponds with the nodalization.
14	ACTING CHAIR RANSOM: How does the real
15	reactor know where this line is?
16	MR. SHIRALKAR: The real reactor knows
17	because that's how the solution of the neutronic
18	fueling equation tells it what the line of symmetry
19	is.
20	MEMBER DENNING: But as far as your
21	loading pattern is concerned, that is a line of
22	symmetry, isn't it?
23	MR. SHIRALKAR: Yes. Yes.
24	MEMBER DENNING: Yes. I mean
25	MR. SHIRALKAR: It's one of the line of
I	I

```
(202) 234-4433
```

	22
1	symmetry in the loading pattern.
2	MEMBER DENNING: It is a line of symmetry.
3	I think you said that it wasn't. But I think that it
4	is a line of symmetry.
5	ACTING CHAIR RANSOM: But if you look at
6	the core pattern, it looks like it's almost anti-
7	symmetric.
8	MR. SHIRALKAR: No, the core pattern
9	wouldn't be symmetric. It's likely mostly octan
10	symmetric. And this is one of the lines of symmetry.
11	So if I show you what the other harmonics
12	look like, now these are octagonal harmonics. So you
13	see the first two harmonics are azimuthal harmonics
14	and they're about the same subcriticality. Okay. So
15	this one is octagonal to that one. They're all
16	octagonal.
17	And then you get to you have an axial
18	harmonics where you get plus or minus in axial
19	direction. You can get a higher order as you move to
20	harmonic. You can get radial harmonic. But as you see
21	as you go down this progression, the subcriticality
22	gets larger and larger. It gets more and more hard,
23	excited harmonics. So you always excite these
24	harmonics first. So all the data we have in operating
25	reactors, which are out of fall in this category.
I	I

(202) 234-4433

	23
1	In fact, you can have so the question is whether it
2	go about this one or about that one. And it's equally
3	likely. And you can have a combination of the two
4	actually happening.
5	And I remember being in a control room in
6	a European plant where we were doing a stability test,
7	and grant, it first went unstable around this
8	diagonal. And then as we watched, it precessed, the
9	line symmetry precessed until it become symmetrical
10	about this diagonal, and then it went back.
11	So either of those diagonals was a
12	possible mode for the oscillation.
13	But the point here is that you're not
14	going to get any local harmonics or any much higher
15	order harmonics happening because they have much
16	higher subcriticality. So what you're going to see is
17	basically these harmonics.
18	DR. BANERJEE: So when you say often
19	symmetry, let's say with the higher order mode, those
20	two lines then correspond to that's divided into
21	four now.
22	MR. SHIRALKAR: Yes.
23	DR. BANERJEE: So you'd have to divide
24	that into eight?
25	MR. SHIRALKAR: Well, but these are the
l	I

(202) 234-4433

	24
1	DR. BANERJEE: They're the most unstable,
2	right?
3	MR. SHIRALKAR: Yes. No. Yes.
4	DR. BANERJEE: So but if you had octan
5	symmetry, let's take the other one and draw two lines
б	between the pluses and minuses, so why does it select
7	these two diagonal lines rather than the vertical and
8	the horizontal line?
9	MR. SHIRALKAR: That's the solution that
10	you'd get from the kinetics. Now, I don't have a good
11	physical explanation to give you. Maybe Jim or Jose
12	can speculate on that. But it's a physically solid
13	fusion equation for the reactor, we extract the
14	harmonic solutions. Then we find that they are
15	typically these kinds of symmetry.
16	MR. JAN: And that's strictly either a
17	loading pattern or Jim Jan.
18	The choice of that line of symmetry would
19	be a function of the loading patterns so that, you
20	know, the bundle peaking, the composition will impact
21	that choice as well as any control rods that are in
22	the core at the time of the evaluation will dictate
23	where that line of symmetry or the lowest
24	subcriticality line of symmetry will exist.
25	DR. BANERJEE: But in fact he says that
ļ	I

(202) 234-4433

	25
1	there is often symmetry in the loading pattern, right?
2	So that means that the vertical and the horizontal
3	lines could also be selected. It just depends on how
4	your control rods are at that time or
5	MR. JAN: That would be the primary
6	difference.
7	DR. BANERJEE: So there will be some
8	detail that drives you to one?
9	MR. JAN: Yes. And again, if you use
10	octan symmetric, then it really doesn't matter. I
11	mean, it's just a calculational variation and the
12	impact on the calculation is the same.
13	DR. BANERJEE: So in other words it
14	selects a line so that in fact everything as symmetric
15	as possible about it, right?
16	MR. JAN: Yes. It's going to set up that
17	line of symmetry such that the Eigenvalue is the
18	lowest.
19	DR. BANERJEE: Right. Could we go back to
20	the other slide just to fix this. Yes. So those two
21	hottest channels are symmetric in some way, that's
22	what I say.
23	MR. JAN: Yes. That the distribution has
24	the lowest possible Eigenvalue.
25	DR. BANERJEE: That depends on your
ļ	I

(202) 234-4433

	26
1	control rod pattern?
2	MR. SHIRALKAR: Yes. In fact, we also
3	find that the oscillation is driven, the fundamental
4	mode oscillation is driven typically by the highest
5	power channels or actually the square of the power in
6	the channels is what's the driving. For the harmonic
7	mode it's the product of the fundamental times the
8	harmonic. Okay. So in some way that product has to
9	be uniform or has to be symmetrical as well. So that
10	may be another consideration that comes into why
11	symmetric about a particular line.
12	ACTING CHAIR RANSOM: These harmonics are
13	defined without feedback from the thermal-hydraulic
14	MR. SHIRALKAR: This is calculated purely
15	from a steady state 3-D code, neutronics code.
16	ACTING CHAIR RANSOM: So it would be
17	uniform thermal-hydraulic conditions, right?
18	MR. SHIRALKAR: No, no, no. It has
19	thermal-hydraulic conditions in it, but it's not a
20	transient computer code. It's just a steady state
21	ACTING CHAIR RANSOM: Right. Not changing
22	with time?
23	MR. SHIRALKAR: Right.
24	ACTING CHAIR RANSOM: You may have core
25	wide variation like this?
I	

	27
1	MR. SHIRALKAR: It does. Yes.
2	And this is I like this slide because
3	to me this is a validation of the hypothesis, if you
4	will, that Jose proposed many years ago and that is
5	that the harmonics in fact drive the out-of-phase, the
6	regional oscillations. And you can see that what we
7	have here is a flux contour from a plant in Europe
8	which actually was having out-of-phase oscillations.
9	Okay. This is a three dimensional power plant, given
10	a snapshot in time. So half a cycle later it will be
11	reversed. So this probably high and that probably
12	low. So it is a snapshot in time. It shows the
13	contour.
14	And it shows this contour is calculated
15	now with our 3-D computer code. Okay. On top of that
16	are actual test data from the local powering monitor
17	oscillation. So you can see that they follow the
18	contour very well. And you can see clearly in this
19	one, which is a cross sectional cut across the
20	diagonal, which shows the normalized flux contour of
21	the oscillation versus distance.
22	DR. BANERJEE: So please orient us with
23	the coordinates. Where are these I mean, where is
24	the center of the core, let's say?
25	MR. SHIRALKAR: In here. So it's
Į	I

(202) 234-4433

	28
1	oscillating around some line like this. And so this
2	part is now on one side of the line of symmetry and
3	this part is on the other on the opposite part.
4	DR. BANERJEE: Why doesn't that side go to
5	fall off like you do on the other side?
6	MR. SHIRALKAR: Well, it's reasonably
7	symmetric. I mean, it's hard to see. This side is
8	falling off and coming up here on this side. You can
9	probably see better here where it's a cut through, cut
10	through here up to the center line.
11	MEMBER DENNING: On that one there that
12	you're showing right now, we're not seeing the reduced
13	side, are we? We're just seeing
14	MR. SHIRALKAR: No. You're just seeing
15	half of it.
16	MEMBER DENNING: We're just seeing half of
17	it.
18	MR. SHIRALKAR: Half of it. From the
19	center. So this is a distance from the center line,
20	okay? And you can see the flux contour calculated by
21	a steady state three dimensional code, this PANACEA
22	code, and these are now the test points which show the
23	fall of the contour. And this is a validation that the
24	harmonic shape in fact is what's driving the
25	oscillations.
I	

(202) 234-4433

29 1 DR. BANERJEE: But there was some thermal-2 hydraulic perturbation that occurred to this, or was 3 this very small? 4 MR. SHIRALKAR: There's no perturbation in 5 this case. This is just a calculation of the harmonic 6 shape. 7 DR. BANERJEE: I'm saying the real 8 situation. 9 MR. SHIRALKAR: The real situation, yes. 10 The real situation half a cycle later it would be That shape would be reversed. 11 reversed. Right. But now if you look 12 DR. BANERJEE: at this real curve there. 13 14 MR. SHIRALKAR: Yes. 15 DR. BANERJEE: Associated with that there 16 are some thermal-hydraulic perturbations, right, about 17 some steady state? MR. SHIRALKAR: Yes. Yes. 18 19 DR. BANERJEE: That's not taken into 20 account in PANACEA. 21 MR. SHIRALKAR: No. 22 DR. BANERJEE: So how does PANACEA do so 23 well? 24 MR. SHIRALKAR: Because it's driven 25 completely by -- the shape is driven by the loading

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	30
1	and the shape of the harmonic. This is just a
2	normalized shape.
3	DR. BANERJEE: Okay. This is not an
4	actual
5	MR. SHIRALKAR: It's a normalized shape,
6	okay?
7	DR. BANERJEE: Now, but there are effects
8	which are due to feedback of thermal-hydraulics?
9	Let's say where the power goes up, your void fraction
10	goes up, right?
11	MR. SHIRALKAR: Yes. Yes.
12	DR. BANERJEE: If the void fraction goes
13	up, presumably that would tend to make the power go
14	down some. Without accounting for that, how does
15	PANACEA get this?
16	MR. SHIRALKAR: The PANACEA accounts for
17	wide feedbacks.
18	DR. BANERJEE: Oh, it does?
19	MR. SHIRALKAR: Yes, of course. But it
20	doesn't calculate transient. I mean, it's calculating
21	the effect in terms of it's a coupled thermal-
22	hydraulic kinetic code, but the steady state
23	calculation of the harmonic.
24	DR. BANERJEE: You mean it is very slow,
25	the transient so that
Į	I

(202) 234-4433

	31
1	MR. SHIRALKAR: Yes. This is a snapshot
2	in time.
3	DR. BANERJEE: Does it do a succession of
4	thermal-hydraulic steady states?
5	MR. SHIRALKAR: No.
6	DR. BANERJEE: So assuming the steady
7	state that was there before the perturbation started?
8	MR. SHIRALKAR: Yes.
9	MEMBER DENNING: How rapid does this flip
10	back and forth?
11	MR. SHIRALKAR: The typical period would
12	be of the order of like two seconds.
13	MEMBER DENNING: A couple of seconds.
14	DR. BANERJEE: So it's quite rapid.
15	MEMBER DENNING: Yes.
16	DR. BANERJEE: Maybe you can explain what
17	is in PANACEA?
18	MR. SHIRALKAR: PANACEA is basically a
19	diffusion theory code that calculates coupling between
20	thermal-hydraulics and neutronics to give you what the
21	shape is, you know the power shape in steady
22	operation. It also calculates the shape for harmonic
23	shape.
24	DR. BANERJEE: But does it have a module
25	within it that corrects the thermal-hydraulics based
ļ	I

(202) 234-4433

	32
1	on the increased power? Not in a transient sense.
2	MR. SHIRALKAR: In the steady state, yes.
3	DR. BANERJEE: It does have?
4	MR. SHIRALKAR: Yes.
5	DR. BANERJEE: Some sort of a module which
6	corrects the void?
7	MR. SHIRALKAR: Yes. I mean, it can
8	register a solution, a steady state solution based on
9	the neutronics and thermal-hydraulics.
10	Now, Jim, you wanted to say something to
11	clarify?
12	MR. JAN: Well, the only point I was going
13	to make was that what PANACEA is calculating are the
14	possible harmonic states for that particular reactor
15	condition. And it tells you that, like say this
16	particular shape is possible and what the
17	subcriticality is for that particular mode. So
18	PANACEA will say, you know, here's the fundamental
19	shape. Its Eigenvalue is one. Here's this harmonic.
20	Its Eigenvalue is, you know, 1005.
21	Now as far as PANACEA is concerned the
22	harmonic is subcritical so it will not show up in the
23	steady state solution. Now what happens when you
24	couple it to a thermal-hydraulics is that the feedback
25	that you were questioning, the hydraulic feedback,

(202) 234-4433

1 supplies enough reactivity so that that particular 2 harmonic mode is now a critical mode. So it overcomes 3 that subcriticality and is actually present in the 4 calculation. But that's something separate from 5 PANACEA. PANACEA just identifies what modes are possible in the neutronic. 6 7 DR. BANERJEE: I understand that. I'm 8 just trying to understand how we've arrived at those 9 points which are data and that solid line. Because 10 that presumably now is a critical mode, right? No. In terms of a solid line, 11 MR. HAN: that's a subcritical mode predicted by PANACEA that 12 has a particular level of subcriticality. 13 DR. BANERJEE: But the data are --14 Data is actual based on the LPRM 15 MR. HAN: 16 readings across the board. 17 DR. BANERJEE: Right. So there's actually something happening there? 18 19 MR. HAN: And it's happening because the 20 hydraulic feedback that existed at the time of the 21 test was enough to overcome the subcriticality of that 22 particular mode. DR. BANERJEE: So what I still don't 23 24 understand is really how that shape can be similar to 25 what is excited when there is some of hydraulic

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

33

	34
1	feedback. Because the feedback changes the
2	neutronics, doesn't it? I mean
3	MR. HAN: Well, I think
4	DR. BANERJEE: Or am I getting mixed up
5	somewhere? I can't understand
б	MR. HAN: Well I don't think you're
7	getting mixed up. But I guess my way of thinking
8	about it is that that particular harmonic becomes
9	critical and observable in the plant when the
10	conditions of the hydraulics are consistent with that
11	particular mode. In other words, it's only when the
12	conditions are right that the hydraulic response is
13	providing the appropriate feedback to overcome the
14	subcriticality that you observe the oscillation. In
15	other words, the things must occur in tandem. You
16	know, the harmonic is present in the nuclear
17	evaluation or nuclear condition and the channels are,
18	and state hydraulic state are such that they can
19	provide this reactivity effect to overcome that
20	subcriticality. So it's two things they have to line
21	up together. Otherwise that mode is still subcritical
22	and you won't observe it.
23	MEMBER DENNING: I don't understand that.
24	You're not implying this wouldn't have a decay rate,
25	would you? I mean, I can see how one can stimulate
I	I

(202) 234-4433

	35
1	within a transient manner, you can stimulate these and
2	then they die out. Is that correct? I mean, it sounds
3	like you're implying
4	MR. SHIRALKAR: In this case, it's steady
5	limit cycle oscillation.
б	MEMBER DENNING: What's that?
7	MR. SHIRALKAR: In this case it's a steady
8	limit cycle oscillation.
9	MEMBER DENNING: This is a steady limit
10	cycle oscillation.
11	ACTING CHAIR RANSOM: But isn't it true
12	that what you're describing with PANACEA is actually
13	a linear small perturbation type analysis so it only
14	indicates whether or not it could exist? In other
15	words, the tendency is there for these different
16	modes. But if it moves beyond a small change,
17	nonlinear effects are going to come into play like
18	thermal-hydraulic feedback, which will actually
19	change?
20	MR. SHIRALKAR: It's not linear. It's not
21	perturbation. It's a steady state calculation
22	ACTING CHAIR RANSOM: In fact, one thing
23	I'd like to
24	MR. SHIRALKAR: of a possible condition
25	that can exist. And you're not saying that PANACEA
ļ	

(202) 234-4433

36 1 will calculate the amplitude of the transient 2 behavior. But it's saying it's calculating the shape 3 that is consistent --4 ACTING CHAIR RANSOM: Right. 5 MR. SHIRALKAR: -- with the shape that it's seeing for the oscillation. 6 7 ACTING CHAIR RANSOM: In fact, isn't it 8 correct to say that what PANACEA calculates is a 9 tendency to oscillate, nothing about instability? 10 When you talk about instability --MR. SHIRALKAR: No, PANACEA doesn't 11 calculate tendency to oscillate. 12 ACTING CHAIR RANSOM: -- it means growing? 13 14 MR. SHIRALKAR: No. PANACEA does not 15 calculate a tendency to oscillate. It tells you 16 nothing about whether it's going to oscillate or not. 17 ACTING CHAIR RANSOM: Right. Right. So all 18 the --19 MR. SHIRALKAR: It just tells you one of 20 the possible modes of the harmonics. 21 ACTING CHAIR RANSOM: Right. 22 MR. SHIRALKAR: And in this case what data 23 is saying is that the oscillation corresponds to this 24 mode. 25 MEMBER DENNING: And you've normalized

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	this?
2	MR. SHIRALKAR: It's a normalized
3	function.
4	MEMBER DENNING: This is normalized?
5	MR. SHIRALKAR: Yes.
6	MEMBER DENNING: I mean somehow you've
7	adjusted
8	MR. SHIRALKAR: PANACEA won't give you the
9	amplitude, but it is normalized function, should
10	function.
11	MEMBER KRESS: To make this calculation
12	did you first fix the I'm here. Did you first fix
13	the void fraction distribution through the core and
14	then make the neutronic calculation test? That's how
15	you did it?
16	MR. SHIRALKAR: Yes.
17	MEMBER KRESS: So you can speculate on
18	what the void fraction might have been?
19	MR. HAN: Well, the void fraction
20	distribution is calculated as the steady state
21	distribution for the fundamental.
22	MEMBER KRESS: You have to assume a sort
23	of power distribution for that fundamental to get
24	that?
25	MR. HAN: Well, you calculate
I	

(202) 234-4433

	38
1	MEMBER KRESS: It's an iterative thing it
2	seems to me like.
3	MR. HAN: Yes. The way the code will work
4	is first it does a fundamental calculation and gets a
5	very exact solution of the fundamental equation.
6	MEMBER KRESS: That depends on the core
7	loading and the rod positions
8	MR. HAN: Yes. Yes, it does.
9	MEMBER KRESS: and the flows up?
10	MR. HAN: And then it disturbs that
11	distribution and begins the power iteration and the
12	calculation on the steady state where at the end of
13	each iteration it removes that highly converged steady
14	state.
15	MEMBER KRESS: Yes.
16	MR. HAN: And so as a result what it's
17	converging to is the next mode with the lowest
18	Eigenvalue. And so you can successively do that to
19	find the first harmonic, second harmonic and so forth.
20	MEMBER KRESS: Okay.
21	DR. BANERJEE: But does it perturb the
22	void distribution when it does that or does it
23	maintain the steady state void distribution?
24	MR. HAN: Steady state void distribution.
25	DR. BANERJEE: Okay. So that's what my
ļ	

(202) 234-4433

	39
1	issue really is here, that of course you assign this
2	your void distribution is going to be perturbed. So
3	why is it so accurate that all this suspecting would
4	look that good?
5	MR. HAN: Well, again, you know the value
6	of this is that is so good in indicating that the
7	mode, that the oscillation and the contours are
8	exciting the harmonic solutions to the steady state
9	power distribution.
10	DR. BANERJEE: So putting it another way,
11	maybe we should do this offline. But what you're
12	really saying is the perturbation and the void
13	distributions associated with this power profile or
14	whatever that is does not have much of an effect?
15	MR. HAN: The good agreement with the
16	plant data would indicate that that effect is quite
17	small.
18	DR. BANERJEE: Yes. Either that or the
19	code is wrong? This is just luck, is it?
20	MR. SHIRALKAR: No, it's not luck.
21	DR. BANERJEE: Well, okay. I mean that
22	sort of makes you suspect that the void effect is so
23	small
24	MR. SHIRALKAR: Because these are now
25	perturbations that are in the fundamental. Okay.
	I

(202) 234-4433

	40
1	DR. BANERJEE: But what you're really
2	saying is that the feedback from the void was
3	negligible, otherwise you shouldn't
4	MR. SHIRALKAR: For this perturbation and
5	for the harmonic perturbation.
6	MR. HAN: And again, these are
7	perturbations that start off at very small variations
8	from that steady state and then for the appropriate
9	conditions grow from that point. And so the
10	conditions that exist when the oscillation first
11	starts are very close to that steady state
12	distribution.
13	MR. SHIRALKAR: We can talk about it maybe
14	separately later on. But
15	MEMBER KRESS: The reason the power is
16	high on one end and low on the other is because of the
17	void difference, right, mostly?
18	MR. HAN: I mean, it's low on one end
19	MEMBER KRESS: You're voided in the low
20	end and not voided as much in the high end.
21	MR. HAN: No. I think we
22	MR. SHIRALKAR: No. What I'm showing is
23	not actual, it's radial power distribution. This is
24	one side
25	MEMBER KRESS: Sure. Yes. That's what I
I	1

(202) 234-4433

	41
1	meant.
2	ACTING CHAIR RANSOM: The thing that would
3	be helpful, you've normalized the power and in terms
4	of percent of power what kind of variations are you
5	talking about there? Are these a fraction of a
6	percent?
7	MR. SHIRALKAR: Yes. This is normalized
8	of the percentage of the oscillation magnitude.
9	ACTING CHAIR RANSOM: Right. So how big
10	is the
11	MR. SHIRALKAR: So the maximum oscillation
12	magnitude is one here and then the fraction.
13	ACTING CHAIR RANSOM: Right. And how big
14	is that?
15	MR. SHIRALKAR: In this particular case,
16	do you remember?
17	MR. HAN: It's 10 to 15 percent peak over
18	average.
19	MR. SHIRALKAR: That's a maximum
20	oscillation. Locally.
21	DR. BANERJEE: So it is having quite an
22	effect on the void
23	MR. SHIRALKAR: But the total power, the
24	total area's power change is like one percent of this
25	due to cancellation effects. But where we're going to
Į	1

(202) 234-4433

1 use this mostly is we're going to -- the TRACG 2 calculations that we do for visual oscillations are 3 going to use this information in the way we group our 4 channels. In other words, we're taking advantage of 5 the harmonic shape to do our calculation. Effectively, that calculation -- if you will, for the 6 7 fundamental for the first harmonic and for second 8 harmonic and so on. 9 BANERJEE: So then, Bharat, it's DR. 10 correct that you can see that this is the mode that's being oscillated, this is the line of symmetry and 11 12 certainly if you're only using it for that, it's one thing. But I'm still concerned about the fact that you 13 14 get such good agreement without what appears to be a void feedback. 15 16 MR. SHIRALKAR: That's what we get. Now, 17 we're not going to -- we're not going to use PANACEA to calculate oscillations. 18 19 DR. BANERJEE: Oh, okay. 20 Okay. We're using PANACEA MR. SHIRALKAR: 21 to guide us on where the line of symmetry is and so 22 that we can look what channel is appropriate. There is a void difference 23 MEMBER KRESS: 24 between those, and the difference is across the radial 25 thing. That's --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

42

	43
1	DR. BANERJEE: But it still doesn't make
2	it counterfeit and yet that's such a good agreement
3	MEMBER KRESS: Well, I think it has to
4	take account of it to get that distribution. In the
5	steady state. It's a steady state void difference.
6	DR. BANERJEE: They're not changing the
7	void distribution. In spite of the fact that the bar
8	is changing by 15 percent. As I understand it.
9	MEMBER DENNING: No. Wait a second. I
10	think that they must be
11	DR. BANERJEE: That's what I was saying.
12	MEMBER DENNING: If you look at the
13	positive, how far it goes up positive versus how far
14	it down goes negative. If there were no changers you
15	would expect that to be purely symmetric, the up and
16	the down, right?
17	If you look here, you see it only goes
18	down to a it's hard to see on that figure, but the
19	minimum that it goes to on this side of the core is
20	like minus .5.
21	MR. SHIRALKAR: Yes. Around that.
22	MEMBER DENNING: Whereas the maximum on
23	the positive side is one, twice as high, right? That
24	difference has to be
25	MR. SHIRALKAR: Yes, there is a
I	I

(202) 234-4433

	44
1	difference. Yes. The perturbation that we're looking
2	at is not necessarily 15 percent. Okay. I mean we're
3	looking basically, the harmonic shape is basically a
4	fairly small perturbation. We're talking about
5	normalized shape functions here, that's all. This is
6	not it corresponds to the oscillation shape and I
7	think we probably ought to leave it at that for the
8	time being and tell you that the thing that we're
9	going to use from here is primarily the fact that we
10	believe the harmonics do drive regional oscillations
11	and we're going to use that information in how we use
12	TRACG to calculate regional oscillations.
13	DR. BANERJEE: Is this the only evidence
14	or do you have more evidence to support that harmonics
15	drive regional oscillations?
16	MR. SHIRALKAR: Well, we have made
17	calculations of I think at least two plants I know
18	that we get good agreement with TRACG in terms of
19	predicting the onset of instability with the regional
20	mode and finding the axis of symmetry and so on.
21	DR. BANERJEE: So it's crucial in grouping
22	the channels?
23	MR. SHIRALKAR: Yes, that's where we use
24	it. It's crucial in the sense if you want to use the
25	core intelligently. I mean, you could do a group force
	I

(202) 234-4433

(202) 234-4433

	45
1	and have every channel represented, like 500 channels,
2	600 channels. But to do it intelligently we can group
3	them so that they're grouped with a group based on,
4	say, the product of the fundamental and the harmonic
5	power distributions and groups across the line of
6	symmetry.
7	DR. BANERJEE: So you select, say, six
8	groups or something?
9	MR. SHIRALKAR: Well, probably about 32
10	groups.
11	DR. BANERJEE: Thirty-two groups. Okay.
12	And so these are 16 on each side or something like
13	that?
14	MR. SHIRALKAR: Right.
15	DR. BANERJEE: What happens if you make
16	those eight or 32 on each side? You get the same
17	answer?
18	MR. SHIRALKAR: No, eight or 32 it doesn't
19	really matter too much. I mean, we've done those kind
20	of sensitivity studies. The more interesting question
21	might be let's say, you know, you're grouping it for
22	a particular mode and let's say that the reactor is
23	actually unstable in, say, the fundamental mode and if
24	you disturb it in that way, it would attempt to go
25	back to fundamental mode oscillation. And I think
	I

(202) 234-4433

Í	46
1	we've done some studies like that, that we've done
2	some joint, you know, kind of grouping to see what
3	would happen.
4	DR. BANERJEE: So this is not crucial,
5	actually?
б	MR. SHIRALKAR: It helps us, yes. It
7	should find a solution, but it helps us in terms of
8	reducing the number of groups we use and give a more
9	constance in how we do the calculation.
10	I think I'm done with my background. Oh,
11	no, I'm not.
12	I wanted to share this with you. This is
13	ESBWR natural circulation. The question always comes
14	up how well do you know the natural circulation flow
15	in this plant. And first of all, it's not really that
16	different from an operating BWR. Okay. I mean, it's
17	the same principle. We have the downcomer density
18	that's driving the flow through the core which is at
19	a high void fraction. What we've got now is a chimney
20	to augment that flow. Okay.
21	And so if you calculate the flow through
22	here, it's dependent on the difference in the static
23	heads inside and outside the shroud and then the loop
24	losses that are controlling the flow rate.
25	The downcomer in the ESBWR is fairly open,
ļ	I

(202) 234-4433

	47
1	so there is no jet pumps, there are no internal pumps.
2	It's a fairly open downcomer and so we have hardly any
3	resistance in that area. We can calculate a single
4	phase pressure drop reasonably well.
5	The dominant pressure drops are in the
6	core region, the site empty orifice and the two phased
7	flow in the core and for that we have very good data.
8	DR. BANERJEE: What's the velocity in the
9	downcomer?
10	MR. SHIRALKAR: Velocity in the downcomer?
11	DR. BANERJEE: Typically?
12	MR. SHIRALKAR: Yes.
13	DR. BANERJEE: Well, velocity versus
14	bubble rise time.
15	MR. SHIRALKAR: Oh, okay. It's much
16	higher than that.
17	DR. BANERJEE: Much higher than that?
18	MR. SHIRALKAR: Yes. Yes, and you're not
19	going to get bubbles carried under from there,
20	especially you have feedwater coming in over here.
21	DR. BANERJEE: So bubble rise time or
22	velocity is much higher than the downward velocity?
23	MR. SHIRALKAR: Is much lower.
24	MEMBER KRESS: Lower.
25	DR. BANERJEE: So then why wouldn't you
I	I

(202) 234-4433

	48
1	get carry under if you get
2	MR. SHIRALKAR: Well, because you get
3	condensation right here when the feedwater control
4	comes in.
5	DR. BANERJEE: Oh, okay. The feedwater is
6	coming in at the top.
7	MR. SHIRALKAR: Yes.
8	DR. BANERJEE: Okay.
9	MR. SHIRALKAR: I don't know, it's 10,000
10	kilograms per second divided by the area. I'm not
11	sure.
12	DR. BANERJEE: And the feedwater is coming
13	through spogs?
14	MR. SHIRALKAR: Yes.
15	DR. BANERJEE: On each side?
16	MR. SHIRALKAR: Right.
17	DR. BANERJEE: Thousands of little holes.
18	MR. SHIRALKAR: That's right.
19	So the dominate losses are inside in the
20	orifice in two phase, pressure up in the core for
21	which you have a lot of data, okay? Good data in
22	terms of those losses.
23	The chimney has hardly any frictional
24	losses being very open.
25	The separator has two phase pressure drop
	I

	49
1	that we have again full scale for typical data for.
2	So generally, you know, these losses are
3	well known and well calibrated. There's not much
4	uncertainty in these frictional losses.
5	The drawing here is proportional to the
6	core and chimney height and the void fraction in those
7	regions. So it turns out that the dominate factor in
8	controlling this is actually the void fraction in the
9	chimney, for which we estimate the uncertainty to be
10	about 5 percent based on our comparisons with data
11	DR. BANERJEE: Five percent in what?
12	MR. SHIRALKAR: In void fraction.
13	DR. BANERJEE: Five percent in absolute
14	void fraction?
15	MR. SHIRALKAR: Yes.
16	DR. BANERJEE: What's the average void
17	fraction then?
18	MR. SHIRALKAR: It's about 60 to 70
19	percent.
20	DR. BANERJEE: And the quality is roughly?
21	MR. SHIRALKAR: The quality leaving the
22	core is about 20 percent, 25 percent. And when it
23	mixes with the flow from the bypass and it reduces to,
24	say, about 15 percent or thereabouts.
25	DR. BANERJEE: And the flow regime is

```
(202) 234-4433
```

	50
1	what, roughly?
2	MR. SHIRALKAR: In the no the chimney
3	is turbulent.
4	DR. BANERJEE: turbulent. So why do
5	you think data from a pipe would work in a square
6	duct?
7	MR. SHIRALKAR: I don't see yes, it's
8	DR. BANERJEE: There are edges here.
9	MR. SHIRALKAR: There are edges, but they
10	are similar diameter. And this would be reasonably
11	good.
12	DR. BANERJEE: But wouldn't water
13	accumulate at the edges, I mean the corners? You
14	don't think so?
15	MR. SHIRALKAR: We don't think so. Not at
16	the velocities that we have in the pipe. So you'd
17	probably get a distribution that would be slightly
18	different than circular pipe. On the average I think
19	is dominated by the central region. I mean, it's a
20	fairly large very large region.
21	DR. BANERJEE: So you say there is an
22	uncertainty in the void fraction. So if it was 60
23	percent, it might be 55 percent or something like
24	that?
25	MR. SHIRALKAR: Right.
I	

(202) 234-4433

	51
1	DR. BANERJEE: Five percent in void
2	fraction.
3	MR. SHIRALKAR: Yes. And so based on that
4	we calculate the core for uncertainty of about 3 to 4
5	percent, one sigma. This is by doing a Monte Carlo
6	analysis where we really always randomly, which is
7	not too bad.
8	DR. BANERJEE: But you don't have any test
9	with a chimney and a channel, 16 channels?
10	MR. SHIRALKAR: No, not at full scale.
11	No, we don't.
12	There is some question asked about
13	developing lengths and so on inside that chimney. I
14	think Graham asked about it last time. And there is
15	some data in which you have there is a pipe
16	geometry in which the flow is injected toward to what
17	they call the bubbler, which is 37 tubes injecting
18	steam inside that, which is not unlike what we have
19	here. And they found that they reached fully
20	developed flow within about one to 200 times.
21	DR. BANERJEE: Where was this?
22	MR. SHIRALKAR: Russian data.
23	DR. BANERJEE: And what diameter was the
24	pipe?
25	MR. SHIRALKAR: One was .6 meters and one
I	

(202) 234-4433

	52
1	was .75 meters.
2	DR. BANERJEE: Can you source that for me?
3	MR. SHIRALKAR: Yes, sure.
4	DR. BANERJEE: Thank you.
5	MR. SHIRALKAR: So if you look at the
б	natural circulation characteristics of this plant,
7	this is a plant at an average power per bundle, which
8	is an average flow per bundle. And this I don't
9	know why it's doing that.
10	DR. BANERJEE: Oscillation.
11	MR. SHIRALKAR: Yes. Anyway, this is the
12	characteristic for the ABSBWR. This is the
13	characteristic for BWR 6. And here is the flow
14	characteristic and natural circulation for an ESBWR.
15	And you can see how much larger the flow is compared
16	to the operating plants. And, of course, this is by
17	design.
18	We have a tall chimney that's driving the
19	buoyancy head. We have an open downcomer, which is a
20	big factor of just moving the jet pumps and the
21	internal pumps from this region. And we also have a
22	shorter core and it'll reduce two phrase pressure
23	drop. And all of them combine to give you this large
24	flow.
25	DR. BANERJEE: Why does it move back like

(202) 234-4433

	53
1	that?
2	MR. SHIRALKAR: That's the point where,
3	you know, this competition between friction and
4	buoyancy. So what happens at that point is that the
5	friction starts to dominate when you get to high
6	qualities. And then the character changes. So what
7	you get is actually a reduction in flow as the power
8	goes up. Because buoyancy reduction is not
9	compensating enough for the friction increase.
10	DR. BANERJEE: Are these mainly the
11	returning losses or is it actual frictional drop
12	through the
13	MR. SHIRALKAR: This is friction, yes.
14	DR. BANERJEE: It's friction?
15	MR. SHIRALKAR: It's friction to the core.
16	DR. BANERJEE: It's not the turning and
17	the
18	MR. SHIRALKAR: No, no. It's dominated by
19	the core, friction.
20	ACTING CHAIR RANSOM: Well, some of it
21	must be acceleration. I mean, as you're changing the
22	void and while you're accelerating the flow
23	MR. SHIRALKAR: Sure. Yes. I mean, it's
24	a total pressure drop in the core that's dominating
25	it.
	I

(202) 234-4433

	54
1	So just to make a point that this and
2	we've had stability, we looked at stability in BWRs
3	for many years. So stability, per se, is not a new
4	thing in terms of BWR analysis. And we've been doing
5	this for many umpteen years. And the important factor
б	of stability are fairly well understood. So the power
7	flow ratio or the Zuber number, if you will, the fuel
8	thermal time consistent, neutronic parameters, actual
9	and aerial peaking, ratio of single phase/two phrase
10	pressure drop and for regional oscillation the
11	subcriticality of the higher order harmonic mode.
12	So if compare those with operating
13	reactors, I hope you can see these things. But if you
14	look at wide coefficient we're in the range of
15	operating plants. If you look at the core average
16	exist quality, we are around we're at natural
17	circulation conditions in operating plants versus
18	ESBWR. Our exit qualities are a little bit lower than
19	the operated plants that we have operating.
20	The bundle average, the bundle exit
21	quality also is a little bit lower than natural
22	circulations in operating plants.
23	DR. BANERJEE: Why do you call that
24	favorable?
25	MR. SHIRALKAR: It's favorable because the

(202) 234-4433

	55
1	larger the power to flow ratio, the more adverse
2	DR. BANERJEE: So
3	MR. SHIRALKAR: Favorable with respect to
4	an operating BWR natural circulation.
5	DR. BANERJEE: Right. Now having a lower
б	quality means you get a lower flow, right, because
7	your buoyancy head is going to be lower?
8	MR. SHIRALKAR: No. This is I'm
9	comparing for a given bundle what is the exit, what is
10	the average condition in that bundle in terms of power
11	and flow. And the higher you make that ratio, the
12	worse it gets in terms of the higher two phase
13	pressure drops, you know, and so on.
14	DR. BANERJEE: Okay.
15	MR. SHIRALKAR: Okay. And the ratio and
16	the fuel time constant to the flow transit time, and
17	this governs the attenuation of the power coming back
18	as heat flux. Okay. So the larger the fuel time
19	constant, the more attenuation in terms of the heat
20	flux. And that ratio is for an operating plant it
21	ranges from 3.5 to 6. And for the ESBWR it's larger,
22	mainly because the transit time is faster. So that is
23	favorable for the ESBWR.
24	The harmonics of criticality is
25	unfavorable because the larger the core size, the
I	

(202) 234-4433

	56
1	smaller the subcriticality. And so that is one factor
2	that is unfavorable for the ESBWR because of the core
3	size. But the dominant one is the ratio of single
4	phase/two phase pressure drop, and that is
5	substantially favorable for the ESBWR because the
6	shorter core length and also the smaller we have
7	rods in these bundles to improve the two phased
8	pressure drop characteristics in the top part of the
9	bundle. And we have a larger relative length above
10	the rods in the shorter fuel bundle. And so that
11	gives you a more favorable two phrase to single phase
12	pressure drop ratio.
13	DR. BANERJEE: Do you take into account
14	the exit loss here from the top of the bundle?
15	MR. SHIRALKAR: Yes. Yes. The dominant
16	losses are the friction and the local losses; the
17	spacers and the upper plate and so on.
18	MEMBER DENNING: What's the significance
19	of the fact that in the second line you relate it to
20	in natural circulation? The others relate to under
21	pumped conditions? Is that right? See, that one.
22	MR. SHIRALKAR: This one?
23	MEMBER DENNING: You quality it.
24	MR. SHIRALKAR: I qualified it because
25	it's a
I	1

(202) 234-4433

Í	57
1	MEMBER DENNING: Had natural circulation.
2	MR. SHIRALKAR: Yes.
3	MEMBER DENNING: Yes.
4	MR. SHIRALKAR: Because the well, we
5	got a big so that's not a factor. But this one,
6	yes, if you look at the rated conditions in operating
7	plant, the qualities are going to be quite a bit
8	lower. And the rated conditions, you know, at
9	operating plants the are quite low. So I'm
10	comparing with the natural circulation.
11	MEMBER DENNING: So it would have been
12	unfavorable?
13	MR. SHIRALKAR: Compared to rated
14	conditions it might be unfavorable.
15	MEMBER DENNING: Yes.
16	MR. SHIRALKAR: Yes.
17	MEMBER DENNING: Whereas these others are
18	favorable
19	MR. SHIRALKAR: Are favorable or in the
20	same range.
21	MEMBER DENNING: Okay.
22	DR. BANERJEE: And you take into account
23	the chimney pressure loss as well?
24	MR. SHIRALKAR: Yes. The chimney does not
25	pressure loss, frictional pressure loss. Then of
	I

(202) 234-4433

	58
1	course the static head. But the chimney does not
2	contribute a whole lot to the stability transfer
3	function. It gives you a larger flow, but it doesn't
4	have a big effect on the whole transfer function.
5	DR. BANERJEE: But doesn't it have I
6	mean, if you could avoid perturbation in the chimney,
7	it will effect the head so it will feed back, won't
8	it?
9	MR. SHIRALKAR: Well, it turns out that
10	the wide perturbations are mostly around subcooled
11	bounding the core. And by the time you get to the
12	edges of the bundle exit of the core, the changes
13	of perturbation, wide perturbation is very small.
14	DR. BANERJEE: But in some turbulent flow
15	you get these sort of void waves traveling, quite
16	significant ones.
17	MR. SHIRALKAR: Yes. You're talking about
18	something that's independent of well, you're
19	talking density of the perturbation.
20	DR. BANERJEE: Right. It's not density
21	waves.
22	MR. SHIRALKAR: It depends on the
23	frequency of those things versus what we're talking
24	about here.
25	DR. BANERJEE: What's your frequency?
ļ	I

	59
1	MR. SHIRALKAR: Particularly they are one
2	second. One hertz, thereabouts. And as long as those
3	perturbations are occurring within the chimney, I mean
4	they don't effect the outer wall
5	DR. BANERJEE: These Ontario Hydro
6	experiments, did you just measure average void or did
7	you also measure the fluctuating void?
8	MR. SHIRALKAR: We measured
9	DR. BANERJEE: Measured with
10	densitometers?
11	MR. SHIRALKAR: Yes. We measured the
12	average void as well as core void fractions.
13	DR. BANERJEE: And how many densitometers
14	did they use?
15	MR. SHIRALKAR: I think they had like
16	about six beams across, but I'll have to look it up.
17	It's been like ten years ago.
18	Okay. So that finishes my background.
19	Okay.
20	I'd like to step through the LTR now and
21	kind of give you a preview of what's in the LTR.
22	Basically we're using TRACG04 is our code that we use
23	evaluating stability. And we use it for both normal
24	operation and I need to correct my terminology
25	here. We actually evaluated not during transients,
I	I

(202) 234-4433

1 but we evaluate conditions that might result as a the 2 effect of a transient. In other words, if you, say, 3 had a loss of feedwater heating event, your power 4 would go up to some value and you would get to a point 5 which is worse than your normal operating condition. So we would evaluate the stability at the worse 6 7 condition that we can get as the effect of this 8 transient. 9 We're also using it to analyze plant 10 startup trajectories to show that there is no issue with respect to internal margins in startup. And we 11 requested NRC approval of TRACG for ESBWR stability 12 application. 13 14 The general licensing requirements, there 15 The more important one is particular are two. disabilities, GDC 12, which requires that power 16 17 oscillations could either be not possible or they should be suppressed. It turns out that in our case 18 19 for the ESBWR the most limiting case is at the rated 20 condition That's the highest power to flow point. So 21 imperative that we maintain a very it's large 22 stability margin at rated conditions. So our 23 approach is to basically make sure that oscillations 24 are not possible by maintaining a very large margin on 25 the decade ratio. And if you do that then we would

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

60

61 1 automatically satisfy this criterion through normal 2 analysis and anticipated transients. 3 So licensing basis says to establish a 4 high degree of confidence that oscillations will not 5 occur by imposing great conservative design criteria on the channel core wide and regional oscillation 6 7 modes. And as a backup, we will implement a detect 8 and suppress solution that the operating plants are 9 using as an defense-in-depth. But we hope we will never get to use that because we want to maintain 10 large margins here. 11 Can you just give me a 12 DR. BANERJEE: brief idea on what this detect and suppress solution 13 14 is? 15 MR. SHIRALKAR: The detect and suppress solution is basically using a group of local power 16 range monitors to detect a likelihood, the presence 17 of an oscillation. And then taking an action to either 18 19 insert rods or scram depending on the magnitude of 20 that oscillation. 21 Now, the exact algorithm with which you do 22 this is still under debate. And I think the operating 23 plants are looking at improved solutions to this. And 24 we will implement whatever that final solution is, 25 algorithm wise. But for us it's just a backup. It's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	a defense-in-depth. Okay.
2	We've used what is called conventional
3	stability map of core decay ratio versus channel decay
4	ratio and we've calculated uncertainties and
5	statistical limits for these parameters. Let me
6	explain what that means.
7	Historically we've been using a map like
8	this where we represent the core decay ratio and the
9	channel decay ratio. And we basically limit them to
10	be less than .8. The .8 allows for some margin here
11	for uncertainty in the calculation methods. And this
12	is historical based on our old code that was used in
13	the old days.
14	Then we found in the '80s the occurrence
15	of these regional oscillations. And the regional
16	oscillations could occur even if you were inside the
17	boundary of the .8. So we had to chop off this corner
18	of the map to account for regional oscillations. And
19	that was based on empirical data as well as
20	calculations.
21	So we proposed to use this map for the
22	ESBWR as well, but we recognized that because the core
23	site is larger, that this line could move inwards
24	because the subcriticality of the harmonic would be
25	small and therefore there will be less damaging
ļ	

(202) 234-4433

	63
1	neutronic damaging to that mode. And so we calculated
2	a boundary that is inside this to be our criteria.
3	ACTING CHAIR RANSOM: The narrowing of the
4	region is due to feedback effects?
5	MR. SHIRALKAR: No. The smaller region is
6	just due to the fact that the core is larger. When
7	the core is larger then your subcriticality of the
8	harmonic decreases. It becomes more excite in the
9	larger, easier to excite if you will, the core is
10	more decoupled and so easier to excite these modes on
11	opposite sides of the core.
12	ACTING CHAIR RANSOM: But this boundary
13	means that they are possible there, I guess, right?
14	MR. SHIRALKAR: Yes. This boundary means
15	that you could have regional oscillations in this core
16	in a hole here, outside this region.
17	ACTING CHAIR RANSOM: Like on the core
18	decay ratio on channel decay ratio you've put an eight
19	tenths value in. Does that curved line represent one
20	then in terms of tendency for them to exist?
21	MR. SHIRALKAR: Well, that was never very
22	clearly established, but there was some margin in
23	establishing that line. Okay. I mean, we drew it
24	inside of all known data and of calculations, to draw
25	a line was inside all of the data. So it represents
I	I

(202) 234-4433

	64
1	some conservatism to the occurrence of regional
2	oscillations. Okay.
3	DR. BANERJEE: But not necessarily .8?
4	MR. SHIRALKAR: Not necessarily .8. But
5	I don't want to belittle that because we've gone away
б	from that criteria for the ESBWR.
7	MEMBER KRESS: You used .8 instead of one
8	because of uncertainties, perhaps? You could have
9	used one in
10	MR. SHIRALKAR: That's right. The .8 is
11	because of uncertainties in our methods, primarily.
12	And from the old code that was being used, the one
13	sigma uncertainty is relatively about .1. So the 2
14	sigma 11.2. And so we set it at .8.
15	MEMBER KRESS: In principle anything below
16	one would have been stable?
17	MR. SHIRALKAR: Exactly. Right. Yes.
18	As a result of the NRC review we revised
19	our approach and we have gone now to a direct
20	calculation of the regional decay ratio and a
21	quantification of uncertainty in the regional decay
22	ration, just like the channel and the core decay
23	ratios.
24	And so now we have a comparison with a
25	regional decay ratio of < 0.8 rather than that map
ļ	I

(202) 234-4433

	65
1	that I showed you. So the new map looks like this.
2	It's a box. So we want to keep the core decay ratio
3	< 0.8, channel decay ration < 0.8 and the regional
4	decay ratio also < 0.8.
5	And internally we started to impose a
6	design goal on ourselves that at a nominal best
7	estimate basis we want to be in a smaller box about
8	half that, 0.4. So at a 95/95 level, for example, we
9	want to meet the 0.8 criteria. That would be our
10	design limit. But as a design goal internally we
11	would like to have the nominal calculation stay about
12	half of that. And the rationale is roughly like this:
13	That for operating plants in the flow control range
14	you typically operate with decay ratios that are half
15	what the limiting decay ratios are.
16	So in normal operation we want to keep
17	more margin to this design limit. We don't want to be
18	too near the design limit during normal operation.
19	MEMBER KRESS: What design parameters are
20	under your control that allows you to get in that
21	middle box?
22	MR. SHIRALKAR: Well, primarily, you know,
23	we want to make sure that we have enough flow. The
24	power to flow ratio
25	MEMBER KRESS: So the size of the chimney
ļ	I

(202) 234-4433

	66
1	perhaps.
2	MR. SHIRALKAR: The size of the chimney,
3	the distance in the downcomer in the core, for
4	example.
5	MEMBER KRESS: Yes.
6	MR. SHIRALKAR: You can also play with the
7	y coefficient. You can play with the core design in
8	terms of the phase to single-phase.
9	MEMBER KRESS: You can effect the void
10	coefficient by the fuel enrichment?
11	MR. SHIRALKAR: No, not a whole lot. Yes.
12	MEMBER KRESS: Okay. So you got two
13	things to play with.
14	MEMBER DENNING: No. The third thing
15	probably more important is the ratio of the single-
16	phase/two-phase pressure drop in the fuel.
17	MEMBER KRESS: Okay. And you've done that
18	as best you can.
19	MR. SHIRALKAR: Right. So we've got
20	shorter fuel.
21	MEMBER KRESS: Yes.
22	MR. SHIRALKAR: And a larger region above
23	the fuel rod, which is open, more open to control
24	that.
25	MEMBER KRESS: Yes, as you made your fuel
I	I

```
(202) 234-4433
```

	67
1	even shorter, you run the risk of enhancing the
2	regional fluctuation.
3	MR. SHIRALKAR: No, but we're losing fuel
4	economy. You'd have time to take more fuel out of the
5	core. Yes. So fuel people always want to put more.
6	MEMBER KRESS: So you'd made it short
7	enough that you cut down on the pressure draw but you
8	still have good economy?
9	MR. SHIRALKAR: Right. Yes. I mean, the
10	fuels people would like us to make the rods even
11	longer because
12	MEMBER KRESS: Yes.
13	MR. SHIRALKAR: obviously they want to
14	put more load more uranium in there.
15	MEMBER KRESS: Right.
16	MR. SHIRALKAR: But it's going to be a
17	compromise between the stability and
18	MEMBER KRESS: And so playing with those
19	parameters you're able to get into that middle box?
20	MR. SHIRALKAR: Right.
21	MEMBER KRESS: Okay.
22	DR. BANERJEE: The regional decay ratio is
23	10 by numerical experiments using TRACG and coupled
24	with
25	MR. SHIRALKAR: All three of them.
ļ	

(202) 234-4433

	68
1	DR. BANERJEE: All of them?
2	MR. SHIRALKAR: Yes.
3	DR. BANERJEE: But for others you got
4	other codes that have done it in the past, right?
5	MR. SHIRALKAR: Well, we can also use a
б	frequency to main code to do the regional.
7	DR. BANERJEE: Right.
8	MR. SHIRALKAR: And we have done that and
9	NRC Staff consultants have done that also.
10	DR. BANERJEE: If it's frequency domain,
11	it has to be a linearized system?
12	MR. SHIRALKAR: Small perturbation.
13	DR. BANERJEE: Yes.
14	MR. SHIRALKAR: But here we're talking
15	about decay ratio. We're not talking about light
16	oscillations. The linearized codes are perfectly
17	acceptable here because we are not looking at
18	magnitude of oscillation. We're looking at small
19	decay ratios. We're talking about decay ratios 0.4
20	DR. BANERJEE: You're talking of
21	perturbations which are very small?
22	MR. SHIRALKAR: Yes.
23	MEMBER KRESS: Does the size of the
24	perturbation influence your decay ratio?
25	MR. SHIRALKAR: I'm sorry.
I	I

(202) 234-4433

69 1 MEMBER KRESS: The size of the 2 perturbation you impose, does that influence your decay ratio? 3 4 MR. SHIRALKAR: It can to some degree, and 5 I'll show you some results. That's one of our parameters to look at different perturbations to see 6 7 what effect it has on the --8 DR. BANERJEE: Well, it's a highly 9 nonlinear system --10 MR. SHIRALKAR: Nonlinear system and when you calculate the decay ratio, you know, it depends on 11 12 whether you use the initial part of the transient or the later part of the transient. You can get some 13 14 small differences. But manageable differences. 15 When you use the initial MEMBER KRESS: 16 part of the transient --17 MR. SHIRALKAR: Yes, because then they're small. 18 19 MEMBER KRESS: -- you assume that's a 20 conservative use? 21 MR. SHIRALKAR: We basically what we do is 22 we neglect the first initial rebound, the bound based 23 on the perturbation and then we use the second, third 24 peaks to calculate. 25 And normally those MEMBER KRESS: Yes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	decay ratios would be higher than if you choose some
2	other part of the decay scheme?
3	MR. SHIRALKAR: Yes and no. Because
4	eventually they get to be so small that you cannot
5	distinguish the
6	MEMBER KRESS: Yes.
7	MR. SHIRALKAR: Very small. But, yes.
8	Frequency domain codes do not have that
9	issue.
10	So methodologies to calculate these decay
11	ratios at normal conditions and then do a statistical
12	calculation to show that we can meet the 95/95 meet
13	the design criteria at the 95/95 level.
14	And the uncertainties and biases include
15	the model uncertainties, experimental uncertainties
16	that are inherent in data comparisons. We don't
17	separate them out.
18	We look at plant parameter variability
19	that includes range of operation and process
20	measurement errors.
21	This is just a table that shows that we
22	tried to address the steps of the CSAU process and
23	which sections of the report address these various
24	steps.
25	I'm sorry. It's too small. I hope you
	I

(202) 234-4433

	71
1	have it's even worse in the handout.
2	DR. BANERJEE: These are right, right?
3	All perturbations?
4	MR. SHIRALKAR: Yes. Eye test.
5	The point I wanted to make was rather than
6	go through this in a whole lot of detail is these are
7	very similar to the PIRT for operating plants to do
8	it. Okay. I mean, they are virtually there are
9	very few differences between the stability phenomena
10	that you get in operating BWR versus any ESBWR. The
11	phenomena are the same. Okay. The parameters are a
12	little different in terms of the flow rates and so on.
13	DR. BANERJEE: But now you have a chimney
14	and presumably there are density waves which move, and
15	you're saying that those density waves are totally
16	uncoupled from the density waves in the core.
17	MR. SHIRALKAR: You're talking flow regime
18	kind of
19	DR. BANERJEE: Yes. Yes.
20	MR. SHIRALKAR: Yes.
21	DR. BANERJEE: So if they are at the same
22	frequency, let's say the transient time of the density
23	wave or the disturbance wave in the chimney is on the
24	order of one second, they would couple.
25	MR. SHIRALKAR: Yes, but you don't have
I	1

(202) 234-4433

	72
1	nuclear feedback in that region. So the dominant
2	region is the core where you get the feedback and you
3	get the gain in the transient function when you go
4	from, say, perturbation in the power, pressure to
5	power.
6	DR. BANERJEE: Yes, but the feedback comes
7	through the change in the flow, right?
8	MR. SHIRALKAR: In the change in the flow
9	and fraction.
10	DR. BANERJEE: Yes.
11	ACTING CHAIR RANSOM: So on the driving
12	force is related to the void and the in the
13	chimney.
14	DR. BANERJEE: Yes, so it has to be. I
15	found that statement very strange, the chimney had no
16	effect on stability. That assumes, of course, that
17	the chimney does not have it's sort of an
18	assumption that you don't have density fluctuations in
19	this chimney which coupled with the core.
20	MR. SHIRALKAR: On an average basis
21	DR. BANERJEE: On an average, of course.
22	MR. SHIRALKAR: On an average basis and
23	don't play any role in the stability process.
24	DR. BANERJEE: Right. But at every
25	MR. SHIRALKAR: Now we're talking about
I	I

(202) 234-4433

	73
1	flow regime transitions or, say, of slugs going by or
2	something like that that we have some frequency.
3	DR. BANERJEE: With a fraction of 60 to 70
4	percent you're bound to have that.
5	MR. SHIRALKAR: No, you don't have slugs
б	because
7	ACTING CHAIR RANSOM: No, now to the core
8	you have a boundary condition that's periodic in terms
9	of void fraction so that what's in the chimney you
10	would think would be periodic as well.
11	MR. SHIRALKAR: Well, I think what you
12	have is sort of a and flow. I mean, you can
13	calculate the length it would take for this flow to
14	develop into slugs.
15	DR. BANERJEE: That be long.
16	MR. SHIRALKAR: Yes, that would be very
17	long.
18	DR. BANERJEE: The turbulent flow itself
19	has density waves which are very strong going through
20	it.
21	MR. SHIRALKAR: And those we have not
22	accounted for in terms of whether you they might be
23	of exact same frequency as the core and might have
24	some influence.
25	DR. BANERJEE: Well, maybe the way to
I	1

(202) 234-4433

	74
1	handle that would be to simply say that until proven
2	otherwise you would have to take that into
3	consideration and say if you took it into
4	consideration, showed that they were completely
5	different frequencies or something, then define. But
6	lots of data exists on the density waves in terms of
7	MR. SHIRALKAR: Well, we can look at
8	typical frequency to get that kind of flow.
9	DR. BANERJEE: Yes. Yes.
10	MR. SHIRALKAR: I think it would be
11	extremely fortuitous if they are in exactly the same
12	DR. BANERJEE: It doesn't have to be
13	exactly the same. They have to be in the general
14	region.
15	ACTING CHAIR RANSOM: Somewhere.
16	DR. BANERJEE: You know, if these are of
17	the order of seconds and the fluctuations in the core
18	that are excited are of the order of seconds, then the
19	potential for coupling exists.
20	MEMBER DENNING: How does that coupling
21	get back to the core, though, is the question?
22	DR. BANERJEE: Through the flow.
23	MEMBER KRESS: Yes, through the flow. It
24	changes the driving force.
25	DR. BANERJEE: It changes the driving
	I

(202) 234-4433

	75
1	force.
2	MR. SHIRALKAR: Well, I'm not sure it does
3	because you've got these fluctuations within the
4	chimney, they're traveling upwards. So whether they
5	change the total pressure drop in the chimney is to me
6	very
7	DR. BANERJEE: Very unlikely.
8	MR. SHIRALKAR: Yes. It's just very
9	unlikely to me. But you change between the total
10	pressure drop in the core to create flow oscillations.
11	DR. BANERJEE: So how tall is the chimney?
12	MR. SHIRALKAR: Nine meters.
13	DR. BANERJEE: Okay.
14	MR. SHIRALKAR: So you got these things
15	traveling through. And, yes, you may have local
16	oscillation variation, but you got to change the whole
17	pressure up in the whole thing.
18	DR. BANERJEE: Right. Well, how tall was
19	on Ontario Hydro pipe?
20	MR. SHIRALKAR: I think where we measured
21	the void fraction, I think it was about 6 meters or
22	thereabouts. I'll have a check. It's been ten years.
23	DR. BANERJEE: So the issue really is what
24	did they find with the pressure drops. Did the
25	pressure drops, the hydraulic head fluctuate and by

(202) 234-4433

	76
1	how much?
2	MR. SHIRALKAR: No. There was not much
3	variation in the pressure drops.
4	DR. BANERJEE: And the void fraction was
5	about 60 percent?
6	MR. SHIRALKAR: We took a whole range of
7	data from low wide fractions right up to about 80
8	percent.
9	DR. BANERJEE: Including dynamic data?
10	MR. SHIRALKAR: Yes. Dynamic meaning?
11	DR. BANERJEE: I mean you took the time
12	traces of the pressure
13	MR. SHIRALKAR: Yes.
14	DR. BANERJEE: and the voids.
15	MR. SHIRALKAR: Yes.
16	DR. BANERJEE: That would reveal
17	something?
18	MR. SHIRALKAR: Yes, it could.
19	MEMBER KRESS: Well, what was the makeup
20	of your PIRT panel? Was that internal?
21	MR. SHIRALKAR: I'm sorry?
22	MEMBER KRESS: Your PIRT panel? Who?
23	MR. SHIRALKAR: PIRT panel is internal,
24	yes. We relied heavily on the PIRT for the operating
25	plants and we looked at the differences. And
•	

```
(202) 234-4433
```

	77
1	actually, I think I said, you know, we're seeing the
2	main differences come about really only because of the
3	chimney. But I tried to show here that these two
4	green things that are different, there's only two
5	things that are different from an operating plant and
6	they are the chimney void fractions and possibly
7	interactions between chimney cells. And by that I
8	mean is it possible for a chimney cell along with its
9	group of 16 bundles to have some kind of a mode of
10	oscillation by itself. And we looked at that. That
11	perturbing a whole group of 16 bundles inside a cell.
12	DR. BANERJEE: I'm simply saying there
13	should be another entry there which says the dynamics
14	should
15	MR. SHIRALKAR: Pressure
16	DR. BANERJEE: Yes. Yes.
17	MR. SHIRALKAR: to flow regime changes
18	are inside
19	DR. BANERJEE: Something like that. Now
20	you may dismiss it at some point, but it has to be
21	looked at.
22	MR. SHIRALKAR: Agreed.
23	MEMBER DENNING: How are we doing time
24	wise, incidentally? Are we running into trouble time
25	wise?
ļ	1

(202) 234-4433

	78
1	MR. SHIRALKAR: Probably.
2	MEMBER DENNING: Probably?
3	MR. SHIRALKAR: Yes, Professor Banerjee
4	has been asking too many questions.
5	DR. BANERJEE: That's what they always
б	say.
7	ACTING CHAIR RANSOM: I think we're
8	already in trouble.
9	MR. SHIRALKAR: Let's see, I'm on yes.
10	Slide 29 out of say, about 90. One-third of the way
11	through, I think, in an hour and a half.
12	All right. I'll try to go through a little
13	bit faster.
14	MEMBER DENNING: You may not have any
15	options.
16	MR. SHIRALKAR: I'll try.
17	We had a comparison where we make a
18	comparison in a matrix of the important phenomena
19	versus the models in TRACG which I've established that
20	we have the models required for the analysis. And
21	we've done that in section 4.
22	We've got an extensive database for
23	internal hydraulic effects in general and stability in
24	operating plants in particular. And I didn't want to
25	belabor that here, but if there is an interest in
	I

(202) 234-4433

	79
1	looking at that qualification of TRACG versus other
2	BWR data, we can do that either now or maybe later.
3	So as a result of our evaluations we found
4	that we had enough data on BWR stability, but it is
5	mostly at the conditions close to the inception of
6	oscillations because the primary interest for BWRs is
7	when you actually get oscillations and you're looking
8	at decay ratios close to one.
9	Now here we're looking at decay ratios in
10	the order of .04 or .03. So we wanted to make sure
11	that TRACG would do a good job at these low decay
12	ratios as well, because other considerations come in
13	like numerical dampening and so on in the code to make
14	sure that you're not way off somewhere.
15	So we supplemented that data with a few
16	points at low decay ratios. Now by this is by no
17	means the extent of our qualification base because
18	we've got a lot of data that is in the overall
19	qualifications report, but I'd like to highlight just
20	these low decay ratio points.
21	And I think at this point I was going to
22	ask if we could close the session for proprietary
23	information.
24	MEMBER DENNING: Well, there's the
25	question of when we're going to take our break.
ļ	1

(202) 234-4433

	80
1	ACTING CHAIR RANSOM: Ten after 10:00 it
2	was scheduled. Well, why don't we do it now then.
3	DR. BANERJEE: And close it after?
4	MEMBER DENNING: And close it after. We'll
5	be back at quarter after
6	ACTING CHAIR RANSOM: Five after. Quarter
7	after 10:00. Okay.
8	(Whereupon, at 9:59 a.m. a recess until
9	10:18 a.m. at which point the proceedings went into
10	Closed Session.)
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
ļ	

	184
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	12:49 p.m.
3	ACTING CHAIR RANSOM: We're back in open
4	session. Okay. We're back in open session.
5	MR. SHIRALKAR: I am back. The last topic
6	I have is on the startup of the plant and natural
7	circulation. And I have a few charts I'd like to step
8	through.
9	The natural circulation startup is
10	something that has been done in Dodewaard, but it also
11	been done at a whole lot of coal fired plants where
12	the natural water has been around for a long time. So
13	it's not something that's necessarily been very unique
14	at this point. And provided that you take the proper
15	precautions, shouldn't pose any problems in getting
16	the reactor to fire. But looking at the Dodewaard
17	procedure, which the Dodewaard is a plant which is
18	much smaller than the ESBWR but shared some of the
19	features; the chimney, the core regions, similar range
20	of void fractions and qualities. And the way they
21	started up the plant was that typically after the
22	first cycle you always have enough decay heat to start
23	up the plant without external heaters. But initial
24	cycle you need an external heater to aid the startup.
25	You heat up the reactor coolant to 80 to
	I

(202) 234-4433

	185
1	90 degrees C with an auxiliary heater and decay heat.
2	And then they dearated the reactor coolant by pulling
3	a vacuum on the main condenser with the steam drain
4	line open. They pull the rods to criticality. And
5	then slowly start pressurizing the system by pulling
6	the rods and creating vapor at the top of the chimney
7	region.
8	And as the power pressure increases, open
9	the turbine bypass valves to control pressure.
10	So we intend to follow a similar process
11	to start up the ESBWR.
12	ACTING CHAIR RANSOM: As you deaerate the
13	reactor do you take it down to subatmospheric
14	pressures?
15	MR. SHIRALKAR: Yes, you canon the
16	vessel.
17	ACTING CHAIR RANSOM: Yes. Okay.
18	MR. SHIRALKAR: You can pull pressure.
19	To give you a brief idea of what I'm
20	talking about, at atmospheric pressure or low pressure
21	we have a significant amount of static head in the
22	system. So when we have, say, one bar pressure at the
23	top in the steam dome we have about three bars or
24	thereabouts at the bottom. And so a significant
25	difference in the saturation temperature as well. So
	I

(202) 234-4433

1 as we start heating up the fluid from coming through 2 the core and heat it up in a slow and controlled 3 manner so to maintain kind of a steady temperature 4 distribution, then you get a heat up in the core, it's 5 adiabatic in the chimney and eventually you start getting flashing in the top because the resaturated 6 7 conditions at the top. And the core is significantly 8 subcooled at the time. 9 And what happens at that point is that as 10 you produce the first vapor in this situation in the top of the chimney, you reduce the static head, you 11 cause an increase in the flow that then collapses the 12 voids and you're back to the no wide situation. So --13 14 CHAIRMAN WALLIS: This is a bit like what 15 we were thinking happens in the power situation; that 16 the voids in the chimney --17 MR. SHIRALKAR: I think --CHAIRMAN WALLIS: -- hence the circulation 18 19 flow rate? 20 MR. SHIRALKAR: No. Because I think the 21 wides in the chimney, I mean you're already in a 22 situation, you already have significant voiding there. 23 And you have a steady situation as far as the wides 24 are concerned. 25 Now this is at the inception of voiding

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

186

	187
1	where you really get these fluctuations happening.
2	CHAIRMAN WALLIS: So the change can be
3	very big?
4	MR. SHIRALKAR: The change can be big.
5	And because you're at a situation where you have a
6	high density ratio and a large amount of void fraction
7	generation.
8	So if you look at a conceptual stability
9	map in, say, the subcooling Zuber kind of plot, a
10	force circulator will have a stability map that looks
11	like this. But an idle circulation has this part that
12	bends back in and this region is called in literature
13	the type 1 instability region. That's between the
14	boiling boundary and until you establish some steady
15	void fraction.
16	And this region here is the conventional
17	density wave region where you're at much high
18	qualities and pressure drops. Okay.
19	So as you start producing voids somewhere
20	in the system you have to traverse this region one,
21	there's no way around it. But what you can do is to
22	make sure that when you start getting the initial
23	small amount of percolation, that you are single
24	phasing the core. And so any velocity oscillations
25	you have are small perturbations in the single phase
l	1

(202) 234-4433

	188
1	region without any reactivity issues. Okay.
2	CHAIRMAN WALLIS: So that red trajectory
3	is where you go, is it?
4	MR. SHIRALKAR: Yes. The red trajectory
5	is where we would calculate and took the trajectory.
6	And at this point then you become stable.
7	CHAIRMAN WALLIS: And the reason it starts
8	way up there is because of the density ratio, is it?
9	MR. SHIRALKAR: Yes. And also because you
10	have a large amount of subcooling when you start.
11	So if you look at different profiles for
12	the heat up, now what we want is a profile that heats
13	up like this trajectory A. So you start off slowly,
14	you establish fairly steady conditions and you have
15	the chimney that's heating up and the highest
16	temperature and the lowest subcooling is at the top.
17	Now if you were to heat it up very
18	rapidly, along trajectory C, then what happens is that
19	you can actually start getting voids at the top of the
20	core when you're still subcooling the chimney. And you
21	don't want to do that because that's where you get
22	start getting these condensation oscillations that you
23	want to avoid. Okay. But if you do it carefully and
24	as a controlled heat operate, then you can get a
25	situation like A and then progresses to B as the
l	

(202) 234-4433

	189
1	boiling boundary progresses down into the chimney.
2	CHAIRMAN WALLIS: Or the flashing
3	boundary.
4	MR. SHIRALKAR: I'm sorry.
5	CHAIRMAN WALLIS: Which is the flashing
6	boundary?
7	MR. SHIRALKAR: Yes, that's right. That's
8	the flashing boundary. And this is the margin to
9	flashing and it's characterized by what we call a
10	flashing number. That's basically the difference in
11	the saturation enthalpy at this pressure and that
12	pressure.
13	CHAIRMAN WALLIS: Now there is a cause of
14	kind of geysering where as you get more voids, you
15	decrease the static head and it
16	MR. SHIRALKAR: No, you don't really get
17	that because the feedback from the downcomer is
18	stronger. So what happens is that as you produce a
19	static head you get increased flow from the downcomer.
20	And that's a much stronger mechanism than geysering
21	is.
22	ACTING CHAIR RANSOM: Well, actually
23	you're trajectory B is a flashing trajectory. I mean,
24	as you show, you go up to the point of saturation and
25	then presumably flashing begins and you have two-phase
I	I

(202) 234-4433

	190
1	on that.
2	MR. SHIRALKAR: Yes. B is actually
3	following up on A and it's progressed later on and
4	come down at some point as it's propagated further
5	into the chimney.
б	So the startup procedures we're proposing
7	is similar to what Dodewaard used. Use a mechanical
8	pump and the vacuum pumps and the condenser to pull a
9	vacuum to deaerate in the deaeration period.
10	CHAIRMAN WALLIS: Those are presumably
11	steam injectors, are they, rather than mechanical
12	pumps?
13	MR. SHIRALKAR: Yes. They're mechanical
14	pumps and
15	CHAIRMAN WALLIS: They're not steam
16	injectors? They're actually mechanical pumps?
17	MR. HINDS: Sorry. This is David Hinds.
18	Mechanical vacuum pumps are used for the
19	initial portion of the startup and then beyond that
20	after we have a steam environment in the plant started
21	up, then we use the steam generator injectors.
22	MR. SHIRALKAR: When we finish the
23	deaerate, we go to the next chart here and show you.
24	So this is the deaerate period in the beginning. And
25	then we're starting up on this trajectory where we're
I	1

(202) 234-4433

	191
1	heating up.
2	In the startup period we had to isolate
3	the vessel. Now you can close it you can close
4	the MSIVs or preferably you can close the turbine and
5	stop the control valves and the bypass valves to
6	get the system bottled up so that you can start
7	building vapor pressure.
8	And then start with bearing control rods.
9	Use efficient power to heat the water. Maintain the
10	water level below the main steamline elevation. You
11	pressure the RPV with vapor generation at the top of
12	the stack and not in the core. And then the core
13	remained subcooled due to the large static head.
14	And you can use the RWCU system, cleanup
15	system can be used to enhance the coolant flow and
16	reduce thermal stratification in the lower plenum.
17	CHAIRMAN WALLIS: Now, do you have some
18	sort of guidance for the operators about how the
19	increasing pressure and power are related? Presumably,
20	you don't just increase the power or you have to
21	increase the pressure in some way along with it or
22	something?
23	MR. SHIRALKAR: Yes. And then the
24	specific guidelines for the ESBWR I don't think are
25	written yet. But they would have to be written to
ļ	I

(202) 234-4433

	192
1	provide that kind of guidance.
2	And when the system is pressurized to 63
3	bars or thereabouts, then you start controlling the
4	pressure with the turbine control rods and the bypass
5	valves and prepare to roll the turbine.
6	So that's the same what I talked about
7	depicted here in terms of pressure versus time.
8	Now we have made calculations with the
9	TRACG of ESBWR startup. We made these calculations
10	without nuclear feedback, without neutronics feedback.
11	The rationale being that we want to achieve this first
12	part of the transient before we get any voiding in the
13	core, so no reactivity feedback at all.
14	We started up with three different rates
15	of heatup; 15 megawatts which corresponds to an
16	increase in temperature of about 30 degree C per hour.
17	At 85 megawatts you get about 55 degrees C per hour
18	and that is typically our tech spec on how fast you
19	can heat up in operating BWRs because of limitations
20	and thermal stresses and other issues.
21	And then just for the heck of it we tried
22	a much larger, a 125 megawatt, which would be like 82
23	C per hour.
24	DR. BANERJEE: Well what other temps?
25	MR. SHIRALKAR: These are steps that you
I	

(202) 234-4433

	193
1	take after you've gotten to the high pressure, that's
2	63 bars. And then they start increasing the power
3	faster so that you can get up to rated power.
4	This is the corresponding pressure
5	responses heating up to pressurizing to about 63
6	bars in each case and then starting then opening
7	the control valves and increasing the power. At that
8	point you are well passed any concerns about the low
9	pressure oscillations.
10	This is the inlet subcooling and the inlet
11	to the hard burn. It starts out very high, which is
12	the reason for the high subcooling number initially,
13	and then decreases as the plant heats up and
14	pressurizes.
15	This is the one that probably is of
16	interest. That is the calculated core inlet flow at
17	these three different heatup rates. And you can see
18	start getting a little noisier at the lowest heatup
19	rate, there's a little more noise here at 85
20	megawatts. And you're getting more noise now you get
21	to the higher flow rate.
22	CHAIRMAN WALLIS: Now what's the decay
23	ratio when you have green noise?
24	MR. SHIRALKAR: Didn't try to calculate
25	decay ratios here.
ļ	I

(202) 234-4433

194 CHAIRMAN WALLIS: Well, presumably it's growing some of the time and decaying other times? MR. SHIRALKAR: Yes. But it's inconsequential in terms of the overall progression of the transient. It's not picking up. It's not going to a situation where it's explosive kind of a situation. All we care about here is to make sure that that's nowhere near any thermal limits. This is the corresponding oscillation and flow and the part bundle exit. And you can see some noise here in the flow as you're heating up. And then eventually you establish with a steady boiling conditions and the noise stops. And the reason for this noise, as you can see it here, this is the void fraction in the separator. The top, the very top of the separator. So when you first start getting these voiding happening in the top of the separators, you get that kind of oscillation that we talked about where you get this increased void, it increases the flow, it quenches the voids and then that cycle repeats. Typically, the cycle has a period of about

15 to 25 seconds. So it's very slow. It's an
enthalpy wave propagation rather than an density wave
propagation. Enthalpy has to propagate all the way

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

	195
1	down the core up to the chimney. Now here the
2	propagation time in the chimney is important because
3	you're talking about enthalpy propagating all the way
4	tot he top. And so time period is more like 15 or 45
5	seconds.
6	DESIGNATED OFFICIAL CARUSO: What's the
7	oscillation that occurs at about 23,000 seconds?
8	MR. SHIRALKAR: Say that again.
9	DESIGNATED OFFICIAL CARUSO: What's the
10	oscillation there that's occurring at about 23,000
11	seconds?
12	MR. SHIRALKAR: Here?
13	DESIGNATED OFFICIAL CARUSO: Yes.
14	MR. SHIRALKAR: These are small changes in
15	the void fraction and in the separator as well. But
16	these are the main concern was generally over here
17	where you have a much lower pressure. By this time
18	you run to fairly high pressure.
19	DR. BANERJEE: But there are some of those
20	oscillations which seems quite large, right?
21	MR. SHIRALKAR: This is an oscillation in
22	void fraction.
23	DR. BANERJEE: I mean to the 23,000
24	seconds. Keep going. Yes, right there's one big
25	one past there.

(202) 234-4433

	196
1	MR. SHIRALKAR: This one here? Yes.
2	That's when you start you open up the control
3	valves and you get some depressurization when you do
4	that.
5	ACTING CHAIR RANSOM: The separators,
6	these are void fractions in the separator component?
7	MR. SHIRALKAR: Separators. Separators.
8	Not in the core.
9	ACTING CHAIR RANSOM: And so they start
10	out flooded, I guess, right?
11	MR. SHIRALKAR: Yes. And this is the
12	transient for the higher power rate. Now the
13	interesting thing that happened here was that
14	initially we got a fairly high spike in the void
15	fraction in the separators and that produced an
16	increase in the flow such that it stopped the voiding
17	until quite a bit later, and then it started voiding
18	again at that point in the separator resulting in a
19	higher flow rate.
20	ACTING CHAIR RANSOM: Do you have any feel
21	for how much of this might be noise in the
22	calculations as opposed to physical effects?
23	MR. SHIRALKAR: I think that physical
24	effects in the sense, and you know that when you first
25	put this void in the separator you're going to produce
I	I

(202) 234-4433

	197
1	this kind of oscillation. How much of it is physical
2	versus what is calculational, I'd have to guess and
3	say I think it's mostly physical.
4	DR. BANERJEE: They're actually pretty
5	long times, right?
б	MR. SHIRALKAR: Yes, these are long times.
7	So the period here is like 15 seconds or 25 seconds.
8	And this is the powerful rate which we are going to
9	get to, but this shows sort of prolonged period here
10	where the separator is trying to make up its mind
11	whether to have voids or not. But it's flashing and
12	then quenching and then flashing and quenching and
13	then eventually starts building up more of a steady
14	void fraction.
15	At this point now the middle part of the
16	separator is also beginning to develop some voids.
17	All this was only in the very top part of the
18	separator.
19	Now this show the void fractions in the
20	core. This is the top cell in the highest power bundle
21	in the core.
22	CHAIRMAN WALLIS: Well, these voids aren't
23	collapsing in the separator, are they? They don't
24	condense?
25	MR. SHIRALKAR: No. It won't condense.

(202) 234-4433

	198
1	CHAIRMAN WALLIS: They just pass through?
2	MR. SHIRALKAR: They just pass through.
3	DR. BANERJEE: Now do you have
4	observations of this nature in Dodewaard?
5	MR. SHIRALKAR: We don't. In Dodewaard
6	they never saw any oscillations on the APRNs. So ten
7	years ago when we are interested in the ESBWR we said,
8	look, look harder. See what you can find. And the
9	final startup they you know Dodewaard shut down
10	many years ago. But the final startup they did a
11	special slow startup just look at various points and
12	see if they could see anything.
13	There was no indications on the APRMs, but
14	then they did some oracle relation functions, they
15	could surmise that there must be some slow damp
16	velocity variations.
17	DR. BANERJEE: Well, the APRMs are seeing
18	all liquid, right?
19	MR. SHIRALKAR: Yes.
20	DR. BANERJEE: There's no way, but they
21	had no flow rates measurements, nothing?
22	MR. SHIRALKAR: No. It didn't show up in
23	the flow rate measurements. The only way that they
24	surmised it was by doing all the correlation function
25	of APRM and so whatever it was, it was more like
I	

(202) 234-4433

	199
1	noise in the flow than anything else.
2	DR. BANERJEE: So if you simulated that
3	with TRACG
4	MR. SHIRALKAR: WE did.
5	DR. BANERJEE: Did you see any
6	oscillations?
7	MR. SHIRALKAR: We got some. We got
8	oscillations that were noticeable in the velocity but
9	not in anything else. In the single phase region.
10	So the core is basically on void. And
11	this is the top still at the hot channel that's
12	showing small amount of subcool voids.
13	This is the higher power level. And then
14	this one is the highest power level. But now we're
15	beginning to see some voiding in the top of the core
16	in the hot bundles. And that's probably getting down
17	to, say, you have 36 cells, it's probably getting down
18	about 8 to 10 cells into the core. And I think this is
19	leading to somewhat more noisy behavior than we would
20	like. This is the pickup rate that is beyond what we
21	would be allowed by tech specs.
22	DESIGNATED OFFICIAL CARUSO: Could you go
23	back to the previous slide? No, the one before that.
24	I'm sorry.
25	At 24,000 seconds you raise the void
I	I

(202) 234-4433

	200
1	fraction. There's something that occurs there, right?
2	MR. SHIRALKAR: Yes. Yes. Then we go into
3	the normal startup. We raise we've gone up to 63
4	bars so now we're raising the power level.
5	DESIGNATED OFFICIAL CARUSO: Okay. Now
6	you have the oscillations that are occurring there at
7	the exit. If the plant had just been allowed to sit
8	there at that power level, how much would those
9	oscillations grow?
10	MR. SHIRALKAR: These oscillations here?
11	DESIGNATED OFFICIAL CARUSO: Yes.
12	MR. SHIRALKAR: What is the magnitude of
13	oscillation? I mean in void faction?
14	DESIGNATED OFFICIAL CARUSO: Well, I'm
15	just saying, you seem to have terminated those
16	oscillations by doing something in the plant.
17	MR. SHIRALKAR: Yes.
18	DESIGNATED OFFICIAL CARUSO: And if the
19	plant had just sat there, what would have happened to
20	those oscillations? Would they have damped out or
21	would they have continued to grow? Because they look
22	like they're growing.
23	MR. SHIRALKAR: I think I can't answer
24	that question because we didn't the simulation longer.
25	But my guess is they probably would have grown
	I

(202) 234-4433

	201
1	somewhat before they before they settled down to
2	some mean value.
3	CHAIRMAN WALLIS: So it's sort of
4	convenient that you raised it.
5	MR. SHIRALKAR: Well, we sat there for
6	we're getting to about 63 bars at that point and then
7	we start depressurizing or opening up the valves and
8	raising the power level.
9	See, the next one.
10	CHAIRMAN WALLIS: It goes back to the
11	beginning.
12	MR. SHIRALKAR: It's the wrong button.
13	CHAIRMAN WALLIS: Maybe you can go
14	backwards from the end.
15	See, in this case you got this noise and
16	then it died out. This is at higher power level.
17	Same thing happened here. So my guess is if you had
18	waited long enough, it probably would begin at similar
19	characteristic.
20	DR. BANERJEE: What causes the
21	oscillations?
22	MR. SHIRALKAR: Down here? I'm not sure.
23	I haven't looked at it very hard. Our main interest
24	was up here where we're looking at possibility of
25	large scale oscillations when you first start the

(202) 234-4433

	202
1	voiding process. We can look at that.
2	And the last one is we calculated I
3	mean, so we have this small oscillation in the
4	velocity while heating up, but what is the impact of
5	that. And my bottom line is that it really don't have
6	any impact. This is the calculated critical power
7	ratio and we are used to looking at critical power
8	ration to the order of one. Because heat fluxes here
9	are so low, we're talking about critical power ratios
10	on the order of 40. There's absolutely no impact on
11	thermal limits heat fluxes are extremely low and we
12	got basically single phase flow in the core.
13	CHAIRMAN WALLIS: Now is there a boiling
14	boundary that's moving up and down with these
15	oscillations?
16	MR. SHIRALKAR: Yes, but we're talking
17	there about the core being essentially single phase.
18	You know, there's a small amount of void at the very
19	top of the hot bundle.
20	CHAIRMAN WALLIS: The core is subcooled?
21	MR. SHIRALKAR: It's subcooled, yes.
22	And TRACG calculates small oscillations
23	but they're inconsequential because the core flow is
24	single phase, no oscillation in neutron flux and large
25	thermal margins. But if you raise the power of the
I	1

(202) 234-4433

	203
1	heatup fast enough you can probably get into trouble.
2	And those heatup rates would not be allowed to occur
3	beyond by tech specs.
4	And we go beyond this initial phase to
5	establish the table void fraction in separator and
6	chimney and then you get a small extension to raise
7	power.
8	Now these calculations are done without
9	neutronics feedback with the assumption that we
10	wouldn't have we were preventing void from forming
11	in the core. Well, the Staff asked us to go back and
12	repeat this calculation with neutronics feedback. And
13	we have done that and the results are very similar to
14	the situation. So essentially it confirms the point
15	that neutronics feedback is not important when you
16	have basically a single phase core situation.
17	ACTING CHAIR RANSOM: Neutronic feedback
18	in this case was just you moderate your temperature?
19	MR. SHIRALKAR: Yes.
20	ACTING CHAIR RANSOM: Primarily I guess
21	fuel temperature maybe enter into it.
22	MR. SHIRALKAR: Right. We did a simulation
23	where we started out with some rod pull rods kind
24	of in the startup mode. And then looked at the power,
25	the full responses.
I	I

(202) 234-4433

	204
1	But that is my final slide unless you have
2	any questions.
3	Thank you.
4	CHAIRMAN WALLIS: Let's see, now TRACG
5	predicts all these interesting things. What's the
6	check that they're right? Is there a check on the
7	validity of these calculations or you just look at
8	them and say that TRACG's predicting something and
9	we've got to believe it.
10	MR. SHIRALKAR: Well, we've got some
11	experimental data of this startup kind of phenomena in
12	the in Japan.
13	CHAIRMAN WALLIS: And you have the
14	comparisons with data then that showed support of
15	this?
16	MR. SHIRALKAR: And we've compared with
17	the Dodewaard startups and with the
18	CHAIRMAN WALLIS: Because I thought we
19	were supposed to get to sort of validate TRACG. And
20	you're just simply showing us predictions of TRACG for
21	ESBWR. That's no validation of anything.
22	MR. SHIRALKAR: Well, that's included in
23	the validation report.
24	CHAIRMAN WALLIS: Which is something we're
25	supposed to have read?
I	

(202) 234-4433

	205
1	ACTING CHAIR RANSOM: Is that a GE report
2	you're referring to?
3	MR. SHIRALKAR: Yes. It's a GE report.
4	CHAIRMAN WALLIS: Is that that we've
5	never seen.
6	MR. SHIRALKAR: In fact, it's called TRACG
7	Qualification for ESBWR. I think the Staff has the
8	report.
9	ACTING CHAIR RANSOM: When was that
10	published?
11	MR. SHIRALKAR: It was first first
12	edition in the ESBWR days ten years ago and then
13	revised maybe five years ago.
14	MS. CUBBAGE: This is Amy Cubbage.
15	That was the one now this morning I said
16	it had been sent to the Committee earlier, but I could
17	get you another copy of that immediately. We have all
18	that electronically at the office. It's all in ADAMS
19	also.
20	CHAIRMAN WALLIS: Well, don't give us
21	anything in ADAMS. It's hopeless. I'm not sure any
22	member of the Committee has ever used ADAMS.
23	ACTING CHAIR RANSOM: Yes.
24	CHAIRMAN WALLIS: Does it work?
25	MEMBER KRESS: Yes.

(202) 234-4433

206 1 CHAIRMAN WALLIS: This is a proprietary 2 presentation. 3 MS. CUBBAGE: Graham, we are going to be 4 open for the beginning and then we're going to close, 5 then we're going to reopen. The slide packet you have in front of you has all the slides. 6 The audience just 7 has the open slides at this time. 8 MR. LANDRY: Okay. My name is Ralph Landry 9 from the Staff. And as Amy said, the presentation 10 which we have today is going to have open material followed by proprietary material. 11 We put the statement on the cover slide 12 just to indicate that this master set that we're using 13 14 does contain proprietary information. 15 As we go through the presentations we'll 16 get through my part and through Veronica Klein's part and then we get into the remainder, we'll be in close 17 session. 18 The members of the review team that are 19 20 with me this morning are Veronica Klein, Peter Yarsky 21 from the Staff and our consultants, contractors, Jose 22 March-Leuba and Jay Spore. And I'll go through in a 23 few minutes the individual responsibilities during 24 this review. 25 As an overview, I'd like to first go

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	207
1	through a little recap of some of the history that
2	we've had with ACRS of looking at TRACG. And then
3	we'll go into the scope of the review, the objective
4	of the review as far as what we are presenting today.
5	And we'd like to remind everybody, as has
6	been said several times this morning and again we're
7	going to have to repeat it this afternoon, that this
8	review is limited to the TRACG code and its
9	application. It is a the methodology and the procedure
10	for using that methodology to predict stability in the
11	ESBWR. This is not a review of the ESBWR.
12	We had to use models for the ESBWR to
13	conduct the review. However, we are not passing
14	judgment or making any statements regarding the
15	acceptability of the ESBWR design. We are simply
16	coming to the bottom line of the acceptability of the
17	TRACG code.
18	CHAIRMAN WALLIS: Well, the predictions of
19	the ESBWR design that we have seen don't tell us
20	anything about how good TRACG is. They just are
21	predictions of ESBWR.
22	MR. LANDRY: We will go through our
23	presentations and tell you some of our conclusions
24	regarding TRACG and how good it is.
25	We're going to discuss a little bit about
ļ	I

(202) 234-4433

	208
1	the approach that was taken in the review and who the
2	reviewers are. I'll go through again the reviewers
3	and what their responsibilities were.
4	And then we're going to talk about the
5	results of the review. And this is where we will
6	breakout into the individual members of the team. They
7	will present the parts of the review which they have
8	primary responsibility for.
9	And then we'll go back and go to
10	conclusions.
11	Now, during the presentations we are going
12	to make three conclusions at the end of each
13	presentation that are regarding the parts that we
14	reviewed. But then when we get to the end we're going
15	to pull it altogether and give a complete sort of
16	conclusions regarding the code.
17	DR. BANERJEE: What is SNPB?
18	MR. LANDRY: That is the abbreviation for
19	the Nuclear Performance and Code Review Branch. And
20	obviously that statement begins with an S.
21	DR. BANERJEE: Yes. Where does that come
22	from?
23	MR. LANDRY: It took about three weeks
24	before we figured out where the S came from. When the
25	reorganization was put into place in NRR where it was
I	I

(202) 234-4433

	209
1	broken down into three associate directorships. And
2	under each associate directorship there were a number
3	of branches. Or excuse me, a number of divisions and
4	then a number of branches. Our division was the
5	division of safety systems. So all the branches under
6	our division begin with an S, safety.
7	Previously we've been the ACRS on TRACG on
8	two occasions. In August/September with the Thermal-
9	Hydraulic Subcommittee and then the full Committee in
10	2001 talking about the application of TRACG to
11	anticipated operational occurrences in BWRs, the
12	operating BWR fleet.
13	We were back again talking about TRACG in
14	January/February when we talked about the application
15	of TRACG to the LOCA in the ESBWR.
16	So we've been here on two occasions
17	talking about TRACG and its applicability; once to the
18	operating fleet and once to the ESBWR. And today
19	we're here to talk about the applicability of TRACG to
20	the ESBWR again, but for analysis of the stability.
21	As I've said and others have said so far,
22	the objective of this review was to determine the
23	acceptability of TRACG for prediction of stability in
24	the ESBWR advanced reactor design. This review is
25	limited to the ESBWR design. We are making no
I	I

(202) 234-4433

210 1 statements about the applicability of TRACG to 2 analyzing stability in any other operating plant. This is limited to prediction of oscillation in the ESBWR. 3 4 It's limited applicability to anticipated operational 5 occurrence. And we'll get into a further definition. Bharat went through a definition this morning of what 6 7 is meant by that, and we'll go through it again and explain what we mean by applicability to calculation 8 9 of stability for AOOs. And it is limited to the early phases of 10 the startup, as Bharat previously explained. 11 The approach that was taken in the review 12 follows the CSAU approach. This is the approach that 13 14 was taken by the applicant, by General Electric. They 15 have followed the CSAU approach in determining the 16 acceptability of the code when determining the uncertainties in the code. This is involved review of 17 the PIRT and on the identification and ranking table. 18 19 We've reviewed some specific models within the code in 20 We've reviewed the assessment cases that great depth. 21 We've reviewed the numerics used in the were run. 22 code and in the methodology. And we performed 23 independent calculations --24 CHAIRMAN WALLIS: Excuse me. All that 25 stuff about explicit and implicit methods and how that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	211
1	seems to be a funny mix of them when they did it
2	MR. LANDRY: That is proprietary and we
3	have to go into closed session to discuss that.
4	CHAIRMAN WALLIS: We're not allowed to
5	talk about that?
6	MR. LANDRY: No.
7	CHAIRMAN WALLIS: And did you understand
8	it?
9	MR. LANDRY: Well, I know did. I won't
10	make any plans to it, but
11	DR. BANERJEE: Wait until we get closed
12	session.
13	MR. LANDRY: We've performed independent
14	calculations using the TRACG code. We've performed
15	independent calculations using the LAPUR code and
16	using independent void modeling methods for that was
17	done by Jay Spore. And Jay will go through those.
18	The reviewers that were involved in the
19	review include Veronica Klein. Ms. Klein has been
20	with us for three three years.
21	MS. KLEIN: Three and a half.
22	MR. LANDRY: Three and a half years. She
23	is an excellent reviewer as
24	CHAIRMAN WALLIS: Excuse me. Were these
25	independent calculations, GE seems to regard these
I	

(202) 234-4433

	212
1	transients as being very close to a second order down
2	system. It would seem that you ought to be able to
3	develop a simple model which would represent that.
4	And this would be very helpful in convincing us that
5	the physics are being captured. It's just a simple
6	result, it ought to have a simple explanation.
7	MR. LANDRY: Why don't you wait, Graham,
8	and let us get through the
9	CHAIRMAN WALLIS: Rather than using TRACG
10	for everything.
11	MR. LANDRY: Jay has pulled out particular
12	models and generated grades that particular models
13	that look at specific points. So let us get through
14	some of those explanations.
15	CHAIRMAN WALLIS: You were talking about
16	what you've done for independent calculations. There's
17	no bullet that says simplified model which captures
18	the physics, right?
19	MR. LANDRY: Not of the entire transient,
20	no.
21	As I was saying, Veronica Klein has been
22	with us for a few years now. And has been given the
23	lead responsibility for this review.
24	During the past year or two years I've
25	been very heavily involved in the 55.6A work and felt
	I

(202) 234-4433

1 that it's time to start transferring knowledge and 2 make sure that some of our younger staff members come 3 along and can take over in a lot of the lead 4 responsibilities.

5 Veronica has done an excellent job with 6 leading this review. She went out to San Jose and 7 lead an audit of GE. And she and Peter Yarsky went 8 down to Wilmington a time with the GE/GF code 9 developers and code modelers studying the way the code 10 is used and the procedures for using the TRACG code.

Now Peter Yarsky came to us in September
after finishing his Ph.D at MIT in reactor physics.
He's one of our reactor physics experts and has done
a lot of modeling for his work today.

Jose March-Leuba is the world renowned Dr.March-Leuba, world traveler also.

Jose, as you heard Bharat refer to this 17 morning, 25 years ago was one of the originators of 18 19 one of the thought on how to phase or regional 20 oscillations may occur. Jose has had a long history of 21 reviewing stability and is leading one of the 22 authorities on stability analysis.

Jay Spore started this work with us when he was at Los Alamos National Laboratory. He has since left LANL and is now with Information System

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

214 1 Laboratories. He is a numerist and a code developer 2 and modeler in his own right and has been the responsible person for reviewing the numerics in the 3 4 code. 5 As I said, we're each going to give some brief conclusions. Some of the brief conclusions as 6 7 a lead in. I know I haven't given you any of the 8 basis for these, but we will give you the basis for 9 these conclusions as we move along through the 10 presentations. CHAIRMAN WALLIS: Well, the first bullet, 11 I mean TRACG can be wrong and can give results. We 12 know that. How do you measure its capability? 13 MR. LANDRY: And that we are going -- as 14 15 I said, that we are going to give out as we go through the presentations. I'm simply leading off with some 16 statements of conclusion. 17 To give you an idea of where we're going 18 19 with this discussion this afternoon, first is that TRACG is capable of calculating stability in the 20 21 ESBWR. CHAIRMAN WALLIS: Well, it's a Graham 22 23 Wallis back of the envelop calculation can calculate 24 stability, too. But I don't say it's much good. 25 MR. LANDRY: We didn't consider the model

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	215
1	calculation
2	CHAIRMAN WALLIS: I know, but you see what
3	I'm getting at. And there has to be some tests of
4	ability.
5	MR. LANDRY: Well, we're going to explain
6	some of this, Graham, why we believe the code to be
7	capable.
8	MEMBER DENNING: But when you say it's
9	capable you mean within the accuracy required for this
10	specific application?
11	MR. LANDRY: Yes, correct.
12	CHAIRMAN WALLIS: Well, with some
13	specifications?
14	MR. LANDRY: Correct.
15	CHAIRMAN WALLIS: You have specifications
16	of what it has to be able to do?
17	MR. LANDRY: This will come out in our
18	discussion. And this comes up further down the list of
19	these conclusions. That goes to the bottom; that it's
20	not only the specification, it's the procedure that is
21	described. It's not just the code that is reviewed.
22	It's the procedure in using the code also that we have
23	stated as our conclusion that not only is the code
24	capable and acceptable, but that you must use the
25	procedure that has been defined also. You can't go
I	I

(202) 234-4433

	216
1	off and use a different procedure for using the code
2	and our conclusion would still apply.
3	CHAIRMAN WALLIS: Now that means noting
4	and all those boxes and everything?
5	MR. LANDRY: We'll get into a lot of these
6	discussions.
7	CHAIRMAN WALLIS: Is that what you mean by
8	procedures?
9	MR. LANDRY: Yes.
10	We also concluded that TRACG's stability
11	procedure can be applied to an ALO once a new steady
12	state condition has been achieved.
13	CHAIRMAN WALLIS: Are you going to
14	conclude that TRACG gives results correct within
15	certain acceptable limits?
16	MR. LANDRY: That is within the
17	uncertainty which has been defined. An uncertainty
18	analysis has been performed and we will conclude that
19	that is an appropriate uncertainty.
20	CHAIRMAN WALLIS: Well, again, it went
21	through the motions.
22	MR. LANDRY: We'll make some more
23	conclusions about this. You have to look at the
24	assessment and we'll talk more about the assessment
25	cases and the conclusions in a little bit. We have to
	I

(202) 234-4433

	217
1	get into closed sessions to go into that, Graham.
2	CHAIRMAN WALLIS: Okay.
3	MR. LANDRY: And as Bharat has described,
4	we are also going to make some statements regarding
5	TRACG's ability to predict the startup trajectory
б	stability for the first four startup phases.
7	And with that, I'd like to turn the
8	presentation to Veronica Klein.
9	MS. KLEIN: Hi. My name is Veronica Klein.
10	And as Ralph mentioned, I'm a member of the Nuclear
11	Performance and Code Review Branch. And my role in
12	this review was I did the overall coordination between
13	the review of our contractors and the staff. And so
14	today I'm going to give you just a brief overview of
15	where our review our was focused and perhaps a preview
16	of some of the reviews that are to follow.
17	Now as Ralph mentioned, the applicant
18	followed a CSAU approach and we reviewed some of
19	the main areas in which we reviewed were the code
20	applicability, the PIRT, the assessment, the bias and
21	the nodalization. In addition, we reviewed the
22	calculation procedure, the xenon assumptions and
23	TRACG's capability of modeling oscillations during
24	startup.
25	And as Ralph has also mentioned, we had
	I

(202) 234-4433

some assistance from some of our experts. Dr. March-Leuba who is an expert in stability, he took the lead in reviewing the PIRT and also the nodalization and the startup. And he was also just our resource for any sort of ESBWR stability features in which we needed to understand.

7 And Jay Spore was our expert on numerics and TRACG models. And he took the lead on reviewing 8 9 the code applicability and the assessment and the bias and uncertainty and made contributions to the review 10 of the PIRT. And he and Jose will be presenting their 11 results following the presentations of the NRC Staff. 12 And the Staff has reviewed the contractor's report on 13 14 this topical, and we have found it to be acceptable.

15 Now, there are several considerations in which -- well, there are several items in which we 16 17 found to be important for predicting stability in ESBWR but were not part of the scope of this review. 18 19 the first four items on this list we are And 20 considering as inputs into the model, and they're all 21 handled in their own topical reports and will be 22 reviewed separately. And these are the dynamic back 23 conductants input, the critical power correlations, 24 the cross section generations and the ESBWR fuel. 25 The next two bullets were not submitted as

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

part of this application and are considered outside of the scope and will be reviewed at a later time. And that's stability during ATWS events and stability with transient xenon conditions.

5 Now, our review of TRACG we tried to expand upon the previous reviews that were performed 6 7 in the past. And so for when we reviewed the code 8 applicability we tried to keep our focus on the models 9 that were important for predicting stability, such as And we also reviewed in detail the 10 void fraction. explicit integration scheme. And in our review of the 11 PIRT we only reviewed the phenomena which we 12 considered important for the prediction of stability 13 14 events.

15 And in the review of the assessment of 16 TRACG we did look at the current assessment base, 17 which has been mentioned by GE, that is in these preceding documents. And we have reviewed that 18 19 information, plus we've also reviewed the information 20 which was contained in the topical that had tests that 21 were specific or that were done more specifically to 22 address ESBWR stability.

And we've also reviewed in detail the bias and uncertainty. GE has used a previously approved statistical methodology which we have also reviewed

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	220
1	and have approved that in the past.
2	We approved their nodalization scheme and
3	in particular, GE uses a fine axial and radial
4	nodalization scheme for performing their calculations.
5	The range of our application of this
6	review only covers steady state conditions. We also
7	cover the range of off normal steady state conditions,
8	and this has also mentioned twice. What this really
9	means, but this is for the AOO condition that are just
10	steady state conditions which may seen during an AOO.
11	And we also reviewed the applicability of TRACG for
12	startup.
13	In support of this review we had performed
14	a number of calculations. We have performed audit of
15	GE calculations. We have visited the San Jose offices
16	and looked at their calculations, as well as visiting
17	the Wilmington offices and looked at their
18	calculational procedures in detail and have used TRACG
19	the same way in which GE does to get a better idea of
20	how they do their calculations.
21	We've also performed independent
22	calculations using TRACG. We've performed independent
23	calculation using LAPUR, which is a frequency domain
24	code. And we have performed independent calculations
25	of the void profile in the hot channel using TRACE,
I	1

(202) 234-4433

	221
1	RELAP5 and an independent drift flux model
2	CHAIRMAN WALLIS: Now these are steady
3	state voids, they're not perturbed voids?
4	MS. KLEIN: Yes.
5	ACTING CHAIR RANSOM: When you said steady
6	state on the previous slide.
7	MS. KLEIN: Yes.
8	ACTING CHAIR RANSOM: Did that include
9	oscillations without a steady state, you know, for
10	stability?
11	MS. KLEIN: I'm sorry, what do you mean?
12	ACTING CHAIR RANSOM: Well, you're saying
13	the range of application of steady state conditions.
14	But we're talking about stability here.
15	MS. KLEIN: Basically what we're saying
16	is, and this has been repeated in the past, is that
17	there is some confusion when you talk about
18	application of the methodology for a transient. And
19	all we're saying is that methodology itself does not
20	allow for calculating things as decayed ratios during
21	a transient. So what we are saying is that everything
22	that we have reviewed requires that GE have a steady
23	state condition and then perturb it. But what we're
24	saying is it has to be a steady state before there's
25	any perturbation, otherwise it was not covered in this
I	

(202) 234-4433

	222
1	topical report.
2	ACTING CHAIR RANSOM: But that is a
3	transient. You're saying the range of application
4	includes steady state but also perturbations around
5	the steady state?
6	MS. KLEIN: I guess basically it's just
7	that we're saying that we're not trying to evaluate
8	the decay ratios during the actual transient while
9	power, while flow, while things are actually changing.
10	That was just not part of the methodology. The
11	methodology was just you have to perform a steady
12	state to begin with. And that's all that we're trying
13	to say, that that starting point, it has to be a
14	steady state in order for this methodology to be
15	applicable.
16	MEMBER DENNING: Is that a deficiency in
17	the analysis? I mean, I understand what you did. Have
18	you evaluated that and said that's okay, all we have
19	to really do is look at these steady state or quasi-
20	steady state initiating conditions.
21	MS. KLEIN: Yes. Dr. March-Leuba has a
22	lot of good slides on this where he talks about how it
23	encompasses some of the limiting conditions that may
24	be seen. So if you can wait until his presentation,
25	I believe he'll be able to really illustrate that for
	I

(202) 234-4433

	223
1	you.
2	CHAIRMAN WALLIS: Well, presumably, if the
3	system were unstable, TRACG would be unable to
4	calculate a steady state condition.
5	DR. MARCH-LEUBA: This is Jose March-
6	Leuba.
7	What we're going to say, and you are 100
8	percent correct, that you have to perform transient to
9	measure the decay ratio with TRACG. That's what the
10	procedure says.
11	Now, the decay ratio, and when it's my
12	time I'll give a little bit of the math behind it.
13	The decay ratio is a property of the core like its
14	mass or its temperature. It's a parameter that exists
15	even if you don't run the transient.
16	TRACG chooses to run a transient with
17	TRACG to calculate that parameter or that property of
18	the core. Okay. But it is a property of a steady
19	state condition of the core. The core or the steady
20	state operating condition has a decay ratio whether a
21	transient or imposed or not. The same way it has
22	a mass
23	CHAIRMAN WALLIS: Well, I think you're
24	right, but I think it's true that it's the core plus
25	the downcomer and the chimney and the circuit which
I	I

(202) 234-4433

	224
1	has the decay ratio. It's not the core by itself.
2	DR. MARCH-LEUBA: I mean the whole.
3	DR. BANERJEE: But the decay ratio assumes
4	a certain model first, doesn't it? I mean, it doesn't
5	have to be a decay ratio in the sense that
6	DR. MARCH-LEUBA: You are 100 percent
7	correct. We have already we want to develop on my
8	slides and we want to go to the blackboard because I
9	hear there are so many misconceptions about what we're
10	talking about.
11	There are many things that we can't
12	measure. And it's not relevant and I'll tell you why
13	if you're willing to wait another 20 minutes.
14	CHAIRMAN WALLIS: We have to wait until
15	it's your turn.
16	DR. MARCH-LEUBA: Yes.
17	CHAIRMAN WALLIS: You're going to tell us
18	that there's a decay ratio no matter what the form of
19	the signal?
20	DR. MARCH-LEUBA: Yes.
21	CHAIRMAN WALLIS: Okay.
22	MS. KLEIN: Okay. That ends my
23	presentation. Next is to Dr. Peter Yarsky of the NRC
24	Staff.
25	CHAIRMAN WALLIS: So your role in this was
ļ	I

(202) 234-4433

	225
1	a manager, was it, or did you do calculations?
2	MS. KLEIN: Pretty much. I assisted Pete
3	a little bit when he did his calcs. And I went with
4	Jose when we went to GE and he taught me a little
5	LAPUR. But I didn't do any main calculations.
6	CHAIRMAN WALLIS: But you didn't say gee
7	wiz, I don't believe that. How about this and that and
8	show me this.
9	MS. KLEIN: Well, I mean I read through
10	the topical. And there were things that, you know,
11	what I didn't know. And since I'm not an expert in a
12	lot of the areas that were involved, that was why we
13	have the assistant. And so I would had to call up Jay
14	and say could you look at this. And call up with Jose
15	and say could you look at this.
16	CHAIRMAN WALLIS: Whoever managed the SER
17	seems to have avoided asking a lot of questions. And
18	maybe they got answered and they were thought to be
19	not important. It doesn't seem to be full of a lot of
20	questions being raised and answered.
21	MR. LANDRY: The Staff did ask a number of
22	questions. We had a number of interactions with the
23	applicant. We did not provide a listing of all the
24	RAIs and all the responses in the SER, but yes we did
25	ask quite a few questions.
	I

(202) 234-4433

	226
1	DR. BANERJEE: We got all the RAIs and
2	responses, didn't we?
3	MR. LANDRY: Yes.
4	DR. BANERJEE: I mean there were four of
5	these that were sent to us.
6	I had a related question. Were there no
7	codes which could actually do a time domain
8	integration other than TRACG?
9	MS. KLEIN: No. TRACE is currently still
10	being developed for that capability. We don't expect
11	that it would be completed until 2008.
12	CHAIRMAN WALLIS: I thought TRACE was
13	based on TRACG to be able to do the same thing.
14	MS. KLEIN: It is, but it doesn't have the
15	right numerical schemes in it to perform these types
16	of calculations.
17	DR. BANERJEE: So it can handle a blowdown
18	but it cannot handle a stability problem?
19	MS. KLEIN: It's mostly within the
20	numerics when we talk about the inputs, explicit
21	integration schemes that has not been fully
22	implemented in TRACE yet and it's not been tested. And
23	we hear rumors that some people do, but it's not been
24	fully benchmarked, it's not been tested. And Research
25	has told us that it won't be ready until 2008.
I	I

(202) 234-4433

	227
1	DR. BANERJEE: For stability?
2	MS. KLEIN: Yes.
3	DR. BANERJEE: What about other codes like
4	RELAP and so forth?
5	MS. KLEIN: We don't know of a time domain
6	code that has ever, other than TRACG that has
7	performed
8	DR. MARCH-LEUBA: We do know of other
9	codes. For example RAMONA code is used by it was
10	licensed to ADD and it is their primary stability
11	mission into analysis. And they've been using it for
12	6 years it's been licensed for 5 or 6 years
13	already.
14	DR. BANERJEE: Is that a drift flux type
15	model?
16	DR. MARCH-LEUBA: RAMONA? Some expert on
17	thermal-hydraulics will have to tell you that. It is
18	an internal momentum equation so it doesn't follow the
19	speed of sound. That what I know. And that's why it's
20	able to model each and every one of the channels which
21	is a really good advantage. I believe it's a five
22	equation model, but don't I don't know those
23	details.
24	So RAMONA is widely used in Europe. It's
25	used a lot in Sweden and Switzerland. Some codes in
I	

(202) 234-4433

	228
1	tandem may have been used in Japan for stability, too.
2	But I'm not that familiar with those. So definitely
3	RAMONA is licensed by the NRC to be used for stability
4	equations since the year 2000.
5	DR. BANERJEE: So could it have been used
6	or could not have been used?
7	DR. MARCH-LEUBA: RAMONA could have been
8	used, but it's a proprietary code that GE does not
9	have access to.
10	DR. BANERJEE: No, but NRC does or does it
11	not?
12	DR. MARCH-LEUBA: Is the RAMONA 5- the ADD
13	version of RAMONA. It's not the public version of
14	RAMONA. When you start talking about RAMONA, there
15	are many versions. It was the ADD RAMONA version that
16	was qualified, not the public version.
17	DESIGNATED OFFICIAL CARUSO: Could the NRC
18	version be used to evaluate the stability?
19	DR. MARCH-LEUBA: Conceivably, but you
20	will have to benchmark it first. And honestly, if you
21	want to know what the decay ratio is, you really
22	should use a frequency domain code, that's what
23	they're designed for. And they're much cheaper, easier
24	to use and, frankly, much more accurate.
25	The only problem and the reason why GE
	I

(202) 234-4433

	229
1	decided to TRACG for ESBWR was the concern with the
2	chimney that the code that they have licensed does not
3	have a chimney and therefore and also cannot handle
4	the startup, cannot handle the the other
5	disabilities. So that was, in my opinion, that's the
6	reason why ESBWR decided to use TRACG. It's a lot
7	more expensive. I can run a pool in about a minute
8	and a half of CPU time and it has 400 times it has
9	full imagery and it's accurate.
10	MS. CUBBAGE: All right. Dr. Peter
11	CHAIRMAN WALLIS: So why can't TRACG do
12	something similar?
13	DR. MARCH-LEUBA: Sorry?
14	CHAIRMAN WALLIS: Why is so expensive and
15	complicated to do a lot of TRACG runs?
16	DR. MARCH-LEUBA: It's an expensive
17	CHAIRMAN WALLIS: It's just a code.
18	DR. MARCH-LEUBA: Yes.
19	DR. BANERJEE: Well, it's not paralyzed or
20	what is the problem?
21	DR. MARCH-LEUBA: CPU time is not a
22	concern anymore.
23	DR. BANERJEE: And it is a 1-D
24	calculation.
25	DR. MARCH-LEUBA: Yes. But it has to
I	

```
(202) 234-4433
```

	230
1	go in with a and it's all on the code on the
2	input development, evaluation and recommendation.
3	That's where your cost is. It's not the CPU time
4	anymore.
5	CHAIRMAN WALLIS: Did anybody do a simple
6	thing with simply an average channel and an average
7	chimney and circulation loop which you can run in
8	about two seconds?
9	DR. MARCH-LEUBA: Things like that have
10	been done.
11	CHAIRMAN WALLIS: To explore it, to
12	explore what happens when you change things?
13	DR. MARCH-LEUBA: You can Google Jose
14	CHAIRMAN WALLIS: I think that would be
15	very helpful.
16	DR. MARCH-LEUBA: Jose's five equation
17	model, you can do a Google search, and you'll find
18	lots of hits. I mean, I develop it 20 years ago and
19	people still use it. The problem is accuracy.
20	MEMBER DENNING: On the frequency domain
21	codes, how do they treat the core the thermal-
22	hydraulics in detail? I mean, are you just saying
23	that you don't have to treat those in the detail the
24	TRACG does?
25	DR. MARCH-LEUBA: No, you do.

(202) 234-4433

	231
1	MEMBER DENNING: You do?
2	DR. MARCH-LEUBA: Yes. Only the solution
3	is in the instead of having to step through the
4	time. So you have
5	MEMBER DENNING: You have the same level
6	of detail, a description of the neutronics in the
7	DR. MARCH-LEUBA: Considerably.
8	Considerably you can do it. In the particular case of
9	the LAPUR code, which is the one that the Staff uses
10	because it is the one that we own, it's not. It
11	doesn't have that much detail. It was developed in the
12	late 1970s and it was developed by a graduate student
13	for \$40,000.
14	It's a slip model on kinetics, so it does
15	have some limitations. All the code you see is 1-d
16	kinetics and it has better thermal-hydraulics. That
17	Staff that Areva uses is an excellent code and it has
18	all the detail you would ever want.
19	There are some frequency domain codes,
20	including LAPUR, that have been upgraded to 3-V.
21	There is a LAPUR version 6 which has been developed in
22	Spain which has built the 3-D capability neutronics.
23	MEMBER DENNING: And somebody is going to
24	explain to us why one has to use the explicit version
25	of this analysis rather than implicit even though it's
Į	

(202) 234-4433

	232
1	solution of the same equation?
2	DR. MARCH-LEUBA: Yes. That's the first
3	thing I want to do on the blackboard.
4	DR. BANERJEE: But now when you say a
5	frequency domain code with thermal-hydraulics, the
б	behavior will depend on the thermal-hydraulics model,
7	right?
8	DR. MARCH-LEUBA: Correct.
9	DR. BANERJEE: So if you have a six
10	equation model of the type that TRACG has with
11	whatever the interfacial friction or whatever,
12	basically you're linearizing that system in some way.
13	DR. MARCH-LEUBA: Correct.
14	DR. BANERJEE: And that's all that you're
15	doing in a frequency domain code. So if you have the
16	same models as TRACG and you did a linearized analysis
17	of this, would you get the same answer as TRACG gets?
18	DR. MARCH-LEUBA: You should if TRACG is
19	using the displaced interfacial method correctly. The
20	frequency domain analysis will give you the correct
21	decay ratio because it's integrated analytically and
22	there is no numerical diffusion.
23	DR. BANERJEE: Based on a linearized-
24	DR. MARCH-LEUBA: Decay ratios are linear
25	parameter.
ļ	I

(202) 234-4433

233 1 DR. BANERJEE: Yes. So if it was finite 2 amplitude oscillation, you would not capture that 3 correctly, right? 4 DR. MARCH-LEUBA: The decay ratio is a characteristic of the reactor that exists even if 5 there are no oscillations. 6 7 DR. BANERJEE: Sure. 8 DR. MARCH-LEUBA: And it's defined only for oscillations of 10 to the minus 5 in the linear 9 10 region. So therefore, the decay ratio is a linear 11 parameter. DR. BANERJEE: Yes. So if you'd start with 12 the linearized thermal-hydraulics model --13 14 DR. MARCH-LEUBA: Yes. 15 DR. BANERJEE: -- you'd start with the linearized neutronics model? 16 17 DR. MARCH-LEUBA: Yes. DR. BANERJEE: And you'd look at this 18 19 whatever the hell you get. 20 DR. MARCH-LEUBA: Write down the equations 21 and invert the methods. 22 So that's all you do? DR. BANERJEE: Yes. 23 DR. MARCH-LEUBA: Correct. 24 DR. BANERJEE: Right. But it doesn't tell 25 you anything about finite amplitude perturbations?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	234
1	DR. MARCH-LEUBA: No. No. And that's the
2	beauty of the time domain codes. You use time domain
3	codes whenever you want to see what happens when the
4	decay ratio goes over one. The moment the decay ratio
5	is greater than one, the oscillations start to go.
6	Frequency domain code doesn't tell you absolutely
7	nothing about how those are going to grow; are they
8	going to be ten percent, 1,000 percent, 10,000
9	percent.
10	DR. BANERJEE: Yes, but I want to give
11	analogy which may not work here but it has some
12	meaning. If you look at pipe flow
13	DR. MARCH-LEUBA: Yes.
14	DR. BANERJEE: if you give it
15	infinitesimal perturbations, it will stay stable until
16	the 100,000 Reynolds number. On the other hand if you
17	give it a finite amplitude perturbation, it'll go
18	unstable at 2,000. So the stability of pipe flow,
19	however, is not determined by these little frequency
20	domain things of the Navier-Stokes equation. If you
21	do hydrodynamic stability analysis you get nothing of
22	usefulness.
23	DR. MARCH-LEUBA: Yes.
24	DR. BANERJEE: So why do we expect that to
25	work for reactors?
I	I

```
(202) 234-4433
```

	235
1	DR. MARCH-LEUBA: Because it has benchmark
2	over the last 50 years of experience. If you do a
3	search, you will hear the term subcritical Hopf
4	bifurcation. That's what you're talking about is when
5	you can make a linearly stable reactor go unstable by
6	having a large enough perturbation. And there are
7	some publications by -
8	CHAIRMAN WALLIS: We talked about that
9	this morning.
10	DR. MARCH-LEUBA: Yes. Basically what
11	you're doing is if you perturb the power sufficiently
12	enough so you make it unstable, then it's unstable.
13	Okay. So if you put a perturbation that is large
14	enough, you will make anything unstable. But you
15	require a very, very large perturbation.
16	We use decay ratios of .02. It's not
17	because we're noisy, it's not because it is the final
18	goal. We want to know how much margin this piece that
19	they're proposing to build has to stability. And the
20	decay ratio is a nice figure of merit that tells you
21	you have decay ratio of .02, you have lots of margin.
22	You have a decay ratio .08, you don't. And you have
23	to worry. We use decay ratio of .02. I mean, you
24	have to keep that in mind.
25	MR. LANDRY: At this point, we're going to
ļ	I

(202) 234-4433

	236
1	go to closed session.
2	Mr. Chairman, the rest of the
3	presentations are going to be closed.
4	ACTING CHAIR RANSOM: Now is this
5	presentation closed?
6	MR. LANDRY: This presentation is closed.
7	ACTING CHAIR RANSOM: Okay. We'll go into
8	closed session then.
9	(Whereupon, the proceedings went into
10	Closed Session.)
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	

	389
1	ACTING CHAIRMAN RANSOM: We're in open
2	session then.
3	MR. LANDRY: Well, I had prepared a number
4	of slides which you have in the handouts which restate
5	all of the conclusions that we've arrived at for each
б	of the presentations. Rather than go through that
7	whole list again, which we talked about considerably
8	as we've been going through the presentations, I'd
9	like to come point and state at this time where the
10	Staff would like to go next.
11	We would propose to provide to the
12	Committee as soon as possible, which means that I'll
13	probably try to burn a CD for you tomorrow, with three
14	documents. The TRACG qualification report from January
15	of 2000. The TRACG qualification for SBWR report from
16	August of 2002. And the TRACG qualification for
17	ESBWR report from August of 2002.
18	CHAIRMAN WALLIS: How long are these?
19	MR. LANDRY: Pardon me?
20	CHAIRMAN WALLIS: How long are these
21	documents?
22	MR. LANDRY: I don't know how many pages
23	off the top of my head. But they're several binders.
24	CHAIRMAN WALLIS: So they're substantial
25	documents?

(202) 234-4433

	390
1	MR. LANDRY: Yes. These are the
2	documents
3	CHAIRMAN WALLIS: And we have a lot to do
4	next week. We can't do anything on this, it seems to
5	me. And you're asking us to review these before we
6	meet next in the February meeting?
7	MR. LANDRY: No. Our proposal is to get
8	these documents to you which will contain within them
9	the comparisons with the CRIEPI, SIRIUS information so
10	that you will have that information at hand before we
11	meet again.
12	CHAIRMAN WALLIS: Are you talking about
13	the February meeting or the full Committee?
14	MR. LANDRY: We haven't said anything
15	about the next meeting yet.
16	CHAIRMAN WALLIS: No, but we are meeting.
17	We have two hours scheduled in February to discuss
18	this in full Committee meeting. For some reason
19	someone has decided that this can all be done in a
20	couple of weeks and we'll be ready to write a letter
21	saying everything's fine.
22	MS. CUBBAGE: Graham?
23	CHAIRMAN WALLIS: And I think that's a
24	mistake.
25	MS. CUBBAGE: Graham, this is Amy Cubbage.
l	I

(202) 234-4433

	391
1	CHAIRMAN WALLIS: Yes.
2	MS. CUBBAGE: Actually, I just found out
3	this morning that we were scheduled for February.
4	CHAIRMAN WALLIS: You didn't know that?
5	MS. CUBBAGE: I did not know that. We had
6	been bumped to March and I was informed this morning
7	that we were on the schedule for February. So if
8	everyone's in agreement, we don't have any problem
9	with going to the March meeting. But as I understand
10	from Ralph telling me that they may not have room for
11	us.
12	MR. LANDRY: It's going to be a problem
13	going to March.
14	CHAIRMAN WALLIS: Well, I think we need to
15	spend some time discussing this. Because if you go to
16	the February meeting, you'll probably get a letter or
17	at least you'll get comments from me saying we need to
18	see more before we can really say this is okay.
19	MS. CUBBAGE: Okay. Well, some of the
20	information we think you need to see would be in this
21	qualification reports.
22	CHAIRMAN WALLIS: But we wouldn't have
23	time to read it.
24	MS. CUBBAGE: No, I understand. And
25	that's why we're suggesting I agree with you that
Į	1

(202) 234-4433

	392
1	February is aggressive. So we'll have to work with
2	ralph if we can get back on the schedule at a later
3	time.
4	You want to continue, Ralph.
5	CHAIRMAN WALLIS: But we're in th <i>&ederal</i>
6	Register for 2 hours of your presentation on
7	MS. CUBBAGE: Okay. Well, it's
8	unfortunate that no one told me that.
9	MR. LANDRY: Right. In NRR we've been
10	operating under the instruction that we've been given
11	for the schedule.
12	CHAIRMAN WALLIS: It seems to me strange.
13	Usually you guys are pressing us to do things quicker.
14	MR. LANDRY: And we had planned on being
15	here in February. But we were told through the
16	scheduling process that we had been bumped from
17	February to March. So that's been the target date
18	that we've been shooting for. And our proposal is get
19	these three documents to you as soon as possible.
20	We will also be revising the SER to
21	include further description which Jose has presented.
22	Something along the lines of what Jose has presented
23	today. And we will also be getting from General
24	Electric additional calculations of looking at
25	nodalization in the chimney. When we get that
I	I

(202) 234-4433

additional demonstration of the effect of nodalization in the chimney and the description of stability from Jose, and you will have the documents on SIRIUS, CRIEPI comparison --

5 CHAIRMAN WALLIS: So the logical thing would be to have another Subcommittee at which we go 6 7 through all this stuff, which is now going to answer 8 some of the questions we had today. And then at the 9 end of that we agree that the case has been properly 10 made, then we say we go to the full Committee, which we would be a process which I would think would take, 11 12 you know, several months. It's not something you do tomorrow. And this is a very important issue for a 13 14 very important new reactor design. It's some new 15 features we haven't seen before. I don't think you 16 just brush it off in a couple of weeks. 17 MR. LANDRY: No, we weren't trying to brush it off in a couple of weeks. 18 19 CHAIRMAN WALLIS: Well, you're asking us 20 to make a decision by -- well, it appears that we're 21 being asked. 22 MS. CUBBAGE: No, we're not. MR. LANDRY: 23 We're not. 24 CHAIRMAN WALLIS: It would appear from our 25 schedule that we're being asked to make a decision.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

393

	394
1	MR. LANDRY: Right. And what we're
2	proposing is to update the SER appropriately and get
3	that to you quickly so that you
4	CHAIRMAN WALLIS: So that's more of this
5	evidence you've been asking for?
6	MR. LANDRY: So that you can have it to
7	look over and we can prepare for our March meeting.
8	CHAIRMAN WALLIS: Don't we need another
9	Committee meeting to look at this.
10	MR. LANDRY: If we can be put into the
11	March schedule. It is the feeling of the Staff that
12	there is sufficient information that if we supplement
13	it with a nodalization study on the effect of the
14	chimney and further description of the stability, that
15	this is not a major perturbation in the information at
16	hand, and that we should be able to go forward.
17	MEMBER DENNING: Ralph, can we change it
18	from February or are we locked into February meeting
19	anyway?
20	DESIGNATED OFFICIAL CARUSO: We don't have
21	to go in February, but March is very full. We moved
22	a bunch of things out of March into February because
23	March was undoable for the Committee.
24	CHAIRMAN WALLIS: So let's move it to
25	April.
I	

(202) 234-4433

	395
1	DESIGNATED OFFICIAL CARUSO: It might be
2	possible to move it into April.
3	MEMBER KRESS: Can we make a four day
4	meeting in March?
5	DESIGNATED OFFICIAL CARUSO: I don't know.
б	I have to check. I don't control that. I don't know.
7	MEMBER KRESS: It's the same week of the
8	regulatory information conferences.
9	DESIGNATED OFFICIAL CARUSO: In March?
10	MEMBER KRESS: That same week.
11	DR. BANERJEE: Ralph, there's a
12	Subcommittee meeting in February, right, 14th to 16th?
13	DESIGNATED OFFICIAL CARUSO: Yes, to talk
14	and it might be possible to add on to that. That's
15	a possibility.
16	DR. BANERJEE: Yes.
17	DESIGNATED OFFICIAL CARUSO: But that's
18	going to be all about your favorite topic, chemical
19	effects and
20	CHAIRMAN WALLIS: Well, that's another one
21	we're wrestling with, yes.
22	DESIGNATED OFFICIAL CARUSO: Right.
23	CHAIRMAN WALLIS: And I understand the
24	23rd/24th ESBWRs has moved.
25	MS. CUBBAGE: That's right.
ļ	I

(202) 234-4433

	396
1	CHAIRMAN WALLIS: So we can worry about
2	this part of ESBWR perhaps in February?
3	DESIGNATED OFFICIAL CARUSO: 23rd/24th of
4	February?
5	MS. CUBBAGE: We were scheduled to go to
6	the PRA Subcommittee. That has been postponed.
7	CHAIRMAN WALLIS: Right. SO we have more
8	time free than they have.
9	DESIGNATED OFFICIAL CARUSO: Oh, okay.
10	DR. BANERJEE: If you could add it to the
11	debris thing, it would make some sense.
12	CHAIRMAN WALLIS: That would make sense.
13	DR. BANERJEE: Because we're going to be
14	here for that. Save a trip.
15	CHAIRMAN WALLIS: And then we'd actually
16	go to the full Committee in March.
17	DESIGNATED OFFICIAL CARUSO: 14th, 15th
18	and 16th. Let me go off and check about March, the
19	availability with the full Committee
20	CHAIRMAN WALLIS: Well, Sam is not going
21	to be happy.
22	DESIGNATED OFFICIAL CARUSO: I know. I
23	know.
24	MEMBER DENNING: But I think we do agree
25	we need another Subcommittee meeting before we go to
I	1

```
(202) 234-4433
```

	397
1	the full Committee?
2	CHAIRMAN WALLIS: That's my impression is
3	we need a Subcommittee meeting.
4	DESIGNATED OFFICIAL CARUSO: Okay.
5	CHAIRMAN WALLIS: There's too many loose
6	ends.
7	And I thought that the whole process of
8	operation at this ACRS was that subcommittees reviewed
9	material. When there was general agreement that the
10	subcommittee had seen enough, that the stuff was
11	mature enough, then it went to the full Committee.
12	You couldn't just sort of schedule it's going to the
13	full Committee without having any idea how the
14	Subcommittee is going to respond to what they see.
15	MEMBER DENNING: But I think we do agree
16	with the items that you identified as those things
17	that we'd like see more of. I think that, you know,
18	it's clear we have heard what people have been saying
19	here. So I think that you're going off in the right
20	direction as far as additional information provided.
21	Don't you agree?
22	CHAIRMAN WALLIS: Yes. And what we heard
23	from Jose I thought was very valuable today. But we
24	didn't know it until we came here today. We need to
25	have it, perhaps, in a more organized fashion.
I	

(202) 234-4433

	398
1	MS. CUBBAGE: On behalf of the staff I
2	just want to make sure there's clarity on what you're
3	expecting at this next Subcommittee meeting. You've
4	already heard additional information from Jose today.
5	So I don't expect that you'd want to hear that again.
6	We're going to provide you with these
7	qualification reports. Are you asking plus
8	CHAIRMAN WALLIS: Well, we asked all these
9	questions about while you know, you've got this one
10	plotted decay ratio of the power. And you've got a
11	decay ration in some way. There's no indication of
12	what the voids are doing in various parts of the
13	system or how the pressure drop and the inertia terms
14	are balanced around the loop, how important are the
15	terms coming from the core and coming from the chimney
16	and all that which would indicate why it is that the
17	core is more important than the chimney. Those are the
18	sorts of things I'd like to hear so that we get a
19	proper perspective that shows that you understand
20	what's going on. Not just one curve we're supposed to
21	believe.
22	MS. CUBBAGE: Okay. So, obviously, this
23	is the technical issues that the reviewers address
24	CHAIRMAN WALLIS: It's a major issue.

MS. CUBBAGE: But would the calculation

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	399
1	with a finer nodalization in the chimney address the
2	issue of the role of the chimney?
3	CHAIRMAN WALLIS: Well, you've got to show
4	what the voids are doing in the chimney and how the
5	pressure drop components around the loop contribute to
6	the dynamics of what's happening.
7	MS. CUBBAGE: Okay. I'm just trying to
8	avoid us coming back and then that not satisfying
9	CHAIRMAN WALLIS: Well maybe we need to
10	make a list of some of the things we're hoping to see.
11	And I just wonder if you can do that in a short time.
12	DR. BANERJEE: Sorry. I was just going to
13	say that it would be very useful to see comparisons of
14	the code against data.
15	CHAIRMAN WALLIS: Yes.
16	DR. BANERJEE: And not just for decay
17	ratio and frequency, but actual predictions from the
18	code compared with data on things like pressure, void
19	fraction, flow rates; whatever available. So these
20	were oscillating, how well are those oscillations
21	actually being predicted by the code. Not just the
22	decay ratio and a table and a frequency and a table.
23	MS. CUBBAGE: Okay. GE, does the
24	qualification report have that level of detail?
25	DR. BANERJEE: Well, if it doesn't, then
I	I

(202) 234-4433

	400
1	they must have that data.
2	CHAIRMAN WALLIS: Somewhere.
3	DR. BANERJEE: Somewhere. That's what we
4	would like to see.
5	MR. SHIRALKAR: It does in some cases.
6	Whatever is available was in that. And for the pre-
7	EPRI, for example, there's comparisons of void and
8	observations and so on.
9	DR. BANERJEE: Right.
10	MR. SHIRALKAR: For LaSalle there's
11	comparisons of flow and power oscillations. And for
12	other plants as well. But not in, say, obviously in
13	the plant data I won't have detail like what action
14	and like that.
15	DR. BANERJEE: Right. But he put a void
16	propagation velocity down for Forsmark and Leibstadt.
17	This was presumably cross correlations between NPRMs
18	or something. Could you get that what propagation
19	velocity and frequency or whatever.
20	MR. SHIRALKAR: We didn't measure any
21	propagation velocity.
22	DR. BANERJEE: Was it just frequency then
23	or
24	MR. SHIRALKAR: I think it was frequency.
25	DR. BANERJEE: All right. And that was
I	I

(202) 234-4433

	401
1	just oscillations in the NPRMs.
2	MR. SHIRALKAR: Yes. Typically the
3	relationship between the propagation time and the
4	period of oscillation. I think that's probably what it
5	will show.
6	CHAIRMAN WALLIS: You see now we have this
7	argument about how that the voids here are out of
8	phase with the flow rates through the orifice and so
9	on. Why don't you show it. Show the TRACG
10	predictions of the flow rates through the orifice and
11	the voids and show that there is. And if there isn't,
12	then you've made a statement that is not validated by
13	the TRACG.
14	DR. BANERJEE: Yes. To answer your
15	question, it would be nice to actually see the
16	experimental traces of certain quantities versus the
17	predicted traces of that. Not just a number but to see
18	in fact are they looking somewhat similar? Are they
19	just shifted? Is the frequency wider. You know, so to
20	get a real feel for what's going on. Because you
21	can't get that from a couple of numbers on a table.
22	And the judgment as to whether to it's actually doing
23	a good job or not is a feel for how these agree with
24	each other. It's not just looking at two numbers at
25	a table and then putting an uncertainty band on it.
	I

(202) 234-4433

	402
1	CHAIRMAN WALLIS: I mean if I were
2	consulting an industry on something like this for why
3	some manufacturing process producing sausages is
4	producing sausages with the wrong wave length and the
5	wrong amplitude or so, I would want to do this. And
6	this is nuclear safety. So I expect at least that
7	quality of detail.
8	DR. BANERJEE: Plus, Jose is documenting
9	your model, right? So we know you equations you've
10	solved. And what is the matrix you inverted and all
11	those things.
12	DR. MARCH-LEUBA: This is fully
13	recommended.
14	DR. BANERJEE: Yes.
15	ACTING CHAIRMAN RANSOM: It would be
16	interesting to interpret those result that show the
17	separation between effects in the chimney from the
18	core. And I think you probably can do that.
19	DR. MARCH-LEUBA: Yes. I'm already
20	thinking of how to do it.
21	DR. BANERJEE: So if you wrote a paper for
22	the EPS Science and Engineering and I have to review
23	it, think of it that way.
24	CHAIRMAN WALLIS: Maybe he will.
25	DR. BANERJEE: Yes.

(202) 234-4433

	403
1	DESIGNATED OFFICIAL CARUSO: If you think
2	of anything else that you would like to provide, have
3	them provide, send me an email and I'll pass it along
4	to the Staff.
5	MS. CUBBAGE: Okay. And then, Ralph,
6	you'll get with us on schedule.
7	CHAIRMAN WALLIS: I'm a bit surprised that
8	we have to ask them specifically and explicitly for
9	all this stuff. And I would think a professional
10	trying to present stuff to another professional to
11	convince him that he knew what he was doing would know
12	some of the level of detail that was appropriate.
13	ACTING CHAIRMAN RANSOM: I think that
14	pretty well summarizes it. So maybe we can move on
15	to the next topic.
16	Sometimes I think they're afraid data.
17	DR. BANERJEE: But actually every time
18	they could have shown us data, we have gone over it
19	actually in less time.
20	ACTING CHAIRMAN RANSOM: Well even in the
21	code calculations, always parameters are there. It's
22	very easy to generate this information.
23	CHAIRMAN WALLIS: And if you show that
24	you've been as curious as we have been curious.
25	(Whereupon, at 4:59 p.m. off the record
Į	I

(202) 234-4433

	404
1	until 5:01 p.m. for the evening session.)
2	CHAIRMAN WALLIS: This is a progress
3	report, Rich? This isn't a finished product?
4	DESIGNATED OFFICIAL CARUSO: I'll give it
5	to you.
б	MR. TSCHILTZ: Good afternoon. My name is
7	Mike Tschiltz. I'm the Deputy Director of Risk
8	Assessment in NRR. We're here today to discuss our
9	plans to revise Regulatory Guide 1.82. The planned
10	revisions relate to the topic of net positive suction
11	head for the ECCS in containment heat removal pumps.
12	We have previously discussed revising Reg.
13	Guide 1.82 Revision 3 with the Thermal-Hydraulics
14	Phenomena Subcommittee on July 10, 2005 and with the
15	full Committee on September 8,2005.
16	Dr. Sharon, the Associate Director for
17	Engineering and Safety System in NRR has discussed our
18	plans our rationale for risk-informing that positive
19	suction head regulatory guidance with the ACRS on
20	October 7, 2005.
21	The ACRS provided feedback in a letter,
22	dated September 20. 2005. The letter recommended that
23	the proposed Revision 4 of Reg. Guide 1.82 not be
24	issued for public comment and should be revised to
25	improve clarity and reflect other recommendations in

(202) 234-4433

	405
1	the letter.
2	ACRS also provided feedback on the topic
3	of credit in containment accident pressure for that
4	positive suction head in January 4, 2006 letter on the
5	Vermont Yankee extended power uprate request.
6	Today we'll share some our preliminary
7	thoughts on the changes to address the issues you've
8	raised in past discussions on the topic and our
9	proposed schedule.
10	I will also note that a representative
11	from GE is here to discuss their plans with respect to
12	this subject.
13	I'm very thankful for the level of effort
14	that the ACRS has devoted to obtaining an in depth
15	understanding of the analysis and reviews performed by
16	licensees and the Staff in contemplating allowing the
17	credit for containment over pressure for ECCS and
18	containment heat removal pump net positive suction
19	head. I understand that the ACRS faces a significant
20	challenge in capturing and communicating its concerns
21	to the Staff in a manner that allows the Staff to make
22	its determination on a safety basis. And by that I
23	mean presenting concerns to the Staff in a manner that
24	allows the Staff to focus on plant parameters of
25	particular concern rather than plant design or
	1

(202) 234-4433

	406
1	subjective terms that are subject to interpretation.
2	With that, I will turn it over to Rich
3	Lobel.
4	MR. LOBEL: Do I change the slides for
5	this.
6	MR. STUTZKE: Yes.
7	MR. LOBEL: Up arrow and down arrow?
8	Okay.
9	Good afternoon. My name is Richard Lobel.
10	I'm a senior reactor systems engineer in the Office of
11	Nuclear Reactor Regulation, NRR. Seated also at the
12	table is Marty Stutzke who is a senior reliability and
13	risk analyst, also in NRR.
14	Okay. As Mr. Tschiltz said, we're here
15	today to discuss our preliminary plans to revise Reg.
16	Guide 1.82 Revision 3, which we'll consider feedback
17	from ACRS and NRR management. And we're really here
18	to get your comments and try to incorporate your
19	guidance into what we're planning to do.
20	I realize we're not going to give you a
21	lot of detail today, but we'll be back again with the
22	details. And we can have more discussion then. But
23	we're trying to give you an idea of where we are right
24	now.
25	The September 20th ACRS letter recommended
	I

(202) 234-4433

	407
1	that licensees should demonstrate that there's no
2	practical alternative to crediting containment
3	accident pressure and that credit should be granted
4	only for robust containments for which there is a
5	positive means for indication of containment integrity
6	inerting or subatmospheric. And at that the time
7	interval should be limited to a few hours.
8	The January 6, 2005 ACRS letter on Vermont
9	Yankee EPU also contained some recommendations on this
10	topic, especially on the development of a statistical
11	approach that would quantify the uncertainty. And
12	we're going to talk about that in a little more detail
13	today.
14	Okay. Related documents. We've talked
15	about this before. That there are some documents that
16	reference Reg. Guide 1.82 or are connected with it.
17	Reg. Guide 1.1 will be revised since it's
18	the licensing basis for some licensees. It'll be
19	revised to just reference Reg. Guide 1.82 for any
20	future work.
21	Standard Review Plan Section 6.2.2 is
22	containment heat removal, and it has the SRP
23	discussions of NPSH. And it will be revised also to
24	reference the Reg. Guide. And likewise, with the NRR
25	Review Standard for Extended Power Uprates.
I	

(202) 234-4433

	408
1	This is just the list of some of the
2	current applications that deal, among other things,
3	with containment overpressure. We've talked to you
4	before about Vermont Yankee extended power uprate,
5	Browns Ferry, Units 2 and 3 already credit some amount
6	of containment overpressure. And Unit 1 is requesting
7	a like amount. Beaver Valley 1 has several
8	applications in house right now that are being
9	reviewed. Beaver Valley 1 and 2 are converting from
10	subatmospheric containments to large dry containments
11	and they're also requesting an extended power uprate
12	concurrently. And Beaver Valley 1 currently and after
13	the containment conversion in the EPU will also will
14	need credit for containment accident pressure for
15	NPSH. Unit 2 will not, and that's due mostly to a
16	difference in design between the two units. I guess
17	the licensee learned something from Unit 1 when they
18	designed Unit 2.
19	ACTING CHAIRMAN RANSOM: I guess in the
20	revision Vermont Yankee EPU will now fall within the
21	Reg. Guide?
22	MR. LOBEL: Yes. Yes. I'll talk about
23	that a little bit more.
24	ACTING CHAIRMAN RANSOM: So it's precedent
25	setting, I guess, in some ways, isn't it.
ļ	I

(202) 234-4433

Í	409
1	MR. LOBEL: It was precedent setting in
2	several ways. It was precedent setting certainly for
3	the amount of attention it got and the detail to this
4	subject. We spent a lot of time and the licensee did
5	a lot of work trying to demonstrate the amount of
6	conservatism that was in the calculation that we
7	hadn't really appreciated before. And I think that
8	lead to the idea of doing the statistical approach to
9	get out of, I'll it a box. To get out of a situation
10	that we got in artificially. A plant didn't really
11	need the overpressure, but their calculations were
12	conservative enough that they ended up in that
13	situation.
14	CHAIRMAN WALLIS: I think we all have egg
15	on our faces a bit because the previous EPUs, neither
16	the Staff nor the ACRS paid much attention to. And
17	the public came up and the state of Vermont came up
18	and started asking these questions, and that's what
19	stimulated all this hard work that you've just been
20	talking about. It wasn't something that happened as a
21	result of the Staff or the ACRS saying we got to look
22	at this. It's a little bit surprising.
23	MR. LOBEL: In a little defense of the
24	Staff, you're correct. But in a little defense of the
25	Staff, what we focused on was the analysis that it was

(202) 234-4433

	410
1	a conservative analysis, but we really didn't
2	appreciate we didn't go into detail about the
3	amount of conservatism. And Vermont Yankee raised the
4	question of why are we in this situation. And we
5	tried to elicit some information from the licensee,
6	and we got quite a bit that quantified the degree of
7	conservatism. We had not done that before.
8	DR. BANERJEE: Well, the one area they
9	want is was the degree blockage. It was very
10	nonconservative.
11	MR. LOBEL: Well, no. I don't know that
12	DR. BANERJEE: They used a completely
13	wrong approach velocity.
14	CHAIRMAN WALLIS: Well, they were
15	conservative in some ways and not in others.
16	DR. BANERJEE: Yes.
17	CHAIRMAN WALLIS: And they used more crude
18	or more mud or something than they actually had, but
19	then they used the wrong
20	MR. LOBEL: Yes.
21	CHAIRMAN WALLIS: So it was a bit hard to
22	tell whether they were conservative or not.
23	DR. BANERJEE: And they ignored the paint
24	chips as well.
25	CHAIRMAN WALLIS: Yes.
I	I

(202) 234-4433

	411
1	ACTING CHAIRMAN RANSOM: Will the
2	revisions address some of the added comments that were
3	in that letter that ACRS wrote on Vermont Yankee?
4	MR. LOBEL: The revision will address some
5	and we'll certainly address them all with you when we
6	present the Reg. Guide.
7	ACTING CHAIRMAN RANSOM: But I mean in
8	terms of the method that would be required in the
9	future.
10	MR. LOBEL: Well, that's something we
11	still need to talk about and it would be good to get
12	your feedback. But normally reg. guides aren't to the
13	level of a recipe where they specify first you do
14	this, and then you do this and then you do this. As
15	it's written now, it tells licensees and the Staff
16	here are the things to consider. Here are all the
17	water sources that you should consider. Here's all the
18	things that can effect the blockage and the drop in
19	head across the screens, and here's the things to
20	consider in calculating the pressure. But it doesn't
21	put it altogether in a recipe of just how to do the
22	calculation.
23	CHAIRMAN WALLIS: It was actually that
24	Reg. Guide 1.82 is one of the guides that goes the
25	furthest in the direction of not giving much help
-	

(202) 234-4433

	412
1	about how to do it.
2	MR. LOBEL: Well, we're going to try to do
3	more of that and
4	CHAIRMAN WALLIS: What's this overall? Do
5	you think that by putting in these conservatisms or
б	putting in these uncertainty estimates that you can
7	move more to satisfy what the ACRS was asking for,
8	which was only a little bit of overpressure for a
9	short period of time? Are you going to ask them to
10	show that, you know, although with a very conservative
11	analysis you're going to say you need overpressure for
12	three days? In fact, if you actually do the
13	uncertainty analysis, the probability of needing it
14	for more than two hours is very low. Isn't that the
15	kind of thing you're looking for? So that this
16	business of being so conservative as it looks as if
17	you need a lot of overpressure for three days, and
18	that absurdity is going to go away and you're going to
19	say well realistically with uncertainty the
20	probability of needing this overpressure is really
21	very small and it's only for a very short time. Isn't
22	that the way you're aiming to go?
23	MR. LOBEL: Well, that would be the goal
24	of the statistical approach that we'll try.
25	CHAIRMAN WALLIS: And then you'll come
	I

(202) 234-4433

	413
1	closer to what the ACRS was asking for which was, you
2	know, small amounts for a short period of time and so
3	on.
4	DR. BANERJEE: Sort of like a best
5	estimate with uncertainties.
6	MR. LOBEL: That approach the
7	representative from GE here is going to talk about
8	some and I'm going to say some more about that. But
9	that would be, hopefully, the approach that would get
10	some plants out of demonstrating that they need
11	overpressure because of too much conservatism. And
12	that approach would be able to define the degree of
13	conservatism. Not for all variables. It would follow,
14	hopefully, pretty close to the guidance that's in the
15	best estimate LOCA reg. guide in terms of recognizing
16	that not every variable can be treated as a best
17	estimated with an uncertainty. There were some things
18	where the bounding approach still has to be used. But
19	then you would have to follow the guidance of that
20	reg. guide which says the conservatism can't mask
21	phenomena and it can't lead to unreasonable results.
22	So, yes, some of that will be put into the
23	reg. guide. We'll try to define the statistical
24	approach some more. And I'll talk about that a little
25	bit more.
I	1

(202) 234-4433

DR. BANERJEE: So I suppose in Vermont Yankee the issue really was that you have to have a single failure as well as something like RHR train knocked out, as well as containment failure. So you wouldn't need the overpressure unless you had one RHR train out of action. So a single --MR. LOBEL: Well, that was the conclusion for Vermont Yankee. Let me just say that not every reactor out there is going to be able to do what Vermont Yankee did and say it's all on the fault of conservatism and if I just didn't have so much conservatism, I wouldn't need overpressure. There are licensees that are telling some us that even realistically they need some credit because of the design of the plant, because of the way the plant is laid out. So like I was trying to say when we were talking about Vermont Yankee to keep that discussion just in terms of Vermont Yankee and don't generalize it too much, because these other cases won't be exactly the same and we're going to have to come to you for some of those cases, too, and discuss those. CHAIRMAN WALLIS: Now when you have these probabilistic statistical methods, presumably they

ought to go into a realistic type PRA. And the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

(202) 234-4433

414

	415
1	problem I see with a PRA is PRA as it's constructed
2	today doesn't really contain these phenomena in it.
3	So you have to somehow do something very artificial to
4	do a risk-informed type of
5	MR. LOBEL: Which is what Vermont Yankee
6	did and what
7	CHAIRMAN WALLIS: Whereas really if you
8	have statistical measures of the probability of ever
9	needing this and the success of NPS having NPSH and
10	so on, that could perhaps go right into a PRA itself.
11	And then it might show that the risk contribution is
12	very small. And it's only a small fraction of the
13	total risk.
14	MR. LOBEL: Well, I think what we did with
15	Vermont Yankee was we artificially biased the PRAs to
16	show that there was little effect
17	CHAIRMAN WALLIS: But that gave a risk
18	which was bigger than the total risk of the plant. It
19	doesn't make any sense.
20	MR. LOBEL: If we adjust done a
21	realistic calculation, it never would have showed up
22	as a consideration.
23	CHAIRMAN WALLIS: I understand what you
24	did there. But it would be nice to have that PRA
25	itself make use of this better thermal-hydraulic
ļ	I

(202) 234-4433

	416
1	analysis that you're going to put into your
2	statistics. Rather than taking some extreme bounding
3	value of something.
4	DR. BANERJEE: Which plants are likely to
5	need this credit even with a best estimate uncertainty
6	sort of
7	MR. LOBEL: I believe Beaver Valley 1 will
8	still need the credit because of the relationship of
9	the sump to the location of the pump. Even with
10	realistic calculation I've been told that they'll
11	still need some credit for that.
12	And the reason is that it goes to the
13	basis design of the plant. A subatmospheric
14	containment was designed, you know, it has the
15	criterion that after a LOCA they have to be back to
16	subatmospheric conditions in an hour. So what they do
17	is they design spray systems that put a lot of water
18	into the containment atmosphere in a very short time.
19	The crunch spray system takes suction from the RWST,
20	but they have an inside and an outside recirculation
21	system that take water from the sump in a very short
22	time after the accident starts. So in that case there
23	isn't very much water on the floor. And so they have
24	always since they started operating have taken credit.
25	And the other subatmospherics have also due to
11	

(202) 234-4433

	417
1	CHAIRMAN WALLIS: Do they need the
2	containment pressure to get the pumps to work to
3	produce flow into the containment to reduce the
4	MR. LOBEL: Right. To release the
5	pressure, right. And so the rule is in the SRP, not
6	the rule. But the guidance in the SRP is that they
7	can only take credit for containment accident pressure
8	during injection. During recirculation they don't.
9	That's when there's enough water on the floor already.
10	The thing is with the subatmospherics it a little blur
11	between recirculation and injection because they're
12	doing both at the same time with different pumps.
13	DR. BANERJEE: So they would need it over
14	what period of time?
15	MR. LOBEL: They take credit for it during
16	the injection phase.
17	DR. BANERJEE: So that would be the first
18	MR. LOBEL: From the beginning of the
19	accident
20	DR. BANERJEE: Yes.
21	MR. LOBEL: until
22	DR. BANERJEE: Thirty minutes?
23	MR. LOBEL: Roughly, I guess, when they
24	use up the water in the RWST.
25	DR. BANERJEE: Which is what? Half of an
I	

(202) 234-4433

	418
1	hour or what?
2	MR. LOBEL: Roughly, maybe a little less
3	for that.
4	DR. BANERJEE: And the pressure would go
5	how much higher than atmospheric?
6	MR. LOBEL: I don't have the number off
7	the top of my head.
8	DR. BANERJEE: So they need a substantial
9	credit or little credit?
10	MR. LOBEL: Their design pressure yes,
11	I'm sorry. I do have numbers. But their design
12	pressure is about I believe it's around 45 psig and
13	with the containment conversion they're very close to
14	the 45.
15	DESIGNATED OFFICIAL CARUSO: We're
16	scheduled to have the opportunity to discuss this in
17	detail in April.
18	MR. TSCHILTZ: I just wanted to point out
19	that the main purpose of this slide was to make the
20	Committee aware that the Staff would be coming back
21	before then with EPUs before the regulatory guidance
22	is revised.
23	MR. LOBEL: Yes, we probably should
24	CHAIRMAN WALLIS: One thing that bothered
25	me I know, I don't know about the rest, but was the
ļ	

(202) 234-4433

	419
1	idea that there are no practical alternatives. In
2	Vermont Yankee, for example, there was never any
3	discussion of that, any meaningful discussion.
4	MR. LOBEL: Well, the answer to one of
5	the members asked them a question and they answered
б	the question. But
7	CHAIRMAN WALLIS: Well I asked it in
8	private and they said it would take \$20 million to put
9	new pumps in. And actually when they talked about I
10	think the revenue from this change, it didn't seem
11	like it was all that great an amount.
12	MR. TSCHILTZ: The issue with practical
13	alternatives I think that we get into is it's a rather
14	subjective issue. And the Staff needs to make its
15	decision based upon a safety case. And when you enter
16	into that consideration, other practical alternatives,
17	we have a very difficult time dealing with it.
18	ACTING CHAIRMAN RANSOM: I admit it's a
19	weak argument to say that when there are no practical
20	alternatives, you know, obviously they're going to
21	take the easiest way out.
22	MEMBER KRESS: I think I agree with you.
23	NRC should just look at the safety case and let them
24	propose and you dispose.
25	ACTING CHAIRMAN RANSOM: Yes.
I	

(202) 234-4433

	420
1	DR. BANERJEE: Yes, the problem, though,
2	there is that clearly they are violating something
3	otherwise we wouldn't be discussing it here, right?
4	So they want something that requires a special
5	dispensation. So then it's a trade-off between
6	getting that and
7	DESIGNATED OFFICIAL CARUSO: Well, in
8	these cases it's not a matter of them violating
9	anything. They want something.
10	DR. BANERJEE: Yes.
11	DESIGNATED OFFICIAL CARUSO: They want to
12	change their licensing basis so they can make more
13	power.
14	DR. BANERJEE: Right.
15	DESIGNATED OFFICIAL CARUSO: As the plant
16	sits, it's acceptable because the Staff allows it to
17	operate.
18	DR. BANERJEE: Well, sure. That's agreed.
19	But now they want to make more power. And it's a
20	question of how much they pay to do it, right?
21	ACTING CHAIRMAN RANSOM: Well, but that's
22	not our question.
23	CHAIRMAN WALLIS: So in all practical
24	terms is a bad term.
25	MEMBER KRESS: Yes. It really is.
Į	

(202) 234-4433

	421
1	MR. LOBEL: And it has no longer I'm
2	sorry.
3	ACTING CHAIRMAN RANSOM: Well, you may as
4	well not have that term in the reg. guide because
5	MEMBER KRESS: Well, I think that's a good
6	proposal.
7	MR. LOBEL: And as I'm going to say, it
8	isn't going to be in the revision.
9	One of the comments that we've gotten was
10	that the wording wasn't clear. And, hopefully, we can
11	simplify the wording and not try to address too many
12	things in one position. And so whether we agree or
13	disagree, at least you'll be able to understand what
14	it is we're trying to say.
15	Okay. One of the attempts to clarify
16	things a little is this reg. guide really addresses a
17	lot of different issues. And it's kind of thick. And
18	what we would like to do is have a very a brief amount
19	of body of the report and put all the different
20	subjects into appendices. So we're not going to change
21	the wording of these other areas. Because right now
22	we're just talking about revising the reg. guide in
23	terms of NPSH. But we want to try to make it easier
24	for people to use while we're in the process of
25	revising this thing. And the appendices that I'm
Į	I

(202) 234-4433

	422
1	talking about, these are all subjects that are already
2	in the reg. guide. We're not adding any new subjects.
3	DR. BANERJEE: But they all affect in some
4	way NPSH?
5	MR. LOBEL: They're all related to pump
6	suction issues.
7	DR. BANERJEE: Right.
8	MR. LOBEL: Yes. NPSH or acceptable
9	behavior of the pump.
10	Okay. Like I was just saying, we're going
11	to delete the words about NRP practicably altered.
12	We're going to use the position that we presented to
13	you several times now about the approach will be
14	acceptable if it's acceptably conservative, and the
15	reg. guide will specify that to some extent. And an
16	acceptable risk evaluation.
17	DR. BANERJEE: But you also specify the
18	methodology or what would be an acceptable assessment?
19	MR. LOBEL: For the risk or for the
20	DR. BANERJEE: You said "acceptable risk
21	evaluation," right?
22	MR. LOBEL: Right.
23	DR. BANERJEE: Now
24	MR. LOBEL: And Marty's going to talk
25	about that. But, yes, that will be specified in the
I	I

(202) 234-4433

	423
1	reg. guide. Now that will be added to the reg. guide.
2	That will be the big new edition.
3	We're considering now that there doesn't
4	need to be a limitation on the time pressure as
5	credited since the argument goes that the most likely
6	containment failure modes are that either a
7	containment has already a failure and an opening
8	somewhere or else that the other high contributor to
9	containment integrity is loss of isolation or
10	isolation failure. And those things occur immediately.
11	So the big concerns are right at the beginning.
12	CHAIRMAN WALLIS: So you're not going to
13	take seriously the ACRS statement that it should only
14	be allowed for a short time? You're going to allow for
15	as long as they want it?
16	MR. LOBEL: Well, as long as it's
17	necessary. But hopefully going to this other approach,
18	the statistical approach, the times will be
19	demonstrably shorter.
20	CHAIRMAN WALLIS: Well, why should they do
21	it if they're going to be allowed it for an indefinite
22	time anyway?
23	MR. LOBEL: Well
24	CHAIRMAN WALLIS: By just being
25	conservative?
ļ	

(202) 234-4433

	424
1	DR. BANERJEE: You have to show the risk
2	is small, right?
3	MR. LOBEL: It's another thing that's hard
4	to define. I mean, how do you say what's short. If
5	you say we have this problem in
6	CHAIRMAN WALLIS: What if you said a few
7	hours?
8	MR. LOBEL: You say two hours and then
9	somebody comes in, but I only need 2 hours and five
10	minutes or I only need 2 hours and 15 minutes.
11	CHAIRMAN WALLIS: Well, except when they
12	need 40 hours. That's different from 2 hours.
13	MR. LOBEL: You know, I guess the 40
14	the 56 hours for Vermont Yankee never bothered me too
15	much because I always thought it was in the
16	conservatism in the calculation
17	CHAIRMAN WALLIS: Well, I brought it up
18	because we've written a letter saying 2 hours.
19	MR. DENNIG: Excuse me, Rich. Rich, this
20	is Bob Dennig. I'm Chief of the Containment and
21	Ventilation Branch and work with Rich.
22	In the spirit of what Rich said at the
23	beginning of his discussion, we're going to be coming
24	back to you and in the spirit of getting your input,
25	your guidance, your thoughts. And so what he's

(202) 234-4433

1 telling you is that you've given us sort of this 2 challenge of how to deal with this time. And we're 3 starting out from the hypothesis that we don't have to 4 put limitation on the time. And we're going to find 5 out in further meetings whether or not we do or do not convince you that you agree with that position or we 6 7 find something about that that allows us to change our 8 position. 9 CHAIRMAN WALLIS: So, for instance, when 10 you look at this time you're going to say during this period of 56 hours what's the probability that some 11 seals will fail on the containment or that something 12 will happen to prevent the pressure being there? 13 Is 14 that the kind of thing you have in mind? 15 That would be part of the MR. LOBEL: 16 likely --

17 CHAIRMAN WALLIS: Because the time has18 some consequences.

MR. LOBEL: Right.

20 CHAIRMAN WALLIS: I mean, you'll look at 21 the risk of longer times or something?

22 MR. LOBEL: That's right. But there's 23 other considerations, too, that is going back to the 24 conservatism. I think in the case of Vermont Yankee 25 they were assuming that the pumps were at ground

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

19

	426
1	flooded for the whole time of the accident. And by the
2	time you get out to 56 hours they didn't need much
3	pressure. And just altering that one assumption to a
4	more realistic calculation, more realistic assumption
5	of the operator taking some action, the minimum NPSH
6	was somewhere around 6 to 8 hours. And the idea that
7	the operator couldn't do anything to control the pump
8	for 6 to 8 hours that it would still be a runout
9	condition is another large conservatism. And probably
10	the pump has a considerable effect on a NPSH in two
11	ways: In terms of the losses and in terms of the
12	required NPSH goes down substantially with lower
13	CHAIRMAN WALLIS: But you have no
14	limitation on time and you think you're having no
15	limitation on pressure as long as it's below a
16	conservative recalculated value or something?
17	MR. LOBEL: That's the idea that
18	CHAIRMAN WALLIS: You're going to relax
19	everything very much.
20	MR. LOBEL: Well, the way things were done
21	before was you would have this minimum pressure and
22	then the licensee would say well I don't need all of
23	that. You calculate 10 psi. "I don't need all the 10
24	psi, I only need 5." And we fussed a lot about the
25	5. Well, you can have 5, but you can't have more than
ļ	

(202) 234-4433

(202) 234-4433

	427
1	5.2 because you can have a little margin. That didn't
2	seem to make a lot of sense either.
3	So we're trying to come up with criteria
4	and a way of doing this that's more reasonable and
5	really makes more sense.
6	MR. DENNIG: Well, clearly, we're going to
7	have to take this on. And in the brief time we've
8	been talking about it, I've heard 3 or 4 different
9	ideas about how one could interpret or address that
10	particular parameter. So the process of getting some
11	feedback and getting some ideas how to deal with this
12	has already begun.
13	MR. LOBEL: Let me move a little faster
14	through some of this.
15	CHAIRMAN WALLIS: Well, why never discuss
16	estimate calculation if you're allowed an indefinite
17	time and pressure up to the conservative value? You
18	only use your statistical approach if you wanted more
19	than the conservative pressure, wouldn't you, which
20	would
21	MR. LOBEL: Well, but the goal of the
22	statistical approach was to approach this in a way
23	that we wouldn't be in the position of defending
24	something that didn't need to be defended.
25	CHAIRMAN WALLIS: That was part of the
I	

(202) 234-4433

	428
1	goal of our early comments was to say, look, if you
2	can show that you don't need this anyway, then that's
3	a really conclusive argument.
4	MR. TSCHILTZ: I think the reality of the
5	situation is that given the alternative, licensees
6	will choose to do the statistical approach which will
7	cause them not, in most cases, to have to credit
8	CHAIRMAN WALLIS: And that would then
9	caution the critics are saying, look, we don't like
10	it for a long time and all that stuff.
11	MR. LOBEL: Right. Right.
12	CHAIRMAN WALLIS: And then there's some
13	people who don't want to give up defense-in-depth
14	under any circumstances no matter what the risk
15	arguments may be. Well then you can then use the
16	statistical approach to show that there's almost very
17	little probability you'll ever need this pressure and
18	so on, and that would help to convince them that
19	you're not really giving up defense-in-depth. So that
20	was, I think, part of our hope. And it doesn't seem
21	to be the thrust of what you're telling us.
22	MR. LOBEL: Well, I haven't gotten to the
23	statistical part yet.
24	CHAIRMAN WALLIS: I just wondered about
25	that.
ļ	1

(202) 234-4433

	429
1	MR. DENNIG: I think part of what Rich is
2	saying is that we have a difficult time dictating any
3	particular specific approach as long as we can make a
4	safety decision. And it's our hope that the licensee
5	will take the most effective and efficient approach to
6	make that safety case and, hopefully, it aligns with
7	the best estimate with uncertainties approach than
8	with some value approach. But we have a hard time,
9	again, saying you have to do it this way. That's why
10	we call the reg. guides and not reg. requirements.
11	So I think he was just trying to be very
12	honest about not being about to tell a licensee
13	particularly how to do something.
14	MR. LOBEL: This approach is going to a
15	little while to implement, too. And we'll talk about
16	that a little bit in one case a little later. But
17	there are licensees that have analyses already in the
18	pipeline coming in and they can't go back and in the
19	time frame that they need to get their licensing
20	approved, they can't go to a completely new method of
21	analysis. But, hopefully, when the reg. guide is out
22	or even before the reg. guide out some licensees will
23	start taking this new approach.
24	Let me just finish.
25	CHAIRMAN WALLIS: My impression is you're
	I

(202) 234-4433

	430
1	going to be just as lenient as you were in the past.
2	MR. LOBEL: Well
3	MR. TSCHILTZ: I think the impetus is to
4	go towards the new calculation method. And once that
5	topical report is issued that provides that, I think
6	it's going to benefit the licensees. I think they will
7	see it as a benefit.
8	CHAIRMAN WALLIS: Well, what's the benefit
9	though?
10	MR. TSCHILTZ: Well because it will be a
11	lot easier for them to gain Staff approval.
12	CHAIRMAN WALLIS: Well, if they can get
13	Staff approval already simply saying that you've
14	granted it to Vermont Yankee for 56 hours and for so
15	many psi, give it to us, too
16	MR. TSCHILTZ: It was not easy, sir. It
17	was a difficult process for both us and the licensee.
18	So I
19	MR. LOBEL: Yes, it was mutual.
20	MR. TSCHILTZ: There are gains to be had
21	there, I think.
22	MR. DENNIG: And the picture that you just
23	described is usually the one that's held in the mind
24	of the licensing managers someplace. That if you give
25	it to X, so give it to us. And it never really ever
	I

(202) 234-4433

	431
1	quite works that way. There's all these little
2	devilish details. And licensees pick up on how they
3	can provide those details up front and get through the
4	process instead of playing 20 questions every couple
5	of months. And that's just the licensing process.
б	So, again, that's the idea is that folks
7	will see that indeed not only do you get a better view
8	of what's going on, a better answer, not only do you
9	not paint yourself into corners but this does provide
10	a more efficient way to have Staff perform it's
11	review. They come back to us with fewer RAIs. And our
12	cost go down for the license.
13	MR. LOBEL: Okay. We're also thinking of
14	changing a position that had to do with a credit for
15	pumps operating in cavitation. And it was something
16	that we reviewed and approved for Vermont Yankee where
17	they had some data from their pumps, but their pump
18	vendor also used some data from similar pumps that
19	were identical to the Vermont Yankee pumps and the
20	parameters that affected NPSH; specific speed, suction
21	specific speed, blade inlet angle and things like that
22	that affect NPSH at the pump.
23	The pump vendor used data from the pumps
24	of similar design but where those parameters were
25	identical. And we're considering maybe changing the
I	I

(202) 234-4433

	432
1	position from the position now, which is that you have
2	to use an identical pump and you have to run that pump
3	for the amount of time at least the amount of time
4	you were credited for in your accident analysis.
5	ACTING CHAIRMAN RANSOM: Now, would this
6	change the definition of the NPSH required
7	MR. LOBEL: Yes. That's what
8	ACTING CHAIRMAN RANSOM: In other words,
9	you could operate beyond the 3 percent drop in
10	MR. LOBEL: Yes. They have a slightly
11	larger head drop and that was compensated for by the
12	pump vendor limiting the amount of time that they
13	could operate with that reduced required NPSH.
14	ACTING CHAIRMAN RANSOM: Well, do you
15	require data or experience with that kind of pump?
16	MR. LOBEL: It was data. It was data.
17	Okay. Oh, the last thing is the most
18	important. Like we've been talking about we'll
19	provide more detailed guidance on the statistical
20	approach. And we've been having some very preliminary
21	discussions with GE about them preparing a topical
22	report that would describe a method that would go
23	through this method and actually define the criteria
24	and the distributions for the different parameters,
25	decide which parameters are the significant ones to

(202) 234-4433

	433
1	consider. And you're going to hear more about that
2	when I get done.
3	Now we're in risk-informed. Marty Stutzke
4	will address the risk-informed aspects. And then
5	we're prepared General Electric is prepared to give
6	you their presentation on their thoughts so far on the
7	statistical approach.
8	MR. STUTZKE: Hi. Marty Stutzke from NRR
9	Division of Risk Assessment.
10	I want to talk to you about the risk-
11	informed guidelines we intend to put in Reg. Guide
12	1.82.
13	Before talking about the technical details
14	of how that risk assessment should or should not be
15	done, I've tried to lay out the regulatory thinking as
16	to why we want to go down this pathway.
17	I will remind you that risk-informed
18	license amendment requests are voluntary. We can't
19	demand a license risk-informed license amendment
20	request unless we have belief that adequate protection
21	is questionable. That guidance is in Standard Review
22	Plan 19 Appendix D. Basically the burden is upon the
23	Staff to demonstrate that special circumstances may
24	exist that rebut a presumption of adequate protection.
25	And these are typed examples of special circumstances
I	

(202) 234-4433

1

2

that I think are particularly appropriate for the containment accident pressure credit.

3 Now the way Appendix D leads me is when I 4 reach this decision, I have to convince my management 5 that such circumstances exist. We can then request the licensees to provide information. If they don't 6 7 provide it, we can elevate it to higher levels of 8 management, all the way up to the Commission like 9 So what we're trying to do in the revision of this. Reg. Guide 1.82 is very -- in my mind it's similar to 10 what we've done on the extended power uprate where 11 we've already made a finding that EPU, in this case, 12 containment overpressure credit does question or raise 13 14 special circumstances. And so from that we can request the information up front rather than going 15 16 through the process here.

17 That's kind of the regulatory, I guess,18 perspective from them.

19 Changing to the next slide, I'll remind 20 that you've written a letter back in the end of the 21 1997 that said decisions to grant overpressure credit 22 should be risk-informed and consider a broad range of 23 accident sequences. And we intend to do that as was 24 done at Vermont Yankee.

The other thing is that risk informing

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

the overpressure credit we need to be consistent with 2 various NRR office instructions. LIC-101 is our 3 procedure for reviewing license amendment requests. 4 And there's guidance in there basically is abstracted from the various risk-informed reg. guides like 1.174, the SPR 19, Appendix D that tell us the process by 6 which we view these things.

A more recent NRR for this instruction is 8 It talks about risk-informed decision making 9 LIC-504. for emergent issues. And the reason why I mention 10 11 that is that it talks about when you reach an impasse 12 implementation of Req. Guide 1.74 we're in the supposed to use an integrated decision making process. 13 14 We're not risk-based, we're risk-informed. We have to 15 consider other aspects. And when we have trouble reaching that decision, LIC-504 tells us what we 16 should do. 17

So going to the next slide, once we've 18 19 reached a conclusion that the special circumstances 20 may exist, Appendix D of SRP 19 refers us directly to 21 Req. Guide 1.74. Specifically it says evaluate the 22 credit against the five key principles of risk-23 informed decision making. That's what we did at 24 Vermont Yankee,

> Some of those key principles are Okay.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

5

7

risk-informed; in other words we actually calculate a change in core damage frequency or LERF. Others have been more deterministic; the consideration of defensein-depth, adequate safety margins, compliance with regulation like this.

6 What I want to point out, and in fact to 7 ensure you based on some discussion we've had with the 8 ACRS in the past, there's a distinction between the 9 concept of adequate protection and risk numbers. Just 10 a meeting numerical risk acceptance guidelines doesn't 11 mean you have adequate protection. There are other 12 features that need to be considered like this.

13 It was stated before by one member of the 14 Committee that the PRA argument always trumps the 15 defense-in-depth argument. We don't agree with that. 16 We've never operated that way. The risk assessment is 17 not a trump card, but it may be the ace in the hole, 18 if you want to look at it that way.

So given that, we will devise appropriate guidance in Reg. Guide 1.82 that will refer to this SRP chapter 10 and perhaps onward to Reg. Guide 1.174 like that.

23 MEMBER KRESS: When you did the Vermont 24 Yankee thing, you did not use LERF, you used LRF. I 25 presume you intend to continue in that direction? If

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	437
1	you went to 1.174, you wouldn't find that anywhere.
2	That bothers me because this is a late
3	MR. STUTZKE: Well, it's true that large
4	release frequency is not one of our current risk
5	matrix. Large early release frequency is directly in
б	174. At Vermont Yankee I looked at conditional
7	containment failure probability.
8	MEMBER KRESS: Yes, that's right. Yes.
9	MR. STUTZKE: And the reason is that gave
10	me some measure of much defense-in-depth was being
11	changed.
12	MEMBER KRESS: Yes.
13	MR. STUTZKE: This notion of balance
14	between accident function and
15	MEMBER KRESS: And I would hope you would
16	continue along that same line, even though
17	MR. STUTZKE: Well, that's
18	MEMBER KRESS: Something has to be said in
19	the guide that somewhere
20	MR. STUTZKE: That's right. That's right.
21	That's the sort of detail that I may add. And, of
22	course, it's an uphill battle. I have to convince
23	other people of the Staff. I personally
24	MR. TSCHILTZ: It's a policy issue of the
25	Commission.
ļ	I

(202) 234-4433

	438
1	MEMBER KRESS: Certainly. I understand.
2	MR. TSCHILTZ: You would have to go back
3	to the Commission and
4	MEMBER KRESS: I understand. But it's the
5	right thing to do. And you'd probably get a lot of
б	support from the ACRS.
7	MR. TSCHILTZ: We're having discussions
8	with Mr they contain the failure next week in a
9	meeting.
10	MEMBER KRESS: Okay.
11	MR. TSCHILTZ: We are discussing it.
12	MR. STUTZKE: Rest assured, I won't write
13	a one liner that says go look at 1.174 and do all
14	that. We will have to amplify that.
15	That's about all I have to say.
16	MR. LOBEL: I'd just like to add the
17	schedule. We had it's in the handout.
18	This is a tentative schedule, but
19	hopefully we'll be able to meet. To come back to you
20	well, to the full Committee in June. Because of the
21	amount of changes from the previous version of the
22	reg. guide, although we did a waiver the first time
23	around adding the risk by component and then
24	statistical approach, we need to consider whether we
25	need to go to CRGR or, as we always, as ACRS.
	I

(202) 234-4433

	439
1	Then we'll put out the draft for comment
2	and roughly a year later issue the final version.
3	Okay.
4	And now I'd like to just have a
5	representative from GE discuss the statistical
6	approach in a little more detail. And I don't think
7	you have handouts for that, do you?
8	CHAIRMAN WALLIS: No.
9	ACTING CHAIRMAN RANSOM: This is also
10	discussion of Reg. Guide 1.82?
11	MR. TSCHILTZ: This is in support of the
12	Staff's effort on the statistical approach.
13	MR. LOBEL: This is Richard Lobel again
14	from the from the Staff. We've discussed this
15	situation with GE some because a lot of the plants
16	that at this point a majority of the plants that
17	we're taking for containment pressure are Mark 1 BWRs.
18	And we've had some preliminary discussions and GE has
19	offered to try to produce a topical report that would
20	go through the method and define the method in a way
21	that at least would be applicable to BWRs. So it
22	won't be done in time to reference in the draft
23	version of the reg. guide, but hopefully by having
24	continued discussions between GE and ourselves, a lot
25	of what they find out in the process of developing the
ļ	

(202) 234-4433

	440
1	topical report will help us write the reg. guide.
2	DR. BANERJEE: Do we have a copy of this?
3	So you're anonymous.
4	MR. QUINTANA: I apologize for that. My
5	name is Lou Quintana. I'm the licensing manager at GE
6	Nuclear Energy. And in discussions with the staff,
7	Rich in particular, he asked if we could make a small
8	presentation on essentially a joint effort at working
9	on a statistical uncertainty based approach for, in
10	this case, limited to BWRs, special temperature
11	calculations which are the predominant inputs from the
12	GE perspective of our portion of the analysis on the
13	NPSH calculations.
14	So this will be a, as you'll see
15	obviously, a very high level discussion because we
16	are, again, in the process of starting this detailed
17	methodology development, to call it that, working with
18	Staff and ultimately intending to be consistent with
19	the changes to Reg. Guide 1.82 are those are
20	developed.
21	The main goals, obviously, are to better
22	define the uncertainties and the degree of
23	conservatism. Certainly in the VY experience that was
24	very important to the ACRS as well as to the other
25	stakeholders. And so that's the goal.
I	1

(202) 234-4433

	441
1	The derivative result is that ultimately
2	the NPSH calculation basis will be clear.
3	CHAIRMAN WALLIS: This will include
4	everything, including for instance the pressure drop
5	across screens and that sort of thing as well?
6	MR. QUINTANA: I'll discuss that briefly.
7	CHAIRMAN WALLIS: That's part of
8	MR. QUINTANA: We're trying to determine
9	what ultimately the key parameters will be. And you'd
10	all, obviously, voiced an input on what some of those
11	are. Ultimately it will be a balance between what can
12	be done with significant enough data to justify the
13	variation in that parameter or whether it just be able
14	or be only forced to pick a conservative number
15	that we all agree is conservative, which is where we
16	are today. But the theory here is that for as many
17	parameters as we can, and certainly the ones that are
18	key, we try to develop
19	CHAIRMAN WALLIS: Will you do something
20	about the uncertainties in the debris, for instance?
21	MR. QUINTANA: Dr. Wallis, I can't answer
22	that one right now. I don't have an answer to that
23	one. I think that's a developing situation in
24	particular in BWR space. Obviously, we talked about it
25	for Yankee. But I couldn't tell you I'm not even
I	

(202) 234-4433

	442
1	sure well, maybe the ACRS could tell us what
2	uncertainties you think we should use. But I don't
3	know that those are established. So
4	MR. LOBEL: Could I just make a comment.
5	MR. QUINTANA: Certainly.
б	MR. LOBEL: I think as far as debris goes,
7	the whole program to design the suction strainers for
8	the BWRs and quantify all those things was done on the
9	basis of trying to bound. And to try to derive
10	distributions from the tests that were done is
11	probably not possible. And so that would probably have
12	to fall into the category that's in the best estimate
13	LOCA reg. guide of you're allowed to keep something
14	conservative as long as it doesn't mask the behavior
15	of other variables or bias the final result. And I
16	just know how it would be possible to derive a
17	meaningful distribution from that. We could make an
18	assumption. GE could make an assumption. But I'm not
19	sure that we could ever defend it very well.
20	DR. BANERJEE: So these are what pressure
21	requirements are usually for Mark 1s, right?
22	MR. LOBEL: Yes. BWRs Mark 2s and Mark 3
23	containments don't need containment over pressure.
24	Just the Mark 1s.
25	DR. BANERJEE: And they have this, the
I	

(202) 234-4433

	443
1	same as
2	MR. QUINTANA: It's the Torus wet well.
3	DR. BANERJEE: So they would come up with
4	solutions somewhat similar in terms of strainers and
5	things like that?
б	MR. LOBEL: Well, all the Mark 1s have
7	installed final design strainers in response to a
8	bulletin from 1996. Bulletin 9603. And most of that
9	work was done before 1999 or in 1999.
10	DR. BANERJEE: But do they look a lot like
11	the Vermont Yankee stack screens or
12	MR. LOBEL: That was one design.
13	DR. BANERJEE: Okay.
14	CHAIRMAN WALLIS: And one of our problems
15	was that was they used tests on single disks to
16	predict the performance of stack disks. And that
17	seemed to be inappropriate. So we I think sort of
18	stuck an uncertainty factor on that, a factor of 10 or
19	something, or some of us did in our thinking.
20	MR. QUINTANA: Right. That was discussed
21	in the
22	CHAIRMAN WALLIS: Are you going to go into
23	that sort of thing?
24	MR. LOBEL: Well, hopefully not. But if
25	there really is a question about the accuracy of the
	I

(202) 234-4433

	444
1	design
2	CHAIRMAN WALLIS: Well, the model
3	MR. LOBEL: I guess we'll have to go
4	back and address it.
5	MR. DENNIG: Rich, I think if we not to
б	jump too far, but jump to the second page and go to
7	the last bullet 7. It says "Utilizing downstream NPSH
8	evaluations." Our discussions so far have been along
9	the lines well what can we generalize from the major
10	vendor and what they can provide that would be a
11	general tool that everybody that's everybody got a
12	similar design containment could use. And then there's
13	always going to be a plant specific portion to this.
14	And so, please, let's just see if we can
15	get something we can plug in where we can now take on
16	a plant specific issue and see if we can continue with
17	the same kind of methodology or we default to some
18	bounding approach. But all GE can do in their topical
19	way is to take on what can be genderized in a
20	reasonable fashion.
21	MR. QUINTANA: Right. And maybe to
22	clarify
23	CHAIRMAN WALLIS: Well, maybe the
24	representative lead plant should be Vermont Yankee
25	since we know such a lot about it now.
I	I

(202) 234-4433

	445
1	MR. QUINTANA: I don't know that it'll be
2	Yankee. Certainly there's a lot of information, as you
3	said, Dr. Wallis, on Yankee. Ultimately we need to
4	look at all the other key parameters and figure out
5	where we have data where a model is already reflective
6	of it and so forth. And that will be some work that
7	we'll have to work through. But the obvious goal is
8	to make it representative calculation. We're not
9	trying to come up with a bounding calculation that
10	would apply to everybody. We're trying to come up with
11	an approach, a methodology of looking at the
12	containment analysis parameters.
13	DR. BANERJEE: So you want to come up with
14	SPT basically, right?
15	MR. QUINTANA: Yes. Or the effect of
16	variation in parameters on SPT which ultimately then
17	can be utilized in the downstream NPSH calculations.
18	DR. BANERJEE: But this depends on the
19	flow rate, right, in some way to record? I mean, in
20	the long term this
21	MR. QUINTANA: Yes. I believe that's
22	correct.
23	DR. BANERJEE: So how can you separate
24	that from things like strainers?
25	MR. QUINTANA: Well, I'll go back to what
ļ	

(202) 234-4433

Rich said and he probably said it better than I can. But on some parameters we may need to say we're going to take a conservative number. Now we all have to then decide if that number is conservative, because we probably won't be able to come up with statistical distributions that, without test data to prove that they're close enough to reality --

8 DR. BANERJEE: So your approach would be 9 a mixed approach to the SPT? Certain parameters where 10 you have uncertainties and so forth would go in some distribution or abnormal distribution of 11 normal And some you just wouldn't have 12 whatever things are? a clue in this chain. And you'd just say 13 I'm putting 14 the bounding value.

I think that's a fair 15 MR. OUINTANA: statement. It will be similar I think to the LOCA 16 17 collocation, the best estimate LOCA where at some point we may -- we declare an over conservative by --18 19 I'll use the word consensus. And then we look at more 20 representative, a better estimate type numbers for all 21 the others. And then provide statistical treatment of 22 those to come up with a --

DR. BANERJEE: But isn't SPT just a part of a recirc and a LOCA calculation anyway? Can't you just use the methodology that you would use for LOCA?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	447
1	MR. LOBEL: This is Rich Lobel from the
2	Staff.
3	You have to realize how these calculations
4	are done and who does the different parts. And what
5	we're telling you is still in the really preliminary
6	stages and all the planning hasn't been worked out,
7	let alone the analytical methods yet. But General
8	Electric or General Electric in general does the
9	containment calculations. They calculate the
10	containment conditions. And then typically a licensee
11	may have another engineering organization or they
12	themselves may do the rest of the calculation. They
13	may take the temperature of the suppression pool of
14	water and then take that water out of the Torus. And
15	then after that it's a different calculation.
16	And one of the things we're still talking
17	about is how far we're going to be able to go with
18	this method in bringing other parties in so we can do
19	not only the containment part, but also the rest of
20	the downstream part that you're talking about.
21	DR. BANERJEE: Well, they're coupled to
22	some extent.
23	MR. LOBEL: They're definitely coupled,
24	yes. Yes. They're definitely coupled. And my wish is
25	that we could do the whole thing. But we have to work
I	

(202) 234-4433

448 1 with different organizations and try to put something 2 together. And like I say, what we're telling you is very preliminary yet and all that plans haven't been 3 4 done. 5 DR. BANERJEE: So let me get this sort of fairly clear in my mind. A utility might use some 6 7 other organization to do LOCA type locations in the 8 long term cooling. 9 MR. QUINTANA: Typically, those are done by GE. 10 The LOCA containment and then the downstream part, in this case the NPSH, that typically is done by 11 12 a licensee or --DR. BANERJEE: But the NPSH depends on 13 14 flow through the core and boiling int he core and all 15 sorts of -- pressure loss through that circuit. MR. LOBEL: Well, not in the core. 16 This is Rich Lobel from the Staff again. 17 18 DR. BANERJEE: Yes. 19 MR. LOBEL: It depends on what -- I'm sure 20 that's part of it, but the temperature you're 21 concerned when you do all that calculation is the 22 temperature in the Torus. 23 DR. BANERJEE: Right. So you decouple 24 that. Okay. 25 So you've done the containment MR. LOBEL:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

449 1 calculation, mass of energy into the containment. Some 2 of it goes to the suppression pool. And you calculate 3 the temperature in the suppression pool. That's one 4 part of the calculation. And then the utility can 5 either ask General Electric to do the rest of the calculation or they can ask somebody else, or they can 6 7 do it themselves. 8 DR. BANERJEE: Right. 9 But you're correct, it's all MR. LOBEL: That's organizational. 10 connected. Technically it's all --11 Right. So it's loosely 12 DR. BANERJEE: enough coupled that you can see another organization 13 14 doing that, starting with the SPT temperature. 15 MR. LOBEL: Right. 16 DR. BANERJEE: Okay. 17 MR. LOBEL: Because each utility has it's own pumps and it's own piping designs --18 19 CHAIRMAN WALLIS: Well, at Vermont Yankee 20 the service water temperature came into this, though, 21 didn't it? Was that because that was used to cool the 22 suppression pool? Was that what it was? 23 MR. LOBEL: Yes. That is --24 CHAIRMAN WALLIS: And that's going to be 25 tremendously seasonal.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	450
1	MR. LOBEL: That was the only source of
2	CHAIRMAN WALLIS: I mean that was sort of
3	40 something for six months of the year.
4	MR. LOBEL: Right.
5	CHAIRMAN WALLIS: And then occasionally in
6	the summer it might go up to 80. That must be plant
7	specific. There's nothing generic about surface water
8	temperature.
9	MR. LOBEL: Oh, absolutely. Yes.
10	ACTING CHAIRMAN RANSOM: That's a very key
11	variable.
12	MR. QUINTANA: Right. And we touch on it
13	briefly as one of the variations is liquid. And for
14	them it made a, I'll say dramatic appearance of
15	difference. But that may not be true for somebody in
16	the south.
17	CHAIRMAN WALLIS: But GE isn't going to do
18	that.
19	DR. BANERJEE: They may.
20	MR. QUINTANA: It would be a factor,
21	because it is ultimately an input for us.
22	MR. LOBEL: It would be a factor and the
23	suppression pool temperature would have to be
24	considered because that's the only source of cooling
25	that's taken credit for in the analysis is the RHR
	I

(202) 234-4433

	451
1	heat exchanger. There are other loss mechanisms, but
2	they're not included in the analysis. Another
3	conservatism.
4	DR. BANERJEE: I think I get the picture.
5	Okay. Yes.
б	MR. QUINTANA: Okay. Without belaboring
7	it too much, the goal is to quality those as best we
8	can with data that exits. We would develop sets of
9	inputs essentially for statistical analysis variations
10	in those inputs. A somewhat traditional approach.
11	We would do the temperature calculations.
12	At this point we're thinking it'll be a Mark 1.
13	And then when we determine the response
14	and the variation, obviously, in that response with
15	the variations in the inputs and come up with a
16	statistical uncertainty on it's confidence level,
17	whether that will be something that we actually but
18	something we're considering.
19	And ultimately feed that into NPSH
20	calculations and what we have to sort of work out with
21	industry and the staff is how you do that. But the
22	point here is that we would look at the way we do this
23	pressure temperature calculations and the derivative
24	NPSH in a statistical approach. And again try to come
25	up with a methodology that can ultimately be
	I

(202) 234-4433

1 referenceable and useable by licensees so that they 2 don't have to have these super-conservative analysis 3 that ultimately if we look at it in a more best 4 estimate manner would not even need the NPSH. Yankee 5 being one exception. But at least it would -- and also for other plants would minimize the time that even 6 7 with conservatism that you would feel you needed it. 8 So that's the goal. 9 CHAIRMAN WALLIS: So it all looks pretty 10 preliminary. That's correct. 11 MR. QUINTANA: So if you use a containment 12 DR. BANERJEE: code then you should get this as well as -- I mean, 13 14 the early stages of LOCA you probably look at the --15 MR. QUINTANA: At this point in discussions with the Staff we would use a containment 16 code that's been reviewed and approved by the Staff on 17 a number of different applications already. 18 19 DR. BANERJEE: So your LOCA code would 20 have to also be a best estimate code of some sort in this case, right? I mean --21 22 It typically is. MR. QUINTANA: 23 DR. BANERJEE: Yes. 24 MR. OUINTANA: At almost every plant that 25 I can think of right now is a safe injester plant,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

```
(202) 234-4433
```

452

	453
1	which is a safe injester LOCA, which is a best
2	estimate code. I think there might be a couple that
3	are still safe reflood, but I can swear to that.
4	DR. BANERJEE: Safe injester.
5	MR. LOBEL: This is Rich Lobel from the
6	Staff.
7	That just puts the mass and the energy
8	into the containment and then the super hex code would
9	be used to do the suppression pool temperature
10	calculations.
11	MR. QUINTANA: We're not posing as part of
12	this to change the input, the LOCA input.
13	DR. BANERJEE: And super hex is a best
14	estimate code?
15	MR. LOBEL: I'm not sure.
16	MR. QUINTANA: I think it'll be closer to
17	one after we the application of it will be closer
18	to one.
19	MR. LOBEL: That's one of the questions
20	that I have that we haven't talked about the general
21	effort. That's something that needs to be discussed.
22	Like I say, this is in the very early stages.
23	MR. QUINTANA: Ultimately if a best
24	estimate code meets every parameter and every model
25	and everything in it is best estimate, then I suspect
I	I

(202) 234-4433

	454
1	that we won't be by that definition. But we'll be a
2	closer to that than we are today.
3	ACTING CHAIRMAN RANSOM: Any further
4	discussions.
5	CHAIRMAN WALLIS: Well, let's go back to
6	Rich's presentation. Now I didn't quite see Rich's
7	logic so these are the present problems with the
8	present guide and these are my ideas for resolving
9	them. This is how I will measure that I've succeeded
10	in resolving the problems. I think you've got some
11	ideas of what you might do. It wasn't clear to me why
12	they resolve the problems, some of which are some
13	incompatibility with some of the statements by ACRS,
14	for instance.
15	MR. LOBEL: We really haven't sat down yet
16	and thought thorough all this. I think we've all been
17	busy with other things. And with the tentative
18	schedule we've given you, we got to get started pretty
19	fast. But we really haven't given this much thought
20	since the discussions with Vermont Yankee.
21	MR. DENNIG: Very well. While Rich was
22	working on Vermont Yankee in parallel we were feeling
23	people out about how can we make progress on doing
24	things differently or at least offering alternatives
25	to people instead of doing things the same old way ad
Į	1

(202) 234-4433

1 nauseam ad infinitum. So during that period of time 2 the past year or so we've had feelers out for how we 3 can leverage ideas about doing best estimate plus 4 uncertainty in this particular area. And I think Rich 5 and Marty have been very successful in getting GE's cooperation so far to even look at the idea and to 6 7 invest some of their effort in the idea since what 8 they do is going to effect a fairly large population. 9 So we're going as fast as we can. We wish 10 we could go faster. We wish you had the answers. But we've heard the message. We think everything -- a lot 11 of other things have gone in the best estimate and 12 uncertainty directions. So it's time to get on with 13 14 it. 15 ACTING CHAIRMAN RANSOM: Okay. Thank you, Rich, fellas. 16 17 MR. LOBEL: Thank you. 18 ACTING CHAIRMAN RANSOM: Do I have 19 anything to do for the next one? 20 CHAIRMAN WALLIS: Well, you might have to write a letter on TRACG application --21 22 ACTING CHAIRMAN RANSOM: You still want a 23 letter --24 CHAIRMAN WALLIS: No. I think it depends 25 upon the schedule.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

455

	456
1	DR. BANERJEE: I don't think you're put
2	that today
3	CHAIRMAN WALLIS: You could write a letter
4	which says more work needs to be done and here is some
5	of the things we'd like to see.
6	DESIGNATED OFFICIAL CARUSO: Or you could
7	do it in March.
8	CHAIRMAN WALLIS: Or we could just pull it
9	into March. Well, I think Sam would be very upset.
10	DESIGNATED OFFICIAL CARUSO: They're not
11	happy at all with March right now.
12	DR. BANERJEE: Who is not. Oh, you mean
13	for the main Committee.
14	(Whereupon, at 6:11 p.m. off the record
15	until 6:13 p.m.)
16	ACTING CHAIRMAN RANSOM: We're still on
17	the record.
18	DR. BANERJEE: You know, my sense of it is
19	they're going to get the approval. It's a question of
20	making sure that we're happy
21	ACTING CHAIRMAN RANSOM: Right.
22	MEMBER KRESS: I think we just need some
23	more assurance.
24	DESIGNATED OFFICIAL CARUSO: I think it's
25	a good idea that we're happy with the reactor, but
I	

	457
1	we're not happy with the methodology. And we just
2	need to express that better.
3	MEMBER KRESS: Well, I think TRACG looks
4	pretty good. You know the PIRT is good.
5	DESIGNATED OFFICIAL CARUSO: But the
6	explanation sucks.
7	MEMBER KRESS: Well, yes, the explanation
8	sucked and we didn't see a good database for
9	calibration of TRACG. But, you know, I think when we
10	see it, we'll probably like it.
11	DR. BANERJEE: Yes. We like it
12	ACTING CHAIRMAN RANSOM: Yes, we might as
13	well go off the record.
14	We can go off the record at this point.
15	(Whereupon, at 6:14 p.m., the meeting was
16	adjourned.)
17	
18	
19	
20	
21	
22	
23	
24	
25	
1	