Official Transcript of Proceedings		
N	UCLEAR REGULATORY COMMISSION	
Title:	Advisory Committee on Reactor Safeguards Reliability and Probabilistic Risk Assessment Subcommittee	
Docket Number:	(not applicable)	
Location:	Rockville, Maryland	
	,, , , , , , , , , ,	
Date:	Thursday, December 14, 2006	
	Haroady, December 14, 2000	

Work Order No.: NRC-1373

Pages 1-299

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	RELIABILITY AND PROBABILISTIC RISK ASSESSMENT
6	SUBCOMITTEE MEETING
7	+ + + +
8	THURSDAY,
9	DECEMBER 14, 2006
10	+ + + +
11	The Advisory Committee met at 8:30 a.m. in
12	room T-2B1 of the U.S. Nuclear Regulatory Commission,
13	One White Flint North, 11555 Rockville Pike,
14	Rockville, Maryland, Dr. George E. Apostolakis,
15	Chairman, presiding.
16	MEMBERS PRESENT:
17	GEORGE E. APOSTOLAKIS Chairman
18	WILLIAM J. SHACK Vice Chairman
19	GRAHAM WALLIS Member
20	THOMAS KRESS Member
21	MARIO V. BONACA Member
22	MICHAEL CORRADINI Member
23	JOHN D. SIEBER Member
24	SAID ABDEL-KHALIK Member
25	OTTO L. MAYNARD Member
ļ	I

			2
1	<u>ACRS STAFF</u>	PRESENT:	
2	ERIC	A. THORNSBURY	
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
ļ	I		

	3
1	AGENDA ITEM PAGE
2	WELCOME:
3	George Apostolakis 4
4	OVERVIEW OF ESBWR PRA:
5	Rick Wachowiak 6
6	ADJOURN:
7	George Apostolakis
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:30 a.m.
3	CHAIRMAN APOSTOLAKIS: The meeting will
4	now come to order. This is a meeting of the Advisory
5	Committee of Reactor Safeguards Subcommittee on
6	Reliability and Probabilistic Risk Assessment. I'm
7	George Apostolakis, Chairman of the Committee.
8	Members in attendance are Said Abdel-Khalik, Mario
9	Bonaca, Tom Kress, Otto Maynard, Bill Shack and Jack
10	Sieber.
11	The purpose of the meeting is to reduce
12	electric dependence of the ESBWR Probabilistic Risk
13	Assessment. The subcommittee will gather information,
14	analyze relevant issues and facts and formally propose
15	solutions and actions as appropriate by deliberation
16	by the close of the meeting. Eric Thornsbury is the
17	designated federal official for the meeting.
18	There are several presentations in today's
19	meeting that have been announced as part of the
20	matters of this meeting, previously published in the
21	Federal Register on December 4, 2006.
22	A transcript of the meeting is being kept
23	and will be made available as stated in the <u>Federal</u>
24	<u>Register</u> notes. It is requested that speakers first
25	identify themselves and speak with sufficient clarity
l	I

(202) 234-4433

	5
1	and volume, so that we can readily be heard.
2	We have received no comments or asking
3	time to make oral statements from members of the
4	public regarding today's meeting.
5	This morning's presentation from GE will
б	provide some background on the ESBWR PRA and then
7	there will be some updates to the PRA since our last
8	meeting. This afternoon, we will hear from GE on the
9	specific issues that were identified during our
10	previous meeting. Tomorrow, we plan to hear from the
11	staff regarding other matters of interest as
12	identified in their request for additional
13	information. This meeting is a peer review meeting,
14	so member discussion by this subcommittee or the full
15	Committee is expected at this time.
16	Time will be set aside at the end of this
17	meeting to identify technical issues that we need to
18	hear more about during subsequent meetings. Specific
19	issues of concern are identified and under a letter
20	from the Committee we can bring them to the full
21	Committee. Otherwise, we will expect that our review
22	of the ESBWR PRA will feed into our letter documenting
23	our PRA review where ESBWR designs have certification.
24	We will now proceed with the meeting and
25	I call upon Mr. Rick Wachowiak from GE to begin the
l	I

(202) 234-4433

	6
1	presentations.
2	MR. WACHOWIAK: All right. Good morning.
3	Do you want me to be here by the microphone probably?
4	CHAIRMAN APOSTOLAKIS: Yeah.
5	MR. WACHOWIAK: Okay. The first thing I
6	want to do this morning is to go quickly over some
7	aspects of the ESBWR device. I think for our new
8	Members, some member of the subcommittee, I'll go
9	through this fairly quickly, since most of you are
10	familiar with it.
11	Okay. We're going to start with, and this
12	is for the whole day, the overview of the ESBWR and
13	then some ESBWR PRA. We're going to talk. In that
14	ESBWR PRA portion, we were asked to go through some
15	significant sequences. I brought some example
16	sequences to walk through and those we will pass out
17	in the next section. Then, we want to talk about some
18	significant items from Revisions 1 of the PRA and then
19	the upcoming Revision 2 of the PRA, which we will talk
20	about that.
21	An issue that has been on the minds of us
22	and of the staff is in the area of regulatory
23	treatment of non-safety systems, so we're going to go
24	through that issue and the proposal that we made to
25	the staff a couple of weeks ago. Then later on in the
	I

(202) 234-4433

	7
1	afternoon, we'll get into some specific items that we
2	had discussed at the previous meeting. There is a
3	couple of different methodology issues that we want to
4	talk about. And then some things about external
5	events. So we'll cover those in the afternoon.
б	Some background for this meeting. The
7	last time we met was in April of 2006. It was shortly
8	after portions of the PRA had been revised and sent
9	in, so most of the members of the subcommittee had
10	seen Rev 0 as a PRA and the staff was in the middle of
11	reviewing pieces of Revision 1 of the PRA. You now
12	should all have the complete Revision 1 of the PRA and
13	it has been available, I think, since September.
14	MEMBER SIEBER: September.
15	MR. WACHOWIAK: The pieces came in at
16	different times, but I think the whole disk came in at
17	once in September.
18	MEMBER SIEBER: September 8.
19	MR. WACHOWIAK: So now everybody should
20	have seen everything that is in Revision 1. When we
21	talked last time, there were some concern about this
22	disconnect in what you have seen and what we were
23	talking about and what the staff was reviewing. So we
24	talked about having this further conversation today.
25	And also, we tried to set the timing up so that any
	I

(202) 234-4433

1 issues that come out of this meeting can be reflected 2 in Revision 2 as it is going to be submitted 3 forthcoming. We will talk about that a little bit 4 later on today.

5 So the first part we're going to talk about this morning is a little bit about the strategy 6 7 for risk management. Then we'll get into some 8 accident sequences produced by the analysis. 9 Basically, I brought the top few sequences and then examples to go through, the sequence description and 10 11 the cutsets associated with those.

Later on today then, we're going to talk about design changes that have been made to the plant, that you have probably seen in DCD Revision 2, but are not yet reflected in the PRA, that's the update that we're going to do. As I said, we talked about or we'll be talking about readiness.

So quickly, so everybody is on the same 18 19 page here, ESBWR is a 4,500 megawatt thermal power reactor. We will get about 1,500, depending on what 20 21 we do with the BOP, 1,600 megawatts of electric out of 22 It's a natural circulation plant, so there are no it. 23 recirculation pumps and we also use passive safety 24 systems, so there's no ECCS pumps. And like you are 25 probably used to seeing, the passive systems are set

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

up so that we have 72 hour capability to respond to 2 accidents and transients with our passive systems before any sort of operator action or replacement is 3 4 needed.

1

5 I'll let most of you go ahead and look at these things on your own. We won't go through each of 6 7 the systems here, that's not the purpose of this meeting. But this just provides an overview of all 8 9 the different systems. Passive systems are contained inside the containment and then we have other active 10 11 backup systems that are out in the other areas of the 12 plant. And if you have any questions about this later, just let me know. 13

14 The ESBWR vessel is a little different 15 than past BWRs. First, as you'll notice, there is no recirculation pumps. The other thing that you notice 16 is that there is significant penetrations in the 17 vessel that are below the top of the core. There are 18 19 some drain penetrations and things like that lower on 20 down, that the pipes that process steam, steam flow, 21 through flow connections are all above the core. This 22 provides the ability to perform the passive functions 23 provide additional margin accident to in and 24 sequences. Then we take in the PRA.

> MEMBER WALLIS: Just --

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	10
1	MR. WACHOWIAK: Go ahead.
2	MEMBER WALLIS: Where would 1.5 be
3	above the core be on this?
4	MR. WACHOWIAK: On this slide, the core
5	area is here.
6	MEMBER SIEBER: Where are we?
7	MR. WACHOWIAK: And so 1.5 meters above
8	the core. This model is in 24. The equalizing line
9	in is 1 meter above the core, so that's right
10	probably right around the 5.
11	MEMBER SIEBER: Right around the 5. And
12	the ground level is positive of that, right?
13	MR. WACHOWIAK: If you
14	MEMBER SIEBER: You draw this picture, you
15	try to draw where the surface of the earth leak picks
16	up for the I on this here.
17	MR. WACHOWIAK: Yes, I would say that
18	grade level is probably about half way up the vessel.
19	MEMBER SIEBER: Okay.
20	MR. WACHOWIAK: I can show that better on
21	a slide that's coming up.
22	MEMBER SIEBER: All right. That's where
23	I thought it was. Okay.
24	MR. WACHOWIAK: Here is one we can show.
25	Grade level in this plant is right near the top of the
Į	I

```
(202) 234-4433
```

	11
1	water in the suppression pool, so right around here
2	somewhere.
3	MEMBER SIEBER: Okay.
4	MR. WACHOWIAK: Some of the features that
5	we have, the solid background on this schematic is the
6	containment boundary. In this direction at this
7	angle, you can see one of our gravity-driven cooling
8	system pools up on the top. We have a suppression
9	pool, just like other BWRs, so it is a pressure
10	suppression containment. Up above the top of the
11	containment, there is water for the passive residual
12	heat removal system. That provides both the
13	resonation condensers and the passive containment pool
14	system.
15	Another area of interest here is that the
16	the spent fuel pool is now down, as I said, gray
17	was about half going, the fuel pool is down below
18	grade in a separate building and is better protected
19	than some other previous designs. We'll take a look
20	at it from the other direction. And this one you can
21	see the heat exchangers for the passive containment
22	pool system here. And if we drilled into the drawing
23	you could see the isolation condensers also. But
24	these pools up on top are used for residual heat
25	removal. These are gravity cooling system pools, so
I	

(202) 234-4433

	12
1	those would drain the reactor in the case of an ECCS
2	actuation.
3	MEMBER MAYNARD: With respect to the pool
4	so low, just for curiosity, how do you open the flood
5	gates for refueling? I mean, bringing on the fuel for
6	some kind of event?
7	MEMBER SIEBER: Yes.
8	MR. WACHOWIAK: Yes, in this we have an
9	incline fuel transfer system that has been used on
10	other BWRs in the past. It's a little different in
11	this case, because it doesn't go through the
12	containment boundary. It's all outside of the
13	containment. So for refueling, you would take the
14	reactor vessel head off. This entire area is flooded
15	with water and the fuel comes out and is transferred
16	immediately down.
17	MEMBER SIEBER: The shaft gets flooded.
18	MR. WACHOWIAK: I'm sorry?
19	MEMBER SIEBER: So there is water and the
20	whole shaft is
21	MR. WACHOWIAK: Yes.
22	MEMBER SIEBER: All right.
23	MR. WACHOWIAK: The shaft is filled with
24	water and there's a signal involved. Valves are
25	locked. You know, they keep it cool as it gets down
ļ	I

(202) 234-4433

	13
1	through the tube. A similar current design.
2	Now, for the PRA we get into a more
3	simplified description of what the containment looks
4	like. This slide here has been presented at various
5	times of important things. Isolation condenser pool,
6	ECC pool, these are all interconnected as we'll see in
7	a moment. The gravity-driven cooling system provides
8	water to the vessel and it can also be used for lower
9	cavity flooding. These are squib valves, squib
10	operated in the ECCS system, depressurization valves
11	to equal out the reactor vessel pressure with the
12	containment, so that GDCS will work properly.
13	We have what we call MCOP. It is
14	basically just a hard type bed, manually operated, so
15	it's not an automatic rupture to this and some other
16	plants they use. If there are no other questions on
17	this?
18	MEMBER SIEBER: You have a lot of squib
19	valves, right?
20	MR. WACHOWIAK: There is eight
21	depressurization squib valves, there are eight GDCS
22	squib valves, four equalizer line squib valves and
23	then the BiMAC system also employs squib valves. I
24	think there are 12 of those in the current
25	MEMBER SIEBER: 32?

(202) 234-4433

	14
1	MR. WACHOWIAK: A lot of squib valves.
2	MEMBER SIEBER: And in your PRA, where do
3	you get your reliability data from? Since I don't
4	ever recall a squib valve operating during operation.
5	MR. WACHOWIAK: The basic value that we
6	have used for the squib valves comes from the EPRI URD
7	for passive plants. There is a value that's used on
8	that. We are also looking into other sources of data
9	for the squib valves. As we will see in one of the
10	upcoming presentations, some of these squib valves are
11	not like the squib valves that have been used by
12	standby liquid control systems in the past.
13	The gauge BiMAC squib valves are probably
14	very similar to what you used in standby liquid
15	control systems today, but the GDCS squib valves is a
16	different type of design and the DPD is yet another
17	type of design. The DPD, I think, is described in the
18	DCD. That valve has been tested as part of the ESBWR
19	program.
20	MEMBER SIEBER: Um-hum.
21	MR. WACHOWIAK: And the GDCS squib valves,
22	there is a conceptual design for DCD. The valve
23	people are still working on exactly what's the optimum
24	configuration for that one.
25	MEMBER ABDEL-KHALIK: Is this the right
ļ	1

(202) 234-4433

	15
1	time to talk about the reliability of the squib valves
2	or is there going to be another sort of presentation
3	later on that talks about this?
4	MR. WACHOWIAK: I think this will be okay
5	to talk about the reliability
6	MEMBER ABDEL-KHALIK: Okay.
7	MR. WACHOWIAK: of squib valves.
8	MEMBER ABDEL-KHALIK: Well, I have an
9	alert service bulletin issued by Bell Helicopter.
10	MR. WACHOWIAK: Okay.
11	MEMBER ABDEL-KHALIK: To owners and
12	operators of three different models of helicopters
13	with emergency flow kit using squib actuated inflation
14	valves. And it essentially says that during about an
15	eight month period, all those helicopters, all those
16	valves, the supplier of the valves provided the wrong
17	squib. Now, do you consider that to be a common
18	failure for your valves? Because you are not going to
19	make your own squibs, presumably.
20	MR. WACHOWIAK: That's correct. We're
21	going to be buying them.
22	MEMBER SIEBER: Controls.
23	MEMBER ABDEL-KHALIK: Right. If that is
24	the case, would you still sort of stick by that number
25	of 3.6×10^{-5} as a public mode of failure of valves? I

(202) 234-4433

	16
1	mean, after all you have no idea that you have the
2	wrong squib for the valves.
3	MEMBER SIEBER: It's sort of hard to test,
4	too.
5	MR. WACHOWIAK: But the weight well, in
6	that particular situation, I'm trying to see, we would
7	have an analogy here that we do have a test program
8	for our squib valves, but it's similar to what is
9	being done with the existing plants where the squib
10	charges would be taken out during an outage and some
11	sample is tested. So it's not that we would never
12	know, but, once again, if you put in a bad batch
13	during an outage, then there is not much you can do
14	about it until the next time you come down.
15	One of the things that we
16	MEMBER SIEBER: You would have a portion.
17	MR. WACHOWIAK: Yes, that would
18	MEMBER SIEBER: If you identified it
19	during operation, the next time you come down, about
20	10 minute after you identified it, right?
21	MR. WACHOWIAK: If all of the squibs were
22	the same.
23	MEMBER SIEBER: Right.
24	MR. WACHOWIAK: From the same batch, yes.
25	That would be the case. What we have talked about in
ļ	

(202) 234-4433

1 the reliability and maintainability program, which I 2 don't think is described in the DCD, but we're worried about things like that. 3 So what we would recommend in 4 that case is that you don't put in all the squibs from 5 the same batch. You would use a batch rotation, so that, you know, you get your order of squib valves 6 7 from the manufacturer, but only a portion of the ones 8 that are in the containment would actually be from 9 that shipment is one thing.

10 The other that we were considering in the past, which I'm not sure that our current valve 11 12 engineer has in the front of his mind at this point in time, is potentially to have different types of squibs 13 14 of the same valve. We will be talking a little bit later this morning probably before lunch about the 15 specific squib arrangement on these, explosive charge 16 17 arrangement and these valves.

Each one of these valves actually has four 18 19 explosive charges on it. And it's -- I would envision 20 that of those four charges, you wouldn't have exactly 21 the same thing from exactly the same batch. They 22 would be staggered through different purchase orders. 23 MEMBER ABDEL-KHALIK: Right. My reading 24 of that as far as the program with automatic 25 depressurization system, that's where you twist the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

17

	18
1	squibs in or you have where you just put the valves.
2	MR. WACHOWIAK: Um-hum.
3	MEMBER ABDEL-KHALIK: Before you replace
4	them. But the value system, the testing program
5	doesn't indicate that those squibs are ever tested.
6	MR. WACHOWIAK: Well, we'll have to get
7	that updated. Those should also be tested just like
8	the DPDs. It's an ECCS system. The testing program
9	between the two systems should be, I would say, nearly
10	identical.
11	MEMBER ABDEL-KHALIK: I mean, my concern
12	is that, you know, this is presumably an industry that
13	would have, one would guess, Q&A standards comparable
14	to what you would have in the plant.
15	MR. WACHOWIAK: Right.
16	MEMBER ABDEL-KHALIK: And yet something
17	like this happens for different models, over a long
18	period of time and it seems anything logical that
19	the same thing could actually happen. You can have
20	squibs that are too small, that the valves wouldn't
21	open. You can have squibs that are too big and you
22	can actually cause a failure of the lines. So we need
23	a probability of a few times 10^{-5} , just seems a little
24	too low.
25	MEMBER SIEBER: Well, you can't test them.
I	

(202) 234-4433

	19
1	You know, they are a one trial valve. Set it off as
2	the, you know
3	MR. WACHOWIAK: The issue
4	MEMBER SIEBER: the prototype.
5	MR. WACHOWIAK: The issue that Said is
6	raising is that of common cause failure.
7	MEMBER ABDEL-KHALIK: Right.
8	CHAIRMAN APOSTOLAKIS: So testing would
9	not help you there. Testing would help you with the
10	reliability of individual valves.
11	MEMBER ABDEL-KHALIK: Right.
12	CHAIRMAN APOSTOLAKIS: It depends on what
13	you are testing to determine the reliability or
14	testing to make sure the valves are working before you
15	use them.
16	MEMBER MAYNARD: Well, they can contribute
17	though the testing if you when you got them back in
18	if you tested the sample before you put the new valves
19	in. You would have a better chance of catching it.
20	No one tests them after you have taken them out.
21	MEMBER SIEBER: We have to test them, yes.
22	MR. WACHOWIAK: So what I'm taking out of
23	this is that we need to discuss more about the testing
24	program and how we're going to prevent common cause
25	issues of these valves in our documentation, at this
I	

(202) 234-4433

	20
1	point, while you're doing the review. And I think we
2	can do that. As you will see, when we get into the
3	instrument and control system discussion that we'll
4	have a little later on today, we're going through
5	great pains to try to eliminate strangers, maybe it's
6	the wrong word, but just unknown common cause
7	failures, things that we haven't seen in the past.
8	As you will see in that system when we
9	discuss that, we've got an entirely diverse system
10	that we put in just to address common mode failures
11	that we may not be able to see and that may not have
12	been evident from the data that is out there in the
13	or maybe in some of the other industries also.
14	I would not see that the squib testing
15	program would be much different. We will do things to
16	minimize the common cause. As examples, testing parts
17	of the batch before it is installed. Not using the
18	same batch everywhere and possibly
19	CHAIRMAN APOSTOLAKIS: You did a
20	sensitivity analysis where you increased the failure
21	rate of the valves, the individual valves, by a factor
22	of applying a factor of 10.
23	MR. WACHOWIAK: Right.
24	CHAIRMAN APOSTOLAKIS: Perhaps you should
25	also do some sensitivity analysis on the common cause
I	

(202) 234-4433

	21
1	failure. One of the problems that you had that was
2	not commonly occurring is you have too many of them.
3	You are not talking about a common cause failure of
4	two components. You are talking about four, five,
5	six, seven. And you put the factor of 10, I believe,
6	something like that, but that would be seven of them
7	will fail. But maybe more sensitivity analysis,
8	because if you assume the factor of 10 on the regular
9	failure rate, the common the core damage frequency
10	goes up only about by a factor of 10. From 10^8 to 10^-
11	7.
12	MR. WACHOWIAK: Well, when we did that, we
13	also varied the common cause failure that basically
14	the core damage frequency in Revision 1 is,
15	approximately, linear with the failure rate of the
16	squib valve. So if you increase the squib valve
17	failure rate by a factor of 10, core damage frequency
18	goes up by a factor of 10.
19	CHAIRMAN APOSTOLAKIS: Right.
20	MR. WACHOWIAK: So yes, when we did that
21	sensitivity, we did vary the common cause terms also.
22	What we didn't vary were the data.
23	CHAIRMAN APOSTOLAKIS: Okay. I mean, the
24	sensitivity analysis is fine, but the uncertainty of
25	that, it seems there was a lot of uncertainty. Maybe
I	I

(202) 234-4433

(202) 234-4433

22 1 there is multiple Greek letters around the 2 circumference. 3 MR. WACHOWIAK: Right. 4 CHAIRMAN APOSTOLAKIS: Including of 5 course, the separate individual reliability of the failure rate of the valves. You seem to be taking 6 7 this uncertainty on common sensibility studies. The 8 studies, the way I see it, are just plain calculations 9 take a quantity and multiply it by where you 10 something. There were some more, but human error aside, there are two and so on, which is a pretty 11 12 serious assumption. I mean, I'll grant you that. Maybe a more careful uncertainty analysis 13 14 combined with sensitivity would give us more insights, 15 but everything seems to be rather 10^{-7} , but I don't think you ever go above that, no matter what you do. 16 17 So we will discuss it when you come up with it. MR. WACHOWIAK: Right. 18 And we'll also --19 I think after lunch I've got a discussion on common 20 cause --21 CHAIRMAN APOSTOLAKIS: Okay. 22 MR. WACHOWIAK: -- on what we're able to 23 do in Revision 2 with common cause and specifically 24 what you're talking about here is included in the 25 update where we will want to --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	CHAIRMAN APOSTOLAKIS: Okay. I have some
2	here we want to know what the subcommittee is
3	interested in, at this time, would be better.
4	MR. WACHOWIAK: Right. Because once
5	again, we're using data from valves that aren't
6	exactly the same kind of valves that we have here now
7	and we're using our common cause factors based the
8	generic common cause factors not even specific to the
9	squib valves. So there would be some uncertainty
10	there and we need to do we'll expand the treatment
11	of that in the next revision.
12	CHAIRMAN APOSTOLAKIS: You said there that
13	the basic failure rate you took from the utility
14	requirement document?
15	MR. WACHOWIAK: Yes.
16	CHAIRMAN APOSTOLAKIS: Where did they get
17	it from?
18	MR. WACHOWIAK: Where did they get it
19	from?
20	CHAIRMAN APOSTOLAKIS: Yes. You don't
21	know? That's okay.
22	MR. WACHOWIAK: I don't know. I'm sorry.
23	CHAIRMAN APOSTOLAKIS: That's all right.
24	It's so similar to that, because they came from the
25	same table.
I	1

(202) 234-4433

	24
1	MR. WACHOWIAK: Okay. Any more on
2	MEMBER SIEBER: What do we have? The
3	problem we have is two simple requirements. You said
4	the CDF tracks the reliability of the squib valve.
5	MR. WACHOWIAK: Yes.
6	MEMBER SIEBER: That tells me that the
7	mitigation system is designed on depressurization.
8	But you do have active components where you could
9	recover from some action to that.
10	MR. WACHOWIAK: Yes.
11	MEMBER SIEBER: And under that
12	circumstance, that would be the difference between
13	those two curves, reliability and the CDF.
14	MR. WACHOWIAK: Something like they have.
15	MEMBER SIEBER: Yes.
16	CHAIRMAN APOSTOLAKIS: There was another
17	contribution there between the active systems.
18	MR. WACHOWIAK: Right.
19	CHAIRMAN APOSTOLAKIS: But I think what
20	Rick was saying was the sequences, where the reactor
21	system was failing.
22	MR. WACHOWIAK: Right. Every sequence
23	eventually passes through one of these.
24	CHAIRMAN APOSTOLAKIS: Yes.
25	MR. WACHOWIAK: And the passive system.
I	I

(202) 234-4433

	25
1	MEMBER SIEBER: Even though this is a
2	passive mitigation?
3	MR. WACHOWIAK: Oh, yes.
4	MEMBER SIEBER: I would think that you
5	would at least place your lines on that system just so
6	that you don't mess up the plant as much as you would
7	otherwise do.
8	MR. WACHOWIAK: Absolutely.
9	CHAIRMAN APOSTOLAKIS: Of course, there's
10	the matter we love to question here and there are a
11	lot of the passive system itself. It's simple.
12	MEMBER SIEBER: Well, gravity is pretty
13	dependable. The question is where are all the
14	differential pressures?
15	CHAIRMAN APOSTOLAKIS: There are various
16	uncertainties relevant for and so on.
17	MEMBER SIEBER: Yes. Yes, you are right.
18	MEMBER KRESS: So that would probably be
19	okay.
20	CHAIRMAN APOSTOLAKIS: Okay. Let's move
21	on.
22	MEMBER SIEBER: Thank you.
23	MR. WACHOWIAK: In one of the systems
24	we'll be talking about in the where we discuss the
25	plant design a little later on, at least the isolation
I	

(202) 234-4433

1 condenser system, and that's one of the -- it would be 2 the preferred system to use if we can in any accident. 3 It's the tidiest of all of our decayed heat removal 4 systems. Okay.

5 In the previous diagram we just had the deluge lines going down in the lower drywell. This is 6 7 an expansion of what is actually down in the lower 8 drywell. It's our core catcher named BiMAC, Basemat-9 Internal Melt Coolability Arrest and System. 10 Basically, the way it is set up is that when the core 11 comes down into the lower drywell, we have a walkway, It will be, essentially, 12 if you will, above this. transparent to the core. It will come down in. 13 There 14 is a layer of refractory material currently envisioned to be zirconium oxide. 15 Is that walkway iron? 16 MEMBER KRESS: 17 MR. WACHOWIAK: What's that? Is that walkway iron? 18 MEMBER KRESS: 19 MR. WACHOWIAK: I don't know that it has 20 been specified at this point. Is there --21 MEMBER KRESS: Well, I was thinking --22 MEMBER SIEBER: We won't be able to use 23 it. 24 MEMBER KRESS: I was thinking it may 25 become part of the melt.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

26

	27
1	MEMBER SIEBER: Yes, sure.
2	MR. WACHOWIAK: It could become part of
3	the melt.
4	MEMBER KRESS: Sometimes oxide and an iron
5	mix, you know, steel mixture.
6	MR. WACHOWIAK: Yes. I don't think that
7	the material has been specified. But as we look for
8	materials for things like that, we have to look at
9	other interactions with what might be going on in the
10	lower drywell at that point. So we're probably not
11	going to make it out of something like zirconium or
12	something like that, that we know is an issue. But
13	the materials for this as well as other things in the
14	drywell, the cabling in the drywell, we have got to
15	worry about the materials in the control line drive
16	mechanisms, all those are materials issues that would
17	need to be addressed here.
18	So we have embedded in this layer in a
19	grid. Right now, the working idea is a grid of 30
20	blocks that each have two thermal couples in there and
21	if any two of adjacent thermal couples detect a high
22	temperature, we would activate the squib valves, the
23	water would come down through the downcomer here and
24	then spread up through each of the pipes on the side
25	providing a forced connection cooling on the bottom.
I	I

(202) 234-4433

	28
1	It spills over onto the top of the melt and there is
2	a return path there to allow for natural circulation
3	in the long-term.
4	VICE CHAIRMAN SHACK: Now, how does the
5	area here confer with that BWR? In the ABWR?
6	MR. WACHOWIAK: In the ABWR. This wet
7	area. I think it's a little bit larger. We've got
8	about 100 square meters of floor area in this one. So
9	I think it's a little bit bigger than ABWR, but given
10	the lesser size of or approximately the same, I
11	wouldn't expect it to be that much different though.
12	MEMBER KRESS: The flow through those
13	tubes, right, will be two phased still?
14	MR. WACHOWIAK: Initially, as it starts to
15	cool the core, there will be some two phase through
16	here. The calculations show that it is going to be a
17	slug flow, in the worst case.
18	MEMBER KRESS: Um-hum.
19	MR. WACHOWIAK: And we won't get any
20	dryout. We won't get bad pressure or things like
21	that.
22	MEMBER KRESS: That's what I was worried
23	about, the bad pressure stopping the flow and getting
24	dry.
25	MR. WACHOWIAK: That's one of the things
I	I

(202) 234-4433

Í	29
1	that we are concerned with, too. As we speak, we are
2	putting together an experiment out in Santa Barbara
3	that is going to test for just those things.
4	MEMBER KRESS: What would you use for
5	that, thermal?
6	MR. WACHOWIAK: You can use electric
7	heating.
8	MEMBER SIEBER: We will focus on the core
9	panel.
10	MR. WACHOWIAK: Right. Yes, this is just
11	to
12	CHAIRMAN APOSTOLAKIS: Yes, this will be
13	MR. WACHOWIAK: I don't have any other
14	presenters that have material for this.
15	MEMBER KRESS: We can talk about this some
16	other time.
17	MEMBER SIEBER: Maybe at another meeting.
18	MR. WACHOWIAK: Yes.
19	MEMBER KRESS: Within theory.
20	MR. WACHOWIAK: What?
21	MEMBER KRESS: Within the core.
22	MEMBER SIEBER: We're going to wake up.
23	MR. WACHOWIAK: Okay.
24	MEMBER SIEBER: Our other members will be
25	dealing with that when this is discussed.
	I

```
(202) 234-4433
```

	30
1	CHAIRMAN APOSTOLAKIS: Okay. Let's move
2	on.
3	MR. WACHOWIAK: Okay.
4	CHAIRMAN APOSTOLAKIS: By the way, those
5	slides are excellent. I would really like this one.
6	MR. WACHOWIAK: Thank you.
7	CHAIRMAN APOSTOLAKIS: You must have a
8	full department of artists, good ones. Did you do
9	them yourself, Rick?
10	MR. WACHOWIAK: Some of them I did. Most
11	of the pictures though we had people who drew the
12	pictures.
13	VICE CHAIRMAN SHACK: Save some of the
14	money next time and put bookmarks in the PRA file.
15	MEMBER SIEBER: And course notes outside.
16	MR. WACHOWIAK: Noted.
17	CHAIRMAN APOSTOLAKIS: And the COL things.
18	MR. WACHOWIAK: One of the things I just
19	want to put up here for those that aren't familiar
20	with this plant, in a LOCA, as we said, all the pipes
21	are connected up above the core, so we don't get a lot
22	of water loss during the LOCA scenarios. Even in the
23	case of what where we had these bottom drain wings
24	over here, the system is actually passive, so that
25	instead of as in the BWR current fleet, where the core
	I

(202) 234-4433

	31
1	dries out and then recovers to about two-third core
2	height, the ESBWR, this is the middle of the level
3	about 1 meter above the core.
4	So loss to that weight and then recovers
5	from there. So instead of steady, this is, you know,
6	steady state from the previous. This is the minimum
7	level for the ESBWR.
8	Kind of getting back to the question that,
9	you know, why are the squib valves in all of the
10	scenarios? You have to go through the GDCS in all of
11	the sequences in some manner to get to core damage.
12	And if GDCS was working, that's the worst case the
13	level can get to. It can't be any worse than that.
14	It's only if the GDCS fails that you would ever even
15	have a possibility of uncovering the core. So that's
16	why it shows up in just about all of the cutsets.
17	Early on I showed the schematic of the
18	containment from the side. This is looking down at
19	the top of the containment. We have isolation
20	condensers four and passive containment cool system
21	heat exchangers, six of those, separated on either
22	side of the building. The significance of the blue
23	water, the light blue water is that that's demobilized
24	water. It is clean.
25	We expect over the life of the plant for
	I

(202) 234-4433

	32
1	these isolation condensers to actuate, at some point,
2	and when they do, they will blow water here and it
3	goes out the side of the building. So we would prefer
4	in those scenarios that non-radioactive steam be
5	coming out of the building.
6	MEMBER SIEBER: So would we.
7	MR. WACHOWIAK: Yes. Now, the water that
8	is in the light blue area, there is enough there and
9	the design requirement is so that there is 24 hours
10	worth of decayed heat removal in those pools. Our
11	calculations actually show that it's about 40 hours
12	worth of decayed heat removal in those pools. The
13	pools are also segmented so that if there is an issue
14	with the building or something here, that only part of
15	the water would be lost.
16	So like there is check valves or some sort
17	of a device in here that would prevent loss of
18	everything on the if there were an issue with the
19	building. So we have that. To get to 72 hours, we do
20	require additional water. We operate with this middle
21	portion here flood, like you would see in a refueling
22	outage, except the head is closed. But that is all
23	still flooded during operation.
24	This gives us the additional water that is
25	needed to get from to get all the way out to 72
I	I

(202) 234-4433

(202) 234-4433

	33
1	hours without having to bring more water into the
2	system. And this is where we talk about RTNSS. This
3	is going to be an important issue later on. This
4	building may not be so clean. It's common site gray
5	water. Because we are going to use common site water
6	in here during outages, then the flood out would be
7	expensive to try to clean that as much as we would
8	need it to be, so we keep these separate.
9	These pools are isolated. As you will see
10	in the PRA, these valves here are modeled to get from
11	24 hours out to the 72 hours to get the additional
12	water.
13	MEMBER SIEBER: If you build a pipe in the
14	drywell and you spilled all the water out of the
15	reactor system, how much water is available to fill up
16	around the outside of the drywell? Are you talking
17	the core?
18	MR. WACHOWIAK: The design requirement is
19	that it will fill above the top of the core.
20	MEMBER SIEBER: Okay. On the outside?
21	MR. WACHOWIAK: On the outside.
22	MEMBER SIEBER: Okay. Not inside?
23	MR. WACHOWIAK: Yes. Actually, we emptied
24	all three GDCS pools.
25	MEMBER SIEBER: Right.
Į	I

(202) 234-4433

	34
1	MR. WACHOWIAK: It goes higher than that.
2	MEMBER SIEBER: Okay. Thank you.
3	PARTICIPANT: You're talking about
4	flooding during the day, right?
5	MR. WACHOWIAK: Yes.
6	MEMBER SIEBER: Yes, that's the ultimate.
7	CHAIRMAN APOSTOLAKIS: As long as there
8	are hatches.
9	MR. WACHOWIAK: This area here is deluge
10	fuel lines used during refueling and we don't take any
11	credit for that in PRA, at this time, they are not
12	connected. Well, after the compliment as nice slides,
13	I'm not sure what happened with this one.
14	MEMBER SIEBER: You would like to withdraw
15	this slide?
16	MR. WACHOWIAK: It has a paste or
17	something was on that slide that I didn't know.
18	MEMBER SIEBER: That happens frequently.
19	CHAIRMAN APOSTOLAKIS: This is an
20	interesting slide. It's very good. I couldn't find
21	anything anywhere as an example of moving from one
22	column to the other. For example, when you started
23	with the conceptual design and then you went to your
24	design base, what did you do? I mean, how do you stop
25	the conceptual design? Do you say this will be seen
I	I

(202) 234-4433

	35
1	in the PRA and ESBWR and here are some conceptual
2	changes and you do some preliminary calculation? Can
3	you describe a little bit the process?
4	MR. WACHOWIAK: Okay. In the conceptual
5	design phase, parts of the systems were like we would
6	say that this is going to be like what's in the ABWR.
7	And we would go and pull it from the ABWR, different
8	reliability studies, some of it even up until now has
9	been retained like the SCRAM system. It is exactly
10	the same as what is in the ABWR. The control rod, the
11	mechanisms, they are all the same.
12	So up through this point, we have said
13	it's ultimately going to be just as reliable as ABWR.
14	If that wasn't okay, then for some reason we would,
15	you know, have a preliminary type calculation, we
16	would think we needed to have some better protection
17	there, then we could go back and add a design
18	requirement.
19	CHAIRMAN APOSTOLAKIS: What kind of
20	criteria did you use to decide this new type of
21	protection, for example?
22	MR. WACHOWIAK: What we did was we looked
23	at existing plants. One of the hard spots would be
24	existing plants. Now, we didn't want to have any
25	issue with Atlas in the ESBWR. So from the outset in
l	I

(202) 234-4433
the conceptual phase, we said that we want to make sure that the combination of the control rods and the standby LOCA control system is reliable enough that all of those sequences for those things together would be negligible. You know, very low 10, ⁻¹⁰ type range. We wanted it to be very low.

7 So we looked at the ABWR control line system, that looked good. We didn't need to do 8 9 anything there. We looked at our standby liquid 10 control system, the conceptual design core valve, the 11 designers had a concept of this pressurized tank 12 standby liquid control system that has some valves that need to open and allow the sodium pentaborate 13 14 solution to go into the core.

15 We looked at what they were planning on doing and noticed that in their design specification, 16 they didn't really say much about instrumentation on 17 locked valves. So we kind of looked at in existing 18 19 PRAs if you have a locked valve that really isn't 20 tested at all during an operation, what type of 21 reliability would you put on that alonq with 22 availability of that train. And then without you 23 wanting any PRA models or anything, just combine those Does it make the reliability that we want? 24 terms. 25 And the answer was no, not really.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	37
1	So we would go back to the design and say
2	here is a list of some valves that we think need to be
3	added to your instrument alarm or not just locked open
4	valves. They also need to be monitored valves, so we
5	would add that. And so in the conceptual phase, those
6	were the kind of things that we're looking at.
7	We would also have different types of
8	meetings where we would discuss tradeoffs in the
9	design. One of the places we were deciding how many
10	safety relief valves to put in the plant. Now, this
11	was a long time ago and it was probably before the
12	core power level in the plant was established, but we
13	were trying to say where should we be with that.
14	And so just from what I had done before in
15	previous PRAs, I said, you know, we would like to have
16	not just a single redundancy. We would like to have
17	more than single redundancy there. Why don't you get
18	us triple redundancy on your SRDs. And so that was
19	factored in. We had space for it and we put in that
20	number of SRDs.
21	CHAIRMAN APOSTOLAKIS: The PRA that we
22	have now corresponds to which column?
23	MR. WACHOWIAK: Right about there.
24	CHAIRMAN APOSTOLAKIS: So two columns?
25	MR. WACHOWIAK: Yes, some of it.
Į	

(202) 234-4433

	38
1	CHAIRMAN APOSTOLAKIS: Oh, that's why we
2	have a zero.
3	MR. WACHOWIAK: Some of it makes it into
4	the more detailed phase. Some of it still is in the
5	basic design phase. So actually in what you have
6	right now, the I&C system is still actually in the
7	white box all the way on the side.
8	CHAIRMAN APOSTOLAKIS: Okay.
9	MEMBER SIEBER: That was my understanding.
10	MR. WACHOWIAK: And we'll talk about that
11	a little bit more sometime today, but the
12	MEMBER SIEBER: Yes, you need to explain
13	to me how you got from a description in the DCD to
14	some kind of hardware, because the middle reason, you
15	listed a bunch of codes and standards and reg guides
16	and things like that which sort of, you know, box
17	around what the system will be. I had a hard time
18	translating the DCD into the PRA document.
19	CHAIRMAN APOSTOLAKIS: Are you going to
20	address this later, Rick?
21	MR. WACHOWIAK: Yes.
22	CHAIRMAN APOSTOLAKIS: Yes?
23	MR. WACHOWIAK: I will. I understand your
24	difficulty in finding that.
25	MEMBER SIEBER: Yes.
ļ	I

	39
1	MR. WACHOWIAK: Because as we'll talk
2	about later, where the Revision 1 of PRA was put
3	together
4	MEMBER SIEBER: Right.
5	MR. WACHOWIAK: the specifics of the
б	I&C system were still in the conceptual design phase.
7	MEMBER SIEBER: Well, how do you know?
8	Rev 1 and the DCD which, you know, it has got a lot of
9	words, but not a lot of detail.
10	MR. WACHOWIAK: Right.
11	MEMBER SIEBER: Okay.
12	MR. WACHOWIAK: And that is indicative
13	of
14	MEMBER SIEBER: And Rev 1 is the PRA.
15	MR. WACHOWIAK: And that is indicative of
16	the vision of the DAC on the I&C system at that point
17	in time. The vision of what that DAC is is different
18	now and it has more design detail in it and we're
19	going to talk about it a little bit later. We'll see
20	as
21	MEMBER SIEBER: Well, what we're mainly
22	interested in hearing about later on is how you
23	reached a conclusion without all of the details that
24	you should have had. Okay?
25	MR. WACHOWIAK: Okay. And this is
	I

(202) 234-4433

	40
1	probably a better time to talk about how we reached
2	our conclusion in Revision 1 without having the
3	detail.
4	MEMBER SIEBER: Yes.
5	MR. WACHOWIAK: One, it would be very nice
6	to have the detail.
7	MEMBER SIEBER: Yes.
8	MR. WACHOWIAK: It makes all of our jobs
9	easier if we have the detail.
10	MEMBER SIEBER: Right.
11	MR. WACHOWIAK: What we needed to do in
12	Revision 1 was look at the requirements that were
13	being set forth in the I&C system and then go find in
14	our other plants something that is similar and would
15	probably meet those requirements. The best we had at
16	the time was the ABWR, and so we pulled some things
17	from the ABWR.
18	What you probably know is that the ABWR
19	doesn't have the same systems as the ESBWR has, so we
20	have to make some decisions of if you were a designer
21	designing the ABWR for these standards, you come up
22	with this thing. If you're going to apply the same
23	standards to ESBWR, you would get something that is
24	similar, but slightly different, and that's what we
25	have to do. We have to make those judgments and try
Į	1

(202) 234-4433

	41
1	to
2	MEMBER SIEBER: Without adding to much to
3	this, right, I once looked and I could take that block
4	of standards that you have listed in the DCD and come
5	up with maybe 10 different systems that would meet the
6	standard.
7	MR. WACHOWIAK: Absolutely.
8	MEMBER SIEBER: Some of which would be
9	bare bones, cheap preferred, and things like the three
10	Ds, we would just barely meet them, or I could come up
11	with Cadillac systems with hardwire protection and
12	multi-processors that were separate and independent
13	and diversified and all that. You would need an
14	expensive system, but it would really give me good
15	reliability numbers.
16	And right now I can't tell where it is you
17	would end up, if you end up with el cheapo or would
18	you end up with pretty good or, you know, because the
19	standards don't go into a single system.
20	MR. WACHOWIAK: Right.
21	MEMBER SIEBER: They don't. It says
22	here's the box you can play in.
23	MR. WACHOWIAK: That is absolutely right
24	and that was the difficulty we had in this stage
25	MEMBER SIEBER: Okay.
I	

(202) 234-4433

	42
1	MR. WACHOWIAK: of being so far to the
2	left on this diagram, because we could end up with
3	different things.
4	VICE CHAIRMAN SHACK: But don't your
5	designers now have some incentive to come up with a
б	system that meets your expectations?
7	MEMBER SIEBER: And they also have
8	incentives to come up with something cheap, because
9	they have got to sell these plants. Okay. So there's
10	the conflict.
11	MR. WACHOWIAK: Yes, they want there is
12	a third conflict, too, in that they have to have
13	something that is qualifiable within the time frame
14	that we have. So there is a lot of different give and
15	take on all of this.
16	So what we did here, we started out with
17	what we thought was bare bones, just take the basic
18	concept from one rhythm, which is an ABWR design, put
19	it in here, one model, see where our problems are.
20	One thing that we did notice in this process, it came
21	at us from several directions, the PRA being one of
22	them, when we look at the common mode failure and the
23	digital I&C systems, we were seeing terms in the model
24	that were or maybe the answer is that we're showing
25	that to have some importance.
	I

(202) 234-4433

	43
1	So we suggested something diverse. Others
2	from different for different purposes were
3	suggesting something diverse. I'll turn that off.
4	That's mine in there. Just go ahead and shut it off.
5	MEMBER SIEBER: Just hit it with a hammer.
б	MR. WACHOWIAK: Okay. It will stop in a
7	second. It will ring about six times. So we were
8	aware of that. And so we wanted to apply what we knew
9	was going to be the diverse protection system in the
10	PRA before we had the study done just the digital
11	where actually the diverse protection system needed to
12	be connected.
13	Well, we were part of the study and we
14	were helping to look at that, but how do you do that
15	in the model without over-committing the plant on this
16	and still providing what we need with our model? So
17	I think we only connected the diverse protection
18	system in the PRA to a couple of functions. I know
19	the depressurization valves are connected,
20	depressurization system is connected there. I don't
21	think we even connected it to the GDCS.
22	So we went bare bones with the adding the
23	DPS. Now we know which place it's connected and we'll
24	talk about this this afternoon, which places it's
25	connected to, and that will go in there. So as we get
ļ	I

(202) 234-4433

	44
1	more of the detail design, we will be able to update
2	the PRA in to more detail and take things to a
3	level where our insights become more results rather
4	than direction to help the designers to maybe change
5	some things.
6	MEMBER SIEBER: And when you add the
7	details into the PRA and come up with a new revision,
8	do you expect them to be surrogate goals to change and
9	then if so, in which direction?
10	MR. WACHOWIAK: We'll talk about that in
11	the next thing. There are some competing things here.
12	MEMBER SIEBER: Yes.
13	MR. WACHOWIAK: We have got some design
14	changes that are making the plant better, so we would
15	go in the one of the core damage direction, but
16	there are some concerns with some uncertainty with
17	things like common cause and other things that could
18	MEMBER SIEBER: Raise it.
19	MR. WACHOWIAK: raise it back the other
20	direction.
21	MEMBER SIEBER: You'll deal with that.
22	MR. WACHOWIAK: So there is going to be a
23	balance.
24	MEMBER SIEBER: Okay. Thank you.
25	MR. WACHOWIAK: I guess my last point on
ļ	

(202) 234-4433

	45
1	this slide was that recognize here that this is going
2	to be an evolutionary process and it's going to go
3	throughout the construction, you know, design
4	construction and test, initial testing of the plant.
5	We're going to continue to update our models. The
6	people who are going to operate the plant are going to
7	need to have PRA for doing things that plants do like
8	maintenance renewal and MSPI and all sorts of things.
9	So it's not a static one time shot to look
10	at this. We'll continue throughout, but the DCD and
11	the COL phase does end and we will be treating the PRA
12	differently as we have done in those other phases.
13	CHAIRMAN APOSTOLAKIS: There will be a PRA
14	at the construction phase, right?
15	MR. WACHOWIAK: Yes.
16	CHAIRMAN APOSTOLAKIS: An updated one.
17	Who do that PRA? You or the utility, the applicant of
18	the license? Do you do the PRA?
19	MR. WACHOWIAK: That is ultimately,
20	that is a commercial decision of who will do that.
21	Our discussions that we have had in the Design Set
22	Working Group up through this point would lead me to
23	believe that we'll do it.
24	CHAIRMAN APOSTOLAKIS: Oh, you'll do it?
25	MR. WACHOWIAK: However, we still are
I	I

(202) 234-4433

(202) 234-4433

	46
1	early in all this and that is a commercial decision,
2	so that could change, but the plan right now is that
3	we would do it.
4	CHAIRMAN APOSTOLAKIS: So at which but
5	the utility will be involved, I hope?
6	MR. WACHOWIAK: Oh, of course. They are
7	involved now.
8	CHAIRMAN APOSTOLAKIS: Because they will
9	be the users.
10	MR. WACHOWIAK: Yes.
11	CHAIRMAN APOSTOLAKIS: They are involved
12	now?
13	MR. WACHOWIAK: They are involved now.
14	CHAIRMAN APOSTOLAKIS: Oh.
15	MEMBER SIEBER: I would have suspected
16	that the design certification phase usually is
17	responsible for the PRA.
18	MR. WACHOWIAK: Well, yes.
19	MEMBER SIEBER: And then when you sell a
20	plant, then you take the PRA from the design
21	certification and enhance it to account for site-
22	specific.
23	CHAIRMAN APOSTOLAKIS: Yes, but the
24	question is who is going to do that?
25	MEMBER SIEBER: I would think the utility.
I	I

(202) 234-4433

	47
1	CHAIRMAN APOSTOLAKIS: I would think so,
2	too, but
3	MEMBER MAYNARD: I would say the utility
4	would be responsible for it, but whether they actually
5	do it in-house or contract it out
6	MEMBER SIEBER: You have still got it
7	wrong. The utility would pay for it.
8	MEMBER MAYNARD: Yes.
9	CHAIRMAN APOSTOLAKIS: For the plant to
10	submit it to the Agency? For the COLA phase?
11	MR. WACHOWIAK: For the COLA phase, the
12	plan right now is we know this part of the plan, is
13	that GE is doing the site-specific PRAs for the two
14	applicants that we have identified right now. Okay?
15	The plan right now okay, so that is known.
16	The plan up through last week or whatever
17	this I think it was last week when there were
18	rumblings about the changes to Part 52 happened, the
19	plan was that that would be submitted along with the
20	COLA. I don't know what is going to happen at this
21	point now, because it sounds like
22	MEMBER SIEBER: Well, we're trying to get
23	at it here.
24	MR. WACHOWIAK: Okay. Well
25	CHAIRMAN APOSTOLAKIS: Boy, you are really
ļ	I

(202) 234-4433

	48
1	up to date, aren't you.
2	MR. WACHOWIAK: Yes. There are unknown
3	ramifications of changing Part 52 that I don't know
4	that I know enough about right now to have a decision
5	on
6	CHAIRMAN APOSTOLAKIS: Okay.
7	MR. WACHOWIAK: what we should do, but
8	up through that change last week, the plan was to
9	submit the site-specific PRAs.
10	CHAIRMAN APOSTOLAKIS: Very good. So
11	let's move on, because of time.
12	MR. WACHOWIAK: Okay. That will get into
13	some background on our PRA. The scope that we have is
14	in internal events. For internal events full power,
15	we have everything covered, Level 1, 2 and a Level 3
16	that uses a bounding environment for the plant to be
17	in. That environment was defined in the URD and we
18	have tweaked it some to match things that have changed
19	since then. I think it's bounding.
20	For shutdown we would have a Level 1 and
21	a very simplified Level 2, mainly because most of
22	shutdown doesn't take credit for containment and it's
23	open.
24	MEMBER SIEBER: For the sequences either.
25	MR. WACHOWIAK: What's that?

(202) 234-4433

	49
1	MEMBER SIEBER: The sequences are sort of
2	frivolous.
3	MR. WACHOWIAK: They are fairly simple
4	sequences.
5	MEMBER SIEBER: Yes.
6	MR. WACHOWIAK: So it's a simplified level
7	to for external events or what have traditionally
8	been called external events, for fires we have a
9	bounding analysis that we have done. In Rev 1 it
10	contains a Level 1 and it contains a Level 1 shutdown
11	analysis.
12	CHAIRMAN APOSTOLAKIS: But, I mean, for
13	fires and updates you did really bounding analysis,
14	because analysis is also bounding.
15	MR. WACHOWIAK: Yes.
16	CHAIRMAN APOSTOLAKIS: I'm wondering why.
17	I mean, wouldn't be useful ultimately for the utility
18	to have a DK PRA for these events, too? I mean, is it
19	that much cheaper to make it to do the bounding
20	analysis that it's not only you, but it seems like
21	or because of this?
22	MR. WACHOWIAK: Because of this.
23	CHAIRMAN APOSTOLAKIS: That you that
24	the COLA phase would be detailed or
25	MR. WACHOWIAK: No. The what we're
I	

(202) 234-4433

	50
1	finding is to do a detailed fire PMA
2	CHAIRMAN APOSTOLAKIS: Why you need to
3	MR. WACHOWIAK: you need to know
4	certain things like where are all the cables.
5	CHAIRMAN APOSTOLAKIS: Right, right.
6	MR. WACHOWIAK: And where are the
7	cabinets.
8	MEMBER SIEBER: How big the room is.
9	MR. WACHOWIAK: How big is the room.
10	CHAIRMAN APOSTOLAKIS: But the boundaries
11	to actually do a detailed PRA when you have this
12	information?
13	MR. WACHOWIAK: For our plan is to do
14	that for the utilities, to have that information.
15	CHAIRMAN APOSTOLAKIS: Right, that's what
16	I'm saying.
17	MR. WACHOWIAK: It's not necessarily part
18	of the COLA.
19	CHAIRMAN APOSTOLAKIS: I see. Okay.
20	MR. WACHOWIAK: But also likely will
21	happen after the COLA and what we're going to need to
22	see is we're going to need to do walk-downs and we're
23	going to need to go and see how those things are.
24	Now, as we move forward, we can get better and better,
25	have an idea of some of those things. But, once
I	

(202) 234-4433

	51
1	again, we'll probably talk about this in the I&C, some
2	a little bit more.
3	There are other tradeoffs once you get
4	into that construction that no longer are how only
5	how cheap is it and how reliable is it, but we have
6	other things like environmental factors and how dense
7	can it be, you know? You have to worry about heat
8	loadings. Then you also have to worry about radiation
9	zones and you have to worry about other walls and
10	things to go through.
11	So it's to do the fire PRA the way that
12	people are now starting to do them for the plants like
13	with the NFPA in '05 and things like that, you have to
14	have much more detail on where things are spatially
15	than what we have now.
16	So what I would also say is that if we
17	knew all that, it would be easier to do the fire PRA.
18	The bounding isn't necessarily cheaper, because
19	sometimes you get into a lot of discussions about
20	assumptions and whether that assumption is valid. And
21	then if you make an assumption, how do you translate
22	that into a design, things like that. And I think
23	once we have the layout of all the electrical systems,
24	so that we could do the detailed fire PRA, it would be
25	much easier for us.
I	I

(202) 234-4433

	52
1	CHAIRMAN APOSTOLAKIS: Do you happen to
2	know whether the two utilities that you mentioned
3	earlier that are interested in this are planning to go
4	NFPA for fire, if you know?
5	MR. WACHOWIAK: No, I don't know that.
6	CHAIRMAN APOSTOLAKIS: Okay.
7	MR. WACHOWIAK: What I was thinking was is
8	how is the applicability of that to the new plant.
9	I'm just not aware.
10	CHAIRMAN APOSTOLAKIS: Okay. That's fine.
11	MEMBER SIEBER: Now, that wouldn't be as
12	important for a new plant once in the bag, because as
13	far as defining fire zones and fire areas, basically
14	do the design so that architectural features can come
15	to those things as opposed to fire wraps.
16	MR. WACHOWIAK: Right.
17	MEMBER SIEBER: And shields and reflectors
18	and stuff like that. So all the kinds of things that
19	you calculate in the fire hazard analysis should go
20	away. I mean, in certain circumstances.
21	MR. WACHOWIAK: Maybe it would. However,
22	that doesn't mean that we can't use some of this
23	information now.
24	MEMBER SIEBER: True.
25	MR. WACHOWIAK: So like when we were doing
Į	I

(202) 234-4433

	53
1	our analysis for RTNSS, one of the fire zones early on
2	was causing us some problem. And the main reason was
3	a valve was in that fire zone that we didn't like
4	having coupled with other things that were in that
5	fire zone. So we asked the designer why don't you
6	move it out?
7	MEMBER SIEBER: Sure.
8	MR. WACHOWIAK: And their next round of
9	their design, they moved the valve into a different
10	fire zone.
11	CHAIRMAN APOSTOLAKIS: Okay.
12	MR. WACHOWIAK: So we can do those kinds
13	of things and still get good insights from the Fire
14	Bureau. The internal flooding is less of a bounding
15	analysis, because the impacts are straightforward.
16	We'll talk about that a little bit this afternoon.
17	MEMBER SIEBER: On the other hand, since
18	the a good portion of the plant is underground,
19	flooding is, you know, a possibility and to mitigate
20	flooding, you have to have an active pump to pump out,
21	right?
22	MR. WACHOWIAK: Or a lot of volume.
23	MEMBER SIEBER: Yes, significant.
24	MR. WACHOWIAK: But, yes.
25	MEMBER SIEBER: Considering the amount of
	I

(202) 234-4433

Í	54
1	water that you're storing in the plant versus the
2	volume of the building site, I don't think you have a
3	lot of water.
4	MR. WACHOWIAK: We'll talk about that a
5	little later.
6	MEMBER SIEBER: Okay.
7	MR. WACHOWIAK: When was that?
8	MEMBER SIEBER: And then you raise
9	everything else up off the floor.
10	CHAIRMAN APOSTOLAKIS: Next slide, please.
11	I mean, you could talk about individual issues like
12	this, but maybe next time.
13	MR. WACHOWIAK: Okay.
14	MEMBER SIEBER: Okay.
15	MR. WACHOWIAK: We probably don't need to
16	talk a lot about this. We just wanted to say that we
17	have incorporated our knowledge from doing the PRA
18	into these aspects of the design. We continue to do
19	that in this, in our process at GE for updating the
20	plant design, things like that. The PRA is, you know,
21	a cover sheet sign off just like mechanical
22	engineering, electrical engineering, everything else.
23	It's integrated into the whole design control process.
24	One of the things that we talked about in
25	the past is how can you use the PRA at this stage. I
	I

(202) 234-4433

	55
1	think we have talked around that quite a bit this
2	morning. We don't need to dwell on that now. We
3	don't have a perfect tool, but we have a tool that
4	does provide us some help in designing the plant.
5	Now, we get into some of the areas of why
6	the results come out the way they are. We asked about
7	the it was asked about the GDCS and the squib
8	valves before. In general, the way that the systems
9	are set up is we have a passive safety system. We
10	have active asset protection systems and then there's
11	various support systems.
12	And what we try to do, the target
13	configuration I call it, is that for every function
14	you have a passive way of performing that function.
15	You have an active way of performing that function.
16	The support systems, in general, are set up so that
17	the safety-related support systems support both and
18	the non and the diverse support systems in some
19	ways support both.
20	Now, all those areas might not be there
21	for everything, but, in general, we have that kind of
22	diverse protection on every function. And where we
23	have important sequences is when that diverse
24	protection is at the minimum and where the sequences
25	drop out is when we have more layers in that diverse
ļ	

(202) 234-4433

	56
1	protection.
2	I think I know what this is, is your font
3	set on the computer here is different and it probably
4	showed up okay on your prints, right?
5	ALL: Yes.
6	PARTICIPANT: That's why you do pdf.
7	MEMBER SIEBER: It looks pretty good to
8	me.
9	MR. WACHOWIAK: We have this was to
10	illustrate for the different functions. Reactivity
11	control, we have several different ways of performing
12	that analysis. See though, some of these things, in
13	the first one, RPS, ARI, FMCRD really all rely on the
14	control rod, so there are some points in there in some
15	of them, but there are still two diverse means which
16	will stand by the control system, and also the FMCRD
17	that is it's no longer all hydraulic on the control
18	rods. There are some that are controller-driven also.
19	Pressure control. We have different ways
20	of doing that, isolation condenser, SRVs and the main
21	condenser. Inventory control, ICS, feedwater, CRD for
22	high pressure scenarios, low pressure scenarios, GDCS,
23	the Fuel and Aux Pools Cooling System and fire water.
24	Depressurization, a couple of different ways to do it.
25	We put here the DPVs in the passive side and the SRVs
	I

(202) 234-4433

	57
1	in the active side.
2	I don't know if that's a real good split
3	there, but there are two different ways to
4	depressurize the plant. And then decay heat removal,
5	PCCS and ICS are the passive means and then main
6	condenser and reactor water cleanup in the shutdown
7	cooling mode can also back that up.
8	We have also now, I would include the
9	FAPCS down in that range. We have it didn't make
10	it on my slide, but it should also be in there,
11	because that can remove decay heat also.
12	The internal events, and we'll talk about
13	some of these things, some of these scenarios. The
14	loss in feedwater and loss of off-site power are the
15	dominant contributors here. The next I guess after
16	the break we'll talk about exactly why that is. The
17	point estimate for CDF, 2.9×10^{-8} . There was some
18	question before on the uncertainty with the skew in
19	that curve with the mean being much different than the
20	point estimate.
21	We did some investigation on that and it
22	turns out that there were some very low order cutsets
23	that were that had erroneous data in them that were
24	driving that. When we fixed those cutsets, then the
25	skew went away. 95 th percentile still remains down in
l	

(202) 234-4433

	58
1	the 10^{-8} sort of range.
2	CHAIRMAN APOSTOLAKIS: Well, I mean, this
3	is a calculation assuming some uncertainties.
4	MR. WACHOWIAK: Right.
5	CHAIRMAN APOSTOLAKIS: And I want to tell
6	you that's really outstanding, but that's very
7	knowledgeable on Section 11. What I found very
8	interesting is the sensitivity analysis that you did,
9	and then it seems to me that a rationale person would
10	take the totality of the calculations that you have to
11	say this is not my uncertainty in my state of
12	knowledge. You know, there is an $8.3 ext{x10}^{-8}$, is a
13	result assuming certain things.
14	MR. WACHOWIAK: Yes.
15	CHAIRMAN APOSTOLAKIS: And then some
16	uncertainty in the failure rate and so on. When you
17	do an evaluation, the focused PRA, assuming all the
18	safety systems and systems under regulatory treatment,
19	you get a number that is $6.7 ext{x} 10^{-6}$. Okay? Admittedly,
20	you have very conservative assumptions, that no active
21	system works, but it does take you plus or minus
22	higher. So if I were to ask you what is the 95 $^{ m th}$
23	percentile in your mind, would you really stick to the
24	8.3x10 ⁻⁸ ? In my mind it's higher, because of all of
25	these uncertainties and squib valve issues and so on.

(202) 234-4433

	59
1	For a 95^{th} percentile to be around 10^{-6} ,
2	that is still a pretty good design, because you are
3	talking about, you know, describable distribution, but
4	I wonder whether I mean, what is it? I mean, this
5	$8.3 ext{x} 10^{-8}$, first of all, it's awfully close to the
6	point estimate considering the fact that this is a new
7	design with some assumptions and so on. It's fairly
8	higher, but it's not 10^{-4} .
9	MR. WACHOWIAK: Right.
10	CHAIRMAN APOSTOLAKIS: Right. And
11	MR. WACHOWIAK: I think
12	CHAIRMAN APOSTOLAKIS: Maybe the 10 $^{-6}$ is
13	in my mind.
14	MR. WACHOWIAK: I think you could make
15	that case. There are different uncertainties that we
16	address in different ways.
17	CHAIRMAN APOSTOLAKIS: Yes.
18	MR. WACHOWIAK: And the question that I
19	would bring up is what are you going to use that
20	number for?
21	CHAIRMAN APOSTOLAKIS: Right.
22	MR. WACHOWIAK: Certainly, you want to
23	make sure that your overall uncertainty is much less
24	than 1, but still
25	CHAIRMAN APOSTOLAKIS: Well, let's say you
I	I

(202) 234-4433

	60
1	want to meet the goal.
2	MR. WACHOWIAK: You want to meet the goal,
3	including all the uncertainty. I think that would be
4	a good use of binding all those things, but the
5	question then is how do you decide, you know, what is
6	the 95 th or what is the shape of that curve? I think
7	you would have to do all that qualitatively and try to
8	estimate where it is. But I would think that most of
9	our risk curve is well within the Commission's goals.
10	CHAIRMAN APOSTOLAKIS: And I would agree,
11	yes. What I'm saying is that well, you know, there
12	are numbers such as this in the report and that is
13	very fine or legitimate numbers, but some sort I
14	mean, we should start as a community talking about
15	these issues, because what we're doing here really are
16	building the safety case. This is why we do it.
17	MR. WACHOWIAK: Yes.
18	CHAIRMAN APOSTOLAKIS: But I don't think
19	anyone would say yes, the 95^{th} percentile is 8.3×10^{-8} .
20	If you do some sensitivity analysis and in
21	some cases very conservative assumptions, you show
22	that it goes up by two orders of magnitude. This is
23	very enlightening to me, because it tells me that, you
24	know, the number is low. Now, whether the 95 th
25	percentile is 10^{-6} or 3×10^{-6} or 9×10^{-7} , it is
ļ	I

(202) 234-4433

	61
1	irrelevant, but it's in that mode that it seems to me.
2	I would be extremely surprised if somebody
3	came up with a sequence that showed that it's 5×10^{-5} ,
4	because you have done all these analyses and I cannot
5	really think that distribution, which admittedly is
6	not the broad curve, I mean, it has a lot of
7	positives, is the result of all these calculations, it
8	seems to me. And it should be presented, you know,
9	that it's more of a qualitative/quantitative
10	evaluation that is the result of these calculations
11	plus the sensitivity analysis and so forth. I
12	wouldn't, for example, go with the 6.68×10^{-6} per year
13	that is the result of ignoring the active systems.
14	MR. WACHOWIAK: Right.
15	CHAIRMAN APOSTOLAKIS: That is probably
16	too high, but that tells me that the 95^{th} percentile
17	may be, you know, a little below that or somewhere
18	there. And that will be maybe realistic to say, yes,
19	our best estimate is 3×10^{-8} , but the 95^{th} percentile
20	can be maybe around 10^{-6} , would be a more realistic
21	representation, I think.
22	And, again, it depends on how you want to
23	use it. The immediate use is yes, we did meet the
24	Commission's goals.
25	MEMBER KRESS: Well, the trouble with
ļ	I

(202) 234-4433

	62
1	that, George, to me is every plant that comes in for
2	design certification with two parts will get different
3	results from it. I think a better approach would be
4	to assume that the goals we put together they have to
5	meet all of this and then we're asking only that they
6	do this part which can be done just about the same way
7	for every plant and it can meet the goals here. Well,
8	an exception might be that you have accounted for
9	those uncertainties by setting goals at a certain
10	level.
11	CHAIRMAN APOSTOLAKIS: Some uncertainties
12	would follow the conditions in the staff's mind when
13	they formulated the goals, but I'm not sure about how
14	many was talking about active systems, for example.
15	I mean, these are from the Agency.
16	MEMBER KRESS: Yes.
17	CHAIRMAN APOSTOLAKIS: That
18	MEMBER KRESS: But we're setting new goals
19	for new tenants now.
20	CHAIRMAN APOSTOLAKIS: 10^{-5} , right?
21	MEMBER KRESS: Um-hum.
22	CHAIRMAN APOSTOLAKIS: Even that argument
23	I would say is part of bringing the safety case. The
24	goals themselves are conservative and we also do all
25	these analyses.
l	I

	63
1	MEMBER KRESS: But the way
2	CHAIRMAN APOSTOLAKIS: And then the PRA to
3	the technical community out there.
4	MEMBER KRESS: Well, with that there, you
5	know
6	CHAIRMAN APOSTOLAKIS: These guys propose
7	a new design and they only have a factor of 3 or so
8	between their best estimate in the high profession
9	guide. That is not really the intent. And the other
10	thing is to represent that they also all applicants
11	are doing the other analysis, too.
12	MEMBER KRESS: The sensitivity.
13	CHAIRMAN APOSTOLAKIS: Everybody does
14	that, because the staff has the numbers, the focused
15	PRA and so on. So I think ultimately it's a
16	combination of all these things, the conservatisms in
17	the goals themselves plus all these calculations.
18	Remember, the net result is yes, we do have a pretty
19	conservative design. It meets the goals.
20	MR. WACHOWIAK: Right. And one of the
21	you talked about one of the sensitivities that we had
22	in there where we took out the non-safety systems.
23	CHAIRMAN APOSTOLAKIS: Yes, right.
24	MR. WACHOWIAK: The next step that we
25	didn't go back in and do in the report here, as it
	I

(202) 234-4433

	64
1	turns out we were evaluating the RTNSS things, is we
2	should have gone back in and put all the RTNSS systems
3	back in to see what that number comes out to be when
4	they are there. So there is a lot of things to do
5	with these.
6	CHAIRMAN APOSTOLAKIS: It's a bounding
7	analysis in probabilistic space.
8	MR. WACHOWIAK: Yes.
9	CHAIRMAN APOSTOLAKIS: Just as though
10	deterministic regulations apply to develop a boundary.
11	And you say now, if anything else happens, we're still
12	covered.
13	VICE CHAIRMAN SHACK: Yes. I mean, you do
14	that analysis for regulatory purposes but, I mean,
15	it's not a very realistic estimate of the 95^{th}
16	percentile either.
17	CHAIRMAN APOSTOLAKIS: Which one? This
18	one?
19	VICE CHAIRMAN SHACK: No, the one where it
20	takes out all
21	CHAIRMAN APOSTOLAKIS: No, no, that's what
22	I'm saying, that ultimately in your mind you have some
23	idea where it could be by looking at all these.
24	That's why I'm saying this is a safety case and you
25	don't necessarily have to say the 95^{th} as a result of
Į	I

(202) 234-4433

	65
1	all these is 3.2×10^{-6} . I mean, that is very hard to
2	do, but you know it's on that order because I can't
3	imagine anybody else doing anything more, I mean,
4	unless of course we do creative monitoring and do
5	something else. So the 95 th percentile from this
6	calculation.
7	MR. WACHOWIAK: From this calculation.
8	CHAIRMAN APOSTOLAKIS: Okay.
9	MR. WACHOWIAK: And I think that is how
10	that is recorded in the report. I also wanted to give
11	a breakdown of the large release frequency. Now, this
12	pie here only includes those things that we have
13	categorized as large release, so it's 3 percent of the
14	CDF.
15	MEMBER KRESS: Now, the fact here is
16	perhaps release. There was a certain amount of
17	release of
18	MR. WACHOWIAK: What we did for this
19	particular analysis and what is in Revision 1 of the
20	PRA is that if the containment did not remain intact,
21	it was considered a large release no matter what the
22	magnitude of the release was.
23	MEMBER SIEBER: So you know if it leaks.
24	MR. WACHOWIAK: If it's tech spec style
25	leakage, type leakage or they are not so,
ļ	

(202) 234-4433

	66
1	basically, if the equivalent leakage allowed by tech
2	specs now, that's a design pressure.
3	MEMBER SIEBER: That's not a large one.
4	MR. WACHOWIAK: That's not a large
5	release. No, we had an increased pressure, so there
6	would be some additional leakage beyond that. But if
7	it's leakage, it's not considered large release. If
8	it's if there is some
9	MEMBER SIEBER: If it's beyond the tech
10	specs though, is that large or what?
11	MR. WACHOWIAK: As I said, what we did for
12	the containment was we calculated what an equivalent
13	leakage area would be for the design pressure, which
14	is how that is calculated. We didn't say that if the
15	pressure went above the design pressure, that was
16	going to be a large release, because the leakage is
17	about the
18	MEMBER SIEBER: I understand.
19	MR. WACHOWIAK: Okay. So those are not
20	included in here. We can have a high containment
21	pressure, but as long as the boundary remains intact
22	and the operators have not had to vent the
23	containment, then it's not a large release. So we
24	even threw the filtered vent into the large release
25	for now. We're considering and, once again, coming

(202) 234-4433

67 1 into these uncertainty calculations, it's possible to 2 take some percentage of the whatever leak-like family 3 and make a criteria and say above this is going to be 4 a large release. What we see is in some of these like the 5 filtered vent case and in some of the -- some portion 6 7 of the BiMAC failure case there would be almost no 8 releases from those scenarios, basically because the 9 core itself is sitting under a 10 meter pool of water 10 and then the venting or the release path is through another pool of water. We could make that case. 11 We're not ready to jump there just yet, but there is 12 a potential there. 13 14 MEMBER SIEBER: I'm surprised the bypass 15 is so small, 1 percent. 16 MR. WACHOWIAK: Well --

MEMBER SIEBER: Because that does providea lot of fluids.

19 WACHOWIAK: Right. And this was MR. 20 another thing, one of those things that we addressed 21 in the conceptual design phase. We looked at what 22 were the potential paths for a bypass from a reactor 23 the containment and looked outside at those 24 penetrations and made sure that those lines were 25 In one case we added an additional isolation robust.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	just for that.
2	MEMBER SIEBER: Yes, the MSIVs are the
3	likely path, aren't they?
4	MR. WACHOWIAK: The
5	MEMBER SIEBER: I mean, and so to bypass
6	the accident really, you use very tightly the
7	reliability and retighten in the MSIV.
8	MR. WACHOWIAK: That is one area. The
9	leakage of the MSIVs, that's probably something
10	additional that we could look at. That wouldn't be
11	included in here.
12	MEMBER SIEBER: Okay.
13	MR. WACHOWIAK: We looked at the closure
14	of the isolation valves, but I would have to think
15	about how leakage would factor into this. There is
16	leakage criteria during testing but, once again, we
17	would have to look at historically how these valves
18	performed outage-to-outage to see what
19	MEMBER SIEBER: One of the big issues in
20	the testing is you need a comparison to Part 100, I
21	mean, as opposed to worse like situations.
22	MR. WACHOWIAK: Yes.
23	MEMBER SIEBER: On the other hand, a
24	degraded valve could bring you close to a Level 3.
25	MR. WACHOWIAK: That's a good point.
I	

(202) 234-4433

69 1 MEMBER KRESS: When Level 3 happens, which 2 we have been talking about today, creating this at the 3 site, you know, with human frequency doing something 4 other than distribution pumps, frequency would be 5 exceeded. To me that is an outcome measure of 6 whatever we're asking. Okay. It's hard to break it 7 down into various points, like you have it here. 8 MR. WACHOWIAK: Right. 9 MEMBER KRESS: To me that is a better 10 measurement than the one you have. This is sort of a simplified manner you took here, when you just look at 11 containment failures, but all of that is wrapped up in 12 the frequency consequence curve. 13 14 MR. WACHOWIAK: Right. 15 That you showed. MEMBER KRESS: Right, including the 16 MR. WACHOWIAK: 17 leakage terms are also --18 MEMBER KRESS: They are also in there, 19 too, right. 20 MR. WACHOWIAK: Also. 21 MEMBER KRESS: Yes. 22 MR. WACHOWIAK: It depends on what you 23 want to do with the number. I think both of those 24 analyses have their uses and if we're trying to figure 25 out what our problem areas are in the containment and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	70
1	how do we make it better
2	MEMBER KRESS: This is a better way to do
3	it. I think this would be a better design.
4	MR. WACHOWIAK: You know, for comparing
5	the thresholds, then the other way is
6	MEMBER KRESS: The other way would be a
7	good comparison of the threshold.
8	MR. WACHOWIAK: A good comparison.
9	MEMBER KRESS: Very good.
10	MEMBER BONACA: For internal events, how
11	does the results compare to the ABWR? I'm not
12	familiar with that design and I'm just looking at loss
13	of power being dominant here and, of course, this is
14	according to passive systems.
15	MR. WACHOWIAK: The one the internal
16	events are the core damage frequency for internal
17	events reported in ABWR, around 1×10^{-7} . I think some
18	calculations had it at 2×10^{-7} . It's right in that
19	range, so it's about an order of magnitude different.
20	So the question I think that you would have is where
21	is the difference here for the loss of off-site power
22	cases.
23	Because, I think, and I'm going off
24	memory, I don't remember what the magnitude or what
25	the absolute portion of loss of off-site power in the
ļ	I

(202) 234-4433

	71
1	ABWR is. But I think if you look at the two, even
2	though the contribution might be comparable, I think
3	the ESBWR has everything is lower, so its
4	contribution is
5	MEMBER SIEBER: It would be an order of
6	magnitude lower across the board.
7	MR. WACHOWIAK: And we'll talk a little
8	bit about some things that we did to address that.
9	That is later on in the presentation.
10	MEMBER SIEBER: Yes.
11	VICE CHAIRMAN SHACK: Okay. Does it come
12	down to the reliability of the school of thought
13	versus the reliability of thinking generally?
14	MR. WACHOWIAK: That's one way of looking
15	at it.
16	MEMBER SIEBER: Yes. You have got 32
17	squib valves. Is it more reliable before they
18	submitted it?
19	MEMBER BONACA: For an additional PRA, I
20	mean, you need to run a line and some piping and you
21	need power to do that.
22	MR. WACHOWIAK: In the ABWR?
23	MEMBER BONACA: In the ESBWR.
24	MR. WACHOWIAK: ESBWR? Yes, there are
25	some things that need to be looked at. Now, one of
I	

(202) 234-4433
	72
1	the differences, and we didn't really talk about it
2	too much in this part here, one of the other things in
3	the comparison now in the passive plants versus the
4	active plants, in the active plants things the PRA
5	pretty much ends at the 24 hour boundary.
6	MEMBER SIEBER: Right, right.
7	MR. WACHOWIAK: Because everything beyond
8	that is just more of the same. Where here, once
9	again, not reflected in the numbers that I just had up
10	there in the sensitivity analysis, some of those
11	things go on out farther than that and things have to
12	happen later on. So the comparison is a good one. I
13	think about that. Is it really just trading squib
14	valve reliability for diesel generator reliability?
15	Maybe that is something we may need to do.
16	MEMBER SIEBER: It's the first order.
17	MR. WACHOWIAK: It's the first order of
18	fact.
19	MEMBER SIEBER: Which one would you rather
20	have, a new diesel or a new squib valve?
21	CHAIRMAN APOSTOLAKIS: Well, hopefully I
22	won't need either one.
23	MR. WACHOWIAK: Yes. And there's
24	different tradeoffs for what you can do about
25	different things, too.
	I

(202) 234-4433

	73
1	MEMBER SIEBER: At least you can use the
2	diesel more than once.
3	VICE CHAIRMAN SHACK: Isolation condenser
4	gets more than one load.
5	MR. WACHOWIAK: Isolation condenser is
6	what we would rather use than anything else.
7	MEMBER SIEBER: Right, absolutely.
8	MR. WACHOWIAK: That is the tidiest
9	system.
10	MEMBER SIEBER: Don't even use your code.
11	MR. WACHOWIAK: I have a summary slide
12	here of some of the different things that we looked at
13	for external events and shutdown. It comes out better
14	on your print than it did on the screen.
15	MEMBER SIEBER: Um-hum.
16	MR. WACHOWIAK: If you just look at the
17	fire for bounding fire analysis, you will think that,
18	oh, you know, we may have missed something here, but
19	I think because the numbers there are comparable to
20	the internal events numbers or the yes, the
21	internal events numbers. And the shutdown, it's even
22	more pronounced.
23	I think this is an artifact of the
24	bounding calculation that we have and that when we
25	actually lay things out in the reactor building, and

(202) 234-4433

	74
1	we'll talk about this later on when we go into detail
2	on the fire analysis, but this is an artifact I
3	believe of our bounding analysis.
4	MEMBER KRESS: The seismic calculations?
5	MR. WACHOWIAK: It's done with seismic
6	margins is what we have and we put in a HCLPF
7	requirement for the safety systems in the plant.
8	MEMBER KRESS: Okay.
9	MR. WACHOWIAK: I think in the latest
10	revision, that went into Tier I, I think. It was
11	asked for. I'm not sure if it made it into the last
12	revision. But for those systems, that performance
13	beyond SSE is being required for the plant. Once
14	again, because we don't really know what it's going to
15	be until it's actual.
16	MEMBER KRESS: Until you have a site.
17	MR. WACHOWIAK: Well, not only until you
18	have a site, but you have got to construct, fabricate
19	and construct the things that we're relying on. And,
20	at this point, we have to make those design
21	requirements rather than actual measured values.
22	When we start getting actual measured
23	values out in the construction phase, I think that's
24	when it's going to switch over to probably more of a
25	quantitative seismic risk analysis. It's again too
I	I

(202) 234-4433

	75
1	late for the COL phase, but certainly useful for the
2	owners of the plant.
3	My conclusion for this section.
4	Basically, after we have gone through the design and
5	looked at some of the things, we think that the design
6	is robust and that there are really compared to
7	what we have out there now, it's very remote to have
8	a severe accident.
9	We think we have addressed many of the
10	things that have turned out to be issues in previous
11	plants and we'll continue to address those all through
12	the design and construction phase. It's a good tool
13	to use in addition to other more traditional code
14	standards, you know, methods.
15	Combination of our passive safety and
16	active non-safety systems and then diversity amongst
17	those is really what is driving this. There are some
18	questions on the data that we'll work through as we go
19	forward but, once again, I think that it's the
20	construction of the or the construction of the
21	plant systems that should drive the ultimate result,
22	you know, rather than relying on, you know, good
23	numbers that have been based on numbers, do more
24	uncertainty analyses and ensure some of those things
25	and still be able to come well within the goals.
	I

(202) 234-4433

	76
1	That's what I had for this particular
2	part. I don't know if you guys wanted to take a break
3	now or whatever and I will bring up the next one. The
4	next set of information, basically we're going to go
5	through some of the sequences, the top sequences in
6	the plant.
7	CHAIRMAN APOSTOLAKIS: Yes, we'll be back
8	at 10:25.
9	(Whereupon, at 10:05 a.m. a recess until
10	10:26 a.m.)
11	CHAIRMAN APOSTOLAKIS: Okay. We are back
12	in session and Rick will tell us about the update of
13	the PRA.
14	MR. WACHOWIAK: Okay. This next section
15	and I was trying to figure out how to put this into
16	the presentation form and I just when we're going
17	to talk about sequences, it doesn't you just never
18	know where it's going to go, so what I did was I
19	grabbed the sections out of the PRA, the top
20	sequences. I have some discussion that I want to have
21	on the top one, which really will could go there,
22	and then if we want to get further into other
23	sequences, I have some other entries and things here
24	we could talk about, too.
25	So start with the one handout that looks
I	I

(202) 234-4433

	77
1	kind of like this and it's this thing up here. If we
2	go through the list of the top sequences, what we
3	the first one is a loss of off-site power sequence.
4	We have been asked why is it called loss of preferred
5	power. I think that is a holdover from ABWR stuff.
6	That is just what we have always called it, but it's
7	what you would traditionally think of as a loss of
8	off-site power.
9	This one sequence here contributes a
10	little over half of the CDF. The event tree that is
11	associated with that should be one of the large ones
12	that you have there that is very difficult to read.
13	PARTICIPANT: This is actually yes.
14	MR. WACHOWIAK: You have the one that has
15	got very small letters on it?
16	CHAIRMAN APOSTOLAKIS: Right.
17	MR. WACHOWIAK: And in your package, I
18	have got something that is a more simplified version
19	that we will actually get into.
20	VICE CHAIRMAN SHACK: We actually don't
21	have that.
22	MR. WACHOWIAK: You don't have loss of
23	off-site power? Do you have a loss of feedwater.
24	VICE CHAIRMAN SHACK: We have loss of
25	feedwater.
I	I

(202) 234-4433

78 1 MR. WACHOWIAK: Okay. Loss of feedwater 2 is exactly the same structure as loss of off-site 3 power. 4 MEMBER SIEBER: I can't read it. Ιt 5 doesn't make any difference. MR. WACHOWIAK: But I got a simplified 6 7 version for you in the package. 8 PARTICIPANT: If you can read, right? 9 MR. WACHOWIAK: Right. 10 PARTICIPANT: That's the general trends. MEMBER SIEBER: General trends, right. 11 12 Well, I can't read it. MR. WACHOWIAK: 13 So --14 VICE CHAIRMAN SHACK: Just a quick 15 question on this one. Suppose even though I have a SCRAM I file off the liquid ejection system, do I get 16 enough water 17 in there that Ι don't need to depressurize and I can right on my isolation 18 19 condenser? 20 MR. WACHOWIAK: If you get standby liquid 21 controlling? 22 VICE CHAIRMAN SHACK: Right, yes. 23 MR. WACHOWIAK: Yes. In this particular --24 in one of these cases. 25 VICE CHAIRMAN SHACK: Is that one of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	79
1	success sequences for this thing or you don't count
2	that?
3	MR. WACHOWIAK: That wouldn't be on this
4	particular tree. That is on the bottom of those
5	pictures you see where it says transfer to AT-TWOP at
6	the bottom, bottom right hand corner?
7	VICE CHAIRMAN SHACK: Got it.
8	MR. WACHOWIAK: That would be on a
9	separate page. That was an entry that we would
10	transfer to. But in that case, you would have this
11	loss of power and the SCRAM fails.
12	VICE CHAIRMAN SHACK: But even if the
13	SCRAM is successful, I want to say that you're
14	ripening up my isolation condensers here. I want to
15	save the isolation condensers and dump them into water
16	from the standby liquid control.
17	MR. WACHOWIAK: Okay. No, that is not
18	sufficient from the standby liquid.
19	VICE CHAIRMAN SHACK: It's not sufficient?
20	MR. WACHOWIAK: We looked at that. Water
21	from standby liquid control is not sufficient to
22	prevent depressurization and that is the important
23	part here, is that we do have in this scenario we
24	have a water level drop and it goes below Level 1.5.
25	Now, when the water level is below 1.5, a
I	I

(202) 234-4433

	80
1	timer starts, because what we're trying to do is we're
2	trying to detect if there is a LOCA or not.
3	So I'll jump ahead of myself here, because
4	we'll cover this in a little more detail and you don't
5	have the handouts just yet for it, but the water level
6	comes down and what we have to do in setting the
7	actual setpoints on the instruments, including the
8	uncertainty on the instruments using our GE setpoint
9	methodology and the uncertainty associated with the
10	equipment that we had for level measurement, the 101
11	setting needed to be higher than what we wanted it to
12	be to account for uncertainty in the measurement.
13	And where it needed to be is what we call
14	here the Level 1.5. If there is a small LOCA, you
15	would have some time, but you really have to open the
16	start the depressurization sequence more around the
17	Level 1.5 range. So for the LOCA detection we did two
18	things. One, if you have below Level 1.5, we check
19	then to see if there is high drywell pressure. If
20	there is high drywell pressure concurrent with this
21	Level 1.5, you assume there is a LOCA. The LOCA
22	sequence starts.
23	If there is no high drywell pressure
24	though, we're still not 100 percent sure that it's not
25	a LOCA because there are other things. If it's a
ļ	1

(202) 234-4433

	81
1	smaller LOCA, it could be holding the drywell pressure
2	down. So the calculation that was done on the design,
3	in the design basis side, was that if we had about 15
4	minutes before we have to start the sequence in these
5	very small LOCAs, then what we'll do is we'll put in
6	a 15 minute timer, essentially, nominal 15 minute
7	timer.
8	So we get to Level 1.5 and there is no
9	high drywell pressure, but we start a 15 minute timer.
10	If water is not recovered above Level 1.5 by the end
11	of that timer, then we'll go into the LOCA sequence.
12	What it takes to get there though is it takes two CRD
13	pumps running full blast to get back to the Level 1.5
14	within the time frame.
15	MEMBER ABDEL-KHALIK: I have a question
16	about that. What you call now Level 1.5 is Level 1 in
17	your report. When you get down to Level 1, the
18	gravity-driven system is actuated. There is 150
19	second time limit for cooling and a short-term cooling
20	and then there is a 30 minute time limit for the long-
21	term cooling, equalizing lines to be opened.
22	Now, there is also the possibility that
23	the operator could initiate the system and,
24	presumably, the operator will initiate this system if
25	the conditions exist that would have called for the
Į	I

(202) 234-4433

	82
1	system to be automatically actuated and for some
2	reason the system was not, which means that the
3	operator would initiate this system sometime after it
4	would have been called for automatically.
5	And when that happens, when the operator
6	initiates this system, the short term valves are
7	opened at the time the operator calls for them and
8	without the 150 second waiting period. However, the
9	long-term valves still go through the 30 minute
10	draining period, which means that that long-term
11	equalizing line which normally would be open 30
12	minutes after reaching Level 1 will now be open much
13	later than that by the time between what it would have
14	been called for and the time the operator realizes
15	that the system had not been actuated.
16	MR. WACHOWIAK: That's not exactly how it
17	works.
18	MEMBER ABDEL-KHALIK: Do you understand
19	that logic?
20	MR. WACHOWIAK: That's not exactly how it
21	works. When you start with the equalizing line and
22	the GDCS injection, the 30 minute timer starts on the
23	ECCS signal, but and that is a 30 minute
24	permissive.
25	MEMBER ABDEL-KHALIK: Okay.
	I

(202) 234-4433

	83
1	MR. WACHOWIAK: You also have to have
2	another signal before the valve will open. It has to
3	be Level 1.5.
4	MEMBER ABDEL-KHALIK: Right.
5	MR. WACHOWIAK: There are no sequences in
6	the design basis accidents where the level gets down
7	that far.
8	MEMBER ABDEL-KHALIK: So the equalizing
9	lines are never open?
10	MR. WACHOWIAK: In the design basis
11	accidents. So if you go into the rest of the DCD like
12	in Chapter 6, the equalizing line is never called to
13	open, because the water level has already recovered
14	back above, well above Level 1, before the 30 minute
15	timer expires.
16	MS. CUBBAGE: That would change though in
17	that period through the excursions of the DCD? That
18	might be something we can do?
19	MR. WACHOWIAK: I don't think so. In the
20	design basis, they have never challenged the
21	equalizing lines at all.
22	MS. CUBBAGE: Isn't it the application?
23	MR. WACHOWIAK: Maybe in preapplications
24	they were there. They said it was for long-term
25	cooling and it would be open very late. So the
I	I

(202) 234-4433

	84
1	operators, if they go to initiate this signal, the
2	first thing that I would say about this is that the
3	human factors analysis, the man-machine interface
4	process that is an ongoing thing, hasn't necessarily
5	specified yet how the operators are going to do this.
6	Will they do it by initiating the sequence or will
7	they do it by initiating each valve individually?
8	There is good things and bad things about
9	either one of those scenarios. You know, so there is
10	a process that's going on to determine how they would
11	go about doing it.
12	I'm trying to remember in the PRA, I
13	think, we had those as separate actions associated
14	with actuating the valves individually. So there is
15	different ways, but I'm not sure that that's the way
16	they are going with the actual design of that manual
17	actuation.
18	So in the PRA now, the GDCS system is
19	assumed to operate, but we have also said now that we
20	are going to require that the equalizing line be
21	operable in order for the GDCS system to work. So
22	it's an assumption that we have and if the GDCS takes
23	themselves inject, we still don't show that the
24	equalizing lines would have to open with any of our
25	success criteria calculations, but we do know that
ļ	I

(202) 234-4433

	85
1	there are things going on.
2	There is containment leakage where we
3	could be losing some inventory and very, very late out
4	into a sequence, it's possible that those valves would
5	need to open. So as a conservatism, we put that
6	requirement in the GDCS top for some of the scenarios.
7	In particular, we said that if only one GDCS tank
8	injects, where the design basis calculation assumed
9	two of them did, we said if only one of them did, then
10	for sure that is going to be required to open. But I
11	think it's in all of the scenarios that not all of
12	them. In most of the scenarios, we assume that some
13	time late in the accident, those equalizing line
14	valves would open.
15	MEMBER ABDEL-KHALIK: So the only scenario
16	under which the level would drop below Level 1.5 would
17	be if you're losing water outside the containment?
18	MR. WACHOWIAK: Yes.
19	MEMBER SIEBER: And the control.
20	MR. WACHOWIAK: So you have to have Level
21	1.5
22	MEMBER ABDEL-KHALIK: Right.
23	MR. WACHOWIAK: before the equalizing
24	lines would open. And in almost all cases, the water
25	level is back above that and there has got to be some
ļ	

(202) 234-4433

(202) 234-4433

1 long-term boil-off before you would get down to that 2 level. Now, if you remember from some of the sketches 3 we had in the last presentation, where the water is 4 boiling out of the core, it goes out through the DPVs 5 into the containment. Then from the containment is where the passive cooling heat exchanger takes its 6 7 intake from, so the steam would go into there, 8 condense in the passive containment cooling heat 9 exchanger and then it goes back into the GDCS pools, which then provides the path back to the reactor. 10 At the preapplication stage, there was a 11 12 slightly different configuration where the suppression pool and the GDCS pools were configured differently 13 14 and it's possible that whether it was in that other 15 configuration that the equalizing lines would open 16 under more of the scenarios. But in our case, you 17 know, it's just a little bit of bleed off gas that's going to the suppression pool. And when we have done 18 19 the TRACG analyses, it would be way, way, way past 20 three days, probably into the, you know, several more 21 day phase before those things would open if at all. 22 You mean long-term? MEMBER SIEBER: 23 MR. WACHOWIAK: It's long-term. Yes. But 24 now, if we don't have full injection from the GDCS, 25 maybe it will open sooner, that's why we put that in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

86

	87
1	the PRA. In the next level, the PRA will be looking
2	at that particular part of the success criteria and
3	probably split those out and show which sequences the
4	equalizing lines will challenge and which ones were
5	not needed and do that explicitly rather than bound up
б	in the top logic.
7	We think it's easier to explain, even
8	though it, you know, makes the calculation more
9	convenient if it's in the top logic, but I think it's
10	easier to explain if we have that separate.
11	MEMBER ABDEL-KHALIK: So the long-term
12	success criteria of having even one sort of line open
13	between the suppression pool and the vessel, doesn't
14	come from a mechanistic calculation that you would
15	need 600 gallons per minute after half an hour to do
16	the job?
17	MR. WACHOWIAK: No, it's from
18	MEMBER ABDEL-KHALIK: It's just
19	MR. WACHOWIAK: It's very much later and,
20	you know, at 72 hours that that's when it opened and
21	you can see that it opens later than that. But if it
22	opened at 72 hours, you would need I guess 200 gpm to
23	deal with that. So we did run those cases in MAAP and
24	showed that the one line was going to work for us. So
25	it's not just pulled out of the air. We have some
I	

(202) 234-4433

	88
1	basis for it, but it's not a detailed calculation.
2	MEMBER MAYNARD: I've got a couple of
3	questions of third power. The distribution panel, you
4	know, with mature heads, your electric system is not
5	safety-related.
6	MR. WACHOWIAK: Yes, that's correct.
7	MEMBER MAYNARD: Okay. And I wonder where
8	your numbers are coming from as far as reliability for
9	diesel generators and some of your other equipment.
10	Is it based on data from equipment being maintained
11	and dumped into frequent data or how did you get into
12	the substance for that?
13	MR. WACHOWIAK: Yes, the data comes from
14	existing power plant diesel generators. So once
15	again, there is a trade off here. They aren't safety-
16	related diesel generators, so the testing may be
17	somewhat different. However, the requirements are
18	also quite different. In this particular scenario
19	here, in one of the DCD where they did the calculation
20	for this scenario where the two CRD pumps are the
21	level in the reactor, the diesel generators don't need
22	to start for two minutes.
23	MEMBER MAYNARD: And I understand all of
24	that. I find it more important the treatment of the
25	equipment system, but it's more in the equipment
	I

(202) 234-4433

1 itself on that thing. It's different. It's really 2 more how it's maintained and tested and treated. So I think how we're going to be treating some of these 3 4 non-safety systems from regulatory states to make sure 5 that they are going to still be consistent with the PRA or from an analysis standpoint. 6 7 MR. WACHOWIAK: This is a little bit 8 beyond the scope of what we are talking about here, 9 but there are three programs that all address it. There is the RTNSS, which is one way, and in the RTNSS 10 program, if one of these things is determined to need 11 12 to have availability controls, which in the end I think we ended up there, at least in our current 13 14 configuration of the plant, then that's where certain types of testing and not really surveillances, but 15 certain types of testing would be specified. 16 17 It would be like in the Technical Requirements Manual they would be there. If we don't 18 19 have -- and then also, we would specify availability 20 targets at that point too then. MEMBER ABDEL-KHALIK: And that's the --21 22 MR. WACHOWIAK: And there is the design 23 reliability assurance program, which comes under the 24 OA portion of the COL, which calls for us to identify 25 important pieces of equipment. And I think in Rev 1

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

89

	90
1	the diesel generators fell into that category. And
2	with that, we would be required for our quality
3	assurance program to specify what the availability and
4	reliability assumptions were in the PRA and those
5	would need to be maintained by the plant.
б	And then the third program that addresses
7	this same thing is the Maintenance Rule. And if these
8	diesel generators meet Maintenance Rule criteria for
9	requiring availability reliability and they do, at
10	least at this point, in the calculation, then those
11	things would be monitored under the Maintenance Rule
12	program.
13	MEMBER MAYNARD: I agree. I think the
14	Maintenance Rule is good from there. Along kind of
15	the same lines, per your assumptions, you assume that
16	there was no preventive maintenance being done on the
17	equipment, some corrective action on maintenance, but
18	no provision maintenance. However, the current
19	philosophy right now is they do online PMs. And I'm
20	just kind of wondering from your PRA, the assumption
21	is availability and everything, why you are assuming
22	that there is no preventive maintenance being done on
23	any of the equipment.
24	MEMBER SIEBER: During outages.
25	MR. WACHOWIAK: That was a first cut in
I	I

(202) 234-4433

our assumptions. The customers, as I said earlier, they are involved in looking at some of this. And in some areas, which one of them we will be talking about in a little while here on the control system that comes up, how are we going to do the maintenance here? You said it gets done during outages. Well, we don't want to do it during outages. We would rather do it And I think if you look at our PRA, one of the insights that you would probably get out of Revision 1 is, you know, maybe it's better to do the maintenance for the diesel generators online, rather than during shutdown, because during shutdown that's when you kind of rely on them for performing shutdown cooling and things like that. So that will have to be resolved as we go through this. Now, I'm trying to remember, I don't think

MEMBER MAYNARD: Well, part of your -- in 23 24 the written text, the assumption that you stated was 25 no presuming.

that in the final fault tree model that we completely

generators, but it may not be a value that's as high

as you might expect if we're going to be doing all the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

maintenance

(202) 234-4433

left

out

maintenance.

test

and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

online.

(202) 234-4433

of the diesel

91

	92
1	MR. WACHOWIAK: Yes.
2	MEMBER MAYNARD: And rely for it covers
3	both it's covered somehow and you're going to have
4	some availability for it. One last question. You
5	relied for the long-term on some portable power
6	supplies to be plugged into that certain location, but
7	I think that you these portable power supplies would
8	be part of the design equipment in the plant.
9	MR. WACHOWIAK: Those that you move from
10	the plant design subsequent to our submitting with one
11	of the PRA that stated that, so they are no longer in
12	the design.
13	MEMBER MAYNARD: Okay.
14	MR. WACHOWIAK: A specific configuration
15	for how those would be used didn't provide the benefit
16	that we were expecting, so that
17	MEMBER MAYNARD: My next question which
18	you also said human intervention for this particular
19	one, somebody is going to have to come up with an
20	eliminator, so that's my last question.
21	MR. WACHOWIAK: Right.
22	CHAIRMAN APOSTOLAKIS: So you are going to
23	talk about the sequence now?
24	MR. WACHOWIAK: Yes.
25	CHAIRMAN APOSTOLAKIS: Okay.
Į	1

	93
1	MR. WACHOWIAK: We've kind of been talking
2	around.
3	CHAIRMAN APOSTOLAKIS: I know.
4	MR. WACHOWIAK: So here in this sequence,
5	the initial level goes below Level 1.5 and this timer
6	starts. And if two CRD pumps are operating, then we
7	would not go down the plant. In this particular
8	case
9	CHAIRMAN APOSTOLAKIS: No, you need to run
10	the two. So what you are saying is both of them fail?
11	MR. WACHOWIAK: In this case?
12	CHAIRMAN APOSTOLAKIS: Both of them fail,
13	both.
14	MR. WACHOWIAK: You need both.
15	CHAIRMAN APOSTOLAKIS: The IC says that
16	MR. WACHOWIAK: Two are required.
17	CHAIRMAN APOSTOLAKIS: Both are required?
18	MR. WACHOWIAK: Yes.
19	CHAIRMAN APOSTOLAKIS: Okay. All right.
20	MR. WACHOWIAK: So two pumps are required,
21	so one fails, so one is injecting, two have failed to
22	restore past the timer. Sometimes we'll be talking
23	success and failure space.
24	CHAIRMAN APOSTOLAKIS: That confuses me a
25	little bit, because if I go to the table of the top
ļ	I

(202) 234-4433

	94
1	200 concepts, in almost all of the sequences, you have
2	two events mispositioning your valve at FO13A and
3	mispositioning for FO13B. So and then you multiply
4	the numbers that you show. I mean, these I guess are
5	the cutsets availability. So what you are saying is
б	that both must fail, right? But tell me if you need
7	any more.
8	MR. WACHOWIAK: That's correct. We're all
9	here and it looks like this loss of feedwater path,
10	which was
11	CHAIRMAN APOSTOLAKIS: Well, I'm looking
12	at the table. Where are you now?
13	MR. WACHOWIAK: Like that is your picture
14	there for the loss of feedwater?
15	CHAIRMAN APOSTOLAKIS: Yes.
16	MR. WACHOWIAK: Which is exactly the same
17	structure as loss of off-site power.
18	CHAIRMAN APOSTOLAKIS: Okay.
19	MR. WACHOWIAK: I have cut off in this
20	picture up here, I have cut off the second half of
21	CHAIRMAN APOSTOLAKIS: Right.
22	MR. WACHOWIAK: the tree. So we can
23	see this particular case. So we have successful
24	SCRAM.
25	MEMBER SIEBER: Can you go to the
	I

(202) 234-4433

	95
1	microphone?
2	CHAIRMAN APOSTOLAKIS: Yes.
3	MR. WACHOWIAK: Yes, I'm sorry.
4	MEMBER SIEBER: Just hold it up here. I'm
5	looking.
б	MR. WACHOWIAK: Yes. We have the
7	successful SCRAM.
8	CHAIRMAN APOSTOLAKIS: Right.
9	MR. WACHOWIAK: The next is this U2CI
10	short. Two CRD pumps required and isolation
11	condensers.
12	CHAIRMAN APOSTOLAKIS: Yes, 3 or 4.
13	MR. WACHOWIAK: We have 4, 3 or 4 need to
14	open. So in this case, either one CRD pump or
15	multiple ICS valves or ICS paths fail. So the cutsets
16	almost all show almost all get there with the
17	failure of one CRD pump. So let's say mispositioning
18	of one of those valves would fail the CRD pump.
19	CHAIRMAN APOSTOLAKIS: Now, that's my
20	problem, the cutset data.
21	MR. WACHOWIAK: I'll get there.
22	CHAIRMAN APOSTOLAKIS: Okay.
23	MR. WACHOWIAK: We have a successful
24	depressurization, but then after depressurization we
25	talk about injection. And here under injection, one
I	1

(202) 234-4433

	96
1	of two CRD pumps can be successful for injection.
2	CHAIRMAN APOSTOLAKIS: Okay.
3	MR. WACHOWIAK: So you pick up the other
4	CRD pump, CRD train failure on this branch.
5	CHAIRMAN APOSTOLAKIS: Okay.
6	MR. WACHOWIAK: And then you come through
7	and you get the GDCS and FAPCS right here.
8	CHAIRMAN APOSTOLAKIS: So the cutset I was
9	looking at included this event, which is that will
10	resolve.
11	MR. WACHOWIAK: Right.
12	CHAIRMAN APOSTOLAKIS: Maybe better.
13	MR. WACHOWIAK: So the first
14	CHAIRMAN APOSTOLAKIS: The first one was
15	this.
16	MR. WACHOWIAK: Then the interesting thing
17	about this
18	CHAIRMAN APOSTOLAKIS: Yes.
19	MR. WACHOWIAK: is that we have taken
20	away the ability to use the isolation condenser of the
21	CPS. This sequence is high, because one of our high
22	pressure systems is gone.
23	CHAIRMAN APOSTOLAKIS: Right.
24	MR. WACHOWIAK: The nicest to have high
25	pressure system is now gone, because of that failure
Į	I

```
(202) 234-4433
```

	97
1	of one CRD pump train.
2	CHAIRMAN APOSTOLAKIS: Now, continuing
3	along these lines.
4	MR. WACHOWIAK: Okay.
5	CHAIRMAN APOSTOLAKIS: I have a couple of
б	comments. So in many of these cutsets, you have the
7	mispositioning of the two valves that kill the CRDs.
8	And these are due to
9	MR. WACHOWIAK: Pre.
10	CHAIRMAN APOSTOLAKIS: Pre-event.
11	MR. WACHOWIAK: Event.
12	CHAIRMAN APOSTOLAKIS: And the human
13	errors have killed those independently. And because
14	you have availability of 4.8×10^{-2} for each one and
15	then if you do the calculations, you multiply them and
16	what the cutset will be. So I'm wondering why they
17	are independent. The joint availability, if you
18	multiply, is around 2.5×10^{-3} . And I mean, if you have
19	human errors of this type, usually there is some sort
20	of dependence. And again, because these two events
21	appear in the majority of these cutsets, they will
22	probably submit back all the numbers.
23	So maybe that's something you have to look
24	at.
25	MR. WACHOWIAK: That is something that we
I	I

(202) 234-4433

	98
1	should look at.
2	CHAIRMAN APOSTOLAKIS: Yes.
3	MR. WACHOWIAK: I believe it is something
4	that we did look at. I just don't have the number or
5	the answer off the top of my head. We did do a
б	operator dependence analysis and I'll have to look at
7	the justification, look for that.
8	CHAIRMAN APOSTOLAKIS: But that analysis
9	should not be separate from this. I mean, it's not a
10	sensitivity study. It's something that you do
11	continue. Just as in the same cutset you consider the
12	common cause failure of those squib valves. You do
13	have that. So it seems to me that human error should
14	be some dependence there. I don't think the number
15	will change that much, but assuming it is, but
16	ultimately it's right. I mean, you answered.
17	MR. WACHOWIAK: I agree that that might
18	make a difference.
19	CHAIRMAN APOSTOLAKIS: Right.
20	MR. WACHOWIAK: One of the things that we
21	have done and we'll talk about this later, we have
22	done a change to the plant in Rev 2 of the DCD, the
23	upcoming Rev 2 of the PRA.
24	CHAIRMAN APOSTOLAKIS: Right.
25	MR. WACHOWIAK: That we don't want this
ļ	I

(202) 234-4433

Í	99
1	the way that this is set up here, but we lose the
2	isolation condenser system from something as simple as
3	not starting two CRD pumps. So the plant has been
4	reconfigured so that this sequence in the middle here
5	goes away and now it looks more like the loss of off-
6	site power at the generic transient.
7	CHAIRMAN APOSTOLAKIS: Yes. Now
8	MR. WACHOWIAK: We'll have to look into
9	that operation actually.
10	CHAIRMAN APOSTOLAKIS: Yes.
11	MR. WACHOWIAK: I know we
12	CHAIRMAN APOSTOLAKIS: That's why I
13	wondered.
14	MR. WACHOWIAK: Because when the
15	dependence analysis based on all the cutsets and I
16	just don't remember how that one came out off the top
17	of my head.
18	CHAIRMAN APOSTOLAKIS: Well, remember
19	cutsets that are here are simply the product.
20	MR. WACHOWIAK: Yes.
21	CHAIRMAN APOSTOLAKIS: Yes. The
22	individual sequences, you know, if you look at these
23	three or the
24	MR. WACHOWIAK: Yes.
25	CHAIRMAN APOSTOLAKIS: loss of
	I

(202) 234-4433

	100
1	preferred power tree, they all seem to have a
2	probability frequency of 2 or 3×10^{-10} . So I guess we
3	have much of those or if you have enough, you have 10^-
4	8.
5	MR. WACHOWIAK: Yes.
6	CHAIRMAN APOSTOLAKIS: Okay.
7	MR. WACHOWIAK: And so these are the
8	cutsets you are talking about.
9	CHAIRMAN APOSTOLAKIS: Yes.
10	MR. WACHOWIAK: The top ones are
11	CHAIRMAN APOSTOLAKIS: Yes, yes, yes, yes.
12	So I'm looking at No. 16. I don't know if you have
13	16. Well, all of these look at them. Number yes,
14	the first one. You see one of these is misposition of
15	valve 13A, 13B. This is the CRDS. Since $4.8 ext{x10}^{-2}$,
16	4.8×10^{-2} and if you multiply the 1, 2, 3, 4, 5 numbers
17	under event availability, indeed, you get the cutset
18	probability, that number.
19	MR. WACHOWIAK: Yes.
20	CHAIRMAN APOSTOLAKIS: So that does move
21	a little bit too, because it's independent.
22	MR. WACHOWIAK: They were treated as
23	independent.
24	CHAIRMAN APOSTOLAKIS: So there are such
25	lines. We look into it.
I	I

	101
1	MR. WACHOWIAK: Yes, we'll look into it
2	later. There might be a reason for it, because I know
3	we did this analysis to look at all those cutsets or
4	dependent actions within cutsets.
5	CHAIRMAN APOSTOLAKIS: And so my other
6	comment was if you look at the cutset probabilities,
7	they are 10 $^{-10}$, right? So you have about 40 such
8	sequences or so to bring it up and I think you do.
9	MR. WACHOWIAK: Yes.
10	CHAIRMAN APOSTOLAKIS: Because the
11	sequences are under 44, they show you more sequences.
12	So if we take another 1 or 2.5×10^{-7} and multiply that
13	by 40, I get up to 10^{-8} . So any one of those might be
14	a new CCF squib valve and the mispositioning of the
15	valves of the CRDs, they are almost everywhere.
16	MR. WACHOWIAK: Yes.
17	CHAIRMAN APOSTOLAKIS: They are almost
18	everywhere, if not everywhere.
19	MR. WACHOWIAK: Yes. The mispositioning
20	of the valves
21	CHAIRMAN APOSTOLAKIS: Yes.
22	MR. WACHOWIAK: turns out to be the
23	dominant failure mode for the CRD.
24	CHAIRMAN APOSTOLAKIS: CRD, yes, okay.
25	MR. WACHOWIAK: So the question, one
ļ	

(202) 234-4433

	102
1	question could be like what when we did the standby
2	liquid controls. Should these valves be instrumented
3	in the alarm, so that that can happen? The answer is
4	probably yes. Are we required to do it for the 10 $^{-8}$
5	sequence? No. And so at this point, we haven't gone
6	back and said you have to do that. We have said we
7	would like you to consider whether or not you would do
8	that.
9	CHAIRMAN APOSTOLAKIS: Yes.
10	MR. WACHOWIAK: It's a human-man-machine
11	interface being the things they are looking at.
12	CHAIRMAN APOSTOLAKIS: I guess you are
13	partial to the issue of acceptable risk. I mean,
14	there is always a sequence that we don't need, that we
15	don't want to push.
16	MR. WACHOWIAK: Right.
17	MEMBER SIEBER: I don't have a quarrel
18	with that.
19	CHAIRMAN APOSTOLAKIS: But at the same
20	time, there are certain rules when you do PRA with
21	dependence and all that and it would be nice to follow
22	that.
23	MR. WACHOWIAK: Well, it would. I'll take
24	a look at this.
25	CHAIRMAN APOSTOLAKIS: Yes, I understand.
Į	I

(202) 234-4433

	103
1	MR. WACHOWIAK: If I have the information
2	with me on my computer, over lunch I can give you the
3	answer before we come back from lunch. We went
4	through and we looked at all those pairs and there is
5	a misposition on all of those pairs in our
6	documentation. I just have to find it.
7	CHAIRMAN APOSTOLAKIS: Right. Okay.
8	Thank you. Now, if we go back in the sequence?
9	MR. WACHOWIAK: Okay. You want to look at
10	the tree or do you want to look at the
11	CHAIRMAN APOSTOLAKIS: No, the
12	description. That was really very nice.
13	MR. WACHOWIAK: The description?
14	CHAIRMAN APOSTOLAKIS: Yes.
15	MR. WACHOWIAK: Let's see.
16	CHAIRMAN APOSTOLAKIS: Injection systems
17	fail.
18	MR. WACHOWIAK: Injection systems fail.
19	What else?
20	CHAIRMAN APOSTOLAKIS: Regarding the
21	gravity system.
22	MR. WACHOWIAK: And the active systems.
23	So when you go back to the cutsets, the gravity-driven
24	system is failed by the squib valves.
25	CHAIRMAN APOSTOLAKIS: Yes.
	I

(202) 234-4433

	104
1	MR. WACHOWIAK: And then that operator
2	action, the operators fail to recognize the need for
3	low pressure injection.
4	CHAIRMAN APOSTOLAKIS: Right.
5	MR. WACHOWIAK: That operator actually is
6	in there.
7	CHAIRMAN APOSTOLAKIS: Which, by the way,
8	I checked out. It was pretty nice. You have nice
9	stuff. I mean, you follow the EPRI calculator and the
10	bundles of the hardware and so on. This goes no
11	comment on that. But the gravity system, I mean, it's
12	a passive system and you assume that it will work as
13	long as the lines are open, right?
14	MR. WACHOWIAK: Yes.
15	CHAIRMAN APOSTOLAKIS: Have you done any
16	calculations to confirm that? I mean, are there any
17	uncertainties anywhere that might make this there
18	is a lot of work now, especially coming out of Europe,
19	the European Union where they are looking at the
20	possible failure of passive systems. I must say I
21	haven't seen in any of those papers a smoking gun that
22	says hey, everybody is missing this. They really are
23	proposing ways of doing the FMEAs and HAZOPS to
24	identify potential failure modes. And my question is
25	what these guys are saying for what applies about the
l	I

(202) 234-4433

	105
1	gas reactors, you know, in water.
2	But we don't second guess in various
3	parameters that they use in the thermal-hydraulic
4	analysis of these systems and often the pipes,
5	transfer efficiency and so on. And it turns out that
6	for some combination of values there, because there
7	are distributions, you do get say high temperatures.
8	You evaluate some criteria.
9	And I'm wondering whether you are worried
10	about it. I mean, you never brought any analysis that
11	I have seen in the PRA, but do you worry at all about
12	it? I mean, do you have any calculations or are these
13	calculations including uncertainty or are they best
14	estimate calculations and they are all met the
15	criteria?
16	MEMBER SIEBER: First of all, I think the
17	calculations of thermal-hydraulics
18	CHAIRMAN APOSTOLAKIS: Yes.
19	MEMBER SIEBER: are an action of
20	something for this point.
21	MR. WACHOWIAK: The
22	CHAIRMAN APOSTOLAKIS: Right. But best
23	estimates? I mean, if you never see the
24	uncertainties, you will never find them.
25	MEMBER SIEBER: Best estimates. The big
I	I

(202) 234-4433

	106
1	issue with this plant is the reactor vessel is almost
2	100 in times and there is a very tremendous amount of
3	water there.
4	CHAIRMAN APOSTOLAKIS: That's right.
5	MEMBER SIEBER: And you don't go below the
6	first foot of the core under any sequence that I
7	recall, as far as
8	MR. WACHOWIAK: Yes, in the PRA success
9	criteria, I think some of the just a couple of
10	sequences dipped a little and then came back on.
11	Those were all see, in what we have reported, you
12	don't see the thermal-hydraulic uncertainty issue.
13	MEMBER SIEBER: Yes.
14	MR. WACHOWIAK: That's one of the things
15	that is an ongoing dialogue with the staff. I have a
16	short presentation on how we're trying to resolve this
17	a little later today.
18	MEMBER SIEBER: Okay.
19	MR. WACHOWIAK: But I understand that the
20	issues in where I am in doing this for the PRA, we
21	have certain tools and certain ways of calculating
22	this that for all of our purposes, we show that we can
23	we get plenty of flow with margin. I performed
24	cases that was using MAAP and trying to adjust things
25	like the friction, a surrogate for friction on the
ļ	

(202) 234-4433

	107
1	valve coming in and, you know, you would have to go to
2	very, very
3	MEMBER SIEBER: Small value.
4	MR. WACHOWIAK: small values before we
5	get to a case where we end up melting the core. And
6	we think that the success criteria that we have is
7	conservative in there now and the question is though
8	how do you prove it using the tools that you have,
9	that we have available to us? That's what is what the
10	special of the staff is at this point.
11	CHAIRMAN APOSTOLAKIS: I understand the
12	plant in this particular report on this.
13	MR. WACHOWIAK: Yes. A little different
14	than we had found before, but I have a slide on that
15	later.
16	MEMBER ABDEL-KHALIK: A related question.
17	You made a statement somewhere in your report that
18	maybe due to high pressure as expected when squib
19	valves are fired open, is this based on a dynamic
20	loading analysis of the points where these valves are
21	located? Do you sort of shockwave situation
22	calculations or anything like that or was this just
23	sort of based on experience?
24	MEMBER SIEBER: Yeah.
25	MR. WACHOWIAK: Well, the first thing that
	1

(202) 234-4433
	108
1	we have is there is a check valve in that line that is
2	expected to prevent that, the pressure wave from
3	getting back to the GDCS pool. We would also have the
4	structural you know, if that failed, do we have a
5	failure of the GDCS pool? And the answer I got back
б	was the check valve is supposed to prevent that and
7	they don't think so.
8	MEMBER ABDEL-KHALIK: Well, not
9	necessarily the failure of the pool.
10	MR. WACHOWIAK: Okay.
11	MEMBER ABDEL-KHALIK: I'm talking about
12	failure of the pipe itself.
13	MR. WACHOWIAK: Failure of the pipe
14	itself?
15	MEMBER ABDEL-KHALIK: Right.
16	MR. WACHOWIAK: Is this the case where the
17	valve opens when it is supposed to or is this a case
18	where the valve opens when it is not supposed to?
19	MEMBER ABDEL-KHALIK: When the valve opens
20	when it is supposed to.
21	MR. WACHOWIAK: Okay. In that case, there
22	shouldn't be really any shockwave at all. The valve
23	is not supposed to open until the pressure of the
24	reactor is down probably close to around 30 pounds.
25	MEMBER SIEBER: Right.
Į	I

(202) 234-4433

	109
1	MR. WACHOWIAK: It opens at a low
2	pressure. So, you know, we didn't go through the
3	whole second half of your question about the 105
4	second timer.
5	MEMBER ABDEL-KHALIK: Right.
6	MR. WACHOWIAK: The 105 second timer is
7	there to allow the reactor to depressurize before the
8	squib valves open the GDCS lines. So the idea there
9	is that they would that those valves don't open
10	until there is almost no pressure in the reactor. So
11	that you are right at the point where they have the
12	water and the GDCS tank will allow the flow into the
13	reactor. The calculations that were done for the
14	design basis determined that proper time point.
15	So when you get the ECCS signal on Level
16	1, there is a sequencing. The first some of the
17	SRVs own them for a time period and then first time it
18	could reach the DPVs open and then the next bay and
19	then the final bay and then all about the time and
20	the final ones open. The reactor is close to
21	depressurizing and the GDCS valves will then open.
22	Because what we don't really want to happen, we took
23	the check valve in the line to prevent backflow just
24	in case the valve opens early. But it's an open check
25	valve.
ļ	

(202) 234-4433

110 1 So we don't want the valve to be closed in 2 the line and then have to be reopened by the head of 3 the water, the GDCS pool. So it's normally an open 4 check valve. And you wait until the pressure of the 5 reactor is low enough, so that when you open that squib valve, it doesn't seek the check valve and then 6 7 it has to reopen. We would open the squib valve only after we would have calculated that the flow would 8 9 start and that's where those timers and permissives 10 all come in. So I think in the PRA though we, outside 11 12 of something I looked at --MEMBER ABDEL-KHALIK: We have determined 13 14 that of all pipes disinitiation of the squib valves we 15 will say as failure of the squib valves to open from a mechanistic standpoint, because it's just gone 16 17 through all that water and never making it to the 18 reactor vessel. The effect would be the 19 MR. WACHOWIAK: 20 same. 21 MEMBER ABDEL-KHALIK: Right. 22 MR. WACHOWIAK: But once again, I'm not 23 sure that there is going to be significant loading on 24 those pipes by the time you get to the point where 25 they would open.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	111
1	MEMBER ABDEL-KHALIK: Okay.
2	VICE CHAIRMAN SHACK: I guess it's a
3	question of whether your risk of failure that your
4	timer failure on that.
5	MR. WACHOWIAK: Yes. Well, it's a timer
б	failure in combination with the low pressure
7	permissive failure. So that would fall down into the,
8	basically, the I&C cover mode failure, which also is
9	included in the model and is stuck on the or is
10	already included in the failure success later. So I
11	don't think it would add much by explicitly calling
12	those out, other than in the description maybe some
13	there, but I don't think the results would change.
14	Because once again, remember that this is
15	all in the I&C system. It's not like we have an
16	individual timer for things. This is all built into
17	the logic cards, so there is logic modules that do
18	timers. There is logic modules that do pressure
19	comparisons and where those come together, right now
20	we couldn't say if both of those calculations are even
21	done on the same processor.
22	So I want to make sure that I have covered
23	everything. SCRAM was successful. The water level
24	goes down and you really don't get water level
25	recovery. In most likely cases, the CRD pumps that
I	I

(202) 234-4433

	112
1	fail. ADS works. The depressurization is what causes
2	ICS to be ineffective.
3	MEMBER SIEBER: Right, can work.
4	MR. WACHOWIAK: So ICS most likely would
5	work just fine, but it can't, because there is no
6	pressure in the reactor. In here, I said injection
7	systems fail. This covers GDCS as we said, FAPCS and
8	fire water, as we said, and then this is the part
9	where I think we list the four. This also includes
10	the second CRD pump. So we fail one CRD pump here and
11	the second CRD pump failure comes in down here.
12	In the end, this is the core damage
13	sequence where the vessel fails at low pressure and
14	when the vessel fails, the lower drywell water level
15	is going to be low, below the level of concern for
16	steam explosion. So this is what defines the Level 2
17	interface on these sequences.
18	Were there any other questions about this
19	particular sequence?
20	VICE CHAIRMAN SHACK: When was this
21	conducted, is a question maybe? Now, look at the
22	seismic event tree, which has some similarities to
23	this. When you go through the seismic event, you have
24	lost D/C power now, so now you really you know, you
25	have an isolation condenser in a passive system. If
	1

(202) 234-4433

	113
1	you SCRAM, you don't count the isolation condenser
2	system. If you fail to SCRAM and you inject the SLC
3	system, you then take credit for the isolation
4	condenser system and you lose the passive systems for
5	the effect it leads to, the control.
6	Why do I credit the isolation condenser
7	when I inject the SLC and I don't when I SCRAM?
8	MR. WACHOWIAK: It's a good question.
9	Fortunately, there is an answer.
10	VICE CHAIRMAN SHACK: Okay.
11	MR. WACHOWIAK: One of the things you
12	mentioned was that you lose D/C power. You actually
13	lose A/C power because of the power. So well,
14	there is a thing about D/C power that we'll talk about
15	in this next part of this, but you lose A/C power.
16	What we have for the in the atlas case,
17	there is an inhibit of ADS, so if we had a valid SCRAM
18	signal, then the APRMs don't show a downscale low for
19	some short time period. ADS is prevented from
20	operating. It's locked out. So in the atlas, ADS
21	never actually actuates at low level depressurization
22	that takes out the isolation condensers.
23	So what happens in the atlas especially in
24	that case, we lose feedwater, which in the atlas is a
25	I don't want to say it's a good thing, but it aids
	I

(202) 234-4433

	114
1	in the short-term response because we want the water
2	level to come down low to start the power level
3	reduction.
4	MEMBER SIEBER: Right.
5	MR. WACHOWIAK: Okay? Then standby liquid
6	control will go in and signal them with a standby
7	liquid control system. The ADS inhibit has already
8	that's part of it's either the same logic or it
9	takes the same signals to do that.
10	So with standby liquid controls coming in,
11	water levels coming down, power levels is coming down
12	and at one point there, we'll close in a couple
13	minutes into the sequence the isolation condensers are
14	able to remove decay heat and keep the level at a
15	steady state there without any injection coming at
16	all.
17	VICE CHAIRMAN SHACK: But you told me here
18	I needed the injection. I couldn't do it with just
19	the sealed system.
20	MR. WACHOWIAK: You need the injection to
21	prevent the ADS. In the atlas condition, the atlas
22	condition itself prevents the ADS.
23	VICE CHAIRMAN SHACK: Prevents the ADS.
24	Okay.
25	MR. WACHOWIAK: Once again, it's complex
ļ	I

(202) 234-4433

	115
1	and we'll see a little bit later that it doesn't work
2	that way anymore. Well, we didn't want that. We
3	didn't want to have to go through those things and
4	challenge our depressurization quite so much. So we
5	have done a design change to the plant in that
6	isolation condensers are just by in the loss of
7	feedwater, loss of off-site power events. We won't
8	depressurize unless we really have to.
9	MEMBER SIEBER: That's good.
10	MR. WACHOWIAK: Any more on this sequence?
11	We'll come down through and we're going to find pretty
12	quick that we have gone through all our CDF in just a
13	few sequences.
14	MEMBER SIEBER: Two, yes.
15	MR. WACHOWIAK: Is it two or is it four?
16	MEMBER SIEBER: I didn't know what you
17	mean by all of your CDF.
18	MR. WACHOWIAK: 99 percent. The next one,
19	the next sequence is, notice, the same sequence, TP
20	water plus loss of feedwater and it's Sequence No. 44.
21	You can use the feedwater, loss of off-site power with
22	that tree structure interchangeably. And what we have
23	here is exactly the same thing. And the reason is
24	because the loss of the result of the loss of off-
25	site power is, essentially, loss of feedwater.
I	I

(202) 234-4433

	116
1	And total immediate loss of feedwater is
2	the only way to get in was the only way to get into
3	that scenario where you challenge the depressurization
4	signal on the timing. So this one goes exactly the
5	same.
6	The next one I have in the package here
7	should be
8	MEMBER SIEBER: Another LOPP.
9	MR. WACHOWIAK: It's another LOPP one, but
10	it's not a LOPP that only contributes 1 percent and
11	it's Sequence 49. Let me yes, I was going to bring
12	up the picture that we were using to illustrate
13	before, but Sequence 49 is this sequence down here.
14	So, once again, we have a short-term
15	failure. ADS fails. Now, this is one of these things
16	where it's hard to tell from the picture what is
17	exactly going on here, but what we found is that in
18	this particular sequence, the only things that are
19	causing the depressurization failure here that make it
20	through truncation is the loss of D/C power.
21	MEMBER SIEBER: Okay.
22	MR. WACHOWIAK: Okay? Now, the loss of
23	D/C power, isolation condensers still have a chance to
24	work because there's two parallel paths for injecting
25	or for initiating isolation condensers. One is a poly
	1

(202) 234-4433

117
hairpin valve and the other is a loss of power. It
opens on a loss of power. So if we lose all of our
batteries, then these particular valves can open. So
this sequence here though has the mechanical failure
of those valves to transfer or other things that could
fail, fail those in the sequence.
So that is why you can that is why the
sequence works here. If loss of D/C power fails
depressurization, then it's possible that the GDCS or
the ICS can work. Once again, you go through the
different scenarios. Here we look at pressure relief
because since you have it open, isolation condensers,
the vessel will remain at pressure and you would have
to relieve that pressure without before you break
the vessel. We say that that mechanical function, the
relief valves, works.
Once again, because it's D/C, losses of
D/C power, those come on through and the loss of D/C
will also fail the CRD system and the SRVs and you end
up in a high pressure sequence. And go back to the
description, and this is the generic description here.
I was talking more about how the cutsets end up or the
individual terms fail these things. So we end up with
a vessel failure at high pressure.

MEMBER SIEBER: That's pretty exciting.

(202) 234-4433

	118
1	MR. WACHOWIAK: Yes, it would be.
2	MEMBER SIEBER: The last line is license
3	revoked.
4	MR. WACHOWIAK: The next sequence down is
5	a medium LOCA sequence. I don't have the picture for
6	this one to go though it, so we'll try to do it in
7	words. Less than 1 percent is where we are here down
8	in this sequence. This graph, the medium LOCA liquid
9	in ESBWR is most likely a GDCS line maybe or some
10	other, like an isolation condenser discharge line
11	break, something like that.
12	So it's one of the connections to the
13	vessel that is in the area that is normally covered by
14	water during power operation. So once we move up
15	beyond, up to the steam lines and the DPV lines and
16	ICS lines, those would be steam line breaks that would
17	be MLS under the same thing, but in these cases the
18	MLL would be GDCS lines or the ICS, whichever one.
19	In this particular case, the fault tree
20	handles which one it is. If there is terms in there
21	that there is a split fraction, if you will, that says
22	it's GDCS line versus the other lines, because the
23	GDCS line affects the success criteria of the GDCS,
24	we're probably going to separate those into two event
25	trees for the Rev 2 and you will see a GDCS line.
ļ	I

(202) 234-4433

	119
1	Well, I think what we're going to just do
2	is go through each line independently and show what is
3	going on there rather than aggregating. It cuts down
4	on explanations and so forth.
5	MEMBER ABDEL-KHALIK: So failure of one of
6	the equalizing lines, even though you had a 60
7	millimeter sort of restriction right at the connection
8	with the vessel, would fall in that category?
9	MR. WACHOWIAK: Yes. The way we did the
10	demarcation between small and medium liquid is the CR
11	one CRD pump needs to be able to keep up with the
12	flow through the break in order for it to be a small,
13	so that is about a 25 millimeter line. So the 60
14	millimeter would be a medium pipe range.
15	MEMBER ABDEL-KHALIK: Okay.
16	MR. WACHOWIAK: As I said, if you look in
17	the design basis LOCA, the analogous sort of thing,
18	Chapter 6 of the DCD, this would be called the GDCS
19	line break. Successful SCRAM, vacuum breakers do
20	perform their function so that the containment works
21	as a pressure suppression containment. Feedwater is
22	now failing in this scenario for one of various
23	reasons that feedwater can fail. We have no low
24	pressure injection. Further depressurization is
25	unsuccessful and then the GDCS lines fail to provide
ļ	I

(202) 234-4433

	120
1	sufficient flow.
2	So a couple of things that we didn't
3	consider here, FAPCS. Right now we don't have an
4	analysis that shows in the LOCAs that we're going to
5	get that we can continue with FAPCS long-term
6	because of where the suction is taken out of the
7	suppression pool. We have got to do some more work on
8	looking at that particular scenario to see if we can
9	maintain long-term cooling in the LOCAs using a pump
10	source from the suppression pool.
11	It's different than the equalizing lines
12	since we don't have to worry about NPSH and other
13	things there. This pump source from the suppression
14	pool, we didn't have enough information to tell if we
15	could flood that long-term. As we refine, get more
16	details on how that is connected into the suppression
17	pool and what type of controls that there are that are
18	going to be on the pump, we may be able to add that in
19	later. We just didn't have the information for you at
20	this point.
21	We didn't ask the CRD in the event tree,
22	we said because of an inadequate water supply. Once
23	again, we have changed or have upgraded the amount of
24	water in the CST since when this was originally done,
25	we'll be re-performing that success criteria
I	1

(202) 234-4433

	121
1	calculation to determine if there now is sufficient
2	water in the CST for the multiple cases.
3	But in the end, since ADS was successful
4	at the low pressure case, the lower drywell water
5	level is high in the Level 2, which will result in
6	steam explosion and the containment failure.
7	MEMBER ABDEL-KHALIK: Wow.
8	MR. WACHOWIAK: And if you look at the
9	last presentation, the X vessel explosion was about .8
10	percent of CDF. That is the sequence. Any questions
11	on this one? So it's not a good scenario, but luckily
12	a lot of things happen to be able to get there. Those
13	are all of them that were at, approximately, 1 percent
14	and higher. Everything else is less than 1 percent.
15	MEMBER SIEBER: Some are expensive.
16	MR. WACHOWIAK: So I can talk about other
17	scenarios, but
18	CHAIRMAN APOSTOLAKIS: Okay. The sequence
19	process. Go ahead.
20	MR. WACHOWIAK: Well, let me see.
21	VICE CHAIRMAN SHACK: Relief valve
22	failure, do you consider it a sequence? The
23	probability of one of these valves failing versus the
24	probability that all of them would fail for this is
25	about the
ļ	I

(202) 234-4433

	122
1	MR. WACHOWIAK: Relief.
2	VICE CHAIRMAN SHACK: I think the
3	safety relief valve.
4	MEMBER SIEBER: The safety valve.
5	MR. WACHOWIAK: Yes. In these particular
6	scenarios where it's not an atlas case, it's just
7	removing the KD, we have shown that all we need is one
8	relief valve to lift to prevent the vessel from over-
9	pressurizing.
10	VICE CHAIRMAN SHACK: But this is now,
11	this is a LOCA?
12	MR. WACHOWIAK: And it's even less. Okay.
13	I'm sorry, I was off back on the let me back up to
14	the sequence. I was okay.
15	VICE CHAIRMAN SHACK: I'm just asking in
16	the LOCA sequence that you have, I mean, you really do
17	assume that all the safety relief valves were working,
18	fail to open with the probability of 3×10^{-4} , which
19	seems very high.
20	MR. WACHOWIAK: Okay. Now, I understand
21	your question.
22	VICE CHAIRMAN SHACK: Sure.
23	MR. WACHOWIAK: That particular scenario
24	that you're talking about is in one of the steam LOCA
25	scenarios.
	I

(202) 234-4433

	123
1	VICE CHAIRMAN SHACK: Right, it's a steam
2	LOCA.
3	MR. WACHOWIAK: It's not this one. It's
4	a steam LOCA. We looked at that two different ways.
5	One, from the spurious opening of a DPV and then a
б	spurious DPV initiation signal. So those values are
7	really calculated differently. All of them opening is
8	not a common mode failure of DPVs themselves opening.
9	That is a failure in the control system that initiates
10	those. We think that value is actually very high.
11	There is a different calculation that was
12	done in Chapter 15 for the probability of a spurious
13	actuation of a DPV or of that system and it was lower
14	than the value that we used in the PRA.
15	VICE CHAIRMAN SHACK: So if you took a
16	value from 5750 for a spurious ADS initiation, that's
17	the value you used?
18	MR. WACHOWIAK: It has the value that we
19	used. We didn't look at our specific control system.
20	Now that we know more about what our control system
21	looks like, we'll be able to go in and do a better
22	job, still not we won't have everything there, but
23	we will have a better job of being able to calculate
24	that.
25	VICE CHAIRMAN SHACK: But even with that
I	I

(202) 234-4433

	124
1	high frequency, it doesn't seem to be a big
2	contributor.
3	MR. WACHOWIAK: Because it's a steam LOCA.
4	VICE CHAIRMAN SHACK: LOCA.
5	MR. WACHOWIAK: Steam LOCAs are very easy
6	to handle in ESBWR. Steam LOCAs are basically, you
7	don't even in many of the cases you don't have to
8	consider much on AD on the depressurization system.
9	It sets it up. A large steam LOCA sets up GDCS to
10	work and a spurious ADS signal sets up GDCS to work
11	and it gets you almost all the way. The initiator
12	gets you almost all the way there.
13	VICE CHAIRMAN SHACK: But in your design
14	to do this.
15	MR. WACHOWIAK: It is designed to do that.
16	A steam line break is part of the design, essentially.
17	So we wouldn't expect to see LOCAs that contribute
18	highly to all this.
19	MEMBER SIEBER: And after the blowdown,
20	you have still got a fair amount of inventory.
21	MR. WACHOWIAK: And there is still yes,
22	right. You're not losing inventory along with the
23	blowdown.
24	MEMBER SIEBER: Well, you're losing some.
25	MR. WACHOWIAK: And it's going to one
I	I

(202) 234-4433

	125
1	place.
2	MEMBER SIEBER: Not a lot.
3	MR. WACHOWIAK: Because now it's any
4	inventory that you lose is going into the GDCS pool to
5	be ready to shipped back right into the vessel. So
6	steam LOCAs are very easy to handle in the ESBWR.
7	MEMBER SIEBER: I think the operators
8	could even go eat lunch, right? Wait until it's done.
9	MR. WACHOWIAK: Okay. Are there any other
10	questions? Well, no, I was moving on to one other
11	thing that I wanted to look at here, and this was our
12	long-term cooling. We have gone back and forth on
13	this. Revision 0 of the PRA had the 72 hour sequences
14	all built into the CDF, but we didn't transfer. We
15	didn't transfer those to the Level 2.
16	In Revision 1 we performed the Level 1
17	only out to the short-term, well, 24 hour, 24 hour
18	stabilization, but didn't look at what might happen
19	later on in the main section of the report. In the
20	sensitivity area we looked at what was actually
21	happening in those longer term sequences.
22	Now that we have gone through this
23	exercise and we know how we're going to treat these,
24	I think the next rev we're actually going to bring
25	them back up again and treat the Class II sequences
I	I

(202) 234-4433

126 like containment bypass sequences. Well, what we did here was we took everything that was listed as Class II, so like if I went back to my simplified event tree, is that clear, these things here where there was some kind of successful injection, but there was a containment challenge, so like this path here, this path here and this, I think it's that path. The ones that -- where we have successful GDCS, but we want to have long-term cooling, so it's-the cooling is being provided by sources inside of the containment. And so that's why on your big event trees you can see how those were all expanded. We consider all the systems that we had left that we hadn't credited already and any other systems that might become available for those times and looked out to a longer time frame. And what we ended up finding was that most of these sequences, when you consider everything else that we have left, don't really contribute that much Where we ran into some issues in Rev 0 was that more. we didn't credit all the systems that we actually had

on those branches and the number came out to be 8

percent of CDF or something much higher. We show here

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

And they are not in the Level 2 now as

that it's really a much lower contribution.

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

	127
1	bypasses, but we would add this extra 4×10^{-11} to our
2	bypass sequences. Things would really be unchanged.
3	MEMBER ABDEL-KHALIK: Now, you indicated
4	that steam line breaks inside the containment are
5	really easy to handle, because globally somehow that
6	steam is going to condense and you're going to retain
7	inventory inside the containment. How about steam
8	line breaks outside containment?
9	MR. WACHOWIAK: A break outside
10	containment is considered, but the initiators on those
11	are tend to be very low because it starts with a
12	break and then you have to have a failure of isolation
13	before it's really a long-term loss of cooling.
14	MEMBER SIEBER: Isolation issue.
15	MR. WACHOWIAK: So the initiators on
16	those, which you get through the isolation, takes them
17	down out of consideration.
18	MEMBER SIEBER: Part of the redundancy and
19	technology.
20	MR. WACHOWIAK: And on the ones that were
21	involved. You know, the reactor water cleanup lines,
22	because the lines are so big and they go so many
23	places, the initiating event frequency is higher on
24	reactor water cleanups because of the length of the
25	pipe.
ļ	

(202) 234-4433

	128
1	MEMBER SIEBER: Right.
2	MR. WACHOWIAK: We had the designers add
3	a third isolation valve into that system, so that even
4	though we have more pipe, the combination of pipe
5	break plus the failure of the isolation remains low
6	like the rest of them.
7	MEMBER SIEBER: Seems like there are quite
8	a few places where your Rev 0 PRA prompted you to make
9	some corrections. Is that correct?
10	MR. WACHOWIAK: The Rev 0 PRA, the
11	development of the Rev 0 PRA and some of the things
12	that still made it into the Rev O PRA prompted us to
13	make some design changes.
14	MEMBER SIEBER: Um-hum.
15	MR. WACHOWIAK: Other design changes were
16	prompted by other things. Some of them used
17	probabilistic arguments to make the design changes,
18	but not the CDF probabilistic argument. It's really
19	more of an investment protection probabilistic
20	argument.
21	MEMBER SIEBER: Okay.
22	MR. WACHOWIAK: And we'll get into that
23	one. Well, that's not the water level issue. What we
24	saw here is that even considering that water level
25	problem, we still had a very low CDF. So is this a
I	

(202) 234-4433

	129
1	case where the PRA is going to require a change to the
2	plant or will something else we like the change.
3	I like the new change. We can talk about that.
4	MEMBER SIEBER: Well, that's an argument
5	for doing the PRAs early in the design process, if you
6	can, after you lose something and you're working in
7	that white band where you don't know too much about
8	it.
9	MR. WACHOWIAK: You can. At every phase
10	we will probably find something that we didn't think
11	about before.
12	MEMBER SIEBER: So you plan to keep
13	updating the PRA as the design becomes more firm and
14	final?
15	MR. WACHOWIAK: Yes.
16	MEMBER SIEBER: That's true. Okay.
17	MR. WACHOWIAK: In some cases where we
18	find some things that we may need to address, they
19	will come in in the base Level 1 model. They will
20	come in when we're trying to do the focus PRA for
21	RTNSS. And so every aspect of the design that is
22	perfectly fine in calculating our base core damage
23	frequency doesn't work out so nice in the RTNSS
24	calculation, we have got to circle back and do some of
25	those like the valve where we suggested moving to a
I	I

(202) 234-4433

	130
1	different fire area phase.
2	MEMBER SIEBER: Okay.
3	CHAIRMAN APOSTOLAKIS: Okay.
4	MR. WACHOWIAK: Anything else on
5	sequences?
6	CHAIRMAN APOSTOLAKIS: No.
7	MR. WACHOWIAK: Okay. I want to move to
8	the next section. We talked about some of this stuff
9	through now, but I think we passed this one out
10	earlier, the update and what we called information
11	exchange when we came out to see the staff a couple
12	weeks ago.
13	What was the hard break that we had to
14	take? Was it noon, noon to 3:00?
15	CHAIRMAN APOSTOLAKIS: Yes.
16	MR. WACHOWIAK: Okay. I will try to make
17	sure I'm at a break point here in 20 minutes. Okay.
18	What I want to talk about in this next section is the
19	Revision 2 of the PRA, what it is we're going to do
20	with Revision 2. That is probably what we'll cover
21	before lunch, and then I want to talk about the effect
22	of some major design changes that were done between
23	Rev 1 and Rev 2 of the DCD. It's not reflected in the
24	PRA yet and we'll talk about how that is going to all
25	fit together. Okay.
I	I

(202) 234-4433

	131
1	Now, in the base model of the PRA, and
2	what I mean by base model, this is the main what we
3	talked about earlier, the Level 1 model. Level 2 for
4	most internal events is what we base everything off
5	of.
6	We're including the isolation condenser
7	additional water volume. That is the major design
8	change that was done. We'll talk about it more in
9	detail, but we added water to the isolation condenser
10	during operation so that now, we don't need to run two
11	CRD pumps to keep the water level up. So we added
12	water into the isolation condenser system itself to
13	eliminate the need for the CRD. That will be included
14	in there.
15	That is probably going to be the biggest
16	change of everything because it changes the structure
17	of the event tree, the two larger event trees there.
18	And, as we saw, we're going to affect the top 90
19	percent of the cutsets by making this change. Okay?
20	The next thing that we're going to include
21	are the actual, I won't say actual just yet, but our
22	I&C architecture and requirements. We have selected
23	potential vendors for the different pieces of our I&C
24	system and so now we know what those systems are going
25	to be able to do. We have a set of requirements that
	I

(202) 234-4433

	132
1	are out there for our I&C system and we have our
2	requirements set for the Diversity and Defense-In-
3	Depth. Those things will all now be factored into the
4	PRA model.
5	MEMBER SIEBER: Yes, right.
6	CHAIRMAN APOSTOLAKIS: How did you include
7	that I&C in the PRA?
8	MR. WACHOWIAK: How did we include it in
9	the PRA?
10	CHAIRMAN APOSTOLAKIS: Yes. I mean, we
11	should know how to do that. We better tell our
12	research staff, because they are spending a lot of
13	money trying to figure it out.
14	MR. WACHOWIAK: Okay. Maybe that gets us
15	to our hard break. There's two aspects to modeling
16	I&C.
17	CHAIRMAN APOSTOLAKIS: Right.
18	MR. WACHOWIAK: Okay? The first is the
19	hardware configuration, how does the signal get from
20	sensor into the I&C and then from once the decision
21	is made in the I&C, how does it get out to the field.
22	That piece of it is what we know how to model now.
23	The specifics of what is going on inside the brains of
24	the I&C system, which is the subject of the research,
25	at this point, we're treating as a simple common cause
I	

(202) 234-4433

	133
1	failure.
2	A couple of things to consider with that.
3	One, we don't have a lot of control going on in this
4	ECCS system. It's a comparative threshold trip type
5	system. Maybe there are some timers put in there, a
6	square root here or there, some things like that, but
7	there is really not a lot of control systems with
8	feedback that can get us into multiple developed
9	states within the system that could do unpredictable
10	things.
11	So we don't think that this particular
12	type of I&C is going to be too far outside of being
13	able to be modeled with the simple common cause model.
14	CHAIRMAN APOSTOLAKIS: But that is common
15	cause. I mean, the number will come out where? What
16	is the number? Do you remember?
17	MR. WACHOWIAK: The number that we used in
18	the base PRA model is a 10 $^{-5}$ common cause failure of
19	all software.
20	CHAIRMAN APOSTOLAKIS: But there is no
21	basis for that, is there?
22	MR. WACHOWIAK: What we looked at for the
23	the basis for this is commercial software systems
24	like here, you know, in the banking systems. They
25	have got to have such reliability in their systems and
I	I

(202) 234-4433

	134
1	they design to that. We have to go through our
2	software design control. There is a process that is
3	going on within the human factors, I think they fall
4	under the human factors group, where a lot of this is
5	going to have to be discussed.
б	But I would agree that right now it's an
7	assumed number and what we need to do in some cases is
8	we need to look at
9	MEMBER CORRADINI: Sorry I'm late.
10	MR. WACHOWIAK: sensitivity analyses
11	and that's part of our overall uncertainty picture.
12	But the good news is that we recognized that
13	uncertainty when we did the analysis for where the
14	diversity is required. So that is why when you read
15	the Diversity and Defense-In-Depth Report from ESBWR,
16	you will see that the diverse systems are connected
17	into many, many more functions than what we had
18	initially assumed in Rev 1.
19	So it will be attacking this one system
20	model. It has got some uncertainty to it, but we
21	think even with the uncertainty associated in it,
22	because of the diversity with the separate systems,
23	the diverse protection system would probably would
24	still be okay.
25	CHAIRMAN APOSTOLAKIS: So the argument
	I

(202) 234-4433

	135
1	then would be based primarily on the sequences
2	themselves? You would have to have some huge common
3	cause failure for a lot of systems to be affected, but
4	I'm not sure that the numbers will mean anything. I
5	mean, what if I make the 10^{-5} 10^{-2} ? Am I going to see
6	a CDF jump up by orders of magnitude?
7	And this is not when you say common
8	cause failure, you don't mean which common cause
9	failure is this? Is it over one particular system or
10	across the systems, because that would be really too
11	much. I think
12	MR. WACHOWIAK: Yes, I understand the
13	problem. That is why it's a hard problem and research
14	is working on this now.
15	CHAIRMAN APOSTOLAKIS: That's right. I
16	would stay away from numbers personally, at this time,
17	and try to make arguments based on the sequences and
18	what goes where and maybe do a couple of sensitivity
19	studies, because then you would have to defend this
20	10^{-5} and I don't know where it came from. You said,
21	you know, the commercial software, but as far as I
22	know the databases are not there. And non-UPR people
23	in general do not worry about common cause failure.
24	MR. WACHOWIAK: Right, and maintenance
25	induced.

(202) 234-4433

	136
1	CHAIRMAN APOSTOLAKIS: Because there is no
2	ACRS to look over them.
3	MEMBER SIEBER: They don't have a lot of
4	the architectural features either, and I think you
5	have to know that before you can do anything.
6	MR. WACHOWIAK: Right.
7	MEMBER SIEBER: For example, is there
8	going to be a physical separation between protective
9	systems and engineered safety feature systems and
10	other control systems, three different systems or are
11	they going to be cross-connected? Are you going to
12	have hardwire elements in the protection system or
13	local modules, for example? You know, that has a big
14	impact on everything.
15	On the other hand, if you have multiple
16	trains of, for example, engineered safety feature
17	systems and you use the same software in every train,
18	then a failure in one will give you a failure across
19	the board, which is common cause.
20	MR. WACHOWIAK: Right.
21	MEMBER SIEBER: So there should be some
22	diversity there or at least some way around that.
23	MR. WACHOWIAK: And I think this afternoon
24	we can answer. We know enough to answer most of those
25	things at this point.
l	I

(202) 234-4433

	137
1	MEMBER SIEBER: I have more.
2	MR. WACHOWIAK: But some other things
3	MEMBER SIEBER: I have a longer list than
4	what I said.
5	MR. WACHOWIAK: The longer list we may not
6	be able to, but that list we're pretty close on
7	things.
8	MEMBER SIEBER: All right.
9	MR. WACHOWIAK: So aside from I
10	understand the concern there and we're going to do
11	whatever is available.
12	CHAIRMAN APOSTOLAKIS: I think it would be
13	wise to stay away from numbers and bring the case
14	using qualitative arguments, what goes where, what
15	does it do to diversity and all that stuff.
16	MR. WACHOWIAK: Okay.
17	CHAIRMAN APOSTOLAKIS: Because, otherwise,
18	you know, you can have internal number of discussions,
19	why 10^{-5} , where did it come from, you know, and all
20	that. And the nature of failures there is different.
21	I mean, you're not really talking about a round of
22	failures anymore.
23	MR. WACHOWIAK: No, it's
24	CHAIRMAN APOSTOLAKIS: Maybe specification
25	requirements, whatever.
	I

	138
1	MEMBER SIEBER: Right.
2	MR. WACHOWIAK: It's like one of those
3	mispositioning valve failures.
4	MEMBER ABDEL-KHALIK: But PG 1145 requires
5	the applicants to demonstrate that the software has
6	worked up to 95 percent, so it's hard to reconcile
7	that 95 percent confidence level required with a 10^{-5}
8	probability.
9	MR. WACHOWIAK: Yes. I'm still unsure of
10	what 95 percent confidence that the software is going
11	to work means either.
12	MEMBER SIEBER: Yes, I mean, if you look
13	at
14	MR. WACHOWIAK: That's part of it.
15	MEMBER SIEBER: If you look at I&C
16	failures, in general, I think it's the transducers
17	that fail, the pressure sensors, the BP cells, the
18	temperature.
19	MR. WACHOWIAK: Right.
20	MEMBER SIEBER: You know, the physical
21	stuff as opposed to some piece of electronics in a
22	cool room and so forth.
23	MR. WACHOWIAK: And we can model those.
24	MEMBER SIEBER: Yes. Well, you already
25	have a long history because they are using analog
ļ	I

(202) 234-4433

	139
1	systems, too, and you have, you know, ICS.
2	MR. WACHOWIAK: In this update we expect
3	to have additional design detail for our valve to
4	plant systems that wasn't available before. We're
5	still working with the engineers to make sure that we
6	get everything we need. It's coming along, so
7	additional detail is correct as much as I had
8	expected, you know, a couple months ago maybe, but
9	that is going to be expanded.
10	CHAIRMAN APOSTOLAKIS: You have decided to
11	do these things on your own initiative or as a result
12	of interactions with the staff or a mix?
13	MR. WACHOWIAK: It's a mix.
14	CHAIRMAN APOSTOLAKIS: It's a mix.
15	MR. WACHOWIAK: This first one was not
16	interaction with the staff.
17	CHAIRMAN APOSTOLAKIS: Okay.
18	MR. WACHOWIAK: This one we knew we had to
19	do and we had some interaction with the staff on and
20	they want to see that. Additional detail for the BOP
21	systems, there was interaction with the staff.
22	CHAIRMAN APOSTOLAKIS: Right.
23	MR. WACHOWIAK: Once again, we already
24	knew we needed to do that. The next one is in the
25	common cause area. We'll talk about this a little bit
I	I

(202) 234-4433

	140
1	more. We're going to switch from the alpha method to
2	an MGL method. It is supported in our PRA software
3	and the things that we'll talk about a little bit
4	later. The things we talked about is uncertainty in
5	the parameters and other things like that. We'll be
6	able to do that.
7	CHAIRMAN APOSTOLAKIS: That's interesting,
8	because I thought the alpha model was supposed to be
9	the latest and the bestest. Did the staff ask you to
10	do this?
11	MR. WACHOWIAK: No.
12	CHAIRMAN APOSTOLAKIS: It's convenience in
13	using codes?
14	MR. WACHOWIAK: It's convenience with
15	codes and the ability to interpret the answers and
16	make sure that we can do the right kind of sensitivity
17	and uncertainty analysis that we want to do. We just
18	have difficulty with making
19	CHAIRMAN APOSTOLAKIS: I know. A lot of
20	people do.
21	MR. WACHOWIAK: Yes. So we think this is
22	the whole straightforward way forward.
23	CHAIRMAN APOSTOLAKIS: I checked, by the
24	way, one of your numbers that you have for common
25	cause failure using the MGL and numerically you get
ļ	

(202) 234-4433

	141
1	roughly the same number, so it's not
2	MR. WACHOWIAK: Okay.
3	CHAIRMAN APOSTOLAKIS: This is not going
4	to be a major change in the numbers, I don't think.
5	MR. WACHOWIAK: No. I wouldn't expect
6	this, in particular, to be a major change in the
7	numbers.
8	CHAIRMAN APOSTOLAKIS: But sequencing
9	maybe.
10	MR. WACHOWIAK: But where we get the
11	parameters from may change some of the numbers.
12	CHAIRMAN APOSTOLAKIS: Conceptually, the
13	MGL parameters are easier to understand.
14	MR. WACHOWIAK: Right.
15	CHAIRMAN APOSTOLAKIS: The alpha stuff is
16	complicated.
17	MR. WACHOWIAK: And it's also harder with
18	the alpha stuff if we want to make a change like for
19	the rest of the PRA. You have to kind of redo
20	everything
21	CHAIRMAN APOSTOLAKIS: That's right.
22	MR. WACHOWIAK: when you want to do
23	those. So it was just more difficult to work with.
24	We're going to try to do this. We believe it will be
25	straightforward.
ļ	I

```
(202) 234-4433
```

	142
1	We talked a little bit about this. We
2	have detailed in our top logic that I would like to
3	split into the event trees to make understanding the
4	sequences easier. This is really a personal
5	preference.
6	CHAIRMAN APOSTOLAKIS: What is your top
7	logic?
8	MR. WACHOWIAK: For example, in the event
9	trees you will find VFL. It's a top. It's FAPCS and
10	fire water panels. I would like those to be split
11	into two separate tops.
12	CHAIRMAN APOSTOLAKIS: Oh, okay.
13	MR. WACHOWIAK: And then you know which
14	branch you're on. You're either on an FAPCS branch or
15	you're on a fire. But even though they are
16	functionally the same thing, you need to it's just
17	I find it easier if you have that split out.
18	The event tree, what that will do I think
19	for reviewers is it will force the event trees to be
20	split onto more than one page, which everybody will
21	like because now you can't read them on one page
22	anyway. So since it is being forced to being split
23	amongst pages, you will be able to see everything
24	better.
25	Eliminate sequence-specific logic flags.
l	I

(202) 234-4433

We have gone through this, that a lot of the plants do this for their A-4 models. We have a way of using our initiator impacts to address it. It's a procedural thing within the logic. It should make things easier to review and you won't have these big blank tables that you have to look at to make sure we're consistent all the time.

As we said before, add that Class II 9 sequences into the base model. We want to reconcile 10 component names with the DCD. This is something that 11 we presented in Rev 0 when we first talked about that, 12 you know, a year or more ago that we knew was the case 13 and now is just a convenient time to fix this.

When we built the initial PRA model, the system designers hadn't named their components yet, so we in the PRA named it for them the best we could. And when they went through and actually did the design of the systems, they were slightly different than what we came up with. At this point it's convenient.

Because of our changes that are also going on that change the names of components in the plant, we're going to reconcile all this now, so that if you see a name of a component in the DCD, it's going to have the same name in the PRA. But it means some of the things you see in the PRA now may be moved to a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7
	144
1	different name, so we'll have to work on something
2	along that and some sort of a translation table, at
3	least initially.
4	Part of the Class II include those
5	sequences in the large release frequency, we talked
6	about that, and then other design detail as
7	information becomes available. So the designers
8	continue to work on adding detail to their systems.
9	If it's useful to us and it comes in in time, we'll
10	use it.
11	Other things that we want to have in this
12	is our basic event naming convention may change
13	slightly. It shouldn't be that big of an impact.
14	What we have found is that in the URD database,
15	certain systems like for a motor-driven pump, there
16	are several different motor-driven pumps that there is
17	data for. You know, if it's a service water pump or
18	if it's some kind of safety injection pump, different
19	data. Our initial model just used one basic event
20	name for motor-driven pump and we just used factors to
21	adjust the data.
22	CHAIRMAN APOSTOLAKIS: I don't think that
23	these details are of interest to the subcommittee.
24	MR. WACHOWIAK: Okay.
25	CHAIRMAN APOSTOLAKIS: Let's go to
l	I

(202) 234-4433

	145
1	something more substantial.
2	MR. WACHOWIAK: Lunch.
3	CHAIRMAN APOSTOLAKIS: Like lunch, so
4	MR. WACHOWIAK: Now, I think this would be
5	a convenient time for lunch.
6	CHAIRMAN APOSTOLAKIS: Yes, okay.
7	MR. WACHOWIAK: Because the next thing is
8	to go through and really explain what that water level
9	change was and what that says in the model.
10	CHAIRMAN APOSTOLAKIS: Very good. Thank
11	you, Rick. So we will reconvene at 3:00.
12	(Whereupon, the meeting was recessed at
13	11:58 a.m. to reconvene at 3:04 p.m. this same day.)
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	

	146
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	3:04 p.m.
3	CHAIRMAN APOSTOLAKIS: Okay. We're back
4	in session.
5	MR. WACHOWIAK: I hope everybody had a
6	good lunch.
7	CHAIRMAN APOSTOLAKIS: Okay, Rick.
8	MR. WACHOWIAK: Okay. Where we left off
9	at before lunch, I was going to go through some of the
10	sort of more significant design changes that we have
11	made to the plant since we have created Rev 1 of the
12	PRA model. These design changes are not in anything
13	that you have at this point. As a matter of fact,
14	they were recently approved, but they are in Rev 2 of
15	the DCD that you should have available, so they are
16	written up. They just haven't gotten to the PRA yet.
17	We talked about a little bit of this this
18	morning, so hopefully on this particular one we can
19	get through here. We talked about the water level
20	issues and I have a couple of graphs here that are in
21	your package. What we used to have, this is a loss of
22	feedwater in Rev 1 of the let's see. Hopefully,
23	this is going to be large enough. You have this.
24	This was a Level 1.5 here. The loss of
25	feedwater above isn't as bad as a loss of off-site
I	I

(202) 234-4433

	147
1	power then, but it illustrates the issue. The water
2	level in this scenario initially drops below Level 1.5
3	and the timer starts and in order to get water back up
4	above this Level 1.5 in time to get rid of the to
5	clear the signal, we have to have two CRD pumps.
6	It looks here like the slope will allow
7	only one CRD pump to operate and be able to clear that
8	in the time frame that we have, but we know in those
9	cases, and the dynamics of the early part of the
10	scenarios, just won't allow it.
11	MEMBER WALLIS: Can I ask a question since
12	we're now here?
13	MR. WACHOWIAK: Okay.
14	MEMBER WALLIS: I read about the feedwater
15	and CRD injection. It talks about one SBW pump and
16	one common pump and so on. And then it said that if
17	SBW fails to keep the level above Level 2 CRD
18	injection initiates, this is described in the PRA,
19	right?
20	MR. WACHOWIAK: Yes.
21	MEMBER WALLIS: But does the PRA run a
22	fully hydraulic code in order to know what the water
23	level is? How does it know what is happening at the
24	water level?
25	MR. WACHOWIAK: We look at the water level
ļ	

(202) 234-4433

	148
1	using various tools.
2	MEMBER WALLIS: And how does the PRA know
3	what the water level is?
4	MR. WACHOWIAK: How does the PRA? It is
5	based on the initiating event.
б	MEMBER WALLIS: But it doesn't, because it
7	depends on whether or not the levels are it says if
8	it fails to keep. You're implying that it might or it
9	might not reach Level 2. So how does the PRA know if
10	you have reached Level 2 or not?
11	MR. WACHOWIAK: Okay. In this particular
12	scenario, which is called a loss of all feedwater, we
13	know.
14	MEMBER WALLIS: Yes, the CRD does it.
15	MR. WACHOWIAK: We know for a fact that in
16	the loss of all feedwater that the water level drops
17	below Level 2, which is right around here.
18	MEMBER WALLIS: If it does?
19	MR. WACHOWIAK: No, it does.
20	MEMBER WALLIS: You know that it does?
21	MR. WACHOWIAK: In a loss of feedwater
22	event, because of that initiator, we know it does. In
23	a loss of off-site power, we know it does, because in
24	a loss of off-site power, the feedwater pumps trip
25	immediately.
	I

(202) 234-4433

	149
1	MEMBER WALLIS: So if you have one
2	feedwater pump, it does?
3	MR. WACHOWIAK: If you have no feedwater
4	pumps, it does. If you have one feedwater pump, it
5	doesn't.
6	MEMBER WALLIS: It does or doesn't?
7	MR. WACHOWIAK: It does not.
8	MEMBER WALLIS: But, you see, the problem
9	is when I read the text, it says if it fails to. I
10	mean, how do you know if it does or doesn't? You have
11	already done all these scenarios, so you have to put
12	that into this.
13	MR. WACHOWIAK: Yes.
14	MEMBER WALLIS: Then you there is no
15	ambivalence about it, I mean?
16	MR. WACHOWIAK: Where were you reading
17	from? Were you reading from
18	MEMBER WALLIS: Page 3.3-4.
19	MR. WACHOWIAK: 3.3-4? Is that under a
20	generic transient?
21	MEMBER WALLIS: U1CF.
22	MR. WACHOWIAK: U1CF. That is
23	MEMBER WALLIS: This occurs several times
24	in all this PRA, so it's as if the levels above so-
25	and-so, then it's successful. I just don't know how
I	

```
(202) 234-4433
```

	150
1	the PRA knows.
2	VICE CHAIRMAN SHACK: Well, you take the
3	branches in the event trees and you're doing the
4	calculations.
5	MEMBER WALLIS: Well, it depends on how
6	effective. It may depend on initial conditions and so
7	on. It may not be determinate.
8	MR. WACHOWIAK: That is exactly correct.
9	MEMBER WALLIS: So what do you do?
10	MEMBER CORRADINI: The PRA gives you the
11	branch point event.
12	MEMBER WALLIS: Well, how do you know
13	which way to go if you don't know what the level is?
14	That's the thing.
15	MR. WACHOWIAK: The way that we break up
16	the PRA model, we break it up into different sequences
17	that behave
18	MEMBER WALLIS: I understand that.
19	MR. WACHOWIAK: similarly.
20	MEMBER WALLIS: I understand that, but you
21	don't know which way to go unless you know what the
22	level is. Until there is a level, you're running
23	thermal-hydraulic codes.
24	MR. WACHOWIAK: Yes. For loss of
25	feedwater so for those things that act like a loss
Į	I

(202) 234-4433

	151
1	of feedwater
2	MEMBER WALLIS: Right.
3	MR. WACHOWIAK: we would run thermal-
4	hydraulic codes separate.
5	MEMBER WALLIS: Alongside the PRA?
6	VICE CHAIRMAN SHACK: No, separately.
7	MEMBER WALLIS: Oh, separately.
8	VICE CHAIRMAN SHACK: Yes, separately.
9	MEMBER WALLIS: Oh, no, you can't do that.
10	VICE CHAIRMAN SHACK: Sure you can.
11	MEMBER WALLIS: Well, you can. You simply
12	couldn't.
13	MR. WACHOWIAK: He likes to finish that
14	statement.
15	MEMBER WALLIS: Not real time.
16	MEMBER CORRADINI: Think of it like
17	definitional boundary conditions that the PRA or the
18	event tree sets up the initial boundary conditions.
19	MEMBER WALLIS: And those were cleared to
20	go.
21	MEMBER CORRADINI: Right. And then they
22	with a set of initial boundary conditions run a
23	deterministic calculation to see how the accident
24	evolves.
25	MEMBER WALLIS: Oh, so you run it at the
I	

(202) 234-4433

	152
1	same time.
2	MEMBER CORRADINI: His answer was if all
3	the pumps are off, deterministically he knows where
4	the water level is.
5	MEMBER WALLIS: Well, this isn't
6	deterministic. It really isn't deterministic.
7	PARTICIPANT: That's correct.
8	MEMBER CORRADINI: Well, it is.
9	VICE CHAIRMAN SHACK: The thing that's
10	probabilistic is whether you take this path or that
11	path.
12	MEMBER WALLIS: Well, it depends on
13	initial conditions. I mean, the beginning of a cycle,
14	end of a cycle are things that make a difference.
15	VICE CHAIRMAN SHACK: Right. You assign
16	that frequency.
17	MR. WACHOWIAK: Those are all correct
18	things that we have handled by bending these together.
19	We have looked and for this particular case, beginning
20	a cycle or end a cycle, it doesn't make any
21	difference.
22	For a loss of feedwater, you always have
23	the low level. And so if you looked in the loss of
24	feedwater tree, which I have the simplified one from
25	the earlier package, but you also have the monster one
I	

(202) 234-4433

	153
1	there, you won't see U1CF, that heading, in the loss
2	of feedwater tree. That heading is applicable to
3	other trees that have the feedwater system considered.
4	MEMBER WALLIS: Well, I guess I won't
5	spend a lot of time on it. Lots of times in this
6	discussion on all these lots of these scenarios
7	where it said if the water level is above so-and-so
8	then, but I'm saying, well, how do you know that? The
9	question arose every time I saw that.
10	MR. WACHOWIAK: And in those particular
11	cases where we have considered feedwater, what we look
12	at is the probability that feedwater worked or the
13	probability that feedwater didn't work. So we know
14	deterministically if feedwater worked, then the water
15	level won't reach the Level 2. We know
16	deterministically that if feedwater doesn't work, it
17	will reach water level 2. That's just how you apply
18	this.
19	MEMBER WALLIS: So the same thing with
20	this. Well, I don't know much of where you are here,
21	but as an RWC USTC system, it says the function is
22	affected only if the reactor water level is recovered
23	at normal level above Level 3.
24	MR. WACHOWIAK: Yes.
25	MEMBER WALLIS: Well, again, how do you
	I

(202) 234-4433

Í	154
1	know whether or not it is? So here is my question all
2	the way through.
3	MR. WACHOWIAK: Okay.
4	MEMBER WALLIS: Now I have got to shut up.
5	MR. WACHOWIAK: I'm trying to figure out
б	how to explain that in a short way.
7	MEMBER WALLIS: Yes, but
8	MR. WACHOWIAK: But if you follow the
9	sequences in the event tree
10	MEMBER WALLIS: Some of this has
11	nothing is affected by okay. But in reality, you
12	might go either way depending on the level being
13	somewhat different, because there are uncertainties in
14	the thermal-hydraulics and uncertainties in your
15	initial condition.
16	MEMBER SIEBER: You make them uncertain.
17	MR. WACHOWIAK: Yes.
18	MEMBER WALLIS: So it's sort of simplistic
19	to say that you know which way to go.
20	MR. WACHOWIAK: To make them uncertainties
21	you can, and then we do sensitivity studies to
22	determine if
23	MEMBER WALLIS: Okay. Or it may go the
24	other way, or it might go the other way.
25	MR. WACHOWIAK: you make the right
I	I

(202) 234-4433

	155
1	decision. Yes.
2	MEMBER WALLIS: Okay. Thank you. Thank
3	you. Okay.
4	MEMBER ABDEL-KHALIK: So, presumably,
5	these supporting calculations are best estimate
б	calculations?
7	MR. WACHOWIAK: In the PRA they are
8	supposed to be best estimate calculations. However,
9	as we talked earlier this morning, at this stage of
10	the design we don't know necessarily that it's the
11	best best estimate.
12	MEMBER WALLIS: It never is, no.
13	MR. WACHOWIAK: It's the best estimate
14	that we can get today.
15	MEMBER WALLIS: Right.
16	MEMBER SIEBER: Knowing what you don't
17	know.
18	MR. WACHOWIAK: Knowing what we
19	MEMBER SIEBER: Don't know.
20	MR. WACHOWIAK: Yes. So this would be
21	MEMBER WALLIS: That's why some of the
22	correlations are 50 years-old, is it?
23	MR. WACHOWIAK: Don't go there. So this
24	is it must have been a very nice lunch.
25	MEMBER WALLIS: I didn't get any lunch.
Į	

```
(202) 234-4433
```

	156
1	MEMBER CORRADINI: That's why he's upset.
2	MR. WACHOWIAK: So what we need to do or
3	what we needed to do was fix this. Now, the reason
4	why we went there in the plant has more to do with
5	investment protection than it does with core damage
6	prevention. With the core damage frequency, you know,
7	the way we estimated that sequence at, approximately,
8	$2x10^{-8}$, you probably we probably could have lived
9	with it in the PRA space.
10	However, on the plant side, using the
11	depressurization system when it's really not when
12	it's best not to use it is something to be avoided.
13	And what we would like to do and we are working toward
14	doing is providing protections in the plant to ensure
15	that an unnecessary depressurization won't happen in
16	the life of the plant.
17	MEMBER WALLIS: Now, you said CDF 10^{-8} ?
18	MR. WACHOWIAK: For that particular
19	sequence.
20	MEMBER WALLIS: This is for that
21	particular sequence?
22	MR. WACHOWIAK: Yes.
23	MEMBER WALLIS: And what is the total CDF
24	you're saying now? 3×10^{-8} .
25	MR. WACHOWIAK: 3×10^{-8} .
I	I

	157
1	MEMBER WALLIS: The total CDF?
2	CHAIRMAN APOSTOLAKIS: Yes.
3	MR. WACHOWIAK: Yes.
4	MEMBER WALLIS: For everything?
5	CHAIRMAN APOSTOLAKIS: For that test.
6	MEMBER WALLIS: For everything?
7	CHAIRMAN APOSTOLAKIS: For that test, yes.
8	MR. WACHOWIAK: No, no, no, for Level 1
9	internal events.
10	CHAIRMAN APOSTOLAKIS: Level 1 internal
11	events.
12	MEMBER WALLIS: Internal events?
13	MR. WACHOWIAK: Yes.
14	MEMBER WALLIS: Well, I noticed throughout
15	this whole document there are a lot of things you have
16	discarded with qualitative arguments. You have sort
17	of said this is unlikely to happen and so on without
18	any explanation. Well, 10^{-8} is a pretty small number
19	throughout things without any explanation. I wonder
20	how the Committee responded. Did they ask you that
21	question yet?
22	MR. WACHOWIAK: Not yet.
23	MEMBER WALLIS: There is a whole pile of
24	places where you qualitatively throw out a scenario.
25	You say there is one case where, you know, the
I	

(202) 234-4433

158 1 operators will never make a mistake sort of thing. 2 Well --3 MR. WACHOWIAK: I don't think we have 4 numbers for that. 5 MEMBER WALLIS: With that particular scenario, with that particular scenario. 6 7 CHAIRMAN APOSTOLAKIS: Independent failures. 8 9 MEMBER WALLIS: Okay. Well, we'll come 10 back to that. MR. WACHOWIAK: Yes, we can come back to 11 that. 12 CHAIRMAN APOSTOLAKIS: Seemed like, you 13 14 know, the shutdown PRA where you have two or three 15 independent failures that we have to assume is sort of 16 now part of --MEMBER WALLIS: There is a whole other 17 18 part. 19 CHAIRMAN APOSTOLAKIS: -- sort of 20 reliability of one. 21 MR. WACHOWIAK: That would be internal use 22 of blanket --23 CHAIRMAN APOSTOLAKIS: There's a lot of 24 other things like that, I mean. 25 MR. WACHOWIAK: -- to shutdown cooling

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	159
1	water and flooded out. If we triple up, we have 30 or
2	40 hours to recover before it hits level, so we would
3	discount that.
4	MEMBER WALLIS: See, I don't like the
5	water level, the reactor water level.
6	MR. WACHOWIAK: So the idea was how can we
7	set this up so that in the life of the plant, of one
8	of these plants, it is very unlikely for
9	depressurization to happen any time other than a LOCA,
10	because a LOCA you have already had other problems.
11	Depressurizing just gets you gets the system and
12	everything stable. You have the investment protection
13	issue. If it's not a LOCA, how do we prevent that?
14	So what we have done is we have made a
15	design change and I will give you the answer to what
16	happened with the design change first, and then we'll
17	go back and say specifically what was the design
18	change and that would be the Rev 2, DCD Rev 2 version
19	of this scenario.
20	You can see we got rid of Level 1.5
21	because it's not needed anymore, and we'll talk about
22	why that is in just a second. So we switched back to
23	just having a Level 1 that is the LOCA signal. The
24	water level doesn't drop far enough in the LOCA to get
25	to the Level 1, so that it is never challenged with
I	

(202) 234-4433

	160
1	the scenario. This one still shows the CRD pumps
2	running like this.
3	MEMBER WALLIS: Where is the core in that
4	picture?
5	MR. WACHOWIAK: The core is at zero.
6	MEMBER WALLIS: At zero. Okay.
7	MR. WACHOWIAK: In this particular one.
8	The axis here is liters above TAF.
9	MEMBER CORRADINI: So just so I have got
10	the picture in my mind. This is a cigar and the core
11	is at the bottom of the cigar like the label is?
12	MR. WACHOWIAK: Right, yes.
13	VICE CHAIRMAN SHACK: With a lot of water.
14	MR. WACHOWIAK: Right. And we have done
15	that for various reasons, the main reason being you
16	need the big head difference to drive the natural
17	circulation flow in the plant. So the height is to
18	allow us to have natural circulation, but it helps in
19	these scenarios. So there's hundreds of cubic meters
20	of water that have to go away before you run into
21	certain issues.
22	MEMBER CORRADINI: So just to say it back,
23	so that I understand it, you got rid of the signal at
24	below the blue line.
25	MR. WACHOWIAK: Right.
	I

(202) 234-4433

	161
1	MEMBER CORRADINI: So that you link to the
2	spurious actuation?
3	MR. WACHOWIAK: Right. Now, no, it's not
4	a spurious actuation. It was a potential LOCA that we
5	couldn't resolve within the time frame that we had.
6	So in design basis space, what we say is if we might
7	have a LOCA and we're not sure, we'll tell the ECCS
8	system to act like it is a LOCA. That's the in
9	deterministic space, that is the conservative thing to
10	do.
11	MEMBER SIEBER: Right, and then give it a
12	LOCA.
13	MR. WACHOWIAK: And then give it a LOCA.
14	VICE CHAIRMAN SHACK: Give it a LOCA when
15	it
16	MR. WACHOWIAK: Well, you create it's
17	a specially engineered LOCA that is very easy to
18	handle with our
19	VICE CHAIRMAN SHACK: I understand.
20	MR. WACHOWIAK: safety features.
21	VICE CHAIRMAN SHACK: Okay.
22	MEMBER WALLIS: Now, but this is a level
23	you're showing here?
24	MR. WACHOWIAK: This is the downcomer
25	level is blue.
Į	I

	162
1	MEMBER WALLIS: And you're measuring this
2	level?
3	MR. WACHOWIAK: Yes.
4	MEMBER WALLIS: And there is a discussion
5	in the PRA about reactor water level instrumentation
6	failure, spurious high, which seems to me a very bad
7	thing to have. I think, there is water there and
8	there isn't maybe, and then you dismiss the whole
9	thing qualitatively without ever evaluating anything.
10	You just say don't consider this in the PRA, although
11	it seems to me a very significant thing to happen.
12	You just sort of talk about how it's
13	unlikely and so on and it's not considered, but isn't
14	that a very important thing to know the level? I
15	mean, all kinds of things actuate on the level and so
16	on.
17	MR. WACHOWIAK: That's correct. We're
18	talking about changes that are going on in Revision 2.
19	We have details, enough details of the instrument and
20	control system now that we can put in those types of
21	failure modes and be able to deal with that
22	probability.
23	MEMBER WALLIS: Oh, so you're going to put
24	that in?
25	MR. WACHOWIAK: We're putting that in.
I	I

(202) 234-4433

	163
1	MEMBER WALLIS: So a lot of things which
2	are not qualitative, which will be quantitative later
3	on?
4	MR. WACHOWIAK: Will be quantitative, and
5	then you will be able to see that it's not going to be
6	a concern.
7	MEMBER WALLIS: So how long is it before
8	it's finished?
9	MEMBER SIEBER: But it's not in your
10	report here.
11	MR. WACHOWIAK: You're jumping ahead of
12	this.
13	MEMBER WALLIS: Well, I'm concerned
14	because I reviewed a long CD about, I don't, about
15	three months or four months ago or something and then
16	it all changed and I got this one. Am I going to get
17	another one?
18	MR. WACHOWIAK: Yes, you are. It's a
19	dirty document.
20	MEMBER WALLIS: It's very difficult when
21	sections are 1,000 pages long and you keep changing
22	them.
23	CHAIRMAN APOSTOLAKIS: Maybe next time,
24	Rick, you can send us also a couple of pages pointing
25	to where the changes have been made, because we had to
	I

(202) 234-4433

	164
1	look this stuff.
2	MEMBER WALLIS: The change is tremendous
3	in organization.
4	CHAIRMAN APOSTOLAKIS: In the PRA, if you
5	submit a Rev 2.
6	MR. WACHOWIAK: You didn't get the version
7	with the revision bars?
8	MEMBER WALLIS: No.
9	CHAIRMAN APOSTOLAKIS: What do mean with
10	a revision, where the revisions were identified?
11	MR. WACHOWIAK: Where they were
12	identified.
13	MEMBER WALLIS: No, nothing like that.
14	CHAIRMAN APOSTOLAKIS: No.
15	MEMBER WALLIS: No, I had to hunt all over
16	the place to find the revision.
17	CHAIRMAN APOSTOLAKIS: So we're looking
18	all over the place.
19	MR. WACHOWIAK: Okay. Well, there was a
20	version that had those identified. We'll make sure
21	that you have that and we're also going to use the
22	same process that a DCD uses where we're where we
23	have a change list that will go along with it. That
24	wasn't asked. Nobody asked for that, the list in the
25	first time, but we did send the version with the
I	I

(202) 234-4433

	165
1	revision bars.
2	CHAIRMAN APOSTOLAKIS: So what do you mean
3	revision bars?
4	MR. WACHOWIAK: It's on the side of the
5	page.
6	CHAIRMAN APOSTOLAKIS: On the side of
7	so I have to go through the whole PRA to find the
8	lines? No, that's not what I mean.
9	MR. WACHOWIAK: Okay.
10	CHAIRMAN APOSTOLAKIS: I mean you will
11	tell me in Section 5, you know, this is what you
12	call a section, which is a whole thing, page such-and-
13	such or subsection such-and-such, there have been
14	changes, so I can go. Otherwise, you
15	PARTICIPANT: That's a change list.
16	MR. WACHOWIAK: Okay. We already
17	committed to this that we'll be in Rev 2 we will be
18	providing the change list along with it.
19	CHAIRMAN APOSTOLAKIS: Okay. Now it's the
20	bars?
21	MR. WACHOWIAK: We did not do that in Rev
22	1.
23	MEMBER WALLIS: Well, sometimes it's not
24	just the changes. It needs to be change of
25	organization, why things are moved around, and that is

(202) 234-4433

	166
1	how the
2	MR. WACHOWIAK: That shouldn't happen
3	anymore with things moving around.
4	MEMBER WALLIS: Okay.
5	MR. WACHOWIAK: We're done moving around.
6	MEMBER SIEBER: We get paid by the hour.
7	It's okay.
8	CHAIRMAN APOSTOLAKIS: So change the whole
9	thing next time, so we'll make an extra \$16.
10	MEMBER CORRADINI: So that when you remove
11	the signal, that then logically says to you that you
12	now decrease the chance of not a spurious actuation,
13	but an actuation where you now are deciding you don't
14	want it?
15	MR. WACHOWIAK: Yes.
16	MEMBER CORRADINI: I'm still trying to get
17	through the logic.
18	MR. WACHOWIAK: Right. If there is no
19	LOCA, we don't want the depressurization unless all
20	the active systems fail. Okay? And what we were in
21	a situation before was we couldn't wait for all the
22	active systems to fail. We had to assume the LOCA
23	earlier than that before we had knowledge that
24	everything failed.
25	So the water level drop here is nearly the
	I

(202) 234-4433

	167
1	same, as you can see from the other one. That is not
2	what changed. When we added, and I will get back to
3	the specific parts of the change again in a minute,
4	what we did was we added tanks into the ICS system
5	that essentially puts in an additional 27 cubic meters
6	of water when the isolation condensers initiate.
7	So what that allows is it allows the LOCA
8	signal, the upper limit of the LOCA signal when the
9	instrument uncertainties are concerned, to be moved
10	away from that Level 1.5 now down all the way to the
11	Level 1 range. And, now, we have a Level 1 that
12	indicates all LOCAs instead of only a subset of LOCAs.
13	So the change that we made didn't really
14	affect the water level very much. It affected it by
15	a small amount, but changing that allowed the setpoint
16	to be moved out of the way, so that we don't get the
17	actuation that we don't want.
18	MEMBER ABDEL-KHALIK: So this initial drop
19	in the loss of all the feedwater is primarily going to
20	shrink?
21	MR. WACHOWIAK: It's
22	MEMBER ABDEL-KHALIK: Or is it
23	MR. WACHOWIAK: It's a manometric
24	equalization. When yes, on the sheet that I gave
25	you today it had well, I had when I did my
	1

(202) 234-4433

(202) 234-4433

	168
1	little back of the envelope calculation, I had two
2	values. One is inside the shroud and one is outside
3	the shroud. Inside of the shroud is mostly steam.
4	The average steam void fraction in the chimney area is
5	about 80 percent. And so you have the shroud which
6	has all this water here and then there is a steam
7	mixed area in here.
8	MEMBER WALLIS: And all the levels measure
9	the
10	MR. WACHOWIAK: Turn the feedwater off.
11	MEMBER WALLIS: Aren't the levels measured
12	outside?
13	MR. WACHOWIAK: The water level is
14	measured out. BWR is measured on the outside.
15	MEMBER SIEBER: Extremely short time.
16	MR. WACHOWIAK: Right.
17	MEMBER SIEBER: I mean, that makes
18	everything drop.
19	MR. WACHOWIAK: So it's not really shrink.
20	It's a collapse of the voids.
21	MEMBER WALLIS: That's correct.
22	MR. WACHOWIAK: Okay. So we go back to
23	CHAIRMAN APOSTOLAKIS: Before we go on,
24	does any Member have a cell phone on the table? It's
25	interfering with the reporter's
I	1

(202) 234-4433

	169
1	MEMBER WALLIS: Maybe it's somebody's
2	brain that is overactive.
3	PARTICIPANT: All the brains are off.
4	MEMBER WALLIS: Maybe your's.
5	MEMBER SIEBER: Turn mine off.
6	PARTICIPANT: We have never had this
7	problem before. Could you check?
8	CHAIRMAN APOSTOLAKIS: Are you okay now?
9	COURT REPORTER: No, it got worse.
10	MEMBER WALLIS: It got worse?
11	CHAIRMAN APOSTOLAKIS: It got worse?
12	COURT REPORTER: It's better just now.
13	CHAIRMAN APOSTOLAKIS: Is the computer
14	perhaps doing it?
15	COURT REPORTER: I don't it wouldn't be
16	the computer.
17	MEMBER SIEBER: Mine went to sleep.
18	MEMBER WALLIS: I don't have a cell phone.
19	MEMBER SIEBER: Maybe it's having a
20	nightmare.
21	COURT REPORTER: It's better now. Thanks.
22	CHAIRMAN APOSTOLAKIS: It's better now?
23	COURT REPORTER: Yes.
24	CHAIRMAN APOSTOLAKIS: Oh, it was Eric.
25	MR. THORNSBURY: Well, everybody turned
ļ	

(202) 234-4433

	170
1	theirs off, so it might have been.
2	MR. WACHOWIAK: So, like I said, we added,
3	and I will show how in a second, 9 cubic meters of
4	water per isolation condenser that allows us to
5	optimize the Level 1 signal for ECCS. Now, we don't
6	need to have CRD to prevent depressurization in the
7	loss of feedwater events and if we remember from this
8	morning, about 90 percent of the cutsets involved
9	loss of feedwater or loss of off-site power with
10	results in loss of feedwater, plus the loss of CRD,
11	control rod drive.
12	And for the people that are new to ESBWR,
13	our control rod drive system also acts as a high
14	pressure injection system. They are not small pumps.
15	We have two 500 gpm pumps that are our CRD pumps, so
16	they are very large CRD pumps. And, as we said in the
17	morning, I think up to we could handle a hole in
18	the vessel, liquid out of the break, a hole in the
19	vessel up to 25 millimeter diameter, so a 1 inch line
20	break can be completely made up by this pump.
21	CHAIRMAN APOSTOLAKIS: I think this
22	morning we agreed that in your reporting that the loss
23	of CRD is primarily due to human error, right,
24	forgetting mispositioning the valve?
25	MR. WACHOWIAK: Mispositioning the valve.
	I

(202) 234-4433

	171
1	CHAIRMAN APOSTOLAKIS: I mean, I'm
2	wondering now if this is okay, if you do a PRA for an
3	existing facility and it's an assessment of whether
4	the but this now, the PRA here is used to optimize
5	things. Why do you have to live with that? I mean,
6	there must be something you can do to make sure that
7	probability is very low.
8	MEMBER SIEBER: Yes.
9	MR. WACHOWIAK: But that particular case
10	that we have is
11	CHAIRMAN APOSTOLAKIS: What do they do?
12	MR. WACHOWIAK: What we have done is we
13	have an interface on the project now with the human
14	factors engineers.
15	CHAIRMAN APOSTOLAKIS: Oh.
16	MR. WACHOWIAK: The human factors
17	engineers, when they are in the process of developing
18	their procedures list, will get that. If we kept that
19	as a high sequence, they would get that sequence and
20	say, oh, look, these mispositioning of these valves
21	after tests or maintenance is very important.
22	When we write the procedures, we need to
23	make sure that we write it with independent
24	verifications in there. We need to have in the
25	training identified that this is important, these are
ļ	I

(202) 234-4433

172
the important scenarios that they need to look for.
So it gets factored into the HFE program.
Then after all those things have been
developed and we can evaluate them and watch some
operator training and watch some other things, in a
future revision of the PRA we can go through the HRA,
Human Reliability Analysis, like we normally would and
identify that those probabilities are much smaller.
CHAIRMAN APOSTOLAKIS: This is how to
update the PRA. I mean, yes, it's nice to have an
updated PRA, but the whole idea here is not to make
sure that you have a good PRA. The whole idea is to
make sure you have a good design. So if you do all
this, why would you want to have a statement that CRD
is not needed? I mean, do things to the ICS.
I mean, it will be needed, but the
probability of it not being available would be very
low. I'm missing something here or because you
seem to be making changes to the plan assuming that I
have to live with this probability of the loss of CRD

21 and you just told us that you don't have to live with 22 it. You can certainly reduce it.

23 MR. WACHOWIAK: We can reduce it, but it 24 won't go away. The probability of core damage due to 25 this is low. If we left things the way they were and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

б

	173
1	fixed the procedural
2	CHAIRMAN APOSTOLAKIS: Would still be low.
3	MR. WACHOWIAK: and fixed the
4	procedural action and just looked at mechanical
5	failures in CRD, so a typical diesel generator failure
6	following a loss of off-site power or a typical pump
7	failure, those sorts of things, the kind of numbers
8	that we were coming up with was about a 3 percent
9	chance of depressurizing the plant in the lifetime of
10	the plant without a LOCA. So there is a 60 year
11	lifetime, a 3 percent chance that we would
12	depressurize the plant.
13	CHAIRMAN APOSTOLAKIS: Right.
14	MR. WACHOWIAK: We can't live with that,
15	because the restoration cost from one of these events
16	is just like the restoration cost of a LOCA.
17	CHAIRMAN APOSTOLAKIS: I'm sorry, maybe I
18	missed. Even if you reduced the human error
19	probability?
20	MR. WACHOWIAK: Yes. When we did that
21	calculation to determine the likelihood of having the
22	undesired actuation, we did it based on the hardware
23	failures not on the human actions.
24	CHAIRMAN APOSTOLAKIS: So where did this
25	3 percent probability come from?
l	1

(202) 234-4433

	174
1	MR. WACHOWIAK: If we look at the
2	probability of a loss of off-site power, the
3	probability of a failure of one diesel or the failure
4	of one CRD pump or the failure of one injection valve,
5	so like three failure probabilities right there, taken
б	over a 60 year operating mission time.
7	CHAIRMAN APOSTOLAKIS: And that is 3
8	percent for the whole period?
9	MR. WACHOWIAK: For the whole period.
10	CHAIRMAN APOSTOLAKIS: And you think
11	that's unacceptable?
12	MR. WACHOWIAK: For something that would
13	have the same cost consequences as a LOCA, we thought
14	that was unacceptable.
15	MEMBER CORRADINI: So can I say that back
16	to you just so I understand? So if the probability
17	was 5×10^{-4} , that's a 3 percent contribution over a 60
18	year life?
19	MR. WACHOWIAK: Yes.
20	MEMBER CORRADINI: And that is,
21	essentially, those numbers you had in the overview,
22	Section 1, where it was the accidental initiation
23	button, whatever they are called, but these valves?
24	MR. WACHOWIAK: Right.
25	MEMBER CORRADINI: Okay. Thank you.
I	I

(202) 234-4433

	175
1	MR. WACHOWIAK: So now we have addressed
2	that also.
3	CHAIRMAN APOSTOLAKIS: How much would it
4	cost if you had an event like that? I mean, why is it
5	unacceptable?
6	MR. WACHOWIAK: The depressurization
7	system opens the reactor vessel directly into the
8	drywell. You need to have that so that the pressure
9	is equalized for GDCS to work. That is a requirement
10	for the system. To make it work passively, you have
11	to do it that way.
12	When you do that, you introduce a lot of
13	steam into the drywell and when we introduce the steam
14	into the drywell and the heat that goes into the
15	drywell, things like that, then we have to go back and
16	we have to look at thermal effects on the vessel
17	because of a fast depressurization. We have to look
18	on lifetime effects of the electrical components that
19	are inside the drywell, cabling and other electrically
20	qualified equipment.
21	Typically, those are analyzed so that they
22	can take one LOCA in the lifetime of the plant. So if
23	we have one of these LOCAs, we would be in there
24	replacing a lot of cabling and we would be replacing
25	other electronic equipment. So we want to make sure
I	I

(202) 234-4433

	176
1	that that is very unlikely, because the length of time
2	that the plant would be out of service in that
3	scenario would replacement power we think would be
4	cost prohibitive.
5	MEMBER CORRADINI: So can I ask the
6	question opposite? So 3 percent is not acceptable.
7	What is the accepted design length, design value?
8	MR. WACHOWIAK: What is the
9	MEMBER CORRADINI: Yes, what can you live
10	with?
11	CHAIRMAN APOSTOLAKIS: You want to push it
12	where?
13	MR. WACHOWIAK: We want to push it less
14	than 1 percent.
15	MEMBER ABDEL-KHALIK: And, yet, you don't
16	have that enunciator in the control room indicating
17	the position of these two valves.
18	MR. WACHOWIAK: That's one way we could
19	have handled it also, but it's not only those valves
20	that get us there. There are other things that are
21	just behind the valves that may get it.
22	MEMBER BONACA: That's the 1 percent per
23	year.
24	CHAIRMAN APOSTOLAKIS: No, over the
25	lifetime.
I	

(202) 234-4433

	177
1	PARTICIPANT: No, 1 percent over the
2	lifetime.
3	MR. WACHOWIAK: Yes, less than 1 percent
4	over the lifetime. I would like it to be even lower
5	than that, but we will have to see what is achievable.
6	MEMBER CORRADINI: Can we ask another?
7	CHAIRMAN APOSTOLAKIS: Yes.
8	MEMBER CORRADINI: Since some of us are
9	ignorant.
10	CHAIRMAN APOSTOLAKIS: Yes, we can.
11	MEMBER CORRADINI: We can? So why the
12	drywell? Just because you can't with your current
13	wetwell design, you can't put it into wetwell?
14	MR. WACHOWIAK: You can put it into the
15	wetwell, but the problem is if you put it into the
16	wetwell, you keep you end up with a delta P between
17	the reactor vessel and the GDCS pool.
18	MEMBER CORRADINI: Which would not allow
19	it to discharge?
20	MR. WACHOWIAK: Which would not allow it
21	to discharge.
22	MEMBER CORRADINI: Thank you.
23	MR. WACHOWIAK: Or at least put it so
24	close to the required head that the uncertainty would
25	say that it wouldn't discharge.
ļ	

(202) 234-4433

	178
1	MEMBER CORRADINI: Okay.
2	MEMBER WALLIS: Can you explain this Line
3	1 then? This Line 1 up here? I don't understand it.
4	MR. WACHOWIAK: Line 1. This one?
5	MEMBER WALLIS: Yes, 9 cubic meters per
6	I/C.
7	MR. WACHOWIAK: This was the change that
8	we made.
9	MEMBER WALLIS: This is a long
10	MR. WACHOWIAK: It eliminated the need
11	for
12	MEMBER WALLIS: It's a longer pipe or
13	something?
14	MR. WACHOWIAK: It is.
15	MEMBER WALLIS: It says return line. It's
16	just something that takes the condensation and puts it
17	back in the vessel, isn't it? You're making the pipe
18	bigger?
19	MR. WACHOWIAK: We're making the pipe
20	bigger.
21	MEMBER WALLIS: Much bigger? It's huge.
22	MR. WACHOWIAK: Yes.
23	MEMBER WALLIS: Doesn't the water just
24	drain down through the pipe anyway? I mean, how does
25	it store water?
	I

(202) 234-4433

179 1 MR. WACHOWIAK: Got to do a rotation here, 2 document. 3 CHAIRMAN APOSTOLAKIS: You can do that 4 rotation. 5 MEMBER WALLIS: Do you have a trough or something, so it fills up with water? 6 7 MR. WACHOWIAK: Do I have a rotation thing 8 up here? 9 MEMBER WALLIS: Oh, you keep it filled 10 with water before you start. Is that the idea? It's 11 full of water before? 12 MR. WACHOWIAK: Well, let's --VICE CHAIRMAN SHACK: It's over there on 13 14 the left. There you go. There, you see? Max had it 15 on the left. There it is. MEMBER WALLIS: We'll probably work on 16 this orientation. 17 18 Okay. MR. WACHOWIAK: Yes. 19 CHAIRMAN APOSTOLAKIS: So explain what 20 happens. 21 MR. WACHOWIAK: So this is the original 22 design and we don't have -- there is nothing in the 23 line, so just remember that one. I, you know, took a 24 long time to get the originals. 25 MEMBER WALLIS: This is the line, right?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```
	180
1	MR. WACHOWIAK: Trying to say return line.
2	MEMBER WALLIS: It's empty.
3	MR. WACHOWIAK: But I'll do your it is
4	not empty. During power operation, so when we start
5	up the plant, the steam supply lines or steam supply
6	isolation valves are open. These are isolation
7	valves, also they are open. Here is our 9 meter tank
8	with the condensation.
9	MEMBER WALLIS: Oh, it's a tank.
10	MR. WACHOWIAK: Yes, it's a tank that is
11	put in there.
12	MEMBER WALLIS: Oh.
13	MR. WACHOWIAK: And it would be
14	PARTICIPANT: It's like a surge pump.
15	MEMBER WALLIS: A surge pump?
16	MR. WACHOWIAK: But the condensation
17	return lines are closed. So as we start up the plant,
18	we start getting a little bit of steam up through
19	here.
20	MEMBER WALLIS: And fill up the tank?
21	MR. WACHOWIAK: And it fills all this up
22	to the surface of the water.
23	MEMBER WALLIS: Oh, so it's filled at the
24	beginning of an event?
25	MR. WACHOWIAK: At the beginning of the

(202) 234-4433

	181
1	event, the whole isolation condenser
2	MEMBER WALLIS: Oh, it's not clear.
3	MR. WACHOWIAK: system is full to here.
4	So we have got 9 meters of water here, cubic meters of
5	water here.
6	MEMBER WALLIS: Okay.
7	MR. WACHOWIAK: And there is about another
8	3 to 5 up in the isolation condenser.
9	MEMBER WALLIS: Okay, because I just
10	thought it was an empty line. I didn't see how it
11	made any difference.
12	MR. WACHOWIAK: Yes.
13	MEMBER WALLIS: Okay.
14	MR. WACHOWIAK: It's not an empty line.
15	MEMBER WALLIS: It's a tank.
16	MR. WACHOWIAK: It's a full line to start
17	with.
18	MEMBER WALLIS: It's a tank. Okay.
19	MR. WACHOWIAK: And so when the scenario
20	starts when we get to the Level 2, these valves will
21	open.
22	MEMBER WALLIS: Okay.
23	MR. WACHOWIAK: The water drains in. We
24	have enough water to well, in the LOCA cases
25	CHAIRMAN APOSTOLAKIS: A lot of water.
	I

(202) 234-4433

	182
1	MEMBER WALLIS: It's like a makeup tank
2	sort of thing.
3	MR. WACHOWIAK: Like a big makeup tank,
4	yes.
5	MEMBER WALLIS: If you want to call it
6	that.
7	CHAIRMAN APOSTOLAKIS: So the 9 cubic
8	meters will come out where, in that time?
9	MR. WACHOWIAK: What's that?
10	CHAIRMAN APOSTOLAKIS: The 9 cubic meters
11	are added to the tank where?
12	MEMBER WALLIS: They are in the tank.
13	CHAIRMAN APOSTOLAKIS: Where is the
14	addition?
15	MR. WACHOWIAK: I showed the old system of
16	the tank.
17	CHAIRMAN APOSTOLAKIS: Okay.
18	MR. WACHOWIAK: The new system has a tank
19	and, apparently, it has a valve that is not connected
20	to the pipe.
21	MEMBER WALLIS: You got room for it?
22	MR. WACHOWIAK: Do we have room for it?
23	MEMBER WALLIS: Yes.
24	MR. WACHOWIAK: Yes, we do have room for
25	it.
I	I

	183
1	MEMBER WALLIS: Okay.
2	MR. WACHOWIAK: That was in fact, that
3	was one of the hardest parts about making the decision
4	to go this way, because we had several different ways
5	of dealing with this. This turned out to be the best
б	solution that we could come up with, and the
7	difficulty was finding a place to put four large tanks
8	in addition to all the other large tanks that we have
9	inside of the drywell and finding out how to anchor
10	them seismically and do all the rest of the good
11	things that you have to do with these things. We have
12	done all that and
13	VICE CHAIRMAN SHACK: Now, you have got
14	even more water.
15	MR. WACHOWIAK: And now we have got more
16	water. This is almost like a high pressure GDCS.
17	MEMBER SIEBER: You could have made the
18	reactor vessel 10 feet higher.
19	MR. WACHOWIAK: 10 feet higher wouldn't
20	necessarily help the situation, but if we made it
21	larger in diameter, it could.
22	MEMBER SIEBER: Wider.
23	MR. WACHOWIAK: As a matter of fact, we
24	only have to go a few centimeters more in diameter to
25	get what we needed for that, but we were we checked
	I

(202) 234-4433

	184
1	into that and we were limited by the vessel
2	manufacturing capability of changing the vessel size.
3	So that was an option that was on the table.
4	MEMBER WALLIS: You probably can't ship it
5	either.
6	MR. WACHOWIAK: And it was taken off the
7	table.
8	PARTICIPANT: I was suspecting a
9	submarine.
10	MEMBER ABDEL-KHALIK: But those four tanks
11	give you only about a meter more of extra level?
12	MEMBER WALLIS: That's a lot, that's a
13	lot.
14	MR. WACHOWIAK: Right. But where it helps
15	now is not in the loss of feedwater events or the loss
16	of off-site power events. What it does is these
17	valves open on Level 2, which comes before Level 1.
18	So in actual LOCA cases, you go through Level 2 before
19	you get to Level 1. So you get that 27 cubic meters
20	for three of the tanks assuming one of the trains
21	fails. You get that at the right time that allows you
22	to change the setpoint for the Level 1 to some place
23	where it's an acceptable range.
24	MEMBER WALLIS: All the more reason why
25	your level indications should work.
	1

(202) 234-4433

	185
1	MR. WACHOWIAK: All the more indication
2	why it should work, and this was all came about
3	CHAIRMAN APOSTOLAKIS: Everything should
4	work.
5	MEMBER WALLIS: No, but particularly the
6	level indication. That's really the key thing.
7	MR. WACHOWIAK: This whole issue came
8	about because of the looking into the uncertainty in
9	the level issue and an actual setpoint, not an
10	analytical setpoint, because none of these things were
11	problems until we set points at the analytical limits.
12	It's when you had to add the uncertainties to the
13	setpoints that things crossed over where they got into
14	an unacceptable range. So it's kind of an elegant
15	solution to the problem and it gets at it through an
16	interesting sort of way.
17	MEMBER ABDEL-KHALIK: So what is the
18	uncertainty level indication?
19	MR. WACHOWIAK: I'm going to have to get
20	back to you on that. In various points in this
21	process, they looked at different ways of doing the
22	measurement and it has changed a couple of different
23	times. I don't really remember what it is. I don't
24	remember. It's in the DCD, so we can find that.
25	MEMBER WALLIS: Well, it seems to have
I	1

(202) 234-4433

	186
1	legs. It has legs, but I couldn't quite figure out
2	how they worked.
3	MR. WACHOWIAK: Yes.
4	MEMBER WALLIS: But you talk about legs in
5	the text.
6	MR. WACHOWIAK: Okay. I just want to
7	continue moving here. Now, we have kind of gone over
8	the event trees, so I won't although this slide
9	just takes us back or our points to what we were
10	looking at. So the next thing that is a major change
11	so that was a major change and, like I said, it
12	affected the top 90 percent of cutsets.
13	And when it affects the top 90 percent of
14	cutsets, what that means now is it's going to affect
15	how we do the Level 2 analysis, because when you
16	transition from Level 1 to Level 2, you really take
17	the most important parts and you make the transition.
18	And we have changed the important parts, so it is
19	probably going to have an impact on the Level 2.
20	The other thing, as we will see later on
21	this afternoon, hopefully we get to this, it affects
22	the major fire areas. So when we have the fire core
23	damage frequency at the $2 imes 10^{-8}$ and $1.5 imes 10^{-8}$ in the
24	Level 1, it is because of one of these loss of off-
25	site power or loss of feedwater initiated fire events.
I	

(202) 234-4433

	187
1	And then it affects the seismic margins
2	analysis, because the seismic margins analysis could
3	not take credit for ICS because we couldn't take
4	credit for the CRD pumps. So this one particular
5	change here really affects everything in the PRA.
6	There is almost nothing that it doesn't touch.
7	The next thing that we have that is going
8	to be different in the next revision of the PRA is
9	this digital instrument and control system
10	architecture. Finally, I say, me, we have chosen what
11	type of architecture we're going to use for our
12	instrument and control system. As I think somebody
13	mentioned here earlier this morning, there are
14	standards that are out there, but there are probably
15	a semi-infinite number of ways to actually meet the
16	standards, so we have to pick something.
17	We have gone through an analysis and we
18	have picked what types of things we want to have, so
19	that makes it that much easier to model. So we can go
20	away from the surrogate ABWR type analysis and into
21	something that matches what is actually going to be
22	built.
23	We have also determined our Diversity and
24	Defense-In-Depth requirements.
25	MEMBER WALLIS: How do you do that?
	I

(202) 234-4433

	188
1	MEMBER SIEBER: What are they?
2	MR. WACHOWIAK: I will get that on I
3	think it's on the next page.
4	MEMBER WALLIS: How do you do that? I
5	mean, are there real criteria for these things?
6	MR. WACHOWIAK: For Diversity and Defense-
7	In-Depth?
8	MEMBER WALLIS: Right. Is it somebody's
9	judgment or is it some criteria? I mean, you can keep
10	on being diverse forever. You can keep on adding
11	defense-in-depth. How do you decide when it's good
12	enough? I mean, you have determined. There must be
13	some way you determined.
14	MR. WACHOWIAK: Well, we have determined
15	the requirements. Now, whether they are acceptable is
16	up to those
17	CHAIRMAN APOSTOLAKIS: So your judgment
18	was that double failure proof is good enough?
19	MEMBER WALLIS: That's good enough?
20	CHAIRMAN APOSTOLAKIS: If the NRC staff
21	agrees, then it's
22	MR. WACHOWIAK: Well, double failure proof
23	in the safety-related DCIS and then we have added a
24	diverse system that is different from the safety-
25	related DCIS. So it's double failure proof plus a
I	

(202) 234-4433

	189
1	diverse system.
2	CHAIRMAN APOSTOLAKIS: Oh, okay.
3	MEMBER WALLIS: So it's doubly double
4	failure proof?
5	CHAIRMAN APOSTOLAKIS: Doubly double, yes.
6	MEMBER SIEBER: They don't have that many
7	trains.
8	MR. WACHOWIAK: Right. Now, what this
9	allows us to do in the instrument and control system
10	is we can actually take one of the divisions out of
11	service. Now, why did we go to this? This is really
12	the thing that drove us to making this change.
13	MEMBER WALLIS: That's one out of two?
14	MEMBER SIEBER: No, it's four trains.
15	MR. WACHOWIAK: Four trains.
16	MEMBER WALLIS: One out of four?
17	MR. WACHOWIAK: Two out of four.
18	MEMBER WALLIS: Two out of four?
19	MR. WACHOWIAK: Well, it's four trains.
20	Any two give you the signal.
21	MEMBER SIEBER: Right.
22	CHAIRMAN APOSTOLAKIS: Right.
23	MEMBER WALLIS: Yes, the average or
24	something or you
25	MR. WACHOWIAK: So it ends up being double
I	I

	190
1	failure proof and we got to that, this change.
2	MEMBER SIEBER: It allows you to test.
3	MR. WACHOWIAK: It allows us to test our
4	batteries when we're online, because we have huge
5	batteries that last a long period of time. Setting
6	up, testing, recharging
7	MEMBER WALLIS: Is this a system
8	MR. WACHOWIAK: the batteries would
9	take longer than an hour.
10	MEMBER WALLIS: Is this the Siemens system
11	or like the Siemens system?
12	MR. WACHOWIAK: Well, we'll talk a little
13	bit about it and you can tell me if it's like the
14	Siemens system.
15	MEMBER WALLIS: Oh, okay, okay. You don't
16	know though.
17	CHAIRMAN APOSTOLAKIS: What is OOS in the
18	PRA?
19	MR. WACHOWIAK: Out of service time of the
20	division that is out. Out of service time would be
21	controlled by the statements in the <u>Technical</u>
22	Requirements Manual, which is an owner-controlled
23	document, and the Maintenance Rule, which will then
24	tally up the time that we have.
25	CHAIRMAN APOSTOLAKIS: Okay.

(202) 234-4433

	191
1	MEMBER SIEBER: Now, if you go back to the
2	previous slide, this refers to protection systems and
3	your safety feature systems, control systems?
4	MR. WACHOWIAK: This particular part is
5	the mainly the ECCS, so the ECCS system. Now, the
6	protection
7	MEMBER SIEBER: Engineering, ESF.
8	MR. WACHOWIAK: Engineering Safeguard
9	Features. The protection system though uses many of
10	the same concepts. So the protection system
11	MEMBER SIEBER: You use the same
12	equipment.
13	MR. WACHOWIAK: No, that's on the next
14	slide.
15	MEMBER SIEBER: Okay.
16	MR. WACHOWIAK: But it uses the same
17	concepts to allow all the same things here, so that we
18	can do this on that system also.
19	MEMBER MAYNARD: These are all primarily
20	protection ways and it's more like an on and off
21	switch. Either it starts or it stops something, as
22	opposed to actually controlling a motor for open and
23	close.
24	MR. WACHOWIAK: Absolutely.
25	MEMBER MAYNARD: It's primarily a go or no
l	I

(202) 234-4433

	192
1	go to a degree.
2	MR. WACHOWIAK: Go or no go.
3	MEMBER SIEBER: It depends on the reactor
4	type whether it has functions built into it or on and
5	off.
6	MR. WACHOWIAK: The safety-related
7	functions in ESBWR are go, no go, on/off.
8	MEMBER SIEBER: Yes, on and off.
9	MEMBER MAYNARD: And those are
10	MR. WACHOWIAK: On and stay on forever.
11	MEMBER MAYNARD: Okay.
12	MR. WACHOWIAK: So we have a bunch of
13	different scenarios here. I didn't take that line off
14	of there, but it was a caution for all looking at
15	that.
16	CHAIRMAN APOSTOLAKIS: Which line?
17	MR. WACHOWIAK: This last one here. When
18	we first used the figure, I wanted to make sure it was
19	the same as the official one that was sent in. It's
20	the same, so we don't have to worry about it. We have
21	a safety-related digital control and instrumentation
22	system. It has two pieces, the RPS, the Reactor
23	Protection System, and the ESF. We call it ECCS. So
24	if we look at this line here, what this is indicating
25	is that this is a diverse system from this, different
I	I

(202) 234-4433

193 1 hardware, different software, different manufacturer, 2 two different systems. 3 MEMBER WALLIS: So --4 MR. WACHOWIAK: They use different 5 sensors. 6 MEMBER WALLIS: Different things. 7 MR. WACHOWIAK: Diverse systems. So ESF 8 and --9 MEMBER SIEBER: So you would get a reactor 10 trip out of only one of those, right? MR. WACHOWIAK: Of this one. This one 11 12 does reactor trip. 13 MEMBER SIEBER: Right. WACHOWIAK: This one does ECCS 14 MR. 15 systems. 16 MEMBER SIEBER: Okay. 17 CHAIRMAN APOSTOLAKIS: And when you say this one, that one has two trains? 18 19 MR. WACHOWIAK: They both have four. 20 CHAIRMAN APOSTOLAKIS: Oh, they both have four. 21 MR. WACHOWIAK: Yes, four channels. 22 23 CHAIRMAN APOSTOLAKIS: Okay. Okay. 24 MR. WACHOWIAK: Four channels. 25 CHAIRMAN APOSTOLAKIS: Okay. They are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	194
1	both double channeled.
2	MR. WACHOWIAK: And any two channels
3	CHAIRMAN APOSTOLAKIS: Okay. I understand
4	now.
5	MR. WACHOWIAK: will tell it to go.
6	CHAIRMAN APOSTOLAKIS: Yes, okay. Well,
7	that's pretty high enough.
8	MR. WACHOWIAK: This one is a fail on
9	system.
10	MEMBER WALLIS: This is a common failure
11	model in the same place.
12	MR. WACHOWIAK: Fails into operation.
13	This one is a fail as-is system.
14	CHAIRMAN APOSTOLAKIS: Now, Rick, when you
15	say four trains and double failure proof and so on,
16	when you say failure, what did you mean? I mean, did
17	you place them the separation, distance criteria?
18	There are all sorts of different manufacturers. In
19	other words, how did you address the issue of common
20	cause failure if possible? Why are they in four
21	separate independent trains?
22	MR. WACHOWIAK: Well, there are four
23	separate and independent yes, four separate and
24	independent trains.
25	CHAIRMAN APOSTOLAKIS: Yes.
	I

(202) 234-4433

195 1 MR. WACHOWIAK: In here there's common 2 cause failure within those four different trains, 3 because they are the same equipment, but they are 4 separated. They are sited in this corner, this corner, this corner, this corner of the building, so 5 they are separated by space. 6 They are separated by 7 fire barriers. They are separated by flood zones. 8 They are separated --9 MEMBER SIEBER: But identical. 10 MR. WACHOWIAK: But it's identical, that's correct, and within each zone there is a copy of those 11 12 four different channels. CHAIRMAN APOSTOLAKIS: Oh. 13 14 MR. WACHOWIAK: Of one of these. Now, 15 this one here, there are four different, four copies of the same thing within this system --16 CHAIRMAN APOSTOLAKIS: Yes. 17 MR. WACHOWIAK: -- that is located now in 18 19 the four corners. So Division 1 room --20 CHAIRMAN APOSTOLAKIS: Yes? 21 MR. WACHOWIAK: -- will be -- these two 22 will be collocated Division 1 within that room, but there will be different equipment between these two 23 24 different systems. 25 MEMBER SIEBER: Yes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	196
1	CHAIRMAN APOSTOLAKIS: Now, since the
2	I mean, if you look at the statistical evidence, it
3	seems that the majority of digital I&C failures are
4	due to is due to requirements, faulty requirements
5	or specifications. So how is that handled? I mean,
6	when you separate them, that doesn't mean anything
7	when it comes to that. They are all from the same
8	manufacturer, I suppose, the same provider?
9	MR. WACHOWIAK: Within a column.
10	CHAIRMAN APOSTOLAKIS: Yes.
11	MR. WACHOWIAK: They are from the same
12	manufacturer and they would all have the same
13	specifications, so that's where it comes back to if we
14	talk about things like the software error, it's in the
15	specification of what we're going to put in there
16	where that would be introduced. And so there is a
17	software control plan that is
18	CHAIRMAN APOSTOLAKIS: So
19	MR. WACHOWIAK: being done by a
20	different group than mine that is
21	CHAIRMAN APOSTOLAKIS: So you are relying
22	then on controlling the process of development and
23	implementation of the software to protect you against
24	common cause failure of that type?
25	MR. WACHOWIAK: Of that type and then
ļ	I

(202) 234-4433

	197
1	testing.
2	CHAIRMAN APOSTOLAKIS: And then testing,
3	yes.
4	MR. WACHOWIAK: And it's tested in the
5	factory and it's tested when it's installed.
6	MEMBER SIEBER: Where you get the
7	independence that avoids common cause failures is not
8	through redundancy, but by diversity.
9	CHAIRMAN APOSTOLAKIS: Right, but they
10	don't seem to have diversity.
11	MEMBER SIEBER: And the way he has
12	described it, there is no diversity.
13	CHAIRMAN APOSTOLAKIS: Within the column
14	there is no diversity, correct, Rick?
15	MR. WACHOWIAK: No diversity within the
16	column.
17	CHAIRMAN APOSTOLAKIS: Yes, that's the
18	point.
19	MR. WACHOWIAK: Now, we move over here to
20	the non-safety-related side. We have this thing that
21	is called a diverse protection system. It does most
22	of the same functions that ECCS does and some of the
23	same functions that RPS does and it is done using a
24	different type of system. Yet, again, a third
25	manufacturer, diverse from all those other two, a
l	I

(202) 234-4433

	198
1	third manufacturer and it is set up to provide a
2	diverse backup to those systems.
3	CHAIRMAN APOSTOLAKIS: I see.
4	MEMBER SIEBER: Now, the codes require
5	redundancy and diversity, but it doesn't say how.
6	MR. WACHOWIAK: Right. So how we have
7	done this is it's redundant within each one of these
8	lines, this one may not be maybe redundant everywhere,
9	but it's redundant within the columns and diverse
10	between the columns.
11	CHAIRMAN APOSTOLAKIS: But, I mean, what
12	is it that prevented you from having diversity within
13	each of the first two columns? Is it just a matter of
14	economics?
15	MR. WACHOWIAK: It's a choice. Like we
16	said, there is a semi-infinite way to skin this cat.
17	CHAIRMAN APOSTOLAKIS: Yes, but, I mean,
18	the issue of common cause failures is
19	MEMBER MAYNARD: But there are different
20	approaches to that. I personally believe like within
21	the column, you're better off, you're going to have a
22	higher reliability and better safety, if you don't
23	have diversity within that column. I think I agree.
24	It's better to have diversity between the two columns,
25	but within that column you introduce additional
	1

(202) 234-4433

	199
1	failures and additional problems, everything from
2	maintenance and everything else, when you have diverse
3	things in the reactor protection system.
4	CHAIRMAN APOSTOLAKIS: Why? I mean, I
5	don't understand that.
6	MEMBER SIEBER: What you need to worry
7	about is operator error.
8	MEMBER MAYNARD: Or operations and
9	maintenance type.
10	MEMBER SIEBER: Yes, testing and
11	calibration.
12	MEMBER MAYNARD: Training.
13	CHAIRMAN APOSTOLAKIS: But why didn't you
14	introduce those when you have the DPS diverse?
15	MEMBER SIEBER: The reactor table and
16	different things.
17	CHAIRMAN APOSTOLAKIS: I mean, those same
18	problems persist, right? But why didn't you have
19	calibration problems when you diversified the DPS?
20	MEMBER MAYNARD: Well, if you had
21	diversity within like column 1 and column 2
22	CHAIRMAN APOSTOLAKIS: Right.
23	MEMBER MAYNARD: Now, you end up basically
24	with 16 different
25	MEMBER SIEBER: Channels.
I	I

	200
1	MEMBER MAYNARD: channels and things
2	that people have to train on, 16 different types of
3	things as opposed to only being trained on two types.
4	There are different philosophies, but I believe that
5	you end up with less errors by doing it the way that
6	they have been doing it.
7	MEMBER WALLIS: Is there any legal basis
8	or some theoretical based on experience rather than
9	judgment for these sorts of statements?
10	MEMBER MAYNARD: I think there is data out
11	there. I don't know that I can pull it out of a
12	binder or whatever but, you know, from the experiences
13	that you see in training type issues and operator
14	issues, I mean, you have got different things. They
15	are trying to do what they normally do on this and
16	present it to the one who is supposed to be doing the
17	same thing, but it's a different stuff, a different
18	component.
19	CHAIRMAN APOSTOLAKIS: So when you do the
20	focused PRA, then you will get no credit for the non-
21	safety-related details.
22	MR. WACHOWIAK: Unless this falls into
23	RTNSS and as we will see, hopefully before we break
24	for sleeping tonight, that it gets there.
25	Particularly
Į	

(202) 234-4433

	201
1	MEMBER SIEBER: That's not on the
2	schedule.
3	MR. WACHOWIAK: One of the other things
4	that is nice about the way that this is split now,
5	too, with the diverse part being in this column, is
б	that we can share. We don't have to add extra diverse
7	instruments, because we already have diverse
8	instruments out here and so we pick up the non-safety-
9	related instruments and they are diverse from the
10	safety-related instruments already.
11	This will probably be the same type of
12	system that is controlling the turbine and the
13	feedwater.
14	CHAIRMAN APOSTOLAKIS: When you say triple
15	redundant, what do you mean? One out of three?
16	MEMBER SIEBER: No.
17	MR. WACHOWIAK: It's a one out of parts
18	of it are one out of three, but the triple redundant
19	means that all the parameters are measured three times
20	and the computer checks between the different three
21	systems to try to weed out bad answers.
22	CHAIRMAN APOSTOLAKIS: But that's two out
23	of three kind of logic?
24	MR. WACHOWIAK: Yes, it's the architecture
25	that is used in controlling many GE turbines. The
I	I

(202) 234-4433

	202
1	system has been used. At least the one we're looking
2	at now has been used several places in turbines and
3	oil rigs and other places where we have some data on
4	the equipment.
5	MEMBER SIEBER: Now, are all of these
6	things going to go through one process? For example,
7	you're going to have protection systems, engineered
8	safety feature systems, your redundant systems, your
9	valves and plant systems. Are they all going to be
10	through one of four processors, four channels?
11	MR. WACHOWIAK: This has four processors,
12	a minimum of four processors. This has a minimum of
13	four processors. This has a minimum I think of
14	MEMBER SIEBER: Three.
15	MR. WACHOWIAK: I think there's three
16	processors in the system, but it's arranged
17	differently.
18	MEMBER SIEBER: So that's 11 processors,
19	right?
20	MR. WACHOWIAK: Minimum. We will get into
21	some of this later.
22	MEMBER SIEBER: You're going to have an
23	independent do you know, like a feedwater heater
24	local control or that's not connected to anything or
25	is everything going to be run off of the master signal
ļ	I

(202) 234-4433

	203
1	like the reactor power?
2	MR. WACHOWIAK: I'm not quite sure how to
3	answer that particular question, because it hasn't
4	been laid out to that level of detail, but I can
5	answer that maybe in the ECCS a little bit because
6	that is where I have concentrated my time. It's
7	possible that we can have one processor per channel
8	that does everything in ECCS. It's possible that we
9	can have a different processor for every different
10	decision in ECCS. Both of those
11	MEMBER SIEBER: Those are the extremes.
12	MR. WACHOWIAK: are a possible thing.
13	Yes, those are the extremes. It's likely that we'll
14	fall somewhere in the middle, that it won't all be
15	done on one processor.
16	MEMBER SIEBER: But you will have shared
17	signals?
18	MR. WACHOWIAK: But we will have shared
19	signals and I will talk about those signals on some of
20	the next upcoming slides.
21	MEMBER SIEBER: So your key features in
22	there are going to be the multiplexers and how you
23	control the information on some data level?
24	MR. WACHOWIAK: Yes. It's not really
25	multiplexers, but we'll talk about that. It's kind of
I	I

(202) 234-4433

	204
1	so we have choices in how we arrange that and both
2	of them have their tradeoffs. If we have everything
3	on one processor, then that one processor can fail
4	everything if there is some sort of a burnout or
5	whatever or, you know, some hardware failure.
6	If we have it spread amongst multiple
7	processors, then it uses more power, takes more heat,
8	has more possibilities of communication failures,
9	things like that, so there are more chances that we
10	would have individual failures. So we're going to
11	have to optimize that as we build in the different
12	systems.
13	And we'll talk about this a little bit,
14	not necessarily so much in the processor side, but out
15	in the field, in the data acquisition and in the
16	signal actuation pieces there are some things that we
17	can use the PRA to determine if there should be
18	segmentation between some of those things based on
19	what different things can happen in different
20	scenarios, and we will be talking specifically about
21	how we address fires in preventing spurious actuation
22	of DPVs with fires.
23	MEMBER SIEBER: But no code or standard or
24	regulatory guide gives you direction with regard to
25	how you design the architecture?
ļ	I

(202) 234-4433

	205
1	MR. WACHOWIAK: No, not that I know of.
2	MEMBER CORRADINI: We were just asking
3	over here about what Jack just asked. So there is no
4	guide.
5	MEMBER SIEBER: Right.
б	MEMBER CORRADINI: What do other
7	industries use or is this just no you don't they
8	don't go to this level of worry?
9	MEMBER SIEBER: They don't.
10	MR. WACHOWIAK: In some cases they don't
11	go to this level of worry but, in particular, for the
12	ECCS this is a commercially available product that is
13	used in other industries, maybe not two out of you
14	know, two signal, four channel redundant thing, but
15	the way the signals are passed, the way the processors
16	are put together is a commercially available system.
17	It is used.
18	MEMBER CORRADINI: Using chemicals.
19	MR. WACHOWIAK: Chemical. Chemical is
20	what they usually talk about.
21	MEMBER WALLIS: So what is the life of
22	these processors, typical life?
23	MEMBER SIEBER: Until the next version of
24	Windows comes out.
25	MR. WACHOWIAK: I thin it even runs
ļ	

(202) 234-4433

	206
1	Windows.
2	MEMBER CORRADINI: There is a hood issue.
3	If Service Pack 3 comes out, then you're in trouble.
4	MEMBER SIEBER: Yes, then you're screwed.
5	You've got to shut down.
6	MEMBER WALLIS: Computers don't last very
7	long.
8	MR. WACHOWIAK: Well, see, that in
9	particular is one of the things in optimizing this.
10	If we put in multiple processors, then we'll be likely
11	repairing, you know, four processors.
12	MEMBER WALLIS: How frequently do you
13	expect to have to replace parts of these things or the
14	whole thing?
15	MR. WACHOWIAK: I don't have that at this
16	point, but each of the manufacturers that we have been
17	looking at have data reports that give the life of
18	their
19	MEMBER WALLIS: I would think you would
20	want to specify what you want not just what they give
21	you.
22	MR. WACHOWIAK: Well, let me turn this
23	around this way. If we specify what they want and
24	it's not what they have, then where do we get data on
25	what they are going to give us?
ļ	I

```
(202) 234-4433
```

	207
1	MEMBER WALLIS: Well, you would go to
2	another system if it's inadequate.
3	MEMBER CORRADINI: There is only discrete
4	amounts of choices.
5	MEMBER WALLIS: Or go back to analog.
6	MR. WACHOWIAK: So what we will be doing
7	is we will see what and we have already done this,
8	the instrument and control people have done this.
9	They have gone to the different manufacturers and they
10	said show me your equipment, show me the lifetime
11	information, show me the data on what you have and
12	then in choosing which things fit into these different
13	boxes, we use that as part of the input decision.
14	Now, I wasn't part of that input decision, but people
15	in our company did.
16	MEMBER WALLIS: I was wondering if you
17	think it's 5 years or 10 years or 50 years or you
18	don't have any idea?
19	MR. WACHOWIAK: It would not be 50 years
20	and I wouldn't be surprised if each individual card
21	was 10 years, but 5 might be right.
22	MEMBER SIEBER: That's about it.
23	MEMBER WALLIS: So you would have to
24	replace them quite a bit?
25	MEMBER SIEBER: For this kind of stuff,
l	I

(202) 234-4433

	208
1	it's about right.
2	MR. WACHOWIAK: Unless we don't put in
3	that many. It's a tradeoff.
4	MEMBER MAYNARD: But I would think it
5	would be quite a bit of data. Mostly, the processor
6	you're probably looking at, they are used in a lot of
7	other instruments, right? Power plants, do you know?
8	There's bound to be power plants and overseas.
9	MEMBER SIEBER: Doing the acquisitions and
10	nuclear development.
11	MEMBER MAYNARD: As far as just the life
12	of the processor itself, I would think that we would.
13	MEMBER SIEBER: Right.
14	MR. WACHOWIAK: Now, in
15	MEMBER SIEBER: Does that represent data
16	or the phenomenon or passive. Which capacitors
17	dryout? For most places you don't have a strict
18	capacitors anymore anyway. They are all built into a
19	chip.
20	MR. WACHOWIAK: In the Revision 1 of the
21	PRA that you have, we have two different numbers that
22	we use for different systems based on what the
23	manufacturer of the equipment told us for the Lungmen
24	Plan. Some of the cards are 100,000 hour mean time
25	between failures. Some of them are 200,000 hour mean
ļ	

(202) 234-4433

	209
1	time between failure. For this project, I know we
2	talked with the I&C guys who were saying that that is
3	probably not good enough.
4	We would like to see something better, but
5	I think in Lungmen they were specifying their minimum
6	so that, you know, maybe what they specify for
7	warranty is different than actual. So, you know, we
8	have got to make sure that we understand what it is
9	that we're getting, but those are numbers that we had
10	from a different project and we used that to help us
11	influence how we're going to do this project.
12	MEMBER ABDEL-KHALIK: How do you address
13	obsolescence?
14	MEMBER SIEBER: When it becomes obsolete,
15	you replace it.
16	MR. WACHOWIAK: Well, there is that is
17	part of the things that we have considered in the
18	design. I'm trying to remember what actual
19	organization handles that, but I know it is being
20	considered at some level because in the existing
21	plants, obsolescence is a very big problem and I think
22	we're trying to we have done at least some effort
23	to try to address that.
24	Does anybody who maybe read the rest of
25	the DCD remember?
	I

(202) 234-4433

	210
1	MEMBER SIEBER: Well, I can tell you what
2	licensees do with existing plants. You buy up spare
3	parts off the market. You get a canceled plant and
4	all of a sudden you find a lot of spare parts.
5	MR. WACHOWIAK: We're not going to have
б	any canceled plants this time.
7	MEMBER SIEBER: Okay. Or you go to the
8	manufacturer and buy up inventory and you finally come
9	to a time, I think it was the Gnay Plant where they
10	started manufacturing B250 cards and a couple of
11	people were buying the circuit board layout from them.
12	But you finally come to a point where you say, you
13	know, this isn't worth the effort of having too many
14	failures and you put in another running system.
15	MR. WACHOWIAK: So I don't know if that
16	question can be or has been answered or is being
17	considered to be answered in the scope of the DCD. I
18	know we have talked about it, but I don't know that it
19	actually makes it into the scope of the DCD. One of
20	the things though that we are talking about now is
21	and some have questioned why does it take so long to
22	determine which things you're going to put in here.
23	Well, one of the things that we have to
24	consider is the plant is not even going to be built
25	starting until when, five, six, eight years from now.
ļ	I

(202) 234-4433

	211
1	So we had
2	MEMBER SIEBER: So the equipment will be
3	obsolete before you start building.
4	MR. WACHOWIAK: We don't want to have the
5	equipment obsolete before we build it, so we're trying
6	to specify this plant, specify the I&C which we know
7	moves at a different trajectory than concrete and
8	rebar and other things like that, that changes faster,
9	we want to make sure that we understand the
10	requirements for this, but we don't necessarily lock
11	ourselves into an obsolete product early on.
12	MEMBER MAYNARD: Most of the licensees
13	that are now putting in digital control systems are
14	putting as part of their contracts a guaranteed period
15	of time that were with everything done to provide
16	parts, so that you at least have some known time frame
17	where you should be able to replace the parts.
18	MEMBER ABDEL-KHALIK: But regardless of,
19	you know, when you start and when you buy, you know
20	that over the life of a plant whatever you're going to
21	put in will become obsolete.
22	MEMBER SIEBER: That's right.
23	MEMBER ABDEL-KHALIK: So somehow you have
24	to have a plan from day one as to how to handle that.
25	MR. WACHOWIAK: Yes.
I	

(202) 234-4433

212 1 MEMBER SIEBER: Well, most plants, 2 existing plants that changed their data have acquisition and, you know, that's a couple million 3 4 dollar project. 5 MEMBER MAYNARD: I don't think you can always have a plan from day one on some of that 6 7 because by the time you reach that point, the 8 technology that was available today, not six years 9 from now. MEMBER CORRADINI: So let me ask another 10 11 question since this is not my area, but I'm curious. 12 So the only two places where I think of this is in the chemical industry and the airline industry. 13 So is 14 what Jack is saying a typical thing, is they will pick 15 a point in time after they buy up all the spare parts and build all the -- all they can, just go in and do 16 a full scale rebuild? 17 18 Is typical with the only that two 19 industries I can think of that are similar? 20 MEMBER SIEBER: Well, a lot of different 21 plants are doing an awful lot with this type of thing, 22 you know, coal fire. 23 MR. WACHOWIAK: Right. 24 MEMBER SIEBER: Yeah, we have digital 25 controls and coal fire plants.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	213
1	MEMBER MAYNARD: Like the fossil people
2	that headed the nuclear plant on this in this area,
3	right?
4	MEMBER SIEBER: And fossil copies the
5	petroleum industry and the chemical industry.
6	MEMBER CORRADINI: Right. Well, that's
7	what I was guessing, is the chemical industry
8	MEMBER SIEBER: You couldn't afford to
9	develop nuclear power plant instruments with a single
10	product. You have to use it has to be spread over
11	a bunch of industries in order to make it cost
12	effective, so you are going to end up buying the same
13	things that, you know, the other buyers.
14	MR. WACHOWIAK: Everything that we have
15	considered here has some sort of basis in a commercial
16	product that can be adapted and licensed into our
17	plant in this time frame that we're looking at.
18	The final thing that I wanted to talk
19	about on this slide is that for the BiMAC we have
20	added another layer of diversity and this is
21	basically, it's not any of these systems. We're going
22	to use stand alone PLCs to drive that system, so that
23	that won't be in conjunction with any of the rest of
24	these things, so we won't have a computer failure.
25	MEMBER WALLIS: And what is a "Historian?"
I	I

(202) 234-4433

	214
1	What is a "Historian?"
2	MR. WACHOWIAK: And you see that where?
3	That's in here? This probably is plant data that we
4	would keep record of the plant.
5	MEMBER WALLIS: As to one like it?
6	MR. WACHOWIAK: I guess it is.
7	MEMBER CORRADINI: So you buy one and keep
8	it around for awhile?
9	MR. WACHOWIAK: It's a computer system.
10	MEMBER CORRADINI: It may be more
11	reliable.
12	MEMBER WALLIS: A professor at an Ivy
13	League university. Okay.
14	MR. WACHOWIAK: So we
15	MEMBER WALLIS: Well, there are a lot of
16	them too in the country.
17	MEMBER SIEBER: Yes, look out for the Y3K.
18	MR. WACHOWIAK: Okay. Now, this is
19	mainly within ECCS now that I will be talking about we
20	use concepts with this in the RPS also.
21	MEMBER WALLIS: Oh, so this is all about
22	PRA. All the stuff in the previous slide is somehow
23	modeled on the PRA?
24	MR. WACHOWIAK: In Revision 1 and Revision
25	0 of the PRA, this is not modeled.
l	I

```
(202) 234-4433
```

	215
1	MEMBER WALLIS: Ah, it's not.
2	MR. WACHOWIAK: In Revision well, let
3	me back up a little bit. The RPS diverse from the
4	ECCS is modeled in Revision 1 of the PRA and Revision
5	0. DPS itself was
6	MEMBER SIEBER: It's gross.
7	MR. WACHOWIAK: What's that?
8	MEMBER SIEBER: It's gross modeling.
9	MEMBER WALLIS: Gross modeling.
10	MR. WACHOWIAK: Yes. Well, that was one
11	of the other things I should have put on the slide.
12	MEMBER WALLIS: Let me just ask. This is
13	about PRAs, right?
14	MR. WACHOWIAK: Right. And now, the DPS,
15	when we we didn't have that diversity assessment
16	and what goes behind that diversity assessment now is
17	what are the different functions that those things are
18	connected to? Now, we know everything that the
19	diverse DPS system is connected to.
20	In Revision 1 of the PRA it wasn't
21	connected to everything that it's ultimately going to
22	control. And these things are now going to be
23	configured differently in the plant than what was
24	envisioned when we created Rev 1 of the PRA. So that
25	is what I want to get into now, is how are we going to
I	1

(202) 234-4433
	216
1	implement this?
2	The system is double failure proof. The
3	term of choice that they use at the plant is the N
4	minus 2 mod. Basically, it allows a single failure.
5	I'm sorry, one division out of service and a single
6	failure and everything still actuates. It's not like
7	in some existing plants where if you have one division
8	out of service, the other division is completely
9	redundant. In reality, if this is the case, one
10	division is out of service and we have a failure in
11	the other division, everything still works. There is
12	no loss of function whatsoever in that case.
13	MEMBER SIEBER: And you don't get a trip.
14	MR. WACHOWIAK: That is not quite true for
15	trips, because there are some
16	MEMBER MAYNARD: If you take one out of it
17	and go to a one out of three? Well, most of the time
18	you take the one you've got in service and they can
19	put that in trip.
20	MEMBER SIEBER: Right.
21	CHAIRMAN APOSTOLAKIS: Oh, okay.
22	MEMBER MAYNARD: So that becomes one of
23	two.
24	CHAIRMAN APOSTOLAKIS: Right.
25	MR. WACHOWIAK: No, that's not the way.
I	

(202) 234-4433

1 That's the way it works in the RPS system, so in the 2 protection system, if you take one out -- if one 3 fails, it defaults to trip. The operators can then 4 assess that situation and put in a bypass if they 5 wanted to, but that is the way the panel works. In the ECCS if something fails, it is just indicated as 6 7 a failure and the operators can then choose to bypass that and that is really their only choice, is to 8 9 bypass something that has been failed. Only one can be bypassed, but I quess they 10 11 could put it in trip 2, but I'm not sure what it means 12 putting it in trip in ECCS. That is -- you know, you don't tell it to start the ADS timer when you're 13 14 operating the plant, so you put that in bypass. On 15 the second failure what you would do is you would be 16 in a pretty short LCO where you would shut the reactor 17 down. But to think of it as two out of four, 18 19 there are four systems. It is -- so you can consider 20 it as two out of four, but it's really set up as in 21 any two, two out of N. So if four are in service, 22 it's a two out of four. If the operators put one of 23 those four in bypass, it's a two out of three, but 24 it's still always looking at any two that give the 25 signal actuate.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

217

	218
1	MEMBER WALLIS: It's not that you could
2	relate that to some metric, I mean, if you could say
3	that the CDF changes by something when you go to two
4	instead of three and we would have some idea of how
5	important this was?
6	MR. WACHOWIAK: We could. We haven't done
7	that.
8	MEMBER WALLIS: You just talk about it.
9	I have no idea how important it is.
10	CHAIRMAN APOSTOLAKIS: The state of the
11	art says you it's too soon to try to do.
12	MEMBER WALLIS: It's too soon to do that?
13	MR. WACHOWIAK: I would think. Our
14	intention on those things would be to set up. When we
15	set up the plant PRA for doing things like A4
16	evaluations, when they do take one of these out of
17	service, that type of thing
18	MEMBER WALLIS: Are you going to have some
19	sort of risk meter in this plant, so that if you take
20	things out of service it tells you how risky it's
21	getting?
22	MR. WACHOWIAK: That is common now.
23	MEMBER WALLIS: You're going to have that?
24	CHAIRMAN APOSTOLAKIS: But except for
25	these things.
	I

	219
1	PARTICIPANT: Some of the plants are doing
2	this right now.
3	MEMBER WALLIS: Except for these things,
4	except for these things.
5	CHAIRMAN APOSTOLAKIS: That's why we have
6	this big research program.
7	MEMBER WALLIS: Ah.
8	MEMBER SIEBER: He wants to know if it's
9	a standard or optional.
10	MR. WACHOWIAK: It is.
11	CHAIRMAN APOSTOLAKIS: Sort of practical.
12	MR. WACHOWIAK: With A4 you have to do
13	something. Now, what the something is is implemented
14	in varying degrees, and our intention is to be able to
15	model everything that is in the PRA and the A4
16	evaluation.
17	CHAIRMAN APOSTOLAKIS: Well, and you
18	really don't have a responsibility of going beyond the
19	state of the art. I mean, the state of the art
20	doesn't allow you. We have been licensing without
21	complete PRAs for 40, 50 years now. So, you know, you
22	use the standard transient depth, diversity line of
23	argument and say this is good enough.
24	MR. WACHOWIAK: That's right. That's what
25	we would do.
ļ	I

(202) 234-4433

	220
1	CHAIRMAN APOSTOLAKIS: Yes.
2	MR. WACHOWIAK: Our guess our marketing
3	department might go beyond the state of the art.
4	CHAIRMAN APOSTOLAKIS: But they don't come
5	to the ACRS, do they? Does the marketing department
6	come here?
7	MR. WACHOWIAK: Come here? No.
8	CHAIRMAN APOSTOLAKIS: To defend it?
9	MR. WACHOWIAK: No.
10	CHAIRMAN APOSTOLAKIS: So
11	MEMBER WALLIS: What is a load driver for
12	a DPV? Is that something
13	MR. WACHOWIAK: A load driver is
14	MEMBER WALLIS: Instrumentation or
15	MR. WACHOWIAK: part of the
16	instrumentation. It's a switch.
17	MEMBER WALLIS: It's a switch. Okay.
18	MR. WACHOWIAK: That is on the
19	MEMBER WALLIS: Okay. It's just a switch.
20	MR. WACHOWIAK: It converts.
21	MEMBER WALLIS: It's a switch of sorts.
22	MR. WACHOWIAK: It's a switch. It
23	converts the signal from the computer
24	MEMBER WALLIS: Okay.
25	MR. WACHOWIAK: into a closed circuit.
I	I

	221
1	MEMBER WALLIS: Okay.
2	MR. WACHOWIAK: That will drive the
3	valves.
4	MEMBER WALLIS: And somebody decided there
5	is a one in a million chance of failure per hour? It
6	just came out of the air.
7	CHAIRMAN APOSTOLAKIS: Of what? Failure
8	of what?
9	MEMBER WALLIS: I'm just trying to see
10	where some of these numbers come from.
11	MR. WACHOWIAK: The load driver? We had
12	MEMBER WALLIS: This is a switch and
13	someone said it's 10^{-6} total failure rate per hour, so
14	there would be no basis for that whatsoever.
15	MEMBER SIEBER: It sounds good.
16	MEMBER WALLIS: It sounded good?
17	CHAIRMAN APOSTOLAKIS: A lot of these
18	numbers, I think, come from LWR experience.
19	MEMBER WALLIS: And then there is a
20	generic common cause failure factor of .1? That came
21	out of the air, too?
22	MR. WACHOWIAK: There is a generic common
23	cause failure number in the ALWR document.
24	MEMBER WALLIS: Well, does sort of bother
25	me these numbers just coming out of the air. Then
ļ	I

(202) 234-4433

	222
1	they use you should believe them when you get them.
2	MR. WACHOWIAK: What I want in previous
3	PRA discussions that we have had with the staff and
4	with the ACRS is that one of the things that we would
5	like to do here is show that we meet all of the goals
6	regardless of what the data sets. So that is why we
7	do some of the sensitivities and other things and you
8	ask questions about what happens if you use a
9	different data value.
10	We would like the plant to be safe based
11	on the configuration of the plant, not necessarily or
12	not largely based on what particular numbers you put
13	on each of these different components. So we use
14	our
15	MEMBER WALLIS: Yes, but that's what a PRA
16	is all about.
17	MR. WACHOWIAK: best estimate.
18	MEMBER WALLIS: PRAs are about putting
19	numbers on these things.
20	MR. WACHOWIAK: PRAs are about putting
21	numbers on things, but then what do you do with the
22	answer when you get it?
23	MEMBER WALLIS: Well, I hope you could
24	believe it within a factor of 10 or something.
25	CHAIRMAN APOSTOLAKIS: Well, the data, the

(202) 234-4433

	223
1	reporting the data analysis section, I think most of
2	it comes from LWR experience.
3	MR. WACHOWIAK: Yes.
4	MEMBER WALLIS: Yes, but these load
5	drivers are just a typical thing, I mean, I assume
6	since we're talking about switches and
7	instrumentation.
8	CHAIRMAN APOSTOLAKIS: Since the reactor
9	safety study, there have been a number of
10	MEMBER WALLIS: I think it's too high a
11	failure rate. But anyway, so maybe we should go on.
12	MR. WACHOWIAK: And it may very well be
13	too high. What we will do in this particular case is
14	when we buy a load driver card, it's a solid state
15	switch on the card from the DCIS manufacturer, we will
16	ask them to supply the data they have on failures of
17	those switches.
18	MEMBER WALLIS: And they may be quite
19	different from what is in this document.
20	MR. WACHOWIAK: Then we will do an update.
21	MEMBER WALLIS: Okay.
22	MR. WACHOWIAK: But, once again, that is
23	we're trying to get as good a numbers as we can and
24	try to help out with that.
25	MEMBER WALLIS: Yes.
	I

	224
1	MR. WACHOWIAK: And in this particular
2	PRA, the intent was to use data from past plants to
3	show that we're not relying on some new advanced thing
4	that hasn't been developed yet to be more reliable
5	than the old stuff.
6	MEMBER WALLIS: Well, I guess the interest
7	here is because one of your large LOCAs is really this
8	generic common cause failure of the DPV load drivers,
9	when they all decide to open up erroneously,
10	spuriously. That is your biggest LOCA, is when you
11	open up all these valves. Mysteriously, there is an
12	instrument failure and it's not a trivial number you
13	come up with. So that's why I'm asking the question.
14	It doesn't seem to come from anywhere though. It
15	starts off with a 10^{-6} which comes from nowhere
16	anyway. MR. WACHOWIAK: We can
17	MEMBER WALLIS: I don't think we're
18	supposed to get into this sort of level of detail
19	today.
20	MR. WACHOWIAK: see what's there.
21	MEMBER WALLIS: I was picking it up as an
22	example.
23	MR. WACHOWIAK: Yes.
24	MEMBER WALLIS: You can get into this
25	level of detail with a lot of things. I'm just
	1

(202) 234-4433

	225
1	picking it up as an example. If I were a member of
2	the staff, I would look at this and say, well, wait a
3	minute, where does all this come from, because it
4	seems to give rise to an event which is not trivial.
5	Anyway, go ahead.
6	MR. WACHOWIAK: This allows us to do
7	online battery testing, so we can take one out of
8	service and still be single failure proof. Then, as
9	I said, at least three safety divisions plus the DPS
10	activates all the safety-related valves and I have got
11	an example on the next page. In the end, what we
12	believe is, and this is a belief right now, we'll be
13	testing this, is that the only way to fail ECCS will
14	be by common cause. Individual failures aren't going
15	to show up in the answer when we're done.
16	MEMBER WALLIS: It's a belief?
17	MR. WACHOWIAK: It's common cause within
18	these systems, yes, so you have got multiple
19	divisions, multiple processors simultaneously or
20	multiple data acquisition cards simultaneously or
21	multiple valves simultaneously.
22	MEMBER WALLIS: Yes, it's not really a
23	belief. It's something you hope you have designed
24	into the system.
25	MR. WACHOWIAK: From everything that I
I	1

(202) 234-4433

	226
1	have looked at, I don't see where that would not be
2	the case.
3	MEMBER WALLIS: And there is some analysis
4	behind it?
5	MR. WACHOWIAK: Yes.
6	MEMBER WALLIS: Okay.
7	CHAIRMAN APOSTOLAKIS: Actually, you can
8	say more. You can since your first estimate is 10
9	⁸ , thereabouts, you can now ask yourself can I have a
10	common cause failure that will have a probability
11	greater than that one? But it doesn't have to be very
12	frequent anymore.
13	MR. WACHOWIAK: Right.
14	CHAIRMAN APOSTOLAKIS: Because you are
15	really in the realm of very rare events. And, again,
16	just as a reminder, the age of the earth's crust is
17	3×10^{-9} years. So when you say 10^{-8} , you are beginning
18	to get close to that. So that is a question. I mean,
19	the broader question is that it was touched on
20	earlier, is really the stuff you are leaving out or
21	that you haven't not just you, but as a community
22	we haven't thought of, is it more than 10 $^{-8}$. Is it
23	higher? That is a problem now, you know.
24	MEMBER WALLIS: It almost certainly is if
25	10^{-8} is the basis.
Į	

(202) 234-4433

	227
1	CHAIRMAN APOSTOLAKIS: Well, I mean, that
2	is the current estimate, so you worry about things you
3	have left out that will change the current estimate.
4	MEMBER CORRADINI: But can I can you
5	explain that to me, because I was looking at the
6	summary about that. So can I say it back to you to
7	make sure I understood the summary, because the
8	summary is at the back somewhere.
9	CHAIRMAN APOSTOLAKIS: Yes, we had a
10	discussion this morning about that.
11	MEMBER CORRADINI: So the summary of all
12	the internal events is a little bit under 10^{-7} .
13	CHAIRMAN APOSTOLAKIS: Yes, but they also
14	have done sensitivity analysis.
15	MEMBER CORRADINI: Right.
16	CHAIRMAN APOSTOLAKIS: They assumed all
17	the human errors were one, the probabilities. They
18	multiplied the squib valve failure rate by 10 and they
19	did it again, and they got numbers. Some of them
20	reached the 10^{-6} , higher than 10^{-6} . So our discussion
21	this morning, at least I suggested that the
22	probability distribution for the core damage event, in
23	my mind at least, is some sort of a result from all
24	these calculations. I can't really put a curve down,
25	but I don't believe that the 95^{th} percentile is 8×10^{-8}
ļ	I

(202) 234-4433

228 1 either. I believe it's somewhere higher because of 2 these other analyses. So let's say the 95^{th} percentile is 10^{-6} . 3 4 So the question now is, I mean, is this distribution, 5 even though it's in my mind, is this a robust distribution? Is there any -- are there any failure 6 7 modes that will be revealed in the future that will 8 show that we have missed something? And now that we 9 are doing the assessment, we have to ask ourselves, you know, if the baseline is 10^{-6} or lower, is the 10 stuff we have left out more frequent, because this 11 12 question always comes up. And I think eventually you come down to 13 14 what we have been told, at least I have been told since I joined the ACRS, that we grant the license 15

based on the fact that there was a review and the plant met all the regulatory requirements, both deterministic and probabilistic. Therefore, it is safe enough, safe enough.

I think that is the end result really. I mean, we shouldn't get hung up on the numbers. But when you get to such low levels, I mean, the question becomes inevitable. I mean, what have you left out that is more frequent than that? That doesn't mean that the guy who asks the question has the answer.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	229
1	You know, sometimes people say I don't believe it.
2	Well, yes, there are a lot of people who
3	are reviewing these things, most importantly our staff
4	here, and they presumably will be unable to find
5	failure modes that will be more frequent, because if
6	they do, then you guys will have to resolve that
7	issue.
8	MR. WACHOWIAK: So
9	CHAIRMAN APOSTOLAKIS: So this is really
10	the community's, I think, thinking at this point.
11	MEMBER CORRADINI: Can I ask another
12	question?
13	CHAIRMAN APOSTOLAKIS: Yes, you can always
14	ask questions, Mike.
15	MEMBER CORRADINI: I am repeating. I just
16	don't want to repeat from this morning. So the thing
17	that got me was the external events was even lower
18	than the internal events, which surprised me. At this
19	level, it would strike me that all of the outside
20	activities would start bumping you would bump up
21	against them, but yet the estimate in the summary
22	CHAIRMAN APOSTOLAKIS: Yes, it was very
23	low.
24	MEMBER WALLIS: Fire is too low, isn't it?
25	MEMBER CORRADINI: Right. But in the
	I

(202) 234-4433

	230
1	current comment it is when the detail design is
2	considered fire and flood will go down, I thought.
3	CHAIRMAN APOSTOLAKIS: Well, Rick, do you
4	want to address that?
5	MR. WACHOWIAK: I can address that
6	particular piece.
7	MEMBER CORRADINI: If we put all these in
8	the southeast, I would think it would go up because of
9	extreme potentially unusual weather that tends to go
10	through the southeast.
11	MR. WACHOWIAK: So that would fall into
12	the
13	MEMBER CORRADINI: Well, I'm just
14	MR. WACHOWIAK: flood type category.
15	MEMBER CORRADINI: Yes.
16	MR. WACHOWIAK: That is a good question.
17	What we have listed on there are things that have
18	historically been considered external events. They
19	are actually internal fires in the building and
20	internal floods caused by pipe breaks and things like
21	that. They have been treated as external events.
22	MEMBER CORRADINI: That is site dependent.
23	MR. WACHOWIAK: Those aren't site
24	dependent.
25	MEMBER CORRADINI: Okay. Excuse me. That
I	I

(202) 234-4433

231 1 answered the question. I understand the point. 2 WACHOWIAK: Okay. Now, for site MR. 3 dependent things, we have done -- for flooding we have 4 said that the siting of the plant must have a flood 5 level below. You know, the building needs to be constructed above a certain flood level and there's 6 7 criteria associated with what. So then what we would need to do when we 8 9 get the sites is then go back and see if there is something that is different now from what we have 10 assumed and see if there is an impact there. 11 12 MEMBER CORRADINI: Okay. Now, Rick, you tell 13 CHAIRMAN APOSTOLAKIS: 14 us when to take a break, when it will be convenient. 15 It has been an hour and a half. There is a principle 16 that we shouldn't --17 MR. WACHOWIAK: Let me do this. 18 MEMBER WALLIS: How long is going to take? 19 MR. WACHOWIAK: Let me do this squib valve 20 and then we'll take a break. 21 CHAIRMAN APOSTOLAKIS: Okay. 22 MR. WACHOWIAK: Okay. So the way that all 23 of our squib valves are now arranged is that each one 24 has four charges physically on the valve, four 25 independent charges, and they are connected, three of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	232
1	them, to different divisions within the ECCS and one
2	division within diverse protection system.
3	So if we go through an example, let's say
4	Division 1 is out of service, Division 2 fails,
5	Divisions 3 and 4 that's an interesting way of
6	writing that. Divisions 3 and 4
7	MEMBER MAYNARD: Diversity.
8	MR. WACHOWIAK: diversity, that's
9	right, provide the two out of four signal. So
10	Division 3 sees that he has got a trip signal.
11	Division 4 sees that he has got a trip signal, okay,
12	and there's two trip signals. It's okay to go. And
13	in this particular case, Division 3 is what provides
14	the actuation if that was the scenario. And we can go
15	through any other different combinations of that and
16	any other combinations of 1-3, 1-3-4, 1-2-4, any of
17	these and we still get the same result. So you always
18	have
19	MEMBER WALLIS: Two out of four.
20	CHAIRMAN APOSTOLAKIS: Yes.
21	MEMBER WALLIS: Any two out of four?
22	MR. WACHOWIAK: No, the valve, it's any
23	one of the four that needs to
24	MEMBER WALLIS: Oh, it's any one of the
25	four.

(202) 234-4433

	233
1	MR. WACHOWIAK: So it takes two divisions
2	to tell. It takes two channels in the I&C system to
3	say yes, it's time to go.
4	MEMBER WALLIS: Okay. And one to actuate.
5	MR. WACHOWIAK: But any one of them can
6	now actuate the components.
7	MEMBER WALLIS: And if those two disagree?
8	MR. WACHOWIAK: Well, then that one would
9	be Division 1 out of service, Division 2 fails,
10	Division 3 fails. That's a different scenario.
11	MEMBER WALLIS: But if 3 and 4 disagree.
12	MR. WACHOWIAK: If they disagree, that
13	means one of them failed.
14	MEMBER WALLIS: Does it mean it failed?
15	MR. WACHOWIAK: They are measuring the
16	same parameters.
17	MEMBER CORRADINI: That's the definition.
18	MEMBER WALLIS: Well, they are just
19	measuring two if one says yes, one says no.
20	MR. WACHOWIAK: Well, it's still
21	MEMBER WALLIS: You assume one must be
22	wrong, right? One must be wrong.
23	MR. WACHOWIAK: Then you get into a
24	scenario where Division 3 gets the signal two seconds
25	or three seconds before Division 4 does.
Į	

(202) 234-4433

	234
1	MEMBER WALLIS: Yes, that's right.
2	MR. WACHOWIAK: So, yes, that could
3	happen, but it will wait until two of them say it's
4	time to actuate.
5	MEMBER WALLIS: Okay.
б	MEMBER ABDEL-KHALIK: Now, regardless of
7	whatever happens with the actuation systems, there is
8	no chance that more than one charge would go off.
9	MEMBER SIEBER: No, it could be more than
10	one.
11	MR. WACHOWIAK: More than one could go
12	off.
13	MEMBER ABDEL-KHALIK: More than one could
14	go off?
15	MR. WACHOWIAK: Right. And the
16	manufacturers of these valves that we have talked to
17	so far say that that's not a problem.
18	MEMBER SIEBER: Right.
19	MEMBER CORRADINI: It just opens faster.
20	MR. WACHOWIAK: No, it just opens.
21	MEMBER SIEBER: No, it opens shorter.
22	MEMBER CORRADINI: Shorter?
23	MEMBER WALLIS: Doesn't it?
24	MR. WACHOWIAK: Shorter.
25	MEMBER WALLIS: Okay.
I	I

	235
1	MR. WACHOWIAK: So what they have told us
2	is that
3	CHAIRMAN APOSTOLAKIS: So even if all four
4	go off, still?
5	MR. WACHOWIAK: Yes, it's okay.
6	MEMBER SIEBER: All four can go off.
7	CHAIRMAN APOSTOLAKIS: Still, I don't have
8	a problem?
9	MR. WACHOWIAK: That's correct.
10	MEMBER SIEBER: I don't know.
11	MEMBER WALLIS: Doesn't firing one
12	MR. WACHOWIAK: In some configurations,
13	setting off one do set off some of the others. Other
14	configurations aren't like that. They have four
15	independent.
16	CHAIRMAN APOSTOLAKIS: And then I'm not
17	too familiar with this. Have squib valves been used
18	in nuclear plants?
19	MR. WACHOWIAK: Yes.
20	CHAIRMAN APOSTOLAKIS: They have.
21	MR. WACHOWIAK: In standby liquid control
22	systems, yes.
23	CHAIRMAN APOSTOLAKIS: Standby liquid
24	controls. Okay.
25	MEMBER WALLIS: Mostly.
I	

	236
1	CHAIRMAN APOSTOLAKIS: And we have never
2	had a problem with them?
3	MR. WACHOWIAK: Well, I don't
4	MEMBER SIEBER: Not if we don't need them.
5	CHAIRMAN APOSTOLAKIS: Well, that's
6	enough. I'm sorry, what?
7	MEMBER SIEBER: As long as you don't use
8	them, they're okay.
9	MR. WACHOWIAK: Yes. They have had
10	testing programs and other
11	MEMBER WALLIS: Was it a mass that uses
12	MR. WACHOWIAK: No one has failed one when
13	they have needed it, but I don't know that anyone has
14	ever needed it.
15	MEMBER SIEBER: Right.
16	MEMBER ABDEL-KHALIK: Well, they have
17	failed when they tried testing them.
18	MR. WACHOWIAK: So there have been some
19	failures and we're looking into that. If I remember
20	right, most of those were the I&C failures and not
21	necessarily the valve failure, but I don't we have
22	to look into that.
23	CHAIRMAN APOSTOLAKIS: Is there another
24	industry that has more extensive experience?
25	MEMBER SIEBER: Yes, aerospace.
ļ	I

(202) 234-4433

	237
1	MEMBER WALLIS: Yes, aerospace has huge
2	experience.
3	MR. WACHOWIAK: And my understanding is
4	that all of your cars have these in them for your
5	airbags.
6	MEMBER SIEBER: All of them?
7	MEMBER WALLIS: Cars?
8	MR. WACHOWIAK: Cars for airbags.
9	MEMBER SIEBER: Oh, yes.
10	MEMBER WALLIS: It's a little smaller.
11	MEMBER SIEBER: So you would have squib in
12	the face.
13	MEMBER WALLIS: They are a little smaller.
14	MR. WACHOWIAK: Well, in some cases they
15	are smaller and in some cases they are not. The
16	deluge valves for the BiMAC, they are fairly small
17	valves, only an inch and a half, 2 inch valves. They
18	are not any different than what is in standby liquid
19	control systems now. Equalizing line is a 3 inch
20	valve. So it's about the same as what we have now.
21	The DPV is an 11 inch valve. That is certainly
22	different than what we have now.
23	MEMBER SIEBER: It's bigger than anything
24	that has been made, right?
25	MR. WACHOWIAK: I don't know that that's
	I

(202) 234-4433

238 the case, but anything that I have had experience 1 2 with. 3 MEMBER SIEBER: Okay. 4 CHAIRMAN APOSTOLAKIS: And the advantage 5 of these valves is that they are passive? Is that what it is? 6 7 MR. WACHOWIAK: The --8 MEMBER WALLIS: It can't be closed. 9 The advantage is once it's MR. WACHOWIAK: 10 open --CHAIRMAN APOSTOLAKIS: It is passive. 11 12 MEMBER WALLIS: It's open. It can't be closed once it's open, right? 13 14 MR. WACHOWIAK: -- it's open. 15 MEMBER SIEBER: Forever. MR. WACHOWIAK: And it doesn't take that 16 17 much power to move to change them, so they are very well-suited for battery powered systems. 18 19 MEMBER CORRADINI: Smaller initiation 20 signal. 21 WACHOWIAK: Yes, small initiation MR. 22 signal. 23 And they are pretty fast. MEMBER SIEBER: 24 MR. WACHOWIAK: And they are fast. 25 MEMBER ABDEL-KHALIK: You indicated this

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

239 1 morning that initiation of the valve will not cause 2 failure of the pipe in which the valve is installed, 3 and the reason is because this is one that has been 4 pressurized. 5 MEMBER SIEBER: Right. MEMBER ABDEL-KHALIK: Now, if more than 6 7 one charge actually goes off simultaneously, is that 8 statement still correct, that there is no way that you 9 can fail the pipe in which the valve is installed even though the pipe is filled with water regardless of 10 what the pressure in the line might be? 11 MR. WACHOWIAK: That would have to be a 12 design requirement for the pipe. I don't think we 13 14 could go with a system that didn't include that as a 15 design requirement. Is that a double negative 16 MR. THORNSBURY: 17 here or --MR. WACHOWIAK: We could not build one 18 19 that did not have that as a design. That would be a 20 design requirement. 21 Thank you. MR. THORNSBURY: So that actuation of these 22 MR. WACHOWIAK: 23 valves does not invalidate any piping analysis. 24 MEMBER SIEBER: Well, the exploding of the 25 charge is relatively significant as far as pipe

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	240
1	strength. If the charge is pretty small, the part in
2	the valve that actually gets sheered off is pretty
3	light compared to the rest of the valve.
4	MR. WACHOWIAK: That's correct.
5	MEMBER SIEBER: You know, so two charges,
б	three charges, four charges, it seems to me like it
7	would be getting done, right?
8	MEMBER WALLIS: Yes.
9	MEMBER BONACA: I have a question
10	regarding the active systems. Would you expect,
11	because they are not set to the label, they are a
12	little different from the same systems which are
13	installed right now in BWRs?
14	MR. WACHOWIAK: I don't expect there to be
15	much detectible difference. Now, in most of the
16	cases, the things that we're looking at for our active
17	systems are going to be normally operating systems.
18	CRD is always going to have one of its pumps in
19	operation and FAPCS is always going to have one of its
20	pumps in operation. So we will have good knowledge of
21	the state of our active systems that we're taking
22	credit for.
23	MEMBER BONACA: The reason I'm asking the
24	question is that, you know, judging the safety for the
25	plant, if I think about current BWRs being 10^{-5} with
	I

(202) 234-4433

	241
1	CDF, okay, I mean, this has to be a safer plant. You
2	are always looking at a shutdown risk analysis. I
3	mean, everything that you could lament in the old
4	plants that we didn't have, it's here in this plant,
5	the isolation, double isolation and the pipes through
б	containments, and then the active systems.
7	There are so many active systems lined up
8	and, you know, after you exhaust them all, it takes a
9	long time to address them all and then you have a
10	passive system. And so I would expect that some
11	reference to the existing plants will be important to
12	make the safety case here, but you have really focused
13	on this plant and addressed the lessons learned, it
14	seems to me.
15	MR. WACHOWIAK: And that is one of the
16	things that we tried to do early on in the conceptual
17	design phase, is to eliminate things that we had
18	problems with in the existing plants.
19	MEMBER BONACA: Yes.
20	MR. WACHOWIAK: Now, the 10 $^{-5}$ that you
21	talk about for those plants also includes the non-
22	safety-related systems. So it's credit for safety and
23	non-safety.
24	MEMBER BONACA: Right.
25	MR. WACHOWIAK: So that 10 $^{-5}$ would be
ļ	

(202) 234-4433

	242
1	analogous to our 10^{-8} .
2	MEMBER BONACA: Right.
3	MR. WACHOWIAK: Not the other
4	sensitivities that were done without the non-safety
5	system.
6	MEMBER BONACA: Yes. And I can say that,
7	you know, all these things you have added will justify
8	the difference. I'm only saying that they have to buy
9	something and the biggest issue to me is, in fact, the
10	squib valves. I mean, that is something that, you
11	know, the point you made about common causes. It's a
12	very important one as to the pursuit, but, certainly,
13	this is, you know, a different kind of animal.
14	Everything that you would like to have is there.
15	MR. WACHOWIAK: Okay.
16	VICE CHAIRMAN SHACK: You could activate
17	half of them pneumatically.
18	MR. WACHOWIAK: Well, there are issues
19	with that and we do have pneumatic valves in this
20	plant. The isolation condenser is a pneumatic valve
21	system, so it's not a squib actuated system, and many
22	of the containment isolations are pneumatically
23	operated. For our pneumatic systems, we have a
24	similar arrangement to this, except it's using
25	different arrangements of solenoid valves.
	I

(202) 234-4433

	243
1	MEMBER CORRADINI: But is the requirement
2	there that you switch to pneumatic if you want to
3	close up again where these are once open, stay open?
4	MR. WACHOWIAK: Yes.
5	MEMBER CORRADINI: Is that the basics of
6	what you're saying?
7	MR. WACHOWIAK: That is where we would
8	make that decision, is if you want it to be able to be
9	used again, you would make it pneumatic. If you want
10	it to be if you only need it as a one shot, then
11	you would make it
12	MEMBER CORRADINI: But you really do
13	expect to use the isolation condensers during the life
14	of this plant.
15	MR. WACHOWIAK: That's right.
16	MEMBER CORRADINI: You don't really plan
17	if that
18	MR. WACHOWIAK: Yes. We're not planning
19	on using we're not planning on needing any of the
20	squib valves, not planning on it. Those are for
21	accidents, things that happen that we didn't plan for.
22	So, anyway, I guess that is what I have here.
23	One last thing associated with this. We
24	can't make this kind of a scheme work with motor-
25	operated valves. We can't really hook four motors and
I	I

(202) 234-4433

	244
1	things like that. It didn't work for us. So in this
2	design change that the plant did to incorporate this,
3	all motor-operated valves were replaced by some sort
4	of a pneumatic valve.
5	MEMBER WALLIS: Oh.
6	MR. WACHOWIAK: All safety-related motor-
7	operated valves. So in Rev 1 if you see anything
8	where we had a safety-related motor-operated valve, it
9	will be replaced by something that is pneumatically
10	operated.
11	MEMBER SIEBER: And fail safe.
12	MR. WACHOWIAK: It's
13	MEMBER SIEBER: And fail safe.
14	MR. WACHOWIAK: It depends on the
15	application. Some fail open, some fail closed and
16	some fail as is.
17	MEMBER SIEBER: They fail safe. They
18	could be open or closed.
19	MR. WACHOWIAK: Some fail as is.
20	MEMBER SIEBER: Okay. Open or closed.
21	MR. WACHOWIAK: Wherever they are, yes,
22	and we have different criteria for those and different
23	designs for those types of valves. So this would be
24	a convenient break time and I will try to step it up.
25	CHAIRMAN APOSTOLAKIS: That's fine.
	I

(202) 234-4433

	245
1	(Whereupon, at 4:39 p.m. a recess until
2	4:57 p.m.)
3	CHAIRMAN APOSTOLAKIS: Ready? Okay. We
4	are back in session. Rick, it's your show.
5	MR. WACHOWIAK: Okay. In this next
б	section what I want to talk about now is how the DCIS
7	system is connected together and how the signals are
8	processed and transferred, and maybe this will get
9	back to answering some of the questions on how might
10	we deal with obsolescence? How might we deal with
11	maintenance? How might we deal with because we
12	will see how the way it's segmented and divided and
13	put together that there probably is the ability to
14	upgrade the system without scrapping and rebuilding
15	among other things. So let's go through what I know.
16	CHAIRMAN APOSTOLAKIS: What is it that you
17	know about the instruments in control?
18	MR. WACHOWIAK: Well, when we were talking
19	about these things, we have these very, very smart
20	instrument in control people that know a whole lot of
21	stuff about instrument in control. And when you ask
22	them to describe the instrument in control system, not
23	only do you get what you need to build a PRA, but you
24	get about five times more. What I tried to do was to
25	concentrate what he said into something that we think
ļ	

(202) 234-4433

	246
1	we might be able to use for the PRA, and this is the
2	distillation of that.
3	So the system uses some different
4	concepts. We have things called a chassis. A chassis
5	is a rack-mounted computer. These are examples of
6	types of chassis that we would have. So you have got
7	the rack-mounted computer. It goes in the rack and
8	each cabinet now has a rack. So a cabinet can have
9	one or more chaises in it. And then the division will
10	have multiple cabinets within that division.
11	Okay. So the first thing I want to talk
12	about is the chassis. The chassis is just basically
13	a back plane type computer and cards are plugged into
14	it. And in one example we were shown there is a
15	processor card, a memory card. They could be both on
16	the same thing, but it's a replaceable card. Okay?
17	Then in this type, a data acquisition chassis, would
18	have one or more I/O cards that can take one or more
19	digital or analog signals into them.
20	(Whereupon, at 5:00 p.m. the meeting
21	continued into the evening session.)
22	
23	
24	
25	
I	

	248
1	E-V-E-N-I-N-G S-E-S-S-I-O-N
2	5:00 p.m.
3	MR. WACHOWIAK: And then we have the
4	communication cards and this is really the part of the
5	guts of how these things are strung together. These
6	communication cards aren't just for passing
7	information. These are what they call a reflective
8	shared memory system.
9	So this card has some number of megabytes
10	on it, a gigabyte, 128 megabytes, whatever we would
11	specify, and all of them in the system would have that
12	same amount or that same memory, all with the same
13	memory locations so that any time any one of these
14	cards gets updated for that location in memory, it
15	takes this dual fiber ring and sends that information
16	out in both directions and within nine milliseconds
17	they tell us every card within that ring has the same
18	information on it.
19	So each chassis in a channel or in a
20	division, each chassis in a division, knows, has the
21	potential to know, everything that is in that
22	division. For backup purposes, we have two of these
23	cards in here and the what I don't know yet is how
24	it decides which ones of those two cards is the one to
25	use at any given time, but they should show exactly
	I

(202) 234-4433

	249
1	the same thing.
2	In the data acquisition chassis, the only
3	thing the processor does is takes a signal or it takes
4	a converted analog or digital signal from this card
5	and puts it in this memory. No decisions are made on
б	these processors. It's just moving information.
7	MEMBER SIEBER: Do you make a decision as
8	to when to go and get it?
9	MR. WACHOWIAK: It's on a fixed time
10	scale. This is a deterministic system.
11	MEMBER SIEBER: So it updates every
12	second, every tenth of a second?
13	MR. WACHOWIAK: Whatever the schedule is.
14	It's some number of some small number of
15	milliseconds. It gets this signal, gets this number
16	from this card, puts it on this card and that's what
17	it does.
18	MEMBER SIEBER: Okay. Now, you said that
19	the transducers, they can be digital or analog?
20	MR. WACHOWIAK: Yes.
21	MEMBER SIEBER: And if it's a temperature
22	transducer, I take it there is a cold junction some
23	place.
24	MR. WACHOWIAK: Yes.
25	MEMBER SIEBER: Or an RDB and 4 to 20 goes

(202) 234-4433

	250
1	to the I/O card?
2	MR. WACHOWIAK: Yes, that's the way it was
3	explained to me.
4	MEMBER SIEBER: But that's analog all the
5	way to the I/O card?
б	MR. WACHOWIAK: That's my understanding,
7	yes.
8	MEMBER SIEBER: Do you have digital
9	transducers in the field?
10	MR. WACHOWIAK: What I was told is that we
11	can have digital transducers in the field, but none
12	have been identified to me.
13	MEMBER SIEBER: So you don't know? You do
14	or you don't think? You don't know?
15	MR. WACHOWIAK: It's possible. I haven't
16	seen any.
17	MEMBER SIEBER: Okay.
18	MR. WACHOWIAK: But I don't know.
19	MEMBER SIEBER: But the I/O cards would be
20	different for a digital signal?
21	MR. WACHOWIAK: Yes, there are different
22	I/O cards for different types of signals. The I/O
23	card would be matched to the right signal.
24	MEMBER SIEBER: Transducer.
25	MR. WACHOWIAK: To the right transducer as
I	

```
(202) 234-4433
```

ĺ	251
1	part of the field. This is where the field testing,
2	when it's installed, or the installation testing, the
3	biggest thing there is to make sure that this
4	transducer is hooked to the right point in that card.
5	MEMBER SIEBER: Okay. Now, does the I/O
6	card follow the parameter or does it sample the
7	parameter?
8	MR. WACHOWIAK: That's a good question.
9	The way it was explained to me, it would sample. Now,
10	I would need to verify that.
11	MEMBER SIEBER: Well, how does it know
12	when to sample? From the CP, the processor? Send the
13	signal to the I/O card? The I/O card goes and asks
14	the
15	MR. WACHOWIAK: I would
16	MEMBER SIEBER: transducer and acquires
17	it, puts it in digital form and then hits an interrupt
18	on the processor? Is that how that works?
19	MR. WACHOWIAK: That was part of the
20	information that Ira told me that I purged from my
21	mind.
22	MEMBER MAYNARD: It's probably the
23	parameters, just set up the sampling stuff on a
24	schedule.
25	PARTICIPANT: They're already programmed
	I

(202) 234-4433
	252
1	in.
2	VICE CHAIRMAN SHACK: No, but sometimes
3	you sample on the I/O card.
4	MEMBER SIEBER: That's right.
5	VICE CHAIRMAN SHACK: And then the
б	processor grabs the value off, an average value off of
7	it.
8	MEMBER SIEBER: That's right.
9	VICE CHAIRMAN SHACK: I don't
10	MEMBER SIEBER: It's whatever is on the
11	I/O card at the time. The sampling schedule can be
12	set up in the transducer or even digitize it in the
13	transducer and just sort of skip the I/O card
14	function, other than some simple gate. Well, you
15	don't know?
16	MR. WACHOWIAK: So I don't know.
17	MEMBER SIEBER: Let's move on.
18	MR. WACHOWIAK: The other thing about this
19	is that the way the power supplies are connected, each
20	chassis has two power supplies. The way that the
21	batteries are set up within a division is we have a
22	Division 1A battery and a Division 1B battery. They
23	are both part of the 72 hour battery, but they are
24	distinct units. The way this is set up is that if
25	both batteries are in service
I	1

(202) 234-4433

	253
1	MEMBER WALLIS: These are D/C now?
2	MEMBER SIEBER: Yes.
3	MR. WACHOWIAK: This is a well
4	MEMBER WALLIS: Your key is a little hard
5	to understand.
6	MR. WACHOWIAK: It's not D/C. It's a 120
7	volt inverted A/C system.
8	MEMBER WALLIS: It's an A/C system.
9	MR. WACHOWIAK: That is being supplied by
10	regulated power backed up by battery.
11	MEMBER WALLIS: Okay.
12	MR. WACHOWIAK: So if it's operating on
13	the battery, each one of these power supplies
14	essentially acts or operates at 50 percent capability.
15	MEMBER SIEBER: Sort of.
16	MR. WACHOWIAK: Sort of. So that if we
17	lose something in one of these channels here, some
18	power source or we lose the power supply, we haven't
19	lost anything in here. It still operates now at full
20	power.
21	MEMBER SIEBER: Right.
22	MR. WACHOWIAK: No interruption of this
23	function, but it announces that there is a failure in
24	there and the operators have time to fix whatever is
25	in that. These are hot swappable power supplies and
I	1

```
(202) 234-4433
```

	254
1	we wouldn't have any loss of function when they go to
2	repair that.
3	MEMBER SIEBER: This isn't a station
4	battery, I take it. This is just a battery for this
5	system?
6	MR. WACHOWIAK: Station batter.
7	MEMBER SIEBER: A station battery? There
8	ain't too much to fix it and operate it?
9	MR. WACHOWIAK: The fixing part I meant
10	was in the power supply or if there was some other
11	short in the system on down, they could go and unshort
12	the system. Remember, it's a 120 volt system. So it
13	is normally being powered from off-site power.
14	MEMBER SIEBER: Right.
15	MR. WACHOWIAK: Through a regulating
16	transformer and there is a battery backup that is
17	sitting there solid state switched in if the off-site
18	power goes away. So you probably wouldn't detect a
19	battery failure out here at the downstream instrument.
20	The battery failure would be detected somehow.
21	MEMBER SIEBER: Now, then if you didn't
22	have A/C power and the battery failed, the other one
23	would discharge twice as fast.
24	MR. WACHOWIAK: It would discharge twice
25	as fast.
	I

(202) 234-4433

	255
1	MEMBER SIEBER: Right.
2	MR. WACHOWIAK: So in that case, Division
3	1 would only last for 36 hours versus 72. We still
4	call that a failure. Okay.
5	MEMBER SIEBER: Okay.
6	MR. WACHOWIAK: So that's the way that
7	these are all set up. We have a different type of
8	chassis, which would be a load driver chassis. This
9	is what tells the things in the field to actuate. It
10	has got a processor. It has got the load driver cards
11	and it has got the same kind of communications cards.
12	So what this processor does is it looks at
13	the communication card and says do I have something
14	that is telling me to actuate this switch? If it's
15	there, it actuates it. If it's not there, it doesn't
16	actuate the switch. So it's just looking at the
17	memory and deciding which switches to turn on. This
18	part, I'll show how it's supplied in a minute.
19	One of the things that the designer said
20	is that you can you don't have to segment it this
21	way into data acquisition, chassis and load driver.
22	You could intermix these things. We're trying to
23	determine what is the best way to do this and in my
24	mind, within a chassis you shouldn't mix the two
25	different types of functions, because then that makes
Į	I

(202) 234-4433

	256
1	the processor logic a little more difficult. We may
2	have prone to some errors or some other things there.
3	I would prefer to see those two types of
4	chassis separate. Right now they said they can do
5	that, so that you would have if the computer has
6	I/O cards in it, it's not going to have if the
7	chassis has I/O cards in it, it won't have load driver
8	cards in it.
9	MEMBER SIEBER: On the other hand, a
10	single chassis may have thousands of I/O cards.
11	MR. WACHOWIAK: That's correct.
12	MEMBER SIEBER: Okay. So this is not
13	three big deals.
14	MR. WACHOWIAK: This is an example here
15	and how many get packed, packed in, is that the right
16	way to say it, how many get put into there is based on
17	several things. Proximity of what you're trying to
18	pick up out in the field is one thing, and also all
19	these systems need to be passively cooled. We don't
20	necessarily want to have active cooling to keep the
21	thing down, so we would
22	MEMBER SIEBER: Keeping it safety-related
23	diesel, keeping all this other stuff cool.
24	MR. WACHOWIAK: Well, that would be the
25	next presentation. But, anyway, so we can segment it

(202) 234-4433

	257
1	out that way for heat density, I guess, if you will.
2	MEMBER SIEBER: Okay.
3	MR. WACHOWIAK: But that's one of the
4	considerations.
5	MEMBER SIEBER: Now, for each you have two
6	power divisions that go to the four channels that you
7	have.
8	MR. WACHOWIAK: We have
9	MEMBER SIEBER: You have four channels,
10	right?
11	MR. WACHOWIAK: We have four channels.
12	MEMBER SIEBER: Does that mean four of
13	these cards, I/O cards and the four load driver cards,
14	one for each channel?
15	MR. WACHOWIAK: Yes.
16	MEMBER SIEBER: Okay. And they are in
17	different racks?
18	MR. WACHOWIAK: Different racks, different
19	rooms.
20	MEMBER SIEBER: And each one is powered by
21	both divisions?
22	MR. WACHOWIAK: No. This is considered
23	one division. We have four of these paired divisions.
24	MEMBER SIEBER: But you don't have eight
25	station batteries.
I	I

```
(202) 234-4433
```

	258
1	MR. WACHOWIAK: There physically are eight
2	different batteries.
3	MEMBER SIEBER: Okay.
4	MR. WACHOWIAK: Each division has two that
5	are loaded at 50 percent each.
6	MEMBER SIEBER: Oh, wow, what a battery.
7	MR. WACHOWIAK: That's correct.
8	MEMBER SIEBER: Okay.
9	MR. WACHOWIAK: Okay? Now, the next one
10	is the logic chassis which is where the decisions are
11	made. So this would be a different place and I will
12	show how that is set up in a minute, but it has got
13	the same sort of thing, processor, memory and just
14	communication cards.
15	This is the communication cards we saw
16	before, so it's the things in the field are setting
17	memory locations here. This processor reads these
18	memory locations, makes a decision, posts its decision
19	to this interdivisional ring and then looks to see if
20	any of the other divisions also came to the same
21	conclusion. If so, the processor then tells its own
22	division go ahead and actuate. So in the ECC
23	MEMBER SIEBER: So that sits in between
24	the I/O card and the load driver card?
25	MR. WACHOWIAK: Yes. Say that again.
	I

(202) 234-4433

	259
1	MEMBER SIEBER: It sits in between the I/O
2	card and the load driver card.
3	MR. WACHOWIAK: That's right, and since
4	it's on a ring
5	MEMBER SIEBER: Yes.
6	MR. WACHOWIAK: Maybe it's on the end,
7	maybe it's in yes, it's in between.
8	MEMBER SIEBER: Now, if an I/O card is
9	acquiring the signal from the transmitter, putting it
10	into its memory and this thing is saying I need this
11	parameter to decide whether I got to do something
12	MR. WACHOWIAK: Yes.
13	MEMBER SIEBER: what happens when they
14	both try to read that memory slot at the same time?
15	Is there interference or is it sequenced or is it all
16	timed out or how do you do that?
17	MR. WACHOWIAK: It's deterministically
18	timed out. The communications cards write to all the
19	cards on a fixed interval and while they are writing
20	on their fixed interval, this guy isn't reading
21	MEMBER SIEBER: He will be waiting.
22	MR. WACHOWIAK: in between.
23	MEMBER SIEBER: This one will be doing
24	something else.
25	MR. WACHOWIAK: Right.
I	1

	260
1	MEMBER SIEBER: Okay.
2	MR. WACHOWIAK: And that is all on a
3	deterministically evaluated
4	MEMBER SIEBER: So you have got one clock
5	for the whole system, for everything, one clock on
6	each division.
7	MR. WACHOWIAK: Within a chassis there is
8	one clock.
9	MEMBER SIEBER: And you would have to have
10	that same clock go through every you have an I/O
11	chassis and a driver chassis and a logic chassis.
12	They would all have to have the same clock, right?
13	MR. WACHOWIAK: The way it was explained
14	to me is that they do not have to have the same clock.
15	MEMBER SIEBER: Well, then they will
16	interfere.
17	MR. WACHOWIAK: No.
18	MEMBER WALLIS: Can I ask the question I
19	asked before? What does all this description have to
20	do with the PRA?
21	MEMBER SIEBER: If you don't know what it
22	is
23	MEMBER CORRADINI: You don't know how to
24	get a failure mode.
25	MEMBER WALLIS: Yes, but unless you talk
Į	I

1 about the failure modes, I don't know what it has got 2 to do with the PRA. 3 MR. WACHOWIAK: Okay. 4 MEMBER SIEBER: Well, you have to 5 understand the hardware a little bit here. 6 MEMBER WALLIS: Well, I know, but this is 7 kind of straightforward, isn't it? The interesting 8 thing is what can go wrong. 9 MR. WACHOWIAK: That's right. 10 MEMBER WALLIS: Okay. 11 MR. WACHOWIAK: And that is really a 12 conversation that I have with the I&C guys also. What 13 happens if we have a failure here? 14 MEMBER CORRADINI: So can you educate him 15 which is educating me about all these clocks and 16 everything? I'm still kind of curious. 17 MR. WACHOWIAK: Within this particular 18 card here, every large number of milliseconds this 19 processor knows it has a window to read from this	
 MR. WACHOWIAK: Okay. MEMBER SIEBER: Well, you have to understand the hardware a little bit here. MEMBER WALLIS: Well, I know, but this is kind of straightforward, isn't it? The interesting thing is what can go wrong. MR. WACHOWIAK: That's right. MEMBER WALLIS: Okay. MR. WACHOWIAK: And that is really a conversation that I have with the I&C guys also. What happens if we have a failure here? MEMBER CORRADINI: So can you educate him which is educating me about all these clocks and everything? I'm still kind of curious. MR. WACHOWIAK: Within this particular card here, every large number of milliseconds this 	
 MEMBER SIEBER: Well, you have to understand the hardware a little bit here. MEMBER WALLIS: Well, I know, but this is kind of straightforward, isn't it? The interesting thing is what can go wrong. MR. WACHOWIAK: That's right. MEMBER WALLIS: Okay. MR. WACHOWIAK: And that is really a conversation that I have with the I&C guys also. What happens if we have a failure here? MEMBER CORRADINI: So can you educate him which is educating me about all these clocks and everything? I'm still kind of curious. MR. WACHOWIAK: Within this particular card here, every large number of milliseconds this 	
5 understand the hardware a little bit here. 6 MEMBER WALLIS: Well, I know, but this is 7 kind of straightforward, isn't it? The interesting 8 thing is what can go wrong. 9 MR. WACHOWIAK: That's right. 10 MEMBER WALLIS: Okay. 11 MR. WACHOWIAK: And that is really a 12 conversation that I have with the I&C guys also. What 13 happens if we have a failure here? 14 MEMBER CORRADINI: So can you educate him, 15 which is educating me about all these clocks and 16 everything? I'm still kind of curious. 17 MR. WACHOWIAK: Within this particular 18 card here, every large number of milliseconds this	
 MEMBER WALLIS: Well, I know, but this is kind of straightforward, isn't it? The interesting thing is what can go wrong. MR. WACHOWIAK: That's right. MEMBER WALLIS: Okay. MR. WACHOWIAK: And that is really a conversation that I have with the I&C guys also. What happens if we have a failure here? MEMBER CORRADINI: So can you educate him which is educating me about all these clocks and everything? I'm still kind of curious. MR. WACHOWIAK: Within this particular card here, every large number of milliseconds this 	
7 kind of straightforward, isn't it? The interesting 8 thing is what can go wrong. 9 MR. WACHOWIAK: That's right. 10 MEMBER WALLIS: Okay. 11 MR. WACHOWIAK: And that is really a 12 conversation that I have with the I&C guys also. What 13 happens if we have a failure here? 14 MEMBER CORRADINI: So can you educate him, 15 which is educating me about all these clocks and 16 everything? I'm still kind of curious. 17 MR. WACHOWIAK: Within this particular 18 card here, every large number of milliseconds this	
8 thing is what can go wrong. 9 MR. WACHOWIAK: That's right. 10 MR. WACHOWIAK: That's right. 11 MR. WACHOWIAK: And that is really a 12 conversation that I have with the I&C guys also. What 13 happens if we have a failure here? 14 MEMBER CORRADINI: So can you educate him 15 which is educating me about all these clocks and 16 everything? I'm still kind of curious. 17 MR. WACHOWIAK: Within this particular 18 card here, every large number of milliseconds this	
 MR. WACHOWIAK: That's right. MEMBER WALLIS: Okay. MR. WACHOWIAK: And that is really a conversation that I have with the I&C guys also. What happens if we have a failure here? MEMBER CORRADINI: So can you educate him which is educating me about all these clocks and everything? I'm still kind of curious. MR. WACHOWIAK: Within this particular card here, every large number of milliseconds this 	
MEMBER WALLIS: Okay. MR. WACHOWIAK: And that is really a conversation that I have with the I&C guys also. What happens if we have a failure here? MEMBER CORRADINI: So can you educate him which is educating me about all these clocks and everything? I'm still kind of curious. MR. WACHOWIAK: Within this particular Random Here, every large number of milliseconds this	
11 MR. WACHOWIAK: And that is really a 12 conversation that I have with the I&C guys also. What 13 happens if we have a failure here? 14 MEMBER CORRADINI: So can you educate him 15 which is educating me about all these clocks and 16 everything? I'm still kind of curious. 17 MR. WACHOWIAK: Within this particular 18 card here, every large number of milliseconds this	
12 conversation that I have with the I&C guys also. What 13 happens if we have a failure here? 14 MEMBER CORRADINI: So can you educate him 15 which is educating me about all these clocks and 16 everything? I'm still kind of curious. 17 MR. WACHOWIAK: Within this particular 18 card here, every large number of milliseconds this	
13 happens if we have a failure here? 14 MEMBER CORRADINI: So can you educate him. 15 which is educating me about all these clocks and 16 everything? I'm still kind of curious. 17 MR. WACHOWIAK: Within this particular 18 card here, every large number of milliseconds this	
14 MEMBER CORRADINI: So can you educate him 15 which is educating me about all these clocks and 16 everything? I'm still kind of curious. 17 MR. WACHOWIAK: Within this particular 18 card here, every large number of milliseconds this	
15 which is educating me about all these clocks and 16 everything? I'm still kind of curious. 17 MR. WACHOWIAK: Within this particular 18 card here, every large number of milliseconds this	
<pre>16 everything? I'm still kind of curious. 17 MR. WACHOWIAK: Within this particular 18 card here, every large number of milliseconds this</pre>	,
17MR. WACHOWIAK: Within this particular18card here, every large number of milliseconds this	
18 card here, every large number of milliseconds this	
19 processor knows it has a window to read from this	
20 communication card. Then these communication cards	
21 are getting signals on the fiber system in a fixed	
22 frequency.	
23 MEMBER SIEBER: And putting it into	
24 memory.	
25 MR. WACHOWIAK: And putting it in this	

(202) 234-4433

	262
1	memory.
2	MEMBER SIEBER: Right.
3	MR. WACHOWIAK: Which is not conflicting
4	with this one. However, when this card puts something
5	out onto the fiber network may not be exactly the same
б	time when a different cards puts out. So each chassis
7	can work asynchronously, but the communication is set
8	up fast enough that the processor won't know about any
9	asynchronous communications between the other
10	divisions.
11	Each parameter only has one memory
12	location, so you can't have and so the
13	communication card knows when I'm going to write into
14	the memory location, when I'm going to read from the
15	memory location. You can't have things trying to read
16	and write at the same time. The card handles that
17	arbitration.
18	MEMBER SIEBER: And if something is
19	happening in the plant where all these transducers are
20	changing value, that does not change the mode of
21	operation of the processors anywhere.
22	MR. WACHOWIAK: That is correct.
23	Everything works on a fixed frequency.
24	MEMBER SIEBER: So you can't plug the
25	machine.
ļ	I

(202) 234-4433

	263
1	MR. WACHOWIAK: You can't plug this
2	machine. It's not set up with a data collision
3	detection rerouting system.
4	MEMBER SIEBER: Right.
5	MR. WACHOWIAK: It's not the kind of
6	system it is.
7	MEMBER CORRADINI: Okay.
8	MR. WACHOWIAK: Okay?
9	MEMBER SIEBER: Moving on.
10	MR. WACHOWIAK: Moving on. Let's move to
11	the data acquisition cabinet. You can have multiple
12	chassis within a physical cabinet. So the rack is
13	there. You put the chassis inside the rack. Power
14	comes in. There is no special power for the cabinet.
15	It's just distributed into each of those chassis.
16	They have their own power supplies. I had examples of
17	sensors here.
18	And the way that the transmission is done
19	through these cards is it is daisy chained through all
20	the different cards and there's two of them, so it's
21	daisy chained through those cards. So if any one
22	particular link fails, well, you get the information
23	from back the other direction. If you end up failing
24	both connections on that link somewhere, then the
25	information is still transferred along the other data
	I

(202) 234-4433

ring.

1

2

5

6

7

8

So you end up actually having to have 3 between two and three communication failures before 4 you would fail the communication on that ring. All these communications are alarmed. The operators know when it happens. Cards are hot. I'm not sure how the connections are hot swappable, but the cards are hot swappable and they can make those repairs. So you would think that there would be a

9 10 low likelihood that any of the cards would be sitting 11 there in a failed state at the time of the accident. 12 And that's -- one of the things we're putting into our PRA model though is what is the probability that any 13 14 of these things would be unavailable at the time.

15 MEMBER SIEBER: I take it from a PRA standpoint, just knowing this kind of architecture 16 handle 17 gives you some on what the failure probabilities are regardless of what the confluence of 18 19 the cards are.

20 MR. WACHOWIAK: Yes. We can know how the 21 logic gets put together and then we can evaluate 22 different individual failures on the cards. 23 MEMBER SIEBER: Okay. 24 MR. WACHOWIAK: A load driver chassis is 25 a little different. First, notice it's a load drive

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	265
1	pair, okay, and the reason for this is mainly we don't
2	want spurious actuations. So when the computer or the
3	logic processor makes a decision that one of these
4	squib valves is supposed to actuate, it tells this
5	load driver and the other load driver on the opposite
6	side or within the division.
7	It tells two load drivers to go ahead and
8	actuate. Both of those have to get the actuation
9	signal in order to actually get the signal out to the
10	field. This is done a little differently here. This
11	cabinet has a set of power supplies in here and those
12	are for the equipment out in the field.
13	The reason that they have their own power
14	supply versus using the power supply in the computer
15	card itself is mainly because of the way these squib
16	valves operate. They take an initial surge of
17	current, that kind of acts like a dead short, and the
18	response of this power supply needs to be much
19	different than the response of the power supply that
20	is in the chassis.
21	So with this arrangement, this is a very
22	fast acting power supply that the chassis then the
23	computers don't see any fluctuation in the voltage

while squib valves are operating. Otherwise, youmight get into a situation where everything just all

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	266
1	trips off on some kind of a funny voltage fluctuation.
2	So we have precluded that by using different types of
3	power supplies here.
4	The other thing that makes this nice is we
5	can separate this in terms of fire protection. If we
6	put if we have a fire that starts in this cabinet,
7	it could potentially short out some of these load
8	drivers.
9	MEMBER SIEBER: Yes.
10	MR. WACHOWIAK: But we don't want an
11	actuation on a fire in that cabinet, so we put the
12	other load driver in a different cabinet and we will
13	evaluate whether it needs to be in a different room or
14	somewhere different.
15	MEMBER SIEBER: Different space.
16	MR. WACHOWIAK: Different, somewhere. And
17	also what we want to evaluate is how many in a series
18	we would need to do. The DPVs, I'm starting to lean
19	toward having three load drivers especially on DPS
20	confirmed that it's supposed to go.
21	But what the manufacturers of these tell
22	us is that if the fire starts in this cabinet and goes
23	to propagate to the other cabinet, the first thing
24	that we're going to lose is these connections that are
25	hooked up to these things, and before the fire would
	I

(202) 234-4433

	267
1	actually propagate to here, you would lose the
2	continuity and there would be a very low likelihood
3	that the propagated fire would actually be able to
4	MEMBER SIEBER: Wouldn't you get hot
5	shorts? I mean, you would get all kinds of things in
6	a fire.
7	MR. WACHOWIAK: You can, but if you got a
8	hot short anywhere in this cabinet, because these
9	switches are all still open, the hot short wouldn't do
10	anything. You have to get a fire that can physically
11	go from here to here without destroying the stuff in
12	between.
13	MEMBER SIEBER: Or you could have a fire
14	in one and a failure in the other.
15	MR. WACHOWIAK: Fire and a failure would
16	do it, too. That's why in the DPVs I'm trying to see
17	if they can accommodate three. The load driver cards
18	really aren't all that expensive on the scale of a
19	nuclear power plant, so I think we can afford a few of
20	them.
21	MEMBER SIEBER: So you plan to cover all
22	three things, hot short, SCRAMS and others?
23	MR. WACHOWIAK: That's correct.
24	MEMBER SIEBER: Okay.
25	MR. WACHOWIAK: The last one here is
Į	1

(202) 234-4433

1 identifying -- and we talked about this a little bit, 2 the four divisions of where the processors make their 3 decisions. There is this other ring that is between 4 those. Some have suggested that this is some way of 5 pumping data from this channel to this channel. That is not really what it's doing. This channel is 6 7 posting data to the ring and this channel is then reading what is on the ring. This channel can't tell 8 9 this one what to do. It's just identifying what it's 10 doing.

And the way these cards are all set up, 11 12 every processor is hard coded so that it can only read and write to certain places on those cards. 13 They all 14 have check sums within them. Everything plugs together. It does a check sum series on the whole 15 16 If you try to plug the card that is supposed system. to go in Division 2 into a Division 1 chassis, it will 17 give you an error and say no, you can't continue with 18 19 This system is still down. So there's all this. 20 sorts of protection in here for making the wrong 21 choices.

Finally, the way the ring is set up in the channel, we had this cabinet here. You know, it passes between the different cabinets. These are typically places like in the reactor building. This

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

268

	269
1	is in the control building, so they are located in
2	different places, the way the cabinets, you know,
3	provide their power out to the field.
4	One thing, the main thing in here that I
5	wanted to point out is there can be any number of any
6	of these cabinets. It doesn't have to be one, but it
7	can be one. Right now we're trying to put together
8	our first scoping PRA model of this to determine what
9	is the worst case.
10	Is it to put everything in one cabinet or
11	is it to distribute it to a bunch of cabinets? We're
12	still not sure which would provide the worst case.
13	What my feeling is or my belief is is that we're not
14	going to see much difference between either of those
15	two configurations.
16	MEMBER SIEBER: That's your hope.
17	MR. WACHOWIAK: From what I have seen so
18	far, I can't see why it would be much different.
19	Another thing is that these other cabinets here, the
20	logic and load driver cabinets, I said within a
21	chassis we didn't want to mix the types, but within a
22	cabinet we can put a data acquisition chassis inside
23	one of these logic or load driver cabinets to do
24	various things like we would like to know announce
25	to the operator is that cabinet door is open.
I	1

(202) 234-4433

270 1 That cabinet door should never be open 2 unless the control room sent somebody there to do There is no reason for that cabinet to 3 maintenance. 4 be open, so monitoring inside the cabinet. We can 5 also monitor temperature in the cabinet. We can put a smoke detector in the cabinet. So if the cabinet 6 7 detects that it's on fire, maybe you shut off the load 8 driver on the other side so that even if it propagates, you can't get anything. 9 10 We don't know. We're still looking at what to do with those different things, but we at 11 12 least know that there are certain other things that we want to put in there to let the operators know what is 13 14 going on inside those cabinets. 15 MEMBER SIEBER: Now, you said you could 16 locate these cabinets any place. Can you locate 17 anything in the harsh environment? For example, in containment, the only thing you're going to have in 18 19 there is transducers and no other --20 MR. WACHOWIAK: That would be correct. We 21 would only -- so this would not be in the containment 22 as far as I know unless there are some --23 MEMBER SIEBER: Any part of it. 24 MR. WACHOWIAK: Yes, they would have to do 25 something other than what we're planning on buying if

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	271
1	they are going to put it in the containment.
2	MEMBER SIEBER: Okay. And other harsh
3	environments would be the, you know, reactor building
4	and outside containment where radiation zones might
5	be.
6	MR. WACHOWIAK: We have got people right
7	now looking at the dose maps in the reactor building
8	and the I&C group is trying to locate the cabinets
9	away from harsh or high radiation zones, but they have
10	a criteria for these. The manufacturers have supplied
11	us, at least so far, the EQ data for what they are
12	planning to give.
13	MEMBER SIEBER: So is it fair to say that
14	nobody has looked into these yet?
15	MR. WACHOWIAK: It would be fair to say
16	that other than what room these cabinets are in, the
17	control building, this is up in the air.
18	MEMBER SIEBER: Okay. Thanks.
19	MR. WACHOWIAK: Okay. So that was all I
20	had with that. Right now what we're planning on or
21	what we're doing with that is we're building a stand
22	alone model of the failures of the hardware within
23	that system to try to help, to see if we can help the
24	designers determine what is the optimal configuration,
25	and then set it up that it's flexible enough that if
Į	

(202) 234-4433

they change the configuration that we can make those changes and have some input.

3 It's likely from what we have seen so far 4 with just the numbers of data input points and the 5 load drivers and all of the rest of those things that that is going to be a pretty big model, especially in 6 7 the communications side, because to fail to 8 communicate from this transducer to the processor, you 9 have got to fail two different counter-rotating rings 10 going both ways with all sorts of different cards and things in between. It's a pretty big model and it's 11 going to get very large very quick. 12

We think we can model this and do it stand 13 14 alone and do some investigation on that individual 15 model. When we actually go into the main PRA, our 16 thoughts are that maybe we wouldn't put the entire 17 thing in there. Maybe we would put some limited set of the other failures. Then we have to figure out 18 19 then what we do with the external events and with the 20 RTNSS and all the rest of those things, so that is 21 still a question. But how we would put such a big 22 model into the main PRA and have it do anything for 23 us, we're still contemplating.

24 So after we have gotten through with all 25 these changes, the top sequences of the cutsets are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

272

	273
1	affected. Basically, for those ones that we talked
2	about with the loss of feedwater, loss of the we
3	add one more failure mode. It's the loss of the
4	isolation condensers get added to each of those, so
5	they will be dropped.
6	I have done a scoping calculation on what
7	the impact of that would be and it looks like those
8	sequences will be brought down by at least an order of
9	magnitude, maybe a little bit more. We're still
10	looking at how that is going to go.
11	The DCIS design that we're putting in now
12	provides additional protection from what we have had,
13	what we have in the current model, but we don't think
14	it's going to have a major impact since what we have
15	in the current model only showed up as common cause
16	failures anyway. So adding something else that only
17	shows up as common cause failures anyway is probably
18	not going to make a big difference.
19	This revised common cause model, depending
20	on where we find the discrepancies between what we
21	have now and what we're going to use, this may offset
22	some of the what we're doing with the others. So
23	I am not going to say all the top ones go away. Maybe
24	they are replaced by some other top, other ones, and
25	the numbers may not change too much.
ļ	I

(202) 234-4433

	274
1	Level 1 model results will be available in
2	April. Now, that is that other handout that I gave
3	out, I wanted to talk about here. It's marked as the
4	it looks like this.
5	MEMBER SIEBER: For the PRA.
6	MR. WACHOWIAK: This outlines what the
7	schedule is for the Rev 2 in the PRA. Okay. Just an
8	idea of where we are right now, Chapter 19, Rev 2,
9	which matches Rev 1 of the PRA so that's no change to
10	anything you had before. This is going in. We're
11	licensing letters and things about that now. There is
12	nothing really new in the PRA from that. It's still
13	matches PRA Rev 1.
14	Out in April we expect to have the new
15	Level 1 model internal events plus quantification done
16	and, at that point, we'll be submitting those chapters
17	to the staff. Because of the time line for writing
18	the SER, they also need information for Chapter 19.
19	The rest of the chapters are going in even earlier in
20	February, but this is where we can support this.
21	What we're going to do is we're going to
22	take the results from the Level 1 and then knowing
23	what we know from Level 1 and how it would propagate
24	into a Level 2 and how the external events would work,
25	we're going to extrapolate what we the Revision 1
I	I

(202) 234-4433

	275
1	other parts of the model based on the Revision 2
2	internal events results, and write a Chapter 19 based
3	on that extrapolation.
4	Because of the level of detail in Chapter
5	19 for the PRA is at a fairly high over it's not a
6	high level of detail. It's more of an overview. We
7	think we're going to be successful at this, at making
8	a good extrapolation here, but it is a risk of maybe
9	missing something in Chapter 19. Then
10	MEMBER WALLIS: Isn't it Chapter 21?
11	MR. WACHOWIAK: This is Chapter 19 of the
12	DCD.
13	MEMBER WALLIS: Is Chapter 21 irrelevant?
14	MR. WACHOWIAK: Chapter 21 that
15	incorporates.
16	MEMBER WALLIS: This is the BiMAC, is it
17	not?
18	MR. WACHOWIAK: Chapter 21, yes. Chapter
19	21 that incorporates the Rome review, the additional
20	Rome reviews that we have done, is being worked on
21	now. We will likely be able to have that done at
22	about the same time as the Level 1 with internal
23	events. The question though is when do we want to put
24	the BiMAC testing results into Chapter 21. Those
25	results are expected out here in the September time
I	1

(202) 234-4433

	276
1	frame, so our decision is do we want to have a Chapter
2	21 of the PRA back here that doesn't include the BiMAC
3	test controls.
4	MEMBER WALLIS: When are we going to look
5	at the credibility of this whole BiMAC or do we need
б	to?
7	CHAIRMAN APOSTOLAKIS: We will have a
8	subcommittee meeting in the next two, three months
9	focused on Level 2 PRA.
10	MEMBER WALLIS: Focused on the BiMAC,
11	okay, focused on the Level 2.
12	CHAIRMAN APOSTOLAKIS: No, Level 2 PRA.
13	MEMBER WALLIS: Okay. Okay.
14	CHAIRMAN APOSTOLAKIS: This is just Level
15	1.
16	MEMBER WALLIS: Okay. Okay.
17	MR. WACHOWIAK: Now, in the rest of the
18	CHAIRMAN APOSTOLAKIS: Digital I&C.
19	MEMBER WALLIS: Oh, okay.
20	MR. WACHOWIAK: I have lines scattered
21	throughout here without dates until the end, because
22	right now we're working on rebaselining our schedule
23	for the DCD or not for the DC for the COLA
24	applications, and a lot of that rebaselining effort is
25	going to help me determine what happens in these
I	I

(202) 234-4433

	277
1	various other milestones and what they are going to be
2	throughout next year.
3	But our end date is basically the end of
4	September, we need to have the full Rev 2 of the PRA
5	completed to support the COLA for the two customers
6	that we have right now. So we're working our schedule
7	and adding our personnel to support that.
8	CHAIRMAN APOSTOLAKIS: When you say full
9	Rev 2, you don't mean just a Level 1 PRA?
10	MR. WACHOWIAK: No, I mean the other
11	chapters. So this would be like Chapters 2 through 6
12	or 2 through 7 and maybe we get 8 and 9, 8, 9 and 10
13	here, 12, 13, 15, 16 and when we get here, all 21 are
14	there.
15	MEMBER WALLIS: How are we supposed to
16	review this, because I think we could spend all of the
17	day on Chapter 2, for instance, or on Chapter 4.
18	There is so much in all of these things.
19	MEMBER SIEBER: There is a more basic
20	problem, I think.
21	MEMBER WALLIS: How are we going to review
22	them?
23	CHAIRMAN APOSTOLAKIS: We're going to have
24	two, three meetings, whatever it takes.
25	MEMBER WALLIS: Are we going to dig into
	I

(202) 234-4433

	278
1	the details or are we going to be at the sort of level
2	we're at today?
3	CHAIRMAN APOSTOLAKIS: No, today if you
4	wanted detail, you could ask for them.
5	MEMBER SIEBER: Well, if we go back to
6	basics, one of the problems that I had was doing the
7	the little bit that was assigned to me was
8	efficiencies in design details in the DCD. I would
9	read through it and I wasn't able to discern from the
10	DCD exactly what you model in the PRA and how it got
11	that way.
12	And so if you're going to work on a time
13	line like this to come up with the next revision of
14	the PRA, there is going to have to be a lot of work
15	done in detailed design, I think, in order to make the
16	PRA a little more valid than it is right now. Right
17	now, there is some speculation in there as to what the
18	equivalent is.
19	And my question is are you prepared to do
20	additional detailed design work to support this and
21	also the selling of the plant and its certification or
22	whatever licensing that you're going to do in that
23	amount of time? It seems to me like a lot of work.
24	MR. WACHOWIAK: We do have for many of the
25	systems more detailed design than what was reported in
l	

(202) 234-4433

	279
1	the DCD done. The DCD only contains a certain level
2	of information. It doesn't contain everything. We
3	need more information than what is in the DCD to do a
4	PRA.
5	MEMBER SIEBER: Yes, but for us to review
6	it at least with the documents we have, we can't do a
7	good job of reviewing them nor can the staff, I doubt.
8	MR. WACHOWIAK: So now, what the question
9	would be is in the PRA report how do we incorporate
10	whatever other level of detail that we have. So, for
11	example, in GDCS, I will throw that one out because I
12	know that that one, the design specification is
13	complete as far as we're concerned for this state. We
14	can build a model from that.
15	Would we take that complete design
16	specification document and submit that? That
17	typically has not ever been done from GE to submit the
18	specific design specifications.
19	CHAIRMAN APOSTOLAKIS: And this is because
20	if you submit it, it becomes part of the docket or
21	what is the problem?
22	MEMBER CORRADINI: I don't think they have
23	it.
24	CHAIRMAN APOSTOLAKIS: He says they are
25	there.

	280
1	MR. WACHOWIAK: That system
2	CHAIRMAN APOSTOLAKIS: For this system
3	they are there.
4	MR. WACHOWIAK: That system we have more
5	than what is in the DCD, but we don't specifically
6	have what type of manufacturer of squib valve or
7	anything like that isn't there yet, but we do have
8	more information about how it's or about
9	MEMBER SIEBER: About the range.
10	MR. WACHOWIAK: how it's operated, what
11	is the range, all those sorts of things that is beyond
12	what was determined to be the scope of the DCD. And
13	so this is what has always been hard for us to come to
14	grips with, and I think the staff also, is that the
15	DCD level of information isn't sufficient to build a
16	PRA model.
17	How do we transfer the information for the
18	PRA without saying without taking all of GE's
19	documents and sending them to the NRC? We have to
20	find a way to do that. The way that we attempted to
21	do that so far and since and because we have gotten
22	many questions, we have not yet succeeded in that, is
23	to take that additional design detail that we have and
24	describe it in the PRA document.
25	MEMBER SIEBER: So that's what I should
Į	

(202) 234-4433

	281
1	look for?
2	MR. WACHOWIAK: And so if there is
3	something that you need that's not in the DCD, you
4	would look in the PRA.
5	MEMBER SIEBER: Right.
6	MEMBER CORRADINI: In terms of design
7	detail necessary.
8	MR. WACHOWIAK: Necessary to support. And
9	what we are looking at is of the design detail that's
10	done at this point, does that support our position in
11	the PRA? In some cases, the answer is no. We just
12	hadn't decided that level of detail yet, because it's
13	something that would be done in a later stage of
14	design. And so we then have a choice to make.
15	Do we just model it in a bounding manner
16	that we can that anything can be supported or do we
17	say, no, we need it to be this way and we provide the
18	designers with the design requirement that says when
19	you add these details later, you will add that.
20	That's a requirement that you have to meet.
21	And we have done a combination of those
22	two things. There is some areas where we have said,
23	where we talk about RTNSS. Tomorrow, we have
24	specified from the PRA, we have specified to the FAPCS
25	engineer that he needs to add a parallel path to the
Į	

(202) 234-4433

282 suction from the suppression pool to the FAPCS pumps for the LPSI function. It was a single path before. We are making a design requirement that it's a double path. CHAIRMAN APOSTOLAKIS: Okay. I'm a little confused by the administrative part of all this. And the reason why I'm not interested in this really is because, as you are aware, of the last three full committees debated the issue of whether the PRA should

be part of the COL and if it is, how much? I mean, when it is updated should it be submitted and so on. There are apparently some legal grounds that if you submit something to the Agency's part of the public record, is that what is driving then this discussion?

I mean, why put the detail in the DCD rather than the PRA, for example? Is that a legal thing or is it just convenience? Is it the date sequence?

MEMBER CORRADINI: If you had it, would you put it there? I mean, let's take this question and reverse it. If you had it, would you have put it in the DCD at the time? MR. WACHOWIAK: No. MEMBER CORRADINI: Okay.

CHAIRMAN APOSTOLAKIS: Why not? Because

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

1

2

3

4

5

6

7

8

9

	283
1	that's what I' asking at this time.
2	MEMBER SIEBER: It was probably documented
3	in the PRA.
4	MR. WACHOWIAK: Well, it's not just that.
5	What goes in the DCD
6	CHAIRMAN APOSTOLAKIS: It's controlled.
7	It's a control document.
8	VICE CHAIRMAN SHACK: Let him answer the
9	question.
10	MR. WACHOWIAK: What does in the DCD for
11	the line description eventually is put into an FSAR.
12	And we all know or at least all of us that have done
13	PRAs for existing plants, the information in the FSAR
14	is not sufficient to do a PRA. So the design
15	description that goes in the DCD should be the same
16	level of description as an FSAR and nothing more. We
17	need more than that to do the PRA.
18	CHAIRMAN APOSTOLAKIS: But again, why not
19	put it in it? What's wrong with that? Is it just an
20	issue?
21	MR. WACHOWIAK: The FSAR then contains all
22	sorts of controls about how it can be changed.
23	CHAIRMAN APOSTOLAKIS: That's the issue.
24	That's a bigger issue.
25	MR. WACHOWIAK: We write, we try to write
I	I

(202) 234-4433

	284
1	things in the FSAR. The things that are there, we
2	really don't expect them to change.
3	CHAIRMAN APOSTOLAKIS: Okay. Now, you've
4	answered my question.
5	MR. WACHOWIAK: So now the design detail
б	that we need and those things that aren't expected to
7	change, are the things that are necessary to
8	demonstrate the design basis.
9	MEMBER SIEBER: Safety requirements.
10	MR. WACHOWIAK: Yes, the design from the
11	deterministic traditional viewpoint for those
12	analyses. That information is there and if you want
13	to change that information, that would be that goes
14	through this process when you have to do these things,
15	but you don't ever expect that information to change.
16	When we do the PRA
17	CHAIRMAN APOSTOLAKIS: When you do the
18	PRA, continue.
19	MR. WACHOWIAK: When we do the PRA, we're
20	not looking at we're not only looking at how the
21	equipment is supposed to perform. You can say it's
22	supposed to do this and then when you go you go and
23	you build it to do that. Well, the PRA also looks at
24	what happens if things don't do what the safety
25	analysis said. Then what's the likelihood that you
	1

(202) 234-4433

	285
1	are going to get into a core damage accident?
2	Some of those things aren't specified.
3	You know, you don't say how everything is going to
4	work under all conditions. You only say how it is
5	going to work under the conditions that it was
6	analyzed for.
7	CHAIRMAN APOSTOLAKIS: That's right.
8	MR. WACHOWIAK: We then have to go look at
9	how things are going to perform in conditions that may
10	not be so much like what was originally specified for
11	the equipment.
12	CHAIRMAN APOSTOLAKIS: So you are not
13	under no legal obligation to update the PRA and submit
14	it to the NRC?
15	MEMBER CORRADINI: No, I thought he just
16	said
17	MR. WACHOWIAK: That's right.
18	MEMBER CORRADINI: can I just?
19	CHAIRMAN APOSTOLAKIS: Yes.
20	MEMBER CORRADINI: Because I thought he
21	just said there are no legal obligations of the FSAR
22	and if there are, it's a task.
23	CHAIRMAN APOSTOLAKIS: The FSAR is
24	supposed to be
25	MEMBER SIEBER: Licensees have to update.
	I

(202) 234-4433

	286
1	CHAIRMAN APOSTOLAKIS: Yes.
2	MEMBER CORRADINI: Yes.
3	CHAIRMAN APOSTOLAKIS: That's the
4	difference.
5	MEMBER SIEBER: Okay. On the other hand,
6	you aren't allowed to change your plan as it's
7	described in the FSAR without telling members.
8	CHAIRMAN APOSTOLAKIS: Right.
9	MR. WACHOWIAK: Right.
10	MEMBER SIEBER: That's where the problem
11	is.
12	CHAIRMAN APOSTOLAKIS: Okay. So the PRA
13	is not under such legal constraints.
14	VICE CHAIRMAN SHACK: The FSAR is not a
15	design document at all. In fact, what is it is a
16	safety document. The FSAR, try to understand, say
17	that you have a BWR with three water pumps and you
18	want to know they are 100 percent capacity or 50
19	percent capacity.
20	MEMBER CORRADINI: They won't tell you.
21	MEMBER BONACA: They won't tell you. The
22	FSAR won't tell you that. The only way you refer it,
23	you go to a loss of feedwater and you look at what
24	they say regarding the accident surrounding it. They
25	say the LOCA was 120 seconds for one pump or two
I	I

(202) 234-4433

	287
1	pumps. It tells me
2	MEMBER CORRADINI: It just tells you not
3	to show the same cases made.
4	MEMBER BONACA: But that's maybe a fashion
5	doesn't give you success criteria for the PRA. So the
6	PRA so in the PRA, however, we want to know by
7	testament how much decayed heat you remove at 1.1.
8	There is different information.
9	CHAIRMAN APOSTOLAKIS: Okay. So the PRA
10	that we have now, that we have reviewed or we are in
11	the process of reviewing, that's a document that is
12	what? I mean, what's the legal status of that
13	document? You don't have to keep it up to date,
14	right?
15	MEMBER SIEBER: No.
16	CHAIRMAN APOSTOLAKIS: It has no legal
17	status even though it has been submitted to the NRC?
18	MEMBER CORRADINI: No.
19	VICE CHAIRMAN SHACK: There is no
20	regulation that says other than Part 52.
21	MEMBER CORRADINI: Okay.
22	CHAIRMAN APOSTOLAKIS: So what part
23	produce this? Part 52 we don't know what it's going
24	to say.
25	MR. WACHOWIAK: But the current Part 52,
	I

(202) 234-4433
	288
1	not the revision, the current version says we submit
2	it.
3	CHAIRMAN APOSTOLAKIS: Okay. And what
4	does that mean? That you also have to update it?
5	MR. WACHOWIAK: No. It just says we have
6	to submit it.
7	CHAIRMAN APOSTOLAKIS: You submit it once?
8	MR. WACHOWIAK: Once.
9	CHAIRMAN APOSTOLAKIS: At which time? Now
10	or
11	MR. WACHOWIAK: In certification.
12	CHAIRMAN APOSTOLAKIS: 2007?
13	MEMBER SIEBER: Design certification.
14	CHAIRMAN APOSTOLAKIS: Certification.
15	Just before you get this out.
16	MR. WACHOWIAK: So now, what the plan for
17	the design certification is is that we know that there
18	is going to be certain open items in the SER for ESBWR
19	at this point. There is some things that just can't
20	be closed on the time line that we have. Some things
21	will be left open. Many of the things that are going
22	to be left open are going to be associated with the
23	review of the PRA.
24	So as time goes up past here, we're going
25	to try to close most of those things up here, but as

(202) 234-4433

	289
1	time goes on, we'll be closing all of those until I
2	believe in 2010 or 2009. There is the final
3	certification with no more open items. And that's
4	when we will be done submitting PRAs and you will be
5	done reviewing PRAs and everything will be up to the
6	COLA applicants and holders to do what they want with
7	PRA.
8	CHAIRMAN APOSTOLAKIS: Very good. So that
9	is consistent.
10	MEMBER WALLIS: So when do we make the
11	hard input into this in the form of a letter or
12	something? Do we wait a year?
13	CHAIRMAN APOSTOLAKIS: We can write
14	internal letters whenever we please.
15	MEMBER SIEBER: I was writing one.
16	CHAIRMAN APOSTOLAKIS: If you believe that
17	there is an important issue now you want to raise?
18	MEMBER WALLIS: This seems to be a state
19	of flux now, it's so hard to know what to do.
20	CHAIRMAN APOSTOLAKIS: Well, no, no. If
21	we convince ourselves
22	MEMBER BONACA: I think what I would
23	suggest is that at this point we begin to fit some
24	expectation of what we would like to review. I mean,
25	I think that, you know, our intent shouldn't be the
ļ	

(202) 234-4433

	290
1	one reviewing every single cutset there is out there
2	in the PRA. We can do that and that's not the point
3	anyway.
4	CHAIRMAN APOSTOLAKIS: Yes.
5	MEMBER BONACA: But maybe to select a
6	number of specific issues, especially the one we're
7	discussing there about the passive system squib, for
8	example, that's a fundamental issue. I mean, you
9	know, because that's what's going to make the
10	difference in these plants and the previous plants.
11	CHAIRMAN APOSTOLAKIS: The Committee is
12	free to write as many letters as it wants.
13	MEMBER BONACA: Yes.
14	CHAIRMAN APOSTOLAKIS: There will be a
15	final letter on the whole design that will tell the
16	commission approve or not approve. Now, if we don't
17	feel that we have significant interest of the PRA, we
18	can wait until that time and say have it there and we
19	reviewed the PRA was okay. If there are significant
20	issues before then, the Committee is free to have a
21	full Committee meeting and write the letter.
22	MEMBER BONACA: Okay. That's fine at this
23	time.
24	MEMBER WALLIS: We can think of examples
25	of all these things which I have read here, I

(202) 234-4433

	291
1	dismissed on the sort of qualitative basis. There's
2	a discussion at the end of the paragraph that says we
3	don't think this is significant, so it's not modeled
4	in the PRA. Well, I have no real basis for knowing
5	whether or not that is a reasonable decision. I have
6	a lot of trouble with those kinds of paragraphs.
7	MEMBER BONACA: Those are, in fact
8	MEMBER WALLIS: They are all over the
9	place.
10	MEMBER BONACA: here to read, but we
11	should verify.
12	MEMBER WALLIS: But we can't verify.
13	MEMBER BONACA: Well, no, you can in some
14	cases. I found for the same thing in the shutdown
15	PRA I was reviewing. In many places this says it is
16	assumed that one part would be in what it assumes
17	is that it is being used many times. But then we'll
18	go back and look at what is assumed, that in order to
19	have that be true, you have to have two or three
20	independent failures, okay. So that gave me
21	sufficient comfort and, you know, the other cases, I
22	don't know what the answer is and we have to review
23	it. So some of that will have to be done in detail.
24	CHAIRMAN APOSTOLAKIS: Well, the issue, I
25	believe, is what Graham just raised. Is this
I	1

(202) 234-4433

292 1 important enough for us to write a letter on it or at 2 this stage we give this feedback to Rick and his 3 colleagues and then we see how it is resolved in the 4 future. Right. 5 MEMBER SIEBER: CHAIRMAN APOSTOLAKIS: So that seems to be 6 7 the decision. If we took, for example, 8 MR. WACHOWIAK: 9 some of the things, and I think where you may have 10 seen some of the things that we had qualitatively discounted was in Section 2 on the initiating events. 11 We have heard that comment from you and from 12 Okay. the staff and as part of this update process, we have 13 14 people assigned to go back and review all of those 15 things and provide either further justification or just modeling, you know. There is different ways of 16 17 handling it. So we take that feedback and we can 18 19 incorporate that in at this time. It gets more -- as 20 time goes out, it gets more and more difficult to 21 incorporate different things. 22 Well, I'll tell you MEMBER WALLIS: 23 another thing which is qualitative and this is Chapter 24 20, Adverse System Interaction. There is a lot of 25 discussion about that, but the conclusions seem to be

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	293
1	just sort of vaguely justified. And I didn't
2	wasn't very convinced, so how do I get more convinced?
3	MR. WACHOWIAK: On adverse system
4	interactions?
5	MEMBER WALLIS: Yes, let's just talk about
б	an example.
7	MR. WACHOWIAK: Well, I had a discussion
8	of that in the RTNSS presentation, but it's probably
9	not going to satisfy you.
10	MEMBER WALLIS: Well, I don't know what
11	you have.
12	MR. WACHOWIAK: But the reason is that
13	adverse system interactions are there are not there
14	because of the fundamental way of how you design the
15	plant. That comes from the details of how you
16	implement the design of the plant.
17	MEMBER WALLIS: Yes, yes.
18	MR. WACHOWIAK: And until we see the
19	details of how all of these different requirements are
20	implemented, we're still not sure if we're going to
21	even have any system interaction in this.
22	MEMBER WALLIS: Yes, okay.
23	MR. WACHOWIAK: And what I think is that
24	as we incorporate the details and find these things,
25	we can design so that we don't have any identified
l	I

(202) 234-4433

	294
1	adverse system interactions.
2	MEMBER WALLIS: Do we have to have faith
3	that that will happen?
4	CHAIRMAN APOSTOLAKIS: No, no, the next
5	question is then in this time line of the second one,
6	the middle one, where would we get informed?
7	MR. WACHOWIAK: On the
8	CHAIRMAN APOSTOLAKIS: In terms of
9	subcommittee meetings. We certainly have to have one
10	of the Level 2 work in the next, I don't know, we'll
11	discuss this tomorrow, month or two months. But then
12	do you see the Committee meeting again at some other
13	times there as you progress, you finally reach the
14	final letter?
15	MR. WACHOWIAK: I could see that. And if
16	we want to do that that way, yes. And when I'm
17	like I said, we are currently rebaselining the
18	schedule to ensure that we meet not only these
19	milestones but there are other milestones in the
20	project that all have to be met and it's an integrated
21	schedule for everything. When I have that completed,
22	that scheduling task is supposed to be completed by
23	next Friday, that's when the customers want it from
24	us, then I will be able to let you know what dates we
25	will have what done.
I	1

(202) 234-4433

	295
1	CHAIRMAN APOSTOLAKIS: Okay.
2	MR. WACHOWIAK: And then we can schedule
3	the meetings around that.
4	CHAIRMAN APOSTOLAKIS: Right. So well
5	anyway, the meeting, the subcommittee meeting on the
6	Level 2 has to be done in the next month or something.
7	MR. WACHOWIAK: Okay.
8	CHAIRMAN APOSTOLAKIS: But then somebody
9	there before the full revision, the question is when
10	will you be ready to have a subcommittee meeting, so
11	that it will be sufficient time for you, if there are
12	some issues that are raised to respond to before
13	October of '07? Sometime in June, July?
14	MR. WACHOWIAK: Yes, I'm thinking probably
15	in late June, early July.
16	CHAIRMAN APOSTOLAKIS: Okay.
17	MR. WACHOWIAK: Probably will be okay,
18	because we have changed our process for how we are
19	CHAIRMAN APOSTOLAKIS: Okay.
20	MR. WACHOWIAK: doing this.
21	CHAIRMAN APOSTOLAKIS: It sounds good.
22	MR. WACHOWIAK: The process that we used
23	before we were stuck. If we sent a Chapter 2 Rev 1 in
24	and then we later found something that we would have
25	liked to have done differently in that to address a
I	I

(202) 234-4433

	296
1	certain problem, maybe say in Chapter 11 or something
2	like that, because of the document control process
3	that we used at GE, we were stuck. We couldn't make
4	that change. We have initiated a different process
5	that will allow us to incorporate those things.
6	CHAIRMAN APOSTOLAKIS: Okay.
7	MR. WACHOWIAK: So even if you find
8	something in the stuff back here, in early July you
9	tell us that it needs done differently.
10	CHAIRMAN APOSTOLAKIS: Okay.
11	MR. WACHOWIAK: We can fix that.
12	CHAIRMAN APOSTOLAKIS: So we will.
13	MEMBER BONACA: You are doing the
14	analysis. You must interact with the designers?
15	MR. WACHOWIAK: Yes.
16	MEMBER BONACA: And so I think to any
17	proposal you make, you will never you will not
18	always get a yes. In some cases you never will,
19	right? I'm trying to understand, you know, when do
20	you think that the time is such that your feedback is
21	being taken, has been accepted and the design is
22	reasonably firmed up? I mean, that would be an
23	important point for us, I mean, to understand, you
24	know, what you are proposing or what you are
25	describing to us is being endorsed by the design team.
ļ	I

(202) 234-4433

	297
1	MR. WACHOWIAK: I don't think there is
2	there is nothing that I presented today that hasn't
3	been endorsed by the design team.
4	MEMBER BONACA: And you are not concerned
5	that something may be getting in your way?
6	MR. WACHOWIAK: I am concerned.
7	MEMBER BONACA: You are?
8	MR. WACHOWIAK: I am concerned and that's
9	why at GE our design control process includes PRA just
10	like any other discipline on any design changes.
11	MEMBER BONACA: Right.
12	MR. WACHOWIAK: I'm always concerned that
13	when people are making changes and doing things to
14	their systems that some thing that we had decided
15	early on might somebody might think is a place
16	where they can do some cost reduction or some place
17	where they can do some simplification.
18	MEMBER BONACA: Is there a day sometime in
19	2007 where you believe that you probably will have to
20	stop, I mean, or attempt to for that?
21	MR. WACHOWIAK: Well, if we remember back
22	from my earlier thing that the design continues to
23	evolve. From my earlier slide, the design is going to
24	continue to evolve all the way into and through
25	construction, because there are some pieces, some
I	1

(202) 234-4433

	298
1	details in the design that aren't going to be
2	specified up front and some of those things make a
3	difference in the PRA.
4	MEMBER BONACA: Sure.
5	MR. WACHOWIAK: Now, that said, for the
6	design or for the detail of the PRA that is needed for
7	a DCD or for a COL application, we have to come to
8	some kind of agreement that this is the level of
9	detail that we're going to have and everything in
10	there is either bounded or covered by a design
11	requirement that can be checked later. If you really
12	need to have that, like for example, we did a seismic
13	margins analysis to address seismic.
14	It doesn't give us any PRA numbers. But
15	we said that if we do this analysis and we have a
16	certain amount of margin, nearly everyone is confident
17	that when you do run the numbers, you will get
18	something that is acceptable. So the values that
19	would be typically, you would go out and determine
20	from a built system the high competence, low
21	probability of failure numbers. We set a requirement
22	for those that said they had to be at a certain level.
23	Those I know I've written in tier 2 and I
24	think they were they are going into tier 1, so that
25	would be those would be tier 1 items that says
	1

(202) 234-4433

	299
1	okay, you will go and you will check these systems to
2	make sure you have this much seismic margin. That way
3	you guys have a confidence now to know that when this
4	PRA is actually done by the site, you will get the
5	kind of answers that you would expect and it's not
6	going to be submitted at that time. It's just you
7	know that is going to be there.
8	MEMBER BONACA: You show these with that
9	graph that we are really already into the detail
10	design.
11	MR. WACHOWIAK: Some systems have started
12	the detail design. Others haven't.
13	MEMBER SIEBER: Right.
14	MEMBER WALLIS: Well, we talked about our
15	review of this, how about the staff review? Is the
16	staff sending you RAIs now?
17	MR. WACHOWIAK: Yes. Well, I don't know
18	if they are right now.
19	MEMBER WALLIS: We're going to hear about
20	that tomorrow?
21	MEMBER CORRADINI: Yes.
22	MR. WACHOWIAK: Yes, we'll hear it
23	tomorrow. I think we have gotten about
24	CHAIRMAN APOSTOLAKIS: For starters, the
25	presentation tomorrow?
Į	I

	300
1	MR. WACHOWIAK: Yes. You have 157 on the
2	PRA.
3	CHAIRMAN APOSTOLAKIS: So what I get from
4	this is that we will have two meetings at least until
5	October, right? Okay. All right.
6	MEMBER WALLIS: And it's awful late.
7	MR. WACHOWIAK: The last point I wanted to
8	make with this slide is we have made a commitment to
9	the staff that after this round with the PRA and we go
10	into DCD Rev 4 where we are closing open items that we
11	are not going to start to be doing staggered things
12	anymore. We have to adjust these schedules to allow
13	the PRA time to catch up with the things that can
14	change in the DCD before we commit to the next DCD
15	delivery.
16	CHAIRMAN APOSTOLAKIS: Okay, so we have
17	MR. WACHOWIAK: This should be the last
18	time where we do this staggered business.
19	CHAIRMAN APOSTOLAKIS: Okay. So it is a
20	good time to stop.
21	MR. WACHOWIAK: Yes.
22	CHAIRMAN APOSTOLAKIS: Thank you very
23	much. We'll see you tomorrow at 8:30.
24	(Whereupon, the meeting was concluded at
25	5:58 p.m.)
I	

(202) 234-4433