Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor SafeguardsSubcommittee on Power Uprates

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Thursday, April 27, 2006

Work Order No.: NRC-999

Pages 1-237

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	SUBCOMMITTEE ON POWER UPRATES
6	+ + + +
7	THURSDAY,
8	APRIL 27, 2006
9	+ + + +
10	ROCKVILLE, MARYLAND
11	+ + + +
12	The Subcommittee met at the Nuclear
13	Regulatory Commission, Two White Flint North,
14	Room T-2B3, 11545 Rockville Pike, at 8:30 a.m.,
15	Richard S. Denning, Chairman, presiding.
16	COMMITTEE MEMBERS:
17	RICHARD S. DENNING, Chairman
18	THOMAS S. KRESS, Member
19	OTTO L. MAYNARD, Member
20	JOHN D. SIEBER, Member
21	GRAHAM B. WALLIS, Member
22	
23	
24	
25	

		2
1	ACRS/ACNW STAFF:	
2	RALPH CARUSO, Designated Federal Official	
3		
4	NRC STAFF:	
5	PATRICK D. MILANO, Division of Operating	
6	Reactor Licensing	
7	SAMUEL MIRANDA, NRR	
8	LEONARD W. WARD, NRR	
9		
10	PANELISTS:	
11	JIM DUNNE, Constellation Energy	
12	DAVID FINK, Westinghouse	
13	MARK FINLEY, Constellation Energy	
14	MARK FLAHERTY, Constellation Energy	
15	ROY GILLON, Constellation Energy	
16	JOSH HARTZ, Westinghouse	
17	DAVE HUEGEL, Westinghouse	
18	JOHN KILLIMAYER, Westinghouse	
19	CHRIS McHUGH, Westinghouse	
20		
21		
22		
23		
24		
25		
	1	

		3
1	C-O-N-T-E-N-T-S	
2	Opening Remarks	5
3	Introduction of Presentation	6
4	Patrick D. Milano	
5	Presentation on behalf of Ginna	9
6	by Constellation Energy	
7	Introduction of Presentation	9
8	Mark Finley	
9	Mark Flaherty	9
10	RCS Materials	10
11	Jim Dunne	10
12	Safety Analysis	24
13	Mark Finley	24
14	Staff Presentation	75
15	Samuel Miranda, NRR	75
16	(Beginning of Actual Presentation)	99
17	Presentation on behalf of Ginna	139
18	by Constellation Energy	
19	Small Break LOCAs	139
20	Mark Finley	139
21	Staff Presentation	176
22	Leonard W. Ward	176
23		
24		
25		
	I	

		4
1	C-O-N-T-E-N-T-S	
2	Presentation on behalf of Ginna	218
3	by Westinghouse	
4	Loss-of-Flow Event	218
5	Dave Huegel	
6	Conclusion on behalf of Ginna	233
7	by Constellation Energy	
8	Mark Flaherty	233
9	Staff Conclusion	237
10	Patrick D. Milano	237
11	Wrapup by Subcommittee Members	237
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

	5
1	P-R-O-C-E-E-D-I-N-G-S
2	8:32 a.m.
3	CHAIRMAN DENNING: (presiding) The
4	meeting will now come to order.
5	This is a meeting of the Advisory
6	Committee on Reactor Safeguards, Subcommittee on Power
7	Uprates. I am Richard Denning, Chairman of the
8	Subcommittee.
9	Subcommittee members in attendance are Tom
10	Kress, Otto Maynard, Jack Sieber, and Graham Wallis.
11	The purpose of this meeting is to discuss
12	the extended power uprate application for the R.E.
13	Ginna Nuclear Power Plant. The Subcommittee will hear
14	presentations by and hold discussions with
15	representatives of the NRC staff and the Ginna
16	licensee, Constellation Energy, regarding these
17	matters.
18	The Subcommittee will gather information,
19	analyze relevant issues and facts, and formulate
20	proposed positions and actions as appropriate for
21	deliberation by the full Committee.
22	Ralph Caruso is the Designated Federal
23	Official for this meeting.
24	The rules for participation in today's
25	meeting have been announced as part of the notice of

(202) 234-4433

	6
1	the meeting previously published in The Federal
2	Register on April 12th, 2006.
3	A transcript of the meeting is being kept
4	and will be made available as stated in The Federal
5	Register notice.
6	It is requested that speakers first
7	identify themselves and speak with sufficient clarity
8	and volume so that they can be readily heard.
9	We have not received any requests from
10	members of the public to make oral statements or
11	written comments.
12	I would make some comments. We are kind
13	of experimenting with some revisions to this room, and
14	some of these speakers do not transmit very well. So
15	when you are making your presentations, please make
16	sure you are up very close to them and speak directly
17	into the microphone.
18	We will now proceed with the meeting, and
19	I will call upon Mr. Milano of the NRC staff to begin.
20	MR. MILANO: Good morning. Again, my name
21	is Patrick Milano. I am the Licensing Project Manager
22	with responsibility for Ginna.
23	This morning we are going to have
24	presentations by Mr. Sam Miranda and Dr. Len Ward of
25	the PWR Systems Branch in the Division of Safety
1	I contraction of the second

(202) 234-4433

	7
1	Systems.
2	On the agenda this morning I am going to
3	give you a brief introduction as to where things stand
4	with the uprate application itself, and then we will
5	cover the items that came out of the March 15th and
6	16th Subcommittee meeting and then go into those open
7	items that were not in the first draft safety
8	evaluation that was provided to you. The subsequent
9	safety evaluation that you received on or about April
10	4th does have the remaining open items evaluated in
11	it.
12	Just as background again, the EPU
13	application that came in on July the 7th was preceded
14	by three license amendment requests that are all tied
15	directly with the license application. We have made
16	some progress in all three. Those were the relaxed x
17	axial offset. As you see on the slide, it is
18	complete. The main feedwater isolation valve one we
19	have issued and it is complete.
20	The revised LOCA analysis amendment, the
21	staff's safety evaluation is complete. You will be
22	hearing some of the information that is in it which is
23	in today's presentation. The safety evaluation has
24	been completed by the staff and the inputs provided,

and the actual package is currently in concurrence

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	8
1	review.
2	Again, we had the Subcommittee meeting on
3	March 15th and 16th, and we are scheduled next
4	Thursday to have the full Committee meeting with you.
5	Also, as part of the uprate, you recognize
6	we have to issue an environmental assessment. That
7	environmental assessment was published in the middle
8	of April for comment, and the comment period ends May
9	the 12th.
10	Again, the licensee plans, if we should
11	issue the power uprate amendment and these other
12	packages, they are planning to implement the uprate
13	during the fall 2006 outage.
14	Again, in addition to hearing
15	presentations by the licensee staff they are going
16	to cover the same subject areas the NRC staff is
17	going to likewise prepare presentations about what we
18	did during the review. For the non-LOCA analysis, you
19	are going to hear from Sam Miranda. He is basically
20	going to talk about acceptance criteria margins and
21	interpretation of the results of three or four
22	different non-LOCA transients as they were reviewed
23	for Ginna.
24	Dr. Ward is going to go through those
25	items. The next two items here are those items that

(202) 234-4433

9 1 were not present in the first draft safety evaluation. 2 These were the open issues or open items from the last Subcommittee meeting. He is going to go through the 3 4 small break LOCA evaluation review that he did and 5 then go into post-LOCA, long-term cooling boron 6 precipitation. 7 That, basically, is all I wanted to say 8 before turning it over to Constellation Energy for 9 their portion of the presentation. With that, Mr. Mark Finley is the Project Manager for the uprate with 10 Constellation, and he will be introducing his staff. 11 MR. FINLEY: Yes, Good morning. 12 Mark Finley, Project Director for the power uprate at 13 14 Ginna, as Mr. Milano said. I would like to introduce Mark Flaherty, 15 current Acting Vice President of technical areas at 16 17 Constellation, to kick off the meeting for Ginna. Speak into that mike CHAIRMAN DENNING: 18 19 and let's make sure that he can hear you. 20 MR. FLAHERTY: Hi. I am Mark Flaherty. 21 CHAIRMAN DENNING: Okay, good.

22 MR. FLAHERTY: Here although the slide 23 shows that I am the Acting Vice President of Technical 24 Services, I was just transferred to the Engineering 25 Manager of Calvert Cliffs on Monday. So with respect

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	10
1	to the project and ACRS, whatever else, I wanted to
2	continue supporting this project for as long as need
3	be. So that is why I am here today.
4	As Pat Milano indicated, Constellation is
5	back to discuss two topics that the Subcommittee
6	requested further discussion from the March meeting.
7	Those are RCS materials and non-LOCA margin. So we
8	have presentations for both of those topics.
9	Secondly, there's two topics that we did
10	not present at the last Subcommittee meeting. Those
11	are small break LOCA and long-term cooldown. Then I
12	will follow up with a summary conclusion once we go
13	through the subject for presentations.
14	So, with that, I will turn this over to
15	Jim Dunne who will lead us into RCS materials.
16	MR. DUNNE: Good morning. My name is Jim
17	Dunne. I am an Engineering Consultant at Ginna
18	Station. I have been at Ginna for 15 years in the
19	Engineering Department, and for the last three years
20	I have been the Lead Mechanical Engineer for the
21	uprate project.
22	One of the open items from the meeting we
23	had in March was a request by the ACRS to see a list
24	of where in the reactor coolant system we have alloy
25	600 material or its weld equivalent, Inconel 82 or

(202) 234-4433

11 1 Inconel 182, present. So the purpose of my 2 presentation is to go over those locations. 3 Basically, there are four locations in the 4 reactor coolant system where we have alloy 82 or the 5 equivalent weld material. Three of them are in the reactor vessel. One of them is in the steam 6 7 generator. The three locations in the reactor vessel 8 9 are in, basically, lower radial supports at the bottom of 10 the reactor vessel, the bottom-mounted instrumentation welds to the reactor vessel lower 11 12 We also have a third location which is a weld head. buildup on a safety injection nozzle for our upper 13 14 plenum safety injection, and then in the steam generator we have alloy 600 weld material as cladding 15 16 on the steam generator tube sheet. Go back to the slide. 17 This is a schematic of the reactor vessel 18 internals, showing the various components. 19 Two of the three items in the reactor vessel are shown here. 20 The 21 safety injection nozzle is not shown on this 22 schematic, but basically our safety injection nozzles are located at the same elevation as our hot and cold 23 24 leg nozzles up in this area of the reactor vessel. 25 The other two locations, like I said

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	earlier, the lower radial supports, which are at the
2	bottom of the core, basically, there are lugs welded
3	to the reactor vessel that act as radial supports.
4	They basically act as a keyway for keys from the core
5	barrel that allow the core barrel to be aligned
6	properly inside the reactor vessel.
7	There are four supports 90 degrees apart.
8	The support material is alloy 600, and it is welded to
9	the lower reactor vessel inner shell with an alloy 600
10	weld material.
11	MR. SIEBER: Have you ever examined those
12	for cracking?
13	MR. DUNNE: We do a visual examination for
14	them as part of the 10-year ISI when we do the vessel
15	examination.
16	MR. SIEBER: It is hard to see though,
17	right?
18	MR. DUNNE: Right. But, other than that,
19	I don't believe there's any special inspections of
20	that. This would be generic probably
21	MR. SIEBER: It's cold.
22	MR. DUNNE: to all Westinghouse reactor
23	vessels, would be my guess.
24	MR. SIEBER: It is cold down there anyway.
25	MR. DUNNE: Yes, the other thing is,
	I

(202) 234-4433

1 because it is at the downcomer, it sees cold leg 2 temperature. Our cold leg temperature for EPU is increasing by about 8 degrees from where we are 3 4 presently operating. However, the cold leg 5 temperature at EPU will be a couple of degrees below where we operated the plant from 1970 up through 1996, 6 7 when we replaced our steam generators and lowered our 8 TF. 9 The second location, next slide, the second location that we have it is in the bottom-10 mounted instrumentation weld locations. We have 36 11 penetrations through the reactor vessel lower head for 12 bottom-mounted instrumentation. 13 14 Basically, there are three areas on the 15 bottom-mounted instrumentation where we have alloy 600 The nozzle itself is an alloy 600 nozzle 16 material. that is machined. It is welded to the reactor vessel 17 lower head in this area with the J-Weld, which is an 18 19 Inconel 182 J-Weld material. Then the nozzle outside 20 the reactor vessel, our nozzle, the alloy 600 nozzle 21 is welded to a stainless steel nozzle with an Inconel 22 82 weld. 23 All three of those locations are pressure-24 boundary locations, and all three of them, basically, 25 see cold leg conditions. So, as such, we don't

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

13

	14
1	believe they would be susceptible to any PWSCC
2	concerns.
3	Next slide.
4	The third location in the reactor vessel
5	where we have alloy 600 is a weld buildup on our SI
6	nozzles. This is a plane view looking down at
7	basically the nozzle location, the reactor vessel, the
8	two hot and cold legs over here.
9	We have two SI nozzles 180 degrees apart
10	that penetrate into the upper plenum region of the
11	core because we are an upper plenum injection plant,
12	like the other Westinghouse two-loop units. At the
13	end of the SI nozzle in the reactor vessel itself
14	internally there is a weld buildup over in this area.
15	Next slide, please.
16	So this basically shows the entire SI
17	nozzle forging. This is the reactor vessel material
18	here. This is the weld for the SI forging to the
19	reactor vessel material. The SI forging itself is
20	basically a carbon steel material with a stainless
21	steel cladding for the nozzle itself, but at the end
22	of it inside the reactor vessel they put in a 1-inch
23	Inconel, I believe it is 182 weld buildup, to extend
24	the nozzle down an inch. That was for fabrication,
25	final fabrication, of the internals to the SI nozzle.

(202) 234-4433

	15
1	Then they ended up machining back on these to get the
2	clearances they needed between the OD of the upper
3	barrel and the SI nozzle.
4	MR. WALLIS: What is the SI nozzle made
5	out of? The safe end there, what is that made out of?
6	MR. DUNNE: The SI nozzle is basically
7	MR. WALLIS: The safe end of it.
8	MR. DUNNE: The safe end over here
9	MR. WALLIS: Yes.
10	MR. DUNNE: is a 182 316 stainless.
11	This weld here is not Inconel. So the only place
12	where we have Inconel is this, which is a weld
13	buildup. It is not pressure boundary
14	MR. SIEBER: It is not load-bearing
15	either?
16	MR. DUNNE: It is not load-bearing. The
17	inside of it, basically, sees hot leg conditions or
18	upper plenum injection conditions, which would be
19	upper plenum pressure and upper plenum temperature.
20	The outside portion over here and over here, because
21	you have the upper core valve basically coming around
22	here, basically, sees cold leg pressures and cold leg
23	temperatures.
24	So there is a minimal delta P across this
25	internal component right here because it is inside the

(202) 234-4433

16 1 pressure boundary. Obviously, out here this SI nozzle 2 sees the full RCS pressure, but this portion of it is 3 basically seeing about 30 to 40 psi delta P between 4 the cold leg pressure and the upper plenum injection 5 pressure. As such, it is not a highly-stressed 6 component. 7 Also, because you have hot leg temperature in here and cold leg temperature out here, basically, 8 its temperature is someplace probably close to TF. 9 So, again, we don't believe that is susceptible to 10 PWSCC, mainly because of the low stresses and because 11 the temperature is relatively low and it is not really 12 hot leg temperature. 13 14 So those are the three locations --15 It cycles in temperature a MR. WALLIS: bit, doesn't it? It cycles? 16 17 MR. DUNNE: The cycles -- well, the SI nozzle for up and down, yes, that is part of the 18 19 design for the reactor vessel. 20 MR. SIEBER: Well, ordinarily, there's no flow there, right? 21 22 There would be no flow, yes, MR. DUNNE: 23 in here. It is a stagnant region during normal 24 operation. 25 The fourth location where we have --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	MR. WALLIS: Do you ever test this in some
2	way? Do you test
3	MR. DUNNE: We don't do tests to
4	MR. SIEBER: Injection.
5	MR. DUNNE: We don't do flow tests into
6	the reactor vessel. We do test SI flow in a recirc
7	mode.
8	The fourth location where we do have
9	cladding, basically Inconel 82 cladding, is on the
10	steam generator tube sheet, between the bottom portion
11	of the tube sheet. This shows the tube sheet here,
12	and this is the primary head. Basically, the tube
13	sheet is carbon steel. It is 25-and-a-quarter-inch
14	thick.
15	The bottom portion, which has siezed the
16	RCS conditions, basically has about a three-eighths-
17	inch Inconel 82 clad material deposited on it. So the
18	clad material isn't the pressure boundary material per
19	se. It is more just to protect this carbon steel
20	base, tube sheet base metal from the borated water.
21	Basically, the divider plate, in a new
22	replacement generator this divider plate is basically
23	a 690 material. The cladding of the primary bowl
24	itself is a stainless steel clad material.
25	There's also in this little blowup here,
	1

(202) 234-4433

1 this is the divider plate, and here is your tube sheet 2 cladding. There is something called a seat bar 3 buildup off the tube sheet that they use to basically 4 build up the tube sheet so they can weld the tube 5 sheet to the divider plate. This seat bar buildup is also Inconel 82. This weld here between the Inconel 6 7 82 material and the 690 primary divider plate is 8 basically a 690 weld material.

9 During building of the replacement generators we did look at substituting a 690 clad on 10 11 the tube sheet versus a 600. BNW Canada has had lots 12 of experience with 600 clad material. They have never had any problems with it. But because of the industry 13 14 concerns about 600 material in general, we evaluated 15 going to 690 during the fabrication of the replacement 16 generator.

17 There was a test program done. This cladding is basically a bead-welded material that is 18 19 automatically welded to the tube sheet. So they 20 evaluated going to a 690 wire material in lieu of the 21 600 material, but the testing that was done indicated 22 they were having problems with under-bead that 23 cracking and inter-bead cracking on the clad material. 24 So the decision was to stay with the 600 material 25 because of those problems with the welding.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

19 1 Basically, the Ginna replacement 2 generators and the other replacement generators that 3 went through BNW Canada about the same time, which 4 would be the St. Lucie replacement generators and the 5 Duke Catawba McGuire replacement generators, all had 600 Inconel 82 clad material on their tube sheets. 6 7 The Commonwealth replacement generators that BNW 8 Canada built subsequent to ours also had 600 weld 9 material. 10 After the Commonwealth, BNW was able to optimize the Inconel 690 wire chemistry and their 11 12 welding process to get 690 to be an acceptable cladding material. Some of the more recent 13 14 replacement generators that BNW Canada has built for 15 U.S. utilities have gone to a 690 clad material, but at the time we were doing it they were not able to get 16 the 690 material to work. 17 Basically, obviously, on the cold leq 18 19 side, whichever one is the cold leg side, the cladding 20 sees cold leg temperature; the hot leg side sees hot 21 leg temperatures. So the cladding material will see 22 a higher temperature than it has historically seen at 23 Ginna. Right now we are running a T hot of around 24 590. Prior to replacing the steam joiners in 1996, we 25 operated around 601-602. For a T hot with EPU we are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	going to be operating with around a 608-609 T hot. So
2	we will be slightly higher there.
3	Historically, BNW Canada has never seen
4	any problems with the Inconel 600 cladding in the
5	industry. As far as we know, nobody in the industry
б	has seen any problems with the 690 cladding on tube
7	sheets.
8	The replacement generators for
9	Commonwealth and Duke with the 600 material are
10	operating at hot leg temperatures comparable to where
11	Ginna will be at EPU. They have been operating for
12	about to eight to ten years without any reported crack
13	problems with the material. So we don't believe it is
14	going to be an issue.
15	The other thing is the fabrication of the
16	generator. Basically, the way BNW Canada fabricated
17	the generator, they put this assembly together, welded
18	the lower shells to the tube sheet, welded the
19	transition cone to the lower shell, and then put that
20	entire assembly into a heat treatment oven to do
21	stress relieving on the pressure boundary welds. So
22	that operation would have also acted to reduce any
23	residual stresses from the original cladding welding
24	on the Inconel material.
25	The next slide.

(202) 234-4433

	21
1	So, basically, in conclusion that's not
2	the slide we had, but that is okay. Our conclusion is
3	we don't believe there is any new PWSCC concerns that
4	would arise to the Inconel alloy 600. We don't
5	believe the alloy 600 we have in the RCS is basically
6	going to create any new concerns due to EPU. For the
7	lower radial support and for the bottom-mounted
8	instrumentation, they see cold leg temperatures, so
9	their susceptibility to PWSCC is low.
10	The SI nozzle weld buildup, it is not a
11	highly-stressed component. So we don't believe it is
12	an issue.
13	Then for the Inconel cladding on the tube
14	sheet, basically, because it was stress-relieved
15	during fabrication, it is not really a pressure
16	boundary material. It is also the hot leg
17	temperatures we are seeing are consistent with hot leg
18	temperatures that other plants presently operating are
19	seeing with the same type of cladding. Because
20	there's been no issues in the industry on tube sheet
21	clad problems with steam generators over the last 35
22	years, we believe that there are no issues with tube
23	sheet.
24	MR. WALLIS: This isn't an issue for power
25	uprate. It might be an issue for license renewal,
1	I contract of the second se

(202) 234-4433

when you are trying to extend the period of time?

2 MR. DUNNE: Well, this was evaluated and 3 there is a -- basically, license renewals, which we 4 have gone through and the NRC has approved, they 5 looked at all the cladding material. They basically said there is no indication of cladding damage out 6 7 there. Therefore, it was viewed that the uprate would not have any -- that extending the license, which 8 9 would not change any conditions, just put more years on it, would not have any issue. This cladding 10 material and tube sheet is low-flow incidency, any 11 12 radiation. Again, Westinghouse's experience and BNW Canada's experience has been there have been no 13 14 problems with tube sheet cladding reported in the 15 industry.

Now for 600 material in general, 16 the 17 industry has a mandate to establish an alloy 600 management program, which the industry, which Ginna is 18 19 part of, is going through creating an inspection 20 program for alloy 600 going forward. So all this 21 stuff will be reviewed as part of that program. That 22 is how we identified, basically, the SI nozzle weld 23 buildup, as part of just going through the weld records for the RCS just to identify where we have 600 24 25 material in the RCS.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

(202) 234-4433

22

	23
1	MR. SIEBER: Do you, by any chance, know
2	what the reactor vessel hot leg safe end to the cast
3	piping, what the weld material is there? Is that a
4	stainless?
5	MR. DUNNE: It is stainless.
6	MR. SIEBER: Okay. How about the
7	pressurizer surge and spray lines?
8	MR. DUNNE: Stainless.
9	MR. SIEBER: Stainless?
10	MR. DUNNE: Yes.
11	MR. SIEBER: Okay. There are some plants
12	where 82/182 is used.
13	MR. DUNNE: Right.
14	MR. SIEBER: But you are not one of them?
15	MR. DUNNE: No.
16	MR. SIEBER: Okay.
17	MR. DUNNE: And that is all I have.
18	MR. SIEBER: You are lucky.
19	MR. DUNNE: Yes.
20	CHAIRMAN DENNING: Do we have any other
21	questions? Jack, are you comfortable?
22	Okay, thank you.
23	MR. SIEBER: I guess I would point out
24	that all these cladding depositions are not pressure
25	boundary. You can sustain a crack and have corrosion
	1

```
(202) 234-4433
```

	24
1	underneath, but since there's virtually oxygen in the
2	coolant, the corrosion rate is very slow.
3	MR. FINLEY: Good morning. Again, Mark
4	Finley, Project Director for the Ginna power uprate.
5	If you recall from last time we met, in my previous
6	life I was actually Supervisor of the Safety Analysis
7	Group at Calvert Cliffs for several years. So I am
8	the lucky one to present our safety analysis
9	discussion here this morning, but I am backed up by
10	our Westinghouse experts to help with questions.
11	As you recall, at the last meeting you
12	asked about margin associated with several of the non-
13	LOCA events. That is what we are going to talk in
14	some detail about today, and, also, Sam Miranda, I
15	think when I am finished, will discuss these events
16	and perhaps others with respect to margin in the
17	safety analysis.
18	I will show you the current results that
19	are applicable now as well as the EPU results that are
20	being reviewed by NRC. We will talk specifically
21	about the loss of flow, loss of load, and rod
22	withdrawal events, which were three of the more
23	limiting events in our safety analysis.
24	This slide shows the current and EPU
25	results associated with the three limiting events I

(202) 234-4433

	25
1	just mentioned. As you can see, the EPU results in
2	the center column there are close to the results in
3	the righthand excuse me the acceptance criteria
4	in the righthand column. This is the reason for the
5	discussion today.
6	MR. WALLIS: These are predicted with
7	RETRAN, is it?
8	MR. FINLEY: That is correct. These
9	results, we did for the non-LOCA methodology at Ginna,
10	we revised the methodology from LOFTRAN to RETRAN, and
11	with respect to the core thermal-hydraulic code,
12	changed that method from the THINC to the VIPRE code.
13	MR. WALLIS: Well, there's sort of two
14	questions that are basic. One is these numbers are
15	awfully close to the limit, and what does that mean?
16	And the other thing is RETRAN isn't a very accurate
17	code. You can tweak it various ways. When you get
18	2748.1, it would seem that the slightest tweak could
19	make it 2749.
20	MR. FINLEY: Right.
21	MR. WALLIS: So what's implied by your
22	saying that this is the number rather than some other
23	number which is perhaps close to it?
24	MR. FINLEY: Right, right. And, actually,
25	Gordon, temporarily go to the next slide.
	I contraction of the second

(202) 234-4433

	26
1	We did this with the understanding of the
2	approach that was used. We modified inputs to the
3	analysis until we got acceptable results by the
4	approved criteria. We didn't attempt to go any
5	further than that and demonstrate additional margin.
6	That is because we understand the margins
7	that are in our analysis and the inputs that are
8	assumed and in the methodology, as well as margin that
9	is above the safety limit controlled by NRC. So these
10	results are not coincidental, as was mentioned last
11	time.
12	Because of that approach
13	MR. WALLIS: Deliberately tried to get to
14	the limit, essentially?
15	MR. FINLEY: Well, I wouldn't term it like
16	that. We were above the limit
17	MR. WALLIS: You tested them until you got
18	to the limit?
19	MR. FINLEY: We were above the limit
20	without any changes to the inputs, and we tweaked on
21	the
22	MR. WALLIS: Pulled it down to be below
23	though?
24	MR. FINLEY: That is correct.
25	MR. WALLIS: So it is similar. Which kind

(202) 234-4433

	27
1	of inputs did you adjust then?
2	MR. FINLEY: Okay, I'll tell you what, if
3	I can hold off on that question until I talk about the
4	events specifically, then we can get to that.
5	MR. WALLIS: Sure.
6	MR. FINLEY: Go back one slide, Gordon.
7	Okay, just stick with this slide.
8	One more comment: Current results you see
9	in the lefthand column of the three columns there. As
10	expected, they are somewhat higher in DNBR space than
11	the EPU result. The trend is all, you know, it makes
12	sense to us.
13	The pressure results, the same way, about
14	eight pounds lower for the pre-EPU result, increased
15	somewhat. We would expect that with the increased
16	power level and decay heat.
17	CHAIRMAN DENNING: You're going to talk
18	about how do you get the DNBR? What about the
19	criterion? Where did that criterion come from?
20	MR. FINLEY: Yes, we will speak to where
21	the criterion comes from here in a minute.
22	CHAIRMAN DENNING: Okay.
23	MR. FINLEY: Okay, next slide, Gordon.
24	Actually, two slides.
25	With respect to the first event, this is
	1

(202) 234-4433

	28
1	the loss of flow and the DNBR margin, where the result
2	was, again, close to the acceptance criteria.
3	Let's focus here in the middle of this
4	slide. That is sort of the way I set up this
5	discussion for all the events. But that is where the
6	safety analysis limit is. Just below that you see our
7	safety analysis result, 1.385 versus the 1.38 for the
8	limit.
9	But what we are attempting to demonstrate
10	here is sort of the range of results as you move from
11	more realistic conditions up to the very conservative
12	conditions.
13	Right underneath the safety analysis
14	result we just modified one input to the analysis
15	associated with the trip time delay for loss of flow.
16	We used a conservative time in our analysis result to
17	get the 1.385. It was 1.4 seconds.
18	We have done one-time testing in the past
19	to demonstrate that result is actually less than one
20	second, and a more typical assumption for plants in
21	the industry is one second for other Westinghouse
22	plants.
23	If you remove that margin and that trip
24	time delay assumption, again, still using a
25	conservative assumption that bounds actual plant

(202) 234-4433

	29
1	performance, there's about a 3 percent change in the
2	result, as you see, 1.42.
3	Now that's not a best-estimate analysis.
4	This would still be a bounding conservative analysis.
5	But that was one input that we could have changed even
6	further to demonstrate additional margin.
7	MR. WALLIS: Now your safety analysis
8	result is conservative in some sense? I would say
9	that you have just mentioned one conservatism. Does
10	it have other conservatisms in it?
11	MR. FINLEY: Yes, that is correct.
12	MR. WALLIS: You say it is a bounding
13	result?
14	MR. FINLEY: That is correct, it is a
15	bounding result. I am not going to go through all the
16	conservatisms here.
17	MR. WALLIS: If there are, what do we have
18	you put in some bounding assumptions. But RETRAN
19	itself has uncertainties in it which you don't know,
20	or you don't assess, it seems to me. So you don't
21	really know how much uncertainty there is in the code
22	itself. So even though you are putting in
23	conservative assumptions, the safety analysis result
24	is really 1.385 plus or minus something, which has to
25	do with the inherent uncertainties in the code itself.

(202) 234-4433

	30
1	MR. FINLEY: Yes, to some extent,
2	that's
3	MR. WALLIS: I am curious about how big
4	those are. If those are 5 percent, maybe it doesn't
5	matter; you don't get beyond the design limit. But if
6	the uncertainties in the code itself are 25 percent,
7	then one might say, "Well, it could be that in the
8	extreme case you could be way down to your bounding
9	test data."
10	MR. FINLEY: Right, I understand.
11	MR. WALLIS: How to assess that?
12	MR. FINLEY: I understand, but our point
13	is that these inputs are quite conservative in
14	bounding. They more than make up for any
15	uncertainties in the RETRAN methodology.
16	MR. WALLIS: That has been demonstrated
17	somewhere?
18	MR. HUEGEL: In the WCAB 14882, we did
19	I am sorry; this is Dave Huegel from Westinghouse.
20	As part of the effort to transition to
21	RETRAN, we did do a bunch of benchmarks which compared
22	the results to actual plant data and confirmed that
23	the RETRAN results were consistent.
24	MR. WALLIS: Plus or minus what sort of
25	MR. HUEGEL: The other thing is, for this
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

ĺ	31
1	event
2	MR. WALLIS: Plus or minus what sort of
3	number?
4	MR. HUEGEL: No, we just did comparisons
5	to make sure that they were in line.
6	MR. WALLIS: Oh, you looked, you made a
7	curve and you showed some data points that were near
8	the curve?
9	MR. HUEGEL: That is right.
10	MR. WALLIS: There's no quantitative
11	assessment of the uncertainty in RETRAN?
12	MR. HUEGEL: No, but we do know that it is
13	conservative in terms of
14	MR. WALLIS: So it is on one side of the
15	data point? There's a bunch of data on the graph and
16	RETRAN is above or below in some conservative way? Is
17	that what you're saying?
18	MR. HUEGEL: What we are doing, what we
19	did is we compared it to plant data and we didn't
20	predict it on one side or the other. But what you
21	have to do is keep in mind the transient that you are
22	looking at.
23	Here we are looking at a loss-of-flow
24	event.
25	MR. WALLIS: Right.

	32
1	MR. HUEGEL: For the loss-of-flow event,
2	the plant does an actual plant coast-down and confirms
3	that the coast-down that is being predicted is
4	conservatively bounded by what we have assumed in the
5	safety analysis.
6	What is going on for this loss-of-flow
7	event is primarily driven by the characteristics of
8	your RCPs. The plant does confirm that the
9	calculation of the flow coast-down is bounded by what
10	we have assumed in the safety analysis.
11	Additional conservatisms that we have in
12	the loss-of-flow event include the fact that we have
13	skewed the reactivity that we have assumed toward the
14	bottom of the core, so that you are not seeing any
15	significant amount of negative reactivity until the
16	rods are well into the core. That is another
17	conservatism that we have within the analysis.
18	Another thing is, even though we have
19	modeled the complete RCS for this particular event, as
20	Mark is showing there, we have taken no credit for the
21	increase in pressure, which is definitely a DNB
22	benefit, in the calculations that we have performed.
23	Another thing we have assumed is frozen
24	feedback. When you assume the effects that you have
25	going on due to the loss of flow in the reactivity
	1

(202) 234-4433

	33
1	feedback, since we are modeling a point kinetics
2	model, we get a very conservative calculation of the
3	reactivity during this transient that is relatively
4	quick and is over in a few seconds.
5	Again, as I mentioned earlier, it is
6	primarily driven by the effects of how the RCPs are
7	coasting down, which, again, is confirmed by the
8	plant.
9	When we did a more realistic best-
10	estimate-type calculation, we didn't do this for Ginna
11	specifically, but we have done calculations with our
12	RAVE methodology where we have linked the different
13	codes, the kinetics code with our thermal-hydraulics
14	code, and then also the VIPRE code, which does the
15	calculations within the core. We find DNBRs that are
16	well over two for this kind of event.
17	So in doing the analysis for Ginna, we
18	have all kinds of conservatisms that we believe are
19	backed up based upon actual test data that the plant
20	has performed, as I mentioned, like the flow coast-
21	down, which confirms that what we have done is
22	conservative.
23	Another conservatism is in the rod drop
24	time that we have assumed. The rod drop time is
25	assumed based upon a very high mechanical design flow.
1	1

(202) 234-4433

	34
1	If you look at this particular event, what you have is
2	a drop in the RCS flow. What you would find is your
3	rod drop time would be much quicker, and if we were to
4	take credit for that conservatism, we would even show
5	a higher DNBR.
6	MR. WALLIS: Instead of whatever
7	MR. HUEGEL: Right. You have layer upon
8	layer upon layer of conservatism placed in the
9	analysis.
10	MR. WALLIS: But say that these
11	conservatisms somehow overwhelm the uncertainties in
12	the thermal-hydraulic code.
13	MR. HUEGEL: Yes, absolutely.
14	MR. WALLIS: And, also, you have to put,
15	in, to get this 1.385, you have to put in a DNB
16	correlation
17	MR. HUEGEL: Right.
18	MR. WALLIS: that has uncertainty in it
19	as well.
20	MR. HUEGEL: That is correct.
21	MR. WALLIS: Presumably, all these things
22	are figured into the choice of 1.38.
23	MR. FINLEY: And so that gets to the other
24	side of the curve
25	MR. WALLIS: There's a whole pile of stuff
	1 I I I I I I I I I I I I I I I I I I I

35 behind this which is difficult for us to assess 1 2 without digging into it for days. MR. HUEGEL: Understood, yes. So there's 3 4 a lot of --5 MR. WALLIS: If I am understanding -- I mean you're assuring us of all this stuff which sounds 6 7 good, but we don't really know how to balance these things, some of which move one way and some of which 8 move the other --9 10 MR. HUEGEL: Understood. MR. WALLIS: -- to be really convinced 11 12 that everything you are doing is conservative. So that is the problem --13 14 MR. FINLEY: Well, Dr. Wallis, one of the 15 things we tried to demonstrate on this slide is the margin in the DNB testing and the data, and so forth, 16 as well. 17 18 MR. WALLIS: Yes. 19 MR. FINLEY: As you see up above, up above 20 the safety limit, there is a stackup of margin --21 MR. WALLIS: Right. 22 FINLEY: -- to address those MR. 23 uncertainties. 24 MR. WALLIS: Right. 25 CHAIRMAN DENNING: Are you going to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701
| | 36 |
|----|---|
| 1 | explain |
| 2 | MR. FINLEY: And I will start with that. |
| 3 | CHAIRMAN DENNING: Go ahead. Go ahead, do |
| 4 | that. |
| 5 | MR. FINLEY: I think Sam Miranda is |
| б | actually going to speak more to that. But if you |
| 7 | start sort of with the definition of critical heat |
| 8 | flux, 1.0, of course, we have test data which is done |
| 9 | for the particular fuel type that we are using, and |
| 10 | there is a scatter of that data, of course. |
| 11 | MR. WALLIS: Well, the 1.17 reflects the |
| 12 | DNB correlation uncertainty? |
| 13 | MR. FINLEY: That is correct. |
| 14 | MR. WALLIS: Okay. |
| 15 | MR. FINLEY: At a 95 percent probability |
| 16 | with 95 percent confidence, and the applicable limit |
| 17 | is 1.17, right? |
| 18 | On top of that, we have a design limit |
| 19 | which accounts for parameter uncertainties such as |
| 20 | temperature, pressure, flow |
| 21 | MR. WALLIS: Depending on where you are on |
| 22 | in the physical space? |
| 23 | MR. FINLEY: Right, some of the |
| 24 | geometries, et cetera. So there's an additional 5 |
| 25 | percent or so on top of that to protect for that. |
| | |

(202) 234-4433

	37
1	MR. WALLIS: Then the thermal-hydraulic
2	calculation uncertainties is what makes you go up to
3	1.38, is it?
4	MR. FINLEY: Help me out, if you would.
5	MR. WALLIS: The RETRAN uncertainties?
6	MR. HUEGEL: The difference between the
7	1.24 and 1.38 is just generic margin that we retain to
8	account for unexpected penalties that may come up.
9	MR. WALLIS: There's several engineering
10	guesses? We're not quite sure, so we'll add something
11	on?
12	MR. HUEGEL: I'm not sure I would say,
13	"guess," but
14	MR. WALLIS: Well, a judgment. It is a
15	judgment.
16	MR. HUEGEL: It is a judgment.
17	MR. WALLIS: Because other plants have
18	different numbers.
19	MR. HUEGEL: Yes, that is correct.
20	MR. WALLIS: That is what is so mysterious
21	about how someone arrives at 1.38 and someone else is
22	1.45 and
23	MR. HUEGEL: Well, hopefully, it is not
24	mysterious.
25	MR. WALLIS: someone else is 1.5, and
	1

(202) 234-4433

	38
1	so on. Okay.
2	CHAIRMAN DENNING: A couple of other
3	questions then.
4	MR. FINLEY: Yes.
5	CHAIRMAN DENNING: On the over-pressure,
6	I want to make sure I understand.
7	MR. FINLEY: Yes.
8	CHAIRMAN DENNING: This is different from
9	what this is primary system pressure?
10	MR. FINLEY: That is correct. This, of
11	course, loss-of-flow event is a heat-up event.
12	CHAIRMAN DENNING: Yes.
13	MR. FINLEY: During the event, D average
14	goes up, causes an insurge to the pressurizer. It
15	compresses the bubble in the pressurizer. And even
16	taking credit conservatively in this case for the
17	sprays acting as they should, and so forth, the
18	pressure goes up about 75 pounds in this transient at
19	the time of minimum DNBR.
20	CHAIRMAN DENNING: And you don't take that
21	into account in your correlation?
22	MR. FINLEY: That is correct.
23	CHAIRMAN DENNING: You just keep it at the
24	initial pressure?
25	MR. FINLEY: That is correct.
	1

	39
1	CHAIRMAN DENNING: Now you could take into
2	account or is there not a pressure dependence
3	developed for the correlation?
4	MR. FINLEY: We could
5	MR. HUEGEL: I think it was partly in the
6	SER that we received, based upon how we explained the
7	methodology, we felt that we mentioned the nominal
8	pressure; therefore, it wouldn't be appropriate, even
9	though it is certainly justifiable, to credit anything
10	beyond the nominal pressure.
11	Certainly, as Mark explained, we see a
12	pressure increase, and since we do see a pressure
13	increase, we would typically assume your pressure
14	control systems to minimize any pressure increase,
15	like your sprays and your PORVs, but we felt, based
16	upon what we had written up in our methodology and
17	what was issued in the SER, we felt that we couldn't
18	go above nominal pressure even though, again, it was
19	perfectly justified in our minds.
20	CHAIRMAN DENNING: Okay. So you're saying
21	that there are some control factors that are not
22	allowed to be taken into account in the performance of
23	the analysis like sprays and stuff like that?
24	MR. HUEGEL: No, it is just we stated we
25	were using nominal pressure there; therefore, that's

(202) 234-4433

	40
1	all we felt we could get away with using.
2	MR. FINLEY: There are items like that
3	that we consider part of the approved methodology
4	MR. HUEGEL: Right.
5	MR. FINLEY: that we would not take
6	credit for, depending on what has been approved
7	previously. Here I think we felt not taking credit
8	for pressure was part of the approved method for Ginna
9	and so we left that out.
10	MR. HUEGEL: Right.
11	MR. FINLEY: But we feel perfectly
12	justifiable would be to take credit for that.
13	CHAIRMAN DENNING: Yes. Now I'm sorry,
14	go ahead, Jack.
15	MR. SIEBER: In this particular event,
16	though, as the coast-down is occurring, the
17	effectiveness of sprays has gone away.
18	MR. HUEGEL: Sure.
19	MR. SIEBER: It is driven by the pump DP.
20	MR. FINLEY: That is correct.
21	MEMBER MAYNARD: But, typically
22	MR. SIEBER: I mean you could actually
23	well, the coast-down is what, 30 seconds or
24	thereabouts?
25	MR. HUEGEL: It is a couple of seconds.
	I

I	41
1	MR. SIEBER: Spray is over with before
2	coast-down?
3	MR. HUEGEL: That is right.
4	MR. FINLEY: And we did model the spray,
5	in determining that 75-pound increase, that was with
6	modeling of sprays, the effect of sprayers.
7	CHAIRMAN DENNING: In this particular
8	version of loss of flow is one in which, it is almost
9	like a loss of power to the pumps where they just go
10	into coast-down?
11	MR. FINLEY: Actually, this is even more
12	severe than the typical loss of power. This, for
13	Ginna, our limiting event is actually a grid frequency
14	change of 5 hertz per second, which is a very, very
15	severe grid transient, one that is worse even than the
16	blackout that we had in 2003, where the grid actually
17	drives the pump speed down because we are locked into
18	the grid, okay, for a certain amount of time. It is
19	actually a more rapid coast-down of the pumps, if you
20	will, than the flywheel-driven coast-down would be.
21	We actually call that a Condition 3 event for Ginna,
22	even though we conservatively apply the Condition 2,
23	no fuel failure criteria.
24	CHAIRMAN DENNING: In getting back to a
25	point that you made about the comparisons that are
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	42
1	made with the plant data, the plant does a similar
2	test or has done a similar test in which it does a
3	pump trip or something like that? And you are saying
4	that in the prediction with RETRAN that the RETRAN
5	results fall below the
6	MR. FINLEY: Right. What we do is part of
7	our hot functional test program. I think all plants
8	have done this reactor coolant pump coast-down. So
9	you get an actual data curve for
10	MR. WALLIS: You don't have a back-up
11	slide that shows that, do you?
12	MR. FINLEY: I don't. Sorry, Doctor.
13	CHAIRMAN DENNING: And that was performed
14	a long time ago or
15	MR. FINLEY: That would have been part of
16	the initial plant startup.
17	CHAIRMAN DENNING: The initial plant
18	startup?
19	MR. FINLEY: Hot functional testing, yes.
20	CHAIRMAN DENNING: But you have done the
21	RETRAN analysis recently to demonstrate just what we
22	heard?
23	MR. FINLEY: Right. But, of course,
24	nothing really of significance would change to affect
25	that; i.e., it is a flywheel mass really that provides
I	1

(202) 234-4433

	43
1	the momentum and determines that coast-down rate. We
2	have not modified
3	MR. HUEGEL: But that is another
4	conservatism, that we would reduce the inertia, even
5	though it wouldn't apply to this event because of the
6	frequency decay driving the pumps down, but in a
7	complete loss of flow where the pumps are free to
8	coast down, we reduce the inertia of the flywheel by
9	10 percent so that we get a conservative coast-down
10	relative to what the plant would measure.
11	CHAIRMAN DENNING: And now, as far as the
12	analysis is concerned, you start it at a slight over
13	like 2 percent or 3 percent over? I mean, is this
14	the kind of thing, over normal power?
15	MR. HUEGEL: Yes, all uncertainties are
16	accounted for, but the way that we have done them is
17	they are included in the DNB design limits. So we
18	would have uncertainties in the power level, in
19	pressure
20	CHAIRMAN DENNING: But when you actually
21	run it, when you run it, what power level do you use
22	as the start?
23	MR. HUEGEL: It is done at nominal power.
24	CHAIRMAN DENNING: At nominal?
25	MR. HUEGEL: Yes.
	1

(202) 234-4433

	44
1	CHAIRMAN DENNING: So that uncertainty was
2	included in that
3	MR. HUEGEL: Yes, that is correct.
4	CHAIRMAN DENNING: Now what about as
5	things about during the cycle and stuff like this?
6	Is there a point in the cycle like when the moderator
7	coefficient is the least negative or something like
8	that that has an impact? I am trying to get a feeling
9	for whether it is done at the worst time in the cycle.
10	MR. FINLEY: Right, right. Certainly,
11	yes. This is a heat-up event. Obviously, the least
12	negative or positive moderator temperature coefficient
13	would be limiting. We can't operate at full power
14	with a positive moderator temperature coefficient. So
15	it would be something, our most, least excuse me
16	our least negative moderator temperature coefficient
17	would be used early in cycle, right.
18	Right. So, as was said before, there are
19	layers and layers of conservatism in each of the
20	inputs that we take at the same time. We think that
21	far outweighs any uncertainty in the RETRAN numerical
22	calculation itself.
23	CHAIRMAN DENNING: Well, the best evidence
24	I have heard so far is that you actually have done the
25	work on the experiment with the plant and that the

(202) 234-4433

	45
1	RETRAN results fall below that level.
2	MR. FINLEY: Right.
3	MR. HUEGEL: That is correct. That is
4	correct.
5	CHAIRMAN DENNING: Okay.
6	MR. FINLEY: We typically do that in the
7	safety analysis for the parameters that are critical.
8	It is done and NRC has asked to do that over time to
9	approve the methodology.
10	MR. WALLIS: When you come to the full
11	Committee I don't know if we are going to go into this
12	again, but other Committee members may have the same
13	curiosity that we have. So it might be good to have
14	some back-up slides with this RETRAN compared with the
15	real plant transient, and so on, just in case someone
16	starts to probe.
17	CHAIRMAN DENNING: Well, I think let's get
18	a little bit beyond that. I mean I would certainly
19	like to see that.
20	MR. WALLIS: So we want to see it
21	ourselves?
22	CHAIRMAN DENNING: Why don't we see that?
23	MR. WALLIS: Can we see it when, this
24	afternoon or something, or when?
25	MR. HUEGEL: Do you have any of the coast-

(202) 234-4433

	46
1	downs, Mark? I don't know.
2	MR. FINLEY: I will try to get it this
3	afternoon. I don't have it at my fingertips. So we
4	will look.
5	CHAIRMAN DENNING: Okay.
6	MR. WALLIS: Yes, maybe if we are
7	satisfied, we can convince our colleagues to be
8	satisfied, but that is always difficult.
9	MR. FINLEY: Okay, any other questions on
10	loss of flow?
11	CHAIRMAN DENNING: No. Let's move on.
12	MR. FINLEY: Okay.
13	MR. WALLIS: So now we have a different
14	issue, which is pressure.
15	MR. FINLEY: Okay, a different issue.
16	This is pressure. This is a loss-of-load event. Just
17	as the title suggests, it is a full loss of load, a
18	turbine tripped a generator off the grid.
19	Again, I will start in the middle here.
20	Our design limit or acceptance criteria for the event
21	is 110 percent of the design pressure for the reactor
22	coolant system. The safety analysis result was about
23	a pound and a half below that, 2747 as compared to
24	2748.5.
25	Again, this looks close, but we need to
	I

(202) 234-4433

	47
1	take it in the context of margin below and margin
2	above, which is what this slide tries to demonstrate.
3	For example, if we did take credit for control system
4	functioning, i.e., steam dump operation and
5	pressurizer spray operation, that alone would reduce
6	the peak pressure by over 100 pounds. Similarly, if
7	we added operation of the PORVs to that mix, that
8	would provide another 40-pound-or-so reduction.
9	Probably most importantly, and why you
10	don't see issues with these types of events in the
11	industry, is when you get a turbine trip, we are
12	designed, as all plants are, to get a reactor trip
13	automatically. So there is no real delay between the
14	time of the turbine trip and the reactor trip.
15	What causes the over-pressure in the
16	analysis is a short time delay between the trip of the
17	turbine and the trip of the reactor. There's where
18	you have a power mismatch for a short period of time,
19	causing additional heat and causing the pressure
20	overshoot
21	MR. WALLIS: If we were following a PRA-
22	type analysis, you would go through this event tree
23	and you would say, did the PORVs work or did the Pzr
24	pressurizer spray work? And you give some probability
25	to all those things, presumably. That would be a way
	1

(202) 234-4433

	48
1	you could
2	MR. FINLEY: That is correct. That is
3	correct.
4	MR. WALLIS: Here you are simply saying we
5	will just assume it doesn't happen.
6	MR. FINLEY: Right.
7	MR. WALLIS: And so you give a probability
8	of zero.
9	MR. FINLEY: Exactly, exactly. In fact,
10	I discussed just to give a flavor for that, we have
11	two, essentially, relays on sets of contexts which
12	will cause a reactor trip on a turbine trip. If
13	either one functions, you will get the reactor trip
14	simultaneously, essentially.
15	I talked to our PRA folks a little about
16	that and asked them what probability they would assign
17	to that. He said between 99.9 and 99.99 probability
18	of success.
19	So between 99.9 and 99.99 percent of the
20	time our result is down here.
21	MR. HUEGEL: But it is not a safety grade
22	function. Therefore, we can't credit in the safety
23	analysis. So we have to rely upon the high-
24	pressurizer pressure reactor trip to terminate the
25	transient, even though, as Mark said, that that
	I contract of the second se

(202) 234-4433

	49
1	function, even though control grade, is highly
2	reliable.
3	CHAIRMAN DENNING: At what level does the
4	pressure trip then?
5	MR. FINLEY: The high-pressurizer pressure
6	trip
7	MR. HUEGEL: Yes, 2377 is the value at the
8	plant, but the safety analysis would assume 2425 or
9	2435. So we have accounted for uncertainties between
10	what the plant would be dialing in and what we were
11	assuming in the safety analysis to account for all the
12	instrumentation uncertainties.
13	MR. WALLIS: How about RETRAN here? Is
14	RETRAN accurate to 10 percent, so we don't have to
15	sort of add another 10 percent on this thing for some
16	reason?
17	MR. HUEGEL: Well, RETRAN we found is very
18	conservative in terms of over-predicting the pressure.
19	Yes, it would predict a higher pressure than you would
20	expect to see at the plant for a similar
21	MR. WALLIS: It is supposed to be a
22	realistic code.
23	CHAIRMAN DENNING: My experience with
24	these codes has generally been that they predict
25	pressure comparatively well, but what kind of evidence
	1

(202) 234-4433

Í	50
1	do you have from plant data? I mean, do you have
2	evidence for plant data?
3	MR. HUEGEL: We do a lot of comparisons
4	with these codes for load rejection tests and making
5	sure that all the control systems are functioning as
6	designed. We have plants out there that are full-load
7	rejection capability plants, and in tuning the control
8	systems we would use the LOFTRAN and RETRAN codes to
9	make sure that we are predicting that these control
10	systems are functioning as designed.
11	When we see the plant actually doing its
12	test, we find that the results compare very favorably.
13	But, again, that is with crediting all the different
14	control systems, which we don't assume or credit in
15	any of the safety analysis unless it makes the
16	transient worse.
17	CHAIRMAN DENNING: Yes. As far as
18	absolute safety is concerned here, suppose we are
19	wrong and the pressure really is higher. Then you
20	adjust you would go to the safety and the safety
21	valves would relieve?
22	MR. HUEGEL: Well, the safety valves do
23	operate in this transient.
24	MR. DUNNE: That is typically what
25	terminates the transient, is when the relief valves
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	51
1	open, but you've got to remember
2	MR. HUEGEL: The reactor trip and the
3	MR. DUNNE: And the reactor trip and the
4	safety valves opening. What is happening is the peak
5	pressure is occurring at the RCP discharge.
6	MR. HUEGEL: Right.
7	MR. DUNNE: And the pressure that the
8	relief valves are set at is the pressurizer pressure,
9	which is nominally around 2500. We have about a 2 to
10	2.5 percent uncertainty on that set point. So in the
11	analysis base we raised the actual set point in the
12	analysis by that 2.5 percent.
13	We also have a 1 percent uncertainty for
14	loop seal drift because we have a loop seal in front
15	of our relief valves. So you add another 1 percent on
16	the pressure at which the safety valves will open on
17	the pressurizer. Then there is a time delay to clear
18	the loop seal, which is around .8 seconds or so, which
19	there is no way to relieve
20	MR. HUEGEL: Right, and there's no credit
21	for any of the relief during that time period where
22	the loop seal is clearing, even though you would be
23	getting some pressure relief capability. As Jim
24	stated, there is no credit for that in the safety
25	analysis.
	1

(202) 234-4433

	52
1	CHAIRMAN DENNING: Except if we are in an
2	ATWS scenario which you analyze differently.
3	MR. DUNNE: Well, in an ATWS scenario you
4	don't take any credit for any of that stuff. Well,
5	you take credit for the relief valves, I think.
6	MR. HUEGEL: Yes, we would.
7	MR. WALLIS: Do you have plant data on
8	this loss of load?
9	MR. FINLEY: Of course, we have
10	experienced loss-of-load-type trips in the past.
11	MR. WALLIS: Yes, and you take the data
12	and you use a realistic analysis, which would be the
13	bottom line here using RETRAN.
14	MR. FINLEY: Right.
15	MR. WALLIS: It would be interesting to
16	see how well you predict what really happened.
17	MR. FINLEY: Right. The difficulty there
18	is you have a very benign event. This is actually the
19	pressure at, I think, the reactor coolant pump
20	discharge. It is low in the RCS. It is actually
21	higher than the pressurizer pressure.
22	MR. WALLIS: Yes.
23	MR. HUEGEL: You don't even get to the
24	point of the PORVs on the pressurizer.
25	MR. FINLEY: Pressurizer pressure goes up
	1

(202) 234-4433

53 1 very, very little. So that data, in terms of 2 wouldn't show comparison to RETRAN, much. Wouldn't show much of a 3 MR. WALLIS: 4 challenge to RETRAN. Nothing much is happening. 5 MR. FINLEY: Right. MR. WALLIS: All that is happening is in 6 7 regulatory space. 8 MR. DUNNE: And, simplistically, you 9 know --10 MR. CARUSO: It is a challenge to RETRAN. I mean it has to calculate the physics properly. 11 12 MR. HUEGEL: That is true. Whatever you put in it should 13 MR. CARUSO: 14 be able to calculate it. So if you have data for a 15 real trip, then RETRAN should be able to calculate a 16 real trip. 17 CHAIRMAN DENNING: Sure, sure. 18 MR. WALLIS: That would be really 19 convincing stuff if you produced that. 20 HUEGEL: We did have some plant MR. 21 comparisons in the WCAP that we submitted and was 22 reviewed by the NRC, 14882. We chose the comparison 23 of the RETRAN results to different plant events. Ι 24 think there were some load rejections. 25 MR. WALLIS: Okay. Is there some key part

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	of that that we can see at this meeting?
2	MR. HUEGEL: We could probably pull out
3	the slides from that WCAP.
4	MR. WALLIS: Because it would be good to
5	go away with a very convinced sort of happy feeling
6	and not feel there are a lot of things we had better
7	study.
8	MR. HUEGEL: I think the important thing
9	to take away is that the methodology, even though we
10	have got different DNBR limits that we are using, we
11	still apply the same exact conservative methodology
12	which has, as we mentioned, for example, in loss of
13	flow, layers upon layers of conservatism. I think
14	that is the important part.
15	MR. WALLIS: You sound very convincing,
16	but then, of course, you are an advocate for your
17	point of view.
18	(Laughter.)
19	MR. HUEGEL: Understood.
20	MR. FINLEY: Certainly with respect to the
21	plant data, part of the approval process with the
22	staff in WCAP review and approval is to provide that
23	sort of benchmarking data.
24	MR. WALLIS: We have to assure ourselves
25	that the staff at least has investigated and asked the
l	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	55
1	kind of questions that occur to us.
2	CHAIRMAN DENNING: All right. Let's go to
3	the next slide.
4	MR. FINLEY: Okay. Well, before we go to
5	the next slide, we didn't talk, I don't think, about
6	above the design limit, to speak to that margin.
7	We have for Ginna calculated, as you see
8	here, an ASME service level C limit for hot conditions
9	of around 3200 psig. That was done for the ATWS
10	scenario. In fact, when we do an ATWS event, we have
11	to meet that pressure.
12	That is where you would potentially start
13	to deform components in the RCS, not likely, but
14	potential. We wouldn't expect catastrophic failure
15	there, but potential for bolting to stretch and that
16	sort of thing.
17	So that gives you some feeling for, you
18	know, we are not on the hairy edge in terms of this
19	110 percent.
20	MR. WALLIS: You're assuming a standard
21	atmosphere or something when you do this? We went
22	through this before. The difference between your psi
23	and your psi design pressure on one of these charts is
24	less than the variability in atmospheric pressure
25	itself.
	1

(202) 234-4433

	56
1	MR. FINLEY: Correct. We don't vary
2	MR. WALLIS: You're trying to assume some
3	kind of atmosphere
4	MR. FINLEY: It's 14.7.
5	MR. WALLIS: Although in reality it is
б	fluctuating up and down quite a bit.
7	MR. FINLEY: Okay, and the last event I
8	wanted to speak to was the rod withdrawal at power
9	event. This event provided results close both to the
10	DNBR criteria
11	MR. WALLIS: This is where you are even
12	closer. This is where you are about as close as you
13	can possibly get.
14	MR. FINLEY: and also pressure. And,
15	again, the reason for the closeness of the result to
16	the acceptance limit is that we reduced the I think
17	in this case Chris, correct me if I'm wrong we
18	reduced the rod speed or reactivity insertion rate,
19	essentially, until we met this limit. That is what we
20	established as our core design.
21	MR. WALLIS: How can you reduce that
22	arbitrarily? You actually can control the insertion
23	rate?
24	MR. HUEGEL: No. We make sure that we've
25	got a conservative insertion rate. Obviously, it
	1

(202) 234-4433

	57
1	would bound anything that we would see at a plant.
2	MR. WALLIS: Make it less conservative in
3	some way? How did you manage to change that?
4	MR. FINLEY: And then we incorporate that
5	restriction into our core design.
6	MR. WALLIS: Make it less conservative?
7	You justify making it less conservative? Is that
8	what
9	MR. HUEGEL: No, it is the same
10	conservatism.
11	MEMBER MAYNARD: This feeds back into what
12	your surveillance requirements would be or what set
13	point you would have to have for certain
14	instrumentation?
15	MR. HUEGEL: Exactly. The other thing is
16	when you
17	MEMBER MAYNARD: You are trying to give
18	yourself as much of a margin
19	MR. HUEGEL: When we define a safety
20	analysis limit, keep in mind that the over temperature
21	and over power delta T trip set points are designed to
22	provide protection based upon the conditions that are
23	associated with what you selected for your safety
24	analysis limit. So it is no surprise that when you
25	have a revised safety analysis set point, you are

(202) 234-4433

going to have trip set points, the OTDT and OPDT, which are designed specifically to ensure you are meeting your DNB design basis, that you are going to end up with a result that is consistent with your safety analysis limit here.

What Mark was saying is we refined the 6 7 reactivity insertion rates that we looked at to make 8 sure that we were getting the closest match to the 9 safety analysis limit. We analyzed a whole wide range 10 of reactivity insertion rates from like 1 pcm per second up to, say, 110 pcm per second, which covers 11 12 the maximum differential rod worth you would expect to in the core design life 13 see anytime and also 14 associated with your maximum rod speed that you would 15 expect to see at the plant. Combining those two, we cover the whole wide range of reactivity insertion 16 17 rates.

What we just did here is refine and make 18 19 sure that we picked the lowest or the exact reactivity 20 insertion rate that gives you the closest approach to 21 your DNBR limit. So that might have been, say, 25 pcm 22 per second, where maybe in the previous analysis we 23 used a more coarse comparison of reactivity insertion 24 limits because we had more margin to the result. 25 MR. WALLIS: Make sure although in reality

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	59
1	it isn't worse?
2	MR. FINLEY: That's correct. And then we
3	factor that input assumption to the safety analysis
4	into our surveillance program as well as into our core
5	design process. So that when we design the core and
6	we use the physics codes to validate the reactivity
7	parameters, we do that. We do that each cycle.
8	MEMBER MAYNARD: They're not arbitrarily
9	changing numbers that have no impact on something
10	else.
11	MR. HUEGEL: No.
12	MEMBER MAYNARD: They are really defining
13	what their surveillance requirement or their set
14	points would be on other parameters to assure they're
15	meeting them.
16	MR. WALLIS: I'm just trying to figure out
17	if there isn't a possibility that the rod withdrawal
18	rate somehow exceeds something that you have set to
19	it.
20	MR. HUEGEL: No. The other thing is we
21	don't limit the insertion either. I mean you have a
22	limited amount of bank worth that you can add in terms
23	of reactivity. What we assume in this transient is
24	that we keep adding whatever amount of reactivity it
25	takes us to get us up to the trip condition.

(202) 234-4433

	60
1	So, in reality, you may have a total bank
2	worth say at 90 percent power of 500 pcm. That might
3	not be enough to take you up to the trip set point
4	that we have assumed, which is like 118 percent power.
5	However, as part of the conservatism of the analysis,
6	we keep adding reactivity, even though it may not
7	truly exist, until we get to the reactor trip set
8	point.
9	We do that from all different power
10	levels, from different times in life, and for all
11	different reactivity insertion rates. So we are
12	analyzing hundreds and hundreds of cases to get to the
13	reactor trip set point, when in reality for a lot of
14	the cases you wouldn't even get there.
15	MR. WALLIS: Well, tell me, physically,
16	how does this reactivity get inserted?
17	MR. HUEGEL: It is assumed to be inserted
18	at a constant rate.
19	MR. WALLIS: It is a withdrawal of rods,
20	right?
21	MR. HUEGEL: Right.
22	MR. FINLEY: You have to start
23	MR. WALLIS: The physical withdrawal of
24	rods? Is this something that happens inadvertently
25	due to some glitch or is it something the operators
	1

(202) 234-4433

	61
1	do? Is it something that happens because of an
2	accident or what?
3	MR. HUEGEL: It is considered to be a
4	Condition 2 transient, which could be, one, a failure
5	in your control system or, two, it could be operator
б	error.
7	MR. WALLIS: So the physics limits the
8	reactivity addition rate, doesn't it?
9	MR. HUEGEL: And keep in mind that
10	MR. WALLIS: Doesn't it? In some way?
11	MR. HUEGEL: Yes.
12	MR. WALLIS: And so you can't so
13	arbitrarily set it? It seems to me you are still
14	twiddling it until you get the right number, and you
15	can't do that. It tells you what it is going to be
16	MR. FINLEY: No, no. In the core design
17	process, by changing your core design and the worth of
18	the rods, you can effect that reactivity addition. So
19	we control that.
20	MR. WALLIS: And then you control that to
21	be the maximum it could possibly be in the transient?
22	MR. FINLEY: That is correct.
23	MR. HUEGEL: Yes. They would have some
24	curve. The differential rod worth varies as a
25	function of rod position. We pick off the peak and

(202) 234-4433

	62
1	then make sure that our
2	MR. WALLIS: You make sure that it is as
3	fast as possible then?
4	MR. HUEGEL: That presents an upper bound
5	which essentially we are well beyond that differential
6	rod worth peak in terms of the range of reactivity
7	insertions that we would look at.
8	CHAIRMAN DENNING: With regard to the
9	implied rate of withdrawal of the rod
10	MR. HUEGEL: We cover a whole wide range.
11	CHAIRMAN DENNING: But how does that
12	relate to the maximum, that withdrawal rate that is
13	possible? I mean you push a button and have a rod
14	withdrawal.
15	MR. HUEGEL: That's right.
16	CHAIRMAN DENNING: It is a certain rate of
17	withdrawal that is implied.
18	MR. HUEGEL: That is right.
19	CHAIRMAN DENNING: And then the reactivity
20	rate depends upon what the worth of the rod is.
21	What is the implied rod withdrawal rate
22	relative to the standard? Is it
23	MR. HUEGEL: Again, what this safety
24	analysis assumes is a whole wide range of constant
25	reactivity insertion rates in pcm per second. That
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	63
1	implies a constant differential rod worth and a
2	constant withdrawal rate for that given condition that
3	we are analyzing.
4	Keep in mind that we analyze a whole wide
5	range of reactivity insertion rates which conceivably
6	would cover a whole wide range of differential rod
7	worths and rod speeds. So we have encompassed any
8	particular rod speed that you could have at the plant
9	and also we have bounded any particular differential
10	rod worth that the core design would calculate, which
11	is confirmed on a cycle-by-cycle basis.
12	CHAIRMAN DENNING: What limits the rate of
13	rod withdrawal?
14	MR. HUEGEL: What is the fastest I
15	think it is 72 steps per minute or is it 66? Okay,
16	sorry, 66 steps per minute. The maximum differential
17	rod worth that I think we have assumed is something
18	like 100 pcm per step.
19	MR. McHUGH: Yes, this is Chris McHugh
20	from Westinghouse.
21	The last reload cycle, the actual
22	calculated maximum rod worth was about 30 pcm per
23	second. In our rod withdrawal power analyses, like
24	Dave said, we go up over 100. So we have covered from
25	1 pcm per second up to 100, and on a cycle-by-cycle
	1

(202) 234-4433

	64
1	basis we need a maximum of about 30.
2	MR. HUEGEL: Thank you, Chris.
3	MR. CARUSO: Can you physically change the
4	rod withdrawal speed? Or is that something that is
5	locked into your control system design?
6	MR. FINLEY: Right. Not without modifying
7	the plant and doing testing post-modification to
8	verify the rod speed.
9	MR. CARUSO: But you have a current
10	defined rod speed that is locked into the rod control
11	logic?
12	MR. FINLEY: That is right. It is part
13	and parcel to the design.
14	MR. WALLIS: 1.381 comes from the fastest
15	withdrawal rate that is possible?
16	MR. HUEGEL: No. We have looked at a
17	whole wide range.
18	MR. FINLEY: No, it is one of the
19	intermediate
20	MR. HUEGEL: Yes.
21	MR. WALLIS: One of the intermediate ones
22	which is worst?
23	MR. HUEGEL: Yes.
24	MR. WALLIS: Okay. And rod ejection is
25	something else?

	65
1	MR. HUEGEL: Yes, that is a whole other
2	beast.
3	MR. WALLIS: A whole other beast because,
4	obviously, rods could go, you know, flying out under
5	some imagined scenario.
6	MR. HUEGEL: Right. The other thing is I
7	think there are also rod blocks. I think if you
8	exceed like 3 percent, don't the rods automatically
9	but that is a control grade function again, which we
10	don't credit in the safety analysis.
11	CHAIRMAN DENNING: Why don't you come up
12	to the mike? State your name, please.
13	MR. GILLON: I'm Roy Gillon. I am Senior
14	Reactor Operator since 1991, current Shift Manager at
15	Ginna.
16	We also have five rod stops, OT delta T,
17	OP delta T; difference in average T, any single T
18	average, low power, 12.8 percent, and a 20 percent
19	drop in power also give us a rod stop.
20	MR. HUEGEL: And these are all well below
21	the reactor trip set points that we are crediting on
22	the safety analysis. We don't take credit for any of
23	these control grade functions, which would effectively
24	limit or make these transients very, very benign.
25	MR. WALLIS: I am trying to think if I'm
	1

(202) 234-4433

	66
1	right now. This 1.381 comes from looking at all times
2	in the cycle, all places where rods could be, and all
3	rates at which they could be withdrawn? At the worst?
4	Is that what you have done?
5	MR. HUEGEL: This limit is set before we
6	even look at the transients.
7	MR. WALLIS: But I am just trying to make
8	sure, are you telling me it is the worst case when you
9	look at
10	MR. HUEGEL: Yes.
11	MR. WALLIS: all times in the cycle,
12	all places where rods could be, and all rates at which
13	they could be withdrawn? You somehow span this whole
14	volume of space and you look for the worst DNB
15	situation?
16	MR. HUEGEL: Yes, with no credit for any
17	of the control functions and with an infinite amount
18	reactivity.
19	MR. WALLIS: So when you say 1.381, you
20	are probably looking at the real tail-end of some
21	probabilistic distribution of what could happen?
22	MR. HUEGEL: Yes.
23	MR. FINLEY: That's correct. Absolutely
24	correct.
25	MR. WALLIS: And, in effect, you are

(202) 234-4433

	67
1	beyond the tail-end or you so claim to be, the real
2	limit of the tail-end?
3	MR. HUEGEL: We believe that the analysis,
4	again, is very, very conservative.
5	MR. DUNNE: This is Jim Dunne.
6	Again, what Chris McHugh said is this is
7	the analysis that we have set up as a bounding
8	analysis going forward for EPU. Then as part of every
9	cycle design for the core design for that cycle,
10	they've got to verify that their limiting condition
11	for that cycle is, indeed, still bounded by the
12	MR. WALLIS: It must be running for quite
13	a long time to get this number.
14	(Laughter.)
15	You must be running about a third of the
16	time you are running the reactor to predict what is
17	going to happen next time.
18	MR. FINLEY: There are dozens and dozens
19	of cases, yes.
20	MR. WALLIS: Right. Okay.
21	MR. HUEGEL: We make assumptions that,
22	hopefully, we don't have to look at the safety
23	analysis every cycle, but what we do confirm every
24	cycle is that what we have assumed in the safety
25	analysis is bounding, and as Chris McHugh stated, what
	I contract of the second se

(202) 234-4433

	68
1	we have assumed in terms of a peak reactivity
2	insertion rate is as well above what the core designs
3	are currently predicting.
4	MR. WALLIS: If you conquered some sort of
5	fuel management program which enabled you to do this,
6	you presumably would reduce the power or do something?
7	You have to adjust something.
8	MR. HUEGEL: You would have to adjust
9	something, but we've got so much margin here I don't
10	think it is a problem.
11	MR. WALLIS: Okay.
12	CHAIRMAN DENNING: I think they can
13	continue.
14	(Laughter.)
15	MR. FINLEY: Good. Next slide, Gordon.
16	Okay. The last slide with respect to
17	margin here for non-LOCA events would be, again, the
18	rod withdrawal, but this time with respect to
19	pressure. This just demonstrates, again, if we took
20	credit for a more realistic, yet still bounding and
21	conservative reactivity addition rate, the peak
22	pressure would come down nearly 200 pounds as a
23	result, still a similar sort of bounding analysis
24	looking at all the potential scenarios we could be in,
25	but just taking some of the margin that is in that one
I	1

(202) 234-4433

	69
1	assumption with respect to reactivity addition.
2	MR. WALLIS: So it looks as if this is
3	what is limiting your power uprate then?
4	MR. FINLEY: That is correct.
5	MR. WALLIS: If you had a higher power
6	uprate and you didn't twiddle a few more things, you
7	would go over this bound?
8	MR. FINLEY: That is correct. These three
9	events are the limiting events for the Ginna uprate.
10	CHAIRMAN DENNING: And this is actually a
11	slightly different, it is a different the
12	particular selection of input parameters that leads to
13	this limited event is different from the selection
14	that led to the DNB
15	MR. FINLEY: That is correct. This comes
16	from a different set of initial conditions, yes.
17	MR. HUEGEL: But we do cover the wide
18	range of reactivity insertions that we talked about in
19	the DNB space. So we still are looking at anything
20	that we conceivably could come up with in terms of
21	MR. WALLIS: When you are searching for an
22	optimum or maximum, you have to take a lot of runs to
23	be sure you are there?
24	MR. HUEGEL: It runs pretty quickly.
25	MR. WALLIS: So that when you take small

(202) 234-4433

	70
1	break LOCA, you have to take quite a lot of steps in
2	the break size in order to get the real maximum?
3	MR. HUEGEL: Well, these transients are
4	over in a few minutes. So we can run tons of cases
5	within a half an hour. I mean this is not a problem
6	running many, many cases. It is not a LOCA where you
7	are looking at it for an extended period of time.
8	MR. WALLIS: I am just wondering if
9	mathematically you can be sure that you are within
10	this .4 psi in terms of having determined the maximum.
11	MR. HUEGEL: Well, the closer we get to
12	the limit, obviously, the more refined we have to be
13	in terms of what we look at in terms of reactivity
14	insertion rate.
15	MR. WALLIS: But we have to get comfort
16	from the fact that there's all this margin and all
17	these conservative assumptions.
18	MR. HUEGEL: And that's what we want you
19	to walk away with, that there is a lot of
20	conservatism.
21	MR. WALLIS: About the accuracy with which
22	you can predict this to five significant figures.
23	MR. HUEGEL: Exactly.
24	MR. FINLEY: Okay, the next slide, Gordon.
25	Just to summarize, once again, all of the
	1

(202) 234-4433

	71
1	results meet the acceptance criteria. There are
2	various areas of margin in the methods and in the
3	inputs. In addition, there's margin above the
4	acceptance limits to the point of failure.
5	MR. WALLIS: What would make me happier,
6	I think, in the long run would be if the margin were
7	expressed in some quantitative way representing a
8	measure of safety, whatever that is. Because you can
9	talk forever about margin and say, "Well, we've got
10	100 psi here," but what does that really mean in terms
11	of public safety? You have to be an engineer and you
12	have to use judgment to say, "Well, we've got 100 psi.
13	That sounds good."
14	But if you could express this margin in
15	terms of some measure of public safety, which is 10 to
16	the minus 10 or something, that might be much more
17	convincing.
18	MR. HUEGEL: Right, and you have to also
19	have confidence that the methodology that we are
20	applying is robust. What we are applying here is the
21	same that we have applied for the last 30 years.
22	MR. WALLIS: Then we would have to examine
23	ASME and I would hate to get into that.
24	(Laughter.)
25	MR. FINLEY: Okay. Well, thank you. That

(202) 234-4433
	72
1	is all I had for the non-LOCA events.
2	CHAIRMAN DENNING: Very good. I think we
3	will just go ahead.
4	MR. WALLIS: Very, very good. Thank you
5	very much.
6	CHAIRMAN DENNING: Go ahead with the
7	regulatory version of this.
8	MR. WALLIS: It's not quite a Ph.D. exam
9	because you didn't show us equations, but we are
10	getting there.
11	(Laughter.)
12	Now we are going to look at the staff view
13	of all of this?
14	CHAIRMAN DENNING: Yes.
15	MR. WALLIS: To put this in perspective,
16	I was interested enough after our last meeting on this
17	subject, margins, to go back and read the transcript,
18	which I very rarely do, to see what questions got
19	answered and which questions did not. So we are
20	really interested, at least I am very interested in
21	this issue. I want to look at the transcript maybe
22	from this presentation and see how well we got
23	convinced.
24	MR. MIRANDA: My name is Sam Miranda. I'm
25	a reviewer in the PWR Systems Branch. I reviewed the

(202) 234-4433

	73
1	Ginna power uprate application.
2	I have the same slides, basically, as you
3	have seen before.
4	MR. WALLIS: But with now different curves
5	on them or the same curves?
6	MR. MIRANDA: I have the Ginna transients
7	I can discuss, but before that I have all the same
8	margin and acceptance criteria slides that you have
9	seen. Unless there are any questions, I suggest we
10	just enter them into the record and move on.
11	CHAIRMAN DENNING: Okay, very good.
12	MR. WALLIS: Okay.
13	MR. MIRANDA: There is this one slide that
14	is a little bit different. It has some different
15	numbers on it.
16	MR. WALLIS: You have different numbers
17	and then they use RETRAN instead of some other code,
18	and so on, right.
19	MR. MIRANDA: So we move from seventies
20	technology to nineties technology from LOFTRAN to
21	RETRAN.
22	MR. WALLIS: So we are on the margins part
23	here, are we?
24	MR. MIRANDA: Well, I am going to start
25	with the accident analyses unless you have some
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

1	questions on the margins.
0	
2	CHAIRMAN DENNING: Well, I guess the only
3	question is that change that we just had where
4	yesterday we were looking at 1.55 and today we are
5	looking at 1.38, and the question is, what's the
6	smallest value that NRR will accept?
7	MR. WALLIS: I'm sure the industry is very
8	interested in their answer, I'm sure.
9	MR. MIRANDA: That margin between the
10	design limit and the safety analysis limit is
11	determined by the licensee and the vendor analysis,
12	the analysts at the vendor. It is a safety margin in
13	the true sense. It is a contingency. It is for
14	unexpected problems.
15	It is something that the staff doesn't
16	really see. All we can judge is, do the accident
17	analyses meet the safety analysis limit? We know
18	there is some amount of non-zero margin between the
19	design limit and the safety analysis limit.
20	MR. WALLIS: But suppose a vendor came in
21	with 1.25 and you don't see where it came from; are
22	you going to accept it?
23	MR. MIRANDA: A safety analysis limit of
24	1.25?
25	CHAIRMAN DENNING: No, the safety analysis

(202) 234-4433

	75
1	limit is, I think, 1.2
2	MR. WALLIS: No, the safety analysis is
3	1.38. That is the one we are talking about.
4	CHAIRMAN DENNING: Oh, I thought the DNBR.
5	Yes, let's put the margins up there again, the one
6	that has the 1.38.
7	MR. WALLIS: I am a little bit puzzled.
8	This is determined by the licensee and the vendor
9	using methods that you don't know about?
10	MR. MIRANDA: We know about the
11	correlation limit.
12	MR. WALLIS: Yes, that is based on a
13	publication.
14	MR. MIRANDA: And we know about the design
15	limit.
16	MR. WALLIS: That's based on a
17	publication.
18	CHAIRMAN DENNING: Right, right.
19	MR. MIRANDA: Those have both been
20	reviewed and approved by the staff.
21	MR. WALLIS: Right.
22	MR. MIRANDA: The part we don't know about
23	is the space between the design limit and the safety
24	analysis limit.
25	CHAIRMAN DENNING: Right, and Graham says,
	I

```
(202) 234-4433
```

	76
1	okay, suppose this is 1.25; they decide let's go for
2	1.25. What do you do?
3	MR. MIRANDA: It is a matter of judgment.
4	If they say 1.25 and if they produce analyses that all
5	meet that value, I don't see how we can object.
6	The only problem with that is if something
7	comes up in the future, some rod bow problems or
8	something else and they need that margin, it won't be
9	available. Then they will have to come in and change
10	the safety analysis limit, and that is going to
11	require a license amendment.
12	MR. WALLIS: I don't understand that. I
13	mean with 1.25, they may be predicting 1.35, and they
14	say, well, it's a huge margin because we are
15	predicting 1.35 and our limit is 1.25.
16	CHAIRMAN DENNING: Well, let me say
17	something that I think was implied that we didn't pick
18	up on adequately. That is this contingency element.
19	That is, suppose during the operation of the plant
20	there's some issue that comes up like rod bowing, and
21	they have to then go back and say, "Oh, well, you
22	know, we really had that extra margin in there between
23	1.24 and 1.38, or between 1.24 and 1.55. So we don't
24	have to shut down the plant."
25	MR. WALLIS: That's what it's for?

(202) 234-4433

	77
1	CHAIRMAN DENNING: I have a feeling that
2	may be what it is for?
3	MR. WALLIS: Is that what it is for?
4	CHAIRMAN DENNING: Would you respond? I
5	wonder whether the licensee might
6	MR. WALLIS: It is a very arbitrary thing.
7	CHAIRMAN DENNING: or Westinghouse
8	might comment on that.
9	MR. KILLIMAYER: Hi. This is Jack
10	Killimayer from Westinghouse, the Fuels Division.
11	The safety analysis limit that we use,
12	okay, the 1.24, the design basis limit has the
13	uncertainties rolled in and meets the 9595 criterion.
14	When we do our analyses, we do them all to meet the
15	higher limits, so we can build in a certain amount of
16	margin that is shown up here.
17	CHAIRMAN DENNING: And the purpose of that
18	margin is to be extra safe or is it in part or largely
19	because you want to make sure that, if issues come up,
20	that suddenly you're not in a position where it
21	appears that you are beyond the design limit?
22	MR. KILLIMAYER: Yes to all of them.
23	There are some known penalties that we choose to cover
24	with DNB margins such as the rod bolt penalties.
25	We've got a rod bolt penalty of about a percent, a

(202) 234-4433

	78
1	percent and a half, depending on the fuel type. We
2	cover that with the margin that we retain between the
3	safety analysis limit and the design limit.
4	You do want to have some margin in all
5	your analyses when you are going into a cycle in case
6	something does happen when you are doing an analysis
7	for a given reload. All our DNB analyses have an
8	assumption on axial power shapes, and we use a
9	bounding axial power shape, what we consider to be a
10	bounding axial power shape, going in, and we verify
11	that each cycle.
12	So if you did end up with a more limiting
13	axial power shape, you would have margin within the
14	safety analysis limit to address small issues like
15	that.
16	MR. WALLIS: So we are talking about .14,
17	a difference between 1.24 from 1.3, which seems to be
18	based on something insubstantial in terms of
19	justification. Then we quibble about the difference
20	between 1.38 and 1.381, which is less than 1 percent
21	of this thing which seems to be somewhat arbitrary.
22	CHAIRMAN DENNING: Well, you and I are
23	quibbling; I am not sure that they are quibbling.
24	MR. WALLIS: Well, we are questioning,
25	let's say.

(202) 234-4433

	79
1	And yet they struggle to meet this 1.38
2	with this huge accuracy when it seems to be itself
3	picked out of the air, to some extent. It seems to me
4	a strange thing, you know.
5	Maybe if it is 1.3 it really might as
6	well be 1.37. Why not?
7	MEMBER MAYNARD: I didn't see that they
8	were struggling to meet that. They were
9	intentionally
10	MR. WALLIS: Yes, they were. They
11	deliberately tried to get right on the
12	MEMBER MAYNARD: getting there, so that
13	they could establish design and set point criteria.
14	MR. WALLIS: They deliberately tried to
15	get to 1.381, as far as I can make out.
16	MR. MIRANDA: I think the difficulty there
17	is that the safety analyses that we were looking at
18	are not safety analyses in the strict sense. They are
19	also sort of design analyses. They are trying to come
20	up with, by doing these safety analyses, come up with
21	enough operating margin, operating space, for the
22	future as possible.
23	So they use, they did, for example, the
24	rod withdrawal at power analyses over a wide range of
25	reactivity insertion rates and other conditions such
I	1

(202) 234-4433

80 1 that there's no future core reload that will go 2 outside that area. They would do that up to the very 3 limit, up to the 1.38, to make sure that they have 4 given themselves as much space as possible. 5 MR. WALLIS: But the area then doesn't set the number 1.38. They could have had a higher power 6 7 uprate and done all this analysis of core reload and 8 said, "All right, our number is 1.36 and we're happy with that." 9 MR. MIRANDA: Well, they could have just 10 as easily have done that. 11 MR. WALLIS: Well, why don't they do that 12 and they come in with a 10 percent power uprate? 13 14 MR. DUNNE: The power uprate, power level 15 was picked first and then all the analyses to support 16 it were done. 17 MR. WALLIS: That's right. MR. DUNNE: We didn't do all these sets of 18 19 analyses and then come say --20 MR. WALLIS: Put the cart before the 21 So you assume what you want to do and then horse. 22 justify it. Well, the other thing on the 23 MR. DUNNE: 24 power uprate is we are also limited by the balanced 25 plant side of the plant.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	(Laughter.)
2	So if we wanted to go higher, then we
3	would have more modifications to make on the balanced
4	plant side of the plant.
5	So, you know, you end up choosing what
6	your power level is
7	MR. WALLIS: I understand that, but we are
8	talking about safety here. We are talking about
9	safety.
10	MR. DUNNE: Right, but that's the reason
11	why we would not have actively pursued going much
12	higher than the number we chose.
13	MR. WALLIS: It seems to me there has to
14	be a justification for 1.38 which is more than saying
15	that the vendor and the licensee decided in some
16	mysterious way that's what it should be.
17	CHAIRMAN DENNING: And that they wanted
18	that margin.
19	MR. WALLIS: Right.
20	CHAIRMAN DENNING: I mean that seems to be
21	the margin they want. Again, it is a value to them
22	related to these unforeseen
23	MR. WALLIS: In some unforeseen
24	circumstances they might go down to 1.30.
25	CHAIRMAN DENNING: Yes, that's right.

(202) 234-4433

	82
1	MR. WALLIS: And then they would come to
2	us and say, "There's no problem because it is still
3	above 1.24."
4	CHAIRMAN DENNING: And then they would
5	come up and they would say, "Well, it's no problem."
6	I think that's what we are hearing.
7	MR. WALLIS: Is that what happens?
8	MR. MIRANDA: No, they can't I don't
9	think they can do that. I mean they have set the
10	safety analysis limit that's in the tech specs. If
11	they come in with something less than 1.38, they would
12	have to justify it. They would have to come in and
13	ask for an amendment, and then the staff would review
14	that. But anything above 1.38
15	CHAIRMAN DENNING: They're locked into
16	that.
17	MR. WALLIS: There had another plant
18	yesterday that was 1.55.
19	MR. MIRANDA: Yes.
20	MR. WALLIS: They look at this plant and
21	they say, "Gee whiz, there's no reason we should be
22	1.55. Why don't we come in with 1.38 and go for a
23	power uprate of 30 percent?" Would you let them do
24	that?
25	MR. MIRANDA: Well, actually, for Beaver

(202) 234-4433

	83
1	Valley, that has a little bit of history behind it.
2	They could have been below 1.55, but they had, I
3	believe they had 1.55 in the past and they didn't need
4	to go below 1.55. The results were acceptable at
5	1.55, so they just kept it. So they had more than the
6	average margin between design limit and the safety
7	analysis limit.
8	MR. WALLIS: Yes, but that's why they
9	might use it. Why don't they use it? Why don't they
10	capture some of that margin and go to higher power?
11	MR. SIEBER: Well, the higher power is
12	limited by how many dollars you want to spend on
13	MR. WALLIS: But we're talking about
14	safety. Dollars are irrelevant.
15	CHAIRMAN DENNING: No, but as far as the
16	plant is concerned, they're
17	MR. WALLIS: But these numbers should have
18	a relationship to safety. That's what we're here for,
19	isn't it? We're not here for anything to do with
20	dollars.
21	MR. FINLEY: Right, Doctor, and we meet
22	the safety limit, right?
23	MR. WALLIS: Set by you, it seems to me.
24	MR. FINLEY: No. These limits have been
25	reviewed by the staff and accepted. We treat them as
	I contract of the second s

(202) 234-4433

	84
1	safety limits and we demonstrate we meet them with the
2	power level that we have chosen.
3	As Jim Dunne said, we chose the power
4	level based on many parameters. These safety limits
5	are part of that decision process.
6	MR. WALLIS: The 1.38 is historically what
7	you have had in this plant, is that it?
8	MR. KILLIMAYER: No. This is Jack
9	Killimayer again.
10	We do set the safety analysis limit. Yes,
11	there is, in a sense, an arbitrary amount of margin
12	that is put in. It does cover known penalties, and we
13	do build in extra margin to cover contingencies for
14	the future.
15	It is an agreed-upon number as to how much
16	margin we retain in the DNB analysis versus where it
17	is in operating space.
18	MR. HUEGEL: It is agreed upon between
19	Westinghouse and the licensee.
20	MR. WALLIS: That's right.
21	MR. HUEGEL: We don't treat that as the
22	license limit. The license limit would be the design
23	limit, okay?
24	MR. WALLIS: The license limit is 1.24?
25	MR. KILLIMAYER: Right. The safety
	1

(202) 234-4433

	85
1	analysis limit is essentially our it is like an
2	accounting method for keeping track of DNB margin to
3	account for penalties.
4	MR. WALLIS: So when the staff evaluates
5	your submittal, do they look to see the DNB number is
6	bigger than 1.24 or that it is bigger than 1.38?
7	MR. MIRANDA: We use the 1.38 value.
8	MR. WALLIS: You use the value, but that
9	seems very strange because you are using something
10	defined for the convenience of the licensee which has
11	no relationship to public safety whatsoever.
12	MR. MIRANDA: Well, there is a
13	relationship to public safety. It is a value that is
14	greater than the design limit.
15	MR. WALLIS: But 1.24 has some merit in
16	terms of a measure of public safety.
17	MR. MIRANDA: Yes.
18	MR. WALLIS: The 1.38 does not; you said,
19	but it is bigger.
20	MR. SIEBER: It has more
21	MR. WALLIS: But it could be 1.9. I mean
22	it is just arbitrary.
23	MR. HUEGEL: But the important thing is it
24	is greater than; the 1.38 has an important part
25	because it was met based upon a conservative
	1

```
(202) 234-4433
```

1 methodology. So using our conservative methodology, 2 we are meeting the 1.38, which includes, granted, it is rather arbitrary, but some amount of DNB margin 3 4 above the design limit to handle the unexpected issues 5 that do arise, as was pointed out, the rod bow penalty, for example. 6 7 You don't want to be in a situation where 8 you have done your safety analysis right up to the 9 design limit; something comes up unexpected, and 10 you're strapped and you have no room to maneuver other 11 than telling the plant, "Well, you have to derate or This gives us the flexibility to address 12 something." the unknown issues that we hope don't occur, but, 13 14 unfortunately, do occur. 15 MR. WALLIS: How do you get flexibility if 16 the staff is approving 1.38 and you go down to 1.37 17 because of rod bow or something? 18 Because we show that the MR. HUEGEL: 19 safety analysis --20 MR. WALLIS: But they wouldn't shut you 21 down? 22 MR. HUEGEL: No. MR. WALLIS: Because you're above 1.24, is 23 24 that right? 25 MIRANDA: No, they would have to MR.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	87
1	explain why they are below the safety analysis limit.
2	MR. HUEGEL: But we have met the design
3	limit and the safety analysis limit, and we have said
4	that
5	MR. WALLIS: It's strange.
6	MR. MIRANDA: Telling us that you met the
7	design limit does not satisfy us.
8	MR. WALLIS: Am I just odd? I think this
9	is very strange.
10	CHAIRMAN DENNING: But it is possible they
11	could come to you and say I mean it sounds like
12	we're hearing slightly different things, but what you
13	are saying is that is what you license them with a
14	particular core reload, core load; that's the way they
15	operate the plant. If they find something mid-cycle
16	that is an issue that would say that they are in
17	conflict with that, then the licensee comes to you and
18	says, "We want to have some granting relaxation,"
19	right? And it would be up to NRR to say yes or no, is
20	that right?
21	MR. MIRANDA: Something like that. If
22	something comes up in the future that causes them to
23	use up all of their 11 percent margin between the
24	design limit and the safety analysis limit
25	CHAIRMAN DENNING: Well, I'm only going to
1	I contraction of the second

(202) 234-4433

ĺ	88
1	let them use up 1 percent of it. Suppose they decide
2	that it is 1.37. You know, something has happened.
3	Now what is the requirement on them? Do they have to
4	now are they in conflict with their license and
5	they have to either shut down the plant I mean they
6	have to shut down the plant within "x" amount of time
7	or something.
8	MR. SIEBER: Reduce power.
9	CHAIRMAN DENNING: Or reduce power? And
10	then you would have to grant some exception to allow
11	them to go back to power? Is that a true statement?
12	MR. SIEBER: They would have to justify
13	that based on a reevaluation of the uncertainties.
14	That is one way to do this.
15	CHAIRMAN DENNING: So, actually, what
16	would probably happen
17	MR. SIEBER: What they come up, the staff
18	might or might not agree with
19	CHAIRMAN DENNING: Might or might not.
20	MR. SIEBER: a new limit.
21	CHAIRMAN DENNING: Yes, right?
22	MR. SIEBER: And you would recapture some
23	of the margin that you put in there in the first
24	place.
25	MR. MIRANDA: I'm a little bit confused.
	1

(202) 234-4433

	89
1	Are you talking about the safety analysis limit or the
2	design limit?
3	CHAIRMAN DENNING: The safety analysis
4	limit.
5	MR. SIEBER: The safety analysis limit has
6	extra margin.
7	MR. MIRANDA: They need to change the
8	safety analysis limit; they would need to come to the
9	staff.
10	MR. SIEBER: You would have to agree
11	before they could do it then?
12	MR. MIRANDA: Since that is in the tech
13	specs, that is a license amendment and the staff would
14	have to review and approve that.
15	MR. WALLIS: It seems to me to have
16	nothing to do with nuclear safety. I mean if 1.24
17	means the public risk is 10 to the minus 5 and 1.38
18	means it is two times 10 to the minus 5, that is very
19	different from its being 10 to the minus 6. Until
20	there is some scale which tells me what we gain in
21	public safety by having this extra margin from 1.24 to
22	1.38, I don't have any way to evaluate how big it
23	should be.
24	MR. MIRANDA: I don't see the need for
25	evaluating that. That is a designer's margin. That

(202) 234-4433

	90
1	is for their use in contingencies to cover unexpected
2	problems.
3	MEMBER KRESS: You are suffering under the
4	whole problem of all the licensees in design basis
5	space which has a relationship to safety but it is not
6	fully quantified because you've got these design basis
7	events that represent ranges of accidents, and they do
8	them conservatively. You end up with margins for the
9	design basis events.
10	But how to relate that to some real
11	measure of safety, which might be a risk number, is
12	you have to it is an after-the-fact thing. You can
13	go back now and say, "We'll do a PRA and we'll see if
14	this design is safe from the standpoint of any risk
15	measures you have." But it is an after-the-fact
16	calculation.
17	To try to relate things like how much this
18	margin contributes to that safety is just
19	MR. WALLIS: I'm really puzzled though.
20	I mean 1.24, see, it has a basis, right? It seems to
21	me that I'm trying to relate it to my experience.
22	If we say that we are going to educate students to
23	pass a professional engineering exam, in a
24	professional engineering exam to be a qualified
25	engineer, you have to get a grade of 1.24. But the

(202) 234-4433

	91
1	student says, "Well, I want to be better than that
2	because I want to be a better engineer. So I am going
3	to come up and say you're going to grade me to be
4	above 1.38," and we agree to that. But it is all just
5	arbitrary from the student's point of view.
6	MEMBER KRESS: Well, sure it is.
7	MR. WALLIS: It is not justified by the
8	agency.
9	MEMBER KRESS: It is not quite arbitrary
10	because it is designed by space and you did it in a
11	conservative way and you end up with a conservative
12	MR. WALLIS: But the number is set by the
13	licensee and the vendor. It is not set by the agency.
14	MEMBER KRESS: That's pretty much
15	arbitrary.
16	MR. WALLIS: It is really peculiar to have
17	a safety thing set by the vendor rather than the
18	agency. But, anyway
19	(Laughter.)
20	MEMBER MAYNARD: I think the safety thing
21	here is the design limit. Now the closer that the
22	safety analysis limit comes to that, the less things
23	that they are going to be able to tolerate
24	MR. WALLIS: I understand that.
25	MEMBER MAYNARD: from other things.
	1

(202) 234-4433

	92
1	The higher they go, that removes operating
2	flexibility from the plant.
3	It is not as much a safety issue as it is
4	as to, how much do you want to be able to tolerate
5	without having to go back and reanalyze and resubmit?
6	MR. WALLIS: They still have to resubmit
7	though. If they come up with something which is 1.3,
8	they have to resubmit.
9	MEMBER MAYNARD: But they are a lot less
10	likely, if they started with 1.3 and that you had some
11	rod bowing or you had some thing, they are not going
12	to be able to absorb as much of that. So the lower
13	they make that limit yes, if they do end up below
14	that 1.38, they've got to come in.
15	MR. WALLIS: Right. There's a likelihood
16	that after they come in they can go out
17	satisfactorily?
18	MR. SIEBER: Yes.
19	MR. WALLIS: Whereas if they were closer
20	to it, they might be more at risk of being shut down?
21	Is that the idea?
22	MR. SIEBER: Well, you have to make sure
23	that you aren't going to approach the design limit.
24	MEMBER MAYNARD: It is going to change
25	other if they have to come in with a lower number,
1	

(202) 234-4433

	93
1	then it is going to change some other things in a
2	tighter design or different set points or different
3	limits from that aspect.
4	CHAIRMAN DENNING: I think another thing
5	that we have to get perspective on, we tend to think
6	in risk space, and these are Condition 2 and Condition
7	3 events. Even defeating the design limits in these
8	cases doesn't put you in a core meltdown situation
9	typically.
10	MR. WALLIS: That's right.
11	MEMBER KRESS: It could possibly do some
12	fuel damage.
13	CHAIRMAN DENNING: It could do some fuel
14	damage.
15	MEMBER KRESS: And we don't have criteria
16	in terms of risk of fuel damage other than full core
17	damage almost. So if we had that criteria, you might
18	possibly be able to relate this change in the limit to
19	how much fuel you might damage if you had a whole
20	spectrum of events, but we don't have that,
21	unfortunately.
22	MR. SIEBER: Actually, you don't do fuel
23	damage until you hit the critical heat flux.
24	MEMBER KRESS: That's right. That's
25	right. But if you did it right, these would have
1	

(202) 234-4433

Í	94
1	probability distributions. The overlap would give a
2	probability of meeting that for all the design for
3	not the design basis accident, but for the spectrum of
4	accidents. You could end up with a probability of
5	core damage and you could have some sort of measure.
6	That could be a measure of safety.
7	We don't do that because right now it is
8	too hard. This seems to guarantee safety this way by
9	experience. It is a way that the staff can deal with
10	and a way the licensee can deal with.
11	MR. SIEBER: It's deterministic. That is
12	the way these things were
13	MEMBER KRESS: Deterministic as opposed
14	to
15	MR. WALLIS: My problem dealing with it,
16	because we are going to evaluate whether or not to
17	allow a power uprate, and if one plant comes in with
18	1.55, this one comes in 1.38, another plant comes in
19	with 1.3, another one comes in 1.25, and they all say,
20	"We want the power uprate." It is clear that the one
21	with 1.25 is probably going for a higher power uprate.
22	So how do we decide?
23	MEMBER KRESS: That's a good question.
24	MR. WALLIS: How do we decide what is
25	reasonable?

(202) 234-4433

	95
1	MEMBER KRESS: That's a good question.
2	MR. MIRANDA: Well, you would be putting
3	yourself in the position of judging as to how much
4	MR. WALLIS: We're asked to write a
5	letter, right. Right.
6	CHAIRMAN DENNING: That's exactly where we
7	are.
8	MEMBER KRESS: You had a suggestion once,
9	Graham, that I really liked, and that is, these are
10	calculated by some code, a thermal-hydraulics code.
11	MR. WALLIS: Right.
12	MEMBER KRESS: And if you, instead of
13	having this number, had a distribution and you could
14	come up with some sort of probability of exceeding
15	your design, your actual CfA, actually correlation
16	limit, and you have some idea
17	MR. WALLIS: Where we are, yes.
18	MEMBER KRESS: But even there you've got
19	a problem because, even though we have that
20	probability, you don't know what probability is
21	acceptable. And that is an arbitrary choice.
22	MR. WALLIS: But at least you know what
23	you are doing more.
24	MEMBER KRESS: You know what you are
25	doing.

(202) 234-4433

	96
1	MR. WALLIS: Right.
2	MEMBER KRESS: But not enough to base a
3	decision on.
4	CHAIRMAN DENNING: Let's not redefine the
5	whole regulatory basis.
6	MEMBER KRESS: No, that is not in the
7	regulatory basis right now; that's right. So we are
8	stuck with the judgment.
9	MR. SIEBER: The only way we could be
10	certain that their number is right is for us to do
11	these calculations, this whole series of calculations,
12	and I don't want to do that.
13	(Laughter.)
14	CHAIRMAN DENNING: Well, thank you, Jack.
15	Go now to where you were going to start
16	your presentation.
17	MR. MIRANDA: Okay. I was going to talk
18	about the same three transients that Mr. Finley
19	discussed earlier: loss of flow, which is the event
20	that challenges that DNB ratio; the rod withdrawal at
21	power, which, by the way, I disagree; I don't think
22	this is a challenging analysis for the DNB ratio. Rod
23	withdrawal at power is more of a design event in terms
24	of testing the over temperature delta T trip to be
25	sure it covers the
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	97
1	MR. SIEBER: That's the culmination of it.
2	MR. MIRANDA: Yes.
3	And the loss of load, which is the event
4	that is most likely to over-pressurize the RCS.
5	These are the results for the loss-of-flow
6	accident. There are two cases described here. One is
7	the frequency decay, which is the limiting event, and
8	then there is the complete loss of flow. With both
9	complete losses of flow, one involves tripping both
10	reactor coolant pumps and the other is the situation
11	where the reactor coolant flow is driven down by a
12	frequency decay on the grid. That one produces a
13	lower DNB ratio.
14	I would say that this event is governed
15	mainly by the power-to-flow ratio. That is very
16	important in DNB ratio. If you look at the power-to-
17	flow ratio, if you delay the reactor trip, if you keep
18	the power relatively high compared to the flow, which
19	is decreasing, either because it pumps a trip or
20	because of being driven down by frequency decay,
21	delaying that reactor trip will cause a lower DNB
22	ratio.
23	We can see, for example, here that looking
24	at the two events, in the flow coast-down event you
25	have the reactor trip immediately because that is the
I	

(202) 234-4433

	98
1	initiating event, the undervoltage condition on the
2	power supply buses on the reactor coolant pumps. So
3	there you have an immediate reactor trip; whereas, for
4	the frequency decay you have to wait for the signal,
5	for the under-frequency reactor trip signal, and that
6	takes a little bit more than half a second.
7	Here we see on the bottom curve it is
8	not a curve; it is a straight line. It is the flow
9	rate responding to the frequency decay.
10	Then we have the under-frequency trip burn
11	in about two seconds. Then, as the rods are falling
12	into the core, you have reached a minimum DNB ratio
13	about here. You see the power level is still
14	relatively high.
15	This is the heat flux in the core average
16	channel and the hot channel. This is a reminder, for
17	one thing, that this event is analyzed with RETRAN and
18	VIPRE. The RETRAN code will calculate the transient
19	in terms of power level and back to coolant system
20	pressure and temperatures and flow rate. Then that
21	information is passed to VIPRE, which actually
22	calculates the heat flux, and VIPRE will model a hot
23	channel. Here we can see there is not that much
24	difference between hot channel and average channel.
25	MR. WALLIS: All this is at some time in
l	1

(202) 234-4433

	99
1	the cycle or some extreme case or something that
2	bounds
3	MR. SIEBER: Worst.
4	MR. WALLIS: The worst?
5	MR. SIEBER: The worst. The worst time in
6	the cycle.
7	MR. MIRANDA: From this curve, we see that
8	minimum DNB ratio well, actually, I have another
9	plot I can show that describes all of this.
10	The minimum DNB ratio will occur actually
11	before the time that the PORVs might open. This is an
12	illustration of that.
13	Here's the minimum DNB ratio occurring.
14	If you take that up to the pressurizer pressure curve,
15	you see that the minimum DNB ratio has been reached
16	before the core opening set point is reached.
17	All of this is interesting and it is not
18	really relevant, though, for this analysis because
19	this pressure is information that is not passed to
20	VIPRE as you see it here. The VIPRE code will
21	calculate the DNB ratio based on the nominal pressure.
22	So there is no credit taken for the pressurization.
23	MR. WALLIS: I think the key thing is what
24	turns around the DNBR. It seems to be headed down and
25	then it gets turned around rather abruptly by

(202) 234-4433

	100
1	something.
2	MR. MIRANDA: The rods are fully inserted,
3	okay.
4	CHAIRMAN DENNING: Heat flux. Heat flux.
5	MR. MIRANDA: It is the power to flow
6	MR. WALLIS: It is the power that turns it
7	around? Okay.
8	MR. MIRANDA: If we look at the first
9	curve with the power levels
10	MR. WALLIS: Okay, it is the power. That
11	is where it is. The power torque falls off the cliff
12	or it goes over it is not really a cliff, but it
13	goes down the slope. Then that is what turns it
14	around. Okay.
15	MR. MIRANDA: It is all a function of
16	power-to-flow ratio.
17	MR. WALLIS: Okay.
18	MR. SIEBER: Well, the whole transient is
19	caused because of the mismatch between the trip and
20	seeing the actual cause, which was the loss of the
21	coolant pump.
22	MR. WALLIS: So what would seem to be
23	MR. SIEBER: You are producing power in a
24	regime where the flood is decaying.
25	MR. WALLIS: What would seem to be

(202) 234-4433

I	101
1	critical here would be how fast the rods drop.
2	MR. MIRANDA: Yes, and we had
3	MR. WALLIS: Because if it is a little bit
4	later, then this DNBR would go down below the safety
5	analysis limit.
6	MR. MIRANDA: Right. That's right.
7	MEMBER KRESS: Why doesn't the DNBR turn
8	around again at some longer time? Because your flow
9	has continued to drop, but the power sort of levels
10	off. So you expect that curve to turn over again.
11	MR. MIRANDA: Well, you do not produce
12	you have the reactor trip. So you're not producing
13	power anymore. The power that you see there is
14	MEMBER KRESS: Decay heat.
15	MR. MIRANDA: Decay heat, yes. It is kind
16	of hard to come up with
17	MR. SIEBER: Well, if the flow continued
18	going down, then even decay heat could reach the DNB.
19	MEMBER KRESS: The flow never really
20	stops.
21	MR. SIEBER: Oh, that curve doesn't
22	continue on down like that?
23	MEMBER KRESS: No, because you end up in
24	natural circulation.
25	MR. MIRANDA: Natural circulation is
1	I contraction of the second

(202) 234-4433

Í	102
1	MEMBER KRESS: Okay. Well, that's the
2	explanation.
3	MR. WALLIS: DNBR in a close to dryout
4	situation, high quality, the power-to-flow ratio might
5	seem no, it is all liquid. It is all liquid, isn't
6	it? It is all liquid. So it is not. No, it has
7	nothing to do with that. Yes, it is all liquid.
8	I am just trying to figure out why it
9	should be power-to-flow ratio, but that doesn't
10	matter. It doesn't matter.
11	MR. MIRANDA: So this DNB ratio, the 1.385
12	I believe is the limiting, is the lowest DNB ratio you
13	will find in Ginna.
14	MR. WALLIS: Well, you have 1.381 in
15	another one.
16	MR. MIRANDA: I will talk about that when
17	I get to the rod withdrawal at power.
18	MR. WALLIS: Okay.
19	CHAIRMAN DENNING: Okay, proceed.
20	MR. MIRANDA: Loss-of-load event, Ginna
21	has done three different cases here.
22	MR. WALLIS: I'm sorry, I want to go back
23	to this other one. Since everything seems to be
24	governed very much by when the rods drop, is this a
25	conservative analysis you are showing us about rod

```
(202) 234-4433
```

	103
1	drop or is this a realistic analysis?
2	MR. MIRANDA: This is conservative.
3	MR. WALLIS: So the rods, where actually
4	it says two, it is more likely to be one?
5	MR. FINLEY: Right. I think, Sam, if you
6	put up your sequence of events table there?
7	MR. WALLIS: As rods begin to drop at two
8	seconds; it is more likely to be one second, is that
9	right?
10	MR. MIRANDA: Well, they take 2.8 seconds
11	to drop.
12	MR. WALLIS: Well, they begin to drop at
13	two. Is it more likely that they would actually drop
14	earlier than that?
15	MR. FINLEY: That is correct. This is
16	Mark Finley, Project Director for Ginna.
17	I mentioned in my presentation there is a
18	1.4-second time delay assumed between the time the
19	frequency set point is reached
20	MR. WALLIS: That is the .6
21	MR. FINLEY: right and the time the
22	rods begin to drop. We have actually timed that in
23	the past at less than one second. So on my slide I
24	said, if you reduced that 1.4-second delay to one
25	second, then you would benefit in margin.
1	I

(202) 234-4433

104 1 MR. WALLIS: Yes, I was recalling what you 2 said. 3 MR. FINLEY: Yes. 4 MR. WALLIS: And I was trying to relate it 5 to what is being presented here. MR. SIEBER: The rod drop speed is slow, 6 7 too. 8 MR. FINLEY: And then the rod drop speed 9 is tested. We have a tech spec number we have to meet for the rods to reach the bottom, and that is tested 10 each startup. 11 12 MEMBER MAYNARD: I think I also heard Westinghouse say that they don't take much credit for 13 14 the rods until they get almost to the bottom, as 15 though all the power were being generated in the 16 bottom there. So that is another conservatism, I 17 believe. MR. FINLEY: They certainly use a bounding 18 19 shape in terms of the rods and the position of the 20 rods for the negative reactivity insertion. 21 MR. MIRANDA: Okay, the loss-of-load case, 22 there are actually three cases, but the important one 23 is the RCS peak pressure case, the last one. Ginna has looked at the loss of load in 24 25 terms of DNB ratio and also in terms of secondary site

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	over-pressurization. They are different cases.
2	The DNBR case is a case that is designed
3	to produce a low DNB ratio, which means you try to
4	keep the pressure low. To keep the pressure low, they
5	would use the pressurizer pressure control system,
6	pressurizer spray and PORVs. They also use the
7	revised thermal design procedure to evaluate the DNB
8	ratio.
9	For this type of an event, as a reviewer,
10	I would look for a trip coming from the protection
11	that is designed to protect against low thermal
12	margin. That would be the over temperature delta T
13	trip. That is what is happening here. The over
14	temperature delta T trip occurs at 11.6 seconds, and
15	then the DNB ratio reaches a minimum, again, as the
16	rods are nearing the bottom of the core.
17	The case designed to look at secondary
18	site pressure, we are not looking at DNB ratio
19	anymore. So they are using the standard thermal
20	design procedure, which means, for example, that they
21	are going to use different initial conditions. They
22	are going to use 102 percent of rated thermal power,
23	and they are going to use temperature uncertainties on
24	the high side.
25	Also, in this case they are, for peak

(202) 234-4433

	106
1	secondary system pressure, they are assuming no steam
2	generator tube plugging to maximum the heat transfer
3	from primary to secondary.
4	Finally, the RCS peak pressure case
5	MR. WALLIS: So that's a conservative
6	assumption?
7	MR. MIRANDA: Yes.
8	For the RCS pressure case, they are not
9	using any pressurizer pressure control, no PORVs, no
10	spray. They are using all the uncertainties in
11	initial conditions in a conservative direction, high
12	temperatures, high power, and they produce the highest
13	pressure. For example, for a trip on the high
14	pressurizer pressure reactor trip
15	MR. WALLIS: Now, presumably, the steam
16	generator is cooling better; the pressure is lower,
17	isn't it? That's a different
18	MR. MIRANDA: They would assume different
19	plugging level
20	MR. WALLIS: Higher secondary pressure,
21	but what did you assume about the steam generator in
22	the last case?
23	MR. MIRANDA: Maximum plugging, 10 percent
24	plugging.
25	MR. WALLIS: You assume 10 percent

(202) 234-4433

	107
1	plugging, okay.
2	MR. MIRANDA: That is why in each one of
3	these analyses you look at what parameter you are
4	interested in
5	MR. WALLIS: No, I am just interested
6	about the steam generator in the last case because it
7	doesn't seem to be written down here. Okay.
8	MR. MIRANDA: So in the first case, in the
9	DNBR case, they have the over temperature delta T trip
10	occurring right about here.
11	MR. WALLIS: We don't have that.
12	CHAIRMAN DENNING: It is on the third one.
13	MR. WALLIS: It is on the third one, okay.
14	MR. MIRANDA: That trip corresponds to
15	this point. Here is your DNB ratio.
16	MR. WALLIS: Oh, it wiggles, unless you
17	put the pencil mark on there.
18	MR. MIRANDA: Oh, the wiggle mark?
19	MR. WALLIS: It is your pencil mark you
20	put on there as a wiggle, isn't it, or is it not?
21	MR. MIRANDA: Yes, the wiggle is due
22	mainly to this.
23	MR. SIEBER: Actually, we don't have that.
24	MR. WALLIS: We don't have that. We don't
25	have that, no.

```
(202) 234-4433
```
	108
1	MR. MIRANDA: Here we have the pressurizer
2	pressure and you see that we have PORV opening at 2350
3	psi, and, in fact, it gets up to 2500, where you might
4	begin to see the safety valves opening. Over
5	temperature delta T trip occurs right about here.
6	MR. WALLIS: We don't have your first
7	curve there for some reason.
8	MR. SIEBER: We don't have the last one.
9	MR. WALLIS: We don't have the one you
10	just showed, the one before this.
11	MR. MIRANDA: The one before this? This
12	one?
13	MR. WALLIS: I don't think we have that.
14	CHAIRMAN DENNING: No, I don't think we
15	do.
16	MR. WALLIS: We don't have that.
17	CHAIRMAN DENNING: It is missing.
18	MR. WALLIS: So DNBR is sort of headed to
19	China until the PORV opens, is it, or something? It
20	seems to be falling off a cliff and then it levels off
21	again.
22	MR. MIRANDA: Well, I don't really connect
23	it to the PORV. It is connected to the rods providing
24	enough negative reactivity to trip the plant.
25	MR. WALLIS: And that's what stops it

(202) 234-4433

	109
1	abruptly? Okay.
2	But is that wiggle something you drew on
3	there? We don't have this figure. You drew something
4	on there?
5	CHAIRMAN DENNING: Yes, that is just a
6	marker, I think.
7	MR. WALLIS: It's a marker, okay. You put
8	that on? Okay. Just don't draw on the screen,
9	whatever you do.
10	(Laughter.)
11	Okay, so that is the figure we don't have.
12	CHAIRMAN DENNING: But that's okay.
13	Proceed.
14	MR. WALLIS: That's okay. We have seen
15	it.
16	MR. MIRANDA: So this is where the trip
17	occurs. I mean this is where the
18	MR. WALLIS: And that is, again,
19	conservatively estimated in time and stuff?
20	MR. MIRANDA: The over temperature delta
21	T trip, that is the trip that is designed to keep the
22	DNBR above 1.3
23	MR. WALLIS: Again, you've got two second
24	between the trip and the rods dropping? Is that this
25	conservatism again?
l	I contract of the second se

```
(202) 234-4433
```

	110
1	MR. SIEBER: Yes.
2	MR. MIRANDA: Yes.
3	MR. WALLIS: Yes, okay.
4	MR. MIRANDA: That is a long time.
5	There is also, by the way, in the over
6	temperature delta T trip, there is also a delay built
7	in actually before you even reach that signal to
8	account for loop transit time because the temperature
9	is measured in RTDs in the hot legs and the cold legs,
10	and it takes time to get there, something like a six-
11	second delay.
12	This over temperature delta T trip is
13	current compensated, lead line compensation to account
14	for the time that it takes to measure the temperature
15	versus the time to actually put the rods into the core
16	and actually trip the plant before you reach the core
17	limit of 1.38.
18	MR. WALLIS: All right. I find this
19	extraordinarily useful. We have complained in the
20	past many times that when you read the SER and you
21	simply see a description of what the applicant did,
22	and then you say the applicant meets the regulations,
23	everything is fine, there's no indication that
24	anything like this sort of study is behind that
25	decision. And I think this is the first time we have
	1

(202) 234-4433

	111
1	really seen that this staff knows what is going on in
2	some detail, and it has been very useful to me. So
3	please continue.
4	MR. MIRANDA: This is simply the steam
5	generator pressure, the pressurizer water volume. The
6	limit for the steam pressure is 1209, which is right
7	about here, 1209.
8	The over temperature delta T trip occurs
9	right here.
10	And we also verify, since this is a
11	Condition 2 event, that the pressurizer is not filled.
12	MR. WALLIS: Yes.
13	MR. MIRANDA: This is an 800 cubic foot
14	pressurizer, 18.6 cubic feet for the surge line. So
15	we see that this event would not cause any water
16	relief for the
17	MR. WALLIS: And it's getting pretty
18	close?
19	MR. MIRANDA: Close, yes.
20	MR. WALLIS: Yes.
21	MR. MIRANDA: Yes, Ginna has gone about as
22	far as they can with this uprate.
23	MR. SIEBER: There's still margin.
24	MR. WALLIS: The operator might have a
25	little concern when he sees that headed up like that.

```
(202) 234-4433
```

	112
1	MR. FINLEY: Exactly, and he's got many
2	indications that might cause him to take actions that
3	would improve these results, but we don't take credit
4	for that, at least not for 10 minutes.
5	MR. WALLIS: These are seconds on the axis
б	here?
7	MR. FINLEY: Yes.
8	MR. WALLIS: So the 15 and 18 seconds, if
9	this is true, this curve, he's going to be having some
10	qualms or something. Something is going to be
11	happening to him.
12	MR. MIRANDA: Well, the reactor trip takes
13	care of that situation. As soon as you turn off
14	the
15	MR. WALLIS: If it happens, yes. Yes.
16	MR. MIRANDA: It starts to go down.
17	In this case, the steam generator peak
18	pressure case, you see that DNB ratio is not the issue
19	and there's lots of margin there.
20	MR. WALLIS: Well, as long as it turns
21	around, right?
22	MR. MIRANDA: It turns around due to the
23	trip, yes.
24	MR. WALLIS: Which is conservatively
25	estimated in time.

```
(202) 234-4433
```

	113
1	MR. MIRANDA: This is the RCS volume for
2	the steam side pressure case. That volume is actually
3	much lower.
4	MR. WALLIS: RCS pressure?
5	MR. MIRANDA: RCS pressure is we do
б	have core opening of 2250
7	MR. WALLIS: I guess where you said
8	"volumes temperature," you mean the temperature
9	increase swells up the volume? Because it is sort of
10	related to volume, isn't it? It looks like volume.
11	MR. MIRANDA: This is the core opening
12	here. Then we have safety valves opening just barely
13	right about here, taking into account 2.5 percent
14	pressure accumulation.
15	MR. WALLIS: These are all curves
16	submitted by the applicant?
17	MR. MIRANDA: Yes.
18	MR. WALLIS: And you folks didn't do any
19	separate predictions or running of the code or
20	anything? I guess Westinghouse doesn't give you the
21	code to run?
22	MR. MIRANDA: Actually, we ran it. We ran
23	a case with LOFTRAN.
24	MR. WALLIS: They did give you LOFTRAN to
25	run? Or you have LOFTRAN?

(202) 234-4433

	114
1	MR. MIRANDA: We had access to LOFTRAN at
2	their Rockville office. We ran the loss-of-load event
3	with LOFTRAN. LOFTRAN agrees pretty well with RETRAN.
4	Back in the sixties, before LOFTRAN was
5	written, there were some tests done at some plants,
6	including Ginna, load rejection tests. They were used
7	to benchmark LOFTRAN. RETRAN later was used, was
8	benchmarked against LOFTRAN, and also these tests.
9	Those codes are available. I think they might in that
10	RETRAN WCAP.
11	MR. FINLEY: They're off looking for those
12	curves as you speak, Sam.
13	MR. MIRANDA: Okay. If you look at those
14	curves, I don't think you will see a consistent
15	conservatism where the pressure is always under-
16	predicted or over-predicted. They are going to cross
17	each other at several points. Probably the better
18	measure is a statistical correlation rather than a
19	pressure margin.
20	All those results were available since the
21	sixties.
22	This is the last of the steam flow
23	pressure case. We see here that the pressurizer
24	doesn't fill and that the steam system design pressure
25	is not exceeded, level 9 psi.

(202) 234-4433

	115
1	This is the peak pressure, the peak RCS
2	pressure case. This case does not assume any
3	operation of the pressurizer pressure control system,
4	no PORVs, no spray. We see the DNB ratio doesn't even
5	go below its initial value.
б	We were looking for peak pressure. This
7	curve, we have the high pressure trip occurring at
8	about five seconds, right about here.
9	MR. WALLIS: The rods drop later at some
10	time, yes.
11	MR. MIRANDA: Yes, the rods drop, but the
12	pressure continues to go up until the safety valves
13	open. The safety valves are opened
14	MR. WALLIS: This is stored heat in the
15	fuel or something?
16	MR. MIRANDA: Yes. Yes, that's right.
17	MR. WALLIS: Stored heat in the fuel?
18	MR. MIRANDA: Yes.
19	CHAIRMAN DENNING: Are the PORVs still
20	open in this one because they are not a safety
21	grade
22	MR. MIRANDA: That's right, the PORVs are
23	considered a control system. So they are not credited
24	to operate.
25	MR. WALLIS: Not allowed to open?
	I

(202) 234-4433

	116
1	CHAIRMAN DENNING: Not credited, but the
2	reality is that they would, you said? Yes.
3	MR. MIRANDA: This same event, the loss of
4	load is analyzed as an ATWS event, and that is a best-
5	estimate analysis. In that case, the PORVs would
6	open.
7	MR. DUNNE: I think the point to notice on
8	this one for peak pressure, what terminates the peak
9	pressure is when the safety valves open. Independent
10	of the computer program, when the safety valves on the
11	pressurizer go open, that's when you get your peak
12	pressure in the pressurizer and
13	MR. WALLIS: So it is going to be less, so
14	it should be less than your design because they are
15	open?
16	MR. DUNNE: Right.
17	MR. WALLIS: And at that point it is
18	suitable.
19	MR. DUNNE: Yes,
20	MR. WALLIS: Yes.
21	MR. MIRANDA: Okay, these curves verify
22	that the pressurizer does not fill. In this case,
23	too, the steam side pressure does not exceed its
24	safety limit.
25	MR. SIEBER: What is the volume of the
	1

	117
1	pressurizer?
2	MR. MIRANDA: The volume of the
3	pressurizer is 800 cubic feet.
4	MR. WALLIS: These maximum pressures are
5	really determined by set point on the relief valves?
6	Nothing else matters, does it? Or does something else
7	matter?
8	CHAIRMAN DENNING: There is overshoot.
9	MR. WALLIS: There is overshoot?
10	MR. DUNNE: Yes, basically, the two things
11	that control this one from pressure is tripping the
12	reactor and the safety valves opening. In this event
13	the reactor trips early, but you don't really
14	terminate the heat up the RCS until you basically
15	a little bit later in time. So you keep on
16	pressurizing until you get to the relief valves. When
17	the relief valve pops, they have more relief capacity
18	than the thermal expansion of the RCS, and that
19	terminates the transient.
20	MR. MIRANDA: Just to complicate things a
21	little bit, if you were to assume the PORVs were open
22	in this event, for example, that would delay the
23	reactor trip because the PORVs will open at 2350 psi;
24	the reactor trip set point is about 24-25 psi. So
25	that PORVs opening and relieving steam at 2350 for a
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	118
1	few seconds would delay the reactor trip for a few
2	seconds.
3	MR. WALLIS: That's because they like to
4	keep the reactor running if they possibly can?
5	MR. MIRANDA: Yes. They put the reactor
6	trip between the PORVs and the safety valves. The
7	PORVs prevent the reactor trip, and the reactor trip
8	prevents the safety valves from opening.
9	CHAIRMAN DENNING: I was going to let you
10	get through your presentation, but I think that things
11	have gone a little bit too far for the break. So why
12	don't we take the break now and have you come back and
13	finish? So we will recess until 10 minutes before the
14	hour.
15	(Whereupon, the foregoing matter went off
16	the record at 10:35 a.m. and went back on the record
17	at 10:51 a.m.)
18	CHAIRMAN DENNING: All right, we're going
19	to come back in session now, please.
20	Proceed.
21	MR. MIRANDA: We had some discussion about
22	this earlier. The licensee submittal contains three
23	transients. The first two are examples and really are
24	two of a series of something like 50 or 60 cases that
25	are done for the rod withdrawal at power, basically,
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	119
1	to map the reactor protection system area of coverage
2	for this event in terms of reactivity insertion rates.
3	Now these notations that you see here are
4	the result of some errors in the license amendment
5	request. The first case is not a maximum case; it is
6	a minimum reactivity feedback case.
7	The times of reactor trip and minimum DNBR
8	are the times that you will see on the curve. The
9	times were originally printed for another curve.
10	The same thing with the slow reactivity
11	insertion rate, 5 pcm per second, the second case.
12	That is a really a maximum feedback case. Those are
13	the times of reactor trip and minimum DNBR.
14	These two examples of transients are taken
15	one at a high reactivity insertion rate, one at a low
16	reactivity insertion rate, to illustrate a transient
17	that is protected by the high-flux trip and another
18	one that is protected by the over temperature delta T
19	trip.
20	Finally, Ginna submitted a transient to
21	show that the rod withdrawal at power event would not
22	violate the reactor coolant system pressure acceptance
23	criteria.
24	Maybe I should mention that DNB ratio at
25	this time. The DNBR ratio for the rod withdrawal at
	I

(202) 234-4433

	120
1	power that was listed at 1.381, that is not really
2	comparable to the DNB ratio that you find from the
3	loss-of-flow accident, the 1.385. That 1.385 value
4	comes from VIPRE results, and the 1.381 number comes
5	from RETRAN results. The 1.381 is really an estimate
6	of DNB ratio based upon insensitivity of DNB ratio to
7	changes in power, temperature, and pressure yes,
8	power, temperature, and pressure all taken at a
9	constant flow.
10	So that 1.381 value from RETRAN is
11	conservatively underestimated. That value, if those
12	same conditions of power, temperature, and pressure
13	were to be input to VIPRE, the DNB ratio would be
14	higher than 1.381.
15	MR. WALLIS: This is because RETRAN is
16	predicting the average behavior? Is that what it is?
17	MR. MIRANDA: It is an estimate. RETRAN
18	is calculating transient conditions for power,
19	temperature, and pressure.
20	MR. WALLIS: But they are all average?
21	They are all
22	MR. MIRANDA: Well, no, they're not all
23	average.
24	MR. WALLIS: That's total power? Okay.
25	MR. MIRANDA: It will calculate the

(202) 234-4433

	121
1	average power, but then it will also calculate
2	pressure at various points in the reactor coolant
3	system. It will calculate temperature
4	MR. WALLIS: But it doesn't deal with hot
5	rods and things like that?
6	MR. MIRANDA: Oh, no, it doesn't have that
7	kind of resolution. That is what VIPRE is for. So it
8	takes the average conditions and puts them into VIPRE
9	for the DNBR evaluation.
10	MR. WALLIS: Why was it not put into
11	VIPRE?
12	MR. MIRANDA: Why was what?
13	MR. WALLIS: I mean in the other case they
14	did use VIPRE, didn't they?
15	MR. MIRANDA: The loss of flow, they did
16	use VIPRE.
17	MR. WALLIS: Yes. So why did they not use
18	it in this case?
19	MR. MIRANDA: Well, they can't do that
20	because the DNBR estimate routine in RETRAN is all
21	based on the core limits, and the core limits are at
22	a constant flow rate.
23	MR. WALLIS: I thought last time they took
24	the RETRAN and then fed it into VIPRE.
25	MR. MIRANDA: In the loss of flow they do
	I

(202) 234-4433

	122
1	that, yes.
2	MR. WALLIS: They couldn't have done it
3	this time, too?
4	MR. MIRANDA: They could have done it. It
5	would have taken longer.
6	MR. WALLIS: Time is of no matter when
7	you're satisfying ACRS.
8	(Laughter.)
9	MR. MIRANDA: The limiting event is not
10	the rod withdrawal at power; it is the loss of flow.
11	The rod withdrawal at power has a 1.381 value.
12	MR. WALLIS: So you think that this is
13	very conservative? It really should be higher than
14	that? Okay.
15	MR. MIRANDA: It will be much higher than
16	that.
17	Chris, did you want to say something?
18	MR. McHUGH: No.
19	MR. MIRANDA: Okay.
20	MR. WALLIS: Well, I think it would have
21	been good for them to have done it and got a better
22	number. Then we wouldn't have asked so many questions
23	about it.
24	(Laughter.)
25	MR. MIRANDA: Well, it is a little bit

(202) 234-4433

123 1 misleading because you think you are comparing apples 2 and apples and you're not. They come from different 3 places. 4 This is the rest of the sequence of events 5 tables and the --MR. WALLIS: Now this pressure that comes 6 7 so close, is, again, this because the pressure is 8 relieved by safety valves? Is that why? 9 MR. DUNNE: It's both -- the pressure is 10 really controlled by the safety valves lifting and when the reactor trips. 11 WALLIS: So we shouldn't be so 12 MR. concerned about it coming up to a limit? 13 14 MR. DUNNE: No. That's right. 15 MR. WALLIS: That is why the safety valves 16 are there. 17 MR. DUNNE: Yes, that's why the safety valves are there, and you get full opening on the 18 19 valves to get full flow and you figure out what your 20 parameters are for --21 MR. WALLIS: And you have enough valves 22 and they are reliable and all that sort of stuff? 23 MR. MIRANDA: Yes, that is all conditioned 24 on the valves relieving steam. As long as the 25 pressurizer doesn't fill and you open the valves as

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	designed, they release steam and they load the
2	pressure
3	MR. DUNNE: And as long as the safety
4	valves open within the stated tolerance on them, your
5	pressure is really limited by that, and it is not
6	really that sensitive to the code itself.
7	MR. WALLIS: If this were PRA, we would be
8	looking at the probability of those valves opening,
9	wouldn't we? Here you just assume they do?
10	MR. DUNNE: Well, we actually go in and
11	test our safety valves.
12	MR. WALLIS: I know that.
13	MR. DUNNE: We basically change out our
14	safety valves every refueling outage. We've got two
15	sets of safety valves.
16	MR. WALLIS: But for this analysis you
17	assume they open?
18	MR. DUNNE: Yes.
19	MR. WALLIS: In this design basis accident
20	event?
21	MR. SIEBER: Well, they are safety
22	degrade, too.
23	CHAIRMAN DENNING: Yes, but in PRA space
24	safety
25	MR. DUNNE: They are basically the code
I	

(202) 234-4433

125 1 valves required to basically prevent over-2 pressurization of the --3 MEMBER KRESS: Failure to open in the PRA 4 space is like one times 10 to the minus 3. 5 MR. WALLIS: Okay, there is a probability though. 6 7 CHAIRMAN DENNING: I don't think on the 8 failure to open --MEMBER KRESS: About 10 to the minus 4 9 10 failure. MR. WALLIS: Okay. 11 MR. MIRANDA: This is the transient for 12 The high neutron flux signal is 13 the first case. 14 reached at about a little more than one second, and the rods begin to fall a half a second later. The 15 16 rods begin to fall about here. 17 MR. WALLIS: Where is this? MR. MIRANDA: The DNB ratio occurs at 2.26 18 19 seconds. 20 MR. WALLIS: Something we don't have, That's something we don't have. We don't have 21 right? 22 that upper curve. MR. MIRANDA: You don't have this one? 23 24 CHAIRMAN DENNING: We have the lower curve 25 but not the upper curve for some reason.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	MR. MIRANDA: All right. We will copy for
2	that.
3	This is the behavior in pressurizer water
4	volume and pressure. Here we verify that the
5	pressurizer doesn't fill. In fact, in this case the
6	PORVs don't even open or they wouldn't open.
7	Since we are looking for a low DNB ratio,
8	if the PORVs were supposed to open, if the pressure
9	were to reach the PORV opening set point, they would
10	open. They would be assumed to open.
11	This is the minimum DNB ratio occurring at
12	2.26 right there.
13	Then, as an example for low reactivity
14	insertion rate, 5 pcm per second, this is a transient
15	that would be protected by the over temperature delta
16	T trip. That occurs at about 214 seconds, and you can
17	see where that is.
18	MR. WALLIS: So it just slowly creeps up
19	in power?
20	MR. MIRANDA: Yes. As you approach the
21	core limit, as you approach that 1.38, the over
22	temperature delta T trip tripped the plant.
23	MR. WALLIS: Would the operator do nothing
24	all this time when it is creeping up in power?
25	MR. GILLON: Yes, this is Roy Gillon

(202) 234-4433

	127
1	again, Reactor Operator.
2	Yes, we are aware of 214 seconds' change
3	in power, PPCS, our computer systems, and both
4	observation of the control board. So this would be
5	hard to believe that the operator wouldn't terminate
6	this within 30 seconds.
7	MR. WALLIS: Before the temperature does,
8	yes.
9	MR. GILLON: Right. We would see
10	temperature increasing. We would see power
11	increasing.
12	CHAIRMAN DENNING: It looks like the
13	pressure has the water volume really increasing.
14	MR. WALLIS: Yes, what is this pressurizer
15	up here?
16	MR. MIRANDA: The margin water level would
17	increase since the reactor coolant system temperature
18	is increasing, and, in fact, I have asked in the past
19	licensees to show me a very low reactivity insertion
20	rate because I look for this pressurizer water volume;
21	I need to see a maximum value to be sure that it is
22	not going to fill the pressurizer.
23	In real life a lot of these reactivity
24	insertion rates are more limited than what you would
25	see in these analyses because, on the one hand, on the

(202) 234-4433

	128
1	high end you just don't have the differential rod
2	worth and the rod speed to get to that 100 pcm per
3	second. Also, on the low end or for a long transient
4	like this, for 200-and-some seconds, chances are that
5	you are just going to reach the end of the rod. I
6	mean the rods are at various insertion limits. You
7	are going to pull it out and the reactivity insertion
8	will end, and very often without a reactor trip. You
9	will just have a new equilibrium power level.
10	Here's the average temperature. You can
11	see it looks like the pressurizer volume curve, and
12	there's the DNB ratio slowly dropping to its minimum
13	value where the reactor trip occurs.
14	These are the results. Of all of the
15	cases that were run, something like 50 or 60 or 70
16	cases, at different reactivity insertion rates with
17	maximum feedback and minimum feedback at three
18	different power levels. So these are the results for
19	the 100 percent power cases.
20	We see from this curve that the low
21	reactivity insertion rate cases are protected by the
22	over temperature delta T trip, and the high reactivity
23	insertion rate cases are protected by the high flux
24	trip. We also see what the minimum value of the DNB
25	ratio is. These DNB ratios, again, are from RETRAN.
	1

(202) 234-4433

	129
1	MR. WALLIS: So you have to have things
2	just right to get one of these valleys? You have to
3	have just the right reactivity insertion rate to be in
4	the region where you get near the minimum?
5	MR. MIRANDA: Well, actually, these
6	curves, there's something that is not shown on these
7	curves. That is, when you do these cases, for
8	example, this curve actually continues. This curve
9	here would continue. This is the intersection.
10	That's where they stop.
11	MR. WALLIS: Wait a minute. I don't
12	understand that.
13	MR. MIRANDA: They do other analyses.
14	They would do other cases. They don't know when this
15	is going to occur, when this minimum is going to
16	occur. They would do a whole series of cases, and
17	there may be some cases down here that are not
18	reported because they are covered
19	MR. WALLIS: They wouldn't get there?
20	MR. MIRANDA: They wouldn't get there,
21	yes.
22	MR. WALLIS: Okay.
23	MEMBER MAYNARD: But I think you're right;
24	it takes just a very unique set of circumstances to
25	hit one of the valleys that takes you down.
	1

(202) 234-4433

	130
1	MR. McHUGH: It is Chris McHugh from
2	Westinghouse.
3	We actually search for that valley. When
4	we do our initial set of runs, we will do like 10, 20,
5	30, 40 pcm per second to determine where we are
6	switching from high flux over temperature delta T, and
7	then we do a finer mesh in between. We go down to
8	single units, 12, 13, 14 pcm per second. So we hunt
9	for that case.
10	MR. MIRANDA: That is in order to find a
11	minimum DNB ratio.
12	These are the results at 60 percent power.
13	These are not transient cases. This is a map of the
14	minimum DNB ratio results.
15	MR. WALLIS: This is a lot of computation
16	then.
17	MR. MIRANDA: Yes. Yes, you need a fast-
18	running code like LOFTRAN or RETRAN. We just stack
19	the cases one after the other, changing a single
20	parameter like reactivity insertion rate.
21	MR. SIEBER: That is why you pick a number
22	and don't do this every time. Otherwise, you would be
23	doing it for every
24	MR. FINLEY: That's right, yes.
25	MR. MIRANDA: And then one last case is

(202) 234-4433

	131
1	the pressure case. This one is at 55 pcm per second.
2	I believe that is more realistic. That is about what
3	you could get, right, for the Ginna?
4	MR. McHUGH: No, realistic value is around
5	30 pcm per second.
6	MR. MIRANDA: Thirty?
7	MR. McHUGH: Yes, that is the maximum that
8	would still yield an acceptable pressurizer pressure.
9	So we have instituted 55 pcm per second as a reload
10	criteria and a reload limit that the core designer has
11	to verify it is always going to be under that. The
12	typical number is around 30.
13	MR. MIRANDA: So we have the reactor
14	the high pressurizer pressure trip occurring in this
15	case at about 13 seconds. Normally, if I were looking
16	at a case of rod withdrawal at power cases, a series
17	of cases, I would want to be sure that the protection
18	occurs from either the high flux trip or the over
19	temperature delta T trip because the parameter of
20	interest is DNB ratio.
21	MR. WALLIS: Why does nuclear power start
22	off so low in this plot?
23	MR. MIRANDA: This is an 8 percent power
24	case.
25	MR. WALLIS: Oh, it's an 8 percent power?
ļ	I contract of the second se

(202) 234-4433

	132
1	Okay. I didn't look at it. Okay. I didn't look at
2	the title there.
3	MR. MIRANDA: But since here we are
4	looking at pressurizer pressure, the parameter of
5	interest is pressure, and the protection comes from
6	the high pressurizer pressure trip.
7	So we have the reactor trip here, and we
8	have the PORVs opening at 2350. No, no, no. No
9	PORVs, no PORVs in this case. This is a high pressure
10	case; no PORVs.
11	So we have the reactor trip, the rods fall
12	in two seconds later, about 15 seconds, and the safety
13	valves open at about 2500 or a little bit higher than
14	2500. Then the limit is 2750, right about there.
15	MR. WALLIS: So the safety valves open and
16	the pressure keeps rising for a while, and then
17	MR. DUNNE: Well, I think what happens is
18	the safety valve set pressure is actually biased up
19	from a nominal 2500, so they really don't open up
20	until about 2600.
21	MR. WALLIS: Until that peak is there.
22	MR. DUNNE: I think where the pressure
23	falls is probably where the safety valves actually did
24	open, would be my guess.
25	MR. WALLIS: They open pretty quickly?
	I contract of the second se

(202) 234-4433

	133
1	MR. DUNNE: Yes.
2	MR. WALLIS: And they relieve pressure
3	right away?
4	MR. DUNNE: They're 15 milliseconds,
5	something like that.
6	MR. WALLIS: Right. So I would think the
7	peak would be when they open.
8	MR. DUNNE: That's what I would expect,
9	the peak, because, again, we biased the safety valve
10	opening upward based tolerances on the set point and
11	loop seal time delay and other parameters.
12	MR. MIRANDA: That's all I have.
13	CHAIRMAN DENNING: Very good. That is
14	very helpful.
15	MR. WALLIS: Do you have some strange
16	logic with all kinds of time constants in it and
17	things that sets these response to signals and opening
18	valves?
19	MR. DUNNE: I'm sorry. For the safety
20	valves, there is no logic. It is just a spring
21	MR. MIRANDA: It is spring-loaded.
22	MR. WALLIS: So I would think your maximum
23	pressure would be the set pressure on the valve.
24	MR. DUNNE: That is correct.
25	MR. WALLIS: There's no control involved

(202) 234-4433

	134
1	at all.
2	MR. DUNNE: That is why there really isn't
3	a lot of variation in what the pressure is.
4	MR. SIEBER: There is some uncertainty
5	about what that set pressure
6	MR. WALLIS: This is just a little bit?
7	MR. DUNNE: Right, yes.
8	MR. WALLIS: This is a little bit. But we
9	shouldn't be surprised that the pressure is about
10	where you set it.
11	MR. DUNNE: Right.
12	MR. SIEBER: Do you heat the loop seal at
13	all?
14	MR. DUNNE: Yes, we do. We have a hot
15	loop seal around 300 degrees.
16	MR. SIEBER: Keeps it from looking like a
17	steel bullet.
18	MR. DUNNE: That is to protect the
19	downstream piping from a cold water slug if the safety
20	valves actuate.
21	MR. SIEBER: Three hundred degrees?
22	MR. DUNNE: I think it is around 300
23	degrees. What we have actually done is the piping
24	from the pressurizer nozzle to the safety valve is
25	inside the pressurizer insulation.
1	I contraction of the second seco

```
(202) 234-4433
```

	135
1	MR. SIEBER: Okay.
2	MR. WALLIS: Well, cold water slugs can be
3	quite interesting.
4	MR. SIEBER: Only once.
5	MR. DUNNE: That's the reason why we heat
6	them.
7	MR. SIEBER: Only once are they
8	interesting.
9	CHAIRMAN DENNING: Okay, we are going to
10	keep going. We are going to move ahead with the small
11	break LOCAs now.
12	MR. WALLIS: I'm amazed that we're under
13	time. We seem to have asked a lot of questions, and
14	yet we are still within time.
15	CHAIRMAN DENNING: I think we got through
16	their presentation early, quickly.
17	MR. FINLEY: Mark Finley again.
18	Two analytical areas had not yet been
19	reviewed by NRC when we last met. So we will discuss
20	this morning both the small break and the long-term
21	cooling analyses, and then Len Ward from NRC will
22	discuss the same analyses.
23	In terms of an agenda for this
24	presentation, we will talk a little bit about the
25	Ginna design and why that is helpful in the small

```
(202) 234-4433
```

break LOCA analysis and then shift to talk about current and EPU results for small break LOCA analysis. You will see there is a significant margin here in these results. Then delve into the long-term cooling analysis with respect to the Ginna design and then both the large break and the small break long-term cooling analysis.

First, with respect to two key aspects of 8 the Ginna design that help in small break LOCA, we 9 have relatively high flow, high head safety injection 10 11 pumps that start to kick in around 1400 psi and 12 capacity conservatively above 1000 gpm. In terms of the power level of Ginna, the two-loop Westinghouse-13 14 type power level, this is significant flow at high 15 pressure, and that helps the small break result.

In addition, we have relatively highpressure accumulators which would start to discharge at around 700 psia.

19MR. WALLIS: This is injection into the20upper head?

21 MR. FINLEY: No, the high head safety --22 and I'll talk more about that -- the high head safety 23 pumps actually inject into the cold leg.

Yes?

24

25

1

2

3

4

5

6

7

MR. SIEBER: You don't use them as your

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 136

	137
1	normal charging pump, do you?
2	MR. FINLEY: No, we don't use these in our
3	normal charging pumps.
4	MR. SIEBER: What do you use for charging?
5	MR. DUNNE: Positive displacement pumps.
6	MR. SIEBER: Okay, like the Navy.
7	MR. FINLEY: Right. And we don't take
8	credit here in this analysis for the charging flow.
9	MR. HARTZ: This is Josh Hartz of
10	Westinghouse. I'm in charge of NOTRUMP.
11	Westinghouse basically has two different
12	ECCS categories, high- and low-pressure plants. The
13	Beaver Valley cases that you saw the other day would
14	be what we would consider a high-pressure plant
15	because they had safety grade charging plants. The
16	two-loop plants do not have that capability. They've
17	got dedicated SI pumps instead.
18	MR. DUNNE: This is Jim Dunne.
19	I think the big difference is that Beaver
20	Valley's high head safety injection pumps can pump in
21	against RCS pressure whereas our high head pumps
22	can't. But it gives us more flow capability at the
23	lower pressures.
24	MR. SIEBER: So you have to wait. Before
25	you can inject at all, you have to have some blowdown?
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	138
1	MR. DUNNE: Pressurization of the RCS,
2	yes.
3	MR. HARTZ: This is true, but the SI set
4	point is typically around 1700. So even with the very
5	small breaks, they depressurize quite quickly and go
6	past that. So these pumps inject very quickly into
7	the transient.
8	MR. FINLEY: Okay, on this slide you see
9	the current results and the EPU results for small
10	break LOCA Pclad temperature. Two key points to take
11	away from this slide:
12	One is the EPU result, 1167, for the
13	limiting break size, which I believe is two inches,
14	right, Josh?
15	MR. HARTZ: That is correct.
16	MR. FINLEY: is very low, 1167, quite
17	a bit less than the 2200.
18	MR. WALLIS: Using a different method than
19	the current method, is it?
20	MR. FINLEY: The method is the same. Both
21	analyses use NOTRUMP methodology.
22	The second key point to take away, as you
23	already allude to, Dr. Wallis, is that the current
24	result is actually a little higher than the EPU
25	result. That is unexpected, but it is due to a
	•

(202) 234-4433

	139
1	physical phenomenon in the NOTRUMP analysis that
2	relates to loop seal clearing, which at the time in
3	1994 the analysis chose to leave alone because it was
4	still an acceptable result by far.
5	MR. WALLIS: The prediction using this
6	9595 method or is this some other sort of conservative
7	approach? What is the method that is used?
8	MR. HARTZ: This is Josh Hartz.
9	This is not a best-estimate approach. It
10	is an Appendix K model.
11	MR. WALLIS: This is an Appendix K run?
12	Okay.
13	MR. HARTZ: That's correct.
14	MR. WALLIS: So it is pretty low for
15	Appendix K, isn't it?
16	MR. FINLEY: Yes, that's the point. Very
17	low for Appendix K. A good deal of margin on small
18	break LOCA.
19	I will also point out that you see the
20	maximum transient oxidation there, .07 for EPU, well
21	below the limit. We also add in the pre-transient
22	oxidation level and we control that in the reload
23	analysis to make sure the total stays below the 17
24	percent.
25	MR. SIEBER: Now this is for the worst-
	1

(202) 234-4433

	140
1	case small break? What size is this?
2	MR. FINLEY: That's correct. This is a 2-
3	inch break, is the worst case for Ginna.
4	MR. SIEBER: Did you model in quarter-inch
5	increments or?
6	MR. FINLEY: We did a spectrum of analyses
7	using the standard Westinghouse method. I believe it
8	was the 1.5-inch, a 2-inch, and a 3-inch break.
9	MR. SIEBER: That's pretty gross.
10	MR. FINLEY: We didn't go to the quarter-
11	inch level. I think you saw Beaver Valley did that.
12	The reason is because we have so much margin here.
13	Because that Pclad temperature is so low, Westinghouse
14	hasn't seen a large variation in the Pclad temperature
15	at this low level.
16	Josh, you might be able to speak to that?
17	MR. HARTZ: Yes. Actually, in this case
18	we did go off and look at quarter-inch intervals just
19	to assure ourselves that that wouldn't be the case.
20	Because when the whole issue of break spectrum up in
21	the Beaver Valley analysis review, we wanted to make
22	sure that everybody was captured in that regard. So
23	we used Ginna as a test case to kind of confirm that,
24	and it did not show much variation in the results.
25	That is mainly because this is not a
	I contract of the second s

(202) 234-4433

	141
1	boiloff the boiloff turbine PCT plants are the ones
2	that are sensitive to that. Beaver Valley would fit
3	into that category.
4	MR. SIEBER: So you actually did do the
5	work?
6	MR. HARTZ: Yes, we did. It would not be
7	in Ginna's SER though.
8	MR. FINLEY: Yes, it was not a part of the
9	licensing report, but they did that after the fact in
10	response to requests for additional information.
11	MR. SIEBER: Basically, what you are
12	saying is you didn't find much sensitivity with regard
13	to break size?
14	MR. HARTZ: No. No, not for a plant of
15	this type.
16	MR. SIEBER: Okay.
17	MR. WALLIS: Assuming a zero break size,
18	though, is
19	MR. SIEBER: That is one of the better
20	breaks.
21	MR. WALLIS: Better points, right.
22	(Laughter.)
23	When you did the large break, you did use
24	the 9595 method?
25	MR. FINLEY: That's correct. The large
	1

	142
1	break was the best estimate
2	MR. WALLIS: Because you got better
3	results, presumably, than using Appendix K?
4	MR. FINLEY: The large break for Ginna is
5	the limiting LOCA, and we did need the
6	MR. WALLIS: Here Appendix K is okay, and
7	it's simplest, so you just did it?
8	MR. SIEBER: Was your accumulator pressure
9	always 700 or is that a change?
10	MR. HARTZ: No, that's the two-loop
11	plants have 100 psi higher design limit than the
12	three- and four-loop plants.
13	MR. SIEBER: Okay, but that is all for
14	large break protection?
15	MR. HARTZ: They do give you benefit in
16	small break space, and that is one reason why the
17	small break results are so good in this case, is
18	because they are jumping into the transient even
19	sooner. Because you go into a depressurization
20	phase
21	MR. SIEBER: Right.
22	MR. HARTZ: And once you hit the set point
23	of the accumulators, they deliver enough water to
24	terminate your heatup. So, yes, in small break space
25	they do tend to help you out, especially more in the

```
(202) 234-4433
```

	143
1	three-loop plants where we have the safety grade
2	charging, and the flows to mitigate the accident
3	aren't as marginal here.
4	MEMBER KRESS: I don't know if you can
5	answer this or not. If you used the transition break
6	size, could you have a substantial increase in power
7	and still meet the rules?
8	MR. HARTZ: Are you referring to the
9	5046(a)?
10	MEMBER KRESS: Yes. I know you may not be
11	prepared to answer that, but I was just curious.
12	MR. HARTZ: I guess in my judgment there
13	would probably be some other accidents waiting to get
14	into the way of that.
15	MEMBER KRESS: Waiting to catch you
16	before
17	MR. HARTZ: Yes. So in LOCA space they
18	tend to do pretty well, the two-loop plants.
19	MR. WALLIS: This plant is large break
20	LOCA-limited. So if you back off a bit on the large
21	break LOCA criteria, you might gain a bit.
22	MR. HARTZ: It would open some things up.
23	It is a possibility, but I think their large break
24	results were pretty good to begin with compared to
25	what some other plants would be.

(202) 234-4433
	144
1	MR. FINLEY: Right.
2	Okay, so just to summarize quickly, small
3	break, a significant amount of margin to the
4	acceptance criteria.
5	MR. WALLIS: In this case the safety
6	analysis limit is a legal one, not one specified by
7	the vendor and the licensee.
8	MR. FINLEY: That is correct. That is
9	correct.
10	With respect to long-term cooling, some of
11	the key aspects of the Ginna design that come into
12	play: again, the high head safety injection pumps.
13	These pumps are aligned to the cold leg.
14	We also have low head safety injection
15	pumps. We call them residual heat removal pumps, RHR
16	pumps. They are aligned to the upper plenum. I will
17	show you a diagram in a second, the same nozzles that
18	I think Jim Dunne had on his slide earlier.
19	But these inject directly into the upper
20	plenum.
21	MR. WALLIS: Do you understand how the
22	water gets down into the core from there? It is a
23	counter-current-flow situation.
24	MR. FINLEY: Yes, actually
25	MR. WALLIS: Because it has to be lopsided

(202) 234-4433

	145
1	or something with flow down on the outside and steam
2	coming up in the middle or something?
3	MR. FINLEY: Right. In fact, in a couple
4	of slides I will show you physically where the nozzles
5	are with respect to the core.
б	MR. WALLIS: Well, you've got water up
7	there and it has to come down here.
8	MR. FINLEY: That's correct. That's
9	correct.
10	MR. WALLIS: It is cold water, so the
11	steam rushing up to condense on it, and so conceivably
12	you have a CCFL-type situation.
13	MR. FINLEY: Right.
14	Gordon, click on that slide there and
15	let's see what we've got.
16	All right, this just shows
17	MR. WALLIS: We can see the hole.
18	MR. FINLEY: the elevation of the
19	nozzle there in between the hot and the cold nozzle on
20	the reactor vessel.
21	Next slide, Gordon.
22	MR. WALLIS: Yes, as far as into the
23	MR. FINLEY: And here, the plan view shows
24	where the nozzles would inject.
25	MR. WALLIS: I think it makes a pool up
1	

(202) 234-4433

	146
1	there, as I remember. Doesn't it make a pool up in
2	there? It fills up. Doesn't it fill up that plenum
3	to some extent and then it somehow drains down in
4	preferred locations?
5	MR. HARTZ: Dr. Wallis, you're probably
6	referring to the early phases of a large break
7	transient where you could be CCFL-limited in upper
8	plenum, yes. Yes, but in the long-term cooling
9	situation, the steaming rates
10	MR. WALLIS: Okay, yes, I'm referring to
11	a different situation.
12	MR. HARTZ: Yes.
13	MR. FINLEY: And I'll actually in a future
14	slide
15	MR. WALLIS: Do you understand that fully,
16	do you?
17	MR. HARTZ: Yes.
18	MR. WALLIS: Of course you're going to say
19	yes, I know.
20	(Laughter.)
21	It was a concern of mine at one time.
22	MR. HARTZ: Yes, with the UPI plants and
23	with the licensing of SECY originally, that was a big
24	concern, to mitigate the large break transient because
25	of the water holdup in the upper plenum.

```
(202) 234-4433
```

	147
1	MR. FINLEY: And I will actually speak to
2	this mixing assumption that we make with respect to
3	long-term cooling in this UPI injection here in a
4	couple of slides.
5	MR. WALLIS: You'll come to that?
6	MR. FINLEY: Yes.
7	MR. WALLIS: Okay.
8	MR. FINLEY: So the point here would be we
9	have the high head SI pumps to the cold legs, the low
10	head SI pumps to the upper plenum, and when they are
11	both injecting simultaneously
12	MR. WALLIS: These look like hot leg
13	injection.
14	MR. FINLEY: That's correct. That's
15	correct.
16	MR. WALLIS: You don't have to switch it
17	on? It just happens?
18	MR. FINLEY: That is correct. It just
19	happens. They are aligned permanently this way. We
20	verify valve lineups and locked valves, and so forth,
21	to make sure they inject in this manner.
22	Okay. And just fundamentally and I'm
23	sure you talked about this some with Beaver Valley
24	if you have the break on the hot side, you need the
25	injection on the cold side to get the flush through
	I contract of the second se

(202) 234-4433

	148
1	the core, and the converse.
2	MR. WALLIS: You've got both of them.
3	MR. FINLEY: Say it again?
4	MR. WALLIS: You've got both of them here?
5	MR. FINLEY: That's correct.
6	MR. WALLIS: You're coming from both
7	sides?
8	MR. FINLEY: That's correct.
9	Okay. Just to walk through the large
10	break sequence here, of course, by definition,
11	essentially, for the break size, the RCS rapidly
12	depressurizes to below both the high head SI and the
13	low head SI injection points. So you get the
14	simultaneous injection early on, and that prevents any
15	buildup early on of boron.
16	As the refueling water storage tank
17	lowers, the level lowers, at that point we switch to
18	the recirculation mode manually. At that point we
19	actually turn off the high head safety injection
20	pumps.
21	I am sure you would ask why, but
22	fundamentally Ginna was not designed for simultaneous
23	injection throughout the recirculation process. In
24	fact, early on in the large break LOCA scenario the
25	sump temperature is higher than would support the
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	149
1	required NPSH that is needed to run simultaneous
2	injection for the whole course of the recirculation.
3	So we turn off the high head SI pumps and
4	then turn them back on. What we have verified through
5	this long-term cooling analysis is that we turn them
б	back on prior to the point that we would have
7	concentrated then to the saturation point for boron.
8	MR. SIEBER: How much time is that?
9	MR. FINLEY: And I'll get to that in the
10	next slide.
11	The other point to make here and I will
12	show it on the next slide in terms of a better view
13	but, conservatively, we don't take credit for the
14	upper plenum injection essentially mixing with the
15	core volume region to prevent concentration of the
16	boron. That is a very, very conservative assumption.
17	Then the operators procedurally will
18	restart those high head safety injection pumps to
19	again restore simultaneous injection.
20	Gordon, if you will go to the next slide?
21	In terms of the analysis that was done
22	and this was in response to the NRC's staff questions.
23	As you probably are aware, they questioned, how are we
24	determining what the void fraction in that water in
25	the core region is and exactly how are we calculating
	1

(202) 234-4433

	150
1	the two-phased level and the volume, the mixing
2	volume. Those were good questions that we really had
3	simplified in the past.
4	But in response to those questions, this
5	time we did an analysis using the Westinghouse
6	COBRA/TRAC method to determine what the void fraction
7	was and take account for that, as well as what the
8	dynamic pressures are around the loop and how that
9	affects the two-phase level. So all that is accounted
10	for in this concentration analysis that was done.
11	Gordon, why don't you click on the first
12	one?
13	Here is the void fraction versus time for
14	a large break. You can see it starts up on the order
15	of .75, .8, and down to just under .55 for the void
16	fraction.
17	And next slide, Gordon.
18	Sort of the converse of that is the mixing
19	volume. This is how, with that void fraction, the
20	volume of water changes over time for the large break.
21	So that now is calculated explicitly with the
22	COBRA/TRAC code.
23	MR. WALLIS: It is throwing away all the
24	upper plenum injection water.
25	MR. FINLEY: I'll tell you what, let's

(202) 234-4433

	151
1	hold that thought. I will show you the control volume
2	that we use.
3	MR. WALLIS: You are not taking credit for
4	it in this volume?
5	MR. FINLEY: Right, we are not taking
6	credit for any of the water coming in from the UPI up
7	above after this point.
8	MR. WALLIS: So where does it go then?
9	You just ignore it? Just ignore it?
10	MR. FINLEY: I will show you in a second,
11	Doctor.
12	Next slide. Maybe the slide before there.
13	There we go.
14	Here is a depiction of the mixing volume
15	that is used. This is the expected condition.
16	Actually, this was not what was used in the analysis
17	but what would be expected would be that you would get
18	some upper plenum injection that would then mix with
19	this entire region, both in the core region and in the
20	upper plenum. Because this is obviously a very
21	turbulent region, there is a lot of boiling go on, we
22	would expect significant mixing here. Then, of
23	course, some amount of that is out the break.
24	Gordon, go to the next.
25	MR. WALLIS: So you are assuming the SI

(202) 234-4433

	152
1	flow just gets washed out in the break?
2	MR. FINLEY: Right, correct.
3	So next slide, Gordon.
4	What we do, very conservatively, is take
5	this mixing volume right at the bottom of the hot leg
6	here, and then we assume the only upper plenum
7	injection flow that crosses the boundary is enough
8	flow to replace the boiloff, the steam that boils off.
9	Obviously, very conservative.
10	The rest of the upper plenum injection
11	flow is assumed to go out the break, carried out the
12	break with the steam.
13	MR. WALLIS: In reality, it is intercepted
14	by all those control rod tubes and things?
15	MR. FINLEY: Right.
16	MR. WALLIS: And it drains down on them?
17	MR. FINLEY: The guide tubes, the rods,
18	and so forth.
19	MR. WALLIS: The guide tubes and things.
20	MR. FINLEY: All that interference is
21	going to cause; plus, this is not a uniform, these
22	assemblies are not producing uniform decay heat. So
23	you will get some hot assemblies with more steaming
24	and cooler assemblies with less steaming. All that
25	would tend to drive mixing across this boundary, a
	1

(202) 234-4433

153 1 significant amount of mixing. But we don't take 2 credit for that, haven't taken credit for that. CHAIRMAN DENNING: Now I am missing some 3 4 element of that, and that is, so that the amount that 5 is going from the upper plenum injection down is matching exactly the steaming rate? Is that what is 6 7 going on? Does that mean that you have no water in 8 that period coming from the annulus? From the 9 downcomer? Right, right. 10 MR. FINLEY: This particular break, this is a hot side break. 11 This is 12 prior to the SI pumps being started, restarted. So we have no flow coming in from the cold legs at this 13 14 point in time. 15 MR. WALLIS: Well, you might have negative 16 flow, wouldn't you? If you have enough pressure drop out the break, you might actually depress the level in 17 18 the core, wouldn't you? 19 MR. FINLEY: Right. We have adequate flow 20 here from upper plenum injection to replace the 21 boiloff. Again, the level is calculated dynamically 22 with that COBRA/TRAC code, so that we know exactly 23 what the pressure drops and the manometer effect 24 around the loop is doing to the two-phased level. 25 I was just concerned about MR. WALLIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	taking too much of this safety injection out the break
2	and produce a back pressure that actually depresses
3	the level in the core.
4	MR. FINLEY: Essentially, we maintain a
5	two-phased level in the core region, which just
6	reflects that the pressure drops due to steam flow out
7	the break, yes.
8	MR. WALLIS: All right. And SI flow?
9	MR. FINLEY: That is all calculated
10	dynamically now.
11	MR. WALLIS: And SI flow, too, isn't it?
12	MR. FINLEY: Well, right now we don't have
13	the SI flow. This is the period of time while the SI
14	is turned off and we are calculating an increase in
15	boron with the SI
16	MR. WALLIS: So the figure doesn't apply
17	then?
18	MR. FINLEY: Right. As soon as we kick
19	the SI pumps on and then we get flow
20	MR. WALLIS: Oh, I'm sorry, SI is a
21	different thing. I mean the UPI, the UPI.
22	MR. DUNNE: Between low head and high head
23	SI.
24	MR. FINLEY: I'm sorry. We don't have the
25	high head SI pumps on yet in this particular diagram.

(202) 234-4433

	155
1	Once they are turned on, you would get the flow in the
2	cold leg and then up through the core.
3	MR. WALLIS: It is the UPI flow I mean.
4	That produces pressure to drop out at the break
5	MR. FINLEY: Right.
6	MR. WALLIS: which can depress the core
7	level, can't it?
8	MR. FINLEY: The steam flow and the UPI
9	flow together would produce
10	MR. WALLIS: That would depress the core
11	level?
12	MR. FINLEY: Right, that produces a
13	MR. WALLIS: So it reduces your mixing
14	volume?
15	MR. FINLEY: That is correct. We have
16	taken that effect into account. That is correct, yes.
17	Yes.
18	CHAIRMAN DENNING: Now, as you are talking
19	about this, this is merely the calculation of how much
20	boron is concentrating in this period? This is not
21	something that you are doing with a dynamic code,
22	computer code?
23	MR. FINLEY: I showed you previously the
24	input that was taken from the dynamic code
25	COBRA/TRAC
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	156
1	CHAIRMAN DENNING: Yes.
2	MR. FINLEY: that related both to void
3	fraction and mixing volume.
4	CHAIRMAN DENNING: Yes.
5	MR. FINLEY: That was then fed into,
6	essentially, a hand-calculation methodology that
7	conservatively bounded that input from the COBRA/TRAC
8	calculation.
9	CHAIRMAN DENNING: Yes. So you ran the
10	COBRA/TRAC through the entire scenario?
11	MR. FINLEY: Yes.
12	CHAIRMAN DENNING: And when you did that,
13	you had some different behavior; that is, the amount
14	of flow that was occurring from the upper plenum
15	injection was probably not exactly matching what is
16	going I mean, isn't it possible you had some flow
17	coming down the downcomer at that stage, even though
18	you had UPI injection and not SI injection or is that
19	impossible? Or was there even negative flow through
20	the lower plenum?
21	MR. FINLEY: Maybe you can help me out.
22	I'm not sure if we had any flow in the SI excuse me
23	in the cold leg or not.
24	MR. FINK: This is Dave Fink from
25	Westinghouse.

(202) 234-4433

	157
1	Yes, what we did was we used a dynamic
2	code simply to adjust our mixing volume, our control
3	volume, to account for core voiding.
4	CHAIRMAN DENNING: But you ran your system
5	code through the whole scenario, right? Forgetting
б	about what is happening with boron, you ran it through
7	the whole
8	MR. FINK: Right.
9	CHAIRMAN DENNING: And so, as a function
10	of time, you have temperatures in the core; you have
11	void fraction in the core, and this kind of stuff?
12	Right?
13	MR. FINK: That is correct. Correct.
14	CHAIRMAN DENNING: During this period we
15	are talking about, was there any flow in the positive
16	direction? I mean, was there any flow in the normal
17	direction of water coming down the downcomer and up
18	through the core or how was it
19	MR. FINK: We didn't look at
20	CHAIRMAN DENNING: How did you treat it?
21	MR. FINK: those particular regions.
22	The problem as we have it outlined here is the
23	stagnation, the stagnant pot. So under the classic
24	three-loop/four-loop design, the stagnant pot has
25	always been a cold leg break with overflow out the

(202) 234-4433

	158
1	break.
2	For a UPI plant for the longest time we
3	said there is no real stagnant pot scenario, but if
4	you look at the way we conservatively outline the
5	control volume, you would say, yes, there could be a
6	stagnant pot scenario. That scenario is where the UPI
7	flow crosses the upper plenum and goes out the break.
8	So in our dynamic code we didn't really
9	look at what was happening in the downcomer.
10	MR. WALLIS: What we are concerned with
11	here is not when it is stagnant but when it is in
12	reverse flow, that the flow actually comes out into
13	the downcomer, depresses the level in the core, and
14	decreases your mixing volume.
15	Is that precluded by your analysis?
16	MR. FINK: Well, we are looking at an
17	equilibrium condition clearly.
18	MR. WALLIS: It has to go all the way
19	around the loop?
20	MR. FINK: That is correct. We did spend
21	most of the time, most of the inspection of the
22	COBRA/TRAC runs actually looking at what happens in
23	the core region.
24	I see Mark put the slide up there.
25	MR. FINLEY: Yes, I just pulled this from
	I contract of the second se

(202) 234-4433

1 -- actually, it is an RAI response that we haven't 2 formally sent in yet, but we have shown it in preliminary form to the staff, to document the flow 3 4 the COBRA/TRAC would calculate over what we'll call 5 the cold sections versus the hot sections in the core, where you actually see some downward flow over the 6 7 cold sections of the core and upper flow over the hot 8 sections, as you would expect. 9 Average flow rate --MR. WALLIS: 10 MR. FINLEY: So the average flow would 11 be --12 MR. WALLIS: Is the average flow zero or is it positive or negative? 13 MR. FINLEY: The average flow would be 14 15 negative to replace -- correct me if I'm wrong --16 would be negative to replace the steam flow, the boiloff. 17 MR. FINK: I think the answer to the 18 19 original question, we would expect virtually no flow 20 in the downcomer and up through the lower plenum 21 because the flow would have to -- there is nowhere for 22 The equilibrium level -anything to go. 23 WALLIS: Yes, but if there was a MR. 24 pressure drop on it, it could be pushed one way or the 25 other, couldn't it?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

159

	160
1	MR. FINLEY: Yes, but then it is just all
2	water head laying on top of the core region, and it
3	will tend to communicate that effect into the cold
4	legs, but that water will quickly fill up and seek an
5	equilibrium throughout the whole rest of the reactor
6	coolant system.
7	MR. FINK: Yes, the problem statement is
8	an equilibrium condition.
9	MR. FINLEY: Right. So we don't think
10	there would be any significant flow in that cold leg
11	without the SI pumps, the high head SI pumps running.
12	MR. FINK: I think on this slide here the
13	thing that we are most interested in is, what happens
14	in the COBRA/TRAC models, a hot core channel, and then
15	peripheral channels. Clearly, what we see, as
16	evidenced in this plot here, is you get significant
17	upward flow in the center hot channels and significant
18	downward flow in the outer channels.
19	The flow that actually crosses the upper
20	plenum in the top of the core is like an order of
21	magnitude more than the boiloff. So that shows that
22	you have significant circulation within the core
23	region.
24	MR. WALLIS: Completely independent of the
25	effects of the boron density, and so on?

(202) 234-4433

	161
1	MR. FINK: That is correct.
2	MR. WALLIS: Which would enhance this
3	perhaps.
4	MR. FINK: Perhaps.
5	One other thing to take into account here,
б	the UPI flows are very high relative to the safety
7	injection flow rates. I mean you are down at real low
8	pressures at this point when these pumps are
9	injecting. The volume flow rate is very high being
10	delivered in this situation.
11	We are only assuming a little fraction of
12	it for makeup, and then everything else is just
13	getting discarded.
14	MR. FINLEY: Okay, so to carry on with the
15	analysis, we do take credit for mixing of one-half of
16	the lower plenum. We take credit for some of that
17	volume, and that is based on testing that has been
18	done previously. We think that is a conservative
19	estimate of the amount of contribution you would get
20	from the lower plenum.
21	We have calculated click on that slide
22	there, Gordon
23	CHAIRMAN DENNING: And you base that on
24	the BACCHUS tests?
25	MR. FINLEY: That's correct.

	162
1	CHAIRMAN DENNING: Is that what you meant?
2	MR. FINLEY: That's correct. We have
3	calculated, based on that mixing volume assumption,
4	the time to concentrate the boron, again, using the
5	saturation limit that is associated with atmospheric
б	pressure, a time to reach the saturation limit of
7	approximately six hours and 13 minutes.
8	MR. WALLIS: But it is really unrealistic
9	to assume that all that upper head injection, upper
10	plenum injection, goes out the break and doesn't
11	some of it doesn't go down to the core, especially
12	since you've got this circulation pattern and
13	everything going on.
14	MR. FINLEY: That is correct.
15	MR. SIEBER: If you don't know what the
16	mixing really is, you are sort of forced to make that
17	assumption.
18	MR. FINLEY: Right, right. And this we
19	will say: We have enhanced this methodology greatly
20	in response to some of the staff's recent questions.
21	So I am sure down the road we are going to look at
22	taking credit for those sorts of things. But because
23	we were resolving this on the EPU schedule, we wanted
24	to do it conservatively.
25	MR. WALLIS: Well, because it can be

(202) 234-4433

	163
1	resolved without allowing any of the water to come
2	down, you don't worry about it?
3	MR. FINLEY: Right.
4	MR. WALLIS: But if it couldn't be
5	resolved, then you might do a more realistic analysis?
6	MR. FINLEY: That is correct. That is
7	correct.
8	Now I mentioned to you with respect to
9	sump temperature we need to have the sump temperature
10	come down somewhat in order for the operators to
11	restart those safety injection pumps.
12	If you will look at this one slide here,
13	we have calculated that at 190 degrees we have
14	adequate NPSH, which occurs about four hours. Again,
15	this is for the type of an accident that would
16	maximize sump temperature.
17	CHAIRMAN DENNING: In this plant how are
18	you getting your long-term cooling for containment in
19	the sump? Is it through sprays and a heat exchange or
20	on sprays or what is it?
21	MR. FINLEY: It is RHR pumps on
22	recirculation.
23	MR. DUNNE: And containment is containment
24	air coolers.
25	CHAIRMAN DENNING: You have safety grade

	164
1	containment in those coolers?
2	MR. DUNNE: Yes, we do. Basically, we
3	have a containment spray system and a containment air
4	cooler system. We use both of them during the
5	injection phase of LOCA. When we go into recirc, we
6	basically terminate containment spray, when we
7	transition to recirc, and we just use containment air
8	coolers to do long-term cooling containment.
9	CHAIRMAN DENNING: Cooling the sump is
10	occurring by cooling through the
11	MR. DUNNE: Well, the sumps basically are
12	low head SI pumps take their suction off the sump;
13	they pump through a heat exchanger, and then that heat
14	exchanger then delivers low head back to the RCS. We
15	can also piggyback our SI pumps off the low head
16	discharge coming out of basically mobile heat
17	exchanges.
18	MR. FINLEY: Right. So the point of this
19	slide is to show that at four hours we would be able
20	to turn back on those SI, high head SI pumps, and
21	procedurally we are going to set that time at four-
22	and-a-half hours to make sure we have some margin
23	here. Even at that four-and-a-half hours, that should
24	be well before the time to conservatively saturate the
25	core region with boron.
	1

(202) 234-4433

	165
1	Next slide.
2	Okay, now we will shift gears to small
3	break, a different scenario.
4	CHAIRMAN DENNING: A quick question, and
5	that is, is it possible that for this plant we are
6	overcomplicating things? I mean, as I look at the
7	configuration here in this scenario, I mean the
8	feeling is it is probably not a real scenario in terms
9	of boron concentration. I don't know what reality is.
10	Here we are now requiring you to turn on
11	SI at a particular point, but maybe that is not a big
12	issue anyway, since you're not going to need the SI.
13	MR. FINLEY: Right.
14	CHAIRMAN DENNING: For it to go on too
15	early and you lose the SI
16	MR. FINLEY: This is conservative. We
17	have made some changes to the analysis method here
18	that we want to cautious about. We are doing it on a
19	constrained schedule to support the EPU.
20	So it does not impact safe operation in
21	terms of doing something that is not smart. So we
22	felt that this was the right conservative approach.
23	Okay, with respect to small break, here
24	the difference, the key difference is that the RCS
25	will depressurize below the high head SI pressure but
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	166
1	not below the upper plenum injection pressure.
2	Remember, I said that that is around 140 psia for the
3	upper plenum injection point.
4	So there are many small break sizes which
5	won't cause you to rapidly depressurize below that 140
6	psi point. So the significant difference here is we
7	need to take credit for operator action to help that
8	depressurization process, which is really a part of
9	our normal LOCA response procedures. That is nothing
10	new. Operators are going to want to depressurize to
11	stop an unisolatable lead regardless of the boron
12	situation. So we are just taking credit for that in
13	the boron scenario, as I will discuss.
14	So for the period of time that the low
15	head SI pumps are not injecting to the upper plenum,
16	we do expect there will be some concentration of the
17	boron in the core region, where you have boiloff
18	occurring and leaving behind boron. So we would
19	expect some concentration there.
20	But the operators would depressurize the
21	plant. Again, once you depressurize to below that
22	upper plenum injection pressure, you would get a
23	simultaneous injection setup, both from the upper
24	plenum and the cold legs. That would flush the core
25	for a break on either side.
1	I contract of the second se

(202) 234-4433

	167
1	Okay, next slide.
2	With respect to the analysis that was
3	done, again, we used the dynamic, in this case,
4	NOTRUMP analysis methodology to calculate the core
5	voiding and the mixing level, et cetera, to feed into
6	the concentration study.
7	A 4-inch break was conservatively used to
8	bound all of the small breaks in this particular
9	study. We didn't take credit for any beneficial
10	effect of sump additives. We have sodium hydroxide
11	added, and that would have a beneficial effect. We
12	did not take credit for that.
13	We calculated a time to reach the boric
14	acid solubility limit of six hours and 48 minutes,
15	assuming that the solubility limit is established
16	based on atmospheric pressure conditions.
17	Gordon, if you would click on that one
18	slide?
19	So here a similar curve that you saw for
20	large break; this is for small break. As long as we
21	initiate the upper plenum injection prior to six hours
22	and 48 minutes, we would stop the concentration
23	process at about 29 weight percent, and that's the
24	limit that corresponds to the atmospheric pressure
25	condition.
I	

(202) 234-4433

	168
1	MR. WALLIS: Stopped because the UPI now
2	flows through the core?
3	MR. FINLEY: That's correct. That is
4	correct.
5	Okay, click on this one here, Gordon.
6	So it is important now for the operators
7	to depressurize the plant prior to that six-hour-and-
8	48 timeframe. So what we did is, again using the
9	NOTRUMP analysis methodology and taking credit for the
10	operator actions, conservatively taking credit for the
11	operator actions that would occur in the EOP response,
12	we would get below the upper plenum injection point
13	within about five, five-and-a-half hours.
14	So at that point, without any further
15	action, essentially, the upper plenum injection would
16	kick in based on the RHR pump shutoff head.
17	MR. SIEBER: How do the operators
18	depressurize the plant? What do they do?
19	MR. FINLEY: The first choice for the
20	operators would be to use the steam dump system. That
21	is not what we used here. Of course, steam dumps
22	would require offsite power availability and condenser
23	vacuum.
24	MR. SIEBER: Right.
25	MR. FINLEY: So what we model here is

(202) 234-4433

	169
1	atmospheric dump valves. So they would use the
2	atmospheric dump valves next after the steam dumps,
3	and if they were to fail, then we would revert to use
4	of PORVs.
5	Next slide, please.
6	So to summarize, we feel the Ginna design
7	is robust with respect to having the upper plenum
8	injection point as part of the two-loop Westinghouse
9	design.
10	We have significantly upgraded the
11	analysis to address the staff concerns with respect to
12	void fraction, mixing volume, and decay heat. I
13	didn't mention the fact that the staff questioned the
14	uncertainty value used on decay heat. Essentially, we
15	used the Appendix K uncertainty for decay heat, and
16	that will prevent boric acid precipitation based on
17	the design and the operator response in the LOCA
18	procedures.
19	Any questions?
20	(No response.)
21	Then I will turn it over to Len Ward.
22	CHAIRMAN DENNING: I think we will
23	probably take our break now. Instead of doing that,
24	we will take our break. We will take our lunch break
25	right now, and we will pick up at 10 minutes before
1	I Contraction of the second

(202) 234-4433

	170
1	1:00.
2	(Whereupon, the foregoing matter went off
3	the record at 11:50 a.m. for lunch and went back on
4	the record at 12:51 p.m.)
5	CHAIRMAN DENNING: I think we are ready to
6	restart. So you can just go right ahead, please.
7	MR. WARD: I am basically going to talk
8	about the same items, subjects, I did on Beaver
9	Valley. It is just the equipment has changed; the
10	objectives are still the same though.
11	So I am going to talk about, first, just
12	quickly the ECCS design, show you a little picture on
13	why the limiting break for a large break is different
14	from the cold break. You know that, but I think it
15	just helps to set up what I am going to say.
16	Then I will talk about large break LOCA.
17	I am only going to talk about long-term cooling, and,
18	of course, that is boron precipitation. You need to
19	be able to remove decay heat for an extended period of
20	time. It is criteria five. In order to do that,
21	you've got to put in more water than you are boiling.
22	Then you have to make sure the boron, the boric acid
23	doesn't precipitate.
24	For small breaks, I will talk about short-
25	term behavior. Again, that is PCT, clad oxidation.

(202) 234-4433

	171
1	Then I will also talk about boron
2	precipitation for that because it is an issue for
3	small breaks as well.
4	Then we can summarize with some
5	conclusions.
6	Ginna is a two-loop plant. This plant is
7	different from all the other plants in that it has an
8	upper plenum injection system that delivers low-
9	pressure flow through two ports into the upper plenum.
10	Then it has cold leg injection. They call it high
11	head safety injection. That is delivered to the cold
12	legs.
13	So the operators don't have to realign
14	HHSI. All they've got to do is make sure the pressure
15	is low enough to get that low pressure pump on, and
16	then they will have a flushing situation.
17	Now they mentioned in the large break LOCA
18	when the RWST drains, and that takes 24 minutes for
19	the limiting large break, they turn off the high head
20	pump. You've got low pressure injection going in.
21	So for the purposes of a boron
22	precipitation calculation, that break is going to be
23	worse because we are going to make the assumption that
24	it doesn't flush the core. There is water going in
25	that keeps it covered, but we are going to assume it
	1

(202) 234-4433

	172
1	concentrates. We are not going to take credit for any
2	of the circulation, if that exists. So we are going
3	to try to do a bounding calculation there.
4	Before I get into the picture, I think you
5	saw this. Here's the high head safety injection pump.
6	It has a shutoff head of around 1400 pounds.
7	This is the important one. It is the low
8	pressure. I guess they call it RHR.
9	This is the curve and this is how I
10	received it. So this is what I put in the code. I
11	think the flow really would behave this way, but we
12	are assuming that there is no flow you've got to
13	get the pressure below 140 pounds to get the system
14	on. So for the small break where you've got to cool
15	the plant down, that is the item we are going to be
16	concerned with.
17	I think my analysis shows you are up in
18	this range where I've got at six hours, I mean you are
19	at 60 to 80 pounds per second. The boiloff is like
20	23. Remember this is a small plant. So just remember
21	that is a key ingredient.
22	My cartoon here is not to scale. I am
23	sure Sanjoy wouldn't like it, but it is simple.
24	This is at the wrong location, but I want
25	to show that the UPI comes in the center line to the
	1

(202) 234-4433

173 1 hot leg through two connections, and then you have hot 2 side and high head safety injection coming into the 3 cold legs. 4 So after 24 minutes in the large break, if 5 you turn this off, the hot leg break would become limiting because there is no flow from the cold to the 6 7 hot side. We are going to assume that any of the ECC coming in from the UPI doesn't flow in and mix and 8 9 We are just going to assume that it flush it out. 10 just replaces -- just keeps the core covered in concentrates. So that is why the hot leg break is 11 going to be limiting for this plant. 12 MR. WALLIS: Now would you explain why the 13 14 core is stagnant? 15 MR. WARD: Well, I can show you, explain The core is not really stagnant. It is boiling. 16 why. 17 Steam is rising and water is flowing down counter to 18 it to replace the boiloff. 19 MR. WALLIS: Where is that flow coming in, 20 though? 21 WARD: If you will recall, they MR. 22 Ginna people showed WCOBRA/TRAC showed, the a 23 calculation. That is their best-estimate calculation. I asked them to run that. 24 25 I will get to the reasons why. I mean

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	when you see when the boron starts to build up, but
2	that is a few slides later.
3	What that calculation shows, the water
4	going down the peripheral assemblies and rising up the
5	center. So it is just sitting there circulating,
6	replacing the water that is boiling off.
7	So the flow in the central part of the
8	core is upflow, and the flow down is really cold
9	peripheral bundles
10	MR. WALLIS: If you look at the whole
11	loop, conceivably, you could have this UPI coming in
12	and the flow actually going up the downcomer and
13	around.
14	CHAIRMAN DENNING: Well, actually, you
15	can't.
16	MR. WARD: I don't see how you could
17	get
18	CHAIRMAN DENNING: We've got a hot leg
19	break.
20	MR. WARD: Yes, it is a hot leg break.
21	CHAIRMAN DENNING: A hot leg break, right,
22	and we are looking at large
23	MR. WARD: Here's a 2-foot hole. There is
24	a 2-foot hole right here. This is 14.7.
25	MR. WALLIS: Everything is the same
	I contract of the second se

(202) 234-4433

	175
1	pressure?
2	MR. WARD: You've got cold side injection,
3	and the first 24 minutes you've got forward flow. I
4	mean everything is going to be pushed out.
5	MR. WALLIS: Well, that was my question.
6	Everywhere at a certain level you get atmospheric
7	pressure.
8	CHAIRMAN DENNING: Yes, and it can't go
9	around the loops.
10	MR. WARD: In other words, what's on, just
11	the UPI?
12	CHAIRMAN DENNING: Just the UPI is on.
13	MR. WARD: Okay. Well, the accumulators
14	and HHSI pump have filled the system up. So any more
15	water that I had in excess of the water is going to
16	spill out the break.
17	MR. WALLIS: It can't push through the
18	loop seal or something?
19	CHAIRMAN DENNING: No.
20	MR. WARD: No.
21	CHAIRMAN DENNING: Because you can't get
22	over the steam generators
23	MR. WARD: There's a steam generator here.
24	It has got to flow over the steam generator to get to
25	the loop seal. There is just a water level, there is

(202) 234-4433

	176
1	a weir here. So it is going to sit.
2	CHAIRMAN DENNING: So it is really
3	stagnant there in this case where
4	MR. WARD: Unless you boil off the water
5	maybe if you've got some wall heat on that side and
6	you boil off a little bit, I think you could get some
7	oscillations, and then that would probably promote
8	mixing. But I don't want they are not going to
9	take credit for that. I just want it to buildup
10	let's try to make this the worst let's beat it to
11	death. That is what I am trying to do.
12	These are all good questions.
13	MR. WALLIS: So there is no way the water
14	can go up and spill over that loop seal until that
15	loop seal is the loop seal full of water, too?
16	Does the water level
17	MR. WARD: Remember we've got a hot leg
18	break. There's no steam binding problem here. The
19	steam that is building up in the core, where does it
20	go? It goes out this huge hole.
21	MR. WALLIS: So everything there is at
22	atmospheric pressure?
23	MR. WARD: Yes, I am assuming we are at
24	14.7 in this guy right here, 14.7 everywhere.
25	MR. WALLIS: How about the other way? The
	I

(202) 234-4433

	177
1	other way is
2	CHAIRMAN DENNING: You mean the other hot
3	leg?
4	MR. WARD: Well, the other hot leg I
5	mean you've got two hot legs. I mean the steam is
6	going out that hole in the hot leg.
7	MR. WALLIS: So I suppose as long as it is
8	a big break this is okay?
9	MR. WARD: This is a double-ended break,
10	yes.
11	MR. WALLIS: Okay.
12	CHAIRMAN DENNING: Well, actually, we did
13	miss the possibility of steaming going up into the
14	steam generator, condensing in the steam generator.
15	MR. WARD: The path of least resistance is
16	probably right out the side and then just flow down a
17	hot leg, go up a bend, and then contract and get into
18	those tubes. I think it is going to go out the hole.
19	CHAIRMAN DENNING: But you absolutely rely
20	on water recirculating back into the core?
21	Otherwise, there is no way to keep the core cool.
22	MR. WARD: Right. The key ingredient here
23	is the LPSI pump, this UPI pump is putting in far more
24	water than you are boiling.
25	CHAIRMAN DENNING: Yes. It can flow down
1	

(202) 234-4433

	178
1	some way to get into the core.
2	MR. WARD: It is going to spill out that
3	hole.
4	MR. WALLIS: It will fill up the vessel,
5	won't it?
6	MR. WARD: Yes, sure.
7	MR. WALLIS: So just lower the curtain and
8	end the play.
9	MR. WARD: Right. That's right.
10	CHAIRMAN DENNING: That is a good
11	question.
12	MR. WARD: So for large breaks, what do
13	they need to do since you turn off the high pressure
14	pump once the RWST drains? They've got to turn it
15	back on, and you've got to turn it back on before you
16	would predict precipitation. It is simple.
17	They don't have to split the
18	MR. WALLIS: But you are foolishly
19	throwing away the other water, aren't we?
20	MR. WARD: Yes. But now for small breaks,
21	the pressure you have to remember in the large
22	break it gets down below 140 pounds, but for a small
23	break you can be above 140 pounds for a long time. So
24	what do you want it to flush the core in order to get
25	both systems working? Remember the HPSI pumps work or

(202) 234-4433

	179
1	that high pressure pump is working in the beginning.
2	We need to get the pressure down so we can get that
3	other pump from the hot side, so that if the break is
4	on the cold or the hot side, it will just flush.
5	So the key ingredient there is to cool the
6	plant down, and that is where the operator actions
7	come in. Long-term cooling is different than short-
8	term behavior PCT. The ECC is designed to keep the
9	temperatures low. The operators should just verify
10	everything is on and diagnosis. They shouldn't have
11	to take any action.
12	In the long-term cooling they've got to do
13	things. So to control boric acid, that is on the
14	operators' shoulders. It is up to them to make it
15	work. That is why we are focusing on this.
16	This being a particularly different plant,
17	we had them do a lot of calculations. Let me talk
18	about the large break model.
19	You've seen the same model in the original
20	submittal that went back, the long-term cooling the
21	large break LOCA analysis was very crude. They used
22	a decay heat multiplier of one. They assumed the
23	whole mixing line was full of liquid.
24	We didn't like that. So we said, hey,
25	let's step back and let's do a little bit better
	I contract of the second se

(202) 234-4433
	180
1	calculation.
2	So they went and they did the calculation
3	where they justified their mixing volume, took credit
4	for the void fraction, so it is not solid liquid.
5	Now we are also using the same
6	precipitation limit, 29 percent, and that is 14.7.
7	MEMBER KRESS: How good do we know that
8	number?
9	MR. WARD: What, that?
10	MEMBER KRESS: Yes.
11	MR. WARD: How good do you know that?
12	CHAIRMAN DENNING: Well, for pure boric
13	acid you know it well.
14	MR. WARD: I've got a curve from the boric
15	from the borax company. I will just show you what
16	it looks like.
17	They have measured the precipitation limit
18	as a function of temperature. We are down here around
19	29 percent, 212. If you've got additives, it is up
20	here.
21	So we are essentially using this. We are
22	using the data from this.
23	MR. WALLIS: Is this the same borax I can
24	buy in the supermarket?
25	MR. WARD: It probably is.
	I contract of the second s

	181
1	MEMBER KRESS: Twenty Mule Team.
2	MR. WARD: I think it is.
3	MR. WALLIS: Twenty Mule Team, yes.
4	MR. WARD: It is.
5	So you will recall this is the calculation
6	I did, and it says, "delay" on it. You will notice
7	that it doesn't start until 24 minutes. I will show
8	you another curve, but if you assume the boron builds
9	up from time zero, you are going to precipitate in
10	four-and-a-half, 4.8 hours.
11	I was really confused: How are they
12	getting this six hours and 13 minutes? I couldn't
13	figure it out until we finally talked enough and
14	finally he says, "Oh, wait a minute. We're not
15	letting buildup until 24 minutes."
16	The reason, the logic for that is during
17	the initial portion of the large break LOCA I have
18	high pressure pumps on; I have a hot leg break.
19	There's a lot of forward flow. You are depressurizing
20	in that upper plenum. It fills up. It is probably
21	going to concentrate within maybe the first several
22	hundred seconds.
23	But once you fill that vessel up, you've
24	got 80 pounds per second going on in one side and of
25	the order of 80 or 90 pounds going out the other side.
	1

(202) 234-4433

182 1 So you are not going to build up boron in the first 24 2 minutes. 3 I asked them to do a calculation to prove 4 that. They went and exercised their best estimate 5 LOCA model, the large break LOCA code. That code has UPI models that were reviewed. It has de-entrainment 6 7 on the guide tubes. It has entrainment phenomena that sweeps out drops. The droplet size distribution is 8 based on data for spraying horizontal jet of UPI into 9 a vertical column of quide tubes. Those models are 10 all in there, and it's got CCFL limits. If the steam 11 is too high, it won't let liquid go down. 12 So they ran that. They ran that code in 13 14 an Appendix K mode. 15 MR. WALLIS: Let's put this in 16 perspective. It starts off at 2400 parts per million, 17 is that right? MR. WARD: It starts off around, it is 18 19 3050 parts per million. 20 MR. WALLIS: What's that? So that's 21 point --22 It is like 1.5, something like MR. WARD: 23 that, 1.7. 24 MR. WALLIS: One point five percent. Ιt 25 is not .3 percent.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	183
1	MR. WARD: Yes, it is something like that.
2	MR. WALLIS: So I can't take parts per
3	million and get percent directly.
4	MR. WARD: Divide by 1748. Take the
5	ppm
6	MR. WALLIS: Okay, so it is 1.5 percent or
7	something?
8	MR. WARD: Right.
9	MR. WALLIS: And I'm going to concentrate
10	it to 30 percent. So I've got to drive off 20 times
11	as much water as I leave behind?
12	MR. WARD: Well, no, it is going to
13	concentrate at the rate it is boiling.
14	MR. WALLIS: Yes, but I mean to get 29
15	percent, I've got to drive off 19 parts in 20 of the
16	water. For 20 gallons, I've got to boil it down to
17	one gallon.
18	MR. WARD: Yes, something like that.
19	MR. WALLIS: It is a humongous amount of
20	water I've got to boil off.
21	MR. WARD: Sure, there is.
22	MR. WALLIS: I've got to start with an
23	enormous amount of water in order to finish up with
24	something which is the amount of water you're ending
25	up with in the vessel, which is concentrated to this.

(202) 234-4433

	184
1	MR. WARD: Right, and don't forget, you
2	know, there's a high
3	MR. WALLIS: So where does all of that
4	water come from that I've driven off?
5	MR. WARD: The initial water that is
6	there, the ECC injection.
7	MR. WALLIS: That's nowhere near enough.
8	MEMBER MAYNARD: Accumulators.
9	MR. WARD: You are putting in 80 pounds
10	per second in the cold side, and what's the LPSI flow?
11	MR. WALLIS: It is all accumulating all
12	that time?
13	MR. WARD: I mean, you've got a 700-pound
14	accumulator in there.
15	MR. WALLIS: And you are boiling all that
16	off?
17	MR. WARD: Right. I mean you've got two
18	huge accumulators and they just
19	MR. WALLIS: So you've got plenty of water
20	in there?
21	MR. WARD: dump tons of water in there.
22	MEMBER MAYNARD: You're putting a lot of
23	water in it.
24	MR. WARD: I'll show you when I get to
25	the
1	1 I I I I I I I I I I I I I I I I I I I

```
(202) 234-4433
```

185 1 MR. WALLIS: Not as much water as you 2 finish up with that you boiled away. That is a huge 3 amount. 4 MR. SIEBER: A couple of hundred thousand 5 gallons. MEMBER KRESS: When you boil off at 6 7 atmospheric pressure --8 MR. WARD: Yes. 9 MEMBER KRESS: -- doesn't the steam take the boron with it? 10 MR. WARD: It does, but we're not --11 12 MEMBER KRESS: You are not even going to account for that? 13 14 MR. WARD: That is not credited. 15 MEMBER KRESS: That might take your time 16 way out. MR. WARD: That is right, and there's 17 entrainment, too, that is taking that liquid and --18 19 MEMBER KRESS: Yes, not even counting the 20 entrainment, no. MR. WARD: No, I'm not counting that 21 22 either. I'm not. Zero. 23 MEMBER KRESS: Okay, so that is another 24 conservatism there? 25 MR. WARD: Right, and there's 20 percent

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	186
1	additional power on the decay heat.
2	So this calculation that I did reproduces
3	the licensee calc.
4	I just want to show you, well, what
5	happens if there is no delay? This is what I was
6	getting originally, at or around 4.8 hours. This is
7	what was confusing me.
8	But look at it this way: The additives,
9	the precipitation limit is really up here with the
10	additives and the containment. So even if it builds
11	up from time zero and it wasn't flushed at all, you're
12	still going to be okay. This is still going to take,
13	well, it is going to take a long time. This is 20
14	percent more decay heat. If you subtract if you go
15	to 1.0, it is even going to push you out farther.
16	That's at 14.7.
17	So I think it is safe to say that there is
18	some margin in that calculation.
19	MR. WALLIS: As long as it doesn't boil
20	over when it gets to about 15 percent. Suppose its
21	properties change so that it boils over like milk
22	boiling in a pan. At 15 percent, then you have lost
23	it.
24	MR. WARD: Well, none of the tests show
25	that. You think it is going to do that?

(202) 234-4433

	187
1	MR. WALLIS: You don't know that yet. I
2	don't think anyone has done tests to that high a
3	concentration. It is stopped at a lower concentration
4	than that.
5	MR. WARD: I have seen tests that have
6	gone up to 32 weight percent, but I can't discuss it.
7	I've seen it. Maybe we can talk afterwards.
8	MR. WALLIS: Okay.
9	MR. WARD: So let's go to the short-term
10	behavior and let's jump back and let's look at PCT.
11	In the original submittal they submitted three break
12	sizes. That is obviously not enough to identify the
13	peak, and the peak was found to be a 2-inch break. But
14	with a Pclad temperature of 1167, I ran that
15	calculation and I got around 1100 degrees.
16	This ECC system is probably the best I
17	have seen. I have never seen a plant with 700-pound
18	accumulators. Those accumulators come on real early.
19	They keep the core from uncovering.
20	It is really a good design in that
21	respect. It has got very high capacity, high pressure
22	pumps compared to the boiloff. I mean you could pump
23	the Atlantic Ocean through this core in about 10
24	minutes. It is why the core doesn't uncover. If I
25	run this at 1.0, there's going to be no uncovery for

(202) 234-4433

	188
1	this break specter. I am going to get no heatup.
2	So based on the calculations that we did,
3	and what they did, there's really no need for them to
4	go off and spend their time looking at these non-
5	integer break sizes when at most it might increase the
6	PCT by what, 100 degrees. I mean they are well below
7	1500.
8	So we said, "You don't need to submit
9	that." They went and did it anyway. But we really
10	didn't need it.
11	As a mater of fact, we had them look at
12	some larger breaks because and I am going to show
13	you this in a minute you turn the HPSI pump off
14	during a small break. There is no injection. Here
15	you've boiled the system down with levels in the hot
16	and cold leg, not something that I really like, like
17	to see, but they've done a lot of analysis.
18	As a matter of fact, they looked at these
19	larger breaks and turned the pump off for 10 minutes
20	because they have stated that they can make that
21	switch in five minutes and certainly within ten. When
22	you look at all these breaks, you see a drop in the
23	level when they turn it off but the core doesn't
24	uncover because of the fluid above the top of the
25	core.

(202) 234-4433

	189
1	Even for these larger breaks, they didn't
2	uncover and they didn't even take credit for the UPI,
3	only the high pressure, and it still didn't uncover.
4	So I liked that when I saw that.
5	Now we did calculations with Relap also,
6	and I am going to show you one in a minute.
7	MR. SIEBER: So if the UPI is the break,
8	that side of the break, you're still okay?
9	MR. WARD: Yes, I'm okay.
10	They also looked at severed ECC lines.
11	When you have a severed ECC line, you have one line
12	that sees 14.7 and the other one that might see 800
13	pounds. So you are not going to lose half the flow.
14	You are probably going to lose more than that. Those
15	were not limiting also.
16	Now we confirmed this with a Relap5
17	calculation, ran the 2-inch, ran a lot of breaks. Of
18	course, we were 1811 megawatts and 17.5 kilowatts per
19	foot.
20	Again, I said we confirmed that breaks on
21	the top of the cold leg, where you can fill the loop
22	seal out, didn't depress the level into the core, nor
23	did severed ECC lines become more limiting.
24	But the key here is you've got to
25	reinitiate that high pressure pump within 15 minutes,
	1

(202) 234-4433

	190
1	and I will show you why in a minute.
2	One of the things that you are going to
3	see in the calculation is I got a CHF condition again.
4	As I mentioned before, I have been talking with Josh
5	Hartz at Westinghouse. I think it is probably a
б	combination, as I said before, between assumptions and
7	differences in the code. Maybe our code is more
8	conservative. Maybe the resistance is in the hot
9	bundle or maybe they are a little too high.
10	Nevertheless, I got a 1400-degree
11	temperature. It is maybe close to 1500. But the
12	point is the PCT still remains well below 10 CFR 5046
13	limits. But we really want to understand this, and if
14	we have to pursue it further, we will.
15	CHAIRMAN DENNING: Now this is where you
16	were saying you used the Relap?
17	MR. WARD: Yes, this is Relap, and I am
18	going to show you this calculation.
19	I am looking at a 2-inch diameter break
20	here and turn the pump off. This is about the time
21	the RWST drains. Turn the pump off. This is a 2-inch
22	break, cold leg break. Turned the pump off here
23	around 7200 seconds, and in about 15 minutes the core
24	uncovered. In about another 15 minutes it is 2200.
25	So they say they can perform the action in
	1

(202) 234-4433

	191
1	five minutes, no later than ten. This is 1.2 times
2	ANS. They've probably got 20 minutes if you have this
3	break in this location.
4	So it is very important that the EOP be
5	emphasized and the training be emphasized with these
6	operators to make sure that they can do that within
7	five to ten minutes.
8	MR. FINLEY: Yes, this is Mark Finley
9	again, the Project Director for the uprate.
10	Len is correct, and we have emphasized
11	this in our procedures. They have the procedures set
12	up now to emphasize to minimize the time that these
13	pumps are off.
14	But I will make the point that you see we
15	would terminate the high head SI pumps at around two
16	hours into this event. So this is not happening five
17	minutes after the break occurs. So there would be
18	time here to ensure that the operators are briefed;
19	they understand the actions that they have to take and
20	would turn these pumps back on.
21	MR. WALLIS: Why do they turn off?
22	MR. WARD: Because not enough net positive
23	suction head. That is for the large break. You've
24	got to switch it to the sump.
25	MR. FINLEY: Right, we are shifting from
	I contract of the second se

(202) 234-4433

	192
1	the injection phase to the
2	MR. WARD: From the RWS they are
3	starting from a tank and now they have got
4	MR. WALLIS: You have drained that tank;
5	now you have got to switch to the sump? So you have
6	to realign the intake and everything?
7	MR. WARD: Yes.
8	MR. FINLEY: Right. There's three sets of
9	valves that have to be repositioned. We feel very
10	confident we can do that within five minutes.
11	MR. DUNNE: Yes, this is Jim Dunne from
12	Ginna.
13	Basically, our ops procedures, urgency
14	procedures, basically, tell our operators to basically
15	turn off SI and then check RCS pressure. If RCS
16	pressure is above a certain value, then they are told
17	to restart SI pumps. In this mode for a small break
18	LOCA that is what they would be doing. They would
19	turn it off.
20	They probably at this point in time would
21	already know what the RCS pressure is before they go
22	into the recirc mode. So they would probably even
23	make an assessment as to whether they really should be
24	turning off the SI pumps or not.
25	But the ELPs are based upon symptoms. So

(202) 234-4433

	193
1	they will check the RCS pressure, and if the RCS
2	pressure is above a certain value, they are basically
3	instructed by procedures to restarting that SI pump.
4	MR. WARD: And this break, bigger breaks,
5	and I will show you what they look like
6	MR. WALLIS: How is this affected by the
7	EPU? We are talking about power uprate.
8	MR. WARD: Well, it is a higher power.
9	MR. WALLIS: Does something change? This
10	picture is the same now. This is what they do now,
11	isn't it?
12	MR. FINLEY: That's correct.
13	MR. WALLIS: How does it change by the
14	EPU. Is it a shorter time period?
15	MR. WARD: They probably have a shorter
16	amount of time before the core uncovers.
17	MR. WALLIS: Is it really a critically
18	shorter amount of time or how does it change?
19	MR. WARD: You've probably got what's
20	the power increase, about 20 percent? So five minutes
21	maybe.
22	MR. WALLIS: So you do have a shorter
23	time?
24	MR. WARD: It is decreased by five
25	minutes.

(202) 234-4433

	194
1	MR. WALLIS: Which is significant.
2	MR. FINLEY: Like Len said, he calculates
3	something on the order of 20 minutes, I think, before
4	you would start to uncover again. So that time is
5	shortened from, say, 25 minutes to 20 minutes as a
6	result of the EPU, something on that order. But,
7	again, we can make these actions within about five
8	minutes.
9	MR. WALLIS: And has the net positive
10	suction head changed as well because of the EPU?
11	MR. WARD: I think the containment, the
12	sprays for this have been operating for this period.
13	You've got cold water in there. You've filled it up.
14	MR. FINLEY: Right. That really only
15	applies to the large break scenario.
16	MR. WARD: That is the large break where
17	you're early, you're hot, and it is probably not a
18	good thing to do.
19	MR. GILLON: This is Roy Gillon, Shift
20	Manager.
21	We run a scenario multiple times a year in
22	a simulator, and we have criteria. Typically, we can
23	get this done in five-six minutes of time. We have
24	never had any trouble getting it done in 10 minutes.
25	CHAIRMAN DENNING: And is there no option
	I

(202) 234-4433

	195
1	considered for depressurization to assure that your
2	pressure is low enough to have the BPI?
3	MR. WARD: Well, there is. I am going to
4	get to that.
5	They will initiate a depressurization with
6	both ADVs and one out, cool the plant down now. I
7	will show you, but this is the break. A break bigger
8	than two inches gets the UPI on it. It is a moot
9	point.
10	This is probably the biggest break where
11	you are only going to have hot side high head
12	injection. So if it is the biggest break, this is the
13	earliest that it would occur with the highest of K
14	heat. So I picked this one because this is the
15	limiting one.
16	CHAIRMAN DENNING: But you are showing us
17	a case in which they have not successfully
18	depressurized.
19	MR. WARD: Yes, I will show you what
20	happened.
21	MR. FINLEY: Let me just clarify. There's
22	two independent sort of issues here. This relates to
23	not turning the SI pumps back on in a timely fashion
24	when you switch from the injection phase to the recirc
25	phase.
	1

(202) 234-4433

	196
1	CHAIRMAN DENNING: Yes, right.
2	MR. FINLEY: It really doesn't relate to
3	the pressure in the RCS.
4	CHAIRMAN DENNING: Well, if you had
5	depressurized and you had the UPI on, does it make any
6	difference?
7	MR. FINLEY: Well, you are correct, if we
8	could get down below 140 psi, but this is only about
9	two hours in. We really can't get there for all the
10	break sizes, right.
11	MR. WARD: Right, and that is why this one
12	is limiting for that case, and you're right.
13	MR. DUNNE: If you did depressurizing down
14	to below the UPI cut-in pressure, you would not see
15	that interruption at all.
16	MR. WARD: Now I want to talk about long-
17	term cooling for small breaks. The analysis shows
18	that you can borrow for long periods of time, and
19	because it is a small break, the pressure remains
20	above the shutoff head of that low pressure injection
21	pump. So what do you do?
22	Well, you need to reduce the pressure
23	below 140 pounds to get the UPI on, or if you can't do
24	that, then show that it refills. I will show you what
25	that looks like in a minute in a slide.
	1

(202) 234-4433

197
Now what I asked them to do is there
were no analyses of these breaks because of this
plant. I want to know which breaks will you stay in
natural circulations, which ones refill, which ones
don't refill, and get UPI on, so we've covered all the
bases.
So they did this detailed analysis. Below
two inches the UPI comes on. So they did a pretty
good job and a pretty detailed analysis, looking at
all these with their this is their Appendix K small
break NOTRUMP code.
MR. WALLIS: Below two inches or above two
inches? You mean above two inches?
MR. WARD: I mean above. Yes, I'm sorry,
above two inches. I'm sorry. You are right.
MR. WALLIS: That was just to test us,
wasn't it?
MR. WARD: Yes, that was a test, wasn't
it?
Now what our audit calculation shows is
that for an 01 square foot break this is a 1.5-inch;
this is about 1.3 inches. I think in terms of square
feet. I don't like inches. So I have got square feet
here.

But in 2.8 hours this break refills, and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

198
this little larger break refills in about four hours.
Now the other thing I looked at is when I
said, gee, what if I fail one of those ADVs? Well,
I've got two PORVs. What does the system look like
under that condition? I will show you that in a
minute.
Let me show this critical break size range
that I could call for small breaks. We are looking at
2 inches, 1.5, 1.3. This is RCS pressure.
Now there is a 2000-second steady state,
and I didn't subtract that off, but the break opens at
2000 seconds.
Operators open both ADVs at this point and
start cooling the plant down. You can see if I have
a 1.3-inch break, if I refill and resubpool the system
somewhere in here a bigger break takes a little
longer. I'm out here maybe four hours. If you look
at the void fraction in the core, it goes to zero for
this 1.5-inch break and it will go to zero back here
for this slightly smaller break.
Now if I look at a 2-inch break, I am
depressurizing, but what happens is I get down below
100 pounds. So I am right in here. So the UPI is on.
So I am fine.
Bigger breaks, depressurize faster. I get

(202) 234-4433

	199
1	more and more flow. Smaller breaks will refill
2	earlier, and you will probably repressurize up near
3	1400 at some point because the break is so small. So
4	the operator will see that response.
5	All breaks from roughly two inches down
6	will refill and resubpool and disperse the boric acid.
7	Good system response.
8	Now I am going to say, what happens if we
9	only have I'm looking at a double failure here. I
10	just wanted to see what this looked like. This is
11	that 1.5-inch break. I have one ADV and I am only
12	opening up two PORVs, and I am hanging up in pressure
13	for a while. Let's blow that up. So I am out eight
14	hours.
15	Actually, what is happening is the low
16	pressure pump is coming on here. This is about 140
17	pounds. I would like to see it get down around 120
18	pounds because now you are getting a lot of flow in
19	there and it is flushing. It is flushing, okay, but
20	I am out probably eight hours.
21	But the point is, if I have delayed the
22	cooldown and I am coming out here and it is a slow
23	it is at a high temperature, there's a high limit. It
24	is not 29. It is 35, 40. As a matter of fact, in
25	this case it is probably greater than 50 percent if I
	I contract of the second s

(202) 234-4433

	200
1	look at the boric acid concentration as a function of
2	time. I am at a higher pressure. I have a lower void
3	fraction. So it takes a while even to get to 29, but
4	the limit is way up off the top of this page because
5	I am over 300 degrees.
6	So the point here is you don't want to be
7	crashing the pressure down if you have been boiling
8	for a long time. So we made a point to have some
9	discussions about changes to the EOPs, the guidance,
10	to make sure that in order for this to be successful,
11	you start to cool down at one hour. Caution the
12	operators, if you have been boiling, not to crash the
13	pressure down if you are out there eight or nine
14	hours.
15	There are strict statements that do not
16	exceed the 100-degree-per-hour cooldown limit, and
17	that will prevent you from, say, opening the bypass
18	and crashing the pressure down if you get power back.
19	We don't want that to happen.
20	So we basically talk about emphasizing
21	cool-down time and the equipment and the timing and
22	the operator actions, and their attention to this
23	event, because it is going to be controlled by them.
24	There are training programs that they are
25	running their operators through. As a matter of fact,
1	

(202) 234-4433

201 1 I think we are going to verify and observe and make 2 sure that we see these things being done by the 3 operators and they are done very effectively and very 4 timely. 5 MR. FINLEY: Yes, and this is Mark Finley, again just to interject. 6 7 Like Len says, the priority is on starting the cooldown and then finishing the depressurization 8 9 prior to the boron concentrating. This really fundamentally doesn't change 10 the operator response to a small break LOCA, however. 11 12 We are not having to make any significant logic or sequence changes in the EOPs. We are doing some 13 14 streamlining to minimize these times, but 15 fundamentally the operators are going want to cool down and depressurize the plant to stop or minimize 16 17 the leak. is 18 So what have done we put some 19 cautionary statements in the procedure to emphasize to 20 the operators to get the cooldown started within an 21 hour and then to get below the UPI injection point 22 within about five-and-a-half hours. 23 So I quess I can summarize the MR. WARD: 24 review. Initially, we asked the licensee to do some 25 more calculations because we learned the HPSI pumps,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	202
1	because of their design, are terminated for small
2	breaks. There were some omissions in their long-term
3	cooling analysis.
4	They did a detailed analysis to show what
5	breaks refill, what don't, what can be cooled down,
6	and what can be refilled if you can't flush. There
7	was a very detailed spectrum analysis that was done
8	with their NOTRUMP small break LOCA code to show that.
9	The temperatures are low for small breaks
10	because the ECC design is very robust. They have very
11	high pressure accumulators, 700 pounds. That
12	terminates, prevents, precludes, basically precludes
13	uncovery in the real world, and even in Appendix K
14	space we're get what, 1100-1200 degrees. Good design.
15	Staff calculations confirm their
16	precipitation. As a matter of fact, by doing the
17	calculations we have found out a lot about the plant
18	and understood better how this thing works and what is
19	going on in the beginning of the transient as well as
20	at the end.
21	It showed that boiling can last for a long
22	time, and equipment and timing for its use is very
23	important and needs to be emphasized again and again.
24	I think that is a key ingredient here.
25	I think by this whole analysis, the
	1

(202) 234-4433

	203
1	emphasis on operator actions is a positive safety
2	thing, and it is going to be included in their
3	training programs for their operators. The analysis
4	that the vendor has done is going to be able to show
5	these operators what is the signature of this, what's
6	it going to look like, how long do we have to get
7	down. So there's a lot of good analyses they can use
8	there to supplement the information the operators
9	have.
10	Based on the calculations that they have
11	done, I looked at the short-term small break LOCA
12	behavior and the long-term cooling and feel that it is
13	a bounding calculation. It is comprehensive and it
14	meets 10 CFR 5046.
15	CHAIRMAN DENNING: I have a couple of
16	questions that I don't consider EPU questions. That
17	relates to the modeling assumptions associated with 50
18	percent of the lower plenum and this kind of stuff.
19	MR. WARD: Right.
20	CHAIRMAN DENNING: The BACCHUS experiment
21	is the principal rationale that you have
22	MR. WARD: It is one of them.
23	CHAIRMAN DENNING: that are supportive
24	of that?
25	MR. WARD: It is one of them. There's a
	1

(202) 234-4433

	204
1	Finnish paper, and I am not sure if you remember,
2	Ralph, or not; I think I gave you a copy of that.
3	That shows some lower plenum mixing as well, but they
4	have some current concerns with scaling.
5	I mean we have the same concerns with the
6	BACCHUS. There's a gradient; there's a concentration
7	gradient in the core. We are mixing everything
8	together.
9	So I took the code that I developed and I
10	predicted that if I assumed the entire lower plenum,
11	I am too late on the precipitation. So I cut the
12	lower plenum volume in half, and I better predicted
13	the timing for when the top half of the core reached
14	the limit.
15	MR. WALLIS: That comes from matching the
16	BACCHUS data within a model?
17	MR. WARD: Yes, the boiloff. Right. I
18	took my model and modeled that test and compared it to
19	the boron concentration as a function of time.
20	CHAIRMAN DENNING: I think that we don't
21	understand the BACCHUS experiment well enough to
22	really understand its direct applicability in a manner
23	like that.
24	MR. WARD: Okay.
25	CHAIRMAN DENNING: I think that one can do

(202) 234-4433

205 more mechanistic analyses of what is really happening 1 2 in attempting to predict the BACCHUS experiment. 3 MR. WARD: Yes. 4 CHAIRMAN DENNING: We would like to see some effort done there. 5 earlier 6 You know, we had some 7 recommendations related toward looking at what happens 8 as you get closer to precipitation. 9 MR. WARD: I agree. CHAIRMAN DENNING: I understand there's 10 some work that is going to happen there. 11 12 MR. WARD: Right. CHAIRMAN DENNING: We would like to see a 13 14 little more. We will gladly share that with 15 MR. WARD: I mean, for example, what I would like to see is 16 you. 17 break the core up into 10 regions and model the That is a more sophisticated calculation, gradient. 18 19 but --20 CHAIRMAN DENNING: Yes, I think you can do 21 that calculation --22 Yes, that can be done. MR. WARD: That 23 can be done. CHAIRMAN DENNING: -- in a mechanistic 24 25 way.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	206
1	MR. WARD: Yes, I think it can be done.
2	I agree with you.
3	This generalized letter with the concerns
4	in it about how the vendors have been doing
5	calculations, that is one of the issues in there.
6	This one, this average concentration, show
7	me that that make it bounding or do a detailed
8	calculation. Show me what it is. What does it really
9	look like?
10	MR. WALLIS: Wasn't there some kind of
11	critical thing in BACCHUS where after it got a certain
12	difference it turned over or something?
13	MR. WARD: Yes. They are putting in cold
14	water. Once the concentration in the core and upper
15	plenum exceeded the density in the lower plenum, then
16	it started to mix.
17	MR. WALLIS: And then it turned over. It
18	is a turning-over criteria.
19	MR. WARD: Then it turned over, yes. You
20	can look at the Finnish test and you will see the same
21	thing. It occurs at a different time. It is at a
22	different temperature.
23	But there are a lot of questions, and the
24	owners' group are addressing them right now.
25	MR. WALLIS: You have a half. If you had

(202) 234-4433

	207
1	something like a third, this would change the time
2	when they have to take action?
3	MR. WARD: Sure, absolutely. Sure. Lower
4	plenum is probably worth three or four hours on pre-
5	set time.
6	MR. WALLIS: I think this is a little bit
7	tenuous, this determination of just what the time is
8	when they have to take action.
9	MR. WARD: Well, remember the limit is
10	more like 40 percent. If you threw out the lower
11	plenum, you've got 15-16 hours.
12	CHAIRMAN DENNING: Well, we hear you, but
13	we would like to see a little more to make us
14	understand what is really going on.
15	MR. WARD: All I am saying is there is a
16	margin there, and they are doing analyses to address
17	all these issues. We don't have all the answers right
18	now, but we are going to get them.
19	MR. WALLIS: There's a research program in
20	RES that is addressing this?
21	MR. WARD: Well, no, but
22	MR. WALLIS: Is it Westinghouse? Who is
23	addressing it?
24	MR. WARD: The owners' group.
25	MR. WALLIS: The owners' group.
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	208
1	MR. WARD: The letter went out to all of
2	the vendors and utilities who do calculations, asking
3	them well, there was a list of concerns on how they
4	do their calculations. We wanted to get them on the
5	same page. There are a lot of questions about
6	justification for their model; what happens when
7	you've got debris going in there; what happens when
8	you add cold water. That is in there, too.
9	There's probably two pages of issues that
10	I see is going to require some experiments to
11	MR. WALLIS: What will concern me is if,
12	as a result of this new research, you have to
13	radically revise your view of boron precipitation.
14	MR. WARD: Boy, I hope that doesn't
15	happen.
16	MR. WALLIS: I know.
17	MR. WARD: I know. Well, I can't stand
18	here and say, "Boy, that's not going to happen." I
19	can't. That's why we asked the questions.
20	MR. WALLIS: Well, think of all the
21	surprises you got with the sumps. Surprises do
22	happen.
23	MR. WARD: That's right. Well, I suspect
24	there's going to be a few surprises here.
25	MR. WALLIS: We will shine the spotlight

(202) 234-4433

	209
1	on you in a while. Okay.
2	MR. FINK: If I can say something? It is
3	Dave Fink of Westinghouse.
4	I heard something up here, if you will
5	forgive me. The WAD program has been mentioned a few
б	times here.
7	Recently, the NRC sent a letter to the PWR
8	owners' group stating the staff's principal boric acid
9	precipitation methodology concerns. The PWR owners'
10	group is in the process of preparing a response to
11	this letter.
12	I happen to be the lead, the Westinghouse
13	lead on that program, so I know a little about it.
14	It is important to emphasize that the
15	methodology concerns raised by the NRC in their letter
16	have been addressed for Beaver Valley and Ginna for
17	the uprates, as we discussed over the past few days.
18	As suggested by the staff, in the owners'
19	group response to the NRC letter we use insights from
20	these analyses, that is, as performed for Waterford,
21	Beaver Valley, and Ginna, to show that from the plants
22	represented by the owners' group that existing
23	calculations are conservative and that existing
24	emergency procedures will prevent boric acid
25	precipitation after a LOCA.
	I

(202) 234-4433

210
While the upcoming owners' group response
to the staff's letter addresses the principal
methodology concerns, there are many other tougher
questions that the staff and the Committee have raised
regarding mixing phenomena in the reactor vessel and
regarding boric acid solutions in general.
These questions are the subject of ongoing
GSI-191 programs and also a longer-term owners' group
boric acid precipitation methodology program. The
objective of this latter program is to answer the
questions that can be answered and, probably more
importantly, to show that the methodologies such as
those used for Waterford and Beaver Valley and Ginna
are adequate to ensure the safe operation of the
plants and to demonstrate compliance with all
regulations.
The owners' group intends to meet with the
staff in the near future to discuss this program, the
specific objectives of this program, and the long-term
solutions to these questions and these problems.
CHAIRMAN DENNING: Thank you for that.
I think we are done now with the
presentations, and I think we are just into some
wrapups.

MR. FINLEY: Yes, Dr. Denning?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

б

	211
1	CHAIRMAN DENNING: Please.
2	MR. FINLEY: There is one open question
3	from this morning. We do have some data with respect
4	to the question about RETRAN uncertainties. So we
5	would like to show you that data.
6	CHAIRMAN DENNING: Please do that.
7	MR. FINLEY: Okay.
8	MR. HUEGEL: My name is Dave Huegel. I am
9	from Westinghouse.
10	One of the things that was being discussed
11	this morning was the loss-of-flow event. What we have
12	here is I just put together a plot where the blue line
13	and I picked out points as best I could of what the
14	flow coast-down was as measured at the Ginna plant.
15	This is a normalized curve and it is based
16	upon whatever the actual flow that was being measured
17	at the plant. Keep in mind they do have a tech spec
18	which identifies the minimum measured flow that the
19	plant has to meet and verify going into a cycle that
20	they are above that flow rate.
21	The minimum flow rate that we assume in
22	the safety analysis is the flow that we were doing the
23	DNB calcs and lower than what the plant has to ensure
24	that it is meeting.
25	What you have here in the purple line,
1	

(202) 234-4433

5 Probably the biggest difference between these two curves is, as I mentioned this morning, the 6 7 fact that in the safety analysis we take off 10 percent from the pump inertia, and we do in the safety 8 9 analysis model all of the pump characteristics, the 10 homologous curves, so that we have captured in the RETRAN model an accurate representation of what the 11 12 plant or the pump models are.

Another thing that I mentioned in the 13 14 loss-of-flow analysis, when we assume the rods are 15 dropping into the core, that is based upon a confirmation that the plant performs based upon full 16 17 RCS flow conditions. As you can see, during the coast-down you are going to be at a degraded flow 18 19 condition, and we would expect that the rods would 20 fall into the core even faster.

Another thing that we do is in the modeling of the reactivity that is inserted in our point kinetics model, as I mentioned, it is assumed that there was a xenon transient in effect where your reactivity is pushed towards the bottom of the core,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

212

213 1 and that is what we assume for the addition of the 2 reactivity as the rods are falling into the core. Yet, at the same time when we do the DNB 3 analysis we would assume a shape that is closer to a 4 5 shape that has an AFD axial flux difference closer to limiting 6 zero, which would be for DNB-type 7 calculations. So, at the same time, you would have a 8 9 reactivity shape where your axial power shape is skewed towards the bottom of the core. Yet, at the 10 same time we are assuming a DNB axial power shape that 11 12 is skewed more closer to the top of the core. So that is an additional conservatism that we have within the 13 14 analysis. 15 The results that are represented this morning were for the under-frequency decay case. 16 The 17 way that the pumps operate is they operate off of the frequency on the grid. So if you have a change in 18 19 frequency, it affects how the pumps are operating. 20 Fluctuations in voltage typically don't affect the 21 pump speed that much. 22 What we have here is a case where we have 23 assumed a very conservative 5 hertz per second decay 24 in the pump coast-down. Now one of the features at a 25 typical Westinghouse plant, and it also applies to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	214
1	Ginna, is that as soon as you hit the under-frequency
2	set point, then your trip breakers would, your pump
3	breakers would open, and the pumps would be free to
4	coast down.
5	So that at some point in here the pumps in
6	reality would begin to follow the line closer to what
7	you would see in the purple line, actually the blue
8	line. Yet, we have assumed in the analysis that the
9	pumps are dragged all the way down to essentially a
10	zero condition at 12 seconds.
11	So this is just to show you the comparison
12	and to tell you that we did do a comparison of what
13	the actual plant data would be versus what we have
14	assumed in a safety analysis.
15	MR. WALLIS: There is no plant data per se
16	here?
17	MR. HUEGEL: Well, the blue is the plant
18	data.
19	MR. WALLIS: It is plant data?
20	MR. HUEGEL: Yes.
21	MR. WALLIS: Okay. I wasn't quite sure
22	MR. HUEGEL: I'm sorry, yes.
23	MR. WALLIS: if it was your prediction
24	from realistic or it is the plant. Oh, it is actually
25	the data? Okay.

	215
1	MR. HUEGEL: Yes, that is actually the
2	data, yes.
3	MR. WALLIS: It is a line through the data
4	or does the data have a big scallop
5	MR. HUEGEL: I was just given a plot from
6	the UFSAR, and I was picking off points as best I
7	could. I apologize; I didn't do a super job there
8	with the blue line.
9	MR. WALLIS: Which is one transient.
10	There's no bouncing around?
11	MR. HUEGEL: No. If there was any
12	bouncing around, it would probably be to detect noise.
13	I mean we do see, if you look at, for example, your
14	hot leg temperatures due to the RTDs being where they
15	are, you do see noise in your hot leg signals which
16	presents a problem for like the over temperature delta
17	T, which has a lead lag function. If you have a spike
18	in your T-hot which affects your TAV, you get a
19	spurious spike on your margin of the OTDT, which isn't
20	real, yet presents a problem in terms of ensuring a
21	plant margin when you are just in a steady-state
22	condition.
23	MR. WALLIS: This is graph paper.
24	(Laughter.)
25	MR. FINLEY: That is the curve from the
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433
	216
1	UFSAR and shows the two-pump coast-down alpha and
2	bravo flow.
3	MR. WALLIS: This is measured?
4	MR. HUEGEL: Correct, that is measured.
5	MR. FINLEY: Correct. That was part of
6	the hot functional testing when Ginna initially
7	started up. Dave just transcribed that data to the
8	plot you see on top, the blue.
9	MR. WALLIS: Oh, okay.
10	MR. HUEGEL: I am due for an eye exam. So
11	I apologize.
12	CHAIRMAN DENNING: Now are you going to
13	show other characteristics then of the
14	MR. HUEGEL: Yes, yes.
15	CHAIRMAN DENNING: Go ahead.
16	MR. HUEGEL: Were there any questions?
17	CHAIRMAN DENNING: I understand that, yes.
18	MR. HUEGEL: This is a comparison of the
19	RETRAN that we just recently completed. This was for
20	the Ringhals 3 plant. It is a plant in Sweden where
21	we did some comparisons against plant data.
22	We don't have any, other than what I was
23	just showing you with the flow coast-down for Ginna,
24	but here is a comparison, if you can see that.
25	CHAIRMAN DENNING: It looks like you cut

```
(202) 234-4433
```

	217
1	off the top. What are they?
2	MR. HUEGEL: I'm sorry. That is the
3	nuclear power transient.
4	This is for a power load decrease, and the
5	hash line in here is the plant data, and the red line
6	is what the RETRAN model is doing.
7	MR. WALLIS: After being adjusted?
8	MR. HUEGEL: Yes, keep in mind that the
9	RETRAN model, we are using a point kinetics model. So
10	as your rod control system is moving in and out, we
11	have some differential rod data, but the fact that we
12	are using frozen feedback and a point kinetics model,
13	we did have to make adjustments to that differential
14	rod worth. Once we did, we got a close match with the
15	nuclear power.
16	MR. WALLIS: Are you fitting the data or
17	are you making a real comparison?
18	MR. HUEGEL: Well, this, actually, on the
19	nuclear power, you would say it is more like fitting
20	the data. Then the question is, how is the RCS
21	responding to the transient once you have done a
22	comparison or a fit of the nuclear power?
23	This here is your vessel TL. The plant
24	data is the black hash line, and your red line is the
25	RETRAN predicted

(202) 234-4433

	218
1	MR. WALLIS: You have used invisible ink
2	for the RETRAN base somehow?
3	(Laughter.)
4	MR. HUEGEL: Actually, it's in there.
5	CHAIRMAN DENNING: It's in there. Yes, I
6	see it.
7	MR. WALLIS: It is sort of visible.
8	MR. HUEGEL: But this is a comparison
9	where we have the rod control system turned on. We
10	have the steam dumps model. We also have your
11	pressurizer pressure control and level control all
12	turned on. So all these kinds of different control
13	systems that certainly we don't credit when we perform
14	a safety analysis.
15	CHAIRMAN DENNING: And that is a pretty
16	fine scale, actually. I mean things are a little bit
17	tight
18	MR. HUEGEL: Yes. Granted, it is.
19	Here is a plot just showing response of
20	the RETRAN model to the pressurizer level. Again,
21	given the scale, I think it is tracking the results
22	rather well.
23	Here's the pressurizer pressure transient,
24	again, the red being the RETRAN results and the hash
25	line being the plant data. So it is showing a fairly
	I contract of the second se

```
(202) 234-4433
```

	219
1	good match of this transient where you are getting
2	fairly substantially large changes in the nuclear
3	power and other parameters.
4	This is the coolant flow, the RCS coolant
5	flow, the loop steam flow, steam header pressure.
6	MR. WALLIS: Wait, wait.
7	MR. HUEGEL: Do you want to go back and
8	look?
9	MR. WALLIS: So when we look at these, we
10	see a sort of agreement, but there's a difference,
11	too. So we don't quite know how to interpret this
12	when you show us a plot of a prediction of a
13	transient, how much we should allow for RETRAN
14	uncertainties around that prediction, because we know
15	there are some, as you can see here.
16	MR. HUEGEL: Sure.
17	MR. WALLIS: We don't quite know how to
18	translate what you show us here to what you showed us
19	earlier today.
20	MR. HUEGEL: Again, I would look at the
21	scale and say that, yes, it looks like a big change,
22	but if you look
23	MR. WALLIS: This is a proportionate
24	change or is it a certain error and a certain number
25	of bars?
	I

```
(202) 234-4433
```

	220
1	MR. HUEGEL: I think it is more a function
2	of the units that were selected. I mean I only have
3	70 units a bar here.
4	The other thing, as I was mentioning this
5	morning, the other important point is we do make very
6	conservative assumptions in the analysis in not
7	crediting the different control systems, which gives
8	us what we believe a very conservative analysis.
9	When we do a comparison, for example, to
10	flow coast-down, we do see that we are predicting a
11	very conservative coast-down.
12	MR. WALLIS: In this case the actual
13	pressure is significantly above the RETRAN phase. The
14	change in pressure is also significantly bigger.
15	MR. HUEGEL: Keep in mind this is the
16	steam header pressure.
17	MR. WALLIS: Right.
18	MR. HUEGEL: We are most concerned in
19	looking at the steam pressure and the steam generator
20	conditions, not necessarily what is going on down in
21	the steam header. So the question is in most
22	plants you do have different runs between where your
23	steam generators are located and then your piping to
24	where they are all headered together. So it could
25	have been the assumption that is made in terms of what
	I

(202) 234-4433

	221
1	piping was selected, because I don't really care what
2	is going on at the header.
3	My concern is what is going on in the
4	steam generator and between the steam generator to
5	where the safety valves are connected. What's the
б	delta P between those two points? What happens down
7	at the header is not really a big concern.
8	CHAIRMAN DENNING: Why don't you go find
9	another curve that is more appropriate than on the
10	pressure.
11	MR. HUEGEL: Well, the good plot I thought
12	was on the pressurizer pressure where we did actually
13	have a good comparison of what the plant was
14	indicating in terms of a pressure versus what RETRAN
15	was showing the pressure was.
16	CHAIRMAN DENNING: Yes.
17	MR. HUEGEL: Obviously, the peak pressure
18	is one of the parameters of concern in the non-LOCA
19	analysis that we do look at.
20	MR. SIEBER: Probably if you started your
21	scale at zero, it would appear to have much greater
22	correlation.
23	MR. HUEGEL: Yes. There's all different
24	ways of manipulating the data. That would be one of
25	them.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	222
1	(Laughter.)
2	MR. SIEBER: And it is apparent.
3	CHAIRMAN DENNING: Is there anything else
4	you were going to show us then?
5	MR. HUEGEL: If that is good enough
6	CHAIRMAN DENNING: Yes, excellent.
7	MR. WALLIS: It is very interesting. It
8	is, however, qualitative, isn't it? So we don't quite
9	know how to look at its effect in some sense.
10	MR. HUEGEL: Well, I still feel very
11	strongly that the methodology that we are using for
12	performing the analysis is very conservative and does
13	a good job of ensuring that the plant is safe.
14	If I look back, like I was talking about
15	with the rod withdrawal at power, we analyze a whole
16	wide range of cases and go all the way to the
17	condition of trip. I know from my discussions with
18	plants that they have problems just at normal
19	operating conditions because of the noise in the
20	channels and the hot legs, of having margin to the
21	trip, and that is without any transient going out at
22	all.
23	Yet, here I am running my transients and
24	going up to power levels of 120-130 percent, which is
25	where I have the trip set points because I have
1	1

(202) 234-4433

	223
1	accounted for all the safety analysis uncertainties.
2	In the case of an OTDT K-1, the uncertainty is on the
3	order of 15 percent. So I've got my safety analysis
4	that is showing I've got a nice, smooth plot of here's
5	what TAV is doing. Yet, at the plant it is bouncing
6	all around, and with the lead lag compensation, it is
7	trying to compensate for the difference between
8	indicated and actual conditions. I am running into
9	problems trying to ensure the plants have adequate
10	margin just for normal operating conditions.
11	Then if you go out, say, for example, a
12	loss of loss in feedwater event, that is a heat-up
13	event. Well, if you were to ask a plant when they
14	have a loss in feedwater event, it is a problem in
15	terms of maintaining shutdown margin because they get
16	so much cooling because of the aux. feedwater.
17	Yet, we would assume a turbine-driven
18	failure. We assume one of the two motor-driven has
19	failed and is at a minimum condition. So that we
20	would analyze it in safety space; it is heatup event
21	long term. But if you look at the plan, it is a cool-
22	down problem.
23	So I feel very comfortable that the
24	methodology that we are applying in these different
25	events is conservative and robust and ensures that the

(202) 234-4433

(202) 234-4433

	224
1	plants are operating in a safe manner.
2	CHAIRMAN DENNING: Thank you.
3	MR. HUEGEL: Thank you.
4	CHAIRMAN DENNING: Okay, let us now move
5	into our wrapup.
6	MR. FINLEY: If we perhaps could
7	summarize, Mark Flaherty would just give a conclusion
8	from our side.
9	MR. WALLIS: Well, I have a question. I
10	was just looking here at this solubility of borax
11	versus temperature. Do you have also some sort of a
12	curve of the boiling point versus the degree of borax
13	dissolved in the concentration? Is there a boiling
14	point elevation due to concentration as well, a curve
15	like that you could give us to take away?
16	CHAIRMAN DENNING: Yes, also if you have
17	density, too, because
18	MR. WALLIS: Density, too, because all
19	those things are related, yes.
20	CHAIRMAN DENNING: I had some trouble
21	getting the density's function on concentration.
22	MR. WALLIS: If we want to look at BACCHUS
23	with some intelligence, we need to have that sort of
24	stuff.
25	MR. FINLEY: I'm not sure this is what you
	1

(202) 234-4433

	225
1	are looking for.
2	MR. WALLIS: That is solubility. I was
3	looking for boiling point. Presumably, as you
4	dissolve more borax, the point goes up, does it?
5	MR. FINLEY: I don't have the boron point.
6	MR. FINK: This is Dave Fink.
7	Mark, go back to that plot you just had up
8	there.
9	MR. WALLIS: There is a boiling point. It
10	says, "Boric acid solution boiling point, 218," but
11	that must be at some concentration.
12	MR. FINK: That is at the atmospheric
13	solubility limit, that is correct.
14	MR. WALLIS: That is at 30.
15	MR. FINK: Correct.
16	MR. WALLIS: So it hasn't changed very
17	much then. I presume it is coming up from 212 to 218,
18	as you have added up to 30 percent by weight.
19	MR. FINK: That is correct.
20	MR. WALLIS: So it hasn't changed that
21	much. Okay, thank you.
22	MR. FLAHERTY: In conclusion,
23	Constellation came back today really to discuss four
24	topics. Two of them were bring-backs.
25	For the first one, dealing with alloy 600
	I contract of the second se

(202) 234-4433

	226
1	material and PWSCC, we believe that we proved that it
2	is not a concern with respect to uprate.
3	The other bring-back item dealt with the
4	margin. Obviously, we have had lots of discussion
5	about margin. I believe that what we attempted to
6	show you today was that there's margin in many
7	different aspects with how we do things. This
8	includes inputs, assumptions of keeping RCS pressure
9	at nominal value even though it increases, and not
10	crediting that for DNB; looking at reactor trip at 1.4
11	seconds versus less than 1 second; doing some analysis
12	at 102 percent power; looking at steam generator
13	plugging from 0 to 10 percent, depending on which is
14	worse case. So that is one aspect for inputs.
15	We just discussed again some of the code.
16	The code has been benchmarked somewhat against real
17	plant data.
18	There's also margin and safety analysis
19	limits where we do assume penalties in looking at
20	margin with that.
21	Finally, even the design limits, even
22	though there's, for instance, a limit of 3200 pounds
23	for RCS pressure from ASME code, that is just at the
24	point at which you have an increased probability of
25	causing additional damage. So there is additional
1	1

(202) 234-4433

	227
1	margin even beyond that.
2	So, in sum, there's lots of different
3	sources of margin within the analysis.
4	With respect to the two new topics we
5	discussed today for small break LOCA and long-term
6	cooling, we did demonstrate that we do have acceptable
7	results. I would like to reiterate that the analyses
8	that were done were very conservative from the
9	standpoint of looking at things even from decay heat
10	of 120 percent. This decay heat, that adds that
11	affects the analysis in many ways with respect to what
12	we believe would actually occur during a real event.
13	To put this in perspective somewhat, with
14	the higher decay heat, you are going to have increased
15	steaming and, therefore, increased pressure inside
16	containment. So this will increase the need for
17	containment spray.
18	But, in all honesty, if you look at just
19	normal decay heat with reduced, relatively reduced
20	steaming effects, so, therefore, containment pressure
21	would be reduced; hence, containment spray by
22	procedure would be looked to be terminated in an
23	earlier standpoint, extending out the period of time
24	in which operators would look to go on to
25	recirculation.

(202) 234-4433

	228
1	So a lot of these conservative aspects,
2	that type of thing, do have effects on the analysis.
3	So even though there may still be some lingering
4	questions or generic comments that the staff is
5	dealing with the PWR owners' group and things like
6	that, we believe that what was done for Ginna is more
7	than sufficiently conservative enough to bound any of
8	those potential issues.
9	So, with that, I would like to conclude
10	Constellation's presentation.
11	CHAIRMAN DENNING: Good. Well, before you
12	leave, let me say thank you for the presentations.
13	You certainly addressed the issues that we asked to be
14	addressed at the last meeting, and I think you have
15	done that very well. I would like to congratulate the
16	presenters and thank them.
17	We will be providing some guidance to you
18	on the presentations for the upcoming meeting.
19	Obviously, we have two hours of which we will have
20	presentations that will be much more focused than we
21	have had in our couple of days of reviews here. We
22	will try to get that guidance to you by tomorrow as to
23	what our expectations are, and also to the regulatory
24	staff, of course.
25	There is some duplication, obviously, that
	1

(202) 234-4433

	229
1	occurs in these presentations. We will probably
2	remove some of that duplication for the presentation
3	to the full Committee.
4	You will also hear we will have some talk-
5	arounds here before we are done. Perhaps you will get
6	some additional guidance from the individual members
7	of the Subcommittee before we are done today. Okay?
8	So we will have the wrapup by the
9	regulatory staff now.
10	MR. MILANO: No, sir, we don't have
11	anything else that we would like to put on the record
12	and stuff. Just what we were going to wrap up you
13	have just mentioned. We were going to ask about the
14	guidance and when to expect it in preparation for the
15	full Committee meeting.
16	CHAIRMAN DENNING: Good. Again, I think
17	we will try to get that to you tomorrow.
18	I would like to thank the staff, too,
19	because I think that we did get quite a bit of
20	enlightenment on some of the things that have been
21	bothering us at the previous meeting, and staff's
22	analyses were very helpful in that. Thank you.
23	MR. MILANO: Thank you.
24	CHAIRMAN DENNING: Okay, then why don't we
25	go around the table. Jack, do you have some comments?

(202) 234-4433

	230
1	MR. SIEBER: Not very many. We had some
2	questions at our meeting last month, and I think both
3	the licensee and the staff did an excellent job of
4	providing the answers.
5	One of those questions about materials was
б	mine. That was properly answered. I think that from
7	my standpoint any concerns that I might have had
8	trying to guess where alloy 600 was are no longer
9	there because they aren't in critical places.
10	I thought the explanation of how safety
11	calculations are done, I think Otto and I both have
12	been through that a few times. On the other hand, I
13	even learned a couple of new things in the process of
14	the presentations myself, and I thought that was well
15	done.
16	MR. WALLIS: What did you use? Did you
17	use 1.38 or 1.55 or what did you use?
18	(Laughter.)
19	MR. SIEBER: 1.55.
20	MR. WALLIS: You used 1.55.
21	MR. SIEBER: You get to pick your own
22	number.
23	(Laughter.)
24	MR. WALLIS: Otto?
25	MEMBER MAYNARD: I'm trying to remember

```
(202) 234-4433
```

	231
1	what it was. We actually took over our own safety
2	analysis. Again, you go back the real number is
3	what the design criteria is, and then, again, you pick
4	a number that gives you design specification margin
5	for your field design and how much you want to use for
6	that and how much you want to be able to use in case
7	you find something later you didn't know about versus
8	where you want to put your set points in your plant
9	and how do you really want to operate your plant.
10	So, again, it really goes back to making
11	sure that you meet the design criteria, and then where
12	you put the other depends on how much flexibility you
13	want to give to your field designer versus how much
14	flexibility you want to give to your operator.
15	I forget what the number was that we used
16	at Wolf Creek, but it was below 1.55. I don't know if
17	it was much above 1.38. But it was in that
18	neighborhood.
19	MR. SIEBER: Those safety limits are like
20	building a box. Once you build the box, that becomes
21	the golden rule, so to speak, and you have to operate
22	the plant inside that box.
23	CHAIRMAN DENNING: And you try to make
24	your box as small as possible.
25	MR. SIEBER: No, you try to make your box
	I

(202) 234-4433

	232
1	as big as possible.
2	MEMBER MAYNARD: Not necessarily. What
3	you want to do is to give, keep yourself the ability
4	to handle unknown or unusual situations that may come
5	up without having to do a re-analysis every time
6	somebody wants to change something.
7	So, basically, you set a box for a field
8	designer and you set a box for other parts of the
9	design. If you find out later that that wasn't a big
10	enough box for your field designer, then you go to
11	another box and you can move that around.
12	If you set your limit right down at the
13	design criteria, you have no flexibility to deal with
14	it. I think it actually creates a less safe
15	situation.
16	So you actually want to have that for a
17	couple of reasons, not just safety operation, but
18	operational flexibility, and, again, to be able to
19	handle any of the unknown.
20	MR. WALLIS: Of course, we had this
21	conversation earlier. I can understand all that from
22	the point of view of operation, but there isn't a
23	measure of how much additional safety the public is
24	getting out of this. That is what is missing. There
25	is no link here.
	1

(202) 234-4433

is built into what the design criteria is in the regulations and the methodologies that are approved, not only the methodology, not only the codes, but also the way the codes have to be used, the restrictions on the application of that code.

MEMBER MAYNARD:

As you have seen from a lot of these discussions, there's a lot of conservatism built into 8 the code and into how the code has to be used and what 9 assumptions are put into that.

That conservatism, plus the conservatism 11 12 built in what the design criteria is, that is the public's safety margin. The rest of that then becomes 13 14 the licensee's margin for how they want to operate.

15 Again, it provides the safety margin in case something comes up you really had not expected or 16 didn't know about. You are still above your design 17 limit. 18

19 MR. SIEBER: If you wanted to know what 20 the margin meant in terms of safety, you would have to 21 do it with distributions, probabilistic distributions, 22 which deterministic rules don't really lend themselves 23 So, generally, if you meet deterministic rules, to. 24 you are safe enough. That is basically the way you 25 would interpret Title 10.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

10

1 MEMBER MAYNARD: And, actually, I think 2 that you are extremely safe because it is very 3 conservative. I think if we went to a more detailed 4 analysis where you really tried to predict where it 5 was, put uncertainties and stuff on it, I think that you could find that you could actually uprate these 6 7 plants to a higher power. There's a lot more 8 conservatism than what you know about. 9 You may find in some areas occasionally 10 that you didn't have as much conservatism as you thought, but in the aggregate you take all the 11 12 conservatisms built into all of the bounding type analyses and there's more margin there than what 13 14 shows. 15 Graham, anything else? CHAIRMAN DENNING: WALLIS: Well, I am much more 16 MR. satisfied than I was before in several areas. 17 I was

I am much more satisfied that the licensee 23 24 and Westinghouse have performed a thorough analysis. 25 I think some of the details we saw today a lot let me

not quite sure what was going on when you got these

numbers and where they came from and why they were so

close to limits, and so on. I think I understand much

better how they were derived and why they have the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

form they do have.

18

19

20

21

22

	235
1	know what was really behind it all that we hadn't seen
2	before and you never get from reading the SER.
3	(Laughter.)
4	Similarly, the staff came through with
5	explanations which are not in the SER. They are also
б	behind the words which tend to just say the applicant
7	did this and it's okay, which leaves completely up in
8	the air, how did you know that?
9	So I feel much more satisfied today. I
10	suppose after I have slept and dreamt a bit I might
11	come back with another question, but I don't at the
12	moment have a question. I am pretty satisfied. So
13	thank you.
14	CHAIRMAN DENNING: Tom?
15	MEMBER KRESS: Well, I felt that the staff
16	and the applicant have shown that they meet all the
17	regulations, the rules. I didn't see any place that
18	I thought there was glitch or a hangup. In fact, they
19	did a good job of showing it.
20	I thought their analysis of the boron
21	precipitation was highly conservative. I think they
22	could show that they've really got a lot more time
23	than a couple of hours. In that large break LOCA with
24	this upper plenum injection, I really don't think that
25	you have any boron concentrate.
	I

(202) 234-4433

	236
1	CHAIRMAN DENNING: No, I don't either.
2	Yes, Otto?
3	MEMBER MAYNARD: I think the licensee has
4	done a real good job in answering questions, which I
5	think many went well beyond what the licensee would be
б	required to have to answer, because our questions to
7	the licensee and to the staff were really challenging
8	or questioning approved methodologies, which I think
9	is fair game, but the licensee I think did a good job
10	of providing answers and responding, and has been
11	responsive to our questions.
12	Again, I agree with Tom, I think they
13	clearly demonstrate that they meet the regulatory
14	requirements and that they have performed the analysis
15	and meet all the requirements there.
16	I also think the staff has done a good job
17	of demonstrating that they understand the applicant's
18	information, that they understand the analysis. They
19	have done some confirmatory work. So I think they
20	have done a good job in demonstrating that they
21	independently took a look at a number of these things
22	and satisfied themselves that the licensee's
23	information was accurate and representative there. So
24	I think they have done a good.
25	So, overall, I think both did good.
	I

(202) 234-4433

	237
1	CHAIRMAN DENNING: Very good.
2	Unless anybody else quickly objects, then
3	I declare this over.
4	(Whereupon, at 2:09 p.m., the proceedings
5	in the above-entitled matter were concluded.)
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor SafeguardsSubcommittee on Power Uprates

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Thursday, April 27, 2006

Work Order No.: NRC-999

Pages 1-237

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	SUBCOMMITTEE ON POWER UPRATES
6	+ + + +
7	THURSDAY,
8	APRIL 27, 2006
9	+ + + +
10	ROCKVILLE, MARYLAND
11	+ + + +
12	The Subcommittee met at the Nuclear
13	Regulatory Commission, Two White Flint North,
14	Room T-2B3, 11545 Rockville Pike, at 8:30 a.m.,
15	Richard S. Denning, Chairman, presiding.
16	COMMITTEE MEMBERS:
17	RICHARD S. DENNING, Chairman
18	THOMAS S. KRESS, Member
19	OTTO L. MAYNARD, Member
20	JOHN D. SIEBER, Member
21	GRAHAM B. WALLIS, Member
22	
23	
24	
25	

		2
1	ACRS/ACNW STAFF:	
2	RALPH CARUSO, Designated Federal Official	
3		
4	NRC STAFF:	
5	PATRICK D. MILANO, Division of Operating	
6	Reactor Licensing	
7	SAMUEL MIRANDA, NRR	
8	LEONARD W. WARD, NRR	
9		
10	PANELISTS:	
11	JIM DUNNE, Constellation Energy	
12	DAVID FINK, Westinghouse	
13	MARK FINLEY, Constellation Energy	
14	MARK FLAHERTY, Constellation Energy	
15	ROY GILLON, Constellation Energy	
16	JOSH HARTZ, Westinghouse	
17	DAVE HUEGEL, Westinghouse	
18	JOHN KILLIMAYER, Westinghouse	
19	CHRIS McHUGH, Westinghouse	
20		
21		
22		
23		
24		
25		
	1	

		3
1	C-O-N-T-E-N-T-S	
2	Opening Remarks	5
3	Introduction of Presentation	6
4	Patrick D. Milano	
5	Presentation on behalf of Ginna	9
6	by Constellation Energy	
7	Introduction of Presentation	9
8	Mark Finley	
9	Mark Flaherty	9
10	RCS Materials	10
11	Jim Dunne	10
12	Safety Analysis	24
13	Mark Finley	24
14	Staff Presentation	75
15	Samuel Miranda, NRR	75
16	(Beginning of Actual Presentation)	99
17	Presentation on behalf of Ginna	139
18	by Constellation Energy	
19	Small Break LOCAs	139
20	Mark Finley	139
21	Staff Presentation	176
22	Leonard W. Ward	176
23		
24		
25		
	I	

		4
1	C-O-N-T-E-N-T-S	
2	Presentation on behalf of Ginna	218
3	by Westinghouse	
4	Loss-of-Flow Event	218
5	Dave Huegel	
6	Conclusion on behalf of Ginna	233
7	by Constellation Energy	
8	Mark Flaherty	233
9	Staff Conclusion	237
10	Patrick D. Milano	237
11	Wrapup by Subcommittee Members	237
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

	5
1	P-R-O-C-E-E-D-I-N-G-S
2	8:32 a.m.
3	CHAIRMAN DENNING: (presiding) The
4	meeting will now come to order.
5	This is a meeting of the Advisory
6	Committee on Reactor Safeguards, Subcommittee on Power
7	Uprates. I am Richard Denning, Chairman of the
8	Subcommittee.
9	Subcommittee members in attendance are Tom
10	Kress, Otto Maynard, Jack Sieber, and Graham Wallis.
11	The purpose of this meeting is to discuss
12	the extended power uprate application for the R.E.
13	Ginna Nuclear Power Plant. The Subcommittee will hear
14	presentations by and hold discussions with
15	representatives of the NRC staff and the Ginna
16	licensee, Constellation Energy, regarding these
17	matters.
18	The Subcommittee will gather information,
19	analyze relevant issues and facts, and formulate
20	proposed positions and actions as appropriate for
21	deliberation by the full Committee.
22	Ralph Caruso is the Designated Federal
23	Official for this meeting.
24	The rules for participation in today's
25	meeting have been announced as part of the notice of

(202) 234-4433

	6
1	the meeting previously published in The Federal
2	Register on April 12th, 2006.
3	A transcript of the meeting is being kept
4	and will be made available as stated in The Federal
5	Register notice.
6	It is requested that speakers first
7	identify themselves and speak with sufficient clarity
8	and volume so that they can be readily heard.
9	We have not received any requests from
10	members of the public to make oral statements or
11	written comments.
12	I would make some comments. We are kind
13	of experimenting with some revisions to this room, and
14	some of these speakers do not transmit very well. So
15	when you are making your presentations, please make
16	sure you are up very close to them and speak directly
17	into the microphone.
18	We will now proceed with the meeting, and
19	I will call upon Mr. Milano of the NRC staff to begin.
20	MR. MILANO: Good morning. Again, my name
21	is Patrick Milano. I am the Licensing Project Manager
22	with responsibility for Ginna.
23	This morning we are going to have
24	presentations by Mr. Sam Miranda and Dr. Len Ward of
25	the PWR Systems Branch in the Division of Safety
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	7
1	Systems.
2	On the agenda this morning I am going to
3	give you a brief introduction as to where things stand
4	with the uprate application itself, and then we will
5	cover the items that came out of the March 15th and
6	16th Subcommittee meeting and then go into those open
7	items that were not in the first draft safety
8	evaluation that was provided to you. The subsequent
9	safety evaluation that you received on or about April
10	4th does have the remaining open items evaluated in
11	it.
12	Just as background again, the EPU
13	application that came in on July the 7th was preceded
14	by three license amendment requests that are all tied
15	directly with the license application. We have made
16	some progress in all three. Those were the relaxed x
17	axial offset. As you see on the slide, it is
18	complete. The main feedwater isolation valve one we
19	have issued and it is complete.
20	The revised LOCA analysis amendment, the
21	staff's safety evaluation is complete. You will be
22	hearing some of the information that is in it which is
23	in today's presentation. The safety evaluation has
24	been completed by the staff and the inputs provided,

and the actual package is currently in concurrence

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	8
1	review.
2	Again, we had the Subcommittee meeting on
3	March 15th and 16th, and we are scheduled next
4	Thursday to have the full Committee meeting with you.
5	Also, as part of the uprate, you recognize
6	we have to issue an environmental assessment. That
7	environmental assessment was published in the middle
8	of April for comment, and the comment period ends May
9	the 12th.
10	Again, the licensee plans, if we should
11	issue the power uprate amendment and these other
12	packages, they are planning to implement the uprate
13	during the fall 2006 outage.
14	Again, in addition to hearing
15	presentations by the licensee staff they are going
16	to cover the same subject areas the NRC staff is
17	going to likewise prepare presentations about what we
18	did during the review. For the non-LOCA analysis, you
19	are going to hear from Sam Miranda. He is basically
20	going to talk about acceptance criteria margins and
21	interpretation of the results of three or four
22	different non-LOCA transients as they were reviewed
23	for Ginna.
24	Dr. Ward is going to go through those
25	items. The next two items here are those items that

(202) 234-4433

9 1 were not present in the first draft safety evaluation. 2 These were the open issues or open items from the last Subcommittee meeting. He is going to go through the 3 4 small break LOCA evaluation review that he did and 5 then go into post-LOCA, long-term cooling boron 6 precipitation. 7 That, basically, is all I wanted to say 8 before turning it over to Constellation Energy for 9 their portion of the presentation. With that, Mr. Mark Finley is the Project Manager for the uprate with 10 Constellation, and he will be introducing his staff. 11 MR. FINLEY: Yes, Good morning. 12 Mark Finley, Project Director for the power uprate at 13 14 Ginna, as Mr. Milano said. I would like to introduce Mark Flaherty, 15 current Acting Vice President of technical areas at 16 17 Constellation, to kick off the meeting for Ginna. Speak into that mike CHAIRMAN DENNING: 18 19 and let's make sure that he can hear you. 20 MR. FLAHERTY: Hi. I am Mark Flaherty. 21 CHAIRMAN DENNING: Okay, good.

22 MR. FLAHERTY: Here although the slide 23 shows that I am the Acting Vice President of Technical 24 Services, I was just transferred to the Engineering 25 Manager of Calvert Cliffs on Monday. So with respect

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	10
1	to the project and ACRS, whatever else, I wanted to
2	continue supporting this project for as long as need
3	be. So that is why I am here today.
4	As Pat Milano indicated, Constellation is
5	back to discuss two topics that the Subcommittee
6	requested further discussion from the March meeting.
7	Those are RCS materials and non-LOCA margin. So we
8	have presentations for both of those topics.
9	Secondly, there's two topics that we did
10	not present at the last Subcommittee meeting. Those
11	are small break LOCA and long-term cooldown. Then I
12	will follow up with a summary conclusion once we go
13	through the subject for presentations.
14	So, with that, I will turn this over to
15	Jim Dunne who will lead us into RCS materials.
16	MR. DUNNE: Good morning. My name is Jim
17	Dunne. I am an Engineering Consultant at Ginna
18	Station. I have been at Ginna for 15 years in the
19	Engineering Department, and for the last three years
20	I have been the Lead Mechanical Engineer for the
21	uprate project.
22	One of the open items from the meeting we
23	had in March was a request by the ACRS to see a list
24	of where in the reactor coolant system we have alloy
25	600 material or its weld equivalent, Inconel 82 or
	I

(202) 234-4433

11 1 Inconel 182, present. So the purpose of my 2 presentation is to go over those locations. 3 Basically, there are four locations in the 4 reactor coolant system where we have alloy 82 or the 5 equivalent weld material. Three of them are in the reactor vessel. One of them is in the steam 6 7 generator. The three locations in the reactor vessel 8 9 are in, basically, lower radial supports at the bottom of 10 the reactor vessel, the bottom-mounted instrumentation welds to the reactor vessel lower 11 12 We also have a third location which is a weld head. buildup on a safety injection nozzle for our upper 13 14 plenum safety injection, and then in the steam generator we have alloy 600 weld material as cladding 15 16 on the steam generator tube sheet. Go back to the slide. 17 This is a schematic of the reactor vessel 18 internals, showing the various components. 19 Two of the three items in the reactor vessel are shown here. 20 The 21 safety injection nozzle is not shown on this 22 schematic, but basically our safety injection nozzles are located at the same elevation as our hot and cold 23 24 leg nozzles up in this area of the reactor vessel. 25 The other two locations, like I said

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	earlier, the lower radial supports, which are at the
2	bottom of the core, basically, there are lugs welded
3	to the reactor vessel that act as radial supports.
4	They basically act as a keyway for keys from the core
5	barrel that allow the core barrel to be aligned
6	properly inside the reactor vessel.
7	There are four supports 90 degrees apart.
8	The support material is alloy 600, and it is welded to
9	the lower reactor vessel inner shell with an alloy 600
10	weld material.
11	MR. SIEBER: Have you ever examined those
12	for cracking?
13	MR. DUNNE: We do a visual examination for
14	them as part of the 10-year ISI when we do the vessel
15	examination.
16	MR. SIEBER: It is hard to see though,
17	right?
18	MR. DUNNE: Right. But, other than that,
19	I don't believe there's any special inspections of
20	that. This would be generic probably
21	MR. SIEBER: It's cold.
22	MR. DUNNE: to all Westinghouse reactor
23	vessels, would be my guess.
24	MR. SIEBER: It is cold down there anyway.
25	MR. DUNNE: Yes, the other thing is,
	I

(202) 234-4433

1 because it is at the downcomer, it sees cold leg 2 temperature. Our cold leg temperature for EPU is increasing by about 8 degrees from where we are 3 4 presently operating. However, the cold leg 5 temperature at EPU will be a couple of degrees below where we operated the plant from 1970 up through 1996, 6 7 when we replaced our steam generators and lowered our 8 TF. 9 The second location, next slide, the second location that we have it is in the bottom-10 mounted instrumentation weld locations. We have 36 11 penetrations through the reactor vessel lower head for 12 bottom-mounted instrumentation. 13 14 Basically, there are three areas on the 15 bottom-mounted instrumentation where we have alloy 600 The nozzle itself is an alloy 600 nozzle 16 material. that is machined. It is welded to the reactor vessel 17 lower head in this area with the J-Weld, which is an 18 19 Inconel 182 J-Weld material. Then the nozzle outside 20 the reactor vessel, our nozzle, the alloy 600 nozzle 21 is welded to a stainless steel nozzle with an Inconel 22 82 weld. 23 All three of those locations are pressure-24 boundary locations, and all three of them, basically, 25 see cold leg conditions. So, as such, we don't

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

13
	14
1	believe they would be susceptible to any PWSCC
2	concerns.
3	Next slide.
4	The third location in the reactor vessel
5	where we have alloy 600 is a weld buildup on our SI
6	nozzles. This is a plane view looking down at
7	basically the nozzle location, the reactor vessel, the
8	two hot and cold legs over here.
9	We have two SI nozzles 180 degrees apart
10	that penetrate into the upper plenum region of the
11	core because we are an upper plenum injection plant,
12	like the other Westinghouse two-loop units. At the
13	end of the SI nozzle in the reactor vessel itself
14	internally there is a weld buildup over in this area.
15	Next slide, please.
16	So this basically shows the entire SI
17	nozzle forging. This is the reactor vessel material
18	here. This is the weld for the SI forging to the
19	reactor vessel material. The SI forging itself is
20	basically a carbon steel material with a stainless
21	steel cladding for the nozzle itself, but at the end
22	of it inside the reactor vessel they put in a 1-inch
23	Inconel, I believe it is 182 weld buildup, to extend
24	the nozzle down an inch. That was for fabrication,
25	final fabrication, of the internals to the SI nozzle.

(202) 234-4433

	15
1	Then they ended up machining back on these to get the
2	clearances they needed between the OD of the upper
3	barrel and the SI nozzle.
4	MR. WALLIS: What is the SI nozzle made
5	out of? The safe end there, what is that made out of?
6	MR. DUNNE: The SI nozzle is basically
7	MR. WALLIS: The safe end of it.
8	MR. DUNNE: The safe end over here
9	MR. WALLIS: Yes.
10	MR. DUNNE: is a 182 316 stainless.
11	This weld here is not Inconel. So the only place
12	where we have Inconel is this, which is a weld
13	buildup. It is not pressure boundary
14	MR. SIEBER: It is not load-bearing
15	either?
16	MR. DUNNE: It is not load-bearing. The
17	inside of it, basically, sees hot leg conditions or
18	upper plenum injection conditions, which would be
19	upper plenum pressure and upper plenum temperature.
20	The outside portion over here and over here, because
21	you have the upper core valve basically coming around
22	here, basically, sees cold leg pressures and cold leg
23	temperatures.
24	So there is a minimal delta P across this
25	internal component right here because it is inside the

(202) 234-4433

16 1 pressure boundary. Obviously, out here this SI nozzle 2 sees the full RCS pressure, but this portion of it is 3 basically seeing about 30 to 40 psi delta P between 4 the cold leg pressure and the upper plenum injection 5 pressure. As such, it is not a highly-stressed 6 component. 7 Also, because you have hot leg temperature in here and cold leg temperature out here, basically, 8 its temperature is someplace probably close to TF. 9 So, again, we don't believe that is susceptible to 10 PWSCC, mainly because of the low stresses and because 11 the temperature is relatively low and it is not really 12 hot leg temperature. 13 14 So those are the three locations --15 It cycles in temperature a MR. WALLIS: bit, doesn't it? It cycles? 16 17 MR. DUNNE: The cycles -- well, the SI nozzle for up and down, yes, that is part of the 18 19 design for the reactor vessel. 20 MR. SIEBER: Well, ordinarily, there's no flow there, right? 21 22 There would be no flow, yes, MR. DUNNE: 23 in here. It is a stagnant region during normal 24 operation. 25 The fourth location where we have --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	MR. WALLIS: Do you ever test this in some
2	way? Do you test
3	MR. DUNNE: We don't do tests to
4	MR. SIEBER: Injection.
5	MR. DUNNE: We don't do flow tests into
6	the reactor vessel. We do test SI flow in a recirc
7	mode.
8	The fourth location where we do have
9	cladding, basically Inconel 82 cladding, is on the
10	steam generator tube sheet, between the bottom portion
11	of the tube sheet. This shows the tube sheet here,
12	and this is the primary head. Basically, the tube
13	sheet is carbon steel. It is 25-and-a-quarter-inch
14	thick.
15	The bottom portion, which has siezed the
16	RCS conditions, basically has about a three-eighths-
17	inch Inconel 82 clad material deposited on it. So the
18	clad material isn't the pressure boundary material per
19	se. It is more just to protect this carbon steel
20	base, tube sheet base metal from the borated water.
21	Basically, the divider plate, in a new
22	replacement generator this divider plate is basically
23	a 690 material. The cladding of the primary bowl
24	itself is a stainless steel clad material.
25	There's also in this little blowup here,
	1

(202) 234-4433

1 this is the divider plate, and here is your tube sheet 2 cladding. There is something called a seat bar 3 buildup off the tube sheet that they use to basically 4 build up the tube sheet so they can weld the tube 5 sheet to the divider plate. This seat bar buildup is also Inconel 82. This weld here between the Inconel 6 7 82 material and the 690 primary divider plate is 8 basically a 690 weld material.

9 During building of the replacement generators we did look at substituting a 690 clad on 10 11 the tube sheet versus a 600. BNW Canada has had lots 12 of experience with 600 clad material. They have never had any problems with it. But because of the industry 13 14 concerns about 600 material in general, we evaluated 15 going to 690 during the fabrication of the replacement 16 generator.

17 There was a test program done. This cladding is basically a bead-welded material that is 18 19 automatically welded to the tube sheet. So they 20 evaluated going to a 690 wire material in lieu of the 21 600 material, but the testing that was done indicated 22 they were having problems with under-bead that 23 cracking and inter-bead cracking on the clad material. 24 So the decision was to stay with the 600 material 25 because of those problems with the welding.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

19 1 Basically, the Ginna replacement 2 generators and the other replacement generators that 3 went through BNW Canada about the same time, which 4 would be the St. Lucie replacement generators and the 5 Duke Catawba McGuire replacement generators, all had 600 Inconel 82 clad material on their tube sheets. 6 7 The Commonwealth replacement generators that BNW 8 Canada built subsequent to ours also had 600 weld 9 material. 10 After the Commonwealth, BNW was able to optimize the Inconel 690 wire chemistry and their 11 12 welding process to get 690 to be an acceptable cladding material. Some of the more recent 13 14 replacement generators that BNW Canada has built for 15 U.S. utilities have gone to a 690 clad material, but at the time we were doing it they were not able to get 16 the 690 material to work. 17 Basically, obviously, on the cold leq 18 19 side, whichever one is the cold leg side, the cladding 20 sees cold leg temperature; the hot leg side sees hot 21 leg temperatures. So the cladding material will see 22 a higher temperature than it has historically seen at 23 Ginna. Right now we are running a T hot of around 24 590. Prior to replacing the steam joiners in 1996, we 25 operated around 601-602. For a T hot with EPU we are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	going to be operating with around a 608-609 T hot. So
2	we will be slightly higher there.
3	Historically, BNW Canada has never seen
4	any problems with the Inconel 600 cladding in the
5	industry. As far as we know, nobody in the industry
б	has seen any problems with the 690 cladding on tube
7	sheets.
8	The replacement generators for
9	Commonwealth and Duke with the 600 material are
10	operating at hot leg temperatures comparable to where
11	Ginna will be at EPU. They have been operating for
12	about to eight to ten years without any reported crack
13	problems with the material. So we don't believe it is
14	going to be an issue.
15	The other thing is the fabrication of the
16	generator. Basically, the way BNW Canada fabricated
17	the generator, they put this assembly together, welded
18	the lower shells to the tube sheet, welded the
19	transition cone to the lower shell, and then put that
20	entire assembly into a heat treatment oven to do
21	stress relieving on the pressure boundary welds. So
22	that operation would have also acted to reduce any
23	residual stresses from the original cladding welding
24	on the Inconel material.
25	The next slide.

(202) 234-4433

	21
1	So, basically, in conclusion that's not
2	the slide we had, but that is okay. Our conclusion is
3	we don't believe there is any new PWSCC concerns that
4	would arise to the Inconel alloy 600. We don't
5	believe the alloy 600 we have in the RCS is basically
6	going to create any new concerns due to EPU. For the
7	lower radial support and for the bottom-mounted
8	instrumentation, they see cold leg temperatures, so
9	their susceptibility to PWSCC is low.
10	The SI nozzle weld buildup, it is not a
11	highly-stressed component. So we don't believe it is
12	an issue.
13	Then for the Inconel cladding on the tube
14	sheet, basically, because it was stress-relieved
15	during fabrication, it is not really a pressure
16	boundary material. It is also the hot leg
17	temperatures we are seeing are consistent with hot leg
18	temperatures that other plants presently operating are
19	seeing with the same type of cladding. Because
20	there's been no issues in the industry on tube sheet
21	clad problems with steam generators over the last 35
22	years, we believe that there are no issues with tube
23	sheet.
24	MR. WALLIS: This isn't an issue for power
25	uprate. It might be an issue for license renewal,
1	I contract of the second se

(202) 234-4433

when you are trying to extend the period of time?

2 MR. DUNNE: Well, this was evaluated and 3 there is a -- basically, license renewals, which we 4 have gone through and the NRC has approved, they 5 looked at all the cladding material. They basically said there is no indication of cladding damage out 6 7 there. Therefore, it was viewed that the uprate would not have any -- that extending the license, which 8 9 would not change any conditions, just put more years on it, would not have any issue. This cladding 10 material and tube sheet is low-flow incidency, any 11 12 radiation. Again, Westinghouse's experience and BNW Canada's experience has been there have been no 13 14 problems with tube sheet cladding reported in the 15 industry.

Now for 600 material in general, 16 the 17 industry has a mandate to establish an alloy 600 management program, which the industry, which Ginna is 18 19 part of, is going through creating an inspection 20 program for alloy 600 going forward. So all this 21 stuff will be reviewed as part of that program. That 22 is how we identified, basically, the SI nozzle weld 23 buildup, as part of just going through the weld records for the RCS just to identify where we have 600 24 25 material in the RCS.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

(202) 234-4433

22

	23
1	MR. SIEBER: Do you, by any chance, know
2	what the reactor vessel hot leg safe end to the cast
3	piping, what the weld material is there? Is that a
4	stainless?
5	MR. DUNNE: It is stainless.
6	MR. SIEBER: Okay. How about the
7	pressurizer surge and spray lines?
8	MR. DUNNE: Stainless.
9	MR. SIEBER: Stainless?
10	MR. DUNNE: Yes.
11	MR. SIEBER: Okay. There are some plants
12	where 82/182 is used.
13	MR. DUNNE: Right.
14	MR. SIEBER: But you are not one of them?
15	MR. DUNNE: No.
16	MR. SIEBER: Okay.
17	MR. DUNNE: And that is all I have.
18	MR. SIEBER: You are lucky.
19	MR. DUNNE: Yes.
20	CHAIRMAN DENNING: Do we have any other
21	questions? Jack, are you comfortable?
22	Okay, thank you.
23	MR. SIEBER: I guess I would point out
24	that all these cladding depositions are not pressure
25	boundary. You can sustain a crack and have corrosion
	1

```
(202) 234-4433
```

	24
1	underneath, but since there's virtually oxygen in the
2	coolant, the corrosion rate is very slow.
3	MR. FINLEY: Good morning. Again, Mark
4	Finley, Project Director for the Ginna power uprate.
5	If you recall from last time we met, in my previous
6	life I was actually Supervisor of the Safety Analysis
7	Group at Calvert Cliffs for several years. So I am
8	the lucky one to present our safety analysis
9	discussion here this morning, but I am backed up by
10	our Westinghouse experts to help with questions.
11	As you recall, at the last meeting you
12	asked about margin associated with several of the non-
13	LOCA events. That is what we are going to talk in
14	some detail about today, and, also, Sam Miranda, I
15	think when I am finished, will discuss these events
16	and perhaps others with respect to margin in the
17	safety analysis.
18	I will show you the current results that
19	are applicable now as well as the EPU results that are
20	being reviewed by NRC. We will talk specifically
21	about the loss of flow, loss of load, and rod
22	withdrawal events, which were three of the more
23	limiting events in our safety analysis.
24	This slide shows the current and EPU
25	results associated with the three limiting events I

(202) 234-4433

	25
1	just mentioned. As you can see, the EPU results in
2	the center column there are close to the results in
3	the righthand excuse me the acceptance criteria
4	in the righthand column. This is the reason for the
5	discussion today.
6	MR. WALLIS: These are predicted with
7	RETRAN, is it?
8	MR. FINLEY: That is correct. These
9	results, we did for the non-LOCA methodology at Ginna,
10	we revised the methodology from LOFTRAN to RETRAN, and
11	with respect to the core thermal-hydraulic code,
12	changed that method from the THINC to the VIPRE code.
13	MR. WALLIS: Well, there's sort of two
14	questions that are basic. One is these numbers are
15	awfully close to the limit, and what does that mean?
16	And the other thing is RETRAN isn't a very accurate
17	code. You can tweak it various ways. When you get
18	2748.1, it would seem that the slightest tweak could
19	make it 2749.
20	MR. FINLEY: Right.
21	MR. WALLIS: So what's implied by your
22	saying that this is the number rather than some other
23	number which is perhaps close to it?
24	MR. FINLEY: Right, right. And, actually,
25	Gordon, temporarily go to the next slide.
	I contraction of the second

(202) 234-4433

	26
1	We did this with the understanding of the
2	approach that was used. We modified inputs to the
3	analysis until we got acceptable results by the
4	approved criteria. We didn't attempt to go any
5	further than that and demonstrate additional margin.
6	That is because we understand the margins
7	that are in our analysis and the inputs that are
8	assumed and in the methodology, as well as margin that
9	is above the safety limit controlled by NRC. So these
10	results are not coincidental, as was mentioned last
11	time.
12	Because of that approach
13	MR. WALLIS: Deliberately tried to get to
14	the limit, essentially?
15	MR. FINLEY: Well, I wouldn't term it like
16	that. We were above the limit
17	MR. WALLIS: You tested them until you got
18	to the limit?
19	MR. FINLEY: We were above the limit
20	without any changes to the inputs, and we tweaked on
21	the
22	MR. WALLIS: Pulled it down to be below
23	though?
24	MR. FINLEY: That is correct.
25	MR. WALLIS: So it is similar. Which kind

(202) 234-4433

	27
1	of inputs did you adjust then?
2	MR. FINLEY: Okay, I'll tell you what, if
3	I can hold off on that question until I talk about the
4	events specifically, then we can get to that.
5	MR. WALLIS: Sure.
6	MR. FINLEY: Go back one slide, Gordon.
7	Okay, just stick with this slide.
8	One more comment: Current results you see
9	in the lefthand column of the three columns there. As
10	expected, they are somewhat higher in DNBR space than
11	the EPU result. The trend is all, you know, it makes
12	sense to us.
13	The pressure results, the same way, about
14	eight pounds lower for the pre-EPU result, increased
15	somewhat. We would expect that with the increased
16	power level and decay heat.
17	CHAIRMAN DENNING: You're going to talk
18	about how do you get the DNBR? What about the
19	criterion? Where did that criterion come from?
20	MR. FINLEY: Yes, we will speak to where
21	the criterion comes from here in a minute.
22	CHAIRMAN DENNING: Okay.
23	MR. FINLEY: Okay, next slide, Gordon.
24	Actually, two slides.
25	With respect to the first event, this is
	1

(202) 234-4433

	28
1	the loss of flow and the DNBR margin, where the result
2	was, again, close to the acceptance criteria.
3	Let's focus here in the middle of this
4	slide. That is sort of the way I set up this
5	discussion for all the events. But that is where the
6	safety analysis limit is. Just below that you see our
7	safety analysis result, 1.385 versus the 1.38 for the
8	limit.
9	But what we are attempting to demonstrate
10	here is sort of the range of results as you move from
11	more realistic conditions up to the very conservative
12	conditions.
13	Right underneath the safety analysis
14	result we just modified one input to the analysis
15	associated with the trip time delay for loss of flow.
16	We used a conservative time in our analysis result to
17	get the 1.385. It was 1.4 seconds.
18	We have done one-time testing in the past
19	to demonstrate that result is actually less than one
20	second, and a more typical assumption for plants in
21	the industry is one second for other Westinghouse
22	plants.
23	If you remove that margin and that trip
24	time delay assumption, again, still using a
25	conservative assumption that bounds actual plant

(202) 234-4433

	29
1	performance, there's about a 3 percent change in the
2	result, as you see, 1.42.
3	Now that's not a best-estimate analysis.
4	This would still be a bounding conservative analysis.
5	But that was one input that we could have changed even
6	further to demonstrate additional margin.
7	MR. WALLIS: Now your safety analysis
8	result is conservative in some sense? I would say
9	that you have just mentioned one conservatism. Does
10	it have other conservatisms in it?
11	MR. FINLEY: Yes, that is correct.
12	MR. WALLIS: You say it is a bounding
13	result?
14	MR. FINLEY: That is correct, it is a
15	bounding result. I am not going to go through all the
16	conservatisms here.
17	MR. WALLIS: If there are, what do we have
18	you put in some bounding assumptions. But RETRAN
19	itself has uncertainties in it which you don't know,
20	or you don't assess, it seems to me. So you don't
21	really know how much uncertainty there is in the code
22	itself. So even though you are putting in
23	conservative assumptions, the safety analysis result
24	is really 1.385 plus or minus something, which has to
25	do with the inherent uncertainties in the code itself.

(202) 234-4433

	30
1	MR. FINLEY: Yes, to some extent,
2	that's
3	MR. WALLIS: I am curious about how big
4	those are. If those are 5 percent, maybe it doesn't
5	matter; you don't get beyond the design limit. But if
6	the uncertainties in the code itself are 25 percent,
7	then one might say, "Well, it could be that in the
8	extreme case you could be way down to your bounding
9	test data."
10	MR. FINLEY: Right, I understand.
11	MR. WALLIS: How to assess that?
12	MR. FINLEY: I understand, but our point
13	is that these inputs are quite conservative in
14	bounding. They more than make up for any
15	uncertainties in the RETRAN methodology.
16	MR. WALLIS: That has been demonstrated
17	somewhere?
18	MR. HUEGEL: In the WCAB 14882, we did
19	I am sorry; this is Dave Huegel from Westinghouse.
20	As part of the effort to transition to
21	RETRAN, we did do a bunch of benchmarks which compared
22	the results to actual plant data and confirmed that
23	the RETRAN results were consistent.
24	MR. WALLIS: Plus or minus what sort of
25	MR. HUEGEL: The other thing is, for this
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

ĺ	31
1	event
2	MR. WALLIS: Plus or minus what sort of
3	number?
4	MR. HUEGEL: No, we just did comparisons
5	to make sure that they were in line.
6	MR. WALLIS: Oh, you looked, you made a
7	curve and you showed some data points that were near
8	the curve?
9	MR. HUEGEL: That is right.
10	MR. WALLIS: There's no quantitative
11	assessment of the uncertainty in RETRAN?
12	MR. HUEGEL: No, but we do know that it is
13	conservative in terms of
14	MR. WALLIS: So it is on one side of the
15	data point? There's a bunch of data on the graph and
16	RETRAN is above or below in some conservative way? Is
17	that what you're saying?
18	MR. HUEGEL: What we are doing, what we
19	did is we compared it to plant data and we didn't
20	predict it on one side or the other. But what you
21	have to do is keep in mind the transient that you are
22	looking at.
23	Here we are looking at a loss-of-flow
24	event.
25	MR. WALLIS: Right.

	32
1	MR. HUEGEL: For the loss-of-flow event,
2	the plant does an actual plant coast-down and confirms
3	that the coast-down that is being predicted is
4	conservatively bounded by what we have assumed in the
5	safety analysis.
6	What is going on for this loss-of-flow
7	event is primarily driven by the characteristics of
8	your RCPs. The plant does confirm that the
9	calculation of the flow coast-down is bounded by what
10	we have assumed in the safety analysis.
11	Additional conservatisms that we have in
12	the loss-of-flow event include the fact that we have
13	skewed the reactivity that we have assumed toward the
14	bottom of the core, so that you are not seeing any
15	significant amount of negative reactivity until the
16	rods are well into the core. That is another
17	conservatism that we have within the analysis.
18	Another thing is, even though we have
19	modeled the complete RCS for this particular event, as
20	Mark is showing there, we have taken no credit for the
21	increase in pressure, which is definitely a DNB
22	benefit, in the calculations that we have performed.
23	Another thing we have assumed is frozen
24	feedback. When you assume the effects that you have
25	going on due to the loss of flow in the reactivity
	1

(202) 234-4433

	33
1	feedback, since we are modeling a point kinetics
2	model, we get a very conservative calculation of the
3	reactivity during this transient that is relatively
4	quick and is over in a few seconds.
5	Again, as I mentioned earlier, it is
6	primarily driven by the effects of how the RCPs are
7	coasting down, which, again, is confirmed by the
8	plant.
9	When we did a more realistic best-
10	estimate-type calculation, we didn't do this for Ginna
11	specifically, but we have done calculations with our
12	RAVE methodology where we have linked the different
13	codes, the kinetics code with our thermal-hydraulics
14	code, and then also the VIPRE code, which does the
15	calculations within the core. We find DNBRs that are
16	well over two for this kind of event.
17	So in doing the analysis for Ginna, we
18	have all kinds of conservatisms that we believe are
19	backed up based upon actual test data that the plant
20	has performed, as I mentioned, like the flow coast-
21	down, which confirms that what we have done is
22	conservative.
23	Another conservatism is in the rod drop
24	time that we have assumed. The rod drop time is
25	assumed based upon a very high mechanical design flow.
1	1

(202) 234-4433

	34
1	If you look at this particular event, what you have is
2	a drop in the RCS flow. What you would find is your
3	rod drop time would be much quicker, and if we were to
4	take credit for that conservatism, we would even show
5	a higher DNBR.
6	MR. WALLIS: Instead of whatever
7	MR. HUEGEL: Right. You have layer upon
8	layer upon layer of conservatism placed in the
9	analysis.
10	MR. WALLIS: But say that these
11	conservatisms somehow overwhelm the uncertainties in
12	the thermal-hydraulic code.
13	MR. HUEGEL: Yes, absolutely.
14	MR. WALLIS: And, also, you have to put,
15	in, to get this 1.385, you have to put in a DNB
16	correlation
17	MR. HUEGEL: Right.
18	MR. WALLIS: that has uncertainty in it
19	as well.
20	MR. HUEGEL: That is correct.
21	MR. WALLIS: Presumably, all these things
22	are figured into the choice of 1.38.
23	MR. FINLEY: And so that gets to the other
24	side of the curve
25	MR. WALLIS: There's a whole pile of stuff
	I

35 behind this which is difficult for us to assess 1 2 without digging into it for days. MR. HUEGEL: Understood, yes. So there's 3 4 a lot of --5 MR. WALLIS: If I am understanding -- I mean you're assuring us of all this stuff which sounds 6 7 good, but we don't really know how to balance these things, some of which move one way and some of which 8 move the other --9 10 MR. HUEGEL: Understood. MR. WALLIS: -- to be really convinced 11 12 that everything you are doing is conservative. So that is the problem --13 14 MR. FINLEY: Well, Dr. Wallis, one of the 15 things we tried to demonstrate on this slide is the margin in the DNB testing and the data, and so forth, 16 as well. 17 18 MR. WALLIS: Yes. 19 MR. FINLEY: As you see up above, up above 20 the safety limit, there is a stackup of margin --21 MR. WALLIS: Right. 22 FINLEY: -- to address those MR. 23 uncertainties. 24 MR. WALLIS: Right. 25 CHAIRMAN DENNING: Are you going to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	36
1	explain
2	MR. FINLEY: And I will start with that.
3	CHAIRMAN DENNING: Go ahead. Go ahead, do
4	that.
5	MR. FINLEY: I think Sam Miranda is
б	actually going to speak more to that. But if you
7	start sort of with the definition of critical heat
8	flux, 1.0, of course, we have test data which is done
9	for the particular fuel type that we are using, and
10	there is a scatter of that data, of course.
11	MR. WALLIS: Well, the 1.17 reflects the
12	DNB correlation uncertainty?
13	MR. FINLEY: That is correct.
14	MR. WALLIS: Okay.
15	MR. FINLEY: At a 95 percent probability
16	with 95 percent confidence, and the applicable limit
17	is 1.17, right?
18	On top of that, we have a design limit
19	which accounts for parameter uncertainties such as
20	temperature, pressure, flow
21	MR. WALLIS: Depending on where you are on
22	in the physical space?
23	MR. FINLEY: Right, some of the
24	geometries, et cetera. So there's an additional 5
25	percent or so on top of that to protect for that.

(202) 234-4433

	37
1	MR. WALLIS: Then the thermal-hydraulic
2	calculation uncertainties is what makes you go up to
3	1.38, is it?
4	MR. FINLEY: Help me out, if you would.
5	MR. WALLIS: The RETRAN uncertainties?
6	MR. HUEGEL: The difference between the
7	1.24 and 1.38 is just generic margin that we retain to
8	account for unexpected penalties that may come up.
9	MR. WALLIS: There's several engineering
10	guesses? We're not quite sure, so we'll add something
11	on?
12	MR. HUEGEL: I'm not sure I would say,
13	"guess," but
14	MR. WALLIS: Well, a judgment. It is a
15	judgment.
16	MR. HUEGEL: It is a judgment.
17	MR. WALLIS: Because other plants have
18	different numbers.
19	MR. HUEGEL: Yes, that is correct.
20	MR. WALLIS: That is what is so mysterious
21	about how someone arrives at 1.38 and someone else is
22	1.45 and
23	MR. HUEGEL: Well, hopefully, it is not
24	mysterious.
25	MR. WALLIS: someone else is 1.5, and
	1

(202) 234-4433

	38
1	so on. Okay.
2	CHAIRMAN DENNING: A couple of other
3	questions then.
4	MR. FINLEY: Yes.
5	CHAIRMAN DENNING: On the over-pressure,
6	I want to make sure I understand.
7	MR. FINLEY: Yes.
8	CHAIRMAN DENNING: This is different from
9	what this is primary system pressure?
10	MR. FINLEY: That is correct. This, of
11	course, loss-of-flow event is a heat-up event.
12	CHAIRMAN DENNING: Yes.
13	MR. FINLEY: During the event, D average
14	goes up, causes an insurge to the pressurizer. It
15	compresses the bubble in the pressurizer. And even
16	taking credit conservatively in this case for the
17	sprays acting as they should, and so forth, the
18	pressure goes up about 75 pounds in this transient at
19	the time of minimum DNBR.
20	CHAIRMAN DENNING: And you don't take that
21	into account in your correlation?
22	MR. FINLEY: That is correct.
23	CHAIRMAN DENNING: You just keep it at the
24	initial pressure?
25	MR. FINLEY: That is correct.
	1

	39
1	CHAIRMAN DENNING: Now you could take into
2	account or is there not a pressure dependence
3	developed for the correlation?
4	MR. FINLEY: We could
5	MR. HUEGEL: I think it was partly in the
6	SER that we received, based upon how we explained the
7	methodology, we felt that we mentioned the nominal
8	pressure; therefore, it wouldn't be appropriate, even
9	though it is certainly justifiable, to credit anything
10	beyond the nominal pressure.
11	Certainly, as Mark explained, we see a
12	pressure increase, and since we do see a pressure
13	increase, we would typically assume your pressure
14	control systems to minimize any pressure increase,
15	like your sprays and your PORVs, but we felt, based
16	upon what we had written up in our methodology and
17	what was issued in the SER, we felt that we couldn't
18	go above nominal pressure even though, again, it was
19	perfectly justified in our minds.
20	CHAIRMAN DENNING: Okay. So you're saying
21	that there are some control factors that are not
22	allowed to be taken into account in the performance of
23	the analysis like sprays and stuff like that?
24	MR. HUEGEL: No, it is just we stated we
25	were using nominal pressure there; therefore, that's

(202) 234-4433

	40
1	all we felt we could get away with using.
2	MR. FINLEY: There are items like that
3	that we consider part of the approved methodology
4	MR. HUEGEL: Right.
5	MR. FINLEY: that we would not take
6	credit for, depending on what has been approved
7	previously. Here I think we felt not taking credit
8	for pressure was part of the approved method for Ginna
9	and so we left that out.
10	MR. HUEGEL: Right.
11	MR. FINLEY: But we feel perfectly
12	justifiable would be to take credit for that.
13	CHAIRMAN DENNING: Yes. Now I'm sorry,
14	go ahead, Jack.
15	MR. SIEBER: In this particular event,
16	though, as the coast-down is occurring, the
17	effectiveness of sprays has gone away.
18	MR. HUEGEL: Sure.
19	MR. SIEBER: It is driven by the pump DP.
20	MR. FINLEY: That is correct.
21	MEMBER MAYNARD: But, typically
22	MR. SIEBER: I mean you could actually
23	well, the coast-down is what, 30 seconds or
24	thereabouts?
25	MR. HUEGEL: It is a couple of seconds.
	I

ĺ	41
1	MR. SIEBER: Spray is over with before
2	coast-down?
3	MR. HUEGEL: That is right.
4	MR. FINLEY: And we did model the spray,
5	in determining that 75-pound increase, that was with
6	modeling of sprays, the effect of sprayers.
7	CHAIRMAN DENNING: In this particular
8	version of loss of flow is one in which, it is almost
9	like a loss of power to the pumps where they just go
10	into coast-down?
11	MR. FINLEY: Actually, this is even more
12	severe than the typical loss of power. This, for
13	Ginna, our limiting event is actually a grid frequency
14	change of 5 hertz per second, which is a very, very
15	severe grid transient, one that is worse even than the
16	blackout that we had in 2003, where the grid actually
17	drives the pump speed down because we are locked into
18	the grid, okay, for a certain amount of time. It is
19	actually a more rapid coast-down of the pumps, if you
20	will, than the flywheel-driven coast-down would be.
21	We actually call that a Condition 3 event for Ginna,
22	even though we conservatively apply the Condition 2,
23	no fuel failure criteria.
24	CHAIRMAN DENNING: In getting back to a
25	point that you made about the comparisons that are
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	42
1	made with the plant data, the plant does a similar
2	test or has done a similar test in which it does a
3	pump trip or something like that? And you are saying
4	that in the prediction with RETRAN that the RETRAN
5	results fall below the
6	MR. FINLEY: Right. What we do is part of
7	our hot functional test program. I think all plants
8	have done this reactor coolant pump coast-down. So
9	you get an actual data curve for
10	MR. WALLIS: You don't have a back-up
11	slide that shows that, do you?
12	MR. FINLEY: I don't. Sorry, Doctor.
13	CHAIRMAN DENNING: And that was performed
14	a long time ago or
15	MR. FINLEY: That would have been part of
16	the initial plant startup.
17	CHAIRMAN DENNING: The initial plant
18	startup?
19	MR. FINLEY: Hot functional testing, yes.
20	CHAIRMAN DENNING: But you have done the
21	RETRAN analysis recently to demonstrate just what we
22	heard?
23	MR. FINLEY: Right. But, of course,
24	nothing really of significance would change to affect
25	that; i.e., it is a flywheel mass really that provides
I	1

(202) 234-4433

	43
1	the momentum and determines that coast-down rate. We
2	have not modified
3	MR. HUEGEL: But that is another
4	conservatism, that we would reduce the inertia, even
5	though it wouldn't apply to this event because of the
6	frequency decay driving the pumps down, but in a
7	complete loss of flow where the pumps are free to
8	coast down, we reduce the inertia of the flywheel by
9	10 percent so that we get a conservative coast-down
10	relative to what the plant would measure.
11	CHAIRMAN DENNING: And now, as far as the
12	analysis is concerned, you start it at a slight over
13	like 2 percent or 3 percent over? I mean, is this
14	the kind of thing, over normal power?
15	MR. HUEGEL: Yes, all uncertainties are
16	accounted for, but the way that we have done them is
17	they are included in the DNB design limits. So we
18	would have uncertainties in the power level, in
19	pressure
20	CHAIRMAN DENNING: But when you actually
21	run it, when you run it, what power level do you use
22	as the start?
23	MR. HUEGEL: It is done at nominal power.
24	CHAIRMAN DENNING: At nominal?
25	MR. HUEGEL: Yes.
	1

(202) 234-4433

	44
1	CHAIRMAN DENNING: So that uncertainty was
2	included in that
3	MR. HUEGEL: Yes, that is correct.
4	CHAIRMAN DENNING: Now what about as
5	things about during the cycle and stuff like this?
6	Is there a point in the cycle like when the moderator
7	coefficient is the least negative or something like
8	that that has an impact? I am trying to get a feeling
9	for whether it is done at the worst time in the cycle.
10	MR. FINLEY: Right, right. Certainly,
11	yes. This is a heat-up event. Obviously, the least
12	negative or positive moderator temperature coefficient
13	would be limiting. We can't operate at full power
14	with a positive moderator temperature coefficient. So
15	it would be something, our most, least excuse me
16	our least negative moderator temperature coefficient
17	would be used early in cycle, right.
18	Right. So, as was said before, there are
19	layers and layers of conservatism in each of the
20	inputs that we take at the same time. We think that
21	far outweighs any uncertainty in the RETRAN numerical
22	calculation itself.
23	CHAIRMAN DENNING: Well, the best evidence
24	I have heard so far is that you actually have done the
25	work on the experiment with the plant and that the

(202) 234-4433

	45
1	RETRAN results fall below that level.
2	MR. FINLEY: Right.
3	MR. HUEGEL: That is correct. That is
4	correct.
5	CHAIRMAN DENNING: Okay.
6	MR. FINLEY: We typically do that in the
7	safety analysis for the parameters that are critical.
8	It is done and NRC has asked to do that over time to
9	approve the methodology.
10	MR. WALLIS: When you come to the full
11	Committee I don't know if we are going to go into this
12	again, but other Committee members may have the same
13	curiosity that we have. So it might be good to have
14	some back-up slides with this RETRAN compared with the
15	real plant transient, and so on, just in case someone
16	starts to probe.
17	CHAIRMAN DENNING: Well, I think let's get
18	a little bit beyond that. I mean I would certainly
19	like to see that.
20	MR. WALLIS: So we want to see it
21	ourselves?
22	CHAIRMAN DENNING: Why don't we see that?
23	MR. WALLIS: Can we see it when, this
24	afternoon or something, or when?
25	MR. HUEGEL: Do you have any of the coast-
	I

(202) 234-4433

	46
1	downs, Mark? I don't know.
2	MR. FINLEY: I will try to get it this
3	afternoon. I don't have it at my fingertips. So we
4	will look.
5	CHAIRMAN DENNING: Okay.
6	MR. WALLIS: Yes, maybe if we are
7	satisfied, we can convince our colleagues to be
8	satisfied, but that is always difficult.
9	MR. FINLEY: Okay, any other questions on
10	loss of flow?
11	CHAIRMAN DENNING: No. Let's move on.
12	MR. FINLEY: Okay.
13	MR. WALLIS: So now we have a different
14	issue, which is pressure.
15	MR. FINLEY: Okay, a different issue.
16	This is pressure. This is a loss-of-load event. Just
17	as the title suggests, it is a full loss of load, a
18	turbine tripped a generator off the grid.
19	Again, I will start in the middle here.
20	Our design limit or acceptance criteria for the event
21	is 110 percent of the design pressure for the reactor
22	coolant system. The safety analysis result was about
23	a pound and a half below that, 2747 as compared to
24	2748.5.
25	Again, this looks close, but we need to
	1

(202) 234-4433

	47
1	take it in the context of margin below and margin
2	above, which is what this slide tries to demonstrate.
3	For example, if we did take credit for control system
4	functioning, i.e., steam dump operation and
5	pressurizer spray operation, that alone would reduce
6	the peak pressure by over 100 pounds. Similarly, if
7	we added operation of the PORVs to that mix, that
8	would provide another 40-pound-or-so reduction.
9	Probably most importantly, and why you
10	don't see issues with these types of events in the
11	industry, is when you get a turbine trip, we are
12	designed, as all plants are, to get a reactor trip
13	automatically. So there is no real delay between the
14	time of the turbine trip and the reactor trip.
15	What causes the over-pressure in the
16	analysis is a short time delay between the trip of the
17	turbine and the trip of the reactor. There's where
18	you have a power mismatch for a short period of time,
19	causing additional heat and causing the pressure
20	overshoot
21	MR. WALLIS: If we were following a PRA-
22	type analysis, you would go through this event tree
23	and you would say, did the PORVs work or did the Pzr
24	pressurizer spray work? And you give some probability
25	to all those things, presumably. That would be a way
	1

(202) 234-4433

	48
1	you could
2	MR. FINLEY: That is correct. That is
3	correct.
4	MR. WALLIS: Here you are simply saying we
5	will just assume it doesn't happen.
6	MR. FINLEY: Right.
7	MR. WALLIS: And so you give a probability
8	of zero.
9	MR. FINLEY: Exactly, exactly. In fact,
10	I discussed just to give a flavor for that, we have
11	two, essentially, relays on sets of contexts which
12	will cause a reactor trip on a turbine trip. If
13	either one functions, you will get the reactor trip
14	simultaneously, essentially.
15	I talked to our PRA folks a little about
16	that and asked them what probability they would assign
17	to that. He said between 99.9 and 99.99 probability
18	of success.
19	So between 99.9 and 99.99 percent of the
20	time our result is down here.
21	MR. HUEGEL: But it is not a safety grade
22	function. Therefore, we can't credit in the safety
23	analysis. So we have to rely upon the high-
24	pressurizer pressure reactor trip to terminate the
25	transient, even though, as Mark said, that that
	I

(202) 234-4433

	49
1	function, even though control grade, is highly
2	reliable.
3	CHAIRMAN DENNING: At what level does the
4	pressure trip then?
5	MR. FINLEY: The high-pressurizer pressure
6	trip
7	MR. HUEGEL: Yes, 2377 is the value at the
8	plant, but the safety analysis would assume 2425 or
9	2435. So we have accounted for uncertainties between
10	what the plant would be dialing in and what we were
11	assuming in the safety analysis to account for all the
12	instrumentation uncertainties.
13	MR. WALLIS: How about RETRAN here? Is
14	RETRAN accurate to 10 percent, so we don't have to
15	sort of add another 10 percent on this thing for some
16	reason?
17	MR. HUEGEL: Well, RETRAN we found is very
18	conservative in terms of over-predicting the pressure.
19	Yes, it would predict a higher pressure than you would
20	expect to see at the plant for a similar
21	MR. WALLIS: It is supposed to be a
22	realistic code.
23	CHAIRMAN DENNING: My experience with
24	these codes has generally been that they predict
25	pressure comparatively well, but what kind of evidence

(202) 234-4433
Í	50
1	do you have from plant data? I mean, do you have
2	evidence for plant data?
3	MR. HUEGEL: We do a lot of comparisons
4	with these codes for load rejection tests and making
5	sure that all the control systems are functioning as
6	designed. We have plants out there that are full-load
7	rejection capability plants, and in tuning the control
8	systems we would use the LOFTRAN and RETRAN codes to
9	make sure that we are predicting that these control
10	systems are functioning as designed.
11	When we see the plant actually doing its
12	test, we find that the results compare very favorably.
13	But, again, that is with crediting all the different
14	control systems, which we don't assume or credit in
15	any of the safety analysis unless it makes the
16	transient worse.
17	CHAIRMAN DENNING: Yes. As far as
18	absolute safety is concerned here, suppose we are
19	wrong and the pressure really is higher. Then you
20	adjust you would go to the safety and the safety
21	valves would relieve?
22	MR. HUEGEL: Well, the safety valves do
23	operate in this transient.
24	MR. DUNNE: That is typically what
25	terminates the transient, is when the relief valves
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	51
1	open, but you've got to remember
2	MR. HUEGEL: The reactor trip and the
3	MR. DUNNE: And the reactor trip and the
4	safety valves opening. What is happening is the peak
5	pressure is occurring at the RCP discharge.
6	MR. HUEGEL: Right.
7	MR. DUNNE: And the pressure that the
8	relief valves are set at is the pressurizer pressure,
9	which is nominally around 2500. We have about a 2 to
10	2.5 percent uncertainty on that set point. So in the
11	analysis base we raised the actual set point in the
12	analysis by that 2.5 percent.
13	We also have a 1 percent uncertainty for
14	loop seal drift because we have a loop seal in front
15	of our relief valves. So you add another 1 percent on
16	the pressure at which the safety valves will open on
17	the pressurizer. Then there is a time delay to clear
18	the loop seal, which is around .8 seconds or so, which
19	there is no way to relieve
20	MR. HUEGEL: Right, and there's no credit
21	for any of the relief during that time period where
22	the loop seal is clearing, even though you would be
23	getting some pressure relief capability. As Jim
24	stated, there is no credit for that in the safety
25	analysis.
	1

(202) 234-4433

	52
1	CHAIRMAN DENNING: Except if we are in an
2	ATWS scenario which you analyze differently.
3	MR. DUNNE: Well, in an ATWS scenario you
4	don't take any credit for any of that stuff. Well,
5	you take credit for the relief valves, I think.
6	MR. HUEGEL: Yes, we would.
7	MR. WALLIS: Do you have plant data on
8	this loss of load?
9	MR. FINLEY: Of course, we have
10	experienced loss-of-load-type trips in the past.
11	MR. WALLIS: Yes, and you take the data
12	and you use a realistic analysis, which would be the
13	bottom line here using RETRAN.
14	MR. FINLEY: Right.
15	MR. WALLIS: It would be interesting to
16	see how well you predict what really happened.
17	MR. FINLEY: Right. The difficulty there
18	is you have a very benign event. This is actually the
19	pressure at, I think, the reactor coolant pump
20	discharge. It is low in the RCS. It is actually
21	higher than the pressurizer pressure.
22	MR. WALLIS: Yes.
23	MR. HUEGEL: You don't even get to the
24	point of the PORVs on the pressurizer.
25	MR. FINLEY: Pressurizer pressure goes up
	1

(202) 234-4433

53 1 very, very little. So that data, in terms of 2 wouldn't show comparison to RETRAN, much. Wouldn't show much of a 3 MR. WALLIS: 4 challenge to RETRAN. Nothing much is happening. 5 MR. FINLEY: Right. MR. WALLIS: All that is happening is in 6 7 regulatory space. 8 MR. DUNNE: And, simplistically, you 9 know --10 MR. CARUSO: It is a challenge to RETRAN. I mean it has to calculate the physics properly. 11 12 MR. HUEGEL: That is true. Whatever you put in it should 13 MR. CARUSO: 14 be able to calculate it. So if you have data for a 15 real trip, then RETRAN should be able to calculate a 16 real trip. 17 CHAIRMAN DENNING: Sure, sure. 18 MR. WALLIS: That would be really 19 convincing stuff if you produced that. 20 HUEGEL: We did have some plant MR. 21 comparisons in the WCAP that we submitted and was 22 reviewed by the NRC, 14882. We chose the comparison 23 of the RETRAN results to different plant events. Ι 24 think there were some load rejections. 25 MR. WALLIS: Okay. Is there some key part

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	of that that we can see at this meeting?
2	MR. HUEGEL: We could probably pull out
3	the slides from that WCAP.
4	MR. WALLIS: Because it would be good to
5	go away with a very convinced sort of happy feeling
6	and not feel there are a lot of things we had better
7	study.
8	MR. HUEGEL: I think the important thing
9	to take away is that the methodology, even though we
10	have got different DNBR limits that we are using, we
11	still apply the same exact conservative methodology
12	which has, as we mentioned, for example, in loss of
13	flow, layers upon layers of conservatism. I think
14	that is the important part.
15	MR. WALLIS: You sound very convincing,
16	but then, of course, you are an advocate for your
17	point of view.
18	(Laughter.)
19	MR. HUEGEL: Understood.
20	MR. FINLEY: Certainly with respect to the
21	plant data, part of the approval process with the
22	staff in WCAP review and approval is to provide that
23	sort of benchmarking data.
24	MR. WALLIS: We have to assure ourselves
25	that the staff at least has investigated and asked the
l	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	55
1	kind of questions that occur to us.
2	CHAIRMAN DENNING: All right. Let's go to
3	the next slide.
4	MR. FINLEY: Okay. Well, before we go to
5	the next slide, we didn't talk, I don't think, about
6	above the design limit, to speak to that margin.
7	We have for Ginna calculated, as you see
8	here, an ASME service level C limit for hot conditions
9	of around 3200 psig. That was done for the ATWS
10	scenario. In fact, when we do an ATWS event, we have
11	to meet that pressure.
12	That is where you would potentially start
13	to deform components in the RCS, not likely, but
14	potential. We wouldn't expect catastrophic failure
15	there, but potential for bolting to stretch and that
16	sort of thing.
17	So that gives you some feeling for, you
18	know, we are not on the hairy edge in terms of this
19	110 percent.
20	MR. WALLIS: You're assuming a standard
21	atmosphere or something when you do this? We went
22	through this before. The difference between your psi
23	and your psi design pressure on one of these charts is
24	less than the variability in atmospheric pressure
25	itself.
	1

(202) 234-4433

	56
1	MR. FINLEY: Correct. We don't vary
2	MR. WALLIS: You're trying to assume some
3	kind of atmosphere
4	MR. FINLEY: It's 14.7.
5	MR. WALLIS: Although in reality it is
б	fluctuating up and down quite a bit.
7	MR. FINLEY: Okay, and the last event I
8	wanted to speak to was the rod withdrawal at power
9	event. This event provided results close both to the
10	DNBR criteria
11	MR. WALLIS: This is where you are even
12	closer. This is where you are about as close as you
13	can possibly get.
14	MR. FINLEY: and also pressure. And,
15	again, the reason for the closeness of the result to
16	the acceptance limit is that we reduced the I think
17	in this case Chris, correct me if I'm wrong we
18	reduced the rod speed or reactivity insertion rate,
19	essentially, until we met this limit. That is what we
20	established as our core design.
21	MR. WALLIS: How can you reduce that
22	arbitrarily? You actually can control the insertion
23	rate?
24	MR. HUEGEL: No. We make sure that we've
25	got a conservative insertion rate. Obviously, it
	1

(202) 234-4433

	57
1	would bound anything that we would see at a plant.
2	MR. WALLIS: Make it less conservative in
3	some way? How did you manage to change that?
4	MR. FINLEY: And then we incorporate that
5	restriction into our core design.
6	MR. WALLIS: Make it less conservative?
7	You justify making it less conservative? Is that
8	what
9	MR. HUEGEL: No, it is the same
10	conservatism.
11	MEMBER MAYNARD: This feeds back into what
12	your surveillance requirements would be or what set
13	point you would have to have for certain
14	instrumentation?
15	MR. HUEGEL: Exactly. The other thing is
16	when you
17	MEMBER MAYNARD: You are trying to give
18	yourself as much of a margin
19	MR. HUEGEL: When we define a safety
20	analysis limit, keep in mind that the over temperature
21	and over power delta T trip set points are designed to
22	provide protection based upon the conditions that are
23	associated with what you selected for your safety
24	analysis limit. So it is no surprise that when you
25	have a revised safety analysis set point, you are

(202) 234-4433

going to have trip set points, the OTDT and OPDT, which are designed specifically to ensure you are meeting your DNB design basis, that you are going to end up with a result that is consistent with your safety analysis limit here.

What Mark was saying is we refined the 6 7 reactivity insertion rates that we looked at to make 8 sure that we were getting the closest match to the 9 safety analysis limit. We analyzed a whole wide range 10 of reactivity insertion rates from like 1 pcm per second up to, say, 110 pcm per second, which covers 11 12 the maximum differential rod worth you would expect to in the core design life 13 see anytime and also 14 associated with your maximum rod speed that you would 15 expect to see at the plant. Combining those two, we cover the whole wide range of reactivity insertion 16 17 rates.

What we just did here is refine and make 18 19 sure that we picked the lowest or the exact reactivity 20 insertion rate that gives you the closest approach to 21 your DNBR limit. So that might have been, say, 25 pcm 22 per second, where maybe in the previous analysis we 23 used a more coarse comparison of reactivity insertion 24 limits because we had more margin to the result. 25 MR. WALLIS: Make sure although in reality

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	59
1	it isn't worse?
2	MR. FINLEY: That's correct. And then we
3	factor that input assumption to the safety analysis
4	into our surveillance program as well as into our core
5	design process. So that when we design the core and
6	we use the physics codes to validate the reactivity
7	parameters, we do that. We do that each cycle.
8	MEMBER MAYNARD: They're not arbitrarily
9	changing numbers that have no impact on something
10	else.
11	MR. HUEGEL: No.
12	MEMBER MAYNARD: They are really defining
13	what their surveillance requirement or their set
14	points would be on other parameters to assure they're
15	meeting them.
16	MR. WALLIS: I'm just trying to figure out
17	if there isn't a possibility that the rod withdrawal
18	rate somehow exceeds something that you have set to
19	it.
20	MR. HUEGEL: No. The other thing is we
21	don't limit the insertion either. I mean you have a
22	limited amount of bank worth that you can add in terms
23	of reactivity. What we assume in this transient is
24	that we keep adding whatever amount of reactivity it
25	takes us to get us up to the trip condition.

(202) 234-4433

	60
1	So, in reality, you may have a total bank
2	worth say at 90 percent power of 500 pcm. That might
3	not be enough to take you up to the trip set point
4	that we have assumed, which is like 118 percent power.
5	However, as part of the conservatism of the analysis,
6	we keep adding reactivity, even though it may not
7	truly exist, until we get to the reactor trip set
8	point.
9	We do that from all different power
10	levels, from different times in life, and for all
11	different reactivity insertion rates. So we are
12	analyzing hundreds and hundreds of cases to get to the
13	reactor trip set point, when in reality for a lot of
14	the cases you wouldn't even get there.
15	MR. WALLIS: Well, tell me, physically,
16	how does this reactivity get inserted?
17	MR. HUEGEL: It is assumed to be inserted
18	at a constant rate.
19	MR. WALLIS: It is a withdrawal of rods,
20	right?
21	MR. HUEGEL: Right.
22	MR. FINLEY: You have to start
23	MR. WALLIS: The physical withdrawal of
24	rods? Is this something that happens inadvertently
25	due to some glitch or is it something the operators
	1

(202) 234-4433

	61
1	do? Is it something that happens because of an
2	accident or what?
3	MR. HUEGEL: It is considered to be a
4	Condition 2 transient, which could be, one, a failure
5	in your control system or, two, it could be operator
б	error.
7	MR. WALLIS: So the physics limits the
8	reactivity addition rate, doesn't it?
9	MR. HUEGEL: And keep in mind that
10	MR. WALLIS: Doesn't it? In some way?
11	MR. HUEGEL: Yes.
12	MR. WALLIS: And so you can't so
13	arbitrarily set it? It seems to me you are still
14	twiddling it until you get the right number, and you
15	can't do that. It tells you what it is going to be
16	MR. FINLEY: No, no. In the core design
17	process, by changing your core design and the worth of
18	the rods, you can effect that reactivity addition. So
19	we control that.
20	MR. WALLIS: And then you control that to
21	be the maximum it could possibly be in the transient?
22	MR. FINLEY: That is correct.
23	MR. HUEGEL: Yes. They would have some
24	curve. The differential rod worth varies as a
25	function of rod position. We pick off the peak and

(202) 234-4433

	62
1	then make sure that our
2	MR. WALLIS: You make sure that it is as
3	fast as possible then?
4	MR. HUEGEL: That presents an upper bound
5	which essentially we are well beyond that differential
6	rod worth peak in terms of the range of reactivity
7	insertions that we would look at.
8	CHAIRMAN DENNING: With regard to the
9	implied rate of withdrawal of the rod
10	MR. HUEGEL: We cover a whole wide range.
11	CHAIRMAN DENNING: But how does that
12	relate to the maximum, that withdrawal rate that is
13	possible? I mean you push a button and have a rod
14	withdrawal.
15	MR. HUEGEL: That's right.
16	CHAIRMAN DENNING: It is a certain rate of
17	withdrawal that is implied.
18	MR. HUEGEL: That is right.
19	CHAIRMAN DENNING: And then the reactivity
20	rate depends upon what the worth of the rod is.
21	What is the implied rod withdrawal rate
22	relative to the standard? Is it
23	MR. HUEGEL: Again, what this safety
24	analysis assumes is a whole wide range of constant
25	reactivity insertion rates in pcm per second. That
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	63
1	implies a constant differential rod worth and a
2	constant withdrawal rate for that given condition that
3	we are analyzing.
4	Keep in mind that we analyze a whole wide
5	range of reactivity insertion rates which conceivably
6	would cover a whole wide range of differential rod
7	worths and rod speeds. So we have encompassed any
8	particular rod speed that you could have at the plant
9	and also we have bounded any particular differential
10	rod worth that the core design would calculate, which
11	is confirmed on a cycle-by-cycle basis.
12	CHAIRMAN DENNING: What limits the rate of
13	rod withdrawal?
14	MR. HUEGEL: What is the fastest I
15	think it is 72 steps per minute or is it 66? Okay,
16	sorry, 66 steps per minute. The maximum differential
17	rod worth that I think we have assumed is something
18	like 100 pcm per step.
19	MR. McHUGH: Yes, this is Chris McHugh
20	from Westinghouse.
21	The last reload cycle, the actual
22	calculated maximum rod worth was about 30 pcm per
23	second. In our rod withdrawal power analyses, like
24	Dave said, we go up over 100. So we have covered from
25	1 pcm per second up to 100, and on a cycle-by-cycle
	1

(202) 234-4433

	64
1	basis we need a maximum of about 30.
2	MR. HUEGEL: Thank you, Chris.
3	MR. CARUSO: Can you physically change the
4	rod withdrawal speed? Or is that something that is
5	locked into your control system design?
6	MR. FINLEY: Right. Not without modifying
7	the plant and doing testing post-modification to
8	verify the rod speed.
9	MR. CARUSO: But you have a current
10	defined rod speed that is locked into the rod control
11	logic?
12	MR. FINLEY: That is right. It is part
13	and parcel to the design.
14	MR. WALLIS: 1.381 comes from the fastest
15	withdrawal rate that is possible?
16	MR. HUEGEL: No. We have looked at a
17	whole wide range.
18	MR. FINLEY: No, it is one of the
19	intermediate
20	MR. HUEGEL: Yes.
21	MR. WALLIS: One of the intermediate ones
22	which is worst?
23	MR. HUEGEL: Yes.
24	MR. WALLIS: Okay. And rod ejection is
25	something else?

	65
1	MR. HUEGEL: Yes, that is a whole other
2	beast.
3	MR. WALLIS: A whole other beast because,
4	obviously, rods could go, you know, flying out under
5	some imagined scenario.
6	MR. HUEGEL: Right. The other thing is I
7	think there are also rod blocks. I think if you
8	exceed like 3 percent, don't the rods automatically
9	but that is a control grade function again, which we
10	don't credit in the safety analysis.
11	CHAIRMAN DENNING: Why don't you come up
12	to the mike? State your name, please.
13	MR. GILLON: I'm Roy Gillon. I am Senior
14	Reactor Operator since 1991, current Shift Manager at
15	Ginna.
16	We also have five rod stops, OT delta T,
17	OP delta T; difference in average T, any single T
18	average, low power, 12.8 percent, and a 20 percent
19	drop in power also give us a rod stop.
20	MR. HUEGEL: And these are all well below
21	the reactor trip set points that we are crediting on
22	the safety analysis. We don't take credit for any of
23	these control grade functions, which would effectively
24	limit or make these transients very, very benign.
25	MR. WALLIS: I am trying to think if I'm
	1

(202) 234-4433

	66
1	right now. This 1.381 comes from looking at all times
2	in the cycle, all places where rods could be, and all
3	rates at which they could be withdrawn? At the worst?
4	Is that what you have done?
5	MR. HUEGEL: This limit is set before we
6	even look at the transients.
7	MR. WALLIS: But I am just trying to make
8	sure, are you telling me it is the worst case when you
9	look at
10	MR. HUEGEL: Yes.
11	MR. WALLIS: all times in the cycle,
12	all places where rods could be, and all rates at which
13	they could be withdrawn? You somehow span this whole
14	volume of space and you look for the worst DNB
15	situation?
16	MR. HUEGEL: Yes, with no credit for any
17	of the control functions and with an infinite amount
18	reactivity.
19	MR. WALLIS: So when you say 1.381, you
20	are probably looking at the real tail-end of some
21	probabilistic distribution of what could happen?
22	MR. HUEGEL: Yes.
23	MR. FINLEY: That's correct. Absolutely
24	correct.
25	MR. WALLIS: And, in effect, you are

(202) 234-4433

	67
1	beyond the tail-end or you so claim to be, the real
2	limit of the tail-end?
3	MR. HUEGEL: We believe that the analysis,
4	again, is very, very conservative.
5	MR. DUNNE: This is Jim Dunne.
6	Again, what Chris McHugh said is this is
7	the analysis that we have set up as a bounding
8	analysis going forward for EPU. Then as part of every
9	cycle design for the core design for that cycle,
10	they've got to verify that their limiting condition
11	for that cycle is, indeed, still bounded by the
12	MR. WALLIS: It must be running for quite
13	a long time to get this number.
14	(Laughter.)
15	You must be running about a third of the
16	time you are running the reactor to predict what is
17	going to happen next time.
18	MR. FINLEY: There are dozens and dozens
19	of cases, yes.
20	MR. WALLIS: Right. Okay.
21	MR. HUEGEL: We make assumptions that,
22	hopefully, we don't have to look at the safety
23	analysis every cycle, but what we do confirm every
24	cycle is that what we have assumed in the safety
25	analysis is bounding, and as Chris McHugh stated, what
	I contract of the second se

(202) 234-4433

	68
1	we have assumed in terms of a peak reactivity
2	insertion rate is as well above what the core designs
3	are currently predicting.
4	MR. WALLIS: If you conquered some sort of
5	fuel management program which enabled you to do this,
6	you presumably would reduce the power or do something?
7	You have to adjust something.
8	MR. HUEGEL: You would have to adjust
9	something, but we've got so much margin here I don't
10	think it is a problem.
11	MR. WALLIS: Okay.
12	CHAIRMAN DENNING: I think they can
13	continue.
14	(Laughter.)
15	MR. FINLEY: Good. Next slide, Gordon.
16	Okay. The last slide with respect to
17	margin here for non-LOCA events would be, again, the
18	rod withdrawal, but this time with respect to
19	pressure. This just demonstrates, again, if we took
20	credit for a more realistic, yet still bounding and
21	conservative reactivity addition rate, the peak
22	pressure would come down nearly 200 pounds as a
23	result, still a similar sort of bounding analysis
24	looking at all the potential scenarios we could be in,
25	but just taking some of the margin that is in that one
I	

(202) 234-4433

	69
1	assumption with respect to reactivity addition.
2	MR. WALLIS: So it looks as if this is
3	what is limiting your power uprate then?
4	MR. FINLEY: That is correct.
5	MR. WALLIS: If you had a higher power
6	uprate and you didn't twiddle a few more things, you
7	would go over this bound?
8	MR. FINLEY: That is correct. These three
9	events are the limiting events for the Ginna uprate.
10	CHAIRMAN DENNING: And this is actually a
11	slightly different, it is a different the
12	particular selection of input parameters that leads to
13	this limited event is different from the selection
14	that led to the DNB
15	MR. FINLEY: That is correct. This comes
16	from a different set of initial conditions, yes.
17	MR. HUEGEL: But we do cover the wide
18	range of reactivity insertions that we talked about in
19	the DNB space. So we still are looking at anything
20	that we conceivably could come up with in terms of
21	MR. WALLIS: When you are searching for an
22	optimum or maximum, you have to take a lot of runs to
23	be sure you are there?
24	MR. HUEGEL: It runs pretty quickly.
25	MR. WALLIS: So that when you take small

(202) 234-4433

	70
1	break LOCA, you have to take quite a lot of steps in
2	the break size in order to get the real maximum?
3	MR. HUEGEL: Well, these transients are
4	over in a few minutes. So we can run tons of cases
5	within a half an hour. I mean this is not a problem
6	running many, many cases. It is not a LOCA where you
7	are looking at it for an extended period of time.
8	MR. WALLIS: I am just wondering if
9	mathematically you can be sure that you are within
10	this .4 psi in terms of having determined the maximum.
11	MR. HUEGEL: Well, the closer we get to
12	the limit, obviously, the more refined we have to be
13	in terms of what we look at in terms of reactivity
14	insertion rate.
15	MR. WALLIS: But we have to get comfort
16	from the fact that there's all this margin and all
17	these conservative assumptions.
18	MR. HUEGEL: And that's what we want you
19	to walk away with, that there is a lot of
20	conservatism.
21	MR. WALLIS: About the accuracy with which
22	you can predict this to five significant figures.
23	MR. HUEGEL: Exactly.
24	MR. FINLEY: Okay, the next slide, Gordon.
25	Just to summarize, once again, all of the
	1

(202) 234-4433

	71
1	results meet the acceptance criteria. There are
2	various areas of margin in the methods and in the
3	inputs. In addition, there's margin above the
4	acceptance limits to the point of failure.
5	MR. WALLIS: What would make me happier,
6	I think, in the long run would be if the margin were
7	expressed in some quantitative way representing a
8	measure of safety, whatever that is. Because you can
9	talk forever about margin and say, "Well, we've got
10	100 psi here," but what does that really mean in terms
11	of public safety? You have to be an engineer and you
12	have to use judgment to say, "Well, we've got 100 psi.
13	That sounds good."
14	But if you could express this margin in
15	terms of some measure of public safety, which is 10 to
16	the minus 10 or something, that might be much more
17	convincing.
18	MR. HUEGEL: Right, and you have to also
19	have confidence that the methodology that we are
20	applying is robust. What we are applying here is the
21	same that we have applied for the last 30 years.
22	MR. WALLIS: Then we would have to examine
23	ASME and I would hate to get into that.
24	(Laughter.)
25	MR. FINLEY: Okay. Well, thank you. That

(202) 234-4433

	72
1	is all I had for the non-LOCA events.
2	CHAIRMAN DENNING: Very good. I think we
3	will just go ahead.
4	MR. WALLIS: Very, very good. Thank you
5	very much.
6	CHAIRMAN DENNING: Go ahead with the
7	regulatory version of this.
8	MR. WALLIS: It's not quite a Ph.D. exam
9	because you didn't show us equations, but we are
10	getting there.
11	(Laughter.)
12	Now we are going to look at the staff view
13	of all of this?
14	CHAIRMAN DENNING: Yes.
15	MR. WALLIS: To put this in perspective,
16	I was interested enough after our last meeting on this
17	subject, margins, to go back and read the transcript,
18	which I very rarely do, to see what questions got
19	answered and which questions did not. So we are
20	really interested, at least I am very interested in
21	this issue. I want to look at the transcript maybe
22	from this presentation and see how well we got
23	convinced.
24	MR. MIRANDA: My name is Sam Miranda. I'm
25	a reviewer in the PWR Systems Branch. I reviewed the

(202) 234-4433

	73
1	Ginna power uprate application.
2	I have the same slides, basically, as you
3	have seen before.
4	MR. WALLIS: But with now different curves
5	on them or the same curves?
6	MR. MIRANDA: I have the Ginna transients
7	I can discuss, but before that I have all the same
8	margin and acceptance criteria slides that you have
9	seen. Unless there are any questions, I suggest we
10	just enter them into the record and move on.
11	CHAIRMAN DENNING: Okay, very good.
12	MR. WALLIS: Okay.
13	MR. MIRANDA: There is this one slide that
14	is a little bit different. It has some different
15	numbers on it.
16	MR. WALLIS: You have different numbers
17	and then they use RETRAN instead of some other code,
18	and so on, right.
19	MR. MIRANDA: So we move from seventies
20	technology to nineties technology from LOFTRAN to
21	RETRAN.
22	MR. WALLIS: So we are on the margins part
23	here, are we?
24	MR. MIRANDA: Well, I am going to start
25	with the accident analyses unless you have some
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

1	questions on the margins.
0	
2	CHAIRMAN DENNING: Well, I guess the only
3	question is that change that we just had where
4	yesterday we were looking at 1.55 and today we are
5	looking at 1.38, and the question is, what's the
6	smallest value that NRR will accept?
7	MR. WALLIS: I'm sure the industry is very
8	interested in their answer, I'm sure.
9	MR. MIRANDA: That margin between the
10	design limit and the safety analysis limit is
11	determined by the licensee and the vendor analysis,
12	the analysts at the vendor. It is a safety margin in
13	the true sense. It is a contingency. It is for
14	unexpected problems.
15	It is something that the staff doesn't
16	really see. All we can judge is, do the accident
17	analyses meet the safety analysis limit? We know
18	there is some amount of non-zero margin between the
19	design limit and the safety analysis limit.
20	MR. WALLIS: But suppose a vendor came in
21	with 1.25 and you don't see where it came from; are
22	you going to accept it?
23	MR. MIRANDA: A safety analysis limit of
24	1.25?
25	CHAIRMAN DENNING: No, the safety analysis

(202) 234-4433

	75
1	limit is, I think, 1.2
2	MR. WALLIS: No, the safety analysis is
3	1.38. That is the one we are talking about.
4	CHAIRMAN DENNING: Oh, I thought the DNBR.
5	Yes, let's put the margins up there again, the one
6	that has the 1.38.
7	MR. WALLIS: I am a little bit puzzled.
8	This is determined by the licensee and the vendor
9	using methods that you don't know about?
10	MR. MIRANDA: We know about the
11	correlation limit.
12	MR. WALLIS: Yes, that is based on a
13	publication.
14	MR. MIRANDA: And we know about the design
15	limit.
16	MR. WALLIS: That's based on a
17	publication.
18	CHAIRMAN DENNING: Right, right.
19	MR. MIRANDA: Those have both been
20	reviewed and approved by the staff.
21	MR. WALLIS: Right.
22	MR. MIRANDA: The part we don't know about
23	is the space between the design limit and the safety
24	analysis limit.
25	CHAIRMAN DENNING: Right, and Graham says,
	I

```
(202) 234-4433
```

	76
1	okay, suppose this is 1.25; they decide let's go for
2	1.25. What do you do?
3	MR. MIRANDA: It is a matter of judgment.
4	If they say 1.25 and if they produce analyses that all
5	meet that value, I don't see how we can object.
6	The only problem with that is if something
7	comes up in the future, some rod bow problems or
8	something else and they need that margin, it won't be
9	available. Then they will have to come in and change
10	the safety analysis limit, and that is going to
11	require a license amendment.
12	MR. WALLIS: I don't understand that. I
13	mean with 1.25, they may be predicting 1.35, and they
14	say, well, it's a huge margin because we are
15	predicting 1.35 and our limit is 1.25.
16	CHAIRMAN DENNING: Well, let me say
17	something that I think was implied that we didn't pick
18	up on adequately. That is this contingency element.
19	That is, suppose during the operation of the plant
20	there's some issue that comes up like rod bowing, and
21	they have to then go back and say, "Oh, well, you
22	know, we really had that extra margin in there between
23	1.24 and 1.38, or between 1.24 and 1.55. So we don't
24	have to shut down the plant."
25	MR. WALLIS: That's what it's for?
	I

(202) 234-4433

	77
1	CHAIRMAN DENNING: I have a feeling that
2	may be what it is for?
3	MR. WALLIS: Is that what it is for?
4	CHAIRMAN DENNING: Would you respond? I
5	wonder whether the licensee might
6	MR. WALLIS: It is a very arbitrary thing.
7	CHAIRMAN DENNING: or Westinghouse
8	might comment on that.
9	MR. KILLIMAYER: Hi. This is Jack
10	Killimayer from Westinghouse, the Fuels Division.
11	The safety analysis limit that we use,
12	okay, the 1.24, the design basis limit has the
13	uncertainties rolled in and meets the 9595 criterion.
14	When we do our analyses, we do them all to meet the
15	higher limits, so we can build in a certain amount of
16	margin that is shown up here.
17	CHAIRMAN DENNING: And the purpose of that
18	margin is to be extra safe or is it in part or largely
19	because you want to make sure that, if issues come up,
20	that suddenly you're not in a position where it
21	appears that you are beyond the design limit?
22	MR. KILLIMAYER: Yes to all of them.
23	There are some known penalties that we choose to cover
24	with DNB margins such as the rod bolt penalties.
25	We've got a rod bolt penalty of about a percent, a

(202) 234-4433

	78
1	percent and a half, depending on the fuel type. We
2	cover that with the margin that we retain between the
3	safety analysis limit and the design limit.
4	You do want to have some margin in all
5	your analyses when you are going into a cycle in case
6	something does happen when you are doing an analysis
7	for a given reload. All our DNB analyses have an
8	assumption on axial power shapes, and we use a
9	bounding axial power shape, what we consider to be a
10	bounding axial power shape, going in, and we verify
11	that each cycle.
12	So if you did end up with a more limiting
13	axial power shape, you would have margin within the
14	safety analysis limit to address small issues like
15	that.
16	MR. WALLIS: So we are talking about .14,
17	a difference between 1.24 from 1.3, which seems to be
18	based on something insubstantial in terms of
19	justification. Then we quibble about the difference
20	between 1.38 and 1.381, which is less than 1 percent
21	of this thing which seems to be somewhat arbitrary.
22	CHAIRMAN DENNING: Well, you and I are
23	quibbling; I am not sure that they are quibbling.
24	MR. WALLIS: Well, we are questioning,
25	let's say.

(202) 234-4433

	79
1	And yet they struggle to meet this 1.38
2	with this huge accuracy when it seems to be itself
3	picked out of the air, to some extent. It seems to me
4	a strange thing, you know.
5	Maybe if it is 1.3 it really might as
6	well be 1.37. Why not?
7	MEMBER MAYNARD: I didn't see that they
8	were struggling to meet that. They were
9	intentionally
10	MR. WALLIS: Yes, they were. They
11	deliberately tried to get right on the
12	MEMBER MAYNARD: getting there, so that
13	they could establish design and set point criteria.
14	MR. WALLIS: They deliberately tried to
15	get to 1.381, as far as I can make out.
16	MR. MIRANDA: I think the difficulty there
17	is that the safety analyses that we were looking at
18	are not safety analyses in the strict sense. They are
19	also sort of design analyses. They are trying to come
20	up with, by doing these safety analyses, come up with
21	enough operating margin, operating space, for the
22	future as possible.
23	So they use, they did, for example, the
24	rod withdrawal at power analyses over a wide range of
25	reactivity insertion rates and other conditions such
	1

(202) 234-4433

80 1 that there's no future core reload that will go 2 outside that area. They would do that up to the very 3 limit, up to the 1.38, to make sure that they have 4 given themselves as much space as possible. 5 MR. WALLIS: But the area then doesn't set the number 1.38. They could have had a higher power 6 7 uprate and done all this analysis of core reload and 8 said, "All right, our number is 1.36 and we're happy with that." 9 MR. MIRANDA: Well, they could have just 10 as easily have done that. 11 MR. WALLIS: Well, why don't they do that 12 and they come in with a 10 percent power uprate? 13 14 MR. DUNNE: The power uprate, power level 15 was picked first and then all the analyses to support 16 it were done. 17 MR. WALLIS: That's right. MR. DUNNE: We didn't do all these sets of 18 19 analyses and then come say --20 MR. WALLIS: Put the cart before the 21 So you assume what you want to do and then horse. 22 justify it. Well, the other thing on the 23 MR. DUNNE: 24 power uprate is we are also limited by the balanced 25 plant side of the plant.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	(Laughter.)
2	So if we wanted to go higher, then we
3	would have more modifications to make on the balanced
4	plant side of the plant.
5	So, you know, you end up choosing what
6	your power level is
7	MR. WALLIS: I understand that, but we are
8	talking about safety here. We are talking about
9	safety.
10	MR. DUNNE: Right, but that's the reason
11	why we would not have actively pursued going much
12	higher than the number we chose.
13	MR. WALLIS: It seems to me there has to
14	be a justification for 1.38 which is more than saying
15	that the vendor and the licensee decided in some
16	mysterious way that's what it should be.
17	CHAIRMAN DENNING: And that they wanted
18	that margin.
19	MR. WALLIS: Right.
20	CHAIRMAN DENNING: I mean that seems to be
21	the margin they want. Again, it is a value to them
22	related to these unforeseen
23	MR. WALLIS: In some unforeseen
24	circumstances they might go down to 1.30.
25	CHAIRMAN DENNING: Yes, that's right.

(202) 234-4433

	82
1	MR. WALLIS: And then they would come to
2	us and say, "There's no problem because it is still
3	above 1.24."
4	CHAIRMAN DENNING: And then they would
5	come up and they would say, "Well, it's no problem."
6	I think that's what we are hearing.
7	MR. WALLIS: Is that what happens?
8	MR. MIRANDA: No, they can't I don't
9	think they can do that. I mean they have set the
10	safety analysis limit that's in the tech specs. If
11	they come in with something less than 1.38, they would
12	have to justify it. They would have to come in and
13	ask for an amendment, and then the staff would review
14	that. But anything above 1.38
15	CHAIRMAN DENNING: They're locked into
16	that.
17	MR. WALLIS: There had another plant
18	yesterday that was 1.55.
19	MR. MIRANDA: Yes.
20	MR. WALLIS: They look at this plant and
21	they say, "Gee whiz, there's no reason we should be
22	1.55. Why don't we come in with 1.38 and go for a
23	power uprate of 30 percent?" Would you let them do
24	that?
25	MR. MIRANDA: Well, actually, for Beaver

(202) 234-4433

	83
1	Valley, that has a little bit of history behind it.
2	They could have been below 1.55, but they had, I
3	believe they had 1.55 in the past and they didn't need
4	to go below 1.55. The results were acceptable at
5	1.55, so they just kept it. So they had more than the
6	average margin between design limit and the safety
7	analysis limit.
8	MR. WALLIS: Yes, but that's why they
9	might use it. Why don't they use it? Why don't they
10	capture some of that margin and go to higher power?
11	MR. SIEBER: Well, the higher power is
12	limited by how many dollars you want to spend on
13	MR. WALLIS: But we're talking about
14	safety. Dollars are irrelevant.
15	CHAIRMAN DENNING: No, but as far as the
16	plant is concerned, they're
17	MR. WALLIS: But these numbers should have
18	a relationship to safety. That's what we're here for,
19	isn't it? We're not here for anything to do with
20	dollars.
21	MR. FINLEY: Right, Doctor, and we meet
22	the safety limit, right?
23	MR. WALLIS: Set by you, it seems to me.
24	MR. FINLEY: No. These limits have been
25	reviewed by the staff and accepted. We treat them as

(202) 234-4433

	84
1	safety limits and we demonstrate we meet them with the
2	power level that we have chosen.
3	As Jim Dunne said, we chose the power
4	level based on many parameters. These safety limits
5	are part of that decision process.
6	MR. WALLIS: The 1.38 is historically what
7	you have had in this plant, is that it?
8	MR. KILLIMAYER: No. This is Jack
9	Killimayer again.
10	We do set the safety analysis limit. Yes,
11	there is, in a sense, an arbitrary amount of margin
12	that is put in. It does cover known penalties, and we
13	do build in extra margin to cover contingencies for
14	the future.
15	It is an agreed-upon number as to how much
16	margin we retain in the DNB analysis versus where it
17	is in operating space.
18	MR. HUEGEL: It is agreed upon between
19	Westinghouse and the licensee.
20	MR. WALLIS: That's right.
21	MR. HUEGEL: We don't treat that as the
22	license limit. The license limit would be the design
23	limit, okay?
24	MR. WALLIS: The license limit is 1.24?
25	MR. KILLIMAYER: Right. The safety
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	85
1	analysis limit is essentially our it is like an
2	accounting method for keeping track of DNB margin to
3	account for penalties.
4	MR. WALLIS: So when the staff evaluates
5	your submittal, do they look to see the DNB number is
6	bigger than 1.24 or that it is bigger than 1.38?
7	MR. MIRANDA: We use the 1.38 value.
8	MR. WALLIS: You use the value, but that
9	seems very strange because you are using something
10	defined for the convenience of the licensee which has
11	no relationship to public safety whatsoever.
12	MR. MIRANDA: Well, there is a
13	relationship to public safety. It is a value that is
14	greater than the design limit.
15	MR. WALLIS: But 1.24 has some merit in
16	terms of a measure of public safety.
17	MR. MIRANDA: Yes.
18	MR. WALLIS: The 1.38 does not; you said,
19	but it is bigger.
20	MR. SIEBER: It has more
21	MR. WALLIS: But it could be 1.9. I mean
22	it is just arbitrary.
23	MR. HUEGEL: But the important thing is it
24	is greater than; the 1.38 has an important part
25	because it was met based upon a conservative

```
(202) 234-4433
```
1 methodology. So using our conservative methodology, 2 we are meeting the 1.38, which includes, granted, it is rather arbitrary, but some amount of DNB margin 3 4 above the design limit to handle the unexpected issues 5 that do arise, as was pointed out, the rod bow penalty, for example. 6 7 You don't want to be in a situation where 8 you have done your safety analysis right up to the 9 design limit; something comes up unexpected, and 10 you're strapped and you have no room to maneuver other 11 than telling the plant, "Well, you have to derate or This gives us the flexibility to address 12 something." the unknown issues that we hope don't occur, but, 13 14 unfortunately, do occur. 15 MR. WALLIS: How do you get flexibility if 16 the staff is approving 1.38 and you go down to 1.37 17 because of rod bow or something? 18 Because we show that the MR. HUEGEL: 19 safety analysis --20 MR. WALLIS: But they wouldn't shut you 21 down? 22 MR. HUEGEL: No. MR. WALLIS: Because you're above 1.24, is 23 24 that right? 25 MIRANDA: No, they would have to MR.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	87
1	explain why they are below the safety analysis limit.
2	MR. HUEGEL: But we have met the design
3	limit and the safety analysis limit, and we have said
4	that
5	MR. WALLIS: It's strange.
6	MR. MIRANDA: Telling us that you met the
7	design limit does not satisfy us.
8	MR. WALLIS: Am I just odd? I think this
9	is very strange.
10	CHAIRMAN DENNING: But it is possible they
11	could come to you and say I mean it sounds like
12	we're hearing slightly different things, but what you
13	are saying is that is what you license them with a
14	particular core reload, core load; that's the way they
15	operate the plant. If they find something mid-cycle
16	that is an issue that would say that they are in
17	conflict with that, then the licensee comes to you and
18	says, "We want to have some granting relaxation,"
19	right? And it would be up to NRR to say yes or no, is
20	that right?
21	MR. MIRANDA: Something like that. If
22	something comes up in the future that causes them to
23	use up all of their 11 percent margin between the
24	design limit and the safety analysis limit
25	CHAIRMAN DENNING: Well, I'm only going to
1	I contraction of the second

(202) 234-4433

ĺ	88
1	let them use up 1 percent of it. Suppose they decide
2	that it is 1.37. You know, something has happened.
3	Now what is the requirement on them? Do they have to
4	now are they in conflict with their license and
5	they have to either shut down the plant I mean they
6	have to shut down the plant within "x" amount of time
7	or something.
8	MR. SIEBER: Reduce power.
9	CHAIRMAN DENNING: Or reduce power? And
10	then you would have to grant some exception to allow
11	them to go back to power? Is that a true statement?
12	MR. SIEBER: They would have to justify
13	that based on a reevaluation of the uncertainties.
14	That is one way to do this.
15	CHAIRMAN DENNING: So, actually, what
16	would probably happen
17	MR. SIEBER: What they come up, the staff
18	might or might not agree with
19	CHAIRMAN DENNING: Might or might not.
20	MR. SIEBER: a new limit.
21	CHAIRMAN DENNING: Yes, right?
22	MR. SIEBER: And you would recapture some
23	of the margin that you put in there in the first
24	place.
25	MR. MIRANDA: I'm a little bit confused.
	1

(202) 234-4433

	89
1	Are you talking about the safety analysis limit or the
2	design limit?
3	CHAIRMAN DENNING: The safety analysis
4	limit.
5	MR. SIEBER: The safety analysis limit has
6	extra margin.
7	MR. MIRANDA: They need to change the
8	safety analysis limit; they would need to come to the
9	staff.
10	MR. SIEBER: You would have to agree
11	before they could do it then?
12	MR. MIRANDA: Since that is in the tech
13	specs, that is a license amendment and the staff would
14	have to review and approve that.
15	MR. WALLIS: It seems to me to have
16	nothing to do with nuclear safety. I mean if 1.24
17	means the public risk is 10 to the minus 5 and 1.38
18	means it is two times 10 to the minus 5, that is very
19	different from its being 10 to the minus 6. Until
20	there is some scale which tells me what we gain in
21	public safety by having this extra margin from 1.24 to
22	1.38, I don't have any way to evaluate how big it
23	should be.
24	MR. MIRANDA: I don't see the need for
25	evaluating that. That is a designer's margin. That

(202) 234-4433

	90
1	is for their use in contingencies to cover unexpected
2	problems.
3	MEMBER KRESS: You are suffering under the
4	whole problem of all the licensees in design basis
5	space which has a relationship to safety but it is not
6	fully quantified because you've got these design basis
7	events that represent ranges of accidents, and they do
8	them conservatively. You end up with margins for the
9	design basis events.
10	But how to relate that to some real
11	measure of safety, which might be a risk number, is
12	you have to it is an after-the-fact thing. You can
13	go back now and say, "We'll do a PRA and we'll see if
14	this design is safe from the standpoint of any risk
15	measures you have." But it is an after-the-fact
16	calculation.
17	To try to relate things like how much this
18	margin contributes to that safety is just
19	MR. WALLIS: I'm really puzzled though.
20	I mean 1.24, see, it has a basis, right? It seems to
21	me that I'm trying to relate it to my experience.
22	If we say that we are going to educate students to
23	pass a professional engineering exam, in a
24	professional engineering exam to be a qualified
25	engineer, you have to get a grade of 1.24. But the

(202) 234-4433

	91
1	student says, "Well, I want to be better than that
2	because I want to be a better engineer. So I am going
3	to come up and say you're going to grade me to be
4	above 1.38," and we agree to that. But it is all just
5	arbitrary from the student's point of view.
6	MEMBER KRESS: Well, sure it is.
7	MR. WALLIS: It is not justified by the
8	agency.
9	MEMBER KRESS: It is not quite arbitrary
10	because it is designed by space and you did it in a
11	conservative way and you end up with a conservative
12	MR. WALLIS: But the number is set by the
13	licensee and the vendor. It is not set by the agency.
14	MEMBER KRESS: That's pretty much
15	arbitrary.
16	MR. WALLIS: It is really peculiar to have
17	a safety thing set by the vendor rather than the
18	agency. But, anyway
19	(Laughter.)
20	MEMBER MAYNARD: I think the safety thing
21	here is the design limit. Now the closer that the
22	safety analysis limit comes to that, the less things
23	that they are going to be able to tolerate
24	MR. WALLIS: I understand that.
25	MEMBER MAYNARD: from other things.
	1

(202) 234-4433

	92
1	The higher they go, that removes operating
2	flexibility from the plant.
3	It is not as much a safety issue as it is
4	as to, how much do you want to be able to tolerate
5	without having to go back and reanalyze and resubmit?
6	MR. WALLIS: They still have to resubmit
7	though. If they come up with something which is 1.3,
8	they have to resubmit.
9	MEMBER MAYNARD: But they are a lot less
10	likely, if they started with 1.3 and that you had some
11	rod bowing or you had some thing, they are not going
12	to be able to absorb as much of that. So the lower
13	they make that limit yes, if they do end up below
14	that 1.38, they've got to come in.
15	MR. WALLIS: Right. There's a likelihood
16	that after they come in they can go out
17	satisfactorily?
18	MR. SIEBER: Yes.
19	MR. WALLIS: Whereas if they were closer
20	to it, they might be more at risk of being shut down?
21	Is that the idea?
22	MR. SIEBER: Well, you have to make sure
23	that you aren't going to approach the design limit.
24	MEMBER MAYNARD: It is going to change
25	other if they have to come in with a lower number,
1	

(202) 234-4433

	93
1	then it is going to change some other things in a
2	tighter design or different set points or different
3	limits from that aspect.
4	CHAIRMAN DENNING: I think another thing
5	that we have to get perspective on, we tend to think
6	in risk space, and these are Condition 2 and Condition
7	3 events. Even defeating the design limits in these
8	cases doesn't put you in a core meltdown situation
9	typically.
10	MR. WALLIS: That's right.
11	MEMBER KRESS: It could possibly do some
12	fuel damage.
13	CHAIRMAN DENNING: It could do some fuel
14	damage.
15	MEMBER KRESS: And we don't have criteria
16	in terms of risk of fuel damage other than full core
17	damage almost. So if we had that criteria, you might
18	possibly be able to relate this change in the limit to
19	how much fuel you might damage if you had a whole
20	spectrum of events, but we don't have that,
21	unfortunately.
22	MR. SIEBER: Actually, you don't do fuel
23	damage until you hit the critical heat flux.
24	MEMBER KRESS: That's right. That's
25	right. But if you did it right, these would have
1	

(202) 234-4433

Í	94
1	probability distributions. The overlap would give a
2	probability of meeting that for all the design for
3	not the design basis accident, but for the spectrum of
4	accidents. You could end up with a probability of
5	core damage and you could have some sort of measure.
6	That could be a measure of safety.
7	We don't do that because right now it is
8	too hard. This seems to guarantee safety this way by
9	experience. It is a way that the staff can deal with
10	and a way the licensee can deal with.
11	MR. SIEBER: It's deterministic. That is
12	the way these things were
13	MEMBER KRESS: Deterministic as opposed
14	to
15	MR. WALLIS: My problem dealing with it,
16	because we are going to evaluate whether or not to
17	allow a power uprate, and if one plant comes in with
18	1.55, this one comes in 1.38, another plant comes in
19	with 1.3, another one comes in 1.25, and they all say,
20	"We want the power uprate." It is clear that the one
21	with 1.25 is probably going for a higher power uprate.
22	So how do we decide?
23	MEMBER KRESS: That's a good question.
24	MR. WALLIS: How do we decide what is
25	reasonable?

(202) 234-4433

	95
1	MEMBER KRESS: That's a good question.
2	MR. MIRANDA: Well, you would be putting
3	yourself in the position of judging as to how much
4	MR. WALLIS: We're asked to write a
5	letter, right. Right.
6	CHAIRMAN DENNING: That's exactly where we
7	are.
8	MEMBER KRESS: You had a suggestion once,
9	Graham, that I really liked, and that is, these are
10	calculated by some code, a thermal-hydraulics code.
11	MR. WALLIS: Right.
12	MEMBER KRESS: And if you, instead of
13	having this number, had a distribution and you could
14	come up with some sort of probability of exceeding
15	your design, your actual CfA, actually correlation
16	limit, and you have some idea
17	MR. WALLIS: Where we are, yes.
18	MEMBER KRESS: But even there you've got
19	a problem because, even though we have that
20	probability, you don't know what probability is
21	acceptable. And that is an arbitrary choice.
22	MR. WALLIS: But at least you know what
23	you are doing more.
24	MEMBER KRESS: You know what you are
25	doing.

(202) 234-4433

	96
1	MR. WALLIS: Right.
2	MEMBER KRESS: But not enough to base a
3	decision on.
4	CHAIRMAN DENNING: Let's not redefine the
5	whole regulatory basis.
6	MEMBER KRESS: No, that is not in the
7	regulatory basis right now; that's right. So we are
8	stuck with the judgment.
9	MR. SIEBER: The only way we could be
10	certain that their number is right is for us to do
11	these calculations, this whole series of calculations,
12	and I don't want to do that.
13	(Laughter.)
14	CHAIRMAN DENNING: Well, thank you, Jack.
15	Go now to where you were going to start
16	your presentation.
17	MR. MIRANDA: Okay. I was going to talk
18	about the same three transients that Mr. Finley
19	discussed earlier: loss of flow, which is the event
20	that challenges that DNB ratio; the rod withdrawal at
21	power, which, by the way, I disagree; I don't think
22	this is a challenging analysis for the DNB ratio. Rod
23	withdrawal at power is more of a design event in terms
24	of testing the over temperature delta T trip to be
25	sure it covers the
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	97
1	MR. SIEBER: That's the culmination of it.
2	MR. MIRANDA: Yes.
3	And the loss of load, which is the event
4	that is most likely to over-pressurize the RCS.
5	These are the results for the loss-of-flow
6	accident. There are two cases described here. One is
7	the frequency decay, which is the limiting event, and
8	then there is the complete loss of flow. With both
9	complete losses of flow, one involves tripping both
10	reactor coolant pumps and the other is the situation
11	where the reactor coolant flow is driven down by a
12	frequency decay on the grid. That one produces a
13	lower DNB ratio.
14	I would say that this event is governed
15	mainly by the power-to-flow ratio. That is very
16	important in DNB ratio. If you look at the power-to-
17	flow ratio, if you delay the reactor trip, if you keep
18	the power relatively high compared to the flow, which
19	is decreasing, either because it pumps a trip or
20	because of being driven down by frequency decay,
21	delaying that reactor trip will cause a lower DNB
22	ratio.
23	We can see, for example, here that looking
24	at the two events, in the flow coast-down event you
25	have the reactor trip immediately because that is the
I	

(202) 234-4433

	98
1	initiating event, the undervoltage condition on the
2	power supply buses on the reactor coolant pumps. So
3	there you have an immediate reactor trip; whereas, for
4	the frequency decay you have to wait for the signal,
5	for the under-frequency reactor trip signal, and that
6	takes a little bit more than half a second.
7	Here we see on the bottom curve it is
8	not a curve; it is a straight line. It is the flow
9	rate responding to the frequency decay.
10	Then we have the under-frequency trip burn
11	in about two seconds. Then, as the rods are falling
12	into the core, you have reached a minimum DNB ratio
13	about here. You see the power level is still
14	relatively high.
15	This is the heat flux in the core average
16	channel and the hot channel. This is a reminder, for
17	one thing, that this event is analyzed with RETRAN and
18	VIPRE. The RETRAN code will calculate the transient
19	in terms of power level and back to coolant system
20	pressure and temperatures and flow rate. Then that
21	information is passed to VIPRE, which actually
22	calculates the heat flux, and VIPRE will model a hot
23	channel. Here we can see there is not that much
24	difference between hot channel and average channel.
25	MR. WALLIS: All this is at some time in
	1

(202) 234-4433

	99
1	the cycle or some extreme case or something that
2	bounds
3	MR. SIEBER: Worst.
4	MR. WALLIS: The worst?
5	MR. SIEBER: The worst. The worst time in
6	the cycle.
7	MR. MIRANDA: From this curve, we see that
8	minimum DNB ratio well, actually, I have another
9	plot I can show that describes all of this.
10	The minimum DNB ratio will occur actually
11	before the time that the PORVs might open. This is an
12	illustration of that.
13	Here's the minimum DNB ratio occurring.
14	If you take that up to the pressurizer pressure curve,
15	you see that the minimum DNB ratio has been reached
16	before the core opening set point is reached.
17	All of this is interesting and it is not
18	really relevant, though, for this analysis because
19	this pressure is information that is not passed to
20	VIPRE as you see it here. The VIPRE code will
21	calculate the DNB ratio based on the nominal pressure.
22	So there is no credit taken for the pressurization.
23	MR. WALLIS: I think the key thing is what
24	turns around the DNBR. It seems to be headed down and
25	then it gets turned around rather abruptly by

(202) 234-4433

	100
1	something.
2	MR. MIRANDA: The rods are fully inserted,
3	okay.
4	CHAIRMAN DENNING: Heat flux. Heat flux.
5	MR. MIRANDA: It is the power to flow
6	MR. WALLIS: It is the power that turns it
7	around? Okay.
8	MR. MIRANDA: If we look at the first
9	curve with the power levels
10	MR. WALLIS: Okay, it is the power. That
11	is where it is. The power torque falls off the cliff
12	or it goes over it is not really a cliff, but it
13	goes down the slope. Then that is what turns it
14	around. Okay.
15	MR. MIRANDA: It is all a function of
16	power-to-flow ratio.
17	MR. WALLIS: Okay.
18	MR. SIEBER: Well, the whole transient is
19	caused because of the mismatch between the trip and
20	seeing the actual cause, which was the loss of the
21	coolant pump.
22	MR. WALLIS: So what would seem to be
23	MR. SIEBER: You are producing power in a
24	regime where the flood is decaying.
25	MR. WALLIS: What would seem to be

(202) 234-4433

I	101
1	critical here would be how fast the rods drop.
2	MR. MIRANDA: Yes, and we had
3	MR. WALLIS: Because if it is a little bit
4	later, then this DNBR would go down below the safety
5	analysis limit.
6	MR. MIRANDA: Right. That's right.
7	MEMBER KRESS: Why doesn't the DNBR turn
8	around again at some longer time? Because your flow
9	has continued to drop, but the power sort of levels
10	off. So you expect that curve to turn over again.
11	MR. MIRANDA: Well, you do not produce
12	you have the reactor trip. So you're not producing
13	power anymore. The power that you see there is
14	MEMBER KRESS: Decay heat.
15	MR. MIRANDA: Decay heat, yes. It is kind
16	of hard to come up with
17	MR. SIEBER: Well, if the flow continued
18	going down, then even decay heat could reach the DNB.
19	MEMBER KRESS: The flow never really
20	stops.
21	MR. SIEBER: Oh, that curve doesn't
22	continue on down like that?
23	MEMBER KRESS: No, because you end up in
24	natural circulation.
25	MR. MIRANDA: Natural circulation is
1	I

(202) 234-4433

Í	102
1	MEMBER KRESS: Okay. Well, that's the
2	explanation.
3	MR. WALLIS: DNBR in a close to dryout
4	situation, high quality, the power-to-flow ratio might
5	seem no, it is all liquid. It is all liquid, isn't
6	it? It is all liquid. So it is not. No, it has
7	nothing to do with that. Yes, it is all liquid.
8	I am just trying to figure out why it
9	should be power-to-flow ratio, but that doesn't
10	matter. It doesn't matter.
11	MR. MIRANDA: So this DNB ratio, the 1.385
12	I believe is the limiting, is the lowest DNB ratio you
13	will find in Ginna.
14	MR. WALLIS: Well, you have 1.381 in
15	another one.
16	MR. MIRANDA: I will talk about that when
17	I get to the rod withdrawal at power.
18	MR. WALLIS: Okay.
19	CHAIRMAN DENNING: Okay, proceed.
20	MR. MIRANDA: Loss-of-load event, Ginna
21	has done three different cases here.
22	MR. WALLIS: I'm sorry, I want to go back
23	to this other one. Since everything seems to be
24	governed very much by when the rods drop, is this a
25	conservative analysis you are showing us about rod

```
(202) 234-4433
```

	103
1	drop or is this a realistic analysis?
2	MR. MIRANDA: This is conservative.
3	MR. WALLIS: So the rods, where actually
4	it says two, it is more likely to be one?
5	MR. FINLEY: Right. I think, Sam, if you
6	put up your sequence of events table there?
7	MR. WALLIS: As rods begin to drop at two
8	seconds; it is more likely to be one second, is that
9	right?
10	MR. MIRANDA: Well, they take 2.8 seconds
11	to drop.
12	MR. WALLIS: Well, they begin to drop at
13	two. Is it more likely that they would actually drop
14	earlier than that?
15	MR. FINLEY: That is correct. This is
16	Mark Finley, Project Director for Ginna.
17	I mentioned in my presentation there is a
18	1.4-second time delay assumed between the time the
19	frequency set point is reached
20	MR. WALLIS: That is the .6
21	MR. FINLEY: right and the time the
22	rods begin to drop. We have actually timed that in
23	the past at less than one second. So on my slide I
24	said, if you reduced that 1.4-second delay to one
25	second, then you would benefit in margin.
	1

(202) 234-4433

104 1 MR. WALLIS: Yes, I was recalling what you 2 said. 3 MR. FINLEY: Yes. 4 MR. WALLIS: And I was trying to relate it 5 to what is being presented here. MR. SIEBER: The rod drop speed is slow, 6 7 too. 8 MR. FINLEY: And then the rod drop speed 9 is tested. We have a tech spec number we have to meet for the rods to reach the bottom, and that is tested 10 each startup. 11 12 MEMBER MAYNARD: I think I also heard Westinghouse say that they don't take much credit for 13 14 the rods until they get almost to the bottom, as 15 though all the power were being generated in the 16 bottom there. So that is another conservatism, I 17 believe. MR. FINLEY: They certainly use a bounding 18 19 shape in terms of the rods and the position of the 20 rods for the negative reactivity insertion. 21 MR. MIRANDA: Okay, the loss-of-load case, 22 there are actually three cases, but the important one 23 is the RCS peak pressure case, the last one. Ginna has looked at the loss of load in 24 25 terms of DNB ratio and also in terms of secondary site

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	over-pressurization. They are different cases.
2	The DNBR case is a case that is designed
3	to produce a low DNB ratio, which means you try to
4	keep the pressure low. To keep the pressure low, they
5	would use the pressurizer pressure control system,
6	pressurizer spray and PORVs. They also use the
7	revised thermal design procedure to evaluate the DNB
8	ratio.
9	For this type of an event, as a reviewer,
10	I would look for a trip coming from the protection
11	that is designed to protect against low thermal
12	margin. That would be the over temperature delta T
13	trip. That is what is happening here. The over
14	temperature delta T trip occurs at 11.6 seconds, and
15	then the DNB ratio reaches a minimum, again, as the
16	rods are nearing the bottom of the core.
17	The case designed to look at secondary
18	site pressure, we are not looking at DNB ratio
19	anymore. So they are using the standard thermal
20	design procedure, which means, for example, that they
21	are going to use different initial conditions. They
22	are going to use 102 percent of rated thermal power,
23	and they are going to use temperature uncertainties on
24	the high side.
25	Also, in this case they are, for peak

(202) 234-4433

	106
1	secondary system pressure, they are assuming no steam
2	generator tube plugging to maximum the heat transfer
3	from primary to secondary.
4	Finally, the RCS peak pressure case
5	MR. WALLIS: So that's a conservative
6	assumption?
7	MR. MIRANDA: Yes.
8	For the RCS pressure case, they are not
9	using any pressurizer pressure control, no PORVs, no
10	spray. They are using all the uncertainties in
11	initial conditions in a conservative direction, high
12	temperatures, high power, and they produce the highest
13	pressure. For example, for a trip on the high
14	pressurizer pressure reactor trip
15	MR. WALLIS: Now, presumably, the steam
16	generator is cooling better; the pressure is lower,
17	isn't it? That's a different
18	MR. MIRANDA: They would assume different
19	plugging level
20	MR. WALLIS: Higher secondary pressure,
21	but what did you assume about the steam generator in
22	the last case?
23	MR. MIRANDA: Maximum plugging, 10 percent
24	plugging.
25	MR. WALLIS: You assume 10 percent

(202) 234-4433

	107
1	plugging, okay.
2	MR. MIRANDA: That is why in each one of
3	these analyses you look at what parameter you are
4	interested in
5	MR. WALLIS: No, I am just interested
6	about the steam generator in the last case because it
7	doesn't seem to be written down here. Okay.
8	MR. MIRANDA: So in the first case, in the
9	DNBR case, they have the over temperature delta T trip
10	occurring right about here.
11	MR. WALLIS: We don't have that.
12	CHAIRMAN DENNING: It is on the third one.
13	MR. WALLIS: It is on the third one, okay.
14	MR. MIRANDA: That trip corresponds to
15	this point. Here is your DNB ratio.
16	MR. WALLIS: Oh, it wiggles, unless you
17	put the pencil mark on there.
18	MR. MIRANDA: Oh, the wiggle mark?
19	MR. WALLIS: It is your pencil mark you
20	put on there as a wiggle, isn't it, or is it not?
21	MR. MIRANDA: Yes, the wiggle is due
22	mainly to this.
23	MR. SIEBER: Actually, we don't have that.
24	MR. WALLIS: We don't have that. We don't
25	have that, no.

```
(202) 234-4433
```

	108
1	MR. MIRANDA: Here we have the pressurizer
2	pressure and you see that we have PORV opening at 2350
3	psi, and, in fact, it gets up to 2500, where you might
4	begin to see the safety valves opening. Over
5	temperature delta T trip occurs right about here.
6	MR. WALLIS: We don't have your first
7	curve there for some reason.
8	MR. SIEBER: We don't have the last one.
9	MR. WALLIS: We don't have the one you
10	just showed, the one before this.
11	MR. MIRANDA: The one before this? This
12	one?
13	MR. WALLIS: I don't think we have that.
14	CHAIRMAN DENNING: No, I don't think we
15	do.
16	MR. WALLIS: We don't have that.
17	CHAIRMAN DENNING: It is missing.
18	MR. WALLIS: So DNBR is sort of headed to
19	China until the PORV opens, is it, or something? It
20	seems to be falling off a cliff and then it levels off
21	again.
22	MR. MIRANDA: Well, I don't really connect
23	it to the PORV. It is connected to the rods providing
24	enough negative reactivity to trip the plant.
25	MR. WALLIS: And that's what stops it

(202) 234-4433

	109
1	abruptly? Okay.
2	But is that wiggle something you drew on
3	there? We don't have this figure. You drew something
4	on there?
5	CHAIRMAN DENNING: Yes, that is just a
6	marker, I think.
7	MR. WALLIS: It's a marker, okay. You put
8	that on? Okay. Just don't draw on the screen,
9	whatever you do.
10	(Laughter.)
11	Okay, so that is the figure we don't have.
12	CHAIRMAN DENNING: But that's okay.
13	Proceed.
14	MR. WALLIS: That's okay. We have seen
15	it.
16	MR. MIRANDA: So this is where the trip
17	occurs. I mean this is where the
18	MR. WALLIS: And that is, again,
19	conservatively estimated in time and stuff?
20	MR. MIRANDA: The over temperature delta
21	T trip, that is the trip that is designed to keep the
22	DNBR above 1.3
23	MR. WALLIS: Again, you've got two second
24	between the trip and the rods dropping? Is that this
25	conservatism again?
l	I contract of the second se

```
(202) 234-4433
```

	110
1	MR. SIEBER: Yes.
2	MR. MIRANDA: Yes.
3	MR. WALLIS: Yes, okay.
4	MR. MIRANDA: That is a long time.
5	There is also, by the way, in the over
6	temperature delta T trip, there is also a delay built
7	in actually before you even reach that signal to
8	account for loop transit time because the temperature
9	is measured in RTDs in the hot legs and the cold legs,
10	and it takes time to get there, something like a six-
11	second delay.
12	This over temperature delta T trip is
13	current compensated, lead line compensation to account
14	for the time that it takes to measure the temperature
15	versus the time to actually put the rods into the core
16	and actually trip the plant before you reach the core
17	limit of 1.38.
18	MR. WALLIS: All right. I find this
19	extraordinarily useful. We have complained in the
20	past many times that when you read the SER and you
21	simply see a description of what the applicant did,
22	and then you say the applicant meets the regulations,
23	everything is fine, there's no indication that
24	anything like this sort of study is behind that
25	decision. And I think this is the first time we have
	1

(202) 234-4433

	111
1	really seen that this staff knows what is going on in
2	some detail, and it has been very useful to me. So
3	please continue.
4	MR. MIRANDA: This is simply the steam
5	generator pressure, the pressurizer water volume. The
6	limit for the steam pressure is 1209, which is right
7	about here, 1209.
8	The over temperature delta T trip occurs
9	right here.
10	And we also verify, since this is a
11	Condition 2 event, that the pressurizer is not filled.
12	MR. WALLIS: Yes.
13	MR. MIRANDA: This is an 800 cubic foot
14	pressurizer, 18.6 cubic feet for the surge line. So
15	we see that this event would not cause any water
16	relief for the
17	MR. WALLIS: And it's getting pretty
18	close?
19	MR. MIRANDA: Close, yes.
20	MR. WALLIS: Yes.
21	MR. MIRANDA: Yes, Ginna has gone about as
22	far as they can with this uprate.
23	MR. SIEBER: There's still margin.
24	MR. WALLIS: The operator might have a
25	little concern when he sees that headed up like that.

```
(202) 234-4433
```

	112
1	MR. FINLEY: Exactly, and he's got many
2	indications that might cause him to take actions that
3	would improve these results, but we don't take credit
4	for that, at least not for 10 minutes.
5	MR. WALLIS: These are seconds on the axis
б	here?
7	MR. FINLEY: Yes.
8	MR. WALLIS: So the 15 and 18 seconds, if
9	this is true, this curve, he's going to be having some
10	qualms or something. Something is going to be
11	happening to him.
12	MR. MIRANDA: Well, the reactor trip takes
13	care of that situation. As soon as you turn off
14	the
15	MR. WALLIS: If it happens, yes. Yes.
16	MR. MIRANDA: It starts to go down.
17	In this case, the steam generator peak
18	pressure case, you see that DNB ratio is not the issue
19	and there's lots of margin there.
20	MR. WALLIS: Well, as long as it turns
21	around, right?
22	MR. MIRANDA: It turns around due to the
23	trip, yes.
24	MR. WALLIS: Which is conservatively
25	estimated in time.

```
(202) 234-4433
```

	113
1	MR. MIRANDA: This is the RCS volume for
2	the steam side pressure case. That volume is actually
3	much lower.
4	MR. WALLIS: RCS pressure?
5	MR. MIRANDA: RCS pressure is we do
б	have core opening of 2250
7	MR. WALLIS: I guess where you said
8	"volumes temperature," you mean the temperature
9	increase swells up the volume? Because it is sort of
10	related to volume, isn't it? It looks like volume.
11	MR. MIRANDA: This is the core opening
12	here. Then we have safety valves opening just barely
13	right about here, taking into account 2.5 percent
14	pressure accumulation.
15	MR. WALLIS: These are all curves
16	submitted by the applicant?
17	MR. MIRANDA: Yes.
18	MR. WALLIS: And you folks didn't do any
19	separate predictions or running of the code or
20	anything? I guess Westinghouse doesn't give you the
21	code to run?
22	MR. MIRANDA: Actually, we ran it. We ran
23	a case with LOFTRAN.
24	MR. WALLIS: They did give you LOFTRAN to
25	run? Or you have LOFTRAN?

(202) 234-4433

	114
1	MR. MIRANDA: We had access to LOFTRAN at
2	their Rockville office. We ran the loss-of-load event
3	with LOFTRAN. LOFTRAN agrees pretty well with RETRAN.
4	Back in the sixties, before LOFTRAN was
5	written, there were some tests done at some plants,
б	including Ginna, load rejection tests. They were used
7	to benchmark LOFTRAN. RETRAN later was used, was
8	benchmarked against LOFTRAN, and also these tests.
9	Those codes are available. I think they might in that
10	RETRAN WCAP.
11	MR. FINLEY: They're off looking for those
12	curves as you speak, Sam.
13	MR. MIRANDA: Okay. If you look at those
14	curves, I don't think you will see a consistent
15	conservatism where the pressure is always under-
16	predicted or over-predicted. They are going to cross
17	each other at several points. Probably the better
18	measure is a statistical correlation rather than a
19	pressure margin.
20	All those results were available since the
21	sixties.
22	This is the last of the steam flow
23	pressure case. We see here that the pressurizer
24	doesn't fill and that the steam system design pressure
25	is not exceeded, level 9 psi.

(202) 234-4433

	115
1	This is the peak pressure, the peak RCS
2	pressure case. This case does not assume any
3	operation of the pressurizer pressure control system,
4	no PORVs, no spray. We see the DNB ratio doesn't even
5	go below its initial value.
б	We were looking for peak pressure. This
7	curve, we have the high pressure trip occurring at
8	about five seconds, right about here.
9	MR. WALLIS: The rods drop later at some
10	time, yes.
11	MR. MIRANDA: Yes, the rods drop, but the
12	pressure continues to go up until the safety valves
13	open. The safety valves are opened
14	MR. WALLIS: This is stored heat in the
15	fuel or something?
16	MR. MIRANDA: Yes. Yes, that's right.
17	MR. WALLIS: Stored heat in the fuel?
18	MR. MIRANDA: Yes.
19	CHAIRMAN DENNING: Are the PORVs still
20	open in this one because they are not a safety
21	grade
22	MR. MIRANDA: That's right, the PORVs are
23	considered a control system. So they are not credited
24	to operate.
25	MR. WALLIS: Not allowed to open?
	I contract of the second se

(202) 234-4433

	116
1	CHAIRMAN DENNING: Not credited, but the
2	reality is that they would, you said? Yes.
3	MR. MIRANDA: This same event, the loss of
4	load is analyzed as an ATWS event, and that is a best-
5	estimate analysis. In that case, the PORVs would
6	open.
7	MR. DUNNE: I think the point to notice on
8	this one for peak pressure, what terminates the peak
9	pressure is when the safety valves open. Independent
10	of the computer program, when the safety valves on the
11	pressurizer go open, that's when you get your peak
12	pressure in the pressurizer and
13	MR. WALLIS: So it is going to be less, so
14	it should be less than your design because they are
15	open?
16	MR. DUNNE: Right.
17	MR. WALLIS: And at that point it is
18	suitable.
19	MR. DUNNE: Yes,
20	MR. WALLIS: Yes.
21	MR. MIRANDA: Okay, these curves verify
22	that the pressurizer does not fill. In this case,
23	too, the steam side pressure does not exceed its
24	safety limit.
25	MR. SIEBER: What is the volume of the
	1

	117
1	pressurizer?
2	MR. MIRANDA: The volume of the
3	pressurizer is 800 cubic feet.
4	MR. WALLIS: These maximum pressures are
5	really determined by set point on the relief valves?
6	Nothing else matters, does it? Or does something else
7	matter?
8	CHAIRMAN DENNING: There is overshoot.
9	MR. WALLIS: There is overshoot?
10	MR. DUNNE: Yes, basically, the two things
11	that control this one from pressure is tripping the
12	reactor and the safety valves opening. In this event
13	the reactor trips early, but you don't really
14	terminate the heat up the RCS until you basically
15	a little bit later in time. So you keep on
16	pressurizing until you get to the relief valves. When
17	the relief valve pops, they have more relief capacity
18	than the thermal expansion of the RCS, and that
19	terminates the transient.
20	MR. MIRANDA: Just to complicate things a
21	little bit, if you were to assume the PORVs were open
22	in this event, for example, that would delay the
23	reactor trip because the PORVs will open at 2350 psi;
24	the reactor trip set point is about 24-25 psi. So
25	that PORVs opening and relieving steam at 2350 for a
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	118
1	few seconds would delay the reactor trip for a few
2	seconds.
3	MR. WALLIS: That's because they like to
4	keep the reactor running if they possibly can?
5	MR. MIRANDA: Yes. They put the reactor
6	trip between the PORVs and the safety valves. The
7	PORVs prevent the reactor trip, and the reactor trip
8	prevents the safety valves from opening.
9	CHAIRMAN DENNING: I was going to let you
10	get through your presentation, but I think that things
11	have gone a little bit too far for the break. So why
12	don't we take the break now and have you come back and
13	finish? So we will recess until 10 minutes before the
14	hour.
15	(Whereupon, the foregoing matter went off
16	the record at 10:35 a.m. and went back on the record
17	at 10:51 a.m.)
18	CHAIRMAN DENNING: All right, we're going
19	to come back in session now, please.
20	Proceed.
21	MR. MIRANDA: We had some discussion about
22	this earlier. The licensee submittal contains three
23	transients. The first two are examples and really are
24	two of a series of something like 50 or 60 cases that
25	are done for the rod withdrawal at power, basically,
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	119
1	to map the reactor protection system area of coverage
2	for this event in terms of reactivity insertion rates.
3	Now these notations that you see here are
4	the result of some errors in the license amendment
5	request. The first case is not a maximum case; it is
6	a minimum reactivity feedback case.
7	The times of reactor trip and minimum DNBR
8	are the times that you will see on the curve. The
9	times were originally printed for another curve.
10	The same thing with the slow reactivity
11	insertion rate, 5 pcm per second, the second case.
12	That is a really a maximum feedback case. Those are
13	the times of reactor trip and minimum DNBR.
14	These two examples of transients are taken
15	one at a high reactivity insertion rate, one at a low
16	reactivity insertion rate, to illustrate a transient
17	that is protected by the high-flux trip and another
18	one that is protected by the over temperature delta T
19	trip.
20	Finally, Ginna submitted a transient to
21	show that the rod withdrawal at power event would not
22	violate the reactor coolant system pressure acceptance
23	criteria.
24	Maybe I should mention that DNB ratio at
25	this time. The DNBR ratio for the rod withdrawal at
	1

(202) 234-4433

Í	120
1	power that was listed at 1.381, that is not really
2	comparable to the DNB ratio that you find from the
3	loss-of-flow accident, the 1.385. That 1.385 value
4	comes from VIPRE results, and the 1.381 number comes
5	from RETRAN results. The 1.381 is really an estimate
6	of DNB ratio based upon insensitivity of DNB ratio to
7	changes in power, temperature, and pressure yes,
8	power, temperature, and pressure all taken at a
9	constant flow.
10	So that 1.381 value from RETRAN is
11	conservatively underestimated. That value, if those
12	same conditions of power, temperature, and pressure
13	were to be input to VIPRE, the DNB ratio would be
14	higher than 1.381.
15	MR. WALLIS: This is because RETRAN is
16	predicting the average behavior? Is that what it is?
17	MR. MIRANDA: It is an estimate. RETRAN
18	is calculating transient conditions for power,
19	temperature, and pressure.
20	MR. WALLIS: But they are all average?
21	They are all
22	MR. MIRANDA: Well, no, they're not all
23	average.
24	MR. WALLIS: That's total power? Okay.
25	MR. MIRANDA: It will calculate the

(202) 234-4433

	121
1	average power, but then it will also calculate
2	pressure at various points in the reactor coolant
3	system. It will calculate temperature
4	MR. WALLIS: But it doesn't deal with hot
5	rods and things like that?
6	MR. MIRANDA: Oh, no, it doesn't have that
7	kind of resolution. That is what VIPRE is for. So it
8	takes the average conditions and puts them into VIPRE
9	for the DNBR evaluation.
10	MR. WALLIS: Why was it not put into
11	VIPRE?
12	MR. MIRANDA: Why was what?
13	MR. WALLIS: I mean in the other case they
14	did use VIPRE, didn't they?
15	MR. MIRANDA: The loss of flow, they did
16	use VIPRE.
17	MR. WALLIS: Yes. So why did they not use
18	it in this case?
19	MR. MIRANDA: Well, they can't do that
20	because the DNBR estimate routine in RETRAN is all
21	based on the core limits, and the core limits are at
22	a constant flow rate.
23	MR. WALLIS: I thought last time they took
24	the RETRAN and then fed it into VIPRE.
25	MR. MIRANDA: In the loss of flow they do
	I

(202) 234-4433
	122
1	that, yes.
2	MR. WALLIS: They couldn't have done it
3	this time, too?
4	MR. MIRANDA: They could have done it. It
5	would have taken longer.
6	MR. WALLIS: Time is of no matter when
7	you're satisfying ACRS.
8	(Laughter.)
9	MR. MIRANDA: The limiting event is not
10	the rod withdrawal at power; it is the loss of flow.
11	The rod withdrawal at power has a 1.381 value.
12	MR. WALLIS: So you think that this is
13	very conservative? It really should be higher than
14	that? Okay.
15	MR. MIRANDA: It will be much higher than
16	that.
17	Chris, did you want to say something?
18	MR. McHUGH: No.
19	MR. MIRANDA: Okay.
20	MR. WALLIS: Well, I think it would have
21	been good for them to have done it and got a better
22	number. Then we wouldn't have asked so many questions
23	about it.
24	(Laughter.)
25	MR. MIRANDA: Well, it is a little bit

(202) 234-4433

123 1 misleading because you think you are comparing apples 2 and apples and you're not. They come from different 3 places. 4 This is the rest of the sequence of events 5 tables and the --MR. WALLIS: Now this pressure that comes 6 7 so close, is, again, this because the pressure is 8 relieved by safety valves? Is that why? 9 MR. DUNNE: It's both -- the pressure is 10 really controlled by the safety valves lifting and when the reactor trips. 11 WALLIS: So we shouldn't be so 12 MR. concerned about it coming up to a limit? 13 14 MR. DUNNE: No. That's right. 15 MR. WALLIS: That is why the safety valves 16 are there. 17 MR. DUNNE: Yes, that's why the safety valves are there, and you get full opening on the 18 19 valves to get full flow and you figure out what your 20 parameters are for --21 MR. WALLIS: And you have enough valves 22 and they are reliable and all that sort of stuff? 23 MR. MIRANDA: Yes, that is all conditioned 24 on the valves relieving steam. As long as the 25 pressurizer doesn't fill and you open the valves as

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	designed, they release steam and they load the
2	pressure
3	MR. DUNNE: And as long as the safety
4	valves open within the stated tolerance on them, your
5	pressure is really limited by that, and it is not
6	really that sensitive to the code itself.
7	MR. WALLIS: If this were PRA, we would be
8	looking at the probability of those valves opening,
9	wouldn't we? Here you just assume they do?
10	MR. DUNNE: Well, we actually go in and
11	test our safety valves.
12	MR. WALLIS: I know that.
13	MR. DUNNE: We basically change out our
14	safety valves every refueling outage. We've got two
15	sets of safety valves.
16	MR. WALLIS: But for this analysis you
17	assume they open?
18	MR. DUNNE: Yes.
19	MR. WALLIS: In this design basis accident
20	event?
21	MR. SIEBER: Well, they are safety
22	degrade, too.
23	CHAIRMAN DENNING: Yes, but in PRA space
24	safety
25	MR. DUNNE: They are basically the code
I	

(202) 234-4433

125 1 valves required to basically prevent over-2 pressurization of the --3 MEMBER KRESS: Failure to open in the PRA 4 space is like one times 10 to the minus 3. 5 MR. WALLIS: Okay, there is a probability though. 6 7 CHAIRMAN DENNING: I don't think on the 8 failure to open --MEMBER KRESS: About 10 to the minus 4 9 10 failure. MR. WALLIS: Okay. 11 MR. MIRANDA: This is the transient for 12 The high neutron flux signal is 13 the first case. 14 reached at about a little more than one second, and the rods begin to fall a half a second later. The 15 16 rods begin to fall about here. 17 MR. WALLIS: Where is this? MR. MIRANDA: The DNB ratio occurs at 2.26 18 19 seconds. 20 MR. WALLIS: Something we don't have, That's something we don't have. We don't have 21 right? 22 that upper curve. MR. MIRANDA: You don't have this one? 23 24 CHAIRMAN DENNING: We have the lower curve 25 but not the upper curve for some reason.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	MR. MIRANDA: All right. We will copy for
2	that.
3	This is the behavior in pressurizer water
4	volume and pressure. Here we verify that the
5	pressurizer doesn't fill. In fact, in this case the
6	PORVs don't even open or they wouldn't open.
7	Since we are looking for a low DNB ratio,
8	if the PORVs were supposed to open, if the pressure
9	were to reach the PORV opening set point, they would
10	open. They would be assumed to open.
11	This is the minimum DNB ratio occurring at
12	2.26 right there.
13	Then, as an example for low reactivity
14	insertion rate, 5 pcm per second, this is a transient
15	that would be protected by the over temperature delta
16	T trip. That occurs at about 214 seconds, and you can
17	see where that is.
18	MR. WALLIS: So it just slowly creeps up
19	in power?
20	MR. MIRANDA: Yes. As you approach the
21	core limit, as you approach that 1.38, the over
22	temperature delta T trip tripped the plant.
23	MR. WALLIS: Would the operator do nothing
24	all this time when it is creeping up in power?
25	MR. GILLON: Yes, this is Roy Gillon

(202) 234-4433

	127
1	again, Reactor Operator.
2	Yes, we are aware of 214 seconds' change
3	in power, PPCS, our computer systems, and both
4	observation of the control board. So this would be
5	hard to believe that the operator wouldn't terminate
6	this within 30 seconds.
7	MR. WALLIS: Before the temperature does,
8	yes.
9	MR. GILLON: Right. We would see
10	temperature increasing. We would see power
11	increasing.
12	CHAIRMAN DENNING: It looks like the
13	pressure has the water volume really increasing.
14	MR. WALLIS: Yes, what is this pressurizer
15	up here?
16	MR. MIRANDA: The margin water level would
17	increase since the reactor coolant system temperature
18	is increasing, and, in fact, I have asked in the past
19	licensees to show me a very low reactivity insertion
20	rate because I look for this pressurizer water volume;
21	I need to see a maximum value to be sure that it is
22	not going to fill the pressurizer.
23	In real life a lot of these reactivity
24	insertion rates are more limited than what you would
25	see in these analyses because, on the one hand, on the

(202) 234-4433

	128
1	high end you just don't have the differential rod
2	worth and the rod speed to get to that 100 pcm per
3	second. Also, on the low end or for a long transient
4	like this, for 200-and-some seconds, chances are that
5	you are just going to reach the end of the rod. I
6	mean the rods are at various insertion limits. You
7	are going to pull it out and the reactivity insertion
8	will end, and very often without a reactor trip. You
9	will just have a new equilibrium power level.
10	Here's the average temperature. You can
11	see it looks like the pressurizer volume curve, and
12	there's the DNB ratio slowly dropping to its minimum
13	value where the reactor trip occurs.
14	These are the results. Of all of the
15	cases that were run, something like 50 or 60 or 70
16	cases, at different reactivity insertion rates with
17	maximum feedback and minimum feedback at three
18	different power levels. So these are the results for
19	the 100 percent power cases.
20	We see from this curve that the low
21	reactivity insertion rate cases are protected by the
22	over temperature delta T trip, and the high reactivity
23	insertion rate cases are protected by the high flux
24	trip. We also see what the minimum value of the DNB
25	ratio is. These DNB ratios, again, are from RETRAN.
	1

(202) 234-4433

	129
1	MR. WALLIS: So you have to have things
2	just right to get one of these valleys? You have to
3	have just the right reactivity insertion rate to be in
4	the region where you get near the minimum?
5	MR. MIRANDA: Well, actually, these
6	curves, there's something that is not shown on these
7	curves. That is, when you do these cases, for
8	example, this curve actually continues. This curve
9	here would continue. This is the intersection.
10	That's where they stop.
11	MR. WALLIS: Wait a minute. I don't
12	understand that.
13	MR. MIRANDA: They do other analyses.
14	They would do other cases. They don't know when this
15	is going to occur, when this minimum is going to
16	occur. They would do a whole series of cases, and
17	there may be some cases down here that are not
18	reported because they are covered
19	MR. WALLIS: They wouldn't get there?
20	MR. MIRANDA: They wouldn't get there,
21	yes.
22	MR. WALLIS: Okay.
23	MEMBER MAYNARD: But I think you're right;
24	it takes just a very unique set of circumstances to
25	hit one of the valleys that takes you down.
	1

(202) 234-4433

	130
1	MR. McHUGH: It is Chris McHugh from
2	Westinghouse.
3	We actually search for that valley. When
4	we do our initial set of runs, we will do like 10, 20,
5	30, 40 pcm per second to determine where we are
6	switching from high flux over temperature delta T, and
7	then we do a finer mesh in between. We go down to
8	single units, 12, 13, 14 pcm per second. So we hunt
9	for that case.
10	MR. MIRANDA: That is in order to find a
11	minimum DNB ratio.
12	These are the results at 60 percent power.
13	These are not transient cases. This is a map of the
14	minimum DNB ratio results.
15	MR. WALLIS: This is a lot of computation
16	then.
17	MR. MIRANDA: Yes. Yes, you need a fast-
18	running code like LOFTRAN or RETRAN. We just stack
19	the cases one after the other, changing a single
20	parameter like reactivity insertion rate.
21	MR. SIEBER: That is why you pick a number
22	and don't do this every time. Otherwise, you would be
23	doing it for every
24	MR. FINLEY: That's right, yes.
25	MR. MIRANDA: And then one last case is

(202) 234-4433

	131
1	the pressure case. This one is at 55 pcm per second.
2	I believe that is more realistic. That is about what
3	you could get, right, for the Ginna?
4	MR. McHUGH: No, realistic value is around
5	30 pcm per second.
6	MR. MIRANDA: Thirty?
7	MR. McHUGH: Yes, that is the maximum that
8	would still yield an acceptable pressurizer pressure.
9	So we have instituted 55 pcm per second as a reload
10	criteria and a reload limit that the core designer has
11	to verify it is always going to be under that. The
12	typical number is around 30.
13	MR. MIRANDA: So we have the reactor
14	the high pressurizer pressure trip occurring in this
15	case at about 13 seconds. Normally, if I were looking
16	at a case of rod withdrawal at power cases, a series
17	of cases, I would want to be sure that the protection
18	occurs from either the high flux trip or the over
19	temperature delta T trip because the parameter of
20	interest is DNB ratio.
21	MR. WALLIS: Why does nuclear power start
22	off so low in this plot?
23	MR. MIRANDA: This is an 8 percent power
24	case.
25	MR. WALLIS: Oh, it's an 8 percent power?
ļ	I contract of the second se

(202) 234-4433

	132
1	Okay. I didn't look at it. Okay. I didn't look at
2	the title there.
3	MR. MIRANDA: But since here we are
4	looking at pressurizer pressure, the parameter of
5	interest is pressure, and the protection comes from
6	the high pressurizer pressure trip.
7	So we have the reactor trip here, and we
8	have the PORVs opening at 2350. No, no, no. No
9	PORVs, no PORVs in this case. This is a high pressure
10	case; no PORVs.
11	So we have the reactor trip, the rods fall
12	in two seconds later, about 15 seconds, and the safety
13	valves open at about 2500 or a little bit higher than
14	2500. Then the limit is 2750, right about there.
15	MR. WALLIS: So the safety valves open and
16	the pressure keeps rising for a while, and then
17	MR. DUNNE: Well, I think what happens is
18	the safety valve set pressure is actually biased up
19	from a nominal 2500, so they really don't open up
20	until about 2600.
21	MR. WALLIS: Until that peak is there.
22	MR. DUNNE: I think where the pressure
23	falls is probably where the safety valves actually did
24	open, would be my guess.
25	MR. WALLIS: They open pretty quickly?
	I contract of the second se

(202) 234-4433

	133
1	MR. DUNNE: Yes.
2	MR. WALLIS: And they relieve pressure
3	right away?
4	MR. DUNNE: They're 15 milliseconds,
5	something like that.
6	MR. WALLIS: Right. So I would think the
7	peak would be when they open.
8	MR. DUNNE: That's what I would expect,
9	the peak, because, again, we biased the safety valve
10	opening upward based tolerances on the set point and
11	loop seal time delay and other parameters.
12	MR. MIRANDA: That's all I have.
13	CHAIRMAN DENNING: Very good. That is
14	very helpful.
15	MR. WALLIS: Do you have some strange
16	logic with all kinds of time constants in it and
17	things that sets these response to signals and opening
18	valves?
19	MR. DUNNE: I'm sorry. For the safety
20	valves, there is no logic. It is just a spring
21	MR. MIRANDA: It is spring-loaded.
22	MR. WALLIS: So I would think your maximum
23	pressure would be the set pressure on the valve.
24	MR. DUNNE: That is correct.
25	MR. WALLIS: There's no control involved

(202) 234-4433

	134
1	at all.
2	MR. DUNNE: That is why there really isn't
3	a lot of variation in what the pressure is.
4	MR. SIEBER: There is some uncertainty
5	about what that set pressure
6	MR. WALLIS: This is just a little bit?
7	MR. DUNNE: Right, yes.
8	MR. WALLIS: This is a little bit. But we
9	shouldn't be surprised that the pressure is about
10	where you set it.
11	MR. DUNNE: Right.
12	MR. SIEBER: Do you heat the loop seal at
13	all?
14	MR. DUNNE: Yes, we do. We have a hot
15	loop seal around 300 degrees.
16	MR. SIEBER: Keeps it from looking like a
17	steel bullet.
18	MR. DUNNE: That is to protect the
19	downstream piping from a cold water slug if the safety
20	valves actuate.
21	MR. SIEBER: Three hundred degrees?
22	MR. DUNNE: I think it is around 300
23	degrees. What we have actually done is the piping
24	from the pressurizer nozzle to the safety valve is
25	inside the pressurizer insulation.
1	I contraction of the second seco

```
(202) 234-4433
```

	135
1	MR. SIEBER: Okay.
2	MR. WALLIS: Well, cold water slugs can be
3	quite interesting.
4	MR. SIEBER: Only once.
5	MR. DUNNE: That's the reason why we heat
6	them.
7	MR. SIEBER: Only once are they
8	interesting.
9	CHAIRMAN DENNING: Okay, we are going to
10	keep going. We are going to move ahead with the small
11	break LOCAs now.
12	MR. WALLIS: I'm amazed that we're under
13	time. We seem to have asked a lot of questions, and
14	yet we are still within time.
15	CHAIRMAN DENNING: I think we got through
16	their presentation early, quickly.
17	MR. FINLEY: Mark Finley again.
18	Two analytical areas had not yet been
19	reviewed by NRC when we last met. So we will discuss
20	this morning both the small break and the long-term
21	cooling analyses, and then Len Ward from NRC will
22	discuss the same analyses.
23	In terms of an agenda for this
24	presentation, we will talk a little bit about the
25	Ginna design and why that is helpful in the small

```
(202) 234-4433
```

break LOCA analysis and then shift to talk about current and EPU results for small break LOCA analysis. You will see there is a significant margin here in these results. Then delve into the long-term cooling analysis with respect to the Ginna design and then both the large break and the small break long-term cooling analysis.

First, with respect to two key aspects of 8 the Ginna design that help in small break LOCA, we 9 have relatively high flow, high head safety injection 10 11 pumps that start to kick in around 1400 psi and 12 capacity conservatively above 1000 gpm. In terms of the power level of Ginna, the two-loop Westinghouse-13 14 type power level, this is significant flow at high 15 pressure, and that helps the small break result.

In addition, we have relatively highpressure accumulators which would start to discharge at around 700 psia.

19MR. WALLIS: This is injection into the20upper head?

21 MR. FINLEY: No, the high head safety --22 and I'll talk more about that -- the high head safety 23 pumps actually inject into the cold leg.

Yes?

24

25

1

2

3

4

5

6

7

MR. SIEBER: You don't use them as your

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 136

	137
1	normal charging pump, do you?
2	MR. FINLEY: No, we don't use these in our
3	normal charging pumps.
4	MR. SIEBER: What do you use for charging?
5	MR. DUNNE: Positive displacement pumps.
6	MR. SIEBER: Okay, like the Navy.
7	MR. FINLEY: Right. And we don't take
8	credit here in this analysis for the charging flow.
9	MR. HARTZ: This is Josh Hartz of
10	Westinghouse. I'm in charge of NOTRUMP.
11	Westinghouse basically has two different
12	ECCS categories, high- and low-pressure plants. The
13	Beaver Valley cases that you saw the other day would
14	be what we would consider a high-pressure plant
15	because they had safety grade charging plants. The
16	two-loop plants do not have that capability. They've
17	got dedicated SI pumps instead.
18	MR. DUNNE: This is Jim Dunne.
19	I think the big difference is that Beaver
20	Valley's high head safety injection pumps can pump in
21	against RCS pressure whereas our high head pumps
22	can't. But it gives us more flow capability at the
23	lower pressures.
24	MR. SIEBER: So you have to wait. Before
25	you can inject at all, you have to have some blowdown?
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	138
1	MR. DUNNE: Pressurization of the RCS,
2	yes.
3	MR. HARTZ: This is true, but the SI set
4	point is typically around 1700. So even with the very
5	small breaks, they depressurize quite quickly and go
6	past that. So these pumps inject very quickly into
7	the transient.
8	MR. FINLEY: Okay, on this slide you see
9	the current results and the EPU results for small
10	break LOCA Pclad temperature. Two key points to take
11	away from this slide:
12	One is the EPU result, 1167, for the
13	limiting break size, which I believe is two inches,
14	right, Josh?
15	MR. HARTZ: That is correct.
16	MR. FINLEY: is very low, 1167, quite
17	a bit less than the 2200.
18	MR. WALLIS: Using a different method than
19	the current method, is it?
20	MR. FINLEY: The method is the same. Both
21	analyses use NOTRUMP methodology.
22	The second key point to take away, as you
23	already allude to, Dr. Wallis, is that the current
24	result is actually a little higher than the EPU
25	result. That is unexpected, but it is due to a
1	

(202) 234-4433

	139
1	physical phenomenon in the NOTRUMP analysis that
2	relates to loop seal clearing, which at the time in
3	1994 the analysis chose to leave alone because it was
4	still an acceptable result by far.
5	MR. WALLIS: The prediction using this
6	9595 method or is this some other sort of conservative
7	approach? What is the method that is used?
8	MR. HARTZ: This is Josh Hartz.
9	This is not a best-estimate approach. It
10	is an Appendix K model.
11	MR. WALLIS: This is an Appendix K run?
12	Okay.
13	MR. HARTZ: That's correct.
14	MR. WALLIS: So it is pretty low for
15	Appendix K, isn't it?
16	MR. FINLEY: Yes, that's the point. Very
17	low for Appendix K. A good deal of margin on small
18	break LOCA.
19	I will also point out that you see the
20	maximum transient oxidation there, .07 for EPU, well
21	below the limit. We also add in the pre-transient
22	oxidation level and we control that in the reload
23	analysis to make sure the total stays below the 17
24	percent.
25	MR. SIEBER: Now this is for the worst-
	1

(202) 234-4433

	140
1	case small break? What size is this?
2	MR. FINLEY: That's correct. This is a 2-
3	inch break, is the worst case for Ginna.
4	MR. SIEBER: Did you model in quarter-inch
5	increments or?
6	MR. FINLEY: We did a spectrum of analyses
7	using the standard Westinghouse method. I believe it
8	was the 1.5-inch, a 2-inch, and a 3-inch break.
9	MR. SIEBER: That's pretty gross.
10	MR. FINLEY: We didn't go to the quarter-
11	inch level. I think you saw Beaver Valley did that.
12	The reason is because we have so much margin here.
13	Because that Pclad temperature is so low, Westinghouse
14	hasn't seen a large variation in the Pclad temperature
15	at this low level.
16	Josh, you might be able to speak to that?
17	MR. HARTZ: Yes. Actually, in this case
18	we did go off and look at quarter-inch intervals just
19	to assure ourselves that that wouldn't be the case.
20	Because when the whole issue of break spectrum up in
21	the Beaver Valley analysis review, we wanted to make
22	sure that everybody was captured in that regard. So
23	we used Ginna as a test case to kind of confirm that,
24	and it did not show much variation in the results.
25	That is mainly because this is not a
	I contract of the second s

(202) 234-4433

	141
1	boiloff the boiloff turbine PCT plants are the ones
2	that are sensitive to that. Beaver Valley would fit
3	into that category.
4	MR. SIEBER: So you actually did do the
5	work?
6	MR. HARTZ: Yes, we did. It would not be
7	in Ginna's SER though.
8	MR. FINLEY: Yes, it was not a part of the
9	licensing report, but they did that after the fact in
10	response to requests for additional information.
11	MR. SIEBER: Basically, what you are
12	saying is you didn't find much sensitivity with regard
13	to break size?
14	MR. HARTZ: No. No, not for a plant of
15	this type.
16	MR. SIEBER: Okay.
17	MR. WALLIS: Assuming a zero break size,
18	though, is
19	MR. SIEBER: That is one of the better
20	breaks.
21	MR. WALLIS: Better points, right.
22	(Laughter.)
23	When you did the large break, you did use
24	the 9595 method?
25	MR. FINLEY: That's correct. The large
	1

	142
1	break was the best estimate
2	MR. WALLIS: Because you got better
3	results, presumably, than using Appendix K?
4	MR. FINLEY: The large break for Ginna is
5	the limiting LOCA, and we did need the
6	MR. WALLIS: Here Appendix K is okay, and
7	it's simplest, so you just did it?
8	MR. SIEBER: Was your accumulator pressure
9	always 700 or is that a change?
10	MR. HARTZ: No, that's the two-loop
11	plants have 100 psi higher design limit than the
12	three- and four-loop plants.
13	MR. SIEBER: Okay, but that is all for
14	large break protection?
15	MR. HARTZ: They do give you benefit in
16	small break space, and that is one reason why the
17	small break results are so good in this case, is
18	because they are jumping into the transient even
19	sooner. Because you go into a depressurization
20	phase
21	MR. SIEBER: Right.
22	MR. HARTZ: And once you hit the set point
23	of the accumulators, they deliver enough water to
24	terminate your heatup. So, yes, in small break space
25	they do tend to help you out, especially more in the

```
(202) 234-4433
```

	143
1	three-loop plants where we have the safety grade
2	charging, and the flows to mitigate the accident
3	aren't as marginal here.
4	MEMBER KRESS: I don't know if you can
5	answer this or not. If you used the transition break
6	size, could you have a substantial increase in power
7	and still meet the rules?
8	MR. HARTZ: Are you referring to the
9	5046(a)?
10	MEMBER KRESS: Yes. I know you may not be
11	prepared to answer that, but I was just curious.
12	MR. HARTZ: I guess in my judgment there
13	would probably be some other accidents waiting to get
14	into the way of that.
15	MEMBER KRESS: Waiting to catch you
16	before
17	MR. HARTZ: Yes. So in LOCA space they
18	tend to do pretty well, the two-loop plants.
19	MR. WALLIS: This plant is large break
20	LOCA-limited. So if you back off a bit on the large
21	break LOCA criteria, you might gain a bit.
22	MR. HARTZ: It would open some things up.
23	It is a possibility, but I think their large break
24	results were pretty good to begin with compared to
25	what some other plants would be.

(202) 234-4433

	144
1	MR. FINLEY: Right.
2	Okay, so just to summarize quickly, small
3	break, a significant amount of margin to the
4	acceptance criteria.
5	MR. WALLIS: In this case the safety
6	analysis limit is a legal one, not one specified by
7	the vendor and the licensee.
8	MR. FINLEY: That is correct. That is
9	correct.
10	With respect to long-term cooling, some of
11	the key aspects of the Ginna design that come into
12	play: again, the high head safety injection pumps.
13	These pumps are aligned to the cold leg.
14	We also have low head safety injection
15	pumps. We call them residual heat removal pumps, RHR
16	pumps. They are aligned to the upper plenum. I will
17	show you a diagram in a second, the same nozzles that
18	I think Jim Dunne had on his slide earlier.
19	But these inject directly into the upper
20	plenum.
21	MR. WALLIS: Do you understand how the
22	water gets down into the core from there? It is a
23	counter-current-flow situation.
24	MR. FINLEY: Yes, actually
25	MR. WALLIS: Because it has to be lopsided

(202) 234-4433

	145
1	or something with flow down on the outside and steam
2	coming up in the middle or something?
3	MR. FINLEY: Right. In fact, in a couple
4	of slides I will show you physically where the nozzles
5	are with respect to the core.
б	MR. WALLIS: Well, you've got water up
7	there and it has to come down here.
8	MR. FINLEY: That's correct. That's
9	correct.
10	MR. WALLIS: It is cold water, so the
11	steam rushing up to condense on it, and so conceivably
12	you have a CCFL-type situation.
13	MR. FINLEY: Right.
14	Gordon, click on that slide there and
15	let's see what we've got.
16	All right, this just shows
17	MR. WALLIS: We can see the hole.
18	MR. FINLEY: the elevation of the
19	nozzle there in between the hot and the cold nozzle on
20	the reactor vessel.
21	Next slide, Gordon.
22	MR. WALLIS: Yes, as far as into the
23	MR. FINLEY: And here, the plan view shows
24	where the nozzles would inject.
25	MR. WALLIS: I think it makes a pool up
1	

(202) 234-4433

	146
1	there, as I remember. Doesn't it make a pool up in
2	there? It fills up. Doesn't it fill up that plenum
3	to some extent and then it somehow drains down in
4	preferred locations?
5	MR. HARTZ: Dr. Wallis, you're probably
6	referring to the early phases of a large break
7	transient where you could be CCFL-limited in upper
8	plenum, yes. Yes, but in the long-term cooling
9	situation, the steaming rates
10	MR. WALLIS: Okay, yes, I'm referring to
11	a different situation.
12	MR. HARTZ: Yes.
13	MR. FINLEY: And I'll actually in a future
14	slide
15	MR. WALLIS: Do you understand that fully,
16	do you?
17	MR. HARTZ: Yes.
18	MR. WALLIS: Of course you're going to say
19	yes, I know.
20	(Laughter.)
21	It was a concern of mine at one time.
22	MR. HARTZ: Yes, with the UPI plants and
23	with the licensing of SECY originally, that was a big
24	concern, to mitigate the large break transient because
25	of the water holdup in the upper plenum.

```
(202) 234-4433
```

	147
1	MR. FINLEY: And I will actually speak to
2	this mixing assumption that we make with respect to
3	long-term cooling in this UPI injection here in a
4	couple of slides.
5	MR. WALLIS: You'll come to that?
6	MR. FINLEY: Yes.
7	MR. WALLIS: Okay.
8	MR. FINLEY: So the point here would be we
9	have the high head SI pumps to the cold legs, the low
10	head SI pumps to the upper plenum, and when they are
11	both injecting simultaneously
12	MR. WALLIS: These look like hot leg
13	injection.
14	MR. FINLEY: That's correct. That's
15	correct.
16	MR. WALLIS: You don't have to switch it
17	on? It just happens?
18	MR. FINLEY: That is correct. It just
19	happens. They are aligned permanently this way. We
20	verify valve lineups and locked valves, and so forth,
21	to make sure they inject in this manner.
22	Okay. And just fundamentally and I'm
23	sure you talked about this some with Beaver Valley
24	if you have the break on the hot side, you need the
25	injection on the cold side to get the flush through
	I contract of the second se

(202) 234-4433

	148
1	the core, and the converse.
2	MR. WALLIS: You've got both of them.
3	MR. FINLEY: Say it again?
4	MR. WALLIS: You've got both of them here?
5	MR. FINLEY: That's correct.
6	MR. WALLIS: You're coming from both
7	sides?
8	MR. FINLEY: That's correct.
9	Okay. Just to walk through the large
10	break sequence here, of course, by definition,
11	essentially, for the break size, the RCS rapidly
12	depressurizes to below both the high head SI and the
13	low head SI injection points. So you get the
14	simultaneous injection early on, and that prevents any
15	buildup early on of boron.
16	As the refueling water storage tank
17	lowers, the level lowers, at that point we switch to
18	the recirculation mode manually. At that point we
19	actually turn off the high head safety injection
20	pumps.
21	I am sure you would ask why, but
22	fundamentally Ginna was not designed for simultaneous
23	injection throughout the recirculation process. In
24	fact, early on in the large break LOCA scenario the
25	sump temperature is higher than would support the
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	149
1	required NPSH that is needed to run simultaneous
2	injection for the whole course of the recirculation.
3	So we turn off the high head SI pumps and
4	then turn them back on. What we have verified through
5	this long-term cooling analysis is that we turn them
б	back on prior to the point that we would have
7	concentrated then to the saturation point for boron.
8	MR. SIEBER: How much time is that?
9	MR. FINLEY: And I'll get to that in the
10	next slide.
11	The other point to make here and I will
12	show it on the next slide in terms of a better view
13	but, conservatively, we don't take credit for the
14	upper plenum injection essentially mixing with the
15	core volume region to prevent concentration of the
16	boron. That is a very, very conservative assumption.
17	Then the operators procedurally will
18	restart those high head safety injection pumps to
19	again restore simultaneous injection.
20	Gordon, if you will go to the next slide?
21	In terms of the analysis that was done
22	and this was in response to the NRC's staff questions.
23	As you probably are aware, they questioned, how are we
24	determining what the void fraction in that water in
25	the core region is and exactly how are we calculating
	1

(202) 234-4433

	150
1	the two-phased level and the volume, the mixing
2	volume. Those were good questions that we really had
3	simplified in the past.
4	But in response to those questions, this
5	time we did an analysis using the Westinghouse
6	COBRA/TRAC method to determine what the void fraction
7	was and take account for that, as well as what the
8	dynamic pressures are around the loop and how that
9	affects the two-phase level. So all that is accounted
10	for in this concentration analysis that was done.
11	Gordon, why don't you click on the first
12	one?
13	Here is the void fraction versus time for
14	a large break. You can see it starts up on the order
15	of .75, .8, and down to just under .55 for the void
16	fraction.
17	And next slide, Gordon.
18	Sort of the converse of that is the mixing
19	volume. This is how, with that void fraction, the
20	volume of water changes over time for the large break.
21	So that now is calculated explicitly with the
22	COBRA/TRAC code.
23	MR. WALLIS: It is throwing away all the
24	upper plenum injection water.
25	MR. FINLEY: I'll tell you what, let's

(202) 234-4433

151
hold that thought. I will show you the control volume
that we use.
MR. WALLIS: You are not taking credit for
it in this volume?
MR. FINLEY: Right, we are not taking
credit for any of the water coming in from the UPI up
above after this point.
MR. WALLIS: So where does it go then?
You just ignore it? Just ignore it?
MR. FINLEY: I will show you in a second,
Doctor.
Next slide. Maybe the slide before there.
There we go.
Here is a depiction of the mixing volume
that is used. This is the expected condition.
Actually, this was not what was used in the analysis
but what would be expected would be that you would get
some upper plenum injection that would then mix with
this entire region, both in the core region and in the
upper plenum. Because this is obviously a very
turbulent region, there is a lot of boiling go on, we
would expect significant mixing here. Then, of
course, some amount of that is out the break.
Gordon, go to the next.
MR. WALLIS: So you are assuming the SI

(202) 234-4433

	152
1	flow just gets washed out in the break?
2	MR. FINLEY: Right, correct.
3	So next slide, Gordon.
4	What we do, very conservatively, is take
5	this mixing volume right at the bottom of the hot leg
6	here, and then we assume the only upper plenum
7	injection flow that crosses the boundary is enough
8	flow to replace the boiloff, the steam that boils off.
9	Obviously, very conservative.
10	The rest of the upper plenum injection
11	flow is assumed to go out the break, carried out the
12	break with the steam.
13	MR. WALLIS: In reality, it is intercepted
14	by all those control rod tubes and things?
15	MR. FINLEY: Right.
16	MR. WALLIS: And it drains down on them?
17	MR. FINLEY: The guide tubes, the rods,
18	and so forth.
19	MR. WALLIS: The guide tubes and things.
20	MR. FINLEY: All that interference is
21	going to cause; plus, this is not a uniform, these
22	assemblies are not producing uniform decay heat. So
23	you will get some hot assemblies with more steaming
24	and cooler assemblies with less steaming. All that
25	would tend to drive mixing across this boundary, a
	I contract of the second se

(202) 234-4433

153 1 significant amount of mixing. But we don't take 2 credit for that, haven't taken credit for that. CHAIRMAN DENNING: Now I am missing some 3 4 element of that, and that is, so that the amount that 5 is going from the upper plenum injection down is matching exactly the steaming rate? Is that what is 6 7 going on? Does that mean that you have no water in 8 that period coming from the annulus? From the 9 downcomer? Right, right. 10 MR. FINLEY: This particular break, this is a hot side break. 11 This is 12 prior to the SI pumps being started, restarted. So we have no flow coming in from the cold legs at this 13 14 point in time. 15 MR. WALLIS: Well, you might have negative 16 flow, wouldn't you? If you have enough pressure drop out the break, you might actually depress the level in 17 18 the core, wouldn't you? 19 MR. FINLEY: Right. We have adequate flow 20 here from upper plenum injection to replace the 21 boiloff. Again, the level is calculated dynamically 22 with that COBRA/TRAC code, so that we know exactly 23 what the pressure drops and the manometer effect 24 around the loop is doing to the two-phased level. 25 I was just concerned about MR. WALLIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	taking too much of this safety injection out the break
2	and produce a back pressure that actually depresses
3	the level in the core.
4	MR. FINLEY: Essentially, we maintain a
5	two-phased level in the core region, which just
6	reflects that the pressure drops due to steam flow out
7	the break, yes.
8	MR. WALLIS: All right. And SI flow?
9	MR. FINLEY: That is all calculated
10	dynamically now.
11	MR. WALLIS: And SI flow, too, isn't it?
12	MR. FINLEY: Well, right now we don't have
13	the SI flow. This is the period of time while the SI
14	is turned off and we are calculating an increase in
15	boron with the SI
16	MR. WALLIS: So the figure doesn't apply
17	then?
18	MR. FINLEY: Right. As soon as we kick
19	the SI pumps on and then we get flow
20	MR. WALLIS: Oh, I'm sorry, SI is a
21	different thing. I mean the UPI, the UPI.
22	MR. DUNNE: Between low head and high head
23	SI.
24	MR. FINLEY: I'm sorry. We don't have the
25	high head SI pumps on yet in this particular diagram.

(202) 234-4433

	155
1	Once they are turned on, you would get the flow in the
2	cold leg and then up through the core.
3	MR. WALLIS: It is the UPI flow I mean.
4	That produces pressure to drop out at the break
5	MR. FINLEY: Right.
6	MR. WALLIS: which can depress the core
7	level, can't it?
8	MR. FINLEY: The steam flow and the UPI
9	flow together would produce
10	MR. WALLIS: That would depress the core
11	level?
12	MR. FINLEY: Right, that produces a
13	MR. WALLIS: So it reduces your mixing
14	volume?
15	MR. FINLEY: That is correct. We have
16	taken that effect into account. That is correct, yes.
17	Yes.
18	CHAIRMAN DENNING: Now, as you are talking
19	about this, this is merely the calculation of how much
20	boron is concentrating in this period? This is not
21	something that you are doing with a dynamic code,
22	computer code?
23	MR. FINLEY: I showed you previously the
24	input that was taken from the dynamic code
25	COBRA/TRAC
	I contract of the second se

(202) 234-4433

	156
1	CHAIRMAN DENNING: Yes.
2	MR. FINLEY: that related both to void
3	fraction and mixing volume.
4	CHAIRMAN DENNING: Yes.
5	MR. FINLEY: That was then fed into,
6	essentially, a hand-calculation methodology that
7	conservatively bounded that input from the COBRA/TRAC
8	calculation.
9	CHAIRMAN DENNING: Yes. So you ran the
10	COBRA/TRAC through the entire scenario?
11	MR. FINLEY: Yes.
12	CHAIRMAN DENNING: And when you did that,
13	you had some different behavior; that is, the amount
14	of flow that was occurring from the upper plenum
15	injection was probably not exactly matching what is
16	going I mean, isn't it possible you had some flow
17	coming down the downcomer at that stage, even though
18	you had UPI injection and not SI injection or is that
19	impossible? Or was there even negative flow through
20	the lower plenum?
21	MR. FINLEY: Maybe you can help me out.
22	I'm not sure if we had any flow in the SI excuse me
23	in the cold leg or not.
24	MR. FINK: This is Dave Fink from
25	Westinghouse.

(202) 234-4433

	157
1	Yes, what we did was we used a dynamic
2	code simply to adjust our mixing volume, our control
3	volume, to account for core voiding.
4	CHAIRMAN DENNING: But you ran your system
5	code through the whole scenario, right? Forgetting
6	about what is happening with boron, you ran it through
7	the whole
8	MR. FINK: Right.
9	CHAIRMAN DENNING: And so, as a function
10	of time, you have temperatures in the core; you have
11	void fraction in the core, and this kind of stuff?
12	Right?
13	MR. FINK: That is correct. Correct.
14	CHAIRMAN DENNING: During this period we
15	are talking about, was there any flow in the positive
16	direction? I mean, was there any flow in the normal
17	direction of water coming down the downcomer and up
18	through the core or how was it
19	MR. FINK: We didn't look at
20	CHAIRMAN DENNING: How did you treat it?
21	MR. FINK: those particular regions.
22	The problem as we have it outlined here is the
23	stagnation, the stagnant pot. So under the classic
24	three-loop/four-loop design, the stagnant pot has
25	always been a cold leg break with overflow out the

(202) 234-4433
	158
1	break.
2	For a UPI plant for the longest time we
3	said there is no real stagnant pot scenario, but if
4	you look at the way we conservatively outline the
5	control volume, you would say, yes, there could be a
6	stagnant pot scenario. That scenario is where the UPI
7	flow crosses the upper plenum and goes out the break.
8	So in our dynamic code we didn't really
9	look at what was happening in the downcomer.
10	MR. WALLIS: What we are concerned with
11	here is not when it is stagnant but when it is in
12	reverse flow, that the flow actually comes out into
13	the downcomer, depresses the level in the core, and
14	decreases your mixing volume.
15	Is that precluded by your analysis?
16	MR. FINK: Well, we are looking at an
17	equilibrium condition clearly.
18	MR. WALLIS: It has to go all the way
19	around the loop?
20	MR. FINK: That is correct. We did spend
21	most of the time, most of the inspection of the
22	COBRA/TRAC runs actually looking at what happens in
23	the core region.
24	I see Mark put the slide up there.
25	MR. FINLEY: Yes, I just pulled this from
	I contract of the second se

(202) 234-4433

1 -- actually, it is an RAI response that we haven't 2 formally sent in yet, but we have shown it in preliminary form to the staff, to document the flow 3 4 the COBRA/TRAC would calculate over what we'll call 5 the cold sections versus the hot sections in the core, where you actually see some downward flow over the 6 7 cold sections of the core and upper flow over the hot 8 sections, as you would expect. 9 Average flow rate --MR. WALLIS: 10 MR. FINLEY: So the average flow would 11 be --12 MR. WALLIS: Is the average flow zero or is it positive or negative? 13 MR. FINLEY: The average flow would be 14 15 negative to replace -- correct me if I'm wrong --16 would be negative to replace the steam flow, the boiloff. 17 MR. FINK: I think the answer to the 18 19 original question, we would expect virtually no flow 20 in the downcomer and up through the lower plenum 21 because the flow would have to -- there is nowhere for 22 The equilibrium level -anything to go. 23 WALLIS: Yes, but if there was a MR. 24 pressure drop on it, it could be pushed one way or the 25 other, couldn't it?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

159

	160
1	MR. FINLEY: Yes, but then it is just all
2	water head laying on top of the core region, and it
3	will tend to communicate that effect into the cold
4	legs, but that water will quickly fill up and seek an
5	equilibrium throughout the whole rest of the reactor
6	coolant system.
7	MR. FINK: Yes, the problem statement is
8	an equilibrium condition.
9	MR. FINLEY: Right. So we don't think
10	there would be any significant flow in that cold leg
11	without the SI pumps, the high head SI pumps running.
12	MR. FINK: I think on this slide here the
13	thing that we are most interested in is, what happens
14	in the COBRA/TRAC models, a hot core channel, and then
15	peripheral channels. Clearly, what we see, as
16	evidenced in this plot here, is you get significant
17	upward flow in the center hot channels and significant
18	downward flow in the outer channels.
19	The flow that actually crosses the upper
20	plenum in the top of the core is like an order of
21	magnitude more than the boiloff. So that shows that
22	you have significant circulation within the core
23	region.
24	MR. WALLIS: Completely independent of the
25	effects of the boron density, and so on?

(202) 234-4433

	161
1	MR. FINK: That is correct.
2	MR. WALLIS: Which would enhance this
3	perhaps.
4	MR. FINK: Perhaps.
5	One other thing to take into account here,
б	the UPI flows are very high relative to the safety
7	injection flow rates. I mean you are down at real low
8	pressures at this point when these pumps are
9	injecting. The volume flow rate is very high being
10	delivered in this situation.
11	We are only assuming a little fraction of
12	it for makeup, and then everything else is just
13	getting discarded.
14	MR. FINLEY: Okay, so to carry on with the
15	analysis, we do take credit for mixing of one-half of
16	the lower plenum. We take credit for some of that
17	volume, and that is based on testing that has been
18	done previously. We think that is a conservative
19	estimate of the amount of contribution you would get
20	from the lower plenum.
21	We have calculated click on that slide
22	there, Gordon
23	CHAIRMAN DENNING: And you base that on
24	the BACCHUS tests?
25	MR. FINLEY: That's correct.

	162
1	CHAIRMAN DENNING: Is that what you meant?
2	MR. FINLEY: That's correct. We have
3	calculated, based on that mixing volume assumption,
4	the time to concentrate the boron, again, using the
5	saturation limit that is associated with atmospheric
б	pressure, a time to reach the saturation limit of
7	approximately six hours and 13 minutes.
8	MR. WALLIS: But it is really unrealistic
9	to assume that all that upper head injection, upper
10	plenum injection, goes out the break and doesn't
11	some of it doesn't go down to the core, especially
12	since you've got this circulation pattern and
13	everything going on.
14	MR. FINLEY: That is correct.
15	MR. SIEBER: If you don't know what the
16	mixing really is, you are sort of forced to make that
17	assumption.
18	MR. FINLEY: Right, right. And this we
19	will say: We have enhanced this methodology greatly
20	in response to some of the staff's recent questions.
21	So I am sure down the road we are going to look at
22	taking credit for those sorts of things. But because
23	we were resolving this on the EPU schedule, we wanted
24	to do it conservatively.
25	MR. WALLIS: Well, because it can be

(202) 234-4433

	163
1	resolved without allowing any of the water to come
2	down, you don't worry about it?
3	MR. FINLEY: Right.
4	MR. WALLIS: But if it couldn't be
5	resolved, then you might do a more realistic analysis?
6	MR. FINLEY: That is correct. That is
7	correct.
8	Now I mentioned to you with respect to
9	sump temperature we need to have the sump temperature
10	come down somewhat in order for the operators to
11	restart those safety injection pumps.
12	If you will look at this one slide here,
13	we have calculated that at 190 degrees we have
14	adequate NPSH, which occurs about four hours. Again,
15	this is for the type of an accident that would
16	maximize sump temperature.
17	CHAIRMAN DENNING: In this plant how are
18	you getting your long-term cooling for containment in
19	the sump? Is it through sprays and a heat exchange or
20	on sprays or what is it?
21	MR. FINLEY: It is RHR pumps on
22	recirculation.
23	MR. DUNNE: And containment is containment
24	air coolers.
25	CHAIRMAN DENNING: You have safety grade

	164
1	containment in those coolers?
2	MR. DUNNE: Yes, we do. Basically, we
3	have a containment spray system and a containment air
4	cooler system. We use both of them during the
5	injection phase of LOCA. When we go into recirc, we
6	basically terminate containment spray, when we
7	transition to recirc, and we just use containment air
8	coolers to do long-term cooling containment.
9	CHAIRMAN DENNING: Cooling the sump is
10	occurring by cooling through the
11	MR. DUNNE: Well, the sumps basically are
12	low head SI pumps take their suction off the sump;
13	they pump through a heat exchanger, and then that heat
14	exchanger then delivers low head back to the RCS. We
15	can also piggyback our SI pumps off the low head
16	discharge coming out of basically mobile heat
17	exchanges.
18	MR. FINLEY: Right. So the point of this
19	slide is to show that at four hours we would be able
20	to turn back on those SI, high head SI pumps, and
21	procedurally we are going to set that time at four-
22	and-a-half hours to make sure we have some margin
23	here. Even at that four-and-a-half hours, that should
24	be well before the time to conservatively saturate the
25	core region with boron.
	1

(202) 234-4433

	165
1	Next slide.
2	Okay, now we will shift gears to small
3	break, a different scenario.
4	CHAIRMAN DENNING: A quick question, and
5	that is, is it possible that for this plant we are
6	overcomplicating things? I mean, as I look at the
7	configuration here in this scenario, I mean the
8	feeling is it is probably not a real scenario in terms
9	of boron concentration. I don't know what reality is.
10	Here we are now requiring you to turn on
11	SI at a particular point, but maybe that is not a big
12	issue anyway, since you're not going to need the SI.
13	MR. FINLEY: Right.
14	CHAIRMAN DENNING: For it to go on too
15	early and you lose the SI
16	MR. FINLEY: This is conservative. We
17	have made some changes to the analysis method here
18	that we want to cautious about. We are doing it on a
19	constrained schedule to support the EPU.
20	So it does not impact safe operation in
21	terms of doing something that is not smart. So we
22	felt that this was the right conservative approach.
23	Okay, with respect to small break, here
24	the difference, the key difference is that the RCS
25	will depressurize below the high head SI pressure but
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	166
1	not below the upper plenum injection pressure.
2	Remember, I said that that is around 140 psia for the
3	upper plenum injection point.
4	So there are many small break sizes which
5	won't cause you to rapidly depressurize below that 140
6	psi point. So the significant difference here is we
7	need to take credit for operator action to help that
8	depressurization process, which is really a part of
9	our normal LOCA response procedures. That is nothing
10	new. Operators are going to want to depressurize to
11	stop an unisolatable lead regardless of the boron
12	situation. So we are just taking credit for that in
13	the boron scenario, as I will discuss.
14	So for the period of time that the low
15	head SI pumps are not injecting to the upper plenum,
16	we do expect there will be some concentration of the
17	boron in the core region, where you have boiloff
18	occurring and leaving behind boron. So we would
19	expect some concentration there.
20	But the operators would depressurize the
21	plant. Again, once you depressurize to below that
22	upper plenum injection pressure, you would get a
23	simultaneous injection setup, both from the upper
24	plenum and the cold legs. That would flush the core
25	for a break on either side.
1	I contract of the second se

(202) 234-4433

	167
1	Okay, next slide.
2	With respect to the analysis that was
3	done, again, we used the dynamic, in this case,
4	NOTRUMP analysis methodology to calculate the core
5	voiding and the mixing level, et cetera, to feed into
6	the concentration study.
7	A 4-inch break was conservatively used to
8	bound all of the small breaks in this particular
9	study. We didn't take credit for any beneficial
10	effect of sump additives. We have sodium hydroxide
11	added, and that would have a beneficial effect. We
12	did not take credit for that.
13	We calculated a time to reach the boric
14	acid solubility limit of six hours and 48 minutes,
15	assuming that the solubility limit is established
16	based on atmospheric pressure conditions.
17	Gordon, if you would click on that one
18	slide?
19	So here a similar curve that you saw for
20	large break; this is for small break. As long as we
21	initiate the upper plenum injection prior to six hours
22	and 48 minutes, we would stop the concentration
23	process at about 29 weight percent, and that's the
24	limit that corresponds to the atmospheric pressure
25	condition.
I	

(202) 234-4433

	168
1	MR. WALLIS: Stopped because the UPI now
2	flows through the core?
3	MR. FINLEY: That's correct. That is
4	correct.
5	Okay, click on this one here, Gordon.
6	So it is important now for the operators
7	to depressurize the plant prior to that six-hour-and-
8	48 timeframe. So what we did is, again using the
9	NOTRUMP analysis methodology and taking credit for the
10	operator actions, conservatively taking credit for the
11	operator actions that would occur in the EOP response,
12	we would get below the upper plenum injection point
13	within about five, five-and-a-half hours.
14	So at that point, without any further
15	action, essentially, the upper plenum injection would
16	kick in based on the RHR pump shutoff head.
17	MR. SIEBER: How do the operators
18	depressurize the plant? What do they do?
19	MR. FINLEY: The first choice for the
20	operators would be to use the steam dump system. That
21	is not what we used here. Of course, steam dumps
22	would require offsite power availability and condenser
23	vacuum.
24	MR. SIEBER: Right.
25	MR. FINLEY: So what we model here is

(202) 234-4433

	169
1	atmospheric dump valves. So they would use the
2	atmospheric dump valves next after the steam dumps,
3	and if they were to fail, then we would revert to use
4	of PORVs.
5	Next slide, please.
6	So to summarize, we feel the Ginna design
7	is robust with respect to having the upper plenum
8	injection point as part of the two-loop Westinghouse
9	design.
10	We have significantly upgraded the
11	analysis to address the staff concerns with respect to
12	void fraction, mixing volume, and decay heat. I
13	didn't mention the fact that the staff questioned the
14	uncertainty value used on decay heat. Essentially, we
15	used the Appendix K uncertainty for decay heat, and
16	that will prevent boric acid precipitation based on
17	the design and the operator response in the LOCA
18	procedures.
19	Any questions?
20	(No response.)
21	Then I will turn it over to Len Ward.
22	CHAIRMAN DENNING: I think we will
23	probably take our break now. Instead of doing that,
24	we will take our break. We will take our lunch break
25	right now, and we will pick up at 10 minutes before
1	I Contraction of the second

(202) 234-4433

	170
1	1:00.
2	(Whereupon, the foregoing matter went off
3	the record at 11:50 a.m. for lunch and went back on
4	the record at 12:51 p.m.)
5	CHAIRMAN DENNING: I think we are ready to
6	restart. So you can just go right ahead, please.
7	MR. WARD: I am basically going to talk
8	about the same items, subjects, I did on Beaver
9	Valley. It is just the equipment has changed; the
10	objectives are still the same though.
11	So I am going to talk about, first, just
12	quickly the ECCS design, show you a little picture on
13	why the limiting break for a large break is different
14	from the cold break. You know that, but I think it
15	just helps to set up what I am going to say.
16	Then I will talk about large break LOCA.
17	I am only going to talk about long-term cooling, and,
18	of course, that is boron precipitation. You need to
19	be able to remove decay heat for an extended period of
20	time. It is criteria five. In order to do that,
21	you've got to put in more water than you are boiling.
22	Then you have to make sure the boron, the boric acid
23	doesn't precipitate.
24	For small breaks, I will talk about short-
25	term behavior. Again, that is PCT, clad oxidation.

(202) 234-4433

	171
1	Then I will also talk about boron
2	precipitation for that because it is an issue for
3	small breaks as well.
4	Then we can summarize with some
5	conclusions.
6	Ginna is a two-loop plant. This plant is
7	different from all the other plants in that it has an
8	upper plenum injection system that delivers low-
9	pressure flow through two ports into the upper plenum.
10	Then it has cold leg injection. They call it high
11	head safety injection. That is delivered to the cold
12	legs.
13	So the operators don't have to realign
14	HHSI. All they've got to do is make sure the pressure
15	is low enough to get that low pressure pump on, and
16	then they will have a flushing situation.
17	Now they mentioned in the large break LOCA
18	when the RWST drains, and that takes 24 minutes for
19	the limiting large break, they turn off the high head
20	pump. You've got low pressure injection going in.
21	So for the purposes of a boron
22	precipitation calculation, that break is going to be
23	worse because we are going to make the assumption that
24	it doesn't flush the core. There is water going in
25	that keeps it covered, but we are going to assume it
	1

(202) 234-4433

	172
1	concentrates. We are not going to take credit for any
2	of the circulation, if that exists. So we are going
3	to try to do a bounding calculation there.
4	Before I get into the picture, I think you
5	saw this. Here's the high head safety injection pump.
6	It has a shutoff head of around 1400 pounds.
7	This is the important one. It is the low
8	pressure. I guess they call it RHR.
9	This is the curve and this is how I
10	received it. So this is what I put in the code. I
11	think the flow really would behave this way, but we
12	are assuming that there is no flow you've got to
13	get the pressure below 140 pounds to get the system
14	on. So for the small break where you've got to cool
15	the plant down, that is the item we are going to be
16	concerned with.
17	I think my analysis shows you are up in
18	this range where I've got at six hours, I mean you are
19	at 60 to 80 pounds per second. The boiloff is like
20	23. Remember this is a small plant. So just remember
21	that is a key ingredient.
22	My cartoon here is not to scale. I am
23	sure Sanjoy wouldn't like it, but it is simple.
24	This is at the wrong location, but I want
25	to show that the UPI comes in the center line to the

(202) 234-4433

173 1 hot leg through two connections, and then you have hot 2 side and high head safety injection coming into the 3 cold legs. 4 So after 24 minutes in the large break, if 5 you turn this off, the hot leg break would become limiting because there is no flow from the cold to the 6 7 hot side. We are going to assume that any of the ECC coming in from the UPI doesn't flow in and mix and 8 9 We are just going to assume that it flush it out. 10 just replaces -- just keeps the core covered in concentrates. So that is why the hot leg break is 11 going to be limiting for this plant. 12 MR. WALLIS: Now would you explain why the 13 14 core is stagnant? 15 MR. WARD: Well, I can show you, explain The core is not really stagnant. It is boiling. 16 why. 17 Steam is rising and water is flowing down counter to 18 it to replace the boiloff. 19 MR. WALLIS: Where is that flow coming in, 20 though? 21 WARD: If you will recall, they MR. 22 Ginna people showed WCOBRA/TRAC showed, the a 23 calculation. That is their best-estimate calculation. I asked them to run that. 24 25 I will get to the reasons why. I mean

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	when you see when the boron starts to build up, but
2	that is a few slides later.
3	What that calculation shows, the water
4	going down the peripheral assemblies and rising up the
5	center. So it is just sitting there circulating,
6	replacing the water that is boiling off.
7	So the flow in the central part of the
8	core is upflow, and the flow down is really cold
9	peripheral bundles
10	MR. WALLIS: If you look at the whole
11	loop, conceivably, you could have this UPI coming in
12	and the flow actually going up the downcomer and
13	around.
14	CHAIRMAN DENNING: Well, actually, you
15	can't.
16	MR. WARD: I don't see how you could
17	get
18	CHAIRMAN DENNING: We've got a hot leg
19	break.
20	MR. WARD: Yes, it is a hot leg break.
21	CHAIRMAN DENNING: A hot leg break, right,
22	and we are looking at large
23	MR. WARD: Here's a 2-foot hole. There is
24	a 2-foot hole right here. This is 14.7.
25	MR. WALLIS: Everything is the same
	I contract of the second se

(202) 234-4433

	175
1	pressure?
2	MR. WARD: You've got cold side injection,
3	and the first 24 minutes you've got forward flow. I
4	mean everything is going to be pushed out.
5	MR. WALLIS: Well, that was my question.
6	Everywhere at a certain level you get atmospheric
7	pressure.
8	CHAIRMAN DENNING: Yes, and it can't go
9	around the loops.
10	MR. WARD: In other words, what's on, just
11	the UPI?
12	CHAIRMAN DENNING: Just the UPI is on.
13	MR. WARD: Okay. Well, the accumulators
14	and HHSI pump have filled the system up. So any more
15	water that I had in excess of the water is going to
16	spill out the break.
17	MR. WALLIS: It can't push through the
18	loop seal or something?
19	CHAIRMAN DENNING: No.
20	MR. WARD: No.
21	CHAIRMAN DENNING: Because you can't get
22	over the steam generators
23	MR. WARD: There's a steam generator here.
24	It has got to flow over the steam generator to get to
25	the loop seal. There is just a water level, there is

(202) 234-4433

	176
1	a weir here. So it is going to sit.
2	CHAIRMAN DENNING: So it is really
3	stagnant there in this case where
4	MR. WARD: Unless you boil off the water
5	maybe if you've got some wall heat on that side and
6	you boil off a little bit, I think you could get some
7	oscillations, and then that would probably promote
8	mixing. But I don't want they are not going to
9	take credit for that. I just want it to buildup
10	let's try to make this the worst let's beat it to
11	death. That is what I am trying to do.
12	These are all good questions.
13	MR. WALLIS: So there is no way the water
14	can go up and spill over that loop seal until that
15	loop seal is the loop seal full of water, too?
16	Does the water level
17	MR. WARD: Remember we've got a hot leg
18	break. There's no steam binding problem here. The
19	steam that is building up in the core, where does it
20	go? It goes out this huge hole.
21	MR. WALLIS: So everything there is at
22	atmospheric pressure?
23	MR. WARD: Yes, I am assuming we are at
24	14.7 in this guy right here, 14.7 everywhere.
25	MR. WALLIS: How about the other way? The
	I

(202) 234-4433

	177
1	other way is
2	CHAIRMAN DENNING: You mean the other hot
3	leg?
4	MR. WARD: Well, the other hot leg I
5	mean you've got two hot legs. I mean the steam is
6	going out that hole in the hot leg.
7	MR. WALLIS: So I suppose as long as it is
8	a big break this is okay?
9	MR. WARD: This is a double-ended break,
10	yes.
11	MR. WALLIS: Okay.
12	CHAIRMAN DENNING: Well, actually, we did
13	miss the possibility of steaming going up into the
14	steam generator, condensing in the steam generator.
15	MR. WARD: The path of least resistance is
16	probably right out the side and then just flow down a
17	hot leg, go up a bend, and then contract and get into
18	those tubes. I think it is going to go out the hole.
19	CHAIRMAN DENNING: But you absolutely rely
20	on water recirculating back into the core?
21	Otherwise, there is no way to keep the core cool.
22	MR. WARD: Right. The key ingredient here
23	is the LPSI pump, this UPI pump is putting in far more
24	water than you are boiling.
25	CHAIRMAN DENNING: Yes. It can flow down
1	

(202) 234-4433

	178
1	some way to get into the core.
2	MR. WARD: It is going to spill out that
3	hole.
4	MR. WALLIS: It will fill up the vessel,
5	won't it?
6	MR. WARD: Yes, sure.
7	MR. WALLIS: So just lower the curtain and
8	end the play.
9	MR. WARD: Right. That's right.
10	CHAIRMAN DENNING: That is a good
11	question.
12	MR. WARD: So for large breaks, what do
13	they need to do since you turn off the high pressure
14	pump once the RWST drains? They've got to turn it
15	back on, and you've got to turn it back on before you
16	would predict precipitation. It is simple.
17	They don't have to split the
18	MR. WALLIS: But you are foolishly
19	throwing away the other water, aren't we?
20	MR. WARD: Yes. But now for small breaks,
21	the pressure you have to remember in the large
22	break it gets down below 140 pounds, but for a small
23	break you can be above 140 pounds for a long time. So
24	what do you want it to flush the core in order to get
25	both systems working? Remember the HPSI pumps work or

(202) 234-4433

	179
1	that high pressure pump is working in the beginning.
2	We need to get the pressure down so we can get that
3	other pump from the hot side, so that if the break is
4	on the cold or the hot side, it will just flush.
5	So the key ingredient there is to cool the
6	plant down, and that is where the operator actions
7	come in. Long-term cooling is different than short-
8	term behavior PCT. The ECC is designed to keep the
9	temperatures low. The operators should just verify
10	everything is on and diagnosis. They shouldn't have
11	to take any action.
12	In the long-term cooling they've got to do
13	things. So to control boric acid, that is on the
14	operators' shoulders. It is up to them to make it
15	work. That is why we are focusing on this.
16	This being a particularly different plant,
17	we had them do a lot of calculations. Let me talk
18	about the large break model.
19	You've seen the same model in the original
20	submittal that went back, the long-term cooling the
21	large break LOCA analysis was very crude. They used
22	a decay heat multiplier of one. They assumed the
23	whole mixing line was full of liquid.
24	We didn't like that. So we said, hey,
25	let's step back and let's do a little bit better
	I contract of the second s

(202) 234-4433

	180
1	calculation.
2	So they went and they did the calculation
3	where they justified their mixing volume, took credit
4	for the void fraction, so it is not solid liquid.
5	Now we are also using the same
6	precipitation limit, 29 percent, and that is 14.7.
7	MEMBER KRESS: How good do we know that
8	number?
9	MR. WARD: What, that?
10	MEMBER KRESS: Yes.
11	MR. WARD: How good do you know that?
12	CHAIRMAN DENNING: Well, for pure boric
13	acid you know it well.
14	MR. WARD: I've got a curve from the boric
15	from the borax company. I will just show you what
16	it looks like.
17	They have measured the precipitation limit
18	as a function of temperature. We are down here around
19	29 percent, 212. If you've got additives, it is up
20	here.
21	So we are essentially using this. We are
22	using the data from this.
23	MR. WALLIS: Is this the same borax I can
24	buy in the supermarket?
25	MR. WARD: It probably is.
	I contract of the second s

	181
1	MEMBER KRESS: Twenty Mule Team.
2	MR. WARD: I think it is.
3	MR. WALLIS: Twenty Mule Team, yes.
4	MR. WARD: It is.
5	So you will recall this is the calculation
6	I did, and it says, "delay" on it. You will notice
7	that it doesn't start until 24 minutes. I will show
8	you another curve, but if you assume the boron builds
9	up from time zero, you are going to precipitate in
10	four-and-a-half, 4.8 hours.
11	I was really confused: How are they
12	getting this six hours and 13 minutes? I couldn't
13	figure it out until we finally talked enough and
14	finally he says, "Oh, wait a minute. We're not
15	letting buildup until 24 minutes."
16	The reason, the logic for that is during
17	the initial portion of the large break LOCA I have
18	high pressure pumps on; I have a hot leg break.
19	There's a lot of forward flow. You are depressurizing
20	in that upper plenum. It fills up. It is probably
21	going to concentrate within maybe the first several
22	hundred seconds.
23	But once you fill that vessel up, you've
24	got 80 pounds per second going on in one side and of
25	the order of 80 or 90 pounds going out the other side.
	1

(202) 234-4433

182 1 So you are not going to build up boron in the first 24 2 minutes. 3 I asked them to do a calculation to prove 4 that. They went and exercised their best estimate 5 LOCA model, the large break LOCA code. That code has UPI models that were reviewed. It has de-entrainment 6 7 on the guide tubes. It has entrainment phenomena that sweeps out drops. The droplet size distribution is 8 based on data for spraying horizontal jet of UPI into 9 a vertical column of quide tubes. Those models are 10 all in there, and it's got CCFL limits. If the steam 11 is too high, it won't let liquid go down. 12 So they ran that. They ran that code in 13 14 an Appendix K mode. 15 MR. WALLIS: Let's put this in 16 perspective. It starts off at 2400 parts per million, 17 is that right? MR. WARD: It starts off around, it is 18 19 3050 parts per million. 20 MR. WALLIS: What's that? So that's 21 point --22 It is like 1.5, something like MR. WARD: 23 that, 1.7. 24 MR. WALLIS: One point five percent. Ιt 25 is not .3 percent.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	183
1	MR. WARD: Yes, it is something like that.
2	MR. WALLIS: So I can't take parts per
3	million and get percent directly.
4	MR. WARD: Divide by 1748. Take the
5	ppm
6	MR. WALLIS: Okay, so it is 1.5 percent or
7	something?
8	MR. WARD: Right.
9	MR. WALLIS: And I'm going to concentrate
10	it to 30 percent. So I've got to drive off 20 times
11	as much water as I leave behind?
12	MR. WARD: Well, no, it is going to
13	concentrate at the rate it is boiling.
14	MR. WALLIS: Yes, but I mean to get 29
15	percent, I've got to drive off 19 parts in 20 of the
16	water. For 20 gallons, I've got to boil it down to
17	one gallon.
18	MR. WARD: Yes, something like that.
19	MR. WALLIS: It is a humongous amount of
20	water I've got to boil off.
21	MR. WARD: Sure, there is.
22	MR. WALLIS: I've got to start with an
23	enormous amount of water in order to finish up with
24	something which is the amount of water you're ending
25	up with in the vessel, which is concentrated to this.

(202) 234-4433

	184
1	MR. WARD: Right, and don't forget, you
2	know, there's a high
3	MR. WALLIS: So where does all of that
4	water come from that I've driven off?
5	MR. WARD: The initial water that is
6	there, the ECC injection.
7	MR. WALLIS: That's nowhere near enough.
8	MEMBER MAYNARD: Accumulators.
9	MR. WARD: You are putting in 80 pounds
10	per second in the cold side, and what's the LPSI flow?
11	MR. WALLIS: It is all accumulating all
12	that time?
13	MR. WARD: I mean, you've got a 700-pound
14	accumulator in there.
15	MR. WALLIS: And you are boiling all that
16	off?
17	MR. WARD: Right. I mean you've got two
18	huge accumulators and they just
19	MR. WALLIS: So you've got plenty of water
20	in there?
21	MR. WARD: dump tons of water in there.
22	MEMBER MAYNARD: You're putting a lot of
23	water in it.
24	MR. WARD: I'll show you when I get to
25	the
	1 I I I I I I I I I I I I I I I I I I I

```
(202) 234-4433
```

185 1 MR. WALLIS: Not as much water as you 2 finish up with that you boiled away. That is a huge 3 amount. 4 MR. SIEBER: A couple of hundred thousand 5 gallons. MEMBER KRESS: When you boil off at 6 7 atmospheric pressure --8 MR. WARD: Yes. 9 MEMBER KRESS: -- doesn't the steam take the boron with it? 10 MR. WARD: It does, but we're not --11 12 MEMBER KRESS: You are not even going to account for that? 13 14 MR. WARD: That is not credited. 15 MEMBER KRESS: That might take your time 16 way out. MR. WARD: That is right, and there's 17 entrainment, too, that is taking that liquid and --18 19 MEMBER KRESS: Yes, not even counting the 20 entrainment, no. MR. WARD: No, I'm not counting that 21 22 either. I'm not. Zero. 23 MEMBER KRESS: Okay, so that is another 24 conservatism there? 25 MR. WARD: Right, and there's 20 percent

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	186
1	additional power on the decay heat.
2	So this calculation that I did reproduces
3	the licensee calc.
4	I just want to show you, well, what
5	happens if there is no delay? This is what I was
6	getting originally, at or around 4.8 hours. This is
7	what was confusing me.
8	But look at it this way: The additives,
9	the precipitation limit is really up here with the
10	additives and the containment. So even if it builds
11	up from time zero and it wasn't flushed at all, you're
12	still going to be okay. This is still going to take,
13	well, it is going to take a long time. This is 20
14	percent more decay heat. If you subtract if you go
15	to 1.0, it is even going to push you out farther.
16	That's at 14.7.
17	So I think it is safe to say that there is
18	some margin in that calculation.
19	MR. WALLIS: As long as it doesn't boil
20	over when it gets to about 15 percent. Suppose its
21	properties change so that it boils over like milk
22	boiling in a pan. At 15 percent, then you have lost
23	it.
24	MR. WARD: Well, none of the tests show
25	that. You think it is going to do that?

(202) 234-4433

	187
1	MR. WALLIS: You don't know that yet. I
2	don't think anyone has done tests to that high a
3	concentration. It is stopped at a lower concentration
4	than that.
5	MR. WARD: I have seen tests that have
6	gone up to 32 weight percent, but I can't discuss it.
7	I've seen it. Maybe we can talk afterwards.
8	MR. WALLIS: Okay.
9	MR. WARD: So let's go to the short-term
10	behavior and let's jump back and let's look at PCT.
11	In the original submittal they submitted three break
12	sizes. That is obviously not enough to identify the
13	peak, and the peak was found to be a 2-inch break. But
14	with a Pclad temperature of 1167, I ran that
15	calculation and I got around 1100 degrees.
16	This ECC system is probably the best I
17	have seen. I have never seen a plant with 700-pound
18	accumulators. Those accumulators come on real early.
19	They keep the core from uncovering.
20	It is really a good design in that
21	respect. It has got very high capacity, high pressure
22	pumps compared to the boiloff. I mean you could pump
23	the Atlantic Ocean through this core in about 10
24	minutes. It is why the core doesn't uncover. If I
25	run this at 1.0, there's going to be no uncovery for
	I contract of the second se

(202) 234-4433

	188
1	this break specter. I am going to get no heatup.
2	So based on the calculations that we did,
3	and what they did, there's really no need for them to
4	go off and spend their time looking at these non-
5	integer break sizes when at most it might increase the
6	PCT by what, 100 degrees. I mean they are well below
7	1500.
8	So we said, "You don't need to submit
9	that." They went and did it anyway. But we really
10	didn't need it.
11	As a mater of fact, we had them look at
12	some larger breaks because and I am going to show
13	you this in a minute you turn the HPSI pump off
14	during a small break. There is no injection. Here
15	you've boiled the system down with levels in the hot
16	and cold leg, not something that I really like, like
17	to see, but they've done a lot of analysis.
18	As a matter of fact, they looked at these
19	larger breaks and turned the pump off for 10 minutes
20	because they have stated that they can make that
21	switch in five minutes and certainly within ten. When
22	you look at all these breaks, you see a drop in the
23	level when they turn it off but the core doesn't
24	uncover because of the fluid above the top of the
25	core.

(202) 234-4433

	189
1	Even for these larger breaks, they didn't
2	uncover and they didn't even take credit for the UPI,
3	only the high pressure, and it still didn't uncover.
4	So I liked that when I saw that.
5	Now we did calculations with Relap also,
6	and I am going to show you one in a minute.
7	MR. SIEBER: So if the UPI is the break,
8	that side of the break, you're still okay?
9	MR. WARD: Yes, I'm okay.
10	They also looked at severed ECC lines.
11	When you have a severed ECC line, you have one line
12	that sees 14.7 and the other one that might see 800
13	pounds. So you are not going to lose half the flow.
14	You are probably going to lose more than that. Those
15	were not limiting also.
16	Now we confirmed this with a Relap5
17	calculation, ran the 2-inch, ran a lot of breaks. Of
18	course, we were 1811 megawatts and 17.5 kilowatts per
19	foot.
20	Again, I said we confirmed that breaks on
21	the top of the cold leg, where you can fill the loop
22	seal out, didn't depress the level into the core, nor
23	did severed ECC lines become more limiting.
24	But the key here is you've got to
25	reinitiate that high pressure pump within 15 minutes,
	1

(202) 234-4433

	190
1	and I will show you why in a minute.
2	One of the things that you are going to
3	see in the calculation is I got a CHF condition again.
4	As I mentioned before, I have been talking with Josh
5	Hartz at Westinghouse. I think it is probably a
б	combination, as I said before, between assumptions and
7	differences in the code. Maybe our code is more
8	conservative. Maybe the resistance is in the hot
9	bundle or maybe they are a little too high.
10	Nevertheless, I got a 1400-degree
11	temperature. It is maybe close to 1500. But the
12	point is the PCT still remains well below 10 CFR 5046
13	limits. But we really want to understand this, and if
14	we have to pursue it further, we will.
15	CHAIRMAN DENNING: Now this is where you
16	were saying you used the Relap?
17	MR. WARD: Yes, this is Relap, and I am
18	going to show you this calculation.
19	I am looking at a 2-inch diameter break
20	here and turn the pump off. This is about the time
21	the RWST drains. Turn the pump off. This is a 2-inch
22	break, cold leg break. Turned the pump off here
23	around 7200 seconds, and in about 15 minutes the core
24	uncovered. In about another 15 minutes it is 2200.
25	So they say they can perform the action in
	1

(202) 234-4433

	191
1	five minutes, no later than ten. This is 1.2 times
2	ANS. They've probably got 20 minutes if you have this
3	break in this location.
4	So it is very important that the EOP be
5	emphasized and the training be emphasized with these
6	operators to make sure that they can do that within
7	five to ten minutes.
8	MR. FINLEY: Yes, this is Mark Finley
9	again, the Project Director for the uprate.
10	Len is correct, and we have emphasized
11	this in our procedures. They have the procedures set
12	up now to emphasize to minimize the time that these
13	pumps are off.
14	But I will make the point that you see we
15	would terminate the high head SI pumps at around two
16	hours into this event. So this is not happening five
17	minutes after the break occurs. So there would be
18	time here to ensure that the operators are briefed;
19	they understand the actions that they have to take and
20	would turn these pumps back on.
21	MR. WALLIS: Why do they turn off?
22	MR. WARD: Because not enough net positive
23	suction head. That is for the large break. You've
24	got to switch it to the sump.
25	MR. FINLEY: Right, we are shifting from
	I contract of the second se

(202) 234-4433

	192
1	the injection phase to the
2	MR. WARD: From the RWS they are
3	starting from a tank and now they have got
4	MR. WALLIS: You have drained that tank;
5	now you have got to switch to the sump? So you have
6	to realign the intake and everything?
7	MR. WARD: Yes.
8	MR. FINLEY: Right. There's three sets of
9	valves that have to be repositioned. We feel very
10	confident we can do that within five minutes.
11	MR. DUNNE: Yes, this is Jim Dunne from
12	Ginna.
13	Basically, our ops procedures, urgency
14	procedures, basically, tell our operators to basically
15	turn off SI and then check RCS pressure. If RCS
16	pressure is above a certain value, then they are told
17	to restart SI pumps. In this mode for a small break
18	LOCA that is what they would be doing. They would
19	turn it off.
20	They probably at this point in time would
21	already know what the RCS pressure is before they go
22	into the recirc mode. So they would probably even
23	make an assessment as to whether they really should be
24	turning off the SI pumps or not.
25	But the ELPs are based upon symptoms. So

(202) 234-4433

	193
1	they will check the RCS pressure, and if the RCS
2	pressure is above a certain value, they are basically
3	instructed by procedures to restarting that SI pump.
4	MR. WARD: And this break, bigger breaks,
5	and I will show you what they look like
6	MR. WALLIS: How is this affected by the
7	EPU? We are talking about power uprate.
8	MR. WARD: Well, it is a higher power.
9	MR. WALLIS: Does something change? This
10	picture is the same now. This is what they do now,
11	isn't it?
12	MR. FINLEY: That's correct.
13	MR. WALLIS: How does it change by the
14	EPU. Is it a shorter time period?
15	MR. WARD: They probably have a shorter
16	amount of time before the core uncovers.
17	MR. WALLIS: Is it really a critically
18	shorter amount of time or how does it change?
19	MR. WARD: You've probably got what's
20	the power increase, about 20 percent? So five minutes
21	maybe.
22	MR. WALLIS: So you do have a shorter
23	time?
24	MR. WARD: It is decreased by five
25	minutes.

(202) 234-4433
	194
1	MR. WALLIS: Which is significant.
2	MR. FINLEY: Like Len said, he calculates
3	something on the order of 20 minutes, I think, before
4	you would start to uncover again. So that time is
5	shortened from, say, 25 minutes to 20 minutes as a
6	result of the EPU, something on that order. But,
7	again, we can make these actions within about five
8	minutes.
9	MR. WALLIS: And has the net positive
10	suction head changed as well because of the EPU?
11	MR. WARD: I think the containment, the
12	sprays for this have been operating for this period.
13	You've got cold water in there. You've filled it up.
14	MR. FINLEY: Right. That really only
15	applies to the large break scenario.
16	MR. WARD: That is the large break where
17	you're early, you're hot, and it is probably not a
18	good thing to do.
19	MR. GILLON: This is Roy Gillon, Shift
20	Manager.
21	We run a scenario multiple times a year in
22	a simulator, and we have criteria. Typically, we can
23	get this done in five-six minutes of time. We have
24	never had any trouble getting it done in 10 minutes.
25	CHAIRMAN DENNING: And is there no option
	I

(202) 234-4433

	195
1	considered for depressurization to assure that your
2	pressure is low enough to have the BPI?
3	MR. WARD: Well, there is. I am going to
4	get to that.
5	They will initiate a depressurization with
6	both ADVs and one out, cool the plant down now. I
7	will show you, but this is the break. A break bigger
8	than two inches gets the UPI on it. It is a moot
9	point.
10	This is probably the biggest break where
11	you are only going to have hot side high head
12	injection. So if it is the biggest break, this is the
13	earliest that it would occur with the highest of K
14	heat. So I picked this one because this is the
15	limiting one.
16	CHAIRMAN DENNING: But you are showing us
17	a case in which they have not successfully
18	depressurized.
19	MR. WARD: Yes, I will show you what
20	happened.
21	MR. FINLEY: Let me just clarify. There's
22	two independent sort of issues here. This relates to
23	not turning the SI pumps back on in a timely fashion
24	when you switch from the injection phase to the recirc
25	phase.
	1

(202) 234-4433

	196
1	CHAIRMAN DENNING: Yes, right.
2	MR. FINLEY: It really doesn't relate to
3	the pressure in the RCS.
4	CHAIRMAN DENNING: Well, if you had
5	depressurized and you had the UPI on, does it make any
6	difference?
7	MR. FINLEY: Well, you are correct, if we
8	could get down below 140 psi, but this is only about
9	two hours in. We really can't get there for all the
10	break sizes, right.
11	MR. WARD: Right, and that is why this one
12	is limiting for that case, and you're right.
13	MR. DUNNE: If you did depressurizing down
14	to below the UPI cut-in pressure, you would not see
15	that interruption at all.
16	MR. WARD: Now I want to talk about long-
17	term cooling for small breaks. The analysis shows
18	that you can borrow for long periods of time, and
19	because it is a small break, the pressure remains
20	above the shutoff head of that low pressure injection
21	pump. So what do you do?
22	Well, you need to reduce the pressure
23	below 140 pounds to get the UPI on, or if you can't do
24	that, then show that it refills. I will show you what
25	that looks like in a minute in a slide.
	1

(202) 234-4433

197
Now what I asked them to do is there
were no analyses of these breaks because of this
plant. I want to know which breaks will you stay in
natural circulations, which ones refill, which ones
don't refill, and get UPI on, so we've covered all the
bases.
So they did this detailed analysis. Below
two inches the UPI comes on. So they did a pretty
good job and a pretty detailed analysis, looking at
all these with their this is their Appendix K small
break NOTRUMP code.
MR. WALLIS: Below two inches or above two
inches? You mean above two inches?
MR. WARD: I mean above. Yes, I'm sorry,
above two inches. I'm sorry. You are right.
MR. WALLIS: That was just to test us,
wasn't it?
MR. WARD: Yes, that was a test, wasn't
it?
Now what our audit calculation shows is
that for an 01 square foot break this is a 1.5-inch;
this is about 1.3 inches. I think in terms of square
feet. I don't like inches. So I have got square feet
here.

But in 2.8 hours this break refills, and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

198
this little larger break refills in about four hours.
Now the other thing I looked at is when I
said, gee, what if I fail one of those ADVs? Well,
I've got two PORVs. What does the system look like
under that condition? I will show you that in a
minute.
Let me show this critical break size range
that I could call for small breaks. We are looking at
2 inches, 1.5, 1.3. This is RCS pressure.
Now there is a 2000-second steady state,
and I didn't subtract that off, but the break opens at
2000 seconds.
Operators open both ADVs at this point and
start cooling the plant down. You can see if I have
a 1.3-inch break, if I refill and resubpool the system
somewhere in here a bigger break takes a little
longer. I'm out here maybe four hours. If you look
at the void fraction in the core, it goes to zero for
this 1.5-inch break and it will go to zero back here
for this slightly smaller break.
Now if I look at a 2-inch break, I am
depressurizing, but what happens is I get down below
100 pounds. So I am right in here. So the UPI is on.
So I am fine.
Bigger breaks, depressurize faster. I get

(202) 234-4433

	199
1	more and more flow. Smaller breaks will refill
2	earlier, and you will probably repressurize up near
3	1400 at some point because the break is so small. So
4	the operator will see that response.
5	All breaks from roughly two inches down
6	will refill and resubpool and disperse the boric acid.
7	Good system response.
8	Now I am going to say, what happens if we
9	only have I'm looking at a double failure here. I
10	just wanted to see what this looked like. This is
11	that 1.5-inch break. I have one ADV and I am only
12	opening up two PORVs, and I am hanging up in pressure
13	for a while. Let's blow that up. So I am out eight
14	hours.
15	Actually, what is happening is the low
16	pressure pump is coming on here. This is about 140
17	pounds. I would like to see it get down around 120
18	pounds because now you are getting a lot of flow in
19	there and it is flushing. It is flushing, okay, but
20	I am out probably eight hours.
21	But the point is, if I have delayed the
22	cooldown and I am coming out here and it is a slow
23	it is at a high temperature, there's a high limit. It
24	is not 29. It is 35, 40. As a matter of fact, in
25	this case it is probably greater than 50 percent if I
	I contract of the second s

(202) 234-4433

	200
1	look at the boric acid concentration as a function of
2	time. I am at a higher pressure. I have a lower void
3	fraction. So it takes a while even to get to 29, but
4	the limit is way up off the top of this page because
5	I am over 300 degrees.
6	So the point here is you don't want to be
7	crashing the pressure down if you have been boiling
8	for a long time. So we made a point to have some
9	discussions about changes to the EOPs, the guidance,
10	to make sure that in order for this to be successful,
11	you start to cool down at one hour. Caution the
12	operators, if you have been boiling, not to crash the
13	pressure down if you are out there eight or nine
14	hours.
15	There are strict statements that do not
16	exceed the 100-degree-per-hour cooldown limit, and
17	that will prevent you from, say, opening the bypass
18	and crashing the pressure down if you get power back.
19	We don't want that to happen.
20	So we basically talk about emphasizing
21	cool-down time and the equipment and the timing and
22	the operator actions, and their attention to this
23	event, because it is going to be controlled by them.
24	There are training programs that they are
25	running their operators through. As a matter of fact,
1	

(202) 234-4433

201 1 I think we are going to verify and observe and make 2 sure that we see these things being done by the 3 operators and they are done very effectively and very 4 timely. 5 MR. FINLEY: Yes, and this is Mark Finley, again just to interject. 6 7 Like Len says, the priority is on starting the cooldown and then finishing the depressurization 8 9 prior to the boron concentrating. This really fundamentally doesn't change 10 the operator response to a small break LOCA, however. 11 12 We are not having to make any significant logic or sequence changes in the EOPs. We are doing some 13 14 streamlining to minimize these times, but 15 fundamentally the operators are going want to cool down and depressurize the plant to stop or minimize 16 17 the leak. is 18 So what have done we put some 19 cautionary statements in the procedure to emphasize to 20 the operators to get the cooldown started within an 21 hour and then to get below the UPI injection point 22 within about five-and-a-half hours. 23 So I quess I can summarize the MR. WARD: 24 review. Initially, we asked the licensee to do some 25 more calculations because we learned the HPSI pumps,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	202
1	because of their design, are terminated for small
2	breaks. There were some omissions in their long-term
3	cooling analysis.
4	They did a detailed analysis to show what
5	breaks refill, what don't, what can be cooled down,
6	and what can be refilled if you can't flush. There
7	was a very detailed spectrum analysis that was done
8	with their NOTRUMP small break LOCA code to show that.
9	The temperatures are low for small breaks
10	because the ECC design is very robust. They have very
11	high pressure accumulators, 700 pounds. That
12	terminates, prevents, precludes, basically precludes
13	uncovery in the real world, and even in Appendix K
14	space we're get what, 1100-1200 degrees. Good design.
15	Staff calculations confirm their
16	precipitation. As a matter of fact, by doing the
17	calculations we have found out a lot about the plant
18	and understood better how this thing works and what is
19	going on in the beginning of the transient as well as
20	at the end.
21	It showed that boiling can last for a long
22	time, and equipment and timing for its use is very
23	important and needs to be emphasized again and again.
24	I think that is a key ingredient here.
25	I think by this whole analysis, the
	1

(202) 234-4433

	203
1	emphasis on operator actions is a positive safety
2	thing, and it is going to be included in their
3	training programs for their operators. The analysis
4	that the vendor has done is going to be able to show
5	these operators what is the signature of this, what's
6	it going to look like, how long do we have to get
7	down. So there's a lot of good analyses they can use
8	there to supplement the information the operators
9	have.
10	Based on the calculations that they have
11	done, I looked at the short-term small break LOCA
12	behavior and the long-term cooling and feel that it is
13	a bounding calculation. It is comprehensive and it
14	meets 10 CFR 5046.
15	CHAIRMAN DENNING: I have a couple of
16	questions that I don't consider EPU questions. That
17	relates to the modeling assumptions associated with 50
18	percent of the lower plenum and this kind of stuff.
19	MR. WARD: Right.
20	CHAIRMAN DENNING: The BACCHUS experiment
21	is the principal rationale that you have
22	MR. WARD: It is one of them.
23	CHAIRMAN DENNING: that are supportive
24	of that?
25	MR. WARD: It is one of them. There's a
	1

(202) 234-4433

	204
1	Finnish paper, and I am not sure if you remember,
2	Ralph, or not; I think I gave you a copy of that.
3	That shows some lower plenum mixing as well, but they
4	have some current concerns with scaling.
5	I mean we have the same concerns with the
6	BACCHUS. There's a gradient; there's a concentration
7	gradient in the core. We are mixing everything
8	together.
9	So I took the code that I developed and I
10	predicted that if I assumed the entire lower plenum,
11	I am too late on the precipitation. So I cut the
12	lower plenum volume in half, and I better predicted
13	the timing for when the top half of the core reached
14	the limit.
15	MR. WALLIS: That comes from matching the
16	BACCHUS data within a model?
17	MR. WARD: Yes, the boiloff. Right. I
18	took my model and modeled that test and compared it to
19	the boron concentration as a function of time.
20	CHAIRMAN DENNING: I think that we don't
21	understand the BACCHUS experiment well enough to
22	really understand its direct applicability in a manner
23	like that.
24	MR. WARD: Okay.
25	CHAIRMAN DENNING: I think that one can do

(202) 234-4433

205 more mechanistic analyses of what is really happening 1 2 in attempting to predict the BACCHUS experiment. 3 MR. WARD: Yes. 4 CHAIRMAN DENNING: We would like to see some effort done there. 5 earlier 6 You know, we had some 7 recommendations related toward looking at what happens 8 as you get closer to precipitation. 9 MR. WARD: I agree. CHAIRMAN DENNING: I understand there's 10 some work that is going to happen there. 11 12 MR. WARD: Right. CHAIRMAN DENNING: We would like to see a 13 14 little more. We will gladly share that with 15 MR. WARD: I mean, for example, what I would like to see is 16 you. 17 break the core up into 10 regions and model the That is a more sophisticated calculation, gradient. 18 19 but --20 CHAIRMAN DENNING: Yes, I think you can do 21 that calculation --22 Yes, that can be done. MR. WARD: That 23 can be done. CHAIRMAN DENNING: -- in a mechanistic 24 25 way.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	206
1	MR. WARD: Yes, I think it can be done.
2	I agree with you.
3	This generalized letter with the concerns
4	in it about how the vendors have been doing
5	calculations, that is one of the issues in there.
6	This one, this average concentration, show
7	me that that make it bounding or do a detailed
8	calculation. Show me what it is. What does it really
9	look like?
10	MR. WALLIS: Wasn't there some kind of
11	critical thing in BACCHUS where after it got a certain
12	difference it turned over or something?
13	MR. WARD: Yes. They are putting in cold
14	water. Once the concentration in the core and upper
15	plenum exceeded the density in the lower plenum, then
16	it started to mix.
17	MR. WALLIS: And then it turned over. It
18	is a turning-over criteria.
19	MR. WARD: Then it turned over, yes. You
20	can look at the Finnish test and you will see the same
21	thing. It occurs at a different time. It is at a
22	different temperature.
23	But there are a lot of questions, and the
24	owners' group are addressing them right now.
25	MR. WALLIS: You have a half. If you had

(202) 234-4433

	207
1	something like a third, this would change the time
2	when they have to take action?
3	MR. WARD: Sure, absolutely. Sure. Lower
4	plenum is probably worth three or four hours on pre-
5	set time.
6	MR. WALLIS: I think this is a little bit
7	tenuous, this determination of just what the time is
8	when they have to take action.
9	MR. WARD: Well, remember the limit is
10	more like 40 percent. If you threw out the lower
11	plenum, you've got 15-16 hours.
12	CHAIRMAN DENNING: Well, we hear you, but
13	we would like to see a little more to make us
14	understand what is really going on.
15	MR. WARD: All I am saying is there is a
16	margin there, and they are doing analyses to address
17	all these issues. We don't have all the answers right
18	now, but we are going to get them.
19	MR. WALLIS: There's a research program in
20	RES that is addressing this?
21	MR. WARD: Well, no, but
22	MR. WALLIS: Is it Westinghouse? Who is
23	addressing it?
24	MR. WARD: The owners' group.
25	MR. WALLIS: The owners' group.
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	208
1	MR. WARD: The letter went out to all of
2	the vendors and utilities who do calculations, asking
3	them well, there was a list of concerns on how they
4	do their calculations. We wanted to get them on the
5	same page. There are a lot of questions about
6	justification for their model; what happens when
7	you've got debris going in there; what happens when
8	you add cold water. That is in there, too.
9	There's probably two pages of issues that
10	I see is going to require some experiments to
11	MR. WALLIS: What will concern me is if,
12	as a result of this new research, you have to
13	radically revise your view of boron precipitation.
14	MR. WARD: Boy, I hope that doesn't
15	happen.
16	MR. WALLIS: I know.
17	MR. WARD: I know. Well, I can't stand
18	here and say, "Boy, that's not going to happen." I
19	can't. That's why we asked the questions.
20	MR. WALLIS: Well, think of all the
21	surprises you got with the sumps. Surprises do
22	happen.
23	MR. WARD: That's right. Well, I suspect
24	there's going to be a few surprises here.
25	MR. WALLIS: We will shine the spotlight

(202) 234-4433

	209
1	on you in a while. Okay.
2	MR. FINK: If I can say something? It is
3	Dave Fink of Westinghouse.
4	I heard something up here, if you will
5	forgive me. The WAD program has been mentioned a few
б	times here.
7	Recently, the NRC sent a letter to the PWR
8	owners' group stating the staff's principal boric acid
9	precipitation methodology concerns. The PWR owners'
10	group is in the process of preparing a response to
11	this letter.
12	I happen to be the lead, the Westinghouse
13	lead on that program, so I know a little about it.
14	It is important to emphasize that the
15	methodology concerns raised by the NRC in their letter
16	have been addressed for Beaver Valley and Ginna for
17	the uprates, as we discussed over the past few days.
18	As suggested by the staff, in the owners'
19	group response to the NRC letter we use insights from
20	these analyses, that is, as performed for Waterford,
21	Beaver Valley, and Ginna, to show that from the plants
22	represented by the owners' group that existing
23	calculations are conservative and that existing
24	emergency procedures will prevent boric acid
25	precipitation after a LOCA.
	I

(202) 234-4433

210
While the upcoming owners' group response
to the staff's letter addresses the principal
methodology concerns, there are many other tougher
questions that the staff and the Committee have raised
regarding mixing phenomena in the reactor vessel and
regarding boric acid solutions in general.
These questions are the subject of ongoing
GSI-191 programs and also a longer-term owners' group
boric acid precipitation methodology program. The
objective of this latter program is to answer the
questions that can be answered and, probably more
importantly, to show that the methodologies such as
those used for Waterford and Beaver Valley and Ginna
are adequate to ensure the safe operation of the
plants and to demonstrate compliance with all
regulations.
The owners' group intends to meet with the
staff in the near future to discuss this program, the
specific objectives of this program, and the long-term
solutions to these questions and these problems.
CHAIRMAN DENNING: Thank you for that.
I think we are done now with the
presentations, and I think we are just into some
wrapups.

MR. FINLEY: Yes, Dr. Denning?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

б

	211
1	CHAIRMAN DENNING: Please.
2	MR. FINLEY: There is one open question
3	from this morning. We do have some data with respect
4	to the question about RETRAN uncertainties. So we
5	would like to show you that data.
6	CHAIRMAN DENNING: Please do that.
7	MR. FINLEY: Okay.
8	MR. HUEGEL: My name is Dave Huegel. I am
9	from Westinghouse.
10	One of the things that was being discussed
11	this morning was the loss-of-flow event. What we have
12	here is I just put together a plot where the blue line
13	and I picked out points as best I could of what the
14	flow coast-down was as measured at the Ginna plant.
15	This is a normalized curve and it is based
16	upon whatever the actual flow that was being measured
17	at the plant. Keep in mind they do have a tech spec
18	which identifies the minimum measured flow that the
19	plant has to meet and verify going into a cycle that
20	they are above that flow rate.
21	The minimum flow rate that we assume in
22	the safety analysis is the flow that we were doing the
23	DNB calcs and lower than what the plant has to ensure
24	that it is meeting.
25	What you have here in the purple line,
1	

(202) 234-4433

5 Probably the biggest difference between these two curves is, as I mentioned this morning, the 6 7 fact that in the safety analysis we take off 10 percent from the pump inertia, and we do in the safety 8 9 analysis model all of the pump characteristics, the 10 homologous curves, so that we have captured in the RETRAN model an accurate representation of what the 11 12 plant or the pump models are.

Another thing that I mentioned in the 13 14 loss-of-flow analysis, when we assume the rods are 15 dropping into the core, that is based upon a confirmation that the plant performs based upon full 16 17 RCS flow conditions. As you can see, during the coast-down you are going to be at a degraded flow 18 19 condition, and we would expect that the rods would 20 fall into the core even faster.

Another thing that we do is in the modeling of the reactivity that is inserted in our point kinetics model, as I mentioned, it is assumed that there was a xenon transient in effect where your reactivity is pushed towards the bottom of the core,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

212

213 1 and that is what we assume for the addition of the 2 reactivity as the rods are falling into the core. Yet, at the same time when we do the DNB 3 analysis we would assume a shape that is closer to a 4 5 shape that has an AFD axial flux difference closer to limiting 6 zero, which would be for DNB-type 7 calculations. So, at the same time, you would have a 8 9 reactivity shape where your axial power shape is skewed towards the bottom of the core. Yet, at the 10 same time we are assuming a DNB axial power shape that 11 12 is skewed more closer to the top of the core. So that is an additional conservatism that we have within the 13 14 analysis. 15 The results that are represented this morning were for the under-frequency decay case. 16 The 17 way that the pumps operate is they operate off of the frequency on the grid. So if you have a change in 18 19 frequency, it affects how the pumps are operating. 20 Fluctuations in voltage typically don't affect the 21 pump speed that much. 22 What we have here is a case where we have 23 assumed a very conservative 5 hertz per second decay 24 in the pump coast-down. Now one of the features at a 25 typical Westinghouse plant, and it also applies to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	214
1	Ginna, is that as soon as you hit the under-frequency
2	set point, then your trip breakers would, your pump
3	breakers would open, and the pumps would be free to
4	coast down.
5	So that at some point in here the pumps in
6	reality would begin to follow the line closer to what
7	you would see in the purple line, actually the blue
8	line. Yet, we have assumed in the analysis that the
9	pumps are dragged all the way down to essentially a
10	zero condition at 12 seconds.
11	So this is just to show you the comparison
12	and to tell you that we did do a comparison of what
13	the actual plant data would be versus what we have
14	assumed in a safety analysis.
15	MR. WALLIS: There is no plant data per se
16	here?
17	MR. HUEGEL: Well, the blue is the plant
18	data.
19	MR. WALLIS: It is plant data?
20	MR. HUEGEL: Yes.
21	MR. WALLIS: Okay. I wasn't quite sure
22	MR. HUEGEL: I'm sorry, yes.
23	MR. WALLIS: if it was your prediction
24	from realistic or it is the plant. Oh, it is actually
25	the data? Okay.

	215
1	MR. HUEGEL: Yes, that is actually the
2	data, yes.
3	MR. WALLIS: It is a line through the data
4	or does the data have a big scallop
5	MR. HUEGEL: I was just given a plot from
6	the UFSAR, and I was picking off points as best I
7	could. I apologize; I didn't do a super job there
8	with the blue line.
9	MR. WALLIS: Which is one transient.
10	There's no bouncing around?
11	MR. HUEGEL: No. If there was any
12	bouncing around, it would probably be to detect noise.
13	I mean we do see, if you look at, for example, your
14	hot leg temperatures due to the RTDs being where they
15	are, you do see noise in your hot leg signals which
16	presents a problem for like the over temperature delta
17	T, which has a lead lag function. If you have a spike
18	in your T-hot which affects your TAV, you get a
19	spurious spike on your margin of the OTDT, which isn't
20	real, yet presents a problem in terms of ensuring a
21	plant margin when you are just in a steady-state
22	condition.
23	MR. WALLIS: This is graph paper.
24	(Laughter.)
25	MR. FINLEY: That is the curve from the

(202) 234-4433

	216
1	UFSAR and shows the two-pump coast-down alpha and
2	bravo flow.
3	MR. WALLIS: This is measured?
4	MR. HUEGEL: Correct, that is measured.
5	MR. FINLEY: Correct. That was part of
6	the hot functional testing when Ginna initially
7	started up. Dave just transcribed that data to the
8	plot you see on top, the blue.
9	MR. WALLIS: Oh, okay.
10	MR. HUEGEL: I am due for an eye exam. So
11	I apologize.
12	CHAIRMAN DENNING: Now are you going to
13	show other characteristics then of the
14	MR. HUEGEL: Yes, yes.
15	CHAIRMAN DENNING: Go ahead.
16	MR. HUEGEL: Were there any questions?
17	CHAIRMAN DENNING: I understand that, yes.
18	MR. HUEGEL: This is a comparison of the
19	RETRAN that we just recently completed. This was for
20	the Ringhals 3 plant. It is a plant in Sweden where
21	we did some comparisons against plant data.
22	We don't have any, other than what I was
23	just showing you with the flow coast-down for Ginna,
24	but here is a comparison, if you can see that.
25	CHAIRMAN DENNING: It looks like you cut

```
(202) 234-4433
```

	217
1	off the top. What are they?
2	MR. HUEGEL: I'm sorry. That is the
3	nuclear power transient.
4	This is for a power load decrease, and the
5	hash line in here is the plant data, and the red line
6	is what the RETRAN model is doing.
7	MR. WALLIS: After being adjusted?
8	MR. HUEGEL: Yes, keep in mind that the
9	RETRAN model, we are using a point kinetics model. So
10	as your rod control system is moving in and out, we
11	have some differential rod data, but the fact that we
12	are using frozen feedback and a point kinetics model,
13	we did have to make adjustments to that differential
14	rod worth. Once we did, we got a close match with the
15	nuclear power.
16	MR. WALLIS: Are you fitting the data or
17	are you making a real comparison?
18	MR. HUEGEL: Well, this, actually, on the
19	nuclear power, you would say it is more like fitting
20	the data. Then the question is, how is the RCS
21	responding to the transient once you have done a
22	comparison or a fit of the nuclear power?
23	This here is your vessel TL. The plant
24	data is the black hash line, and your red line is the
25	RETRAN predicted

(202) 234-4433

	218
1	MR. WALLIS: You have used invisible ink
2	for the RETRAN base somehow?
3	(Laughter.)
4	MR. HUEGEL: Actually, it's in there.
5	CHAIRMAN DENNING: It's in there. Yes, I
6	see it.
7	MR. WALLIS: It is sort of visible.
8	MR. HUEGEL: But this is a comparison
9	where we have the rod control system turned on. We
10	have the steam dumps model. We also have your
11	pressurizer pressure control and level control all
12	turned on. So all these kinds of different control
13	systems that certainly we don't credit when we perform
14	a safety analysis.
15	CHAIRMAN DENNING: And that is a pretty
16	fine scale, actually. I mean things are a little bit
17	tight
18	MR. HUEGEL: Yes. Granted, it is.
19	Here is a plot just showing response of
20	the RETRAN model to the pressurizer level. Again,
21	given the scale, I think it is tracking the results
22	rather well.
23	Here's the pressurizer pressure transient,
24	again, the red being the RETRAN results and the hash
25	line being the plant data. So it is showing a fairly
	I contract of the second se

```
(202) 234-4433
```

	219
1	good match of this transient where you are getting
2	fairly substantially large changes in the nuclear
3	power and other parameters.
4	This is the coolant flow, the RCS coolant
5	flow, the loop steam flow, steam header pressure.
6	MR. WALLIS: Wait, wait.
7	MR. HUEGEL: Do you want to go back and
8	look?
9	MR. WALLIS: So when we look at these, we
10	see a sort of agreement, but there's a difference,
11	too. So we don't quite know how to interpret this
12	when you show us a plot of a prediction of a
13	transient, how much we should allow for RETRAN
14	uncertainties around that prediction, because we know
15	there are some, as you can see here.
16	MR. HUEGEL: Sure.
17	MR. WALLIS: We don't quite know how to
18	translate what you show us here to what you showed us
19	earlier today.
20	MR. HUEGEL: Again, I would look at the
21	scale and say that, yes, it looks like a big change,
22	but if you look
23	MR. WALLIS: This is a proportionate
24	change or is it a certain error and a certain number
25	of bars?
	I

```
(202) 234-4433
```

	220
1	MR. HUEGEL: I think it is more a function
2	of the units that were selected. I mean I only have
3	70 units a bar here.
4	The other thing, as I was mentioning this
5	morning, the other important point is we do make very
6	conservative assumptions in the analysis in not
7	crediting the different control systems, which gives
8	us what we believe a very conservative analysis.
9	When we do a comparison, for example, to
10	flow coast-down, we do see that we are predicting a
11	very conservative coast-down.
12	MR. WALLIS: In this case the actual
13	pressure is significantly above the RETRAN phase. The
14	change in pressure is also significantly bigger.
15	MR. HUEGEL: Keep in mind this is the
16	steam header pressure.
17	MR. WALLIS: Right.
18	MR. HUEGEL: We are most concerned in
19	looking at the steam pressure and the steam generator
20	conditions, not necessarily what is going on down in
21	the steam header. So the question is in most
22	plants you do have different runs between where your
23	steam generators are located and then your piping to
24	where they are all headered together. So it could
25	have been the assumption that is made in terms of what
	I

(202) 234-4433

	221
1	piping was selected, because I don't really care what
2	is going on at the header.
3	My concern is what is going on in the
4	steam generator and between the steam generator to
5	where the safety valves are connected. What's the
б	delta P between those two points? What happens down
7	at the header is not really a big concern.
8	CHAIRMAN DENNING: Why don't you go find
9	another curve that is more appropriate than on the
10	pressure.
11	MR. HUEGEL: Well, the good plot I thought
12	was on the pressurizer pressure where we did actually
13	have a good comparison of what the plant was
14	indicating in terms of a pressure versus what RETRAN
15	was showing the pressure was.
16	CHAIRMAN DENNING: Yes.
17	MR. HUEGEL: Obviously, the peak pressure
18	is one of the parameters of concern in the non-LOCA
19	analysis that we do look at.
20	MR. SIEBER: Probably if you started your
21	scale at zero, it would appear to have much greater
22	correlation.
23	MR. HUEGEL: Yes. There's all different
24	ways of manipulating the data. That would be one of
25	them.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	222
1	(Laughter.)
2	MR. SIEBER: And it is apparent.
3	CHAIRMAN DENNING: Is there anything else
4	you were going to show us then?
5	MR. HUEGEL: If that is good enough
6	CHAIRMAN DENNING: Yes, excellent.
7	MR. WALLIS: It is very interesting. It
8	is, however, qualitative, isn't it? So we don't quite
9	know how to look at its effect in some sense.
10	MR. HUEGEL: Well, I still feel very
11	strongly that the methodology that we are using for
12	performing the analysis is very conservative and does
13	a good job of ensuring that the plant is safe.
14	If I look back, like I was talking about
15	with the rod withdrawal at power, we analyze a whole
16	wide range of cases and go all the way to the
17	condition of trip. I know from my discussions with
18	plants that they have problems just at normal
19	operating conditions because of the noise in the
20	channels and the hot legs, of having margin to the
21	trip, and that is without any transient going out at
22	all.
23	Yet, here I am running my transients and
24	going up to power levels of 120-130 percent, which is
25	where I have the trip set points because I have

(202) 234-4433

	223
1	accounted for all the safety analysis uncertainties.
2	In the case of an OTDT K-1, the uncertainty is on the
3	order of 15 percent. So I've got my safety analysis
4	that is showing I've got a nice, smooth plot of here's
5	what TAV is doing. Yet, at the plant it is bouncing
6	all around, and with the lead lag compensation, it is
7	trying to compensate for the difference between
8	indicated and actual conditions. I am running into
9	problems trying to ensure the plants have adequate
10	margin just for normal operating conditions.
11	Then if you go out, say, for example, a
12	loss of loss in feedwater event, that is a heat-up
13	event. Well, if you were to ask a plant when they
14	have a loss in feedwater event, it is a problem in
15	terms of maintaining shutdown margin because they get
16	so much cooling because of the aux. feedwater.
17	Yet, we would assume a turbine-driven
18	failure. We assume one of the two motor-driven has
19	failed and is at a minimum condition. So that we
20	would analyze it in safety space; it is heatup event
21	long term. But if you look at the plan, it is a cool-
22	down problem.
23	So I feel very comfortable that the
24	methodology that we are applying in these different
25	events is conservative and robust and ensures that the
	1

(202) 234-4433

(202) 234-4433

	224
1	plants are operating in a safe manner.
2	CHAIRMAN DENNING: Thank you.
3	MR. HUEGEL: Thank you.
4	CHAIRMAN DENNING: Okay, let us now move
5	into our wrapup.
6	MR. FINLEY: If we perhaps could
7	summarize, Mark Flaherty would just give a conclusion
8	from our side.
9	MR. WALLIS: Well, I have a question. I
10	was just looking here at this solubility of borax
11	versus temperature. Do you have also some sort of a
12	curve of the boiling point versus the degree of borax
13	dissolved in the concentration? Is there a boiling
14	point elevation due to concentration as well, a curve
15	like that you could give us to take away?
16	CHAIRMAN DENNING: Yes, also if you have
17	density, too, because
18	MR. WALLIS: Density, too, because all
19	those things are related, yes.
20	CHAIRMAN DENNING: I had some trouble
21	getting the density's function on concentration.
22	MR. WALLIS: If we want to look at BACCHUS
23	with some intelligence, we need to have that sort of
24	stuff.
25	MR. FINLEY: I'm not sure this is what you
	1

(202) 234-4433

	225
1	are looking for.
2	MR. WALLIS: That is solubility. I was
3	looking for boiling point. Presumably, as you
4	dissolve more borax, the point goes up, does it?
5	MR. FINLEY: I don't have the boron point.
6	MR. FINK: This is Dave Fink.
7	Mark, go back to that plot you just had up
8	there.
9	MR. WALLIS: There is a boiling point. It
10	says, "Boric acid solution boiling point, 218," but
11	that must be at some concentration.
12	MR. FINK: That is at the atmospheric
13	solubility limit, that is correct.
14	MR. WALLIS: That is at 30.
15	MR. FINK: Correct.
16	MR. WALLIS: So it hasn't changed very
17	much then. I presume it is coming up from 212 to 218,
18	as you have added up to 30 percent by weight.
19	MR. FINK: That is correct.
20	MR. WALLIS: So it hasn't changed that
21	much. Okay, thank you.
22	MR. FLAHERTY: In conclusion,
23	Constellation came back today really to discuss four
24	topics. Two of them were bring-backs.
25	For the first one, dealing with alloy 600
	I contract of the second se

(202) 234-4433

	226
1	material and PWSCC, we believe that we proved that it
2	is not a concern with respect to uprate.
3	The other bring-back item dealt with the
4	margin. Obviously, we have had lots of discussion
5	about margin. I believe that what we attempted to
6	show you today was that there's margin in many
7	different aspects with how we do things. This
8	includes inputs, assumptions of keeping RCS pressure
9	at nominal value even though it increases, and not
10	crediting that for DNB; looking at reactor trip at 1.4
11	seconds versus less than 1 second; doing some analysis
12	at 102 percent power; looking at steam generator
13	plugging from 0 to 10 percent, depending on which is
14	worse case. So that is one aspect for inputs.
15	We just discussed again some of the code.
16	The code has been benchmarked somewhat against real
17	plant data.
18	There's also margin and safety analysis
19	limits where we do assume penalties in looking at
20	margin with that.
21	Finally, even the design limits, even
22	though there's, for instance, a limit of 3200 pounds
23	for RCS pressure from ASME code, that is just at the
24	point at which you have an increased probability of
25	causing additional damage. So there is additional
1	1

(202) 234-4433

	227
1	margin even beyond that.
2	So, in sum, there's lots of different
3	sources of margin within the analysis.
4	With respect to the two new topics we
5	discussed today for small break LOCA and long-term
6	cooling, we did demonstrate that we do have acceptable
7	results. I would like to reiterate that the analyses
8	that were done were very conservative from the
9	standpoint of looking at things even from decay heat
10	of 120 percent. This decay heat, that adds that
11	affects the analysis in many ways with respect to what
12	we believe would actually occur during a real event.
13	To put this in perspective somewhat, with
14	the higher decay heat, you are going to have increased
15	steaming and, therefore, increased pressure inside
16	containment. So this will increase the need for
17	containment spray.
18	But, in all honesty, if you look at just
19	normal decay heat with reduced, relatively reduced
20	steaming effects, so, therefore, containment pressure
21	would be reduced; hence, containment spray by
22	procedure would be looked to be terminated in an
23	earlier standpoint, extending out the period of time
24	in which operators would look to go on to
25	recirculation.

(202) 234-4433

	228
1	So a lot of these conservative aspects,
2	that type of thing, do have effects on the analysis.
3	So even though there may still be some lingering
4	questions or generic comments that the staff is
5	dealing with the PWR owners' group and things like
6	that, we believe that what was done for Ginna is more
7	than sufficiently conservative enough to bound any of
8	those potential issues.
9	So, with that, I would like to conclude
10	Constellation's presentation.
11	CHAIRMAN DENNING: Good. Well, before you
12	leave, let me say thank you for the presentations.
13	You certainly addressed the issues that we asked to be
14	addressed at the last meeting, and I think you have
15	done that very well. I would like to congratulate the
16	presenters and thank them.
17	We will be providing some guidance to you
18	on the presentations for the upcoming meeting.
19	Obviously, we have two hours of which we will have
20	presentations that will be much more focused than we
21	have had in our couple of days of reviews here. We
22	will try to get that guidance to you by tomorrow as to
23	what our expectations are, and also to the regulatory
24	staff, of course.
25	There is some duplication, obviously, that
	1

(202) 234-4433

	229
1	occurs in these presentations. We will probably
2	remove some of that duplication for the presentation
3	to the full Committee.
4	You will also hear we will have some talk-
5	arounds here before we are done. Perhaps you will get
6	some additional guidance from the individual members
7	of the Subcommittee before we are done today. Okay?
8	So we will have the wrapup by the
9	regulatory staff now.
10	MR. MILANO: No, sir, we don't have
11	anything else that we would like to put on the record
12	and stuff. Just what we were going to wrap up you
13	have just mentioned. We were going to ask about the
14	guidance and when to expect it in preparation for the
15	full Committee meeting.
16	CHAIRMAN DENNING: Good. Again, I think
17	we will try to get that to you tomorrow.
18	I would like to thank the staff, too,
19	because I think that we did get quite a bit of
20	enlightenment on some of the things that have been
21	bothering us at the previous meeting, and staff's
22	analyses were very helpful in that. Thank you.
23	MR. MILANO: Thank you.
24	CHAIRMAN DENNING: Okay, then why don't we
25	go around the table. Jack, do you have some comments?

(202) 234-4433
	230
1	MR. SIEBER: Not very many. We had some
2	questions at our meeting last month, and I think both
3	the licensee and the staff did an excellent job of
4	providing the answers.
5	One of those questions about materials was
6	mine. That was properly answered. I think that from
7	my standpoint any concerns that I might have had
8	trying to guess where alloy 600 was are no longer
9	there because they aren't in critical places.
10	I thought the explanation of how safety
11	calculations are done, I think Otto and I both have
12	been through that a few times. On the other hand, I
13	even learned a couple of new things in the process of
14	the presentations myself, and I thought that was well
15	done.
16	MR. WALLIS: What did you use? Did you
17	use 1.38 or 1.55 or what did you use?
18	(Laughter.)
19	MR. SIEBER: 1.55.
20	MR. WALLIS: You used 1.55.
21	MR. SIEBER: You get to pick your own
22	number.
23	(Laughter.)
24	MR. WALLIS: Otto?
25	MEMBER MAYNARD: I'm trying to remember

```
(202) 234-4433
```

	231
1	what it was. We actually took over our own safety
2	analysis. Again, you go back the real number is
3	what the design criteria is, and then, again, you pick
4	a number that gives you design specification margin
5	for your field design and how much you want to use for
6	that and how much you want to be able to use in case
7	you find something later you didn't know about versus
8	where you want to put your set points in your plant
9	and how do you really want to operate your plant.
10	So, again, it really goes back to making
11	sure that you meet the design criteria, and then where
12	you put the other depends on how much flexibility you
13	want to give to your field designer versus how much
14	flexibility you want to give to your operator.
15	I forget what the number was that we used
16	at Wolf Creek, but it was below 1.55. I don't know if
17	it was much above 1.38. But it was in that
18	neighborhood.
19	MR. SIEBER: Those safety limits are like
20	building a box. Once you build the box, that becomes
21	the golden rule, so to speak, and you have to operate
22	the plant inside that box.
23	CHAIRMAN DENNING: And you try to make
24	your box as small as possible.
25	MR. SIEBER: No, you try to make your box
	I

(202) 234-4433

	232
1	as big as possible.
2	MEMBER MAYNARD: Not necessarily. What
3	you want to do is to give, keep yourself the ability
4	to handle unknown or unusual situations that may come
5	up without having to do a re-analysis every time
6	somebody wants to change something.
7	So, basically, you set a box for a field
8	designer and you set a box for other parts of the
9	design. If you find out later that that wasn't a big
10	enough box for your field designer, then you go to
11	another box and you can move that around.
12	If you set your limit right down at the
13	design criteria, you have no flexibility to deal with
14	it. I think it actually creates a less safe
15	situation.
16	So you actually want to have that for a
17	couple of reasons, not just safety operation, but
18	operational flexibility, and, again, to be able to
19	handle any of the unknown.
20	MR. WALLIS: Of course, we had this
21	conversation earlier. I can understand all that from
22	the point of view of operation, but there isn't a
23	measure of how much additional safety the public is
24	getting out of this. That is what is missing. There
25	is no link here.
	1

(202) 234-4433

is built into what the design criteria is in the regulations and the methodologies that are approved, not only the methodology, not only the codes, but also the way the codes have to be used, the restrictions on the application of that code.

MEMBER MAYNARD:

As you have seen from a lot of these discussions, there's a lot of conservatism built into 8 the code and into how the code has to be used and what 9 assumptions are put into that.

That conservatism, plus the conservatism 11 12 built in what the design criteria is, that is the public's safety margin. The rest of that then becomes 13 14 the licensee's margin for how they want to operate.

15 Again, it provides the safety margin in case something comes up you really had not expected or 16 didn't know about. You are still above your design 17 limit. 18

19 MR. SIEBER: If you wanted to know what 20 the margin meant in terms of safety, you would have to 21 do it with distributions, probabilistic distributions, 22 which deterministic rules don't really lend themselves 23 So, generally, if you meet deterministic rules, to. 24 you are safe enough. That is basically the way you 25 would interpret Title 10.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

10

1 MEMBER MAYNARD: And, actually, I think 2 that you are extremely safe because it is very 3 conservative. I think if we went to a more detailed 4 analysis where you really tried to predict where it 5 was, put uncertainties and stuff on it, I think that you could find that you could actually uprate these 6 7 plants to a higher power. There's a lot more 8 conservatism than what you know about. 9 You may find in some areas occasionally 10 that you didn't have as much conservatism as you thought, but in the aggregate you take all the 11 12 conservatisms built into all of the bounding type analyses and there's more margin there than what 13 14 shows. 15 Graham, anything else? CHAIRMAN DENNING: WALLIS: Well, I am much more 16 MR. satisfied than I was before in several areas. 17 I was

I am much more satisfied that the licensee 23 24 and Westinghouse have performed a thorough analysis. 25 I think some of the details we saw today a lot let me

not quite sure what was going on when you got these

numbers and where they came from and why they were so

close to limits, and so on. I think I understand much

better how they were derived and why they have the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

form they do have.

18

19

20

21

22

	235
1	know what was really behind it all that we hadn't seen
2	before and you never get from reading the SER.
3	(Laughter.)
4	Similarly, the staff came through with
5	explanations which are not in the SER. They are also
6	behind the words which tend to just say the applicant
7	did this and it's okay, which leaves completely up in
8	the air, how did you know that?
9	So I feel much more satisfied today. I
10	suppose after I have slept and dreamt a bit I might
11	come back with another question, but I don't at the
12	moment have a question. I am pretty satisfied. So
13	thank you.
14	CHAIRMAN DENNING: Tom?
15	MEMBER KRESS: Well, I felt that the staff
16	and the applicant have shown that they meet all the
17	regulations, the rules. I didn't see any place that
18	I thought there was glitch or a hangup. In fact, they
19	did a good job of showing it.
20	I thought their analysis of the boron
21	precipitation was highly conservative. I think they
22	could show that they've really got a lot more time
23	than a couple of hours. In that large break LOCA with
24	this upper plenum injection, I really don't think that
25	you have any boron concentrate.
	I

(202) 234-4433

	236
1	CHAIRMAN DENNING: No, I don't either.
2	Yes, Otto?
3	MEMBER MAYNARD: I think the licensee has
4	done a real good job in answering questions, which I
5	think many went well beyond what the licensee would be
б	required to have to answer, because our questions to
7	the licensee and to the staff were really challenging
8	or questioning approved methodologies, which I think
9	is fair game, but the licensee I think did a good job
10	of providing answers and responding, and has been
11	responsive to our questions.
12	Again, I agree with Tom, I think they
13	clearly demonstrate that they meet the regulatory
14	requirements and that they have performed the analysis
15	and meet all the requirements there.
16	I also think the staff has done a good job
17	of demonstrating that they understand the applicant's
18	information, that they understand the analysis. They
19	have done some confirmatory work. So I think they
20	have done a good job in demonstrating that they
21	independently took a look at a number of these things
22	and satisfied themselves that the licensee's
23	information was accurate and representative there. So
24	I think they have done a good.
25	So, overall, I think both did good.
	I Contraction of the second

(202) 234-4433

	237
1	CHAIRMAN DENNING: Very good.
2	Unless anybody else quickly objects, then
3	I declare this over.
4	(Whereupon, at 2:09 p.m., the proceedings
5	in the above-entitled matter were concluded.)
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	I