Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor Safeguards
Subcommittee on Power Uprates Meeting

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Wednesday, March 15, 2006

Work Order No.: NRC-930

Pages 1-342

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	MEETING OF THE SUBCOMMITTEE ON POWER UPRATES
6	+ + + +
7	WEDNESDAY,
8	MARCH 15, 2006
9	+ + + + +
10	The meeting was convened in
11	Cabinet/Judiciary Suite of the Hyatt Regency Hotel,
12	Bethesda, Maryland, at 8:30 a.m., Dr. Richard Denning,
13	Subcommittee Chairman, presiding.
14	MEMBERS PRESENT:
15	RICHARD S. DENNING, Chairman
16	JOHN SIEBER
17	GRAHAM B. WALLIS
18	OTTO L. MAYNARD
19	ACRS STAFF PRESENT:
20	RALPH CARUSO
21	SAM MIRANDA
22	
23	
24	
25	
	1

1	NRC STAFF PRESENT:		
2	PATRICK MILANO		
3	JOHN NAKOSKI		
4	KENT WOOD		
5	BRIAN LEE		
6	CHRIS MCHUGH		
7	NEIL RAY		
8	JOHN WU		
9	RAUL HERNANDEZ		
10	ALSO PRESENT:		
11	MARK FLAHERTY	Constellation	Power
12	MARK FINLEY	Constellation	Power
13	JIM DUNNE	Constellation	Power
14	ROY GILLOW	Constellation	Power
15	DAVE WILSON	Constellation	Power
16	GORDON VERDIN	Constellation	Power
17	JEFF KOBELAK	Constellation	Power
18	JOE PACHER	Constellation	Power
19	GEORGE WROBEL	Constellation	Power
20			
21			
22			
23			
24			
25			
	1		

2

	3
1	A-G-E-N-D-A
2	Introduction
3	Background: P. Milano, NRR 7
4	Background: M. Flaherty, Constellation Generation 12
5	Plant Changes: M. Finely, Ginna
б	Process: D. Wilson Constellation Generation 50
7	Fuel Lead and Fuel Core: G. Verdin, Ginna 53
8	Safety Analysis: M.Finley, Ginna 87
9	Fuel Assemblies Design: K. Wood, NRC 140
10	Transient Analysis: S. Miranda, NRC 155
11	Source Terms and Radiological Consequences
12	Analyses: B. Lee, NRC
13	Risk Evaluation: R. Cavedo, Ginna 191
14	D. Harrison, NRC
15	Electrical Impacts: J. Pacher, Ginna 231
16	Mechanical Impacts: J. Dunne, Ginna 248
17	Reactor Vessel, Reactor Internal and Core Support
18	Materials: N. Ray, NRR
19	Reactor Coolant Pressure Boundary Materials:
20	T. Steingass, NRR
21	Components and Support Degradation Mechanisms:
22	K. Manoly and John Wu, NRC
23	Flow Accelerate Corrosion: G. Maker, NRC 322
24	Steam Generator Tube Integrity: G. Makes, NRC 324
25	Steam Generator Blowdown System: G. Makes, NRC 325
	1

(202) 234-4433

			4
1	Chemical And Volume Control System:		
2	G. Makes, NRC		326
3	Paint and Other Organic Materials:		
4	G. Makes, NRC		326
5	Balance of Plant: R. Hernandez, NRC		331
I	NEAL R. GROSS		
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701	(202) 234	1-4433

	5
1	P-R-O-C-E-E-D-I-N-G-S
2	8:30 a.m.
3	CHAIRMAN DENNING: The meeting will co me
4	to order. This is the Advisory Committee on Reactor
5	Safeguards Subcommittee ion Power Rates. I am Rich
6	Denning, Chairman of the Subcommittee.
7	The Subcommittee members in attendance are
8	Otta Maynard, Jack Sieber and Graham Wallis.
9	The purpose of this meeting is to discuss
10	the extended power uprate application for the Ginna
11	Nuclear Power Plant. The Subcommittee will hear
12	presentations by and hold discussions with
13	representatives of the NRC Staff and the Ginna
14	licensee Constellation Energy regarding these matters.
15	The Subcommittee will gather information,
16	analyze relevant issues and facts and formulate
17	proposed positions and actions as appropriate for
18	deliberation by the full Committee.
19	Ralph Caruso is the designate federal
20	official for this meeting.
21	The rules for participation in today's
22	meeting have been announced as part of a notice of
23	this meeting previously published in the Federal
24	Register on March 3, 2006.
25	A transcript of the meeting is being kept
1	

(202) 234-4433

6 and will be made available as stated in the Federal 1 2 Register notice. 3 It is requested that speakers first 4 identify themselves and speak with sufficient clarity 5 and volume that they can be readily heard. We have a very limited number of microphones in the room here, 6 7 so that's going to be a little painful. But please 8 make sure you go to a microphone when you make a 9 statement. 10 We have not received any requests for members of the public to make oral statements or 11 12 written comments. Review of an application for a power 13 14 uprate is one of the most challenging activities that 15 Based on source term alone we the NRC undertakes. know that the risk will increase by at least 17 16 17 percent due to this application. But the subtle change in risk is associated with decreased in safety 18 19 margins. We have to look carefully at those margins, the uncertainties and determine whether the increment 20 21 to safety limits are still adequate. 22 Let me first say what we don't want to 23 hear today. We don't want to hear a checklist of areas 24 of reviews where the change in plants conditions is 25 negligible and the safety of the plant is unaffected.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

7 1 If you have any viewgraphs of that type, tell us why 2 you're going to jump over them and move on. 3 What we do want to hear about today are 4 the results of quantitative analyses. We want to see 5 changes in margins, the effect of uncertainties. Ιf you present sensitivity studies, we want to know what 6 7 the basis was for the range selected for those 8 sensitivity studies. We want to hear about processes that would be affected by changes in conditions such 9 equipment, 10 as vibrations in flow accelerated corrosion. And we also want to hear about the 11 12 identify approached programs that will safe on conditions. 13 14 Now, as I've looked at the agenda I think 15 that it is appropriate and that we will focus on the important things that we do want to review. 16 17 We will now proceed with the meeting and I call up Mr. Milani of the NRC Staff to begin. 18 19 MR. MILANO: Good morning. All right. 20 Again, my name is Pat Milano. I'm the 21 Senior Project Manager in NRR for the Ginna and 22 Calvert Cliff Stations. Before I get started here, I'd like to 23 24 give a little bit of background for the application. 25 The application came in on July the 7th of 2005 and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	8
1	subsequent there have been a series of supplement to
2	that ranging from last August through now.
3	The application itself was provided to us
4	in two specific parts; basically the overview with the
5	technical specifications that are going to be changed
6	and then the licensee's analysis presented in terms of
7	what we call a licensing report.
8	The presentations today are going to be
9	focused on several topics. One is the fuel and core
10	design, which will be presented by the licensee,
11	followed by safety analysis focusing both on the
12	reactor systems areas an dose consequence. And then a
13	presentation on risk.
14	You'll notice here there's a slight change
15	to the agenda. We're going to talk about electrical
16	impacts, predominately grid and power delivery. The
17	licensee's member has a conflict tomorrow, so we had
18	to move this one up earlier.
19	And then as you see here the remainder of
20	the afternoon will be mechanical matters, reactor
21	vessels, the various degradation mechanisms and then
22	we'll talk about some of the mechanical systems,
23	predominately in the balance of plant.
24	Tomorrow will be limited. We'll be
25	talking about operations and testing, human factors
	1

(202) 234-4433

issues.

1

9

2	MEMBER WALLIS: Can I ask that when we get
3	these presentations we hear where we are today and
4	what the effect of the uprate will be. The safety
5	evaluation report simply seemed to say they meet all
6	the requirements. But I like to know the value of
7	some parameter is something today, this uprate will
8	change it by this much and here's the limit. And I did
9	not see that. And maybe this is all going to happen,
10	but that's what I'd like to see. I'd like to know what
11	the change is and how close we are to limits in every
12	one of these categories that's important.
13	MR. MILANO: The application, the July 7th
14	application came in after several preapplication
15	submittals. There were three amendments that came in
16	in late April. One for relaxed axial offset control,
17	one for main feedwater isolation valves and one for
18	revised LOCA analyses methodologies. Of these three,
19	three constrain the approval or the Staff's approval
20	of the power uprate. The power uprate itself assumes
21	that these three amendments have been previously
22	approved. And just for a quick status, the axial

offset control was approved on February 14th. Main feedwater isolation valves has the Staff review and along with the OGC review had been completed and it's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	in the final stages of administrative processing with
2	the expectation of issuance by the end of the week.
3	The revised LOCA analysis continuing to be reviewed by
4	the Staff.
5	The Staff's schedule basically centers on
6	the licensee's need date for implementation. The
7	licensee plans to implement the power uprate
8	MEMBER WALLIS: Excuse me. Revised LOCA
9	analysis; is that because it's now being done a
10	different way?
11	MR. MILANO: Yes.
12	MEMBER WALLIS: Is there going to be a
13	comparison with the old way or are we just going to
14	see the new way?
15	MR. MILANO: No. There will be no
16	comparison with the old way.
17	MEMBER WALLIS: Presumably they're
18	choosing the new way because it's favorable to do it
19	that way?
20	MR. MILANO: Yes.
21	MEMBER WALLIS: So it might be interesting
22	to see what would have happened if they did it the old
23	way? But we won't see that?
24	MR. MILANO: No, you will not.
25	MEMBER WALLIS: Okay.
	I contraction of the second seco

(202) 234-4433

1 MR. MILANO: Okay. As I indicated, the schedule is constrained by the licensee's requested 2 3 implementation during the fall 2006 refueling outage. 4 Right now the Staff's schedule -- excuse me. The draft 5 safety evaluation has been issued with the exception of the open item, although in the LOCA analysis area 6 7 the Staff has completed its review of the large break 8 and the non-LOCA transients. However, the Staff 9 continues to review a combination of issues centered around small break LOCAs, long term cooling and boron 10 11 precipitation. The expectation is for the Staff to 12 complete its review of those areas on or before April That portion of the safety evaluation will be 13 4th. 14 provided to the ACRS in order to meet the next 15 Subcommittee meeting late in April wherein those issues itself will be talked about after the Beaver 16 17 Valley Subcommittee meeting. And then followed on with the May 4th full Committee meeting. 18 19 Based on that, the Staff's goal is to 20 issue the safety evaluation in the July or early 21 August time frame. 22 With that, that concluded my presentation 23 with regard to the introduction. Baring any 24 questions, I'm going to turn it over to the licensee 25 for their introduction.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

11

Í	12
1	MR. FLAHERTY: My name is Mark Flaherty.
2	I'm the Acting Vice President of Nuclear Technical
3	Services with Constellation Generation. I'm out of
4	the corporate offices in Annapolis, Maryland.
5	Previous to that I was at Ginna Station
б	for approximately 15 years where I received my SRO
7	cert and was an STA for approximately one year and
8	held management positions in engineering, licensing
9	and PRA.
10	So we're glad to be here to have this
11	opportunity to talk to ACRS about the proposed uprate.
12	I'll start off with a high level overview
13	introduction. And I'll be followed by Mark Finely,
14	who will discuss the plant changes. Mark was the
15	project manager for this with Constellation. He'll be
16	followed by Dave Wilson who will go over the process
17	focusing on the licensing issues. And then followed
18	by Gordon Verdin who will discuss the fuel and core.
19	And then also Mark Finley will come back and discuss
20	safety analysis. Rob Cavedo will discuss risk
21	evaluation. Jim Dunne will discuss mechanical impacts.
22	Joe Pacher will discuss electrical impacts. Roy
23	Gillow will discuss operations and testing. And then
24	I'll conclude tomorrow morning.
25	With respect to the introduction, I'm
I	I

(202) 234-4433

	13
1	going to discuss a little bit about the design and
2	operating history for Ginna, some initial preparations
3	that were done for the uprate prior to initiation of
4	this project. And also some of the executive
5	oversight that was done both from the site perspective
6	and from Constellation Corp's perspective.
7	With respect to the history of Ginna,
8	Ginna is a Westinghouse two loop 1520 megawatt thermal
9	intercourse design. Went commercial operation in
10	1970. And the original license power level was for
11	1300 megawatts thermal. In 1972 it was uprated to
12	1520 megawatts thermal consistent with its sister
13	plants Kewaunee, Point Beach and Prairie Island.
14	The uprate that we're proposing and
15	discussing today brings us up to 1775 megawatts
16	thermal, which is very consistent with the current
17	operating level of Kewaunee, one of the Ginna sister
18	plants.
19	MEMBER WALLIS: Are you going to tell us
20	why it's 1775 and not 1800 or some bigger number? Is
21	there some limiting phenomenon which determines that
22	it should be 1775?
23	MR. FLAHERTY: Yes. Mark Finely will
24	address that in the next
25	MEMBER WALLIS: So there is one particular
l	1

(202) 234-4433

	14
1	phenomenon that limits? What is it? Or is it a whole
2	bunch of phenomenon?
3	MR. FINLEY: Well, we'll get to that.
4	MEMBER WALLIS: You will explain that?
5	MR. FLAHERTY: Yes.
6	MR. FINLEY: In the safety analysis
7	section.
8	MEMBER WALLIS: Because it wasn't clear to
9	me where you were limited. And you're going to tell
10	us that clearly?
11	MR. FINLEY: Yes.
12	MEMBER WALLIS: Okay. Thank you.
13	MR. FLAHERTY: Prior to pursuing the
14	uprate project for Ginna Station, some activities
15	occurred at Ginna that did set the stage for allowing
16	us to go for uprate. This included in 1996 we did
17	replace the steam generators at Ginna. And the
18	replacement steam generators were sized sufficiently
19	to provide the opportunity to pursue uprate when the
20	company desired to pursue that.
21	Also in 2003 we did replace the reactor
22	vessel head for Ginna Station.
23	With respect to the team itself, we
24	elected to pursue a very experienced project team that
25	included Westinghouse, Stone & Webster and Siemens.

(202) 234-4433

15 1 And many of those individuals are here in this room 2 also. 3 We also provided a lot of executive 4 oversight. This is both from a standpoint from a 5 corporate perspective and also from а vendor 6 perspective and industry experts with the intention 7 being that we wanted to use as much operating 8 experience as was available out there for people that 9 had pursued uprates and to bring that to the team to 10 make sure that those were addressed up front and throughout the project. 11 12 far the executive oversight, Δs as Constellation senior management was closely involved. 13 14 This includes both site management, the site Vice 15 Manager President and plant General and those individuals, and also from a corporate perspective 16 from within Annapolis. 17 18 We formed Executive Oversight an 19 Committee, and that has met eight times to date. And, 20 actually, we have another meeting scheduled for next 21 week. 22 And the purpose of the Executive Oversight 23 was it looks at all the various aspects of the project both from safety analysis and technical items that 24 25 we're discussing today, but also from the standpoint

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	of how do we implement these items from outage
2	management, that type of thing.
3	The Executive Oversight included a lot of
4	experience, former NRC management and industry
5	management experts. And they were actively engaged. To
6	a certain extent you can almost correlate this to like
7	an NSRB, Nuclear Safety Review Board concept for this
8	project.
9	And we also ensured from a Constellation
10	management perspective, we wanted to make sure that
11	all resources were available. And you'll hear a lot of
12	discussion today about some of the risk beneficial
13	changes that were being made that when we pursued this
14	project we wanted to ensure that we weren't just
15	pursuing it in order to obtain additional megawatts,
16	but we also focused on what's the impact of this
17	uprate on operations and that type of thing and could
18	we also pursue some beneficial actions at the same
19	time we were operating to reduce potential burden on
20	the operators. And those will be discussed today.
21	CHAIRMAN DENNING: Okay. And you'll
22	specifically identify those risk beneficial changes
23	for us, and are they all in the procedural domain?
24	MR. FLAHERTY: No.
25	CHAIRMAN DENNING: Okay.

(202) 234-4433

	17
1	MR. FLAHERTY: And I think Rob will go
2	into more detail specifically in the risk deltas and
3	improvements and that type of thing.
4	So with that, I'll turn this over to Mark
5	Finley then.
6	MR. FINLEY: Good morning. As Mark said,
7	my name is Mark Finley. I'm the Project Director for
8	the power uprate at Ginna.
9	In terms of my background, 28 years
10	nuclear power, 7 years additionally in nuclear Navy.
11	And then 19 years at Calvert Cliffs. And then the
12	last two years I've been at Ginna as the Project
13	Director for this power uprate.
14	Significantly, at Calvert Cliffs the last
15	13 years there I was in the fuel and safety analysis
16	group, which is why I'll be talking about the safety
17	analysis here the next time I come up.
18	What I'm going to do at this point is
19	discuss the changes to operating parameters, the
20	modifications to the plant to achieve the power
21	uprate, the license amendments and the use of
22	operating experience that has gone into the design and
23	procedure updates for the plant.
24	Before I begin, though, I would like to
25	echo the comments that Mark made about our experienced

(202) 234-4433

	18
1	project team and specifically about the Ginna
2	engineers that you're going to hear later today.
3	These Ginna engineers all have significant experience
4	at the Ginna site, perhaps with the one exception Rob
5	Cavedo who is a corporate PRA specialist. But the
6	other engineers are the lead engineers in their
7	technical areas at Ginna which means not only were
8	they familiar with the design and licensing basis for
9	Ginna, but they're also very familiar with the
10	operational issues and the real margin issues at
11	Ginna. And these are the engineers that were the lead
12	people on my project team.
13	One of the lessons incorporated in our
14	project team was not to come in with a corporate
15	project team that really had no experience at the
16	site. We did not do that from the beginning.
17	And these gentlemen from Ginna, of course,
18	are backed up by very experienced teams at
19	Westinghouse, at Stone & Webster. And we've got a
20	selection of those experts here today. And we're
21	going to try to give you a meaty presentation. If we
22	don't have the meat that you're looking for, ask the
23	question and we'll try to get you the answer.
24	The first slide here I'm going to call my
25	Waterford legacy slide. Because I looked at the

(202) 234-4433

(202) 234-4433

	19
1	transcript of your meeting with Waterford and I saw
2	confusion about how exactly is the plant going to get
3	the power out. And I hope to do that with this slide.
4	If I don't, then please ask questions.
5	It's a little bit busy, but I'll spend
6	some time with it.
7	But first of all, the first line item
8	there core power. You see the change from 1520 to 1775
9	megawatt thermal. That is a 16.8 percent increase.
10	So you ask how do we get that power out?
11	Really two major changes. The first is the average
12	coolant temperature is increasing, that second line
13	item. The average temperature coolant is increasing
14	from 561 degrees to 574 degrees. And we do that to
15	raise the steam pressure in the steam generator and
16	drive the flow through the turbine. Okay. That's the
17	first change.
18	The second primary change we're using to
19	increase the power out of the plant is the $\Box T$ or
20	delta h across the core. Okay. We're increasing the
21	power out of the fuel, increasing the core $ riangle$ T. You
22	can see the delta h term there from 74 BTUs per pound
23	to 87.1 BTUs per pound; that's an increase of 17.5
24	percent. Okay. That's actually greater than the
25	total power increase. And the reason for that is if
	I contraction of the second seco

(202) 234-4433

	20
1	you go down another couple of lines you see the
2	coolant mass flow pounds per hour. That's actually
3	decreasing slightly, very slightly, minus 0.7 percent.
4	That's a mass flow rate. Volumetric flow rate is
5	actually increasing very slightly. But overall the
6	flow is fairly constant. We're increasing the core $ riangle T$
7	and that's how we're getting the power out.
8	MEMBER WALLIS: I think what you said is
9	very clear. How does this relate to the table that's
10	in the SER where there are two different ways to get
11	the power uprate and they end up with a $\mathrm{T}_{_{\mathrm{Hot}}}$ of 615 in
12	one of those columns?
13	MR. FINLEY: Right.
14	MEMBER WALLIS: It doesn't seem to be the
15	same as your numbers here.
16	MR. FINLEY: Right. Right. And I'll
17	emphasize that these numbers are the nominal operating
18	parameters.
19	MEMBER WALLIS: They're nominal. But you
20	can operate with other kinds of numbers which might
21	lead to a higher T_{Hot} , for instance?
22	MR. FINLEY: That's correct. However, we
23	would fully analyze any change in these operating
24	parameters. We have control set points in the plant
25	that essentially control the plant to these
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	21
1	parameters. That's
2	MEMBER WALLIS: But when you're doing the
3	safety submittal which numbers then do you use? Do
4	you use these ones or some of the numbers that are in
5	the SER, or something else?
6	MR. FINLEY: The safety submittal uses the
7	numbers in the SER. It uses the bounding safety
8	analysis
9	MEMBER WALLIS: Okay. So it uses the
10	maximum T _{Hot} , the 615?
11	MR. FINLEY: That's correct. That's
12	correct.
13	MR. DUNNE: This is Jim Dunne from Ginna.
14	Basically what's in the safety submittal
15	is the range Tavg that the plant has been designed
16	for.
17	MEMBER WALLIS: Right.
18	MR. DUNNE: So now from an operation point
19	of view we have to stay within that band. So the Tavg
20	is chosen we look at the present condition of the
21	steam generators, the present fouling factor. We look
22	at basically the inlet pressure that we're designing
23	our new HP turbine to and we basically have to figure
24	out with the frictional loss in our system what
25	pressure we need back in the generator to get that

(202) 234-4433

	22
1	flow to the turbine to reach full power.
2	The secondary side pressure in the
3	generator then defines your T sat. And then we figure
4	out what Tavg we need based upon the present plant
5	conditions to basically get that power across the
6	generator tubes to
7	MEMBER WALLIS: And during a fuel cycle
8	you might change these parameters?
9	MR. DUNNE: No.
10	MEMBER WALLIS: No?
11	MR. DUNNE: Typically when we replaced the
12	generators in 1996 we designed the RCS and the
13	replacement for a Tavg window from 561 to 573½. Our
14	original steam generator, our Tavg prior to
15	replacement have always been 573½ but our operating
16	experience had shown with plugging of the generators
17	due to defect mechanisms, steam generator pressure
18	fell off. And prior to replacement we were running
19	valves wide open on our turbine at reduced power level
20	because were volumetrically flow limited by the
21	turbine basically. So when we did the replacement, we
22	decided: (1) we'd put in steam generators to have
23	that greater surface area than the original
24	generators, and we decided we wanted to have a band
25	we wanted to analyze the plant for a Tavg window so

(202) 234-4433

that we could adjust Tavg as we needed to support any degradation in steam generator performance, i.e., plugging as we went along. 3

4 We choose 561, which is at the bottom 5 range of the Tavg range, that we had analyzed for 1996 as our operating point at that point in time. And 6 7 that's the Tavy we have operated at from 1996 to the We haven't seen any degradation in the steam 8 present. 9 generator performance and basically we have had to 10 plug very few tubes. So there has been no need for us to adjust Tavg from cycle-to-cycle. If we basically 11 12 saw we had to start plugging tubes and we were basically going to valves wide open on the turbine and 13 14 we become power limit, then we would evaluate changing 15 the Tavg for a future cycle. But that Tavg that we would change would have to fall within the 564 to 576 16 17 Tavg range that we've evaluated for the operate rate. So for the present operating conditions we 18 19 are choosing a Tavg coming out of our refueling outage

20 of 574 to basically get us to the full power condition 21 with the new turbine.

22 And when you're looking at MEMBER WALLIS: 23 the conditions in the head if you're evaluating the life of the head and the --24

> We are addressing that. MR. DUNNE:

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

	24
1	MEMBER WALLIS: various things that
2	could happen
3	MR. DUNNE: We use the upper band.
4	MEMBER WALLIS: you'd use the maximum
5	MR. DUNNE: Yes.
6	MEMBER WALLIS: Do you use
7	MR. DUNNE: All the analyses that were
8	done for the uprate project would either use the
9	minimum or the maximum Tavg, minimum or maximum T
10	cold
11	MEMBER WALLIS: Whatever is
12	MR. DUNNE: whichever was conservative
13	for the particular set of the analyses.
14	MEMBER WALLIS: Okay.
15	MR. DUNNE: Once we do that, now we need
16	to make sure we operate the plant within that band,
17	we're choosing a Tavg coming out of the uprate outage
18	of 574 to get to the power level, our license power
19	level. And based upon past experience, we've gone ten
20	years with 561 with no need to change it.
21	MEMBER WALLIS: So some of these things
22	are based on the conservative limit?
23	MR. DUNNE: Right. I think that's
24	MEMBER WALLIS: But when you get to the
25	LOCA, it seems to me you're using a statistical

(202) 234-4433

	25
1	method.
2	MR. DUNNE: Right.
3	MEMBER WALLIS: You're using the best
4	estimate, which presumably are these values with some
5	variation around it?
6	MR. DUNNE: The best estimate LOCA would
7	use I think Westinghouse is in a better position
8	than I to answer that. But they would use a
9	conservative value with statistical uncertainty. I
10	don't think they used our nominal Tavg. They used a
11	normal design band for doing the best estimate.
12	MEMBER WALLIS: Because when you get near
13	some limit and the margin begins to disappear, it
14	makes a difference which one of these numbers you
15	choose to put in your analysis.
16	MR. DUNNE: Well, in theory since we've
17	done the analyses between the min and the max, we
18	should be able to operate the plant at any Tavg within
19	that window coming out of our uprate. And our
20	determination as to where we need to operate is the
21	574 number.
22	I think what happened with Waterford is
23	they were combining design numbers with operating
24	numbers, which is very confusing. What we're showing
25	here is a best estimate as to where the plant is

(202) 234-4433

	26
1	operating today for pressures and temperatures and
2	flow and where we expect the plant to operate coming
3	out of our refueling outage. And that should be within
4	the band of temperatures that were shown in the
5	licensing report.
6	MEMBER SIEBER: I have a couple of
7	questions just to clarify some things in my own mind.
8	Your original steam generators were model
9	44?
10	MR. DUNNE: That's correct.
11	MEMBER SIEBER: What's the square foot of
12	the replacement steam generators?
13	MR. DUNNE: The originals were model 44,
14	so they had 44,000 square feet. The replacements were
15	B&W Canada replacement we have 54,000 square feet. So
16	they're comparable to a Series 51 generator.
17	MEMBER SIEBER: Okay.
18	MR. DUNNE: Which is what basically
19	Kewaunee had.
20	MEMBER SIEBER: With the allowance for
21	690?
22	MR. DUNNE: Right. The other change we
23	made when we replaced the generators is we went from
24	Alloy 600 to Alloy 690. Alloy 690 has a slightly
25	lower thermal conductivity.
	1

(202) 234-4433

	27
1	MEMBER SIEBER: Right.
2	MR. DUNNE: Which gives you little bit
3	more hydraulic consistency
4	MEMBER SIEBER: Three percent.
5	MR. DUNNE: and to gooseup the surface
6	a little bit to compensate for the lower thermal
7	conductivity.
8	MEMBER SIEBER: Now the next question I
9	looked through the list of things that you changed in
10	the plant to accommodate the EPU. Could you describe
11	for me what steps, if any, that you took to evaluate
12	that the size of your pressurizer, which you aren't
13	replacement, is adequate for the uprate of power?
14	MR. FINLEY: Yes. I'll do that
15	specifically in the safety analysis area where we
16	discuss the results of the events that essentially
17	result in the sizing of the pressurizer.
18	MEMBER SIEBER: Okay. Well, one of the
19	key questions there is at a plant trip from full
20	power, where does the pressurizer level go? And if
21	the pressurizer is sized for a lower specific power
22	level, there is a chance that it would go below a good
23	operability limit and perhaps get a steam bubble in
24	the head if you emptied the pressurizer altogether.
25	And so I'm curious to hear more about that.
	1

(202) 234-4433

	28
1	Now, I understand that you have selected
2	within a range of parameters. Your tech spec change
3	puts in the limits for all of these parameters, but
4	you expect to operate with some margins below those.
5	On the other hand there's nothing saying that you
6	couldn't operate at the limit, which in my view puts
7	$T_{_{ m Hot}}$ at 517, perhaps. And
8	MR. DUNNE: 617.
9	MEMBER SIEBER: And the INCONEL 600
10	question then pops up that basically says there is
11	some kind of a transition point at 611. You would be
12	beyond that if you used all of your margin and
13	operated, for example if you had a lot of steam
14	generator tube plugging, you may be T _{Hot} but it is
15	beyond that. So the question becomes what remaining
16	uses in your reactor coolant system do you have for
17	alloy 600 or weld material 8182 which potentially
18	could be subject to cracking? And it may be buttered
19	joints, for example, and components are welded into
20	the reactor coolant systems. It may be in your
21	pressurizer surge line and so forth.
22	The next question is the pressurizer
23	operates at a higher temperature than any other place
24	in the plant, basically. And so what materials are
25	used in the pressurizer?
l	I contraction of the second seco

(202) 234-4433

	29
1	I note with your EPU you aren't changing
2	any of your pressurizer parameters. They will remain
3	the same. So you've become no more susceptible to this
4	today or in the future than you are today. But I'm
5	still curious as to what the materials are there and
б	what your operating and repair experience has been
7	with the pressurizer.
8	MR. FINLEY: Understand. And as Mark as
9	at the outset, we have replaced our head in 2003.
10	MEMBER SIEBER: Right.
11	MR. FINLEY: So that resolved the alloy
12	600 concerns on the head specifically.
13	MEMBER SIEBER: Right.
14	CHAIRMAN DENNING: And I'd like to defer
15	into the materials section where we discuss about
16	other materials.
17	MEMBER SIEBER: Okay. I've already
18	checked off my list of things; your head replacement
19	and steam generator replacement.
20	MR. FINLEY: Good. Good. And as you
21	mentioned with respect to the pressurizer, as you see
22	on this slide the nominal pressure in the pressurizer
23	is not changing.
24	MEMBER SIEBER: Right. So the temperature
25	is the same?

(202) 234-4433

	30
1	MR. FINLEY: The temperature in the
2	pressurizer is not changing. Right.
3	MEMBER SIEBER: On the other hand, the
4	volume becomes an issue for power uprate?
5	MR. FINLEY: Right. Right. And so we'll
6	touch on the volume and the sizing of the pressurizer
7	in the safety analysis section.
8	MEMBER SIEBER: Okay. Thank you.
9	MEMBER MAYNARD: Are you at $T_{\!_{\! m Hot}}$ or T cold
10	head?
11	MR. DUNNE: This is Jim Dunne.
12	I believe we are basically considered to
13	be a $T_{_{Hot}}$ head. Typically I think we assume that the
14	head temperature is about ten degrees below our hot
15	leg temperature.
16	MEMBER MAYNARD: Okay.
17	MR. DUNNE: Or T_{Hot} temperature. Yes.
18	MEMBER MAYNARD: Okay. And that's what
19	I would have probable thought for your plant.
20	And also your steam generator 2 plugging
21	limit, what's your current analysis based on?
22	MR. FINLEY: This analysis is based on a
23	ten percent 2 plugging.
24	MEMBER MAYNARD: Ten percent?
25	MR. FINLEY: Yes.
	1

(202) 234-4433

	31
1	Other questions? Good
2	I'd like to summarize the plant
3	modifications. Before I go down the list, I'd like to
4	say at the outset that the design objection for the
5	Ginna power uprate was to maintain the overall safety
6	and reliability of the plant at the uprated power
7	level. And several of these modifications did just
8	that, i.e., we didn't reduce margins with respect to
9	operation of pumps in the feed and condensate system
10	or cooling for the transfer or iso-phase. We
11	maintained the operating spare configuration, if you
12	will. And again, that maintains the overall
13	reliability of the plant operation.
14	MEMBER WALLIS: So your fuel is changing
15	with the upgrade? You have bigger rod diameter and so
16	on. So there's a while when you have a mix of fuels
17	in there?
18	MR. FINLEY: That's correct. That's
19	correct. There'll be two transition cores. And Gordon
20	Verdin will come up and talk in some detail on that.
21	MEMBER WALLIS: We'll get to that. We'll
22	get to that.
23	MR. FINLEY: With respect to the
24	modifications, the first three on this list are the
25	safety related modifications. As you can see, the bulk

(202) 234-4433

	32
1	of the modifications are to the balance of the plant,
2	and this is not a surprise. Mark had mentioned the
3	comparison to the Kewaunee plant, our sister plant,
4	who is operating to a very similar power level. We
5	have nearly identical NSSS systems. They've safely
6	operated at that power level now for more than a year.
7	So we expected with similar designs that we wouldn't
8	need significant modifications to the NSSS.
9	We are changing the fuel assembly. And,
10	again, Gordon Verdin will speak to that here shortly.
11	We are installing new actuators on main
12	feed isolation valves. They're manual valves now.
13	We're installing an air operator to automatically
14	close these values during a steam line break scenario.
15	We'll talk more about that with respect to the license
16	amendment associated with it.
17	MEMBER MAYNARD: Okay. So you're not
18	adding an valve into the system. You're actuator for
19	the existing valve?
20	MR. FINLEY: That's correct.
21	MEMBER MAYNARD: Okay.
22	MR. FINLEY: The air actuator on the
23	existing valve.
24	For the standby aux feedwater system, as
25	you probably know Ginna has a very robust aux

(202) 234-4433

(202) 234-4433

	33
1	feedwater system overall. There's five aux feedwater
2	pumps, two are standby pumps. And for the standby
3	pumps the discharge valve internals will be replaced
4	to increase the flow slightly from that pump.
5	Probably the largest modification for the
6	uprate is replacing the high pressure turbine rotor.
7	Part of that modification is to also modify the
8	turbine control valves, essentially increasing the
9	throat area on those values to reduce the pressure
10	drop across the valves. Obviously what we want to do
11	is get more steam flow to the turbine and through the
12	turbine. We will be operating in the valves wide open
13	mode as opposed to the sequential valve opening.
14	MEMBER SIEBER: This isn't a safety
15	question, but I'm curious. In your modified turbine
16	how many stages will be impulse stages and, I presume,
17	everything in the high pressure turbine will be on the
18	impulse stage or stages that is reaction?
19	MR. FINLEY: Let me ask Jim Dunne to
20	answer that.
21	MR. DUNNE: Jim Dunne from Constellation.
22	Right now we have a partial arc of
23	Westinghouse turbines. We're going to a full arc
24	Siemens' turbine design.
25	MEMBER SIEBER: Okay.
	1

(202) 234-4433

	34
1	MR. DUNNE: And they do not have an
2	impulse stage. They basically have all reaction.
3	MEMBER SIEBER: Everything is all
4	reaction?
5	MR. DUNNE: Everything is all reactionary.
6	MEMBER SIEBER: Okay. So you don't have
7	the nozzle blocks and
8	MR. DUNNE: No. We do right now. And if we
9	did not replace the turbine, we would have had to have
10	gone in and rework the nozzle on our existing turbine
11	to get increase flow capability. Basically we went and
12	got bids for a new HP turbine because basically the
13	delta megawatt improvement with the new turbine design
14	for the new uprate verses modifying the old turbine
15	basically was favorable. And we looked at a number of
16	different of vendors with different designs. And we
17	choose Siemens, which is really the old Westinghouse
18	turbine owned by Siemens. And they basically what
19	they sell today is a full arc no impulse stage
20	turbine, and that's what we're installing. And as
21	part of that
22	MEMBER SIEBER: But you would operate with
23	valves wide open regardless of what it is?
24	MR. DUNNE: Yes. You don't really want to
25	be fully wide open, but you basically you want to be
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	35
1	close to wide open on your full arc machine. You'd
2	still have a little bit of bite, and basically running
3	full open.
4	MEMBER SIEBER: Okay. And you're
5	replacing not only the rotor but the casing?
6	MR. DUNNE: We're reusing the existing
7	casing. We're just replacing the stationary blades and
8	the rotating element. The outer casing cylinder and
9	stuff is for the existing machine.
10	MEMBER SIEBER: Okay.
11	MR. DUNNE: We are replacing the turbine
12	control valves because with the existing control
13	valves with the increased flow we're getting a lot of
14	pressure drop and we're basically going to a bigger
15	control valve flow area point of view, we would
16	minimize the pressure drop across the turbine control
17	valve stage. The governor, the stop valves on the
18	turbine will stay as the existing valves.
19	MEMBER SIEBER: And I presume that your
20	new control system is digital as opposed to the old
21	one which was hydraulic and mechanical, analog?
22	MR. DUNNE: At this point we're basically
23	maintaining our existing control system.
24	MEMBER SIEBER: Which is an analog system.
25	MR. DUNNE: It'll be hydraulic, yes,
l	1

(202) 234-4433
	36
1	analog system.
2	MEMBER SIEBER: Yes.
3	MR. DUNNE: Independent of uprate, I think
4	there's an issue as to whether we should long term
5	replace the digital. But that's not being done as
6	part of our uprate. We are changing, you know, the
7	programming and some of the cards that go into that
8	system because of the new characteristics of the new
9	control valve and going from a partial arc emission to
10	a full arc emission, the philosophy.
11	MEMBER SIEBER: Okay. Thank you.
12	MEMBER WALLIS: So the low pressure
13	turbine is the same?
14	MR. DUNNE: Low pressure turbine is
15	exactly the same as we had.
16	MEMBER WALLIS: Do you have more
17	extraction or you have the extra ten percent flow goes
18	through the low pressure turbine.
19	MR. DUNNE: Basically the low pressure
20	turbine was not flow limited, so basically
21	MEMBER WALLIS: So all the flow's going
22	through or there's a ten percent increase in flow
23	in the
24	MR. DUNNE: The flow to the low pressure
25	turbine will increase, which is one reason why we have
24 25	MR. DUNNE: The flow to the low pressur turbine will increase, which is one reason why we have

(202) 234-4433

	37
1	to make modifications to our MSR relief system.
2	MEMBER WALLIS: And your condenser, too?
3	MR. DUNNE: Condenser
4	MEMBER WALLIS: Safety. Probably not
5	MR. DUNNE: Right. We'll have a higher
6	back pressure, obviously, at any given late
7	temperature for a condenser. But we're not making any
8	changes to our or system as part of our
9	MEMBER SIEBER: But you have retube the
10	condenser?
11	MR. DUNNE: We did retube the condenser in
12	1995, went from an admirality tube to basically
13	stainless steel tube primarily to get cooper alloys
14	out of our feedwater system because of steam generator
15	corrosion issues.
16	MEMBER SIEBER: And these changes will
17	increase the extraction pressure side of your feed
18	heaters?
19	MR. DUNNE: Yes, that's correct. All the
20	extraction pressures will increase. The one that we do
21	have some control over with the HP turbine
22	modification, our final feedwater heat, our high
23	pressure heater because that comes off of the HP
24	turbine point. And so we defined a final feedwater
25	temperature for the uprate that Siemens is designing

(202) 234-4433

	38
1	too with their HP turbine.
2	MEMBER SIEBER: Okay. So that means you
3	have more stored energy. You may have to change relief
4	valve settings on the feed heaters. And the other
5	thing is that if you trip, there is more stored energy
6	and therefore more of a propensity to go to overspeed
7	faster?
8	MR. DUNNE: We
9	MR. FINLEY: Right. Right. For both of
10	those comments, the relief valves on the feedwater
11	heaters and the stored energy for overspeed trip
12	setting on the turbine, we've incorporated the new
13	conditions in our analyses.
14	MEMBER SIEBER: And it's satisfactory.
15	MR. DUNNE: Yes.
16	MR. FINLEY: Yes. No modifications to the
17	relief valve. We are changing the over speed trip
18	settings slightly.
19	MEMBER SIEBER: Thank you.
20	MR. FINLEY: To continue down the list of
21	modifications. For the main feed and condensate
22	train, we are replacing the impellers on the main feed
23	pumps and the motors on the main feed pumps and also
24	the impellers and motors on the booster pumps,
25	obviously to get the additional flow through

(202) 234-4433

	39
1	condensate feed.
2	The feed regulating valve is being changed
3	to a valve with a passing greater flow. And also the
4	bypass valve on the feed regulating valve; the
5	internals there are being replaced.
6	Cooling for some of the electrical systems
7	is being upgraded. For example, for the main generator
8	we're replacing the condensate cooler which cools the
9	water into the hydrogen coolers on top of the main
10	generator, you know for the greater I squared R losses
11	in the main generator.
12	The step up transfer is getting an
13	additional cooler bank. This is one of the
14	modifications I mentioned to you. We have an
15	installed spare now. It was necessary that we modified
16	the cooling system for uprate, but we would have had
17	to use the installed spare. We put a new cooler bank
18	in, so we still have an installed spare.
19	Similar with the iso-phase bus ducts.
20	We're adding a third fan. We have two fans now.
21	Typically those two fans run all the time and that
22	flow would have been adequate for the cooling. We're
23	installing a third fan, again to provide an operating
24	spare. For upright, we'll need to have those two fans
25	operating whereas currently technically we would only
	1

(202) 234-4433

	40
1	need one fan operating.
2	And finally, the underground oil cables,
3	and Joe Pacher will talk more about this this
4	afternoon, but we have oil filled eight inch cables
5	that run from the site transformer across the street
6	to the switch yard. And we're instituting a forced
7	flow of that oil system. All that pumping and piping
8	is available now, and it's been available since the
9	site was originally constructed. We're putting those
10	pumps in operation at this point to circulate the oil.
11	And that will only be required for the warm months of
12	the year.
13	Moisture separator reheater relief system.
14	As we talked about, the pressures will increase here
15	and the flow requirements will increase. And we're
16	making modifications to that.
17	There will be various heater drain minor
18	modifications to piping, vent systems and so forth to
19	handle the increased flow rates.
20	Minor support changes all in the balance
21	of plant, and this is in response to the higher
22	transient loads. When you shut turbines and stop
23	valves and/or feed reg valve, those transient loads
24	are higher and there are some beefing up of supports
25	that will be needed.
	1

(202) 234-4433

	41
1	And the finally, this will be talked about
2	more in Rob's risk presentation, three modifications
3	that specifically relate to risk benefits. We're
4	adding a backup air system for the charging pumps and
5	we're adding some controls for both the charging pumps
6	and the turbine driven aux feed pump to help the
7	operator response, particularly in fire scenarios.
8	MEMBER MAYNARD: You're talking about
9	local controls or operating outside the control room?
10	MR. FINLEY: That's correct. That's
11	correct. For scenarios where the operators need to
12	evacuate the control room and operate these components
13	locally.
14	With respect to license amendment, Pat
15	Milano touched on these briefly, but I'd like to
16	summarize. Obviously the important amendment relates
17	to changing the power level, allow the core thermal
18	power increase to 1775 megawatt thermal.
19	LOCA methods we are updating to the newest
20	approved Westinghouse BE LOCA method. ASTRUM versus
21	an older BE LOCA, SECY-83-472 method.
22	Axial offset control we're changing from
23	the constant methodology to a relaxed methodology
24	which changes the limits on axial flux distribution.
25	MEMBER SIEBER: Could you explain that in
	1

(202) 234-4433

	42
1	more detail, please?
2	MR. FINLEY: I'll defer to Gord Verdin if
3	you can wait when he comes up with the fuel
4	discussion.
5	MEMBER SIEBER: Okay.
б	MR. FINLEY: We are increasing the maximum
7	allowed boron concentration for the accumulators and
8	the refueling water storage tank. And that's to allow
9	for a higher boron for the hold down reactivity at
10	beginning of life in the core.
11	Minimum value in the actuator is actually
12	reduced slightly. This is really not due to the
13	uprate, per se, but because we were doing the analyses
14	we got a little bit more margin for our uncertainty
15	calculations for the level setpoints on the
16	accumulators here. So we reduced that slightly.
17	MEMBER SIEBER: But you aren't going to
18	change any setpoints? You're not going to change any
19	setpoints?
20	MR. FINLEY: That's correct. We're
21	actually not changing the level
22	MEMBER SIEBER: So the levels will be the
23	same, just more margin?
24	MR. DUNNE: The control that I used at ops
25	controls the accumulator level, too, it would be the
1	

(202) 234-4433

	43
1	same. We're just giving them more margin with tech
2	specs, like Mark said, primarily to accommodate to
3	give us more instrument uncertainty margin going
4	forward.
5	MEMBER SIEBER: Thank you.
6	MR. FINLEY: The condensate storage tank
7	minimum volume in the technical specifications will be
8	increased. And this is due to the basis for that tank
9	to provide two hours of decade heat removal
10	capability. Obviously, our decay heat will be
11	increasing.
12	The feed isolation valve that we talked
13	about modifying is actually a back-up valve to the
14	feed regulating valve. The feed regulating valve is
15	the primary closure that we rely on in a main steam
16	line break. It actually closes in ten seconds. This
17	new valve will be closing in 30 seconds. However,
18	that's faster. You can see here twice as fast as the
19	current valve that we have in the tech specs, which is
20	the feed pump discharge valve.
21	So not only will be the valve be closing
22	faster, the new valve, it's also closer to the steam
23	generator down the pipe further. So that's better from
24	the standpoint of shutting off the hot water in that
25	pipe closer to the steam generator.
1	I contract of the second s

(202) 234-4433

	44
1	And then finally there are changes to the
2	safety setpoints, and I'll defer to the safety
3	analysis section and talk about each of those
4	specifically.
5	And the last thing I'd like to speak to at
6	this time is the importance of industry operating
7	experience. This has been factored into every aspect
8	of the project for the Ginna power uprate. I'm going
9	to touch briefly here on a few of the topics to give
10	you a sense of what we learned, but by no means is
11	this a complete list.
12	Vibration induced failures, obviously
13	we've understood the history of vibration induced
14	failures throughout the industry, specifically on
15	small bore piping. One of the things we're doing here
16	is incorporating all of the failure points that we've
17	seen in industry, and in fact all of the small bore
18	piping that's tied to the large piping that will see
19	flow increases, and made that a part of our vibration
20	monitoring plan as we escalate the plant.
21	MEMBER SIEBER: The architect engineer for
22	your plant was Stone & Webster?
23	MR. DUNNE: No. The original architect
24	engineer was Gilberts. Ginna was a turnkey plant and
25	Westinghouse was basically responsible for picking the
	I contract of the second se

(202) 234-4433

	45
1	AE and the constructor. And for the Ginna of Ginna,
2	they chose Gilberts.
3	MEMBER SIEBER: Back in the days when your
4	plant was built the piping engineers typically did not
5	do a rigorous analysis on supports for small bore
6	piping, particularly a seismic analysis. They used
7	templates and said at, you know, every 20 feet I'm
8	going to put a hanger and it'll look like this out of
9	their cookbook.
10	Have you ever gone back and reanalyzed
11	with modern analytical tools the response and support
12	system for your small bore piping or are you still
13	relying on the template type of hanger design?
14	MR. DUNNE: For our safety related systems
15	in the late '70s early '80s, we went back and did a
16	seismic upgrade program, but that was I think for
17	piping two inches and larger in general. The small
18	bore piping we're just basically using engineering
19	judgment for adequate supports.
20	Balance of plant there was no attempt to
21	go back and redo that. It's primarily based upon
22	operating experience where if we see support damage or
23	something, we'll go in and analyze it to see what
24	could have caused it and whether it's something
25	related to design that needs to be changed.

(202) 234-4433

	46
1	MEMBER SIEBER: Okay. That's typically
2	what licensees did in that period. And that leaves out
3	things like vents and drains and instrument impulse
4	lines. In the history of your plant have you had
5	cracks or other failures of those types of lines;
6	vents and drains and
7	MR. DUNNE: We've had some socket weld
8	failures. I don't think we've had a lot of them, but
9	we've had some of them. Usually they attribute it to
10	a construction defect that basically propagates over
11	the operating life of the plant.
12	MEMBER SIEBER: Okay. But you've never
13	had one break off? You just have cracks that caused
14	leaks, right?
15	MR. DUNNE: I'm not aware in the time I've
16	been there of any that have broken off. The one event
17	that I am aware of is that we had a pre-separator tank
18	fail on us in the early '90s, which was an erosion
19	issue due to an inadequate material. And we
20	MEMBER SIEBER: What was the tank again?
21	MR. DUNNE: It's a pre-separator. Ginna
22	on the HP turbine outlet to the MSR inlet installed
23	pre-separators to a decreased moisture loading
24	MEMBER SIEBER: Okay.
25	MR. DUNNE: on the MSR separator, if
	1

(202) 234-4433

47 1 you will, in the mid '80s. It's a skimmer basically in the piping going towards the MSR to try and do some 2 3 preferential moisture removal. The moisture that 4 removed is routed to a tank and then gets trained to 5 a feedwater heater through a control valve. In the early '90s we had one of those tanks fail on us due to 6 7 erosion --8 MEMBER SIEBER: Yes. MR. DUNNE: -- within the tank due to an 9 10 inadequate material. That's the biggest thing that I remember. We basically went in and modified all our 11 12 tanks. One of them failed, I believe we have two. 13 14 Yes. And so we modified the one and then the next 15 refueling outage we replaced both tanks with new tanks with basically upgraded materials for erosion issues. 16 17 MEMBER SIEBER: Okay. Thank you. MR. FINLEY: And let me ask Roy Gillow 18 19 audience. He's operated the plant for many years. He 20 can speak to experience here. 21 MR. GILLOW: Yes. I'm a senior reactor 22 operator. I've worked 23 years at operations. And I 23 recall any kind of failure like you're talking to. The things we've had is impingement issues in some 24 25 extraction steam lines like Jim mentioned. But never

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	any failure of vibration induced failure of a line
2	that I'm aware of.
3	MEMBER SIEBER: Okay. Thank you very
4	much.
5	MR. FINLEY: With respect to the turbine,
6	one of the lessons learned in the industry is when you
7	go to these more efficient low clearance machines that
8	the likelihood of rubs especially during power
9	increase or coming up to speed and low powers
10	increases, and one of the things we learned here was
11	that you can't have an asymmetric lineup of your
12	feedwater heaters on the turbine. It sets up a
13	gradient across the turbine which can cause these
14	rubs. So we're going to factor that into our
15	operating process.
16	Turbine control valves. Again, we're
17	going to the valves wide open mode. One lesson we
18	learned here is that instead of having all four valves
19	come off their shut seat when you initially come up in
20	power and starting the plant up, is to stagger two of
21	the valves slightly. And so we have more bite on two
22	of the values, and the other two will lag for some
23	period of time before they all come up together. So
24	this will help the control issues.
25	Iso-phase. You're probably aware of
	I contract of the second se

(202) 234-4433

	49
1	failures due to flow induced vibration in iso-phase
2	bus ducts. These happened at plants that significantly
3	increased their air flow in the bus ducts. We have a
4	small increase in air flow, but well within what our
5	analyzed limit is for increasing vibration in the bus
6	ducts.
7	We've also carefully looked at the heat
8	loads on the system to make sure that that flow is
9	adequate to handle the heat removal.
10	Step-up transfer cooling. There have been
11	issues for plants that didn't really understand the
12	heat loads on their cooling system. And in particular
13	they didn't understand what the ambient loading, the
14	ambient air temperature was surrounding their
15	transformers. We did a study during the hottest time
16	of the year to verify what the ambient conditions
17	before we analyzed the heat loads.
18	Power measurement. There's been issues
19	with respect to secondary calimetric calculations in
20	particular. And Ginna's looked at all of the inputs
21	to the secondary calimetric calculation and verified
22	that we have the right scaling, that we have the right
23	ranges on all those inputs and that the accuracy won't
24	be compromised.
25	And then finally with respect to operating
	1

(202) 234-4433

	50
1	setpoints: Steam pressure, T $_{_{\rm Hot}}$, $\bigtriangleup T$ all those have
2	been issues. We've looked carefully at the margins
3	there. We've used Westinghouse to optimize the
4	margins. And we feel we have plenty of operating
5	margin to be.
6	And with that, I'll conclude my first
7	presentation.
8	I'd like to introduce Dave Wilson who is
9	the licensing lead for the project to discuss the
10	process.
11	MR. WILSON: Good morning. I'm David
12	Wilson. I'm a principle engineer at Ginna Station.
13	I've been there about 20 years.
14	Most notable last accomplishment was I
15	worked on a license renewal project. I'm contributing
16	to power uprate here.
17	What I'd like to talk about is RS-001
18	submittal, the fact that we added some additional
19	sections, the level of staff interaction we had and
20	the level of review effort we made. I'll be brief.
21	What we wanted to do was give them
22	everything that they asked in RS-001 plus everything
23	we think they needed based on operating experience
24	from other utilities. And we got a lot of coaching
25	and a lot of good interactions with the staff, so we
I	

(202) 234-4433

	51
1	were very pleased with that.
2	In order to pull the job off successfully
3	we added some unique sections that aren't in the RS-
4	001 document. We talked about our renewed operating
5	plant license in every section that had an impact. We
6	talked about the system evaluation program we
7	underwent in 1970s and '80s and how that relates to
8	our CLB, our current licensing program. And we gave
9	them a section 1 to RS-001 which we considered to be
10	a roadmap of lessons learned that allowed the staff
11	and the station to enter the dialogue on how to relate
12	the facts that were not designed for the standard
13	review plan, and have opened an honest dialogue and
14	discussions.
15	We met frequently with the staff. We had
16	very timely meaningful interactions. That is, as you
17	heard, before we had presubmittals and that allowed us
18	to keep working on the major submittal while giving
19	the government an opportunity to work on the long lead
20	time evaluations.
21	Everywhere we had the opportunity we
22	incorporated lessons learned.
23	We had no surprises in our review effort.

Communications were prompt and they were very clear. 24 And we worked through the issues. 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 We had a very rigorous owner acceptance 2 review of our vendor inputs. Our acceptance reviews 3 were proceduralized and we did get quality assurance 4 reviews of those to make sure that we were following 5 our procedures. And, by in large, the NRC reviews went The questions that were asked were 6 very well. 7 meaningful and relevant. And it was pleasurable to have a line of reasoning with RAI that came in. 8 That 9 really kept us from having miscommunications and delay 10 sin the process. 11 WALLIS: You had all these MEMBER 12 interactions with the NRC. Did you have some reviews from sister plant people or some sort of internal --13 14 MR. WILSON: Yes, we did. We had --15 MEMBER WALLIS: Did you find that useful? 16 Did you get information which you wouldn't otherwise 17 have got that way? Oh, absolutely. 18 MR. WILSON: 19 MEMBER WALLIS: All right. MR. WILSON: And we also fostered that in 20 21 the industry. We're now providing our expertise, if 22 you will, to other utilities. You know we're trying 23 to push the lessons learned throughout the industry. 24 So we had principally Kewaunee was a very big help to 25 us. And we had them up several times.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

52

53 1 We had a sequester week where we took 2 industry experts and our staff and our vendor experts 3 and we locked ourselves away for a full week going 4 over the hard issues and reviewing the operating 5 experience and trying to make sure that we actually understood the implications of some of the operating 6 7 experience that we saw in the industry, and that we 8 correctly dealt with it. 9 It was a pretty rewarding project to work We were pleased with the interactions of the 10 on. staff. 11 If there are no questions for me, I'd like 12 to introduce Gord Verdin. He's our fuel lead. 13 14 MR. MILANO: We had originally planned for 15 a break now. But we can go on. 16 MR. FLAHERTY: Yes. We'll go on. MR. MILANO: I'd like to take a break 17 after his? 18 19 MR. FLAHERTY: After that? 20 MR. MILANO: Thank you. 21 MR. FLAHERTY: That would be fine. 22 Good morning. MR. VERDIN: My name is 23 Gord Verdin, I'm a principal engineer at Ginna 24 Station. I'm the principal engineer for the primary 25 systems and reactor engineering group. I've been at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	Ginna for 9 years. In those 9 years I've served
2	primarily in the areas of reactor engineering, steam
3	generator engineering and also in engineering
4	analysis.
5	I do have an SRO certification and I was
6	an STA for a year and a half.
7	Prior to that I worked for 4½ years at
8	Babock & Wilcox Canada as a steam generator thermal
9	hydraulic designer and as a steam generator service
10	engineer.
11	Today I'm going to talk about fuel and the
12	core, in particular the fuel assembly design that
13	we're going to be implementing with the EPU. The goal
14	of this fuel assembly design was to recover and
15	improve margins for the EPU compared to the current
16	fuel. And also we will be adding some additional
17	robust features that Westinghouse has implemented over
18	the last several generations of fuel that they've
19	made.
20	MEMBER WALLIS: In getting the power
21	uprate, this means you have more fission material in
22	the core?
23	MR. VERDIN: That is correct.
24	MEMBER WALLIS: Is it roughly
25	proportional? Do get the same sort of burnups the new
ļ	1 A CONTRACTOR OF A CONTRACTOR OFTA

(202) 234-4433

1

2

3

4

5

6

7

8

MR. VERDIN: The burnups will be similar. We're currently we're as far as average fuel assembly, discharge burnups are approximately 50,000 megawatts days per MTU. That should be similar. The actual per fuel assembly uranium loading is going up from about 346 kilograms uranium to about 396 kilograms of uranium.

9 I'm going to talk about core design briefly. Some of the strategies and the number of 10 11 feeds that we'll be doing. Obviously as part of this 12 uprate, it's a fairly large uprate, we will be putting in additional feed assemblies over what we normally 13 14 would for the first two cycles. Then we'll get back to 15 a number of assemblies that's similar to what we're 16 using currently.

And then lastly I'm going to talk about core operating limits. This is where I'll address the CAOC versus RAOC question that was asked previously.

In front of you can see the diagram showing both the current Ginna 14 by 14 optimized fuel assembly, that's the OFA. I'll refer to it as OFA from now on. And on the right side you'll see the new 422 Vantage Plus 9 grid Ginna assembly.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

The significant changes that we've

(202) 234-4433

25

1 implemented here are the rod outside diameter is going 2 to be changing from .4 inches to .422 inches. That obviously gives you a larger surface area and helps to 3 4 recover DNBR margin that you -- as a result of the 5 uprate, obviously, we do need to cover margins and that's one of the way that we do that. That also, 6 7 obviously supports the increase in uranium inventory 8 that I had previously discussed. 9 MEMBER WALLIS: This gives a higher fluid 10 velocity? 11 MR. VERDIN: Yes. The fluid velocities 12 are higher. And what I will address is the thermal hydraulics. It seems a little counter-intuitive. When 13 14 you first see it, you think that you're going to see 15 a reduction in volumetric flow. I will address that. The fuel rod lengths themselves will be 16 increasing 3.6 inches and the fuel stack will be 17 increasing 1.85 inches. 18 And all this increase 19 MEMBER WALLIS: 20 seems to be in the last little piece between grids 8 and 9, is it? 21 22 VERDIN: Correct. I will address MR. 23 degree issue --MEMBER WALLIS: You will address that, 24 25 too. in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

56

	57
1	MR. VERDIN: as well momentarily.
2	But this rod length and fuel stack you'll
3	see that we're actually building in additional plenum
4	length inside each fuel rod. That plenum length helps
5	to accommodate the additional fission gases and also
6	the gases from burnable absorbers, the Zirc diboride
7	obviously generates helium gas it burns up. So that's
8	a margin enhancement to increase the plenum length.
9	The other thing is the increased fuel
10	stack. By increasing 1.85 inches you obviously also
11	reduce your linear heat generation rate for a given
12	power level. So it does give you some margin in terms
13	of central line temperatures and that sort of thing.
14	One of the things you can see as a result
15	is the top nozzle for our fuel will be changing. The
16	current 059 grid assembly has a unique I believe it
17	is now unique, there was nobody else that was using
18	that anymore. We will be going to the standard
19	Westinghouse top nozzle, which is the shorter top
20	nozzle that's pictured.
21	MEMBER SIEBER: During a couple of cycles
22	you'll be operating with both types of fuel?
23	MR. VERDIN: That's correct. For two
24	cycles.
25	MEMBER SIEBER: When I look at those from
	1

(202) 234-4433

	58
1	a seismic standpoint, the grid straps are supposed to
2	align to give you lateral support. On the other hand
3	in your operated fuel assembly the top strap does not
4	have a counterpart for support?
5	MR. VERDIN: That's correct.
6	MEMBER SIEBER: Has that been analyzed and
7	is that satisfactory from the seismic standpoint?
8	MR. VERDIN: Yes. Originally we are a nine
9	grid assembly, which is unique as well. Most
10	Westinghouse assemblies including the other 422V+
11	products that are out there are seven grid assemblies.
12	Originally we even looked at potentially
13	going to a seven grid assembly. But overall, you could
14	not make this work with the grid assembly or the
15	grid height mismatches that you would.
16	Early on in the project during the
17	implementation of this or the design and
18	conceptualization phase, there was a lot of discussion
19	as to whether we put those two grids such that there
20	is some overlap, that's the top grid I'm referring to,
21	or whether we go this way.
22	MEMBER SIEBER: Yes.
23	MR. VERDIN: There's really benefits and
24	detractor from either approach. If you put them,
25	obviously, in a line that you get better, there's less
	I contract of the second se

(202) 234-4433

	59
1	cross flow at that grid because obviously grid height
2	mismatch is also a source of crossflow. If you
3	actually look at it, it can exacerbate crossflow.
4	The disadvantage is that you would have to
5	put that rod or that grid so far below the top of the
б	rod that you have a long length, and that turns out to
7	be a sensitivity in terms of vibration.
8	In the end what was determined was they
9	did extensive analytical analysis. We've also tested
10	these two assemblies next to each other at
11	substantially higher flows. And the results of the
12	testing and the results of the analysis really
13	indicated that either approach would have worked.
14	However, this approach for the long term once we get
15	to cores that are all 422V+ is superior.
16	MEMBER SIEBER: Now the purpose of the
17	testing that you did, was that to evaluate and learn
18	about the degree of mixing or to look at the strength
19	of the assembly and the seismic characteristics, or
20	both?
21	MR. VERDIN: There were multiple types of
22	tests.
23	MEMBER SIEBER: Okay.
24	MR. VERDIN: There was testing, the
25	original testing is what's called the FACTS loop,
	1

(202) 234-4433

60 1 which is basically you put the fuel assembly by itself 2 in the loop and you pass flow through it. It's used 3 to validate hydraulic design aspects, pressure drops, 4 that sort of thing. 5 There's also what's called the VIPRE test. And the VIPRE test is where you actually put an OFA 6 7 fuel assembly next to one of the new fuel assemblies. 8 And they run it for an extended period of time, 9 several months, at higher than design flows. They have a whole bunch of various things to look at 10 individual rod vibration, fretting; that sort of 11 Looking at compatibility. 12 thing. MEMBER SIEBER: Yes. 13 14 MR. VERDIN: And then there's other 15 testing specifically what you're referring to, which is the seismic. There's grid crush testing --16 17 MEMBER SIEBER: Right. -- on individual grids where 18 MR. VERDIN: 19 they heat the grids up to operating temperature and 20 then they basically put enough energy into them to 21 verify that they're adequate. 22 seismic design, As far as the fuel 23 assembly was designed for LOCA plus SSE. One of the 24 licensing basis, things that will be discussed later, 25 is the changing to the leak before break to limit the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	size of different breaks that can occur. And under
2	those conditions, under the licensing basis LOCA SSE
3	there's at least a 50 percent margin. Approximately
4	half of the allowable loading was what was calculated
5	in a mix core, in a transition core.
6	MEMBER SIEBER: A couple of other
7	questions.
8	MR. VERDIN: Yes.
9	MEMBER SIEBER: The grids themselves, the
10	support for the rod is brought about by having to
11	dimples that are at adjacent corners, two springs.
12	MR. VERDIN: That's correct.
13	MEMBER SIEBER: With a larger rod that
14	means you have to reduce the size and defection of the
15	spring. Does that change the stability at all?
16	MR. VERDIN: Like I said, there was
17	testing done where they put the 422V+ and OFA
18	together. They run them at substantially higher flows
19	than they will see in the reactor to determine the
20	stability, to look at threading. And the 422V+ design
21	with the larger dimples that we have, that we're going
22	to be having with this new fuel, showed excellent
23	fretting capability, which would obviously indicate
24	that you have adequate holding force.
25	MEMBER SIEBER: Okay. Now the grid straps
	1

(202) 234-4433

Í	62
1	have little tabs and vanes and wings in order to
2	promote mixing?
3	MR. VERDIN: That's correct.
4	MEMBER SIEBER: And it seems to me that
5	you have a smaller overall cross section, smaller
6	footprint here. So I would expect the flow to be less,
7	but I think you said the flow is greater. Does that
8	mean you sacrificed in the tabs and vanes and wings in
9	the mixing area?
10	MR. VERDIN: What we have done is we have
11	gone to a new grid design that has thinner straps. The
12	thinner strap design, basically the reduction in
13	pressure drop at the grids, offsets the increase in
14	pressure drop due to friction along the fuel rods.
15	So, yes, the straps are thinner. The straps themselves
16	went through what's called a VISTA high-frequency test
17	where they basically looked at fatigue of the straps
18	and that sort of thing and determined that the straps
19	were adequate for the design.
20	Also, this is obviously similar to designs
21	that are in service. The 422V+ has seen three cycle
22	service at Point Beach. I believe it was put in at
23	Point Breach in 1997. And it has been discharged and
24	it has had satisfactory experience.
25	One of the changes we did make to the
l	

(202) 234-4433

	63
1	grids I should mention is we have gone to a balance
2	vane design.
3	MEMBER SIEBER: Okay.
4	MR. VERDIN: The 422V+ product that's in
5	service right now, it does not have a balanced vane
6	design. And as a result, that potentially can be
7	resonately self excited because it has a net force.
8	The balanced vane design actually rotates the vanes in
9	the four quadrants of the grid to reduce the net
10	force. And we have implemented that. That's a robust
11	features that's implemented from previous Westinghouse
12	designs.
13	MEMBER SIEBER: Okay. Now the grid straps
14	made out of Zircaloy?
15	MR. VERDIN: No. The replacement grid
16	straps will be made out of ZIRLO.
17	MEMBER SIEBER: ZIRLO.
18	MR. VERDIN: It's a
19	MEMBER SIEBER: All except for the
20	springs?
21	MR. VERDIN: No. The springs are part of
22	the grid. They're stamped in it.
23	MEMBER SIEBER: Oh.
24	MR. VERDIN: The only grids that are not,
25	there's alloys
	I contract of the second se

```
(202) 234-4433
```

	64
1	MEMBER SIEBER: You're not worried about
2	the spring relaxing due to irradiation?
3	MR. VERDIN: There is spring relaxation as
4	a result of irradiation, but that's evaluated as part
5	of the test. And on the test
6	MEMBER SIEBER: So it still work at the
7	end of life?
8	MR. VERDIN: because we don't irradiate
9	it.
10	Pardon?
11	MEMBER SIEBER: It will still work at the
12	end of life? It maintains contact all the way to the
13	end of life?
14	MR. VERDIN: That's correct. I don't
15	remember the criteria. I think it might be one pound
16	that it's supposed to be maintained.
17	MEMBER SIEBER: Well, if you don't do
18	that, it'll fret and then you got a damaged fuel
19	assembly.
20	MR. VERDIN: Right. Right. And like I
21	said, there is 422V+ product has been irradiated for
22	three cycles and discharged with adequate service
23	history. No known failures.
24	MEMBER SIEBER: Do you have any idea as to
25	how big a particle, an impurity particle would be that
	1

(202) 234-4433

	65
1	would still make it through the fuel assembly without
2	getting snagged on a grid strap or caught in between
3	two rods, or captured someplace in order to block the
4	flow?
5	MR. VERDIN: The Ginna
6	MEMBER SIEBER: For example when you're in
7	recirculation.
8	MR. VERDIN: Right.
9	MEMBER SIEBER: And you're pumping gravel
10	through your system.
11	MR. VERDIN: Right. As far as the Ginna
12	fuel design, we do have a debris filtering bottom
13	nozzle. We've had that for some time. I believe the
14	holes in the debris filter bottom nozzle are .23
15	inches. I remember looking at it a few weeks ago,
16	that's the number that sticks in my head.
17	But if you look, the actual bottom nozzle
18	will filter.
19	MEMBER SIEBER: Okay. So the debris
20	well, that prevents you from getting debris up in the
21	fuel and vibrating and making a hole. On the other
22	hand, all the debris could go to that bottom nozzle
23	and block it.
24	MR. VERDIN: Correct.
25	MEMBER SIEBER: Has that been evaluated?
	1

(202) 234-4433

	66
1	MR. VERDIN: That is currently Ginna is
2	implementing an active strainer design
3	MEMBER SIEBER: Yes.
4	MR. VERDIN: that's going to be
5	installed during our 2006 outage.
6	MEMBER SIEBER: An active strainer?
7	MR. VERDIN: That's correct. I think we'll
8	be the first plant to implement an active strainer.
9	MEMBER SIEBER: You'll be one of four,
10	yes.
11	MR. VERDIN: Yes. That's being evaluated
12	as part of the downstream effects analysis. I haven't
13	been really involved in that, so I'll have to defer
14	to
15	MEMBER SIEBER: What part of your strainer
16	is active? What does it do? Scrap or
17	MR. VERDIN: What it's got is it's too
18	large boxes. I believe they're about three feet
19	square. And on top of them they have a comb and
20	sweeper design with a motor that obviously sits up
21	high enough as to not be potentially impacted by the
22	water level in the containment at that point. And they
23	basically have from those large boxes that are
24	perforated and have the perforated top, there's
25	perforated pipes that go over to the sump. The sump

(202) 234-4433

	67
1	itself will be sealed. The current sump such that all
2	water has to go through this strainer mechanism.
3	MEMBER SIEBER: And that will receive
4	emergency power?
5	MR. VERDIN: Yes, that's correct.
6	MEMBER SIEBER: Safety grade power.
7	MR. VERDIN: Correct.
8	MEMBER SIEBER: Okay. Thank you.
9	MEMBER MAYNARD: A quick question on the
10	PLV. There's been a number of fuel failures in the
11	industry associated with new fuel designs supposed to
12	improve overall fuel design. Is this a new design or
13	do you have unique aspects for your new fuel or is
14	this a proven
15	MR. VERDIN: This is based upon a proven
16	design, which is the 422V+ that's currently in
17	service. I believe the lead plant was Point Beach. I
18	think it was 1997. So it has seem full a full
19	irradiation for three cycles and it has been
20	discharged. It's also now in use at Kewaunee.
21	The changes that we have versus those
22	plants, obviously we have the nine grid design versus
23	the seven grid design. We talked about swapping over
24	to a seven grid, couldn't make it work.
25	The other features that we've got that

(202) 234-4433

	68
1	they don't have, I actually will get to them a little
2	bit, but basically they're things like the balance
3	vane design. That's a robust feature. That's
4	something that we added to improve our fuel assembly
5	over their fuel assembly based upon other robust fuel
6	designs that are in service.
7	We've also done a couple of other things
8	to our fuel. We increased the rod length .2 inches;
9	that's to provide additional plenum volume, more
10	margin for rod internal pressure issues.
11	We also when we first went down the path
12	of this fuel transition, we were going to use an
13	identical fuel rod design to those plants. However,
14	because of rod internal pressure it was decided that
15	we would remove pellet from our fuel stack to get this
16	143.25 inch fuel stack.
17	So there are slight differences, but in
18	general it's very similar to that project.
19	MEMBER MAYNARD: I would caution because
20	sometimes some very minor changes that were supposed
21	to improve turns out to create an unexpected problem,
22	too.
23	MR. VERDIN: Right. Okay. Thank you.
24	MEMBER WALLIS: Is this a fairly simple
25	fuel design or is it one of these custom tailored

(202) 234-4433

	69
1	things that has varying enrichments at different
2	places and all that?
3	MR. VERDIN: No. This fuel assembly design
4	has within the fuel assembly itself other than the
5	axial blankets at the top and the bottom, it has a
6	common enrichment, okay?
7	MEMBER WALLIS: It's uniform? Okay.
8	MR. VERDIN: That's correct. It has 2.6
9	percent min. enriched annul or axial blankets. We have
10	annul or axial blankets to provide additional gas
11	plenum volume. Again, a lot of this comes down to
12	these rod internal issues.
13	The assemblies have multiple burnable
14	absorber patterns. They can go anywhere from 16 to 64
15	to 100 rod burnable absorber patterns per assembly.
16	That's core design specific. But other than that, no,
17	it's not a particularly it's actually quite similar
18	to what we have right now with the features that I've
19	said. Okay?
20	One of the things I just wanted to mention
21	briefly is the top nozzle on the 422V+ design you can
22	see that it sits higher. That does have some impacts
23	on our rod position indicating system and on our
24	control rods. Currently our control rods will go out
25	to 230 steps. The new control rod maximum will be 325
	1

(202) 234-4433

	70
1	steps.
2	The other thing is the microprocessor rod
3	position indicating system that Ginna has is a unique
4	system. Because of the way it's a unique system that
5	every 12 steps reads the end of the drive rod, we have
6	to do some firmware changes to our microprocessor rod
7	position indicating system. And those are in progress.
8	MEMBER MAYNARD: I don't know if you're
9	going to cover this later or not, but it looked like
10	during these transition cycles you're going to have
11	potentially some differences in rod height
12	indications?
13	MR. VERDIN: Correct.
14	MEMBER MAYNARD: Is that going to be
15	handled I don't know how confusing that's going to
16	be in the control room or on your system or for the
17	operators there?
18	MR. VERDIN: For the first cycle, and for
19	the first cycle only we will have either one or two
20	banks of control rods that will be over OFA fuel.
21	Okay? The remainders will be over the new 422V+ fuel.
22	What we plan to do is once we close the
23	trip breakers, is we plan to go into bank mode,
24	withdraw those banks, five steps, and then basically
25	reset the rod control system such that it thinks that
	1

(202) 234-4433

(202) 234-4433

	71
1	everything is at zero steps. That way there should
2	really be no impact on the operator at all.
3	MEMBER MAYNARD: Okay.
4	MR. VERDIN: Other than, obviously the
5	process of the original extraction by five steps.
6	Okay?
7	MEMBER SIEBER: Have you done the core
8	design yet?
9	MR. VERDIN: The core design?
10	MEMBER SIEBER: So you know what fuel will
11	go where?
12	MR. VERDIN: We have a candidate, a likely
13	candidate loading pattern that's in the process. one
14	of the issues that we've had with this transition is
15	the OFA fuel does have a small plenum length so it is
16	more limiting from a rod internal pressure
17	perspective.
18	During the last cycle we actually
19	implemented, our core designer recommended and it
20	turned out to be a very good recommendation, that for
21	the 100 rod patterns that we had, that we actually go
22	to a 120 rod pattern with a lower loading, so we had
23	eight assemblies that were of the OFA design that had
24	lower internal gas pressures. But that is the first
25	cycle margin issue is rod internal pressure. And it
	I

(202) 234-4433
	72
1	requires that we actually put those OFA assemblies
2	that are limiting in lower power locations and do more
3	detailed fuel rod design.
4	MEMBER SIEBER: I presume you operate or
5	design the core with a low leakage pattern?
6	MR. VERDIN: That's correct.
7	MEMBER SIEBER: The assemblies that will
8	contain rods that operate at the bite level, I take it
9	all those will be new assemblies?
10	MR. VERDIN: I don't understand. Are you
11	referring to
12	MEMBER SIEBER: You have some rods
13	inserted sort of partially?
14	MR. VERDIN: Yes, we maintain
15	MEMBER SIEBER: So you can control it?
16	MR. VERDIN: We maintain control bank
17	delta very slightly inserted in the core. It's the
18	only thing
19	MEMBER SIEBER: That would be all new fuel
20	assemblies?
21	MR. VERDIN: No. Actual delta will be OFA
22	fuel assemblies.
23	MEMBER SIEBER: All OFA fuel assemblies?
24	MR. VERDIN: That's correct.
25	MEMBER SIEBER: Okay.
	1

(202) 234-4433

	73
1	MR. VERDIN: We're actually looking at
2	other things. It's really beyond up the uprate. It's
3	RCCA life. We're looking at potentially operating
4	control bank delta out of the core in the future;
5	something we're assessing.
6	MEMBER WALLIS: Now you need more boron to
7	control the initial reactivity? You need more boron
8	in the cooling system?
9	MR. VERDIN: Yes. The RCS boron will
10	increase slightly.
11	MEMBER WALLIS: All right. Does this have
12	any effect on the spent fuel pool, this new fuel?
13	MR. VERDIN: This fuel that we're putting
14	in is actually this 422 .422 inch rod design is
15	actually very similar to the fuel that we used in
16	cycles one through seven. We had Westinghouse standard
17	fuel.
18	MEMBER WALLIS: Yes.
19	MR. VERDIN: In cycle eight we
20	transitioned to another fuel vendor for a period of
21	time. The original fuel was .422 and from a
22	reactivity perspective it's actually it's been
23	assessed. It's in our current spent fuel for
24	criticality analysis this size of fuel rod with
25	enrichments up to five percent.

(202) 234-4433

	74
1	MEMBER WALLIS: You have a huge margin as
2	I understand anywhere in the spent fuel pool for
3	criticality.
4	MR. VERDIN: We have in our spent fuel
5	pool several regions. We have two regions that have
6	borated stainless steel racks that were installed in
7	1997. We have older regions that are borallex racks,
8	which are no longer accredited in the criticality
9	analysis. That requires credit for cellular boron.
10	We do that by checkerboarding. It's a burnout versus
11	years of decay pattern. But that's all been assessed
12	and it's bounded by the current standard fuel that's
13	in the spent fuel pool.
14	MEMBER SIEBER: You have a maximum limit
15	on new fuel enrichment based on your spent fuel pool
16	design, I take it?
17	MR. VERDIN: Yes. We do not exceed five
18	percent. Typically it's 4.95 with Westinghouse
19	uncertainties.
20	MEMBER SIEBER: And you will meet that
21	with all anticipated future core designs?
22	MR. VERDIN: We will not load a core with
23	higher enrichment than that.
24	MEMBER SIEBER: Okay.
25	MR. VERDIN: Okay?
	1

	75
1	MEMBER SIEBER: Thanks.
2	MR. VERDIN: As I mentioned, some of these
3	slides were obviously done because of the questions
4	that have come through, but this nine grid design is
5	based on the fuel proven seven grid design. The
6	balanced mixing vanes that I mentioned is a robust
7	feature. The increased dimple contact area are
8	designed to reduce wear rate and provide more margins
9	in the fuel assembly.
10	Another change that we're making is to
11	what's called tube and tube guide thimbles. This is
12	another robust fuel assembly feature that we're going
13	to be implementing in our fuel. This design is
14	actually a more rigid guide thimble that's designed to
15	it's actually simpler to manufacture than the
16	double dash pot, but it also provides additional
17	margin against burn up induced bowing that can cause
18	incomplete rod insertion in the fuel.
19	And I mentioned these other things, so
20	I'll continue.
21	I also mentioned the testing. This is not
22	all of the testing. I mentioned grid cross testing
23	and that sort of thing, but there is the FACTS loop
24	that was done to validate the hydraulics for the
25	assembly, the $ riangle Ts$, that sort of thing.
l	

(202) 234-4433

	76
1	The VIPRE was the long term wear test of
2	the optimized fuel assembly adjacent to the 422V+
3	assembly. That was looking at things like cross flow
4	and wear. There's an extensive wear testing done in
5	this fuel assembly.
6	And lastly, the VISTA high-frequency
7	testing for the straps that I mentioned previously.
8	As far as the core design is concerned,
9	we've already discussed we will have two transition
10	core cycles that contain the OFA fuel assemblies. The
11	probably feed assembly quantities are listed. For the
12	first cycle, which is cycle 33 which will start in
13	November of 2006, we're anticipating 53 assemblies
14	will be required. There are 121 assemblies currently
15	and in the future in the Ginna core.
16	The 52 just because it's a 121 assembly core,
17	we have a center fuel assembly. So you can see when
18	you look at these numbers anywhere there's an odd
19	number means the center fuel assembly will be
20	replaced.
21	The first cycle 53, then we'll be doing 48
22	assemblies projected currently in cycle 34, which is
23	the second transition cycle. And then once we get to
24	the equil, all 422V+ cycles will basically be
25	oscillating between a 45 and a 44 assembly reload.
	I

(202) 234-4433

	77
1	The 45, obviously, we'll be replacing the center
2	assembly every other cycle.
3	MEMBER SIEBER: I take it even though
4	you're using a type of low leakage loading pattern
5	that the overall, the fluence to the reactor vessel
6	will increase for the power uprate?
7	MR. VERDIN: Yes. The reactor fluence
8	will increase compared to previous low leakage core
9	designs.
10	MEMBER SIEBER: Okay.
11	MR. VERDIN: If you were to actually look
12	at things like outside of the vessel, the concrete,
13	the supports; the actual fluence that's leaving the
14	vessel is less than the original out/in fuel loading
15	fluence that's out there. So we still remain bounded
16	by the original plant analysis.
17	MEMBER SIEBER: Okay.
18	MR. VERDIN: Okay?
19	MEMBER SIEBER: That would have been my
20	next question.
21	MR. VERDIN: Okay.
22	MEMBER SIEBER: Thank you.
23	MR. VERDIN: All right. Lastly, as I
24	mentioned or was previously mentioned, the EPU
25	analyses were done for a range of temperatures from

(202) 234-4433

Í	78
1	564.6 to 576°F for our average RCS temperature.
2	The reload designs it has been decided, we
3	made this decision several months ago based upon the
4	turbine design and sensitivity information from the
5	vendor that we would use $574^{\circ}F$ to satisfy the
6	requirements that Jim Dunne previously discussed.
7	Lastly, core operating limits. As was
8	previously mentioned, our axial power distribution
9	technical specification we'll be transitioning from
10	the constant axial offset control methodology to the
11	relaxed axial offset control methodology. The reason
12	for this transition, this was predominately done and
13	I'll put some figures up in a moment to show you what
14	it really means, we were concerned when we first
15	started on the uprate transition at the possibility of
16	a crud induced power shift situation. Similar has
17	occurred at several other Westinghouse plants.
18	Crud induced power shift is basically in
19	plants that have a very high massive operation rate
20	off he fuel. Can tend to actually concentrate boron in
21	the crud at the top of the core. It can suppress the
22	power distribution down. Has various challenges to
23	things like shutdown margin.
24	One of the challenges that we were
25	anticipating if we did get crud induced power shift

(202) 234-4433

79

tech specs really requires us to very tightly control axial offset. If we do not control or if we cannot control axial offset within the narrow band, we basically get into what's called the accumulation of penalty time due to the build in of abnormal Xenon power distributions. Xenon and power distributions.

8 We were concerned the way our current tech 9 specs are if we accumulate one hour of penalty time, 10 that means if we cannot maintain it within this tight 11 band for one hour, we basically are forced to go below 12 50 percent power for 24 hours that allows you -- and 13 get back in the band and reestablish the correct Xenon 14 power distribution.

We were concerned because one of the issues with crud induced power shift is during when you do down power maneuvers, the boron tends to come out of the crud and the power distribution then shifts rapidly to the top of the core. It can actually challenge your insertion limits on your rods to maintain the flux down.

We were concerned at the time that we may be subjected to CIPS and that we basically made this as a mitigating strategy to help the operators and to basically prevent this enforced -- tech spec enforced

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	80
1	down power.
2	What we have done, I have contacted
3	Kewaunee who is now near the end of this first uprate
4	cycle at 1772 megawatts thermal. They have seen no
5	evidence whatsoever of CIPS. So we're thinking that
6	the RAOC transition, obviously it still buys us
7	operational margin otherwise. But it appears that we
8	will not be inflicted with CIPS. And I really hope
9	we're not, because it will not be a nice issue to deal
10	with.
11	MEMBER SIEBER: Sounds like a hockey game.
12	MR. VERDIN: CIPS.
13	MEMBER SIEBER: In the penalty box.
14	MR. VERDIN: Yes. I can actually show you
15	that real quickly here. Just give me a moment.
16	MEMBER MAYNARD: Yes. I wouldn't be
17	overly optimistic until you actually operate it and
18	see it. Because I've been experienced with identical
19	plants, one having it and one not. A lot of it
20	depends on past chemistry, just a number of different
21	things that feed into that.
22	MR. VERDIN: Right. Right. We have
23	implemented some other changes. We have implemented
24	changes to our operating procedures to put the 60
25	gallon per minute let down orifice in service at the

(202) 234-4433

	81
1	time of any power changes.
2	One of the real reasons with CIPS is if
3	you actually look at the analytical methods that are
4	used to predict CIPS, they're not I don't have a
5	lot of faith in them. So basically our analyses said
6	that we originally said that we would not have or we
7	would be subjected to CIPS. Then the analysis said we
8	wouldn't. The difference was a small amount of carried
9	over crud that was used in the codes. It's really
10	something, I agree, you cannot say for sure that you
11	won't get it.
12	Just to give you a real quick if this
13	mouse works. This shows you just very briefly what the
14	difference is between the two methodologies.
15	On the left you see the constant axial
16	offset control methodology. You can see there's a
17	green line which represents a target line. It
18	represents really where the core wants to be at an all
19	rods out condition. Then you have two red lines plus
20	or minus five percent axial flux difference either
21	side.
22	We have to try to maintain flux between
23	those two red lines. If we get outside of the red
24	lines, we're basically into above 90 percent power,
25	the large black doghouse. You end up having to get

(202) 234-4433

	82
1	back in the red lines. There's no penalty time. It's
2	a tech spec requirement or you have to get below 90
3	percent power.
4	Below 90 percent you accumulate penalty
5	time anywhere between the black bounds and the red.
6	And if you're outside the black bounds, you're in
7	violation of the tech spec.
8	On the right you can see the relax axial
9	offset curve. You can see the doghouse now is really
10	your operating limits.
11	I've shown a green target line in there
12	still because it's important to understand that with
13	RAOC we're still going to operate according to the
14	CAOC methodology. So our operating strategy, the
15	operators will still have a target, we'll still want
16	them to maintain the axial flux difference on that
17	target line. It's just that now if they can't it due
18	to a CIPS type event, they can actually operate within
19	the larger bounds.
20	CHAIRMAN DENNING: How did you actually
21	perform this control to keep it within the target?
22	MR. VERDIN: The control is performed
23	basically during any type of a down power maneuver.
24	You are using rods and boron. So what it comes down to
25	is you have to basically balance what you're going to
I	

(202) 234-4433

1 use to keep the rods in a position to keep the flux 2 where you want them to be. So basically the control 3 is done by typically rules of thumb. We have rules of 4 thumb at power levels where the rods have to be for 5 various flux differences. We have recently implemented within 6 more advanced codes reactor 7 engineering that can help us do better predictions for 8 the operators for these vents. 9 MEMBER MAYNARD: I would assume that 10 typically for а down power maneuver reactor engineering would be involved with how much rod versus 11 12 boron changes in order to maintain? VERDIN: That's correct. That's 13 MR. 14 typical. Our operators actually can use the rules of 15 thumb during rapid down powers when reactor 16 engineering is not in the control room. But, yes, typically we would be involved for any planned down 17 18 power. 19 Okay? 20 Core operating limits. As I mentioned, the CAOC to RAOC transition. One other things about CAOC 21 22 to RAOC is that we are really trading off analysis 23 margin for operating margin. So in reality when you're 24 operating at your RAOC limits, you are more limiting 25 than you would be during CAOC. That's obviously a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

83

	84
1	decision to really make that tradeoff, basically to a
2	much more complicated analysis in order to provide
3	yourself with additional operating margin.
4	There are no changes to the thermal design
5	flow for the core. The actual volumetric flow, it's
6	been already said, that it will increase marginally.
7	This fuel assembly does have a lower overall pressure
8	drop.
9	The actual Mark mentioned previously as
10	well, the mass flow does decrease slightly. That's
11	just due to density changes.
12	The nominal 100 percent rate of thermal
13	power, heat flux hot channel factor will increase from
14	its current limit of 2.45 to 2.6. This 2.45 currently
15	is because of PCT and the SECY LOCA method that we
16	have right now. The 2.45 limit was established for
17	the new best estimate LOCA with automated statistical
18	treatment of uncertainty methodology. Does support the
19	change to 2.6 and all the non-LOCA analyses do as
20	well.
21	The nominal 100 percent enthalpy rise hot
22	channel factor will be decreasing slightly from 1.75
23	to 1.72 in the 422V+ fuel. This is one of those margin
24	recovery things. Obviously, with the higher powered
25	fuel, we go to a larger diameter rod, we also bring
	1

(202) 234-4433

ĺ	85
1	down the F $ riangle$ h to improve DNBR margin.
2	The optimized fuel assemblies themselves
3	will have a lower limit due to the transition core
4	penalties. When you put this lower hydraulic
5	resistent fuel assembly next to the older OFA higher
6	hydraulic, what you can do is you'll actually do have
7	cross flow from the higher resistance assembly into
8	the lower resistance assembly. As a result, the OFA
9	limits have to be lower.
10	And the last thing is the shutdown margin
11	requirements that we have will be reduced. Mark
12	mentioned previously the addition the of a new
13	feedwater isolation valve. That feedwater isolation
14	valves allows us to, in the event of a normal feed reg
15	valve closure failure, that normally closes in 10
16	seconds. Currently the feed pump discharge closes in
17	60 seconds. That tends to lead to more water being
18	pushed into the steam generators. The required higher
19	shutdown margin with the current design in order to
20	limit the mass and energy release rate and the return
21	to power. So our shutdown margin requirements will be
22	reduced to 1300 pcm from current end of cycle of 2400
23	pcm.
24	MEMBER MAYNARD: So which one of these are
25	you taking credit for in your analysis? Is it the
	I contract of the second se

(202) 234-4433

	86
1	main feed isolation in 30 seconds or the feed reg
2	valve in ten seconds?
3	MR. VERDIN: We do not credit the feed reg
4	valve. It is the Mark might be able to add more to
5	this. But the ten second closure of the feed reg valve
6	is the one that we would expect to occur. The 30
7	second is what we actual credit the analysis.
8	MR. FINLEY: Gordon, this is Mark Finley.
9	Gordon is speaking of the limiting
10	analysis. We credit both in the safety analysis, both
11	the feed regulating valve and the new feed water
12	isolation valve. But for a failure, we have to
13	consider single failure of that feed regulating valve,
14	the faster stroking valve. In that case in that
15	analysis we take credit for the new actuator closing.
16	MEMBER MAYNARD: Okay.
17	MR. FINLEY: Okay.
18	MR. VERDIN: And I'm going to introduce
19	Mark Finley again who was just up here. He's the
20	project director again. He's going to be discussing
21	safety analysis.
22	CHAIRMAN DENNING: That will be after the
23	break.
24	And are there any questions on the core
25	before we move on? Okay.

(202) 234-4433

	87
1	In that case we will now take a 15 minute,
2	which means that we'll start up again at 10:20
3	(Whereupon, at 10:04 a.m. off the record
4	until 10:20 a.m.)
5	CHAIRMAN DENNING: Proceed please.
6	MR. FINLEY: Okay. Thank you.
7	Mark Finley. I mentioned that I was in the
8	safety analysis group at Calvert Cliffs. That does not
9	make an expert in the Westinghouse safety analysis
10	methodology, little different from combustion
11	engineering methodology under Westinghouse. But I do
12	have the experts or a representation of the experts
13	from Westinghouse in the audience. So if you have
14	questions that go beyond my knowledge, I won't
15	hesitate to call on them.
16	What I'd like to talk about is the changes
17	to the safety setpoints. I mentioned under the license
18	amendment section that there were various safety
19	setpoints that are changing. I'll talk about those.
20	I'll also talk about the control setting
21	changes.
22	Talk about the methods that are changing
23	in the safety analysis area.
24	And then I'll talk about results from
25	LOCA/non-LOCA containment and dose assessment and
,	•

(202) 234-4433

	88
1	provide a conclusion.
2	First, the safety setpoints that are
3	changing. These are the setpoints in the technical
4	specifications. I'll go down the list briefly here. If
5	you have questions stop me.
6	For the high flux trip we are reducing
7	that.
8	Oh, by the way, these are the analytical
9	setpoints, i.e, the setpoints that Westinghouse would
10	use in their safety analysis. The actual field
11	settings are bounded by these analytical setpoints.
12	But the analytical setpoint is being reduced three
13	percent. And what that does is provide us a more
14	responsive high flux trip for certain of the over
15	power transients.
16	Both the steam line hi-hi isolation and
17	the steam line hi isolation settings, which are based
18	on steam flow, are being increased. And that
19	incorporates or allows us to increase our steam flow.
20	The limiting safety setting for the lift
21	setting for the pressurizer safety valves is being
22	reduced by two pounds from 2544 psig to 2542 psig.
23	Essentially driven by also load analysis. I'll talk
24	about those results in a second.
25	MEMBER WALLIS: You can actually set it as
	1

(202) 234-4433

	89
1	accurately as that?
2	MR. FINLEY: The tolerance in our setting
3	of the safety valves is plus or minus one percent.
4	And
5	MEMBER WALLIS: One percent on a change
6	of 2 psig is within your tolerance?
7	MR. FINLEY: That's correct. The actual
8	field setting is more than one percent below this
9	analytical limit. So we incorporate the field setting
10	tolerance under the analytical limit.
11	The next two set points actually were not
12	required for EPU, but again similar to the setting we
13	discussed previously. Because we were redoing the
14	analysis for EPU, we wanted to get some additional
15	margin to support instrument uncertainty calculations.
16	But we are reducing the safety injection setting on
17	the pressurizer pressure from 1715 psig to 1700 psig.
18	We've incorporated that in the LOCA analysis.
19	And similarly, although in the opposite
20	direction, we're increasing the containment spray
21	setting from 32.5 psig to 33.4 psig. Small change.
22	Again, that one pound margin is utilized in our
23	uncertain analysis.
24	And lastly
25	MEMBER WALLIS: And what's your
1	

(202) 234-4433

	90
1	containment design pressure?
2	MR. FINLEY: I'll show that on the
3	subsequent slide. The containment design pressure is
4	60 psig.
5	Finally. the P-8 permissive setpoint,
6	which is the setpoint above which you'll have a
7	reactor trip on low flow, has been reduced from 50
8	percent to 35 percent. One of the reasons for the
9	fairly size change here is we're using the updated and
10	more conservative methodology from Westinghouse to
11	establish this permissive setpoint.
12	With respect to the control settings,
13	these are the control systems, the most significant
14	control systems that are fed into the safety analysis.
15	The full power and zero power setting for pressurizer
16	level, at the top there you see there 56 percent for
17	the full power setting. Twenty percent for the zero
18	power setting. That's an expansion of the range
19	compared to what we have now, 50 and 35. However,
20	these ranges that we're going to for EPU are very
21	similar to what we had prior to replacing the steam
22	generators. As you recall, we mentioned back in 1996
23	we actually had an average coolant temperature that's
24	very close to what we'll have for EPU. And the program
25	level in the pressurizer was essentially the same as

(202) 234-4433

	91
1	well. So we're going back to that control regime.
2	Average coolant temperature, we talked
3	about
4	CHAIRMAN DENNING: Now help me again on
5	the pressurizer level. What happens at 56 percent? Is
6	that a trip.
7	MR. FINLEY: Okay. No. This is actually
8	the steady state control level. So this would be the
9	nominal expected level at full power, 56 percent in
10	the pressurizer.
11	CHAIRMAN DENNING: Oh, I'm sorry. I see.
12	MR. FINLEY: And then as you come down in
13	power in a controlled fashion, the pressurizer level
14	would program down as well.
15	Average coolant temperature mentioned, 574
16	for full power, ramp down to 547 at zero power. That's
17	the same zero power setting as what we had previously.
18	We have reduced the gain setting for rod
19	control on a power mismatch. We typically operate in
20	automatic rod control. And if you have a power
21	mismatch setup beyond a certain point, you'll drive
22	the rods. We actually reduced the sensitivity, if you
23	will, on this system so that they won't drive as fast
24	or as far on a given power mismatch. And that was
25	actually driven by rod drop analysis in the safety
	I

(202) 234-4433

	92
1	analysis.
2	MEMBER SIEBER: Do you find running in
3	automatic for rod control gives you a lot more rod
4	motion than if the operator did it manually between
5	elements that you had administratively set?
6	MR. FINLEY: Yes. I'm going to defer to
7	Roy Gillow, our operations expert, to answer that.
8	MR. GILLOW: No, we really don't have any
9	rod shattering type problems or typically we don't get
10	any steps at all in the automatic rod control at stay
11	state or close to stay state. We've had some hot leg
12	streaming issues, and that isn't enough to give us a
13	rod motion even.
14	MEMBER SIEBER: Thank you.
15	MR. FINLEY: With respect to steam dump
16	modulation, one of our objectives throughout the
17	analysis was to maintain the Ginna capability to ride
18	out a 50 percent load rejection, a fairly sizeable
19	power mismatch from our design perspective. And to do
20	that we needed to essentially increase the response
21	for the steam dump system. So as you can see here the
22	temperature range over which the steam dumps would
23	fully modulate has been reduced as far as the power
24	mismatch is concerned. And that just makes that steam
25	dump system more responsive to a load rejection.

(202) 234-4433

(202) 234-4433

	93
1	and then finally one of our instrument
2	modifications which we think will provide benefit with
3	respect to operating margin is we're incorporating a
4	4.5 second time delay filter on our $T_{_{\rm Hot}}$ indication
5	and what that does is dampen out the oscillations that
6	we see in T_{Hot} which are common to Westinghouse and
7	other pressurized water reactors. You see some
8	oscillation in the T _{Hot} indication just due to
9	incomplete mixing as the hot water comes out of the
10	different power level assemblies, you see different
11	it's a hot leg streaming issue that Roy mentioned.
12	We do have some oscillations there. This
13	filter will damper those oscillations and actually
14	provide a stable response for the operators.
15	MEMBER SIEBER: That also though increases
16	the uncertainty of the measurement, does it not?
17	MR. FINLEY: We factor this module in the
18	loop uncertainty calculation, that's correct. We also
19	factor in the time delay in the analysis as well. In
20	other words, we model this as an appropriate time
21	delay in the response.
22	MEMBER SIEBER: And the time delay, I take
23	it, is in the range of one to two seconds?
24	MR. FINLEY: The time delay is in the
25	range of 4.5 seconds, right? And that's defined that
	1

(202) 234-4433

	94
1	the .693 RC sort of time frame for the circuit.
2	MEMBER SIEBER: All right. Thank you.
3	MR. FINLEY: With respect to methods, I
4	list the primary methods here. There are other
5	methods
6	MEMBER WALLIS: And someone is going to
7	explain to me later on how ASTRUM works?
8	MR. FINLEY: Actually, we can take that
9	opportunity right now. We'll start off by saying for
10	the large break LOCA we are changing the methodology
11	h ere. And this again was a license amendment because
12	this method is listed in the technical specifications
13	going from an older version of the BE LOCA methodology
14	to the newest BE LOCA/ASTRUM method. And let me ask
15	Jeff Kobelak from Westinghouse to discuss the new
16	method.
17	MEMBER WALLIS: There's no medium break
18	LOCA involved here?
19	MR. KOBELAK: No. The ASTRUM is still a
20	large break LOCA and
21	MEMBER WALLIS: Well, I mean there's
22	another table here, it says large and small. There's
23	nothing in between?
24	MR. KOBELAK: No. The large break covers
25	down to a one square foot break.

(202) 234-4433

	95
1	MEMBER WALLIS: And then small is less
2	than that?
3	MR. KOBELAK: I can't speak to the small
4	break LOCA analysis.
5	MR. MILANO: And the answer is yes.
6	MR. KOBELAK: Yes.
7	MEMBER WALLIS: Yes. So there isn't any
8	subdivision into small, medium and large? Okay.
9	MR. KOBELAK: What the ASTRUM methodology
10	is, it's built off of our prior 1996 best estimate
11	LOCA methodology. And what we do is we have a set of
12	reference transient conditions, which is essentially
13	the nominal operating conditions for the plant. At
14	that point we will run a set of confirmatory studies
15	to determine what the limiting steam generator tube
16	plugging level is, the limiting vessel average
17	temperature. We run several Cobratec cases at both the
18	high Tavg and the low Tavg window and we determine
19	what the limiting case is. And we take these cases
20	into our uncertainty analysis. And essentially what we
21	do is we will randomly sample from all the different
22	uncertainty parameters and we'll run 124 Cobratec
23	cases from all these randomly sampled parameters. And
24	then we determining the limiting PCT and oxidation
25	values from the 129 Cobratec cases.

(202) 234-4433

	96
1	CHAIRMAN DENNING: Give us an idea of what
2	variables are considered uncertain and for which you
3	have density functions. And what are the variables
4	that are considered conservatively, taken at a
5	conservative value?
б	MR. KOBELAK: Okay. The parameters that
7	are bounded would be the steam generator tube plugging
8	level. The vessel average temperature we bound based
9	on the nominal windows. So we will run several cases
10	at the 576 and several cases at the 564. And then we
11	also sample and uncertainty around what the limiting
12	value is from the window.
13	The average power in the low power
14	assemblies is a bounded parameter. And loss of offsite
15	power versus offsite power available is a bounded
16	parameter.
17	In the uncertainty sampling we will sample
18	accumulator water volume, accumulator pressure,
19	accumulator temperature, safety injection temperature,
20	the peaking factors. And on top of that we will also
21	sample the local parameters, blow down heat transfer
22	multiplier, reflood heat transfer multiplier. So those
23	would all be sampled within the 124 Cobratec cases.
24	MEMBER SIEBER: It seemed to me that
25	Westinghouse at one time had a methodology that said
	1

(202) 234-4433

	97
1	for a given class of plants there was a broad accident
2	analysis that fit plants in that category. and that if
3	your parameters fit within certain defined limited,
4	you didn't need to rerun the full blown LOCA analysis.
5	Is my memory correct on that?
6	MR. KOBELAK: For this particular case we
7	redid the entire LOCA analysis.
8	MEMBER SIEBER: Okay.
9	MR. KOBELAK: I honestly can't speak to
10	what we've done.
11	MEMBER SIEBER: So that happened 10 or 15
12	years ago?
13	MR. KOBELAK: Yes.
14	MEMBER SIEBER: Apparently I can't either.
15	But it seemed to me there was a lot of parameters that
16	were variable parameters in here like, you know, it
17	was the multitude of tens of parameters that are
18	important in the analysis.
19	MR. KOBELAK: Yes. In the ASTRUM analysis
20	we sample, I believe it's 38 different parameters
21	MEMBER SIEBER: Right.
22	MR. KOBELAK: Using the Monte Carlo
23	method.
24	MEMBER SIEBER: Okay.
25	CHAIRMAN DENNING: And what are the

98 1 fundamental differences between that and the SECY 83 2 472? 3 MR. KOBELAK: In the SECY analysis there 4 was a lot of parameters that we would bound rather 5 than sample uncertainties around them, we would use a limiting peaking factor. In ASTRUM we only determined 6 7 four bounded parameters from these conformity studies. And everything else is run at a nominal value. And 8 9 then we do the uncertainty sampling afterwards. 10 CHAIRMAN DENNING: So that there is the complete mixing together of what we would call 11 12 epistemic and aleatory uncertainties here? Both types of uncertainties are treated in a probabilistic manner 13 14 rather than looking at a particular worse state of the 15 And then from that worse state of the plant, plant. from an aleatory version seeing what's the uncertainty 16 in the best estimate? 17 MR. KOBELAK: Yes. We will only bound 18 19 those four particular parameters and then the rest of 20 them are all sampled. CHAIRMAN DENNING: And the Staff has 21 22 accepted this approach? Is that true? Has this been 23 reviewed and this approach has been accepted? MR. NAKOSKI: Yes. This is Jim Nakoski. 24 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

I'm the PWR Systems Branch Chief.

(202) 234-4433

	99
1	And the answer is ASTRUM has been reviewed
2	and approved by the Staff.
3	MEMBER WALLIS: Is the break size one of
4	these random variables?
5	MR. KOBELAK: Yes. For double ended
6	guillotine breaks we will sample a discharge
7	coefficient. For split breaks we will sample a
8	discharge coefficient and the break size.
9	MEMBER WALLIS: But you sample the size
10	itself?
11	MR. KOBELAK: Yes, we sample the break
12	size as well.
13	MEMBER WALLIS: So the break sizes are
14	random input?
15	MR. KOBELAK: Yes. The break size and the
16	discharge coefficient are randomly
17	MEMBER WALLIS: And you have some kind of
18	a probabilistic assessment of the probability of these
19	various break sizes then?
20	MR. KOBELAK: We do not factor that into
21	the LOCA analysis.
22	MEMBER WALLIS: So it's a flat, they're
23	all equally likely?
24	MR. KOBELAK: Yes.
25	MEMBER WALLIS: That's
1	

(202) 234-4433

	100
1	CHAIRMAN DENNING: Well, you said you
2	didn't factor that in, but your answer was you did but
3	with a flat answer?
4	MR. KOBELAK: Well, yes. We sampled them
5	all at an equal probability. We don't
6	MEMBER WALLIS: An equal probability?
7	MR. KOBELAK: Yes.
8	MEMBER WALLIS: Which is really presumably
9	conservative. Large break is less likely than a medium
10	break?
11	MR. KOBELAK: Yes.
12	MEMBER WALLIS: And they're all given
13	equal probability?
14	MR. KOBELAK: Yes. There's a 50/50 percent
15	change of whether it will be a guillotine break or
16	split break.
17	MEMBER WALLIS: No, but I know. But size,
18	the size?
19	CHAIRMAN DENNING: And when you say the
20	MR. KOBELAK: And the
21	MEMBER WALLIS: When you've a size range
22	of, I don't know, one square foot up to however many
23	it is, the maximum
24	MR. KOBELAK: Yes, and we that is
25	MEMBER WALLIS: Do you sample flat in that

(202) 234-4433

	101
1	range?
2	MR. KOBELAK: Flat, yes.
3	CHAIRMAN DENNING: Why did you consider
4	that to be conservative, Graham? Don't forget, we're
5	not looking at probabilities here. This isn't the
6	PRA. This is saying that probably is the less
7	challenging LOCA at one square foot has equal
8	likelihood to the most challenging so that your
9	MEMBER WALLIS: No. But then the
10	consequences depend on the size of the break, as I
11	understand it. And so if you happen to just randomly
12	get large break LOCAs, you're going to get higher
13	temperatures in your output. Whereas, in reality
14	there's in reality? According to expert
15	elicitation the large break LOCA is considerably less
16	likely than the one square foot. The largest break is
17	significantly less likely than a one square foot
18	break. And I think what some other people have done
19	is to actually put in a more realistic probability
20	distribution for the size of the break.
21	And this I think is conservative. This
22	comes out with more large break LOCAs as inputs than
23	is realistic.
24	CHAIRMAN DENNING: I would disagree.
25	MEMBER WALLIS: Or more of the largest

(202) 234-4433

(202) 234-4433

	102
1	break.
2	MR. FINLEY: Certainly from a regulatory
3	standpoint all the breaks need to show a PClad
4	temperature less than 2200 degrees Fahrenheit.
5	CHAIRMAN DENNING: All of those do you're
6	saying?
7	MR. KOBELAK: All of it.
8	CHAIRMAN DENNING: So you take a large
9	break and for that one you determine what the
10	MEMBER WALLIS: No.
11	CHAIRMAN DENNING: That's what
12	MEMBER WALLIS: Large breaks is a spectrum
13	break, as I understand it.
14	CHAIRMAN DENNING: Right.
15	MEMBER WALLIS: It's not as if large break
16	is the biggest break.
17	CHAIRMAN DENNING: No. I meant the biggest
18	break. You take the biggest break and demonstrate for
19	that one or are you treating that probabilistically so
20	that
21	MR. KOBELAK: We will take the results of
22	all those 124 runs across the break spectrum and we
23	will show that the most limiting of all of those is
24	still less than 2200.
25	CHAIRMAN DENNING: You don't use the
l	I

```
(202) 234-4433
```

	103
1	statistical
2	MEMBER WALLIS: Yes. That is the
3	statistical. Let's get it straight. There are two
4	ways to do this.
5	CHAIRMAN DENNING: Yes.
6	MEMBER WALLIS: You can say we're going to
7	take breaks of say, 1, 2, 3, 4, 5 categories, right,
8	of sizes?
9	CHAIRMAN DENNING: Yes.
10	MEMBER WALLIS: And we're going to run
11	statistics on one and get a number. Statistics on two
12	and get a number. Statistics on three. And then we're
13	going to look at the biggest number of PCT we get out
14	of these six categories.
15	The other to do it is to put in all of
16	these breaks into the statistics.
17	CHAIRMAN DENNING: Then that
18	MEMBER WALLIS: Then you may randomly
19	never get the biggest break possible at all. It may
20	just happen that you'd never get that.
21	CHAIRMAN DENNING: Oh, you mean in the
22	sampling?
23	MEMBER WALLIS: In the statistical process
24	you may never hit the biggest break, doubled ended
25	CHAIRMAN DENNING: In a statistical
	1

(202) 234-4433

	104
1	sampling? Well, you'd probably sample in such a way
2	that your forced
3	MEMBER WALLIS: Well there's a good
4	probability of it, but you're not sure you'll get
5	that
6	CHAIRMAN DENNING: Well, you'd probably do
7	that in a structured way like sampling where you
8	MEMBER WALLIS: Well, I think I know what
9	you've done. You have used the break size as an input
10	statistical parameter. Just like these other things
11	with the correlations and
12	MR. KOBELAK: Yes. Exactly. That's one
13	of the sample parameters similar to it.
14	MEMBER WALLIS: And then I can talk with
15	my colleague about what it means at some other time.
16	MEMBER SIEBER: It seems to me the issue
17	is you've got a lot of parameters that you want to
18	vary. And if you ran a case for all 34 parameters at
19	its limits, we wouldn't be here; you'd still be
20	running your computer code. I mean, that's thousands
21	of cases. So this is a reasonable way to cut down the
22	number of runs that you have to make to still define
23	an envelop in which you can operate safely. That's
24	sort of my way of looking at it.
25	MEMBER WALLIS: Well, they're using a
1	I Contraction of the second

(202) 234-4433

	105
1	statistical something out there with a certain
2	confidence that they've got if they covered the
3	certain range of the probabilistic space. And if they
4	run this code on Tuesday, they may get a different
5	answer than they get on Monday using exactly the same
6	method.
7	CHAIRMAN DENNING: Now is the criterion
8	for being satisfied is that every one of these cases
9	as to be below the
10	MEMBER SIEBER: The 2200.
11	CHAIRMAN DENNING: 2200? It's not the
12	95th percentile or something like that?
13	MR. KOBELAK: Right. It's that all of
14	these cases will be less than 2200. All of these
15	cases will be less than 17 percent oxidation.
16	MEMBER WALLIS: Based on a 95/95?
17	MR. KOBELAK: Yes.
18	MEMBER WALLIS: All right. And if you
19	wanted to take the second one, you'd have to take 295
20	or something
21	MR. KOBELAK: Yes. The 124 is enough to
22	assure that we will find at least the 95/95 PCT and
23	oxidation. And for each additional parameter that you
24	would be looking for, then the number increases.
25	MR. CARUSO: If you run your cases on

(202) 234-4433

	106
1	Monday and you get an answer where one of them exceeds
2	2200, what do you do? Do you just run it again on
3	Tuesday and if it's okay, you accept Tuesday's results
4	and throw away Monday's?
5	MR. KOBELAK: No. Whenever we run the
6	code to determine the sampling and develop these 124
7	cases, once we've run that code we will maintain that
8	seed. So if we were exceed 2200 from that analysis,
9	we would have to find ways of reduced peaking factors,
10	some way to meet that limit. We would not resample.
11	MEMBER WALLIS: It would be very
12	interesting if the government ran confirmatory
13	analysis and it doesn't matter whether it's Monday,
14	Tuesday or Wednesday. It's just that since they
15	sample differently, they get a different number. IF
16	they get a number which is 2200 and one and you get a
17	number which is 1999, it would be interesting to see
18	what they would do.
19	MR. KOBELAK: Yes. Fortunately, we didn't
20	challenge the limits with this analysis.
21	MEMBER WALLIS: But you seemed to come up
22	with an 1800 and something number. It's not as if
23	you're sort of near the limit, as I understand.
24	MR. KOBELAK: Yes. The 1870 was the
25	limiting case we had.

(202) 234-4433

	107
1	MR. FINLEY: Okay. Thanks. Thanks, Jeff.
2	With respect to the small break
3	methodology, no change in that methodology. Continue
4	to use the NOTRUMP method from Westinghouse.
5	For the non-LOCA events we have gone to
6	the updated methodology, the RETRAN methodology for
7	the system code. Presently we use LOFTRAN for these
8	non-LOCA events.
9	For the control system transients we
10	continue to use LOFTRAN both now and for EPU.
11	For the containment analysis we currently
12	use the GOTHIC methodology, although a slightly older
13	versions of what was used by Westinghouse for the
14	updated EPU containment analysis.
15	For steam line break we currently use
16	COCO, that's being updated to the GOTHIC methodology.
17	And finally, for dose assessment we did et
18	the alternate source term methodology approved last
19	year and we just updated that for the EPU source term.
20	MEMBER SIEBER: And those, the dose to
21	control operators, it seemed to me come out pretty
22	low, right? It's in the two or three rem range?
23	MR. FINLEY: Well, we'll show you the
24	results for the control room in a few slides.
25	MEMBER SIEBER: Okay.
	I

(202) 234-4433
	108
1	MR. FINLEY: Okay. What I tried to do on
2	this slide is capture the most significant of the non-
3	LOCA events. I think this speaks to some extent to the
4	questions or comments that came up early on with
5	respect to margin.
6	I would like to say at the outset that
7	obviously these methods are conservative. They're
8	approved methods. As well the inputs to the methods
9	are also conservative and bounding.
10	And finally, the acceptance criteria that
11	you see here are conservative. So there's margin in
12	these results, although it appears they're close to
13	the acceptance criteria.
14	To summarize, I've grouped these in four
15	categories. Overheating as a result of reduced
16	primary cooling being the first.
17	MEMBER WALLIS: Could we look at these
18	now? These seem to be important numbers?
19	MR. FINLEY: Yes.
20	MEMBER WALLIS: And it looks as if in
21	every case your result is very close to the criteria?
22	MR. FINLEY: Yes. Yes. And as I said,
23	there's conservatism in the methods and in the inputs
24	and in the criteria. In addition, when we did these
25	analyses, our objective was not to demonstrate how

(202) 234-4433

	109
1	much margin we had to the acceptance criteria. Our
2	objective was to demonstrate that we meet the
3	acceptance criteria.
4	MEMBER WALLIS: Well, you seem to have
5	very carefully engineered this plant so that it's
6	close to the envelop in a lot of different dimensions
7	here.
8	MR. FINLEY: Well, in some sense that's
9	true. In other words if we made changes to inputs
10	into these methods, we typically would stop at
11	something that would give us an acceptable result, and
12	that's why you see the results that you see here.
13	MEMBER WALLIS: And then we may have some
14	concern when you say things are conservative about
15	just what you mean and how much the uncertainty is
16	some of these numbers. We really dug into this.
17	MR. FINLEY: Yes. I understand. Let me
18	give you an example. In fact, I'll call upon Chris
19	McHugh from Westinghouse here.
20	But take the first loss of flow condition
21	2 event, for example. We show the DNBR acceptance
22	criteria here for DNBR at 1.38 and we calculated
23	1.385, but that looks very close to the limit. There
24	is margin in that 1.38 acceptance criteria for the
25	DNBR limit. And let me ask Chris McHugh to speak to
	1

(202) 234-4433

	110
1	that just as an example.
2	MEMBER WALLIS: Well this 1.385, does that
3	come from the mean of some best estimate? There's no
4	uncertainty put on that number for me.
5	MR. McHUGH: This is Chris McHugh from
6	Westinghouse.
7	That's the actual calculated out of RETRAN
8	or out of
9	MEMBER WALLIS: But RETRAN isn't that
10	accurate a code, is it? I mean, this could easily be
11	plus or minus something or other. I don't know how big
12	it would be. But if that's the number that RETRAN
13	gives you, there's a plus or minus on that which is
14	not insignificant, is it?
15	MR. FINLEY: Well, this of course gets
16	back to the thermal hydraulic methodology as well,
17	which is essentially a 95/95 type methodology
18	MEMBER WALLIS: Is it? I mean is this
19	1.38 a 95/95, it isn't, is it? Isn't it just one
20	point from RETRAN code?
21	MR. FINLEY: With respect to the thermal
22	hydraulic analysis this does incorporate variations in
23	power, temperature and flow.
24	MEMBER WALLIS: Please, now I want to be
25	clear. Is this treated the same way as the LOCA, this
I	

(202) 234-4433

	111
1	is 1.35 number as with the 124 or whatever the number
2	of runs is?
3	MR. FINLEY: No.
4	MEMBER WALLIS: No, it isn't?
5	MR. FINLEY: That's a single bounding run.
6	MEMBER WALLIS: It's one run? And we know
7	that these codes aren't all that accurate. They have
8	correlations and things in them which do not represent
9	data perfectly. They have assumptions in them. And
10	they have simplifications and
11	MR. McHUGH: Well, the correlation
12	uncertainties are accounted for in the DNBR limit.
13	The actual limit that he has listed there of 1.38, the
14	actual limit for the 14 by 14 422V+ fuel is 1.24.
15	MEMBER WALLIS: So you're saying that the
16	Agency accounts for correlations in the way it
17	specifies the criteria it accounts for uncertainty in
18	correlations in the way it
19	MR. McHUGH: Yes.
20	MEMBER WALLIS: So when it approves RETRAN
21	it's implying that it knows that RETRAN has
22	uncertainty within the limits that were considered in
23	setting the criteria?
24	MR. McHUGH: Well, it approved RETRAN with
25	the methodology that we planned to use RETRAN with. It
I	1

(202) 234-4433

	112
1	wasn't just the RETRAN code by itself. But then that
2	methodology was used for
3	MEMBER WALLIS: But then when you change
4	the plant, the errors may change. So you're sort of
5	assuming that your assessment of uncertainties in
6	RETRAN before the uprate haven't changed in any way
7	with the uprate?
8	MR. MIRANDA: I didn't understand the
9	difference between the criteria and that' identified
10	here, 1.38 and what you said the actual criterion is?
11	What did you mean? Whose criterion is this and what
12	did you mean by the
13	MR. McHUGH: The DNB correlation that we
14	used has a limit of 117. From 1.17 to 1.24 they
15	MR. MIRANDA: I'm sorry. You said it has
16	a limit. What do you mean by it has a limit?
17	MR. McHUGH: The approved limitation of
18	the correlation is 1.17. We can't go below that.
19	Because, like you said, there are uncertainties
20	associated with the correlation. It's not perfect.
21	And then we used the revised thermal
22	design procedure, which means we statistically
23	convolute the uncertainties into the DNBR limit, and
24	that takes the limit from 1.17 up to 1.24?
25	MEMBER WALLIS: So that it's the Agency
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	113
1	that's convoluting the uncertainties?
2	MR. McHUGH: Pardon me?
3	MEMBER WALLIS: It's the Agency? You're
4	speaking for the
5	MR. McHUGH: No. The vendor takes the
6	the Agency gave us 1.17.
7	MEMBER WALLIS: Oh, so I don't understand
8	this. So what's the law, let's say the law laid down
9	by the governmental agency is 1.17?
10	MR. McHUGH: Well, yes. For the DNB
11	correlation that we used, that's
12	MEMBER WALLIS: Well, maybe that's what we
13	should be looking at.
14	CHAIRMAN DENNING: Just for the
15	correlation.
16	MEMBER WALLIS: So you have taken the kind
17	of uncertainties in changing the criteria from some
18	regulatory value to some other value?
19	MR. McHUGH: To a higher more restrictive
20	value.
21	MEMBER WALLIS: It seems a strange way of
22	doing it. I would think you would take your
23	predictions and show that you meet some regulatory
24	criterion specified by the government. Wouldn't that
25	be the 1.17

```
(202) 234-4433
```

	114
1	MR. MIRANDA: This is Sam Miranda from the
2	NRC.
3	We don't have a specific value like 1.17.
4	The law says there should be a condition two event,
5	for example, that there should be no fuel clad damage.
6	And the 1.17 is determined by DNB experiments and
7	correlations to come with a value that with good
8	confidence will assure that there's no clad damage.
9	And then what Chris is talking about is
10	adding on to the uncertainties they could either be
11	put in directly or convoluted in to assure that you
12	have this 95/95 confidence level that no clad damage
13	will occur.
14	So you start with a 1.17 and by the time
15	the uncertainties are added in, the limit, the safety
16	analysis limit that the analysis have to meet, is
17	9.38.
18	MEMBER WALLIS: Then you make one RETRAN
19	run with 1.385?
20	MR. MIRANDA: Well, in this case it's
21	RETRAN, it was VIPRE.
22	MEMBER WALLIS: So this is very different
23	from what we just heard from Westinghouse. They make
24	124 runs and then they compare a fixed criteria. And
25	you're sort of stretching the criterion first and then
	I contract of the second se

(202) 234-4433

115 1 making one run. That seems a strange way to do it. 2 Yes, this is not a best MR. MIRANDA: These 3 estimate calculation. are conservative 4 calculations. And the conservatisms are added, for 5 example, in the initial conditions that are used in calculating the transient with RETRAN. And then the 6 7 results from RETRAN are factored into a more detailed core model in VIPRE which actually calculated the DNB 8 9 ratio. 10 MEMBER WALLIS: It seems that in order to satisfy ourselves you're doing the right thing. We 11 12 ought to maybe spend a lot of time on these sort of things rather than just reading an SER which says they 13 14 meet the regulation. Because how they meet the 15 regulations is absolutely critical. MR. MIRANDA: Well, these things have been 16 17 addressed in detail in the past --MEMBER WALLIS: It doesn't concern me. I 18 19 want to be satisfied now. 20 MR. MIRANDA: I will --21 MEMBER WALLIS: If you would point me to 22 the reference, if there's something that I can study 23 and be convinced, that's fine. But the fact that someone's done it before doesn't necessarily I'm 24 25 happy.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	MR. MIRANDA: Well, the licensing basis
2	MEMBER WALLIS: I want to know what you're
3	doing and why and what's the rationale for deciding
4	everything is okay.
5	MR. MIRANDA: Yes. These methods have not
6	changed from the licensing basis. In the EPU they
7	used the same sort of treatment of uncertainties.
8	MEMBER WALLIS: So when they did it
9	before, before the EPU, did they use 1.38 or some
10	other number?
11	MR. MIRANDA: It could be any number,
12	actually. It depends on the plant, it depends on the
13	correlation used. And for this case it was a WRB-1
14	correlation.
15	MEMBER WALLIS: So what did they use
16	before the EPU for these numbers? What did they use
17	for this 1.38 before the EPU?
18	MR. McHUGH: I believe it was 1.38.
19	MEMBER WALLIS: It's the same thing?
20	MR. McHUGH: I'm not positive. I'd have
21	to go back and check.
22	MEMBER WALLIS: And then the result,
23	1.385, did that change with the EPU?
24	MR. McHUGH: Yes.
25	MEMBER WALLIS: And what was it before?

(202) 234-4433

	117
1	MR. McHUGH: It was about 1.6 before.
2	MEMBER WALLIS: 1.6? So this looks as if
3	they've moved very close to some limit as a result of
4	the EPU? Should I conclude that?
5	MR. McHUGH: Yes.
6	MR. MIRANDA: Yes.
7	MEMBER WALLIS: If they got 1.375, you
8	would have rejected the application?I
9	MR. MIRANDA: Personally if they had got
10	1.375, I would have questioned it.
11	MEMBER WALLIS: Well, I could ask that of
12	all these numbers. When get to ATWS there's 3200,
13	which is presumably is that an ASME limit or
14	something for the 3200 or is that something that's
15	varied in the same way that the 1.38 was varied?
16	MR. MIRANDA: Actually, the 3200 psi limit
17	is the ASME level C stress limit
18	MEMBER WALLIS: Which is something which
19	is not subject to be twiddled?
20	MR. MIRANDA: Right. Well, it can be
21	twiddled in the sense that it's the weakest component
22	in the RCS.
23	MEMBER WALLIS: And then when I look at
24	3.93, does that have uncertainties in it, 3193? Is
25	that a very conservative number or is that a mean, or
l	1

(202) 234-4433

	118
1	95/95, or what is it?
2	MR. MIRANDA: That number actually is less
3	conservative than the other accident analysis, and
4	that has been the ground rules for ATWS analyses since
5	1974 since ATWS is considered a very low probability
6	event.
7	MEMBER WALLIS: It doesn't matter. You've
8	got a criteria and it has got to be satisfied.
9	MR. MIRANDA: Yes. Yes.
10	MEMBER WALLIS: Probably or not.
11	MR. MIRANDA: And it is satisfied, 3193.
12	MEMBER WALLIS: And I know that large
13	break LOCAs are very unlikely, but you still had to
14	satisfy criteria.
15	MR. MIRANDA: That's right.
16	MEMBER WALLIS: So I don't accept the
17	argument that it's unlikely and therefore you don't
18	have to worry about it.
19	MR. MIRANDA: No. That's not my personal
20	judgment. This is what the Staff has decided during
21	the ATWS evaluations which have been going on since
22	1969 and then ended in the 1986 rule.
23	MEMBER WALLIS: That's a part of
24	exasperation reading the SER was that I just read this
25	whole thing and it says the applicant assumed this,
I	

(202) 234-4433

	119
1	this and this and the ends of the paragraph saying
2	or the several pages saying that he met the
3	regulations. But unless I get into the details of how
4	you let him calculate these numbers and how you
5	evaluated whether or not they're satisfactory, I have
6	no way of telling whether I give credibility to what
7	you have done. And therefore, I need that
8	presentation. I'm not sure I'm going to get it. So I
9	may just have to defer and say I don't know whether or
10	not this is a reasonable uprate, even though I may be
11	impressed with what the licensee has done. Because I
12	cannot follow the train of thought whereby the staff
13	approves the numbers that are submitted to it.
14	MR. MIRANDA: I will be talking about that
15	in my presentation later.
16	MEMBER WALLIS: Then we're going to have
17	this conversation again.
18	MR. MIRANDA: Yes.
19	MEMBER WALLIS: Thank you.
20	I'm sorry to take so much time from the
21	applicant.
22	MR. FINLEY: Well, that's fine. Important
23	questions.
24	The next significant event is the locked
25	rotor event, condition IV event. The pressure
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

1 criteria is based on a 120 percent of design in this 2 case, and you can see the margin that we have there. For overheating, the loss of load event at 3 4 most limiting condition ΙI with respect to 5 overpressure. And again this just takes into the sizing of the pressurizer which was asked earlier on 6 7 this morning. The result is close to the acceptance criteria, which is 110 percent of design pressure. 8 9 This was the event that was used to establish the 10 limiting pressurizer safety valve setting that we talked about with respect to the license amendments 11 previously. 12 For the feed line break analysis, that of 13 14 course is a condition IV event. And here the 15 acceptance criteria relates to not having saturation condition in the hot leg and we demonstrated that what 16 remains subcooled with 2 degrees margin. 17 brieflv ATWS just mentioned the 18 we 19 acceptance criteria of 3200 psig, 3193 the result. For overcooling for steam line break it's 20 21 a condition IV event. This event actually had not 22 previously been analyzed for Ginna. We've added that 23 to our licensing basis with EPU. And we continue 24 demonstrate conservatively that we don't have clad 25 damage for this event.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

120

	121
1	MEMBER WALLIS: Well, again, this linear
2	heated or something
3	MR. FINLEY: Heat rate, yes.
4	MEMBER WALLIS: Where does 22.7 come from?
5	MR. FINLEY: Let me ask.
6	MEMBER WALLIS: Is this in a reg. guide or
7	something or where does it come from?
8	MR. FINLEY: Yes. That's one of the SAFDLs
9	for the Westinghouse fuel, Specified Acceptable Fuel
10	Design Limits for the fuel. Let me ask Westinghouse.
11	MEMBER WALLIS: So this is something
12	that's written into the law in some way, 22.7? It's
13	been approved and all that? This is actually a
14	regulatory position of the Agency, 22.7? Yes?
15	MR. FINLEY: Let me ask Westinghouse.
16	Chris or Roberta.
17	Okay. We're going to have to take that
18	question and get back to you with respect to the basis
19	for the 22.7.
20	MEMBER WALLIS: Also the basis for 22.67.
21	They're so close and I'm just interested in where they
22	come from.
23	CHAIRMAN DENNING: The other element
24	that's so strange about this is how many and some
25	of these things are clearly very closely coupled and

(202) 234-4433

1 it's not too surprising that some of these DNBR happen 2 to be so close. But things like the pressurizer -- I'm maximum 3 the pressure which is somewhat sorry, 4 independent from the DNBR, here's within .4 of a 5 criterion and then this somewhat independent thing, the DNBR is also so incredibly close to the criterion. 6 7 And one would expect -- how have you tuned this 8 somehow so that they're all right --9 MR. FINLEY: I understand the point. And 10 that's not by coincidence. It's really an outcome of the process. In other words, we would revise the 11 inputs into these methods until we got the acceptable 12 13 results. And again --14 CHAIRMAN DENNING: And so you keep your 15 setpoints --16 MR. FINLEY: relying ___ we're on 17 conservative --18 CHAIRMAN DENNING: -- you mean things like 19 that? 20 MR. FINLEY: Pressurizer safety valve 21 setpoints, for example, is key to limiting the 22 overpressure for the loss of load. 23 MEMBER WALLIS: So you're changing the 24 physical variables? You're not changing some 25 correlation or some assumption --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

122

	123
1	MR. FINLEY: Well, in that case that's a
2	physical variable. In other cases it may be
3	analytical type margin.
4	MEMBER WALLIS: So the old joke about this
5	used to be that you simply have a loop in the program
6	that says if you don't get the answer you want, go
7	back and assume something else. Now that's not the
8	way you get the numbers so close, it can't be.
9	MR. FINLEY: No. No.
10	MEMBER WALLIS: But there must be some way
11	that you worked to get the numbers so close.
12	MR. FINLEY: And that's correct. Certainly
13	as part of the process we run these events the first
14	time, we collaborate with Westinghouse with respect to
15	the sensitivity of the event based on the inputs. And
16	we decide to make changes in the inputs and changes to
17	our operating margin at the site. And that's what
18	we've done in this cases. So although some of these
19	results are independent, they come from different
20	events and driven by different parameters. The reason
21	two or three are close is because we went through that
22	process to revise our operating strategy, our
23	setpoints and so forth to make these results
24	acceptable.
25	CHAIRMAN DENNING: If we went back and
l	

(202) 234-4433

	124
1	looked at Kewaunee, we would see basically the same
2	type of thing? Would they all be up against their
3	limits?
4	MR. FINLEY: I can't speak to all of the
5	Kewaunee results here. I can't speak to that. I don't
6	know the details.
7	MEMBER WALLIS: I've never seen this
8	before. I mean, usually in these uprates we still have
9	a large margin in that the numbers are not close up to
10	some limit.
11	CHAIRMAN DENNING: Well, we have to be
12	careful. I mean, these are not safety limits and they
13	have margins built into them.
14	MEMBER WALLIS: Right.
15	CHAIRMAN DENNING: But we're not taking up
16	all of that.
17	MEMBER WALLIS: We're taking it all off.
18	CHAIRMAN DENNING: We're going right up to
19	the
20	MEMBER WALLIS: Right, which I haven't
21	seen anything like this before. It's really striking.
22	MEMBER SIEBER: These aren't the only
23	limits. There are other limits where they don't
24	approach them so closely.
25	MEMBER WALLIS: Are you just showing the
	I

(202) 234-4433

	125
1	worse
2	MR. FINLEY: Right. I'm obviously picking
3	the most limiting events. And these are the ones
4	that, you know, with respect to margins to the
5	acceptance criteria are the tightest.
6	MEMBER WALLIS: So you're not going to
7	give
8	MR. FINLEY: But again for example, for
9	the loss of load analysis we don't take credit for a
10	spray system that would be there and it would be
11	operating, it's not safety related. We don't take
12	credit for the PORVs, the relief valves that would
13	accurate before the safety valves.
14	I mean our typical loss of load event at
15	Ginna results in much, much lower pressures than what
16	you see here. So these are conservative methods,
17	again, conservative
18	MEMBER WALLIS: But if you read the SER
19	there's many, many more events than this?
20	CHAIRMAN DENNING: Right.
21	MEMBER SIEBER: Yes.
22	MEMBER WALLIS: And they always end up
23	saying the regulations are met.
24	MEMBER SIEBER: Right.
25	MEMBER WALLIS: What I want to see is a

	126
1	table like this for all events which may be, you know,
2	35 or something. And then showing that these are the
3	events which we have to think about because they're so
4	close to some limit and arguing in some detail about
5	why one part in ten thousandths is an acceptable
6	margin for these things.
7	MR. FINLEY: Right.
8	MEMBER WALLIS: That's what I was looking
9	for. I never found anything like that in the SER.
10	MR. FINLEY: In the licensing report we
11	have a table that we could show you. We can make that
12	available to you later today, I'm sure, that lists all
13	the events.
14	MEMBER WALLIS: Well, I'm very surprised
15	because in general I think that you guys seem to have
16	done a good job. And I just don't understand why I've
17	suddenly discovered that these numbers are so close in
18	this table.
19	MR. VERDIN: This is Gord
20	MEMBER WALLIS: I had not seen them
21	before.
22	MR. VERDIN: This is Gord Verdin. I do
23	have some comments on this.
24	First of all, the 22.7 kilowatts per foot
25	is a 14 by 14 422V+ kilowatts per center line melting.
	1

(202) 234-4433

127
MEMBER SIEBER: Right.
MR. VERDIN: So it is a limit for that
particular fuel design.
The other thing is one of the reasons some
of these limits look as close, as I mentioned in my
previous discussion, that we've made a transition from
CAOC to RAOC. And when you make that transition to
RAOC, you try to get the bands that you were allowed
to operate within wide enough to give you operating
margin. So some of your initiating conditions for
these events are closer than they would have been in
the past when we had CAOC analysis.
MEMBER MAYNARD: Well, as I recall, most
of these criteria have most of the margin built into
them.
MEMBER SIEBER: Right.
MEMBER MAYNARD: So as long as you meet
that criteria, you have the margin and that you
typically will come close to these in a number of
areas to provide yourself operating margin. You don't
actually set setpoints and things to the exact
MEMBER SIEBER: Limit.
MEMBER MAYNARD: limit that you could.
MR. FINLEY: That's correct. That's
correct. These acceptance criteria set the limit

(202) 234-4433

	128
1	beyond which we begin to infringe on the safety
2	margin. Below these limits we consider that operating
3	margin. And that's how we approached the analyses.
4	MR. DUNNE: This is Jim Dunne.
5	I think another thing that we need to
6	remember is typically for a lot of the parameters
7	instead of inputs into these analyses, they're skewed
8	in a conservative reaction. For example pressurized
9	water level; if for a particular analysis it's
10	conservative to maximize pressurizer water level, you
11	take your nominal and you throw your uncertainty and
12	raise it to a higher value as a starting point. Or if
13	it was conservative to minimize it, you would take
14	your nominal and reduce it by your uncertainty to a
15	starting point.
16	So you've got a lot of the inputs into
17	these analyses that have been skewed in a conservative
18	direction to give you conservative result as a final
19	output.
20	MEMBER WALLIS: Well, this reactivity to
21	this rod withdrawn thing. That must depend on the
22	time and the cycle at which it happens?
23	MR. FINLEY: That's correct.
24	MEMBER WALLIS: Is this the worst case
25	you're showing us here?

(202) 234-4433

129
MR. FINLEY: We look at different times in
cycle, we look at different rod positions. And you
have to have rods inserted.
MEMBER WALLIS: Well, that depends on your
whole fuel arrangement and everything.
MR. FINLEY: That's correct. That's
correct. We look at all those. This is the most
limiting result of all the times
MEMBER WALLIS: So you've run a lot of
calculations with a lot of different inputs?
MR. FINLEY: That's correct.
MEMBER SIEBER: That's part of the reload
safety evaluation.
MR. DUNNE: Right.
MR. FINLEY: That's correct.
MEMBER SIEBER: You do it every cycle.
MR. DUNNE: And when you your fuel reload
for any particular cycle, you got to look at your
reload design and see if it impinges upon any of these
MEMBER WALLIS: Right. So there might be
some reloads that gave you 27.486
MR. DUNNE: And if we did that we
MEMBER WALLIS:2748.6.
MEMBER SIEBER: Then you need to change

(202) 234-4433

	130
1	something.
2	MEMBER WALLIS: Then you go and change the
3	reload.
4	MR. DUNNE: Well if we do a reload report
5	and we get a number that's outside the band that
6	presently analyzed, we basically have to review it
7	whether we can accept that change under 50.59 or
8	whether it's not accepted in the 50.59, then we got to
9	go back and get the Commission's approval before we do
10	that. Ideally what we would do would be to change the
11	core design to stay within the design limits that
12	we've been licensed to and not try and raise the
13	limits higher.
14	MEMBER SIEBER: And I think that's
15	typically what happens. In a situation like Ginna it
16	is not surprising to me that you would find some of
17	these things close to or up against a limit because
18	the designer's question is how much can I increase the
19	power without exceeding a limit. And they worked very
20	hard to do that, and they may come right up next to
21	a limit and say that's how many megawatts I can get
22	out of the machine without exceeding a limit. And if
23	he would do less then that, then he wouldn't be
24	fulfilling the design requirement which is how much
25	can I get out of the machine and still not exceed the
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	131
1	limit.
2	So I'm not surprised that they're close on
3	some of these.
4	MR. FINLEY: That's correct. And that
5	actually responds to the question I think Dr. Wallis
6	had earlier, or one of the gentleman had earlier,
7	which events set the power limits. These are the
8	events here that set the power limits we've chosen.
9	MEMBER WALLIS: Well, I guess we could
10	spend a lot of time on everything. I don't want to do
11	it. But just look at the rod injection, less than 200
12	curies per gram, and we have looked at it's a
13	knowledge base for fuel damage. And there's quite a
14	bit of uncertainty in that that's 200 curies per gram.
15	And over the years there have been efforts to change
16	the number in response to what we know.
17	So that's certainly one where I wouldn't
18	expect you to try to get within .01 percent or
19	something.
20	MR. FINLEY: I understand that.
21	MEMBER WALLIS: I mean, we could spend
22	forever on all these numbers. I don't want to do it.
23	It's just that this is a rather striking presentation,
24	this particular slide here.
25	MR. FINLEY: And let me also say
	1

(202) 234-4433

	132
1	MEMBER WALLIS: Maybe we should move on.
2	MR. FINLEY: Okay.
3	MEMBER SIEBER: I just would, not trying
4	to belabor the point, point out that depending on
5	where the issue came up in the licensing process
6	determines to some extent how it's treated.
7	For example, the ATWS event as the staff
8	has reported has been out there and the subject of
9	policy and rulemaking for a long time. And because it
10	is not a likely event, for example, ATWS mitigation
11	equipment is not safety related. It's not safety
12	related equipment reflecting the fact that you aren't
13	going to get an ATWS with a combination of other kinds
14	of accidents like outages and so forth.
15	So there are a lot of twists and turns in
16	the rules that determine what these limits really are
17	and what they mean. There's a long history behind a
18	lot of this.
19	MEMBER WALLIS: I'd like to request that
20	when you make a presentation to the full Committee you
21	don't fail to show this sort of slide. Because
22	sometimes what happens is that the points that are
23	sensitive in the Subcommittee meeting get passed over
24	when it comes to the full Committee. And I think you
25	want to be completely open about this.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	133
1	MR. FINLEY: All right. We'll include this
2	slide in that presentation.
3	CHAIRMAN DENNING: You can proceed now.
4	MR. FINLEY: Again, sticking with results
5	from the safety analysis with respect to the LOCA
6	analyses, large break Pclad temperature 1970 as
7	compared I didn't show the acceptance criteria
8	here. You know 2200.
9	Small break is actually not the review
10	from the Staff is not complete. But the current result
11	submitted is 1167. Obviously, a margin there.
12	MEMBER SIEBER: If you were to use your
13	old methodology, what would that number have been?
14	MR. FINLEY: Let ask Jeff Kobelak from
15	Westinghouse.
16	MEMBER SIEBER: 2195 maybe?
17	MR. FINLEY: Let me ask Jeff Kobelak to
18	answer that question.
19	MR. KOBELAK: With the SECY methodology at
20	the prior to EPU conditions, the 95/95 PCT was 2087
21	degrees.
22	MEMBER SIEBER: Which was okay.
23	MEMBER WALLIS: So you can certainly buy
24	something by changing the methodology?
25	MR. FINLEY: That's correct.
	1

(202) 234-4433

	134
1	With respect to the containment, you see
2	the results here for the LOCA and the steam line
3	break, 54.2 psig as compared to the design pressure
4	for 60 for LOCA
5	MEMBER WALLIS: I'm sorry. When he said
6	"the number is" he was talking about the large break?
7	MR. KOBELAK: Yes.
8	MEMBER WALLIS: Yes. Thank you. Just
9	clarifying.
10	MR. FINLEY: And that result 54 pounds is
11	comparable to what we had for LOCA now, slightly
12	higher.
13	For steam line break 59.6 psig, it's
14	actually a little lower than our current licensing
15	basis for a steam line break. That's a tight analysis
16	for Ginna even now. When we installed the fast acting
17	feed insolation valve, it actually took that single
18	failure away as the limiting case for steam line break
19	containment. But there are other single failures that
20	also result in this 59.6.
21	MEMBER WALLIS: You know, when I read the
22	SER I read a statement that said the licensee stated
23	that no fuel damage is postulated to occur because of
24	a main steam line break. Well, it maybe true that
25	there's no fuel damage. But you can't assume the
	I

(202) 234-4433

	135
1	answer. You can't just postulate something. You've got
2	to have some justification for it.
3	MR. FINLEY: Well, that's correct. And we
4	I think mentioned earlier that when we did the steam
5	line break under non-LOCA we demonstrated no clad
6	damage.
7	MEMBER WALLIS: Well, you demonstrated.
8	But the SER it simply says you postulated. That's not
9	a proper description of what you did.
10	MR. DUNNE: That's correct. It's not an
11	assumption. It's based upon analyses.
12	MEMBER WALLIS: Right. And in the rod
13	injection accident you assumed that a certain amount
14	of rods fail? Did that just come from the sky or did
15	you know how many failed and for some reason?
16	MR. FINLEY: Are you moving ahead to dose
17	assessment slide?
18	MEMBER WALLIS: Well, I'm just looking at
19	how trying to figure out what you did in terms of
20	calculating things and how the Staff evaluated them.
21	And when I see that they simply say you assumed the
22	answer, I don't understand how that's an acceptable
23	position to have.
24	CHAIRMAN DENNING: In some respects it's
25	a question for you. It's really SER verbiage, but
	1

(202) 234-4433

	136
1	really the question in both of these cases was did you
2	really make assumptions or did you actually perform
3	analysis
4	MR. FINLEY: We actually performed
5	analysis to demonstrate the fuel behavior during these
6	transients, yes.
7	CHAIRMAN DENNING: Okay. I think you can
8	continue.
9	MR. FINLEY: I do want to mention that
10	although the design pressure of the containment is 60
11	psig, when we replaced the steam generators in 1996 we
12	did a structural integrity test of the containment at
13	82 psig, just as an example to show the conservative
14	nature of the design pressure.
15	With respect to dose assessments, I
16	mentioned earlier that we already had approved last
17	year the
18	MEMBER MAYNARD: I'm sorry. That was done
19	after the replacement of the steam generators?
20	MR. FINLEY: That's correct.
21	MR. DUNNE: Yes.
22	MEMBER MAYNARD: Because you had to put a
23	hole in the containment to put those in. So you did
24	the integrity test after that.
25	MR. DUNNE: This is Jim Dunne.
	1

(202) 234-4433

	137
1	Yes, we did a normal integrated leak rate
2	test, we went up to 115 percent design and checked
3	containment leakage, which was nominally 69 psig. And
4	then after we completed that test, we took it up to 72
5	psig, held for a while to monitor conditions to
6	basically check containment integrity at that higher
7	pressure.
8	MR. FINLEY: The alternate source term
9	methodology was approved last year for Ginna, and
10	that's what we utilized. For EPU upgrading, of course,
11	the new source term.
12	Also of importance is that Ginna recently
13	modified the plant to incorporate two new safety
14	related ventilation trains for the control room. We
15	also did the in leakage test with tracer gas and came
16	up with a recent far below what was assumed in the
17	control room dose assessment, 300 scfm. The source
18	terms are consistent with Reg. Guide 1.193. We did
19	update the X/Qs. And the calculated doses, as you'll
20	see here in a second, are within the guidelines of 10
21	CRF 50.67.
22	MEMBER SIEBER: Do you have any idea of
23	what the result would have been not using alternate
24	source term, but using TID 14844?
25	MR. FINLEY: Let me ask Ken Rubin here.
l	

(202) 234-4433

ĺ	138
1	No, we don't have that information. We didn't do
2	those analyses. It would be difficult to estimate it.
3	MEMBER SIEBER: Well, I don't want you to
4	guess at them.
5	MR. FINLEY: Right.
6	In terms of the results, as you can see we
7	essentially redid the dose assessment analysis for all
8	of the events. Here they are before you. I won't go
9	down each one.
10	Of particular note are the locked rotor
11	and the large break LOCA results for the control room
12	in particular. Those were the only two results which
13	actually increased more than ten percent of the margin
14	to the acceptance criteria. That's important, as you
15	know, with respect to 50.59. Those results need to be
16	reviewed and approved by the Staff. And they're in the
17	process of doing that.
18	All the other results, small changes with
19	respect to the margin to the acceptance limits.
20	MEMBER MAYNARD: And even those were
21	within the criteria, but there was more than a 10
22	percent change, so
23	MR. FINLEY: That's correct. Still within
24	the criteria.
25	And in conclusion with respect to the

(202) 234-4433

	139
1	safety analysis, all of the safety analysis met the
2	acceptance criteria. This demonstrates that the NSSS
3	and Emergency Safety Features at Ginna are robust.
4	And, again, this is not a surprise. This was the
5	expectation given our similarity to the Kewaunee
6	design and their safe operation to date.
7	I think at this point we'd like to ask the
8	staff to make their presentation.
9	MR. MILANO: Before we get started, I'd
10	like to clarify one point. You asked about the
11	approval of ASTRUM. And while it's been approved
12	generically, that is one of the amendments that's
13	still under that is the amendment that's still
14	under Staff review that constrains the power uprate.
15	We have not yet issued an amendment approving the use
16	of that best model on Ginna. Okay.
17	Also for the Staff's review, as with
18	Ginna, we're going to have two different organizations
19	providing the Staff's response. We'll have the PWR
20	Systems Branch going over the various accidents and
21	transients. And then followed up by the Accident Dose
22	Branch, which will provide our accident dose
23	consequences.
24	Sam Miranda, although there were a number
25	of individuals that reviewed the reactor systems area,

(202) 234-4433

	140
1	Sam Miranda has the lead for the overall management of
2	the reactor systems review.
3	And also speaking today along with Sam
4	will be Kent Wood and Lyn Ward.
5	MR. MIRANDA: Yes. And we also have here
6	John Nakoski, the branch chief for Pressurized Water
7	Reactor Systems Branch.
8	At this point I just want to introduce the
9	topics we're going to cover and go right to Kent Wood
10	who will discuss the fuel assemblies nuclear design
11	and thermal hydraulic design. Then I'll come back and
12	we'll talk about the accident analyses. And I'll give
13	it to Kent Wood right now.
14	MR. WOOD: Good morning, gentlemen. My
15	name is Kent Wood. I'm a reactor systems engineer in
16	the Pressurized Water Rector Branch.
17	MEMBER WALLIS: Excuse me. I'm just trying
18	to look at the schedule here. We have all kinds of
19	material being presented, but isn't safety analysis
20	the key thing in all of this? I'm just wondering why
21	we have a short time on safety analysis and a lot of
22	time on things which may not be so important to
23	safety.
24	MR. WOOD: That's not my purview.
25	MEMBER WALLIS: I'm just wondering it
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	141
1	would be appropriate to dig into the safety part much
2	more than some of these other parts and maybe take a
3	bit more time with it. I'm not sure, but that's the
4	comment I have.
5	MR. MILANO: You know, if you want to
6	spend some more time, the Staff can accommodate your
7	schedule and stuff. This was our best understanding
8	at the time as to how much time based on the length of
9	our presentations and giving you what we thought at
10	the time sufficient time to ask questions.
11	CHAIRMAN DENNING: We'll give some thought
12	to this perhaps over lunch as to whether and it may
13	be very difficult for you to readjust anyway. But my
14	guess is that when we get to some of these areas,
15	we'll move through them very quickly. We'll see.
16	MR. MILANO: Right.
17	MR. WOOD: In executing their extended
18	power uprate, Ginna is switching from what is
19	currently Westinghouse's design of the optimized fuel
20	assembly to a 14X14 422 Victor Plus or V+ design,
21	which is actually a derivative of the fuel design that
22	was approved as the Vantage Plus design under WCAP. It
23	was approved the NRC and then subsequently modified
24	slightly by Westinghouse. This is the same fuel
25	assemblies that are essentially the same assemblies
1	I Contraction of the second

(202) 234-4433

	142
1	like were discussed earlier by Mr. Verdin. That these
2	are currently installed and in use at Point Beach and
3	Kewaunee. Kewaunee is actually these assemblies at
4	the current power level essentially that Ginna is
5	requested.
6	The notable difference is that over the
7	OFA fuel that Ginna currently have is that you're
8	going to put the more fuel in. It's approximately
9	about 20 percent more fuel that allows them to keep
10	their fuel densities and their power densities down.
11	The fuel rods are longer, that were
12	discussed. That accommodates your increased internal
13	pressure from the burnups.
14	And also what was addressed by the
15	licensee was the RCA position of the deltas and that
16	due to the top nozzle change.
17	What I focused on in my review was I
18	wanted to look at the transition effects considering
19	the differences between the OFA fuel and the 422V+
20	fuel. And I focused on like the flow differentials
21	that they were going to have that would incur
22	vibrational differences and flow starting for the OFA
23	fuel. And I also looked at the assembly
24	compatibilities. And I also went through the SRP,
25	standard review plan, acceptance criteria which was
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	143
1	for fuel damage. I looked at stress and strain,
2	fatigue, corrosion, crud, internal rod pressure and
3	growth. And for the rod rod failure on focused on like
4	threading an hydrogen pickup, overheating of the fuel
5	in the clad and for fuel culpability it was the
6	structural integrity.
7	A lot of that I looked at. We conducted an
8	audit at the Westinghouse facilities in Monroeville
9	the first week in November. During that I looked at
10	the calculations and reports for their flow testing
11	mechanical capability. I looked at their calculations
12	and reports for their control rod drop times. And
13	their calculations for their fuel rod performance.
14	These were all done in accordance with previously
15	approved NRC codes and methodologies.
16	With respect to nuclear design, they're
17	changing some design parameters and was discussed
18	before. Design parameters are subject to the actual
19	plant specific or core specific parameters are subject
20	to change from one cycle to the next. What they have
21	done is they're changing boundary parameters that they
22	use in their safety analysis.
23	And as was mentioned before, I forgot who
24	asked the questions, there's a standing of
25	Westinghouse reload design methodology which a WCAP,
	I

(202) 234-4433
ĺ	144
1	I think it's 9272 which would tell them that they go
2	through a list of key parameters. And if these key
3	parameters are met for a given plant, each plant would
4	have it's own key parameters. Then you verify that
5	the design is bounded and therefore you wouldn't have
б	to redo each analysis every time you reload the core.
7	As I mentioned down here, it's the 9272
8	WCAP that provides the continuity.
9	The actual acceptability for a given
10	nuclear design parameter is actually demonstrated by
11	the acceptance of the transient analysis. And to do
12	that I went through and reviewed the transient
13	analysis and the results that were reached because the
14	transients were reviewed by a different staff member.
15	And their results and conclusions to show that the
16	transient analysis were acceptable at these design
17	parameters as the bounding limits.
18	With respect
19	MEMBER WALLIS: How did you determine that
20	they're acceptable?
21	MR. WOOD: Excuse me, sir.
22	MEMBER WALLIS: How do you determine that
23	they are acceptable?
24	MR. WOOD: Okay. Well, the design
25	parameters, nuclear design factors are factors in how
	1

(202) 234-4433

	145
1	the core responds during a transient, the maximum
2	limits that they
3	MEMBER WALLIS: But you determine that the
4	methods used were approved or you look at the results
5	and you apply some criteria or something?
6	MR. WOOD: Well, these are parameters that
7	factor into the transient analysis. And if the
8	transient analysis using these design limits show
9	acceptable results, then these nuclear design
10	parameters would be acceptable.
11	MEMBER WALLIS: So the bottom line is you
12	compare some number with some other number, is that
13	what you do?
14	MR. WOOD: As a review at the NRC, I don't
15	have a different number to compare to. What the
16	analysis that's performed is that the transient
17	analysis will take a given set of input parameters of
18	which these would factor in the different transients.
19	MEMBER WALLIS: Right.
20	MR. WOOD: And then if that transient
21	shows acceptable results with those input parameters,
22	then they're considered acceptable. If it doesn't,
23	then you decide as a designer for designing that core
24	or those parameters what you need to modify in your
25	design or your plant to make them acceptable.
1	

(202) 234-4433

	146
1	MEMBER WALLIS: Because I mean I could see
2	that if you read this thing, you could say well you go
3	through and these look like reasonable design
4	parameters. But I'm not quite sure about how they
5	chose their hot channel factor. And then you go
6	through and then you compare with some criteria. And
7	if the criterion satisfied with a lot of margin, you
8	may not go back and review what you questions before.
9	But if you're very close to some limit, you would say
10	well I wasn't too convinced about they did with hot
11	channel factor. I'd better go back and dig into that
12	and find out if that is sort of swinging the results
13	too close to the limit.
14	And I just wanted to be sure you guys are
15	digging into things which might give you a little bit
16	of concern if they influence the answer too much and
17	they're not too well presented, and things like that.
18	It's just not a routine checklist and you
19	just go through it without much thought?
20	MR. WOOD: No, sir. But that iterative
21	process of checking with the individual parameters
22	would be done when that transient analysis was
23	reviewed.
24	MEMBER WALLIS: What helps you achieve
25	credibility sometimes is by saying everything looked
	1

(202) 234-4433

	147
1	fine except I was a bit concerned about this and this
2	is what I did. And if you can explain how you did it,
3	that sometimes help achieve credibility. Just reading
4	through blind statements everything works fine doesn't
5	tell us anything about how you went about it.
6	So I don't want to interrupt your
7	MR. WOOD: No, that's okay.
8	MEMBER WALLIS: train of thought here,
9	but that would help
10	CHAIRMAN DENNING: Let's interrupt you
11	just a little bit on more on that. In the parameters
12	that you've identified up there, those are all inputs
13	to the transient analysis, yes? Those are all inputs?
14	MR. WOOD: They're not all of the inputs,
15	but they are inputs
16	CHAIRMAN DENNING: Yes, but they're all
17	inputs?
18	MR. WOOD: of the safety analysis. You
19	know your shutdown margin, as was described earlier,
20	they have now fully put in the feedwater regulation
21	modification. They needed a shutdown margin of I think
22	it was 2400 PCM. And with that they show that they
23	only need a shutdown margin of 1300 PCM. So that's an
24	example of where you make a plant change to, you know,
25	like shutdown margin they're losing shutdown margin

(202) 234-4433

1 because of the uprate because of the additional fuel and reactivity that's going to be in the core. So in 2 3 order to gain some of that margin and make sure that 4 their examples are going to be acceptable with that 5 uprate and that decreased shutdown margin due to the uprate, they go in and they make a modification of the 6 7 power plant that, you know, like this is demonstrating iterative effect. I'm going to lose some shutdown 8 9 margin, I need to gain some, what can I do to do that. 10 And one of the things they did to do that was to make feedwater reg mode change. And now the shutdown 11 the 12 margin that they need to have to show acceptable results, you know limiting transients would be a steam 13 14 line break at the end of cycle is now 13000 PCM as opposed to 2400 PCM because of a modification they 15 16 made to the plant. 17 And so those are the types of things that we question. Several of those things get questioned 18 19 back and forth over like questions that the Staff 20 asked to the licensee to explain further and more 21 detail.

I mentioned that we conducted an audit with Westinghouse where we actually reviewed some of their calculations. And one of the things that I was concerned about was the incompatibility differences

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

148

	149
1	between the old OFA fuel and the new 422V+ fuel. Like
2	I reviewed those calculations for the flow
3	differentials, the testing reports that they did for
4	establishing the fuel assembly loss coefficients, and
5	those type of things. Looked over their rod drop
6	calculations for their rod insertion times. I
7	questioned them about the raw positions on how they
8	were going to adjust RPM, on how they were going to
9	deal with that with the different heights and things
10	like that.
11	And so it's not just that what you see
12	in the SER, Safety Evaluation Report, isn't everything
13	that we've ever discussed with them. It's a, you
14	know, perhaps too much of a Reader's Digest version of
15	what we've asked and discussed with the licensee over
16	the course of the review.
17	CHAIRMAN DENNING: I was trying to get a
18	feeling for within the context of where you are right
19	now, when you talked about acceptability shown by
20	transient analyses are you talking about operational
21	transients are you talking about actual analysis?
22	MR. WOOD: I'm talking about the safety
23	analysis transients that they
24	CHAIRMAN DENNING: Safety Analysis
25	transients. So the DNBR that in comparison with some
	I contraction of the second seco

(202) 234-4433

	150
1	criterion would be what you would determine to be the
2	acceptability.
3	MR. WOOD: Right.
4	CHAIRMAN DENNING: So things like that?
5	MR. WOOD: Yes, sir.
6	CHAIRMAN DENNING: Okay. I understand.
7	Okay. And the DNBR, I anticipate another
8	lively discussion.
9	In the change from the OFA to the 422V+
10	fuel there is several differences. One is that due to
11	primarily a change in the grid decision and some other
12	aspects, and the top nozzle I believe, this would be
13	the actual total assembly coefficient for the flow
14	flow loss coefficient for the new fuel is less. And
15	that's what drives what we were talking about earlier
16	as the pressure differential across the fuel. So that
17	can get their cross flow and the mixing and things
18	like that.
19	I probably should have put more of that
20	translates into your transition core DNBR penalty.
21	Now they developed their DNB penalty in accordance
22	with the previously established and approved NRC
23	method that was done. So they did that in accordance
24	with because it's not the first time that
25	somebody's transitioned core designs that they've had
	1

(202) 234-4433

	151
1	to account for these type of flow imbalances between
2	the assemblies and the core. So there's a methodology
3	that's been established to deal with that.
4	They changed from the THINC IV code to the
5	VIPRE I code. The VIPRE 1 is the more flexibility, it
6	always them to a little more things in the transient
7	analysis. It handles the transient analysis during the
8	nonsteady state activities better than the THINC does.
9	So the similarities is the use of the
10	revised thermal design procedure with the DNB
11	correlations that WRB1 and in the standard thermal
12	design procedure with the W3 correlation.
13	And then the limits are pretty much the
14	same from before and after. Those limits were I'll
15	discuss them because I know that they're of interest
16	to the Committee.
17	The limits for and then there's a DNBR
18	limit is applied a penalty is applied to the OFA
19	fuel so that the limit for the OFA fuel is less than
20	that for the 422V+ due to the flow disparities between
21	the two.
22	The flow correlations, these correlations
23	have a limit. And for the correlation for both of them
24	for the WRB1, the correlation limit is 1.17 DNBR. And
25	what that means is that that to the limit that' set
	1

(202) 234-4433

1 when that code and correlation and methodology for applying that code is applied to and approved by the 2 NRC, that takes into account the exact codes and 3 4 correlations and methodologies of how it's applied. 5 Able to accurately within the 95/95 percent confidence predict or requrgitate the data that it's based on. 6 And then that's the correlation limit. 7 And for both the OFA fuel and the 422V+ 8 9 fuel that's 1.17. And then for a site specific limit you get 10 into a design limit which they take and they put the 11 12 site specific uncertainties into that. And for Ginna for the OFA and for the 422V+ fuel after they put in 13 14 that, that's another design limit which is 1.24 15 percent DNBR. 16 And then to ensure that vou have 17 additional margin to the analysis criteria, the setpoint, the number that they're trying to prove that 18 19 they meet in the safety analysis limit as a DNBR limit 20 is 1.38. 21 if you meet exactly 1.38, you're So 22 already .14 percent over your design limit. So if you 23 meet exactly your safety analysis limit, you already 24 have margin over your design limit which includes 25 uncertainties. So that's how those uncertainties are

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

factored into trying to determine the acceptance for your DNBR consideration.

CHAIRMAN DENNING: A question about the additional cross flow between the two fuels in a transition. Can you use VIPRE directly to determine what the effect is on the DNBR or do you -- how do you do that?

You can't calculate the 8 MR. WOOD: 9 directly. What is done is you do a two core analysis, one with assuming all of the one fuel design or the 10 other. And then you go through the transition penalty 11 12 process and determine -- okay, well I'm going to have the first core, they're going to -- I believe the 13 14 number they're predicting is 53 assemblies of the 15 So your transition core penalty methodology 422V+. comes up with a relationship that is relative, is 16 based on the number of the different types of fuel 17 assemblies that you have in the core, it's a fraction 18 19 of those. And then based on that number you get a 20 penalty and then you apply that to the limited 21 assembly, like in this case it would be the OFA fuel 22 So they'd get a penalty based on what assemblies. 23 they're allowed to see as DNB for that assembly. CHAIRMAN DENNING: I didn't understand. 24 25 MR. WOOD: I'm sorry.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	154
1	CHAIRMAN DENNING: It sounds to me like
2	that there was that there were be flow diverted
3	from the one assembly to another assembly when they're
4	side-by-side that wouldn't be seen in uniform cores.
5	MR. WOOD: That's correct. That's what
6	causes the imbalance and the need for a transition
7	core penalty. Because those assemblies that have that
8	higher pressure resistance, they're going to see less
9	flow because it's going to go to the other less
10	resistent assemblies. And so you have to apply a DNB
11	penalty to those assemblies to make sure that they
12	still meet your acceptance criteria.
13	CHAIRMAN DENNING: Yes. But it sounded to
14	me I didn't under the way it sounded to me like
15	you're talking about a formula for calculating that
16	penalty that didn't seem phenomenological.
17	MR. WOOD: There's a methodology that
18	there is, that you do calculate a formula that's based
19	on the number of assemblies of the percentage of OFA
20	assemblies that you have in the core. And say okay now
21	I have to reduce that allowed DNBR for those type of
22	assemblies by a certain amount. And that's a penalty
23	that goes that on their DNBR limit.
24	CHAIRMAN DENNING: I wonder, can the
25	applicant jump in and help here as far as how you
	I contract of the second se

(202) 234-4433

	155
1	actually determined that penalty?
2	MR. FINLEY: Mark Finley again. I'm not
3	a thermal hydraulic expert. Let me ask Westinghouse
4	whether they have someone here to answer that
5	question: How the flow diverges from the new fuel to
6	the OFA fuel is taken into account in the thermal
7	hydraulic analysis.
8	MR. DOMINICUS: My name is Dave Dominicus
9	from Westinghouse.
10	And no, we do not have a T&H expert with
11	us. We're going to call back to Pittsburgh.
12	MR. FINLEY: We'll get that answer for you
13	this afternoon, okay?
14	CHAIRMAN DENNING: Fine.
15	MR. DOMINICUS: Okay.
16	MR. WOOD: And with, I'd like to introduce
17	Sam Miranda to discuss transient analysis.
18	MR. MIRANDA: First of all, the SER that
19	you have is written according to the guidelines of the
20	review standard for extended power uprates. And a lot
21	of the language you see is template. The original
22	language is basically in the technical evaluation part
23	and the conclusions.
24	There were some differences I might point
25	that that relate to the Ginna plant design. For

(202) 234-4433

	156
1	example, it is an older plant and there is a
2	discussion in there about applicable GDCs. And in
3	large part they satisfied the applicable GDCs. One
4	GDC, for example, that did not apply is GDC 5 which
5	relates to dual plants on the same site. And
6	obviously, this plant is not covered by that.
7	There was a change in methodology that
8	Ginna shifted from LOFTRAN to RETRAN and from TINC to
9	VIPRE. And all of those codes have been approved by
10	the NRC.
11	The analyses were conducted 102 percent of
12	nominal power. The two percent is a typical number
13	added for uncertainty. And the intent was originally
14	to allow some space for measurement uncertainty
15	recapture power uprating, which I understand is not
16	going to happen.
17	There is also the consideration of steam
18	generators which were replaced in 1996. And some of
19	the analyses would be effected by the new steam
20	generators. The new steam generators are fairly
21	similar in design to the old steam generators in terms
22	of size and volumes.
23	There was also a license renewal granted
24	in 2004. And some of the analyses were considered
25	back then and there's no need to look at them again
1	I contraction of the second seco

(202) 234-4433

	157
1	this time around.
2	And concurrent with the EPU, we had the
3	fuel transition which has been discussed at length.
4	And this fuel transition does effect a number of the
5	accident analyses. It's not simply the power
6	uprating. There are changes in nuclear design
7	parameters such as shutdown margin as Kent mentioned
8	that would effect key analyses.
9	And then there's also the Tavg operating
10	window. And this sets a range of Tavg for normal
11	operation. And this required, for example, that
12	accident analyses be considered at various points
13	along this window to find a conservative initial
14	condition.
15	And then two plugging, a maximum of two
16	plugging of ten percent was assumed in the accident
17	analyses. Before the EPU it was 15 percent.
18	This slide just lists the events that had
19	been reanalyzed for the EPU for various reasons. And
20	I don't think I'm going to go into these in detail.
21	I'm sure you'll have questions. The time allotted to
22	me was very short and I just wanted you to have a
23	summary here and allow you to look through this and
24	come up with some questions.
25	The one thing I would say is that this

(202) 234-4433

	158
1	event, this EPU, since there is a fuel transition
2	involved and there are new steam generators required
3	the analysis of more transients than might be expected
4	in simply a straight EPU.
5	MEMBER WALLIS: Because there are very
6	many events here, and the discussion of them takes up
7	about a quarter of the SER, I think. And presumably
8	these are the kind of events that limit what they can
9	do in terms of power uprate.
10	MR. MIRANDA: Yes.
11	MEMBER WALLIS: And this is really where
12	they are pushing the envelope in various dimensions.
13	MR. MIRANDA: Well, then would you like
14	MEMBER WALLIS: And yet we don't seem to
15	spend much time in this meeting discussing them.
16	MR. MIRANDA: I think there was a
17	misunderstand.
18	MEMBER WALLIS: Isn't this the guts of the
19	whole thing? Isn't this the basis for your decision;
20	you look at all these things and they're pushing their
21	limits in some ways, and then you decide whether
22	that's acceptable or not.
23	MR. MIRANDA: That's right. I was told
24	that to use maybe ten or 15 minutes. But if you want
25	to take longer

(202) 234-4433

	159
1	MEMBER WALLIS: Well, it seems to me
2	that's the essence of the whole decision making, isn't
3	it? Lots of the other stuff is peripheral.
4	MR. MIRANDA: Well would you like to take
5	some more time and go through these?
6	MEMBER WALLIS: Well, what do we think?
7	CHAIRMAN DENNING: Well, i think what we
8	would like to do is for those ones that are limiting,
9	we'd like to look and see what your assessment is of
10	those relative to what the applicant's assessment was.
11	MR. MIRANDA: Okay. Mark Finley had a
12	good slide before indicating the limiting transients.
13	MR. MILANO: We've also got slides that
14	came out of section 2.8 of the licensing report. And
15	I'll provide those now.
16	MR. MIRANDA: Well, from my experience I
17	would say that the loss of flow, accident, is the
18	limiting transient in terms of DNB ratio. And that
19	was one of the events that was in an earlier slide by
20	Mark Finley.
21	In the license amendment request this is
22	referred to as the flow coastdown accident. And that
23	came very close to the DNBR limit of 1.38.
24	CHAIRMAN DENNING: You're looking at the
25	table that was just handed out to us, is that true?
	1

(202) 234-4433

	160
1	MR. MIRANDA: Yes.
2	CHAIRMAN DENNING: And that's in section
3	15.3.1
4	MR. MIRANDA: Yes.
5	CHAIRMAN DENNING: The flow coastdown.
б	MEMBER WALLIS: I notice some other ones
7	we haven't seen before, like 15.2.2 loss-of-external-
8	electrical load, which isn't all that uncommon an
9	event. Your pressure is, again, remarkably close to
10	some limit.
11	CHAIRMAN DENNING: Well, let' come back to
12	that one. Let's focus for the moment on the one
13	MEMBER WALLIS: Yes, I know. But I just
14	said they're discovering other ones which are very
15	close to the limit.
16	CHAIRMAN DENNING: Yes. Other ones, very
17	good.
18	MR. MIRANDA: Yes. Would you like to go
19	through these one-by-one
20	MR. FINLEY: Actually let me correct.
21	That loss-of-load result was shown on a previous
22	slide. That was the one that was
23	MEMBER WALLIS: Well, maybe I missed it.
24	MR. FINLEY: Yes.
25	CHAIRMAN DENNING: Thanks. Yes, let's
	1

(202) 234-4433

1look at some of these key ones and just spend a few2minutes on some of these key ones. And let's start3out on the one that's 15.3.1, the one you pointed out4there.5MR. MIRANDA: Okay. Okay.6CHAIRMAN DENNING: Okay. And so talk to7us a little bit about that. And there are two numbers8here. And explain to us again the 422V+ versus what9the other number means.10MR. MIRANDA: Okay. For the loss of low11accident there are three cases that were analyzed by12the licensee. One is the partial loss of flow, which13is the tripping of one reactor coolant pump. Then14there's a flow coastdown accident, which is tripping15of both pumps. And then there's another accident16referred to as UF, under frequency. And this is the17event where the grid frequency decays and eventually18leads to a lose of reactor coolant flow, totally loss19of reactor coolant flow. And this is the one that is20The analysis limit is 1.38. There are two21The analysis limit is 1.38. There are two22numbers listed there. They're both for the Vantage23Plus fuel. One refers to a typical cell, the other24refers to a thimble cell.25A thimble cell is the assembly that		161
2minutes on some of these key ones. And let's start3out on the one that's 15.3.1, the one you pointed out4there.5MR. MIRANDA: Okay. Okay.6CHAIRMAN DENNING: Okay. And so talk to7us a little bit about that. And there are two numbers8here. And explain to us again the 422V+ versus what9the other number means.10MR. MIRANDA: Okay. For the loss of low11accident there are three cases that were analyzed by12the licensee. One is the partial loss of flow, which13is the tripping of one reactor coolant pump. Then14there's a flow coastdown accident, which is tripping15of both pumps. And then there's another accident16referred to as UF, under frequency. And this is the17event where the grid frequency decays and eventually18leads to a lose of reactor coolant flow, totally loss19of reactor coolant flow. And this is the one that is20The analysis limit is 1.38. There are two21The analysis limit is 1.38. There are two22numbers listed there. They're both for the Vantage23Plus fuel. One refers to a typical cell, the other24refers to a thimble cell.25A thimble cell is the assembly that	1	look at some of these key ones and just spend a few
3out on the one that's 15.3.1, the one you pointed out4there.5MR. MIRANDA: Okay. Okay.6CHAIRMAN DENNING: Okay. And so talk to7us a little bit about that. And there are two numbers8here. And explain to us again the 422V+ versus what9the other number means.10MR. MIRANDA: Okay. For the loss of low11accident there are three cases that were analyzed by12the licensee. One is the partial loss of flow, which13is the tripping of one reactor coolant pump. Then14there's a flow coastdown accident, which is tripping15of both pumps. And then there's another accident16referred to as UF, under frequency. And this is the17event where the grid frequency decays and eventually18leads to a lose of reactor coolant flow, totally loss19of reactor coolant flow. And this is the one that is20The analysis limit is 1.38. There are two21The analysis limit is 1.38. There are two22numbers listed there. They're both for the Vantage23Plus fuel. One refers to a typical cell, the other24refers to a thimble cell.25A thimble cell is the assembly that	2	minutes on some of these key ones. And let's start
 there. MR. MIRANDA: Okay. Okay. CHAIRMAN DENNING: Okay. And so talk to us a little bit about that. And there are two numbers here. And explain to us again the 422V+ versus what the other number means. MR. MIRANDA: Okay. For the loss of low accident there are three cases that were analyzed by the licensee. One is the partial loss of flow, which is the tripping of one reactor coolant pump. Then there's a flow coastdown accident, which is tripping of both pumps. And then there's another accident referred to as UF, under frequency. And this is the event where the grid frequency decays and eventually leads to a lose of reactor coolant flow, totally loss of reactor coolant flow. And this is the one that is the limiting event. It produces the lowest DNB ratio. The analysis limit is 1.38. There are two numbers listed there. They're both for the Vantage Plus fuel. One refers to a typical cell, the other refers to a thimble cell. 	3	out on the one that's 15.3.1, the one you pointed out
5MR. MIRANDA: Okay. Okay.6CHAIRMAN DENNING: Okay. And so talk to7us a little bit about that. And there are two numbers8here. And explain to us again the 422V+ versus what9the other number means.10MR. MIRANDA: Okay. For the loss of low11accident there are three cases that were analyzed by12the licensee. One is the partial loss of flow, which13is the tripping of one reactor coolant pump. Then14there's a flow coastdown accident, which is tripping15of both pumps. And then there's another accident16referred to as UF, under frequency. And this is the17event where the grid frequency decays and eventually18leads to a lose of reactor coolant flow, totally loss19of reactor coolant flow. And this is the one that is20The analysis limit is 1.38. There are two21The analysis limit is 1.38. There are two22numbers listed there. They're both for the Vantage23Plus fuel. One refers to a typical cell, the other24refers to a thimble cell.25A thimble cell is the assembly that	4	there.
6 CHAIRMAN DENNING: Okay. And so talk to 7 us a little bit about that. And there are two numbers 8 here. And explain to us again the 422V+ versus what 9 the other number means. 10 MR. MIRANDA: Okay. For the loss of low 11 accident there are three cases that were analyzed by 12 the licensee. One is the partial loss of flow, which 13 is the tripping of one reactor coolant pump. Then 14 there's a flow coastdown accident, which is tripping 15 of both pumps. And then there's another accident 16 referred to as UF, under frequency. And this is the 17 event where the grid frequency decays and eventually 18 leads to a lose of reactor coolant flow, totally loss 19 of reactor coolant flow. And this is the one that is 20 the limiting event. It produces the lowest DNB ratio. 21 The analysis limit is 1.38. There are two 22 numbers listed there. They're both for the Vantage 23 Plus fuel. One refers to a typical cell, the other 24 refers to a thimble cell. 25 A thimble cell is the assembly that	5	MR. MIRANDA: Okay. Okay.
7us a little bit about that. And there are two numbers8here. And explain to us again the 422V+ versus what9the other number means.10MR. MIRANDA: Okay. For the loss of low11accident there are three cases that were analyzed by12the licensee. One is the partial loss of flow, which13is the tripping of one reactor coolant pump. Then14there's a flow coastdown accident, which is tripping15of both pumps. And then there's another accident16referred to as UF, under frequency. And this is the17event where the grid frequency decays and eventually18leads to a lose of reactor coolant flow, totally loss19of reactor coolant flow. And this is the one that is20The analysis limit is 1.38. There are two21The analysis limit is 1.38. There are two22numbers listed there. They're both for the Vantage23Plus fuel. One refers to a typical cell, the other24refers to a thimble cell.25A thimble cell is the assembly that	6	CHAIRMAN DENNING: Okay. And so talk to
 here. And explain to us again the 422V+ versus what the other number means. MR. MIRANDA: Okay. For the loss of low accident there are three cases that were analyzed by the licensee. One is the partial loss of flow, which is the tripping of one reactor coolant pump. Then there's a flow coastdown accident, which is tripping of both pumps. And then there's another accident referred to as UF, under frequency. And this is the event where the grid frequency decays and eventually leads to a lose of reactor coolant flow, totally loss of reactor coolant flow. And this is the one that is the limiting event. It produces the lowest DNB ratio. The analysis limit is 1.38. There are two numbers listed there. They're both for the Vantage Plus fuel. One refers to a typical cell, the other refers to a thimble cell. 	7	us a little bit about that. And there are two numbers
9the other number means.10MR. MIRANDA: Okay. For the loss of low11accident there are three cases that were analyzed by12the licensee. One is the partial loss of flow, which13is the tripping of one reactor coolant pump. Then14there's a flow coastdown accident, which is tripping15of both pumps. And then there's another accident16referred to as UF, under frequency. And this is the17event where the grid frequency decays and eventually18leads to a lose of reactor coolant flow, totally loss19of reactor coolant flow. And this is the one that is20The analysis limit is 1.38. There are two21The analysis limit is 1.38. There are two22numbers listed there. They're both for the Vantage23Plus fuel. One refers to a typical cell, the other24refers to a thimble cell.25A thimble cell is the assembly that	8	here. And explain to us again the 422V+ versus what
10MR. MIRANDA: Okay. For the loss of low11accident there are three cases that were analyzed by12the licensee. One is the partial loss of flow, which13is the tripping of one reactor coolant pump. Then14there's a flow coastdown accident, which is tripping15of both pumps. And then there's another accident16referred to as UF, under frequency. And this is the17event where the grid frequency decays and eventually18leads to a lose of reactor coolant flow, totally loss19of reactor coolant flow. And this is the one that is20the limiting event. It produces the lowest DNB ratio.21The analysis limit is 1.38. There are two22numbers listed there. They're both for the Vantage23Plus fuel. One refers to a typical cell, the other24refers to a thimble cell.25A thimble cell is the assembly that	9	the other number means.
11accident there are three cases that were analyzed by12the licensee. One is the partial loss of flow, which13is the tripping of one reactor coolant pump. Then14there's a flow coastdown accident, which is tripping15of both pumps. And then there's another accident16referred to as UF, under frequency. And this is the17event where the grid frequency decays and eventually18leads to a lose of reactor coolant flow, totally loss19of reactor coolant flow. And this is the one that is20the limiting event. It produces the lowest DNB ratio.21The analysis limit is 1.38. There are two22numbers listed there. They're both for the Vantage23Plus fuel. One refers to a typical cell, the other24refers to a thimble cell.25A thimble cell is the assembly that	10	MR. MIRANDA: Okay. For the loss of low
12the licensee. One is the partial loss of flow, which13is the tripping of one reactor coolant pump. Then14there's a flow coastdown accident, which is tripping15of both pumps. And then there's another accident16referred to as UF, under frequency. And this is the17event where the grid frequency decays and eventually18leads to a lose of reactor coolant flow, totally loss19of reactor coolant flow. And this is the one that is20The analysis limit is 1.38. There are two21The analysis limit is 1.38. There are two22numbers listed there. They're both for the Vantage23Plus fuel. One refers to a typical cell, the other24refers to a thimble cell.25A thimble cell is the assembly that	11	accident there are three cases that were analyzed by
 is the tripping of one reactor coolant pump. Then there's a flow coastdown accident, which is tripping of both pumps. And then there's another accident referred to as UF, under frequency. And this is the event where the grid frequency decays and eventually leads to a lose of reactor coolant flow, totally loss of reactor coolant flow. And this is the one that is the limiting event. It produces the lowest DNB ratio. The analysis limit is 1.38. There are two numbers listed there. They're both for the Vantage Plus fuel. One refers to a typical cell, the other refers to a thimble cell. A thimble cell is the assembly that 	12	the licensee. One is the partial loss of flow, which
 14 there's a flow coastdown accident, which is tripping 15 of both pumps. And then there's another accident 16 referred to as UF, under frequency. And this is the 17 event where the grid frequency decays and eventually 18 leads to a lose of reactor coolant flow, totally loss 19 of reactor coolant flow. And this is the one that is 20 the limiting event. It produces the lowest DNB ratio. 21 The analysis limit is 1.38. There are two 22 numbers listed there. They're both for the Vantage 23 Plus fuel. One refers to a typical cell, the other 24 refers to a thimble cell. 25 A thimble cell is the assembly that 	13	is the tripping of one reactor coolant pump. Then
 of both pumps. And then there's another accident referred to as UF, under frequency. And this is the event where the grid frequency decays and eventually leads to a lose of reactor coolant flow, totally loss of reactor coolant flow. And this is the one that is the limiting event. It produces the lowest DNB ratio. The analysis limit is 1.38. There are two numbers listed there. They're both for the Vantage Plus fuel. One refers to a typical cell, the other refers to a thimble cell. A thimble cell is the assembly that 	14	there's a flow coastdown accident, which is tripping
 16 referred to as UF, under frequency. And this is the event where the grid frequency decays and eventually leads to a lose of reactor coolant flow, totally loss of reactor coolant flow. And this is the one that is the limiting event. It produces the lowest DNB ratio. 21 The analysis limit is 1.38. There are two numbers listed there. They're both for the Vantage Plus fuel. One refers to a typical cell, the other refers to a thimble cell. A thimble cell is the assembly that 	15	of both pumps. And then there's another accident
 event where the grid frequency decays and eventually leads to a lose of reactor coolant flow, totally loss of reactor coolant flow. And this is the one that is the limiting event. It produces the lowest DNB ratio. The analysis limit is 1.38. There are two numbers listed there. They're both for the Vantage Plus fuel. One refers to a typical cell, the other refers to a thimble cell. A thimble cell is the assembly that 	16	referred to as UF, under frequency. And this is the
 18 leads to a lose of reactor coolant flow, totally loss 19 of reactor coolant flow. And this is the one that is 20 the limiting event. It produces the lowest DNB ratio. 21 The analysis limit is 1.38. There are two 22 numbers listed there. They're both for the Vantage 23 Plus fuel. One refers to a typical cell, the other 24 refers to a thimble cell. 25 A thimble cell is the assembly that 	17	event where the grid frequency decays and eventually
 of reactor coolant flow. And this is the one that is the limiting event. It produces the lowest DNB ratio. The analysis limit is 1.38. There are two numbers listed there. They're both for the Vantage Plus fuel. One refers to a typical cell, the other refers to a thimble cell. A thimble cell is the assembly that 	18	leads to a lose of reactor coolant flow, totally loss
20 the limiting event. It produces the lowest DNB ratio. 21 The analysis limit is 1.38. There are two 22 numbers listed there. They're both for the Vantage 23 Plus fuel. One refers to a typical cell, the other 24 refers to a thimble cell. 25 A thimble cell is the assembly that	19	of reactor coolant flow. And this is the one that is
21The analysis limit is 1.38. There are two22numbers listed there. They're both for the Vantage23Plus fuel. One refers to a typical cell, the other24refers to a thimble cell.25A thimble cell is the assembly that	20	the limiting event. It produces the lowest DNB ratio.
 numbers listed there. They're both for the Vantage Plus fuel. One refers to a typical cell, the other refers to a thimble cell. A thimble cell is the assembly that 	21	The analysis limit is 1.38. There are two
 23 Plus fuel. One refers to a typical cell, the other 24 refers to a thimble cell. 25 A thimble cell is the assembly that 	22	numbers listed there. They're both for the Vantage
24 refers to a thimble cell.25 A thimble cell is the assembly that	23	Plus fuel. One refers to a typical cell, the other
25 A thimble cell is the assembly that	24	refers to a thimble cell.
	25	A thimble cell is the assembly that

	162
1	contains the control rods.
2	The limiting case, as indicated, is the
3	1.35 and that's for the Vantage Plus fuel. The 1.392
4	is for the OFA fuel.
5	CHAIRMAN DENNING: Now when you look at
6	this and recognize the precision of the numbers and we
7	established 1.38 as a limit, if they had gotten 1.38
8	would that have been unacceptable?
9	MR. MIRANDA: No, that would have been
10	okay.
11	CHAIRMAN DENNING: That would be
12	acceptable?
13	MR. MIRANDA: Yes.
14	CHAIRMAN DENNING: So anything that's like
15	1.381, that's better you know
16	MR. MIRANDA: Yes.
17	CHAIRMAN DENNING: Anyway, the question is
18	partly one of these extra significant figures that are
19	clearly of no true significance. Are they important
20	in this assessment?
21	MR. MIRANDA: They just show that they've
22	met the limit.
23	CHAIRMAN DENNING: Yes.
24	MR. MIRANDA: So 1.1381 means that they
25	met the limit. 1.38 would have been okay, too.
I	1

```
(202) 234-4433
```

ĺ	163
1	CHAIRMAN DENNING: 1.38 would have been
2	okay?
3	MR. MIRANDA: Yes. And the reason is that
4	there is a margin on both the number on the safety
5	analysis result.
6	CHAIRMAN DENNING: Yes.
7	MEMBER MAYNARD: I personally don't have
8	concern with coming that close to limit knowing that
9	the criteria has margins already built into that. And
10	that also the methodology that's reviewed and approved
11	is also shown to show conservatism and make the
12	approach.
13	If you wanted to change it where you went
14	to the actual limit and demonstrated how much margin
15	you had, then that would be a different process. But
16	you basically have margin built into the criteria and
17	an acceptable methodology that's been reviewed and
18	approved.
19	MR. MIRANDA: Yes, I agree with that.
20	CHAIRMAN DENNING: Yes. And I recognize
21	that the Staff has reviewed the basis for that. But I
22	think that we'd like to get close enough to that to
23	give ourselves some comfort that the uncertainties in
24	this 1.38 value that we come up, the methodology to
25	get to that, really do provide us the substantial
I	I

(202) 234-4433

	164
1	margin to a true safety limit that the Staff's already
2	gone through independently and convinced themselves
3	of.
4	And also, we recognize that although that
5	margin may be acceptable, it certainly is less than
6	what it is in the current design. And trying to get
7	a feeling for the risk significance is of going to the
8	marginal results is something of interest to us.
9	MR. MIRANDA: It's kind of hard to gauge
10	how much margin is lost by increasing the power level.
11	You expect some reduction in margin intuitively, just
12	because the power level goes up. But these are not
13	exactly linear scales that you can just compare like
14	apples and applies.
15	In this case the DNB correlation has not
16	changed, but there are other instances where
17	correlations do change from cycle to cycle. And you
18	have different safety analysis limits to compare to.
19	For this particular case the flow
20	coastdown accident involves an analysis by RETRAN to
21	calculate the flow coastdown accident in the reactor
22	coolant system and generates power level, reactor
23	coolant system temperature, flow and other conditions.

And these are then fed into a detailed core model, 24 25 VIPRE, which has the fuel assembly and the dimensions

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

164

1 and the pitch and all of that, including the thimble 2 and the typical, including the OFA and the Vantage Plus fuel which actually calculated a DNB ratio for 3 4 the hot rod. And that is the number that you find. 5 That number is not from the bulk conditions calculated 6 by RETRAN. 7 CHAIRMAN DENNING: And the Staff has 8 reviewed these couple of codes and is there a safety

9 evaluation report on that? How do you bless it 10 through a safety evaluation report?

MR. MIRANDA: Yes. These methods have 11 been submitted to the Staff as topical reports and 12 they have been approved by the Staff in the past for 13 14 other plants.

CHAIRMAN DENNING: Yes.

16 MEMBER WALLIS: And the approval didn't 17 have conditions on it? It may be it's being used now for conditions which were not used for its approval 18 19 before.

20 MR. MIRANDA: Yes, that's a good point. 21 And that is something that the Staff has to review 22 with every application that when an applicant uses an 23 approved methodology, that they're using it within the 24 limits of the approval. And that has been done.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

CHAIRMAN DENNING: Okay. Did you want to

(202) 234-4433

15

25

	166
1	go back the to some of these other cases and look at
2	those?
3	MEMBER WALLIS: What do you do when you
4	see a number like, you know, 15.2.2 on the first page
5	which has 2748.8 versus 2748.5? Does that raise a
6	sort of flag with you that these are very close, I'd
7	better go back and be sure that everything is okay, or
8	do you just accept it?
9	MR. MIRANDA: Are you referring to
10	MEMBER WALLIS: There's no criterion
11	there.
12	MR. MIRANDA: Okay. Okay.
13	MEMBER WALLIS: There's no criterion.
14	MR. MIRANDA: The pressures? You're
15	talking about the pressures then. Yes.
16	MEMBER WALLIS: I'm not sure. What are
17	showing here by analysis limit and limiting case, what
18	does that mean? An analysis limit means the criterion
19	that you apply?
20	MR. MIRANDA: Yes. Yes. The analysis
21	limit for peak pressure, for example, is 110 percent
22	of design pressure. And that goes for the primary and
23	secondary side.
24	MEMBER WALLIS: Presumably the 110 was not
25	109.9 or something. But that's what they've got, so
ļ	1

(202) 234-4433

	167
1	whatever. It's very close.
2	MR. MIRANDA: Yes.
3	MEMBER WALLIS: Does that raise a flag
4	with you and you go back and check into it in some
5	way?
6	MR. MIRANDA: It raises a very small flag
7	in the sense that, yes, I would see the number and
8	begin to question it and say why is it so close. But
9	then that leads to the review of the actual analysis
10	that produced that result. And I would need to make
11	sure that that analysis was conservative analysis,
12	that it was conducted using approved methods within
13	their limits and that the initial conditions that were
14	used were in the conservative direction. And if I'm
15	assured that those initial conditions were the
16	appropriate conservative values, then I know that
17	2746.8 is really lower than that. And this is
18	CHAIRMAN DENNING: Have you done some
19	independent checking of these using those codes or did
20	you go to the vendor? I'm sorry, you went to
21	Westinghouse and you oversaw some calculations being
22	performed.
23	MR. MIRANDA: Okay. As a matter of fact
24	we went to Westinghouse November 1, 2 and 3. And Kent
25	Wood and I and Len Ward were all there, and John
1	1

(202) 234-4433

	168
1	Nakoski as well. And we reviewed the calculations
2	that were performed by Westinghouse for almost all of
3	these accidents.
4	We also reviewed the guidance that
5	Westinghouse uses internally for their analysts to be
6	sure that they produce consistent analyses.
7	And we also requested that Westinghouse
8	provide a copy of their LOFTRAN code at their local
9	office in Rockville for use by the Staff to perform
10	confirmatory analyses. And as a matter of fact, I did
11	an analysis for the loss-of-external load. And my
12	value came very close, within 2 psi of 2746.
13	MEMBER WALLIS: So the client or the
14	utility uses RETRAN?
15	MR. MIRANDA: Yes.
16	MEMBER WALLIS: That's not a Westinghouse
17	code. They would use a different code. I would be
18	prepared to expect that if you use a Westinghouse code
19	rather than RETRAN, you'd get a difference which was
20	bigger than the difference we're talking about here
21	between the limiting case and the analysis limit.
22	MR. MIRANDA: Well, RETRAN and
23	MEMBER WALLIS: So using another code
24	would give a different answer which might be over the
25	limit, quite likely. Just as likely as not.
1	

(202) 234-4433

	169
1	MR. MIRANDA: The two codes involved in,
2	RETRAN and LOFTRAN. LOFTRAN is a Westinghouse code.
3	And it was benchmarked RETRAN was benchmarked
4	against LOFTRAN.
5	MEMBER WALLIS: That means that they're
6	sort of about the same, but they don't give exactly
7	the same answer.
8	MR. MIRANDA: That's right, they're about
9	the same. And the results
10	MEMBER WALLIS: So what you could do, is
11	you got two numbers which are close together, you
12	could say I want an independent opinion here. I want
13	a different code to look at this. You don't do that
14	sort of thing?
15	MR. MIRANDA: Well, we do. We use RELAP
16	also. In case we didn't do the RELAP analyses on the
17	non-LOCA events because we just didn't have the time.
18	But right now RELAP is being used by Len Ward to
19	perform small break LOCA analysis.
20	MEMBER WALLIS: But if you were in a
21	hospital and you got some patient, and you weren't
22	quite sure whether or not to do something, you know
23	you might want a second opinion to confirm your
24	decision in some way, you know.
25	MR. FINLEY: Mark Finley.

(202) 234-4433

	170
1	Just to respond to the one question. We
2	didn't cherry pick, so to speak, in terms of the
3	methodology. We made the decision up front to use the
4	RETRAN methodology and that's what we stuck with for
5	the non-LOCA events. We used LOFTRAN for the control
6	systems, so a different functional area at
7	Westinghouse. But we didn't look at the results of two
8	different analyses with two different codes and pick
9	the ones that was better.
10	MEMBER WALLIS: But the Agency has the
11	choice of sometimes doing confirmatory analysis.
12	MR. MIRANDA: Yes.
13	MEMBER WALLIS: Did you pick any of these
14	numbers as being so close that you wanted to see a
15	confirmatory analyses?
16	MR. MIRANDA: Well, as I said before, I
17	did not an analysis of the loss-of-electrical load
18	using the LOFTRAN code. And the results I got were
19	very close to the values that were produced by RETRAN.
20	MEMBER WALLIS: So you did do the
21	MR. MIRANDA: I did that, yes.
22	MEMBER WALLIS: And what was the number
23	you came up with?
24	MR. MIRANDA: I believe it's in the SER.
25	For the loss-of-load.
I	1 I I I I I I I I I I I I I I I I I I I

```
(202) 234-4433
```

	171
1	CHAIRMAN DENNING: And that was with
2	LOFTRAN THINC?
3	MR. MIRANDA: That was with LOFTRAN.
4	CHAIRMAN DENNING: And THINC?
5	MR. MIRANDA: No. THINC was not used in
6	these case.
7	CHAIRMAN DENNING: It wasn't?
8	MEMBER WALLIS: So LOFTRAN is like RETRAN
9	then? Well, maybe you could tell us after lunch or
10	something if you're having difficulty finding it.
11	MR. MIRANDA: I don't know what that
12	number is. The loss-of load event I did was for the
13	overpressure case. The overpressure case, I believe,
14	was 2525 something like that. And that was in another
15	okay. Yes. That was to verify that the pressurizer
16	safety valves and the steam generator safety valves
17	were sized adequately. And that value was 2725, which
18	was very close to Westinghouse's number.
19	CHAIRMAN DENNING: And when you worked
20	with Westinghouse I'm sorry, you reviewed the
21	Westinghouse analyses, in doing that did you look at
22	inputs and outputs or was this verbal discussion with
23	Westinghouse about them? Did you physically look at
24	the input and output and do some cross checking of
25	that?
	1

(202) 234-4433

	172
1	MR. MIRANDA: Yes. Yes, we did.
2	Westinghouse had available to us the analysts who
3	performed these analyses for discussions. And the
4	analysts brought along the calculations and we looked
5	through the calculations at the inputs and the methods
6	used. Yes, we did that for three days.
7	MEMBER SIEBER: But there is a fair amount
8	of margin built into all of these just by the nature
9	of where they come from.
10	For example in the loss-of-external-
11	electrical load the design pressure of the coolant
12	system, which is really what you're looking at, is
13	2500 pounds for this plant. Normal operating pressure
14	is 2250. During this abnormal occurrence, I think
15	this is an abnormal occurrence type event that's
16	expected to occur perhaps as much as every year, the
17	pressure you can go to is 110 percent of the design
18	pressure by code. But that doesn't mean that that's
19	the ultimate strength of the coolant system. The
20	coolant system ultimate strength, there's tremendous
21	margin between 110 percent of code design pressure and
22	what the ultimate strength is. So that's where the
23	margin really exists. And that doesn't mean don't do
24	your best job to be under this. But it doesn't mean
25	that when you calculate 2750 compared to a limit of
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	173
1	2750 that there's no margin left. There's plenty of
2	margin left and it's built into the way the ASME code
3	is designed.
4	CHAIRMAN DENNING: Yes. And that 110
5	percent of design pressure comes an ANSI standard 18.2
6	1993 for condition II events.
7	MEMBER SIEBER: Right.
8	MEMBER WALLIS: I guess what concerns me
9	is the generic problem with codes. Whenever there is
10	a conference on codes, now people are always talking
11	about the user effect; that different people using
12	apparently the same code to analyze exactly the same
13	thing, apparently using the same methods and the same
14	inputs, can often come up with different answers. And
15	the utility has, of course, the incentive to come up
16	with a favorable answer. And it is a user. And so
17	there has to be some careful examination that there
18	hasn't been some user effect which has enabled this
19	code to come very close to whatever is required as the
20	regulatory limit. I think you have to be very careful
21	to ensure that does not happen.
22	MR. MIRANDA: Yes.
23	MR. DUNNE: Jim Dunne.
24	I think one of the things Westinghouse
25	tries to do to eliminate some of the variability

(202) 234-4433

associated with the analysts is they have these instruction guidelines for all these different accidents that basically tell the analysts these are the assumptions you have to make and not leave it up to the individual analyst to make that assumption himself.

7 So for a lot of the key inputs 8 Westinghouse has basically standardized internally the 9 assumptions their analysts have to make to remove that 10 variability. And that was, I think, one of the things 11 that the NRC reviewed when they did the audit of 12 Westinghouse in November of last year.

MR. MIRANDA: That's correct. And these analysis standards, as they're referred to at Westinghouse have been existence since 1972. I know this because I wrote the first one.

MEMBER WALLIS: So you maintain there's no user effect? If we had two different analysts do the same thing, they come up with the same number?

20 MR. MIRANDA: Of course there's a user 21 effect, but these analysis standards are designed to 22 minimize that.

23 MEMBER WALLIS: So how big is the minimum? 24 Is the minimum of variance of 10 percent -- you can go 25 on forever about this. But I'm sure people are aware

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	175
1	of this and they've done something, but I just don't
2	have any idea of the dimensions of the uncertainty
3	that remains.
4	MR. MIRANDA: Part of the procedure is
5	that the analysts when calculating the inputs for the
6	codes, it has to follow certain procedures and use
7	certain values that are dictated for that plant. And
8	if he deviates from that procedure for any reason,
9	he's instructed to state the reason and this is
10	reviewed when the calculation is checked by peers and
11	management.
12	Sometimes it's necessary to deviate just
13	because of the plant design. And the analyst should
14	have a good reason for the deviation.
15	CHAIRMAN DENNING: I think you should
16	bounce back now to the continuation of the
17	presentation that you're on and we'll move forward
18	through that.
19	MR. FINLEY: Okay.
20	MR. MIRANDA: This is a listing of the
21	events that the Staff has received analyses for from
22	the licensees. For various reasons, as I said before,
23	in addition to the power uprating.
24	This is followed by events that were
25	evaluated. And the reasons for these events for being

(202) 234-4433

176 1 evaluated stem from these are either not applicable or they're bounded by other events. Usually they're 2 3 bounded by other events and a new analysis was not 4 necessary. 5 And this is also stated in the safety evaluation which events are evaluated, which are 6 7 analyzed. And in the case of events that are 8 evaluated, why it was not necessary to do the 9 analysis. 10 ATWS was also considered. And this event, I thought it was important to review the analysis for 11 12 this event. There was very little provided by the licensee, by the way, in their submittal concerning 13 14 They said yes we meet the criteria. And I ATWS. 15 requested to see the analyses and the calculation. And 16 they were provided to me. 17 I considered it important because the Ginna plant has new steam generators, B&W steam 18 19 generators installed in 1996. And I was afraid that 20 they might be trying to use the Westinghouse generic 21 analyses that originally covered Ginna, which had a 44 22 series steam generators. Without the 44 series steam 23 generator, I believe that the generic analyses no 24 longer applied. And it turns out that Westinghouse 25 had performed an entire new analysis using the new

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	177
1	steam generators at the power level of 1817 megawatts.
2	And they obtained an acceptable result.
3	And this 3200 psig is the ASME level
4	stress limit for the weakest component in the RCS,
5	which I believe is the
б	MEMBER WALLIS: Can I ask you about ATWS?
7	Now other operator actions that occur during an ATWS
8	event which influence the outcome?
9	MR. MIRANDA: The ATWS event is analyzed
10	without operator actions?
11	MEMBER WALLIS: Without?
12	MR. MIRANDA: Without, yes.
13	MEMBER WALLIS: So the operators are not
14	likely to take actions which would change the number
15	of this peak pressure?
16	MR. MIRANDA: The peak pressure occurs at
17	about 2 minutes into the transient.
18	MEMBER WALLIS: And by then the operators
19	haven't done anything?
20	MR. MIRANDA: I don't believe an operator
21	would have a chance to do anything at 2 minutes.
22	MEMBER WALLIS: This is very different
23	from a BWR ATWS where the operators are expected to do
24	things.
25	MR. MIRANDA: As far as new spent fuel
I	

(202) 234-4433

	178
1	storage, Ginna had received an amendment December 2000
2	which permits the credit for soluble boron in the
3	spent fuel pool. And they satisfied also all of the
4	provisions of the 10 CFR 50.68.
5	MEMBER WALLIS: Well the spent fuel pool,
6	rather surprised and maybe not a surprise if I'd know
7	the history of these things. But originally it was
8	capable of taking 210 assemblies and now it seems to
9	be capable of taking it has a spec limit of 1879
10	assemblies. So somehow the capacity of the spent fuel
11	pool has been increased by a factor of nine.
12	MR. DUNNE: This is Jim Dunne.
13	I think I can explain some of that
14	history.
15	The 1879 number assumes consolidation of
16	fuel assemblies into consolidated canisters. We take
17	two fuel assemblies approach
18	MEMBER WALLIS: Well, it's the same the
19	pool. It's the same pool.
20	MR. DUNNE: The same pool.
21	MEMBER WALLIS: So you found ways to
22	increase the capacity by a factor of nine?
23	MR. DUNNE: Right. We've gone through I
24	believe three reracking of our spent fuel pool since
25	the original construction. Our last rereacking was in

(202) 234-4433

	179
1	1998, I believe. And the actual number of storage
2	locations we physically have in the pool right now is
3	up around 1321 fuel assemblies basically. And part of
4	that involved going to boroflex fuel assemblies I
5	think in the '80s.
6	MEMBER WALLIS: Yes.
7	MR. DUNNE: And then in the 1990s we
8	inserted a number of borated stainless steel fuel
9	assemblies
10	MEMBER WALLIS: So there must have a
11	considerable conservatism in the original design then
12	that you can do this.
13	MR. DUNNE: Yes.
14	MEMBER WALLIS: But now you probably are
15	getting close to a real limit?
16	MR. DUNNE: We are getting close to a real
17	limit, that's correct.
18	CHAIRMAN DENNING: And initially you
19	weren't allowed to take credit for boron in the water.
20	MR. DUNNE: Right. And I think the reason
21	why we took credit for the boron is the boroflex issue
22	and degradation of the boroflex which was either boron
23	poison. But because it's degraded and really not
24	assume it's there, we needed to
25	MEMBER WALLIS: But we're talking about
1	I contract of the second se

(202) 234-4433
	180
1	margin. You're below .95 aren't you, in this case?
2	MR. DUNNE: I believe when we borated,
3	typically we're well below.
4	MEMBER WALLIS: Way below it?
5	MR. DUNNE: Yes.
6	MEMBER WALLIS: Right. So that's not one
7	of these things where you're close to the limit at
8	all?
9	CHAIRMAN DENNING: You take burn up
10	credit?
11	MR. DUNNE: I'll let our fuel engineer
12	answer that one.
13	MR. VERDIN: Yes. This is Gord Verdin.
14	We do take burn up credit and also years
15	of decay due to plutonium decay. And we also have
16	criterion as to the reactivity categories of
17	assemblies that we can place adjacent to each other.
18	That's how we make up for the loss of the boroflex.
19	We don't credit the boroflex at all.
20	MEMBER SIEBER: But the original rules
21	didn't give you a burn up credit, right? And so
22	that's why the spacing was so big?
23	MR. VERDIN: Yes. The other thing was
24	that Ginna back in the 1970s, we actually shipped
25	three regions of the fuel to the West Valley

(202) 234-4433

	181
1	Demonstration Project. There was no intention to leave
2	the fuel in the pool for any period of time.
3	MR. MIRANDA: Okay. These are the results
4	for the large break LOCA using the ASTRUM methodology.
5	And you've seen these numbers before.
6	And finally
7	MEMBER WALLIS: That's very conservative
8	124 runs. Because the PCT seems to be the one which
9	matters. And so you could do the number of runs
10	appropriate to one criteria. And if you were really
11	satisfied that that was the one that
12	MR. MIRANDA: Was there a question?
13	MEMBER SIEBER: That's not a question.
14	MEMBER WALLIS: I'm noting that it's only
15	the PCT which seems to come near the limit, so that's
16	the one that governs.
17	MR. MIRANDA: The Staff is still
18	evaluating the small break LOCA analyses and the long
19	term cooling and the boron precipitation. And these
20	are independent analyses being conducted with RELAP.
21	So we don't have the results of those just yet.
22	MEMBER WALLIS: So maybe this is where we
23	get an example of one issue, small break LOCA, which
24	we can go into in some detail instead of rushing
25	through all of these other ones.

(202) 234-4433

	182
1	CHAIRMAN DENNING: Of course, the problem
2	is that one's going to be fair from illumination
3	apparently based on so I'm not sure it's going to
4	be
5	MEMBER WALLIS: So why are we waiting so
б	long to hear something which isn't so important? I
7	was thinking that you might that would be your
8	opportunity to show how you go in depth into some of
9	these things because you have more time then.
10	MR. MIRANDA: John Nakoski will address
11	that.
12	MR. NAKOSKI: Yes. This is John Nakoski.
13	I'm the PWR Reactor System Branch Chief.
14	Our intention is at the next Subcommittee
15	meeting where we discuss Beaver Valley to go through
16	what we have done, our confirmatory calculations and
17	the review that we've done for the small break LOCA
18	and long term cooling.
19	Our concern was to develop reasonable
20	assurance that the analysis method and assumptions and
21	the results are consistent with our expectations and
22	satisfy our acceptance criteria.
23	You may be aware that we have a concern in
24	long term cooling for a small break LOCA, that we have
25	reasonable assurance that boron precipitation is not
	I

(202) 234-4433

	183
1	an issue that would impact the Staff's findings.
2	We're evaluating that issue. Ken Ward is doing
3	independent confirmatory calculations. But we have
4	not finished those yet.
5	MR. MIRANDA: In conclusion, the Staff
6	believes that the accident analysis both analyses and
7	evaluations submitted by the licensee, have met the
8	acceptance criteria short of the small break LOCA and
9	the long term cooling of boron precipitation which are
10	still under review.
11	MEMBER SIEBER: I have a question that
12	goes back to the issue of peak clad temperature and
13	design trends through the years. It seems to me that
14	the trend by fuel designers has been to make more rods
15	but smaller rods to lower the linear power density.
16	And in doing that, that had a positive impact insofar
17	as lowering the peak clad temperature.
18	I look at the fuel design trend for Ginna,
19	they're going in the opposite direction. And I
20	presume, you know, they now have bigger, heavier rods,
21	reduced flow, a change in the moderation ratio you
22	know whether you're over moderated or under moderated.
23	And that probably had some negative that kind of a
24	design implementation had some negative effect on peak
25	clad temperature, even though you got a lot of margin,
	I

(202) 234-4433

	184
1	I would think that would come out that way? Am I
2	thinking about this in the right framework or not?
3	MR. FINLEY: Let me ask Jeff Kobelak to
4	respond to that, if he would.
5	MEMBER WALLIS: And you told us that using
6	the old method you got to 2070 something.
7	MR. KOBELAK: Yes.
8	MEMBER WALLIS: What would you get to
9	using the old method before the EPU?
10	MR. KOBELAK: We did not run any cases.
11	MEMBER WALLIS: Well, someone must have
12	calculated before because there was a submittal
13	before. It must be in the record somewhere what they
14	were calculating. But they were using some other
15	method even different in those days. Were they using
16	Appendix K or something so we can't make comparisons?
17	MR. KOBELAK: You mean like with pre
18	MEMBER WALLIS: Well, has the peak clad
19	temperature gone up significantly as a result of the
20	EPU? I think that's sort of the question.
21	MR. VERDIN: This is Gord Verdin.
22	There has been some miscommunication. The
23	2087 is the current best estimate LOCA with the safety
24	methodology at the current power level.
25	MEMBER WALLIS: Without the EPU?
	1

(202) 234-4433

	185
1	MR. VERDIN: That's correct.
2	MEMBER WALLIS: So with the EPU if it goes
3	up, you might have found yourselves up to the limit
4	with the core methodology?
5	MR. VERDIN: Correct. And as we've stated,
6	they didn't actually perform those evaluation at EPU.
7	MEMBER WALLIS: So we can't really make
8	comparisons. But in fact we might have the implication
9	that you used this new methodology because the old
10	methodology was not giving the right answer?
11	MEMBER SIEBER: Or you think it might not.
12	MEMBER WALLIS: Or you thought it might
13	not.
14	MEMBER SIEBER: But whether you thought
15	that or not is irrelevant.
16	MR. FINLEY: Certainly with respect to
17	large break LOCA one of our objectives at the outset
18	was to use the new BE LOCA methodology to demonstrate
19	we had the margin in that analysis for the uprate.
20	Yes.
21	MR. NAKOSKI: And regarding the fuel
22	design, yes, I would say that's an accurate statement.
23	As you increase the number of rods and you lower the
24	linear heat rate per rod, that does kind of benefit
25	the PCT.
l	I

(202) 234-4433

	186
1	MEMBER SIEBER: Right. But this design
2	change in the fuel goes the opposite way, which puts
3	more pressure on PCT than you otherwise would have had
4	and you did it for other reasons. That's sort of the
5	way I piece all this together. And you still meet the
6	limit.
7	MR. NAKOSKI: Yes. And the prior fuel was
8	also 14X14.
9	MEMBER SIEBER: Yes.
10	MR. FINLEY: That's correct. Right.
11	MEMBER WALLIS: Well, this would be useful
12	to the Committee to get some idea of is this
13	statistical approach to LOCAs one of the keys to
14	allowing power uprates of this magnitude.
15	MEMBER SIEBER: Yes.
16	MEMBER WALLIS: I think that's an
17	important issue for this Committee to think about. Is
18	that true? Is it true that the statistical approach
19	is enabling this to happen?
20	MR. FINLEY: Yes. That is one of the
21	factors that enables this, yes.
22	MEMBER WALLIS: Yes.
23	CHAIRMAN DENNING: Are you actually done
24	with your part of the presentation and we would have
25	gone to the source terms and radiological consequences

(202) 234-4433

187 1 next? Is that where we stand? 2 MR. MIRANDA: Yes. I'm done with my part, 3 yes. 4 CHAIRMAN DENNING: Yes. So I think if 5 it's--Our presentation is 6 MR. MILANO: 7 relatively short in that area. And I think it would probably be, if you don't mind, you know we could go 8 9 through and do that and then have our break. 10 CHAIRMAN DENNING: Would you prefer to do that for some reason? 11 12 MR. MILANO: Yes. That's what I would prefer to do. 13 Then we'll go ahead and 14 CHAIRMAN DENNING: 15 do it that way then. 16 MR. MILANO: Thank you. 17 Brian? MR. MILANO: This is Brian Lee. he's from 18 19 our Accident Dose Branch and he's going to make a presentation. 20 21 MR. LEE: Yes. Good morning. I'm Brian 22 Lee, a reactor systems engineer in the Office of 23 Nuclear Reactor Regulation. Also here with me today is a senior member of staff from the Accident Dose 24 25 Branch to provide a guidance with me on this review.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1The Staff reviewed the source terms for2rad waste system analysis and reviewed Matrix 9 of the3review standard and section 2.9.1 of the EPU safety4evaluation.5The radiation sources and the reactor6coolant were analyzed for EPU conditions under the

same methodology previously used in the Ginna design basis, which is consistent with the GALE code that is considered in the Staff's review.

Based on the maximum reactor coolant activity product, the staff determined that the EPU is acceptable as it continues to meet the requirements of the 10 CFR Part 20, 10 CFR Part 50 Appendix I, and the General Design Criterion 60.

With respect to the design basis accidents radiological consequences analysis, the Staff review Matrix 9 of the review standard and section 2.9.2 of the EPU safety evaluation.

19 The licensee had previously reanalyzed all 20 design basis accidents with the implementation of a 21 full scope alternate source term. The current revised 22 dose analysis assumed proposed EPU conditions at a 23 reactor core power of 1811 megawatts thermal including two percent power measurement uncertainty 24 and а 25 followed the guidance of Reg. Guide 1.183.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

7

8

9

1 The Staff took a look at all design basis 2 accidents in its review. The LOCA, the fueling handling accident and the tornado missile accident, 3 4 which is not considered to a design basis accident but 5 is a part of the Ginna's licensing and design basis were all reanalyzed due to the sources and the fuel 6 7 increasing at the power increase. 8 The main steam line break, the steam 9 generator tube rupture, the locked rotor accident and

10 the rod injection accident were all reanalyzed due to 11 the change in its mass and energy release.

The licensee assumed a control room isolation for all design basis accidents with a filter recirculation flow of 5400 cubic feet per minute. A 300 cubic feet per minute unfilter in leakage was assumed and has been validated by a tracer gas in leakage test performed in February of 2005.

18 CHAIRMAN DENNING: When you say confirmed, 19 actually didn't they show that it was substantially 20 lower?

21 MR. LEE: Yes, they did. Actually, their 22 number with one train running the highest load was 21 23 cubic feet per minute.

In conclusion the licensee has adequatelyaccounted for the effects of the proposed EPU. All

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

190 design basis accidents meet the exposure guideline 1 2 values cited in 10 CFR 50.67 and the acceptance 3 criteria in the Standard Review Plan 15.0.1 for both 4 offsite and in the control room. 5 The Staff finds that the proposed EPU is acceptable with the radiological 6 respect to 7 consequences of design basis accidents. And that concludes my presentation. 8 I can take any questions if you have any. 9 10 CHAIRMAN DENNING: Questions? No. Thank you very much. 11 12 We'll say it's 12:30 and we'll Okay. resume here at 1:30. 13 14 MR. MILANO: At 1:30 is there an 15 expectation that we would continue on with anything with regard to the safety analysis or would we be 16 17 going to the next item on the --CHAIRMAN DENNING: We'll go to the next 18 19 item on the list. 20 MR. MILANO: Okay. 21 (Whereupon, at 12:27 p.m. the Subcommittee 22 was adjourned, to reconvene this same day at 1:30 23 p.m.) 24 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	191
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	1:30 p.m.
3	MR. MIRANDA: Could I have your attention,
4	please.
5	Okay. We're going to get started this
6	afternoon's presentations. We're going to start with
7	the risk evaluation summary. And it'll be a two
8	parter. It's going to start out with Ralph Cavedo
9	with Ginna presenting his and we'll follow it with
10	Donnie Harrison from the NRC Staff.
11	Thank you.
12	MR. CAVEDO: Hi. My name is Rob Cavedo.
13	And I've been doing probability risk assessment for 17
14	years. I'm here to present the results of the risk
15	evaluation, results and insights.
16	CHAIRMAN DENNING: You don't have to
17	apologize right at the beginning for saying your risk
18	analyst.
19	MEMBER SIEBER: You can wait a little bit.
20	MR. CAVEDO: Before we go into the
21	original agenda, I just wanted to a tie in to how risk
22	assessment is used to evaluate actual changes in
23	margin.
24	CHAIRMAN DENNING: Move in a little
25	closer.

(202) 234-4433

	192
1	MR. CAVEDO: I'm sorry. I like to move
2	around. I can't do that. I need a wireless microphone.
3	So I'd like to tie in to how the actual
4	risk evaluation relates to actual changes in margin
5	versus calculated changes in margin that you've been
6	referring to a lot.
7	So when you do a typical design basic
8	calculation like loss-of load you'll go through and
9	evaluate the lift setpoints of a bunch of relief
10	valves, for example. And when you determine what you
11	can live with in the calculation, you raise that
12	setpoint until you reach the calculational regulatory
13	limit. But from a risk assessment perspective that's
14	where we go back and look at was that change
15	acceptable. And we look at real plant changes. So if
16	you change an actual setpoint, that's factored into
17	the risk evaluation. And that's where the rubber hits
18	the road and that's where we evaluate what the actual
19	loss in margin is.
20	So I think there is a tie in. We want to
21	have as much operational flexibility as possible, but
22	we want to evaluate what the real change in risk is
23	and make sure that it's acceptable.
24	To perform the risk evaluation we looked
25	at the changes in initiating event frequency, success

(202) 234-4433

	193
1	criteria, equipment failure rates, operator
2	restoration times. And we used that to calculate the
3	change in the core damage frequency in LERF for
4	internal, external events and shutdown.
5	MEMBER SIEBER: Now your success criteria
6	is still a go/no go situation?
7	MR. CAVEDO: Well, the success criteria in
8	a very similar fashion to how the design basis
9	calculations is an iterative process. So for example
10	let's say that you're trying to determine the feed and
11	bleed success criteria. Well, you know a fixed set of
12	equipment that you would like to use and you keep on
13	changing the time that it takes the operator to
14	initiate that action until a certain set of equipment
15	is satisfied. But from a PRA you go beyond just that
16	and say, okay, let's say you had one less PORVs or you
17	had fewer charging. Then you have less time to
18	implement the action. So it's all factored in by
19	calculation to determine time available to perform an
20	action, or in some cases it's break size. So you
21	might go in and let's say it's a large break LOCA,
22	what set of equipment do you need. Let's say that it's
23	medium break LOCA, well you determine those break
24	transition points in terms of piping size based on the
25	amount of equipment that's available. So you turn it

(202) 234-4433

	194
1	into a go/no go problem but it is calculated based on
2	the range of parameters that you examine.
3	MEMBER SIEBER: On the other hand if you
4	have a pump, for example, that is operating right when
5	it's about to lose MPSH, you know maybe you're in
6	recirculation and your strainer's partially clogged.
7	You would count that pump if it doesn't meet the
8	success criteria as inoperable as opposed to a pump
9	that may be chugging and not pumping as much as you
10	would like or as much as advertised?
11	MR. CAVEDO: Right. If the design basis
12	criteria for loss of net positive suction had a sum
13	value, then we might use a different value in the PRA
14	for determining when that pump will actually be
15	failed. Not inoperable, but unavailable.
16	MEMBER SIEBER: Yes.
17	MR. CAVEDO: So we use a terminology as
18	far as the design basis way that you say that it can
19	satisfy the design basis criteria and it's operable,
20	we consider things available to perform their function
21	or not available to perform their function under the
22	given set of circumstances.
23	MEMBER SIEBER: Yes. I think that's one of
24	the drawbacks, at least in my own mind as to how well
25	PRAs model what's going on in the plant.
	1

(202) 234-4433

	195
1	And another one is that PRAs do not have
2	a lot of phenomenological models built into it. And
3	it's relatively simple. And I guess for the purposes
4	that it's being used here by you and by the staff,
5	it's okay. On the other hand, there is plenty of
6	places where PRA modeling could be improved, you know.
7	MR. CAVEDO: There's plenty of places
8	where any modeling could be improved, no matter what
9	you're talking about. That's definitely true.
10	MEMBER SIEBER: Right. That's my speech
11	for this hour.
12	MR. CAVEDO: I mean the Chairman talks
13	about when he talks about PRA and you say is PRA good
14	or bad. And then you say well what are you comparing
15	it to? Design basis. And we all know what the
16	vulnerabilities are with design basis. So it's not
17	whether it's the perfect tool; no one is saying that
18	PRA is the perfect tool. It's just saying it's
19	well, in my view, it's a better tool.
20	So you have to maintain your design basis
21	margins because that gives you the framework which to
22	evaluate things, but you do need to evaluate what the
23	changes in risk are to make sure that you're operating
24	appropriately.
25	Okay. So we evaluated the impact on those
l	

(202) 234-4433

	196
1	elements to calculate the core damage and load changes
2	on internal events, external events and shutdown risk.
3	There are no PSA initiators as a result of
4	this. Now the reason I mention PRA initiators is
5	because that's different than design basis initiators.
6	Most of the time when you look at a phenomenon,
7	considering the huge number of initiating events that
8	are considered in the PRA, you don't have to make a
9	new initiating event. You just adjust the frequency
10	based on changes as a result of the EPU, for example.
11	So if we had increased flow in the
12	feedwater system and it was beyond certain limits, or
13	not beyond certain limits but it was approaching
14	certain limits, then we might increase the failure
15	rate of that feedwater piping to account for that.
16	As far as success criteria adjustments,
17	which was a majority of the risk. So the small part
18	of the risk was the initiating event frequency
19	changes, the vast majority of the risk changes was due
20	to the change in success criteria. And we used a
21	thermal hydraulic code to evaluate that. And the major
22	impact that we came up with was bleed and feed.
23	We went from pre-EPU to post-EPU, a case
24	where you had to have two PORVs for bleed and feel
25	depending on the availability of charging. So we
1	

(202) 234-4433

197 1 noticed that was the biggest success criteria change 2 that we had. 3 We did also look at equipment failure 4 rates, but we found is due to the programs that are in 5 place there is not much impact on equipment failures immediate mitigation standpoint 6 from an of an 7 accident. So PRA analysis works 24 hours following the 8 plant challenge. But from a long term perspective 9 because equipment can be operating with less margin available, there is a likelihood that you will have 10 initiating events as a result of the reduced margins, 11 an increasing in the initiating event frequency. 12 MEMBER SIEBER: Do you change your PRA to 13 14 account for that? 15 MR. CAVEDO: Yes. 16 MEMBER SIEBER: Because I think that's an 17 important thing. 18 MR. CAVEDO: Yes, we do. 19 Okay. And how do you do--MEMBER SIEBER: MR. CAVEDO: Yes. We went through a --20 21 MEMBER SIEBER: How do you do it? 22 MR. CAVEDO: Say again? 23 How do you do it? By MEMBER SIEBER: 24 changing the failure rate? 25 That's exactly right. We MR. CAVEDO:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	198
1	change the frequency as a result of that. So what
2	we'll do is we'll do a detailed review of the
3	engineering reports. We'll look at where margin is
4	lost. And then we will adjust frequencies based on
5	that.
б	Now, of course, how do you predict exactly
7	how they're going to be degraded.
8	MEMBER SIEBER: Right.
9	MR. CAVEDO: That's probably the next
10	question that you're worried about. Well, there's no
11	way to predict perfectly what's going to happen. And
12	so with any good risk assessment what you have to do
13	then are sensitivity studies. You look at how all the
14	parameters that are sensitive to this will change as
15	a result of increasing by a factor of two or some
16	metric so you can determine what's sensitive. And then
17	we had, as Dave mentioned, a detailed sequester review
18	where we get everybody together and we talk about it.
19	And we reviewed with the project manager and members
20	of licensing and others all of the parameters that
21	were sensitive. And they were comfortable that those
22	parameters were not going to be adversely impacted by
23	EPU.
24	So the sensitivities give us a feel for
25	not only what the changes are going to be, but to make

(202) 234-4433

	199
1	sure that we're focused on the right areas.
2	MEMBER SIEBER: So you don't really have
3	data? This is a judgment call based on your
4	MR. CAVEDO: Yes. It's almost exclusively
5	a judgment call because, as you said, data even if you
6	had data for another plant, that might not be
7	applicable to the Ginna plant. And so you could try to
8	do some Basian update, but the sample is so small that
9	it would really not be very relevant, so
10	MEMBER SIEBER: Right. I think that you
11	realize what the pitfalls are?
12	MR. CAVEDO: Yes.
13	MEMBER SIEBER: It's not clear that there
14	isn't some better way to handle it, but it dominates
15	your lack of data.
16	MR. CAVEDO: And that's why you have to do
17	uncertainty analysis, to make sure that you compensate
18	for your lack of predictability in what's going to
19	happen by looking at let's say it's a little bit
20	worse than you think, or let's say it's this; how much
21	does that change the result and would that still be
22	acceptable? So we did a ton of uncertainty analysis
23	to give us comfort that we were still making the right
24	decision.
25	MEMBER SIEBER: Very good. Thank you.

(202) 234-4433

	200
1	MR. CAVEDO: You're welcome.
2	So as I said, the major impact was a
3	change in operator response time. And as was
4	mentioned on a previous slide, obviously the higher
5	decay heat reduced most of the operator response
6	times. And the most important impacts that we noticed
7	was the reduction in time to recover from a loss of
8	shutdown cooling during reduced inventory. And we'll
9	talk about a plant change that we're proposing to help
10	offset that risk.
11	And the next largest one was the amount of
12	the loss of time to recover from a loss of decay
13	removal during a loss of offsite power. And then the
14	one to recovery from a turbine driven AFW pump on a
15	control room complex fire. And so you'll see that the
16	modifications that we're talking about or the plant
17	changes that we're talking about reflect these areas.
18	So here are the results, a sample of the
19	results. This isn't all of them. If you actually
20	looked in the submittal, you'd see that we evaluated
21	all of the actions that could change as a result of
22	the reduction in operator response time due to the
23	increased decay heat. But this just gives you a nice
24	little smattering of what changed.
25	And the important thing to look at here is
l	1

(202) 234-4433

1 when you're looking at these times and you go, oh, 2 this is a bigger change in time than the percent 3 change in power, how could that possibly be? Well, these are diagnosis times. So it takes a certain 4 5 amount of time for an operator to go through a 6 procedure. And that's going to be sometime, ten 7 minutes or whatever it is. So if you reduce the 8 overall time by 17 percent or whatever the calculation 9 shows, because we actually get more margin in the steam generators it's a little cooler, so there are 10 some things which offset each other. But overall you 11 would expect things to be a 17 percent. But because of 12 subtraction you actually 13 that can see biqqer 14 percentage changes than you would expect just based on 15 the nature of the power uprate. And that was all factored into the evaluation to calculate what the 16 17 impact was. 18 MEMBER WALLIS: So are the changes in CDF 19 all due to operator time factors? 20 MR. CAVEDO: Could you say again? 21 MEMBER WALLIS: Are all the changes in CDF 22 due to these changes in time available for operator 23 action? 24 MR. CAVEDO: No. The majority of the CDF, 25 and I've produced a chart in the submittal --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

201

	202
1	MEMBER WALLIS: It seems to be in these
2	EPUs that the hardware changes don't make any
3	difference?
4	MR. CAVEDO: Well, we're going to get to
5	that in a little bit. But the changes that they made
6	actually helped to preserve a lot of the margin. If it
7	wasn't for that, then we would have had a much bigger
8	risk increase.
9	CHAIRMAN DENNING: I wanted to make sure
10	I fully understand the table. What's the right hand
11	column, the steam generator water level at trip?
12	MR. CAVEDO: Well, I could have presented
13	a column with steam generator water levels at other
14	demarkation points. But obviously the more water that
15	you have in the generator at the time of the trip,
16	then the more time you're going to have available to
17	do that. And that's going to damp the impact of these
18	changes. So I just wanted to put that this is at the
19	low level water trip and so these are the conservative
20	numbers. If you look at numbers at a different water
21	level, then you would have more margin.
22	CHAIRMAN DENNING: With regards to these
23	particular events, can you tell us what the
24	conditional failure probability was for the base time
25	versus the EPU time? How much of the failure
	I

(202) 234-4433

	203
1	probabilities changed?
2	MR. CAVEDO: Well, for example for the
3	bleed and feed where you had no charging pumps and a
4	single PORV available, it went from I don't
5	remember the specific number whether it was a ten
6	percent chance of failure to guaranteed failure. So
7	that was one of the ones where it went from a
8	reasonable likelihood the operator would succeed to
9	there's not enough time available to perform the
10	action.
11	CHAIRMAN DENNING: Okay.
12	MR. CAVEDO: I did provide all this
13	information in the submittal. And if you want me to,
14	I could look up any specific action that you're
15	curious about, but I don't remember off the top of my
16	head all the changes.
17	CHAIRMAN DENNING: But that's the fourth
18	one down, is it?
19	MR. CAVEDO: That's the one where operator
20	fails to align bleed and feed given a single PORV and
21	no charging. That's the second line down.
22	CHAIRMAN DENNING: Ah, yes. Oh, this is
23	the single PORV?
24	MR. CAVEDO: Yes. Where it's both PORVs
25	they're actually both achievable, so it was just a
	I contraction of the second

(202) 234-4433

	204
1	change in failure probability. But with the single
2	PORV and no charging, it was oh, you've got the
3	chart there.
4	So single PORV no charging it went from
5	well, that was the one that went from guaranteed
6	failure. So there was a 09.7 percent chance of
7	success pre-EPU. With post-EPU it went to guaranteed
8	failure.
9	MEMBER WALLIS: Just by going to 15
10	minutes time?
11	MR. CAVEDO: Yes.
12	MEMBER WALLIS: I mean, he can't do
13	anything in 15 minutes?
14	MR. CAVEDO: Well, there's always the
15	chance that the operator could move outside the
16	procedure or faster than the procedure and achieve a
17	success. But we did tabletop exercises with
18	operations to find out how much time it takes to get
19	to those particular. And it was they actually might
20	have been able to do it, but it might have been like
21	an 80 percent chance. And we don't use failure
22	likelihoods. If they're over .5, we typically don't
23	use them for noncurve type recoveries.
24	Does that answer your question? And
25	thanks for this.

	205
1	CHAIRMAN DENNING: Yes.
2	MR. CAVEDO: Okay. And then the next
3	thing we have are the actual results of the EPU change
4	in terms of the internal and external events
5	breakdown. And you can see from this it's about a net
6	change of 7, E-06 for core damage and you can see what
7	the LEF changed. Just do the substraction there.
8	And the percent change in core damage, it
9	actually went up. If we didn't do any modifications or
10	procedure enhancements or improvements to the plant,
11	then the core damage would have gone by 12 percent and
12	the LERF would have gone up by 10 percent.
13	CHAIRMAN DENNING: Can you help us a
14	little bit on what are the principle contributors on
15	fire, for example?
16	MR. CAVEDO: It was the turbine driven AFW
17	pump on the low steam generator water level. So it's
18	a control room complex fire type situation where, of
19	course, there's not much indication available and the
20	turbine driven pump is an important means of
21	mitigating that event.
22	CHAIRMAN DENNING: Yes.
23	MR. CAVEDO: And we are doing
24	modifications in plant improvements along to help
25	support that. So that's not reflected in these

(202) 234-4433

	206
1	numbers. These are the numbers without those
2	improvements in place.
3	CHAIRMAN DENNING: Now are those plant
4	improvements the ones we were hearing about at the
5	very introduction about things that are going to
6	happen that would be risk reducers?
7	MR. CAVEDO: Yes. And I have another
8	slide that talks, and you can see what the specific
9	impacts are of those changes.
10	CHAIRMAN DENNING: Oh, good.
11	Does the pressurizer volume appear as an
12	issue on any damaged states?
13	MR. CAVEDO: Yes. It's not a risk
14	significant issue, but all the stuff that was
15	mentioned in Mark's evaluation, that's all been
16	factored into the risk assessment; the change in boron
17	precipitation, the difference in the pressurizer
18	level, the change of the loss-of load parameters. All
19	of those are factored into the risk assessment. So we
20	did consider increased PORV challenges as a result in
21	the change of the pressurizer configuration. And we
22	did consider slightly increased PORV challenges as a
23	result of loss-of load because above 50 percent it was
24	going to happen anyway and below 10 percent it wasn't.
25	And so we figured out what fraction in between the

(202) 234-4433

	207
1	PORV would be challenged and we figured out what
2	fraction we operated in that plant configuration. So
3	all of that is factored into the risk assessment. But
4	those issues did not play the most significant role.
5	It was all decay heat removal. Change in the operator
6	response time, I mean it's critical operator response
7	time. And so that was the vast majority of the risk
8	increase was as a result of the reduced time for
9	operator response. But all of that information was
10	factored in explicitly in the risk evaluation.
11	CHAIRMAN DENNING: With regards to the
12	potential for vibrational modes of failure of
13	equipment that did not occur that are introduced, is
14	there any contribution as you see it from that?
15	MR. CAVEDO: The initiating event
16	contribution did factor in changes in the vibration.
17	It is our expectation that with our programs in place
18	we are not going to see a risk impact. But until the
19	programs come to fruition, it's obviously when you
20	first achieve that state there may be some
21	degradation. So conservatively we increased the
22	initiating event frequencies based on the items that
23	were mentioned in the engineering report. And it was
24	all judgment based, but then as I said we did the
25	uncertainty evaluation to see what the impact would be
1	I Contraction of the second seco

(202) 234-4433

	208
1	possibly.
2	CHAIRMAN DENNING: So you introduced the
3	initiating event frequencies for particular components
4	that presumably would have failed?
5	MR. CAVEDO: No.
6	CHAIRMAN DENNING: No?
7	MR. CAVEDO: We did initiating event
8	frequencies for whole systems. For example, we would
9	increase the loss of feedwater frequency if there was
10	a vibration concern in that whole system. So it
11	wasn't done from a post-trip mitigation standpoint.
12	It was done as an accident initiation.
13	CHAIRMAN DENNING: Yes. But you did it as
14	a system frequency initiator?
15	MR. CAVEDO: Yes. At a initiating event
16	level. And the initiating event are larger than just
17	a component level. The component might not necessarily
18	actually cause an initiating event. There might be
19	actions that could be taken to mitigate that. But we
20	did it at the system level.
21	CHAIRMAN DENNING: Thanks.
22	MR. CAVEDO: Okay.
23	MEMBER WALLIS: I'm a bit confused here.
24	What do you mean? You seem to have said that you
25	increased the risk and then you do some modifications

(202) 234-4433

	209
1	which would decrease the risk so that eventually less
2	than it was before the uprate?
3	MR. CAVEDO: Well, we're jumping ahead,
4	and that's a great lead in.
5	MEMBER WALLIS: So I don't quite
6	understand, what's the difference between
7	MR. CAVEDO: These numbers don't include
8	any of the plant improvements that we're going to
9	assess later on.
10	MEMBER WALLIS: So these include simply
11	hardware changes or something?
12	MR. CAVEDO: This is just the plant
13	improvements that aren't risk based.
14	So the first thing we did is we did this
15	risk evaluation based on the operational plant
16	improvements that were going to be done, like the
17	condensate booster pump, the standby AFW pump; all of
18	those are factored into these numbers to make sure
19	that we have the same operational configuration which,
20	that obviously provides some risk benefit. If we
21	wouldn't have done that and now a booster pump loss
22	would cause a trip immediately, then that would be a
23	risk increase associated with that. But that was
24	already within the scope to handle that. We didn't
25	consider that from a risk perspective.

(202) 234-4433

	210
1	What we then did was that once we
2	achieved
3	MEMBER WALLIS: But this business we were
4	talking about earlier about the operator fails to do
5	things. That has changed. That's figured into this
6	slide here?
7	MR. CAVEDO: That is the primary basis,
8	the operator change in times to a 12 percent increase.
9	MEMBER WALLIS: The primarily influence of
10	all this is the operator time to
11	MR. CAVEDO: I don't remember the exact
12	number, but it was something like 63 percent and then
13	initiating events were 27.
14	MEMBER WALLIS: Okay.
15	MR. CAVEDO: So there you have. He's got
16	the numbers better memorized than I do.
17	MR. FINLEY: Mark Finley again.
18	Just to interject, and what Rob is talking
19	about sort of reflects the timing of how this went.
20	This risk evaluation to this point was done early
21	enough for Rob to identify to us where the risk
22	vulnerabilities were and identify what procedure
23	changes and other modifications might help counteract
24	that. Okay. So this is where we were before he made
25	the recommendations and before we added those

(202) 234-4433

1 additional mods to the scope of the uprate. 2 MR. CAVEDO: So at this point this is what 3 was within the original scope of the uprate. But our 4 management was very interested in preserving our 5 overall margin and keeping our risk levels low. So they said take a look at the most risk significant 6 7 contributions among your calculations and come up with some procedures enhancement or modifications that 8 9 could reduce the risk to below the pre-EPU level. And so we did a very exhaustive study and cost benefit 10 analyses with the risk benefit that was available. 11 12 And we came up with some options. And here are the options that we came up with. 13 14 Well, first to explain the chart that's 15 there. The first column shows you the pre-EPU risk, 16 and if you look back on the previous one, you see that's just the sum of the internal/external events 17 and shutdown. And then you see what the risk would be, 18 19 which is also the same as on the previous chart, post-20 And then you can see how much the risk goes down EPU. 21 as a result of the plant improvements that we're 22 planning. And the aggregate of them is just the last 23 line. 24 So the SI is -- for our Appendix R 25 evaluation we were limited by our existing procedures

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

211

to just basically crediting the alpha charging pump.
But we're doing improvements to make sure that we can
credit the safety injection pump for mitigation during
our control room complex fire, for example. And so
this gives us some risk benefit.

And you remember that was one of the risk 6 7 significant issues was fire. And then the next risk significant issue, actually the most risk significant 8 9 issue that we found, was during reduced inventory it 10 was possible that air operator control valves on loss of air or power could fail open and cause vortexing on 11 the RHR pumps. And that, of course, 12 in reduced inventory there's not much time available to recover. 13 14 So that could lead to negative consequences. So we're 15 doing actions to make sure that even on the loss of 16 power or air, the valves will not fail to the point 17 where you'll have that vortexing problem and your RHR 18 pumps will fail. So that, as you can see, was another 19 risk benefit.

20 And then a modification that we're doing 21 is to provide backup air to the charging system so it 22 can maintain --

23MEMBER WALLIS: Well, I'm lost. I'm lost.24Where are these CDF numbers?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. CAVEDO: This column is the CDF and

(202) 234-4433

25

213 1 these are the changes that are --2 MEMBER WALLIS: Those are changes in CDF? 3 No. 4 MR. CAVEDO: Yes. MEMBER WALLIS: They're awfully big. 5 MR. CAVEDO: So this is what the base 6 7 changes -- so this is the base change in CDF. 8 MEMBER WALLIS: That's what you had on the 9 previous slide? MR. CAVEDO: And that' what I had on the 10 previous slide. Exactly. And then if you do the 11 12 safety injection --MEMBER WALLIS: You can get it down lower? 13 14 MR. CAVEDO: Exactly. Then it goes down by 15 And if you do just the shutdown -that much. 16 CHAIRMAN DENNING: You're saying you could 17 get it down by that much. But you meant it goes down 18 to that much. 19 MEMBER WALLIS: To that much. 20 MR. CAVEDO: Yes, it goes down to that 21 much. Sorry. 22 MEMBER WALLIS: These are separate items 23 them? 24 MR. CAVEDO: Yes. 25 MEMBER WALLIS: If you only do one of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	214
1	these?
2	MR. CAVEDO: Yes.
3	MEMBER WALLIS: But suppose you do them
4	all?
5	MR. CAVEDO: That's the bottom line.
6	MEMBER WALLIS: Oh the bottom line is the
7	sigma. I was just wondering when we'd get to that.
8	MR. CAVEDO: The bottom line is this one
9	right here.
10	MEMBER WALLIS: That's the sum of the
11	whole lot, of three? Okay.
12	MR. CAVEDO: Yes. And that's actually a
13	good lead in to the next slide, if you wanted to go
14	there.
15	CHAIRMAN DENNING: Well, the only thing
16	I've got to say is that we can criticize for lots of
17	things, but we can't criticize you for the mentality
18	of going back and looking at ways to improve safety.
19	MR. CAVEDO: Yes.
20	CHAIRMAN DENNING: So I certainly commend
21	you on that.
22	MR. CAVEDO: So our conclusion is, as was
23	demonstrated by that last slide, is that with these
24	plant improvements in place our risk level post-EPU is
25	actually going to be lower than our risk level pre-
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	215
1	EPU.
2	So that concludes this, unless there are
3	any questions.
4	MEMBER SIEBER: Well, that conclusion is
5	based on the fact that you're using surrogates as CDF
6	and LERF as the measure of risk. The real risk also
7	includes the magnitude of the source term?
8	MR. CAVEDO: Yes. To do a level three
9	evaluation.
10	MEMBER SIEBER: Which is probably beyond
11	the practice of PRA the way you all use it. On the
12	other hand it's beyond 1.172 criteria. But I think
13	overall you did a pretty decent job.
14	MR. CAVEDO: Well, one thing to consider
15	with the source term is we are providing an extra risk
16	benefit to the public by producing more power. And so
17	the source term kind of offsets that. The reason we
18	don't talk about the core damage is because if that
19	went up, then of course that is proportional to the
20	source term, which is more consequence.
21	MEMBER SIEBER: That's sort of relative,
22	though. It depends on whether you're getting the
23	increased power or you're getting the source term, you
24	know. It may be two different sets.
25	CHAIRMAN DENNING: Go back one slide here.

(202) 234-4433
	216
1	MR. CAVEDO: Sure.
2	CHAIRMAN DENNING: Down on the bottom line
3	here, I mean we had major fire contributors. As far
4	as the benefit in reduced CDF and LERF, are they
5	fairly evenly distributed among these areas of
6	flooding, I mean proportional to what they were to the
7	core damage frequency initially or is there some
8	particular
9	MR. CAVEDO: No. The fire and the shutdown
10	took a bigger hit. And you can see that based on the
11	previous chart.
12	CHAIRMAN DENNING: The fire is the one
13	MR. CAVEDO: The fire in terms of human
14	actions took a bigger hit.
15	CHAIRMAN DENNING: Yes.
16	MR. CAVEDO: But there's something that's
17	interesting in the PRA is if you guarantee fail a
18	bunch of equipment, then of course whether the
19	operator could restore it or not is no longer
20	relevant. So the fire if it fails a lot of equipment
21	just due to the fire, then that's not going to show a
22	big change. But for shutdown where it's a lot of
23	operator action is required to recover from those, you
24	can see that it was a 21 percent change in the core
25	damage frequency because that's heavily reliant on
	I contraction of the second seco

(202) 234-4433

	217
1	operator actions and it's not so much driven by an
2	outside or an event which damages multiple pieces of
3	equipment at a time. It's just a loss of air, the
4	operator fails to respond in time and then you have a
5	negative consequence.
6	But this is how you can see what
7	specifically was contributing to the risk.
8	CHAIRMAN DENNING: Okay. Any other
9	comments, questions?
10	Good. Well, let's see what the Staff has
11	to say about the risk.
12	MR. HARRISON: I'm Donnie Harrison. I'm
13	magically moving the slides. Okay. We're done.
14	CHAIRMAN DENNING: Well, thank you.
15	MR. HARRISON: There you go.
16	I'm Donnie Harrison. And actually the
17	Ginna analysis presentation makes my presentation a
18	little simpler, because it's amazing two PRA analysts
19	that actually ended up with similar slides.
20	But as part of this review I want to
21	recognize that Otto Basioni was also a key member of
22	the review team. So just as we go through this, it
23	wasn't just one person that did the review; it was
24	actually a couple.
25	I wanted to start off by just giving you
	1

(202) 234-4433

1 the conclusion, which is the Staff believes that the 2 licensee Ginna is adequately modeled and addressed the 3 potential risk impacts due to the power uprate. And 4 the subbullet there, it's from my observation this was 5 the most complete submittal that I've seen to date trying to address the power uprate up front. 6 7 MEMBER SIEBER: I agree. 8 CHAIRMAN DENNING: Are you saying of the 9 total thing or you mean the risk assessment or what? MR. HARRISON: Yes. The risk assessment 10 portion of the submittal was the most complete that I 11 as an risk analyst has seen. So, yes, don't 12 generalize that comment. 13 14 Being that it's nonrisk-informed, it still 15 meets the risk acceptance guidelines of Reg. Guide 1.174. 16 17 And during our review we did not identify any special circumstances per the SRP 19 Appendix D 18 19 criteria that we use. 20 And as you've heard a number of times so 21 far, the licensee's used this analysis to actually 22 identify potential improvements to the plant to make 23 the plant actually safer. 24 CHAIRMAN DENNING: Incidentally, I think 25 that that third bullet is the proper interpretation of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

218

-- I think that, you know, these risk-informed changes and I think there are limitations to the 1.174 approach to power uprates. But your interpretation at least of the first third bullet, I certainly agree with.

And as you said, this is 6 MR. HARRISON: 7 the generic slide that we usually start with just to remind everyone that the power uprate submittals are 8 not risk-informed. However, per the review standard, 9 get guite a bit of risk information in the 10 we submittal. And that information is used in two ways. 11 12 determine that the One is just to risks are acceptable, and we use the Reg. Guide 1.174 guidelines 13 14 as a judge on that. But also, we're looking to see if 15 there's special circumstances. And for those not familiar with the process, special circumstances in 16 this case is even though the licensee may meet all the 17 regulatory requirements and may be able to show in the 18 19 deterministic calculations that everything is 20 all acceptable and they meet their acceptance 21 criteria, if there's some issue that shows up that 22 would make you question the safety of the plant, 23 that's what we're looking for. Has this done 24 something that even though it meets the regulations, 25 it still creates an unsafe condition?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	220
1	MEMBER WALLIS: Now this is completely
2	independent of what we were talking about earlier,
3	these various analyses of various events comparing
4	results with criteria.
5	MR. HARRISON: Right.
6	MEMBER WALLIS: And if the number which we
7	were just looking at which was very slightly below
8	some acceptance criteria for those things have been
9	above it, it wouldn't have shown up in the risk
10	analysis at all. So it's a completely different
11	world.
12	MR. HARRISON: It's a completely different
13	world. That's a correct
14	MEMBER WALLIS: That's always puzzled me
15	a bit that you can sort of do all this LOCA analyses
16	by different methods and it doesn't really show up in
17	the risk analysis at all.
18	MR. HARRISON: Well, it shows up, but it's
19	using different approaches
20	MEMBER WALLIS: Different success criteria
21	and so on?
22	MR. HARRISON: Different success criteria,
23	that's right. And
24	CHAIRMAN DENNING: It's because we don't
25	consider the uncertainty of the success criteria.
1	

(202) 234-4433

	221
1	That's the issue.
2	MEMBER WALLIS: Also it could be because
3	the risk analysis uses very simplified thermal
4	hydraulic models, too.
5	MR. HARRISON: It can be a balance of
6	that. And you may have two PORVs requiring your design
7	basis in the PRA analysis may say one PORV was good
8	enough. So you can have those types of differences. So
9	this is a different world from the deterministic
10	world.
11	And the last bullet on this slide is just
12	to make the observation that we've looked at a number
13	of power uprates, both BWRs and PWRs ranging from 20
14	percent in the BWR world to 17 percent, if you will,
15	for Ginna. And to date we have never identified
16	anything that would be representative of a special
17	circumstances.
18	MEMBER WALLIS: Now
19	MR. WOOD: and Ginna and Kewaunee and
20	similar and they're going to the same power.
21	MR. HARRISON: Yes.
22	MEMBER WALLIS: What's the Kewaunee
23	situation as regards to risk? Is it very comparable?
24	MR. HARRISON: Kewaunee's power uprate was
25	done many years ago, if I remember.

(202) 234-4433

222
MEMBER WALLIS: That was a smaller one?
MR. HARRISON: It was a smaller one
because I think they started at a higher level. So it
didn't take them as much to get up to the 17
MEMBER WALLIS: Because it's a very
similar plant.
MR. HARRISON: Because I think this is
something like 7 seven percent or 5 percent.
MR. DUNNE: Kewaunee was originally
licensed to 1650. Basically they had the larger steam
generators. This is the series 51 Westinghouse
generator versus the series 44 generators that Ginna
did. So Ginna was originally licensed at 1520. So
when Kewaunee did their uprate, they went from the
1650 up to the 1772. And we did our uprate because we
now have equivalence series 51 generators, it looked
that we used the Kewaunee target as our potential
target for doing an uprate. And we rounded it up to
1775.
MEMBER WALLIS: But their CDF values are
very similar to yours?
MR. DUNNE: I don't know what yes, sir.
MR. FINLEY: Yes. I'm Mark Finley again.
The Kewaunee if you look a the Ginna
risk profiles since I developed the original for

(202) 234-4433

	223
1	Ginna, a lot of the risk is driven by fire. And, you
2	know, the non-LOCA, that type of thing. And Ginna
3	also has five aux feedwater pumps, where Kewaunee will
4	have three. And so a lot of the issues for the Ginna
5	secondary site design is what drives the risk profile.
6	So the risk profile for Ginna are Kewaunee
7	are going to be different. You know, the operator
8	timing issues, that type of thing, there will be some
9	similarities there. But, you know, if you look like
10	where cable routing is from a fire concept, that's
11	what drives the risk profile for Ginna. So the cable
12	routing at Kewaunee is going to be different. So
13	therefore, they'll have a different risk profile from
14	a fire standpoint.
15	MR. HARRISON: I think it would be a fair
16	observation, and we'll get to that in a minute, but
17	for most power uprates the observation would be your
18	main impact is going to be operator timing. So that
19	would be a similarity between almost any power uprate
20	that's come before you.
21	The next thing would be initiating event
22	frequencies, you may postulate more trips due to
23	reductions in operating margin.
24	You typically won't see much in component
25	reliability because almost every licensee refurbishes

(202) 234-4433

their components or adjust their setpoints or they'll 2 change the motors or and impellers and on their pumps so that they can handle the increased flow rates. So 3 4 typically they'll make the argument that the component reliability should be comparable pre and post uprate because of that. 6

7 Sometimes you'll get an impact in success 8 criteria, but those tend to be fairly minor at most 9 plants.

This slide just identifies what Ginna 10 covers. You have to recognize that Ginna actually has 11 a PRA or PSA analysis for internal events, external 12 events and shutdown operations. So they have a fairly 13 14 full scope PRA. Most licensees don't have that.

On the level two side they used, at least 15 for this application, the NUREG/CR 6595 simplified in 16 containment of entry approach, which the Staff allows. 17

To give you the risk impacts, this is 18 19 similar to what Rob presented before. The total CDF 20 increases by 12 percent. The total LERF increases by 21 10 percent. Post power uprate give you the dominant 22 impacts and what their percents were for CDF and LERF. 23 CHAIRMAN DENNING: Did you do SPAR 24 analyses for internal events? 25 MR. HARRISON: In one case. We didn't do

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

	225
1	a rerun of the SPAR model for Ginna, but we did do
2	that for the situation with seismic events. We took
3	the seismic initiator and put it into the SPAR model
4	to see if we would get a comparable answer to what
5	Ginna got. And we did. We got the same order of
6	magnitude response to that.
7	CHAIRMAN DENNING: But as far as baseline?
8	MR. HARRISON: But we didn't do a baseline
9	recalculation to compare
10	CHAIRMAN DENNING: No. Recalculation.
11	MR. HARRISON: our numbers to their
12	numbers.
13	CHAIRMAN DENNING: What about the baseline
14	itself, the SPAR analysis must be reasonably
15	consistent with the baseline?
16	MR. HARRISON: To be honest with you I
17	don't know. I would have to go back and look. And it
18	would surprise me if it weren't because they did a
19	benchmarking exercise a while back to try to in the
20	Reactor Oversight Program they go out to the sites and
21	they benchmark their activities. And in doing that if
22	they find there's a lot of differences, and it's
23	typically the SPAR model that gets adjusted. So
24	they'll adjust it to make them match. So I would be
25	surprised if there was much, but to be honest with
	1

(202) 234-4433

	226
1	you, I can't tell you that, how close the numbers are.
2	CHAIRMAN DENNING: Are we looking at mean
3	risks here? Are we looking at mean of a distribution
4	that's calculated?
5	MR. HARRISON: I would represent these as
6	point estimates.
7	CHAIRMAN DENNING: These are point
8	estimates?
9	MR. HARRISON: Right. And when Rob was
10	earlier talking about doing uncertainty analysis, I
11	would really have characterized those as being
12	sensitivity analysis.
13	CHAIRMAN DENNING: Sensitivity studies.
14	Yes.
15	MR. HARRISON: Where they doubled the
16	frequency or they did other things to try to get at
17	what was important. It was really more sensitivity
18	analysis than uncertainty analysis.
19	MEMBER WALLIS: Are these initiating
20	events? I thought there were no changes in initiating
21	event?
22	MR. HARRISON: No, there were in a couple
23	of different areas. One is the initiating event
24	dealing with the increased flow of main feedwater,
25	main steam. They increased the failure probability for
	I contract of the second se

(202) 234-4433

	227
1	some pipe breaks. So you're going to have increased
2	MEMBER WALLIS: Okay. As a result of
3	increase or a result
4	MR. HARRISON: now those segments of
5	pipe have been put
6	MEMBER WALLIS: ==of increase so there's
7	more likelihood of a pipe break?
8	MR. HARRISON: Right. And they've put
9	those into the corrosion/erosion program, but they
10	went ahead and said with the increased flow there will
11	be an increase probability of a pipe a segment of
12	a pipe break.
13	There were some other things. There was
14	the ATWS frequency goes up a little bit because all
15	the initiators went up a little bit. If you had
16	increased reactor trip, then you have an increase in
17	the probability of an ATWS. And they increased the
18	reactor trip frequency, so that gives you a connection
19	there.
20	So, yes, there was about a 27 percent of
21	the CDF increases due to initiating events, 63 percent
22	of it is operator reaction timing, recovery timing
23	driven. The numbers here are the same as what Rob
24	provided in his presentation.
25	The one thing I want to emphasize here is
1	1

(202) 234-4433

	228
1	Ginna has used this risk evaluation as an opportunity
2	to identify potential changes to make the plant safer
3	that could reduce risk. Now in their submittal they
4	identified what they refer to as risk and cost
5	beneficial changes. They didn't conclude it by talking
6	about the three that they've talked about
7	implementing. But there were a total of five that were
8	originally identified. So don't get too confused
9	between five and three.
10	MR. CAVEDO: This is Rob Cavedo again.
11	MR. CAVEDO: We actually are going to do
12	all of those. The only reason that I mentioned the
13	three in the slide is because they provide the largest
14	risk benefit.
15	MR. HARRISON: And this just gives you a
16	bulletized list of what the five are. Rob's already
17	mentioned three of them. The last two here I think
18	are the ones that weren't mentioned before, which are
19	local controls for the turbine driven aux feedwater
20	pump discharge motor-operated valve and relocating the
21	charging pump control power disconnect.
22	Okay. And we're back to my conclusion.
23	I've got one more slide after this, though.
24	Again, just to reiterate. The Staff
25	believes that the licensee's model, the power uprate
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	229
1	correctly using the tools. The risks are acceptable.
2	If this were risk-informed submittal, it would still
3	be acceptable even without the mods that the licensee
4	is making to reduce risk.
5	No special circumstances have been
6	created.
7	And they've used this to identify those
8	five mods that would even further improve risk and
9	make the plant actually from a risk perspective lower
10	than where it is today.
11	And just as a going forward strategy, the
12	Staff sees a need that licensee will continue to need
13	to provide risk information as part of their
14	submittals under the Review Standard 001. However, to
15	better utilize Staff resources, within the Review
16	Standard there's an option that says if we look at
17	what the licensee submits and it looks complete and
18	has addressed all the issues that we can, if you will,
19	truncate our review and we can submit a letter to the
20	project manager and say we've reviewed it, it's
21	complete, you know you can use that information as the
22	Staff input. So it would be a way to truncate our
23	review.
24	We haven't done that to date But going
25	forward as we may actually start to implement that

(202) 234-4433

part of the review standard that would let us shorten our review, as long as the licensee provides all the 3 information and it looks complete. So then that would 4 focus our review on just making sure the information is complete and addresses special circumstances and risk acceptability.

7 And just the last bullet. I just want to 8 take this as an opportunity to commend Ginna for 9 actually using the risk evaluation to identify those 10 plant changes that they've called for. It's really easy for a licensee to say we meet Reg. Guide 1.174, 11 we're good enough, let's go. And to see actually a 12 licensee say hey, but we can learn something here and 13 14 use it, that's worth commending them for. And I would 15 hope that that would be a lesson that they would share 16 with the rest of the industry and that the industry 17 would take that, if you will, as a challenge to say when you do these evaluations, use them and come back 18 19 and see what you can do to improve your plant. 20 With that note --

21 MEMBER SIEBER: I for one certainly agree 22 with your last bullet. I think this whole piece of 23 this is very well done.

24 CHAIRMAN DENNING: I certainly agree. 25 Thank you very much.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

5

6

	231
1	MR. HARRISON: Okay.
2	CHAIRMAN DENNING: All right. Now this is
3	where electrical is going to be interjected, is that
4	a true statement?
5	MR. FINLEY: Yes, it is. Yes.
6	I'd like to introduce Joe Pacher, the
7	System Engineering Director from Ginna.
8	MR. PACHER: Hi. I've been at Ginna for
9	about 20 years. I'm SOR certified there. I've been in
10	engineering in a couple different supervisory
11	positions. And before that I did many electrical
12	analysis on the distribution side of the plant.
13	What I'm going to talk about today is our
14	evaluations and some of the modifications we're doing
15	on the power delivery side, and then some of the
16	evaluations we did on our impact on the grid for the
17	power uprate.
18	On the electrical power delivery side, we
19	did do extensive verification and review of onsite and
20	offsite transmission electrical equipment. We did
21	identify, and I'll talk about four specific
22	modifications on the power delivery side that we
23	identified early on our feasibility study that needed
24	some upgrades. And fortunately by identifying them
25	early, it gave us plenty of opportunities to look at
	1

(202) 234-4433

232 1 industry and to actually do some of the modifications 2 in our 2005 outage and some additional inspections on 3 them. We've been monitoring the performance of that 4 equipment since that time to verify we're going to 5 both maintain adequate margin after uprate and we're going to have reliability after uprate on this 6 7 equipment. 8 MEMBER WALLIS: Do you ever assess the 9 possibility of switchyard fires? Some plants have had 10 fires int he switchyard. Is this part of your assessment here? 11 12 MR. PACHER: It's not part of what I'm presenting? 13 14 MEMBER WALLIS: You're not? 15 MR. PACHER: None of the changes we're doing should impact the likelihood of a fire in our 16 switchyard. The only thing I can think of would be the 17 transformer. 18 Right. The transformers. 19 MEMBER WALLIS: 20 And the transformer, MR. PACHER: Yes. 21 that's the first thing I'm going to talk about. What 22 we have right now it's a three phase 19kV to 115kV 23 transformer. It was installed in 1996, so it's not a 24 significantly old transformer. We installed it in '96 25 based on some gassing increasing we saw in our

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 previous transformer. That transformer has four 2 cooling banks. And like Mark mentioned on, it gave us 3 one cooling bank as a spare. For our uprate we've 4 installed a fifth cooling bank so that we can maintain 5 the same margin. We're not going to see increases in 6 operating temperatures above what we saw before. So 7 our overall risk of a transformer fire shouldn't have 8 increased. So the two things we had to do on that 9 10 transformer was install the fifth bank and replace the high side voltage bushings. And we did those 11 replacements in 2005. 12 I n addition to doing those replacements, 13 14 it gave us an opportunity since we had to have the 15 transformer drained to do some detailed inspections, some testing. We had GE come in, spend some time going 16 17 through the transformer. Replaced all our coolers, replaced all our pumps, replaced the bladder. We did 18 19 some other inspections. So we got some very high 20 confidence that transformer is going to be reliable 21 after. 22 Based on our OE searches, one of the 23 things we noticed plants were seeing after uprates was 24 they were seeing higher temperatures than expected on 25 the transformer based on local ambient temperatures.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

233

	234
1	We did monitoring last summer and verified that the
2	assumptions that went into our seizing of the fifth
3	cooler in the rating of the transformer were valid
4	based on the temperatures in that area, and we'll
5	continue to monitor it this summer.
6	MEMBER WALLIS: Now what's the interaction
7	between you and the grid? I mean you're producing
8	more power and presumably there has to be some
9	assessment from beyond your plant, which isn't
10	directly your responsibility.
11	MR. PACHER: Yes.
12	MEMBER WALLIS: But you haven't changed
13	the probability of some transient on the grid which
14	would cause you a loss of offsite power.
15	MR. PACHER: Yes.
16	MEMBER WALLIS: There's proper interaction
17	with whatever is responsible for that?
18	MR. PACHER: Yes, there is some
19	interaction. Unfortunately, it's coming up in a couple
20	of slides here, but I'll go into that.
21	MEMBER WALLIS: You were going to go into
22	that?
23	MR. PACHER: The time that we did the
24	feasibility study was the same time Ginna's ownership
25	was being sold to Constellation. So at that point
I	I contract of the second se

(202) 234-4433

	235
1	there was a lot of interactions because we were
2	discussing uprate at the time with our local
3	transmission operator, which is Entergy East, to do
4	some detailed evaluations of the impact of our uprate
5	on grid reliability on equipment ratings.
6	Where we're positioned in the transmission
7	system the actual 80 megawatt increase really didn't
8	impact the overall grid reliability. The bar
9	capability of the generator has more impact than the
10	megawatt increase.
11	So they helped us perform those detailed
12	studies. Everything was proven to be acceptable. But
13	there is another study going on right now as part of
14	the New York ISO for the class of 2006 where they look
15	at not just our uprate, but all power increases on the
16	grid in New York. And they're doing various stability
17	studies throughout the system. And at this point
18	they've identified nothing that Ginna would impact
19	that over our good reliability.
20	The second matter I wanted to talk about
21	was the main generator. It's a 19kV generator. When
22	we looked at that generator it was originally rated
23	for 616 MBA to .85 power factor for uprate. We're
24	taking it to 667 MBA. We did some benchmark and we
25	worked with Siemens Westinghouse.
	1

(202) 234-4433

1 That same frame generator is installed at 2 many other places -- not many. Some other places with 3 a 667 MBA rating. The delta for us was our condensate 4 cooler. And we are going to replace our condensate 5 cooler. But our overall windings and design is adequate for the 667 MBA rating. 6 7 Now knowing that we were going to do this uprate last outage, we did do a major inspection our 8 9 generator. Our generator has been performing exceptionally. Again, we didn't find any indications 10 11 that would indicate that we wouldn't have a reliable 12 generator after. But we did do three modifications last outage, including a flux probe, a partial 13 14 discharge monitor and an intern vibration monitor that 15 we've been monitoring since that during startup and since the outage to verify that the generator is 16 indeed performing reliable. 17 Now those monitors were picked based on 18 some OE searches we did on what failure foods for this 19 20 type of generator. And we feel that monitoring is 21 going to assure us that we're going to have good 22 reliability on that generator after uprate. 23 MEMBER SIEBER: Does that have a static 24 exciter on it or a rotating exciter?

MR. PACHER: It's a rotating exciter. And

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

236

	237
1	that exciter we did
2	MEMBER SIEBER: Old fashioned?
3	MR. PACHER: It's an old fashioned one.
4	Very reliable old fashioned one, but
5	MEMBER SIEBER: Yes, right. It's more work
6	for the operator.
7	MR. PACHER: Right.
8	MEMBER SIEBER: Changing brushes.
9	MR. PACHER: The third modification we had
10	to do was on our iso-phase bus duct cooler. What we
11	have is a 19kV bus duct. It's service water cooled.
12	Right now there's two fans and both fans operate all
13	the time. There's been significant OE in the industry
14	of plants that have done uprates, Clinton, Vermont
15	Yankee where they've done the uprates and they've
16	increased their fan flow substantially and they
17	experienced delamination of the flexible links that
18	resulted in shorts and plant trips and fires,
19	actually. We looked at their evaluations extensively.
20	For our uprate we have a different type of
21	flex link design, so that failure mode we're not as
22	susceptible to. Last outage we did some detailed
23	inspections of our iso-phase. We had Delta Unibus
24	work with us. We didn't find any issues with our iso-
25	phase, but we did put a focus on out of this uprate we
1	I contract of the second se

(202) 234-4433

	238
1	didn't want to increase our cooling flow, our air flow
2	too much that we were going to get into any of these
3	vibration issues. And actually our changes really
4	if we're going to run the two existing fans that we
5	have right now, we're going to see about a four
6	percent increase in flow. And if we run the third fan
7	we're putting in, we'll see about a ten percent in
8	flow. So our increases in flow are substantially lower
9	than the other plants, both Clinton and Vermont
10	Yankee, who experienced problems.
11	Like I say, we are putting a third cooling
12	fan in. That gives us some operational margin if we do
13	have a trip or a failure of one of the existing fans.
14	It will be a manual action for operations to start
15	that fan. But we won't have to derate for a failure of
16	one fan.
17	The other things we did is the two
18	existing fans that we have, the motors are marginally
19	sized at this point. Sometimes during startups we
20	have some issues with those motors. We are increasing
21	the size of those motors to give us more margin in
22	those motors.
23	I can say throughout the uprate projects
24	there's been many other motors in the plant that we've
25	increased the rate. We've replaced the motors out with
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

(202) 234-4433

	239
1	a higher horsepower motors to give us some margin. In
2	cases we really didn't need that margin technically,
3	but it gives us some operating margin going forward.
4	Especially given the vintage of our plant, it's a good
5	time to put the newer motors in for reliability out to
6	60 years.
7	MEMBER SIEBER: Do you maintain sufficient
8	margin in interrupt capacity of switchyard circuit
9	breakers and the main unit breakers?
10	MR. PACHER: Yes.
11	MEMBER SIEBER: You checked that, right?
12	MR. PACHER: Yes. We did low flow studies
13	and short circuit analysis.
14	MEMBER SIEBER: Okay.
15	MR. PACHER: Since we're not replacing our
16	generator, we didn't replace the transformer, our
17	actual fault circuits in our switchyard
18	MEMBER SIEBER: Stays the same?
19	MR. PACHER: really haven't changed.
20	And we have adequate margin there.
21	MEMBER SIEBER: Okay.
22	MR. PACHER: The other thing we did on the
23	iso-phase is we are installing some additional
24	indications. We're putting the air temperature on the
25	plant computer so operations has that visible. There
1	

(202) 234-4433

will be alarms so they can have some improved monitoring after uprate that they presently do not have. The fourth component we're doing some

5 modifications on is our oil static pipe cable system. We're a little unique in this application. Instead of 6 7 having overhead transmission lines going from our onsite substation to our substation across the street 8 9 from this plant, it's an underground oil pipe filled It's 4, 8 and a quarter inch pipes with 2000 10 system. KM cables in there that are -- it's oil pressurized 11 12 between 180 and 220 pounds. And it's been a very reliable system. It's a static pressurization system 13 14 right now. No recirculation.

When they built the plant they did put recirc pumps in so that they could do recirc flow. But based on the operating temperatures and what the plant was originally sized to, we did not have to put recirc flow. We didn't have to put in service.

For uprate we did some detailed reviews of this. Like I said, there's not a lot of nuclear OE experience, so we brought in Underground Systems, Incorporated. They're a company that does a lot of oil pipe systems in non-nuclear applications. They came in, did a complete checkout of our system, did some

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

1 oil samples. We dug down to the pipe. We examined the 2 coatings. We did some testing to verify the pipe 3 coatings were adequate. And they gave us a clean bill 4 of health on our system. But the temperature studies 5 we've done has indicated that in the peak summer time it will beneficial to go to recirculation mode to keep 6 7 the temperatures down in the oil. Basically it's a 2900 foot pipe, four sets of pipe that go in some 8 9 shady areas, go in some grassy areas and also go into 10 a parking lot.

The parking lot was a particular concern 11 12 backaches that would be the hottest spot. In that location we did dig down and we put thermal couples on 13 14 the oil pipe cables under that parking lot. And we're going to tie that to our plant monitor so we can 15 monitor it going forward. And our plan right now 16 based on our studies is that we're going to have to 17 operate that system in recirc for three to four months 18 19 during the summer time frame.

Now we did it operate it last year for a portion of the year to get some operating experience on it. We are going to run it again this summer to make sure that work out any bugs, we can verify it's going to be a reliable system so after uprate we should have a fairly reliable design.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

242 1 MEMBER SIEBER: Now that system, does that 2 work like a transformer oil when you get deterioration 3 and some arcing inside, you form a setaline gas --4 MR. PACHER: Yes. Yes. And they sampled 5 it this year. IEEE 1406 had some criteria in there that you could give an indication of how much aging 6 7 you've done on the oil looking at CO₂ levels. 8 MEMBER SIEBER: Right. Basically our levels were 9 MR. PACHER: consistent with an application of less than five years 10 of service. So it was obviously an indication that 11 12 operated this well below its ratings we've historically. 13 Now do you have a 14 MEMBER SIEBER: 15 procedure in the plant where you sample the oil in 16 this duct system the way you sample oil in the transformer --17 18 MR. PACHER: We have not --19 MEMBER SIEBER: -- to look at it for 20 indicators of incipient failure? 21 MR. PACHER: No. On the transformers we 22 do have online monitors. On the oil pipe system, since 23 it was a static system, samples in the past wouldn't 24 have really given us much because it could have been--25 you know it depends where the partial discharge was

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	243
1	occurring if it was occurring in the middle of the
2	pipe.
3	Once we start operating in recirculation
4	mode, that's one of the PM changes we're looking at is
5	what type of frequency we should take samples of that
6	oil and get
7	MEMBER SIEBER: Well, this line is not
8	safety related, right?
9	MR. PACHER: Right. Right. But from a
10	reliability point it's pretty important.
11	MEMBER SIEBER: Well, even if it trips it
12	doesn't change your lube frequency or anything like
13	that, right?
14	MR. PACHER: No.
15	MEMBER SIEBER: And so it's just be a
16	business decision as to the extent to which you wanted
17	to monitor.
18	MR. PACHER: Right. And obviously anything
19	here I consider pretty critical from a reliability,
20	and I'm sure my bosses think it's pretty critical if
21	something happened to that line after we are
22	MEMBER SIEBER: That's up to you folks.
23	MR. PACHER: Yes. I mean, we have gone
24	through all the equipment out in that pump house, both
25	the pressurization system and the recirc system. And
1	

(202) 234-4433

	244
1	like I say, we are going to run it this summer even
2	though we don't need to just to verify reliability.
3	MEMBER SIEBER: Does this go through the
4	apple orchard?
5	MR. PACHER: Yes. Yes. It goes underneath
6	the apple orchard.
7	MEMBER SIEBER: Well don't mess up the
8	apple orchard.
9	MR. PACHER: It's actually a good spot
10	because it's shady there. So it's a good area.
11	As far as the electrical impacts on the
12	grid, I did mention that already. The main generator,
13	we're bound by our interconnect agreement with Entergy
14	East to be able to verify a 100 megabars both leading
15	and lagging. After uprate we will be able to meet
16	that, we will be able to provide 260 megabars out and
17	we'll be able to take a 100 megabars in. So we can
18	meet the requirements. It'd be highly unlikely we'd
19	ever be at the 260 megabars out, but we have the
20	capability in all our components in the power delivery
21	path are now rated to handle that.
22	Like I said, the New York is always
23	working with us doing the class of 2006, they call it,
24	where they're looking at all the generating stations.
25	And the grid can withstand a trip of Ginna during
I	

(202) 234-4433

	245
1	worse case conditions.
2	MEMBER MAYNARD: A quick question on that.
3	Is that true even if you have one I don't know how
4	many offsite lines you have coming in, but some plants
5	their line or two of the offsite line is not
6	available, then they have to reduce power because it
7	can't take a trip. Does that apply to Ginna at all?
8	MR. PACHER: We have our substation
9	across the street is a 115 kV system, but it does have
10	five separate transmission lines that come into it.
11	Right now we don't have to derate if anyone of those
12	lines go out. There is some contingencies where two
13	lines are on a single pole where we can get into
14	scenarios if lines out, where they might ask us to
15	derate. But at the present time we don't have to
16	derate if any single goes out.
17	MEMBER MAYNARD: Okay. Does the extended
18	power uprate effect that or not? You have the same
19	situation or without the power uprate?
20	MR. PACHER: That's one of the studies
21	we're finalizing right now.
22	MEMBER MAYNARD: Okay.
23	MR. PACHER: But right now the indications
24	are it is going to be we won't have to derate after
25	with a single line being out. Now there is some
1	

(202) 234-4433

	246
1	upgrades going onto this system planned outside of
2	uprate where they're bring a sixth line in and it's
3	going to even make it more stable. But right now
4	there's no plans to have to derate for a single line
5	being out, pre-uprate or post-uprate.
6	MEMBER MAYNARD: Okay.
7	MR. PACHER: Some other things we're doing
8	that are not uprate related but the timing is work at
9	least noting is we have two offsite circuits coming to
10	the plant, one is an underground fed circuit, Circuit
11	767 has been highly reliable over time. The other one
12	is Circuit 751, which is an overhead transmission
13	line.
14	The overhead line, obviously, is exposed
15	to the elements. We've had failures of that. It's
16	been a concern with us on reliability. We have a
17	modification going on right now that will be scheduled
18	to be done by September to bury that line and feed it
19	underground, too, so that we can get the same
20	reliability on that offsite circuit as we have on 767.
21	The other thing we're doing is right now
22	the control room has curves in the control room to
23	verify voltages in our bar generation to make sure
24	that our post trip voltages are adequate. We are
25	working with our local transmission operator and we
	1

(202) 234-4433

	247
1	have a contract in place with him right now for this
2	summer to have an online contingency monitor. And
3	we're working with him on the protocol on how we
4	communicate those issues. If there's something going
5	on in the transmission system where our post trip
6	contingency voltage is below our limits, our operation
7	shift would be immediately notified.
8	So those are two activities. They're not
9	uprate related, but they are things that we're doing
10	that should improve the reliability of our offsite
11	power and our transmission system post-uprate.
12	The last bullet here was our four hour
13	station blackout coping capability. The uprate didn't
14	really add any significant DC loads, negligible real
15	increase on the DC system. So we haven't impacted our
16	four hour coping capability of our batteries.
17	I do make a note here that last time the
18	batteries came up for PM replacement, when we replaced
19	them we put in bigger batteries. We went from 1200
20	amp hour to 1495 amp hour batteries to give us some
21	additional margin, and obviously that margin is still
22	there. And it's not being impacted by uprate.
23	MEMBER SIEBER: When did the battery
24	replacement occur?
25	MR. PACHER: I think it was 2000. I think
	I contract of the second se

(202) 234-4433

	248
1	it was 2000.
2	MEMBER SIEBER: So these are pretty new
3	batteries.
4	MR. PACHER: Yes, these are pretty new
5	batteries.
6	MEMBER SIEBER: Okay.
7	MEMBER WALLIS: This is the second time
8	we've replaced them. Last time we did 1050s and when
9	we replaced them we went to 1200. So it was a case
10	where we had to do a replacement we wanted to get some
11	margin and we took advantage of it.
12	MEMBER SIEBER: Okay. That's good.
13	MR. PACHER: That's all I have. I
14	introduce Jim Dunne for mechanical impacts.
15	Thank you.
16	MEMBER SIEBER: Thanks.
17	MR. DUNNE: Good afternoon. I'm Jim Dunne.
18	I'm an engineering consultant in the design
19	engineering group at Ginna. I've been in the
20	engineering department at Ginna for approximately 15
21	years. And for the last approximately three years
22	I've been the lead mechanical engineer on the uprate
23	project.
24	Today I want to talk about how the uprate
25	project has effected a number of different mechanical
	I

(202) 234-4433

	249
1	systems and components. Specifically to talk about
2	the impact of upgrade on steam generator vibration,
3	which will also including some discussion on a steam
4	separator designer, even though we don't really have
5	any vibration analysis of our steam generators. But
6	because of the BWR experience, which is why is expect
7	that you would be interested in our separator design.
8	Also review the impact of uprate on the
9	major BOP heat exchanger and the process systems. And
10	the vibration monitoring program that we will be
11	implementing to support uprate from a piping component
12	point of view.
13	Also quickly go over the effect of uprate
14	on the flow accelerated corrosion program we presently
15	have in place.
16	And finally talk about how uprate has
17	effected a number of our existing cooling system,
18	decay heat removal and some others.
19	MEMBER SIEBER: A quick question. When you
20	bought your replacement steam generators, did you
21	specify that you would be operating at this higher
22	steam flow?No
23	MR. DUNNE: No, we didn't.
24	MEMBER SIEBER: So is a reanalysis
25	required

	250
1	MR. DUNNE: That's correct. And that's
2	MEMBER SIEBER: to qualify the steam
3	separators?
4	MR. DUNNE: That is correct. That gets
5	into my next slide specifically on steam generator
6	vibration. As we stated earlier, our original
7	generators were Westinghouse series 44 generators. And
8	in 1966 we replaced them with new generators
9	manufactured by B&W Canada. Same feed rate in design.
10	The major changes to the generators where we increased
11	the surface area from 44,000 to 54,000 square feet, we
12	changed out the tube material from alloy 600 to 690.
13	And from a steam separator point of view we changed
14	the design moisture carry over number from 0.25
15	percent down to 0.1 percent.
16	As part of the
17	MEMBER SIEBER: And that's at the old
18	plant rate?
19	MR. DUNNE: Right.
20	MEMBER SIEBER: Okay.
21	MR. DUNNE: So as part of the original
22	uprate or original replacement, B&W Canada was tasked
23	with doing a vibration analysis of the two bundle
24	design where they looked at a number of different
25	areas. For the uprate we have gone back to B&W Canada
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	251
1	and asked them to basically revise their original
2	design to take into account the uprated conditions.
3	And for that analysis we gave them conservative
4	bounding estimates to use for their analysis.
5	For example, we expect our steam
6	generator, all that pressure based upon our HP turbine
7	design, to be around 800 psia. And for the uprate,
8	for the reassessment of the bundle we asked B&W Canada
9	to conservatively assume a 750 psia outlet pressure.
10	The lower pressure the maximize the velocity in the
11	two bundle so that we had margin in our analysis.
12	With regard to the original analysis,
13	which is the same as what they have redone, they
14	basically used the ATHOS computer program to calculate
15	the three dimensional flow through the bundle and it's
16	a two phase flow model. They used the ATHOS program to
17	identify areas in the two bundle design that had
18	velocities and also to get the velocity profile
19	density and quality profile within the bundle. Then
20	that
21	MEMBER WALLIS: Can I ask you these steam
22	generators. Are there other plants using the
23	MR. DUNNE: Yes.
24	MEMBER WALLIS: same steam generator
25	MR. DUNNE: Yes, there are.
	1

(202) 234-4433
	252
1	MEMBER WALLIS: under the essentially
2	the same velocity conditions and so on?
3	MR. DUNNE: Well, there are other plants
4	that have B&W replacement generators. Basically the
5	general design we have is the same design that they've
б	been using for the CANDU steam generators. And there
7	have been a number of U.S. utilities who have bought
8	replacement generators from B&W
9	MEMBER WALLIS: Well, whatever these
10	analyses show, if you can actually show there's an
11	experience pace which says that these steam generators
12	are not prone to vibration under these conditions,
13	that is also useful information.
14	MR. DUNNE: Correct. And for example
15	there are I believe around 70 to 80 steam generators
16	operating in the world, about 35 or 40 of them in the
17	U.S. including ours that have been operating for
18	periods of time. We've been operating our generators
19	for ten years. And we have not seen any indications
20	of vibration damage or wear in our steam generator
21	bundle consistent with the original analysis. And
22	from my understanding, that's basically true
23	throughout the B&W Canada replacement generator fleet.
24	The types of vibration analyses they did
25	were basically in the area of the two bundle that are
	1

(202) 234-4433

exposed to cross flow, which is basically the two entrance region and the U-bend region of the bundles. The types of vibration analyses they did is basically they do a fluidelastic instability

5 calculations both the tube entrance and the U-bend region. They do a vortex shedding analysis only for 6 7 the tube entrance region because it's an inlet effect and that's really the only place where you have flow 8 9 entering the bundle. They do a random turbulence excitation analysis for displacements for both the U-10 Bend and the tube entrance region. And they also do a 11 12 tube wear analysis for the U-bend. Their experience has been that if you're going to see any tube wear due 13 14 with wear with supports, it's in the U-bend and not anywhere else in the bundle. 15

So basically they have repeated that set 16 of analyses for Ginna for the uprate conditions. 17 As you would expect with the increased flow we're 18 19 getting, in general the numbers increase slightly over 20 what we had previously. But for all of the parameters 21 investigated, still that were we met the B&W 22 acceptance criteria.

For example, for fluidelastic instability the limiting tube velocity ratio that we have at uprate is .87 with a criteria of less than 1.0. And

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

that compares to, I believe, for the present design a 2 value of around .81 for the same tube location. So you see an increase but we're still below the acceptance 3 4 criteria.

5 For vortex shedding they use a criteria that the tube displacement for vortex shedding should 6 7 nominally not be greater than 2 percent of the tube The original analysis we had cut one tube where 8 OD. 9 we were slightly over 2 percent, that they determined was acceptable because of the conservatism in the 10 methodology. At uprate that tube, the displacement 11 has increased slightly but it's gone from like 2.05 12 percent up to like 2.15 percent, a minor change. And 13 it was viewed as still being acceptable. 14

15 Random turbulence excitation, they use a criteria of 15 mils displacements -- excuse me, 10 16 17 mils displacement. And none of our tubes either for the present design condition or with the uprate are 18 19 anywhere near the 10 mil number they use.

20 The tube wear analysis for the U-bend is 21 a little bit different for uprate than was done for 22 the original design. The original design back in 1994 23 and '95 when the generators were being designed by B&@ 24 Canada they used a qualitative assessment on tube wear 25 in the U-bend region comparing the Kewaunee thermal

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

they've with 6 Since then come up а 7 quantitative method for assessing tube wear in the Ubend. And for our uprate reanalysis, they basically 8 9 the quantitative method that they're using did presently. Basically their criteria is over a 40 year 10 11 life of a steam generator that the tube wear due to 12 fretting between tubes and the tube support plates in the U-bend region should not exceed 40 percent 13 14 throughwall. Their analysis for us at the uprated 15 conditions it showed that none of the wear over a 40 year life would exceed 20 percent. 16 So we're well 17 within their acceptance criteria. Do you just drilled 18 MEMBER SIEBER: 19 support plates? 20 No, we don't. We have a MR. DUNNE: 21 basically a lattice grid design.

bounded by existing units.

MEMBER SIEBER: Okay.
MR. DUNNE: It's completely different-MEMBER SIEBER: Like a combustion
engineering --

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

(202) 234-4433

255

	256
1	MR. DUNNE: So it's a line interface, if
2	you will, versus you know a full tube interface or a
3	drilled hole interface.
4	MEMBER SIEBER: Okay.
5	MR. DUNNE: So the conclusion of the
6	assessment was that the present design is adequate for
7	the uprated conditions and that there were no other
8	actions that we need to take. We will continue to do
9	our normal monitoring of the tubes per our existing
10	schedule to, again, verify we see no wear or corrosion
11	related indications with the bundle.
12	MEMBER SIEBER: Now you did not discuss
13	the steam separator at the top.
14	MR. DUNNE: Next slide.
15	MEMBER SIEBER: Oh, okay. Well, let me
16	ask a question.
17	MR. DUNNE: Sure.
18	MEMBER SIEBER: And then you can work it
19	into your discussion. In ten years I'm sure you've
20	done the inspections
21	MR. DUNNE: Yes, we have. We do
22	inspections.
23	MEMBER SIEBER: What did you find.
24	MR. DUNNE: Excuse me?
25	MEMBER SIEBER: What did you find?

(202) 234-4433

	257
1	MR. DUNNE: We didn't find a heck of a
2	lot. We found magnetite buildup on surfaces, but we
3	haven't seen any other indications of wear or any
4	broken welds or anything along those lines.
5	Basically the Ginna steam generators
б	originally with the Westinghouse series 44 generators
7	are primary separators with a swirl vane separators,
8	three big swirl vanes.
9	MEMBER SIEBER: Right.
10	MR. DUNNE: And then our secondary
11	separators were basically a Chevron de-mister type
12	hood, a secondary separator.
13	The B&W design for a primary and secondary
14	separators is completely different than that. They
15	basically use a centrifugal separation for both the
16	primary and the secondary separators.
17	The replacement generators have 85 primary
18	to secondary separator modules installed in the steam
19	dome region.
20	MEMBER SIEBER: Yes.
21	MR. DUNNE: To basically equalize the
22	steam flow over the entire bundle. Also the one
23	feature of that is that it allowed them to do full
24	scale testing of their primary and secondary separator
25	designs at actual operating conditions and steam flow

(202) 234-4433

	258
1	so you didn't have to do any extrapolation from scale
2	testing to figure out the performance of the
3	separators.
4	MEMBER SIEBER: Okay.
5	MR. DUNNE: Based upon the design there's
6	minimum cross flow for the components in the steam
7	dome region. And the way it's constructed, it's a
8	relatively rigid structure which we believe is not
9	susceptible to bundle design.
10	I'll have some slides after I get through
11	these bullets to show a little bit more of the details
12	of the design.
13	And again, as I stated, they have done
14	full scale model testing of these modules for
15	operating pressures between 750 up to, I believe 950
16	psia, for steam flows up to 5800 pounds per hour per
17	module.
18	Presently at our present operating
19	condition our average steam flow is on the order of
20	38,500 pounds per hour. At uprate we'll be increasing
21	our steam flow to around 45,000 pounds per hour per
22	m module. So we're well within the range of steam
23	flows that they have tested these modules at a
24	laboratory.
25	MEMBER SIEBER: And what separation have
	1

(202) 234-4433

	259
1	you gotten so far? .25?
2	MR. DUNNE: When we replaced the
3	generators in 1996 we did a sodium 24 tracer test,
4	basically it was a performance warranty test to prove
5	that they met the 0.1 percent design requirement for
6	the new separators versus the 2.5 percent we have the
7	old. The results of that separator test we're getting
8	moisture carryover rates on the order of .015 to .02
9	percent.
10	MEMBER SIEBER: Okay.
11	MR. DUNNE: So about a factor of five less
12	than the design.
13	Now at uprate we expect actual moisture
14	carryover will increase. Their full scale model
15	testing basically shows that as you increase the steam
16	flow, you tend to get higher qualities. However, you
17	don't really get beyond the 0.1 percent design until
18	you start approaching that 58,000 per hour number per
19	module. So in general we expect that at uprate we will
20	still be well below our design requirement for
21	moisture carryover of .1 percent. We'll probably be
22	down around the .04 to .04 percent range based upon
23	the laboratory test results they have.
24	MEMBER SIEBER: Okay. What's the steam
25	quality of the turbine exhaust?

(202) 234-4433

	260
1	MR. DUNNE: The HP turbine exhaust?
2	MEMBER SIEBER: No. The LP turbine.
3	MR. DUNNE: The LP?
4	MEMBER SIEBER: Yes, that's where you get
5	the wear.
6	MR. DUNNE: Yes. I'm guessing off the top
7	of my head it's around 18 percent. We actually may
8	have higher quality at the HP exhaust. Higher
9	quality, yes, less moisture at the HP turbine exhaust
10	at uprate than we do at the present power level
11	because we're going to have a higher back pressure in
12	our condenser.
13	MEMBER SIEBER: I would think so. I would
14	think so.
15	MR. DUNNE: I don't believe the quality
16	has really changed that much. We're basically coming
17	out at a higher back pressure, but the quality is
18	about the same.
19	MEMBER SIEBER: Okay. Okay.
20	MR. DUNNE: Okay. So just to show you
21	what our steam separators look like, this is an
22	elevation view of the steam drum region of our steam
23	separators. And basically the long riser tube that
24	you see is our primary separator. There is a curved
25	arm separator up at the top. And then you'll see
	I

(202) 234-4433

1 there's a gap and then another set of modules, squat 2 modules all the way up at the top just below the 3 secondary plate. Those squat modules are our 4 secondary separators.

5 In reality even though this drawing doesn't show it, the entire cross section is filled 6 7 with the separators. So if you go in and look down at 8 the primary separators, what you end up seeing is 9 something that looks like that. Basically what dictates the number of steam separator modules that we 10 install in the steam drum --11

MEMBER SIEBER: How big it is.

MR. DUNNE: -- is how big the steam drum 13 14 is and how many of these things we can put in. Basically the size of these modules from a diameter 15 point of view is the same for all the uprate plants. 16 And what changes the number of modules from one steam 17 18 generator versus another steam generator is the 19 diameter of the steam drum.

So if you just go in now and look at one individual separator, this is what you see. You see a riser plate at the bottom that is welded to the primary deck. So the steam flow leaving the U-bend is coming out of that riser plate, going up to that curved armed vane separator where you do your initial

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

12

Í	262
1	separation of steam and water. The steam comes up and
2	proceeds upward. The water basically gets spinned out
3	of the curved armed separator, hits the return
4	canister and then drains down the return canister.
5	MEMBER WALLIS: So the purpose of that
б	long riser is what?
7	MR. DUNNE: Well, one of the purposes is
8	to get the primary separator up above the water level
9	in the steam generator.
10	MEMBER SIEBER: Yes.
11	MR. DUNNE: I think that's basically the
12	prime purpose for it. Because the normal water level
13	in the generator may be 4 or 5 feet above the primary
14	deck. And you also want to have it above it so that on
15	operational transients you don't flood out the
16	separator, the primary separator. And basically the
17	testing that was done on these modules basically
18	showed the moisture removal characteristics of the
19	primary separators pretty independent of water level
20	as long as the water doesn't rise into the primary
21	separator themselves.
22	So the return canister is basically welded
23	to the riser tube at the bottom by two plates 180
24	degrees apart. And then the two sets of alignment
25	bolts, one at the bottom and one up near the top that
	1

(202) 234-4433

	263
1	they used to center the riser plate inside the return
2	canister.
3	Now what they end up doing is the primary
4	deck has a stiffener plate welded to the top of it
5	that go across the length of the primary deck to
6	stiffen it up. It's one inch thick steel.
7	The separators have separator ties welded
8	to the outside of them where they basically end up
9	welding adjacent separators to these ties to try and
10	make the entire bundle more rigid. So one separator if
11	it tries to move laterally is transmitting its load to
12	the seven separators.
13	Basically the ties are basically small
14	bore piping, schedule 40 piping. Anywhere from, I
15	believe, maybe one inch up to inch depending upon the
16	location in the tube bundle.
17	The secondary separators, again, it's a
18	curved arm separator where you get steam coming in
19	introducing a swirl to separate the water from the
20	steam. And the steam passes up and then there's a
21	drain tube in the bottom of the box that collects the
22	water and drains it back to the == basically, the
23	water side of the generator.
24	The curved arm separators are welded to
25	the separator plate that's above it. The separator

(202) 234-4433

	264
1	plate is basically half inch carbon steel plate and
2	it's got stiffeners underneath it running from one end
3	to the other laterally. And in between those there are
4	spacers that go from one separator to another to make
5	it a very rigid structure.
6	MEMBER SIEBER: It seems like it would be
7	hard to inspect.
8	MR. DUNNE: Actually, let me go back
9	MEMBER SIEBER: Do you use a baroscope or
10	something?
11	MR. DUNNE: What you end up doing, there's
12	a manway at the top
13	MEMBER SIEBER: Right.
14	MR. DUNNE: of the steam generator. We
15	can enter that manway and basically get into that
16	steam dome region.
17	MEMBER SIEBER: Right.
18	MR. DUNNE: And that allows us to inspect
19	the secondary deck plate and we can also inspect all
20	t hose secondary separators because we can look down
21	into that.
22	MEMBER SIEBER: Right.
23	MR. DUNNE: There is always, and you don't
24	see it here, but down in the bottom there's a boxed
25	area over by the feed ring, that's basically a ladder

(202) 234-4433

	265
1	access that allows us to climb down through the
2	separator bundle. It's primarily there to allow us to
3	access the U-bend region of the steam generator. But
4	we can also as we go down there look in at those
5	modules.
6	MEMBER SIEBER: With all those welds in
7	there, it doesn't look like you could go and inspect
8	them.
9	MR. DUNNE: No. No. We really can't go in
10	and inspect the welds on those separator ties, for
11	example.
12	MEMBER SIEBER: Right.
13	MR. DUNNE: So if you go in and compare
14	what we have to what we understand the BWR steam
15	generators look like, and this is sort of similar to
16	the criterion that I think Waterford used to the full
17	ACRS. As a matter of fact, that's where we stole their
18	BWR cartoon. But the design and the flow patterns
19	basically are completely different.
20	We believe we have a rigid structure to
21	begin with. And basically whereas they had flow
22	patterns that were inducing a lot of turbulence in the
23	reactor vessel head trying to work its way over to the
24	main steam nozzle, we basically have a uniform flow
25	path going to our main steam nozzle so we don't
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	266
1	believe we're going to get turbulence within the
2	bundle that would cause any flow induced vibration on
3	our steam separating system.
4	MEMBER SIEBER: There is an advantage of
5	having the steam outlet at the top as opposed to the
6	side where you have to
7	MR. DUNNE: That's where the steam wants
8	to go.
9	MEMBER SIEBER: Yes. Correct.
10	MR. DUNNE: So that's basically what I
11	have on the steam separators for Ginna.
12	CHAIRMAN DENNING: Do you have vibration
13	monitors downstream that could pick up a vibration if
14	one were to occur.
15	MR. DUNNE: No. We don't have vibration
16	monitors installed on our main steam piping. As part
17	of vibration piping monitoring program we may be
18	installing some monitors for the power escalation on
19	the main steam line to monitor data. But in general we
20	don't monitor vibration on it.
21	Now one thing we do have if we had a loose
22	part and it fell down into the bundle, we do have an
23	acoustic monitoring system on the tube sheet region of
24	our steam generators which basically would alarm in
25	the control room if it got any acoustic signals that
	1

(202) 234-4433

	267
1	were outside its normal range. It's primarily intended
2	to tell us that we've got a loose part basically in
3	the bottom of the bundle design that may be causing a
4	wear indication.
5	MEMBER MAYNARD: And I would think that if
6	you had vibration especially if it was causing any
7	contact between any points, that monitoring system
8	would pick that up.
9	MR. DUNNE: Depending upon possibly.
10	I don't want to say conclusively that if we had any
11	vibration it would pick it up. I think if we had any
12	major issues due to the parts that fell off that were
13	rattling around in the U-bend or in the steam
14	generator, we would hope that that acoustic monitoring
15	system would notice a change and alarm and force us to
16	go figure out why it alarmed on us.
17	MEMBER SIEBER: I noticed in one of the
18	pictures, and this isn't a safety issue either, that
19	from the feed drain you don't have the old
20	Westinghouse design
21	MR. DUNNE: No. We have a gooseneck design
22	so that instead of the feedwater nozzleand so the
23	feedwater coming horizontally into the feed ring and
24	then feeding out, and the original design had the
25	holes in the bottom which caused steam generator water
I	

(202) 234-4433

	268
1	hammer problems and then we went to J-nozzles. We have
2	J-nozzles on our feed ring, but instead of coming
3	directly into the feed ring, we come in and we have a
4	gooseneck piping that goes up and comes down.
5	MEMBER SIEBER: Like a trap?
6	MR. DUNNE: To trap it and minimize,
7	basically, draining the header and causing a steam
8	generator water head issue.
9	MEMBER SIEBER: Yes. I thought I saw that
10	on the drawing.
11	MR. DUNNE: That was one of the features
12	associated with the new replacement generators over
13	the old design.
14	MEMBER SIEBER: Yes.
15	MEMBER WALLIS: Is a gooseneck the same as
16	a J-tube?
17	MR. DUNNE: Possibly.
18	MEMBER WALLIS: Isn't it really the same
19	thing?
20	MR. DUNNE: I always called it a
21	gooseneck, but it's basically a U-bend basically type
22	deal.
23	So if there aren't any other questions, I
24	will move on if I can figure out where I am. Okay.
25	Balance of plant heat exchanges.
	1

```
(202) 234-4433
```

	269
1	Basically, obviously increasing flows around the
2	process piping and the main feedwater, main steam
3	extraction steams we're increasing mass flow rates to
4	our feedwater heaters.
5	Ginna has two trains of feedwater heaters,
6	each train has five feedwater heaters, four low
7	pressure heaters and one high pressure heater. Three
8	of our four low pressure heaters basically have a
9	drain cooling section, one of them doesn't it's just
10	a condensing heater design.
11	So as part of the uprate and based upon
12	the operating experience out there from past uprates
13	where people have had vibration problems after uprate
14	with their heat exchanges, we basically contracted
15	with TEI, Thermal Engineering International which is
16	the old Southwest Engineering, to go back and do an
17	assessment of our existing feedwater heaters at the
18	uprated condition. Basically Ginna has changed out
19	all of the tube bundles in our existing feedwater

20 heaters. We originally had cooper alloy tubing and as 21 part of steam generator corrosion from the early '80s 22 up to 1995 we're in the processing of retubing our 23 heat exchangers.

24TEI or Southwest Engineering was25responsible for providing three of the five new tube

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	270
1	bundles, so they were very familiar with that design
2	because it was theirs. And the other two were Marley,
3	who I guess had gone out of business, but they had
4	access to their design information.
5	So we asked them to review the feedwater
6	heaters for uprate from both a vibration point of
7	view, velocity point of view, thermal performance
8	point of view.
9	From a vibration point of view basically
10	their conclusion was that there is no concerns with
11	vibration in the condensing zone region of the
12	feedwater heaters. They were more concerned about the
13	potential for vibration in the drain cooling section,
14	so they did detailed calculations for fluid elastic
15	instability in the drain cooling section. Their
16	conclusions were that on all four of the feedwater
17	heaters that have drain cooling sections that the
18	velocity was below the critical velocity.
19	They had one concern because their normal
20	design practice for a new feedwater heater is to
21	design it to a velocity ratio of 0.75. And we had one
22	set of heaters, our number 5 feedwater heaters which
23	are our high pressure heaters, where our velocity
24	ratio at uprate actually exceed .75, I think it was
25	around .82, .82. their recommendation was that they
1	I Contraction of the second

(202) 234-4433

ĺ	271
1	believed it was okay to go forward, but they
2	recommended monitoring those feedwater heaters going
3	forward to make sure there is not an issue.
4	So what we are done and we are basically
5	getting baseline examinations, eddy current
6	examination for the drain cooling sections of our two
7	number 5 feedwater heaters prior to uprate. We did one
8	of them last year, we're going to do the second one
9	this year so that we have a good comparison point.
10	The last time we had inspected those
11	heaters were back in 2002 as part of our normal heat
12	exchanger inspection program. And the one we looked at
13	last year when we compared the eddy current results to
14	the previous one in 2002, we did not see any changes.
15	So the expectation is the second one that we do this
16	year we'll see the same thing. But we'll have a clean
17	baseline for assessing what we see after we do the
18	uprate.
19	So the plan is that the first refueling
20	outage after uprate we will go back in and do an eddy
21	current examine both those heat exchangers to confirm
22	that there are no indications of vibration damaging
23	occurring.
24	The second set of major heaters effected
25	by uprate are our moisture separator reheaters. We

(202) 234-4433

	272
1	have basically four reheaters. We have single stage
2	reheating, but we have four MSRs. Again, they were
3	retubed in the early 1980s, again, to get cooper alloy
4	out and I think to put stainless in.
5	Additionally, we have had problems with
6	the reheater design on thermal performance. And we
7	thought we were getting excessive carryover moisture
8	from the separator into the bundle design, which is
9	probably why we were having thermal performance issues
10	with the steam outlet temperature.
11	TEI or Southwest Engineering at the time
12	was responsible for designing those new tube bundles.
13	So we went back to them to ask them to update their
14	analyses for the uprated conditions. They redid their
15	analyses for the uprated conditions and their
16	conclusion was that the design was acceptable. We had
17	around 15 to 20 percent margin between the velocity
18	and the critical velocity.
19	The final major heat exchanger in the
20	system is the condenser. We retubed our condensers in
21	1995, replaced tubing with stainless steel tubing. As
22	part of that tube bundle replacement in '95, we staked
23	our entire tube bundle.
24	Stone & Webster evaluated our condenser
25	for uprate on tube span for the uprated conditions
	1

(202) 234-4433

using the methodology in HEI for condenser design for maximal allowable span. And the calculations concluded that we had adequate spacing presently based upon the calculations. And the only reason why that's the case is because we staked the bundle in '95. If we had not staked the bundle in '95, we would have had to have done a condenser staking operation to support uprate.

The other vibration program we have is the 8 9 vibration monitoring program, which is primarily for piping that we will use to assess potential impact of 10 uprate on piping vibration. It's basically composed of 11 two parts, like everybody else who has probably come 12 Basically a pre-EPU 13 before you. assessment of 14 vibration levels in the process piping systems; main 15 steam, main feedwater extraction, reheater a couple of 16 others. But all the systems that basically see 17 increased flow due to uprate.

And basically there's a two part baseline. 18 19 It's an initial walkdown, visual walkdown of the 20 system to identify areas where there are possibly 21 noticeable indications of vibration. We did that with 22 Stone & Webster, I believe, last week. And they're 23 putting the results of the walkdown together. And then 24 based upon that we're going to identify locations 25 where we have vibration levels that we think we need

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	274
1	to monitor going forward. We'll put monitoring
2	equipment on, be it handheld or permanent will depend
3	upon the location, and get a baseline indication of
4	what the vibration level is presently. And then after
5	we come out of our uprate outage we will basically
6	repeat that process, do the visual walkdown again to
7	verify that we don't see any new indications of
8	vibration. And also to go in and compare those places
9	we monitored now, to monitor them again at EPU and
10	assess any changes in vibration levels. And then
11	depending upon what we'll see, we'll evaluate the
12	results and take whatever actions are appropriate if
13	there are any areas where we see vibration that we
14	need to basically deal with.
15	CHAIRMAN DENNING: I'm not quite
16	understanding. Are you talking about monitoring
17	instrumentation?
18	MR. DUNNE: We will install yes, be it
19	an accelerometer or a displacement probe or velocity
20	probe. We haven't figured out exactly what we're going
21	to install, but we are going to put monitoring
22	instrumentation at select points. And we haven't
23	figured out the list yet because it's going to be base
24	don our visual walkdown on the system that we will
25	then go in and present instrumentation values be it
l	

(202) 234-4433

(202) 234-4433

	275
1	acceleration velocity or displacement. And then
2	repeat that at those same locations at the EPU
3	conditions to assess deltas, if you will, due to the
4	uprate.
5	MEMBER SIEBER: This is portable
6	instruments or permanent ones, or you don't know?
7	MR. DUNNE: We haven't decided yet. It
8	may be a combination of both. It may be all portable,
9	it may be a combination of portable and permanent.
10	We have used operating experience in
11	setting up our monitoring program. And specifically
12	Stone & Webster has been involved in a lot of uprates
13	where they have done this activity and so whatever
14	they've learned from all the walkdowns they've done,
15	they've incorporated into the program.
16	We've also gone through basically action
17	report condition reports at Ginna to figure out any
18	areas where historically we may have noticed vibration
19	to make sure that review those and assess them going
20	forward. And we also have reviewed the other
21	operating industry experience reports that are on INPO
22	to see what other lessons learned we should
23	incorporate into our program.
24	For example, someone a couple of years ago
25	and came out and they had an instrument to basically
1	

(202) 234-4433

	276
1	fail. We're making sure that our visual walkdown
2	includes all branch lines including instrumentation
3	off of the main process lines that are seen in the
4	high flows.
5	MEMBER SIEBER: Now do you have motor
6	driven or steam drive feed pumps?
7	MR. DUNNE: We have motor driven.
8	MEMBER SIEBER: And so at low power levels
9	you're putting a big pressure drop across your feed
10	reg valves?
11	MR. DUNNE: That's correct.
12	MEMBER SIEBER: You get a lot of vibration
13	there?
14	MR. DUNNE: We probably do. Typically we
15	don't go in and monitor at transient operating points
16	because typically you will get higher vibration levels
17	than you will at your normal operating point. That
18	the last
19	MEMBER SIEBER: That's usually when the
20	valve falls apart.
21	MR. DUNNE: Yes. So that's the last
22	portion of the monitoring program.
23	We do have a rotating machinery vibration
24	program presently which involves periodic monitoring
25	of the major rotating components in the plant,
1	

```
(202) 234-4433
```

277 1 basically the feed pump, heater drain pump, circ water 2 condensate pump, etc. Right now that's pump, 3 monitored on a monthly bases. We have baseline 4 vibration readings for the pumps, the motors for our 5 main feed pumps. We have a speed increaser between a motor and the pump. We monitor vibration from that 6 7 component. So we have that baseline. And typically after any refueling outage 8 9 rotating equipment analyst goes our around and basically walks through all those components to make 10 sure there's been no change versus what our values 11 were before We will be doing that activity as part of 12 our power accession program. 13 14 MEMBER SIEBER: Now I think I read where 15 you're replacing motors or pumps in your feedwater 16 system? We are putting new main feed 17 MR. DUNNE: pump impellers into our existing pump casings to 18 19 basically get increased capacity. Because of that 20 increased capacity we're putting larger sized motors. 21 So we have to rebaseline those components anyway to 22 get a new baseline reading. 23 We're also putting in new impellers in our 24 condensate booster pumps. 25 MEMBER SIEBER: And your output pressure

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	278
1	for the pumps will be higher because $\mathtt{T}_{\mathtt{h}}$ is higher?
2	MR. DUNNE: Our T ^h is higher. Our steam
3	drainer pressure is going to be slightly higher than
4	when we operate now, but not appreciably. Right now
5	we run with a steam generator outlet pressure on the
6	order of around 770 psi at the steam generator nozzle.
7	And at uprate we expect that that value will go up to
8	800. Basically what we're trying to do is increase
9	the steam generator pressure to cover the increased
10	frictional loss in the main steam line so that the
11	inlet pressure to our turbine
12	MEMBER SIEBER: Right. It about the same?
13	MR. DUNNE: is basically the same as
14	what we have right now. And it's the turbine design
15	that controls that.
16	MR. DUNNE: That's going to put more
17	pressure on your fed reg valve.
18	MR. DUNNE: Right. Now what we need to do
19	is because the main feed pump impeller was going to
20	give us comparable pressure drop characteristics to
21	what we have presently. But right now we throttle out
22	of the system about 200 psi across our main feedwater
23	valves. So what we're basically doing is putting
24	MEMBER SIEBER: Is that all? I would think
25	it would be more than that.

(202) 234-4433

279 1 MR. DUNNE: Yes, it's around -- I think 2 it's around 200. MEMBER SIEBER: At full power? 3 4 MR. DUNNE: Yes. Full power. Yes. 5 MEMBER SIEBER: Okay. Okay. Yes, at low power it's 6 MR. DUNNE: 7 a very large number. 8 MEMBER SIEBER: Okay. 9 Actually, at low power it may MR. DUNNE: 10 not be as large as you think because at low power the steam generator pressure is higher. 11 12 Right. MEMBER SIEBER: 13 MR. DUNNE: At zero power we run a 1,000 14 But you got more head -- you got more head on -psi. 15 It's nearly closed. MEMBER SIEBER: 16 MR. DUNNE: Right. You've got less flow 17 and you got more head on your pumps, you got a larger pump discharge pressure. 18 19 MEMBER SIEBER: Yes. Well, it's something 20 for you to watch. 21 MR. DUNNE: Yes. And that's all I had on 22 the vibration monitoring program. 23 The next thing I want to quickly go over 24 is flow accelerated corrosion program. Ginna does 25 have a flow accelerated corrosion program presently

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	280
1	that we're maintaining. It basically involves the
2	CHECWORKS, EPRI CHECWORKS computer program in
3	combination with actual plant readings on wear rates
4	on the various components are a part of the system.
5	And eery outage our flow accelerated corrosion
6	engineer goes around and has probably 100 or 200
7	components that he identifies to go in and get actual
8	thickness readings so he can assess what the change in
9	wear rates has been. And then he rolls that back into
10	his program.
11	Obviously with increased flow rates
12	changes in pressures and temperatures and quality in
13	your piping systems you would expect there's a
14	potential impact on the corrosion rates.
15	For the uprate what we've done is we've
16	taken the CHECWORKS program and used it to
17	analytically predict the wear rate based upon the
18	existing process conditions. And then go in, put in
19	the new uprate conditions and look at a change in wear
20	rate, an analytical wear rate.
21	And in our submittal, if I can get this
22	thing to work, we included this table in our licensee
23	submittal to the NRC where we went around and
24	basically tried to touch all the major systems that
25	are part of the FAC program and look at components
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	281
1	that have wear rates presently to assess what the
2	change in the wear rate would be analytically due to
3	the EPU conditions. So I believe it's the column all
4	the way over at the right that tells you the percent
5	change and the wear rate due to EPU. And the numbers,
6	depending upon the system, vary anywhere from about 2
7	or 3 percent up to as high as 24 percent.
8	MEMBER WALLIS: So it's the extraction
9	steam line that's the most sensitive here, the one
10	that's wear in the fastest?
11	MR. DUNNE: And that may not be too
12	surprising. That's a wet system.
13	MEMBER WALLIS: It's because of the
14	materials that you're using, too, isn't it?
15	MR. DUNNE: It could be.
16	MEMBER WALLIS: It's two phase?
17	MR. DUNNE: It's two phase, and that
18	probably has a large part to it. We've gone through
19	the plant and have changed out a lot of materials from
20	the original material that was susceptible to wear to
21	basically a chrome molly material.
22	MEMBER WALLIS: So how long are they going
23	to last, these pipes now?
24	MR. DUNNE: Well, that will depend upon
25	MEMBER WALLIS: Your 5 mils per year or

(202) 234-4433

282
something you're losing?
MR. DUNNE: It depends upon where you're
talking. Which component?
MEMBER WALLIS: It's not changed all that
much?
MR. DUNNE: No, it doesn't. So basically
what's happening is we're in the process right now
if I can get out of this.
MEMBER WALLIS: Well, it's not really a
safety issue?
MR. DUNNE: No.
MEMBER WALLIS: It would be embarrassing
to lose a section of steam line, but it's not really
a safety issue.
MR. DUNNE: I guess a couple of things I
would like to say is that
MEMBER SIEBER: It's not a nuclear safety
issue. Personnel safety more than nuclear safety.
MR. DUNNE: Basically we have added
components to the FAC program based upon the uprate.
For example, the piping between our number two
feedwater heater outlet and on our number 3 feedwater
heater inlet is presently out of the program because
the temperature doesn't exceed 212 degrees. It's
around 208, 210. At EPU it's going to be over 212.

(202) 234-4433

	283
1	So it's in the program now. Now it's basically about
2	five feet of pipe, there isn't much there. But we will
3	be adding that to the program.
4	And also based upon the analysis of the
5	feedwater heaters that was done by TEI, we have a lot
6	of feedwater heater nozzles where we have high
7	velocities. Most of those nozzles are already in our
8	emersion corrosion program because of temperature and
9	quality, but there were a number of them that weren't.
10	For example, our low pressure feedwater heaters that
11	see 150/160 degree water would be out of the program.
12	We are adding them into the program because of high
13	velocity to monitor wear on those nozzle due to the
14	increased velocity that we see under EPU conditions.
15	So we do not have any components that need
16	to be replaced. We will be increasing the number of
17	components that we basically sample going into our
18	2006 refueling outage. That will be at the discretion
19	of our emersion corrosion engineer based upon what he
20	sees after he updates his entire program. And then
21	going forward we will monitor components and look at
22	actual wear rates based upon plant data and assess our
23	inspection frequency as needed.
24	Okay. The final thing I'd like to quickly
25	do is go through and just go over what effect the

(202) 234-4433

	284
1	uprate has had on our various cooling systems, they're
2	primarily safety related cooling systems.
3	The approach we took at uprate going into
4	it was to assume that all of our cooling systems would
5	function the same as they do right now. Do all the
6	evaluations based upon the existing cooling capability
7	and then assess whether that was adequate or whether
8	changes needed to be made to the system. And that's
9	the approach we took. So what this basically does is
10	tell you where we found out we didn't need to make
11	changes versus where we had to make changes.
12	Safety injection system, which is
13	primarily used for large break/small break LOCAs, we
14	used the existing flow capability that we have for the
15	present operating condition. And basically based upon
16	the Pclad temperature numbers we're getting, there's
17	no need to change flow capability.
18	Additionally contain the spray system
19	which is for containment pressurization. We used the
20	existing design flow capability. And, again, since we
21	were able to show that containment pressure are below
22	design, there was no need to change its functional
23	requirements.
24	Aux feedwater system. At Ginna
25	MEMBER WALLIS: So many plants have upper
	I

(202) 234-4433

	285
1	plenum injection.
2	MR. DUNNE: Excuse me?
3	MEMBER WALLIS: You have upper plenum
4	injection
5	MR. DUNNE: Yes, we have upper plenum
6	injection.
7	MEMBER WALLIS: which is rather
8	unusual.
9	MR. DUNNE: We are rather unusual.
10	MEMBER WALLIS: Are there many other
11	plants that do that?
12	MR. DUNNE: There are a couple. Kewaunee,
13	I believe, has it.
14	MEMBER WALLIS: Well, it's just a few,
15	very few?
16	MR. DUNNE: Just a few, yes.
17	MEMBER WALLIS: All right. It's not an
18	issue, I was just curious.
19	MR. DUNNE: No. We are an upper plenum
20	injection plant.
21	Our aux feedwater system, we actually have
22	two aux feedwater systems. The preferred aux
23	feedwater system and a standby aux feedwater system.
24	And as mentioned earlier, we have a total of five
25	pumps in those two systems.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

Our preferred aux feedwater system has two motor driven aux feedwater pumps, nominal design requirements of 200 gpm. And they're aligned to individual steam generators. And then our turbine driven aux feedwater pump is a 400 gpm system that basically is supposed to deliver 200 gpm to each generator.

Because of potential high energy line 8 9 break concerns since all our aux feedwater pumps are in the same general area, there was a potential for a 10 11 high energy line break that could take out all the 12 pumps. In the mid-'70s we added a separate standby aux feedwater system which has two more 200 gpm pumps 13 14 completely independent of the preferred. It's 15 basically pumps that we never operate. They are basically a backup to our preferred aux feedwater 16 pumps. We don't use them for normal plant cool down or 17 anything. They're basically, again, backups. Because 18 19 they're backups there is no automatic actuation of 20 those pumps, it's all depending upon manual operator 21 action from the control room to basically start the 22 pumps and align them to the steam generators. 23 You're preferred aux MEMBER SIEBER:

feedwater is still 200 gpm per steam generator?

MR. DUNNE: Yes. Yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

1

2

3

4

5

6

7

	287
1	MEMBER SIEBER: But you sacrifice margin?
2	MR. DUNNE: Yes, we have. For example, we
3	don't
4	MEMBER SIEBER: How much margin do you
5	have left?
6	MR. DUNNE: Well, what happens is at the
7	existing power level we don't need 200 gpm. We need
8	around 170 gpm. And so for uprate the analysis I
9	believe the last analysis showed we needed 195 gpm.
10	So it's still within the capability of our 200 gpm
11	system. Obviously there's less margin, again with an
12	increase in decay heat you're going to get less
13	margin. Just a fact of life.
14	Now our standby aux feedwater system, it's
15	also a 200 gpm system, however because it requires
16	manual operator action, it does not get an automatic
17	actuation signal, so if you bring it into a high
18	energy line break concern later in time than you would
19	the preferred system. And basically at the uprated
20	conditions the 200 gpm flow capability we presently
21	have was not sufficient to meet the acceptance
22	criteria for the analysis. The analysis Westinghouse
23	did at uprate said we needed 235 gpm delivery
24	capability to the generator for a feedwater line
25	break, which they analysis as a loss of feedwater

(202) 234-4433
	288
1	event.
2	MEMBER SIEBER: But the standby system is
3	there for Appendix R, I take it, and
4	MR. DUNNE: It's high energy line break
5	and Appendix R, yes. And for
6	MEMBER SIEBER: But it's manual, you can't
7	take credit for it?
8	MR. DUNNE: We can take credit for it for
9	the high energy line breaks that it was put into to
10	mitigate.
11	MEMBER SIEBER: Right.
12	MR. DUNNE: Basically
13	MEMBER SIEBER: You don't have a lot of
14	margin?
15	MR. DUNNE: So we need to increase the
16	flow capability. The pumps are actually 600 gpm pumps.
17	So the pumps themselves are not an issue. So what we
18	ended up doing and to get 235 gpm, we basically have
19	to decrease the hydraulic resistance in the flow path
20	which got us into this modification to change out an
21	existing flow control valve on the discharge with a
22	larger valve, basically, so that we can pump 235 gpm
23	into a generator at a code safety valve setpoint,
24	basically.
25	Additionally, like you mentioned, we use

(202) 234-4433

	289
1	our standby aux feedwater pumps for Appendix R
2	scenarios. Ginna has this unique required capability
3	of doing going to cold shutdown using the steam
4	generators in a water solid mode where we use standby
5	aux feedwater.
6	MEMBER SIEBER: Right.
7	MR. DUNNE: If you get down to a normal
8	RHR tie in and you don't have RHR and you want to go
9	to cold shutdown, basically what we would end up
10	doing, we would steam the generators down with
11	atmospheric dumps for a period of time and get as low
12	as we could, and then transition to basically water
13	solid steam generator cooling where we start at
14	standby aux feedwater and basically pump water into
15	the steam generators and take water out through the
16	main steam lines to reflect that.
17	Now for that uprate has effected that flow
18	capability. Presently for the present power level we
19	need, I believe, 225 gpm. Going to uprate because of
20	the increase in decay heat, we need to go up to 250
21	gpm.
22	Now from a pump point of view it's not
23	really an issue or from a hydraulic resistance point
24	of view because when we do that the steam generator
25	pressures are down around a couple hundred psi so
I	I contract of the second se

(202) 234-4433

you've got excess head margin on your pump to be able to put that flow into your generators. So it's not really that scenario that's controlling our modification. Our modification is being controlled by our need to be able to put water into the generator for a high energy line break event where the generators are sitting at a code safety valve setpoint of basically 1085.

9 The other systems that are obviously 10 affected by uprate by decay heat removal systems. For Ginna that basically entails three different systems 11 12 or our residual heat removal system, which basically That rejects heat 13 is the primary path. to our 14 cooling system, which is component water an 15 intermediate loop, and then the component cooling water system in turn rejects heat to our service water 16 17 system. The service water system uses Lake Ontario as its water source. And it delivers the water back to 18 19 Lake Ontario, which is our ultimate heat sink.

So basically, again, we evaluated the capability of those systems to handle both normal shutdown and accident long term containment cooling with the existing heat removal capability. And in general they can still support both normal shutdown and long term cooling and containment. Obviously, the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

times required to get to cold shutdown have lengthened out and the times to depressurize the containment have lengthened out because of the increase in decay heat, but we're still able to meet our functional requirements.

6 The last system is spent fuel pool 7 cooling, which is obviously another one affected by 8 decay heat. For spent fuel pool cooling our requirements are for a full core offload, we will not 9 initiate a full core offload until the cooling 10 capability of the system can match the decay heat load 11 12 in the pool. That's in our technical requirements manual whenever we do a full core offload, we have to 13 14 cycle specific analysis of our cooling do а 15 capability, which will take into account lake temperature, whether it's summer, spring or fall and--16 17 MEMBER WALLIS: Are there any trends in lake temperature with the years? I know there's 18 19 rather peculiar years recently, but are there other 20 trends with the years that we should need to take into 21 consideration? 22 We don't believe so yet. But--MR. DUNNE: 23 MEMBER WALLIS: Not yet? I mean, we can go back and 24 MR. DUNNE: 25

look at a ten year history and we'll find some years

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

(202) 234-4433

291

where it gets hotter than others. For example, last summer it was a very hot summer, probably the hottest we've had in the last ten years. But the summer before it was very cool, one of the coolest ones we've had in the last ten years.

Now to address that what we did -- what we 6 7 have done is raised our design basis lake temperature. 8 Not as part of uprate. We did that a couple of years 9 ago. It used to be the design basis lake temperature 10 for Ginna was 80 degrees because historically you very rarely exceeded 80 degrees. But every time during the 11 summer when the lake would start going up to 75, 76, 12 77, everybody would get in a fit about are we going to 13 14 exceed 80, what are we going to do. And we'd start to 15 put JCOs in place and then the lake would cool off and we'd never use them. But there were about four or five 16 17 summers where we do that.

So about three or four years ago we went through and did a 5059 to increase the design basis the lake temperature from 80 to 85. We don't expect ever to see 85 degrees. We might see 80 on a hot day occasionally. But we will not see 85. At least not while I'm working, anyway.

24 MEMBER SIEBER: What you need is a lake 25 cooling system.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	293
1	MR. DUNNE: Yes. And Lake Ontario has
2	this unique feature of turning over on us every now
3	and then where the lake temperature will go from that
4	75 degrees to like 40 degrees in five or six hours.
5	But we haven't figure out how to predict that.
6	And unless there are any other questions,
7	that's all I have.
8	CHAIRMAN DENNING: Good. Thank you.
9	MR. DUNNE: And I think I turn it over to
10	the NRC.
11	CHAIRMAN DENNING: Do we want to go with
12	a break now?
13	MR. MILANO: We can do it either way.
14	CHAIRMAN DENNING: Let's do that. It's
15	3:22. Fifteen minutes, let's make that 3:40. All
16	right.
17	(Whereupon, at 3:22 p.m. off the record
18	until 30:40 p.m.)
19	CHAIRMAN DENNING: Okay. Next speaker.
20	MR. MIRANDA: Right. The rest of the
21	afternoon is going to be taken up by presentation from
22	the NRR Staff. We're going to start off with our
23	Reactor Vessel Materials Reviewer, Neil Ray, who will
24	provide the reactor vessels and internals review. And
25	following him from that same organization talking
	I

(202) 234-4433

	294
1	about the reactor coolant pressure boundary materials
2	will be Timothy Steingass.
3	Neil?
4	MR. RAY: Good afternoon. By this time you
5	know that I am Neil Ray from NRR, materials engineer.
6	We looked into the effects of this EPU on
7	reactor vessels materials properties and its impacts
8	and also on the reactor internal and core support
9	materials.
10	Now, reactor vessel integrity when we call
11	it integrity, we looked into surveillance capsule
12	program. Because of the EPU there will be the
13	possibility of reactor vessel clearance, and that may
14	impact surveillance capsule program, so we looked into
15	it.
16	We also looked at additional effect on the
17	reactor vessel integrity. And as I said, we looked
18	into the reactor vessel internals and core support
19	materials.
20	Regarding surveillance capsule program,
21	because the EPU fluence is greater than 200°F, that's
22	not a surprise it was there before. And as part of
23	ASME standard still they have to have 5 capsule
24	withdrawal. Four capsules already withdrawn from that
25	Ginna vessel, and fifth capsule is planned for
	1

(202) 234-4433

	295
1	withdrawal at 5.45 E19, which is the EOL. When I say
2	EOL, keep in mind that is extended life not our
3	intended of life. SO EOL is 5.45 E19. So that
4	basically says between one to two times the peak EOL
5	fluence, which is perfectly all right for ASME
6	standard.
7	MEMBER WALLIS: So it meets the boundary
8	by less than one percent accuracy.
9	MR. RAY: That's is correct. That is
10	correct.
11	MEMBER WALLIS: Which is probably not as
12	accurate as you know the fluence anyway. It's the
13	same as we had before, isn't it?
14	MR. RAY: Yes. Okay. So there is no
15	basically on surveillance capsule program. Just to
16	tell you for that, they are planning to
17	MEMBER WALLIS: Well, suppose that it was
18	not just over the limit, would they then withdraw it
19	at a different time or something?
20	MR. RAY: Yes.
21	MR. WROBEL: Yes. Can I answer that?
22	George Wrobel from Ginna.
23	Yes. Right now I think you were going to
24	say we're going to withdraw in 2006. We refined our
25	calculations a little bit and we're going to wait
	1

```
(202) 234-4433
```

	296
1	until 2008 to make sure
2	MEMBER WALLIS: So you have plenty of
3	flexibility there?
4	MR. WROBEL: Excuse me?
5	MEMBER WALLIS: You have plenty of
6	flexibility.
7	MR. WROBEL: We have plenty of flexibility
8	in that withdrawal.
9	MR. RAY: Yes, they do. Actually, in a
10	sense, just off the record the letter that we have
11	done is better for them also. Because you are talking
12	about 60 years. And they have the last capsule
13	they're planning with withdraw when it's predicted to
14	be accumulated 80 years. That is the capsule end, I
15	suppose.
16	Okay. That's all about surveillance
17	capsule. Let's move into the other area that the
18	radiation embrittlement may impact, that is the
19	pressure temperature limits, upper shelf energy,
20	pressurized thermal shock.
21	Now pressure temperature limits is a
22	fairly straightforward. What happened is their current
23	limits is applicable up to 28 EFPY. And that is based
24	on the cumulate fluence of 3.11 E19 and the
25	corresponding adjusted reference temperature they

(202) 234-4433

	297
1	calculated. Now because of the EPU and the new
2	calculation methodology and in the meantime the
3	fluence design differences, their cumulative fluence
4	with EPU is reduced, which is 2.01 E19 n/cm 2 (E>1.0
5	MeV). So obviously every other parameters in
6	developing pressure temperature limits remaining
7	constant so their current pressure temperature limit
8	is bounding, and so there is no impact whatsoever in
9	terms of pressure limits.
10	Is there any question on that?
11	MEMBER WALLIS: So the fluence of the EPU
12	is less than
13	MR. RAY: Yes, I know somebody will ask
14	that question.
15	MEMBER WALLIS: Is this because they've
16	used a different method or something?
17	MR. RAY: Well, there are two
18	possibilities. One is you have to keep in mind this
19	pressure limit they've allowed several years ago. At
20	that time from that point onwards they probably have
21	low leakage goal,number one.
22	Number two, they have a different
23	procedure in calculation. They've withdrawn the
24	capsule so the dosimeter, everything put together they
25	are ready for it kind of surprises most of the
	I contraction of the second

(202) 234-4433

	298
1	people, but it does happen all the time.
2	MR. WROBEL: Again, George Wrobel from
3	Ginna.
4	We did use the Reg. Guide 1.190
5	methodology which is more accurate we think.
б	MR. RAY: Yes.
7	MR. WROBEL: But you know the original
8	methodology was a lot more conservative than that. So
9	it looks like we have a lot margin that we gained.
10	MR. RAY: Yes. Okay. So that's what I
11	did, don't have to do anything with the PT limits. It
12	will be applicable up to 28 year EFPY and prior to
13	that, they have to generate new PT limits, which will
14	be applicable probably up to 54 year period or so.
15	MR. WROBEL: Yes. We've currently done
16	the analysis out to 32 already. We haven't submitted
17	that, but that's been completed.
18	MR. RAY: Okay. Now regarding upper shelf
19	energy, except two particular waves waves are
20	always a problem, as we all know, for upper shelf
21	energy and PT issues. And in this case they have
22	intermediate-to-lower shell girth weld and the
23	intermediate-to-nozzle shell. Both of them dropped
24	below 54 pounds based on Reg. Guide. So as you all
25	know that there is a ASME Code, Section XL Appendix K

(202) 234-4433

	299
1	calculation that always gives you green signal and you
2	move ahead. That's exactly what they did and that's
3	perfectly all right. So there is no upper shelf
4	energy problem. That's in a nutshell. And we verified
5	their calculation as well.
6	Pressurized thermal shock. Well, again,
7	because of the increasing fluence there end of life,
8	again 54 or up to extended life, was 270.6. Now it
9	increased to 273 using the EPU fluence which is no
10	nevermind, because our screening criteria all software
11	needs 300. So they have enough margin there.
12	So PTS is also not a problem.
13	Now regarding the reactor internal and
14	core support materials, currently they are following
15	ASME Section XI inservice inspection program with PT1
16	and PT3 procedures. And they committed that they will
17	participate and follow whatever comes out of the EPRI
18	MRP program, which we are all anxiously waiting for at
19	this moment. We don't know what will come out. But
20	they committed, they will follow through and they will
21	let us know. And that perfectly fulfills our Review
22	Standard RS-001.
23	So in conclusion we looked into the areas
24	that the reactor vessels and internals and it looks,
25	all of them, pretty good in a satisfactory margin.
	1

(202) 234-4433

	300
1	There is no significant that concern us that we can
2	think of. So I think they're in good shape.
3	Any questions, any part of that
4	discussion? Thanks.
5	CHAIRMAN DENNING: Thank you.
б	MR. MIRANDA: Tim?
7	MR. STEINGASS: Good afternoon. My name is
8	T.K. Steingass. I was introduce as Timothy, and I
9	haven't been called that in about 30 years.
10	I'm a material engineer in the Flaw
11	Evaluation and Welding Branch.
12	I want to talk about the reactor coolant
13	pressure boundary, how the EPU effects or I evaluated
14	how or what effect the EPU may have on the reactor
15	coolant pressure boundary.
16	The review covered the specification
17	compatibility of the reactor coolant, fabrication and
18	processing, material susceptibility to degradation,
19	the degradation management programs that were in
20	effect that will be in effect, EPU impact on
21	failure mechanisms and leak before break analyses.
22	The degradation mechanisms that I looked
23	at were under austenitic stainless steels and the
24	reactor coolant pressure boundary, what impact EPU may
25	have on the acceleration or impact on IGSCC. Of
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

301 1 we're concerned with the sensitized course, 2 microstructure and the effect of the EPU on the hot 3 leg is only 8.6°F. 4 Transgranular and stress corrosion 5 cracking, through the introduction of halogens that may aggravate that failure mechanism. So, as I said 6 7 before, the 8.6 degree increase and the slightly elevated chemistry of 3.5 ppm lithium is still within 8 9 quidelines. Therefore, those EPRI two failure 10 mechanisms are not accelerated or aggravated through the EPU. 11 For alloy 600 and 82 and 182 welds, what 12 the major concern is PWSCC as we've seen in the Davis-13 14 Besse head. For Ginna the reactor head was replaced in 2003 with alloy 690 material which will probably 15 start cracking further on down the line than the first 16 17 one did. susceptible 18 Other program other or 19 susceptible components like the thimble tubes, welds 20 the bottom head, they're still going to in be 21 susceptible to PWSCC, of course. But again, the EPU 22 does not introduce any new failure mechanisms or 23 accelerate that. So consequently there's still going 24 to be cracking, but under the license renewal 25 application process I looked at whether or not there

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	302
1	were existing programs that would manage or aging
2	management programs to assure that these components
3	will still remain operable and perform their design
4	function.
5	These programs were approved by the staff,
6	these aging management programs, under NUREG-1786.
7	Consequently, I came to the conclusion that the
8	effects of PWSCC will be adequately managed.
9	MEMBER SIEBER: Now when you talk about
10	increase in temperature is 8.6 degrees in the hot leg.
11	MR. STEINGASS: Yes, sir.
12	MEMBER SIEBER: That's an increase in the
13	nominal temperature based on what their operating
14	parameters are now planned to be as opposed to the
15	maximum that they could be allowed, I take it?
16	MR. STEINGASS: That's correct.
17	MEMBER SIEBER: On the other hand, there's
18	nothing that would prevent the operators of the plant
19	from moving to a higher hot leg temperature and still
20	be within the bounds of the approved EPU?
21	MR. STEINGASS: Due to a power excursion
22	or just
23	MEMBER SIEBER: No. I mean as a regular
24	way of operation, day-to-day operation. Because you
25	know they've been given a range of values where they
I	

(202) 234-4433

	303
1	can operate and they have chosen ones that give them
2	a $T_{_{Hot}}$ temperature of 609, but they could go as high
3	as, what, 617?
4	MR. DUNNE: This is Jim Dunne.
5	During a cycle that won't happen. I mean,
6	we have a
7	MEMBER SIEBER: Well, that's because you
8	chose to operate
9	MR. DUNNE: Yes.
10	MEMBER SIEBER: where you're at.
11	MR. DUNNE: Yes. They can
12	MEMBER SIEBER: But there's nothing in our
13	rules that would prevent you from increasing that.
14	MR. DUNNE: We could increase up to the
15	576 number with a value with a nominal dead band
16	around that, which is nominally I believe 2 degrees.
17	But we wouldn't be able to go in and say we're going
18	to start operating the plant at 578 normally, because
19	that would be outside the span that we've done the
20	analysis for. We'd have to reanalyze the plant for
21	going to a Tavg temperature greater than 576.
22	MEMBER SIEBER: Okay. I'll have to think
23	about that for a little bit. But it just seems to me
24	that you could change Tavg and your ultimate ${\rm T}_{\rm _{Hot}}$
25	without additional interaction with the Staff. And if
1	1

(202) 234-4433

	304
1	you had 82, 182 weld buttering someplace that could
2	accelerate, it's aging.
3	MR. WILSON: This is David Wilson, Ginna.
4	If we made changes like that, our
5	commitments under license renewal requires us to
6	reevaluate the programs also and evaluate whether or
7	not the conclusions of the Staff agreed to our
8	extended operating license were still valid. And
9	perhaps even have to go back and get approval to do it
10	because of the license renewal programs.
11	MEMBER SIEBER: Okay. Well, like I said
12	before, that's something that I would have to check
13	on.
14	Does the Staff agree that they would have
15	to come back?
16	MR. WILSON: Well we'd start under the
17	5059 process, of course.
18	MR. MIRANDA: That's what I was going to
19	say. Even though they had some margin in the band of
20	what they could operate to
21	MEMBER SIEBER: Right.
22	MR. MIRANDA: if they did decide to it,
23	that their 5059 process drives them to have to
24	evaluate it, the license renewal commitments are part
25	of the licensing basis of the plant and that would
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	305
1	dictate, you know, whether or not there's a need for
2	prior NRC approval.
3	MEMBER SIEBER: Okay. Under my postulate
4	circumstances, would they be required to come back?
5	MR. MIRANDA: I couldn't answer that right
6	now.
7	MEMBER SIEBER: Okay.
8	MR. STEINGASS: Another thing I looked at
9	was the leak before break analyses. Does what these
10	people do and what these people pretend to do have any
11	impact on the existing leak before break analyses.
12	So I looked to determine if the analyses
13	were impacted by the EPU under WCAP-15837. The leak
14	before break analysis of the primary loop piping and
15	reactor coolant pump casing was performed in 2002 for
16	Ginna under their license renewal application. The
17	people at Ginna evaluated the impact of the EPU on the
18	conclusions reached in their 2002 leak before break
19	analysis, which was approved by the Staff in NUREG-
20	1786.
21	The review summary 001 lists under SRP
22	Section 3.6.3 the following acceptance criteria for a
23	leak for break analysis. A margin of 10 on leak rate;
24	a margin of 2 on critical flaw size, and; a margin of
25	1 of loads.
	1

(202) 234-4433

	306
1	The evaluation done by the licensee showed
2	that they met the acceptance criteria. For EPU they
3	had a margin of ten, on critical flaw size a margin of
4	2 and a margin of 1 for loads.
5	Consequentially, I came to the following
б	conclusion. The licensee has adequately evaluated the
7	effects of EPU or reactor coolant boundary materials.
8	No new failure mechanisms have been incorporated due
9	to the EPU.
10	The licensee has appropriately identified
11	aging management programs to address effects of
12	changes in system operating temperatures. And this was
13	done on a license renewal application process.
14	The licensee has demonstrated that a leak
15	before break analysis remained valid under EPU
16	conditions. Consequently per the review summary 001
17	Matrix 1 design criteria 14,-14, -31, 10 CFR 50
18	Appendix G and 10 CRF 50.55(a) requirements have been
19	met. And that's all I have.
20	MR. MIRANDA: All right thank you.
21	MR. STEINGASS: You're welcome.
22	MR. MIRANDA: Okay. Continuing on to the
23	next area is Kamel Manoly. He's the Chief of the
24	Mechanical Engineering Branch.
25	MR. MANOLY: Good afternoon. I'm Kamel
	I

(202) 234-4433

	307
1	Manoly, Chief of the Engineering Mechanics Branch in
2	Division of Engineering.
3	And we have Dr. John Wu, the leader
4	reviewer for the power uprate.
5	Okay. The first slide basically shows the
6	components that were evaluated in the Ginna power
7	uprate. Typically it would be the vessel and
8	internals and the nozzle and supports.
9	Like to note that the vessel was designed
10	to ASME 1965 edition and the NSSS was designed to the
11	ANSI 1967 with '73 addenda. So the NSSS did not have
12	the traditional fatigue analysis as the more recent
13	plants do.
14	We also looked at the replacement steam
15	generators and the reactor coolant pump, pressurizer
16	and supports and vessel BOP piping system and supports
17	and also the components, valves, MOVs, AOVs and SRVs.
18	We typically evaluate the methodology and
19	the loads applied, and calculated the stresses and
20	usage factors. The primarily one would be for the
21	vessel because explicit fatigue analysis whereas for
22	the other components the NSSS of you use then ANSI
23	1967 then the '73, it doesn't have explicit cumulative
24	uses factor like Class 1 components.
25	We also looked at the functionality and
l	1

(202) 234-4433

	308
1	impact of EPU on the three major GL 89-10 and 95-07.
2	And I believe also we looked at on GL 96-06, I
3	believe.
4	And we also looked if there's any conflict
5	between the EPU and the license renewal and the
6	evaluations covers the 60 year span.
7	And finally then NSSS and BOP piping
8	systems and supports.
9	I'd like to note that Ginna's approved for
10	the leak before break criterion, which eliminate pipe
11	breaks ten inches and larger. So the limiting break
12	sizes were obviously in the smaller lines 3 inches and
13	2 inches. A specific evaluation was done for the
14	safety injection line, the hot leg and the 4 inch
15	upper plenum injection line connected to the vessel.
16	The finite element analysis using the
17	ESTDYN code, I believe that's a Westinghouse code, and
18	compared the stresses using the ANSI B31.1 limits and
19	ASME what are applicable.
20	CHAIRMAN DENNING: Could you speak up just
21	a little bit.
22	MR. MANOLY: Okay.
23	CHAIRMAN DENNING: Thanks.
24	MEMBER WALLIS: I'm sorry. These
25	calculated stresses were stresses all calculated by
I	

(202) 234-4433

	309
1	the licensee?
2	MR. MANOLY: Yes.
3	MEMBER WALLIS: What did you do to satisfy
4	yourself that they had done this correctly?
5	MR. MANOLY: We looked at the summary of
6	the analyses. We did not do we don't do an
7	additional analysis to verify what they have done. We
8	just look at the results and see if it's reasonable
9	and
10	MEMBER WALLIS: You look at the basis for
11	the results?
12	MR. MANOLY: Yes. Yes. And, obviously,
13	every power uprate has it's own uniquenesses. And for
14	this power uprate probably the things that comes to
15	mind the most is vibration issues of the components
16	and the steam line. And that's where we did the most
17	focus on areas where we expect, you know, issues can
18	come up.
19	We note that the result of the EPU, the
20	licensee upgraded nine supports and added one support
21	in main steam line. And added also one support in the
22	feedwater line to address the effect of increased
23	flow.
24	I think the first bullet points that we
25	verified that they account for 60 years of operation

(202) 234-4433

	310
1	to show that the fatigue limits does not exceed the
2	value of one.
3	We looked at the effect of flow on
4	vibration on the steam separators because it's
5	expected to increase the EPU. And it was found
6	acceptable. The concerns in the boiling water
7	reactors is very different than for the pressurized
8	reactors. The flow here is pretty much parallel to the
9	primary tubes so you don't get the cross flow that
10	would invite flow induced vibration issues.
11	And also the separators are basically a
12	very rugged which are not going to be amenable to the
13	flow induced vibration as you would expect in the
14	steam dryers and the boilers.
15	CHAIRMAN DENNING: When you said "judge to
16	be acceptable," what quantitative guidelines did you
17	use?
18	MR. MANOLY: Well, we know that that
19	design of a generator has been used before. They did
20	the testing of the new dryer I think the facility in
21	Canada. So they did testing of that dryer itself. And
22	there are several plants that use the same design at
23	a higher velocity coming from the restricting nozzle
24	than from Ginna. And there hasn't been really any
25	issue. So operation really is the best test of a
1	

(202) 234-4433

	311
1	component.
2	CHAIRMAN DENNING: Incidently, that type
3	of insight helps us quite a bit in evaluating
4	statements like this.
5	MR. MANOLY: Yes. I can tell you the steam
6	velocities through the flow restrictors after the EPU
7	are lower than steam velocities at similar plants like
8	Byron, Braidwood, McGuire and Catawba. So there
9	hasn't been any issue there, so I wouldn't expect that
10	to have any issue here.
11	MEMBER WALLIS: So these notes that you're
12	referring to, are they part of the public record or
13	are they your own private notes that
14	MR. MANOLY: No, this was in application.
15	MEMBER WALLIS: So the numbers you're
16	quoting to us are from their application?
17	MR. MANOLY: You mean the velocities? I
18	didn't really give numbers. I'm just saying the
19	number was lower than.
20	MEMBER WALLIS: Yes, but those numbers
21	you've just given us, is that document you're reading
22	from, is that part of the public record?
23	MR. MANOLY: Yes. This is from the
24	application itself.
25	MEMBER WALLIS: From the application?
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	312
1	MR. MANOLY: Yes. Yes.
2	MEMBER WALLIS: So it's not something
3	that. you dug out yourself?
4	MR. MANOLY: No. No. Well, RIAs back and
5	forth. But that's also in the public record.
6	MEMBER WALLIS: Well I just wonder when
7	the Staff has all these judge to be acceptable
8	statement and we don't know why, there is a paper
9	trail somewhere that it could be investigated if
10	necessary.
11	MR. CARUSO: Yes, there is.
12	MEMBER WALLIS: There is.
13	MR. MIRANDA: We have the application, we
14	have all the RAIs.
15	MEMBER WALLIS: And you have all the RAIs?
16	And that includes everything that justifies this
17	"judged to be acceptable" statement?
18	MR. MIRANDA: Everything that's been
19	publicly documented, yes.
20	CHAIRMAN DENNING: But there's no trace
21	line, though, that
22	MEMBER WALLIS: Is there a trace line of
23	your rationale somewhere?
24	MEMBER SIEBER: No, it doesn't say why.
25	MEMBER WALLIS: It doesn't say why. Then
	1

(202) 234-4433

	313
1	why is the key question, though, isn't it?
2	MEMBER SIEBER: Yes.
3	MR. MANOLY: Sometimes the why is it meets
4	the code limits, sometimes why is like here for the
5	monitoring after the operation going to using OM
6	standard. If they meet the OM standard for vibration,
7	that will be the reason.
8	CHAIRMAN DENNING: But if it isn't the
9	SER, then there really isn't a
10	MR. MANOLY: Oh, no, definitely. I mean
11	we say that where it meets certain code limits or,
12	you know, vibration testing limits, those are the
13	basis that constitute acceptance.
14	CHAIRMAN DENNING: Continue. Oh, you
15	mentioned there's a slight increase in flow rate and
16	induced vibration in the U-bend tubing?
17	MR. MANOLY: Yes. Yes. But they evaluated
18	that and found the see, the acceptance limit here
19	is the stability ratio is less than one. So if it
20	shows it's less than one, then that will be
21	acceptability. I mean, that is the criterion for
22	acceptance based on analysis that was done.
23	MR. WU: This is John Wu.
24	About flow in this vibration evaluation,
25	normally we looked at the flow induced vibration, you

(202) 234-4433

	314
1	know, the what the maximum is and what it's close
2	instabilities is going to have close and I don't
3	know why it's look at you know, even it's low but
4	sometimes you look at the past experience because it's
5	the operating experience compared to, you know, the
6	seeing the prints and we do that.
7	For this one like the four separator, you
8	look at that this can do, I think it's B&W Canada,
9	they were similar plants, about 44 steam generator in
10	Canada, about 34 in United States, it's a similar
11	plant. And there's no failure, no records of any
12	indication at all. So this is very sturdy.
13	And I talk about showing this vibration
14	normally we look at instability like instability
15	through such a instability number. And which is normal
16	in their criterion is pretty low, probably maybe
17	you know, normally we look at less than one and that
18	is instability. Less than one where we would consider
19	acceptable. And also you look at like vortex
20	shedding and like turbulence goes through. But here
21	because the flow is parallel to the separator so it's
22	minimal. There's no shedding. And even there's
23	shedding, it's very small at all. Very small. Like
24	tubing, tubing has so there's more shedding and
25	more shedding. So I think sometimes they have a

(202) 234-4433

(202) 234-4433

	315
1	criteria and something like 15 like you know two
2	percent of the allowance, something like that. But the
3	2 percent is based on the fix/fix type of fix/fix
4	type.
5	But the idea is try to keep the trace
6	level below the endurance limits so no matter how you
7	shake, it won't break even for
8	MEMBER WALLIS: So the best argument is
9	that there is a lot of experience with similar steam
10	generators?
11	MR. WU: Yes.
12	MR. MANOLY: Yes. Yes.
13	MEMBER WALLIS: Because the predictability
14	of flow induced vibration from is not that good, as
15	we know from some other experiences. There are some
16	vibrations which sometimes occur as a surprise?
17	MEMBER SIEBER: But I think you're right,
18	you can't tell the basis just from reading the SER.
19	MR. MIRANDA: Well, you can't tell the
20	specific basis, I'll agree with you. The fact is that
21	each section of the Staff's evaluation provides a
22	detailed list of the regulatory requirements that the
23	Staff had to assess against along with, you know,
24	whether there were GDCs or whether there were some
25	other type of regulation. And in addition, the Staff

(202) 234-4433

1 reviewed the licensee's application against both the 2 Review Standard itself and that in part called out a 3 lot of the original SRP sections. Albeit it that it 4 may not say it at the end as to what specifically --5 would it specifically came for a conclusion against each one of the issue. The fact of the matter is is 6 7 they did review each section against those. And if 8 they didn't, I guess the answer is in the negative. 9 They didn't find anything in those areas so it was 10 acceptable. MEMBER WALLIS: Is there some record, a 11 form of notebooks kept by the Staff member that sort 12 of says that on a certain day I sat down to review 13 14 this thing and I checked off this, this and this and 15 I was satisfied and after five minutes I went away, or 16 is there something that says I spent three weeks doing 17 it and these are the things I did, and it's all written down somewhere? 18 19 MR. MIRANDA: No, it is not. That is not 20 part of the --21 MEMBER WALLIS: So if it were a legal case 22 and somewhere were trying to find out the basis for 23 these decision, how would they be determined? MANOLY: Well, depending on the 24 MR. 25 complexity of the subject. I mean, there are certain

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

316

	317
1	areas where we might even do confirmatory analysis and
2	some areas where you have a routine type review, it's
3	not really cost effective to question things that we
4	pretty much know the answers are pretty reasonable.
5	So it depends on but the basis always has to be in
6	the SER. Whether it's standards meets standard ASME
7	limits, it's in the ASME limits or OM limits. There is
8	always some limit that ultimately we have to point to.
9	MEMBER WALLIS: But what can you do? I
10	mean if the applicant says we calculated 2921 and the
11	ASME limit is 3000, let's say, do you just accept
12	that?
13	MR. MANOLY: Well, this
14	MEMBER WALLIS: What else can you do?
15	MR. MANOLY: But they describe the
16	analysis. Now when we read the description of what
17	they have done, if it seems reasonable, I'm not going
18	to ask
19	MEMBER WALLIS: So you look at their
20	notebooks or their calculation sheets or something?
21	MR. MANOLY: No, no, no.
22	MEMBER WALLIS: No?
23	MR. MANOLY: Sometimes we look at the
24	calculation if we suspect something that doesn't seem
25	to add up. But if it seems reasonable
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

(202) 234-4433

	318
1	MEMBER WALLIS: Don't you do some random
2	spot checks where you do audits at plants and you say
3	show me your calculation sheet and
4	MR. MANOLY: No, no. That comes in RAI.
5	I mean, we can ask questions in RAIs that we ask for
6	specific documents that we need to review further. We
7	did not do that in this application because we didn't
8	feel the need to. I mean this
9	MEMBER WALLIS: So your justification
10	I mean, we have to rely on your judgment I think in
11	many cases then, don't we?
12	MR. MANOLY: Well, I mean, and I think you
13	learn when I mean for boiling reactors do you
14	know what have been happening at steam dryers. So
15	when we run into that we do a lot of audits. You
16	know, John just came from an audit of Quad Cities'
17	dryers. He's still you know, even though they had
18	the license, but he's still auditing the calculations.
19	We've been doing that for the last, probably year and
20	a half or two because there is a cause for that.
21	And I think the effort, we put the effort
22	where we can get maximum return out of the time we
23	spend.
24	CHAIRMAN DENNING: You may continue.
25	MR. MANOLY: All right. I think John
	1

(202) 234-4433

319
pretty much covered this slide.
I think the first bullet basically, the
reliance on the first bullet on the load downs that
are going to be done prior to the power uprate is the
baseline and then get evaluation that weren't
continued observation of the steam line where they
think that potentially there to be increased
vibration.
The second bullet basically addresses that
the flow is primarily parallel to the axis of the
tubes. And the possibility of FIVs is respect to
of vortex shedding is apparently very low.
And that pretty much covers this slide.
The next one is the specifics about the
separators. Inspections on fatigue for flow induced
vibration did not reveal any issues in previous
separators. We know the design of this one is fairly
rugged in the new design, so it minimizes the chances
for FIV. And the velocity, as I mentioned, is fairly
low. And also the they have a flow I guess like
a nozzle that would capture anything of any size that
potentially can break loose before it goes to the
turbine.
And if anything breaks, it potentially it
an get caught at the support plate inside the steam

(202) 234-4433

	320
1	generator. This is just one of the scenarios.
2	But we didn't really feel that there was
3	any concern about the separators in this plant.
4	CHAIRMAN DENNING: Tomorrow we're going to
5	hear about the power ascension testing. Based upon
6	your assessment of potential for vibration do you make
7	recommendations as to what kind of monitoring you
8	think should be done or where monitoring should be
9	done to detect vibrations if they should be
10	encountered as the power level increases?
11	MR. MANOLY: Well, they identified the
12	systems, the lines that they're going to be monitoring
13	in the application. The licensee. And they're going
14	to do baseline walkdown first at 100 percent power,
15	current 100 percent and then they're going to be
16	monitoring certain locations. So we agree with the
17	list with what they identified. They're going to meet
18	OM code, OM3 is very conservative criteria for
19	vibration.
20	CHAIRMAN DENNING: Yes. What about lack of
21	monitoring the steam lines, is that an issue?
22	MR. MANOLY: They are monitoring the steam
23	lines.
24	CHAIRMAN DENNING: What's that?
25	MR. MANOLY: They are monitoring the steam

(202) 234-4433

	321
1	lines, I believe.
2	CHAIRMAN DENNING: Well it's my
3	understanding they weren't, but it might have been a
4	misinterpretation.
5	MR. MANOLY: No. I think the licensee can
6	say. The application says they're going to monitor
7	the steam lines. They're going to determine the
8	portions within the steam lines that they're going to
9	monitor.
10	CHAIRMAN DENNING: Can you respond to that
11	from the plant?
12	MR. DUNNE: This is Jim Dunne.
13	Basically based on the we've agreed
14	with the NRC that we should be monitoring certain
15	locations in the plant, probably primarily main
16	feedwater and main steam piping. We're going to use
17	our baseline visual walkdown that we did last week to
18	identify specific locations in both systems that we
19	think we should monitor going forward. We haven't
20	identified those points yet. But the plan is that
21	there will be some monitoring of main steam line and
22	feedwater locations based upon the visual walkdown.
23	MR. MIRANDA: A number of the issues that
24	you're asking about if you look through the history of
25	some of the later requests for additional information
	I contract of the second se

(202) 234-4433

1 you'll see it where we ask questions with regard to 2 the post-EPU conditions, whether they be flow or 3 otherwise in comparison to industry norms and things 4 like that. And in the course of the RAIs and 5 discussions via teleconferences and others, we determined whether or not or we agreed with the fact 6 7 that their program is focusing towards the right 8 systems and components and stuff. 9 So what you're asking is is we did do it and we did it outside of the initial application 10 review. 11 12 CHAIRMAN DENNING: Okay. I think this is the last 13 MR. MANOLY: 14 slide. Yes, it's the last slide. Components. 15 Mechanical components. So that concludes the 16 MR. MIRANDA: 17 engineering mechanics portion. If there aren't any other questions, Greq Makar is going to talk about 18 19 flow accelerated corrosion and some other --20 MR. MAKER: Thank you. 21 Yes. I'm going to talk about five systems. 22 I'm going to talk about flow accelerate corrosion, 23 steam generator tube integrity, the steam generator 24 blow down system, the chemical and volume control 25 system and finally paint and other organic materials.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

322

323 like 1 And I'd to start with flow 2 accelerated corrosion or FAC. FAC is a corrosion 3 thinning mechanism that, as you heard from Jim Dunne, 4 it involves an interaction between several variables, 5 including the temperature, flow rate, the moisture content and the alloy of the components. So what's 6 7 going on in the pipe and what the pipe is made of. And we focused our evaluation on where 8 there are 9 changes. Because some components will 10 experience changes in some of these parameters. MR. MIRANDA: You want to go up one slide. 11 12 MR. MAKER: Thank you. What we look for is scoping first of all, 13 14 that the license was looking at the changes due to the 15 and seeing what effect that would have on EPU components and whether they needed to add components 16 17 into their FAC program. And they did. They evaluated those 18 19 parameters, temperature, etc. And they found, for 20 example, cases of inlet nozzles in the feedwater 21 systems where they had high flow rates and now they 22 increasing the temperature from below were the threshold of about $212^{\circ}F$ to above that threshold. 23 And 24 those things were added into the program. 25 So after the scoping, the CHECWORKS, the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	324
1	EPRI CHECWORKS program is one of the tools that they
2	used to monitor FAC and manage FAC. This program
3	allows for since it models system, it allows for
4	changes and they are updating these models for the
5	uprate conditions and provided us with well, you
6	saw a table of increases in corrosion rates and
7	thicknesses of pipes due to the EPU. And we saw
8	changes in the corrosion rates. They increased from
9	about 3 percent to 24 percent. And the actual
10	corrosion rates themselves up to about five mils per
11	year.
12	And this group of components that they
13	evaluated and showed us the evaluations for covered a
14	variety of component types and sizes and operating
15	conditions.
16	So this was our basis for concluding that
17	at EPU conditions their program will continue to
18	manage FAC. The scoping, the fact that they used
19	CHECWORKS and the result that they showed us.
20	And next I'll talk about steam generator
21	tube integrity. The Ginna plant has replacement steam
22	generators, replaced in 1996 with steam generators
23	with alloy 690 thermally treated material. They also
24	have stainless steel tube support materials.
25	In addition to these material changes,
l	I contraction of the second seco

(202) 234-4433

there are also some design changes. For example the for the tubing to minimize support structures 3 vibrations and also thermal treatment and design 4 features to reduce stressed in the U-bends relative to other older steam generator designs.

The operating parameters, of course will 6 7 change for the tubing. For example, the after temperature inside will be hotter. But even at the 8 9 increased T_{Hot} this will still be within the range of 10 other steam generators already operating in the fleet. There are others with higher temperatures that have 11 12 been operating longer. And for this reason, although the higher temperature will increase the rate of 13 14 degradation mechanisms, we don't feel it will be 15 significant and it will be managed by their program.

The vibrations and wear of the tubes, 16 you've heard that this has been evaluated and there is 17 not an expectation of a lot of tube wear, but tube 18 19 wear is part of the steam generator tube integrity 20 program it includes degradation assessments that 21 include wear and evaluations of wear if they're found. 22 And so based on the main guidelines we

23 use, which are the NEI 97-06 and the associated EPRI 24 evaluation guidelines, we judge that their inspection 25 program will continue to manage the integrity of the

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

tubes.

1

2 The steam general blowdown system supports 3 tube integrity by removing impurities from the 4 secondary coolant. And at EPU conditions there will 5 be increases in flow rate of the system. This is going to increase from about 40 to 80 gallons per minute to 6 7 40 to 100 gallons per minute. This is below design limits and it's also equivalent to what they operated 8 9 with until about 1990. The temperature and pressure are also increasing, but remaining within the design 10 limits. This is true for the piping and the 11 12 containment isolation valves.

And we also note that this system steam generator blowdown system is monitored within the FAC program. And so we concluded that the power uprate would not effect the ability to remove impurities from the secondary system.

On the Chemical and volume control system 18 19 there's several functions related to water inventory 20 and water quality. The license told us about there is 21 an expectation that there will be need for increase 22 boration and also there is a possibility of increased 23 crud buildup. These increases are within the design limits. 24 The increases in temperature in the system 25 are small and will not effect the operation of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 heat exchanges, so therefore not the system in 2 general. And so based on these small changes and all remaining within design, we just that acceptable. 3 4 Finally, paints and other organic 5 materials. The plant was constructed prior to

Regulatory Guide 1.54, which is our guidance now for 6 7 the application of coatings. The coatings were 8 applied according to Westinghouse and plant 9 specifications. And since then the coating program has also been evaluated under the Generic Letter and 10 license renewal processes. So we are focusing on 11 12 changes in the coatings from the power uprate.

The license provided some temperature containment with pH, spray pH values and radiation dose values and compared that to the values at which those coating were qualified. And so those will all remain within the qualification parameters for normal operation design basis accidents and post-accident operations.

So on that basis we don't expect any effect on the adhesion or degradation of the coatings. Not that there isn't degradation, but the effect of the degradation on the plant and other debris is being evaluated under the Generic Letter 2004-02 process. And that includes the effect of power uprate.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	328
1	Now there other organic materials in
2	containment such as
3	MEMBER WALLIS: Did anyone inspect the
4	coatings at the plant?
5	MR. MAKER: Yes. There are coatings.
6	There's a program for coatings.
7	MEMBER WALLIS: Are they in good shape?
8	Are they all in good shape?
9	CHAIRMAN DENNING: Do you mean as part of
10	power uprate and are you both in agreement here?
11	MEMBER SIEBER: No.
12	MEMBER WALLIS: Well, I think there was a
13	license renewal that probably inspected the coatings.
14	I was wondering what I mean, there's a statement
15	that coatings do not detach from the substrate during
16	a design basis LOCA. And I just wondered if their
17	present state when you look at them indicates that
18	they look like the kind of coatings that wouldn't
19	detach. It's a very superficial inspection, but at
20	least
21	MR. WROBEL: George Wrobel from Ginna.
22	Yes, well we started as a result of
23	Generic Letter 98-05 response, we did a pretty
24	thorough walkdown of containment. And we did another
25	one for IEEE for looking at the protective coatings on
1	I Contraction of the second

(202) 234-4433

	329
1	the liner. And then every year when we do our
2	containment cleanliness walkdown we do an inspection
3	of the coatings.
4	There is some coatings that are not there.
5	I mean, you know some of the floor there's wear marks
6	and things like that, but we haven't noticed any large
7	layers of coatings being removed. And we did do an
8	assessment of the adhesion of the coatings and there's
9	not any large amounts of coatings that are coming off.
10	There are coatings that are off
11	MEMBER WALLIS: Because coming off in a
12	design basis LOCA is rather different. They're being
13	bombarded
14	MR. WROBEL: We didn't do it during a
15	design basis LOCA, I'll give you that.
16	MEMBER WALLIS: So I just wonder what the
17	basis was for asserting that they do not detach from
18	the substrate during a design basis LOCA. Because we
19	know that in some plants that they're bad enough that
20	you may even see some of them detach without any LOCA
21	at all.
22	MR. WROBEL: That's based on the
23	qualification, the original qualification testing.
24	MEMBER WALLIS: The qualitification says
25	they won't happen, that's right.

(202) 234-4433

	330
1	MR. WROBEL: And we have assessed the
2	current coatings against the original coatings that
3	were applied
4	MEMBER WALLIS: Well, there's no
5	instruction technique which sort of
6	MR. WROBEL: Not during a LOCA, no.
7	MEMBER WALLIS: tests how well they're
8	adhered now. No.
9	MEMBER MAYNARD: Have you ever done any
10	pull test on it or anything? There are tests you can
11	do for coatings to basically glue and see how much
12	MR. WROBEL: We haven't done comprehensive
13	pull tests, but we have walked down coatings and you
14	can kind of tell if things are adhering. In fact, a
15	few years ago we did do scrapings of the coatings to
16	try to get them off because we want to assess them
17	against you know, make sure they were still
18	consistent with the original coating composition. And
19	we actually had a lot of trouble getting coatings off
20	most areas of the plant. Now, again, there were a few
21	areas that was gone already, so we didn't get any
22	coatings.
23	MEMBER MAYNARD: Yes. There are some
24	things you can do besides just looking at that.
25	MR. WROBEL: Yes.

(202) 234-4433

	331
1	MEMBER MAYNARD: And it sounds like you
2	have done some of those.
3	MR. WROBEL: A little bit. It's not a huge
4	comprehensive program yet, but I think this 2004-02 is
5	going to be bringing more.
6	MR. MAKER: Well, I'll finish up with the
7	other organic materials, things like cable insulation
8	that could generate hydrogen and other inorganic acids
9	because of higher temperatures and radiation dose.
10	And the increases will be insignificant. There won't
11	be significant gas generation.
12	CHAIRMAN DENNING: Thank you.
13	MR. MAKER: Okay. You're welcome.
14	MR. MIRANDA: I'd like to introduce Raul
15	Hernandez. He's from our Balance of Plant Branch. And
16	he's going to be talking more in the systems area and
17	the EPU effects and our evaluation of the EPU effect
18	or EPU conditions on a number of the balance of plant
19	systems.
20	MR. HERNANDEZ: My name is Raul Hernandez,
21	like he said. And I'll be discussing the review of
22	the balance of plant section.
23	Our review is based on Review Standard 001
24	Matrix 5. There's over 20 systems in Matrix 5. These
25	systems can be summarized as internal hazards, fission
	I

(202) 234-4433

	332
1	product control, component cooling and decay heat
2	removal, balance of plant system, waste management
3	system, emergency diesel fuel oil storage and light
4	loads. And also we review test consideration for
5	certain balance of plant systems.
6	For the purpose of this presentation we
7	are going to emphasize the spent fuel pool cooling,
8	the service water system and the ultimate heat sink,
9	the auxiliary feedwater system, the condensate and
10	feedwater system. But you can ask questions of any
11	system if you have them.
12	For the spent fuel pool system, the
13	licensee performed a heat load analysis and determined
14	that the heat load would not be exceeded for the spent
15	fuel pool cooling system. And they will maintain
16	administrative control to make sure of this. They will
17	be delaying the full core upload until they have
18	assurance that they have enough cooling capability.
19	The licensee has commit to make some
20	material changes to the tech spec to reflect this new
21	thermal analysis that they have performed.
22	During the evaluation
23	MEMBER WALLIS: What is this alternate
24	source?
25	MR. HERNANDEZ: What?
1	

(202) 234-4433

	333
1	MEMBER WALLIS: What is the alternate
2	source in the second bullet?
3	MR. HERNANDEZ: Yes. This is for the
4	worst case scenario boil up rate. The licensee has a
5	make up source with that is going to be higher that
6	this worst case boil up rate. They have in addition to
7	that an alternate make up water source for the spent
8	fuel pool which has the capability of 50 gallons per
9	minute. This is slightly below the worst case boil up
10	rate of 52.8 gallons per minute. The licensee has
11	done an evaluation and have determined that in the
12	time that it would take for the boil up rate to drop
13	to 50 or below gallons per minute, the spent fuel pool
14	would have lost less than or almost 2 inches of water.
15	The staff determined that based on all the
16	conservatism in the calculations, that this was
17	acceptable. And the licensee has committed to update
18	the USR to include this justification.
19	MEMBER WALLIS: This alternate source is
20	something that's installed and comes on automatically
21	with some signal or something?
22	MR. HERNANDEZ: Well, for the worst case
23	this is if they lose all cooling for the spent fuel
24	pool, they have the capability of providing makeup
25	water for the spent fuel pool from the condensate

(202) 234-4433

	334
1	storage excuse me. Let me just make sure.
2	MEMBER WALLIS: So it requires some
3	operator action? It requires some operator action?
4	MR. HERNANDEZ: Yes. Yes. It will take
5	some operator action. It's not an automatic system.
6	The preferred one is the RWST
7	MEMBER WALLIS: But the operator action is
8	opening valve, it's not laying a line or something?
9	It's not actually installing a hose or something? The
10	hose is already there. It's just opening an valve?
11	MR. MIRANDA: A valve line.
12	MEMBER WALLIS: Right.
13	MR. HERNANDEZ: The alternate source is
14	the CBCS.
15	MR. DUNNE: Yes. The alternate source is
16	our charging system. The other thing is the boiler
17	over which you're going to lose this 2 inches, it's on
18	the order of 19 hours. So that's more well before
19	that time we'd have alternate source water available.
20	MEMBER WALLIS: This isn't really an EPU
21	issue anyway, is it?
22	MR. DUNNE: It basically changed because
23	we did an more conservative analysis for EPU than we
24	have presently. And the two inch number we gave the
25	NRC was also a conservative analysis. We basically
	I

(202) 234-4433

ĺ	335
1	assumed that we instantaneously offload the entire
2	core at the minimum time, that we instantaneously heat
3	the pool to its limit at that point in time and then
4	we instantaneously lose decay heat, and then we got a
5	boil off. And so there's conservatism in the analysis.
6	MR. HERNANDEZ: Next we're going to be
7	discussing the service water system and the alternate
8	heat sink. For Ginna Lake Ontario is the alternate
9	heat sink.
10	The service water system evaluation has
11	determined that the system has enough capability to
12	handle the decay heat at EPU conditions. Flow rates
13	are capable to handle EPU during the safe shutdown and
14	injection phase only one service water pump is
15	required. But like for, like as I mention here, post-
16	LOCA mitigation recirculation phase, two service water
17	are required. The licensee has committed to revise the
18	tech specs to include this into the tech specs.
19	And like I already mentioned, no
20	modifications are required due to the EPU.
21	For the aux feedwater systems there's some
22	over here that you see that the preferred flow
23	that the preferred AFW required flow has increased 5
24	gallons per minute. There was some confusion in some
25	statement on the application. We discussed this with

(202) 234-4433

	336
1	the licensee and what they discussed before, that the
2	required flow hasn't change, that is acceptable and
3	that was their original intent.
4	CHAIRMAN DENNING: We talked before the
5	break and since then I've had an epiphany and
6	remembered where the numbers came from.
7	Basically Westinghouse for exit analysis
8	basically asked for a minimum AFW flow rate and a
9	maximum AFW flow rate to use. And for whichever
10	analysis if it's conservative to use the minimum, they
11	used the used the maximum if it's conservative to use
12	the maximum, they used the maximum.
13	So right now the way AFW system is
14	designed when it gets automatically initiated is a
15	control valve that throttles back and will stop
16	throttling once the AFW flow gets between a range of
17	200 to 230 gpm.
18	So previously we had always used 200 gpm
19	as our minimum number and 230 gpm as the maximum.
20	For EPU, again this is one of those areas
21	where our instrumentation people would like to have
22	more margin for uncertainty analysis, we decided that
23	we would increase the maximum number from 230 to 235.
24	So for any analysis that Westinghouse did where they
25	need to maximize AFW flow to a steam generation for a
l	I contract of the second se

(202) 234-4433

	337
1	particular transient, they are now using a max flow of
2	235 gpm for any analysis. Where it's conservative to
3	use minimum numbers, they're using the existing,
4	they're using the 200 gpm number, which is the
5	capability of the system.
6	So the reality is the way the table is in
7	the submittal it's somewhat confusing to interpret and
8	it does mean you need to increase AFW flow to 230 to
9	235 or a 5 gpm increase. We basically are saying that
10	we are using a conservative up or down for max flow of
11	235 gpm in lieu of 230 gpm for the present licensing
12	basis. So we've added some conservatism to our
13	analysis of record.
14	MR. HERNANDEZ: For the standby AFW
15	systems, the licensee has acknowledged that the
16	required flow has increased. It's supposed to reach 35
17	gallons per minute.
18	The Staff finds this acceptable based on
19	the testing that is going to be performed on the
20	system. Part of the power uprate testing, they're
21	going to perform a test to verify that the system can
22	provide the required flow as it's supposed to.
23	For the condensate and feedwater system
24	the Staff have determined that no safety challenges
25	have been created. There are some major modifications
	1

(202) 234-4433

	338
1	to the system which includes a feedwater regulatory
2	valve, feedwater pumps and the condensate booster
3	pumps.
4	To decrease the severity of certain vents
5	the licensee is performing some system tuning. The
6	ones that we mention here is main feedwater pumps,
7	suction pressure setpoint, main feedwater pump, NPSH
8	calculator setpoint and delays have been added to the
9	low pressure heater bypass value open circuit.
10	Basically this modifications add to reduce the
11	severity of a loss of condensate pump, loss of
12	condensate booster pumps or heat or drain pump.
13	During power accession and during some
14	limited transient, the licensee is going to monitoring
15	the performance of the main feed system to verify
16	their modeling of different areas and to verify the
17	setpoints that they have used.
18	As a summary, the Balance of Plant Staff
19	has determined that the EPU is acceptable with respect
20	with the Balance of Plant area. This is based on the
21	evaluations of the licensee's submittal and their
22	results, the commitments that the licensee has agreed
23	on and the results from the power ascension and
24	transient testing program.
25	Any question?
	I

(202) 234-4433

	339
1	MEMBER SIEBER: Thank you.
2	CHAIRMAN DENNING: Thank you very much.
3	Okay. Let's talk just a little bit about
4	tomorrow, because I think we're done for the day,
5	right?
6	MR. MIRANDA: Right. We are done for
7	today.
8	CHAIRMAN DENNING: As far as tomorrow is
9	concerned, my guess is that we probably will be
10	finishing up an hour before the scheduled time, but
11	it's a little bit hard to interpret now. With regards
12	to what kinds of surprises we might have for you
13	tomorrow and who you ought to have around, I think we
14	ought to talk about that just a little bit.
15	It's conceivable that over the night we
16	might decide we want to talk a little bit more about
17	safety analysis. Do you think that's likely, Graham?
18	I don't know. I don't know whether you're wondering
19	what people should I have here tomorrow and is there
20	anybody that you'd like to dismiss and send home and
21	we could discuss now whether we think that we might
22	miss them.
23	I mean, it's up to you. I don't know
24	whether as far as you're concerned, I mean there's
25	a lot of money involved in this whole thing and you
l	

(202) 234-4433

	340
1	might want to just keep them here just in case. But my
2	guess is there's some set of your staff that could
3	really go home, but I don't how to advise you.
4	MR. FINLEY: Right. And we'll be prepared
5	to discuss further safety analysis questions if you
6	have those. As far as our electrical folks and
7	materials, we intended to send them home tonight.
8	CHAIRMAN DENNING: I see absolutely no
9	problem with that.
10	MR. FINLEY: Okay. Then we're fine I
11	think.
12	CHAIRMAN DENNING: Okay. You're fine?
13	Okay. Very good.
14	Then did you have any other comments or
15	questions?
16	MR. MIRANDA: No, I don't.
17	CHAIRMAN DENNING: No? Okay.
18	MR. MIRANDA: So similarly, you would like
19	to have our Staff, our safety analysis staff here
20	also?
21	CHAIRMAN DENNING: I think that would be
22	a good idea. Because
23	MR. MIRANDA: Just the reactor systems
24	portion or the dose consequences people? Just the
25	reason systems?
	1

```
(202) 234-4433
```

	341
1	CHAIRMAN DENNING: Just the reactor
2	systems people.
3	MR. MIRANDA: Okay.
4	CHAIRMAN DENNING: I think we're pretty
5	comfortable with the dose.
6	MR. MIRANDA: Yes, dose came out pretty
7	good.
8	MEMBER WALLIS: Your people in response to
9	our questions earlier today in the reactor systems
10	area, are they preparing anything that they might want
11	to bring in as an illustration of an example of how
12	thorough their investigation was or something? Or are
13	they just leaving it open in case we might ask
14	something? Are they preparing anything.
15	MR. FINLEY: No, they are not preparing
16	anything.
17	MEMBER WALLIS: They're not preparing
18	anything.
19	MR. MIRANDA: No.
20	MEMBER WALLIS: Sometimes that happens
21	when we ask questions, they say oh I wished I'd
22	actually been able to present something, and they
23	CHAIRMAN DENNING: But I'm not suggesting
24	that you now initiate
25	MEMBER WALLIS: I'm not suggesting. I'm
1	

(202) 234-4433

	342
1	just asking if I'm just asking if they had that on
2	their agenda. I wasn't soliciting it. I was just
3	curious if they
4	MEMBER SIEBER: It might not be a bad
5	idea, though, to pick some aspect of the review and go
б	through it carefully with us to show what the basis
7	is, what things you reviewed from the licensee and how
8	you draw your conclusions, what kind of calculations
9	if any do you make on your own as confirmatory. And
10	a way to describe the basis for a conclusion that says
11	everything is okay. I think if we just ran through
12	that once, perhaps it would help us.
13	CHAIRMAN DENNING: But if you want to
14	defer that until we meet again in a month, you can do
15	that. It makes more sense than trying to
16	MEMBER SIEBER: You probably couldn't put
17	it together for tomorrow.
18	MR. MIRANDA: Yes. Basically what it would
19	be is an ad hoc discussion
20	MEMBER SIEBER: That wouldn't do.
21	CHAIRMAN DENNING: Okay. In that case we
22	are adjourned until tomorrow.
23	(Whereupon, at 4:53 p.m. the Subcommittee
24	was adjourned, to reconvene at 8:30 a.m. on March 16,
25	2006.)
	1

(202) 234-4433