Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee Reactor Safeguards
Subcommittee on Power Uprates

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Wednesday, April 26, 2006

Work Order No.: NRC-982

Pages 1-157

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	MEETING OF THE SUBCOMMITTEE ON POWER UPRATES
6	BEAVER VALLEY POWER STATION EXTENDED POWER UPRATE
7	+ + + + +
8	WEDNESDAY,
9	APRIL 26, 2006
10	+ + + +
11	The subcommittee meeting convened at the
12	Nuclear Regulatory Commission, Two White Flint
13	North, Room T-2B3, 11545 Rockville Pike, at 8:30
14	a.m., Richard B. Denning, Chair, presiding,
15	
16	SUBCOMMITTEE MEMBERS PRESENT:
17	RICHARD B. DENNING
18	, Chair
19	SANJOY BANERJEE
20	ACRS, Consultant
21	THOMAS S. KRESS
22	
23	OTTO L. MAYNARD
24	JOHN D. SIEBER
25	GRAHAM B. WALLIS
	1

		2
1	ACRS STAFF PRESENT:	
2	RALPH CARUSO	
3		
4	FIRSTENERGY STAFF:	
5	BOB BAIN	
6		
7	Stone & Webster	
8	DON DURKOSH	
9		
10	FENOC	
11	BILL ETZEL	
12		
13	FENOC	
14	KEN FREDERICK	
15		
16	FENOC	
17	DAVID GRABSKI	
18		
19	FENOC	
20	JEFF HALL	
21		
22	Westinghouse	
23	NORM HANLEY	
24		
25	Stone & Webster	
1		

		3
1	GREG KAMMERDINER	
2	FENOC	
3	COLIN KELLER	
4		
5	FENOC	
б	JAMES LASH	
7		
8	FENOC	
9	MARK MANOLERAS	
10		
11	FENOC	
12	PETE SENA	
13		
14	FENOC	
15	GEORGE STORLIS	
16		
17	FENOC	
18	MIKE TESTA	
19		
20	FENOC	
21		
22	NRR STAFF PRESENT:	
23	TIMOTHY COLBURN	
24	STEVEN LAUR	
25	GREGORY MAKAR	
I	1	

			4
1	ROBER	RT PETTIS	
2	MARK	RUBIN	
3	THOMA	AS SCARBROUGH	
4	ANGEL	O STUBBS	
5			
	(202) 224 4422	INEAL R. GRUSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005 3701	(202) 224 4422
	(202) 204-4400	WASHINGTON, D.C. 20003-3701	(202) 234-4433

	5
1	A-G-E-N-D-A
2	Mechanical Impacts, M. Testa (FENOC) 4
3	Flow Accelerated Corrosion, D. Grabski (FENOC) . 22
4	Engineering Mechanics Aspects,
5	T. Scarbrough, K. Manoly, John Wu (NRR) 36
6	Steam Generator and Tube Integrity and Chemical
7	Engineering Topics, G. Makar (NRR) 41
8	Balance-of-Plant Systems, A. Stubbs (NRR) 55
9	Probabilistic Risk Assessment, C Keller (FENOC) . 62
10	Risk Evaluation, S. Laur (NRR)
11	Operations and Testing , D. Durkosh 111
12	Human Performance, K. Martin (NRR) 128
13	Power Ascension and Test Program, R. Pettis (NRR)142
14	Concluding Remarks, J. Lash (FENOC) 147
15	Concluding Remarks, T. Colburn (NRR) 151
16	
17	

	6
1	P-R-O-C-E-E-D-I-N-G-S
2	8:33 a.m.
3	CHAIRMAN DENNING: We are now back in
4	session. And this is Wednesday, April the 26th.
5	And we're going to start off discussing mechanical
6	impacts and Mike Testa.
7	MR. TESTA: First I'd like to thank the
8	Committee for the opportunity to speak here today.
9	My name is Mike Testa, I'm the extended power uprate
10	Project Manager for Beaver Valley.
11	A little background on myself. I have
12	23 years of experience at Beaver Valley Power
13	Station. The last five year I've been the uprate
14	Project Manager and I also was on the full potential
15	project from the beginning.
16	Today I'll be discussing the mechanical
17	impacts that the uprate has on Beaver Valley Power
18	Station.
19	Next slide, John.
20	I'll be discussing the steam generators,
21	balance of plant heat exchangers, vibration
22	monitoring program for the secondary piping systems,
23	cooling water systems and flow accelerated
24	corrosion, of which we'll have our program owner
25	come up and speak on that program.

(202) 234-4433

	7
1	Today if there's any questions, I have
2	Jeff Hall from Westinghouse to assist me as well as
3	Bob Bain from Stone & Webster.
4	For steam generator vibration, we looked
5	at the first thing, we used a thermal-hydraulic code
6	Athos that computes the thermal-hydraulic parameters
7	the tubes so the tube bundle would be subjected to.
8	We looked at the vibration potential in
9	the U-bend and tube bundle entrance region. Out of
10	two vibration mechanisms that were considered, were
11	fluid-elastic instability, vortex shedding and
12	random turbulent excitation.
13	And we also looked at tube wear. And
14	that's tube wear in the U-bed radio at the
15	antivibration bar interface.
16	The tube bundles, just the difference
17	between the units now. For Unit 1 we replaced the
18	steam generators. We discussed that yesterday. Model
19	54. Just installed in fact a few weeks ago here.
20	The model 54 was designed for uprate conditions so
21	the stress report, the design report considered
22	uprate.
23	For Unit 2 we have the Series 51 steam
24	generator, of course, which now will see increased
25	flow because the uprate.
	I contraction of the second

(202) 234-4433

	8
1	We reviewed the
2	MEMBER WALLIS: I presume the steam
3	generators is plural and you installed three of
4	them?
5	MR. TESTA: Yes.
6	MEMBER WALLIS: Not just one?
7	MR. TESTA: Yes, correct. That's
8	correct. Yes. Three loop PWR 3 steam generators.
9	We looked at the flow induced vibration
10	effects
11	DR. BANERJEE: What's the difference
12	between the two?
13	MR. TESTA: Between a model 54 and 51?
14	Jeff?
15	MR. HALL: Yes. This is Jeff Hall from
16	Westinghouse.
17	The differences are really many. With
18	respect to the tube material itself the 51M is a 600
19	mm tubing where the 54F is a 690 thermally treated
20	tubing. So issues such as stress cracking are
21	greatly reduced with the new model generator.
22	The support plates are stainless for the
23	new model generator versus carbon steel support
24	plates.
25	The antivibration bars are better

(202) 234-4433

	9
1	designed for the new unit.
2	DR. BANERJEE: What does that better
3	design mean?
4	MR. HALL: The support conditions are
5	more assured. Where for the 51M sometimes you could
6	pick up gaps between AVBs and the tubes, with the
7	newer design with the reduced gaps you have a
8	reduced potential for wear at the AVB sites.
9	DR. BANERJEE: So are these just gaps or
10	are there actually things holding the tubes in
11	place?
12	MR. HALL: Well, you could think of it
13	as a bar that's inserted between the tubes in the U-
14	bend region. It's a flat bar. Essentially it
15	provides a support location to prevent the tube from
16	moving in the out of plane direction.
17	DR. BANERJEE: But they're not broach
18	plates or anything like that?
19	MR. HALL: Well with respect to the
20	support plates. The support plates are in fact
21	broached.
22	DR. BANERJEE: Okay.
23	MR. HALL: Where the 51M is a circular
24	drilled hole.
25	DR. BANERJEE: And the 54F?
	I contraction of the second

(202) 234-4433

	10
1	MR. HALL: The 54F is a broached
2	configuration.
3	MR. KAMMERDINER: Excuse me, Jeff. This
4	is Greg Kammerdiner.
5	Back on the AVBs, the other difference
6	with the 54Fs, there's an extra set of AVBs. 51s
7	have two sets of AVBs, the 54s have three. So
8	there's more support in the upper bundle because
9	there is an extra set of AVBs in the 54.
10	DR. BANERJEE: And the number of tubes
11	are the same?
12	MR. KAMMERDINER: There's approximately
13	400 tubes more in the 54?
14	MR. HALL: Yes.
15	DR. BANERJEE: Four hundred out of how
16	many?
17	MR. KAMMERDINER: The 51Ms have 3,376.
18	The 54s approximately 400 more.
19	DR. BANERJEE: Ten percent more?
20	MR. KAMMERDINER: Yes.
21	DR. BANERJEE: Thanks.
22	MR. KAMMERDINER: Fifty-four stands for
23	54,000 square feet of heat transfer area. The 51, is
24	51,000 square feet.
25	DR. BANERJEE: Thank you.
	1

	11
1	MEMBER WALLIS: So the AVBs limit the
2	amplitude of the oscillation, but they also give the
3	tubes something to rub against, to bang against?
4	MR. HALL: Yes.
5	MEMBER WALLIS: Well, they're good and
6	bad at the same time in a way.
7	MR. HALL: Beg your pardon?
8	MEMBER WALLIS: They're both and bad?
9	MR. HALL: Well, yes. No, they're
10	actually all good.
11	MEMBER WALLIS: Okay. But it says here
12	tube wear at IBBs. There is some rubbing or
13	something going on?
14	MR. HALL: Yes. And that's primarily a
15	result of the fit up between the tube and the bar
16	itself. If you have the ability to move back and
17	forth, well the tube is going to move back and
18	forth. But if you're holding it sufficiently so
19	that you don't have relative motion, well then you
20	don't get wear.
21	MEMBER SIEBER: The AVBs go in the U-
22	bend area, not below?
23	MR. HALL: That's correct.
24	MEMBER SIEBER: The old ones sometimes
25	they weren't long enough to catch all the tubes. So
Į	

(202) 234-4433

	12
1	you would end up with a tube that's not supported.
2	MR. HALL: Yes. And actually in both
3	cases, the 51 in particular, there are some tubes in
4	the U-bend region that are unsupported.
5	MR. TESTA: And actually, that's a lead
6	in for the next bullet where we looked at go
7	back, John.
8	Yes for Unit 2 again for the series 51,
9	unsupported U-bends were reviewed for increased
10	fatigue. And because the analysis that was
11	performed, there was six tubes that we had to take
12	out of service. And we did that.
13	Okay. As far as the next slide here, I
14	just wanted to touch on the steam dryer. Again,
15	look at the comparison between the PWR and the BWR.
16	Just a little description on the secondary steam
17	dryers on the steam generators. Now the main
18	difference is between the 51 and the 54 is that the
19	51s have a two tier arrangement for the secondary
20	dryers. I have sketch behind this to show that,
21	whereas the model 54 has a single tear arrangement.
22	It's better illustrated here. Again,
23	with the 51 they have two tiers of secondary steam
24	dryers. You can see the lines that are drawn. The
25	steam comes up and enters into the side region of

(202) 234-4433

	13
1	the secondary dryer and then flows up, comes up
2	through and then has a natural progression up
3	through the secondary dryers.
4	The flow velocity in that region is on
5	the order of 3½ to 4 feet per second. And you can
6	see the vicinity of the nozzle region there's no
7	structural components within the vicinity of the
8	nozzle.
9	CHAIRMAN DENNING: I realize that later
10	you're going to talk a little bit about experience.
11	But could you tell us at this point how much
12	experience is there with the 51 at the conditions
13	that you're now going to go to?
14	MR. HALL: With respect to these
15	conditions there's an immense amount of experience.
16	These steam dryers, this configuration is used in a
17	multitude of steam generator models, not just the
18	51s. The D models, D2, D3, D4, D5 all have a very
19	similar arrangement. 54F a very similar
20	arrangements. The Fs all have a two tier
21	arrangement.
22	The velocities coming out of that area
23	are all pretty much of the same order of magnitude.
24	I mean, a couple of feet per second one way or the
25	other, but they're all essentially the same.
	I

(202) 234-4433

	14
1	Totally different orders of magnitude than some of
2	the boiling water reactor dryers.
3	MEMBER SIEBER: Well, the one thing you
4	don't have is a 180 degree change of direction.
5	MR. HALL: And all the consequences of
6	that with respect to the turbulence that you can
7	get, yes. It's all pretty much it comes out of the
8	steam dryers and it continues on right up to the
9	steam nozzle.
10	MEMBER SIEBER: The velocities are
11	pretty low. They're like
12	DR. BANERJEE: Can you stay there. Can
13	you go back to that slide?
14	MR. TESTA: That one?
15	DR. BANERJEE: No, no, no.
16	MEMBER WALLIS: The velocities?
17	DR. BANERJEE: Yes.
18	MEMBER WALLIS: The one with the
19	velocities, 107.
20	DR. BANERJEE: The velocities.
21	MEMBER WALLIS: That's it.
22	DR. BANERJEE: That's it.
23	MEMBER WALLIS: There's no history of
24	problems with these dryers, I understand?
25	MR. TESTA: That's correct. In fact here

(202) 234-4433

	15
1	from this slide here it was to compare, again the 51
2	to the BWR. You can see that they have low
3	velocities up through the dryers at 3½ to 4 feet per
4	second where the BWR was on the order of 100 feet
5	per second. And there have been no operational
б	issues reported in the 51s or the 54s.
7	We had a backup slide just to show the
8	operating experience.
9	DR. BANERJEE: Can you, please?
10	MR. TESTA: Sure. Okay. So for
11	example, you know, well Beaver Valley which is going
12	to operate at 2910. The difference with the model
13	54 one tier secondary dryer in the Unit 2, with two
14	tier you can see the comparison to the other plants
15	that utilize the similar secondary steam dryer
16	arrangement.
17	MR. HALL: Yes, but these are not the
18	only plants to have this particular dryer
19	arrangement, too. There's many more.
20	MEMBER SIEBER: As far as megawatt
21	production, Beaver Valley and North Anna are about
22	the same so the operating experience from North Anna
23	at that power level, it's got a fair amount of time
24	behind it.
25	MR. TESTA: That's correct.
	1

(202) 234-4433

	16
1	MEMBER SIEBER: So they aren't really
2	breaking any new ground here.
3	MR. TESTA: In fact, North Anna is on
4	the list here where they're operating at 2905.
5	MEMBER SIEBER: Got them beat by five?
6	MR. TESTA: Yes. Okay. Okay, John.
7	No, go forward.
8	Now if there's no other questions on the
9	steam generator, we also looked at balance of plant
10	heat exchangers. From the uprate looking at the
11	heat balance and the flow parameters that the
12	equipment would be subjected to. We looked at the
13	feedwater heaters and the feedwater heaters will
14	operate within the design capacity.
15	The moisture separator reheaters, we
16	went back to the vendor. We had a specific analysis
17	performed to show acceptability under the increased
18	flows.
19	As we mentioned yesterday, one of the
20	modifications that we're going to do is on the
21	condenser. Now our Unit 1 condenser was retubed a
22	while back. And at that time the condenser was
23	staked. Prior to the power escalation we will be
24	taking the condenser in order to limit the tube
25	vibration.
	1

(202) 234-4433

17 1 Vibration monitoring. This is a 2 monitoring program for the secondary side for the 3 balance of plant piping. We're going to monitor the 4 secondary systems pre and post-EPU. This is going 5 to include baseline walkdowns on each of the plants which we've already done. We have documented 6 7 walkdowns. Areas of interest where there's level of 8 9 vibration that causes us to pay particular attention as we escalate power, we've identified those 10 11 locations. 12 All this is within the guidance of ASME OM Part 3 that prescribes the walkdowns or the 13 14 acceptance criteria that could be used and the 15 method of performing this program. CHAIRMAN DENNING: Could you help me a 16 17 little bit on a walkdown where you're looking for vibration, what does one do quantitatively there? 18 19 MR. TESTA: Okay. What we do there is, 20 for example, we came up with a screening criteria. 21 We're looking at the displacement I'd say on the 22 order of an eighth of an inch. And we'll walk it 23 down to see if there's any signs, any noticeable 24 signs of vibration. And we basically have 25 documented from the plant, basically going from say

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	component to component, basically identifying if we
2	have vibration levels that would exceed that limit.
3	CHAIRMAN DENNING: Visually?
4	MR. TESTA: Visually. That's correct.
5	I have Bob Bain from Stone & Webster.
6	If you'd like to add?
7	MR. BAIN: Yes. This is Bob Bain from
8	Stone & Webster.
9	We followed the basic guidance of OM3 as
10	Mike says. The first test criterion we used was
11	visual on displacement of an eighth of an inch,
12	which is within the guidance provided in OM3. They
13	allow for visual measurements using simple devices
14	such as rulers, hand held type mechanical simple
15	devices like pencils, literally. And an eighth of
16	an inch peak to peak displacement is easily visual
17	on a focused walkdown. And as Mike says, these
18	walkdowns were basically focused.
19	Over the last three or four years,
20	actually, we took a schematics and basically
21	connected the dots from equipment. So from pump to
22	valve, valve to vent or drain, vent or drain to
23	branch lines. So it was a focused walkdown looking
24	at the piping, the components as well as the support
25	hardware.
	1

(202) 234-4433

	19
1	And any observation, again eighth of an
2	inch was a fairly stringent criteria. Easily
3	visually noted. That would get it onto this list of
4	interest, as Mike identified.
5	And we followed up that list of interest
6	literally over the last three or four years for both
7	units.
8	CHAIRMAN DENNING: Is there quantitative
9	stuff that one can do? I mean, are there instruments
10	that you can go and put it up against the machine?
11	I mean, the equipment
12	MR. TESTA: Yes, there are.
13	CHAIRMAN DENNING: and have a measure
14	of not only the displacement but the frequency?
15	MR. TESTA: Yes. There's a portable
16	device, hand held accelerometers. And, again, we
17	conduct these walkdowns. We use the experienced
18	engineers. And if there's any question about the
19	acceptance of the level of vibration, then we will
20	use accelerometers to record the displacement and
21	the frequency.
22	MR. BAIN: Yes. This is Bob Bain again.
23	And this hand held equipment that Mike
24	references actually gives you data in displacement
25	or velocity or acceleration. And OM3 allows you to

(202) 234-4433

	20
1	do more detailed evaluations if required using
2	velocity or displacement data. So the hand held is
3	a good device to give you the next level of detail
4	quantitatively.
5	MR. TESTA: Okay. Just the last mention
6	here, large equipment like the reactor coolant pump
7	and the turbine have continuous monitoring
8	available. So we'll be monitoring that as we
9	escalate power.
10	Okay, John.
11	Now the next area we looked at is
12	cooling systems. The bottom line here is that the
13	systems remain capable of dissipating heat for
14	normal shutdown and accident conditions.
15	WE looked at these following systems,
16	the flows were adequate without modification:
17	The river water system. Beaver Valley 1
18	the equivalent system service water for Unit 2;
19	The component cooling water;
20	Residual heat removal, and;
21	The safety injection containment
22	depressurization system which uses the recirc spray
23	heat exchangers.
24	Next slide.
25	Spent fuel cooling. We looked at spent
	1

	21
1	fuel cooling. As part of the project or the overall
2	initiative, which we started we said five to six
3	years ago, we looked at spent fuel cooling. And
4	there was an amendment that we put in where we
5	looked at the offload time. At that time we
6	performed the analysis to incorporate the uprate
7	decay heat loads.
8	MEMBER KRESS: Do you have dry casks on
9	the site?
10	MR. TESTA: Not at this point, no.
11	Still use the fuel pool.
12	MEMBER WALLIS: I think I remember your
13	burnup is the same as it was before essentially, is
14	that right?
15	MR. TESTA: Yes, I believe so. Yes.
16	The last area to touch on here is the
17	auxiliary feedwater system. The auxiliary feedwater
18	is fed from the condensate storage tank. The
19	condensate storage tank is sized for 9 hours of hot
20	standby conditions. And with the uprate or the
21	increased decay heat, we've revised the tech specs
22	to require 130,000 gallons useable volume for each
23	of the tanks for both Unit 1 and Unit 2.
24	The other thing with the aux feedwater
25	system, there were two accidents: The feedline

(202) 234-4433

	22
1	break and loss of normal feed that required us
2	crediting two aux feed pumps.
3	CHAIRMAN DENNING: I didn't understand
4	with regards to the tech spec limit and the 130,000
5	gallons. What do you do physically to assure that?
6	MR. TESTA: Basically we have the
7	calculated tank volume and maintain a level on the
8	tank.
9	CHAIRMAN DENNING: So it's a level on
10	the tank that has to be assured now that it's
11	slightly higher than it was previously?
12	MR. TESTA: Yes. Yes.
13	CHAIRMAN DENNING: Gotcha.
14	MR. DURKOSH: This is Don Durkosh from
15	Beaver Valley Operations.
16	Basically we obtained curves that show
17	based on indications available to us what the volume
18	is. And on every shift we have minimum levels that
19	we're required to verify on a shiftly basis. So
20	that's how we maintain our minimum tech spec values.
21	MEMBER MAYNARD: You didn't make any
22	modifications to the tank. You're just changing the
23	level setpoint there.
24	MR. TESTA: That's correct. That's
25	correct.
	I contract of the second se

(202) 234-4433

	23
1	MR. CARUSO: Why would you not normally
2	keep the tank full?
3	MEMBER SIEBER: It goes up and down. You
4	have to have surge volume.
5	MR. TESTA: To answer that question we
6	normally do. As part of the review of our L5 logs
7	we typically, our levels are high. What we try to do
8	is basically clear the alarms. We have a low alarm
9	that indicates we're approaching a tech spec limit.
10	And normally we have a high alarm very close to the
11	overflow. So we try to maintain it within that
12	range so we have no alarms in the control room.
13	MR. TESTA: Okay. Again, just to finish
14	this out here, there are two accidents that required
15	us to credit two pumps. This was already in place
16	for Unit 2. And with the revised analysis Unit 1
17	will now require two pumps also for these two
18	accidents. It's basically accounting for the
19	increased decay heat plus the addition of the
20	cavitating venturies, which puts a little more
21	system resistance into the system.
22	CHAIRMAN DENNING: And that's two out of
23	how many?
24	MR. TESTA: Two out of three.
25	CHAIRMAN DENNING: And it had been one

(202) 234-4433

	24
1	out of three?
2	MR. TESTA: It had been one out of
3	three, just for Unit 1. Unit 2 was already
4	crediting two pumps.
5	Okay. Well, this completes my part of
6	the discussion. I have Dave Grabski here, which
7	he's our flow accelerated corrosion program owner,
8	and he'll talk about the program.
9	Thank you.
10	MR. GRABSKI: As Mike said, I'm Dave
11	Grabski. I am the FAC program owner.
12	A little background. I'm a FirstEnergy
13	employee. I worked at Beaver Valley and before that
14	Shippingport Atomic Power Station for a combined 26
15	years.
16	I've been the FAC program owner since
17	the early '90s.
18	Next slide.
19	The first bullet, the EPU effects
20	evaluated using CHECWORKS. So we've taken the
21	revised heat balance diagram parameters and using
22	the CHECWORKS models determined analytically what
23	we'd expect as far as our wear rates. With most
24	uprates, we've seen an increase in velocity and
25	temperature. And those two factors play differently

(202) 234-4433

	25
1	with different systems. Some systems we've seen a
2	decrease in our wear rates, and others we've seen a
3	slight increase.
4	The feedwater and extraction steam
5	systems, those systems had a decrease. Systems like
6	the feedwater heater drains, condensate have
7	increased. Again, because of the play of those
8	different parameters: Velocity and temperature
9	mainly.
10	In preparation for the uprate we've
11	actually replaced two extraction steam Ts because
12	of the increase in our SMR relief valve set point
13	that has cut into our margin between our measured
14	wall thickness and our required wall thickness.
15	Extraction steam is one system at Beaver Valley that
16	does wear due to the flow accelerated corrosion
17	mechanism.
18	CHAIRMAN DENNING: So there wasn't a
19	materials change, it was just a thickness change?
20	MR. GRABSKI: We have upgraded the
21	material to a chrome-molly. Basically anytime we
22	make piping replacements at Beaver Valley, we'll
23	upgrade to a chrome-molly. Chrome-molly is much
24	more resistent to this particular degradation
25	mechanism.
1	

(202) 234-4433

26 1 Based on the engineering evaluation 2 we're going to focus on a few more systems. Well, 3 not more systems, but more components within those 4 systems, on those systems that we expect an increase 5 in velocity. Mainly our moisture -- or I should say the heat drain system from our 4th to 5th point 6 7 heaters, we had a significant velocity there. So we're going to focus examinations in the next outage 8 9 there to get a baseline where we're at. And in the 10 future qo back to these areas to see how they're 11 doing. 12 And there's some components at Beaver Valley 1 and 2 in the 4th point heat drain line. 13 14 It's showing you in the next to the last column 15 there some of the wear rates we saw before the 16 outage. Very low. And heater drains is a low wear 17 system at Beaver Valley. But we do see some 18 increases based on the uprate. 19 DR. BANERJEE: Do you have a diagram 20 showing where these components are in the steam 21 cycle? 22 MR. GRABSKI: I don't have --23 DR. BANERJEE: I have no idea where the 24 four point heat is or what -- I imagine that it's 25 extraction --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	MEMBER WALLIS: This is a preheater.
2	DR. BANERJEE: Preheater?
3	MR. GRABSKI: Yes. We have six
4	MEMBER WALLIS: Well, these aren't
5	safety concerns anyway. These are just
6	embarrassments for you if you break a pipe, it might
7	be dangerous for anyone who is around the pipe.
8	MR. GRABSKI: It could be a personnel
9	issue.
10	MEMBER WALLIS: It's dangerous for your
11	people, but it's not a nuclear
12	MR. GRABSKI: That's correct. This is a
13	non-safety related piping systems.
14	MR. STORLIS: My name is George Storlis.
15	I'm a FENOC employee.
16	An in Operations I can get a little bit
17	of perspective to what the feed heater string is.
18	The feed heater string is compromised of six feed
19	heaters in line with the condensate feed system to
20	preheat the feed. The fourth point is fourth in
21	line, the sixth point being the lowest energy or
22	lowest pressure system and the first point being an
23	extraction steam of highest pressure off of the
24	turbine cycle. And the fourth point is in route to
25	that.
	1

(202) 234-4433

28 1 And we're talking pressures, 2 temperatures that compliment the feedwater heat up 3 that approaches the 440 degrees or so when it 4 ultimately is arriving at the steam generators. So 5 it takes a portion of the energy from the turbine cycle and uses that to preheat the steam and the 6 7 shelf tube arrangement. And that's the basics of it. If there's 8 9 any questions, please ask. 10 DR. BANERJEE: Is the steam wet at this point? 11 12 MR. STORLIS: Yes. Yes. DR. BANERJEE: What's the quality? 13 14 MR. STORLIS: Without having the curves 15 and the diagram in front of me, I can't speak to 16 that, that specific quality. 17 MR. KAMMERDINER: Probably some in the 90s. 18 19 MEMBER WALLIS: Pretty high. 20 MR. TESTA: This is Mike Testa. 21 We have a heat balance diagram, maybe 22 that would help. 23 DR. BANERJEE: Does it show quality at 24 various points, extraction points? 25 MEMBER SIEBER: That chart would work.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	DR. BANERJEE: I can't do it in my head.
2	MEMBER WALLIS: And the problem is the
3	wetness, presumably.
4	DR. BANERJEE: Yes, the wetness.
5	MEMBER WALLIS: But it's a few percent.
6	It's not a humongous amount or is it designed to
7	extract in a way that it separates the wall, and it
8	would be wetter, wouldn't it?
9	MR. GRABSKI: Actually the steam quality
10	is fairly low.
11	MEMBER WALLIS: That's in the turbine.
12	But when you extract, don't you sort of have
13	something that's centrifugally separates or anything
14	like that?
15	MR. GRABSKI: We have steam traps and
16	orifices to pull off the moisture.
17	MEMBER WALLIS: It's an oxidate or
18	whatever it is that comes out, ends up in some
19	condensate where does it go?
20	MR. GRABSKI: It varies with the system
21	that might be wearing. If you're feedwater's
22	wearing, you're going to get it in the steam
23	generators on secondary side. A lot of the heater
24	drains go to a receiver tank.
25	MEMBER WALLIS: The crude appears in the

(202) 234-4433

	30
1	steam generator. Where does the stuff that's worn
2	away from the pipe?
3	MR. GRABSKI: Again, depending on what
4	system it's in. The heat drains, there's a heat
5	drain receiver tank that it could filter out at. We
6	do have do you have something?
7	MR. HANLEY: Yes. Norm Hanley from
8	Stone & Webster.
9	All the secondary side condensate and
10	extraction steam heater drains all recovered. Some
11	of it cascades back to the condenser, some of it's
12	pumped forward to the feed pump suction. So it is
13	all recovered.
14	MEMBER WALLIS: Isn't a lot of it
15	dissolved and then it appears somewhere else in an
16	MEMBER SIEBER: Heater drain and steam
17	generator.
18	MEMBER WALLIS: In these steam
19	generator?
20	MEMBER SIEBER: Yes. There is a blow
21	down line on the steam generator.
22	MR. HANLEY: Right. There's a blow down
23	in the steam generator. They also sample the
24	secondary side.
25	MEMBER MAYNARD: Well, do you have
1	1

(202) 234-4433

	31
1	condensate polishers? Do you run it through
2	MEMBER SIEBER: Only on Unit 2.
3	MEMBER MAYNARD: Only on Unit 2.
4	CHAIRMAN DENNING: Can you comment on
5	the accuracy of CHECWORKS? I mean, obviously, it's
6	not the four significant figures that's in that
7	table.
8	MR. GRABSKI: Basically the models will
9	improve with the number of examinations you do on
10	the system. It correlates with the data you have.
11	So without any data, I would take it as just a
12	ranking. And that's what we use it for, as a
13	ranking. But actually in our extraction steam which
14	we examine the heck out of, they actually correlate
15	pretty well once you get enough data in there.
16	MEMBER MAYNARD: I take it you also use
17	industry experience what's found at other places
18	MR. GRABSKI: Oh, absolutely. Our
19	examinations are the backbone. But certainly ops
20	experience, trending of data at our plants and then
21	that's all factored in.
22	DR. BANERJEE: Is there any increased
23	erosion due to the wet steam, the velocities being
24	somewhat higher or
25	MR. GRABSKI: Yes. That's in the
1	1

(202) 234-4433

	32
1	CHECWORKS algorithm higher velocity results in a
2	higher wear rate.
3	DR. BANERJEE: Due to erosion or is it
4	some erosion/corrosion?
5	MEMBER WALLIS: I suspect it includes
6	both erosion
7	MR. GRABSKI: The FAC takes in the both.
8	That's the mechanism.
9	DR. BANERJEE: But does it also depend
10	does this depend on the wetness as well?
11	MR. GRABSKI: Absolutely. That's a
12	factor in the algorithm.
13	DR. BANERJEE: You feed this stuff into
14	CHECWORKS and out comes these numbers?
15	MR. GRABSKI: Yes.
16	DR. BANERJEE: Hopefully.
17	MR. GRABSKI: Hopefully, yes.
18	DR. BANERJEE: Yes. Who developed this
19	thing?
20	MR. GRABSKI: EPRI developed CHECWORKS.
21	And it's the industry
22	DR. BANERJEE: Probably validated
23	against data?
24	MR. GRABSKI: They call it an empirical
25	study
l	I Contraction of the second

	33
1	DR. BANERJEE: I see.
2	MR. GRABSKI: based on lab and actual
3	events in the industry.
4	MEMBER KRESS: There's sort of a
5	Bayesian update. You go in and inspect and you
6	compare the inspection findings, and then you adjust
7	CHECWORKS to better agree with your findings?
8	MEMBER WALLIS: Learns about your
9	MEMBER SIEBER: Putting your own data
10	MR. GRABSKI: Exactly. As I said, they
11	call it a pass one without any data. Once you get
12	enough data in there, it correlates itself. And you
13	have a line correlation factor, it's called.
14	DR. BANERJEE: So the predicative
15	capability is always in question of these types of
16	things? It's only as good as your database?
17	MEMBER SIEBER: By the time you are
18	ready to decommission the plant, it will be very
19	DR. BANERJEE: Yes, it'll be excellent
20	by them.
21	MEMBER KRESS: Or by the time you're
22	ready for a license extension.
23	DR. BANERJEE: Extrapolation is always
24	dangers in these sorts of things. There's no theory
25	or model there, right?

(202) 234-4433

	34
1	MR. GRABSKI: Well though EPRI calls it
2	a model and it certainly does take into
3	consideration velocity, temperature
4	MEMBER MAYNARD: And geometry, right?
5	MR. GRABSKI: And geometry. Exactly.
6	But again, it's as good as the data you're putting
7	into it at the point.
8	DR. BANERJEE: Let's imagine that we
9	take this today with the data you've got and try to
10	predict what will happen two years from now. Has it
11	ever been tested in this mode to show whether it
12	gives a reasonable prediction?
13	MR. GRABSKI: Yes, I think it has.
14	DR. BANERJEE: It does?
15	MR. GRABSKI: Yes, it does. It
16	certainly. Yes. It'll give you
17	MEMBER MAYNARD: Isn't the main purpose
18	of it, though, to predict areas where you may have
19	high wear rates and that you inspect those and that
20	you put those in your trending program? And you're
21	actually using more actual trend data than you are a
22	prediction from the program as to when that line
23	might break?
24	MR. GRABSKI: Exactly. It gives you the
25	places to look first. The highest susceptible line.
	I contraction of the second

(202) 234-4433

Í	35
1	And I think it does a very good job of that. But
2	once you get into a qualitative or quantitative
3	measure, that's when you need to get some data in
4	there to verify what the model is telling you.
5	You may be right on the money, but again
6	once you get more and more data in there, you
7	correlate the model and then it becomes a very good
8	predictive tool.
9	MEMBER MAYNARD: Yes. Most of the plants
10	do a lot of measuring of a large number of areas
11	where they measure and periodically do that so they
12	can see what's trending.
13	MR. GRABSKI: Exactly.
14	MEMBER MAYNARD: It's not just using a
15	computer program to
16	MR. GRABSKI: No. Your data proves it,
17	but it's a great start because it's going to tell
18	you that this T is more susceptible than this T,
19	elbow to elbow.
20	MEMBER MAYNARD: But again that's the
21	way the nuclear safety issue other than if it could
22	result in an unnecessary plant transient or it may
23	be a personnel safety, but from a nuclear safety
24	accident it's not.
25	MR. GRABSKI: That's true.
	I

(202) 234-4433
	36
1	MEMBER SIEBER: And if you take a big
2	fitting like an elbow or a T, a single measurement
3	is inadequate. You have to basically put a grid on
4	that fitting.
5	MR. GRABSKI: Right.
6	MEMBER SIEBER: Take a lot of
7	measurements of different positions. Because the
8	wear will be local to someplace where there is an
9	eddy in the flow stream.
10	MR. GRABSKI: That's correct.
11	DR. BANERJEE: Have you seen any erosion
12	in the high pressure stages?
13	MR. GRABSKI: Excuse me?
14	DR. BANERJEE: Did you see any erosion
15	at all in the high pressure stages?
16	MEMBER SIEBER: Main feed?
17	DR. BANERJEE: Yes.
18	MR. GRABSKI: Some feedwater, we have
19	very low wear rates there. In our main steam coming
20	off the steam generators, we haven't seen any wear
21	DR. BANERJEE: What about the turbine
22	plates, any erosion there, high pressure plates?
23	MR. GRABSKI: I don't know. That's not
24	my expertise on the turbine.
25	MEMBER SIEBER: But generally speaking

	37
1	DR. BANERJEE: You should have any.
2	MEMBER SIEBER: what erosion you see,
3	you see at the very the exhaust end of the
4	turbine. And if your moisture separators and
5	everything are working properly, you don't see
6	hardly anything at all.
7	DR. BANERJEE: Not in nuclear plants,
8	but some fossil plants you do because of the oxide
9	MEMBER SIEBER: Well, generally the
10	fossil plants are better than the nukes because they
11	operate at a higher temperature.
12	MR. GRABSKI: That's true.
13	DR. BANERJEE: Yes. But the oxide flakes
14	come and hit the high pressure stages sometimes,
15	depending on how you cycle the plant. But you don't
16	see any so the higher velocity doesn't give you a
17	problem?
18	MR. GRABSKI: Again, I'm not a turbine
19	guy.
20	DR. BANERJEE: Right.
21	MEMBER WALLIS: It's not a nuclear
22	problem. It's not a nuclear safety problem. Just
23	expensive if you have to fix the turbine.
24	CHAIRMAN DENNING: I think we're
25	completed them, yes?
	I Contraction of the second

	38
1	MR. GRABSKI: Yes, unless you have any
2	questions.
3	CHAIRMAN DENNING: I think we're good.
4	Thank you.
5	MR. GRABSKI: Thanks.
6	CHAIRMAN DENNING: And I think NRR now
7	is going to present in the same basic area.
8	MEMBER WALLIS: They're going to defend
9	CHECWORKS, are they?
10	CHAIRMAN DENNING: You can go ahead.
11	MR. SCARBROUGH: Thank you.
12	Good morning. I'm Tom Scarbrough in the
13	Division of Component Integrity of NRR. And with me
14	today is the Branch Chief in Division Engineering,
15	Kamal Manoly and Dr. John Wu.
16	We're going to talk about the
17	engineering mechanics aspects of the review. In
18	terms of the components evaluated, they included the
19	reactor vessel, the internals, the nozzles,
20	supports, control rod drive mechanisms, the steam
21	generator, reactor coolant pumps, the pressurizer
22	and the supports, nuclear steam supply system and
23	balance of plant piping systems and supports and
24	safety related pumps and valves. Motor operated
25	valves, air operated valves and safety relief

(202) 234-4433

	39
1	valves.
2	The scope of the review included the
3	impact of the EPU conditions due to changes in
4	system pressure, temperature and flow rate.
5	The review of the licensee's evaluations
6	of EPU conditions including the analytical
7	methodology, loads, flow-induced vibration,
8	calculated stressed and cumulative fatigue usage
9	factors, acceptance criteria, ASME codes and
10	addenda, functionality impact of EPU on Generic
11	Letter 89-10 for motor operated valves and Generic
12	Letter 95-07 for pressure locking and thermal
13	binding of power operated valves.
14	The license's EPU evaluation does
15	incorporate an improved leak before break criterion
16	that allows elimination of postulated primary loop
17	pipe breaks in the original design basis analysis.
18	And after elimination of the primary coolant loop
19	breaks by the application of the leak before break
20	criterion, the existing design bases analysis for
21	NSSS piping and components are bounded for the EPU
22	evaluation considering postulated smaller branch
23	line pipe breaks.
24	The specific areas where the Staff
25	requested additional information included the main

(202) 234-4433

steamline and feedwater line flow-induced vibration 2 due to increased flow rate, quantitative analysis 3 and results for the Beaver Valley Unit 1 replacement 4 steam generator, calculation of cumulative usage 5 factors for the vessel flange closure stubs, considering 10,400 cycles as opposed to the 18,300 6 cycles of the design bases.

With respect to flow-induced vibration 8 in particular, the main steamline and feedwater 9 piping are instrumented at critical locations to 10 monitor vibration levels at current rate of power 11 12 and during power ascension up to full authorized EPU The vibration monitoring and the power level. 13 14 collective data will be evaluated according to ASME 15 Standard and Guide 2003 Part 3.

The flow-induced vibration effect on the 16 17 steam separators and the steam generators is expected to increase somewhat for EPU conditions. 18 19 Based on the licensee's response to the request for 20 additional information to the request for additional 21 information, the potential for flow-induced 22 vibration of the steam separator is minimized due to 23 its high stiffness resulting in a high natural 24 frequency combined with a low velocity. And we 25 heard about it, it's about 4 feet per second or so

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

7

(202) 234-4433

40

	41
1	of passing flow. And past inspection performed for
2	steam generator, moisture separators on operating
3	PWR, pressurized water reactor plants have found no
4	indications due to flow-induced vibration fatigue.
5	The flow-induced vibration on the U-bend
6	tubing and the steam generators is within allowable
7	limits. In other words, the fluid-elastic
8	instability ratio was maintained less than the limit
9	of 1.0. And peak stresses are less than the material
10	endurance limit.
11	There were some pump and valve
12	modifications to accommodate the EPU operations.
13	These are relatively minor considering the 7 percent
14	EPU power uprate. The charging and safety injection
15	pumps have been modified to improve their high head
16	performance and flow rate.
17	The tolerance settings for the main
18	steam and safety valves and reactor coolant
19	pressurizer safety valves have been adjusted.
20	New trim was installed in the feedwater
21	regulating valves in Beaver Valley Unit 1 and those
22	valves were replaced at Beaver Valley Unit 2.
23	Fast acting main feedwater isolation
24	valves were installed in Beaver Valley Unit 1
25	similar to those in Unit 2.
	1

(202) 234-4433

	42
1	And based on the Staff's review our
2	conclusion is that the calculated stresses and
3	accumulate usage factors in the NSSS and balance of
4	plant piping and components are bounded by the
5	original design basis analysis with the application
6	of the leak before break technology, such that the
7	postulated primary loop pipe breaks are eliminated.
8	The potential for flow-induced vibration
9	is not increased for steam separators and the steam
10	generator tubes at EPU conditions.
11	The main steamline and feedwater line
12	piping is monitoring to remain within the allowable
13	limits in accordance with ASME OM3 code guidance.
14	The NRC Staff reviewed the licensee's
15	assessments related to functional performance of
16	safety related valves and pumps at Beaver Valley for
17	EPI conditions and based on that review the licensee
18	has adequately addressed the EPU effects on safety
19	related pumps and valves. And as a result, the
20	Staff concludes that the licensee has demonstrated
21	that the safety related valves and pumps will
22	continue to meet their NRC regulatory requirements
23	during EPU operation at Beaver Valley.
24	So we'd be happy to answer any questions
25	you might have.
	I contract of the second se

(202) 234-4433

	43
1	CHAIRMAN DENNING: I think this is
2	pretty clean. Any questions? Okay. Thank you.
3	MR. SCARBROUGH: Thank you.
4	MEMBER WALLIS: Are we gaining time
5	here?
6	CHAIRMAN DENNING: Oh, yes, we're
7	gaining time.
8	We're going to go ahead with the next
9	presentation.
10	An NRC presentation. By Gregory Makar.
11	MR. MAKER: Good morning. I'm Greg
12	Makar. I am in the Division of Component Integrity.
13	And my branch works on issues of steam generator
14	integrity and other chemical engineering topics.
15	And this morning the Staff reviews in five areas:
16	Low accelerate corrosion, steam generator tube
17	integrity, the steam generator blowdown system,
18	chemical and volume control system and finally
19	coatings.
20	Our review of flow accelerated corrosion
21	begins with determining of the licensee has
22	evaluated the changes due to the extended power
23	uprate on the parameters like temperature, velocity,
24	moisture content that are the keys in controlling
25	flow accelerated corrosion rates. They did this and
	I

(202) 234-4433

	44
1	based on the known effects of this parameters, you
2	see as Mr. Grabski explained, cases where the
3	corrosion rates would be expected to increase and
4	some where it would be expected to decrease.
5	MEMBER WALLIS: The boron content has no
б	effect on any of this?
7	MR. MAKER: Excuse me, boron
8	MEMBER WALLIS: Boron doesn't seem to be
9	a parameter that comes into this at all?
10	MR. MAKER: No.
11	MEMBER WALLIS: This is simply because
12	it's ignored or because it's proven to have no
13	effect?
14	MR. MAKER: Well, if it changed the pH,
15	say, then if the pH decreased because of it. But as
16	I understand it, the pH does not decrease
17	significantly enough to change the corrosion rate in
18	this case.
19	So to satisfy that they were scoping
20	things in properly, there's also the question of
21	scoping things out because you want to keep your
22	resources focused where they're needed. And there
23	are criteria. And all of these cases we're going
24	primarily by the EPRI guidelines on flow accelerate
25	corrosion programs. That scoping out components
l	

(202) 234-4433

	45
1	based on things like temperature below 200 degree
2	Fahrenheit, the chromium content being 1 and a
3	quarter percent or higher. And this they're doing
4	according to the EPRI guidelines.
5	DR. BANERJEE: Does NRC have any
6	programs which independently check EPRI sort of
7	guidelines and things?
8	MR. MAKER: No. No, computer models or
9	programs.
10	DR. BANERJEE: Even the research
11	programs or whatever?
12	MR. MAKER: No.
13	DR. BANERJEE: How do you know that
14	do you audit it in some way other than just take
15	their data or what?
16	MR. MAKER: The way that we evaluate
17	this is by the NRC in the past was involved in
18	developing a response flow accelerate corrosion and
19	understanding the parameters that are the key
20	influences on it. And I think at that time we did
21	have research programs to determine those. I think
22	we were in the lead at that time and helped lead
23	industry toward a resolution and a development of
24	the computer based programs. And followed and
25	participated in research efforts to understand all
	I

(202) 234-4433

	46
1	the parameters and their influence.
2	DR. BANERJEE: So when did that effort
3	terminate within RES or wherever in NRC it was?
4	MR. MAKER: I'm sorry. I don't know the
5	answer to that.
6	DR. BANERJEE: Was it a long time ago or
7	recently?
8	MR. MAKER: Well, several I don't
9	know. And currently we sent for example, we send
10	people to training to understand how CHECWORKS is
11	used.
12	DR. BANERJEE: That's an EPRI training?
13	MR. MAKER: Yes. But the effect of
14	these parameters on low accelerated corrosion is
15	fairly well understood now. And I think the most
16	value on making sure the licensees are following
17	these programs and using skipping ahead a little
18	bit. But the computer models for plants are one
19	factor. But really the key is actually inspecting
20	systems at repeatable locations and developing data
21	so that you can then trend and determine corrosion
22	rates. That allows you to make decisions about
23	future inspections and replacement repairs. And
24	also it improves the quality, the predictive ability
25	of the model.
	1

(202) 234-4433

	47
1	DR. BANERJEE: Does this apply mainly to
2	components that can be inspected then or there
3	components which inspection is difficult?
4	MR. MAKER: Yes. It should apply to
5	all. There are cases where it's difficult to inspect
б	components. And in that case what the licensees may
7	do is go to a secondary inspection or a testing
8	technique such a radiography, which isn't as good as
9	ultrasonic testing. Or they may have another
10	similar system behaves, is nearby, say, same type
11	environment which behaves in the same way. And
12	they'll use that
13	DR. BANERJEE: So you're talking mainly
14	of the secondary side rather than the primary side?
15	MR. MAKER: Yes. Yes.
16	DR. BANERJEE: None of this concerns the
17	primary side then? Okay.
18	MEMBER WALLIS: Because of the materials
19	that are used there, is that it, really?
20	MR. MAKER: Well, yes. Once you get to
21	1 and a quarter.
22	MEMBER SIEBER: Single phase flow.
23	MR. MAKER: Yes. And you need moisture
24	fort his to occur.
25	MEMBER WALLIS: Moisture isn't
	1

(202) 234-4433

	48
1	necessary. You've got this in the feedwater line.
2	MR. MAKER: Sorry. Yes.
3	MEMBER WALLIS: I mean
4	MR. MAKER: And there's also a
5	temperature
6	MEMBER WALLIS: Okay. I guess
7	MR. MAKER: Well, some things like
8	velocity, as you increase velocity you would expect
9	corrosion rate to increase. There are other effects
10	like temperature where there's a peak around 300
11	degrees fahrenheit and then beyond that then it
12	start decreasing.
13	MEMBER WALLIS: Well, CHECWORKS is well
14	established, and it's updated from time-to-time. So
15	throughout industry, isn't it? This is why the NRC
16	has stopped
17	DR. BANERJEE: Also I suppose from a
18	safety point of view this is not incredibly
19	significant.
20	MEMBER WALLIS: Right.
21	MEMBER SIEBER: Not safety related.
22	MEMBER MAYNARD: The NRC does perform
23	periodic inspections at the site on the flow
24	accelerated corrosion program.
25	MEMBER SIEBER: Sure.
1	

	49
1	MEMBER MAYNARD: So it's not something
2	that's just left out.
3	MR. MAKER: Plant audits, yes.
4	MEMBER MAYNARD: Yes.
5	MR. MAKER: So following on that idea,
6	the importance of the inspection, this is really
7	their a key to their program is ultrasonic
8	measurements at repeatable locations to develop
9	corrosion trends. And therefore, the combination of
10	the required thickness of the components, the
11	measured thickness and the corrosion rates are the
12	key to future inspections and replacement repair
13	decisions. And the CHECWORKS computer program is
14	one tool in managing this program.
15	Next slide, please.
16	So they are updating the models. I've
17	done that for the EPU. It does predict some
18	increases in corrosion rates in some cases,
19	decreases in others.
20	In cases where there's a large increase,
21	it happened to be a system with a very low corrosion
22	rate to start with. And that was an example Mr.
23	Grabski showed.
24	So considering all these things, we
25	concluded that their program will continue to manage
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	50
1	the flow accelerated corrosion effectively after the
2	extended power uprate.
3	Next please.
4	Address steam generator tube inservice
5	inspection. Our guidance here is some we have
6	standard review plans on materials and also for
7	inspection we're focused mainly on the NEI 97-06,
8	which also refers to the more detailed EPRI steam
9	generator program guidelines. And as you've heard,
10	the steam generators in Unit 1 were replaced.
11	There are two key materials upgrades;
12	the thermally treated Alloy 690 tubes and also the
13	stainless steal tube support plates, which these two
14	things have a big effect on types of degradation
15	that are observed and the rates of degradation,
16	initiation and propagation. There are also some
17	additional design factors like the shape of the
18	holes in the tube support plates, the type of the
19	antivibration bar design. And all of these are major
20	improvements in steam generators.
21	Now the temperature, and the temperature
22	is one of the key parameters in causing degradation.
23	That will remain within the range seen at other
24	plants that have 690 tubes.
25	There is a possibility, as you

(202) 234-4433

	51
1	discussed, in tube vibration and wear. And there's
2	been an evaluation that the likelihood for wear is
3	low. But for our purposes we're looking at the fact
4	that if there is wear, that is captured in the tube
5	integrity program. That the inspections will see
6	that they're required to evaluate that and monitor
7	that in their operational assessments and their
8	MEMBER MAYNARD: Has Beaver Valley
9	either made their tech spec changes or committed to
10	make the tech spec changes for the Generic Letter
11	06-01?
12	MR. MAKER: They have an application in
13	house now that being evaluated.
14	MR. KAMMERDINER: If I could add
15	something. This is Greg Kammerdiner from
16	FirstEnergy.
17	We have submitted the license amendment
18	request to adopt TSTF449 for both units.
19	MR. MAKER: So we're concluded for Unit
20	1 that their program will continue to manage
21	degradation at uprate conditions.
22	Next please.
23	For Unit 2 they have the original steam
24	generators with the milled annealed Alloy 600 tubing
25	and both carbon steel and Alloy 600 tube support
1	

(202) 234-4433

1 structures. The existing degradation mechanisms 2 include several forms or several modes of stress corrosion cracking and also some small amount of 3 4 antivibration bar where the cracking initiation and 5 growth rates could increase based on the small temperature increase and also increases in flow and 6 7 potentially sludge accumulation at EPU conditions. However, these changes are relatively small and 8 still will remain within the experience we have at 9 other operating plants. And we don't see this as a 10 -- it will not degrade in anyway their ability to 11 12 monitor, to detect and monitor degradation at uprate conditions. 13 14 And we also note that these steam 15 generators have a couple of design features, improvements over a lot of the Alloy 600 plants, 16 such as the heat treatment to stress relieve small 17 radius U-bends and also shop pinning in the portion 18 19 of the tube within the tube sheet. And these are 20 things which are shown to retard the initiation of 21 stress corrosion cracking. 22 The AVB wear rates for Unit 2 are 23 measurable but low. But as with Unit 1, again, there are inspections performed to measure this and 24 25 evaluate it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

52

We don't expect with these small changes and conditions any new forms of degradation to emerge as a result of the uprate. But, again, we're satisfied that their program will find them and will continue to be consistent with the guidelines at uprate conditions.

7 MEMBER SIEBER: I think one of the big factors is the chemistry control of feedwater. 8 And Beaver 2 should do much better than Beaver 1 because 9 it has a polisher, it has 1 years less life even 10 though the capacity factor is better. And generally 11 12 there's been good careful control of the chemistry. So I would expect to see lower rates of degradation 13 14 than Unit 1 experienced through its lifetime. 15 MR. MAKER: Thank you. Yes. The 16 importance of water in chemistry is really 17 important.

18MEMBER SIEBER: That's the key factor in19my opinion

MR. MAKER: Next, please.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

The steam generator blowdown system helps steam generator tube integrity by controlling the quality of the secondary coolant. The blowdown flow rates are not expected to increase as a result of the uprate because they're determined by some

(202) 234-4433

1

2

3

4

5

6

20

	54
1	parameters that are not going to be effected. There
2	is a repositioning of flow control valves due to
3	decreased pressure. This will reduce the maximum
4	achievable flow rate, but not be require. It will
5	not reduce it below what's required.
6	So we conclude that this will not have
7	an effect on the ability to remove impurities from
8	the blowdown. And we also note here this is a
9	system with potential for flow accelerated corrosion
10	and it is in their FAC program.
11	Next please.
12	Chemical and volume control system.
13	Several functions related to the water inventory and
14	quality for the reactor coolant.
15	The heat exchange temperatures, heat
16	exchangers are one of the key components. There are
17	some slight changes in temperature increases and
18	decreases, but they stay well within the well
19	below the design values. And the heat exchanger
20	pressures are not changing as a result of EPU.
21	Boration requirements continue to be
22	met. And letdown flow rates, charging rates and
23	nitrogen-16 delay times are not being affected
24	significantly by this.
25	So, again, according to our Standard
	1

(202) 234-4433

	55
1	Review Plan we concluded that this will be
2	acceptable at EPU conditions.
3	Finally on coatings. Unit 1 coatings
4	were specified according to the ANSI standard.
5	We're evaluating compared to we have a Reg. Guide
6	1.54, there are ANSI standards that are called out
7	in that. And we have a Standard Review Plan 6.1.2 on
8	coatings.
9	Unit 1 coatings were specified according
10	to ANSI N101.2. When Unit 2 coatings were
11	specified, we now have the Reg. Guide which also
12	referred to 101.2 as well as the newer ANSI standard
13	on the quality of coatings.
14	And the licensee provided us with their
15	uprate environmental parameters compared to the
16	qualification test values for normal and design
17	bases accidents showing that their bounded by those
18	qualification values. And so we expect no effect on
19	the adhesion or the degradation of those.
20	CHAIRMAN DENNING: I mean if there were
21	any issues here in the painting areas, I don't think
22	they're EPU issues. But I'm just curious, did you
23	talk to management of these units about what the
24	status is of their paints, whether there is
25	observable flaking occurring in areas and potential

(202) 234-4433

	56
1	problems there?
2	MR. MAKER: I didn't as part of the EPU.
3	And I talked to our GSI-191 team members who are
4	evaluating their coatings. Well, the debris issue
5	which includes coatings. But they were not able to
6	tell me the status of coatings yet.
7	CHAIRMAN DENNING: Okay.
8	MEMBER WALLIS: Well, it says coating
9	failures are identified by inspection. I'd be
10	curious to know have there been coating failures.
11	MR. MANOLERAS: Yes. This is Mark
12	Manoleras, Beaver Valley, FENOC.
13	I own the coatings program and the
14	coating engineer works for me. Our containment
15	coatings actually have been in very good shape. If
16	we identify a deficiency, it's put in our corrective
17	action system. It's evaluated by that coating
18	system engineer and then it is repaired.
19	We've had outside people come in and
20	take a look at our coatings in response to the GSI-
21	191 to make sure that what we believe is what the
22	outside experts also believe. And we've gotten very
23	good feedback on that, on our coatings, our
24	containment coatings.
25	MEMBER WALLIS: Have you actually had to

(202) 234-4433

	57
1	replace some coatings?
2	MR. MANOLERAS: We've had to make very
3	minor repairs to some coatings in containment.
4	MEMBER SIEBER: Those are typically
5	scrapes
6	MR. MANOLERAS: That's correct.
7	MEMBER SIEBER: as opposed to force
8	or lack of somebody runs a cart into the wall,
9	you can scrape.
10	MR. MANOLERAS: That's correct.
11	MEMBER SIEBER: And you have to repair
12	that.
13	MEMBER WALLIS: So it's that kind of
14	thing rather blistering or
15	MEMBER WALLIS: Right.
16	MR. MANOLERAS: That is correct.
17	MR. MAKER: Okay. That concludes my
18	presentation unless you have any further questions
19	on these five topics.
20	CHAIRMAN DENNING: I think we don't.
21	And I think Mr. Stubbs could now continue with the
22	next presentation.
23	MR. MAKER: Thank you.
24	MR. STUBBS: Good morning. My name is
25	Angelo Stubbs and I'll be discussing the review of
l	I contract of the second se

(202) 234-4433

	58
1	the balance-of-plant systems.
2	Next slide.
3	Okay. In conducting our review we
4	utilized Review Standard RS-001, which is a Review
5	Standard for extended power uprates. And in general
6	our review scope covered the balance-of-plant
7	mechanical systems contained in Matrix 5 of the
8	standard.
9	Scope of the BOP systems included over
10	20 systems, 6 major areas of review, the first of
11	which internal hazards for which reviews were
12	performed for the EPU impact on flood protection,
13	equipment of floor drains, the circulating water
14	system, missile protection, the turbine generator
15	and pipe failures.
16	The second area, fission product control
17	included reviews on the fission product controlling
18	systems in the structure, the main condenser
19	evacuation system and the turbine gland seal system.
20	For the next area, component cooling and
21	decay heat removal we reviewed the spent fuel pool
22	cooling and clean up system, service water system,
23	react water cooling system, ultimate heat sink and
24	auxiliary feedwater system.
25	Next slide.

(202) 234-4433

	59
1	The next area of review balance-of-plant
2	included review of the main steam, main condenser,
3	turbine bypass and consondate and feedwater system.
4	And the final two areas was the waste
5	management system, which included gaseous liquid and
6	solid radwaste and then the emergency diesel fuel
7	oil storage and light loads were also reviewed.
8	In addition to our review of the systems
9	I just mentioned, the staff also reviewed test
10	considerations for certain BOP systems.
11	Next slide.
12	The Staff focused under review of
13	auxiliary systems for which increased heat loads
14	associated with the uprated plant might pose an
15	increased challenge to the systems. The systems
16	included the spent fuel pool coolings, the service
17	water and ultimate heat sinks, auxiliary feedwater
18	system and condensate and feedwater system.
19	In regards to the spent fuel pool
20	cooling system, the Staff determined that the
21	licensing bases evaluation, that is the current
22	licensing bases evaluation which was performed at
23	the power level of 2918 megawatts will be bounding
24	for the EPU plant. But service water system and
25	increasing the heat loads was not to have a

(202) 234-4433

Í	60
1	significant increase in fact on the system. And
2	they stable within the design temperatures of the
3	system.
4	The Ohio River is the alternate heat
5	sink for both of these plants and this capacity far
6	exceeds the shutdown cooling and accident heat load
7	requirements for the Beaver Valley units. And power
8	uprate doesn't effect the temperature in that water
9	for this.
10	The auxiliary heat water system is a
11	system which required increased flow as a result of
12	EPU at both units. In addition, Unit 1 has undergone
13	a modification to add limiting flow venturies. And
14	I'll discuss the EPU impact on these systems a
15	little later when I address modifications that
16	effected the BOP review.
17	And the condensate and feedwater system,
18	there was minor modifications of the regulating
19	valves. But the licensee evaluation showed that the
20	condensate pumps had sufficient margin to operate at
21	the EPU power and that sufficient flow could be
22	provided to the system.
23	In addition to that the parameters of
24	flow, pressure, temperature parameters will be
25	monitored during the startup so that will help
	I Contraction of the second

(202) 234-4433

	61
1	verify the performance also.
2	Next slide.
3	The modification. The modifications made
4	to the balance-of-plant. These are I'd like to talk
5	a little bit about. Take a few minutes to talk
6	about.
7	The first was modifications to the high
8	pressure turbine and the second is a modification to
9	auxiliary feedwater system at Beaver Valley 1.
10	Next slide.
11	Okay. But in the case of the high
12	pressure turbine in both units, the high pressure
13	turbine is being replaced with an all reaction
14	turbine. The Unit 1 modification has already been
15	completed. They have calculated the maximum
16	overspeed to be 118, which is below the acceptance
17	criteria of 120.
18	The Unit 2 modification has not been
19	completed yet and will be completed prior to
20	operation at EPU. But at this time they have done
21	the calculations for overspeed the licensee has
22	committed to perform the appropriate overspeed
23	analysis to ensure overspeed protection that's
24	acceptable. Also as part of their operating
25	surveillance tests verifies that the proper

(202) 234-4433

	62
1	operation of the turbine overspeed trip protection
2	system and that and they do this by demonstrating
3	that the turbine works at or below the 111 percent
4	at that.
5	MR. TESTA: Excuse me. This is Mike
6	Testa.
7	I just wanted to clarify one thing for
8	Unit 2. Now the way we're going to we're going
9	to do a staged power increase. The existing turbine
10	has additional capacity to it, around 5 percent. So
11	we're going to elect to increase the power somewhat
12	the existing turbine. But prior to going to the full
13	extended uprate, we will replace the turbine with
14	the reaction turbine.
15	MR. STUBBS: Okay. The auxiliary
16	feedwater system, for this system in Unit 1 they're
17	adding cavitating venturies. They're installing that
18	as a modification to Unit 1.
19	At EPU the auxiliary feedwater pumps,
20	which are now being credited for the feedwater line
21	break and the loss of normal feedwater events, which
22	is something that the current plant doesn't do.
23	Unit 2 licensing bases already credits
24	these to AFW pumps. So this isn't a change to Unit
25	2. It's only a change to Unit 1. We did look at

(202) 234-4433

	63
1	that. And the total required flow for the auxiliary
2	feedwater system will be able to be met by any of
3	the two pumps available out of the three that
4	services that system. And there will be sufficient
5	capacity for it to perform this intended function.
6	And the technical specifications, as I
7	just mentioned, requires three alternate auxiliary
8	feed pumps to be operable. And so this allows us to
9	have a single failure and still require it to for
10	the two events, the loss of normal feedwater and
11	heat feedwater line break.
12	Next slide.
13	Okay. In summary, Staff finds that the
14	proposed EPU to be acceptable with respect to the
15	balance-of-plant areas based on:
16	The evaluations that was performed that
17	we reviewed;
18	The commitments made by the licensee,
19	and;
20	The tests that they will be performing.
21	So, is there any questions.
22	CHAIRMAN DENNING: Are there any
23	questions? No.
24	Thank you very much.
25	MR. STUBBS: Okay. Thank you.
l	I

	64
1	CHAIRMAN DENNING: Now what we'll do is
2	we'll take a 15 minute break so we can prepare
3	ourselves for the risk assessment presentations. And
4	we'll be back by the clock on the wall at 10:00.
5	(Whereupon, at 9:49 a.m. off the record
6	until 10:04 a.m.)
7	CHAIRMAN DENNING: We'll now come back
8	into session. And our first presentation will be on
9	risk analysis and its impact.
10	MR. KELLER: Good morning. My name is
11	Colin Keller. I'm a supervisor of the PRA Group at
12	Beaver Valley.
13	With me here today also is Bill Etzel to
14	help answer any questions that the Subcommittee may
15	have.
16	A little bit about myself. I've been in
17	nuclear power for 24 years now at Beaver Valley,
18	starting at the Shippingport Atomic Power Station
19	and working through other engineering assignments
20	through Unit 2 startup, equipment qualification and
21	the last ten years I've been involved in PRA.
22	I'm here today to discuss the Beaver Valley
23	EPU PRA models, one for each unit.
24	Next side.
25	And I'd like to talk about the elements

	65
1	of the Beaver Valley model that were reviewed as
2	part for this uprate. And also to talk about the
3	resulting changes in core damage from these reviews.
4	Next slide.
5	The first element we reviewed was our
б	initiating events. We found that from the extended
7	power uprate there were no new initiators identified
8	and also there were no significant increases in our
9	initiating event frequencies as a result of the
10	power uprate.
11	We also did a review of our success
12	criteria. We used the MAAP code to perform these
13	analyses to establish our success criteria. Also
14	included setpoint changes in there due to
15	containment conversion and new pump curves that were
16	put in.
17	We found that new accident sequences
18	were identified as a result of the power uprate.
19	We went on to review our component and
20	system reliability. Comprehensive reviews of the
21	equipment were performed. We found that systems
22	will operate within their allowable limits. There
23	was on the PRA failure rates or results. We will
24	continue to use our existing monitoring programs to
25	account for any additional system wear using

(202) 234-4433

	66
1	Maintenance Rule MSPI, flow accelerate corrosion.
2	We expect that our future model updates
3	will capture any initiating event or equipment
4	failure rate changes.
5	We also performed reviews of our
6	operator response times for our human reliability
7	analysis. The MAAP analysis was used to determine
8	operator action times that are available.
9	Higher decay heat did reduce times for
10	some of these operator actions.
11	The most important impacts were:
12	For operators to start aux feedwater
13	given a solid state system protection has failed and
14	no SI signal present;
15	Operator initiates a bleed and feed,
16	and;
17	And there was a reduction in time to
18	recover from a loss of shutdown cooling due to
19	reduced inventory.
20	This is a listing of Unit 1's five most
21	important operator actions. You see there was a
22	reduction in time for two of those actions from the
23	pre-EPU to the post-EPU. And as a result of that,
24	there was also an increase in their human error
25	probability for both of those actions.
	I

(202) 234-4433

	67
1	The following table
2	CHAIRMAN DENNING: No. Let's stick a
3	little bit with this. You were done with this
4	table, let's spend a little bit more time on the
5	table.
6	MR. KELLER: Certainly.
7	CHAIRMAN DENNING: So the first item and
8	the last time are the only ones where you have a
9	significant change in your human error rates, is
10	that right?
11	MR. KELLER: Yes. And as you can see,
12	those are also the ones that saw a reduction in
13	operator action time.
14	CHAIRMAN DENNING: Now this initiating
15	feed and bleed, there's really a major time,
16	difference in time, isn't there? Between 78 minutes
17	and 29 minutes, is that right?
18	MR. KELLER: That's correct.
19	MR. ETZEL: This is Bill Etzel from
20	FENOC.
21	Yes. In the pre-EPU case that was done
22	with a hand calculation and it was based on steam
23	generator dryout. For post-EPU feed and bleed was
24	based on a 13 percent wide range level in the steam
25	generators.
	1

(202) 234-4433

	68
1	CHAIRMAN DENNING: So the big difference
2	is really a matter of
3	MR. ETZEL: Yes, in setpoint levels.
4	CHAIRMAN DENNING: Okay. Now I'd like
5	to spend just a little bit of time on each of these,
6	if you would. And give us some and that doesn't
7	necessarily have to be a lot. But let's start with
8	the first one here.
9	The first is starting the auxiliary
10	feedwater system when you have no safety injection.
11	And it does look like the 43 minutes certainly seems
12	a substantial period of time to be available for
13	that. You say the confirmation as it was simulator
14	observation. So tabletop and simulator observations.
15	So you've run through this in the simulator at post-
16	EPU conditions?
17	MR. KELLER: That's correct. And George
18	Storlis is here. He will speak to that.
19	MR. STORLIS: Yes, I'll speak. My name
20	is George Storlis. I'm with FENOC.
21	And operationally we train extensively
22	in the simulator environment. Both Unit 1 and Unit
23	2 have separate simulators, have a lot of exposure
24	to simulator time.
25	One of the key elements of any failure
l	I

(202) 234-4433

	69
1	of solid state is manual backup by the operator and
2	the supervisors that stand behind the team as part
3	of the simulation. And 43 minutes is an extensive
4	period of time, as you pointed out, for diagnosing a
5	failure and then ultimately responding to that
6	failure with manual actions. So I'm quite confident
7	that we can make that 43 minutes.
8	CHAIRMAN DENNING: Okay.
9	MR. STORLIS: Probably in the realm of 2
10	minutes or less.
11	CHAIRMAN DENNING: Although you did have
12	a big change in the human error I mean a big
13	change in the human error probability. But I won't
14	get into the details of that. I don't care.
15	Now let's look at, the second one
16	obviously that's not an issue is the 24 hours.
17	The next is this portable diesel driven
18	fans to cool the emergency switchgear rooms.
19	MR. STORLIS: Switchgear ventilation
20	affords a rather large heat sink in that area. The
21	portable ventilation is established to enhance
22	existing cooling. And in the absence of cooling you
23	have a period of time to set up and establish that
24	flow.
25	MEMBER MAYNARD: Is the equipment pre-

(202) 234-4433

	70
1	staged?
2	MR. STORLIS: The equipment is available
3	and staged in a brigade area. And it's available.
4	CHAIRMAN DENNING: What about this, this
5	fourth one? Can you describe that one to me? The
6	reactor coolant pump trip, what's happening here.
7	MR. ETZEL: This is Bill Etzel from
8	FENOC again.
9	Yes. That's just a simple reactor
10	coolant pump trip on CCW, which is our component
11	cooling water. And component cooling water supports
12	thermal barrier cooling along with motor and cooling
13	to the motors of the pumps, the reactor cooling
14	pumps. So therefore we assumed that you have five
15	minutes to trip the pumps with that, otherwise you
16	would get an increased RCP seal LOCA due to high
17	vibration.
18	MR. STORLIS: Again, this is an area
19	where operator training is repeated over and over
20	and over again to identify the absence of cooling
21	water flows to the coolant pumps and the need for
22	the five minute window to shut the pumps off to
23	preserve the pump's condition.
24	MEMBER SIEBER: It seems to me you
25	actually had an event like that at one time. Is that
I	

(202) 234-4433

	71
1	correct? Where you lost seal coolant?
2	MR. STORLIS: We did have an event where
3	in loss of an emergency bus did transcend itself
4	into a loss of thermal barrier cooling. And the
5	pump was managed immediate to that and seal
6	injection was reapplied in the pump.
7	MEMBER SIEBER: You actually didn't trip
8	the pump, you reestablished the flow?
9	MR. STORLIS: Seal injection, that is
10	correct.
11	MEMBER MAYNARD: This is I think a
12	pretty common requirement or guideline for all the
13	Westinghouse
14	MR. STORLIS: That is a true statement,
15	sir.
16	MEMBER MAYNARD: seals.
17	CHAIRMAN DENNING: Let's go to the next
18	table them.
19	MR. KELLER: Okay. The next table is
20	similar and is a listing of the operator actions for
21	the Unit 2.
22	CHAIRMAN DENNING: Okay. Let's see, are
23	there any here that are particularly okay. Well,
24	let's start at the bottom one, the let's see.
25	This is manual trip after the solid state protection
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433
	72
1	system fails to automatically actuate reactor trip.
2	So this is
3	MR. KELLER: Directly from the bench
4	port.
5	MR. STORLIS: Again, this is George
6	Storlis.
7	The operator identifying conditions as
8	displayed on what we call our first op panel. It
9	enables early diagnoses of the need for trip along
10	with a validation with the existing instrumentation.
11	And the operator's license responsibility and legal
12	responsibility to bring that reactor off line on
13	manual action.
14	CHAIRMAN DENNING: Okay. Let's see
15	MEMBER KRESS: Did you use a human error
16	model to get these probabilities?
17	MR. KELLER: Yes. We were using the HRA
18	Calculator?
19	MEMBER KRESS: HRA Calculator. That's
20	the EPRI
21	MR. KELLER: That is correct.
22	MR. ETZEL: We just switched to the HRA
23	Calculator.
24	Bill Etzel, FENOC.
25	When we did this analysis we used the
I	

	73
1	SLIM methodology, success likelihood index
2	methodology.
3	CHAIRMAN DENNING: Let's see
4	MEMBER KRESS: And the confirmation with
5	the simulators tabletop was just to show that you
6	did it within that.
7	MR. KELLER: Ensure that we would be
8	capable of performing those actions with the times
9	that we don't have.
10	CHAIRMAN DENNING: Now why do you say
11	tabletop there and simulator? Isn't this something
12	that you would have verified with the simulator,
13	validated with the simulator.
14	MR. ETZEL: This is Bill Etzel from
15	FENOC again.
16	Yes. We were going through an update on
17	our PRA model at Unit 1. And like Colin said, we
18	were using the HRA Calculator. So we waned to
19	since we were changing methodologies, we wanted to
20	validated all our human actions. So we had simulator
21	runs for the Unit 1 PRA model update. Similarly,
22	when we go through the Unit 2 update sometime later
23	this year, we will also do some simulator
24	benchmarks.
25	MEMBER MAYNARD: But many of these are
ļ	I contraction of the second

	74
1	things that you're doing as part of normal ops
2	training anyway, aren't you?
3	MR. STORLIS: That is correct, sir.
4	MEMBER MAYNARD: This last one in
5	particular, that's one of the first things you do
6	when you have an issue is to check it and there's
7	more than one person doing that, too.
8	MR. STORLIS: And that is absolutely
9	correct. We're practiced on these in the simulator
10	environment repeatedly.
11	MR. SENA: Again, this is Pete Sena.
12	The indications available to the operators at Unit 1
13	to take the actions such as manually tripping the
14	reactor in the event of a first out indication for
15	the need for a trip is virtually identical at Unit
16	2. So the actions are the same, the training is the
17	same and the indications are the same. So you can
18	translate the simulation walkthrough that we've done
19	at Unit 1 into Unit 2 through the tabletop method
20	and be confident that the times are identical.
21	CHAIRMAN DENNING: Yes. It is
22	interesting, though, that you seem to have some
23	significant differences between the two units as to
24	what the risk important operator actions are, or am
25	I misinterpreting the similarities here? Is that

(202) 234-4433

ĺ	75
1	true?
2	MR. KELLER: There are some differences
3	between the units, yes.
4	MEMBER WALLIS: These are all errors of
5	omission where the operator fails to do something?
6	MR. KELLER: That's the probability that
7	we've failed to accomplish that action.
8	MEMBER WALLIS: Do you somehow put in
9	potential errors of commission by misdiagnosing
10	something and doing the wrong thing? Does that
11	appear in your PRA at all.
12	MR. ETZEL: This is Bill Etzel from
13	FENOC.
14	Mostly they are failures of omission in
15	that he does not perform this action as opposed to
16	doing the wrong action and making things worse.
17	MEMBER WALLIS: Are there some items of
18	commission that would be affected in some way by the
19	power uprate in that there will be a little more
20	going on or more likelihood to make a mistake or
21	something like that? I don't know you assess that,
22	but conceivably in could be a context which is more
23	likely to produce an error.
24	MR. ETZEL: Yes. This is Bill Etzel
25	again.
I	

(202) 234-4433

	76
1	That's a possibility and hopefully
2	through the simulator training and just normal time
3	in the control room will help prevent that.
4	MEMBER WALLIS: Fix that up during
5	simulated training. You observe and see if as a
6	result of the EPU there's more tendency to make some
7	mistake, and then you correct that in some way? Is
8	that the way you find it? You do it by training in
9	the simulator?
10	MR. ETZEL: Yes.
11	MR. STORLIS: And this is George
12	Storlis.
13	With regards to the structure of the OP,
14	operating procedures, the team concept in the
15	control environment, the identification of a
16	potential error being made is identified and
17	corrected before the committing of the act. So from
18	an operating perspective the confidence in the team,
19	the confidence in the training, the confidence in
20	the practice of simulation and EOP network provide a
21	high level of assuredness of proper actions.
22	MEMBER MAYNARD: The EOPs are also
23	fairly good that even if a mistake is made or
24	there's multiple things going on, getting you back,
25	prioritizing and taking care of the issues.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	77
1	MR. STORLIS: That's correct. The
2	response not obtained columns and so forth that
3	structure a pathway to success is very high.
4	CHAIRMAN DENNING: And I think if you
5	identified in your simulator training a place where
6	people were making errors of commission, then you'd
7	correct something rather than putting it as a
8	probability failure in a PRA.
9	MR. KELLER: That's correct.
10	CHAIRMAN DENNING: So it's hard to
11	identify them, Once you do, then presumably you'll
12	fix them.
13	MR. KELLER: Yes. You want to reenforce
14	the training so we would make sure that we'd meet
15	these times.
16	MR. STORLIS: Either in robust barriers
17	and the like to assure that if there is a likely
18	error condition that it's remedied either by
19	physical barrier or other means.
20	CHAIRMAN DENNING: Okay. Proceed.
21	MR. KELLER: Okay. Thank you.
22	Next slide.
23	In regards to the operator response
24	times, we did do a validation of the operator times
25	to complete these actions through combinations of

(202) 234-4433

	78
1	tabletops, discussions of simulator training or
2	observations. And the operator actions with small
3	amounts of time available can be performed within
4	the time that is available.
5	MEMBER WALLIS: "Can" is a big
6	MR. KELLER: I'm sorry?
7	MEMBER WALLIS: "Can" is a big word. I
8	mean can with probability of zero or one? You think
9	it can be performed with high probability or
10	something.
11	CHAIRMAN DENNING: Well, he has exactly
12	the probabilities on this table.
13	MEMBER WALLIS: He does, I know. But
14	CHAIRMAN DENNING: These are three
15	significant figures.
16	MEMBER WALLIS: I know. So it's really
17	it will be performed or likely to be performed.
18	MR. KELLER: Likely to be performed.
19	That's probably yes.
20	MEMBER WALLIS: Right. There's some
21	things I can do, but without much probability.
22	CHAIRMAN DENNING: Likely would be a
23	very PRA term.
24	MR. KELLER: I understand. Likely to be
25	performed.

(202) 234-4433

	79
1	Next slide.
2	We also did a review for shutdown risk
3	conditions. We found the EPU has no unique or
4	significant impacts to the shutdown risk. There'll
5	be no changes to shutdown operations to our safe
6	shutdown risk assessments.
7	Next slide.
8	Summary for Unit 1 is shown here for the
9	total core damages from pre-EPU to post-EPU and with
10	a breakdown of internals, externals and fire and
11	also it shows the differences for the total LERF.
12	And the changes in risk are well within the guidance
13	provided by Reg. Guide 1.174.
14	MEMBER MAYNARD: One new piece of
15	equipment that you put in was the main feed
16	isolation valves, How was that treated? Did that
17	end up with positive credit, negative credit
18	relative to the PRA. Because a new piece of
19	equipment
20	MR. KELLER: Yes. You do have some
21	additional failure probabilities with that and also
22	with the cavitating venturies. There is a
23	probability that they could plug. But overall for
24	the sequences, and Bill correct me, where main
25	feedwater was involved there was not a huge impact
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	80
1	from those additional failure rates.
2	MR. ETZEL: That is correct.
3	MEMBER MAYNARD: On the main feed
4	isolation valves are you using an existing design
5	that's been out there proven or is this
6	MR. ETZEL: This is Bill Etzel from
7	FENOC.
8	We have these similar valves installed
9	at Unit 2, so we use their failure rates and apply
10	them to Unit 1.
11	CHAIRMAN DENNING: Now let me ask an
12	embarrassing question.
13	MR. KELLER: Yes, sir.
14	CHAIRMAN DENNING: Maybe an embarrassing
15	question. And that is, you know, we recognize that
16	there are changes in risks that aren't quantified by
17	the way we treat CDF and LERF, particularly as far
18	as radionuclide inventory is concerned. I mean, the
19	risk is going to increase with no changes in CDF and
20	LEFT, you're going to see there is a true increase
21	in risk of at least a percent associated with
22	MEMBER KRESS: Sixteen percent.
23	CHAIRMAN DENNING: this.
24	MEMBER KRESS: Two plants.
25	CHAIRMAN DENNING: Two plants. Well, I'm
1	

(202) 234-4433

	81
1	not sure that that's still eight percent per, Tom.
2	But in any event, we have had other applicants who
3	have said okay, we want to make sure that the risk
4	is not increased, and so we look to see what aspects
5	of our PRA indicate things that we could fix that
6	would actually reduce the risk or maintain the risk.
7	And I realize, of course, you changed
8	the generator on Unit 1 and there's been probably a
9	decreased risk associated with that. But as far as
10	just looking at the major contributors to risk and
11	recognizing the potential benefit that's associated
12	here that certainly is worth doing, but did you look
13	to see are there things that at this particular time
14	we might change so that indeed we're not increasing
15	the risk?
16	MR. KELLER: Yes. We have looked and we
17	actually have some recommendations based on that.
18	We've looked at things like potentially going out
19	and adding additional methods for RCP seal
20	injection. There was a recommendation also to, I
21	believe it was restructure an EOP to gain some
22	benefit towards large early release frequency.
23	And, Bill, there were two other
24	modifications for each unit we were also looking at?
25	MR. ETZEL: This is Bill Etzel from
	1

(202) 234-4433

(202) 234-4433

	82
1	FENOC.
2	Yes. We also looked at increasing
3	seismic ruggedness. We have at Unit 1 block walls
4	on our emergency batteries. So we're looking at
5	increasing seismic readiness of those block walls.
6	Also putting some fire barriers around
7	our HVAC fans in the cable vault and spreading area.
8	CHAIRMAN DENNING: And has management
9	agreed to any of these upgrades or made a commitment
10	to these at this time?
11	MR. KELLER: At this time our plans to
12	take those to our plant health committee at site and
13	to get them evaluated and go forward from there.
14	See if they'd
15	CHAIRMAN DENNING: What's the committee
16	you said?
17	MR. KELLER: Called the plant health
18	committee.
19	CHAIRMAN DENNING: Plant health
20	committee?
21	MR. MANOLERAS: Yes. This is Mark
22	Manoleras from FENOC.
23	Our plant health committee is comprised
24	of basically the management team at the site. Each
25	project is presented to the plant health committee
	1

(202) 234-4433

	83
1	and it's weighed on its benefit and risks to the
2	station and then will be implemented in course;
3	ranked and implemented in course.
4	CHAIRMAN DENNING: Yes.
5	MR. ETZEL: And this is Bill Etzel from
6	FENOC.
7	We did present the alternate RCPC seal
8	injection system to the plant health committee
9	already.
10	CHAIRMAN DENNING: And has a decision
11	been made on that at this point or is that
12	MR. ETZEL: Yes. We have had positive
13	feedback on it.
14	CHAIRMAN DENNING: Yes.
15	MR. KELLER: A decision was made whether
16	to go and install it at this time.
17	MR. ETZEL: Yes. The decision was made
18	was that we were going to take a look at options to
19	actually implement those options and then estimates
20	will be performed on those options. We will go to
21	our next committee, which is our technical oversight
22	committee, which takes a look at the technical
23	robustness of the options and how those will be
24	implemented.
25	So it's well along in the process to be
1	1

(202) 234-4433

	84
1	targeted.
2	CHAIRMAN DENNING: What are the criteria
3	that the committee uses to decide whether they would
4	undertake a safety improvement that effectively
5	isn't providing economic benefit?
6	MR. ETZEL: Yes. We actually have a
7	very detailed rating system. We went out and
8	benchmarked the industry and took a look at
9	basically industry best practice. And actually one
10	of the significant contributors to identify a
11	project selection would be an increase or decrease
12	in risk. We actually have a very large portion of
13	our process will actually look at the change in CDF.
14	So it's actually a big contributor to selecting a
15	project to be implemented.
16	CHAIRMAN DENNING: You know, that still
17	didn't help me very much. I mean, I'm talking about
18	some things here where there's no economic benefit
19	to the plant, or at least the economic benefit isn't
20	obvious of some of these safety related improvements
21	that could reduce risk. And so the question is
22	under what conditions would the plant management
23	say, well, it really I'm willing to invest some
24	money here to reduce the risk even though I'm not
25	going to see an economic payback and there's no

(202) 234-4433

	85
1	regulatory requirements.
2	MR. ETZEL: Yes. I'm sorry if I didn't
3	answer that clearly. A reduction in that risk is
4	one of the key contributors to ranking a project.
5	It is probably one of the top three contributors to
б	ranking a project.
7	CHAIRMAN DENNING: Thank you.
8	MEMBER KRESS: As a bit of a follow on
9	to this question, does your PRA system have the
10	capability to do a level 3 analysis?
11	MR. ETZEL: This is Bill Etzel again.
12	Currently we do not. We just have level
13	1 and level 2.
14	MEMBER WALLIS: With a follow up
15	question again. I understand that management looks
16	at decreasing risk as a criterion for endorsing a
17	project. Presumably there's something on the other
18	side of the balance which is the cost of
19	implementing this. And I just wonder how much your
20	management is willing to pay? Do they have some
21	sort of a figure that says we're willing to pay so
22	much for so much decrease in risk? Is there some
23	kind of an economic that's understood in the plant
24	or is it not? You don't have to give me the
25	figures, but it seems to me in the end its cost

(202) 234-4433

	86
1	benefit that's got to rule in the decision.
2	MR. SENA: This is Pete Sena.
3	When we go through the plant health
4	committee there's a detailed ranking form, as Mark
5	was speaking towards, as far as how we score a
6	particular project. Some of the other criteria may
7	be, for example, does the modification result in in
8	improvement in radiation dose to folks doing work on
9	the station. Other criteria would be, you know, a
10	change in personal safety, a change in equipment
11	reliability. So there are many factors.
12	Those factors are then accumulated and
13	tabulated. And that is then weighed against all the
14	other modifications that are proposed.
15	Now, out of a year we will go through
16	and we will pick, perhaps, our top 12 or 15 projects
17	to go implement to look a year ahead. But, again,
18	we do have limited financial means, as every other
19	utility does. So we have a specific set budget. But
20	the ranking criteria does not apply to the initial
21	cost estimate. It would then be categorized against
22	all the other mods. And we have X number of dollars
23	and how many mods do we want to do with that X
24	number of dollars.
25	MEMBER WALLIS: And so you have to spend
	1

(202) 234-4433

	87
1	your budget?
2	MR. SENA: We would spend our budget,
3	correct.
4	MEMBER WALLIS: So there is no trade-
5	off? It's just a question of which ones do you
6	spend it on, is that it? That was an interesting
7	economic viewpoint.
8	MR. SENA: Well, again
9	MR. MANOLERAS: Well
10	MR. SENA: Go ahead.
11	MR. MANOLERAS: This is Mark.
12	Again, we want to weigh all the factors
13	for the selection of this modification. We may want
14	to increase equipment reliability in an area, we may
15	want to increase personal safety. So we do weigh all
16	those facets when we select the modification
17	packages.
18	MEMBER KRESS: Just out of curiosity,
19	how far away is Pittsburgh from Beaver Valley's
20	plant?
21	MR. MANOLERAS: It's approximately 30
22	miles.
23	MEMBER KRESS: Thirty miles?
24	MR. MANOLERAS: That's correct.
25	CHAIRMAN DENNING: Proceed.
l	1

(202) 234-4433

	88
1	MR. KELLER: Thank you.
2	The next slide is a similar summary for
3	Unit 2 showing the same changes. And, again, the
4	changes in risk for both CDF and LERF are below the
5	thresholds for Reg. Guide 1.174.
6	MEMBER WALLIS: Reg. Guide 1.174 also
7	gives you no incentive decreased risk.
8	MR. SENA: And, Dr. Wallis, if I may
9	just go back to how we look at various projects we
10	may do. One example to speak towards, for example,
11	is we installed N16 monitors at Unit 2. We had them
12	previously installed at Unit 1. But, again, this was
13	a benefit to the station. Not a production benefit,
14	but a safety benefit so that operators would have a
15	key prompt indication of a potential tube leak. So,
16	again, that is an excellent example of a mod that
17	met our criteria to move forward with.
18	MEMBER WALLIS: Thank you.
19	CHAIRMAN DENNING: Yes?
20	MR. KELLER: Okay. And summary, all the
21	PRA model elements were reviewed for impact and
22	found that the increase in risk due to the EPU for
23	both Unit 1 and Unit 2 does meet the acceptance
24	criteria. There were small changes in operator
25	times that were available for some actions, and
	I contraction of the second seco

(202) 234-4433

	89
1	additional equipment that was installed had a small
2	impact on overall risk.
3	CHAIRMAN DENNING: Let me just state for
4	the record, I mean I think it's fine for you to
5	compare with Reg. Guide 1.174, but its applicability
6	to power uprates is somewhat questionable. And I
7	think that the way the risk analysis was used in the
8	review is really in a slightly different way than
9	applies 1.174 to a change in the licensing.
10	MR. KELLER: Since it's not a risk
11	informed application?
12	CHAIRMAN DENNING: Right.
13	MR. KELLER: Okay. I understand.
14	CHAIRMAN DENNING: Well, not to say that
15	it isn't interesting to look at.
16	MEMBER SIEBER: It's not a risk informed
17	application. It's nice to have risk information.
18	CHAIRMAN DENNING: Right.
19	MEMBER SIEBER: And, for example, the
20	PRAs the state of the art today, does not evaluate
21	and assign risk numbers to how much margin that
22	you're reducing.
23	CHAIRMAN DENNING: Right.
24	MEMBER SIEBER: And to me that's a
25	significant thing, but we are not going to easily

(202) 234-4433

	90
1	get to the point to do that. It's a tremendous
2	amount of work. And that's probably off in the
3	future in number of years.
4	MR. KELLER: That's all I have.
5	MEMBER WALLIS: Do you have some
6	perspective on what's the effect of these power
7	uprate on risk? I mean, this is a measure of safety
8	and this is what we're here for, so we get some idea
9	what are the consequences of an EPU. And I think
10	that's useful. But it's not as if 1.174 is the rule
11	that you're going to use.
12	MR. KELLER: Oh, agreed. But it is a
13	measuring stick, yes.
14	MEMBER WALLIS: Yes.
15	MR. KELLER: Any other questions?
16	CHAIRMAN DENNING: Okay. I see no other
17	questions. I think we're ready to move on to the
18	staff.
19	MR. KELLER: Thank you.
20	CHAIRMAN DENNING: Thank you.
21	We're on the Staff's presentation on
22	risk assessment.
23	MEMBER SIEBER: Risk evaluation.
24	MR. LAUR: Well, good morning. I'm glad
25	to see it's still morning.
	1

	91
1	My name is Steve Laur. I'm in the NRR
2	Division of Risk Assessment, Senior Reliability &
3	Risk Analyst. I'm here today to discuss the Staff
4	review of the Beaver Valley EPU risk assessment.
5	Next slide.
6	I'll give you the conclusion slide first
7	and if that's all you want to hear, we can make this
8	even shorter.
9	The licensee assessed the potential risk
10	impacts of the extended power uprate. Our review
11	concluded and agreed with the licensee that special
12	circumstances do not exist that would rebut the
13	presumption of adequate protection. So therefore,
14	we have approved going forward with this proposed
15	power uprate.
16	Next slide.
17	Just a reminder, I think you just
18	mentioned this right before I got up here, but they
19	are not risk-informed as defined in Reg. Guide
20	1.174. However, there is an applicable review
21	standard 001 that basically describes the purpose
22	for the risk information that the licensee provides.
23	First of all, to determine whether the
24	risk is acceptable. But as I mentioned before, to
25	determine special circumstances exist that would

(202) 234-4433

92 1 rebut the presumption of adequate protection 2 afforded by compliance with regulations. And this 3 is discussed in the Standard Review Plan, Chapter 4 19. This has been said a few times yesterday 5 and today, but I want to reiterate this. This is an 6 7 8 percent power uprate. The Staff has approved uprates on PWRs up to 17 percent and on BWRs up to 8 20 percent. And so far from the risk assessment and 9 from other reviews we have yet to determine special 10 circumstances. 11 12 Next slide. One thing that's important in looking at 13 14 a risk assessment using a PRA is what is the quality 15 or pedigree of the PRA? Beaver Valley has two 16 separate PRAs because the units were sufficiently different. These are full power seismic fire and 17 internal events including internal flooding PRAs. 18 19 And they calculate the risk matrix, core damage 20 frequency and larger release frequency. 21 For other risks including other external 22 events and shutdown risk, the licensee used 23 qualitative risk assessment. 24 CHAIRMAN DENNING: Unfortunately, George 25 Apostolakis isn't here to say what's a qualitative

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	risk assessment
2	MR. LAUR: Yes. I noted that. I
3	appreciate that.
4	CHAIRMAN DENNING: That's okay.
5	MR. LAUR: PRA quality, these are
6	uprates of the agency's IPE models, and in the case
7	of the fire and seismic, IPEEE models that were
8	submitted under Generic Letter 88-20.
9	They had an owners review on the
10	internal events portion in accordance with the
11	industry peer review guidelines in 2002 and they've
12	incorporated the resolutions from those comments.
13	The seismic fire PRA models, we don't
14	have an equivalent industry peer review process or
15	standards. However, they were reviewed by the
16	consultants that did the work. I take that back.
17	They were reviewed by consultants when the IPEEEs
18	were performed. And the NRC in the staff evaluation
19	report found them acceptable for meeting the Generic
20	Letter 88-20 purpose.
21	And so the conclusion that I made from
22	all this is that the PRA is of sufficient scope,
23	quality and level of detail to support this
24	application.
25	We also conducted a very focused onsite
	1

(202) 234-4433

1 audit of the licensee's PRA last October. There were 2 several purposes. One was to understand the risk of the EPU taken by itself. A second purpose was to 3 4 check the quality of the PRA and the risk assessment 5 that was done using the PRA and to understand and clarify some of the RAI responses in an onsite 6 7 manner as opposed to multiple back and forth on the 8 docket. Let me go to the key findings. 9 The key 10 findings was that the licensee up to that point had 11 not assessed the risk of EPU by itself. There were 12 model enhancements and methodology changes and then modifications to the plant that were unrelated to 13 14 EPU that were included in the post-EPU model which 15 made the delta risk assessment not apples-to-apples 16 comparison. Also, as a result of the audit we 17 identified the need to explain some apparently 18 19 anomalous MAAP results. 20 Coming out of the audit the licensee 21 actually identified a MAAP error and reperformed and 22 resubmitted quite a bit of the HRA timing analysis. 23 They also submitted a risk assessment that was more 24 of an apples-to-apples comparison pre-EPU to post-25 EPU.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

94

	95
1	DR. BANERJEE: Which were the MAAP
2	results that had to be explained? What type of
3	results, do you remember?
4	MR. LAUR: There was a reactor coolant
5	pump seal LOCA calculation for station blackout.
6	Correct me if I'm wrong, I know it was station
7	blackout. I think it was RCP seal LOCA that in most
8	of the cases from pre-EPU to post-EPU timing
9	decreased as you would expect. In one case it
10	actually increased. And so we questioned that. And
11	then on the audit we pulled the thread a little
12	more, the licensee ended up getting Fauske &
13	Associates involved in explaining how the MAAP code
14	works, et cetera. And it turned out the actual
15	timing increase was due to another change, it had to
16	do with the accumulator setpoints. And therefore,
17	it could be explained in terms of the thermal-
18	hydraulics, which was not my expertise, but it could
19	be explained in the fact that more accumulator water
20	went in during the transient.
21	However, in the course of researching
22	that they discovered a modeling error in the MAAP
23	model that required redoing.
24	DR. BANERJEE: Do you recall what the
25	error was?
	I contract of the second se

(202) 234-4433

96 1 MR. LAUR: They had the pressurizer 2 surge line going into the top of the loop instead of in the middle of the loop. 3 4 MR. ETZEL: This is Bill Etzel from 5 FENOC. Yes. on the pressurizer surge line the 6 7 MAAP code we had a loop sealed model where in 8 reality we do not have one. 9 DR. BANERJEE: But why didn't it show up 10 in the pre-EPU calculation and the post-EPU. Ι mean, the error would have been made in both, right? 11 12 Right. MR. LAUR: The error was a preexisting error to my understanding. 13 14 DR. BANERJEE: So why did it give this 15 anomalous result? I can't answer that. 16 MR. LAUR: But I 17 know in my review when we're looking at a table of timing changes due to EPU and you see all of them 18 19 going in the expected duration, a little bit 20 shorter, and one of them going longer, it causes you 21 to question. 22 But as to why that wasn't caught 23 earlier, I don't know. 24 MEMBER WALLIS: But the two aren't quite 25 so connected. Maybe the result of this lead to a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	review of MAAP which showed up this error; I'm not
2	sure the two things are connect.
3	MR. KELLER: Yes. This is Colin Keller.
4	That's correct, Dr. Wallis. The two were
5	not related. The error was found in part of the
6	review that we did to the NRC's
7	MEMBER WALLIS: You were lead to look
8	further at MAAP and then you found something
9	okay.
10	MR. KELLER: Yes.
11	MR. LAUR: Right. I didn't mean to imply
12	that this error was causing the anomalous result.
13	DR. BANERJEE: So why was there an
14	anomalous result? Then we're back to
15	MR. LAUR: Well, when I say "anomalous,"
16	it's apparently anomalous
17	MEMBER WALLIS: But not really?
18	MR. LAUR: but the reason for the
19	time getting longer in this one or two scenarios, I
20	don't remember how many there were, had to do with
21	changing accumulator pressure setpoints and level
22	setpoints that resulted a change in addition to or
23	actually opposite to the change caused by power
24	increase. So that in this particular scenario
25	instead of the timing getting shorter, this
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	98
1	additional water from the accumulators actually
2	caused it to be longer.
3	DR. BANERJEE: So it was a legitimate
4	now you accept that as a legitimate finding?
5	MR. LAUR: Yes. Yes.
6	DR. BANERJEE: But at the end of it it
7	allowed you to well, not allowed it actually
8	initiated this review of MAAP which found an error.
9	But that error had nothing to do with this?
10	MR. LAUR: That is correct. And the
11	real point I was trying to make here is that they
12	did review the MAAP analyses and resubmit them on
13	the docket.
14	The other result out of the
15	DR. BANERJEE: Was there any independent
16	check of MAAP or audit of MAAP or was this what was
17	done?
18	MR. LAUR: I don't know. The audit we
19	did was not looking at MAAP. We're looking at very
20	focused on the licensee's configuration control
21	process for MAAP and for risk calculations and on
22	specific areas that we had asked in RAIs that we
23	didn't understand. And this was one of them. But I
24	think there were two MAAP areas, and the one they
25	were able to resolve right away and this one took a

(202) 234-4433

	99
1	little longer.
2	DR. BANERJEE: What was the other area?
3	MR. LAUR: I'd have to look it up. I
4	don't recall offhand.
5	DR. BANERJEE: Okay.
6	MR. LAUR: The other result, though, we
7	did compare the licensee's procedure for
8	configuration the PRA to the ASME PRA standard
9	Section 5 and concluded it was a good process. They
10	had virtually all the elements met for practicing
11	the configuration control by procedure.
12	The licensee already covered the fact
13	that the way we tend to assess the risk is to look
14	at the various elements that make up a PRA and say
15	what could be impacted. And I've got these combined
16	in a couple of slides here. But this one talks
17	about initiating events and equipment reliability.
18	The EPU does not result in any new initiating
19	events. Even in the cases where an initiating event
20	is modeled as a fault tree model of some operating
21	system that fails during its mission time, the
22	equipment reliability is not expected to change
23	either. So therefore, those initiating events would
24	not be impacted.
25	And for the same reason the systems that
	I contract of the second s

(202) 234-4433

	100
1	are mitigating the accidents are not expected to
2	change because they're still operating within their
3	same design limits.
4	Next slide.
5	Accident sequence and success criteria.
6	The general accident progression, accident sequence
7	progression did not change. In other words, the
8	event tree models are the same. Now timing may be
9	different at EPU conditions, but you don't expect to
10	have to ask different questions in the event tree as
11	a result of an 8 percent power uprate. And the
12	licensee concluded that you don't, and I concur.
13	The success criteria for the most part
14	stays the same. And I just want to talk about a
15	couple of places where it didn't.
16	Station blackout is impacted slightly.
17	If you have a station blackout and never recover
18	offsite power, you're going to have core damage
19	somewhat earlier. That translates int the time that
20	the operator has to recover offsite power, which
21	translates into a higher operator action failure
22	probability and therefore core damage frequency.
23	The licensee did include that in their post-EPU
24	model.
25	The ATWS success criteria was impacted.
	1

(202) 234-4433

	101
1	Addition of the cavitating venturies on Unit 1 means
2	you can no longer mitigate a full ATWS event because
3	you can't get full flow out of three AFW pumps.
4	However, the PRA success criteria didn't change.
5	And the reasons for that is that the licensee had
6	conservatively not credited full flow in the pre-EPU
7	model. And therefore, the success criteria is the
8	same. The licensee reported no change in risk.
9	I pointed out in my safety evaluation
10	that that's not correct. There is a change in risk.
11	The change in risk would be if you had taken the
12	conservatism out of the initial, the pre-EPU, and
13	you'd actually get a delta. But I also know to
14	looking at the information they submitted that ATWS
15	is less than 1 percent on both units. Therefore,
16	the max that could be would be a 1 percent. It
17	would not change my conclusions.
18	CHAIRMAN DENNING: That really is
19	interesting, though, in terms of just looking at
20	delta risks where, as you quite properly pointed
21	out, that making the conservative assumptions made
22	it look like there was no change in risk whereas in
23	reality there was a slight increase in risk.
24	MR. LAUR: That's correct.
25	CHAIRMAN DENNING: But I agree, it's a
	I

(202) 234-4433

(202) 234-4433

Í	102
1	negligible consideration.
2	MR. LAUR: The design bases loss of
3	feedwater transient was picked up by one of the
4	other branches and brought to my attention resulted
5	in a request for additional information on how the
6	PRA success criteria was impacted. It turned out it
7	was not. And the licensee submitted realistic
8	LOFTRAN and realistic MAAP calculations to show that
9	in a realistic analysis that the success criteria
10	pre and post-EPU does not change.
11	CHAIRMAN DENNING: Now, is this the
12	success criterion that relates to two out of three
13	aux feedwater pumps?
14	MR. LAUR: Right. The PRA from a
15	realistic standpoint pre and post-EPU you only need
16	one AFW pump for secondary side decay heat removal.
17	Now in Unit 2 you need two steam generators because
18	you have small atmospheric dump valves but as far as
19	the AFW portion, which is what has been effected by
20	the cavitating venturies, the realistic analysis
21	shows that it does not change.
22	And then the final bullet here is
23	actually the subject of a whole other slide, which
24	is containment accident pressure credit for ECCS
25	NPSH positive suction head.
	1

(202) 234-4433

	103
1	Next slide.
2	This has a potential of impacting
3	success criteria, so that's why I put it under here.
4	I don't know how much you want me to go over this.
5	I thought it was pretty well covered by the Licensee
6	and by Rich Lobel yesterday.
7	CHAIRMAN DENNING: Yes, I think it was.
8	So if you just want to kind of bottom line, feel
9	free.
10	MR. LAUR: The bottom line is if you
11	remember the two graphs that were respective of
12	calculations before and after, there's a difference
13	of about 30 seconds to one minute when they cross
14	zero, in which I concluded there was an incalculable
15	risk impact, delta risk impact, from crediting the
16	containment accident pressure.
17	MEMBER WALLIS: Does all this go into
18	the PRA then? I mean you have an actual evaluation
19	of the change in the PRA as a result of crediting
20	this containment accident pressure?
21	MR. LAUR: No.
22	MEMBER WALLIS: You don't?
23	MR. LAUR: Not to my knowledge. If you
24	look at the absolute value of a contribution to
25	risk, in other words not the change but what it
	I

(202) 234-4433

	104
1	would be, and the licensee indicated that a large
2	LOCA and failure of containment isolation for
3	example would be 1E minus 8. I don't have their
4	model, but what I did look at was a failure on
5	demand. If you use a bounding value for a failure
6	on demand of a containment isolation valve, a
7	typical common cause failure in a bounding LOCA of
8	frequency of ten to the minus four, you're down to
9	ten to the minus seven right there. So you're
10	talking about a very low
11	MEMBER WALLIS: No, granting there's
12	containment overpressure is not really something
13	that's necessary in order to bring the risk down.
14	It's necessary in order to meet some other
15	requirement.
16	MR. LAUR: That is correct.
17	MR. RUBIN: Dr. Wallis, that's correct.
18	If I could just interject momentarily.
19	This is Mark Rubin, Branch Chief 1.
20	The reason this was looked at is because
21	of the issues related to the VY power uprate and
22	some of the concerns on granting NPSH over pressure
23	and the fact that the Reg. Guide I'm sure Mr.
24	Lobel talked about that previously. Because the
25	Reg. Guide is under revision, a senior NRR
1	

(202) 234-4433

Í	105
1	management asked that we reflect on the potential
2	risk impact to see if any existed on the power
3	uprates and that in the future it be sort of looked
4	at quickly, if all that's required, to validate
5	little to no risk impact. And that's why this was
6	looked at specifically.
7	But the conclusion, you're absolutely
8	correct, has no real impact in this case.
9	MR. LAUR: And the point was already
10	made yesterday, but we're not granting containment
11	overpressure. That's the existing licensing basis.
12	MEMBER WALLIS: There's really no
13	change. It's been granted before and there's almost
14	no change in the requirements, so nothing has really
15	happened here?
16	MR. LAUR: Exactly. That's what we
17	concluded.
18	Human reliability. I guess in keeping
19	with every other EPU that I've heard about, this is
20	the major impact on risk, on calculated risk. EPU
21	has a tendency to reduce times for operators to act.
22	The change in the HRA due to EPU is not assessed
23	directly by the licensee. What was done instead was
24	a sensitivity study. And the reason for that was
25	their pre-EPU timing was, as I mentioned, based on
	1

(202) 234-4433

	106
1	often grossly conservative hand calculations for the
2	time. Their post-EPU they've upgraded to use MAAP
3	on both units.
4	Secondly, the method they used cannot
5	translate small changes in timing into realistic
6	human error probabilities.
7	MEMBER WALLIS: But that's just what
8	they do, isn't it? Isn't that what they do?
9	MR. LAUR: That's what they do. But
10	that's
11	MEMBER WALLIS: You're saying they can't
12	do it meaningfully?
13	MR. RUBIN: This is Mark Rubin again.
14	Yes, I think that's what we're saying.
15	Some of the HRA methodologies, especially the
16	earlier ones we'll grant, as Dr. Apostolakis has
17	shown us on many occasions. The small change is in
18	timing. The model will calculate a difference in
19	human performance or success rate, but it's really
20	not a meaningful you have no confidence really in
21	those small changes shown.
22	MEMBER WALLIS: What else are you going
23	to do? If you're asked to calculate the CDF effect,
24	you have to use some sort of HRA?
25	MR. RUBIN: Yes.
	I

(202) 234-4433

107
MR. LAUR: Yes.
MR. RUBIN: Certainly.
MEMBER WALLIS: And you're simply saying
that this isn't a very good method. I think it's a
little extreme to say it's not meaningful. It's
maybe the best method available.
MR. RUBIN: What is meaningful well,
certainly it does give a quantitative result. But
what is meaningful is that the techniques allow us
to identify the more important actions, look at the
timing changes for those and see if they're
significant and let us focus in risk case.
All we wanted to point out here is that
we're in the areas of uncertainty, almost in the
area of noise in the small calculational
differences. But we do use the technology to help us
focus in on the important human response actions and
look at the timing changes on those.
MEMBER WALLIS: I think you ought not to
use the word "meaningful" though. That might mean
the wrong thing to some people. And you're just
saying that there are uncertainties and these are
very small changes anyway, and all that sort of
thing. But you're still doing the best you can or
the licensee is doing the best he can.

(202) 234-4433
	108
1	MR. LAUR: That's a good comment. When
2	I say the "methodology," as I mentioned I used the
3	success likelihood index method, but I'm not
4	integrating that methodology. If you have a time
5	reliability correlation, which I think is an
б	artifact in some ways, but as Mark said you change
7	time, you're going to get a change. And this method
8	has a method on the performance there's a time. If
9	you look at the SPAR-H model, they have discreet
10	time steps ranging from not enough time to adequate
11	time, to excess time. And the point I'll make on
12	the next slide goes to more with symptom based
13	procedures, it's almost a function of can you get to
14	that step in the procedure and then do you have an
15	error of omission when you get to that step.
16	So looking at the third major bullet,
17	the way I assessed the risk was looking at the post-
18	EPU core damage frequency and large early release
19	frequency recognizing that the change in those is
20	based on natural plant changes and on a sensitivity
21	analysis for the HRA. Okay.
22	And I did ask the licensee in an RAI to
23	validate important operator actions with short time
24	frames. You know, demonstrate they can be done. In
25	other words, they are not precluded. I understand
	I Contraction of the second

(202) 234-4433

	109
1	you "can" meaning one to zero. What I'm saying is
2	you haven't changed the time to where something that
3	was maybe marginal but you could do it became
4	precluded. And they did that and nothing fell into
5	that category of being precluded.
6	So my conclusions focused on, like I
7	said, that the actual CDF and LERF and whether or
8	not special circumstances arose.
9	Next slide.
10	The licensee showed you a top five
11	operator actions and they gave me whole pages of
12	them, but if you look through them and sort them by
13	importance, I tried to summarize them in two major
14	categories. What shows up are depressurizing the
15	RCS and feed and bleed cooling at both units and
16	then some manual actions to, in the case of Unit 1
17	start auxiliary river water pumps and align them and
18	Unit 2 solid state protection system failure so you
19	have to start aux feedwater pump.
20	The licensee, as I said, validated these
21	and all the other ones that could be performed. But
22	just looking at the feed and bleed actions briefly.
23	These are proceduralized, they're routinely
24	practiced, they're performed in the control room
25	with one minor exception. They take a relatively
	I contraction of the second seco

(202) 234-4433

	110
1	short time from two to ten minutes to actually
2	perform the tasks. And they occur in response to
3	symptom based procedures, not just the EOPs but also
4	the functional restoration procedures.
5	So the last subbullet under there is
6	what I was trying to say. It's really more of a
7	function of how much time you have until you get to
8	that step in the procedure as opposed to a slight
9	decrease in the amount of time available.
10	And the other two actions up there are
11	control room actions that are simple actions.
12	So we concluded that there was a minimal
13	impact on EPU risk on the HRA.
14	DR. BANERJEE: What about switching to
15	hot leg injection?
16	MR. LAUR: I don't recall that operator
17	action, and I'd have to defer to the utility. That
18	might be a good one for the utility to comment on.
19	MR. ETZEL: This is Bill Etzel from
20	FENOC.
21	We currently do not model hot leg
22	injection.
23	DR. BANERJEE: But you switch, right, to
24	hot leg injection in the log term cooling scenario,
25	right?
	1

(202) 234-4433

	111
1	MR. ETZEL: Yes.
2	MR. DURKOSH: This is Don Durkosh. I'll
3	be addressing that in the next presentation.
4	DR. BANERJEE: Okay.
5	MR. LAUR: Okay. External events, we've
6	got seismic fires and other, which include high
7	winds. There's nothing about EPU that would
8	increase any of the initiating event frequencies or
9	types of initiating events from these.
10	The quantitative assessment, since their
11	PRA handles seismic and fires, demonstrated that a
12	very small impact on the risk from those. And that
13	comes from the fact that their seismic and fire PRA
14	models are integrated with their PRA model. So
15	human reliability increases and plant modification
16	increases translate and propagate through those
17	models.
18	And for other external events, the
19	successive screening methodology that was used for
20	their IPEEE remains valid and we conclude that would
21	be a minimal impact on risk as well.
22	Next slide.
23	I don't have as many as the licensee
24	had, but this shows you the post-EPU core damage
25	frequency and large release frequency using their
1	

(202) 234-4433

	112
1	HRA methodology with a MAAP realistic timing and
2	that is what I used to conclude that there was no
3	special circumstances. These are very small
4	changes.
5	The increases include the modifications
6	and the sensitivity analysis. These small. They
7	meet the Reg. Guide 1.174 guidelines for being
8	small, but it's not what I based my conclusion on
9	for adequate protection.
10	Next slide.
11	The licensee did a qualitative
12	assessment of shutdown risk using the questions in
13	the Standard Review Plan, Chapter 19. And we agree
14	that the shutdown initiating events aren't impacted.
15	Times to boil times for operator actions are
16	slightly decreased, but minimal impact on risk.
17	Finally, in conclusion the licensee
18	assessed the potential risk from EPU. We concluded
19	the EPU does not create special circumstances that
20	would rebut the presumption of adequate protection
21	and therefore we found this acceptable.
22	CHAIRMAN DENNING: Are there any
23	questions?
24	Thank you. Good job.
25	MR. LAUR: Thank you.
l	1

113 1 CHAIRMAN DENNING: Okay. Now we're just 2 going to continue on and we'll get into operations 3 and testing starting off with human factors, I 4 guess. 5 MR. DURKOSH: Okay. My name is Don 6 Durkosh. I am a senior reactor operator currently 7 licensed at Unit 2 and control room supervisor. I also have with me George Storlis. 8 9 George brings over 30 years of operating experience 10 at Shippingport, Beaver Valley Unit 1 and Beaver Valley Unit 2. 11 12 A little bit about myself. I have 25 years of experience in the commercial nuclear power 13 14 industry. I started my career with Westinghouse 15 working in the engineering design analysis services I was the Westinghouse site manager at Beaver 16 area. Valley and was in the unique position of kicking off 17 this project and working with Mike Testa from a 18 19 management perspective. 20 And I am licensed at Unit 2 and looking 21 forward to raising power toward the end of this year 22 at Unit 2. 23 The four areas that I plan to cover are 24 human factors, training, our test plan and overview 25 of our test plan and touch upon large transient

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	testing.
2	From an overview perspective, the human
3	factors impact of the EPU is minimal. There's a
4	total of eight meter changeouts from a control room
5	perspective. Six of them are related to the fact
6	that we're replacing our accumulator pressure
7	indicators with a digital indicator. And we also are
8	replacing our containment narrow range pressure
9	indicators as part of the containment conversion
10	project. All eight of these meters have been
11	replaced out at Unit 1 and on the Unit 1 simulator
12	and in the process of being changed out at Unit 2.
13	Coming into the EPU project we were at
14	an advantage in that in late 2002 and early 2003
15	Beaver Valley Operations staff undertook a major
16	review of our emergency operating procedures. And e
17	have substantially streamlines our EOPs and made
18	them consistent with the Westinghouse ERGs. And, in
19	fact, that's a project that I also worked.
20	So we had a very solid foundation for
21	coming into the final portion of the EPU project
22	having very streamlined procedures.
23	In the big picture here, the procedure
24	changes that are coming out of the EPU project are
25	rather minimally. They're primarily: Revise
I	

(202) 234-4433

115 1 operating parameters, changes in limits and revise 2 setpoints. 3 One area where the EOPs were directly 4 impacted was the addition of an attachment that will 5 require that the control room initiate a purge 6 following a steam generator tube rupture. However, 7 I do want to point out that that existing attachment 8 already exists for purging the control room for a 9 steamline break scenario. So in a big sense, it's a 10 very minimal impact. DR. BANERJEE: What are those two little 11 What was that interesting stuff. things there? 12 MR. DURKOSH: Go back, but don't click 13 14 on it. 15 What they are, they are backup slides. What I wanted to do, what I have here are examples 16 17 of some of the normal operating parameters and some of the EOP setpoint changes. But I looked ahead at 18 19 the NRC presentation and they have much more than I 20 have, so I don't see any value going there, if 21 that's okay with you. 22 CHAIRMAN DENNING: Thank you. 23 MEMBER WALLIS: What we could do is 24 check that you and the NRC have the same 25 presentation or there's no inconsistency.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	MR. DURKOSH: All right. Click on it.
2	CHAIRMAN DENNING: Don't click it.
3	Don't click.
4	MEMBER WALLIS: We'll trust you on that
5	one.
6	MR. DURKOSH: All right.
7	Okay. I was at the Ginna presentation
8	so I heard your feedback, what you really wanted to
9	focus on; those areas that were potentially
10	impacted. So, obviously, our action time, operator
11	action time is a key issue so I wanted to address
12	that.
13	Obviously with increased decay heat the
14	available time to perform some actions are reduced.
15	However, I do want to point out that the basic
16	operator actions that we have to do remain
17	unchanged. We are not implementing any new
18	modifications that require new operator action
19	times. And that's unlike Ginna where they did
20	actually implement some modifications.
21	In most cases our action times have
22	either remained the same or actually been extended
23	to improve the overall process. And I do have a
24	couple of slides where the case is actually reduced,
25	and I'll talk about those.

(202) 234-4433

	117
1	During the course of this review we also
2	identify procedure enhancements and we have
3	incorporated those. Most notably, we did a complete
4	review of our fire related procedures for Unit 1 and
5	we did a major upgrade as part of the EPU project.
6	And action times are being revalidated.
7	We've already talked about some using the simulator,
8	using walkdowns, using tabletop discussions and
9	field timing of operator actions in the field.
10	I do want to take a point. Colin had
11	mentioned operator action time relative to the PRA.
12	And for the scenarios that I saw, most of those are
13	beyond design bases. So it gets you pretty deep
14	into the emergency procedures and the contingency
15	procedures. For instance, initiating bleed and
16	feed. There's a loss of heat sink scenario which
17	requires us to lose all of our aux feedwater pumps,
18	not be able to use our main feedwater pumps, our
19	startup feed pumps, our condensate pumps. So we're
20	basically sitting as the steam generators are slowly
21	drying out and getting ready to wait to initiate
22	bleed and feed. So it's a pretty extreme scenario.
23	Okay. The next slide.
24	Okay. We talked about ECCS switchover
25	to hot leg recirc. Ken had talked about and this

(202) 234-4433

	118
1	question just came up.
2	At Unit 1 the existing time is 8 hours
3	and when we go to uprate, that time will get reduced
4	to 6½ hours.
5	At Unit 2 the current time is 7 hours
6	and that will get reduced to 6 hours.
7	And in addition, at Unit 2 our design
8	bases has us switch from straight cold leg recirc to
9	hot leg recirc and back to cold leg recirc on a
10	periodic frequency. That time rate now is 11½ hours
11	and that'll be reduced to 9½ hours.
12	I think the question came up as to what
13	the burden or impact is. Through our simulations
14	generally within an hour or two of a large break
15	LOCA scenario we are back into the emergency
16	mainstream procedure called E1. And basically we
17	are doing our preparations looking down the road and
18	doing our preparations.
19	As was mentioned, approximately one hour
20	before we will start taking steps to make sure we
21	have AC power to the valves in questions. If we
22	have any jumpers that require, we have those jumpers
23	in position. And we're briefing on what actions
24	have to occur.
25	And the time frame for actually

(202) 234-4433

1 initiating switchover, at least I looked at the Unit 2 1 validation efforts on the simulator to initiate hot leg recirc. Coming into the procedure we're 3 4 talking a matter of minutes. So those hot leg 5 recirc procedures are relatively streamline. You're able to get in and get out very quickly. 6 7 DR. BANERJEE: I guess the impact would be if one was wrong in determining where the 8 9 switchover time should be? If it was, say, three hours instead of 6½ h ours, there's no direct 10 measure you have here. But it's not related to the 11 uprate, it's in general this issue of not having a 12 direct measure for the boron? 13 14 MR. DURKOSH: I agree. It's not 15 directly impacted by the project. DR. BANERJEE: Yes. The amount of time 16 17 difference is not significant. All right. MR. DURKOSH: Two areas that I would 18 19 like to talk about is the tube rupture and isolating 20 aux feedwater flow and the post trip fire scenario 21 where if we did lose aux feedwater, we would want to 22 restore it. 23 Relative to the tube rupture, one of the 24 key operator actions is to isolate aux feedwater 25 flow. I do want to point out that all of the EPU

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

119

ĺ	120
1	analyses that were performed were actually based on
2	crew simulation data collected in 2002. So we had a
3	solid footing for the analyses going forward.
4	And then as part of the EPU project in
5	late last year we ran on the simulator with the new
6	procedures that are being proposed, we had the Unit
7	1 crew go through and then we validated the fact
8	that what we had done before we were able to meet.
9	For Unit 2 this EOP changes are in the
10	final stages of being identified. There were
11	tabletops that were performed and we are planning to
12	do simulator validation later this year.
13	Next slide.
14	Relative to the fire scenarios, key
15	action would be if you lost aux feedwater you'd need
16	to reestablish it. I wanted to give you a positive
17	message here. Relative to the Beaver Valley Unit 1
18	the EPU project established all of the critical
19	operator action times. The entire set of fire
20	related procedures were revised, streamlined and the
21	walkdowns have been completed. So that validation
22	effort is complete.
23	Relative to Unit 2, about 3 years ago
24	our fire related procedures were updated. And it
25	turns out that because that occurred in the midst of
	I contract of the second se

(202) 234-4433

	121
1	this EPU project, the aux feedwater critical times
2	have already been incorporated in the procedures.
3	So there's basically minimal work to do on Unit 2.
4	Possible that any of the lessons learned from the
5	Unit 1 procedures may get back to Unit 2. But we're
6	not anticipating any major changes to our
7	procedures; they're already there. And they've
8	already included the operator action times that are
9	appropriate for EPU.
10	The next slide.
11	Okay. Moving on to operator training.
12	Basically we use classroom training of our design
13	change packages. We'll go over our tech spec and
14	licensing requirement manual changes. We'll go over
15	any physical changes, procedure and setpoint
16	changes. And then also we'll do simulator focus
17	areas where if there is a change warning, a
18	demonstration or hands-on training, we would do
19	that. And for instance, the Unit 1 crews had a
20	chance on the simulator to operate the new steam
21	generator level control program following steam
22	generator replacement. So the crews have time to
23	basically get accustomed to the new control
24	setpoint.
25	And then we always will continue our

(202) 234-4433

	122
1	transient response and EOP execution training.
2	And for startup and shutdown, we also
3	use just-in-time training to get the crews focused
4	in prebrief so that those activities go smoothly.
5	As we discussed over the last day and a
б	half many of the modifications have been
7	incorporated. So crew training has been going on
8	here for the last couple of years as modifications
9	have been made. And they'll continue up to our EPU
10	uprate.
11	We do have plant specific simulators
12	that we use, separate ones for Unit 1 and Unit 2.
13	And the changes that we're talking about are
14	primarily model and initial conditions. So there's
15	no issue about going from current plant to EPU plant
16	other than a matter of a couple of minutes to switch
17	over the model. I know that question was raised at
18	Ginna. So we do not have any issues being able to
19	switch back and forth.
20	Moving on test plan. This is an
21	overview of our test plan. Primarily consists of
22	post modifications tests which, as I mentioned, many
23	of them have already been performed and we'll
24	continue doing them as the mods are made.
25	Our low power physics testing program

(202) 234-4433

1 remains the same. There's no change there. What we 2 are doing is we are collecting baseline data and 3 then using that baseline data to support our power ascension testing. And in the power ascension 4 5 testing we're planning on small increments. I have a couple of slides to show you of what our current 6 7 plan is. But basically we'll use the baseline 8 data to make data projections. We'll collect data 9 at steady state conditions and then we'll review 10 that day and if we have any anomalies, we'll 11 12 evaluate that and identify through our corrective action program what our next step would be. 13 14 So what I wanted to do here is here's 15 kind of a profile of Unit 1 power ascension profile. As we discussed, we just completed our 1R17 16 refueling outage which involved replacing the steam 17 generators. We have started up and we are operating 18 19 at a 100 percent power currently. And during the 20 startup process we did collect baseline data at 21 roughly 90 percent and 95 percent. So we now have 22 the data that we can use to predict where we expect 23 to be. Following receipt of the safety evaluation 24 report, we plan to uprate approximately a nominal 3

percent power uprate and we'll be using the baseline

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

123

	124
1	data to predict where the parameters should be so
2	that we have a method to compare.
3	And we expect to operate the rest of the
4	cycle at approximately 2770 megawatt thermal.
5	And then coming out of the new refueling
6	outage, we expect to return to that power level and
7	make two small moves approximately 2.5 percent each
8	time collecting data, evaluating the data making
9	sure that we're comfortable and then moving up to
10	the ultimate power level of 2900 megawatts.
11	I have a similar slide for Unit 2. We
12	are currently in cycle 12 with a 2R12 refueling
13	outage plan for the fall. Our plans here is to come
14	out of the outage, collect our baseline data at
15	roughly 95 percent. Come up to our current license
16	power of 2689, which is 100 percent power and then
17	initiate shortly thereafter a nominal increase of 3
18	percent up to 2770. And our plan is to operate for
19	the rest of basically the full cycle at 3 percent
20	uprate. And then at the following refueling outage
21	would be the next opportunity to go ahead and
22	incorporate the high pressure upgrade at Unit 2 and
23	basically come out of the outage at the referenced
24	power level and again make two small moves up to the
25	ultimate 2900 megawatt for core license power.

(202) 234-4433

ĺ	125
1	DR. BANERJEE: When do you have it all
2	with robust fuel or whatever this new RFA? I don't
3	remember.
4	MR. DURKOSH: I didn't understand the
5	question.
6	DR. BANERJEE: When is the core
7	completely peopled with this robust fuel?
8	MR. DURKOSH: We're there already.
9	DR. BANERJEE: Both units?
10	MR. DURKOSH: That's correct. As part
11	of our extensive planning process for this phased
12	implementation we started five or six years ago when
13	we began to transition to RFA fuel. So both units
14	today as we speak are 100 percent RFA fuel.
15	DR. BANERJEE: Okay. Thanks.
16	MR. DURKOSH: The next topic, I'd like
17	to move on, is the topic of transient testing. So
18	what should be considered when you evaluate the need
19	for transient testing?
20	One thing that is very important is to
21	evaluate the modifications and also to evaluate the
22	NSSS control changes. And then based on that in
23	your test plan ensure that you have adequate
24	coverage for testing.
25	So there was a detailed evaluation that
	I contract of the second se

(202) 234-4433

	126
1	was performed as part of the license amendment and
2	follow up RAIs. As we indicated, each of the
3	modifications will be fully tested. And as I've
4	already mentioned, many of the modifications have
5	already been incorporated and we're gaining
6	operating experience with those modifications.
7	In addition, design engineering did an
8	extensive owners review of the NSSS control
9	supporting analyses. These are the operational
10	transients to make sure that we would not have a
11	reactor trip during selected design bases events.
12	And I think the key point that came out
13	of that is there are no controller functional or
14	logic changes. I know Vermont Yankee had somewhat
15	of a fundamental logic change and transient testing
16	may have been appropriate in that case.
17	We have no new control schemes. And our
18	changes are primarily limited to setpoint changes
19	that have been optimized for EPU conditions.
20	The conclusion from our earlier work is
21	the aggregate impact does not adversely affect plant
22	dynamic response.
23	Next slide.
24	Now Beaver Valley Unit 1 given the
25	replacement steam generators, it was important that
I	1

(202) 234-4433

127 1 we did monitor control systems during startup. And 2 I believe Pete mentioned yesterday that the feedback 3 from the operators was very positive. So our control 4 system operated as expected and in addition we did 5 perform, and this was an area where we thought transient testing was important, we change our valve 6 7 trims out, we did change our control operating 8 setpoints and we had new steam generators. So there 9 was a transient test performed, and actually it was completed over the last weekend. Basically we 10 imputed a step change and we were monitoring the 11 controller response. 12 If you can go to the backup slide. I had 13 14 this data provided to me over the weekend. But 15 basically this is the new control point, a nominal They imputed a signal that drove the 16 65 percent. controller down 5 percent and we had minimal 17 overshoot. And then they initiated a similar 18 19 transient up with minimal overshoot. So overall the 20 control system worked just as planned. We easily met 21 all the acceptance criteria. And this all happened 22 within the last few days over the weekend. So verv 23 positive feedback on the test. The test and the 24 control modeling worked just as expected.

As mentioned, large transient testing is

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

normally a test that involves reactor trip at some high power. At Beaver Valley any turbine trip greater than 49 percent will result in a reactor trip. As I mentioned, there are no functional changes in the NSSS controls and the supporting reactor trip functions. So we do not believe large

transient testing is necessary.

In addition, the simulation code, which 8 9 was LOFTRAN, that we use supported the original 10 plant. LOFTRAN has been around a long time. So my 11 message here is the computer code and the model 12 basically supported the original plant design and basically all Westinghouse plant designs. 13 The 14 startup testing confirmed that the plant matches the 15 model, that computer code and model supports our current operational analyses, we have used it to 16 benchmark our simulators, we use it in our non-LOCA 17 analysis and we use it to optimize the EPU 18 19 conditions. So no further benchmark testing was 20 deemed necessary. 21 And again, my conclusion is based on the 22 technical changes there's no large transient testing 23 that will be necessary.

Slide.

So my overall conclusions in the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 128

24

25

1

2

3

4

5

6

7

	129
1	operations and testing area, the key take aways are:
2	Our procedure changes primarily involve
3	operating parameters, limits and setpoint changes;
4	The power ascension process will ensure
5	a controlled, closely monitored, very conservative
6	approach to our new licensed power level;
7	And the modification in the NSSS control
8	changes do not alter the basic design function of
9	those systems, nor introduce a first-of-a-kind type
10	change that will warrant large transient testing.
11	CHAIRMAN DENNING: How is the auxiliary
12	feedwater flow test did following the changes that
13	have occurred with the venturies?
14	MR. DURKOSH: Actually, those venturies
15	were replaced I think in the previous outage. But
16	generally what we do is we have an aux feedwater
17	flow test, an operations surveillance test. And
18	there were predictions on what the flow requirements
19	are. And then we have tested the system.
20	CHAIRMAN DENNING: Yes. And actually
21	test it and add water to the steam generator within
22	those tests?
23	MR. DURKOSH: Yes. We normally will do
24	that in the last stages of plant startup.
25	MR. HANLEY: Yes. This is Norm Hanley
l	1

(202) 234-4433

	130
1	from Stone & Webster.
2	And, again, when we implemented the
3	modifications to add the venturies, we did use the
4	OSTs to monitor the flow to the we also did a
5	very detailed calibration with the venturie itself
6	with the vendor. We did extensive tests to make
7	sure the calibration and the predicted flows would
8	match. We did an OST test where we did pump water
9	to the generator and verify those conditions. And we
10	also did an OST on the pump to verify the pump curve
11	was matching what we used in the analysis.
12	MEMBER MAYNARD: And you do this test
13	coming out of each outage, don't you?
14	MR. DURKOSH: That is correct.
15	MEMBER MAYNARD: I mean as far as the
16	flow test, the calibration?
17	MR. HANLEY: That's correct.
18	MR. DURKOSH: That's correct.
19	Any additional questions? All right.
20	Thank you very much.
21	CHAIRMAN DENNING: Okay. We will go
22	ahead and continue to hear from the Staff.
23	You may proceed.
24	MS. MARTIN: Good morning. I'm Kamishan
25	Martin. I'm a human factors engineer in branch of

(202) 234-4433

	131
1	Operator Licensing.
2	For our evaluation we reviews
3	procedures, training in human factors, interface
4	CHAIRMAN DENNING: I think you're going
5	to have to speak louder. And is that mike working
6	for sure.
7	The room's been all changed around and
8	so we're having some trouble with the mikes. And
9	you really have to get right up to this mike, too, I
10	know from experience here.
11	MS. MARTIN: Okay. Can you hear me?
12	CHAIRMAN DENNING: Okay.
13	MS. MARTIN: The areas we reviewed
14	include the training and human factors interfaces
15	between the operator and the control room and in the
16	plant related to performance.
17	These are the regulatory guidelines that
18	I use in the evaluation.
19	The main areas that we use that we
20	evaluated include the EOPs and the AOPs, the
21	operator actions that are sensitive to the power
22	uprate, the control room alarms, the SPDS and the
23	training program and simulator.
24	As the licensee stated, the changes were
25	slight modifications for parameter thresholds and

(202) 234-4433

	132
1	the elimination to references to the BIT tech spec.
2	This was eliminated because it's no longer credited
3	as a source of boron borated water. Sorry.
4	There was one new operator action that
5	was introduced due to the EPU and that includes the
6	control room purge. And the one change was a change
7	to another purge of the control room dealing with
8	the steam generator tube rupture. I'm sorry. That's
9	a new action.
10	The time reductions, some of the time
11	reductions for operator actions were due to decay
12	heat, but as the licensee stated, most of them
13	stayed the same. There were only a couple that were
14	reduced due to the EPU.
15	In Unit 1 all of the action times were
16	validated through the simulator and through the
17	walkthrough in the plant.
18	For Unit 2 the in plant operator action
19	times were validated, but because the procedures
20	aren't finalized at this time they only did a
21	tabletop review. But the licensee has committed to
22	validating the times on the simulator once the
23	procedures are finalized. We determined this to be
24	acceptable because of their commitment to validated
25	operator action times on the simulator.
l	I contraction of the second

(202) 234-4433

	133
1	This is just a table with the operator
2	action times that were most sensitive to the EPU.
3	In Unit 1, as I stated, all of them were
4	validated. But in Unit 2 there was in particular
5	that didn't have a margin between the time available
6	and the time it would take the operator to actually
7	perform this. But it hasn't been validated at this
8	time because the procedures aren't finalized.
9	CHAIRMAN DENNING: Now let me see if I
10	understand. Whose evaluation of action performance
11	time was this, the 9.7 minutes for example in this
12	first action? That's the plant says it can be done
13	in 9.7 minutes or somehow you guys did it?
14	MS. MARTIN: No, the plant said that it
15	could be done.
16	CHAIRMAN DENNING: Yes.
17	MS. MARTIN: And they performed a
18	validation of this because it's in Unit 1 that it
19	could be finished in 9.7 minutes.
20	MR. DURKOSH: Okay. This is Don Durkosh
21	from Beaver Valley.
22	The Unit 1 operator action times were
23	validated last fall on the simulator.
24	CHAIRMAN DENNING: Now, why don't you
25	stay there just a second. And that is this action
l	I

(202) 234-4433

1 performance time versus time available, I mean 2 obviously there's extremely small margin between 9.7 3 minutes and 10 minutes. Is that just a conservative 4 value as to we're 99 percent confident that it can 5 be done within 9.7 minutes or what's the difference between the 9.7 minutes and the 10 minutes there? 6 7 Can you respond to that? As was discussed in 8 MR. DURKOSH: Sure. 9 the non-LOCAs presentation from yesterday, the 10 minutes was the assumed operator action time for 10 basically terminating an inadvertent SI basically 11 12 precluding additional safety injection flow into the pressurizer. And they made an assumption of 10 13 14 minutes that operator action could be accomplished. 15 And we confirmed that we were able to do it within 10 minutes. 16 17 MEMBER WALLIS: How much time is available? 18 19 CHAIRMAN DENNING: Ten minutes. And the 20 10 minutes is the rough criterion that you have of 21 you have to do it within 10 minutes, right? 22 MR. DURKOSH: That is correct. And 23 where it says "Time Available/Times used in the 24 analysis," that's the specified time, that's the 25 target time that we're aiming at reaching.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

134

	135
1	MEMBER WALLIS: I'm assuming the time
2	available is longer than 10 minutes.
3	CHAIRMAN DENNING: Well, let me put a
4	hypothesis down and then you can tell me why I'm
5	wrong. Suppose this action in performance time if
6	that was the mean time that it took staff to do
7	this, then the probability of successfully doing it
8	within this time would be about 50 percent. And I'm
9	sure you're not telling me that. What is that 9.7
10	minutes telling me? That's not the mean time to
11	perform it. What is it?
12	MR. SENA: This is Pete Sena again.
13	Dr. Denning, if I can back up slightly.
14	If you recall during the non-LOCA transients for the
15	inadvertent SI, the way we went through that
16	transient was for the design bases assumptions we
17	bias steam generator or correct in pressurizer level
18	an additional 7 percent high from the norm and you
19	put in these various conservatisms.
20	When we go through the design bases
21	transient, the design folks that 10 minute window to
22	get it done. So the operating crews go through the
23	EOPs E zero, ES1.1 for inadvertent SI and all
24	simulator crews went through the scenario and were
25	able to perform that action within the 10 minute
	1

(202) 234-4433

	136
1	time period.
2	CHAIRMAN DENNING: So are you saying the
3	conservatism is within the 10 minutes?
4	MR. SENA: Yes. That's correct. But
5	again when we went through the analysis the way we
6	qualified the acceptability of the analysis was
7	through the qualifications of the downstream piping
8	and the PORVs and not relying on the operator action
9	time. That's how we precluded the event from going
10	from a condition II event to a condition III event.
11	MEMBER WALLIS: Well, what does the 9.7
12	minutes mean?
13	MR. SENA: Well, that is the actual time
14	that the operating crews completed the performance
15	in.
16	CHAIRMAN DENNING: All of them or
17	MEMBER SIEBER: The slowest one or the
18	average?
19	CHAIRMAN DENNING: the slowest one?
20	Yes.
21	MR. SENA: I cannot recall. I believe
22	that might have been the maximum time, but let me
23	get back to you. Let me phone call.
24	MEMBER WALLIS: The average, it isn't
25	very good.

```
(202) 234-4433
```

	137
1	CHAIRMAN DENNING: Right. Other than the
2	fact there's conservatism in 10 minutes, but then we
3	don't have a real good feeling as to how much
4	conservatisms.
5	MR. CARUSO: And let's ask once again if
6	the operators don't get it done until 11 minutes,
7	what does that mean?
8	MR. FREDERICK: This is Ken Frederick.
9	In a realistic sense it probably means
10	that they will be closer to overfill. In the safety
11	analysis world that means that we'll cycle the
12	safety valve a couple of more times.
13	MR. DURKOSH: So Ken gave you the
14	analysis impact. From a simulator perspective and
15	all the training that we have received, I cannot
16	recall ever challenging an overfill condition on
17	this kind of transient. We have streamlined our
18	procedures. We can get to SI termination very
19	quickly within 10 minutes. And normally when we
20	would stop the simulator at that point, we're
21	nowhere close to being overwhelmed.
22	MEMBER MAYNARD: I think the importance
23	of this is whether it ends up being classified as a
24	condition II or condition III event. In reality if
25	they don't get it done at all, you're still covered

(202) 234-4433

138 1 but your safety analysis just goes into a different 2 wonder. But it's whether this is considered a 3 condition II or condition III event. 4 CHAIRMAN DENNING: In this particular 5 case. 6 MEMBER MAYNARD: Right. 7 MEMBER WALLIS: Does this chart come 8 from a FENOC submittal? Is this something that you 9 put together. 10 MS. MARTIN: I'm sorry, what was the question? 11 MEMBER WALLIS: Is this chart taken from 12 the FENOC submittal or is it taken from--13 14 MS. MARTIN: I put this chart together 15 from information that was in a chart that they submitted that had more --16 17 MEMBER WALLIS: I was wondering why we hadn't seen something like this before. 18 19 MEMBER MAYNARD: I thought this was 20 discussed a little bit yesterday. MEMBER WALLIS: Yes, I think it was. 21 But we seem to be seeing it a different way now than 22 23 we did yesterday. 24 CHAIRMAN DENNING: Yes. 25 MEMBER WALLIS: Now it doesn't look so

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	139
1	good.
2	MEMBER MAYNARD: Well, again, I think we
3	had a similar discussion yesterday, though, in that
4	what happens if the operator doesn't get the action
5	done.
6	MEMBER WALLIS: Yes.
7	MEMBER MAYNARD: And you're still
8	covered with your small break LOCA or whatever other
9	analysis is covered. It's whether or not this ends
10	up being a condition II or condition III event. And
11	that's what was discussed with one of the NRC
12	presenters
13	CHAIRMAN DENNING: Well, that certainly
14	is true in that first one. I'm not sure that that's
15	true for everyone of these.
16	MR. DURKOSH: Well, I can address the
17	other ones if you'd like.
18	CHAIRMAN DENNING: Well, why don't you
19	go ahead and do that?
20	MR. DURKOSH: Okay. Sure.
21	So in the case of Unit 2, as I
22	mentioned, an isolating aux feedwater on a tube
23	rupture is a key operator action. Previously the
24	previous analyses used 9.1 minutes. Based on the
25	extensive simulator crew evaluations from, I think

(202) 234-4433

	140
1	2002, they came up with 5.5 minutes as being a very
2	representative time to perform that action. And that
3	was prior to our streamlining of our EOPs.
4	And the action performance time was
5	tabletopped at 5 minute.
6	I do have some data available to me from
7	Unit 1 which I believe it was of the order of less
8	than 5 minutes for Unit 1 on the actual simulator.
9	MEMBER WALLIS: So the now column here
10	is the time used before, pre EPU, is it?
11	MR. DURKOSH: That's correct. It's in
12	the current.
13	MEMBER WALLIS: Okay. So the word "EPU"
14	should disappear from the title.
15	CHAIRMAN DENNING: Yes. And "isolate"
16	is that just an implication as far as offsite doses
17	from the steam generator tube rupture or does it
18	have more dire implications?
19	MR. FREDERICK: This is Ken Frederick.
20	Yes. Each individual action in the tube
21	rupture procedure and the analysis associated with
22	that is trying to minimize overfill of the
23	generator. So for these particular cases
24	CHAIRMAN DENNING: Overfill.
25	MR. FREDERICK: the goal is not to

(202) 234-4433

	141
1	fill up the steam generator.
2	CHAIRMAN DENNING: Okay.
3	MEMBER MAYNARD: Okay. Some of this
4	also is to keep you from wasting water to the
5	ruptured steam generator there?
6	MR. FREDERICK: Right.
7	MR. CARUSO: And what are the
8	consequences of overfilling the generator?
9	MR. FREDERICK: If you overfill the
10	generator, then you lose iodine partitioning, which
11	makes the offsite doses go up.
12	CHAIRMAN DENNING: Okay. I think we're
13	content with this figure.
14	MEMBER WALLIS: I suppose we are. And
15	just a little bit mystified.
16	CHAIRMAN DENNING: Yes.
17	MEMBER WALLIS: If we're just comparing
18	columns and you say you need 2 minutes and you got 2
19	minutes, that doesn't really help me much.
20	CHAIRMAN DENNING: Now, I don't think
21	any of these are identified as important human
22	actions from a risk assessment. Is that a true
23	statement? Do we still have risk people here? Are
24	they
25	MEMBER WALLIS: I think we do.

(202) 234-4433

	142
1	MR. LAUR: This is Steve Laur again, NRR
2	Division of Risk Assessment.
3	I don't know what the relationship
4	between the design bases accident and the PRA is.
5	But certainly cool down the action to cool down
6	is one of the risk important operator actions.
7	I would point out that this a design
8	bases discussion looking at the inputs from Chapter
9	15 and not a risk assessment.
10	CHAIRMAN DENNING: Yes.
11	MR. LAUR: And as I understand it, what
12	the human factors are doing is verifying or
13	validating that basically a go/no go criteria that
14	you can meet the time whereas in the PRA risk
15	assessment they use realistic timing and realistic
16	scenarios and calculated the frequency of core
17	damage sequences. So really it's not a comparable
18	set of information.
19	CHAIRMAN DENNING: Yes. It does,
20	however, give us a feeling as to what significance
21	of margin in the design bases. But I think you're
22	absolutely right, that that's probably the context
23	that we ought to be interpreting this in rather than
24	risk.
25	And I'm ready to move on to the next

(202) 234-4433

	143
1	viewgraph.
2	MS. MARTIN: These are the times that
3	the licensee provided, the data that will be changed
4	due to the EPU setpoints. This is a representation
5	of the data that will change.
6	In the control room there will be no new
7	displays except for as the licensee mentioned
8	earlier, the SI accumulator should be upgraded to a
9	digital display.
10	And all of the setpoints and displays
11	will be normalized so that 100 percent remains a 100
12	percent and the actions don't change due to the
13	renormalization.
14	For the SPDS, these are just the
15	representation of the changes that will come.
16	Nothing major. And this describes the change
17	process that will be implementing the changes that
18	we'll have.
19	For the simulator, as they mentioned
20	previously, both the simulators have been
21	benchmarked with engineering models. And they will
22	be using the systematic approach training to train
23	the operators for the
24	CHAIRMAN DENNING: Thank you.
25	MS. MARTIN: This is just more general

(202) 234-4433
	144
1	information on the simulator changes and how they
2	will cover the training for the simulator changes.
3	Our conclusion is that the licensee
4	addressed the effects of the EPU on human factors
5	and they have taken the appropriate actions to
6	assure that the EPU does not adversely affect the
7	operator actions. And we find these proposed
8	changes to be acceptable because of their commitment
9	to validation on Unit 2 and because of the issues
10	that they've addressed.
11	CHAIRMAN DENNING: Very good. And I
12	think we see no other questions.
13	Thank you very much.
14	And we'll move on to what is the last
15	technical presentation, I think.
16	MR. PETTIS: Good morning. My name is
17	Bob Pettis. I'm with the Division of Engineering.
18	I'm filling in for Greg Galletti who was the
19	technical reviewer for the Beaver Valley EPU. At
20	present he's currently at Vermont Yankee and the
21	license renewal inspection. So I'll do the best I
22	can with what was the basis of his review.
23	As you're aware, the power ascension and
24	testing program is covered under the SRP 14.2.1 and
25	which we've had many discussions over the last
1	I contract of the second s

(202) 234-4433

	145
1	several months.
2	The EPU test program should include
3	sufficient testing to demonstrate that the SSCs will
4	perform satisfactorily at the request power level.
5	The Staff guidance considers the original power
6	ascension test program that was done under the Reg.
7	Guide 1.68 process and the EPU related plant
8	modification, which most of the modifications fall
9	into the area of plant systems branch which they
10	probably have already provided their evaluation to
11	you folks earlier today.
12	Staff guidance acknowledges that
13	licensees may proposal alternative approaches to
14	testing without adequate justification. We've
15	centered around the large transient testing issue,
16	but it's basically any departure from the original
17	test program is reviewed as part of the technical
18	justification for allowing those exceptions.
19	The Staff basis for requiring
20	performance of testing including the large transient
21	testing fell into the Reg. Guide 1.68 document
22	which was basically established to ensure that there
23	was a suitable test program at the original plant
24	licensing phase that covered both the steady state
25	and anticipated transients.
I	I Contraction of the second

(202) 234-4433

	146
1	The objectives of Reg. Guide 1.68 were
2	to familiarize operators with training, confirmation
3	of design and installation of equipment, benchmark
4	of analyses and codes and also to confirm the
5	adequacy of EOPs.
б	One of the main objectives with 1.68 was
7	also to provide necessary assurance that the
8	facility could ge operated in accordance with the
9	design requirements and validate any analytical
10	models.
11	Under the Reg. Guide 168 there were a
12	series of tests that were recommended back in the
13	appendix. And two of those tests that were in the
14	original 1.68 guidance were the so called large
15	transient tests which are under discussion for the
16	new plants today. And both of those tests that were
17	required at original plant construction, again to
18	validate analytical models in performance of a brand
19	new plant.
20	Beaver Valley is planning on performing
21	additional startup tests which were originally not
22	part of the initial startup test program to maintain
23	consistency with that of Unit 2. And I believe from
24	what I could look at the SE, it had to do with the
25	fact of the vintages of Unit 1 versus Unit 2 in
l	I

(202) 234-4433

	147
1	order to have both plants be somewhat the same, the
2	additional tests were included to make that happen.
3	Some of those examples included the
4	secondary system vibration frequency and amplitude
5	test, system expansion and restraint test, turbine
6	plant system tests.
7	Beaver Valley will perform a series of
8	post mod tests for plant design changes associated
9	with the power uprate. A few of those are listed
10	here. Replacement of main instrumentation,
11	modification of HB turbine.
12	With respect to the transient testing
13	issue, Beaver Valley like most others that have come
14	before the agency, have elected not to perform the
15	two large transient tests which are the MSIV closure
16	and the generator load reject. Some of the accepted
17	justification for not performing these tests for
18	some of the previous plants were that the licensee's
19	test program will monitor the important parameters
20	during the power ascension test phase. And most of
21	that occurs within $2\frac{1}{2}$ to 5 percent increments where
22	the licensee monitors the power ascension.
23	Tech surveillance and post mods will
24	confirm the performance and capability of the
25	modified components through tech spec testing,
1	

(202) 234-4433

	148
1	through normal QA and Appendix B type testing.
2	Operating history is a big factor that
3	quite a few applications take credit for, which is
4	listed in the SRP. And they've cited North Anna,
5	Summer and Harris as similar plants that have
6	undergone the uprates.
7	CHAIRMAN DENNING: Normally we tend to
8	challenge the Staff in this particular area. But in
9	all honesty, I don't think that there's any real
10	serious concerns about large transient testing in
11	this particular uprate.
12	MR. PETTIS: Okay.
13	MEMBER SIEBER: Percentage of power
14	increase is really pretty small.
15	MR. PETTIS: I believe this 108 percent
16	on Beaver Valley.
17	MEMBER SIEBER: Yes.
18	MR. PETTIS: But just to maybe reenforce
19	that
20	CHAIRMAN DENNING: And also looking at
21	the lack of major modifications in
22	MR. PETTIS: Yes. I was just going to
23	mention that the technical staff in the balance-of-
24	plant section identified that the balance-of-plant
25	modifications don't warrant the need for the
	I

(202) 234-4433

	149
1	transient testing.
2	So based upon that part of the Staff's
3	review, the Staff concludes that the EPU is
4	satisfactory.
5	CHAIRMAN DENNING: Are there any
6	questions? Thank you very much.
7	MR. PETTIS: Okay. Thank you.
8	CHAIRMAN DENNING: Well you never
9	thought you were going to get away that easy, did
10	you?
11	MR. PETTIS: No.
12	CHAIRMAN DENNING: Okay. Well, I don't
13	hear anybody saying we ought to go to lunch. Let's
14	finish out.
15	MEMBER SIEBER: If you want me to.
16	CHAIRMAN DENNING: Yes. Okay. So,
17	first we'll hear from FENOC management and their
18	wrapup.
19	MR. LASH: Again, I'm Jim Lash, Site
20	Vice President. And I will be brief. I know I'm us
21	and lunch.
22	The past two days I think our team as
23	well as the NRC the presentations have concluded
24	that the reviews have been detailed and there have
25	been no safety issues identified and the Beaver
	I

(202) 234-4433

	150
1	Valley approach is a conservative approach both from
2	an analysis as well as a power escalation that we
3	plan to employ at the station. And I assure you that
4	the implementation of the power uprate will be
5	performed safety and reliability using our plant
б	modification process, our operator training program,
7	our plant procedure modification processes and our
8	adherence to the operating conditions.
9	That completes our presentation unless
10	there are questions from myself.
11	CHAIRMAN DENNING: I don't see any
12	questions. I would like to thank you and your staff
13	for a very good presentation.
14	And as far as the full Committee
15	meeting, we'll give you some more guidance as to
16	what our expectations there. We have two hours
17	there.
18	There was a little bit of duplication
19	between some of the regulatory Staff's presentations
20	and some of your presentation. I think that our
21	guidance will be largely that we're going to focus
22	more on your presentations in a few areas, and some
23	of them are obvious.
24	MR. LASH: Sure.
25	CHAIRMAN DENNING: We're going to want
1	1

(202) 234-4433

	151
1	to certainly focus on the results of the accident
2	analyses. But some other areas that aren't
3	necessarily problems, but which ones has to look at
4	like potential for vibrations and stuff like that.
5	I think your story today was quite good on that.
6	We'll have to abbreviate those.
7	And we'll give you some more guidance as
8	to what the presentations.
9	MR. LASH: I appreciate that. I was going
10	to ask you for that guidance. And I appreciate
11	that.
12	CHAIRMAN DENNING: Yes. I think that
13	rather than attempting to really lay it out at this
14	meeting, Ralph will send you a message that kind of
15	indicates how much time to figure on.
16	MR. LASH: Okay. Good.
17	CHAIRMAN DENNING: And in which areas.
18	MR. LASH: Very good.
19	CHAIRMAN DENNING: But there's nothing
20	missing that I see, you know, that we're going to
21	have to have additional things. It's really a matter
22	of compressing and perhaps eliminating in some
23	areas. And from the Staff's side, I think it's going
24	to be an elimination in a lot of areas of some of
25	the reviews that were of value to us to make sure
	I

(202) 234-4433

	152
1	that we saw that they had been comprehensive in
2	their reviews and to see what their considerations
3	were, but as far as the full Committee is concerned
4	I think would be unnecessarily duplicative.
5	MR. LASH: Okay. Thank you.
6	CHAIRMAN DENNING: Okay?
7	MR. LASH: I do have another question,
8	though.
9	CHAIRMAN DENNING: Yes.
10	MR. LASH: And that is just to confirm I
11	think we've been checking all along. I don't believe
12	we owe the Subcommittee anything?
13	CHAIRMAN DENNING: Let me just see if
14	Ralph agrees.
15	MR. CARUSO: That's correct.
16	CHAIRMAN DENNING: Although it looked at
17	some points like there might be, everything has been
18	provided that we had asked for.
19	MR. LASH: Okay.
20	MEMBER SIEBER: Well, if Ralph has some
21	of this typical
22	MR. CARUSO: I'll be getting a copy of
23	the WRP-2M. I'll send you off that today or
24	tomorrow.
25	MR. LASH: Okay. Good.
1	I

	153
1	CHAIRMAN DENNING: Okay?
2	DR. BANERJEE: And ATWS, I guess, but
3	you have that.
4	MR. CARUSO: And I'll give you a copy of
5	BACCHUS, too.
6	CHAIRMAN DENNING: Yes. Yes.
7	MR. LASH: Very good. I would like to
8	thank the Subcommittee for allowing us to make this
9	presentation of our power uprate proposal.
10	I'd also in your presence like to thank
11	my team, which includes the subcontractors from
12	Westinghouse and Stone & Webster for supporting us.
13	The folks worked very hard. Their preparations were
14	very thorough and I think that bore itself out in
15	their presentations. So I thank the team as well.
16	That's it.
17	CHAIRMAN DENNING: Thank you.
18	MR. LASH: Thank you.
19	CHAIRMAN DENNING: And wrapping up for
20	the Staff?
21	MR. COLBURN: I don't have any slides,
22	so I can do that from here.
23	My name is Tim Colburn again.
24	And I'd just like to thank the
25	Subcommittee also for allowing the Staff to make its

(202) 234-4433

	154
1	presentation.
2	We reviewed the licensee's submittal
3	against all of the areas in the Review Standard RS-
4	001. We had a challenging review. There were
5	numerous requests for additional information we
6	provided to the licensee, but they stepped up and
7	provided information every time we asked them
8	questions that resolved all of our issues.
9	The Staff believes that the licensee has
10	done a very good job in resolving the open items
11	that we have along the review path and also in
12	ultimately demonstrating that they can adequately
13	and safely implement the power uprate of 8 percent
14	for Beaver Valley Units 1 and 2.
15	And, again, look forward to whatever
16	guidance the Committee would like to provide us on
17	preparing for the full Committee.
18	CHAIRMAN DENNING: Very good. Thank
19	you.
20	Any questions or comments from the
21	Subcommittee?
22	Anything else we want to discuss before
23	we
24	MEMBER WALLIS: Well I think we should
25	establish that we don't have any sort of outstanding

(202) 234-4433

	155
1	questions or anything.
2	CHAIRMAN DENNING: Absolutely. Jack, do
3	you want to start off?
4	MEMBER SIEBER: I would indicate that I
5	worked at Beaver Valley for many years. So I don't
6	have a bias one way or another.
7	When I read the application and through
8	the SER, I found the application pretty easy to
9	read, it was straightforward, easy to follow,
10	legible, made sense. On the other hand, that was
11	your second shot at it, I think.
12	In the SER it indicates a lot of
13	requests for additional information that tell me
14	that maybe the first application wasn't real
15	complete.
16	On the other hand, all of that has been
17	remedied and I think the document is in good shape.
18	And I think the modifications that you intend to
19	make on the plant are reasonable. The EPU level
20	that you chose is reasonable because you still
21	remain sort of in the middle of the pack as far
22	experience is concerned. There are a number of
23	plants like yours that operate basically with the
24	same parameters. So you're not blazing ground in
25	that area.

(202) 234-4433

	156
1	I was impressed with the presentations.
2	I think that they demonstrated a good knowledge of
3	analytical methods that were used and what they
4	meant. And I congratulate your staff for that.
5	We had a discussion with some of your
6	folks at the Ginna EPU and I noted that you've been
7	sending people out to see what goes on in these
8	meetings as a way to prepare for this meeting. And,
9	obviously, you learned a lot because this meeting in
10	my opinion went very well. The questions that we
11	asked and that were important were answered well and
12	with the analytical backup and operating experience
13	backup. And I think those factors are important.
14	As far as issues are concerned, I don't
15	see any issues that arise from this application.
16	And I agree with the Staff's conclusions. And when
17	we get an opportunity to vote on Rich's letter which
18	he'll write, hopefully
19	CHAIRMAN DENNING: I'd better. They
20	don't pay me otherwise.
21	MEMBER SIEBER: I personally feel in
22	the affirmative at this time with regard to granting
23	the uprate.
24	So that would be my conclusion.
25	CHAIRMAN DENNING: Thank you.
	1

(202) 234-4433

	157
1	Sanjoy, do you want to comment?
2	DR. BANERJEE: I think that the approach
3	taken is quite conservative and lies within the
4	bound of what has been done before. So I have no
5	particular concerns.
6	I think I'd like to follow up a little
7	bit more on the fate of the boron, which I will do
8	when I look at the BACCHUS report. And a little bit
9	more on the refluxing mod. But other than that, I
10	have no major points. But the applicant doesn't
11	really have to supply any more information at this
12	time.
13	CHAIRMAN DENNING: Let me interject that
14	with regards to the boron, I think there is more
15	work that has to be done here. But not within the
16	context of this EPU. And I have some
17	recommendations that I will to the Staff about how I
18	think that ought to be done there.
19	DR. BANERJEE: Far more generic issues
20	which
21	CHAIRMAN DENNING: Yes.
22	DR. BANERJEE: should not necessarily
23	be a burden on the applicant.
24	CHAIRMAN DENNING: Yes.
25	MEMBER SIEBER: Yes, I agree with that.

(202) 234-4433

	158
1	CHAIRMAN DENNING: Graham?
2	MEMBER WALLIS: Well, I'm glad Jack made
3	the speech, now I don't have to make it. I'm pretty
4	satisfied with what I've heard.
5	I think in front of the full Committee
6	you just have to present the key things and what are
7	the main effects of the EPU as they effect the
8	criteria for reactor safety; how do you meet those
9	criteria. That's really the main issue.
10	Try to avoid a long discussion on PRA
11	because, you know, the changes are so very small
12	they don't effect the ultimate decision.
13	CHAIRMAN DENNING: Okay.
14	MEMBER WALLIS: I think there are some
15	of these questions like the boron thing that we keep
16	coming up with need to be resolved better at some
17	time. But that's not something we should hang on
18	this particular licensee.
19	Thank you.
20	CHAIRMAN DENNING: Tom?
21	MEMBER KRESS: I think it's all been
22	said.
23	CHAIRMAN DENNING: Otto?
24	MEMBER MAYNARD: I think it's all been
25	said, too.

(202) 234-4433

1 CHAIRMAN DENNING: I think it's all been 2 said, too. 3 We're adjourned. 4 (Whereupon, at 12:01 p.m. the meeting 5 was adjourned.) 6			159
2 said, too. 3 We're adjourned. 4 (Whereupon, at 12:01 p.m. the meeting 5 was adjourned.) 6	1		CHAIRMAN DENNING: I think it's all been
3 We're adjourned. 4 (Whereupon, at 12:01 p.m. the meeting 5 was adjourned.) 6	2	said, too.	
4 (Whereupon, at 12:01 p.m. the meeting 5 was adjourned.) 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19 . 14 . 15 . 16 . 17 . 18 . 19 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19 . 12 . 131 . 14 <td>3</td> <td></td> <td>We're adjourned.</td>	3		We're adjourned.
5 was adjourned.) 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19 . 111 . 112 . 123 <td>4</td> <td></td> <td>(Whereupon, at 12:01 p.m. the meeting</td>	4		(Whereupon, at 12:01 p.m. the meeting
6 7 8 9 10 11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	5	was adjourn	ed.)
7 8 9 9 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1	б		
8 9 9 9 10 9 11 9 12 9 13 9 14 9 15 9 16 9 17 9 18 9 19 9 20 9 21 9 22 9 23 9 24 9 25 9	7		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	8		
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	9		
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	10		
12 13 14 15 16 17 18 19 20 21 22 23 24 25	11		
13 14 15 16 17 18 19 20 21 22 23 24 25	12		
14 15 16 17 18 19 20 21 22 23 24 25	13		
15 16 17 18 19 20 21 22 23 24 25	14		
16 17 18 19 20 21 22 23 24 25	15		
17 18 19 20 21 22 23 24 25	16		
18 19 20 21 22 23 24 25	17		
19 20 21 22 23 24 25	18		
20 21 22 23 24 25	19		
21 22 23 24 25	20		
22 23 24 25	21		
23 24 25	22		
24 25	23		
25	24		
	25		

Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee Reactor Safeguards
Subcommittee on Power Uprates

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Wednesday, April 26, 2006

Work Order No.: NRC-982

Pages 1-157

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	MEETING OF THE SUBCOMMITTEE ON POWER UPRATES
6	BEAVER VALLEY POWER STATION EXTENDED POWER UPRATE
7	+ + + + +
8	WEDNESDAY,
9	APRIL 26, 2006
10	+ + + +
11	The subcommittee meeting convened at the
12	Nuclear Regulatory Commission, Two White Flint
13	North, Room T-2B3, 11545 Rockville Pike, at 8:30
14	a.m., Richard B. Denning, Chair, presiding,
15	
16	SUBCOMMITTEE MEMBERS PRESENT:
17	RICHARD B. DENNING
18	, Chair
19	SANJOY BANERJEE
20	ACRS, Consultant
21	THOMAS S. KRESS
22	
23	OTTO L. MAYNARD
24	JOHN D. SIEBER
25	GRAHAM B. WALLIS
	1

		2
1	ACRS STAFF PRESENT:	
2	RALPH CARUSO	
3		
4	FIRSTENERGY STAFF:	
5	BOB BAIN	
6		
7	Stone & Webster	
8	DON DURKOSH	
9		
10	FENOC	
11	BILL ETZEL	
12		
13	FENOC	
14	KEN FREDERICK	
15		
16	FENOC	
17	DAVID GRABSKI	
18		
19	FENOC	
20	JEFF HALL	
21		
22	Westinghouse	
23	NORM HANLEY	
24		
25	Stone & Webster	
1		

		3
1	GREG KAMMERDINER	
2	FENOC	
3	COLIN KELLER	
4		
5	FENOC	
б	JAMES LASH	
7		
8	FENOC	
9	MARK MANOLERAS	
10		
11	FENOC	
12	PETE SENA	
13		
14	FENOC	
15	GEORGE STORLIS	
16		
17	FENOC	
18	MIKE TESTA	
19		
20	FENOC	
21		
22	NRR STAFF PRESENT:	
23	TIMOTHY COLBURN	
24	STEVEN LAUR	
25	GREGORY MAKAR	
I	1	

			4
1	ROBER	RT PETTIS	
2	MARK	RUBIN	
3	THOMA	AS SCARBROUGH	
4	ANGEL	O STUBBS	
5			
	(202) 224 4422	INEAL R. GRUSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005 3701	(202) 224 4422
	(202) 204-4400	WASHINGTON, D.C. 20003-3701	(202) 234-4433

	5
1	A-G-E-N-D-A
2	Mechanical Impacts, M. Testa (FENOC) 4
3	Flow Accelerated Corrosion, D. Grabski (FENOC) . 22
4	Engineering Mechanics Aspects,
5	T. Scarbrough, K. Manoly, John Wu (NRR) 36
6	Steam Generator and Tube Integrity and Chemical
7	Engineering Topics, G. Makar (NRR) 41
8	Balance-of-Plant Systems, A. Stubbs (NRR) 55
9	Probabilistic Risk Assessment, C Keller (FENOC) . 62
10	Risk Evaluation, S. Laur (NRR)
11	Operations and Testing , D. Durkosh 111
12	Human Performance, K. Martin (NRR) 128
13	Power Ascension and Test Program, R. Pettis (NRR)142
14	Concluding Remarks, J. Lash (FENOC) 147
15	Concluding Remarks, T. Colburn (NRR) 151
16	
17	

	6
1	P-R-O-C-E-E-D-I-N-G-S
2	8:33 a.m.
3	CHAIRMAN DENNING: We are now back in
4	session. And this is Wednesday, April the 26th.
5	And we're going to start off discussing mechanical
6	impacts and Mike Testa.
7	MR. TESTA: First I'd like to thank the
8	Committee for the opportunity to speak here today.
9	My name is Mike Testa, I'm the extended power uprate
10	Project Manager for Beaver Valley.
11	A little background on myself. I have
12	23 years of experience at Beaver Valley Power
13	Station. The last five year I've been the uprate
14	Project Manager and I also was on the full potential
15	project from the beginning.
16	Today I'll be discussing the mechanical
17	impacts that the uprate has on Beaver Valley Power
18	Station.
19	Next slide, John.
20	I'll be discussing the steam generators,
21	balance of plant heat exchangers, vibration
22	monitoring program for the secondary piping systems,
23	cooling water systems and flow accelerated
24	corrosion, of which we'll have our program owner
25	come up and speak on that program.

(202) 234-4433

	7
1	Today if there's any questions, I have
2	Jeff Hall from Westinghouse to assist me as well as
3	Bob Bain from Stone & Webster.
4	For steam generator vibration, we looked
5	at the first thing, we used a thermal-hydraulic code
6	Athos that computes the thermal-hydraulic parameters
7	the tubes so the tube bundle would be subjected to.
8	We looked at the vibration potential in
9	the U-bend and tube bundle entrance region. Out of
10	two vibration mechanisms that were considered, were
11	fluid-elastic instability, vortex shedding and
12	random turbulent excitation.
13	And we also looked at tube wear. And
14	that's tube wear in the U-bed radio at the
15	antivibration bar interface.
16	The tube bundles, just the difference
17	between the units now. For Unit 1 we replaced the
18	steam generators. We discussed that yesterday. Model
19	54. Just installed in fact a few weeks ago here.
20	The model 54 was designed for uprate conditions so
21	the stress report, the design report considered
22	uprate.
23	For Unit 2 we have the Series 51 steam
24	generator, of course, which now will see increased
25	flow because the uprate.
	I contraction of the second

(202) 234-4433

	8
1	We reviewed the
2	MEMBER WALLIS: I presume the steam
3	generators is plural and you installed three of
4	them?
5	MR. TESTA: Yes.
6	MEMBER WALLIS: Not just one?
7	MR. TESTA: Yes, correct. That's
8	correct. Yes. Three loop PWR 3 steam generators.
9	We looked at the flow induced vibration
10	effects
11	DR. BANERJEE: What's the difference
12	between the two?
13	MR. TESTA: Between a model 54 and 51?
14	Jeff?
15	MR. HALL: Yes. This is Jeff Hall from
16	Westinghouse.
17	The differences are really many. With
18	respect to the tube material itself the 51M is a 600
19	mm tubing where the 54F is a 690 thermally treated
20	tubing. So issues such as stress cracking are
21	greatly reduced with the new model generator.
22	The support plates are stainless for the
23	new model generator versus carbon steel support
24	plates.
25	The antivibration bars are better

(202) 234-4433

	9
1	designed for the new unit.
2	DR. BANERJEE: What does that better
3	design mean?
4	MR. HALL: The support conditions are
5	more assured. Where for the 51M sometimes you could
6	pick up gaps between AVBs and the tubes, with the
7	newer design with the reduced gaps you have a
8	reduced potential for wear at the AVB sites.
9	DR. BANERJEE: So are these just gaps or
10	are there actually things holding the tubes in
11	place?
12	MR. HALL: Well, you could think of it
13	as a bar that's inserted between the tubes in the U-
14	bend region. It's a flat bar. Essentially it
15	provides a support location to prevent the tube from
16	moving in the out of plane direction.
17	DR. BANERJEE: But they're not broach
18	plates or anything like that?
19	MR. HALL: Well with respect to the
20	support plates. The support plates are in fact
21	broached.
22	DR. BANERJEE: Okay.
23	MR. HALL: Where the 51M is a circular
24	drilled hole.
25	DR. BANERJEE: And the 54F?
	I contraction of the second

(202) 234-4433

	10
1	MR. HALL: The 54F is a broached
2	configuration.
3	MR. KAMMERDINER: Excuse me, Jeff. This
4	is Greg Kammerdiner.
5	Back on the AVBs, the other difference
6	with the 54Fs, there's an extra set of AVBs. 51s
7	have two sets of AVBs, the 54s have three. So
8	there's more support in the upper bundle because
9	there is an extra set of AVBs in the 54.
10	DR. BANERJEE: And the number of tubes
11	are the same?
12	MR. KAMMERDINER: There's approximately
13	400 tubes more in the 54?
14	MR. HALL: Yes.
15	DR. BANERJEE: Four hundred out of how
16	many?
17	MR. KAMMERDINER: The 51Ms have 3,376.
18	The 54s approximately 400 more.
19	DR. BANERJEE: Ten percent more?
20	MR. KAMMERDINER: Yes.
21	DR. BANERJEE: Thanks.
22	MR. KAMMERDINER: Fifty-four stands for
23	54,000 square feet of heat transfer area. The 51, is
24	51,000 square feet.
25	DR. BANERJEE: Thank you.
	1

	11
1	MEMBER WALLIS: So the AVBs limit the
2	amplitude of the oscillation, but they also give the
3	tubes something to rub against, to bang against?
4	MR. HALL: Yes.
5	MEMBER WALLIS: Well, they're good and
6	bad at the same time in a way.
7	MR. HALL: Beg your pardon?
8	MEMBER WALLIS: They're both and bad?
9	MR. HALL: Well, yes. No, they're
10	actually all good.
11	MEMBER WALLIS: Okay. But it says here
12	tube wear at IBBs. There is some rubbing or
13	something going on?
14	MR. HALL: Yes. And that's primarily a
15	result of the fit up between the tube and the bar
16	itself. If you have the ability to move back and
17	forth, well the tube is going to move back and
18	forth. But if you're holding it sufficiently so
19	that you don't have relative motion, well then you
20	don't get wear.
21	MEMBER SIEBER: The AVBs go in the U-
22	bend area, not below?
23	MR. HALL: That's correct.
24	MEMBER SIEBER: The old ones sometimes
25	they weren't long enough to catch all the tubes. So
Į	

(202) 234-4433

	12
1	you would end up with a tube that's not supported.
2	MR. HALL: Yes. And actually in both
3	cases, the 51 in particular, there are some tubes in
4	the U-bend region that are unsupported.
5	MR. TESTA: And actually, that's a lead
6	in for the next bullet where we looked at go
7	back, John.
8	Yes for Unit 2 again for the series 51,
9	unsupported U-bends were reviewed for increased
10	fatigue. And because the analysis that was
11	performed, there was six tubes that we had to take
12	out of service. And we did that.
13	Okay. As far as the next slide here, I
14	just wanted to touch on the steam dryer. Again,
15	look at the comparison between the PWR and the BWR.
16	Just a little description on the secondary steam
17	dryers on the steam generators. Now the main
18	difference is between the 51 and the 54 is that the
19	51s have a two tier arrangement for the secondary
20	dryers. I have sketch behind this to show that,
21	whereas the model 54 has a single tear arrangement.
22	It's better illustrated here. Again,
23	with the 51 they have two tiers of secondary steam
24	dryers. You can see the lines that are drawn. The
25	steam comes up and enters into the side region of

(202) 234-4433

	13
1	the secondary dryer and then flows up, comes up
2	through and then has a natural progression up
3	through the secondary dryers.
4	The flow velocity in that region is on
5	the order of 3½ to 4 feet per second. And you can
6	see the vicinity of the nozzle region there's no
7	structural components within the vicinity of the
8	nozzle.
9	CHAIRMAN DENNING: I realize that later
10	you're going to talk a little bit about experience.
11	But could you tell us at this point how much
12	experience is there with the 51 at the conditions
13	that you're now going to go to?
14	MR. HALL: With respect to these
15	conditions there's an immense amount of experience.
16	These steam dryers, this configuration is used in a
17	multitude of steam generator models, not just the
18	51s. The D models, D2, D3, D4, D5 all have a very
19	similar arrangement. 54F a very similar
20	arrangements. The Fs all have a two tier
21	arrangement.
22	The velocities coming out of that area
23	are all pretty much of the same order of magnitude.
24	I mean, a couple of feet per second one way or the
25	other, but they're all essentially the same.
	I

(202) 234-4433

	14
1	Totally different orders of magnitude than some of
2	the boiling water reactor dryers.
3	MEMBER SIEBER: Well, the one thing you
4	don't have is a 180 degree change of direction.
5	MR. HALL: And all the consequences of
6	that with respect to the turbulence that you can
7	get, yes. It's all pretty much it comes out of the
8	steam dryers and it continues on right up to the
9	steam nozzle.
10	MEMBER SIEBER: The velocities are
11	pretty low. They're like
12	DR. BANERJEE: Can you stay there. Can
13	you go back to that slide?
14	MR. TESTA: That one?
15	DR. BANERJEE: No, no, no.
16	MEMBER WALLIS: The velocities?
17	DR. BANERJEE: Yes.
18	MEMBER WALLIS: The one with the
19	velocities, 107.
20	DR. BANERJEE: The velocities.
21	MEMBER WALLIS: That's it.
22	DR. BANERJEE: That's it.
23	MEMBER WALLIS: There's no history of
24	problems with these dryers, I understand?
25	MR. TESTA: That's correct. In fact here

(202) 234-4433

	15
1	from this slide here it was to compare, again the 51
2	to the BWR. You can see that they have low
3	velocities up through the dryers at $3\frac{1}{2}$ to 4 feet per
4	second where the BWR was on the order of 100 feet
5	per second. And there have been no operational
б	issues reported in the 51s or the 54s.
7	We had a backup slide just to show the
8	operating experience.
9	DR. BANERJEE: Can you, please?
10	MR. TESTA: Sure. Okay. So for
11	example, you know, well Beaver Valley which is going
12	to operate at 2910. The difference with the model
13	54 one tier secondary dryer in the Unit 2, with two
14	tier you can see the comparison to the other plants
15	that utilize the similar secondary steam dryer
16	arrangement.
17	MR. HALL: Yes, but these are not the
18	only plants to have this particular dryer
19	arrangement, too. There's many more.
20	MEMBER SIEBER: As far as megawatt
21	production, Beaver Valley and North Anna are about
22	the same so the operating experience from North Anna
23	at that power level, it's got a fair amount of time
24	behind it.
25	MR. TESTA: That's correct.
	I

(202) 234-4433

	16
1	MEMBER SIEBER: So they aren't really
2	breaking any new ground here.
3	MR. TESTA: In fact, North Anna is on
4	the list here where they're operating at 2905.
5	MEMBER SIEBER: Got them beat by five?
6	MR. TESTA: Yes. Okay. Okay, John.
7	No, go forward.
8	Now if there's no other questions on the
9	steam generator, we also looked at balance of plant
10	heat exchangers. From the uprate looking at the
11	heat balance and the flow parameters that the
12	equipment would be subjected to. We looked at the
13	feedwater heaters and the feedwater heaters will
14	operate within the design capacity.
15	The moisture separator reheaters, we
16	went back to the vendor. We had a specific analysis
17	performed to show acceptability under the increased
18	flows.
19	As we mentioned yesterday, one of the
20	modifications that we're going to do is on the
21	condenser. Now our Unit 1 condenser was retubed a
22	while back. And at that time the condenser was
23	staked. Prior to the power escalation we will be
24	taking the condenser in order to limit the tube
25	vibration.
	1

(202) 234-4433

17 1 Vibration monitoring. This is a 2 monitoring program for the secondary side for the 3 balance of plant piping. We're going to monitor the 4 secondary systems pre and post-EPU. This is going 5 to include baseline walkdowns on each of the plants which we've already done. We have documented 6 7 walkdowns. Areas of interest where there's level of 8 9 vibration that causes us to pay particular attention as we escalate power, we've identified those 10 11 locations. 12 All this is within the guidance of ASME OM Part 3 that prescribes the walkdowns or the 13 14 acceptance criteria that could be used and the 15 method of performing this program. CHAIRMAN DENNING: Could you help me a 16 17 little bit on a walkdown where you're looking for vibration, what does one do quantitatively there? 18 19 MR. TESTA: Okay. What we do there is, 20 for example, we came up with a screening criteria. 21 We're looking at the displacement I'd say on the 22 order of an eighth of an inch. And we'll walk it 23 down to see if there's any signs, any noticeable 24 signs of vibration. And we basically have 25 documented from the plant, basically going from say

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	component to component, basically identifying if we
2	have vibration levels that would exceed that limit.
3	CHAIRMAN DENNING: Visually?
4	MR. TESTA: Visually. That's correct.
5	I have Bob Bain from Stone & Webster.
6	If you'd like to add?
7	MR. BAIN: Yes. This is Bob Bain from
8	Stone & Webster.
9	We followed the basic guidance of OM3 as
10	Mike says. The first test criterion we used was
11	visual on displacement of an eighth of an inch,
12	which is within the guidance provided in OM3. They
13	allow for visual measurements using simple devices
14	such as rulers, hand held type mechanical simple
15	devices like pencils, literally. And an eighth of
16	an inch peak to peak displacement is easily visual
17	on a focused walkdown. And as Mike says, these
18	walkdowns were basically focused.
19	Over the last three or four years,
20	actually, we took a schematics and basically
21	connected the dots from equipment. So from pump to
22	valve, valve to vent or drain, vent or drain to
23	branch lines. So it was a focused walkdown looking
24	at the piping, the components as well as the support
25	hardware.
	1

(202) 234-4433

	19
1	And any observation, again eighth of an
2	inch was a fairly stringent criteria. Easily
3	visually noted. That would get it onto this list of
4	interest, as Mike identified.
5	And we followed up that list of interest
6	literally over the last three or four years for both
7	units.
8	CHAIRMAN DENNING: Is there quantitative
9	stuff that one can do? I mean, are there instruments
10	that you can go and put it up against the machine?
11	I mean, the equipment
12	MR. TESTA: Yes, there are.
13	CHAIRMAN DENNING: and have a measure
14	of not only the displacement but the frequency?
15	MR. TESTA: Yes. There's a portable
16	device, hand held accelerometers. And, again, we
17	conduct these walkdowns. We use the experienced
18	engineers. And if there's any question about the
19	acceptance of the level of vibration, then we will
20	use accelerometers to record the displacement and
21	the frequency.
22	MR. BAIN: Yes. This is Bob Bain again.
23	And this hand held equipment that Mike
24	references actually gives you data in displacement
25	or velocity or acceleration. And OM3 allows you to
	I contract of the second se

(202) 234-4433
	20
1	do more detailed evaluations if required using
2	velocity or displacement data. So the hand held is
3	a good device to give you the next level of detail
4	quantitatively.
5	MR. TESTA: Okay. Just the last mention
6	here, large equipment like the reactor coolant pump
7	and the turbine have continuous monitoring
8	available. So we'll be monitoring that as we
9	escalate power.
10	Okay, John.
11	Now the next area we looked at is
12	cooling systems. The bottom line here is that the
13	systems remain capable of dissipating heat for
14	normal shutdown and accident conditions.
15	WE looked at these following systems,
16	the flows were adequate without modification:
17	The river water system. Beaver Valley 1
18	the equivalent system service water for Unit 2;
19	The component cooling water;
20	Residual heat removal, and;
21	The safety injection containment
22	depressurization system which uses the recirc spray
23	heat exchangers.
24	Next slide.
25	Spent fuel cooling. We looked at spent
	1

	21
1	fuel cooling. As part of the project or the overall
2	initiative, which we started we said five to six
3	years ago, we looked at spent fuel cooling. And
4	there was an amendment that we put in where we
5	looked at the offload time. At that time we
6	performed the analysis to incorporate the uprate
7	decay heat loads.
8	MEMBER KRESS: Do you have dry casks on
9	the site?
10	MR. TESTA: Not at this point, no.
11	Still use the fuel pool.
12	MEMBER WALLIS: I think I remember your
13	burnup is the same as it was before essentially, is
14	that right?
15	MR. TESTA: Yes, I believe so. Yes.
16	The last area to touch on here is the
17	auxiliary feedwater system. The auxiliary feedwater
18	is fed from the condensate storage tank. The
19	condensate storage tank is sized for 9 hours of hot
20	standby conditions. And with the uprate or the
21	increased decay heat, we've revised the tech specs
22	to require 130,000 gallons useable volume for each
23	of the tanks for both Unit 1 and Unit 2.
24	The other thing with the aux feedwater
25	system, there were two accidents: The feedline

(202) 234-4433

	22
1	break and loss of normal feed that required us
2	crediting two aux feed pumps.
3	CHAIRMAN DENNING: I didn't understand
4	with regards to the tech spec limit and the 130,000
5	gallons. What do you do physically to assure that?
6	MR. TESTA: Basically we have the
7	calculated tank volume and maintain a level on the
8	tank.
9	CHAIRMAN DENNING: So it's a level on
10	the tank that has to be assured now that it's
11	slightly higher than it was previously?
12	MR. TESTA: Yes. Yes.
13	CHAIRMAN DENNING: Gotcha.
14	MR. DURKOSH: This is Don Durkosh from
15	Beaver Valley Operations.
16	Basically we obtained curves that show
17	based on indications available to us what the volume
18	is. And on every shift we have minimum levels that
19	we're required to verify on a shiftly basis. So
20	that's how we maintain our minimum tech spec values.
21	MEMBER MAYNARD: You didn't make any
22	modifications to the tank. You're just changing the
23	level setpoint there.
24	MR. TESTA: That's correct. That's
25	correct.
	I contract of the second se

(202) 234-4433

	23
1	MR. CARUSO: Why would you not normally
2	keep the tank full?
3	MEMBER SIEBER: It goes up and down. You
4	have to have surge volume.
5	MR. TESTA: To answer that question we
6	normally do. As part of the review of our L5 logs
7	we typically, our levels are high. What we try to do
8	is basically clear the alarms. We have a low alarm
9	that indicates we're approaching a tech spec limit.
10	And normally we have a high alarm very close to the
11	overflow. So we try to maintain it within that
12	range so we have no alarms in the control room.
13	MR. TESTA: Okay. Again, just to finish
14	this out here, there are two accidents that required
15	us to credit two pumps. This was already in place
16	for Unit 2. And with the revised analysis Unit 1
17	will now require two pumps also for these two
18	accidents. It's basically accounting for the
19	increased decay heat plus the addition of the
20	cavitating venturies, which puts a little more
21	system resistance into the system.
22	CHAIRMAN DENNING: And that's two out of
23	how many?
24	MR. TESTA: Two out of three.
25	CHAIRMAN DENNING: And it had been one

(202) 234-4433

	24
1	out of three?
2	MR. TESTA: It had been one out of
3	three, just for Unit 1. Unit 2 was already
4	crediting two pumps.
5	Okay. Well, this completes my part of
6	the discussion. I have Dave Grabski here, which
7	he's our flow accelerated corrosion program owner,
8	and he'll talk about the program.
9	Thank you.
10	MR. GRABSKI: As Mike said, I'm Dave
11	Grabski. I am the FAC program owner.
12	A little background. I'm a FirstEnergy
13	employee. I worked at Beaver Valley and before that
14	Shippingport Atomic Power Station for a combined 26
15	years.
16	I've been the FAC program owner since
17	the early '90s.
18	Next slide.
19	The first bullet, the EPU effects
20	evaluated using CHECWORKS. So we've taken the
21	revised heat balance diagram parameters and using
22	the CHECWORKS models determined analytically what
23	we'd expect as far as our wear rates. With most
24	uprates, we've seen an increase in velocity and
25	temperature. And those two factors play differently

(202) 234-4433

	25
1	with different systems. Some systems we've seen a
2	decrease in our wear rates, and others we've seen a
3	slight increase.
4	The feedwater and extraction steam
5	systems, those systems had a decrease. Systems like
6	the feedwater heater drains, condensate have
7	increased. Again, because of the play of those
8	different parameters: Velocity and temperature
9	mainly.
10	In preparation for the uprate we've
11	actually replaced two extraction steam Ts because
12	of the increase in our SMR relief valve set point
13	that has cut into our margin between our measured
14	wall thickness and our required wall thickness.
15	Extraction steam is one system at Beaver Valley that
16	does wear due to the flow accelerated corrosion
17	mechanism.
18	CHAIRMAN DENNING: So there wasn't a
19	materials change, it was just a thickness change?
20	MR. GRABSKI: We have upgraded the
21	material to a chrome-molly. Basically anytime we
22	make piping replacements at Beaver Valley, we'll
23	upgrade to a chrome-molly. Chrome-molly is much
24	more resistent to this particular degradation
25	mechanism.
1	

(202) 234-4433

26 1 Based on the engineering evaluation 2 we're going to focus on a few more systems. Well, 3 not more systems, but more components within those 4 systems, on those systems that we expect an increase 5 in velocity. Mainly our moisture -- or I should say the heat drain system from our 4th to 5th point 6 7 heaters, we had a significant velocity there. So we're going to focus examinations in the next outage 8 9 there to get a baseline where we're at. And in the 10 future qo back to these areas to see how they're 11 doing. 12 And there's some components at Beaver Valley 1 and 2 in the 4th point heat drain line. 13 14 It's showing you in the next to the last column 15 there some of the wear rates we saw before the 16 outage. Very low. And heater drains is a low wear 17 system at Beaver Valley. But we do see some 18 increases based on the uprate. 19 DR. BANERJEE: Do you have a diagram 20 showing where these components are in the steam 21 cycle? 22 MR. GRABSKI: I don't have --23 DR. BANERJEE: I have no idea where the 24 four point heat is or what -- I imagine that it's 25 extraction --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	MEMBER WALLIS: This is a preheater.
2	DR. BANERJEE: Preheater?
3	MR. GRABSKI: Yes. We have six
4	MEMBER WALLIS: Well, these aren't
5	safety concerns anyway. These are just
6	embarrassments for you if you break a pipe, it might
7	be dangerous for anyone who is around the pipe.
8	MR. GRABSKI: It could be a personnel
9	issue.
10	MEMBER WALLIS: It's dangerous for your
11	people, but it's not a nuclear
12	MR. GRABSKI: That's correct. This is a
13	non-safety related piping systems.
14	MR. STORLIS: My name is George Storlis.
15	I'm a FENOC employee.
16	An in Operations I can get a little bit
17	of perspective to what the feed heater string is.
18	The feed heater string is compromised of six feed
19	heaters in line with the condensate feed system to
20	preheat the feed. The fourth point is fourth in
21	line, the sixth point being the lowest energy or
22	lowest pressure system and the first point being an
23	extraction steam of highest pressure off of the
24	turbine cycle. And the fourth point is in route to
25	that.

(202) 234-4433

28 1 And we're talking pressures, 2 temperatures that compliment the feedwater heat up 3 that approaches the 440 degrees or so when it 4 ultimately is arriving at the steam generators. So 5 it takes a portion of the energy from the turbine cycle and uses that to preheat the steam and the 6 7 shelf tube arrangement. And that's the basics of it. If there's 8 9 any questions, please ask. 10 DR. BANERJEE: Is the steam wet at this point? 11 12 MR. STORLIS: Yes. Yes. DR. BANERJEE: What's the quality? 13 14 MR. STORLIS: Without having the curves 15 and the diagram in front of me, I can't speak to 16 that, that specific quality. 17 MR. KAMMERDINER: Probably some in the 90s. 18 19 MEMBER WALLIS: Pretty high. 20 MR. TESTA: This is Mike Testa. 21 We have a heat balance diagram, maybe 22 that would help. 23 DR. BANERJEE: Does it show quality at 24 various points, extraction points? 25 MEMBER SIEBER: That chart would work.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	DR. BANERJEE: I can't do it in my head.
2	MEMBER WALLIS: And the problem is the
3	wetness, presumably.
4	DR. BANERJEE: Yes, the wetness.
5	MEMBER WALLIS: But it's a few percent.
6	It's not a humongous amount or is it designed to
7	extract in a way that it separates the wall, and it
8	would be wetter, wouldn't it?
9	MR. GRABSKI: Actually the steam quality
10	is fairly low.
11	MEMBER WALLIS: That's in the turbine.
12	But when you extract, don't you sort of have
13	something that's centrifugally separates or anything
14	like that?
15	MR. GRABSKI: We have steam traps and
16	orifices to pull off the moisture.
17	MEMBER WALLIS: It's an oxidate or
18	whatever it is that comes out, ends up in some
19	condensate where does it go?
20	MR. GRABSKI: It varies with the system
21	that might be wearing. If you're feedwater's
22	wearing, you're going to get it in the steam
23	generators on secondary side. A lot of the heater
24	drains go to a receiver tank.
25	MEMBER WALLIS: The crude appears in the

(202) 234-4433

	30
1	steam generator. Where does the stuff that's worn
2	away from the pipe?
3	MR. GRABSKI: Again, depending on what
4	system it's in. The heat drains, there's a heat
5	drain receiver tank that it could filter out at. We
6	do have do you have something?
7	MR. HANLEY: Yes. Norm Hanley from
8	Stone & Webster.
9	All the secondary side condensate and
10	extraction steam heater drains all recovered. Some
11	of it cascades back to the condenser, some of it's
12	pumped forward to the feed pump suction. So it is
13	all recovered.
14	MEMBER WALLIS: Isn't a lot of it
15	dissolved and then it appears somewhere else in an
16	MEMBER SIEBER: Heater drain and steam
17	generator.
18	MEMBER WALLIS: In these steam
19	generator?
20	MEMBER SIEBER: Yes. There is a blow
21	down line on the steam generator.
22	MR. HANLEY: Right. There's a blow down
23	in the steam generator. They also sample the
24	secondary side.
25	MEMBER MAYNARD: Well, do you have
1	1

(202) 234-4433

	31
1	condensate polishers? Do you run it through
2	MEMBER SIEBER: Only on Unit 2.
3	MEMBER MAYNARD: Only on Unit 2.
4	CHAIRMAN DENNING: Can you comment on
5	the accuracy of CHECWORKS? I mean, obviously, it's
6	not the four significant figures that's in that
7	table.
8	MR. GRABSKI: Basically the models will
9	improve with the number of examinations you do on
10	the system. It correlates with the data you have.
11	So without any data, I would take it as just a
12	ranking. And that's what we use it for, as a
13	ranking. But actually in our extraction steam which
14	we examine the heck out of, they actually correlate
15	pretty well once you get enough data in there.
16	MEMBER MAYNARD: I take it you also use
17	industry experience what's found at other places
18	MR. GRABSKI: Oh, absolutely. Our
19	examinations are the backbone. But certainly ops
20	experience, trending of data at our plants and then
21	that's all factored in.
22	DR. BANERJEE: Is there any increased
23	erosion due to the wet steam, the velocities being
24	somewhat higher or
25	MR. GRABSKI: Yes. That's in the
1	1

(202) 234-4433

	32
1	CHECWORKS algorithm higher velocity results in a
2	higher wear rate.
3	DR. BANERJEE: Due to erosion or is it
4	some erosion/corrosion?
5	MEMBER WALLIS: I suspect it includes
6	both erosion
7	MR. GRABSKI: The FAC takes in the both.
8	That's the mechanism.
9	DR. BANERJEE: But does it also depend
10	does this depend on the wetness as well?
11	MR. GRABSKI: Absolutely. That's a
12	factor in the algorithm.
13	DR. BANERJEE: You feed this stuff into
14	CHECWORKS and out comes these numbers?
15	MR. GRABSKI: Yes.
16	DR. BANERJEE: Hopefully.
17	MR. GRABSKI: Hopefully, yes.
18	DR. BANERJEE: Yes. Who developed this
19	thing?
20	MR. GRABSKI: EPRI developed CHECWORKS.
21	And it's the industry
22	DR. BANERJEE: Probably validated
23	against data?
24	MR. GRABSKI: They call it an empirical
25	study
l	I Contraction of the second

	33
1	DR. BANERJEE: I see.
2	MR. GRABSKI: based on lab and actual
3	events in the industry.
4	MEMBER KRESS: There's sort of a
5	Bayesian update. You go in and inspect and you
6	compare the inspection findings, and then you adjust
7	CHECWORKS to better agree with your findings?
8	MEMBER WALLIS: Learns about your
9	MEMBER SIEBER: Putting your own data
10	MR. GRABSKI: Exactly. As I said, they
11	call it a pass one without any data. Once you get
12	enough data in there, it correlates itself. And you
13	have a line correlation factor, it's called.
14	DR. BANERJEE: So the predicative
15	capability is always in question of these types of
16	things? It's only as good as your database?
17	MEMBER SIEBER: By the time you are
18	ready to decommission the plant, it will be very
19	DR. BANERJEE: Yes, it'll be excellent
20	by them.
21	MEMBER KRESS: Or by the time you're
22	ready for a license extension.
23	DR. BANERJEE: Extrapolation is always
24	dangers in these sorts of things. There's no theory
25	or model there, right?

(202) 234-4433

	34
1	MR. GRABSKI: Well though EPRI calls it
2	a model and it certainly does take into
3	consideration velocity, temperature
4	MEMBER MAYNARD: And geometry, right?
5	MR. GRABSKI: And geometry. Exactly.
6	But again, it's as good as the data you're putting
7	into it at the point.
8	DR. BANERJEE: Let's imagine that we
9	take this today with the data you've got and try to
10	predict what will happen two years from now. Has it
11	ever been tested in this mode to show whether it
12	gives a reasonable prediction?
13	MR. GRABSKI: Yes, I think it has.
14	DR. BANERJEE: It does?
15	MR. GRABSKI: Yes, it does. It
16	certainly. Yes. It'll give you
17	MEMBER MAYNARD: Isn't the main purpose
18	of it, though, to predict areas where you may have
19	high wear rates and that you inspect those and that
20	you put those in your trending program? And you're
21	actually using more actual trend data than you are a
22	prediction from the program as to when that line
23	might break?
24	MR. GRABSKI: Exactly. It gives you the
25	places to look first. The highest susceptible line.
	1

(202) 234-4433

Í	35
1	And I think it does a very good job of that. But
2	once you get into a qualitative or quantitative
3	measure, that's when you need to get some data in
4	there to verify what the model is telling you.
5	You may be right on the money, but again
6	once you get more and more data in there, you
7	correlate the model and then it becomes a very good
8	predictive tool.
9	MEMBER MAYNARD: Yes. Most of the plants
10	do a lot of measuring of a large number of areas
11	where they measure and periodically do that so they
12	can see what's trending.
13	MR. GRABSKI: Exactly.
14	MEMBER MAYNARD: It's not just using a
15	computer program to
16	MR. GRABSKI: No. Your data proves it,
17	but it's a great start because it's going to tell
18	you that this T is more susceptible than this T,
19	elbow to elbow.
20	MEMBER MAYNARD: But again that's the
21	way the nuclear safety issue other than if it could
22	result in an unnecessary plant transient or it may
23	be a personnel safety, but from a nuclear safety
24	accident it's not.
25	MR. GRABSKI: That's true.
	I

(202) 234-4433

	36
1	MEMBER SIEBER: And if you take a big
2	fitting like an elbow or a T, a single measurement
3	is inadequate. You have to basically put a grid on
4	that fitting.
5	MR. GRABSKI: Right.
6	MEMBER SIEBER: Take a lot of
7	measurements of different positions. Because the
8	wear will be local to someplace where there is an
9	eddy in the flow stream.
10	MR. GRABSKI: That's correct.
11	DR. BANERJEE: Have you seen any erosion
12	in the high pressure stages?
13	MR. GRABSKI: Excuse me?
14	DR. BANERJEE: Did you see any erosion
15	at all in the high pressure stages?
16	MEMBER SIEBER: Main feed?
17	DR. BANERJEE: Yes.
18	MR. GRABSKI: Some feedwater, we have
19	very low wear rates there. In our main steam coming
20	off the steam generators, we haven't seen any wear
21	DR. BANERJEE: What about the turbine
22	plates, any erosion there, high pressure plates?
23	MR. GRABSKI: I don't know. That's not
24	my expertise on the turbine.
25	MEMBER SIEBER: But generally speaking

	37
1	DR. BANERJEE: You should have any.
2	MEMBER SIEBER: what erosion you see,
3	you see at the very the exhaust end of the
4	turbine. And if your moisture separators and
5	everything are working properly, you don't see
6	hardly anything at all.
7	DR. BANERJEE: Not in nuclear plants,
8	but some fossil plants you do because of the oxide
9	MEMBER SIEBER: Well, generally the
10	fossil plants are better than the nukes because they
11	operate at a higher temperature.
12	MR. GRABSKI: That's true.
13	DR. BANERJEE: Yes. But the oxide flakes
14	come and hit the high pressure stages sometimes,
15	depending on how you cycle the plant. But you don't
16	see any so the higher velocity doesn't give you a
17	problem?
18	MR. GRABSKI: Again, I'm not a turbine
19	guy.
20	DR. BANERJEE: Right.
21	MEMBER WALLIS: It's not a nuclear
22	problem. It's not a nuclear safety problem. Just
23	expensive if you have to fix the turbine.
24	CHAIRMAN DENNING: I think we're
25	completed them, yes?
	I Contraction of the second

	38
1	MR. GRABSKI: Yes, unless you have any
2	questions.
3	CHAIRMAN DENNING: I think we're good.
4	Thank you.
5	MR. GRABSKI: Thanks.
6	CHAIRMAN DENNING: And I think NRR now
7	is going to present in the same basic area.
8	MEMBER WALLIS: They're going to defend
9	CHECWORKS, are they?
10	CHAIRMAN DENNING: You can go ahead.
11	MR. SCARBROUGH: Thank you.
12	Good morning. I'm Tom Scarbrough in the
13	Division of Component Integrity of NRR. And with me
14	today is the Branch Chief in Division Engineering,
15	Kamal Manoly and Dr. John Wu.
16	We're going to talk about the
17	engineering mechanics aspects of the review. In
18	terms of the components evaluated, they included the
19	reactor vessel, the internals, the nozzles,
20	supports, control rod drive mechanisms, the steam
21	generator, reactor coolant pumps, the pressurizer
22	and the supports, nuclear steam supply system and
23	balance of plant piping systems and supports and
24	safety related pumps and valves. Motor operated
25	valves, air operated valves and safety relief

(202) 234-4433

	39
1	valves.
2	The scope of the review included the
3	impact of the EPU conditions due to changes in
4	system pressure, temperature and flow rate.
5	The review of the licensee's evaluations
6	of EPU conditions including the analytical
7	methodology, loads, flow-induced vibration,
8	calculated stressed and cumulative fatigue usage
9	factors, acceptance criteria, ASME codes and
10	addenda, functionality impact of EPU on Generic
11	Letter 89-10 for motor operated valves and Generic
12	Letter 95-07 for pressure locking and thermal
13	binding of power operated valves.
14	The license's EPU evaluation does
15	incorporate an improved leak before break criterion
16	that allows elimination of postulated primary loop
17	pipe breaks in the original design basis analysis.
18	And after elimination of the primary coolant loop
19	breaks by the application of the leak before break
20	criterion, the existing design bases analysis for
21	NSSS piping and components are bounded for the EPU
22	evaluation considering postulated smaller branch
23	line pipe breaks.
24	The specific areas where the Staff
25	requested additional information included the main

(202) 234-4433

steamline and feedwater line flow-induced vibration 2 due to increased flow rate, quantitative analysis 3 and results for the Beaver Valley Unit 1 replacement 4 steam generator, calculation of cumulative usage 5 factors for the vessel flange closure stubs, considering 10,400 cycles as opposed to the 18,300 6 cycles of the design bases.

With respect to flow-induced vibration 8 in particular, the main steamline and feedwater 9 piping are instrumented at critical locations to 10 monitor vibration levels at current rate of power 11 12 and during power ascension up to full authorized EPU The vibration monitoring and the power level. 13 14 collective data will be evaluated according to ASME 15 Standard and Guide 2003 Part 3.

The flow-induced vibration effect on the 16 17 steam separators and the steam generators is expected to increase somewhat for EPU conditions. 18 19 Based on the licensee's response to the request for 20 additional information to the request for additional 21 information, the potential for flow-induced 22 vibration of the steam separator is minimized due to 23 its high stiffness resulting in a high natural 24 frequency combined with a low velocity. And we 25 heard about it, it's about 4 feet per second or so

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

7

(202) 234-4433

40

	41
1	of passing flow. And past inspection performed for
2	steam generator, moisture separators on operating
3	PWR, pressurized water reactor plants have found no
4	indications due to flow-induced vibration fatigue.
5	The flow-induced vibration on the U-bend
6	tubing and the steam generators is within allowable
7	limits. In other words, the fluid-elastic
8	instability ratio was maintained less than the limit
9	of 1.0. And peak stresses are less than the material
10	endurance limit.
11	There were some pump and valve
12	modifications to accommodate the EPU operations.
13	These are relatively minor considering the 7 percent
14	EPU power uprate. The charging and safety injection
15	pumps have been modified to improve their high head
16	performance and flow rate.
17	The tolerance settings for the main
18	steam and safety valves and reactor coolant
19	pressurizer safety valves have been adjusted.
20	New trim was installed in the feedwater
21	regulating valves in Beaver Valley Unit 1 and those
22	valves were replaced at Beaver Valley Unit 2.
23	Fast acting main feedwater isolation
24	valves were installed in Beaver Valley Unit 1
25	similar to those in Unit 2.
	1

(202) 234-4433

	42
1	And based on the Staff's review our
2	conclusion is that the calculated stresses and
3	accumulate usage factors in the NSSS and balance of
4	plant piping and components are bounded by the
5	original design basis analysis with the application
6	of the leak before break technology, such that the
7	postulated primary loop pipe breaks are eliminated.
8	The potential for flow-induced vibration
9	is not increased for steam separators and the steam
10	generator tubes at EPU conditions.
11	The main steamline and feedwater line
12	piping is monitoring to remain within the allowable
13	limits in accordance with ASME OM3 code guidance.
14	The NRC Staff reviewed the licensee's
15	assessments related to functional performance of
16	safety related valves and pumps at Beaver Valley for
17	EPI conditions and based on that review the licensee
18	has adequately addressed the EPU effects on safety
19	related pumps and valves. And as a result, the
20	Staff concludes that the licensee has demonstrated
21	that the safety related valves and pumps will
22	continue to meet their NRC regulatory requirements
23	during EPU operation at Beaver Valley.
24	So we'd be happy to answer any questions
25	you might have.
	I contract of the second se

(202) 234-4433

	43
1	CHAIRMAN DENNING: I think this is
2	pretty clean. Any questions? Okay. Thank you.
3	MR. SCARBROUGH: Thank you.
4	MEMBER WALLIS: Are we gaining time
5	here?
6	CHAIRMAN DENNING: Oh, yes, we're
7	gaining time.
8	We're going to go ahead with the next
9	presentation.
10	An NRC presentation. By Gregory Makar.
11	MR. MAKER: Good morning. I'm Greg
12	Makar. I am in the Division of Component Integrity.
13	And my branch works on issues of steam generator
14	integrity and other chemical engineering topics.
15	And this morning the Staff reviews in five areas:
16	Low accelerate corrosion, steam generator tube
17	integrity, the steam generator blowdown system,
18	chemical and volume control system and finally
19	coatings.
20	Our review of flow accelerated corrosion
21	begins with determining of the licensee has
22	evaluated the changes due to the extended power
23	uprate on the parameters like temperature, velocity,
24	moisture content that are the keys in controlling
25	flow accelerated corrosion rates. They did this and
	I

(202) 234-4433

	44
1	based on the known effects of this parameters, you
2	see as Mr. Grabski explained, cases where the
3	corrosion rates would be expected to increase and
4	some where it would be expected to decrease.
5	MEMBER WALLIS: The boron content has no
б	effect on any of this?
7	MR. MAKER: Excuse me, boron
8	MEMBER WALLIS: Boron doesn't seem to be
9	a parameter that comes into this at all?
10	MR. MAKER: No.
11	MEMBER WALLIS: This is simply because
12	it's ignored or because it's proven to have no
13	effect?
14	MR. MAKER: Well, if it changed the pH,
15	say, then if the pH decreased because of it. But as
16	I understand it, the pH does not decrease
17	significantly enough to change the corrosion rate in
18	this case.
19	So to satisfy that they were scoping
20	things in properly, there's also the question of
21	scoping things out because you want to keep your
22	resources focused where they're needed. And there
23	are criteria. And all of these cases we're going
24	primarily by the EPRI guidelines on flow accelerate
25	corrosion programs. That scoping out components
l	

(202) 234-4433

	45
1	based on things like temperature below 200 degree
2	Fahrenheit, the chromium content being 1 and a
3	quarter percent or higher. And this they're doing
4	according to the EPRI guidelines.
5	DR. BANERJEE: Does NRC have any
6	programs which independently check EPRI sort of
7	guidelines and things?
8	MR. MAKER: No. No, computer models or
9	programs.
10	DR. BANERJEE: Even the research
11	programs or whatever?
12	MR. MAKER: No.
13	DR. BANERJEE: How do you know that
14	do you audit it in some way other than just take
15	their data or what?
16	MR. MAKER: The way that we evaluate
17	this is by the NRC in the past was involved in
18	developing a response flow accelerate corrosion and
19	understanding the parameters that are the key
20	influences on it. And I think at that time we did
21	have research programs to determine those. I think
22	we were in the lead at that time and helped lead
23	industry toward a resolution and a development of
24	the computer based programs. And followed and
25	participated in research efforts to understand all
	I

(202) 234-4433

	46
1	the parameters and their influence.
2	DR. BANERJEE: So when did that effort
3	terminate within RES or wherever in NRC it was?
4	MR. MAKER: I'm sorry. I don't know the
5	answer to that.
6	DR. BANERJEE: Was it a long time ago or
7	recently?
8	MR. MAKER: Well, several I don't
9	know. And currently we sent for example, we send
10	people to training to understand how CHECWORKS is
11	used.
12	DR. BANERJEE: That's an EPRI training?
13	MR. MAKER: Yes. But the effect of
14	these parameters on low accelerated corrosion is
15	fairly well understood now. And I think the most
16	value on making sure the licensees are following
17	these programs and using skipping ahead a little
18	bit. But the computer models for plants are one
19	factor. But really the key is actually inspecting
20	systems at repeatable locations and developing data
21	so that you can then trend and determine corrosion
22	rates. That allows you to make decisions about
23	future inspections and replacement repairs. And
24	also it improves the quality, the predictive ability
25	of the model.
	1

(202) 234-4433

	47
1	DR. BANERJEE: Does this apply mainly to
2	components that can be inspected then or there
3	components which inspection is difficult?
4	MR. MAKER: Yes. It should apply to
5	all. There are cases where it's difficult to inspect
6	components. And in that case what the licensees may
7	do is go to a secondary inspection or a testing
8	technique such a radiography, which isn't as good as
9	ultrasonic testing. Or they may have another
10	similar system behaves, is nearby, say, same type
11	environment which behaves in the same way. And
12	they'll use that
13	DR. BANERJEE: So you're talking mainly
14	of the secondary side rather than the primary side?
15	MR. MAKER: Yes. Yes.
16	DR. BANERJEE: None of this concerns the
17	primary side then? Okay.
18	MEMBER WALLIS: Because of the materials
19	that are used there, is that it, really?
20	MR. MAKER: Well, yes. Once you get to
21	1 and a quarter.
22	MEMBER SIEBER: Single phase flow.
23	MR. MAKER: Yes. And you need moisture
24	fort his to occur.
25	MEMBER WALLIS: Moisture isn't
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	48
1	necessary. You've got this in the feedwater line.
2	MR. MAKER: Sorry. Yes.
3	MEMBER WALLIS: I mean
4	MR. MAKER: And there's also a
5	temperature
6	MEMBER WALLIS: Okay. I guess
7	MR. MAKER: Well, some things like
8	velocity, as you increase velocity you would expect
9	corrosion rate to increase. There are other effects
10	like temperature where there's a peak around 300
11	degrees fahrenheit and then beyond that then it
12	start decreasing.
13	MEMBER WALLIS: Well, CHECWORKS is well
14	established, and it's updated from time-to-time. So
15	throughout industry, isn't it? This is why the NRC
16	has stopped
17	DR. BANERJEE: Also I suppose from a
18	safety point of view this is not incredibly
19	significant.
20	MEMBER WALLIS: Right.
21	MEMBER SIEBER: Not safety related.
22	MEMBER MAYNARD: The NRC does perform
23	periodic inspections at the site on the flow
24	accelerated corrosion program.
25	MEMBER SIEBER: Sure.
1	

	49
1	MEMBER MAYNARD: So it's not something
2	that's just left out.
3	MR. MAKER: Plant audits, yes.
4	MEMBER MAYNARD: Yes.
5	MR. MAKER: So following on that idea,
6	the importance of the inspection, this is really
7	their a key to their program is ultrasonic
8	measurements at repeatable locations to develop
9	corrosion trends. And therefore, the combination of
10	the required thickness of the components, the
11	measured thickness and the corrosion rates are the
12	key to future inspections and replacement repair
13	decisions. And the CHECWORKS computer program is
14	one tool in managing this program.
15	Next slide, please.
16	So they are updating the models. I've
17	done that for the EPU. It does predict some
18	increases in corrosion rates in some cases,
19	decreases in others.
20	In cases where there's a large increase,
21	it happened to be a system with a very low corrosion
22	rate to start with. And that was an example Mr.
23	Grabski showed.
24	So considering all these things, we
25	concluded that their program will continue to manage
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	50
1	the flow accelerated corrosion effectively after the
2	extended power uprate.
3	Next please.
4	Address steam generator tube inservice
5	inspection. Our guidance here is some we have
6	standard review plans on materials and also for
7	inspection we're focused mainly on the NEI 97-06,
8	which also refers to the more detailed EPRI steam
9	generator program guidelines. And as you've heard,
10	the steam generators in Unit 1 were replaced.
11	There are two key materials upgrades;
12	the thermally treated Alloy 690 tubes and also the
13	stainless steal tube support plates, which these two
14	things have a big effect on types of degradation
15	that are observed and the rates of degradation,
16	initiation and propagation. There are also some
17	additional design factors like the shape of the
18	holes in the tube support plates, the type of the
19	antivibration bar design. And all of these are major
20	improvements in steam generators.
21	Now the temperature, and the temperature
22	is one of the key parameters in causing degradation.
23	That will remain within the range seen at other
24	plants that have 690 tubes.
25	There is a possibility, as you

(202) 234-4433

	51
1	discussed, in tube vibration and wear. And there's
2	been an evaluation that the likelihood for wear is
3	low. But for our purposes we're looking at the fact
4	that if there is wear, that is captured in the tube
5	integrity program. That the inspections will see
6	that they're required to evaluate that and monitor
7	that in their operational assessments and their
8	MEMBER MAYNARD: Has Beaver Valley
9	either made their tech spec changes or committed to
10	make the tech spec changes for the Generic Letter
11	06-01?
12	MR. MAKER: They have an application in
13	house now that being evaluated.
14	MR. KAMMERDINER: If I could add
15	something. This is Greg Kammerdiner from
16	FirstEnergy.
17	We have submitted the license amendment
18	request to adopt TSTF449 for both units.
19	MR. MAKER: So we're concluded for Unit
20	1 that their program will continue to manage
21	degradation at uprate conditions.
22	Next please.
23	For Unit 2 they have the original steam
24	generators with the milled annealed Alloy 600 tubing
25	and both carbon steel and Alloy 600 tube support
1	

(202) 234-4433

1 structures. The existing degradation mechanisms 2 include several forms or several modes of stress corrosion cracking and also some small amount of 3 4 antivibration bar where the cracking initiation and 5 growth rates could increase based on the small temperature increase and also increases in flow and 6 7 potentially sludge accumulation at EPU conditions. However, these changes are relatively small and 8 still will remain within the experience we have at 9 other operating plants. And we don't see this as a 10 -- it will not degrade in anyway their ability to 11 12 monitor, to detect and monitor degradation at uprate conditions. 13 14 And we also note that these steam 15 generators have a couple of design features, improvements over a lot of the Alloy 600 plants, 16 such as the heat treatment to stress relieve small 17 radius U-bends and also shop pinning in the portion 18 19 of the tube within the tube sheet. And these are 20 things which are shown to retard the initiation of 21 stress corrosion cracking. 22 The AVB wear rates for Unit 2 are 23 measurable but low. But as with Unit 1, again, there are inspections performed to measure this and 24 25 evaluate it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

52

We don't expect with these small changes and conditions any new forms of degradation to emerge as a result of the uprate. But, again, we're satisfied that their program will find them and will continue to be consistent with the guidelines at uprate conditions.

7 MEMBER SIEBER: I think one of the big factors is the chemistry control of feedwater. 8 And Beaver 2 should do much better than Beaver 1 because 9 it has a polisher, it has 1 years less life even 10 though the capacity factor is better. And generally 11 12 there's been good careful control of the chemistry. So I would expect to see lower rates of degradation 13 14 than Unit 1 experienced through its lifetime. 15 MR. MAKER: Thank you. Yes. The 16 importance of water in chemistry is really 17 important.

18MEMBER SIEBER: That's the key factor in19my opinion

MR. MAKER: Next, please.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

The steam generator blowdown system helps steam generator tube integrity by controlling the quality of the secondary coolant. The blowdown flow rates are not expected to increase as a result of the uprate because they're determined by some

(202) 234-4433

1

2

3

4

5

6

20

	54
1	parameters that are not going to be effected. There
2	is a repositioning of flow control valves due to
3	decreased pressure. This will reduce the maximum
4	achievable flow rate, but not be require. It will
5	not reduce it below what's required.
6	So we conclude that this will not have
7	an effect on the ability to remove impurities from
8	the blowdown. And we also note here this is a
9	system with potential for flow accelerated corrosion
10	and it is in their FAC program.
11	Next please.
12	Chemical and volume control system.
13	Several functions related to the water inventory and
14	quality for the reactor coolant.
15	The heat exchange temperatures, heat
16	exchangers are one of the key components. There are
17	some slight changes in temperature increases and
18	decreases, but they stay well within the well
19	below the design values. And the heat exchanger
20	pressures are not changing as a result of EPU.
21	Boration requirements continue to be
22	met. And letdown flow rates, charging rates and
23	nitrogen-16 delay times are not being affected
24	significantly by this.
25	So, again, according to our Standard
	1

(202) 234-4433

	55
1	Review Plan we concluded that this will be
2	acceptable at EPU conditions.
3	Finally on coatings. Unit 1 coatings
4	were specified according to the ANSI standard.
5	We're evaluating compared to we have a Reg. Guide
6	1.54, there are ANSI standards that are called out
7	in that. And we have a Standard Review Plan 6.1.2 on
8	coatings.
9	Unit 1 coatings were specified according
10	to ANSI N101.2. When Unit 2 coatings were
11	specified, we now have the Reg. Guide which also
12	referred to 101.2 as well as the newer ANSI standard
13	on the quality of coatings.
14	And the licensee provided us with their
15	uprate environmental parameters compared to the
16	qualification test values for normal and design
17	bases accidents showing that their bounded by those
18	qualification values. And so we expect no effect on
19	the adhesion or the degradation of those.
20	CHAIRMAN DENNING: I mean if there were
21	any issues here in the painting areas, I don't think
22	they're EPU issues. But I'm just curious, did you
23	talk to management of these units about what the
24	status is of their paints, whether there is
25	observable flaking occurring in areas and potential

(202) 234-4433
	56
1	problems there?
2	MR. MAKER: I didn't as part of the EPU.
3	And I talked to our GSI-191 team members who are
4	evaluating their coatings. Well, the debris issue
5	which includes coatings. But they were not able to
6	tell me the status of coatings yet.
7	CHAIRMAN DENNING: Okay.
8	MEMBER WALLIS: Well, it says coating
9	failures are identified by inspection. I'd be
10	curious to know have there been coating failures.
11	MR. MANOLERAS: Yes. This is Mark
12	Manoleras, Beaver Valley, FENOC.
13	I own the coatings program and the
14	coating engineer works for me. Our containment
15	coatings actually have been in very good shape. If
16	we identify a deficiency, it's put in our corrective
17	action system. It's evaluated by that coating
18	system engineer and then it is repaired.
19	We've had outside people come in and
20	take a look at our coatings in response to the GSI-
21	191 to make sure that what we believe is what the
22	outside experts also believe. And we've gotten very
23	good feedback on that, on our coatings, our
24	containment coatings.
25	MEMBER WALLIS: Have you actually had to

(202) 234-4433

	57
1	replace some coatings?
2	MR. MANOLERAS: We've had to make very
3	minor repairs to some coatings in containment.
4	MEMBER SIEBER: Those are typically
5	scrapes
6	MR. MANOLERAS: That's correct.
7	MEMBER SIEBER: as opposed to force
8	or lack of somebody runs a cart into the wall,
9	you can scrape.
10	MR. MANOLERAS: That's correct.
11	MEMBER SIEBER: And you have to repair
12	that.
13	MEMBER WALLIS: So it's that kind of
14	thing rather blistering or
15	MEMBER WALLIS: Right.
16	MR. MANOLERAS: That is correct.
17	MR. MAKER: Okay. That concludes my
18	presentation unless you have any further questions
19	on these five topics.
20	CHAIRMAN DENNING: I think we don't.
21	And I think Mr. Stubbs could now continue with the
22	next presentation.
23	MR. MAKER: Thank you.
24	MR. STUBBS: Good morning. My name is
25	Angelo Stubbs and I'll be discussing the review of
l	I contract of the second se

(202) 234-4433

	58
1	the balance-of-plant systems.
2	Next slide.
3	Okay. In conducting our review we
4	utilized Review Standard RS-001, which is a Review
5	Standard for extended power uprates. And in general
6	our review scope covered the balance-of-plant
7	mechanical systems contained in Matrix 5 of the
8	standard.
9	Scope of the BOP systems included over
10	20 systems, 6 major areas of review, the first of
11	which internal hazards for which reviews were
12	performed for the EPU impact on flood protection,
13	equipment of floor drains, the circulating water
14	system, missile protection, the turbine generator
15	and pipe failures.
16	The second area, fission product control
17	included reviews on the fission product controlling
18	systems in the structure, the main condenser
19	evacuation system and the turbine gland seal system.
20	For the next area, component cooling and
21	decay heat removal we reviewed the spent fuel pool
22	cooling and clean up system, service water system,
23	react water cooling system, ultimate heat sink and
24	auxiliary feedwater system.
25	Next slide.

(202) 234-4433

	59
1	The next area of review balance-of-plant
2	included review of the main steam, main condenser,
3	turbine bypass and consondate and feedwater system.
4	And the final two areas was the waste
5	management system, which included gaseous liquid and
6	solid radwaste and then the emergency diesel fuel
7	oil storage and light loads were also reviewed.
8	In addition to our review of the systems
9	I just mentioned, the staff also reviewed test
10	considerations for certain BOP systems.
11	Next slide.
12	The Staff focused under review of
13	auxiliary systems for which increased heat loads
14	associated with the uprated plant might pose an
15	increased challenge to the systems. The systems
16	included the spent fuel pool coolings, the service
17	water and ultimate heat sinks, auxiliary feedwater
18	system and condensate and feedwater system.
19	In regards to the spent fuel pool
20	cooling system, the Staff determined that the
21	licensing bases evaluation, that is the current
22	licensing bases evaluation which was performed at
23	the power level of 2918 megawatts will be bounding
24	for the EPU plant. But service water system and
25	increasing the heat loads was not to have a

(202) 234-4433

Í	60
1	significant increase in fact on the system. And
2	they stable within the design temperatures of the
3	system.
4	The Ohio River is the alternate heat
5	sink for both of these plants and this capacity far
6	exceeds the shutdown cooling and accident heat load
7	requirements for the Beaver Valley units. And power
8	uprate doesn't effect the temperature in that water
9	for this.
10	The auxiliary heat water system is a
11	system which required increased flow as a result of
12	EPU at both units. In addition, Unit 1 has undergone
13	a modification to add limiting flow venturies. And
14	I'll discuss the EPU impact on these systems a
15	little later when I address modifications that
16	effected the BOP review.
17	And the condensate and feedwater system,
18	there was minor modifications of the regulating
19	valves. But the licensee evaluation showed that the
20	condensate pumps had sufficient margin to operate at
21	the EPU power and that sufficient flow could be
22	provided to the system.
23	In addition to that the parameters of
24	flow, pressure, temperature parameters will be
25	monitored during the startup so that will help
	I Contraction of the second

(202) 234-4433

	61
1	verify the performance also.
2	Next slide.
3	The modification. The modifications made
4	to the balance-of-plant. These are I'd like to talk
5	a little bit about. Take a few minutes to talk
6	about.
7	The first was modifications to the high
8	pressure turbine and the second is a modification to
9	auxiliary feedwater system at Beaver Valley 1.
10	Next slide.
11	Okay. But in the case of the high
12	pressure turbine in both units, the high pressure
13	turbine is being replaced with an all reaction
14	turbine. The Unit 1 modification has already been
15	completed. They have calculated the maximum
16	overspeed to be 118, which is below the acceptance
17	criteria of 120.
18	The Unit 2 modification has not been
19	completed yet and will be completed prior to
20	operation at EPU. But at this time they have done
21	the calculations for overspeed the licensee has
22	committed to perform the appropriate overspeed
23	analysis to ensure overspeed protection that's
24	acceptable. Also as part of their operating
25	surveillance tests verifies that the proper

(202) 234-4433

	62
1	operation of the turbine overspeed trip protection
2	system and that and they do this by demonstrating
3	that the turbine works at or below the 111 percent
4	at that.
5	MR. TESTA: Excuse me. This is Mike
6	Testa.
7	I just wanted to clarify one thing for
8	Unit 2. Now the way we're going to we're going
9	to do a staged power increase. The existing turbine
10	has additional capacity to it, around 5 percent. So
11	we're going to elect to increase the power somewhat
12	the existing turbine. But prior to going to the full
13	extended uprate, we will replace the turbine with
14	the reaction turbine.
15	MR. STUBBS: Okay. The auxiliary
16	feedwater system, for this system in Unit 1 they're
17	adding cavitating venturies. They're installing that
18	as a modification to Unit 1.
19	At EPU the auxiliary feedwater pumps,
20	which are now being credited for the feedwater line
21	break and the loss of normal feedwater events, which
22	is something that the current plant doesn't do.
23	Unit 2 licensing bases already credits
24	these to AFW pumps. So this isn't a change to Unit
25	2. It's only a change to Unit 1. We did look at

(202) 234-4433

	63
1	that. And the total required flow for the auxiliary
2	feedwater system will be able to be met by any of
3	the two pumps available out of the three that
4	services that system. And there will be sufficient
5	capacity for it to perform this intended function.
6	And the technical specifications, as I
7	just mentioned, requires three alternate auxiliary
8	feed pumps to be operable. And so this allows us to
9	have a single failure and still require it to for
10	the two events, the loss of normal feedwater and
11	heat feedwater line break.
12	Next slide.
13	Okay. In summary, Staff finds that the
14	proposed EPU to be acceptable with respect to the
15	balance-of-plant areas based on:
16	The evaluations that was performed that
17	we reviewed;
18	The commitments made by the licensee,
19	and;
20	The tests that they will be performing.
21	So, is there any questions.
22	CHAIRMAN DENNING: Are there any
23	questions? No.
24	Thank you very much.
25	MR. STUBBS: Okay. Thank you.
1	

	64
1	CHAIRMAN DENNING: Now what we'll do is
2	we'll take a 15 minute break so we can prepare
3	ourselves for the risk assessment presentations. And
4	we'll be back by the clock on the wall at 10:00.
5	(Whereupon, at 9:49 a.m. off the record
6	until 10:04 a.m.)
7	CHAIRMAN DENNING: We'll now come back
8	into session. And our first presentation will be on
9	risk analysis and its impact.
10	MR. KELLER: Good morning. My name is
11	Colin Keller. I'm a supervisor of the PRA Group at
12	Beaver Valley.
13	With me here today also is Bill Etzel to
14	help answer any questions that the Subcommittee may
15	have.
16	A little bit about myself. I've been in
17	nuclear power for 24 years now at Beaver Valley,
18	starting at the Shippingport Atomic Power Station
19	and working through other engineering assignments
20	through Unit 2 startup, equipment qualification and
21	the last ten years I've been involved in PRA.
22	I'm here today to discuss the Beaver Valley
23	EPU PRA models, one for each unit.
24	Next side.
25	And I'd like to talk about the elements

	65
1	of the Beaver Valley model that were reviewed as
2	part for this uprate. And also to talk about the
3	resulting changes in core damage from these reviews.
4	Next slide.
5	The first element we reviewed was our
б	initiating events. We found that from the extended
7	power uprate there were no new initiators identified
8	and also there were no significant increases in our
9	initiating event frequencies as a result of the
10	power uprate.
11	We also did a review of our success
12	criteria. We used the MAAP code to perform these
13	analyses to establish our success criteria. Also
14	included setpoint changes in there due to
15	containment conversion and new pump curves that were
16	put in.
17	We found that new accident sequences
18	were identified as a result of the power uprate.
19	We went on to review our component and
20	system reliability. Comprehensive reviews of the
21	equipment were performed. We found that systems
22	will operate within their allowable limits. There
23	was on the PRA failure rates or results. We will
24	continue to use our existing monitoring programs to
25	account for any additional system wear using
	I

(202) 234-4433

	66
1	Maintenance Rule MSPI, flow accelerate corrosion.
2	We expect that our future model updates
3	will capture any initiating event or equipment
4	failure rate changes.
5	We also performed reviews of our
6	operator response times for our human reliability
7	analysis. The MAAP analysis was used to determine
8	operator action times that are available.
9	Higher decay heat did reduce times for
10	some of these operator actions.
11	The most important impacts were:
12	For operators to start aux feedwater
13	given a solid state system protection has failed and
14	no SI signal present;
15	Operator initiates a bleed and feed,
16	and;
17	And there was a reduction in time to
18	recover from a loss of shutdown cooling due to
19	reduced inventory.
20	This is a listing of Unit 1's five most
21	important operator actions. You see there was a
22	reduction in time for two of those actions from the
23	pre-EPU to the post-EPU. And as a result of that,
24	there was also an increase in their human error
25	probability for both of those actions.
	I

(202) 234-4433

	67
1	The following table
2	CHAIRMAN DENNING: No. Let's stick a
3	little bit with this. You were done with this
4	table, let's spend a little bit more time on the
5	table.
6	MR. KELLER: Certainly.
7	CHAIRMAN DENNING: So the first item and
8	the last time are the only ones where you have a
9	significant change in your human error rates, is
10	that right?
11	MR. KELLER: Yes. And as you can see,
12	those are also the ones that saw a reduction in
13	operator action time.
14	CHAIRMAN DENNING: Now this initiating
15	feed and bleed, there's really a major time,
16	difference in time, isn't there? Between 78 minutes
17	and 29 minutes, is that right?
18	MR. KELLER: That's correct.
19	MR. ETZEL: This is Bill Etzel from
20	FENOC.
21	Yes. In the pre-EPU case that was done
22	with a hand calculation and it was based on steam
23	generator dryout. For post-EPU feed and bleed was
24	based on a 13 percent wide range level in the steam
25	generators.
1	1

(202) 234-4433

	68
1	CHAIRMAN DENNING: So the big difference
2	is really a matter of
3	MR. ETZEL: Yes, in setpoint levels.
4	CHAIRMAN DENNING: Okay. Now I'd like
5	to spend just a little bit of time on each of these,
6	if you would. And give us some and that doesn't
7	necessarily have to be a lot. But let's start with
8	the first one here.
9	The first is starting the auxiliary
10	feedwater system when you have no safety injection.
11	And it does look like the 43 minutes certainly seems
12	a substantial period of time to be available for
13	that. You say the confirmation as it was simulator
14	observation. So tabletop and simulator observations.
15	So you've run through this in the simulator at post-
16	EPU conditions?
17	MR. KELLER: That's correct. And George
18	Storlis is here. He will speak to that.
19	MR. STORLIS: Yes, I'll speak. My name
20	is George Storlis. I'm with FENOC.
21	And operationally we train extensively
22	in the simulator environment. Both Unit 1 and Unit
23	2 have separate simulators, have a lot of exposure
24	to simulator time.
25	One of the key elements of any failure
1	1

(202) 234-4433

	69
1	of solid state is manual backup by the operator and
2	the supervisors that stand behind the team as part
3	of the simulation. And 43 minutes is an extensive
4	period of time, as you pointed out, for diagnosing a
5	failure and then ultimately responding to that
6	failure with manual actions. So I'm quite confident
7	that we can make that 43 minutes.
8	CHAIRMAN DENNING: Okay.
9	MR. STORLIS: Probably in the realm of 2
10	minutes or less.
11	CHAIRMAN DENNING: Although you did have
12	a big change in the human error I mean a big
13	change in the human error probability. But I won't
14	get into the details of that. I don't care.
15	Now let's look at, the second one
16	obviously that's not an issue is the 24 hours.
17	The next is this portable diesel driven
18	fans to cool the emergency switchgear rooms.
19	MR. STORLIS: Switchgear ventilation
20	affords a rather large heat sink in that area. The
21	portable ventilation is established to enhance
22	existing cooling. And in the absence of cooling you
23	have a period of time to set up and establish that
24	flow.
25	MEMBER MAYNARD: Is the equipment pre-

(202) 234-4433

	70
1	staged?
2	MR. STORLIS: The equipment is available
3	and staged in a brigade area. And it's available.
4	CHAIRMAN DENNING: What about this, this
5	fourth one? Can you describe that one to me? The
6	reactor coolant pump trip, what's happening here.
7	MR. ETZEL: This is Bill Etzel from
8	FENOC again.
9	Yes. That's just a simple reactor
10	coolant pump trip on CCW, which is our component
11	cooling water. And component cooling water supports
12	thermal barrier cooling along with motor and cooling
13	to the motors of the pumps, the reactor cooling
14	pumps. So therefore we assumed that you have five
15	minutes to trip the pumps with that, otherwise you
16	would get an increased RCP seal LOCA due to high
17	vibration.
18	MR. STORLIS: Again, this is an area
19	where operator training is repeated over and over
20	and over again to identify the absence of cooling
21	water flows to the coolant pumps and the need for
22	the five minute window to shut the pumps off to
23	preserve the pump's condition.
24	MEMBER SIEBER: It seems to me you
25	actually had an event like that at one time. Is that
	I contraction of the second

(202) 234-4433

	71
1	correct? Where you lost seal coolant?
2	MR. STORLIS: We did have an event where
3	in loss of an emergency bus did transcend itself
4	into a loss of thermal barrier cooling. And the
5	pump was managed immediate to that and seal
6	injection was reapplied in the pump.
7	MEMBER SIEBER: You actually didn't trip
8	the pump, you reestablished the flow?
9	MR. STORLIS: Seal injection, that is
10	correct.
11	MEMBER MAYNARD: This is I think a
12	pretty common requirement or guideline for all the
13	Westinghouse
14	MR. STORLIS: That is a true statement,
15	sir.
16	MEMBER MAYNARD: seals.
17	CHAIRMAN DENNING: Let's go to the next
18	table them.
19	MR. KELLER: Okay. The next table is
20	similar and is a listing of the operator actions for
21	the Unit 2.
22	CHAIRMAN DENNING: Okay. Let's see, are
23	there any here that are particularly okay. Well,
24	let's start at the bottom one, the let's see.
25	This is manual trip after the solid state protection
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	72
1	system fails to automatically actuate reactor trip.
2	So this is
3	MR. KELLER: Directly from the bench
4	port.
5	MR. STORLIS: Again, this is George
6	Storlis.
7	The operator identifying conditions as
8	displayed on what we call our first op panel. It
9	enables early diagnoses of the need for trip along
10	with a validation with the existing instrumentation.
11	And the operator's license responsibility and legal
12	responsibility to bring that reactor off line on
13	manual action.
14	CHAIRMAN DENNING: Okay. Let's see
15	MEMBER KRESS: Did you use a human error
16	model to get these probabilities?
17	MR. KELLER: Yes. We were using the HRA
18	Calculator?
19	MEMBER KRESS: HRA Calculator. That's
20	the EPRI
21	MR. KELLER: That is correct.
22	MR. ETZEL: We just switched to the HRA
23	Calculator.
24	Bill Etzel, FENOC.
25	When we did this analysis we used the
I	

	73
1	SLIM methodology, success likelihood index
2	methodology.
3	CHAIRMAN DENNING: Let's see
4	MEMBER KRESS: And the confirmation with
5	the simulators tabletop was just to show that you
6	did it within that.
7	MR. KELLER: Ensure that we would be
8	capable of performing those actions with the times
9	that we don't have.
10	CHAIRMAN DENNING: Now why do you say
11	tabletop there and simulator? Isn't this something
12	that you would have verified with the simulator,
13	validated with the simulator.
14	MR. ETZEL: This is Bill Etzel from
15	FENOC again.
16	Yes. We were going through an update on
17	our PRA model at Unit 1. And like Colin said, we
18	were using the HRA Calculator. So we waned to
19	since we were changing methodologies, we wanted to
20	validated all our human actions. So we had simulator
21	runs for the Unit 1 PRA model update. Similarly,
22	when we go through the Unit 2 update sometime later
23	this year, we will also do some simulator
24	benchmarks.
25	MEMBER MAYNARD: But many of these are
ļ	I contract of the second se

	74
1	things that you're doing as part of normal ops
2	training anyway, aren't you?
3	MR. STORLIS: That is correct, sir.
4	MEMBER MAYNARD: This last one in
5	particular, that's one of the first things you do
6	when you have an issue is to check it and there's
7	more than one person doing that, too.
8	MR. STORLIS: And that is absolutely
9	correct. We're practiced on these in the simulator
10	environment repeatedly.
11	MR. SENA: Again, this is Pete Sena.
12	The indications available to the operators at Unit 1
13	to take the actions such as manually tripping the
14	reactor in the event of a first out indication for
15	the need for a trip is virtually identical at Unit
16	2. So the actions are the same, the training is the
17	same and the indications are the same. So you can
18	translate the simulation walkthrough that we've done
19	at Unit 1 into Unit 2 through the tabletop method
20	and be confident that the times are identical.
21	CHAIRMAN DENNING: Yes. It is
22	interesting, though, that you seem to have some
23	significant differences between the two units as to
24	what the risk important operator actions are, or am
25	I misinterpreting the similarities here? Is that

(202) 234-4433

ĺ	75
1	true?
2	MR. KELLER: There are some differences
3	between the units, yes.
4	MEMBER WALLIS: These are all errors of
5	omission where the operator fails to do something?
6	MR. KELLER: That's the probability that
7	we've failed to accomplish that action.
8	MEMBER WALLIS: Do you somehow put in
9	potential errors of commission by misdiagnosing
10	something and doing the wrong thing? Does that
11	appear in your PRA at all.
12	MR. ETZEL: This is Bill Etzel from
13	FENOC.
14	Mostly they are failures of omission in
15	that he does not perform this action as opposed to
16	doing the wrong action and making things worse.
17	MEMBER WALLIS: Are there some items of
18	commission that would be affected in some way by the
19	power uprate in that there will be a little more
20	going on or more likelihood to make a mistake or
21	something like that? I don't know you assess that,
22	but conceivably in could be a context which is more
23	likely to produce an error.
24	MR. ETZEL: Yes. This is Bill Etzel
25	again.
I	

(202) 234-4433

	76
1	That's a possibility and hopefully
2	through the simulator training and just normal time
3	in the control room will help prevent that.
4	MEMBER WALLIS: Fix that up during
5	simulated training. You observe and see if as a
6	result of the EPU there's more tendency to make some
7	mistake, and then you correct that in some way? Is
8	that the way you find it? You do it by training in
9	the simulator?
10	MR. ETZEL: Yes.
11	MR. STORLIS: And this is George
12	Storlis.
13	With regards to the structure of the OP,
14	operating procedures, the team concept in the
15	control environment, the identification of a
16	potential error being made is identified and
17	corrected before the committing of the act. So from
18	an operating perspective the confidence in the team,
19	the confidence in the training, the confidence in
20	the practice of simulation and EOP network provide a
21	high level of assuredness of proper actions.
22	MEMBER MAYNARD: The EOPs are also
23	fairly good that even if a mistake is made or
24	there's multiple things going on, getting you back,
25	prioritizing and taking care of the issues.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	77
1	MR. STORLIS: That's correct. The
2	response not obtained columns and so forth that
3	structure a pathway to success is very high.
4	CHAIRMAN DENNING: And I think if you
5	identified in your simulator training a place where
6	people were making errors of commission, then you'd
7	correct something rather than putting it as a
8	probability failure in a PRA.
9	MR. KELLER: That's correct.
10	CHAIRMAN DENNING: So it's hard to
11	identify them, Once you do, then presumably you'll
12	fix them.
13	MR. KELLER: Yes. You want to reenforce
14	the training so we would make sure that we'd meet
15	these times.
16	MR. STORLIS: Either in robust barriers
17	and the like to assure that if there is a likely
18	error condition that it's remedied either by
19	physical barrier or other means.
20	CHAIRMAN DENNING: Okay. Proceed.
21	MR. KELLER: Okay. Thank you.
22	Next slide.
23	In regards to the operator response
24	times, we did do a validation of the operator times
25	to complete these actions through combinations of

(202) 234-4433

	78
1	tabletops, discussions of simulator training or
2	observations. And the operator actions with small
3	amounts of time available can be performed within
4	the time that is available.
5	MEMBER WALLIS: "Can" is a big
6	MR. KELLER: I'm sorry?
7	MEMBER WALLIS: "Can" is a big word. I
8	mean can with probability of zero or one? You think
9	it can be performed with high probability or
10	something.
11	CHAIRMAN DENNING: Well, he has exactly
12	the probabilities on this table.
13	MEMBER WALLIS: He does, I know. But
14	CHAIRMAN DENNING: These are three
15	significant figures.
16	MEMBER WALLIS: I know. So it's really
17	it will be performed or likely to be performed.
18	MR. KELLER: Likely to be performed.
19	That's probably yes.
20	MEMBER WALLIS: Right. There's some
21	things I can do, but without much probability.
22	CHAIRMAN DENNING: Likely would be a
23	very PRA term.
24	MR. KELLER: I understand. Likely to be
25	performed.

(202) 234-4433

	79
1	Next slide.
2	We also did a review for shutdown risk
3	conditions. We found the EPU has no unique or
4	significant impacts to the shutdown risk. There'll
5	be no changes to shutdown operations to our safe
6	shutdown risk assessments.
7	Next slide.
8	Summary for Unit 1 is shown here for the
9	total core damages from pre-EPU to post-EPU and with
10	a breakdown of internals, externals and fire and
11	also it shows the differences for the total LERF.
12	And the changes in risk are well within the guidance
13	provided by Reg. Guide 1.174.
14	MEMBER MAYNARD: One new piece of
15	equipment that you put in was the main feed
16	isolation valves, How was that treated? Did that
17	end up with positive credit, negative credit
18	relative to the PRA. Because a new piece of
19	equipment
20	MR. KELLER: Yes. You do have some
21	additional failure probabilities with that and also
22	with the cavitating venturies. There is a
23	probability that they could plug. But overall for
24	the sequences, and Bill correct me, where main
25	feedwater was involved there was not a huge impact
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	80
1	from those additional failure rates.
2	MR. ETZEL: That is correct.
3	MEMBER MAYNARD: On the main feed
4	isolation valves are you using an existing design
5	that's been out there proven or is this
6	MR. ETZEL: This is Bill Etzel from
7	FENOC.
8	We have these similar valves installed
9	at Unit 2, so we use their failure rates and apply
10	them to Unit 1.
11	CHAIRMAN DENNING: Now let me ask an
12	embarrassing question.
13	MR. KELLER: Yes, sir.
14	CHAIRMAN DENNING: Maybe an embarrassing
15	question. And that is, you know, we recognize that
16	there are changes in risks that aren't quantified by
17	the way we treat CDF and LERF, particularly as far
18	as radionuclide inventory is concerned. I mean, the
19	risk is going to increase with no changes in CDF and
20	LEFT, you're going to see there is a true increase
21	in risk of at least a percent associated with
22	MEMBER KRESS: Sixteen percent.
23	CHAIRMAN DENNING: this.
24	MEMBER KRESS: Two plants.
25	CHAIRMAN DENNING: Two plants. Well, I'm
1	

(202) 234-4433

	81
1	not sure that that's still eight percent per, Tom.
2	But in any event, we have had other applicants who
3	have said okay, we want to make sure that the risk
4	is not increased, and so we look to see what aspects
5	of our PRA indicate things that we could fix that
6	would actually reduce the risk or maintain the risk.
7	And I realize, of course, you changed
8	the generator on Unit 1 and there's been probably a
9	decreased risk associated with that. But as far as
10	just looking at the major contributors to risk and
11	recognizing the potential benefit that's associated
12	here that certainly is worth doing, but did you look
13	to see are there things that at this particular time
14	we might change so that indeed we're not increasing
15	the risk?
16	MR. KELLER: Yes. We have looked and we
17	actually have some recommendations based on that.
18	We've looked at things like potentially going out
19	and adding additional methods for RCP seal
20	injection. There was a recommendation also to, I
21	believe it was restructure an EOP to gain some
22	benefit towards large early release frequency.
23	And, Bill, there were two other
24	modifications for each unit we were also looking at?
25	MR. ETZEL: This is Bill Etzel from
	1

(202) 234-4433

(202) 234-4433

	82
1	FENOC.
2	Yes. We also looked at increasing
3	seismic ruggedness. We have at Unit 1 block walls
4	on our emergency batteries. So we're looking at
5	increasing seismic readiness of those block walls.
6	Also putting some fire barriers around
7	our HVAC fans in the cable vault and spreading area.
8	CHAIRMAN DENNING: And has management
9	agreed to any of these upgrades or made a commitment
10	to these at this time?
11	MR. KELLER: At this time our plans to
12	take those to our plant health committee at site and
13	to get them evaluated and go forward from there.
14	See if they'd
15	CHAIRMAN DENNING: What's the committee
16	you said?
17	MR. KELLER: Called the plant health
18	committee.
19	CHAIRMAN DENNING: Plant health
20	committee?
21	MR. MANOLERAS: Yes. This is Mark
22	Manoleras from FENOC.
23	Our plant health committee is comprised
24	of basically the management team at the site. Each
25	project is presented to the plant health committee
	1

(202) 234-4433

	83
1	and it's weighed on its benefit and risks to the
2	station and then will be implemented in course;
3	ranked and implemented in course.
4	CHAIRMAN DENNING: Yes.
5	MR. ETZEL: And this is Bill Etzel from
6	FENOC.
7	We did present the alternate RCPC seal
8	injection system to the plant health committee
9	already.
10	CHAIRMAN DENNING: And has a decision
11	been made on that at this point or is that
12	MR. ETZEL: Yes. We have had positive
13	feedback on it.
14	CHAIRMAN DENNING: Yes.
15	MR. KELLER: A decision was made whether
16	to go and install it at this time.
17	MR. ETZEL: Yes. The decision was made
18	was that we were going to take a look at options to
19	actually implement those options and then estimates
20	will be performed on those options. We will go to
21	our next committee, which is our technical oversight
22	committee, which takes a look at the technical
23	robustness of the options and how those will be
24	implemented.
25	So it's well along in the process to be
1	1

(202) 234-4433

	84
1	targeted.
2	CHAIRMAN DENNING: What are the criteria
3	that the committee uses to decide whether they would
4	undertake a safety improvement that effectively
5	isn't providing economic benefit?
6	MR. ETZEL: Yes. We actually have a
7	very detailed rating system. We went out and
8	benchmarked the industry and took a look at
9	basically industry best practice. And actually one
10	of the significant contributors to identify a
11	project selection would be an increase or decrease
12	in risk. We actually have a very large portion of
13	our process will actually look at the change in CDF.
14	So it's actually a big contributor to selecting a
15	project to be implemented.
16	CHAIRMAN DENNING: You know, that still
17	didn't help me very much. I mean, I'm talking about
18	some things here where there's no economic benefit
19	to the plant, or at least the economic benefit isn't
20	obvious of some of these safety related improvements
21	that could reduce risk. And so the question is
22	under what conditions would the plant management
23	say, well, it really I'm willing to invest some
24	money here to reduce the risk even though I'm not
25	going to see an economic payback and there's no

(202) 234-4433

	85
1	regulatory requirements.
2	MR. ETZEL: Yes. I'm sorry if I didn't
3	answer that clearly. A reduction in that risk is
4	one of the key contributors to ranking a project.
5	It is probably one of the top three contributors to
б	ranking a project.
7	CHAIRMAN DENNING: Thank you.
8	MEMBER KRESS: As a bit of a follow on
9	to this question, does your PRA system have the
10	capability to do a level 3 analysis?
11	MR. ETZEL: This is Bill Etzel again.
12	Currently we do not. We just have level
13	1 and level 2.
14	MEMBER WALLIS: With a follow up
15	question again. I understand that management looks
16	at decreasing risk as a criterion for endorsing a
17	project. Presumably there's something on the other
18	side of the balance which is the cost of
19	implementing this. And I just wonder how much your
20	management is willing to pay? Do they have some
21	sort of a figure that says we're willing to pay so
22	much for so much decrease in risk? Is there some
23	kind of an economic that's understood in the plant
24	or is it not? You don't have to give me the
25	figures, but it seems to me in the end its cost

(202) 234-4433

	86
1	benefit that's got to rule in the decision.
2	MR. SENA: This is Pete Sena.
3	When we go through the plant health
4	committee there's a detailed ranking form, as Mark
5	was speaking towards, as far as how we score a
6	particular project. Some of the other criteria may
7	be, for example, does the modification result in in
8	improvement in radiation dose to folks doing work on
9	the station. Other criteria would be, you know, a
10	change in personal safety, a change in equipment
11	reliability. So there are many factors.
12	Those factors are then accumulated and
13	tabulated. And that is then weighed against all the
14	other modifications that are proposed.
15	Now, out of a year we will go through
16	and we will pick, perhaps, our top 12 or 15 projects
17	to go implement to look a year ahead. But, again,
18	we do have limited financial means, as every other
19	utility does. So we have a specific set budget. But
20	the ranking criteria does not apply to the initial
21	cost estimate. It would then be categorized against
22	all the other mods. And we have X number of dollars
23	and how many mods do we want to do with that X
24	number of dollars.
25	MEMBER WALLIS: And so you have to spend
	1

(202) 234-4433

	87
1	your budget?
2	MR. SENA: We would spend our budget,
3	correct.
4	MEMBER WALLIS: So there is no trade-
5	off? It's just a question of which ones do you
6	spend it on, is that it? That was an interesting
7	economic viewpoint.
8	MR. SENA: Well, again
9	MR. MANOLERAS: Well
10	MR. SENA: Go ahead.
11	MR. MANOLERAS: This is Mark.
12	Again, we want to weigh all the factors
13	for the selection of this modification. We may want
14	to increase equipment reliability in an area, we may
15	want to increase personal safety. So we do weigh all
16	those facets when we select the modification
17	packages.
18	MEMBER KRESS: Just out of curiosity,
19	how far away is Pittsburgh from Beaver Valley's
20	plant?
21	MR. MANOLERAS: It's approximately 30
22	miles.
23	MEMBER KRESS: Thirty miles?
24	MR. MANOLERAS: That's correct.
25	CHAIRMAN DENNING: Proceed.
	1

(202) 234-4433

	88
1	MR. KELLER: Thank you.
2	The next slide is a similar summary for
3	Unit 2 showing the same changes. And, again, the
4	changes in risk for both CDF and LERF are below the
5	thresholds for Reg. Guide 1.174.
6	MEMBER WALLIS: Reg. Guide 1.174 also
7	gives you no incentive decreased risk.
8	MR. SENA: And, Dr. Wallis, if I may
9	just go back to how we look at various projects we
10	may do. One example to speak towards, for example,
11	is we installed N16 monitors at Unit 2. We had them
12	previously installed at Unit 1. But, again, this was
13	a benefit to the station. Not a production benefit,
14	but a safety benefit so that operators would have a
15	key prompt indication of a potential tube leak. So,
16	again, that is an excellent example of a mod that
17	met our criteria to move forward with.
18	MEMBER WALLIS: Thank you.
19	CHAIRMAN DENNING: Yes?
20	MR. KELLER: Okay. And summary, all the
21	PRA model elements were reviewed for impact and
22	found that the increase in risk due to the EPU for
23	both Unit 1 and Unit 2 does meet the acceptance
24	criteria. There were small changes in operator
25	times that were available for some actions, and
	I contraction of the second seco

(202) 234-4433

	89
1	additional equipment that was installed had a small
2	impact on overall risk.
3	CHAIRMAN DENNING: Let me just state for
4	the record, I mean I think it's fine for you to
5	compare with Reg. Guide 1.174, but its applicability
6	to power uprates is somewhat questionable. And I
7	think that the way the risk analysis was used in the
8	review is really in a slightly different way than
9	applies 1.174 to a change in the licensing.
10	MR. KELLER: Since it's not a risk
11	informed application?
12	CHAIRMAN DENNING: Right.
13	MR. KELLER: Okay. I understand.
14	CHAIRMAN DENNING: Well, not to say that
15	it isn't interesting to look at.
16	MEMBER SIEBER: It's not a risk informed
17	application. It's nice to have risk information.
18	CHAIRMAN DENNING: Right.
19	MEMBER SIEBER: And, for example, the
20	PRAs the state of the art today, does not evaluate
21	and assign risk numbers to how much margin that
22	you're reducing.
23	CHAIRMAN DENNING: Right.
24	MEMBER SIEBER: And to me that's a
25	significant thing, but we are not going to easily

(202) 234-4433

	90
1	get to the point to do that. It's a tremendous
2	amount of work. And that's probably off in the
3	future in number of years.
4	MR. KELLER: That's all I have.
5	MEMBER WALLIS: Do you have some
6	perspective on what's the effect of these power
7	uprate on risk? I mean, this is a measure of safety
8	and this is what we're here for, so we get some idea
9	what are the consequences of an EPU. And I think
10	that's useful. But it's not as if 1.174 is the rule
11	that you're going to use.
12	MR. KELLER: Oh, agreed. But it is a
13	measuring stick, yes.
14	MEMBER WALLIS: Yes.
15	MR. KELLER: Any other questions?
16	CHAIRMAN DENNING: Okay. I see no other
17	questions. I think we're ready to move on to the
18	staff.
19	MR. KELLER: Thank you.
20	CHAIRMAN DENNING: Thank you.
21	We're on the Staff's presentation on
22	risk assessment.
23	MEMBER SIEBER: Risk evaluation.
24	MR. LAUR: Well, good morning. I'm glad
25	to see it's still morning.
	1

	91
1	My name is Steve Laur. I'm in the NRR
2	Division of Risk Assessment, Senior Reliability &
3	Risk Analyst. I'm here today to discuss the Staff
4	review of the Beaver Valley EPU risk assessment.
5	Next slide.
6	I'll give you the conclusion slide first
7	and if that's all you want to hear, we can make this
8	even shorter.
9	The licensee assessed the potential risk
10	impacts of the extended power uprate. Our review
11	concluded and agreed with the licensee that special
12	circumstances do not exist that would rebut the
13	presumption of adequate protection. So therefore,
14	we have approved going forward with this proposed
15	power uprate.
16	Next slide.
17	Just a reminder, I think you just
18	mentioned this right before I got up here, but they
19	are not risk-informed as defined in Reg. Guide
20	1.174. However, there is an applicable review
21	standard 001 that basically describes the purpose
22	for the risk information that the licensee provides.
23	First of all, to determine whether the
24	risk is acceptable. But as I mentioned before, to
25	determine special circumstances exist that would

(202) 234-4433
92 1 rebut the presumption of adequate protection 2 afforded by compliance with regulations. And this 3 is discussed in the Standard Review Plan, Chapter 4 19. This has been said a few times yesterday 5 and today, but I want to reiterate this. This is an 6 7 8 percent power uprate. The Staff has approved uprates on PWRs up to 17 percent and on BWRs up to 8 20 percent. And so far from the risk assessment and 9 from other reviews we have yet to determine special 10 circumstances. 11 12 Next slide. One thing that's important in looking at 13 14 a risk assessment using a PRA is what is the quality 15 or pedigree of the PRA? Beaver Valley has two 16 separate PRAs because the units were sufficiently different. These are full power seismic fire and 17 internal events including internal flooding PRAs. 18 19 And they calculate the risk matrix, core damage 20 frequency and larger release frequency. 21 For other risks including other external 22 events and shutdown risk, the licensee used 23 qualitative risk assessment. 24 CHAIRMAN DENNING: Unfortunately, George 25 Apostolakis isn't here to say what's a qualitative

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	risk assessment
2	MR. LAUR: Yes. I noted that. I
3	appreciate that.
4	CHAIRMAN DENNING: That's okay.
5	MR. LAUR: PRA quality, these are
6	uprates of the agency's IPE models, and in the case
7	of the fire and seismic, IPEEE models that were
8	submitted under Generic Letter 88-20.
9	They had an owners review on the
10	internal events portion in accordance with the
11	industry peer review guidelines in 2002 and they've
12	incorporated the resolutions from those comments.
13	The seismic fire PRA models, we don't
14	have an equivalent industry peer review process or
15	standards. However, they were reviewed by the
16	consultants that did the work. I take that back.
17	They were reviewed by consultants when the IPEEEs
18	were performed. And the NRC in the staff evaluation
19	report found them acceptable for meeting the Generic
20	Letter 88-20 purpose.
21	And so the conclusion that I made from
22	all this is that the PRA is of sufficient scope,
23	quality and level of detail to support this
24	application.
25	We also conducted a very focused onsite
	1

(202) 234-4433

1 audit of the licensee's PRA last October. There were 2 several purposes. One was to understand the risk of the EPU taken by itself. A second purpose was to 3 4 check the quality of the PRA and the risk assessment 5 that was done using the PRA and to understand and clarify some of the RAI responses in an onsite 6 7 manner as opposed to multiple back and forth on the 8 docket. Let me go to the key findings. 9 The key 10 findings was that the licensee up to that point had 11 not assessed the risk of EPU by itself. There were 12 model enhancements and methodology changes and then modifications to the plant that were unrelated to 13 14 EPU that were included in the post-EPU model which 15 made the delta risk assessment not apples-to-apples 16 comparison. Also, as a result of the audit we 17 identified the need to explain some apparently 18 19 anomalous MAAP results. 20 Coming out of the audit the licensee 21 actually identified a MAAP error and reperformed and 22 resubmitted quite a bit of the HRA timing analysis. 23 They also submitted a risk assessment that was more 24 of an apples-to-apples comparison pre-EPU to post-25 EPU.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

94

	95
1	DR. BANERJEE: Which were the MAAP
2	results that had to be explained? What type of
3	results, do you remember?
4	MR. LAUR: There was a reactor coolant
5	pump seal LOCA calculation for station blackout.
6	Correct me if I'm wrong, I know it was station
7	blackout. I think it was RCP seal LOCA that in most
8	of the cases from pre-EPU to post-EPU timing
9	decreased as you would expect. In one case it
10	actually increased. And so we questioned that. And
11	then on the audit we pulled the thread a little
12	more, the licensee ended up getting Fauske &
13	Associates involved in explaining how the MAAP code
14	works, et cetera. And it turned out the actual
15	timing increase was due to another change, it had to
16	do with the accumulator setpoints. And therefore,
17	it could be explained in terms of the thermal-
18	hydraulics, which was not my expertise, but it could
19	be explained in the fact that more accumulator water
20	went in during the transient.
21	However, in the course of researching
22	that they discovered a modeling error in the MAAP
23	model that required redoing.
24	DR. BANERJEE: Do you recall what the
25	error was?
	I contract of the second se

(202) 234-4433

96 1 MR. LAUR: They had the pressurizer 2 surge line going into the top of the loop instead of in the middle of the loop. 3 4 MR. ETZEL: This is Bill Etzel from 5 FENOC. Yes. on the pressurizer surge line the 6 7 MAAP code we had a loop sealed model where in 8 reality we do not have one. 9 DR. BANERJEE: But why didn't it show up 10 in the pre-EPU calculation and the post-EPU. Ι mean, the error would have been made in both, right? 11 12 Right. MR. LAUR: The error was a preexisting error to my understanding. 13 14 DR. BANERJEE: So why did it give this 15 anomalous result? I can't answer that. 16 MR. LAUR: But I 17 know in my review when we're looking at a table of timing changes due to EPU and you see all of them 18 19 going in the expected duration, a little bit 20 shorter, and one of them going longer, it causes you 21 to question. 22 But as to why that wasn't caught 23 earlier, I don't know. 24 MEMBER WALLIS: But the two aren't quite 25 so connected. Maybe the result of this lead to a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	review of MAAP which showed up this error; I'm not
2	sure the two things are connect.
3	MR. KELLER: Yes. This is Colin Keller.
4	That's correct, Dr. Wallis. The two were
5	not related. The error was found in part of the
6	review that we did to the NRC's
7	MEMBER WALLIS: You were lead to look
8	further at MAAP and then you found something
9	okay.
10	MR. KELLER: Yes.
11	MR. LAUR: Right. I didn't mean to imply
12	that this error was causing the anomalous result.
13	DR. BANERJEE: So why was there an
14	anomalous result? Then we're back to
15	MR. LAUR: Well, when I say "anomalous,"
16	it's apparently anomalous
17	MEMBER WALLIS: But not really?
18	MR. LAUR: but the reason for the
19	time getting longer in this one or two scenarios, I
20	don't remember how many there were, had to do with
21	changing accumulator pressure setpoints and level
22	setpoints that resulted a change in addition to or
23	actually opposite to the change caused by power
24	increase. So that in this particular scenario
25	instead of the timing getting shorter, this
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	98
1	additional water from the accumulators actually
2	caused it to be longer.
3	DR. BANERJEE: So it was a legitimate
4	now you accept that as a legitimate finding?
5	MR. LAUR: Yes. Yes.
6	DR. BANERJEE: But at the end of it it
7	allowed you to well, not allowed it actually
8	initiated this review of MAAP which found an error.
9	But that error had nothing to do with this?
10	MR. LAUR: That is correct. And the
11	real point I was trying to make here is that they
12	did review the MAAP analyses and resubmit them on
13	the docket.
14	The other result out of the
15	DR. BANERJEE: Was there any independent
16	check of MAAP or audit of MAAP or was this what was
17	done?
18	MR. LAUR: I don't know. The audit we
19	did was not looking at MAAP. We're looking at very
20	focused on the licensee's configuration control
21	process for MAAP and for risk calculations and on
22	specific areas that we had asked in RAIs that we
23	didn't understand. And this was one of them. But I
24	think there were two MAAP areas, and the one they
25	were able to resolve right away and this one took a

(202) 234-4433

	99
1	little longer.
2	DR. BANERJEE: What was the other area?
3	MR. LAUR: I'd have to look it up. I
4	don't recall offhand.
5	DR. BANERJEE: Okay.
6	MR. LAUR: The other result, though, we
7	did compare the licensee's procedure for
8	configuration the PRA to the ASME PRA standard
9	Section 5 and concluded it was a good process. They
10	had virtually all the elements met for practicing
11	the configuration control by procedure.
12	The licensee already covered the fact
13	that the way we tend to assess the risk is to look
14	at the various elements that make up a PRA and say
15	what could be impacted. And I've got these combined
16	in a couple of slides here. But this one talks
17	about initiating events and equipment reliability.
18	The EPU does not result in any new initiating
19	events. Even in the cases where an initiating event
20	is modeled as a fault tree model of some operating
21	system that fails during its mission time, the
22	equipment reliability is not expected to change
23	either. So therefore, those initiating events would
24	not be impacted.
25	And for the same reason the systems that
	I contract of the second s

(202) 234-4433

	100
1	are mitigating the accidents are not expected to
2	change because they're still operating within their
3	same design limits.
4	Next slide.
5	Accident sequence and success criteria.
6	The general accident progression, accident sequence
7	progression did not change. In other words, the
8	event tree models are the same. Now timing may be
9	different at EPU conditions, but you don't expect to
10	have to ask different questions in the event tree as
11	a result of an 8 percent power uprate. And the
12	licensee concluded that you don't, and I concur.
13	The success criteria for the most part
14	stays the same. And I just want to talk about a
15	couple of places where it didn't.
16	Station blackout is impacted slightly.
17	If you have a station blackout and never recover
18	offsite power, you're going to have core damage
19	somewhat earlier. That translates int the time that
20	the operator has to recover offsite power, which
21	translates into a higher operator action failure
22	probability and therefore core damage frequency.
23	The licensee did include that in their post-EPU
24	model.
25	The ATWS success criteria was impacted.
	1

(202) 234-4433

	101
1	Addition of the cavitating venturies on Unit 1 means
2	you can no longer mitigate a full ATWS event because
3	you can't get full flow out of three AFW pumps.
4	However, the PRA success criteria didn't change.
5	And the reasons for that is that the licensee had
6	conservatively not credited full flow in the pre-EPU
7	model. And therefore, the success criteria is the
8	same. The licensee reported no change in risk.
9	I pointed out in my safety evaluation
10	that that's not correct. There is a change in risk.
11	The change in risk would be if you had taken the
12	conservatism out of the initial, the pre-EPU, and
13	you'd actually get a delta. But I also know to
14	looking at the information they submitted that ATWS
15	is less than 1 percent on both units. Therefore,
16	the max that could be would be a 1 percent. It
17	would not change my conclusions.
18	CHAIRMAN DENNING: That really is
19	interesting, though, in terms of just looking at
20	delta risks where, as you quite properly pointed
21	out, that making the conservative assumptions made
22	it look like there was no change in risk whereas in
23	reality there was a slight increase in risk.
24	MR. LAUR: That's correct.
25	CHAIRMAN DENNING: But I agree, it's a
	I

(202) 234-4433

(202) 234-4433

Í	102
1	negligible consideration.
2	MR. LAUR: The design bases loss of
3	feedwater transient was picked up by one of the
4	other branches and brought to my attention resulted
5	in a request for additional information on how the
6	PRA success criteria was impacted. It turned out it
7	was not. And the licensee submitted realistic
8	LOFTRAN and realistic MAAP calculations to show that
9	in a realistic analysis that the success criteria
10	pre and post-EPU does not change.
11	CHAIRMAN DENNING: Now, is this the
12	success criterion that relates to two out of three
13	aux feedwater pumps?
14	MR. LAUR: Right. The PRA from a
15	realistic standpoint pre and post-EPU you only need
16	one AFW pump for secondary side decay heat removal.
17	Now in Unit 2 you need two steam generators because
18	you have small atmospheric dump valves but as far as
19	the AFW portion, which is what has been effected by
20	the cavitating venturies, the realistic analysis
21	shows that it does not change.
22	And then the final bullet here is
23	actually the subject of a whole other slide, which
24	is containment accident pressure credit for ECCS
25	NPSH positive suction head.
	1

(202) 234-4433

	103
1	Next slide.
2	This has a potential of impacting
3	success criteria, so that's why I put it under here.
4	I don't know how much you want me to go over this.
5	I thought it was pretty well covered by the Licensee
6	and by Rich Lobel yesterday.
7	CHAIRMAN DENNING: Yes, I think it was.
8	So if you just want to kind of bottom line, feel
9	free.
10	MR. LAUR: The bottom line is if you
11	remember the two graphs that were respective of
12	calculations before and after, there's a difference
13	of about 30 seconds to one minute when they cross
14	zero, in which I concluded there was an incalculable
15	risk impact, delta risk impact, from crediting the
16	containment accident pressure.
17	MEMBER WALLIS: Does all this go into
18	the PRA then? I mean you have an actual evaluation
19	of the change in the PRA as a result of crediting
20	this containment accident pressure?
21	MR. LAUR: No.
22	MEMBER WALLIS: You don't?
23	MR. LAUR: Not to my knowledge. If you
24	look at the absolute value of a contribution to
25	risk, in other words not the change but what it
	1

(202) 234-4433

	104
1	would be, and the licensee indicated that a large
2	LOCA and failure of containment isolation for
3	example would be 1E minus 8. I don't have their
4	model, but what I did look at was a failure on
5	demand. If you use a bounding value for a failure
6	on demand of a containment isolation valve, a
7	typical common cause failure in a bounding LOCA of
8	frequency of ten to the minus four, you're down to
9	ten to the minus seven right there. So you're
10	talking about a very low
11	MEMBER WALLIS: No, granting there's
12	containment overpressure is not really something
13	that's necessary in order to bring the risk down.
14	It's necessary in order to meet some other
15	requirement.
16	MR. LAUR: That is correct.
17	MR. RUBIN: Dr. Wallis, that's correct.
18	If I could just interject momentarily.
19	This is Mark Rubin, Branch Chief 1.
20	The reason this was looked at is because
21	of the issues related to the VY power uprate and
22	some of the concerns on granting NPSH over pressure
23	and the fact that the Reg. Guide I'm sure Mr.
24	Lobel talked about that previously. Because the
25	Reg. Guide is under revision, a senior NRR
1	

(202) 234-4433

Í	105
1	management asked that we reflect on the potential
2	risk impact to see if any existed on the power
3	uprates and that in the future it be sort of looked
4	at quickly, if all that's required, to validate
5	little to no risk impact. And that's why this was
6	looked at specifically.
7	But the conclusion, you're absolutely
8	correct, has no real impact in this case.
9	MR. LAUR: And the point was already
10	made yesterday, but we're not granting containment
11	overpressure. That's the existing licensing basis.
12	MEMBER WALLIS: There's really no
13	change. It's been granted before and there's almost
14	no change in the requirements, so nothing has really
15	happened here?
16	MR. LAUR: Exactly. That's what we
17	concluded.
18	Human reliability. I guess in keeping
19	with every other EPU that I've heard about, this is
20	the major impact on risk, on calculated risk. EPU
21	has a tendency to reduce times for operators to act.
22	The change in the HRA due to EPU is not assessed
23	directly by the licensee. What was done instead was
24	a sensitivity study. And the reason for that was
25	their pre-EPU timing was, as I mentioned, based on
	1

(202) 234-4433

	106
1	often grossly conservative hand calculations for the
2	time. Their post-EPU they've upgraded to use MAAP
3	on both units.
4	Secondly, the method they used cannot
5	translate small changes in timing into realistic
6	human error probabilities.
7	MEMBER WALLIS: But that's just what
8	they do, isn't it? Isn't that what they do?
9	MR. LAUR: That's what they do. But
10	that's
11	MEMBER WALLIS: You're saying they can't
12	do it meaningfully?
13	MR. RUBIN: This is Mark Rubin again.
14	Yes, I think that's what we're saying.
15	Some of the HRA methodologies, especially the
16	earlier ones we'll grant, as Dr. Apostolakis has
17	shown us on many occasions. The small change is in
18	timing. The model will calculate a difference in
19	human performance or success rate, but it's really
20	not a meaningful you have no confidence really in
21	those small changes shown.
22	MEMBER WALLIS: What else are you going
23	to do? If you're asked to calculate the CDF effect,
24	you have to use some sort of HRA?
25	MR. RUBIN: Yes.
	1

(202) 234-4433

107
MR. LAUR: Yes.
MR. RUBIN: Certainly.
MEMBER WALLIS: And you're simply saying
that this isn't a very good method. I think it's a
little extreme to say it's not meaningful. It's
maybe the best method available.
MR. RUBIN: What is meaningful well,
certainly it does give a quantitative result. But
what is meaningful is that the techniques allow us
to identify the more important actions, look at the
timing changes for those and see if they're
significant and let us focus in risk case.
All we wanted to point out here is that
we're in the areas of uncertainty, almost in the
area of noise in the small calculational
differences. But we do use the technology to help us
focus in on the important human response actions and
look at the timing changes on those.
MEMBER WALLIS: I think you ought not to
use the word "meaningful" though. That might mean
the wrong thing to some people. And you're just
saying that there are uncertainties and these are
very small changes anyway, and all that sort of
thing. But you're still doing the best you can or
the licensee is doing the best he can.

(202) 234-4433

	108
1	MR. LAUR: That's a good comment. When
2	I say the "methodology," as I mentioned I used the
3	success likelihood index method, but I'm not
4	integrating that methodology. If you have a time
5	reliability correlation, which I think is an
б	artifact in some ways, but as Mark said you change
7	time, you're going to get a change. And this method
8	has a method on the performance there's a time. If
9	you look at the SPAR-H model, they have discreet
10	time steps ranging from not enough time to adequate
11	time, to excess time. And the point I'll make on
12	the next slide goes to more with symptom based
13	procedures, it's almost a function of can you get to
14	that step in the procedure and then do you have an
15	error of omission when you get to that step.
16	So looking at the third major bullet,
17	the way I assessed the risk was looking at the post-
18	EPU core damage frequency and large early release
19	frequency recognizing that the change in those is
20	based on natural plant changes and on a sensitivity
21	analysis for the HRA. Okay.
22	And I did ask the licensee in an RAI to
23	validate important operator actions with short time
24	frames. You know, demonstrate they can be done. In
25	other words, they are not precluded. I understand
	I Contraction of the second

(202) 234-4433

	109
1	you "can" meaning one to zero. What I'm saying is
2	you haven't changed the time to where something that
3	was maybe marginal but you could do it became
4	precluded. And they did that and nothing fell into
5	that category of being precluded.
6	So my conclusions focused on, like I
7	said, that the actual CDF and LERF and whether or
8	not special circumstances arose.
9	Next slide.
10	The licensee showed you a top five
11	operator actions and they gave me whole pages of
12	them, but if you look through them and sort them by
13	importance, I tried to summarize them in two major
14	categories. What shows up are depressurizing the
15	RCS and feed and bleed cooling at both units and
16	then some manual actions to, in the case of Unit 1
17	start auxiliary river water pumps and align them and
18	Unit 2 solid state protection system failure so you
19	have to start aux feedwater pump.
20	The licensee, as I said, validated these
21	and all the other ones that could be performed. But
22	just looking at the feed and bleed actions briefly.
23	These are proceduralized, they're routinely
24	practiced, they're performed in the control room
25	with one minor exception. They take a relatively
	1

(202) 234-4433

	110
1	short time from two to ten minutes to actually
2	perform the tasks. And they occur in response to
3	symptom based procedures, not just the EOPs but also
4	the functional restoration procedures.
5	So the last subbullet under there is
6	what I was trying to say. It's really more of a
7	function of how much time you have until you get to
8	that step in the procedure as opposed to a slight
9	decrease in the amount of time available.
10	And the other two actions up there are
11	control room actions that are simple actions.
12	So we concluded that there was a minimal
13	impact on EPU risk on the HRA.
14	DR. BANERJEE: What about switching to
15	hot leg injection?
16	MR. LAUR: I don't recall that operator
17	action, and I'd have to defer to the utility. That
18	might be a good one for the utility to comment on.
19	MR. ETZEL: This is Bill Etzel from
20	FENOC.
21	We currently do not model hot leg
22	injection.
23	DR. BANERJEE: But you switch, right, to
24	hot leg injection in the log term cooling scenario,
25	right?
	1

(202) 234-4433

	111
1	MR. ETZEL: Yes.
2	MR. DURKOSH: This is Don Durkosh. I'll
3	be addressing that in the next presentation.
4	DR. BANERJEE: Okay.
5	MR. LAUR: Okay. External events, we've
6	got seismic fires and other, which include high
7	winds. There's nothing about EPU that would
8	increase any of the initiating event frequencies or
9	types of initiating events from these.
10	The quantitative assessment, since their
11	PRA handles seismic and fires, demonstrated that a
12	very small impact on the risk from those. And that
13	comes from the fact that their seismic and fire PRA
14	models are integrated with their PRA model. So
15	human reliability increases and plant modification
16	increases translate and propagate through those
17	models.
18	And for other external events, the
19	successive screening methodology that was used for
20	their IPEEE remains valid and we conclude that would
21	be a minimal impact on risk as well.
22	Next slide.
23	I don't have as many as the licensee
24	had, but this shows you the post-EPU core damage
25	frequency and large release frequency using their
1	

(202) 234-4433

	112
1	HRA methodology with a MAAP realistic timing and
2	that is what I used to conclude that there was no
3	special circumstances. These are very small
4	changes.
5	The increases include the modifications
6	and the sensitivity analysis. These small. They
7	meet the Reg. Guide 1.174 guidelines for being
8	small, but it's not what I based my conclusion on
9	for adequate protection.
10	Next slide.
11	The licensee did a qualitative
12	assessment of shutdown risk using the questions in
13	the Standard Review Plan, Chapter 19. And we agree
14	that the shutdown initiating events aren't impacted.
15	Times to boil times for operator actions are
16	slightly decreased, but minimal impact on risk.
17	Finally, in conclusion the licensee
18	assessed the potential risk from EPU. We concluded
19	the EPU does not create special circumstances that
20	would rebut the presumption of adequate protection
21	and therefore we found this acceptable.
22	CHAIRMAN DENNING: Are there any
23	questions?
24	Thank you. Good job.
25	MR. LAUR: Thank you.
l	1

113 1 CHAIRMAN DENNING: Okay. Now we're just 2 going to continue on and we'll get into operations 3 and testing starting off with human factors, I 4 guess. 5 MR. DURKOSH: Okay. My name is Don 6 Durkosh. I am a senior reactor operator currently 7 licensed at Unit 2 and control room supervisor. I also have with me George Storlis. 8 9 George brings over 30 years of operating experience 10 at Shippingport, Beaver Valley Unit 1 and Beaver Valley Unit 2. 11 12 A little bit about myself. I have 25 years of experience in the commercial nuclear power 13 14 industry. I started my career with Westinghouse 15 working in the engineering design analysis services I was the Westinghouse site manager at Beaver 16 area. Valley and was in the unique position of kicking off 17 this project and working with Mike Testa from a 18 19 management perspective. 20 And I am licensed at Unit 2 and looking 21 forward to raising power toward the end of this year 22 at Unit 2. 23 The four areas that I plan to cover are 24 human factors, training, our test plan and overview 25 of our test plan and touch upon large transient

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	testing.
2	From an overview perspective, the human
3	factors impact of the EPU is minimal. There's a
4	total of eight meter changeouts from a control room
5	perspective. Six of them are related to the fact
6	that we're replacing our accumulator pressure
7	indicators with a digital indicator. And we also are
8	replacing our containment narrow range pressure
9	indicators as part of the containment conversion
10	project. All eight of these meters have been
11	replaced out at Unit 1 and on the Unit 1 simulator
12	and in the process of being changed out at Unit 2.
13	Coming into the EPU project we were at
14	an advantage in that in late 2002 and early 2003
15	Beaver Valley Operations staff undertook a major
16	review of our emergency operating procedures. And e
17	have substantially streamlines our EOPs and made
18	them consistent with the Westinghouse ERGs. And, in
19	fact, that's a project that I also worked.
20	So we had a very solid foundation for
21	coming into the final portion of the EPU project
22	having very streamlined procedures.
23	In the big picture here, the procedure
24	changes that are coming out of the EPU project are
25	rather minimally. They're primarily: Revise
I	

(202) 234-4433

115 1 operating parameters, changes in limits and revise 2 setpoints. 3 One area where the EOPs were directly 4 impacted was the addition of an attachment that will 5 require that the control room initiate a purge 6 following a steam generator tube rupture. However, 7 I do want to point out that that existing attachment 8 already exists for purging the control room for a 9 steamline break scenario. So in a big sense, it's a 10 very minimal impact. DR. BANERJEE: What are those two little 11 What was that interesting stuff. things there? 12 MR. DURKOSH: Go back, but don't click 13 14 on it. 15 What they are, they are backup slides. What I wanted to do, what I have here are examples 16 17 of some of the normal operating parameters and some of the EOP setpoint changes. But I looked ahead at 18 19 the NRC presentation and they have much more than I 20 have, so I don't see any value going there, if 21 that's okay with you. 22 CHAIRMAN DENNING: Thank you. 23 MEMBER WALLIS: What we could do is 24 check that you and the NRC have the same 25 presentation or there's no inconsistency.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	MR. DURKOSH: All right. Click on it.
2	CHAIRMAN DENNING: Don't click it.
3	Don't click.
4	MEMBER WALLIS: We'll trust you on that
5	one.
6	MR. DURKOSH: All right.
7	Okay. I was at the Ginna presentation
8	so I heard your feedback, what you really wanted to
9	focus on; those areas that were potentially
10	impacted. So, obviously, our action time, operator
11	action time is a key issue so I wanted to address
12	that.
13	Obviously with increased decay heat the
14	available time to perform some actions are reduced.
15	However, I do want to point out that the basic
16	operator actions that we have to do remain
17	unchanged. We are not implementing any new
18	modifications that require new operator action
19	times. And that's unlike Ginna where they did
20	actually implement some modifications.
21	In most cases our action times have
22	either remained the same or actually been extended
23	to improve the overall process. And I do have a
24	couple of slides where the case is actually reduced,
25	and I'll talk about those.

(202) 234-4433

	117
1	During the course of this review we also
2	identify procedure enhancements and we have
3	incorporated those. Most notably, we did a complete
4	review of our fire related procedures for Unit 1 and
5	we did a major upgrade as part of the EPU project.
6	And action times are being revalidated.
7	We've already talked about some using the simulator,
8	using walkdowns, using tabletop discussions and
9	field timing of operator actions in the field.
10	I do want to take a point. Colin had
11	mentioned operator action time relative to the PRA.
12	And for the scenarios that I saw, most of those are
13	beyond design bases. So it gets you pretty deep
14	into the emergency procedures and the contingency
15	procedures. For instance, initiating bleed and
16	feed. There's a loss of heat sink scenario which
17	requires us to lose all of our aux feedwater pumps,
18	not be able to use our main feedwater pumps, our
19	startup feed pumps, our condensate pumps. So we're
20	basically sitting as the steam generators are slowly
21	drying out and getting ready to wait to initiate
22	bleed and feed. So it's a pretty extreme scenario.
23	Okay. The next slide.
24	Okay. We talked about ECCS switchover
25	to hot leg recirc. Ken had talked about and this

(202) 234-4433

	118
1	question just came up.
2	At Unit 1 the existing time is 8 hours
3	and when we go to uprate, that time will get reduced
4	to 6½ hours.
5	At Unit 2 the current time is 7 hours
6	and that will get reduced to 6 hours.
7	And in addition, at Unit 2 our design
8	bases has us switch from straight cold leg recirc to
9	hot leg recirc and back to cold leg recirc on a
10	periodic frequency. That time rate now is 11½ hours
11	and that'll be reduced to 9½ hours.
12	I think the question came up as to what
13	the burden or impact is. Through our simulations
14	generally within an hour or two of a large break
15	LOCA scenario we are back into the emergency
16	mainstream procedure called E1. And basically we
17	are doing our preparations looking down the road and
18	doing our preparations.
19	As was mentioned, approximately one hour
20	before we will start taking steps to make sure we
21	have AC power to the valves in questions. If we
22	have any jumpers that require, we have those jumpers
23	in position. And we're briefing on what actions
24	have to occur.
25	And the time frame for actually

(202) 234-4433

1 initiating switchover, at least I looked at the Unit 2 1 validation efforts on the simulator to initiate hot leg recirc. Coming into the procedure we're 3 4 talking a matter of minutes. So those hot leg 5 recirc procedures are relatively streamline. You're able to get in and get out very quickly. 6 7 DR. BANERJEE: I guess the impact would be if one was wrong in determining where the 8 9 switchover time should be? If it was, say, three hours instead of 6½ h ours, there's no direct 10 measure you have here. But it's not related to the 11 uprate, it's in general this issue of not having a 12 direct measure for the boron? 13 14 MR. DURKOSH: I agree. It's not 15 directly impacted by the project. DR. BANERJEE: Yes. The amount of time 16 17 difference is not significant. All right. MR. DURKOSH: Two areas that I would 18 19 like to talk about is the tube rupture and isolating 20 aux feedwater flow and the post trip fire scenario 21 where if we did lose aux feedwater, we would want to 22 restore it. 23 Relative to the tube rupture, one of the 24 key operator actions is to isolate aux feedwater 25 flow. I do want to point out that all of the EPU

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

119

ĺ	120
1	analyses that were performed were actually based on
2	crew simulation data collected in 2002. So we had a
3	solid footing for the analyses going forward.
4	And then as part of the EPU project in
5	late last year we ran on the simulator with the new
6	procedures that are being proposed, we had the Unit
7	1 crew go through and then we validated the fact
8	that what we had done before we were able to meet.
9	For Unit 2 this EOP changes are in the
10	final stages of being identified. There were
11	tabletops that were performed and we are planning to
12	do simulator validation later this year.
13	Next slide.
14	Relative to the fire scenarios, key
15	action would be if you lost aux feedwater you'd need
16	to reestablish it. I wanted to give you a positive
17	message here. Relative to the Beaver Valley Unit 1
18	the EPU project established all of the critical
19	operator action times. The entire set of fire
20	related procedures were revised, streamlined and the
21	walkdowns have been completed. So that validation
22	effort is complete.
23	Relative to Unit 2, about 3 years ago
24	our fire related procedures were updated. And it
25	turns out that because that occurred in the midst of
	I contract of the second se

(202) 234-4433

	121
1	this EPU project, the aux feedwater critical times
2	have already been incorporated in the procedures.
3	So there's basically minimal work to do on Unit 2.
4	Possible that any of the lessons learned from the
5	Unit 1 procedures may get back to Unit 2. But we're
6	not anticipating any major changes to our
7	procedures; they're already there. And they've
8	already included the operator action times that are
9	appropriate for EPU.
10	The next slide.
11	Okay. Moving on to operator training.
12	Basically we use classroom training of our design
13	change packages. We'll go over our tech spec and
14	licensing requirement manual changes. We'll go over
15	any physical changes, procedure and setpoint
16	changes. And then also we'll do simulator focus
17	areas where if there is a change warning, a
18	demonstration or hands-on training, we would do
19	that. And for instance, the Unit 1 crews had a
20	chance on the simulator to operate the new steam
21	generator level control program following steam
22	generator replacement. So the crews have time to
23	basically get accustomed to the new control
24	setpoint.
25	And then we always will continue our

(202) 234-4433

	122
1	transient response and EOP execution training.
2	And for startup and shutdown, we also
3	use just-in-time training to get the crews focused
4	in prebrief so that those activities go smoothly.
5	As we discussed over the last day and a
б	half many of the modifications have been
7	incorporated. So crew training has been going on
8	here for the last couple of years as modifications
9	have been made. And they'll continue up to our EPU
10	uprate.
11	We do have plant specific simulators
12	that we use, separate ones for Unit 1 and Unit 2.
13	And the changes that we're talking about are
14	primarily model and initial conditions. So there's
15	no issue about going from current plant to EPU plant
16	other than a matter of a couple of minutes to switch
17	over the model. I know that question was raised at
18	Ginna. So we do not have any issues being able to
19	switch back and forth.
20	Moving on test plan. This is an
21	overview of our test plan. Primarily consists of
22	post modifications tests which, as I mentioned, many
23	of them have already been performed and we'll
24	continue doing them as the mods are made.
25	Our low power physics testing program
	1

(202) 234-4433

1 remains the same. There's no change there. What we 2 are doing is we are collecting baseline data and 3 then using that baseline data to support our power ascension testing. And in the power ascension 4 5 testing we're planning on small increments. I have a couple of slides to show you of what our current 6 7 plan is. But basically we'll use the baseline 8 data to make data projections. We'll collect data 9 at steady state conditions and then we'll review 10 that day and if we have any anomalies, we'll 11 12 evaluate that and identify through our corrective action program what our next step would be. 13 14 So what I wanted to do here is here's 15 kind of a profile of Unit 1 power ascension profile. As we discussed, we just completed our 1R17 16 refueling outage which involved replacing the steam 17 generators. We have started up and we are operating 18 19 at a 100 percent power currently. And during the 20 startup process we did collect baseline data at 21 roughly 90 percent and 95 percent. So we now have 22 the data that we can use to predict where we expect 23 to be. Following receipt of the safety evaluation 24 report, we plan to uprate approximately a nominal 3

percent power uprate and we'll be using the baseline

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

123

	124
1	data to predict where the parameters should be so
2	that we have a method to compare.
3	And we expect to operate the rest of the
4	cycle at approximately 2770 megawatt thermal.
5	And then coming out of the new refueling
6	outage, we expect to return to that power level and
7	make two small moves approximately 2.5 percent each
8	time collecting data, evaluating the data making
9	sure that we're comfortable and then moving up to
10	the ultimate power level of 2900 megawatts.
11	I have a similar slide for Unit 2. We
12	are currently in cycle 12 with a 2R12 refueling
13	outage plan for the fall. Our plans here is to come
14	out of the outage, collect our baseline data at
15	roughly 95 percent. Come up to our current license
16	power of 2689, which is 100 percent power and then
17	initiate shortly thereafter a nominal increase of 3
18	percent up to 2770. And our plan is to operate for
19	the rest of basically the full cycle at 3 percent
20	uprate. And then at the following refueling outage
21	would be the next opportunity to go ahead and
22	incorporate the high pressure upgrade at Unit 2 and
23	basically come out of the outage at the referenced
24	power level and again make two small moves up to the
25	ultimate 2900 megawatt for core license power.

(202) 234-4433

ĺ	125
1	DR. BANERJEE: When do you have it all
2	with robust fuel or whatever this new RFA? I don't
3	remember.
4	MR. DURKOSH: I didn't understand the
5	question.
6	DR. BANERJEE: When is the core
7	completely peopled with this robust fuel?
8	MR. DURKOSH: We're there already.
9	DR. BANERJEE: Both units?
10	MR. DURKOSH: That's correct. As part
11	of our extensive planning process for this phased
12	implementation we started five or six years ago when
13	we began to transition to RFA fuel. So both units
14	today as we speak are 100 percent RFA fuel.
15	DR. BANERJEE: Okay. Thanks.
16	MR. DURKOSH: The next topic, I'd like
17	to move on, is the topic of transient testing. So
18	what should be considered when you evaluate the need
19	for transient testing?
20	One thing that is very important is to
21	evaluate the modifications and also to evaluate the
22	NSSS control changes. And then based on that in
23	your test plan ensure that you have adequate
24	coverage for testing.
25	So there was a detailed evaluation that
	I contract of the second se

(202) 234-4433

	126
1	was performed as part of the license amendment and
2	follow up RAIs. As we indicated, each of the
3	modifications will be fully tested. And as I've
4	already mentioned, many of the modifications have
5	already been incorporated and we're gaining
6	operating experience with those modifications.
7	In addition, design engineering did an
8	extensive owners review of the NSSS control
9	supporting analyses. These are the operational
10	transients to make sure that we would not have a
11	reactor trip during selected design bases events.
12	And I think the key point that came out
13	of that is there are no controller functional or
14	logic changes. I know Vermont Yankee had somewhat
15	of a fundamental logic change and transient testing
16	may have been appropriate in that case.
17	We have no new control schemes. And our
18	changes are primarily limited to setpoint changes
19	that have been optimized for EPU conditions.
20	The conclusion from our earlier work is
21	the aggregate impact does not adversely affect plant
22	dynamic response.
23	Next slide.
24	Now Beaver Valley Unit 1 given the
25	replacement steam generators, it was important that
I	1

(202) 234-4433

127 1 we did monitor control systems during startup. And 2 I believe Pete mentioned yesterday that the feedback 3 from the operators was very positive. So our control 4 system operated as expected and in addition we did 5 perform, and this was an area where we thought transient testing was important, we change our valve 6 7 trims out, we did change our control operating 8 setpoints and we had new steam generators. So there 9 was a transient test performed, and actually it was completed over the last weekend. Basically we 10 imputed a step change and we were monitoring the 11 controller response. 12 If you can go to the backup slide. I had 13 14 this data provided to me over the weekend. But 15 basically this is the new control point, a nominal They imputed a signal that drove the 16 65 percent. controller down 5 percent and we had minimal 17 overshoot. And then they initiated a similar 18 19 transient up with minimal overshoot. So overall the 20 control system worked just as planned. We easily met 21 all the acceptance criteria. And this all happened 22 within the last few days over the weekend. So verv 23 positive feedback on the test. The test and the 24 control modeling worked just as expected.

As mentioned, large transient testing is

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25
normally a test that involves reactor trip at some high power. At Beaver Valley any turbine trip greater than 49 percent will result in a reactor trip. As I mentioned, there are no functional changes in the NSSS controls and the supporting reactor trip functions. So we do not believe large

transient testing is necessary.

In addition, the simulation code, which 8 9 was LOFTRAN, that we use supported the original 10 plant. LOFTRAN has been around a long time. So my 11 message here is the computer code and the model 12 basically supported the original plant design and basically all Westinghouse plant designs. 13 The 14 startup testing confirmed that the plant matches the 15 model, that computer code and model supports our current operational analyses, we have used it to 16 benchmark our simulators, we use it in our non-LOCA 17 analysis and we use it to optimize the EPU 18 19 conditions. So no further benchmark testing was 20 deemed necessary. 21 And again, my conclusion is based on the 22 technical changes there's no large transient testing 23 that will be necessary.

Slide.

So my overall conclusions in the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 128

24

25

1

2

3

4

5

6

7

	129
1	operations and testing area, the key take aways are:
2	Our procedure changes primarily involve
3	operating parameters, limits and setpoint changes;
4	The power ascension process will ensure
5	a controlled, closely monitored, very conservative
6	approach to our new licensed power level;
7	And the modification in the NSSS control
8	changes do not alter the basic design function of
9	those systems, nor introduce a first-of-a-kind type
10	change that will warrant large transient testing.
11	CHAIRMAN DENNING: How is the auxiliary
12	feedwater flow test did following the changes that
13	have occurred with the venturies?
14	MR. DURKOSH: Actually, those venturies
15	were replaced I think in the previous outage. But
16	generally what we do is we have an aux feedwater
17	flow test, an operations surveillance test. And
18	there were predictions on what the flow requirements
19	are. And then we have tested the system.
20	CHAIRMAN DENNING: Yes. And actually
21	test it and add water to the steam generator within
22	those tests?
23	MR. DURKOSH: Yes. We normally will do
24	that in the last stages of plant startup.
25	MR. HANLEY: Yes. This is Norm Hanley
l	1

(202) 234-4433

	130
1	from Stone & Webster.
2	And, again, when we implemented the
3	modifications to add the venturies, we did use the
4	OSTs to monitor the flow to the we also did a
5	very detailed calibration with the venturie itself
6	with the vendor. We did extensive tests to make
7	sure the calibration and the predicted flows would
8	match. We did an OST test where we did pump water
9	to the generator and verify those conditions. And we
10	also did an OST on the pump to verify the pump curve
11	was matching what we used in the analysis.
12	MEMBER MAYNARD: And you do this test
13	coming out of each outage, don't you?
14	MR. DURKOSH: That is correct.
15	MEMBER MAYNARD: I mean as far as the
16	flow test, the calibration?
17	MR. HANLEY: That's correct.
18	MR. DURKOSH: That's correct.
19	Any additional questions? All right.
20	Thank you very much.
21	CHAIRMAN DENNING: Okay. We will go
22	ahead and continue to hear from the Staff.
23	You may proceed.
24	MS. MARTIN: Good morning. I'm Kamishan
25	Martin. I'm a human factors engineer in branch of

(202) 234-4433

	131
1	Operator Licensing.
2	For our evaluation we reviews
3	procedures, training in human factors, interface
4	CHAIRMAN DENNING: I think you're going
5	to have to speak louder. And is that mike working
6	for sure.
7	The room's been all changed around and
8	so we're having some trouble with the mikes. And
9	you really have to get right up to this mike, too, I
10	know from experience here.
11	MS. MARTIN: Okay. Can you hear me?
12	CHAIRMAN DENNING: Okay.
13	MS. MARTIN: The areas we reviewed
14	include the training and human factors interfaces
15	between the operator and the control room and in the
16	plant related to performance.
17	These are the regulatory guidelines that
18	I use in the evaluation.
19	The main areas that we use that we
20	evaluated include the EOPs and the AOPs, the
21	operator actions that are sensitive to the power
22	uprate, the control room alarms, the SPDS and the
23	training program and simulator.
24	As the licensee stated, the changes were
25	slight modifications for parameter thresholds and

(202) 234-4433

	132
1	the elimination to references to the BIT tech spec.
2	This was eliminated because it's no longer credited
3	as a source of boron borated water. Sorry.
4	There was one new operator action that
5	was introduced due to the EPU and that includes the
6	control room purge. And the one change was a change
7	to another purge of the control room dealing with
8	the steam generator tube rupture. I'm sorry. That's
9	a new action.
10	The time reductions, some of the time
11	reductions for operator actions were due to decay
12	heat, but as the licensee stated, most of them
13	stayed the same. There were only a couple that were
14	reduced due to the EPU.
15	In Unit 1 all of the action times were
16	validated through the simulator and through the
17	walkthrough in the plant.
18	For Unit 2 the in plant operator action
19	times were validated, but because the procedures
20	aren't finalized at this time they only did a
21	tabletop review. But the licensee has committed to
22	validating the times on the simulator once the
23	procedures are finalized. We determined this to be
24	acceptable because of their commitment to validated
25	operator action times on the simulator.
l	I contraction of the second

(202) 234-4433

	133
1	This is just a table with the operator
2	action times that were most sensitive to the EPU.
3	In Unit 1, as I stated, all of them were
4	validated. But in Unit 2 there was in particular
5	that didn't have a margin between the time available
6	and the time it would take the operator to actually
7	perform this. But it hasn't been validated at this
8	time because the procedures aren't finalized.
9	CHAIRMAN DENNING: Now let me see if I
10	understand. Whose evaluation of action performance
11	time was this, the 9.7 minutes for example in this
12	first action? That's the plant says it can be done
13	in 9.7 minutes or somehow you guys did it?
14	MS. MARTIN: No, the plant said that it
15	could be done.
16	CHAIRMAN DENNING: Yes.
17	MS. MARTIN: And they performed a
18	validation of this because it's in Unit 1 that it
19	could be finished in 9.7 minutes.
20	MR. DURKOSH: Okay. This is Don Durkosh
21	from Beaver Valley.
22	The Unit 1 operator action times were
23	validated last fall on the simulator.
24	CHAIRMAN DENNING: Now, why don't you
25	stay there just a second. And that is this action
l	I

(202) 234-4433

1 performance time versus time available, I mean 2 obviously there's extremely small margin between 9.7 3 minutes and 10 minutes. Is that just a conservative 4 value as to we're 99 percent confident that it can 5 be done within 9.7 minutes or what's the difference between the 9.7 minutes and the 10 minutes there? 6 7 Can you respond to that? As was discussed in 8 MR. DURKOSH: Sure. 9 the non-LOCAs presentation from yesterday, the 10 minutes was the assumed operator action time for 10 basically terminating an inadvertent SI basically 11 12 precluding additional safety injection flow into the pressurizer. And they made an assumption of 10 13 14 minutes that operator action could be accomplished. 15 And we confirmed that we were able to do it within 10 minutes. 16 17 MEMBER WALLIS: How much time is available? 18 19 CHAIRMAN DENNING: Ten minutes. And the 20 10 minutes is the rough criterion that you have of 21 you have to do it within 10 minutes, right? 22 MR. DURKOSH: That is correct. And 23 where it says "Time Available/Times used in the 24 analysis," that's the specified time, that's the 25 target time that we're aiming at reaching.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

134

	135
1	MEMBER WALLIS: I'm assuming the time
2	available is longer than 10 minutes.
3	CHAIRMAN DENNING: Well, let me put a
4	hypothesis down and then you can tell me why I'm
5	wrong. Suppose this action in performance time if
6	that was the mean time that it took staff to do
7	this, then the probability of successfully doing it
8	within this time would be about 50 percent. And I'm
9	sure you're not telling me that. What is that 9.7
10	minutes telling me? That's not the mean time to
11	perform it. What is it?
12	MR. SENA: This is Pete Sena again.
13	Dr. Denning, if I can back up slightly.
14	If you recall during the non-LOCA transients for the
15	inadvertent SI, the way we went through that
16	transient was for the design bases assumptions we
17	bias steam generator or correct in pressurizer level
18	an additional 7 percent high from the norm and you
19	put in these various conservatisms.
20	When we go through the design bases
21	transient, the design folks that 10 minute window to
22	get it done. So the operating crews go through the
23	EOPs E zero, ES1.1 for inadvertent SI and all
24	simulator crews went through the scenario and were
25	able to perform that action within the 10 minute
	1

(202) 234-4433

	136
1	time period.
2	CHAIRMAN DENNING: So are you saying the
3	conservatism is within the 10 minutes?
4	MR. SENA: Yes. That's correct. But
5	again when we went through the analysis the way we
6	qualified the acceptability of the analysis was
7	through the qualifications of the downstream piping
8	and the PORVs and not relying on the operator action
9	time. That's how we precluded the event from going
10	from a condition II event to a condition III event.
11	MEMBER WALLIS: Well, what does the 9.7
12	minutes mean?
13	MR. SENA: Well, that is the actual time
14	that the operating crews completed the performance
15	in.
16	CHAIRMAN DENNING: All of them or
17	MEMBER SIEBER: The slowest one or the
18	average?
19	CHAIRMAN DENNING: the slowest one?
20	Yes.
21	MR. SENA: I cannot recall. I believe
22	that might have been the maximum time, but let me
23	get back to you. Let me phone call.
24	MEMBER WALLIS: The average, it isn't
25	very good.

```
(202) 234-4433
```

	137
1	CHAIRMAN DENNING: Right. Other than the
2	fact there's conservatism in 10 minutes, but then we
3	don't have a real good feeling as to how much
4	conservatisms.
5	MR. CARUSO: And let's ask once again if
6	the operators don't get it done until 11 minutes,
7	what does that mean?
8	MR. FREDERICK: This is Ken Frederick.
9	In a realistic sense it probably means
10	that they will be closer to overfill. In the safety
11	analysis world that means that we'll cycle the
12	safety valve a couple of more times.
13	MR. DURKOSH: So Ken gave you the
14	analysis impact. From a simulator perspective and
15	all the training that we have received, I cannot
16	recall ever challenging an overfill condition on
17	this kind of transient. We have streamlined our
18	procedures. We can get to SI termination very
19	quickly within 10 minutes. And normally when we
20	would stop the simulator at that point, we're
21	nowhere close to being overwhelmed.
22	MEMBER MAYNARD: I think the importance
23	of this is whether it ends up being classified as a
24	condition II or condition III event. In reality if
25	they don't get it done at all, you're still covered

(202) 234-4433

138 1 but your safety analysis just goes into a different 2 wonder. But it's whether this is considered a 3 condition II or condition III event. 4 CHAIRMAN DENNING: In this particular 5 case. 6 MEMBER MAYNARD: Right. 7 MEMBER WALLIS: Does this chart come 8 from a FENOC submittal? Is this something that you 9 put together. 10 MS. MARTIN: I'm sorry, what was the question? 11 MEMBER WALLIS: Is this chart taken from 12 the FENOC submittal or is it taken from--13 14 MS. MARTIN: I put this chart together 15 from information that was in a chart that they submitted that had more --16 17 MEMBER WALLIS: I was wondering why we hadn't seen something like this before. 18 19 MEMBER MAYNARD: I thought this was 20 discussed a little bit yesterday. MEMBER WALLIS: Yes, I think it was. 21 But we seem to be seeing it a different way now than 22 23 we did yesterday. 24 CHAIRMAN DENNING: Yes. 25 MEMBER WALLIS: Now it doesn't look so

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	139
1	good.
2	MEMBER MAYNARD: Well, again, I think we
3	had a similar discussion yesterday, though, in that
4	what happens if the operator doesn't get the action
5	done.
6	MEMBER WALLIS: Yes.
7	MEMBER MAYNARD: And you're still
8	covered with your small break LOCA or whatever other
9	analysis is covered. It's whether or not this ends
10	up being a condition II or condition III event. And
11	that's what was discussed with one of the NRC
12	presenters
13	CHAIRMAN DENNING: Well, that certainly
14	is true in that first one. I'm not sure that that's
15	true for everyone of these.
16	MR. DURKOSH: Well, I can address the
17	other ones if you'd like.
18	CHAIRMAN DENNING: Well, why don't you
19	go ahead and do that?
20	MR. DURKOSH: Okay. Sure.
21	So in the case of Unit 2, as I
22	mentioned, an isolating aux feedwater on a tube
23	rupture is a key operator action. Previously the
24	previous analyses used 9.1 minutes. Based on the
25	extensive simulator crew evaluations from, I think

(202) 234-4433

	140
1	2002, they came up with 5.5 minutes as being a very
2	representative time to perform that action. And that
3	was prior to our streamlining of our EOPs.
4	And the action performance time was
5	tabletopped at 5 minute.
6	I do have some data available to me from
7	Unit 1 which I believe it was of the order of less
8	than 5 minutes for Unit 1 on the actual simulator.
9	MEMBER WALLIS: So the now column here
10	is the time used before, pre EPU, is it?
11	MR. DURKOSH: That's correct. It's in
12	the current.
13	MEMBER WALLIS: Okay. So the word "EPU"
14	should disappear from the title.
15	CHAIRMAN DENNING: Yes. And "isolate"
16	is that just an implication as far as offsite doses
17	from the steam generator tube rupture or does it
18	have more dire implications?
19	MR. FREDERICK: This is Ken Frederick.
20	Yes. Each individual action in the tube
21	rupture procedure and the analysis associated with
22	that is trying to minimize overfill of the
23	generator. So for these particular cases
24	CHAIRMAN DENNING: Overfill.
25	MR. FREDERICK: the goal is not to

(202) 234-4433

	141
1	fill up the steam generator.
2	CHAIRMAN DENNING: Okay.
3	MEMBER MAYNARD: Okay. Some of this
4	also is to keep you from wasting water to the
5	ruptured steam generator there?
6	MR. FREDERICK: Right.
7	MR. CARUSO: And what are the
8	consequences of overfilling the generator?
9	MR. FREDERICK: If you overfill the
10	generator, then you lose iodine partitioning, which
11	makes the offsite doses go up.
12	CHAIRMAN DENNING: Okay. I think we're
13	content with this figure.
14	MEMBER WALLIS: I suppose we are. And
15	just a little bit mystified.
16	CHAIRMAN DENNING: Yes.
17	MEMBER WALLIS: If we're just comparing
18	columns and you say you need 2 minutes and you got 2
19	minutes, that doesn't really help me much.
20	CHAIRMAN DENNING: Now, I don't think
21	any of these are identified as important human
22	actions from a risk assessment. Is that a true
23	statement? Do we still have risk people here? Are
24	they
25	MEMBER WALLIS: I think we do.

(202) 234-4433

	142
1	MR. LAUR: This is Steve Laur again, NRR
2	Division of Risk Assessment.
3	I don't know what the relationship
4	between the design bases accident and the PRA is.
5	But certainly cool down the action to cool down
6	is one of the risk important operator actions.
7	I would point out that this a design
8	bases discussion looking at the inputs from Chapter
9	15 and not a risk assessment.
10	CHAIRMAN DENNING: Yes.
11	MR. LAUR: And as I understand it, what
12	the human factors are doing is verifying or
13	validating that basically a go/no go criteria that
14	you can meet the time whereas in the PRA risk
15	assessment they use realistic timing and realistic
16	scenarios and calculated the frequency of core
17	damage sequences. So really it's not a comparable
18	set of information.
19	CHAIRMAN DENNING: Yes. It does,
20	however, give us a feeling as to what significance
21	of margin in the design bases. But I think you're
22	absolutely right, that that's probably the context
23	that we ought to be interpreting this in rather than
24	risk.
25	And I'm ready to move on to the next
	1

(202) 234-4433

	143
1	viewgraph.
2	MS. MARTIN: These are the times that
3	the licensee provided, the data that will be changed
4	due to the EPU setpoints. This is a representation
5	of the data that will change.
6	In the control room there will be no new
7	displays except for as the licensee mentioned
8	earlier, the SI accumulator should be upgraded to a
9	digital display.
10	And all of the setpoints and displays
11	will be normalized so that 100 percent remains a 100
12	percent and the actions don't change due to the
13	renormalization.
14	For the SPDS, these are just the
15	representation of the changes that will come.
16	Nothing major. And this describes the change
17	process that will be implementing the changes that
18	we'll have.
19	For the simulator, as they mentioned
20	previously, both the simulators have been
21	benchmarked with engineering models. And they will
22	be using the systematic approach training to train
23	the operators for the
24	CHAIRMAN DENNING: Thank you.
25	MS. MARTIN: This is just more general

(202) 234-4433

	144
1	information on the simulator changes and how they
2	will cover the training for the simulator changes.
3	Our conclusion is that the licensee
4	addressed the effects of the EPU on human factors
5	and they have taken the appropriate actions to
6	assure that the EPU does not adversely affect the
7	operator actions. And we find these proposed
8	changes to be acceptable because of their commitment
9	to validation on Unit 2 and because of the issues
10	that they've addressed.
11	CHAIRMAN DENNING: Very good. And I
12	think we see no other questions.
13	Thank you very much.
14	And we'll move on to what is the last
15	technical presentation, I think.
16	MR. PETTIS: Good morning. My name is
17	Bob Pettis. I'm with the Division of Engineering.
18	I'm filling in for Greg Galletti who was the
19	technical reviewer for the Beaver Valley EPU. At
20	present he's currently at Vermont Yankee and the
21	license renewal inspection. So I'll do the best I
22	can with what was the basis of his review.
23	As you're aware, the power ascension and
24	testing program is covered under the SRP 14.2.1 and
25	which we've had many discussions over the last
1	I contract of the second s

(202) 234-4433

	145
1	several months.
2	The EPU test program should include
3	sufficient testing to demonstrate that the SSCs will
4	perform satisfactorily at the request power level.
5	The Staff guidance considers the original power
6	ascension test program that was done under the Reg.
7	Guide 1.68 process and the EPU related plant
8	modification, which most of the modifications fall
9	into the area of plant systems branch which they
10	probably have already provided their evaluation to
11	you folks earlier today.
12	Staff guidance acknowledges that
13	licensees may proposal alternative approaches to
14	testing without adequate justification. We've
15	centered around the large transient testing issue,
16	but it's basically any departure from the original
17	test program is reviewed as part of the technical
18	justification for allowing those exceptions.
19	The Staff basis for requiring
20	performance of testing including the large transient
21	testing fell into the Reg. Guide 1.68 document
22	which was basically established to ensure that there
23	was a suitable test program at the original plant
24	licensing phase that covered both the steady state
25	and anticipated transients.
I	I Contraction of the second

(202) 234-4433

	146
1	The objectives of Reg. Guide 1.68 were
2	to familiarize operators with training, confirmation
3	of design and installation of equipment, benchmark
4	of analyses and codes and also to confirm the
5	adequacy of EOPs.
б	One of the main objectives with 1.68 was
7	also to provide necessary assurance that the
8	facility could ge operated in accordance with the
9	design requirements and validate any analytical
10	models.
11	Under the Reg. Guide 168 there were a
12	series of tests that were recommended back in the
13	appendix. And two of those tests that were in the
14	original 1.68 guidance were the so called large
15	transient tests which are under discussion for the
16	new plants today. And both of those tests that were
17	required at original plant construction, again to
18	validate analytical models in performance of a brand
19	new plant.
20	Beaver Valley is planning on performing
21	additional startup tests which were originally not
22	part of the initial startup test program to maintain
23	consistency with that of Unit 2. And I believe from
24	what I could look at the SE, it had to do with the
25	fact of the vintages of Unit 1 versus Unit 2 in
l	I

(202) 234-4433

	147
1	order to have both plants be somewhat the same, the
2	additional tests were included to make that happen.
3	Some of those examples included the
4	secondary system vibration frequency and amplitude
5	test, system expansion and restraint test, turbine
6	plant system tests.
7	Beaver Valley will perform a series of
8	post mod tests for plant design changes associated
9	with the power uprate. A few of those are listed
10	here. Replacement of main instrumentation,
11	modification of HB turbine.
12	With respect to the transient testing
13	issue, Beaver Valley like most others that have come
14	before the agency, have elected not to perform the
15	two large transient tests which are the MSIV closure
16	and the generator load reject. Some of the accepted
17	justification for not performing these tests for
18	some of the previous plants were that the licensee's
19	test program will monitor the important parameters
20	during the power ascension test phase. And most of
21	that occurs within $2\frac{1}{2}$ to 5 percent increments where
22	the licensee monitors the power ascension.
23	Tech surveillance and post mods will
24	confirm the performance and capability of the
25	modified components through tech spec testing,
1	

(202) 234-4433

	148
1	through normal QA and Appendix B type testing.
2	Operating history is a big factor that
3	quite a few applications take credit for, which is
4	listed in the SRP. And they've cited North Anna,
5	Summer and Harris as similar plants that have
6	undergone the uprates.
7	CHAIRMAN DENNING: Normally we tend to
8	challenge the Staff in this particular area. But in
9	all honesty, I don't think that there's any real
10	serious concerns about large transient testing in
11	this particular uprate.
12	MR. PETTIS: Okay.
13	MEMBER SIEBER: Percentage of power
14	increase is really pretty small.
15	MR. PETTIS: I believe this 108 percent
16	on Beaver Valley.
17	MEMBER SIEBER: Yes.
18	MR. PETTIS: But just to maybe reenforce
19	that
20	CHAIRMAN DENNING: And also looking at
21	the lack of major modifications in
22	MR. PETTIS: Yes. I was just going to
23	mention that the technical staff in the balance-of-
24	plant section identified that the balance-of-plant
25	modifications don't warrant the need for the
	I

(202) 234-4433

	149
1	transient testing.
2	So based upon that part of the Staff's
3	review, the Staff concludes that the EPU is
4	satisfactory.
5	CHAIRMAN DENNING: Are there any
6	questions? Thank you very much.
7	MR. PETTIS: Okay. Thank you.
8	CHAIRMAN DENNING: Well you never
9	thought you were going to get away that easy, did
10	you?
11	MR. PETTIS: No.
12	CHAIRMAN DENNING: Okay. Well, I don't
13	hear anybody saying we ought to go to lunch. Let's
14	finish out.
15	MEMBER SIEBER: If you want me to.
16	CHAIRMAN DENNING: Yes. Okay. So,
17	first we'll hear from FENOC management and their
18	wrapup.
19	MR. LASH: Again, I'm Jim Lash, Site
20	Vice President. And I will be brief. I know I'm us
21	and lunch.
22	The past two days I think our team as
23	well as the NRC the presentations have concluded
24	that the reviews have been detailed and there have
25	been no safety issues identified and the Beaver
	I

(202) 234-4433

	150
1	Valley approach is a conservative approach both from
2	an analysis as well as a power escalation that we
3	plan to employ at the station. And I assure you that
4	the implementation of the power uprate will be
5	performed safety and reliability using our plant
б	modification process, our operator training program,
7	our plant procedure modification processes and our
8	adherence to the operating conditions.
9	That completes our presentation unless
10	there are questions from myself.
11	CHAIRMAN DENNING: I don't see any
12	questions. I would like to thank you and your staff
13	for a very good presentation.
14	And as far as the full Committee
15	meeting, we'll give you some more guidance as to
16	what our expectations there. We have two hours
17	there.
18	There was a little bit of duplication
19	between some of the regulatory Staff's presentations
20	and some of your presentation. I think that our
21	guidance will be largely that we're going to focus
22	more on your presentations in a few areas, and some
23	of them are obvious.
24	MR. LASH: Sure.
25	CHAIRMAN DENNING: We're going to want
1	1

(202) 234-4433

	151
1	to certainly focus on the results of the accident
2	analyses. But some other areas that aren't
3	necessarily problems, but which ones has to look at
4	like potential for vibrations and stuff like that.
5	I think your story today was quite good on that.
6	We'll have to abbreviate those.
7	And we'll give you some more guidance as
8	to what the presentations.
9	MR. LASH: I appreciate that. I was going
10	to ask you for that guidance. And I appreciate
11	that.
12	CHAIRMAN DENNING: Yes. I think that
13	rather than attempting to really lay it out at this
14	meeting, Ralph will send you a message that kind of
15	indicates how much time to figure on.
16	MR. LASH: Okay. Good.
17	CHAIRMAN DENNING: And in which areas.
18	MR. LASH: Very good.
19	CHAIRMAN DENNING: But there's nothing
20	missing that I see, you know, that we're going to
21	have to have additional things. It's really a matter
22	of compressing and perhaps eliminating in some
23	areas. And from the Staff's side, I think it's going
24	to be an elimination in a lot of areas of some of
25	the reviews that were of value to us to make sure
	I

(202) 234-4433

	152
1	that we saw that they had been comprehensive in
2	their reviews and to see what their considerations
3	were, but as far as the full Committee is concerned
4	I think would be unnecessarily duplicative.
5	MR. LASH: Okay. Thank you.
6	CHAIRMAN DENNING: Okay?
7	MR. LASH: I do have another question,
8	though.
9	CHAIRMAN DENNING: Yes.
10	MR. LASH: And that is just to confirm I
11	think we've been checking all along. I don't believe
12	we owe the Subcommittee anything?
13	CHAIRMAN DENNING: Let me just see if
14	Ralph agrees.
15	MR. CARUSO: That's correct.
16	CHAIRMAN DENNING: Although it looked at
17	some points like there might be, everything has been
18	provided that we had asked for.
19	MR. LASH: Okay.
20	MEMBER SIEBER: Well, if Ralph has some
21	of this typical
22	MR. CARUSO: I'll be getting a copy of
23	the WRP-2M. I'll send you off that today or
24	tomorrow.
25	MR. LASH: Okay. Good.
1	I

	153
1	CHAIRMAN DENNING: Okay?
2	DR. BANERJEE: And ATWS, I guess, but
3	you have that.
4	MR. CARUSO: And I'll give you a copy of
5	BACCHUS, too.
6	CHAIRMAN DENNING: Yes. Yes.
7	MR. LASH: Very good. I would like to
8	thank the Subcommittee for allowing us to make this
9	presentation of our power uprate proposal.
10	I'd also in your presence like to thank
11	my team, which includes the subcontractors from
12	Westinghouse and Stone & Webster for supporting us.
13	The folks worked very hard. Their preparations were
14	very thorough and I think that bore itself out in
15	their presentations. So I thank the team as well.
16	That's it.
17	CHAIRMAN DENNING: Thank you.
18	MR. LASH: Thank you.
19	CHAIRMAN DENNING: And wrapping up for
20	the Staff?
21	MR. COLBURN: I don't have any slides,
22	so I can do that from here.
23	My name is Tim Colburn again.
24	And I'd just like to thank the
25	Subcommittee also for allowing the Staff to make its

(202) 234-4433

	154
1	presentation.
2	We reviewed the licensee's submittal
3	against all of the areas in the Review Standard RS-
4	001. We had a challenging review. There were
5	numerous requests for additional information we
6	provided to the licensee, but they stepped up and
7	provided information every time we asked them
8	questions that resolved all of our issues.
9	The Staff believes that the licensee has
10	done a very good job in resolving the open items
11	that we have along the review path and also in
12	ultimately demonstrating that they can adequately
13	and safely implement the power uprate of 8 percent
14	for Beaver Valley Units 1 and 2.
15	And, again, look forward to whatever
16	guidance the Committee would like to provide us on
17	preparing for the full Committee.
18	CHAIRMAN DENNING: Very good. Thank
19	you.
20	Any questions or comments from the
21	Subcommittee?
22	Anything else we want to discuss before
23	we
24	MEMBER WALLIS: Well I think we should
25	establish that we don't have any sort of outstanding

(202) 234-4433

	155
1	questions or anything.
2	CHAIRMAN DENNING: Absolutely. Jack, do
3	you want to start off?
4	MEMBER SIEBER: I would indicate that I
5	worked at Beaver Valley for many years. So I don't
6	have a bias one way or another.
7	When I read the application and through
8	the SER, I found the application pretty easy to
9	read, it was straightforward, easy to follow,
10	legible, made sense. On the other hand, that was
11	your second shot at it, I think.
12	In the SER it indicates a lot of
13	requests for additional information that tell me
14	that maybe the first application wasn't real
15	complete.
16	On the other hand, all of that has been
17	remedied and I think the document is in good shape.
18	And I think the modifications that you intend to
19	make on the plant are reasonable. The EPU level
20	that you chose is reasonable because you still
21	remain sort of in the middle of the pack as far
22	experience is concerned. There are a number of
23	plants like yours that operate basically with the
24	same parameters. So you're not blazing ground in
25	that area.

(202) 234-4433

	156
1	I was impressed with the presentations.
2	I think that they demonstrated a good knowledge of
3	analytical methods that were used and what they
4	meant. And I congratulate your staff for that.
5	We had a discussion with some of your
6	folks at the Ginna EPU and I noted that you've been
7	sending people out to see what goes on in these
8	meetings as a way to prepare for this meeting. And,
9	obviously, you learned a lot because this meeting in
10	my opinion went very well. The questions that we
11	asked and that were important were answered well and
12	with the analytical backup and operating experience
13	backup. And I think those factors are important.
14	As far as issues are concerned, I don't
15	see any issues that arise from this application.
16	And I agree with the Staff's conclusions. And when
17	we get an opportunity to vote on Rich's letter which
18	he'll write, hopefully
19	CHAIRMAN DENNING: I'd better. They
20	don't pay me otherwise.
21	MEMBER SIEBER: I personally feel in
22	the affirmative at this time with regard to granting
23	the uprate.
24	So that would be my conclusion.
25	CHAIRMAN DENNING: Thank you.
	1

(202) 234-4433

	157
1	Sanjoy, do you want to comment?
2	DR. BANERJEE: I think that the approach
3	taken is quite conservative and lies within the
4	bound of what has been done before. So I have no
5	particular concerns.
6	I think I'd like to follow up a little
7	bit more on the fate of the boron, which I will do
8	when I look at the BACCHUS report. And a little bit
9	more on the refluxing mod. But other than that, I
10	have no major points. But the applicant doesn't
11	really have to supply any more information at this
12	time.
13	CHAIRMAN DENNING: Let me interject that
14	with regards to the boron, I think there is more
15	work that has to be done here. But not within the
16	context of this EPU. And I have some
17	recommendations that I will to the Staff about how I
18	think that ought to be done there.
19	DR. BANERJEE: Far more generic issues
20	which
21	CHAIRMAN DENNING: Yes.
22	DR. BANERJEE: should not necessarily
23	be a burden on the applicant.
24	CHAIRMAN DENNING: Yes.
25	MEMBER SIEBER: Yes, I agree with that.
	I

(202) 234-4433

	158
1	CHAIRMAN DENNING: Graham?
2	MEMBER WALLIS: Well, I'm glad Jack made
3	the speech, now I don't have to make it. I'm pretty
4	satisfied with what I've heard.
5	I think in front of the full Committee
6	you just have to present the key things and what are
7	the main effects of the EPU as they effect the
8	criteria for reactor safety; how do you meet those
9	criteria. That's really the main issue.
10	Try to avoid a long discussion on PRA
11	because, you know, the changes are so very small
12	they don't effect the ultimate decision.
13	CHAIRMAN DENNING: Okay.
14	MEMBER WALLIS: I think there are some
15	of these questions like the boron thing that we keep
16	coming up with need to be resolved better at some
17	time. But that's not something we should hang on
18	this particular licensee.
19	Thank you.
20	CHAIRMAN DENNING: Tom?
21	MEMBER KRESS: I think it's all been
22	said.
23	CHAIRMAN DENNING: Otto?
24	MEMBER MAYNARD: I think it's all been
25	said, too.

(202) 234-4433

CHAIRMAN DENNING: I think it's all been said, too. We're adjourned. (Whereupon, at 12:01 p.m. the meeting was adjourned.) was adjourned.) was adjourned.) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		159	
2 said, too. 3 We're adjourned. 4 (Whereupon, at 12:01 p.m. the meeting 5 was adjourned.) 6	1	CHAIRMAN DENNING: I think it's all been	
3 We're adjourned. 4 (Whereupon, at 12:01 p.m. the meeting 5 was adjourned.) 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19 . 20 . 21 . 22 . 23 . 24 . 25 .	2	said, too.	
4 (Whereupon, at 12:01 p.m. the meeting 5 was adjourned.) 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19 . 10 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19 . 20 . 21 . 22 . 23 . 24 . 25 .	3	We're adjourned.	
5 was adjourned.) 6	4	(Whereupon, at 12:01 p.m. the meeting	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	5	was adjourned.)	
7 8 9 9 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1	6		
8 9 9 10 10 11 11 12 12 13 14 15 15 16 17 18 19 19 20 19 21 19 22 19 23 19 24 19 25 10	7		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	8		
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	9		
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	10		
12 13 14 15 16 17 18 19 20 21 22 23 24 25	11		
13 14 15 16 17 18 19 20 21 22 23 24 25	12		
14 15 16 17 18 19 20 21 22 23 24 25	13		
15 16 17 18 19 20 21 22 23 24 25	14		
16 17 18 19 20 21 22 23 24 25	15		
17 18 19 20 21 22 23 24 25	16		
18 19 20 21 22 23 24 25	17		
19 20 21 22 23 24 25	18		
20 21 22 23 24 25	19		
21 22 23 24 25	20		
22 23 24 25	21		
23 24 25	22		
24 25	23		
25	24		
	25		