Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor Safeguards
Plant License Renewal Subcommittee

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Wednesday, February 8, 2006

Work Order No.: NRC-850

Pages 1-117

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	PLANT LICENSE RENEWAL SUBCOMMITTEE MEETING
6	+ + + +
7	WEDNESDAY,
8	FEBRUARY 8, 2006
9	+ + + +
10	The meeting was convened in Room T-2B3 of
11	Two White Flint North, 11545 Rockville Pike,
12	Rockville, Maryland, at 1:30 p.m., JOHN D. SIEBER,
13	Chair, presiding.
14	ACRS MEMBERS PRESENT:
15	JOHN D. SIEBER, Chair
16	MARIO V. BONACA
17	OTTO L. MAYNARD
18	WILLIAM J. SHACK
19	GRAHAM B. WALLIS
20	
21	
22	
23	
24	
25	
Į	I

		2
1	ACRS STAFF PRESENT:	
2	JOHN G. LAMB ACRS Staff Engineer	
3	<u>NRR STAFF PRESENT</u> :	
4	HANS ASHER	
5	GREG CRANSTON	
6	FRANK GILLESPIE	
7	MAURICE HEATH	
8	CAUDLE JULIAN	
9	P.T. KUO	
10	JIM MEDOFF	
11	SIKHINDRA MITRA	
12	BILL ROGERS	
13	JAKE ZIMMERMAN	
14	PROGRESS ENERGY STAFF PRESENT:	
15	LENNY BELLER	
16	TIMOTHY CLEARY	
17	MARK GRANTHAM	
18	MICHAEL HEATH	
19	JEFF LANE	
20	CHRIS MALLNER	
21	GARRY MILLER	
22		
23		
24		
25		
I	I	

		3
1	I-N-D-E-X	
2	AGENDA ITEM	PAGE
3	Opening Remarks	4
4	Staff Introduction	6
5	Brunswick License Renewal Application	8
6	A. Application Background	30
7	B. Description of Brunswick	9
8	C. Operating History	27
9	D. Scoping Discussion	31
10	E. Application of GALL	33
11	F. Commitment Process	43
12	SER Overview	51
13	A. Scoping and Screening Results	56
14	B. Onsite Inspection Results	65
15	Aging Management Program Review and Audits	72
16	Time-Limited Aging Analyses	85
17	Subcommittee Discussion	110
18		
19		
20		
21		
22		
23		
24		
25		
I		

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(1:31 p.m.)
3	OPENING REMARKS
4	CHAIRMAN SIEBER: This meeting will now
5	come to order. This is a meeting of the Plant License
б	Renewal Subcommittee. My name is John Sieber,
7	Chairman of the Plant License Renewal Subcommittee.
8	The ACRS members in attendance are Dr.
9	Graham Wallis and Dr. William Shack, Dr. Mario Bonaca.
10	To my right is John Lamb of the ACRS staff, who is the
11	designated federal official for this meeting.
12	Would you introduce yourself, please?
13	MEMBER MAYNARD: I'm the newest member of
14	the ACRS. I'm Otto Maynard.
15	CHAIRMAN SIEBER: Thank you.
16	The purpose of this meeting is to discuss
17	the license renewal application for the Brunswick
18	steam electric plant, units I and II. We will hear
19	presentations from the representatives of the Office
20	of Nuclear Reactor Regulation, the region II office,
21	and Carolina Power and Light Company.
22	The subcommittee will gather information,
23	analyze relevant issues and facts, and formulate a
24	proposed position and action as appropriate for
25	deliberation by the full committee during its meeting
l	I

(202) 234-4433

5
this week.
The rules for participation in today's
meeting were announced as part of the notice of this
meeting previously published in the Federal Register
on January 25th, 2006. We have received no written
comments or requests for time to make oral statements
from members of the public regarding today's meeting.
A transcript of the meeting is being kept
and will be made available, as stated in the Federal
Register notice. Therefore, we request that

1

2

3

4

5

6

7

8

9

erefore, we request that 10 11 participants in this meeting use the microphones 12 located throughout the meeting room when addressing the Subcommittee. Participants should first identify 13 14 themselves and speak with sufficient clarity and 15 volume so that they may be readily heard.

I would also ask that, particularly if you 16 17 make a statement or answer a question, that you make sure that you signed in on the logs in back of this 18 19 post here so that the transcribing stenographer knows 20 who you are and what your name is so that the 21 transcript may be accurate and complete.

22 We will now proceed with the meeting. And 23 I call upon Mr. P. T. Kuo of the Office of Nuclear 24 Reactor Regulation to begin.

> Thank you, Mr. Chairman. MR. KUO:

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	б
1	STAFF INTRODUCTION
2	MR. KUO: This is P. T. Kuo, the Deputy
3	Director of the Division of License Renewal. To my
4	right is Mr. Jake Zimmerman. He's the Branch Chief
5	for the License Renewal B Branch. And to my far right
6	is Mr. S. K. Mitra. He's the project manager for this
7	project for the staff review.
8	S. K. will be making the briefing for the
9	staff on the SER that we prepared. And Jake is going
10	to run the meeting today. We also have our inspection
11	team leader, Caudle Julian, from region II. He's here
12	to make a briefing to the staff on the inspection
13	results.
14	We also have all of the technical support
15	staff sitting here in the audience. They will be
16	ready to answer any of the questions you might have.
17	So, with that, I will pass it to Jake.
18	MR.ZIMMERMAN: Good afternoon. Again, my
19	name is Jake Zimmerman. I am the Branch Chief for
20	Branch B. That is the projects branch.
21	One additional person I would like to also
22	recognize is Dr. Ken Chang is here with us today. Dr.
23	Chang is now the Branch Chief for Branch C, which is
24	the Aging Management Audit Branch. That was the
25	branch that I used to have. Dr. Chang took over for
ļ	

(202) 234-4433

	7
1	me in January, and I moved over to Branch B.
2	Louise Lund, who could not be with us
3	today, is the other branch chief for the project side.
4	She has License Renewal Branch A.
5	Just so you all know the way we're
6	structured now, branch A will be all of the projects
7	for the applications that are under review. Branch B,
8	my branch, will have application reviews but also
9	infrastructure review. The GALL update, all the
10	license renewal documents that were recently updated,
11	infrastructure work will now fall under me. And Dr.
12	Chang will have the audit activities.
13	With that, I will turn it back over to
14	you, Chairman Sieber.
15	CHAIRMAN SIEBER: Do you want to introduce
16	the applicant?
17	MR. KUO: Yes. Now we want to turn the
18	presentation to the applicant. This is Brunswick.
19	Please take it over.
20	MR. MIKE HEATH: Thank you.
21	BRUNSWICK LICENSE RENEWAL APPLICATION
22	MR. MIKE HEATH: My name is Mike Heath.
23	And I am the license renewal supervisor for the
24	Brunswick plant. With me up here today I have Lenny
25	Beller, who is the Brunswick licensing supervisor;
I	

```
(202) 234-4433
```

	8
1	Mark Grantham, who is the design engineering
2	superintendent at Brunswick.
3	With us from the plant, we also have Tim
4	Cleary, who is the Director of Site Operations. From
5	the license renewal organization, we have Joe Donahue,
6	who is the Vice President of Nuclear Engineering;
7	Garry Miller, who is the Manager of License Renewal.
8	And from the Brunswick license renewal staff, we have
9	Chris Mallner, Jeff Lane, Mike Fletcher, and Ed
10	Williams.
11	We want to give you a little bit of
12	background on the Brunswick plant today, talk about
13	how we developed our application. To do that, we will
14	start off with a description of the Brunswick plant,
15	give you an operating history, talk about our current
16	plant status. Those three items will be handled by
17	Mr. Beller.
18	Then we will be discussing our application
19	background, get into our review methodology, discuss
20	how we apply GALL, and then have some discussion on
21	our commitment process.
22	So, with that, I will turn that over to
23	Mr. Beller.
24	B. DESCRIPTION OF BRUNSWICK
25	MR. BELLER: Good afternoon. As Mr. Heath
I	1

(202) 234-4433

	9
1	said, my name is Lenny Beller. I am supervisor of
2	licensing at Brunswick.
3	Brunswick is a dual-unit GE BWR 4 with a
4	Mark I containment. We are located in Southport,
5	North Carolina on the Cape Fear River. The Cape Fear
6	River is our ultimate heat sink.
7	MEMBER WALLIS: It's a year-round river?
8	There are no fluctuations of any significance in the
9	flow?
10	MR. BELLER: That's correct, sir. We are
11	a 218-inch vessel. So we're one of the smaller BWR-4s
12	with 560 fuel assemblies per unit. And we are a
13	hydrogen water chemistry plant.
14	MEMBER SHACK: Now, do you use noble
15	metal, too?
16	MR. BELLER: No, sir, hydrogen water
17	chemistry only.
18	MEMBER SHACK: Now, your license renewal
19	application doesn't commit you to use hydrogen water
20	chemistry, as I understand it, right?
21	MR. MIKE HEATH: No, sir. We are not
22	using hydrogen water chemistry as a commitment.
23	MEMBER SHACK: As a commitment.
24	MR. MIKE HEATH: We are a hydrogen water
25	chemistry plant.

(202) 234-4433

	10
1	MR. BELLER: At this time we were asked
2	some questions prior to the meeting regarding our
3	primary containment and recirc piping. And I would
4	like to turn it over to Mr. Grantham.
5	MR. GRANTHAM: Good afternoon. This is
6	Mark Grantham again. I am the superintendent of
7	design engineering.
8	Brunswick has a unique Mark I containment.
9	We are the only Mark I containment that actually has
10	the suppression-poor torus encapsulated in concrete.
11	The other sites have a freestanding torus that is
12	supported.
13	MEMBER WALLIS: Now, that torus is pretty
14	big. The thickness of that concrete in places is
15	quite remarkable, isn't it?
16	MR. GRANTHAM: That is correct. It's on
17	the order of three to four feet thick.
18	MEMBER WALLIS: Or even more in the
19	corners.
20	MR. GRANTHAM: Correct.
21	MEMBER WALLIS: Minimum is three to four
22	feet.
23	MR. GRANTHAM: Correct.
24	CHAIRMAN SIEBER: Now, the metallic part
25	of the torus acts as a liner, as opposed to a
I	I

(202) 234-4433

	11
1	structural member. Is that correct?
2	MR. GRANTHAM: That is correct. There is
3	a liner on the inside of the concrete that
4	CHAIRMAN SIEBER: Right.
5	MR. GRANTHAM: provides a
6	CHAIRMAN SIEBER: And the concrete itself
7	is the structural member?
8	MR. GRANTHAM: That's correct.
9	CHAIRMAN SIEBER: Okay.
10	MR. GRANTHAM: Any other questions
11	regarding specifically the Mark I containment?
12	MEMBER BONACA: Given the unique
13	configuration, I mean, how did you address the issue
14	of leakage from seals, the refueling seals?
15	MR. GRANTHAM: From refueling seals?
16	Well, we have observed no leakage from the refueling
17	seal. Again, there is a barrier of concrete that goes
18	directly against the containment liner.
19	MEMBER BONACA: That's why I was asking
20	the question. It's a unique configuration there.
21	MR. GRANTHAM: We have in the past
22	observed some corrosion between the concrete and
23	liner. That primarily occurred due to issues during
24	construction where construction debris was left in
25	place between the liner and the concrete at the
I	I

(202) 234-4433

	12
1	personal access hatch. There is actually a felt
2	coating between the liner in the concrete that during
3	construction became wet and when the concrete was
4	poured served as a mechanism to allow corrosion.
5	MEMBER BONACA: Okay.
б	MR. GRANTHAM: Due to the construction
7	with the liner and the concrete, whenever that
8	corrosion occurs, just the expansion of the corrosion
9	products provides bulging.
10	So our IWE program specifically looks for
11	bulging on the containment liner as a method for
12	identification of any type of corrosion between the
13	actual liner and
14	MEMBER WALLIS: How much bulging can you
15	detect?
16	MR. GRANTHAM: We actually go out with
17	straightedges. It is fairly visible.
18	MEMBER WALLIS: So you can detect what, an
19	eighth of an inch or something or less than that?
20	MR. GRANTHAM: Yes, eighth of an inch.
21	MEMBER WALLIS: Would that mean there is
22	an eighth of an inch corrosion behind it or more?
23	MR. GRANTHAM: Well, when you have
24	corrosion, the corrosion product expands quite a bit
25	more than the actual metal loss. So it does not take
I	I

(202) 234-4433

	13
1	a lot of metal loss to start the
2	MEMBER SHACK: Do you have a quantitative
3	feel for how much metal loss you can have before you
4	detect it from experience?
5	MR. GRANTHAM: No. Based on our
6	experience, particularly a couple of outages ago, we
7	had a bulging in the personnel access hatch. We did
8	not encroach it on min wall when we went in. We went
9	in and did UTs. Now, we did go in and do the other
10	MEMBER SHACK: Oh, that's what you do?
11	You come in and you do a UT from the back
12	MR. GRANTHAM: Correct.
13	MEMBER SHACK: to find out how much is
14	left?
15	MR. GRANTHAM: That is correct. And that
16	is fairly standard if we find bulging to go in and do
17	UTs so we know exactly what level of metal we have
18	there.
19	MEMBER SHACK: Now, do you do inspections
20	of the linear in the torus, too?
21	MR. GRANTHAM: That is correct. In the
22	error region, that is part of the IWE program. We do
23	go in and do inspections of that region.
24	MEMBER BONACA: So essentially from your
25	configuration, you don't feel that you have the
I	I

(202) 234-4433

	14
1	concern regarding leakage from the fueling seal?
2	MR. GRANTHAM: No, sir, we do not.
3	MEMBER BONACA: And that is something that
4	the staff has accepted, too?
5	CHAIRMAN SIEBER: On the other hand, large
6	concrete structures like this, another example would
7	be a large dry PWR-type containment. When you
8	construct that, the concrete cracks. And so there is
9	a pathway for ingress of oxygen to the inside of the
10	liner. And your liner is carved in steel, right?
11	MR. GRANTHAM: That is correct.
12	CHAIRMAN SIEBER: So you have an
13	opportunity for moisture. At least from the outside
14	in, you have an opportunity to get oxygen in there on
15	carbon steel. So it's a natural place for corrosion
16	to occur.
17	Do you do any kind of volumetric
18	examination of the liner? And if so, how do you do
19	it?
20	MR. GRANTHAM: No volumetric other than,
21	well, we do UTs for thickness measurement, no other
22	volumetric
23	MEMBER WALLIS: How thick is the liner?
24	MR. GRANTHAM: The drywell liner is
25	five-sixteenths-inch thick.
I	I

(202) 234-4433

	15
1	MEMBER WALLIS: Now, at half an inch or
2	MR. GRANTHAM: Suppression pool liner is
3	three-eighths of an inch. I will say the areas where
4	we have found degradation, we actually cut out a
5	portion of the liner and found the corrosion products
6	on the back side were, in fact, dry. And there was no
7	active corrosion that was going on there.
8	MEMBER WALLIS: So do you have a way of
9	predicting from any in-service examination that you
10	perform how much material you have left that can
11	corrode before you lose integrity of the torus or any
12	part of containment? Do you have a way to do that or
13	does your ISI program say it's good today and it was
14	good yesterday, but I don't know about tomorrow?
15	MR. GRANTHAM: Well, we do frequent
16	inspections. And, again, we do do ultrasonic
17	thickness measurements. We do have a minimum
18	thickness.
19	MEMBER WALLIS: Okay. That's sort of a
20	volumetric technique.
21	MR. GRANTHAM: Correct.
22	MEMBER WALLIS: Sort of.
23	MR. BELLER: Plus, anything that we find
24	in one unit, we will obviously take that operating
25	experience and go look in the opposite unit to make
ļ	I

(202) 234-4433

16 1 sure that that failure mode is not present there as 2 well. 3 MEMBER WALLIS: Okay. 4 MEMBER BONACA: So, to summarize, what I 5 hear is that whatever corrosion you have is historical, seems to be historical, --6 7 MR. GRANTHAM: Correct. 8 MEMBER BONACA: -- came in from the initial construction. 9 MR. GRANTHAM: That is correct. 10 MEMBER BONACA: And so I guess there 11 should be an objective of verification, I mean, as you 12 go forth, that you don't have any --13 14 MR. GRANTHAM: That's correct. Our IWE 15 is an ongoing program where we inspect program 16 essentially 100 percent degree ISI interval. 17 MEMBER BONACA: Now, should you have leakage from those seals -- and you said that you 18 19 don't, but should you have it, in that configuration, 20 you have no way for it to penetrate between the 21 concrete and the metal? 22 MR. GRANTHAM: I believe that is the case. 23 We have seen no evidence of that. 24 CHAIRMAN SIEBER: So your aging management 25 program for containment consists of doing in the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	future what you are doing today?
2	MR. GRANTHAM: That is correct. It is
3	implementation of our section 11 IWE and IWL programs.
4	MEMBER MAYNARD: When you found corrosion
5	through the bulging, did you typically just do the UT
6	and then monitor that in the future or did you cut it
7	out and repair it?
8	MR. GRANTHAM: We did well repairs in some
9	instances. We had actually one area that had gone
10	through while in the containment liner, where it was
11	a wet glove from construction was left between the
12	liner and the concrete. That area actually went
13	through while we cut out that area and replaced it.
14	That is correct. But where we have found them, where
15	they encroach on
16	MEMBER BONACA: What do you mean "went
17	through," I mean, like the roof?
18	MR. GRANTHAM: Through the liner. That's
19	correct.
20	CHAIRMAN SIEBER: Yes. So at that point,
21	you did not have containment integrity?
22	MR. GRANTHAM: We did do a test of the
23	through-walled area, a localized test up to
24	containment pressure, accident pressure. It did, in
25	fact, pass. That is correct.
	I

(202) 234-4433

	18
1	MEMBER BONACA: So you provided that.
2	CHAIRMAN SIEBER: Well
3	MEMBER WALLIS: This is just a wet glove?
4	MR. GRANTHAM: That is correct. The
5	design of this is there are Nelson studs welded to the
6	liner that go into the concrete. It appeared that a
7	glove was dropped during construction. And that
8	landed on one of the Nelson studs before the concrete
9	was actually poured.
10	MEMBER WALLIS: There is still a pretty
11	rapid corrosion rate replacing carbon steel. The
12	oxygen has got to get there from somewhere. The glove
13	doesn't provide the oxygen.
14	CHAIRMAN SIEBER: Well, this is an inertic
15	containment, right?
16	MR. GRANTHAM: That is correct.
17	MEMBER WALLIS: That's from the outside.
18	CHAIRMAN SIEBER: But the oxygen can
19	attack
20	MEMBER WALLIS: From the outside.
21	CHAIRMAN SIEBER: from the outside.
22	MEMBER WALLIS: Right. But there are
23	plenty of trucks driving around with chassis that are
24	not as thick as that that didn't corrode away.
25	They're subject to the elements. So this just seems
I	I

(202) 234-4433

	19
1	a rapid corrosion rate to me.
2	CHAIRMAN SIEBER: Well, there aren't very
3	many 60-year-old trucks driving around.
4	MEMBER WALLIS: There are some pretty old
5	trucks.
6	CHAIRMAN SIEBER: Okay.
7	MEMBER WALLIS: Well, it just seems a bit
8	surprising you've got that much corrosion just from a
9	glove. At least you fixed it.
10	MR. GRANTHAM: Are there any other
11	questions on containment?
12	CHAIRMAN SIEBER: No, but I think it's an
13	area where I need to and perhaps my colleagues need to
14	ponder that because it is a complex design. It's not
15	particularly amenable to a volumetric inspection. And
16	since it's made out of carbon steel subject to
17	corrosion because all of the essential elements of
18	corrosion are present
19	MEMBER BONACA: And the concern is that
20	you don't want to go through corrosion before you find
21	out.
22	CHAIRMAN SIEBER: Yes.
23	MEMBER BONACA: And so
24	CHAIRMAN SIEBER: And this design, to my
25	understanding, is unique in the industry.
ļ	I

	20
1	MR. GRANTHAM: That is correct.
2	CHAIRMAN SIEBER: No other containment,
3	Mark 1 containment, built like this. And so you can't
4	draw on the experience of another plant particularly.
5	Okay. I think unless other members have
6	questions
7	MR. GRANTHAM: Okay. There was one other
8	question about recirc piping replacement we're going
9	to cover as part of this.
10	CHAIRMAN SIEBER: All right. You can do
11	that.
12	MR. GRANTHAM: In the mid 1980s, we did
13	replace the recirc risers. We did have some IDCC that
14	went through. We had a number of welled overlays.
15	And we did replace those with the one-piece no-weld
16	construction riders.
17	CHAIRMAN SIEBER: Do you know what
18	material the replacement risers were made from?
19	MR. GRANTHAM: Do you remember, Chris?
20	MR. MALLNER: This is Chris Mallner.
21	I think those replacement risers were a
22	316 ng nuclear braid.
23	MEMBER SHACK: So your recirculation
24	headers, then, are still the original 304?
25	MR. GRANTHAM: That is correct.
	I

(202) 234-4433

	21
1	MEMBER SHACK: Do you have overlays on
2	them or IHSI, any kind of stress improvement, or it's
3	just the 304 header?
4	MR. GRANTHAM: Do you want to address
5	that?
6	MR. MALLNER: Again, this is Chris
7	Mallner.
8	Nothing specific was done, as far as I can
9	recall, with the headers. It was just basically riser
10	replacements. I think they did some mechanical stress
11	improvement, did some IHSI for the risers and around
12	the nozzles.
13	MEMBER SHACK: Okay. So you still have
14	augmented inspection, then, in the headers? You don't
15	have two means of mitigation on the header welds from
16	an 031 point of view?
17	MR. MALLNER: We still do the augmented
18	inspections.
19	Again, Chris Mallner.
20	MEMBER SHACK: We might as well bring up
21	the core shroud while we're here. The core shroud
22	says it's stainless steel. Is it ordinary
23	garden-variety stainless steel, 304, 316?
24	MR. GRANTHAM: It's 304 stainless steel.
25	MEMBER SHACK: So you don't need a
I	I

(202) 234-4433

22 high-strength material to provide this integrity? 1 2 It's not precipitation-hardened? I mean, it's 304. 3 MR. GRANTHAM: It's just straight 304 4 stainless steel. 5 MEMBER SHACK: Do you know what the stress load is on that? I mean, you're pushing this up near 6 7 vield. Is it within an ASME kind of code stress 8 limit? 9 MR. GRANTHAM: Chris, do you know? 10 MR. MALLNER: Garry Miller may want to address that. 11 My name is Garry Miller. 12 MR. MILLER: Ι am the Manager of License Renewal. I was project 13 14 manager when the shroud indications were diagnosed 15 back in the early '90s. 16 Your question is were the loads across the shroud when the --17 18 MEMBER SHACK: No, no. Across the tie 19 rods. 20 MR. MILLER: Across the tie rods. Well, 21 at low power, the actual weight of the structure above 22 it is actually forcing down on that, the actual seam 23 that actually had the majority of the indications in 24 that the clamps go across. 25 As power is raised and steam pressure is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	raised inside the shroud, there becomes an upward
2	force on it. So it changes during operation.
3	MEMBER SHACK: No. But there is a
4	pre-load on those rods, which takes it to
5	MR. MILLER: But we don't have rods. What
6	we have got is one joint that, actually, there was a
7	clamp across it where we EDMed holes through the
8	shroud above and below that weld location and actually
9	have bolted clamps across it and have changed. In
10	essence, we have replaced that weld joint with a
11	mechanical clamp across it, mechanical joint.
12	MEMBER SHACK: Oh, this is not one of
13	these tie rod joints?
14	MR. MILLER: We were the first. And the
15	design we have was one of a kind that preceded the
16	rest of the tie rod designs.
17	MR. MEDOFF: This is Jim Medoff of the
18	staff.
19	I asked an RAI to confirm that they did
20	not replace the original clamps with tie rods and
21	change their design. They confirmed that they still
22	are using the C clamps and the repair design.
23	MEMBER SHACK: Okay. So this C clamp is
24	bolted above and below the weld.
25	MR. MEDOFF: The C clamp should cover the
I	I

(202) 234-4433

	24
1	H-1 to 2 and 3 welds.
2	MEMBER SHACK: Welds.
3	MR. MEDOFF: That's correct.
4	MEMBER SHACK: Why?
5	MEMBER WALLIS: To react to a design by a
6	carpenter.
7	MEMBER BONACA: I just have a question I
8	want to ask just for information here. You know, we
9	talk about the shroud and the problems you have with
10	the shroud. That's operating experience.
11	When I was reading the application chapter
12	3, you know, under mechanical descriptions of the six
13	individual groupings of passive components, for each
14	one of them, for example, the reactor vessel and
15	reactor coolant systems, you provide operating
16	experience, a summary of it. And there I found a
17	description of the steam dryer cracking that you had
18	experienced or has been experienced actually be a
19	sister plant, I mean, and the erosion components, but
20	specifically you talk about flow orifices and pump
21	casings in the CRD system.
22	There is no mention there of any other
23	operating experience. Yet, throughout the
24	application, I found a lot of examples, including the
25	shroud, for example. That tells me that there is
I	I

(202) 234-4433

	25
1	additional operating experience.
2	What am I missing there? You use words
3	like as "This is the operating experience. No other
4	unpredicted aging effects were found." What does it
5	mean?
6	MR. GRANTHAM: Chris, do you want to take
7	that?
8	MR. MALLNER: I'll take it. Again, this
9	is Chris Mallner.
10	We do our operating experience review in
11	order to determine whether or not there is a
12	possibility that there is an aging effect that could
13	be happening at our plants that our normal aging using
14	our aging tools would not predict.
15	So if we review the operating experience
16	and we find that the operating experience would have
17	been predicted by the tools we're using in order to
18	predict aging effects, we say that those things are
19	the same.
20	MEMBER SHACK: So that's what we mean
21	MR. MALLNER: What we're looking for in
22	our operating experience is those things that would be
23	outside the bounds of our aging tool and would only be
24	predicted by operating experience.
25	MEMBER BONACA: So you really did not
ļ	I

(202) 234-4433

	26
1	experience, for example, erosion of components such as
2	pump casings and CRDs?
3	MR. MALLNER: That's correct. That was a
4	
5	MEMBER BONACA: Sister plant. Okay.
6	MR. MALLNER: This is Chris Mallner again.
7	No. That was a plant-specific thing. We
8	had gone in there and noticed there was some erosion
9	of a pump casing. They did a nickel-based alloy
10	overlay. We identified that from operating
11	experience. And we applied a one-time inspection
12	program to validate the efficacy of the repair.
13	MEMBER BONACA: Okay. Fair enough. Okay.
14	I understand now.
15	MR. MIKE HEATH: We'll then return to
16	operating history with Mr. Beller.
17	CHAIRMAN SIEBER: Okay.
18	C. OPERATING HISTORY
19	MR. BELLER: This is Lenny Beller.
20	Going back to operating history, unit 2
21	actually was licensed and began commercial operation
22	first. Commercial operation on unit 2 began in
23	November of 1995. And unit 1 followed in March of
24	1997. Current license expiration is September
25	CHAIRMAN SIEBER: '77 and '75.
I	I

(202) 234-4433

1MR. BELLER: Thank you very much. '75 at2'77. Current license expiration for unit 1 is3September 2016 and unit 2 in December 2014.4Our operating license thermal power has5changed over time. We were originally licensed to62436 megawatts thermal. In the mid '90s, we had to7take a stretch uprate of 5 percent to 105 percent of8original licensed thermal power.9We were licensed. We received our license10for that in November of 1996. It was a pressure11increase power uprate. So we implemented it in the12subsequent refueling outages. So we can do the plant13modifications that would support that.14In May of 2002, we received a license for15an extended power uprate. In our operating history	
 3 September 2016 and unit 2 in December 2014. 4 Our operating license thermal power has 5 changed over time. We were originally licensed to 6 2436 megawatts thermal. In the mid '90s, we had to 7 take a stretch uprate of 5 percent to 105 percent of 8 original licensed thermal power. 9 We were licensed. We received our license 10 for that in November of 1996. It was a pressure 11 increase power uprate. So we implemented it in the 12 subsequent refueling outages. So we can do the plant 13 modifications that would support that. 14 In May of 2002, we received a license for 	ē
4Our operating license thermal power has5changed over time. We were originally licensed to62436 megawatts thermal. In the mid '90s, we had to7take a stretch uprate of 5 percent to 105 percent of8original licensed thermal power.9We were licensed. We received our license10for that in November of 1996. It was a pressure11increase power uprate. So we implemented it in the12subsequent refueling outages. So we can do the plant13modifications that would support that.14In May of 2002, we received a license for	e.
 changed over time. We were originally licensed to 2436 megawatts thermal. In the mid '90s, we had to take a stretch uprate of 5 percent to 105 percent of original licensed thermal power. We were licensed. We received our license for that in November of 1996. It was a pressure increase power uprate. So we implemented it in the subsequent refueling outages. So we can do the plant modifications that would support that. In May of 2002, we received a license for 	÷e
 6 2436 megawatts thermal. In the mid '90s, we had to 7 take a stretch uprate of 5 percent to 105 percent of 8 original licensed thermal power. 9 We were licensed. We received our license 10 for that in November of 1996. It was a pressure 11 increase power uprate. So we implemented it in the 12 subsequent refueling outages. So we can do the plant 13 modifications that would support that. 14 In May of 2002, we received a license for 	e
7 take a stretch uprate of 5 percent to 105 percent of 8 original licensed thermal power. 9 We were licensed. We received our licens 10 for that in November of 1996. It was a pressure 11 increase power uprate. So we implemented it in the 12 subsequent refueling outages. So we can do the plant 13 modifications that would support that. 14 In May of 2002, we received a license for	e
8 original licensed thermal power. 9 We were licensed. We received our licens 10 for that in November of 1996. It was a pressure 11 increase power uprate. So we implemented it in the 12 subsequent refueling outages. So we can do the plant 13 modifications that would support that. 14 In May of 2002, we received a license for	e
9 We were licensed. We received our licens 10 for that in November of 1996. It was a pressure 11 increase power uprate. So we implemented it in the 12 subsequent refueling outages. So we can do the plant 13 modifications that would support that. 14 In May of 2002, we received a license for	e
10 for that in November of 1996. It was a pressure 11 increase power uprate. So we implemented it in the 12 subsequent refueling outages. So we can do the plant 13 modifications that would support that. 14 In May of 2002, we received a license for	e
11 increase power uprate. So we implemented it in the 12 subsequent refueling outages. So we can do the plant 13 modifications that would support that. 14 In May of 2002, we received a license for	
12 subsequent refueling outages. So we can do the plant 13 modifications that would support that. 14 In May of 2002, we received a license for	
<pre>13 modifications that would support that. 14 In May of 2002, we received a license for</pre>	
14 In May of 2002, we received a license for	-
15 an extended power uprate. In our operating history	
16 there, after receiving the license, since it was a	
17 constant power uprate, we could proceed with	
18 increasing power through our start-up test program.	
19 Unit 1 increased power to 113 percent of	
20 original rated in June of 2002 and then went to 120	
21 percent in April of 2004. So we're just now	
22 completing our full first cycle, refuel cycle, at the	
23 full 120 percent.	
24 MEMBER WALLIS: Did anything happen that	
25 was noteworthy after you went to high power?	

(202) 234-4433

28 1 MR. BELLER: We have some operating 2 experience --3 MEMBER WALLIS: The steam dryers worked 4 quite okay? 5 MR. BELLER: That's correct. And we have 6 a presentation that Mr. --7 MEMBER WALLIS: Within the scope of 8 license renewal? 9 MR. BELLER: That's correct. 10 MR. MIKE HEATH: Steam dryers are in the 11 scope. 12 Did you have to apply for MEMBER WALLIS: 13 containment over-pressure credit? 14 MR. GRANTHAM: Yes, we did. 15 MEMBER WALLIS: You did? 16 MR. GRANTHAM: That's correct. 17 MR. MIKE HEATH: We were a safety guide 1 plant with a zero. And we did apply and receive 18 19 increased pressure. 20 MR. GRANTHAM: We were required 3.1 psig of over-pressure. We got credit for 5 psig. And we 21 22 had --23 MEMBER WALLIS: For guite a long time? MR. GRANTHAM: Around 20-24 hours is what 24 25 sticks in my mind.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	29
1	MEMBER WALLIS: Around a day.
2	MR. GRANTHAM: Around a day.
3	MR. BELLER: Continuing on, unit 2
4	achieved 116 percent power in April of 2003 and 120
5	percent power in April of 2005. So we're coming up on
6	the first year of unit 2 on 120 percent power.
7	Current plant status, unit 1 is
8	MEMBER WALLIS: Your dryers are different
9	design from Dresden and Quad Cities, are they?
10	MR. BELLER: Yes, that's correct.
11	MR. GRANTHAM: That's correct. We have
12	the BWR slant hood dryer that has roughly a quarter.
13	For a given load, it has around a quarter of the
14	stresses of what you would encounter in the square
15	dryer hood.
16	MR. BELLER: Unit 1 is currently in its
17	15th operational cycle. Both units did transition to
18	a 24-month cycle in 1997. Currently unit 1 is at 100
19	percent rated thermal power. And we are going to
20	enter a refuel outage on March 4th of this year.
21	Unit 2 is in operating cycle 17 and,
22	again, transition to a 24-month cycle in '97. Unit 2
23	is also at 100 percent power. We do have one plant
24	issue. We have a white performance indicator, NRC
25	performance indicator, for unplanned power changes.
I	I

(202) 234-4433

	30
1	A. APPLICATION BACKGROUND
2	MR. MIKE HEATH: This is Mike Heath. I'll
3	give you a little discussion, then, on our application
4	background.
5	This application was submitted and
6	prepared using the class of 2003 format. We used the
7	2001 versions of the standard review plan and GALL and
8	the March 2001 version of NEI 95-10.
9	As we put this application together, we
10	built the application essentially using plant
11	calculations. The plant calculations are developed
12	using plant procedures for calculation development.
13	And we are fully compliant with our appendix B program
14	at Brunswick.
15	D. SCOPING DISCUSSION
16	MR. MIKE HEATH: We did our scoping. We
17	did scoping on a system basis, initially using the
18	UFSAR or design basis documents, and our docketed
19	correspondence. We then drill down to the component
20	level using our quality clash review from our
21	electronic database. That allowed us to scope right
22	down to piece parts or two components for our systems.
23	We also did focus reviews for regulated
24	MEMBER WALLIS: What I don't understand,
25	I noticed that light bulbs are in scope. It doesn't
I	1

(202) 234-4433

	31
1	refer to the shape of the drywell. But light bulbs
2	are in scope? I was amazed to see something like that
3	in the SER.
4	Light bulbs are a disposable item. Why
5	would they be in scope?
6	MR. MIKE HEATH: I'm not sure.
7	MEMBER WALLIS: Maybe it's the staff that
8	said this. So maybe I should ask them why light bulbs
9	are in scope. It just seemed very strange to me that
10	light bulbs
11	MR. MIKE HEATH: I don't recall putting
12	any light bulbs in, but
13	MEMBER WALLIS: Okay. Well, it's in the
14	SER, page
15	MR. MIKE HEATH: If we had a
16	non-safety-related system, for instance, that had a
17	component that was mounted on the control board. And
18	we would have brought that system in for the function
19	of having that switch on the main control board. I
20	would have to check on the light bulbs, though.
21	We did focus reviews for our regulated
22	events and for the non-safety-impacting,
23	safety-intended function. A couple of things that
24	came into scope because of that were the
25	non-safety-related steam dryers, which is based on
	I

(202) 234-4433

	32
1	industry OE for uprated plants, and our
2	non-safety-related drain, which is based on
3	plant-specific OE associated with some drain failures
4	we had that impact the safety-related equipment.
5	MEMBER WALLIS: Does this also affect some
6	of the service water, which is relied upon to cool
7	things which are supposed to work during an accident
8	but are not safety-related?
9	There are some heat exchangers and things
10	that service water works on. Did you bring them into
11	scope? Was that an example of something brought into
12	scope because of a non-safety-related system affecting
13	performance of safety-related?
14	MR. MIKE HEATH: Did you catch the
15	question?
16	MEMBER WALLIS: Did any of the service
17	water get brought into scope because of its effect on
18	safety-related systems?
19	MR. LANE: This is Jeff Lane with Progress
20	Energy.
21	We brought in fluid-containing systems in
22	areas that had safety-related components. So to the
23	extent that non-safety-related service water pipe was
24	in a building that contained safety-related
25	components, it was
I	

(202) 234-4433

	33
1	E. APPLICATION OF GALL
2	MR. MIKE HEATH: We addressed all of our
3	ISGs 1 through 20. This application was submitted to
4	the old GALL prior to the new GALL being approved.
5	Our aging management review, we used the
6	2003 table format. It's a nine-column table, which
7	then allowed us to align our line items with GALL. We
8	identified 34 aging management program. Of those,
9	eight are new to the Brunswick plant. And five are
10	considered plant-specific to Brunswick.
11	CHAIRMAN SIEBER: Before you leave this
12	slide, you say steam dryers are in scope. And
13	obviously you have had the equivalent of a 20 percent
14	EPU. What has the performance of the steam dryers
15	been under the increased power level? What
16	examinations have you made to determine if there is
17	cracking or an extension of preexisting cracking?
18	What measurements have you taken for things such as
19	vibration or unusual system responses that could
20	indicate that there were problems occurring with your
21	steam dryers?
22	MR. GRANTHAM: This is Mark Grantham
23	again.
24	In the outage before we actually achieved
25	our full 420 percent uprate, we did a full VT-1
	I

(202) 234-4433

	34
1	external inspection of our steam dryers. That was in
2	accordance with GE SIL 644, rev 1, which provide the
3	inspection criteria as well as BWR VIP 139.
4	CHAIRMAN SIEBER: VT-1 is a standard
5	visual, as opposed to an enhanced visual?
6	MR. GRANTHAM: That is correct. We did
7	find some minor cracking existing that was typically
8	IGSCC-type cracking, small.
9	CHAIRMAN SIEBER: Where?
10	MR. GRANTHAM: Six to eight-inch range.
11	We did do some modifications to the dryer based on the
12	recommendations of General Electric. That included
13	increasing the weld size on our cover plate. We have
14	a three-eighths-inch cover plate that had a
15	quarter-inch weld.
16	The dryers that failed after uprate, the
17	square hood dryers, had a thin, one-quarter-inch,
18	cover plate. We beefed up the welds on our cover
19	plate so that they would be three-eighths-inch. We
20	also added a center gusset to provide stiffening to
21	the outer hoods. We also increased the size of the
22	tie bars on the top of the dryer. Again, those
23	modifications were performed in March of 2004.
24	In April of last year this is one year
25	of operating at the full 120 percent power we came

(202) 234-4433

	35
1	down for a mid-cycle fuel bundle replacement outage to
2	do a leaking fuel bundle.
3	At that time, we went in and did a VT-1
4	inspection of the dryer repairs as well as the
5	indications that we had identified in the VT-1
6	inspection during the previous outage and found no
7	further degradation. So after one year operating
8	cycle at 120 percent, we didn't see any further
9	degradation.
10	Now, we do plan to repeat those
11	inspections. It will be, again, a full VT-1. It will
12	be external during our refueling outage, which starts
13	in March.
14	CHAIRMAN SIEBER: Do you have any
15	instrumentation installed that would tell you if you
16	had unusual or excessive vibrations coming from the
17	steam dryer?
18	MR. GRANTHAM: No, we do not. As a point
19	of reference, dryer loading is heavily influenced by
20	steam line velocity. Steam line velocity is a major
21	indication
22	CHAIRMAN SIEBER: Obviously the diameter
23	of the steam line.
24	MR. GRANTHAM: The Brunswick steam line
25	velocity after power uprate was 146 feet per second.
I	I

(202) 234-4433
	36
1	CHAIRMAN SIEBER: Okay.
2	MR. GRANTHAM: As a relative value, the
3	dryers that failed, the square hood dryers, those
4	steam line velocities, were well in excess of 200 feet
5	per second.
6	CHAIRMAN SIEBER: What's the diameter of
7	your steam line?
8	MR. GRANTHAM: Twenty-four-inch?
9	MR. BELLER: Twenty-four-inch.
10	CHAIRMAN SIEBER: And you had four?
11	MR. BELLER: That's correct.
12	MR. GRANTHAM: That correct. But the key
13	point is, even after uprate, our steam line velocities
14	were still well in the middle of the BWR fleet. For
15	example, our steam line velocities after uprate were
16	well below the steam line velocities of the failed
17	dryers before they uprated.
18	So from a vibration standpoint, given the
19	velocities we have, we don't believe that's an issue.
20	And, again, we have not instrumented those dryers.
21	CHAIRMAN SIEBER: And you have no
22	instrumentation to tell you whether it's happening or
23	not?
24	MR. GRANTHAM: That is correct. We are
25	doing the monitoring recommended by SIL, 644, which,
ļ	1

(202) 234-4433

	37
1	again, is looking at moisture carryover and looking at
2	conditions in steam lines.
3	MEMBER BONACA: Have you experienced any
4	equipment degradation or failures due to the power
5	uprate?
6	MR. GRANTHAM: We have seen some vibration
7	issues. We implemented our uprate in a two-phased
8	approach. We did some mods, came up to around 113
9	percent power on unit 1, operated a cycle, did mods
10	during the next cycle, and did the full uprate to 120
11	percent.
12	During that interim operating cycle, where
13	we were not at full power, we did have some cycling of
14	our turbine control valves. We were operating at a
15	non-optimum point. We did have some failures of our
16	EHC return lines that were connected to the control
17	valve and due to that cycling and vibration.
18	Now, that's an industry OE issue. It's
19	happened at non-uprate plants. We did replace those
20	lines with a flex connection. We also have had some
21	vibration issues on small socket well drain lines.
22	Again, that's an industry OE issue. We had failures
23	
24	CHAIRMAN SIEBER: On what, the main steam
25	system?
I	1

(202) 234-4433

	38
1	MR. GRANTHAM: This was actually around
2	our feedwater heaters.
3	CHAIRMAN SIEBER: Okay.
4	MR. GRANTHAM: But that's an industry OE
5	issue. We had failures on those lines before uprate.
6	So did uprate cause it? We attribute it to uprate.
7	And we went in and implemented some modifications to
8	install a more fatigue-resistant well configuration
9	for those socket wells.
10	CHAIRMAN SIEBER: But none of those are
11	safety-related?
12	MR. GRANTHAM: That is
13	CHAIRMAN SIEBER: None of them are in
14	scope?
15	MR. MIKE HEATH: That is correct.
16	MEMBER BONACA: Unit 2? You said unit 2
17	had a white on plant power changes. I mean, what
18	were the power changes related to?
19	MR. BELLER: The first power change
20	occurred in April of 2005. We can bring a slide up on
21	this so that you don't have to try to remember
22	everything I say here.
23	In April of 2005, we had a reactor feed
24	pump, too broad of a rector feed pump and peller that
25	failed. And, as a result, we had to reduce power to
ļ	I

(202) 234-4433

	39
1	60 percent to take that pump out of service and
2	facilitate repairs.
3	In June of 2005, unit 2, these are all
4	on unit 2 we experienced some debris loading on one
5	of our circ water intake pump traveling screens. And,
6	as a result, the pump tripped. And the operating crew
7	took a conservative action to reduce power to maintain
8	a vacuum in its desired range.
9	August of 2005, we had a dual unit
10	shutdown, another conservative action. We had
11	questions on our differential protection of our diesel
12	generators. And while we were resolving that issue,
13	we did take the units out of service because it was a
14	conservative action taken to declare the diesel
15	generators inoperable.
16	MEMBER BONACA: None of these seem to be
17	related to the power uprate.
18	MR. BELLER: November of 2005 we had three
19	separate instances of leaks in our condenser tubes in
20	the water boxes; actually, one water box, the 2A water
21	box. We are still assessing that as to its
22	applicability to uprate. We haven't had a chance to
23	enter the water box yet. So we have select causes.
24	But we haven't been able to validate our root cause
25	yet.
I	1

(202) 234-4433

	40
1	And then in December of '05, one of our
2	reactor recirc pumps tripped. We had a blown fuse in
3	the voltage regulation circuit. We do have a
4	supplemental inspection scheduled this month by the
5	senior resident at the Harris plant.
6	CHAIRMAN SIEBER: Well, the uprate will
7	give you increased exhaust steam flow from the
8	turbine,
9	MR. BELLER: That's correct.
10	CHAIRMAN SIEBER: which some licensees
11	have experienced increased condenser tube vibration
12	sometimes to the extent that the tubes actually touch
13	one another and wear.
14	Can you tell me where you had tube
15	failures in the condenser?
16	MR. GRANTHAM: This is Mark Grantham
17	again.
18	CHAIRMAN SIEBER: That gives you a clue as
19	to whether it's the exhaust velocity that is causing
20	it or not.
21	MR. GRANTHAM: I guess if you look at the
22	two units, we have had far more tube failures over the
23	years on unit 2 than unit 1. The tube failures we
24	have recently experienced, if you picture our two
25	water boxes, they're up at the top corners of the
	l

```
(202) 234-4433
```

	41
1	tubes.
2	CHAIRMAN SIEBER: Closest to the turbine
3	exhaust?
4	MR. GRANTHAM: That is correct.
5	CHAIRMAN SIEBER: You might want to think
6	about staking those two.
7	MR. GRANTHAM: Well, we retubed our
8	condenser in the mid '80s, and our tubes were pretty
9	heavily staked at that time.
10	CHAIRMAN SIEBER: What kind of tubes do
11	you have?
12	MR. GRANTHAM: They're titanium. And so,
13	like Lenny said, during the outage, that will be a
14	prime inspection point to go in and try to ascertain
15	what is happening there.
16	As an interim measure, we have gone in and
17	we have plugged the tubes along those periphery on the
18	outside.
19	CHAIRMAN SIEBER: Well, that will change
20	with inertia that can give you different vibration
21	modes, which may be helpful.
22	MR. GRANTHAM: But right now we really
23	need to get in and do an inspection to fully
24	understand what is going on there.
25	CHAIRMAN SIEBER: Okay.
ļ	1

(202) 234-4433

	42
1	MR. MIKE HEATH: We're done with
2	methodology. Any other questions on that? Well,
3	let's take a few minutes to talk about our
4	commitment-tracking process.
5	F. COMMITMENT PROCESS
6	MR. MIKE HEATH: Brunswick uses our
7	corrective action program to track off of it. And the
8	license renewal commitments are handled exactly the
9	same way.
10	The license renewal, we develop an
11	implementation plan for each of our commitments. And
12	the implementation plan lists each thing that we have
13	to do. So every procedure change, any new procedures,
14	new PMs, PM revisions all are contained in those
15	implementation plans.
16	And the actions that we are using to make
17	those changes are tied back to the corrective action
18	program assignment. Each of those actions has a due
19	date. Each of those actions has an owner.
20	In addition, we're developing a program
21	manual for license renewal for Brunswick. That manual
22	will have every requirement to comply with those
23	commitments. And we'll be using that to do periodic
24	assessments to assure that everything is being
25	completed in a timely fashion prior to the period of
	I

(202) 234-4433

	43
1	extended operation.
2	Any questions on commitments?
3	MEMBER MAYNARD: Your commitment-tracking
4	program or your corrective action program, once you
5	make a procedure or program change to meet your new
б	license condition, what ensures that it doesn't get
7	reversed later?
8	MR. BELLER: The commitment-tracking
9	program is modeled on the NEI guidance. And if the
10	procedure in its entirely is meant to meet the
11	commitment, that will be stated in the purpose
12	section. And then you'll reference the commitment in
13	the reference section.
14	If it's a section of a procedure, we'll
15	put an "R" in the left margin associated with that.
16	And it will say "R-1," for instance. R-1 will point
17	back to the reference where the commitment was made.
18	So not only would you have to do the
19	50.59. You have to go through the commitment change
20	process, which asks a lot of the same questions on
21	this that
22	MEMBER MAYNARD: It is flagged where it
23	would have to be evaluated before the change could be
24	made?
25	MR. BELLER: That's correct.
	1

(202) 234-4433

	44
1	MR. MIKE HEATH: That's correct.
2	Other questions on commitments?
3	(No response.)
4	MR. MIKE HEATH: Well, I would like to
5	conclude, then. A few comments concerning the new
6	audit process. We were not the first to go through
7	the audit process, but we had been through the old
8	audit process with our Robinson plant.
9	What we found with the new process is that
10	it was extremely helpful to us to have the opportunity
11	to have staff on site to talk to directly concerning
12	their issues and concerns.
13	We were able to resolve these issues and
14	concerns early on in the process, very early in the
15	process. And we think as a direct result of that, the
16	SER when it was issued was issued with no open items
17	and no confirmatory items.
18	So we were very pleased with it. We're
19	hoping it's working for you as well as we think it has
20	been working for us. Are there any other questions
21	for us?
22	MEMBER BONACA: I had some questions.
23	CHAIRMAN SIEBER: Go ahead.
24	MEMBER BONACA: I have a few questions.
25	One, it was in excessive medium voltage cables, not
ļ	I

(202) 234-4433

	45
1	environmentally qualified. You have a new program,
2	right, for this cable?
3	MR. MIKE HEATH: Yes.
4	MEMBER BONACA: Now, one thing I noticed
5	is that you do inspect manholes at least every two
6	years
7	MR. MIKE HEATH: Yes, sir.
8	MEMBER BONACA: to remove the water if
9	you find it. Is it all you do or do you do
10	MR. MIKE HEATH: A water mitigation
11	MEMBER BONACA: Yes. Do you have any
12	initiative to prevent recurrence of accumulation of
13	water?
14	MR. MIKE HEATH: What we're doing on water
15	mitigation for our manholes is the manholes that we
16	inspect are inspected based on our experience in water
17	accumulation.
18	So the idea is we are inspecting those and
19	finding that the water is below the cable. Then we're
20	maintaining that inspection or increasing it or making
21	it longer before finding, in fact, that it has
22	impacted the cable. Then the inspection gets a sooner
23	frequency. So the idea is to make sure that the water
24	doesn't get up to the cables.
25	So, to my knowledge, I'm not sure exactly
ļ	I

(202) 234-4433

	46
1	what the frequencies are, but most of these
2	frequencies are much sooner than two years. And we'll
3	adjust those depending on what we find.
4	MEMBER BONACA: Okay. But, I mean, your
5	objective is not to have the cable wetted?
6	MR. MIKE HEATH: That's correct. Our
7	objective is to have cable not be wetted when we find
8	it during the inspection.
9	MEMBER BONACA: Okay. So you deal with it
10	by frequency of the inspection?
11	MR. MIKE HEATH: That's correct.
12	MEMBER BONACA: You have no other means?
13	Because this is part of your preventive action
14	program. And so I thought that you may have some
15	initiatives to prevent water from accessing the cable
16	probably.
17	MR. MIKE HEATH: Well, we do do some
18	things associated with that.
19	MEMBER BONACA: Okay.
20	MR. MIKE HEATH: For instance, there is a
21	little catch bowl on the covers of the manholes. But
22	what we're finding when we do go inspect them is the
23	water is not up over the cables.
24	MR. BELLER: In addition, if we did find
25	an unexpected condition, we would enter into the
I	I

(202) 234-4433

47 1 corrective action program, do an investigation, and 2 corrective actions would come out to address. And it 3 may be a PM frequency increase. 4 MEMBER BONACA: Another question I had was 5 regarding the flow accelerator corrosion problem. There was a discussion in the ACRS regarding piping 6 7 with super heated steam, essentially noting the 8 problem. Okay? 9 But then there was a discussion of piping 10 with greater than 99.5 percent quality but still some moisture there. And for it, you do not perform 11 inspection for that. 12 MR. MIKE HEATH: Jeff? 13 What we did was to evaluate 14 MR. LANE: 15 that at the very low steam levels, we haven't seen a 16 problem to that effect. 17 MEMBER BONACA: Okay. 18 MR. LANE: So we're making our program 19 parameters as to the new revisions. 20 MEMBER BONACA: Which is okay to me, but you have, first of all, got some verification that you 21 22 have no problem, right? 23 MR. LANE: Yes. 24 MEMBER BONACA: So you have measured some 25 locations and must be looking at them?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	48
1	MR. LANE: Yes.
2	MEMBER SHACK: Let me just go back. The
3	new EPRI guidelines would have you include those
4	within the scope of the program?
5	MR. LANE: This is Jeff Lane.
6	The new EPRI guidelines I believe say
7	super heat conditions, basically. And the guidelines
8	that we're operating under I believe are 99.5 percent.
9	So that's the delta that we're talking
10	MEMBER BONACA: I just had the curiosity
11	more. I wasn't familiar. There is a discussion of
12	TLAAs regarding the fuel pool girder, tension loss of
13	prestress. What is the design basis for that system?
14	I mean, I was wondering. I understand
15	you're measuring the tension in the cables and then
16	provide correction action in case you have loss of
17	tension.
18	I was wondering about fire. Is there a
19	design basis dealing with fire issues below these
20	girders or not? I was just curious.
21	MR. GRANTHAM: None that I'm aware of.
22	MEMBER BONACA: Okay. No. I understand
23	that concrete is a pretty good protector of steel, but
24	I just wondered if there was probably was not a
25	factor other than the design basis, I guess.
I	1

(202) 234-4433

	49
1	MR. MIKE HEATH: Oh, no. We didn't
2	address it.
3	MEMBER BONACA: All right. That was just
4	a curiosity. And I'm done.
5	CHAIRMAN SIEBER: Okay. Anyone else have
6	any questions that they would like to ask the
7	applicant at this point?
8	(No response.)
9	CHAIRMAN SIEBER: And I presume you have
10	concluded your presentation.
11	MR. BELLER: We have concluded our
12	presentation. Thank you.
13	CHAIRMAN SIEBER: Okay. I think it's
14	appropriate that we take a break. And I think a
15	15-minute break would be about right. If you could
16	come back at 20 minutes to 3:00? At that time we'll
17	listen to the staff's presentation.
18	(Whereupon, the foregoing matter went off
19	the record at 2:25 p.m. and went back on
20	the record at 2:40 p.m.)
21	CHAIRMAN SIEBER: We will come back to
22	order.
23	MR. KUO: Mr. Chairman, S. K. Mitra, the
24	project manager, will lead the staff presentation with
25	assistance by Mr. Maurice Heath.
	I

(202) 234-4433

	50
1	CHAIRMAN SIEBER: Thank you.
2	<u>SER OVERVIEW</u>
3	MR. MITRA: Good afternoon.
4	CHAIRMAN SIEBER: Good afternoon.
5	MR. MITRA: I am S. K. Mitra. I'm the
6	project manager for Brunswick steam power electric
7	plant units I and II license renewal application.
8	To my right is Mr. Maurice Heath. He is
9	a project manager also. He helped me prepare the SER
10	and issue it. And he will present the TLAA section of
11	the presentation.
12	CHAIRMAN SIEBER: Okay.
13	MR. MITRA: I also have Mr. Caudle Julian,
14	the lead inspector from region II, who will present
15	the inspection done by region II. Mr. Greg Cranston.
16	He was here. He will be here. He was the team leader
17	for the audit. And if you have any questions, he can
18	answer that. And also present in the audience are the
19	technical reviewers who contributed to the SER to
20	answer any question that may arise.
21	Next. These are the subjects which we
22	will cover during the presentation. The LRA, the
23	license renewal application, is submitted by letter
24	dated October 18, 2004. And the applicant already
25	described about their boiling water reactor, Mark I
I	I

(202) 234-4433

	51
1	design containment.
2	The plant is located at the mouth of the
3	Cape Fear River in the Brunswick County, North
4	Carolina, two miles north of Southport, North
5	Carolina. Unit 1 expires, license, on September 8,
6	2016; and unit 2, which was started earlier, December
7	27, 2014. And applicant requested an operating
8	license extension for 20 years.
9	Each unit generates about 2,923 megawatt
10	thermal, 1,007 megawatt electrical. That includes 20
11	percent extended power uprate. And, as applicant
12	described before, the five percent power uprate was
13	approved by NRC on November 1996. An additional 15
14	percent was extended on May 2002.
15	Again, I am emphasizing the steam dryer
16	within the scope of license renewal. And applicant
17	committed to review plant and industrial operating
18	experience relevant to aging effects caused by
19	operation at power uprate. The evaluation will be
20	submitted to NRC review one year prior to the period
21	of extended operation. And that's reflected on
22	commitment number 31.
23	This commitment was made in response to
24	ACRS letter of September 16, 2004 on license renewal
25	application of Dresden/Quad Cities.

(202) 234-4433

	52
1	The SER issued on December 20, 2005. And
2	it doesn't contain any open or confirmatory items. I
3	stop right there. The reason no open or confirmatory
4	items was not that easy on applicant. Staff and
5	applicant had numerous dialogues. If you see, we had
6	174 RAIs via 4 letters. And we had 39 audit questions
7	requiring supplements. And we had numerous dialogues
8	by meeting face to face and conference call.
9	And I have to thank both sides. Applicant
10	and the staff showed a lot of patience and
11	understanding to resolve all the issues raised by RAIs
12	and audit questions.
13	CHAIRMAN SIEBER: A hundred and
14	seventy-four is compared to other previous
15	applications, pretty small number.
16	MR. MITRA: It's a small number. And
17	audit questions, we had 100 in total. And 39 need
18	response under alternate information because there is
19	a change. Compared to what recent count, it's very
20	insignificant.
21	ACRS has three licensing conditions. And
22	these are the usual licensing conditions under each of
23	the previous applications.
24	MEMBER SHACK: The aging management
25	programs and BWRs must be in a sense more consistent
I	I

(202) 234-4433

	53
1	since they all kind of followed the VIP program.
2	There is I would think a lot of standardization that
3	may not be in the other
4	MR. MITRA: If you are asking that
5	question because the RAIs are smaller, it's not true
б	because what I heard from other BWR plants that are
7	being reviewed right now, the questions
8	MEMBER SHACK: Are still
9	MR. MITRA: Higher. So I have to assume
10	the application was better than most other BWRs.
11	Through the review, three items that we
12	brought into scope are switchyard breakers; service
13	water intake structure fan, dampers, bird screen; and
14	condensate storage tank piping credited for SBO. I
15	will describe this while I go further in the slide.
16	The NRC review process is usual. We do
17	scoping and screening methodology audit. We go. We
18	went there to the plant to do consistency with GALL
19	audits two times: AMPs, aging management program; and
20	aging management reviews.
21	The technical staff, the portion that is
22	not consistent with GALL, the technical staff did
23	in-house safety review. And we had regional
24	inspection, which contains scoping and screening
25	inspection and aging management program inspection.
I	I

(202) 234-4433

	54
1	And Caudle will elaborate on that later on.
2	This is the time line we had when we went
3	to the site. You see the GALL audits are done right
4	in the beginning, within a couple of months, three
5	months after the application and then scoping and
6	screening methodology audit. And then we had last,
7	but not the least, the regional inspections.
8	On section 2, the structural components
9	subject to aging management review, we have section
10	2.1 had scoping and screening methodology. Staff
11	audit and review concluded the applicant's methodology
12	satisfies the rule pursuant to 10 CFR 54.4(a) and 10
13	CFR 54.21.
14	Section 2.2, "Plant Level Scoping
15	Results," staff identified no omission of systems and
16	structures within the scope of the license renewal as
17	defined by 10 CFR 54.4 criterion.
18	A. SCOPING AND SCREENING RESULTS
19	MR. MITRA: Section 2.3, "Scoping and
20	Screening Results of Mechanical Systems," as usual in
21	other applications, we had reactor vessel, internals,
22	reactor coolant system. We have engineered safety
23	features. We have auxiliary systems. And we have
24	steam and power conversion.
25	What is new is this is the first time
I	

(202) 234-4433

	55
1	staff have reviewed balance of the plant scoping and
2	screening review in a two-tiered process. The staff
3	presented this concept to ACRS full committee on March
4	4th, 2005. And I guess they got the blessing and
5	explained the review process at that time.
6	Two-tiered process, two-tier scoping
7	review based on screening criteria of safety
8	importance/risk significance, systems susceptible to
9	common cause failure of redundant trains, operating
10	experience indicating likely passive failures, and
11	previous license renewal application review experience
12	of omissions.
13	The tier 1 review actually has the screen
14	and review the license renewal application and FSAR
15	and identifies certain systems, samples certain
16	systems for inspection. And we will cover that there
17	are three systems that were referred to for
18	inspections during the written inspection.
19	In tier 2 review, which is more detailed,
20	they go through the boundary drawings, other licensing
21	basis documents, such as plant, you know, relief
22	request and all of this. And they look at, of course,
23	the application in FSAR.
24	There are 62 mechanical systems. And out
25	of that, 39 are the balance of the plant, most
I	I

(202) 234-4433

	56
1	auxiliary and steam and power conversion systems. Out
2	of that 39, 15 balance of the plant systems selected
3	for tier 1 review. And 24 are selected for tier 2
4	review. The rest of 23 mechanical non-balance of the
5	plant systems are RCS, engineered safety features,
б	some auxiliary systems, continue to receive tier 2
7	review. And obviously electrical and structure
8	receive tier 2 review.
9	MEMBER WALLIS: Now I've got a question
10	about something here.
11	MR. MITRA: Okay.
12	MEMBER WALLIS: When you're figuring out
13	what is in scope, just take an example. There is a
14	heat exchanger for the fuel pool cooling system. It's
15	got tubes in it. The heat is removed, and it goes
16	into the reactor-building closed water cooling system.
17	The only thing that is in scope is the
18	shell and access cover, channel head and access cover.
19	So it looks as if what you are worried about is the
20	outside of this heat exchanger. You don't want to
21	leak into the environment. That's presumably because
22	you don't want water from the fuel pool cooling system
23	to go out into the building.
24	But doesn't it matter if it goes from that
25	into the service water system and through the tubes?
I	1

(202) 234-4433

	57
1	And doesn't it matter if the heat isn't transferred?
2	Why is only the shell in scope? Why isn't the
3	internal function also in scope in some way?
4	MR. MITRA: My first crack will be the
5	shell is in scope because it is giving you the
6	boundary at the outside. And why it's not out inside
7	of the shell is not I don't have the answer. Any of
8	us
9	MEMBER WALLIS: So you don't care if the
10	water goes into the building, into reactor building
11	closed cooling water system. It doesn't matter. But
12	it does matter if it goes into the building. It just
13	seems a bit odd to break it up that way. It says
14	something about a fluid-retaining boundary. But the
15	tubes also retain the fluid, don't they?
16	But, anyway, I just raise that because I
17	am a little puzzled by how you decide what is and is
18	not in scope. In some of these things, the condensate
19	cooler tubes are in scope. And then the tubes are not
20	in scope for this other heat exchanger. I'm so
21	puzzled by how you decide when the tube is in a heat
22	exchanger and scope and when they are not.
23	MR. MITRA: Bill Rogers will address the
24	question.
25	MR. ROGERS: I'm Bill Rogers from Division

(202) 234-4433

	58
1	of Engineering.
2	I did the scoping and screening
3	methodology audit. I can't answer the particulars for
4	that piece of equipment, but just in general, to
5	determine whether the item would be in scope or not,
б	it would have to fall into one of the three
7	categories: (a)(1), (a)(2), or (a)(3). And that
8	would be based on the intended function of the item.
9	If it had a safety-related function, it
10	would be in scope for (a)(1). And if it was a
11	non-safety-related item that supported the function of
12	another safety-related system, it would be in scope
13	for that purpose. But that's the beginning for the
14	determination of whether it's in scope. I can't speak
15	to the specific review of that component.
16	Does that help address your question?
17	MEMBER WALLIS: Is there something called
18	a pressure-retaining boundary that uses a criterion,
19	then?
20	MR. ROGERS: No.
21	MEMBER WALLIS: That's what comes up in
22	the write-up. It talks about pressure-retaining
23	boundaries. Well, maybe this is too complicated.
24	MR. KUO: The pressure-retaining boundary,
25	Dr. Wallis, is one that actually advanced to the
ļ	

(202) 234-4433

	59
1	category (a)(1). That is the safety-related structure
2	systems.
3	MEMBER WALLIS: What you really mean is a
4	fluid-retaining boundary, isn't it? Pressure isn't
5	something you retain. You retain the fluid and
6	something that keeps the fluid from getting out into
7	somewhere else. So that's why I wondered why tubes
8	aren't also.
9	But, anyway, let's move on. I'm just
10	puzzled by this.
11	CHAIRMAN SIEBER: Maybe I can add a little
12	something to it. Being a safety-related component
13	means that it mitigates one of the design basis
14	accidents, of which loss of fuel pool cooling is not
15	one.
16	Typically in a fuel pool cooler, the
17	service water side of it is at a higher pressure than
18	the pool water. So if the tubes fail, the water leaks
19	into the pool, as opposed to the pool leaking out to
20	the service water and then to the environment.
21	So from the standpoint of being able
22	MEMBER WALLIS: That's not too good
23	because the pool then overflows, then?
24	CHAIRMAN SIEBER: Yes. On the other hand,
25	you know, that's an easier thing to control than
I	I

(202) 234-4433

	60
1	trying to cool the pool and having the pool water
2	escaping to the river. And that's why they designed
3	it in that kind of a fashion.
4	So it's not unreasonable, at least in my
5	way of thinking of things, to say that the fuel pool
б	cooling heat exchanger is not safety-related because
7	it doesn't relate to the design basis accidents.
8	On the other hand, it's important from the
9	standpoint of preserving the service water system,
10	which is used for other mitigating equipment. And you
11	can still perform the function, even if some tubes
12	leak. You know, it takes a long time to heat up the
13	pool anyway.
14	MEMBER BONACA: The licensee, is this a
15	correct evaluation that Mr. Sieber made?
16	MR. LANE: I'm Jeff Lane with Progress
17	Energy.
18	The fuel pool heat exchangers are in scope
19	for special interaction. RBCCW, our closed cycle
20	cooling water system, doesn't perform any
21	safety-related cooling functions at Brunswick. So
22	we're concerned with the fuel pool heat exchangers
23	basically not leaking into the reactor building
24	environments.
25	Should an RBCCW tube leak, interaction
I	I

(202) 234-4433

	61
1	between RBCCW and fuel pool cooling would not cause an
2	adverse interaction to the environs. It would be
3	something we would have to address in the course of
4	plant operation but not an issue that would affect
5	license renewal scoping.
6	CHAIRMAN SIEBER: One cause of an accident
7	or preventive mitigation of a design accident,
8	MR. LANE: Right.
9	CHAIRMAN SIEBER: design basis
10	accident.
11	MEMBER BONACA: You get more than a
12	passing grade.
13	CHAIRMAN SIEBER: Pardon?
14	MEMBER BONACA: You deserve more than a
15	passing grade. You are correct.
16	CHAIRMAN SIEBER: I'm going to write that
17	down. Okay.
18	MR. MITRA: We mentioned before that
19	condensate storage tank piping credited for SBO
20	brought into the scope. There's some pipes that were
21	not in scope. The condensate storage tank was in
22	scope, but the piping was not. And due to mechanical
23	system review, there are some RAIs that brought into
24	the piping in scope.
25	And also service water intake structure
	I

(202) 234-4433

	62
1	fan, the bird screen, and damper housings are brought
2	into scope. And this is also through a RAI process.
3	MEMBER WALLIS: A fan is in scope?
4	CHAIRMAN SIEBER: Yes.
5	MR. MITRA: It is.
б	MEMBER WALLIS: What has that got to do
7	with safety?
8	CHAIRMAN SIEBER: It's service water
9	safety-related.
10	MR. MITRA: The service water
11	infrastructure is in scope. So that's why the fan,
12	the screen, and the damper housing are brought into
13	scope.
14	MEMBER WALLIS: Well, okay.
15	CHAIRMAN SIEBER: It is better to be in
16	scope than out of scope.
17	MR. MITRA: This is 2.4, scoping and
18	screening of structures. And there are two types of
19	structures. One is containment. Another is class I
20	and in-scope structures and buildings. There are 15
21	of them.
22	Section 2.5 has scoping and screening as
23	a result of electrical and instrumentation control I&C
24	systems. And the guidance contained in 95-10,
25	appendix B was used to develop a list of electrical

(202) 234-4433

	63
1	I&C community groups.
2	Dr. Wallis, your question about the light
3	bulb was in that NEI 95-10, appendix B had listed it
4	as scope, but it's screened out because of its active
5	components. So there is no aging management review on
б	that.
7	MEMBER WALLIS: Oh, it is an active
8	component?
9	CHAIRMAN SIEBER: Yes.
10	MR. MITRA: The switchyard breakers at 230
11	kv gas-filled power circuit breakers, respresent the
12	first breakers for the SBO recovery path that are
13	brought into scope of the license renewal process.
14	In summary, the applicant scoping
15	methodology meets requirements of 10 CFR part 52. The
16	scoping and screening results as amended included all
17	system structural components within the scope of
18	license renewal and subject to aging management
19	review.
20	And now I give the floor to Caudle Julian
21	for licensing and inspection.
22	CHAIRMAN SIEBER: Welcome.
23	MR. JULIAN: Hello. Thank you.
24	B. ONSITE INSPECTION RESULTS
25	MR.JULIAN: My name is Caudle Julian from
I	

(202) 234-4433

	64
1	NRC region II in Atlanta. And I have led the team
2	inspections for license renewal for all of the region
3	II plants, here today to talk about the Brunswick
4	inspection that we did last June.
5	The slide you see up there now lists the
6	topics we are going to talk about. If we can click
7	over to the next one? It's one you have seen before,
8	to tell you again that we have a manual chapter,
9	25-16, and an inspection procedure, 710.02, that we
10	follow for these inspections. We develop a
11	site-specific inspection plan for each one. And they
12	are scheduled to support NRR's review schedule.
13	We have two portions to our inspection,
14	scoping and screening inspection, area, which has the
15	objective to confirm that the applicant has brought
16	the right stuff into scope. And S. K. has portrayed
17	it here as the first half of the inspection was that.
18	It was probably less than half of a week of effort
19	this time.
20	We were using our new procedure, where we
21	have revised 710.02 to reduce the amount of resources
22	that we put on scoping and screening. We have talked
23	about that before. And we will focus primarily on
24	(a)(2) situations, non-safety equipment that can
25	affect safety.
I	1

(202) 234-4433

65 1 We took from NRR's request to look at 2 three of their tier I systems that they had questions about. And you can see they are non-safety systems: 3 4 heat tracing, moisture separator reheater drains and 5 reheat and heater drains and miscellaneous vents and And those systems are, of course, out in the 6 drains. 7 balance of plant. And one would not think that that would be a safety-related function there. 8 9 We went out with the applicant people and 10 walked those systems down and concluded that they had done a good job and that those systems were very 11 conservatively brought into scope. 12 MEMBER WALLIS: Why would you pick those? 13 14 I would think you would look at things like bulges on These seem to be 15 the containment floor or something. 16 so far removed from safety systems. 17 MR. JULIAN: I agree with you. Those selections were made by NRR as ones for us to look at. 18 19 MR. MITRA: As I described before, -- this 20 is S. K. Mitra again -- this is a process that 21 followed in tier I and tier II, two tiers of review of 22 the balance of the plant system. And maybe Mr. Chang 23 can explain why he chose this system particularly. 24 DR. CHANG: We used a two-tiered review 25 process to deal with the balance of planning systems,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	which it has 29 of them. We will put our focus to
2	have detailed review on the tier II review and
3	grouping that 15 out of 39 systems into tier I.
4	Among those 15 systems, I looked at it.
5	I pick up three out of 15 because those systems, most
б	of those systems involve the (a)(2), which the
7	application by itself doesn't tell me much. And even
8	if I look at the drawings, it's still not enough
9	information for me to make a determination.
10	However, if we go to either very detailed
11	review of all those systems, we think we would rather
12	have our focus and attention, resource put on the rest
13	of the more important systems.
14	So among those 15 less important systems,
15	our review process, review application description,
16	the FSAR descriptions, but we are not able to go into
17	the detailed drawings.
18	We ask the inspecting teams to go in
19	there, look at the systems, look at the drawings, look
20	at the calculations by self so that they would be able
21	to look at the methodologies of doing this, true
22	systems. And once we have the three systems group
23	being scoped properly, we would be able to have
24	confidence on those 15 systems, which have the similar
25	way of doing a true process. So that's how we draw
I	1

(202) 234-4433

	67
1	the three systems that are necessarily important.
2	Actually, they are not very important. It's on the
3	first screening, two-tiered screening, process.
4	MR. JULIAN: So his real answer is there
5	were none better to select from. The group that we
6	had to look at were out on the
7	MEMBER WALLIS: But if you were to find
8	something wrong with the heat tracing systems, that
9	wouldn't have prevented license renewal, would it? I
10	mean, it's not an important issue.
11	MR. JULIAN: No. So we were looking at
12	ones here that they had brought into scope. We were
13	looking to see that they had identified that you can't
14	tell about
15	MEMBER WALLIS: You're testing their
16	approach and their methods and so on. That's what
17	you're doing.
18	MR. JULIAN: Yes. We're actually going
19	out and looking at the hardware.
20	MR. GILLESPIE: Frank Gillespie.
21	Let me say it a different way. We don't
22	want to inspect what we already know is in. What
23	they're doing is testing what the licensee has not
24	included to see if it should have been in. So, in
25	fact, if the inspectors are actually looking at an
	1

(202) 234-4433

	68
1	important system, we have done something wrong because
2	that means the licensee left an important obvious
3	system out of scope.
4	So what we're really testing here is the
5	(a) over (2) methodologies in the fringe systems. I
б	mean, that's more simply what we're really doing.
7	So you're actually looking for what is not
8	included, as opposed to inspecting what they have
9	already volunteered, is going to be managed.
10	MR. JULIAN: And Brunswick was rather
11	conservative, I think. There were not many borderline
12	cases that we had big disputes about in Brunswick.
13	Moving on, the second half of the
14	inspection was the aging management program. The
15	objective is confirmed that the existing AMPs are
16	managing current age-related degradation and that they
17	have we found that they had established a very
18	comprehensive implementation plan in their plant
19	acquisition request system that was talked about as
20	a corrective action program earlier to track the
21	committed future actions.
22	We found in our inspection a few examples
23	where actions committed in aging management program
24	description documents were not yet into the
25	implementation plan.
ļ	

(202) 234-4433

These were only two or three examples. And we think the issue was that they were not yet. They had been recently committed to by NRR, but when these were pointed out, the applicant promptly made changes to the documents and included the comments that we have had.

7 In our walk around Brunswick -- and we did 8 one look-see inside the drywell during a refueling 9 outage -- we thought that the material condition of 10 the plant was being adequately maintained. The 11 documentation that we saw was a very good quality and 12 was supported by a comprehensive computer database 13 controlling equipment that we spoke of earlier.

One other issue that we normally talk about here is what is the current performance of the plant with respect to the reactor oversight program. Brunswick unit 1 you can see we have here the third quarter performance indicators that are posted on our Web site.

I believe the fourth quarter is just any day now we'll be coming out fourth quarter of 2005. Look to the next, please. There is nothing remarkable here, of course. Both of these are green. As the applicant has described to you, they had a bad run of luck in 2005 and had numerous power reductions. And

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	70
1	that performance indicator is going to go white on
2	unit 2 in the new data that is coming up on our Web
3	site here in the very near future.
4	The criteria is the number of power
5	reductions below 80 percent unplanned. And if you
6	have things like condenser tube links, these kind of
7	things happen but pose no particular negative light on
8	the capability of performance to the operators and so
9	on in the plant. It's just equipment problems that
10	happen to them that put them in these circumstances.
11	And that really
12	CHAIRMAN SIEBER: It doesn't reflect on
13	the performance of operators. On the other hand, it
14	may reflect somewhat on the condition of the plant.
15	MR. JULIAN: Yes.
16	CHAIRMAN SIEBER: That's why it's a
17	performance indicator.
18	MR. JULIAN: Yes. Well, that concludes
19	what I have to say. Do you have any questions?
20	(No response.)
21	MR. JULIAN: Thank you.
22	CHAIRMAN SIEBER: Thank you, Caudle.
23	AGING MANAGEMENT PROGRAM REVIEW AND AUDITS
24	MR. MITRA: We'll go ahead and start
25	section 3, "Aging Management Review Results." We have
	1

(202) 234-4433

	71
1	the usual internal reactor coolant system. And you
2	see a separate feature of the system, steam and power
3	conversion system, containment structure, and
4	component support and electrical.
5	The total, we have a management program of
б	34. Only nine are consistent with GALL. Consisting
7	of GALL with deviations is 20. And plant-specific are
8	five.
9	The example we have of audits and built-in
10	findings in the audit times, the Brunswick stimulator
11	plant recent form ISI program was revised according to
12	the EPRI topical report ER 112.657, which is not
13	consistent with GALL, really.
14	ISI does not recognize the changes
15	recommended by the EPRI report. As a result, the
16	applicant revised the upsert to include pruritic,
17	volumetric, surface, and visual examination of the
18	component which is consistent with GALL. They
19	actually according to the EPRI report, took that out.
20	So we included that little bit during the audit
21	process, and they put it in there, actually, again.
22	The second one bullet is originally
23	MEMBER SHACK: Let me understand. When
24	they go to a risk-informed ISI program, that is
25	reviewed by the staff and approved, right?
I	l

(202) 234-4433
	72
1	MR. MITRA: Apparently this is a topical
2	report here. 112657 was a recent report. And the
3	applicant thought that they can follow that without
4	going through the NRC's review.
5	But the staff found that, and they said
б	it's not being you know, the staff did not really
7	recognize that EPRI report. And they go according to
8	the consistent. As in the GALL, it's the volumetric
9	and the surface and visual examination was included in
10	GALL. And according to the EPRI report, they just
11	took that out.
12	MEMBER BONACA: I thought this was only
13	pertaining to small bore piping. There's an exception
14	here of moving from ISI. I mean, I thought the logic
15	was, as in GALL, that you're looking for susceptible
16	locations as a lead indication for use. Therefore,
17	you don't want to have a risk-informed approach.
18	But I thought that this was really
19	pertaining to small bore piping.
20	MR. MITRA: I think it's not just the
21	small bore piping.
22	MEMBER BONACA: Okay.
23	MR. MITRA: It's for everything else.
24	Greg, do you have something to add on
25	that? Greg Cranston is our leader.
I	

(202) 234-4433

	73
1	MR. CRANSTON: My name is Greg Cranston.
2	The concern we have is we don't want the risk-informed
3	ISI to be a basis for elimination of inspections. So
4	it covers primarily the small bore but other areas,
5	too. It's kind of like really for questions, things
6	like that that we don't want them to cite those as
7	reasons now. So that's how we cover it.
8	MEMBER BONACA: Pertaining only to small
9	bore piping or all piping?
10	MR. CRANSTON: I know it pertains to small
11	bore piping. I'm not sure if it extends beyond that.
12	MEMBER BONACA: The issue has always been
13	the small piping. I mean, that's my understanding.
14	MR. MEDOFF: This is Jim Medoff of the
15	Division of Component Integrity. We're the division
16	responsible for granting relief requests under
17	50.55(a).
18	Licensees are required to get any
19	risk-informed ISI programs submitted in a relief
20	request and approved by the staff. For small bore
21	pipe, we in the past have come up with they are
22	exempted by the code, but we still need one of them
23	managed for license renewal. So we came up with a
24	risk-informed approach to select a sampling of small
25	bore pipe.
ļ	1

(202) 234-4433

	74
1	And we're talking about small bore pipe
2	with full penetration but for inspection. And they
3	can use a risk-informed approach to pick the locations
4	that they're going to select on the sampling basis.
5	So the risk-informed ISIs are only granted
6	normally for the ten-year intervals. And they reapply
7	once they're coming up for the next interval.
8	MEMBER BONACA: So what you're saying is
9	that you're looking for susceptible locations.
10	However, you're using a risk-informed approach?
11	MR. MEDOFF: Yes, meaning
12	MEMBER BONACA: How do you do that?
13	MR. MEDOFF: It's based on, I think the
14	approach, if I'm not mistaken, is based on, those
15	locations that would impact the PRA most and have the
16	most susceptibility for failure, a combination of the
17	two.
18	MEMBER BONACA: To me it is a change from
19	what I maybe I am just behind the time, but
20	MR. MEDOFF: Actually, this has been
21	incorporated into the revision, into the new small
22	bore AMP for the revised GALL.
23	MEMBER BONACA: So I'll have to do a
24	little bit better. Thank you.
25	MR. MITRA: The second bullet is the
	1

(202) 234-4433

	75
1	applicant already committed to inspect and clean RHR
2	emergency diesel generator jacket water heat exchanger
3	prior to creating an exchanging operation.
4	This is in lieu of any test result of the
5	heat transfer capability of heat exchanger as
6	recommended by GALL. So they modified the open cycle
7	cooling water heating management program to include
8	performance testing of heat transfer capability.
9	There are a couple of more examples. They
10	originally committed to inspect buried piping only
11	during opportunistic inspection. And due to all the
12	questions, they modified. And they have agreed to
13	perform periodic inspection, at least once every ten
14	years. But opportunity inspection can qualify for
15	periodic inspection.
16	And also the inspection and coated piping
17	has to be done by the coating inspector. Also, that
18	they have put in commitment number 13.
19	MEMBER BONACA: So now they're consistent
20	with GALL?
21	MR. MITRA: Yes, they are consistent with
22	GALL. And that's the new GALL.
23	MEMBER BONACA: The new GALL, yes.
24	MR. MITRA: The new GALL.
25	MEMBER BONACA: Yes.
ļ	

(202) 234-4433

Í	76
1	MR. MITRA: And the structural monitoring
2	program was not originally consistent with GALL. The
3	modified aging management program, the commitment
4	number 16 said they include the inspection of so much
5	portion of the service water infrastructures on a
6	frequency not to exceed 5 years and specific in-well
7	groundwater monitoring inspection frequency of
8	concrete structures and specific inspection frequency
9	for service water intake structure and intake can all
10	not exceed 5 years.
11	MEMBER WALLIS: Five years is a strange
12	measure of frequency.
13	MR. MITRA: Well, I really don't know
14	where the five years come from.
15	MEMBER WALLIS: I understand what you
16	mean, but it is a sort of tortuous way to put it.
17	Frequency is so much per year or something, isn't it?
18	DR. CHANG: This is Ken Chang.
19	What it really means is he inspected at
20	least once every five years. It doesn't mean
21	frequency.
22	MEMBER WALLIS: It doesn't make sense.
23	DR. CHANG: The word "frequency" is being
24	used in a different meaning. I agree.
25	MR. MITRA: Reactor vessel internal and
	I

(202) 234-4433

77 1 reactor coolant system have five plant-specific 2 systems, which is reactor vessel and internal neutral 3 monitoring system, reactor manual control system, 4 control rod hydraulic system, drive hydraulic system, 5 and the reactor coolant recirculation system. Reactor structure 6 vessel internal 7 integrity program, the program is a plant-specific 8 aging management program. The inspections, the 9 program inspections, are based on the augmented 10 inspection recommended by the BWRVIP. And the applicant committed to, which I think is commitment 11 12 number 22, define which BWRVIP reports are included in additional specific 13 the scope of the program, 14 augmented activities that will be taken by the 15 applicant. So if you see commitment number 22, there's a list of all the BWRVIP programs that will be 16 included, almost a one full list. 17 Reactor vessel surveillance program, the 18 program monitors for the impact of neutron irradiation 19 20 on the fracture toughness properties of RV material. 21 The program is based on the integrated surveillance 22 program criteria, BWRVIP-78 and 86. The applicant is committed to enhance the 23 24 program to include conformance with updated integrated 25 surveillance program criteria, VIP-116, BWRVIP, once

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	approved by NRC. And I know that it is being
2	submitted to NRC and it's being reviewed now,
3	BWRVIP-116.
4	Engineered safety features, they obtain
5	plant-specific systems. And in response to one of the
б	RAIs, the applicant committed to manage the loss of
7	material in tracking and small bore class I
8	piping-treated water, including steam and internal
9	environment, using one-time inspection.
10	Auxiliary system, 34 plant-specific
11	systems. Applicant committed to add preventative
12	maintenance program, routine sampling and analysis to
13	address corrosion concern related to potential water
14	intrusion into lubricating oil in the service water
15	pump motor cooler coils and the emergency diesel
16	engines lube oil system. That's commitment number 24.
17	Additionally, applicant committed to add
18	to one-time inspection program at least one of the
19	four emergency diesel engine sumps and at least one of
20	the ten service water pump lubricating oil cooling
21	coils for corrosion products and evidence of moisture.
22	That's commitment number 11. And this is also in
23	response to RAI.
24	MEMBER WALLIS: So one out of 10 is a good
25	enough sample?
I	

(202) 234-4433

	79
1	MR. MITRA: Richard? Anybody else in
2	there can answer that, the sampling size? No? Well,
3	we can take this
4	MEMBER WALLIS: You can conclude that if
5	no moisture leaked into one of these, then it's likely
6	it didn't leak into any of the other ones?
7	MR. MITRA: I don't
8	MEMBER WALLIS: I don't think it's a big
9	issue. I just wonder, though, why one is enough.
10	MR. MITRA: We can take this action. And
11	we will find out. If applicant has any answer for
12	this, why one in ten is
13	MR. LANE: This is Jeff Lang with Progress
14	Energy.
15	As far as one in ten, I don't recall a
16	specific basis, but I can say that any time that we
17	change lube oil and empty the sumps, we do an
18	inspection. In actuality, there will be many more
19	inspections, and it's done. We will document one of
20	them for the propose of license renewal.
21	MEMBER WALLIS: That makes more sense.
22	MR. MITRA: Do you need further
23	clarification?
24	MEMBER WALLIS: No. That's okay. If
25	they're doing it all the time, that's all right.
I	I

(202) 234-4433

	80
1	MR. MITRA: Okay. The steam and power
2	conversion systems, they have 13 plant-specific
3	systems. The applicant's AMR result for titanium
4	components in a raw water environment was an issue
5	requiring additional information.
б	The applicant clarified that the titanium
7	in a raw water environment at a temperature less than
8	160 degrees Fahrenheit does not exhibit aging effects.
9	The titanium tubes in a raw water environment are at
10	a temperature less than 160 degrees Fahrenheit.
11	MEMBER WALLIS: What is raw water? I
12	understand what pure water is.
13	CHAIRMAN SIEBER: Raw water means comes
14	striaght from the river.
15	MR. MITRA: It's raw. Raw means it's
16	unpurified water.
17	CHAIRMAN SIEBER: It comes out of the
18	river.
19	MR. MITRA: It comes out of the river.
20	CHAIRMAN SIEBER: Yes.
21	MEMBER WALLIS: So you don't really know
22	what is in it. It could be anything.
23	CHAIRMAN SIEBER: You'll find out if you
24	drink it.
25	MEMBER WALLIS: Titanium doesn't react
	I

(202) 234-4433

	81
1	with anything.
2	MR. MITRA: Containment, structure, and
3	component supports. As I said, containment and other
4	15 structures and buildings there. Brunswick steam
5	electric plant credits ASME section XI, subsection IWE
6	and 10 CFR part 50, appendix J for management for a
7	drywell liner. And I think the applicant went through
8	detail on that.
9	Both IWE and appendix J require 100
10	percent inspection per period. There are three
11	periods per interval, and each interval is ten years.
12	And the 100 percent inspection is for the accessible
13	area, but if corrosion is noticed during inspection,
14	10 CFR 50.55(a) is demanded to inspect the
15	corresponding non-accessible area also.
16	Each period is 3.3 years. If you divide
17	10 by 3, it's 3.3. The Brunswick outage they have
18	every 24 months. The BSAP, the Brunswick plant, the
19	partial inspection in each outage, they do the partial
20	in each outage, but complete, 100 percent they do in
21	2 outages. So as a result of the fourth outage, which
22	is after 8 years, they are required to do 100 percent
23	inspection the last.
24	This is inaccessible concrete in
25	acceptable range for non-aggressive environment,

(202) 234-4433

	82
1	inaccessible concrete more than 5.5 pH and less than
2	500 ppm for chloride and less than 1,500 ppm for
3	sulfates. And groundwater phosphate is .12 ppm. As
4	a result, we concluded that below-grade environment is
5	quite non-aggressive.
6	The electrical and I and C program,
7	component/commodities subject to AMR, there are six of
8	them: the Non-EQ insulated cables and connections,
9	phase bus, non-EQ electrical and I and C penetration
10	assembly, high-voltage insulators, switchyard bus, and
11	transmission conductors.
12	In response to RAI, applicant committed to
13	add preventive maintenance program and periodic
14	inspection of high-voltage insulators for water
15	beading on silicone coating and for age-related
16	degradation. That is commitment number 24.
17	And in another RAI, applicant committed to
18	include in the phase bus aging management program
19	inspecting the interior condition of the bus enclosure
20	for foreign debris, excessive dust build-up, and
21	evidence of water inclusion, and use a structural
22	monitoring program to inspect the external surface of
23	the phase bus housing, checking the accessible and
24	inaccessible phase bus voltage connection by
25	thermography on a ten-year frequency while bus is
I	I

(202) 234-4433

	83
1	energized and loaded. That is commitment number 25.
2	Now we will go to the TLAAs. And my
3	colleague Maurice Heath will address the TLAA portion.
4	TIME-LIMITED AGING ANALYSES NRR
5	MR. MAURICE HEATH: Good afternoon. Like
6	he said, my name is Maurice Heath. And I will be
7	doing section 4, time-limited aging analyses overview.
8	Section 4.1, we have identification of
9	TLAAs. And that is based on by definition 10 CFR
10	54.3. Section 4.2 through 4.7 are the six main
11	categories for the TLAAs, and I will be touching each
12	one of them in the following slides. One note I would
13	like to add is, if you notice, 4.5, concrete
14	containment, tendon prestress, is not applicable to
15	Brunswick.
16	For section 4.2, "Reactor Vessel Neutron
17	Embrittlement," there were ten TLAAs identified. If
18	you notice, the last bullet, "Reactor Vessel Thermal
19	Shock Reflood Analysis," was added in response to a
20	staff's RAI.
21	MEMBER WALLIS: Just wait a second.
22	(Pause.)
23	MEMBER WALLIS: Okay. Go ahead.
24	MR. MAURICE HEATH: Now I want to
25	highlight for section 4.2 two important analyses that
ļ	1

(202) 234-4433

	84
1	were done by the staff or by the applicant and
2	verified by the staff. The first one is on the
3	reactor vessel, "Upper Shelf Energy," and "Equivalent
4	Margins Analyses."
5	Now, the applicant, what they used was
6	from the guidelines of the BWRVIP-74. It established
7	acceptance criterion. And, if you notice, we have
8	their calculations here. And also the staff performed
9	independent calculations to verify the applicant's
10	conclusions. And the values were all under the
11	acceptance criterion.
12	MEMBER WALLIS: What time are these values
13	for? Is this for a certain time in the history of the
14	plant? This is after so many years or something?
15	MR. MAURICE HEATH: Yes.
16	MR. MITRA: Yes.
17	MEMBER WALLIS: And this is what is it,
18	56 equivalent years or something?
19	MR. MAURICE HEATH: Fifty-four.
20	MEMBER WALLIS: Fifty-four?
21	MR. MAURICE HEATH: Fifty-four.
22	MEMBER WALLIS: This is the end of the new
23	license period. Is that what it is?
24	MR. MAURICE HEATH: Yes.
25	MEMBER WALLIS: Well, I'm glad you have a
I	

(202) 234-4433

	85
1	table. When I read the text, I couldn't figure out if
2	they were meeting criteria or not. There seemed to be
3	such a lot of discussion going on. I couldn't tell.
4	I mean, there were different numbers that appeared at
5	various places in the text. I couldn't tell whether
6	they were meeting the criteria.
7	Now you've made it clearer by having a
8	table. Did I miss something? Was this table in the
9	text or
10	MR. MAURICE HEATH: Was it in the SER?
11	MEMBER WALLIS: Yes.
12	MR. MITRA: No.
13	MR. MAURICE HEATH: No, it was not.
14	CHAIRMAN SIEBER: A picture is worth 1,000
15	words.
16	MEMBER WALLIS: Yes.
17	MR. MAURICE HEATH: Did you have any more
18	questions?
19	CHAIRMAN SIEBER: It seems to me that
20	these vessels have a lot of margin.
21	MR. MAURICE HEATH: Yes. Conservative.
22	Yes, they are.
23	MEMBER WALLIS: Well, this is one of these
24	things. Are you going to talk about this? The next
25	one is the RTndt.

(202) 234-4433

	86
1	MR. MAURICE HEATH: Yes. Yes. Now, this
2	is reactor vessel circumferential weld and axial weld,
3	the probability failure analysis. And the guidelines
4	used for the circ welds and axial welds were
5	BWRVIP-05. What it was was the mean RTndt acceptance
6	for probablistic fracture mechanics and BWRs.
7	MEMBER WALLIS: Where does the Charpy
8	value come into all of this? Is that what the
9	these foot pounds of Charpy value, are they part of
10	this somewhere?
11	MR. MAURICE HEATH: Jim may have to
12	address that.
13	MEMBER WALLIS: They are also part of this
14	material.
15	MR. MEDOFF: Right. This is Jim Medoff of
16	the staff. I was the reviewer for the neutron
17	embrittlement TLAAs.
18	MEMBER WALLIS: The numbers in the text
19	seem to have nothing to do with this.
20	MR. MEDOFF: If you're talking
21	MEMBER WALLIS: It's a different thing,
22	isn't it, from the foot pounds and the Charpy values?
23	MR. MAURICE HEATH: Are you referring to
24	the previous slide?
25	MEMBER WALLIS: Well, this isn't my field,
Į	I

(202) 234-4433

	87
1	but I was trying to figure out what was going on. I
2	had all of these numbers of Charpy values, 45, 30,
3	everywhere, 45, 57.4 or something, no indication of
4	whether or not they met a criterion or what the
5	criterion was? That's what I was missing.
6	MR. MEDOFF: This is Jim Medoff of the
7	staff. The requirements are for upper shelf energy,
8	but the BWR performed some generic equivalent margins
9	analyses for all of the boiling water reactors in the
10	fleet. And that's what the fleet is currently using.
11	There is one plant-specific equivalent
12	margins analysis for the reactor vessel nozzle forging
13	Brunswick is using because I had performed that review
14	in I think it was like 1998 for them.
15	MEMBER WALLIS: So that's the same thing
16	as the upper shelf energy?
17	MR. MEDOFF: Yes. Well, it's to prove
18	that if they go below the 50-foot pound requirement at
19	10 CFR part 50, appendix G, that they would still have
20	acceptable safety margins and upper shelf energy.
21	For the VIP documents, they valued
22	different types of reactor vessel materials and base
23	their equivalent margins analyses based on the
24	MEMBER WALLIS: So these numbers are foot
25	pounds, these numbers we see here?
I	I

(202) 234-4433

	88
1	MR. MEDOFF: Yes.
2	MEMBER WALLIS: From the fluence, right?
3	MR. MEDOFF: For the BWRVIP-74A, those are
4	in percent drop in foot pounds and allowable percent
5	drop in foot pounds for a group of materials. So for
6	the limiting plate, it's based on the assessment of
7	BWR plates and
8	MEMBER WALLIS: Is the SER complete? I
9	mean, I had a lot of trouble reading the SER to figure
10	out what all of these numbers had to do with some
11	criterion. If you could make it clearer in some way
12	in the SER, it would help a lot.
13	I couldn't figure out, such a long
14	discussion that I couldn't figure out from a table or
15	something else whether all of these numbers, Charpy
16	values, which don't look like the numbers in this
17	table, meet some criterion or not.
18	MR. MITRA: We might take action to
19	include this table in the SER.
20	MR. MEDOFF: Those numbers are pulled out
21	from the SER.
22	MR. MITRA: Yes, but we don't have the
23	table in the
24	MEMBER WALLIS: It says something should
25	exceed 50 foot pounds or is it supposed to be less
I	I

(202) 234-4433

	89
1	than or more than? It says, "It should exceed 50 foot
2	pounds." Is that right?
3	MR. MEDOFF: No. In the SER, it clearly
4	clarifies what the requirements are in appendix G and
5	what you're supposed to do if you fall below that. I
6	have a regulatory base
7	MEMBER WALLIS: It should exceed 50 foot
8	pounds. Is that right?
9	MR. MEDOFF: Right. But if you fall below
10	50 foot pounds, what the rule requires you to do is do
11	an equivalent margins analysis to demonstrate
12	acceptable levels of upper shelf energy.
13	MEMBER WALLIS: Which seems to be much
14	lower values.
15	MR. MEDOFF: Right. It would be lower
16	than 50 foot pounds at the end of the extended
17	MEMBER WALLIS: A lot lower, right? A lot
18	lower? It's talking about 29, 30, 35, something. I
19	just don't understand why it's all okay.
20	MR. MEDOFF: The 50 foot pound value is
21	based on linear-elastic fracture mechanics. Once you
22	fall below it, there are alternative fracture
23	toughness assessments, specifically elastic plastic
24	fracture mechanics, evaluations that they can use to
25	show equivalent safety margin.
	I

(202) 234-4433

	90
1	MEMBER WALLIS: And it's so arcane that I
2	can't understand it.
3	MR. MEDOFF: The materials aren't here.
4	MEMBER SHACK: Well, I mean, you have to
5	go through the fracture mechanics analysis, you know,
6	but you postulate your big flaw and then you
7	demonstrate that you, in fact, can sustain that. But
8	it's sort of not intuitively obvious.
9	MEMBER WALLIS: That's right. It wasn't
10	clear by what criterion the staff accepted these
11	values that they came up with.
12	MR. MEDOFF: It should be in the SE, but
13	I can point it out to you or we can revise the SE to
14	make it clearer.
15	MEMBER WALLIS: Maybe you can make it
16	clearer somehow. So that is quite different from this
17	table we're looking at here. This is something else.
18	And this quarter, the RTndt, what's that?
19	MR. MEDOFF: The RTndt, the boilers have
20	submitted during the current term certain leave
21	requests to eliminate certain inspections of their
22	circumferential wells in their reactor vessel.
23	They're based on probablistic fracture mechanics
24	assessments that were developed by the BWRVIP, which
25	were documented in the BWRVIP-05 report.
I	

(202) 234-4433

91 1 The staff reviewed that report and 2 improved the probablistic fracture mechanics methods for the fleet and came up with limiting probability of 3 4 failure values for both the circumferential welds and 5 axial welds in the reactor vessel. And then they developed corresponding adjusted reference 6 7 temperatures, maximum adjusted reference temperatures, 8 for the vessel materials that would correspond to 9 those probabilities of failure. MEMBER WALLIS: Your conclusion is that 10 they meet the --11 12 As long as they're --MR. MEDOFF: MEMBER WALLIS: -- correspondence with a 13 14 big margin. 15 MEMBER SHACK: Again, the upper shelf is sort of toughness at high temperature. 16 The RTndt is 17 initiation embrittlement, just like the --18 CHAIRMAN SIEBER: Brittle fracture, yes. 19 MEMBER SHACK: So they're looking at both 20 ends of it and meeting it. 21 MEMBER BONACA: This is the first time I've seen negative --22 23 The probability of --MR. MEDOFF: 24 MEMBER WALLIS: Okay. I think it just 25 needs to be clearer in the document.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	MR. MEDOFF: Well, we'll go through it.
2	MR. MAURICE HEATH: All right. We'll go
3	on. Section 4.3, "Metal Fatigue." What I wanted to
4	do is just highlight one of the TLAAs: reactor
5	coolant environment on fatigue life of components and
6	piping. Due to the staff's review, the applicant
7	enhanced the fatigue-monitoring program to monitor
8	fatigue for each of the six locations identified in
9	NUREG 62.60. That's applicable to older GE plants and
10	considering reactor water environmental effects.
11	The applicant performed a refined fatigue
12	analysis based on data collection from cycle
13	evaluation module and finite element analysis from
14	fatigue-monitoring program to show CUF, the cumulative
15	usage factor, will remain below the ASME code limiting
16	value.
17	The staff found applicant's assessment
18	acceptable in accordance with 10 CFR 54.21(c)(1)(ii).
19	MEMBER SHACK: Just clarify for me, is
20	this a requirement in the new GALL that they do this
21	now finally or is this still something you negotiate
22	on a case-by-case basis?
23	DR. CHANG: Ken Chang on the staff.
24	In the new GALL, it is clearly stated the
25	6260 normally it's 6 or 7 locations is at a
I	I

(202) 234-4433

	93
1	minimum. In establishing those six locations, safety
2	has been taken into consideration. So these locations
3	are of safety importance. You don't take like a
4	pressurizer support skirt into consideration. Those
5	are of no safety significance.
6	And also this is the minimum, six or seven
7	locations. Normally applicants can select more than
8	those locations. In this plant, it did select more
9	locations for monitoring. It could be up to 11.
10	So originally they have five locations.
11	And due to the audit, the auditing recommended and
12	requested that, hey, explain why you are using like
13	five of your locations and the GALL recommended, 6260
14	recommended, six locations everybody knows.
15	The applicant agreed to include in their
16	monitoring program, fatigue monitoring program, all
17	the 6260 locations. Some of them may be the same as
18	the five they originally monitored, so up to 11 but
19	could be as minimum as 6.
20	MR. GILLESPIE: But, Ken, Dr. Shack asked
21	a question. Is this now in GALL?
22	DR. CHANG: It is in GALL.
23	MR. GILLESPIE: I just wanted to make sure
24	that no, we're not negotiating this separately every
25	time, which is why you are seeing fewer RAIs and
I	

(202) 234-4433

	94
1	hopefully you will see fewer in the future.
2	CHAIRMAN SIEBER: The answer is yes.
3	MEMBER WALLIS: Now, is this fatigue due
4	to pressurizing and depressurizing the system? Is
5	that what it is or is it fatigue due to something
б	shaking or is it fatigue due to thermal changes or
7	DR. CHANG: Mostly thermal.
8	MEMBER WALLIS: Mostly thermal. It's not
9	just the pressurizing
10	CHAIRMAN SIEBER: Part of shutdown.
11	DR. CHANG: Now, this fatigue analysis is
12	in the ASME. Currently we call ASME fatigue analysis.
13	MEMBER WALLIS: Like flows in and out of
14	the pressurized
15	DR. CHANG: Oh, yes. Those are the PWR
16	cases.
17	MEMBER WALLIS: Yes.
18	DR. CHANG: In the BWR cases, you probably
19	are looking at the feedwater nozzles. Those are
20	equivalent to the PWR's pressure research line.
21	MEMBER WALLIS: So this is all metal
22	fatigue we're talking about?
23	DR. CHANG: Yes. This is all metal
24	fatigue. Yes, you can say that.
25	MEMBER SHACK: But driven mostly by

(202) 234-4433

	95
1	thermal.
2	MEMBER WALLIS: So what do you do with
3	vibration fatigue? I mean, something like vibrating
4	separators or something,
5	DR. CHANG: Yes.
6	MEMBER WALLIS: what do you do about
7	that? How do you know what the cycling load is?
8	MR. GILLESPIE: We had that issue, if you
9	remember, at Dresden/Quad Cities because of the power
10	uprate. And they had extensive vibrations down the
11	whole main steam line. And in that case, now we're in
12	negotiating space because GALL doesn't cover this.
13	In that case, the licensee agreed with the
14	staff, not just for license renewal purposes, but they
15	were instrumenting the entire line to try to get some
16	data on what they had to do relative to dampening that
17	vibration.
18	I think that was a commitment for like a
19	one-year program at the time. I remember they came
20	and discussed that with the committee.
21	MEMBER WALLIS: This is also after the
22	fact, after you find that something is shaking. Then
23	you start to investigate.
24	MR. GILLESPIE: At Dresden/Quad, it was
25	after the fact. I hope we and the utilities are now
I	1

(202) 234-4433

	96
1	smart enough for the next round of things.
2	CHAIRMAN SIEBER: In that instance,
3	though, it's not clear that the deterioration would be
4	to the piping system. It was knocking the valves
5	apart,
6	MR. GILLESPIE: Right.
7	CHAIRMAN SIEBER: position indicators
8	and
9	MR.GILLESPIE: Fundamentally the analysis
10	wasn't refined enough to have seen the vibration. In
11	the actual as-built situation when they went to the
12	higher flows,
13	CHAIRMAN SIEBER: Right.
14	MR. GILLESPIE: the darned thing had
15	sympathetic vibrations down the whole steam line right
16	to the turbine. So we were unable mathematically to
17	predict it. So the staff took action on it. I mean,
18	clearly if we could predict it up front, I think you
19	would find the staff taking action.
20	So yes, that is a case by case. And that
21	is one of the sensitivities of power uprates.
22	DR. CHANG: In special cases, the ASME
23	code, the fatigue curve, has modified in history. It
24	used to be the fatigue curve goes up to 10 6 cycles.
25	Now the fatigue curve goes to the 10^{11} cycles.
I	

(202) 234-4433

	97
1	Why do that? The purpose is to address
2	the high-cycle fatigue, high-cycle, low-amplitude
3	fatigue. If you have a case like that, then it
4	depends on you measure the vibration frequency and
5	amplitude.
б	You can address that's how many years to
7	get a failure. If under that 10 11 cycle, we call it
8	under the induced limit. And those loadings,
9	vibration loadings, will not cause failure until the
10	ASME code changed again.
11	MEMBER WALLIS: You must have low
12	amplitude, too.
13	DR. CHANG: Yes. I did say "amplitude,"
14	frequency and amplitude.
15	MEMBER WALLIS: We know that these steam
16	lines are vibrating. Any idea about the amplitude and
17	what governs it?
18	DR. CHANG: Say the amplitude and
19	frequency depend on the configuration. You put
20	certain frequency there. No. The piping span has
21	certain frequency. And the measurement and monitoring
22	will give you the amplitude.
23	You plug this in there. You see a single
24	span, single span but it would be the maximum strength
25	in a span. And that you show, that stress, is under
	I

(202) 234-4433

	98
1	the endurance limit. You're okay.
2	MEMBER WALLIS: Well, I was just wondering
3	if you know enough to input the right thing into your
4	analysis.
5	DR. CHANG: That's where experience
6	counts.
7	MEMBER SHACK: Most of those you're not
8	going to analyze up front. You know, you're
9	CHAIRMAN SIEBER: Yes. It will break.
10	And then you analyze it.
11	MEMBER SHACK: It comes after you go out
12	and you make the measurements and you find out that
13	you've got the problem. You can then sort of decide
14	how bad it is.
15	MEMBER WALLIS: That's what concerns me.
16	So you're not giving us sort of assurance by this
17	slide that there's not going to be any problem of
18	vibrations leading to fatigue?
19	CHAIRMAN SIEBER: No.
20	MEMBER WALLIS: No? You're saying that
21	they do, then? What are you giving the credit for
22	here: analyzing the things they could analyze and
23	being within the code?
24	MEMBER SHACK: These are sort of analyzing
25	the thermal fatigue problems they know they have

(202) 234-4433

	99
1	MEMBER WALLIS: They know about. Okay.
2	MEMBER SHACK: and making sure that
3	that analysis remains valid for the life of it. You
4	know, the fatigue problems they have that they don't
5	know about they haven't analyzed.
6	DR. CHANG: And those, back to the fatigue
7	problem, it is most likely going to be discovered by
8	walk-down, including
9	CHAIRMAN SIEBER: Yes.
10	MR. GILLESPIE: Again, getting back to
11	Dresden/Quad because that was one if you walked onto
12	the turbine deck before they did the upgrade and
13	increased flows and after, the noise was horrendous
14	after.
15	So it's not just walking down looking at
16	passive pipe. When you change, physically change, the
17	plant, that's when you're going to find out. And
18	that's what our experience is.
19	And the mathematical models aren't as
20	perfect as we would like to think they are when you
21	try to put in the pipe hangers and stuff. It's not
22	that exact.
23	CHAIRMAN SIEBER: But from a calculational
24	standpoint, it is far easier to look at thermally
25	induced fatigue,
l	

(202) 234-4433

	100
1	MR. GILLESPIE: Yes.
2	CHAIRMAN SIEBER: which is a low-cycle
3	fatigue, than it is to try to find the resonance point
4	of some complex mechanical system, which I think is
5	really tough to do.
6	MR. GILLESPIE: Now, in Brunswick's case,
7	we could ask the licensee, did they see anything after
8	they uprated because they are a power uprated plant.
9	CHAIRMAN SIEBER: Yes.
10	MR. GILLESPIE: I think the answer is no,
11	there was no abnormal condition that was seen at
12	Brunswick, but let's have the applicant because that
13	will address your specific problem.
14	MEMBER WALLIS: Some of those uprates have
15	only been in effect for a short while.
16	MR. GILLESPIE: It didn't take long to
17	MR. GRANTHAM: This is Mark Grantham.
18	We did instrument main steam and feedwater
19	lines inside primary containment as well as our MSIV
20	pit. And there were some very slight increases in
21	vibration level, but they were very
22	MEMBER WALLIS: You have accelerometers or
23	something on there?
24	MR. GRANTHAM: Yes, that is correct.
25	There were minor increases and well within allowables.

(202) 234-4433

	101
1	MEMBER WALLIS: So this is what is going
2	into this fatigue monitoring program? One of the
3	inputs is the accelerometer readings from the steam
4	lines? Is it? It's not?
5	CHAIRMAN SIEBER: No.
6	MEMBER WALLIS: I'm just not quite sure
7	how the staff satisfies itself that everything is okay
8	enough.
9	MR. GILLESPIE: Let me ask the licensee
10	because it may not be. Your statement I think was
11	that this was within allowables that you just made on
12	the accelerometers?
13	MR. GRANTHAM: That is correct.
14	MR. GILLESPIE: Okay, which means it's
15	encompassed in the uncertainties and considerations of
16	the calculation.
17	MR. GRANTHAM: What we did was we went
18	back and did a pipe stress analysis based on certain
19	displacements and vibration and based on the
20	allowables within the code determined what acceptable
21	levels were.
22	MR. GILLESPIE: So I just don't want it to
23	go on record that this was ignored. It wasn't
24	ignored. It's actually encompassed in the analysis in
25	the allowables and uncertainties within the analysis
	I

(202) 234-4433

	102
1	already.
2	So the staff finding is that what they're
3	doing is acceptable. It wasn't ignored.
4	MEMBER WALLIS: That's what I'm trying to
5	determine. That's all.
б	MR. GILLESPIE: We needed the dialogue to
7	do that.
8	CHAIRMAN SIEBER: Okay. Moving on.
9	MR. MAURICE HEATH: All right. Moving on
10	to section 4.4, "Environmental Qualification, EQ, of
11	Electrical Equipment," the applicant's EQ programs
12	consistent with GALL AMP, X.El, "Environmental
13	Qualification of Electrical Components," operating
14	experience identified no age-related equipment
15	failures that its program is intended to prevent. The
16	staff concluded that the effects of aging or the
17	intended function will be adequately managed for the
18	period of extended operation.
19	Section 4.6, I want to highlight two
20	TLAAs: the torus downcomer/vent header fatigue
21	analysis and the torus, attached and safety relief
22	valve piping system fatigue analysis. The staff found
23	that the staff accepted the evaluation in accordance
24	with 10 CFR 54.21(c)(1)(ii).
25	MEMBER WALLIS: Now, this fatigues because
I	I

(202) 234-4433

	103
1	they test these from time to time or from time to time
2	a relief valve is open and there is shaking in the
3	torus downcomer? Is that what has happened?
4	MR. MAURICE HEATH: Ken?
5	MEMBER WALLIS: What is it that challenges
6	this fatigue? What is it that causes the fatigue?
7	DR. CHANG: This is Ken Chang again.
8	Speaking of this SRV piping system that is subject to
9	the dynamic loading, those loadings can be determined.
10	And then you can go into the stress calculation,
11	evaluate stress level in the piping, and compare it to
12	the ASME allowable in primary, secondary, and fatigue
13	limits. That's what they mean.
14	MEMBER WALLIS: It gets pretty exciting,
15	doesn't it, when you blow steam into the torus?
16	DR. CHANG: Oh, yes. That's lots of
17	paper, publication that has generated over like ten
18	years ago, traced back many, many years.
19	MEMBER WALLIS: So that's what you're
20	calculating based on data you're calculating these
21	loads?
22	DR. CHANG: That can not be experienced
23	because that is a horrible experience.
24	CHAIRMAN SIEBER: You only do it once.
25	MR. MAURICE HEATH: Section 4.7, "Other
ļ	I

(202) 234-4433

	104
1	Plant-Specific TLAAs," I wanted to highlight one in
2	particular: torus component corrosion allowance, the
3	component supports classified as ASME section XI,
4	"In-service Inspection Supports," and non-ASME section
5	XI, "ISI Supports."
6	The staff needed additional information on
7	calculations for corrosion rates for the ASME
8	components and clarification on the one-time
9	inspection program for the non-ASME ISI supports.
10	In letter dated March 31, 2005, the
11	applicant presented calculations for corrosion rates
12	and descriptions on one-time inspection program for
13	non-ASME ISI supports.
14	The staff accepted the evaluation in
15	accordance with 10 CFR 54.21(c)(1)(ii).
16	MEMBER SHACK: What's an ASME support and
17	the non-ASME support?
18	MR. MAURICE HEATH: I'll defer to Hans
19	Asher to answer that question for you.
20	MR. ASHER: My name is Hans Asher.
21	Inside the torus, there are two types of
22	supports. One is ASME. Those are bearing the low
23	pressure-containing components. They are all ASME
24	components. But then there are certain supports which
25	are like a structure supporting the grading or some
	I

(202) 234-4433

	105
1	other non-safety-bearing
2	MR. MAURICE HEATH: Did that answer your
3	question?
4	(No response.)
5	MR. MAURICE HEATH: All right. For a
б	summary for section 4, the TLAA, according to the
7	definition in 10 CFR 54.3, the TLAA list, as amended,
8	was found adequate by the staff. And each TLAA met
9	one of the definitions of 10 CFR 54.21 (c)(1)(i),
10	either (i), (ii), or (iii).
11	And, with that, I would like to conclude
12	the staff's presentation and ask if there are any more
13	questions.
14	MEMBER BONACA: There were no (iii)'s,
15	right?
16	MR. MAURICE HEATH: No. There were
17	(iii)'s.
18	MEMBER BONACA: There were (iii)'s?
19	MR. MAURICE HEATH: In the metal fatigue
20	portion.
21	MEMBER BONACA: Yes.
22	MR. MAURICE HEATH: They did a calculation
23	60-year to show that to the extended period of
24	operation.
25	MEMBER BONACA: That reply means that you
ļ	I

(202) 234-4433

	106
1	will manage the problem.
2	MR. MAURICE HEATH: I'm sorry. Yes.
3	That's what fatigue monitoring programs are.
4	MEMBER BONACA: Okay. I didn't see those.
5	MR. MAURICE HEATH: Right.
6	MR. MITRA: That concludes our
7	presentation.
8	CHAIRMAN SIEBER: Yes. Are there any
9	other questions from members?
10	MEMBER WALLIS: So if something goes wrong
11	with the intended function, then we say you guys
12	didn't anticipate it in your review or we simply say
13	that it's okay because it's being properly managed and
14	it's going to be found and it's going to be cured?
15	You were interested in the management of
16	it, not in trying to predict that there won't be any
17	problems? You're just saying that they had the
18	problem system set up so that they can manage the kind
19	of problems that might arise?
20	MR. MAURICE HEATH: Yes. That is correct.
21	CHAIRMAN SIEBER: Any other questions or
22	comments?
23	(No response.)
24	SUBCOMMITTEE DISCUSSION
25	CHAIRMAN SIEBER: Well, according to the
	I

(202) 234-4433

	107
1	agenda, our next step is to have a Subcommittee
2	discussion. To my viewpoint, the discussion focuses
3	on whether the full committee should write an interim
4	letter or not on the safety evaluation in the
5	application and the applicant's and staff's activity
6	so far in the review process.
7	Generally interim letters are written if
8	there are significant issues that arise that appear to
9	be taking a direction which would differ from ACRS'
10	view of the final condition of the SER when the
11	license extension is granted.
12	So what I would like to do is to go around
13	the table and ask members, first of all, should we
14	write an interim letter. And if we do, what should be
15	the topics and issues that would be in that letter.
16	And then beyond that, I would be
17	interested in knowing your overall assessment and
18	comments as to individual items within both the
19	application and the SER in today's presentations.
20	So, with that, I would like to ask Dr.
21	Shack those questions and hear his comments.
22	MEMBER SHACK: Well, you know, since the
23	staff has no open issues, I don't see any showstoppers
24	here. So I don't see any particular need for an
25	interim letter. The application seems like a fairly
	1

(202) 234-4433

	108
1	good one. I don't see any real problems.
2	CHAIRMAN SIEBER: Okay. That's good
3	because if there were an interim letter, I would have
4	to write it tonight.
5	(Laughter.)
6	CHAIRMAN SIEBER: Okay. Dr. Wallis?
7	MEMBER WALLIS: Yes. I don't think we
8	need an interim letter. This SER actually is fatter
9	and more extensive, I think, than some of the others
10	we have seen at this point in time, from license
11	renewal.
12	What I have been missing is sometimes a
13	clarification at the end of a discussion about why the
14	issue is resolved or why the evidence as presented
15	meets some criterion. I think that can be fixed up in
16	looking at the SER.
17	I mean, you can write it for the reader
18	when you have 20 pages of discussion about Charpy
19	being all these different numbers. I mean, why is it
20	that you conclude that everything was okay? That's
21	the kind of thing that I was after in my questions.
22	I think the substance is there, but it
23	needs to be presented in a way which is absolutely
24	clear why you reached the conclusion that everything
25	was okay.
I	1

(202) 234-4433

	109
1	MR. MITRA: We will take a look at the
2	we took note that you have described. And we will
3	take a look at it and try to revise it.
4	CHAIRMAN SIEBER: Dr. Bonaca?
5	MEMBER BONACA: Yes. I second the
б	comments of Graham.
7	CHAIRMAN SIEBER: Okay.
8	MEMBER BONACA: It's a common experience.
9	I mean, the SER seems to serve a lot of purposes. One
10	of them is to document all the exchange and
11	interaction with the licensee. The result of it is
12	that for a reviewer, like ourselves, at times you have
13	to really go through until you find the conclusions of
14	what you are looking for. And at times, it gets
15	confusing more or less.
16	But with regard to this application, I
17	think it was a very good application. It was very
18	clear. And I think the SER also was thorough and
19	complete.
20	I had the same trouble a little bit with
21	TLAA because there was so much write-up and
22	considerations. And, again, in search of the
23	concluding statement, it was not easy.
24	Yes?
25	MEMBER SHACK: I was just going to say
	1

(202) 234-4433

	110
1	part of the problem is that, you know, these things
2	are now so linked and so documented you sort of have
3	to know the whole history of things.
4	I sort of sat there deciding why it was
5	okay they didn't have to commit to a hydrogen water
6	chemistry in the license renewal. Well, then that
7	shifted me to their BWR SEC corrosion program. And
8	then that shifted me to the BWRVIP-76, which sort of
9	said, you know, if you had the hydrogen water
10	chemistry, you wouldn't have this much inspection, but
11	if you turned off the hydrogen water chemistry, they
12	were still covered because the BWR-76 would throw them
13	into a new inspection program.
14	And somehow you have to just keep chasing
15	down the thing. So the trail, it isn't as though the
16	license renewal stands on its own anymore. It's
17	infinitely linked.
18	MEMBER BONACA: Well, it's more of the
19	complexity of our review because we discussed this at
20	our retreat. I mean, it's how do you make it more
21	efficient when you have to chase all of these issues,
22	in fact? In some cases, I'm still puzzled about some
23	of the responses I got.
24	But going back to the application, I think
25	it was very good. SER 2 I am supportive of the fact
ļ	I

(202) 234-4433

	111
1	that there are no open items. So I don't see any need
2	for an interim letter at this time. And, in fact, I
3	would expect that this will come back pretty soon for
4	final review
5	CHAIRMAN SIEBER: I would think so.
6	MEMBER BONACA: because of the
7	condition of this application and the SER. So I have
8	no further comments.
9	CHAIRMAN SIEBER: Otto, do you have any
10	comments? It's sort of unfair to ask you because you
11	haven't had the luxury of time like the rest of us
12	have had.
13	MEMBER MAYNARD: Well, I'm not officially
14	on this Subcommittee yet, but I'll offer opinions
15	anyway.
16	CHAIRMAN SIEBER: I have never prevented
17	anyone else from doing that.
18	(Laughter.)
19	MEMBER MAYNARD: As I understand the
20	criteria, I wouldn't see a need for an interim letter
21	on this one.
22	I don't have much of a reference point.
23	I haven't had a lot of time looking at this or looking
24	at others. But I would say that just from the overall
25	thoroughness of the report and the lack of a lot of
I	I

(202) 234-4433

	112
1	open items and open issues, that it would appear to me
2	that both the utility and the NRC have been learning
3	as this process has gone along, taken advantage of it.
4	It's a good product overall.
5	CHAIRMAN SIEBER: My overall impression,
6	by the way, is that as time goes on and more and more
7	license renewal applications and SERs are written has
8	a tendency to come to you know, you say this code
9	word and I will say that code word.
10	It gets to the point I think that it
11	becomes more difficult for the average person or
12	average engineer to read and understand what all these
13	things mean.
14	In the case of Brunswick, there are some
15	unique features about this plant that don't exist in
16	any other plant. In order to evaluate how the
17	licensee treated it and how the staff reviewed their
18	treatment from the standpoint of aging management,
19	some of these unique features, like the containment,
20	you know, almost require the FSAR plus some other
21	access to documents, which basically aren't online.
22	This plant was built in 1970. I think the
23	Radio Shack's TRS-80, which was the first commercial
24	PC, came out seven years later. And so I don't expect
25	to find that on the ADAMS system. On the other hand,
	1

(202) 234-4433

	113
1	that is available to the staff.
2	My way of doing this was to go through and
3	find the unique features and things I didn't know
4	about, make a list of questions, and then prompt the
5	licensee and the staff to the fact that I had
6	questions that they ought to address in this
7	presentation.
8	I agree with my colleagues that we don't
9	need an interim letter. This was a good SER. It was
10	a good clean application or appears to be good
11	cooperation between the applicant and the staff at
12	resolving issues.
13	That's why there are no open items, a
14	modest, relatively speaking, number of RAIs. And I
15	think the process is maturing and the staff is getting
16	more efficient at being able to conduct their reviews,
17	turn out a good solid SER in the process.
18	In the design process if I were the
19	designer back 30 or 40 years ago, which I was, but
20	designers design little pieces of things, as opposed
21	to gigantic things, especially when you're in your 20s
22	and 30s age-wise, there are some things I might have
23	done differently. On the other hand, the design does
24	work.
25	The aging management that the licensee is
	I

(202) 234-4433

	114
1	conducting appears to satisfy the requirements. And
2	with all the commitments that have been made, I think
3	that one can conclude the plant will be safe for the
4	extended period of operation.
5	So overall those are the conclusions that
6	I came to. I appreciate the fact that I don't have to
7	write an interim letter tonight as a draft. On the
8	other hand, you never know. Maybe when the full
9	committee hears my presentation tomorrow, I will end
10	up writing an interim letter. One never knows.
11	What I would like to do is to thank the
12	applicant and the staff for what I think is a job
13	well-done and good preparation and good presentations
14	to us today. And to all the reviewers, I think we're
15	all learning to speak each other's language. Now that
16	again makes it more efficient and understandable for
17	us. And so, with that, I want to offer my thanks to
18	all of you who are here for a good Subcommittee
19	meeting today.
20	If either the staff or the applicant has
21	any comments with regard to our process here or the
22	overall license renewal process or license extension
23	process, I think now would be a good time to do that.
24	Yes, sir?
25	MR. GILLESPIE: Frank Gillespie, NRR.
I	I

(202) 234-4433

115 1 Some questions came up on the screening 2 process. 3 CHAIRMAN SIEBER: Yes. 4 MR. GILLESPIE: And one of the initiatives 5 the staff has kind of taken on is to do something in screening, smaller effort, but look at the past 6 7 precedence and our past screening decisions. We are working with Billy Rogers and Greg Galletti, who are 8 9 two of the team leaders who have been doing the 10 process and to actually try to pull I'll call it a screening database together because the answer I don't 11 12 think was the right answer you got on the bird screen. We can chuckle about the bird screen, but 13 14 you put a fan on a pump cooling house because you need 15 ventilation because of that removal purposes during high temperatures, which can cause --16 17 CHAIRMAN SIEBER: Birds go and then plug 18 up the --19 MR. GILLESPIE: Pluq up the fan. And so 20 it could actually fail, a system that can fail a 21 safety system. And we didn't give you the safety 22 We shouldn't have said, "Well, that's part of answer. 23 the building." And so we're pulling together this so that 24 25 we can actually have some guidance for us and the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	licensees. And we're kind of doing it as time
2	permits, but maybe by next fall, we might be ready to
3	come and share it with the committee.
4	CHAIRMAN SIEBER: Okay.
5	MR. GILLESPIE: Because what it does is
6	kind of sets a standardization of screening for people
7	much as GALL gives a standardization for technical
8	decision-making. So that's just a small initiative we
9	have got going on. And you will probably hear some
10	things about that in the future.
11	MEMBER WALLIS: I'm glad you brought that
12	up because we get the impression from some of this
13	that the only thing that matters is maintaining a
14	boundary. There were actually heat exchangers and
15	fans that are designed to cool things as well. There
16	is another function besides just maintaining a
17	boundary.
18	MR. GILLESPIE: Yes. And, again, I think
19	the applicant answered that heat exchanger question
20	and why. And every one of these components is kind of
21	a unique reason. And you had to be there when you
22	made that decision to try to rethink it when the
23	committee asks the question on a specific component.
24	So sometimes it appears that we don't have the answer,
25	but hidden in the balls of our notes someplace is that
I	

(202) 234-4433

	117
1	answer.
2	And standardization of how we do it and
3	how we consider it in sharing that might help bring
4	some more understanding, universal understanding, to
5	that.
6	CHAIRMAN SIEBER: Okay. Good. Thank you.
7	Are there any other comments?
8	(No response.)
9	CHAIRMAN SIEBER: If not, again, I want to
10	thank everyone for the effort it took to prepare the
11	presentations and the work that was done on the
12	application and the SER. And, actually, that makes my
13	job and the committee's job much easier on the work
14	that was professionally done.
15	So, with that, I think that we can adjourn
16	even a few minutes early.
17	(Whereupon, the foregoing matter was
18	concluded at 4:14 p.m.)
19	
20	
21	
22	
23	
24	
25	
I	I