Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Thermal Hydraulic Phenomena Subcommittee
Docket Number:	(not applicable)
Location:	Rockville, Maryland
Date:	Wednesday, January 26, 2005

Work Order No.: NRC-194

Pages 1-364

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	MEETING
5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
6	(ACRS)
7	SUBCOMMITTEE ON THERMAL-HYDRAULIC PHENOMENA
8	+ + + +
9	WEDNESDAY,
10	JANUARY 26, 2005
11	+ + + +
12	ROCKVILLE, MARYLAND
13	+ + + +
14	
15	The Subcommittee met at the Nuclear Regulatory
16	Commission, Two White Flint North, Room T2B3, 11545
17	Rockville Pike, at 8:30 a.m., Dr. Graham Wallis,
18	Chairman, presiding.
19	COMMITTEE MEMBERS:
20	GRAHAM B. WALLIS, Chairman
21	F. PETER FORD, Member
22	THOMAS S. KRESS, Member
23	VICTOR H. RANSOM, Member
24	STEPHEN L. ROSEN, Member
25	JOHN D. SIEBER, Member
ļ	I

1	ACRS STAFF PRESENT:
2	RALPH CARUSO
3	NRC STAFF PRESENT:
4	HERBERT BERKOW
5	ROBERT DAVIS
6	MICHELLE HART
7	STEVE JONES
8	N. (KALY) KALYANAM
9	RICHARD LOBEL
10	LOUISE LUND
11	KAMAL MANOLY
12	L.B. (TAD) MARSH
13	JAMES MEDOFF
14	SAM MIRANDA
15	KRIS PARCZIEWSKI
16	PAUL PRESCOTT
17	WILLIAM H. RULAND
18	ANGELO STUBBS
19	MARTIN A. STUTZKE
20	JAMES TATUM
21	JOHN TSAO
22	LEN W. WARD
23	
24	
25	
I	I

1	ALSO PRESENT:
2	ROB ALEKSICK, CSI Technologies
3	JEFF BROWN, Westinghouse
4	PRASANTA R. CHOWDHURY, Entergy
5	JOSEPH CLEARY, Westinghouse
6	DAVID CONSTANCE, Entergy
7	STEVEN CYBERT, Westinghouse
8	THOMAS FLEISCHER, Entergy
9	JAMIE GOBELL, Entergy
10	MARIA ROSA GUTIERREZ, Entergy
11	ALAN HARRIS, Entergy
12	JERRY HOLMAN, Entergy
13	THEODORE LEONARD, Entergy
14	G. SINGH MATHARU, Entergy
15	JOSEPH REESE, Entergy
16	RALPH K. SCHWARTZBECK, Enercon
17	PAUL SICARD, Entergy
18	DON SISKA, Westinghouse
19	DAVID VIENER, Entergy
20	ARTHUR (GENE) WEMETT, Entergy
21	
22	
23	
24	
25	

	4
1	A-G-E-N-D-A
2	INTRODUCTION 6
3	OPENING REMARKS , Tad Marsh 8
4	INTRODUCTION, N. Kalyanam
5	LICENSEE PRESENTATION
6	Overview of EPU, Tim Mitchell 21
7	Safety Analysis, Paul Sicard 27
8	Risk Considerations, Jerry Holman 88
9	Engineering Plant Impact, David Viener . 110
10	Operational Impact, Gene Wemett 144
11	RCS Flow, Paul Sicard 178
12	Concluding Remarks, Tim Mitchell 181
13	STAFF'S PRESENTATION
14	Mechanical and Chemical Engineering, Jim Medoff 182
15	Bob Davis
16	John Tsao
17	Mechanical and Civil Engineering, Kamal Manoly 207
18	Plant Systems, Angelo Stubbs
19	Increased flow through steam generator, Ken Karwoski,
20	EMCB
21	CHECWORKS/FAC program, Louise Lund 238
22	Rob Aleksick, CSI Technologies 242
23	Containment Performance, Richard Lobel 249
24	Reactor Systems, Sam Miranda
25	

(202) 234-4433

		5
1	A-G-E-N-D-A (con't)	
2	STAFF'S PRESENTATION	
3	Independent Calculations/Long Term Cooling,	
4	Len Ward	266
5	Source Term and Radiological Consequences,	
6	Michelle Hart	308
7	Power Ascension and Testing, Paul Prescott	318
8	Risk Evaluation, Martin Stutzke	340
9	Closing Remarks, Allen Howe	351
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
I		

	6
1	P-R-O-C-E-E-D-I-N-G-S
2	8:31 a.m.
3	CHAIRMAN WALLIS: The meeting will now
4	come to order. This is a meeting of the Advisory on
5	Reactor Safeguards Subcommittee on Thermal-Hydraulic
6	Phenomena. I am Graham Wallis, Chairman of the
7	Subcommittee.
8	Subcommittee members in attendance are Tom
9	Kress, Victor Ransom, Jack Sieber, Steve Rosen and
10	Peter Ford.
11	The purpose of this meeting is to discuss
12	the extended power upgrade application for the
13	Waterford Steam Electric Station, Unit 3. The
14	Subcommittee will hear presentations by and hold
15	discussions with representatives of the NRC staff and
16	the Waterford licensee, Entergy Operations regarding
17	these matters.
18	The Subcommittee will gather information,
19	analyze relevant issues and facts and formulate
20	proposed positions and actions as appropriate for
21	deliberation by the full Committee.
22	Ralph Caruso is the designated federal
23	official for this meeting.
24	The rules for participation in today's
25	meeting have been announced as part of the notice of
ļ	I

	7
1	this meeting previously published in the Federal
2	Register on December 21, 2004.
3	A transcript of the meeting is being kept
4	and will be made available as stated in the Federal
5	Register notice.
б	It is requested that speakers first
7	identify themselves and speak with sufficient clarity
8	and volume so that they can be readily heard.
9	We have not received any requests from
10	members of the public to make oral statements or
11	written comments.
12	I have an opening comment. I read hundreds
13	of pages of text, prepared both by the licensee and
14	the staff, and I still don't have a good grasp of how
15	this operate is achieved. I noticed some changes
16	which were very small in the temperatures of the cold
17	leg and hot leg, but they do not seem to be sufficient
18	to account for an 8 percent uprate. And there's no
19	mention whatever of what happens to the full rate
20	through the core.
21	In some way the power in the core is
22	increased and yet we're told that the linear heat
23	generation rate, actual linear heat generation rate is
24	reduced and the radiation to the core internals is
25	reduced, so something has presumably happened with the
	I

(202) 234-4433

	8
1	fuel management, although we're told it's the same
2	fuel. But there's a mystery there I'd like to have
3	resolved.
4	So it will be very useful if someone could
5	explain just how the operators achieved and what the
б	consequences are for important parts of the system
7	such as the fuel and the cooling system. And maybe
8	this in the documents and I just couldn't find it, but
9	I'm still mystified by just exactly how the uprate was
10	achieved and what the consequences were. Otherwise,
11	most of the documentation was very readable and
12	explicit.
13	I'm sorry, Tad, to hold you up.
14	MR. MARSH: That's fine.
15	CHAIRMAN WALLIS: Please go ahead.
16	MR. MARSH: Thank you.
17	Good morning, Mr. Chairman. And I do hope
18	we address those questions either from the licensee
19	from the staff in terms of how this is actually taking
20	place in the reactor.
21	Good morning. My name is Tad Marsh. I'm
22	the Director of the Division of Licensing Project
23	Management in the Office of Nuclear Reactor
24	Regulation.
25	The purpose of our briefing today is to
I	I

(202) 234-4433

present our review of Entergy's application for the extended power uprate for Waterford Unit 3. If the 8 percent uprate is approved, it will be the largest power uprate for pressurized water reactor in the U.S. And Waterford 3 will operate at a core power level of 3716 megawatts thermal.

7 Our review of the proposed EPU for Waterford is the first one to be completed using the 8 9 Review Standard RS-001. Throughout the development of the Review Standard the staff was in communication 10 with the ACRS. First in the July 2002 time frame the 11 12 discussed an outline of the Review Standard with the Committee and then presented the draft Review Standard 13 14 to the Committee in a meeting in December, 2002. At 15 that time the Committee encouraged the staff to issue the draft review standard to the public for comment 16 17 and report to the resolution of those comments to the Committee. 18

The staff presented the Review Standard including incorporation of the public comment to the ACRS Thermal Hydraulic Phenomena Subcommittee in August of 2003, and the Review Standard was finalized later that year.

24 The staff's review of the Waterford power 25 uprate application was challenging and required a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	10
1	substantial amount of additional information from the
2	licensee to complete its review. And this was the
3	first review involving large transient testing for
4	PWR, and the staff set the standard high and followed
5	the new Standard Revenue Plan associated with large
6	transient testing. And you'll hear more about that.
7	The staff completed a thorough review of
8	the application for Waterford, but there are still a
9	few items remaining resolution. Our Project Manager
10	Kaly will describe those items to you as we go through
11	the presentation.
12	Stepping back a little from Waterford, in
13	particular, and going to power uprate in general this
14	is, as I say, the first application of the Review
15	Standard in a power uprate review. And we believe the
16	review standard is a very thorough, very complete
17	document which is guiding our technical staff in these
18	reviews. But we did notice that there was a lot of
19	RAIs associated with this application and with other
20	applications associated with the Review Standard
21	review. We believe that's because the staff is now
22	guided with some specifics in terms of reviews, so
23	it's an effort for complete and thorough documentation
24	and complete and thorough review of an application
25	which we believe is in part resulting in these RAIs.
	I

(202) 234-4433

(202) 234-4433

We do intend on issuing a regulatory issues summary, a RIS, to clarify to the industry what we believe we need for a thorough and complete application associated with the Review Standard. And those lessons learned are coming from not only the Waterford review, but from other power uprate reviews which are ongoing.

We look forward to the dialogue with you. 8 9 We would like to get a sense from you the level type 10 of information that you would like in the context of some of these open items. Because you will hear today 11 12 that we are not quite done with them. So we would like a sense from you what you would like in terms of 13 14 follow on communications or a presentation at the full 15 Committee. But we would like a sense of that, too, as 16 you go through these presentations. 17 Well thank you very much. I'd like to turn

18 it over to Kaly who will give an introduction for the 19 presentation.

20 CHAIRMAN WALLIS: Just one moment. You 21 mentioned the use of the new standard.

MR. MARSH: Right.

23 CHAIRMAN WALLIS: I think that's very24 evident in the SER.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. MARSH: Right.

1

2

3

4

5

6

7

22

	12
1	CHAIRMAN WALLIS: The SER is very
2	comprehensive and thorough in a way that some of the
3	earlier ones didn't.
4	MR. MARSH: Right.
5	CHAIRMAN WALLIS: I think that the
6	standard, obviously, is having an effect.
7	MR. MARSH: I recall conversations with
8	you about thorough and completeness of the safety
9	evaluations and making sure that the basis was
10	apparent in the staff's review. And the Review
11	Standard will help us in that regard. But it is
12	causing more hours to be expended for these reviews
13	than we had anticipated. And what we're trying to
14	discern is this a level of completeness standard that
15	we need to articulate to the industry more clearly,
16	hence the RIS, or is this our staff you know being
17	guided thoroughly in the Review Standard itself. But
18	it is causing more review time, quite a bit more.
19	CHAIRMAN WALLIS: Well, it's the first
20	time. You're learning, too.
21	MR. MARSH: It is.
22	CHAIRMAN WALLIS: And also I think it's
23	appropriate with such a large power uprate for a PWR
24	that you do cover all the bases.
25	MR. MARSH: Right.
I	

(202) 234-4433

	13
1	CHAIRMAN WALLIS: Maybe next time you can
2	do it a little quicker and more efficiently.
3	MR. MARSH: Maybe. But thorough and
4	complete is important, making sure that the staff can
5	make the right kind of safety findings.
6	CHAIRMAN WALLIS: Thank you.
7	MR. MARSH: Thank you.
8	Kaly?
9	MR. KALYANAM: Good morning. My name is
10	Kalyanam and I'm known as Kaly here. I'm the Project
11	Manager for Waterford 3, and I work in the DLPM.
12	Okay. Just to give you a little background
13	for the Waterford uprate.
14	The plant was originally licensed in 1985
15	for operational reactor core power not to exceed 3390
16	megawatts thermal units. And measurement uncertainty
17	recapture uprate was rendered in 2002 which gave them
18	a 1.5 percent increase, and the core power level was
19	not to exceed 3441 megawatt thermal.
20	Now the uncertainty power uprate which we
21	are discussing now, requests are in the case of 8
22	percent and the core level will not exceed 3716
23	megawatts thermal. And as Mr. Marsh said, this is the
24	largest PWR power uprate to date.
25	Now, some of the major plant modifications

(202) 234-4433

are: The licensee upgrading the high pressure turbine and rewinding the generator and provide the associated 3 auxiliaries; installing higher capacity generator 4 output circuit breakers; disconnect switches and reworking on the bus; main transformers and modifications, and; replace and upgrade the control valves for the heater drain system, and; stake the 8 condenser tubes.

table 9 And the time for the EPU 10 implementation is intended plants implement this 11 Waterford 3 EPU in one increment. And completion of 12 the plant modifications necessary to implement the EPU is planned prior to the end of the refuelling outage, 13 14 which is commencing the spring of 2005.

15 With the approval of this license amendment request, the plant will be operated at the 16 17 new power starting in cycle 14.

Some of this table giving the comparison 18 19 of operating parameters. And as it was pointed, there 20 is a slight increase in the hot leg temperature and 21 the cold leg temperature, it drops. And the RCS flow 22 increases slightly pound-mass per second.

23 And on the secondary site, the steam 24 generator pressure drops and the flow increases. 25 be provided by Further data on this will the

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

7

	15
1	reviewers.
2	CHAIRMAN WALLIS: So it's the increase in
3	the flow as well, that's the one I didn't find in the
4	documentation. There is something peculiar in the
5	documentation. It says that this change in temperature
6	was equivalent to an enthalpy change going through the
7	core, which was 9 percent. But that's not true. If
8	you look at the steam tables, it just doesn't work
9	out. So maybe the licensee is going to explain all
10	that to us.
11	MR. KALYANAM: I am sure.
12	MR. MIRANDA: Could I attempt to answer
13	this question? My name is Sam Miranda from the
14	Reactor Systems Branch.
15	And this question came up before just
16	where this power increase is coming from. And I did a
17	few calculations to see where it is coming from. And
18	basically it's a change in the cold leg temperature
19	increasing the delta T through the core. That
20	accounts for the 8 percent increase in power. And
21	there's also an increase in steam flow and a change in
22	the feedwater temperature.
23	And if you do the delta H calculations of
24	feedwater, FOP the steam FOP at the new steam
25	pressure, that's also the 8 percent increase in power.
ļ	1

(202) 234-4433

(202) 234-4433

	16
1	CHAIRMAN WALLIS: Sam, you didn't say
2	anything about the RCS flow rate?
3	MR. MIRANDA: The RCS flow rate, there is
4	a small change there but mainly that's due to the
5	density change in the cold leg.
6	CHAIRMAN WALLIS: Well, I think if you
7	calculate the enthalpy change for the hot leg/cold
8	leg, you're lucky to get about four something percent
9	just from the enthalpy change. So we're going to
10	revisit this. Do you have different steam tables from
11	mine, though, something just doesn't work out. It's
12	not just the enthalpy change in the RCS fluid. It's
13	also the flow rate you have to use. I think this flow
14	rate may do it, just looking at it.
15	MR. MIRANDA: It's deceptive to look at
16	just the flow rate because the flow rate is the
17	thermal design flow rate, and that can change
18	depending upon, you know, how they want to use it in
19	their thermal-hydraulic calculations as opposed to the
20	RCP rated flow rate.
21	If you just look at the volumetric flow
22	rate and take the density changes, there is an overall
23	change in the flow rate of about 2.9 percent of which
24	about 2.4 percent is strictly due to the change in
25	density in the cold leg. And the rest would be
ļ	I

(202) 234-4433

	17
1	CHAIRMAN WALLIS: And so we'll revisit
2	page 105 of the SER sometime, this enthalpy
3	MR. MARSH: Yes. We want to explain to
4	you, too, as best we can what's going on in the core.
5	You know, where's the power happening in the core and
б	the fuel itself. So it's not just an RCS loop, it's
7	also what's happening to the flux profiles, what's
8	happening to why don't we make sure that the
9	licensee really addresses that for you as well.
10	Okay. Kaly.
11	MR. KALYANAM: The staff approach for the
12	review was as Mr. Marsh said, this the first PWR EPU
13	to follow Review Standard 001. We replaced the
14	Standard Review Plan and acceptable core and
15	methodologies. We developed 20 or 25 requests for
16	additional information. And altogether we had about
17	30 supplements. And we have done audits and
18	independent calculations in selected areas and the
19	reviewers will discuss that in later detail.
20	And principal areas of review. Okay. I
21	have listed them.
22	The vessels and internals.
23	Okay. The metrics which we are referring
24	to is the Review Standard metrics and we have covered
25	all of them. I'm not going to go line by line, but
ļ	I

(202) 234-4433

18 basically vessels internals, piping integrity, steam 1 2 generator integrity and so on. 3 And we have --4 CHAIRMAN WALLIS: How about the fuel? 5 MR. KALYANAM: The fuel comes --6 CHAIRMAN WALLIS: The fuel is going to 7 produce more power? 8 MR. KALYANAM: Pardon? 9 CHAIRMAN WALLIS: The fuel produces more 10 power, so presumably you had to review what happens to the fuel. It gets hotter or --11 12 MR. KALYANAM: Yes. CHAIRMAN WALLIS: -- heat distribution is 13 14 different and so on. 15 MR. KALYANAM: Okay. I'm sure we'll be 16 able to address it in their respective sections. CHAIRMAN WALLIS: What is it that limits 17 the operators? Is it the fuel? 18 19 MR. KALYANAM: I think Sam or --20 CHAIRMAN WALLIS: Or was it accident 21 analysis? 22 MR. KALYANAM: What? Can you answer? 23 MR. SICARD: This is Paul Sicard. I'm the 24 lead safety analysis engineer for the Waterford 25 uprate.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	Now the question is what is a limit as far
2	as the power. From a core and fuel analysis point of
3	what we saw as a limiting event was the performance
4	related tube, the small break LOCA ECCS analysis.
5	CHAIRMAN WALLIS: Thank you.
6	MR. KALYANAM: And this is the
7	continuation of the principal areas of review.
8	And the order of the NRR presentation
9	after the licensee presentation will be as shown here.
10	We have the reviewers from all the branches. And if
11	there is any question that comes up, you know we have
12	the experts in those areas to answer your questions.
13	And the few open items that Tad Marsh
14	referred to, let me briefly discuss them. There are
15	four issues or topics that are on a success path and
16	close to resolution.
17	One is submittal by the licensee on the
18	alternate source term is under review. The draft SE
19	which you have and you have seen, the flux test and
20	the issue of the EPU amendment will be contingent on
21	the issue of the alternate source term amendment.
22	And the reactor vessel internal
23	degradation monitoring program we had some discussions
24	with the licensee and we are on a success path there.
25	And there was an issue on the three second
Į	1

(202) 234-4433

	20
1	time delay between the steam generator tube rupture
2	and loss of offsite power. And there also we are very
3	close to the resolution.
4	And, you know, these items will be
5	resolved before the license is granted.
6	And the last one is accounting the
7	instrument uncertainty for the tech spec parameters,
8	but are influenced by the EPU. That's one other issue
9	that we are on a success path and close to resolution.
10	With that, I will ask Jim Medoff to come.
11	MR. MARSH: Just building a little bit on
12	that last one, that's not really the methods reissue
13	that you and I talked about. This is another accuracy
14	issue associated with this petition, which we'll
15	describe.
16	DR. RANSOM: One question that I have is
17	I would like to see a pressure schedule for this
18	system because you have a higher flow rate through the
19	core, so a higher delta P across the core, apparently,
20	and some of the steam generator tubes are plugged as
21	well which means the delta P is increased across
22	there. So the horsepower to the pumps must have to
23	increase. And I'm wondering if that's been looked at?
24	MR. BARKOW: Just a correction. This is
25	Herb Berkow. I'm the Project Director for Region IV
I	I

(202) 234-4433

	21
1	plant.
2	The licensee's presentation is next.
3	MR. KALYANAM: I'm sorry. The licensee's
4	presentation comes.
5	MR. MARSH: But I hope we get at your
6	question. If not us, then the licensee. Okay. That's
7	pressure around the reactor, what's going on when the
8	flow drops, horsepower requirements for the reactor.
9	Okay. Mr. Chairman, we'd like to turn it
10	over to the licensee for his presentation.
11	CHAIRMAN WALLIS: Move on. Thank you.
12	Thank you.
13	MR. MARSH: Thank you.
14	MR. MITCHELL: Good morning. I'm Tim
15	Mitchell. I'm Engineering Director at the Waterford 3
16	plant. I've been in this position since about August
17	of last year. Prior to that one piece of my past
18	experience was as Operations Manager at Arkansas
19	Nuclear One for the Unit 2 power uprate. So I've seen
20	power uprates also from the operations side. And I
21	feel like that has given me a perspective coming in as
22	Engineering Director at Waterford to look at this and
23	follow up.
24	In this presentation, Mr. Chairman, we
25	will answer your questions. We'll answer all the

(202) 234-4433

	22
1	questions, but we'll make sure that we get to the ones
2	that have been introduced so far.
3	We have a number of people here to support
4	our presentation, people from Westinghouse, Enercon
5	and Entergy. I will be introducing the primary
б	members here.
7	We've built this presentation to cover a
8	number of items, some not effected by power uprate,
9	but they're areas of interest for the industry. So we
10	will try to address more than just what has been
11	effected by power uprate.
12	I am Tim Mitchell, again giving the
13	introduction.
14	Safety analysis will be presented by Paul
15	Sicard.
16	And each of these presenters will give a
17	little bit about their background when they come up.
18	Risk considerations will be given by Mr.
19	Jerry Holman.
20	Engineering plant impacts by Mr. David
21	Viener.
22	Then the Operations Impacts. First
23	training and procedures by Mr. Gene Wemett. And then
24	testing, Mr. David Constance.
25	And then we'll to the conclusions.

(202) 234-4433

	23
1	We have a lot of data to present. We will
2	present it as efficiently and answer your questions as
3	we can.
4	This h as been a significant project for
5	us with significant resource amendment. We think that
6	has helped our product. It has been over three years
7	of significant dedicated resources, and it's been a
8	multisite effort, not just Waterford, but all the
9	Entergy nuclear sites have contributed resources and
10	expertise to this effort.
11	We feel one of the benefits for Waterford
12	is it has improve our design basis. We've had a
13	strong focus while we went through this on margins.
14	We've eliminated some longstanding margin issues and
15	have plans to address more.
16	Focused oversight and rigor has been a key
17	element of managing this project. We have a director
18	level project lead, Mr. Ted Leonard. Design and
19	review committees have been used to provide oversight
20	throughout the process so that we have additional
21	rigor or oversight at the end to make sure that the
22	product that is being provided to the plant is the
23	best possible.
24	We've had some assessments, including
25	corporate lead assessments. We started the effort with

(202) 234-4433

	24
1	a large assessment to make sure that we learned from
2	the industry and in particular the Arkansas Nuclear
3	One Unit 2 upgrade. So we started on the right foot.
4	We had several other assessments. We had
5	a big one last October to review our readiness. It
6	was a 12 member team. Eleven people on that team had
7	previous upgrade experience, four were from outside
8	Entergy. And then we do periodic assessments of our
9	engineering quality also to make sure another depth of
10	review of done, to make sure the fire quality is good.
11	We've accounted for industry experience.
12	We've applied it where applicable and we have had a
13	rigorous and we appreciate that rigor because we
14	feel that it has given us a better product as well.
15	And as previously mentioned, this
16	submittal was prepared for the draft Review Standard
17	RS-001 for our efforts.
18	A high level description of the plant,
19	most of this has already been presented, but we are a
20	combustion engineering NSSS pressure water reactor. So
21	we did enter commercial operation in 1985, and Kaly
22	has already presented the rest of the information on
23	the slide, so I won't go through it again
24	MR. SIEBER: You have two steam
25	generators.
I	1

(202) 234-4433

	25
1	MR. MITCHELL: That is correct.
2	MR. SIEBER: And how many total tubes and
3	how many are plugged?
4	MR. MITCHELL: Do you have the actual
5	data, Alan?
6	MR. HARRIS: I'm Alan Harris with the
7	engineering department at Waterford.
8	There are normally 9,350 tubes per steam
9	generator. And number one steam generator, 571 tubes
10	are plugged. And in number two steam generator, 484
11	tubes. That's a total of 1,055 tubes.
12	Of those that are plugged, only 429 were
13	plugged due to actual indications. The other 626 were
14	preventively plugged early in plant life or prior to
15	commercial operations due to concerns with vertical
16	support ware at the bat wings.
17	Does that answer your question?
18	MR. SIEBER: Okay. Thank you.
19	DR. FORD: Could you go back one slide,
20	please? This whole presentation relates to the power
21	uprate, of course. I understand that you're
22	considering going for license renewal at some time in
23	the future. To what extent did your analyses for
24	power uprate take into account this future license
25	renewal?
I	

(202) 234-4433

	26
1	MR. MITCHELL: We in all cases protected
2	our options to go for license extension, and we do
3	plan on going for license extension. The current
4	schedule would be roughly the 2008 time frame to be
5	prepared to go forward with that license renewal.
б	So we have every intention of proceeding
7	with license
8	DR. FORD: So in the back of your mind
9	when you're going through these analyses, the changes
10	influx for instance, corrosion of various types but
11	also entered into your thinking?
12	MR. MITCHELL: That is correct.
13	Okay. I'll go through a little
14	introduction of the project team consisting of
15	Entergy, Westinghouse, Enercon and Siemen's-
16	Westinghouse. And as already mentioned, we have a
17	number of people from Westinghouse and Enercon here
18	with us today.
19	In closing my introduction, we plan to
20	show you that we've done a thorough and rigorous
21	project and that we are making the plant better as a
22	result of this project, and it is safe. The staff
23	review has challenged us and it has improved our
24	project.
25	And we thank the ACRS Subcommittee for
I	I

(202) 234-4433

	27
1	their time to be able to present this to you.
2	Thank you. I'll turn it over to Paul
3	Sicard, who will go over our safety analysis.
4	MR. SICARD: Good morning. My name is Paul
5	Sicard. I'm the lead safety analysis engineer for the
б	Waterford 3 extended power uprate project.
7	I started work at Waterford in 1988, and
8	I've been doing safety analysis work for Entergy since
9	that time. And I'm here to discuss the safety analysis
10	work that had been done to demonstrate that Waterford
11	will continue to operate safely under extended power
12	uprate conditions, and that we meet the required
13	acceptance criteria for this.
14	And my discussion is going to be focused
15	on the analytical side of safety analysis, the final
16	safety analysis report section, chapter 15 for
17	example. But I want to also stress that Waterford has
18	kept a focus on operational safety as part of our
19	uprate project, and we have kept our operations
20	department very involved in the project, as Tim has
21	said.
22	Next slide, please.
23	The scope of what we've looked at has
24	included looking at the fuel impacts, the emergency
25	core cooling system analyses, the analyses of non-LOCA
ļ	I

(202) 234-4433

1 transient events, containment analyses and our 2 radiological analyses. This has been an extremely 3 thorough review. We have basically redone 90 to 95 4 percent of the analyses that fall into this 5 traditional realm of safety analysis. We have been closely involved with Westinghouse in the development 6 7 of those computations. And this is a project that we see as greatly improving the strength of the design 8 basis for the Waterford plant in terms of bringing all 9 of this up to date for our power uprate conditions. 10 Next slide. 11 12 Kaly already gone the has over modifications associated with the power uprate. 13 We 14 want to point out that we have not needed to make 15 significant changes to any of the safety systems. 16 There's no change, for example, to the safetv 17 injection system associated with the uprate. Most of these changes are related to the power conversion side 18 19 of the plant. We do have some changes in the control 20 systems and instrumentations, a couple of minor 21 setpoint changes and relatively minor changes to 22 control system setpoints that are associated with the 23 power uprate. 24 Next slide. 25 A quick question, and you may MR. SIEBER:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	29
1	not be able to answer but I'm sure somebody will in
2	the course of the day.
3	I note the steam pressure goes down by
4	about 30 pounds and the steam flow goes up by about 8
5	or 9 percent. That tells me that the moisture content
6	has to increase. You are not planning, I presume, to
7	change the moisture separator path of the steam
8	generators. And if you don't, then I presume that
9	there will be an increase in erosion/corrosion of the
10	piping and also an increase in the wear rates of the
11	turbine blade. If that's the case, what steps has
12	Entergy taken to recognize that and alleviate it if
13	possible?
14	You probably aren't the guy?
15	MR. SICARD: No. I'm not the guy to get
16	into those details here. David Viener, who is our
17	lead mechanical engineer for the project, will be
18	addressing flow accelerated corrosion during his
19	presentation later, or do you want your answer
20	MR. SIEBER: I can wait.
21	MR. SICARD: Okay.
22	MR. SIEBER: But if he could right is down
23	so that he makes sure he covers it.
24	MR. SICARD: Okay.
25	MR. SIEBER: Maybe I can ask a general
ļ	I

	30
1	question about fuel management.
2	MR. SICARD: Yes.
3	MR. SIEBER: You intend to increase power
4	by about 8 percent. Will the cycle lengths remain the
5	same?
6	MR. SICARD: I will cover that in a slide
7	later, but yes we are going to keep the same 18 month
8	cycle length that we currently operate with.
9	MR. SIEBER: Do you intend to replace the
10	same number of assemblies at each refueling or a
11	greater number?
12	MR. SICARD: We anticipate replacing a
13	larger number of assemblies for each refueling. For
14	the upcoming refueling, our fuel cycle 14, we will
15	have 100 new assemblies as part of the reload compared
16	to 92 for the previous one.
17	MR. SIEBER: Is it your philosophy, I take
18	it, to minimize the increase in final burnup of the
19	fuel by increasing the amount that you
20	MR. SICARD: We are looking to stay within
21	our current burnup limits by having larger batch
22	sizes. Also, by having slightly larger batch sizes
23	that allows us to lower the peaking on the fuel such
24	that under operating conditions there will not be a
25	significant difference in the environment seen by the
I	

(202) 234-4433

1fuel assemblies for uprate versus what the highest2peaking assemblies see right now.3MR. SIEBER: Thank you.4CHAIRMAN WALLIS: You also have well,5I think it's in the staff's, lower gamma fluxes and so6on to the internals. Something has happened about the7flux distribution in the core?8MR. SICARD: That is basically an artifact9of conservatisms in the original analyses. The10original analyses were done, you know, with what was11viewed as a core design for the early 1980s. Since12then we have gone to a low leakage core such that even13when power uprate is considered, and we go and we14calculate what the fluence is towards the core15periphery, it is lower now than in those original16analyses.17CHAIRMAN WALLIS: So what's happened is18it's not as if it's actually decreased. It's19decreased not only because of the analysis20MR. SICARD: It has decreased compared to21the values that it was designed for.22CHAIRMAN WALLIS: Physically it has23probably increased?24MR. SICARD: Pardon?25CHAIRMAN WALLIS: Physically it has		31
3 MR. SIEBER: Thank you. 4 CHAIRMAN WALLIS: You also have well, 5 I think it's in the staff's, lower gamma fluxes and so 6 on to the internals. Something has happened about the 7 flux distribution in the core? 8 MR. SICARD: That is basically an artifact 9 of conservatisms in the original analyses. The 10 original analyses were done, you know, with what was 11 viewed as a core design for the early 1980s. Since 12 then we have gone to a low leakage core such that even 13 when power uprate is considered, and we go and we 14 calculate what the fluence is towards the core 15 periphery, it is lower now than in those original 16 analyses. 17 CHAIRMAN WALLIS: So what's happened is 18 it's not as if it's actually decreased. It's 19 decreased not only because of the analysis 20 MR. SICARD: It has decreased compared to 21 the values that it was designed for. 22 CHAIRMAN WALLIS: Physically it has 23 probably increased? 24 MR. SICARD: Pardon? <td>1</td> <td>fuel assemblies for uprate versus what the highest</td>	1	fuel assemblies for uprate versus what the highest
 CHAIRMAN WALLIS: You also have well, I think it's in the staff's, lower gamma fluxes and so on to the internals. Something has happened about the flux distribution in the core? MR. SICARD: That is basically an artifact of conservatisms in the original analyses. The original analyses were done, you know, with what was viewed as a core design for the early 1980s. Since then we have gone to a low leakage core such that even when power uprate is considered, and we go and we calculate what the fluence is towards the core periphery, it is lower now than in those original analyses. CHAIRMAN WALLIS: So what's happened is it's not as if it's actually decreased. It's decreased not only because of the analysis MR. SICARD: It has decreased compared to the values that it was designed for. CHAIRMAN WALLIS: Physically it has probably increased? MR. SICARD: Pardon? 	2	peaking assemblies see right now.
5I think it's in the staff's, lower gamma fluxes and so6on to the internals. Something has happened about the7flux distribution in the core?8MR. SICARD: That is basically an artifact9of conservatisms in the original analyses. The10original analyses were done, you know, with what was11viewed as a core design for the early 1980s. Since12then we have gone to a low leakage core such that even13when power uprate is considered, and we go and we14calculate what the fluence is towards the core15periphery, it is lower now than in those original16analyses.17CHAIRMAN WALLIS: So what's happened is18it's not as if it's actually decreased. It's19decreased not only because of the analysis20MR. SICARD: It has decreased compared to21the values that it was designed for.22CHAIRMAN WALLIS: Physically it has23probably increased?24MR. SICARD: Pardon?	3	MR. SIEBER: Thank you.
 on to the internals. Something has happened about the flux distribution in the core? MR. SICARD: That is basically an artifact of conservatisms in the original analyses. The original analyses were done, you know, with what was viewed as a core design for the early 1980s. Since then we have gone to a low leakage core such that even when power uprate is considered, and we go and we calculate what the fluence is towards the core periphery, it is lower now than in those original analyses. CHAIRMAN WALLIS: So what's happened is it's not as if it's actually decreased. It's decreased not only because of the analysis MR. SICARD: It has decreased compared to the values that it was designed for. CHAIRMAN WALLIS: Physically it has probably increased? MR. SICARD: Pardon? 	4	CHAIRMAN WALLIS: You also have well,
7flux distribution in the core?8MR. SICARD: That is basically an artifact9of conservatisms in the original analyses. The10original analyses were done, you know, with what was11viewed as a core design for the early 1980s. Since12then we have gone to a low leakage core such that even13when power uprate is considered, and we go and we14calculate what the fluence is towards the core15periphery, it is lower now than in those original16analyses.17CHAIRMAN WALLIS: So what's happened is18it's not as if it's actually decreased. It's19decreased not only because of the analysis20MR. SICARD: It has decreased compared to21the values that it was designed for.22CHAIRMAN WALLIS: Physically it has23probably increased?24MR. SICARD: Pardon?	5	I think it's in the staff's, lower gamma fluxes and so
8MR. SICARD: That is basically an artifact9of conservatisms in the original analyses. The10original analyses were done, you know, with what was11viewed as a core design for the early 1980s. Since12then we have gone to a low leakage core such that even13when power uprate is considered, and we go and we14calculate what the fluence is towards the core15periphery, it is lower now than in those original16analyses.17CHAIRMAN WALLIS: So what's happened is18it's not as if it's actually decreased. It's19decreased not only because of the analysis20MR. SICARD: It has decreased compared to21the values that it was designed for.22CHAIRMAN WALLIS: Physically it has23probably increased?24MR. SICARD: Pardon?	6	on to the internals. Something has happened about the
9 of conservatisms in the original analyses. The 10 original analyses were done, you know, with what was 11 viewed as a core design for the early 1980s. Since 12 then we have gone to a low leakage core such that even 13 when power uprate is considered, and we go and we 14 calculate what the fluence is towards the core 15 periphery, it is lower now than in those original 16 analyses. 17 CHAIRMAN WALLIS: So what's happened is 18 it's not as if it's actually decreased. It's 19 decreased not only because of the analysis 20 MR. SICARD: It has decreased compared to 21 the values that it was designed for. 22 CHAIRMAN WALLIS: Physically it has 23 probably increased? 24 MR. SICARD: Pardon?	7	flux distribution in the core?
10 original analyses were done, you know, with what was 11 viewed as a core design for the early 1980s. Since 12 then we have gone to a low leakage core such that even 13 when power uprate is considered, and we go and we 14 calculate what the fluence is towards the core 15 periphery, it is lower now than in those original 16 analyses. 17 CHAIRMAN WALLIS: So what's happened is 18 it's not as if it's actually decreased. It's 19 decreased not only because of the analysis 20 MR. SICARD: It has decreased compared to 21 the values that it was designed for. 22 CHAIRMAN WALLIS: Physically it has 23 probably increased? 24 MR. SICARD: Pardon?	8	MR. SICARD: That is basically an artifact
viewed as a core design for the early 1980s. Since then we have gone to a low leakage core such that even when power uprate is considered, and we go and we calculate what the fluence is towards the core periphery, it is lower now than in those original analyses. CHAIRMAN WALLIS: So what's happened is it's not as if it's actually decreased. It's decreased not only because of the analysis MR. SICARD: It has decreased compared to the values that it was designed for. CHAIRMAN WALLIS: Physically it has probably increased? MR. SICARD: Pardon?	9	of conservatisms in the original analyses. The
12then we have gone to a low leakage core such that even13when power uprate is considered, and we go and we14calculate what the fluence is towards the core15periphery, it is lower now than in those original16analyses.17CHAIRMAN WALLIS: So what's happened is18it's not as if it's actually decreased. It's19decreased not only because of the analysis20MR. SICARD: It has decreased compared to21the values that it was designed for.22CHAIRMAN WALLIS: Physically it has23probably increased?24MR. SICARD: Pardon?	10	original analyses were done, you know, with what was
13 when power uprate is considered, and we go and we 14 calculate what the fluence is towards the core 15 periphery, it is lower now than in those original 16 analyses. 17 CHAIRMAN WALLIS: So what's happened is 18 it's not as if it's actually decreased. It's 19 decreased not only because of the analysis 20 MR. SICARD: It has decreased compared to 21 the values that it was designed for. 22 CHAIRMAN WALLIS: Physically it has 23 probably increased? 24 MR. SICARD: Pardon?	11	viewed as a core design for the early 1980s. Since
14 calculate what the fluence is towards the core 15 periphery, it is lower now than in those original 16 analyses. 17 CHAIRMAN WALLIS: So what's happened is 18 it's not as if it's actually decreased. It's 19 decreased not only because of the analysis 20 MR. SICARD: It has decreased compared to 21 the values that it was designed for. 22 CHAIRMAN WALLIS: Physically it has 23 probably increased? 24 MR. SICARD: Pardon?	12	then we have gone to a low leakage core such that even
15 periphery, it is lower now than in those original analyses. 17 CHAIRMAN WALLIS: So what's happened is it's not as if it's actually decreased. It's decreased not only because of the analysis MR. SICARD: It has decreased compared to the values that it was designed for. 20 CHAIRMAN WALLIS: Physically it has probably increased? 24 MR. SICARD: Pardon?	13	when power uprate is considered, and we go and we
<pre>16 analyses. 17 CHAIRMAN WALLIS: So what's happened is 18 it's not as if it's actually decreased. It's 19 decreased not only because of the analysis 20 MR. SICARD: It has decreased compared to 21 the values that it was designed for. 22 CHAIRMAN WALLIS: Physically it has 23 probably increased? 24 MR. SICARD: Pardon?</pre>	14	calculate what the fluence is towards the core
17 CHAIRMAN WALLIS: So what's happened is 18 it's not as if it's actually decreased. It's 19 decreased not only because of the analysis 20 MR. SICARD: It has decreased compared to 21 the values that it was designed for. 22 CHAIRMAN WALLIS: Physically it has 23 probably increased? 24 MR. SICARD: Pardon?	15	periphery, it is lower now than in those original
18 it's not as if it's actually decreased. It's 19 decreased not only because of the analysis 20 MR. SICARD: It has decreased compared to 21 the values that it was designed for. 22 CHAIRMAN WALLIS: Physically it has 23 probably increased? 24 MR. SICARD: Pardon?	16	analyses.
19 decreased not only because of the analysis 20 MR. SICARD: It has decreased compared to 21 the values that it was designed for. 22 CHAIRMAN WALLIS: Physically it has 23 probably increased? 24 MR. SICARD: Pardon?	17	CHAIRMAN WALLIS: So what's happened is
20 MR. SICARD: It has decreased compared to 21 the values that it was designed for. 22 CHAIRMAN WALLIS: Physically it has 23 probably increased? 24 MR. SICARD: Pardon?	18	it's not as if it's actually decreased. It's
21 the values that it was designed for. 22 CHAIRMAN WALLIS: Physically it has 23 probably increased? 24 MR. SICARD: Pardon?	19	decreased not only because of the analysis
22 CHAIRMAN WALLIS: Physically it has 23 probably increased? 24 MR. SICARD: Pardon?	20	MR. SICARD: It has decreased compared to
<pre>23 probably increased? 24 MR. SICARD: Pardon?</pre>	21	the values that it was designed for.
24 MR. SICARD: Pardon?	22	CHAIRMAN WALLIS: Physically it has
	23	probably increased?
25 CHAIRMAN WALLIS: Physically it has	24	MR. SICARD: Pardon?
	25	CHAIRMAN WALLIS: Physically it has

(202) 234-4433

	32
1	probably increased.
2	MR. SICARD: Physically it has probably
3	increased.
4	CHAIRMAN WALLIS: And that equates
5	decrease because there's less conservatism?
6	MR. SICARD: That is correct.
7	This slide presents some of the operating
8	parameters.
9	CHAIRMAN WALLIS: Well, this enthalpy
10	change we're talking about comes from using 541, is
11	it?
12	MR. SICARD: Let me speak to the
13	CHAIRMAN WALLIS: I don't understand
14	having this range of temperatures. I mean, you're
15	talking about a specific power. You presumably have
16	a certain temperature?
17	MR. SICARD: Yes. And when one starts
18	talking about RCS flow, one gets into the situation
19	like the saying of the man with two watches never
20	knows what time it is. Because one has to define which
21	flow it is that you are considering and what are the
22	assumptions that go into those particular flows.
23	The technical specification minimum flow
24	is not being changed. That's a value of 148 million
25	pounds per hour. The maximum flow assumption that we
I	

(202) 234-4433

	33
1	used in safety analyses is 115 percent of that value.
2	There is also a nominal flow which we used
3	in order to do analyses, for instance, of fuel burnup
4	and support fuel management and which is input into
5	items such as structural analysis.
6	A number that was presented in the slides
7	before shows the change in that nominal flow from what
8	had been our docketed operating point under the
9	Appendix K uprate compared to what the nominal flow is
10	that we are docketing right now for our extended power
11	uprate. And a complication in there is the fact that
12	Waterford had a miscalibration of its ultrasonic flow
13	meter which lead to that previous flow that was our
14	docketed flow upon which operating point calculations
15	were built being slightly low. You know, when we
16	discovered this issue, we entered into our corrective
17	action process. We have assessed it for impact on
18	current operations which was truly minimal. But it
19	does result in having to explain this difference in
20	between the flow rate for our Appendix K information
21	as docketed with the NRC versus power uprate.
22	Now, for the actual physical change due to
23	power uprate, you will see a slight change in the flow
24	because of the increase in density, because of the

(202) 234-4433

25

slight decrease in temperature.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	34
1	CHAIRMAN WALLIS: Well, what I'm trying to
2	get at is when you increase the power by 8 percent, is
3	6 percent of that due to temperature change and 2
4	percent due to flow change or is it a variable and
5	sometimes it's 5 percent 3, sometimes it's 7 percent
6	2, one or something? There's obviously these two
7	figure in the energy balance. And I couldn't figure
8	out by how much the flow rate had changed in order to
9	make up this energy out.
10	MR. SICARD: Yes.
11	CHAIRMAN WALLIS: Presumably there's a
12	range.
13	MR. SICARD: Yes. From our point of view
14	the major contributor to the increase in delta T will
15	be the increase in the power. We see the input from
16	the increased output of the core being the more
17	dominate factor to increasing what your delta T will
18	be.
19	CHAIRMAN WALLIS: Should I use 541 when I
20	try to check your calculations, or 543?
21	MR. SICARD: You should use 543 because
22	that is
23	CHAIRMAN WALLIS: Then you have not quite
24	an increase in flow rate, and flow rate is a
25	significant part of the uprate?
ļ	I

(202) 234-4433

	35
1	MR. SICARD: Pardon?
2	CHAIRMAN WALLIS: Then the flow rate
3	change is a significant contributor to the uprate.
4	Because 543 you don't get close to it
5	MR. SICARD: No. We are able to accomplish
6	this uprate without crediting an increase in the flow.
7	Because we have built this uprate based upon our
8	minimum technical specification flow which has not
9	change for the uprate. So we are having a fire
10	temperature rise across the core that for the same
11	flow rate as what we had previously.
12	CHAIRMAN WALLIS: That's true. But 2.6
13	degrees is not enough to give you that. So I just
14	wanted a simple energy balance calculation, that's all
15	I'm looking for because when I do it, it doesn't come
16	up to 8 percent. That's all I'm looking for.
17	MR. SICARD: We had questions and
18	discussions with the staff on the subject. This has
19	been documented in some of the responses to the
20	request for additional information that we did have
21	from the staff. And, you know, what is confusing here
22	is the fact that we had this error of approximately 3
23	percent in this nominal flow. Now I need to stress
24	again
25	CHAIRMAN WALLIS: Basically what you guys
	I

(202) 234-4433

	36
1	could do is you could prepare a one sheet explanation
2	that will make sense to a sophomore in engineering in
3	terms of heat balance and put it up on the screen
4	sometime today so I can understand it. You've talked
5	around it so much, I still don't understand how the
б	energy balance works. All I need is a simple equation
7	with some numbers that I could go over
8	MR. SICARD: Sure.
9	CHAIRMAN WALLIS: and say, yes, I believe
10	it. That's all I'm looking for.
11	MR. HOLMAN: This is Jerry Holman from
12	Waterford 3.
13	And we'll try and put together that type
14	of slide. The other piece of the equation here that
15	I think is missing is the increase in steam flow from
16	the steam generator as a result of
17	CHAIRMAN WALLIS: That has nothing to do
18	with what happens in the flow.
19	MR. SICARD: We do have that information,
20	and it was in our May 12th RAI response, last page of
21	that.
22	MR. MIRANDA: Excuse me. Name is Sam
23	Miranda.
24	Again, I'm back with this same question.
25	And referring back to my calculations. And I believe
	I

(202) 234-4433

	37
1	that the 543 degree temperature in my calculations
2	accounts for only five percent of the power uprate.
3	If I go to the 541 degree temperature, that goes up to
4	the 8 percent.
5	CHAIRMAN WALLIS: Yes, that's right. Yes,
6	that's more like it.
7	MR. CARUSO: And you should have a table
8	there that
9	MR. MIRANDA: Yes, I did a little
10	spreadsheet.
11	CHAIRMAN WALLIS: Maybe you could share
12	this with us at some time today? Maybe we should move
13	on now, but we'll come back and make this absolutely
14	clear at some point.
15	MR. SIEBER: The new delta T, the range of
16	it, would lead to a 6 to 9 percent increase in power.
17	So this, by the change in delta T, that accounts for
18	it in my mind.
19	MR. SICARD: Let me also explain what this
20	541 to 543 is. This is a gram of the nominal
21	temperature. We have a range for our cold leg
22	temperature technical specification. But a
23	temperature program for the plant, we're at zero power
24	conditions to control around 541 degrees, and that
25	raises that is increased to 543 for hot/cold power
I	

(202) 234-4433

ĺ	38
1	conditions. And this is consistent with the original
2	design of Waterford 3. Waterford 3 originally was
3	designed with a temperature ramp going from 545 up to
4	553. And we changed that in 1992 to a flat
5	temperature profile of 545 due to concerns for
б	potential material issues such as the condition steam
7	generator 2. So that is some of the history of the
8	temperature and how it evolved over time.
9	You know, let me get back to so me of the
10	other
11	CHAIRMAN WALLIS: I guess the reason that
12	this concerned me was because there are changes in
13	flow rate that wasn't evident in the documentation.
14	They have some consequences, and they never seemed to
15	be discussed. That's why it interested me was that
16	there are changes in the RCS flow rates and there are
17	some consequences in terms of
18	MR. SICARD: The changes in those flow
19	rates are within the bounds of the existing analyses
20	
21	CHAIRMAN WALLIS: Well, they be legal, but
22	they still have some effect. And it's interesting to
23	discuss what the effects might be.
24	MR. CARUSO: Can I ask a question?
25	MR. SICARD: Yes.
	I

(202) 234-4433

	39
1	MR. CARUSO: Are you changing anything
2	about the reactor coolant pump operations as a result
3	of this uprate?
4	MR. SICARD: No. We are not changing any
5	reactor coolant pump operation as a result of the
6	uprate.
7	MR. CARUSO: And you're not making any
8	hardware changes to the reactor coolant pump?
9	MR. SICARD: We are not making any
10	hardware changes to the reactor coolant pump.
11	MR. CARUSO: So if the reactor coolant
12	pump mass flow rate changes, it's entirely because of
13	you're not making any changes to the geometry or
14	the reactor coolant system or the pressure drop
15	behavior of the fuel, correct?
16	MR. SICARD: We are not making any
17	physical changes to the reactor coolant system. You
18	do have some slight change in the hydraulic resistance
19	as the number of tubes plugged increases.
20	MR. CARUSO: Right.
21	MR. SICARD: And there are some slight
22	changes associated with the acceleration of fluid
23	through the core due to the higher heat input. Those
24	are relatively minor.
25	MR. CARUSO: Okay. So any change in the
I	I

(202) 234-4433

	40
1	flow through the reactor coolant pumps is due to the
2	change in the density of the fluid as it's flowing
3	around the loop and as it's heated by the core?
4	MR. SICARD: Yes, that would be correct.
5	CHAIRMAN WALLIS: Don't you have some
б	control over that flow rate? You must have. You just
7	run the pump and get whatever flow rate you get?
8	MR. SICARD: Yes.
9	CHAIRMAN WALLIS: Then that's another
10	interesting consideration. How do you manage to make
11	it happen?
12	MR. SICARD: Well, we do perform analyses
13	of the pressure drop within the core and there are,
14	you know, extensive analyses in order to document what
15	the flow rate will be and that it will be within the
16	acceptable criteria.
17	Would Steve Cybert of Westinghouse want to
18	add anything to that statement. I think Steve would be
19	the best person. Is he there?
20	CHAIRMAN WALLIS: So I'm trying to figure
21	out how you get the operate. You simply take more
22	steam out of the steam generator and that makes the
23	water colder?
24	MR. SICARD: Right.
25	CHAIRMAN WALLIS: And this then has
I	I

(202) 234-4433

	41
1	effects on the flow rate and everything else which
2	somehow works out.
3	MR. SIEBER: But the primary effect is on
4	the delta T.
5	MR. SICARD: Yes.
6	MR. SIEBER: The flow rate really doesn't
7	mean anything.
8	CHAIRMAN WALLIS: So how do you manage to
9	get the flow rate coming out of the core hotter? You
10	raise the power level?
11	MR. SIEBER: You lower is the way you
12	do it.
13	CHAIRMAN WALLIS: So, I mean, you seem to
14	be very concerned about regulations, you say
15	everything's within regulations. But I'm just
16	wondering whether the physics works out and you can
17	actually do it. Maybe it'll work out. Maybe when you
18	do this thing it'll happen exactly as you planned.
19	MR. SIEBER: It does. It works out.
20	CHAIRMAN WALLIS: Okay. Okay.
21	MR. SICARD: Steve, you have something
22	you'd like to add?
23	MR. CYBERT: Steve Cybert, Westinghouse
24	Electric.
25	As far as we're looking at the numbers,
I	I

(202) 234-4433

	42
1	and on the operating point, Kal, it does show that the
2	T hot will be more closer to like 601.8, so there's a
3	little more there as far as the delta T.
4	CHAIRMAN WALLIS: That helps me, too.
5	Because I still have the discrepancy of the 601. So
6	if you have 600.2 you might as well get the other
7	numbers to the same accuracy so we can make a simple
8	calculation.
9	We should move on here. It just to me
10	there's some very simple questions I was asking and it
11	seemed to be difficult to get a very simple answer.
12	MR. SICARD: We can provide some
13	information on this later today to clarify the issue.
14	CHAIRMAN WALLIS: Sure.
15	MR. SICARD: Okay. Getting on to some of
16	the other parameters. You know, one of the objectives
17	that we had in our power uprate is that we did want to
18	maintain a hot leg temperature approximately the same
19	on a nominal basis as what it was before. That is, you
20	know, somewhere around 601 degrees over here. And
21	that is why we lowered what the cold leg temperature
22	was slightly compared to where it is previously in
23	order to not aggravate any materials associated with
24	nominal hot leg temperature.
25	We have not changed what our nominal RCS
ļ	

(202) 234-4433

pressure is. The steam generator pressure for the full power conditions goes down slightly because of that increase in power and the fact that we have no increased what that hot leg temperature is and steam flow, of course, increases in order to get the increase in power.

7 One other operating parameter of note is 8 that we have expanded the safety analyses to allow for 9 slightly more negative moderator а temperature 10 coefficient than what we had previously included in our analysis. And now we cover up to a minus 4.2 times 11 10 to the minus fourth value for the MTC as opposed to 12 a minus 4.0 previously. 13

14 CHAIRMAN WALLIS: So your steam flow goes 15 up by 8.6 percent. And that leads you to stiffen the 16 condenser tubes because you're concerned about 17 vibration. So there's a rather small change in flow and you do something with the condenser. 18 The small 19 changes in flow through the core don't lead you to any 20 concerns about what might happen?

21 MR. SICARD: We have fully analyzed the 22 impact of flow conditions on the core for power 23 uprate. The change in the flow associated with the 24 slight increase in density is well within the bounds 25 of the number that we have based our maximum analyses

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	44
1	on. You know, we feel like we have a focus on reactor
2	safety in that we have done the analyses to show that
3	the hydraulic performance of the core is acceptable
4	and that this change is within the bounds that we have
5	established for the acceptable.
6	MR. ROSEN: Would you go back to the
7	moderator temperature coefficient again?
8	MR. SICARD: Yes.
9	MR. ROSEN: Tell me more about that. How
10	long does that last through the cycle an what is its
11	profile?
12	MR. SICARD: The moderator temperature
13	coefficient is roughly linear through the cycle. It
14	starts out at a value which is fairly small. Our
15	technical specification limit, I believe, is minus
16	0.02 at start up. Am I recalling that number
17	correctly, Jerry?
18	MR. HOLMAN: Yes. This is Jerry Holman.
19	The MTC that Paul referred to is the minus
20	4 is an end of cycle MTC.
21	MR. ROSEN: And the beginning of cycle.
22	MR. HOLMAN: The beginning of cycle is
23	very slightly negative at 100 percent power.
24	MR. ROSEN: And it remains negative at a
25	100 percent power throughout the cycle.
ļ	I

(202) 234-4433

	45
1	MR. HOLMAN: That is correct. Yes.
2	MR. ROSEN: Does it remain negative at a
3	100 percent power, I mean does it remain negative at
4	zero percent power through the cycle?
5	MR. HOLMAN: At zero percent power it is
6	slightly positive at the beginning of cycle.
7	MR. ROSEN: How positive is that?
8	MR. HOLMAN: I don't have the exact
9	number.
10	MR. SICARD: The former limit which
11	hopefully we do not challenge on each core design, is
12	I believe plus 0.5.
13	Jeff Brown of Westinghouse, do you recall
14	for cycle 14 what our beginning of cycle moderator
15	temperature coefficient is?
16	MR. BROWN: It's about a minus .3 at full
17	power conditions at beginning of cycle.
18	MR. SICARD: And do you have the numbers
19	with you for what it is at lower powers?
20	MR. BROWN: At zero power it's about a
21	plus .5.
22	MR. ROSEN: And how long does that last
23	through the cycle?
24	MR. BROWN: Well, it's
25	MR. ROSEN: As the boron burns out?
I	

	46
1	MR. BROWN: Right. As Paul said, it's more
2	a less monotonically a decreasing throughout cycle
3	from the value of minus .5 to the end of cycle value
4	18 months later of about minus 4. That's delta
5	MR. ROSEN: So I would just guess that
6	maybe from those numbers and the monotonic information
7	that it's about 20 percent through the cycle, perhaps,
8	before you go to zero?
9	MR. SICARD: I'd say a little bit less
10	than that.
11	MR. BROWN: Well, at full power.
12	MR. ROSEN: I know, at zero power?
13	MR. SICARD: At zero power it probably
14	would be about my guess is, you're correct, about
15	20 percent of the cycle.
16	MR. ROSEN: Thank you.
17	MR. SICARD: And for the cycle 14 core in
18	particular, you know while we have expanded the range
19	of the MTC in most of the safety analyses to this
20	minus 4.2 value, our actual expected end of cycle MTC
21	for cycle 14, our first power uprate four that we will
22	be starting up in May or June is a minus 3.9 value. So
23	the minus 4.2 is the result of consideration for
24	providing an expanded range to accommodate the uprate
25	fours. But the first uprate four is within the bounds
ļ	I

(202) 234-4433

	47
1	of what we had previously assumed.
2	MR. ROSEN: And how many effective full
3	power days is the core loaded with for anything on
4	site?
5	MR. SICARD: Okay. Jeff, do you have your
6	number at your fingertips, number of effective full
7	power days?
8	MR. BROWN: Yes. It's 510 EFPDs.
9	MR. SICARD: And I'll compare that to our
10	cycle 13 core which was actually designed for a 524
11	EFPD cycle.
12	MR. ROSEN: Thank you very much.
13	CHAIRMAN WALLIS: While we're talking
14	about flow, the concern with flow-induced vibrations
15	in the steam generator, is that due to the steam flow
16	or water flow?
17	MR. SICARD: Let me refer that to one of
18	our support staff over here. I think Don Siska from
19	Westinghouse is the best person to answer that
20	question.
21	MR. SISKA: Yes. This is Don Siska from
22	Westinghouse.
23	The answer is both the two areas that are
24	most commonly see that flow-induced vibration are the
25	downcomer entrance to the tube bundle, which is
I	I

(202) 234-4433

	48
1	essentially saturated flow, maybe slightly subcooled,
2	and also in the upper tube bundle, the horizontal
3	section of tubing which is mainly a high quality steam
4	at that point or mid quality steam.
5	CHAIRMAN WALLIS: Are you going to cover
б	that later on?
7	MR. SICARD: That will be covered in David
8	Viener's presentation on the impacts to the plant.
9	Next slide.
10	We'll go on and discuss some of the
11	significant aspects of the uprate. As presented on
12	the previous slide, we're trying to maintain
13	approximately the same nominal hot rate temperature.
14	One of the significant aspects is that we are
15	crediting our steam generator atmospheric dump valves,
16	the ADVs, for secondary pressure control for the small
17	break LOCA event. Those are safety related valves that
18	have already been credited as a means of cool down for
19	the plant and we now have also credited them in this
20	particular analysis.
21	We have adopted the Westinghouse 1999
22	large break LOCA evaluation model for the ECCS
23	analyses.
24	We have moved to the Westinghouse CENTS
25	code as opposed to the CESEC code for the evaluation
l	I

(202) 234-4433

Í	49
1	of non-LOCA transients. The FSAR Chapter 15 type
2	events over there. And that is the case of moving to
3	a more moderate code that has increased capability.
4	It has slightly better modeling on the secondary side
5	and the steamline.
6	And we have also adopted the alternative
7	source term methodology for our dose calculations.
8	And that is something that we have done primarily in
9	response to the generic letter on control room
10	habitability.
11	I will mention that there is a precedent
12	for crediting the atmospheric dump valves on this
13	role. South Texas Project credits them in a similar
14	capacity.
15	Next slide.
16	These are a list of some of the technical
17	specifications of interest for the power uprate.
18	Because we are crediting the atmospheric dump valves
19	in the small break LOCA analyses, we have moved the
20	requirements that we have on them from the licensee
21	controlled technical requirements manual to our
22	technical specifications including the specification
23	of the setpoint for those valves.
24	We have raised what our minimum boric acid
25	concentration is in the boric acid makeup tank in
I	1

(202) 234-4433

order to show acceptable shutdown margin. We have also made more rigorous assumptions in that analysis than 3 the original calculations that supported those 4 technical specifications.

5 We have lowered the maximum liquid volume in the safety injection tank. That was done for large 6 7 break LOCA purposes. What that does is it increases the volume of the pressurized nitrogen at the top of 8 9 the tank which drives the safety injection flow into 10 the reactor coolant system with a better delivered guides that flow in faster because of having more of 11 12 that gas pressure. Because of the lower steam 13 generator pressure associated with our uprate 14 conditions, we have lowered our setpoints on low steam 15 generator pressure to maintain operational margin.

16 As enhancement we have moved the an 17 controls on minimum containment temperature, which is a parameter credited in the ECCS analysis from the 18 19 technical requirements manual to he technical 20 specifications. And --

CHAIRMAN WALLIS: Now why did you do that? 21 22 We had this parameter in the MR. SICARD: 23 technical requirements manual. And we had a discussion 24 as we were formulating our license amendment on this 25 parameter. And we felt that minimum containment

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

50

	51
1	temperature because of it's role in ECCS performance
2	analysis merited under 50.36 being included in
3	technical specifications.
4	CHAIRMAN WALLIS: The focus has something
5	to do with NPSH?
6	MR. SICARD: This does not have
7	CHAIRMAN WALLIS: It has no impact on it?
8	MR. SICARD: This has does not have impact
9	on NPSH. We do not credit containment over pressure
10	for our net positive suction head calculations.
11	And we have also changed our specification
12	for primary to secondary leakage for the steam
13	generator. We have based on discussions with the
14	staff adopted an operational leakage value. This is
15	similar to the operational leakage that is discussed
16	in NEI 97-06. And the industry as a whole is moving
17	based on discussions with the staff to adopting
18	operational leakage values for the steam generator.
19	CHAIRMAN WALLIS: But the previous slide
20	you mentioned control room habitability. We're going
21	to discuss that later on?
22	MR. SICARD: Yes. The end of my
23	presentation I have a discussion on the alternative
24	source term, analyses including the results of our
25	control room habitability tests.
Į	I

(202) 234-4433

	52
1	CHAIRMAN WALLIS: And will there be some
2	discussion of the remote shutdown panel and
3	accessibility?
4	MR. SICARD: We had not included
5	CHAIRMAN WALLIS: The time to perform
б	operations there and that sort of thing?
7	MR. SICARD: We have a discussion from our
8	operations support people here on what the operational
9	impact is of power uprate, including the impact on
10	procedures. Does that answer your question.
11	CHAIRMAN WALLIS: Well, maybe they will
12	cover that then, remote shutdown panel. I didn't find
13	anything about that in the documentation, which is
14	curious. So put that on the list of things to
15	MR. SICARD: Somebody has that on the list
16	then.
17	DR. KRESS: Are you going to talk about
18	your calculations from the control room habitability
19	with the alternative source term?
20	MR. SICARD: I didn't catch the beginning
21	of your question.
22	DR. KRESS: Is it on the agenda to go over
23	the calculations that are on the alternative source
24	term
25	MR. SICARD: I will present the results of
I	1

(202) 234-4433

	53
1	that and fully prepared to discuss that.
2	DR. KRESS: What code did you use for
3	that?
4	MR. SICARD: We used RADTRAD.
5	DR. KRESS: RADTRAD.
6	MR. SICARD: We have a couple of slides
7	presenting some of the analysis changes associated
8	with our power uprate effort. As noted before, we
9	have expanded the assumption on number of steam
10	generator tubes plugged for power uprate. Currently
11	our analyses support a maximum number of 700 tubes
12	plugged, and we for power uprate plus that number up
13	to 1,000 to give us more margin on that particular
14	parameter.
15	The next slide.
16	CHAIRMAN WALLIS: Are you going to discuss
17	the small break LOCA and things like that? Is someone
18	going to do that later on?
19	MR. SICARD: Yes. I am presenting kind of
20	the generic list of the analysis changes and I have
21	slides later on small break and large break LOCA.
22	CHAIRMAN WALLIS: Okay.
23	MR. ROSEN: Did you mention earlier that
24	you were planning to change the steam generators out?
25	MR. SICARD: No. We do not have any
Į	I

(202) 234-4433

	54
1	definite plan for changing the steam generator. Ted
2	Leonard will speak to that.
3	MR. MITCHELL: Actually, I am Tim
4	Mitchell.
5	We have initiated studies for steam
6	generator replacement. Those studies indicate that it
7	will be sometime after the 2010 time frame before we
8	would be required. Probably more likely beyond 2012.
9	But we will be monitoring and updating that study
10	after each refueling outage following our inspection
11	scope and what we find. But right now, steam
12	generator replacement is something we anticipate in
13	the future, but it is a number of years off.
14	MR. ROSEN: What do you think it's impact
15	would be on the EPU depending the plant is granted an
16	extended power uprate?
17	MR. MITCHELL: That the steam generator
18	replacement would account for the extended power
19	uprate and we would factor in other variables such as
20	did we want to raise T_{hot} after steam generator
21	replacement, those types things. But, you know, none
22	of that design has been started as far as designing
23	the steam generators. But we would expect that all of
24	this power uprate and life extension would be factored
25	into the replacement steam generator uprate.
I	1

(202) 234-4433

	55
1	CHAIRMAN WALLIS: Did you get to the
2	lowest item yet?
3	MR. SICARD: Pardon?
4	CHAIRMAN WALLIS: Did you get to the
5	lowest item here yet?
6	MR. SICARD: No. I was just going to
7	mention that in passing, and we do have a slide on
8	that later, we have changed our analysis on the long
9	term cooling. We previously had credited the lower
10	plenum in the mixing volume as a result of lessons
11	learned or operating experience from the ANO power
12	uprate. We changed what that assumed volume was for
13	the analysis. We submitted such that we no longer
14	credit the lower plenum but instead credit a portion
15	of the upper plenum.
16	CHAIRMAN WALLIS: Is this making is
17	this now a more conservative analysis?
18	MR. SICARD: Yes. That is a more
19	conservative analysis because that gives you a smaller
20	overall mixing volume under the power upgrade
21	assumptions, which means that you get to the
22	concentration limit sooner.
23	CHAIRMAN WALLIS: And in the resolution of
24	GSI-185 we were convinced by the staff to accept a
25	well mixed lower plenum. So it just seems to be going
I	I

(202) 234-4433

	56
1	on the opposite direction here, but if it's
2	conservative that's okay.
3	MR. SICARD: It is conservative. And I
4	believe the staff is also going to discuss this
5	analysis.
6	CHAIRMAN WALLIS: I think they need to
7	because there's a very long discussion in the SER
8	about this matter, and I couldn't quite see how it got
9	resolved.
10	MR. SICARD: Continuing on. One aspect of
11	our uprate analysis is that we now predict and permit
12	fuel failure for the return to power main steamline
13	break analysis, one of the Chapter 15 analyses. There
14	are two analyses that are done for main steamline
15	break. This is the one for the longer term reactivity
16	control return to criticality. And we now allow a 2
17	percent fuel failure due to the DNBR departure from
18	nucleate boiling mechanism. There's a precedent in
19	terms of Florida Power & Light and Calvert Cliffs also
20	having fuel failure for that event.
21	I will point out that we do not have fuel
22	failure for any of the outside containment main
23	steamline break for Waterford. We have fully adopted
24	the method of statistical convolution for assessing
25	the amount of fuel failure for the Chapter 15 events,
	1

(202) 234-4433

	57
1	and we have updated the ANSI standard upon which we
2	base our reactor coolant radioisotopic concentrations.
3	Let me also point out on this main
4	steamline break analysis, that is based upon a minus
5	4.2 MPC. And the amount of fuel failure would be
6	significantly reduced and we may not have any if we
7	looked at that based upon the minus 3.9 value that we
8	would actually have for cycle 14.
9	Next slide presents the analysis changes
10	that are pertinent to the dose analysis. We're
11	adopting the alternative source term methodology. We
12	are changing the primary-to-secondary leak rate
13	technical specification to an operational leakage
14	value, 75 gallons per day, per steam generator.
15	We have updated the calculation of our
16	atmospheric dispersion factors for use in both offsite
17	dose analyses and for the main control room. We are
18	using ICRP30 dose conversation factors.
19	And we have expanded the scope of the
20	control room doses that are reported in our final
21	safety analysis report to include all of the non-LOCA
22	transients analysis and the small break LOCA as well
23	as the large break LOCA and the fuel handling accident
24	which are the two events that we currently report for
25	control room dose.
ļ	I

(202) 234-4433

58 1 The next slide. This is where are 2 addressing fuels issues related to the operating. And 3 I hope that we will answer the questions that you have 4 related to fuel here. 5 Our cycle 14 fuel design, there's no change in the fuel mechanical design. It is a standard 6 7 16 by 16 Westinghouse/CE fuel design. It is a 18 month fuel cycle. We continue to use Erbia as the burnable 8 9 poison in that design. We've been using Erbia for 10 several fuel cycles. Out of the 217 total fuel assemblies in 11 12 the core, we will have a batch size of 100 fresh assemblies for the upcoming cycle. We have done 13 14 analysis for the fuel rod corrosion and duty, and 15 demonstrated that we have acceptable performance 16 related to those parameters. 17 We've asked questions as far as how much power we're getting out of the fuel. 18 On a core 19 average linear heat rate basis, we will have a core 20 average linear heat rate that corresponds to 5.8 21 kilowatts per foot. That's just slightly larger than 22 the ANO conditions after they're operated at 5.7. And 23 that is not an outlier compared to other PWRs. 24 Prairie Island has a corresponding value, 6.2. Indian 25 Point has a value of 6.6.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	CHAIRMAN WALLIS: It says in the SER that
2	the peak linear heat rate is actually reduced. So you
3	must have done something to change the heat generation
4	distribution.
5	MR. SICARD: Well, the peak linear heat
б	rate that is assumed as the input in the ECCS analysis
7	for power uprate is a value of 13.2 kilowatts per foot
8	which compares to a value in the current pre-rate ECCS
9	analyses of 12.9 kilowatt per foot.
10	CHAIRMAN WALLIS: So it's actually
11	increased?
12	MR. SICARD: On that basis it has
13	increased. We have been able to increase what the
14	value is that we can accommodate within the analyses.
15	You know, there are different you know, linear heat
16	rate enters into different analyses and with different
17	biases. And I do not want to comment on what's in the
18	SER because I'm not sure of the context in which that
19	was presented. But, you know, looking at this from
20	the ECCS performance analysis our power uprate
21	supports an increase in what that peak linear feet
22	CHAIRMAN WALLIS: So should we think that
23	what's happening here is that a power generated in the
24	core is increased by 8 percent everywhere?
25	MR. SICARD: That would be a simplistic
	I

(202) 234-4433

	60
1	way of looking at it. What we have, really, is a case
2	where more of the assemblies are sharing the power.
3	More of them are operating closer to the limit.
4	I'm going to ask Jeff Brown from
5	Westinghouse, who is
6	CHAIRMAN WALLIS: So there is a change in
7	the distribution?
8	MR. SICARD: Yes, you could say there is
9	a change in the distribution
10	CHAIRMAN WALLIS: Because in these power
11	uprates that we've seen before when there's a large
12	power uprate, the management of the fuel becomes very
13	important.
14	MR. SICARD: And
15	CHAIRMAN WALLIS: And is often the key to
16	getting the high uprate.
17	MR. SIEBER: Yes. But at this point you
18	aren't designing in the final design on the long term
19	steady-state cores. You do that reload by reload as
20	you go along. So what you know most about is the
21	transition fuel.
22	I think a way to look at this, if there
23	were not a EPU, how many assemblies would you
24	typically add each refueling?
25	MR. SICARD: We had 92 assemblies for
I	I

(202) 234-4433

	61
1	cycle 13, which is currently operating compared to 100
2	assemblies for cycle 14 our first power
3	MR. SIEBER: Okay. So you're increasing
4	it by about 8 percent?
5	MR. SICARD: Yes.
6	MR. SIEBER: Which is about the size that
7	you would use.
8	MR. SICARD: Yes.
9	MR. SIEBER: So the burnup will stay the
10	same, the enrichment is typical
11	MR. SICARD: Yes.
12	MR. SIEBER: The first cycle enrichments
13	will be the same?
14	MR. SICARD: The increase in enrichment
15	from cycle 13 to cycle 14 is 0.07 percent. So it is
16	very small.
17	MR. SIEBER: It's basically the same.
18	MR. SICARD: Yes, it is basically the
19	same.
20	MR. SIEBER: Now you're using a low
21	leakage core?
22	MR. SICARD: Yes, we have a low leakage
23	core.
24	MR. SIEBER: Okay. So the second and
25	third burn assemblies on the outside, basically?
	I

(202) 234-4433

	62
1	MR. SICARD: The third burn on the
2	outside, yes.
3	MR. SIEBER: Yes. Okay. So that's where
4	the power comes from, this additional assembly you
5	said, and it's right over
6	MR. SICARD: We're trying to get more
7	assemblies sharing the load
8	MR. SIEBER: Right.
9	MR. SICARD: so that they are all
10	closer together in terms of the power.
11	MR. SIEBER: Right.
12	MR. SICARD: Let me have Jeff Brown from
13	Westinghouse provide his perspective on this. Jeff?
14	MR. BROWN: Right. I just want to
15	mention, as Paul said, although the average power in
16	the fuel rods has increased, in fact the peak fuel rod
17	power has remained more or less the same because this
18	increase in batch size, feed batch size, but also the
19	fact that we added a more burnable absorber, the more
20	smoothed the power distribution. And it was one of
21	the goals going in that the peak rod power would not
22	substantially be you know, in terms of absolute
23	power, kilowatts per foot, relative to what the thing
24	is. And so we inspect under normal operating
25	conditions to have about the same margins for the fuel
	1

(202) 234-4433

	63
1	limits as we currently do.
2	MR. SIEBER: Since you volunteered to
3	answer questions, let me ask another that relates to
4	what Mr. Rosen discussed before.
5	If you had added additional burnable
6	you could actually lower the zero power temperature
7	coefficient which is now positive and make it
8	negative, correct, which from an operator standpoint
9	would be a more stable core. And the offset for that
10	is you would have to increase enrichment cycling and
11	those are dollar bills that you're putting in.
12	Some utility licensees try to keep the
13	moderator coefficient negative in all cases. Would it
14	be a worthwhile endeavor for this plant to do such a
15	thing from the standpoint of operational stability,
16	particularly in cycle life?
17	MR. HOLMAN: This is Jerry Holman.
18	That is the balance that we always have to
19	weigh. I should mention, though, that this is not the
20	first cycle that we've seen, the positive MTC at low
21	power. So the operators are used to seeing that and
22	dealing with that type of response.
23	MR. SIEBER: Is it the practice of Entergy
24	to try to maintain negative temperature coefficients
25	at all times and exceeding it and having it go
l	I

(202) 234-4433

	64
1	positive as an exception?
2	MR. HOLMAN: We look at the balance of
3	those two factors. As you mentioned, the operational
4	impact versus the impact of the fuel and putting the
5	extra enrichment in there.
6	MR. SIEBER: So the answer is no?
7	MR. HOLMAN: Our balance would allow us to
8	have a slightly positive MTC as zero power. We've
9	trained the operators to address that and they're
10	familiar with that type of core response.
11	MR. MITCHELL: This is Tim Mitchell.
12	And I can speak from our Arkansas Nuclear
13	One experiences with what would turn out to be a
14	similar core post uprate and the effects of positive
15	moderator temperature coefficient on the operators
16	even at low powers is very minimal. So that is
17	something we've trained extensively on. And if we saw
18	problems with that, that is something that we would
19	consider changing our philosophy.
20	MR. SIEBER: Well, during a transient then
21	coefficient does turn negative someplace in the course
22	of a power transient. On the other hand, it makes for
23	a unusual response from the operator's viewpoint.
24	MR. MITCHELL: We use a lot of just in
25	time training to make sure that they're prepared for
I	I

(202) 234-4433

	65
1	changes in
2	MR. SIEBER: Well it always happens just
3	in time.
4	MR. CARUSO: Who does your core design?
5	Do you do your own core design or do you have
б	Westinghouse do it?
7	MR. SICARD: Westinghouse does our core
8	design. Entergy does maintain an intrusive role in
9	that process, both in terms of participation from our
10	site safety analysis and reactor engineering and
11	operations groups as well as our corporate support
12	staff located in Jackson, Mississippi which provides
13	core physics supports to all of the Entergy South
14	sites.
15	CHAIRMAN WALLIS: While we're on this
16	number of first assemblies, so there's a discussion in
17	the SER about maximum heat loads to the spent fuel
18	pool and the decay time required for reactor shutdown
19	before you can transfer the fuel. Presumably you have
20	you just have 8 percent more assemblies with the
21	same burnoff as before you're transferring. It doesn't
22	seem like much of an issue, does it? But why is it
23	mentioned in the SER then?
24	MR. SICARD: Well, David Viener will
25	discuss these issues as part of the
I	1

(202) 234-4433

	66
1	CHAIRMAN WALLIS: Oh, that's going to come
2	later?
3	MR. SICARD: design input. As far as
4	that ultimate heat sink calculation, that is a case of
5	where the analysis of record was done, you know, back
б	in the start up days and was a very conservative
7	analysis such that when we have updated mass and
8	energy releases that go into that calculation we
9	result in a lower peak heat load on the ultimate heat
10	sink now under power uprate than under the previous.
11	CHAIRMAN WALLIS: So part of the way you
12	can get this power uprate is because your analysis is
13	now sharper than it was before on several of these
14	matters, it seems to me?
15	MR. SICARD: Yes. There area number of
16	cases where that is the case, where the calculations
17	as done originally had conservatism in them that can
18	easily accommodate an 8 percent power uprate.
19	David Viener, would you like to add
20	anything on the subject? He's standing there to say
21	something. Okay.
22	Are there any other questions regarding
23	fuel or is it okay if I continue on to discuss other
24	aspects?
25	MR. SIEBER: Well, let me ask just as part
ļ	I

(202) 234-4433

	67
1	of the roadmap through all the presentations, the work
2	that you do comes up with safety limits, right? The
3	work that you personally do?
4	MR. SICARD: Yes.
5	MR. SIEBER: Your responsibility, your
6	come up with safety limits. From safety limits
7	somebody goes through a scaling manual process to come
8	to safety systems settings which is what one puts into
9	the instruments to cause reactors to
10	MR. SICARD: Yes.
11	MR. SIEBER: Will someone discuss the
12	methodology that Entergy proposes at Waterford to make
13	safety system settings? And if so, who will it be so
14	that I can
15	MR. SICARD: No, we were not going to
16	present too much information on that topic since we
17	only have one of our setpoints, which is changing for
18	power uprate. That is our low steam generator
19	MR. SIEBER: My questions is more generic
20	than that. My questions involves the use of ISA RP
21	67.04 Method 3 which is not allowed by the staff,
22	which you proposed to use. And I want to know where
23	you stand,
24	MR. SICARD: I think I have the answer to
25	your question, which is that we had proposed the
Į	I

(202) 234-4433

	68
1	setpoint per Waterford's license methodology
2	originally. There have been some discussions with the
3	staff subsequently on that one setpoint. Based on our
4	discussions with the staff, we have conservatively
5	adjusted that setpoint. We raised that setpoint
6	slightly in order to satisfy the staff's concerns and
7	we can come to an agreement.
8	MR. SIEBER: Are you still using Method 3?
9	MR. SICARD: I'm going to
10	MR. SIEBER: With an adjustment?
11	MR. SICARD: I am going to have our lead
12	instrumentation engineer for power uprate Tom
13	Fleischer step in and address this.
14	MR. FLEISCHER: My name is Tom Fleischer.
15	I'm the lead I&C instrumentation engineer for
16	Waterford 3.
17	Currently the answer is no we do not.
18	Currently the answer is yes, we do use methods for the
19	other NSSS setpoints at this time. The setpoint that
20	we touched for extended power uprate was derived based
21	on our technical specification basis. We added
22	additional margin to that setpoint per the staff's
23	request which, I hate to admit, makes it equivalent to
24	Method 1.
25	The reason I'm saying I hate to admit is
	I

(202) 234-4433

	69
1	because the committee right now, ISA 67.04, of which
2	I'm a voting member, currently is having discussions
3	about the use of Method 3.
4	MR. SIEBER: That's tomorrow, right?
5	MR. FLEISCHER: Yes.
6	MR. SIEBER: Okay. The meeting is
7	tomorrow.
8	Well, the way things stand right now
9	Method 3 is not endorsed by the regulation. And
10	Waterford is not the only plant that's in this
11	situation because others have chosen that pathway. On
12	the other hand, I have an interest in that and I think
13	it needs to be resolved. And as a person with
14	infinite patience, I will wait for the staff to make
15	progress on that. But it's something that I will
16	follow. And I would have objected to the EPU on that
17	basis, had you insisted on using Method 3 without any
18	adjustment. But since you've made an adjustment and
19	the staff's approved that, I guess I will wait until
20	a more generic resolution of the whole issue occurs.
21	It is something that has to happen sooner or later.
22	Okay. Thank you very much.
23	CHAIRMAN WALLIS: We're running way
24	behind. And I suggest that you keep going until you
25	finish your presentation and we have a break.
	I

(202) 234-4433

	70
1	MR. SICARD: Okay.
2	CHAIRMAN WALLIS: And I hope that happens
3	before lunch sometime.
4	MR. SICARD: Okay. We have some slides
5	presenting the results of some of our specific
6	analyses. We have revisited our containment analysis
7	for power uprate. Our current containment LOCA
8	pressurization analysis already accounted for power
9	uprate in terms of the mass and energy releases. We
10	generated new mass and energy releases for main
11	steamline break, rerun these analysis using the GOTHIC
12	code, which is our current license code for this. The
13	results show that we meet our 33 psig acceptance
14	limit. There's essentially no change in the LOCA
15	results and the main steamline break results have gone
16	down slightly due to the lower steam generator
17	pressure at full power conditions.
18	The next slide. As I mentioned, we are
19	transitioning to the use of the CENTS analysis code
20	instead of CESEC for non-LOCA transients. CENTS is a
21	code that has been generically approved by the NRC for
22	CE designed plants, and it has also received plant
23	specific approval also for ANO 2, San Onofre and Palo
24	Verde.
25	One aspect of our transient analysis is
ļ	I

(202) 234-4433

that we are continuing to credit a three second time delay between reactor trip and the time of loss of 3 offsite power for the steam generator 2 rupture. That 4 assumption had previously been included in the CESAR analysis and is also an assumption which is common for Westinghouse Pittsburgh plants to assume for various Chapter 15 events.

We have basically, as I said, gone through 8 and rewritten all of the safety analysis that go into 9 Chapter 15 of the final safety analysis report. 10 We have demonstrated that we meet the acceptance criteria 11 12 for those events, be that it may depending on the specific event a no fuel failure acceptance criteria 13 14 or a fuel failure that supports the limits for the 15 dose calculations.

Next slide presents the results on our 16 17 limiting pressurization events, which is the loss of condenser vacuum and for a limiting fault event, the 18 19 feedwater line break. This shows that we continue to 20 meet what those acceptance criteria are.

21 The next slide, our large break LOCA 22 analysis has been updated. We based upon the 1999 23 We currently use the 1985 model. evaluation model. 24 Mentioned some of the changes that went into this 25 analysis such as lowering what the maximum liquid

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

7

	72
1	level assumes for the safety injection tank is. Our
2	maximum peak clad temperature from this analysis is
3	2164 which meets the acceptance criteria of 2200.
4	DR. RANSOM: What was that before?
5	MR. SICARD: The value currently in our
6	license basis analysis today is 2177.
7	DR. RANSOM: One thing that hasn't been
8	clear from this presentation is you're getting more
9	power out of the core, you haven't changed the
10	velocity through the core because I think you're
11	arguing you both maintained the volumetric flow
12	constant, which means that and the heat transfer
13	coefficient hasn't changed as a result of that or very
14	much. And so it must come from an increase in
15	temperature from the fuel clad to the fluid. And I
16	know you've lowered the temperature of the incoming
17	flow, but not changed the temperature of the outgoing
18	flow. But what happens to the peak power region of
19	the core; it's sort of unclear. It'd be nice to see a
20	picture of the fluid temperature and the clad
21	temperature through the core.
22	MR. SIEBER: I think you'd have a flatter
23	distribution.
24	DR. RANSOM: And I'm surprised that you
25	wouldn't increase the peak clad temperature under the
	I

(202) 234-4433

	73
1	loss of coolant accident.
2	MR. SICARD: Well, for the question of
3	normal operation, Jeff Brown attempted to address that
4	in terms of the lowering peaking on the hot assemblies
5	for power uprate result in a very similar
6	characteristic for the hot assemblies under power
7	uprate compared to the hot assemblies in today's core.
8	And that's because of spreading what the load is
9	amongst more of the assemblies.
10	Now, for the large break LOCA, we do have
11	an improvement in the performance of this analysis
12	associated with using the 1999 evaluation model and we
13	do see some improvement in terms of improved delivery
14	of the safety injection tank fluid to the reactor
15	fluent system because of that increased vapor volume
16	at the top of the take. Those are the reasons why for
17	power uprate we are able to demonstrate using that
18	change to the safety injection tank and to the
19	evaluation model that the peak clad temperature
20	remains roughly similar.
21	MR. LEONARD: But the short answer is that
22	the higher decay heat that would drive a higher peak
23	clad temperature in the large break LOCA event is
24	offset by the better model. So we're getting a lower
25	peak clad temperature because we're using the new

(202) 234-4433

	74
1	evaluation model.
2	DR. RANSOM: I was concerned about the
3	stored energy. The
4	MR. LEONARD: Right. That's correct. But
5	the new model offsets that higher decay heat and the
6	stored energy and gives us slightly lower temperature,
7	heat clad temperature.
8	MR. SIEBER: The model that you're using
9	is not a realistic model.
10	MR. LEONARD: That's correct. Yes
11	MR. SIEBER: If you use the realistic
12	model, your temperatures would be around 1500 or
13	something?
14	MR. LEONARD: Would be much lower than
15	what we have here, yes.
16	DR. DENNING: Do you get discharge of the
17	nitrogen into the system? Do you have more discharge
18	of nitrogen in the system or is there something that
19	prevents the discharge?
20	MR. SICARD: There are limits on the
21	maximum and the minimum amount of nitrogen in the
22	system. And we did not change anything dealing with
23	the maximum nitrogen volume.
24	Joe Cleary from Westinghouse will have
25	something to add.
	I

(202) 234-4433

	75
1	MR. CLEARY: Yes. My name is Joe Cleary.
2	LOCA safety analysis, Westinghouse, involved with the
3	Waterford power uprate analysis.
4	Yes. In the large break LOCA calculation
5	the safety injection tanks do empty their liquid and
б	inject the nitrogen into the RCS. The tanks inject
7	the nitrogen at an RCS pressure of roughly psi or so.
8	And the large break LOCA evaluation model represents
9	the effect of that nitrogen discharge in the injection
10	section of the RCS piping.
11	MR. SICARD: Does that answer your
12	question?
13	DR. DENNING: It wasn't clear. But there
14	is a larger nitrogen volume injected then?
15	MR. CLEARY: Yes. In order by lowering
16	the the analysis does analyze a maximum SIT liquid
17	level as the most limiting condition, and therefore by
18	lowering that there is slightly more, by that same
19	amount, more nitrogen.
20	MR. SICARD: Let me move on to the small
21	break LOCA analysis. We have not changed the method
22	for that analysis. Waterford 3 continues to use the
23	S2M evaluation model. We have credited the automatic
24	operation of the atmospheric dump valves on the
25	secondary side for secondary pressure control for the
	I

(202) 234-4433

	76
1	small break LOCA. Previously relied on the main steam
2	safety pressure that control pressure at a higher
3	pressure.
4	We have a 1040 psia analysis setpoint for
5	the atmospheric dump valves. What this functionally
6	means is that we're able to control the pressure in
7	the reactor coolant system slightly lower which gives
8	increased flow delivery from our high pressure safety
9	injection pumps for this event.
10	We had historically at Waterford credited
11	the charging pumps in the small break LOCA analysis.
12	Those have been removed from that analysis both for
13	today's conditions and for power uprate conditions.
14	And the results of our analysis show a peak clad
15	temperature of 2019 degrees, which meets the 2200
16	acceptance criteria.
17	CHAIRMAN WALLIS: In your SBLOLCA analysis
18	you present lots of the two-phase level in the core.
19	And a minimum two-phase level is about half way down
20	the core for 1,000 seconds or more. To me a two-phase
21	level means the top of a two-phase mixture, so that
22	would indicate that the half top of the core is dry.
23	I don't think that's what you mean, is it?
24	MR. SICARD: Joe, would you care to answer
25	that?
I	1

(202) 234-4433

	77
1	MR. CLEARY: Yes, that is what that the
2	picture is supposed to present. The upper half of the
3	core is dry steam that the cladding is being cooled by
4	steam, heat transfer to steam both convective and
5	radiation.
6	CHAIRMAN WALLIS: For that very long
7	period of time. It seems surprising to me that you can
8	steam cool for that long period of time.
9	MR. CLEARY: That amount of coolant
10	recovery is not unusual. It's very similar to other
11	analysis we've been doing with our evaluation model
12	from the very beginning. The p-cladding temperature
13	of 2000, low 2000 is a somewhat typical result for a
14	CE PWR using our methodology.
15	CHAIRMAN WALLIS: Maybe it's it all right.
16	I remember analyzing TMI, and when that went dry
17	things heated up pretty quickly. Maybe it's all right.
18	I'm just surprised. You got some much of the core dry
19	for so long with that small break LOCA.
20	MR. SICARD: You have removed the sensible
21	heat before that occurs and your decay heat has gone
22	done somewhat by that point in time. You know, we do
23	have an increase in the clad oxidation associated with
24	the small break LOCA for power uprate which probably
25	is tied to this phenomenon that you are referring to
ļ	I

(202) 234-4433

	78
1	here.
2	Joe, would you have any further comments?
3	MR. CLEARY: You've made a good point.
4	The time at temperature is what controls the cladding
5	oxidation and the cladding oxidation did go up but
6	still well below the acceptance criterion level.
7	MR. SICARD: Right. And if I remember our
8	boiler brethren, they basically look to try to keep
9	the core one-third covered in order to credit the
10	steam cooling for the top part of their cores. You
11	know, our fuel is of a different design, but one would
12	have the same phenomenon to some extent.
13	CHAIRMAN WALLIS: Some of these plots are
14	in terms of collapsed level, and that's not what
15	you're showing here. You're showing a two-phased
16	level?
17	MR. CLEARY: Yes, sir.
18	MR. SICARD: I'll go on, if I may.
19	On LOCA long term cooling,t his is the
20	boric acid precipitation analysis that is done for the
21	core. And this was analyzed per the approved CE
22	Westinghouse methodology. And with the change in the
23	mixing volume that I had presented in the earlier
24	slide where we assumed part of the outlet plenum but
25	no longer assumed the inlet plenum as the mixing
ļ	I

(202) 234-4433

	79
1	volume, the results of that analysis who that the
2	initiation of hot leg injection in a two to three hour
3	time frame after a loss of coolant accident shows that
4	you meet your solubility limit. We have a four weight
5	percent margin at the three hour time point to that
6	solubility limit. And this is a change which is
7	primarily due to the change in method, change in
8	assumed volume rather than one which is driven by the
9	power uprate itself.
10	CHAIRMAN WALLIS: This is an area where
11	the staff has not always agreed with you?
12	MR. SICARD: There have been some
13	discussions with the staff on that. Let's see, Jerry
14	Holman, I believe
15	MR. HOLMAN: Yes. We have had some
16	discussions with the staff on concerns that they had.
17	We have come to resolution on those concerns. And
18	I'll let the NRC staff discuss that more in their
19	presentation.
20	CHAIRMAN WALLIS: What's the ultimate heat
21	sink?
22	MR. SICARD: The ultimate heat sink aspect
23	of the analysis will be discussed in Dave Viener's
24	presentation.
25	CHAIRMAN WALLIS: I understand it's

(202) 234-4433

(202) 234-4433

	80
1	cooling towers?
2	MR. SICARD: We have a combination of wet
3	and dry cooling towers. Dave, would you care to
4	answer that?
5	MR. VIENER: My name is David Viener, and
6	I'm the power uprate mechanical engineering lead.
7	Ultimate heat sink consists of the
8	component cooling water system, aux component cooling
9	water system and the wet cooling tower basins. The
10	component cooling water system uses a set of dry
11	cooling towers. The aux component systems removes heat
12	from the component cooling water system using the wet
13	cooling towers.
14	CHAIRMAN WALLIS: The condenser water is
15	cooled by normal operation?
16	MR. SICARD: The condenser is cooled by
17	our circulating water system, which is a once through
18	system cooled by the river.
19	CHAIRMAN WALLIS: It's cooled by the
20	river? Yes.
21	MR. SICARD: Yes.
22	CHAIRMAN WALLIS: So I just wondered why
23	you needed cooling towers when you have one of the
24	biggest rivers in the nation running next door?
25	MR. VIENER: Well, the plant was
ļ	1

(202) 234-4433

	81
1	originally designed to use the river, but during
2	original licensing it was determined to have an
3	independent
4	CHAIRMAN WALLIS: It case the river dried
5	up, is that it?
6	MR. SICARD: I understand that happened to
7	Beaver Valley once.
8	CHAIRMAN WALLIS: The Mississippi probably
9	wouldn't dry up, but it might get diverted under
10	flood.
11	MR. SICARD: We can address that in our
12	risk considerations portion of the analysis.
13	Let me go on to the AST dose analysis.
14	Waterford had documented control room dose previously
15	only for the large break LOCA and the fuel handling
16	accidents. While we were in our power uprate project
17	developing analysis in support to it, there was the
18	issuance of the NRC Generic Letter 2003-01 on control
19	room habitability. And as a result of that generic
20	letter, Waterford saw the need to add to its licensing
21	basis for the control doses for other events.
22	We conducted our trace gas test of the
23	plant in April of 2004, which was after the initial
24	submittal of our power uprate licensing application.
25	And we have made a subsequent related but separate
I	

(202) 234-4433

82 1 license amendment to adopt alternative source term in 2 order to address the control habitability issues for the plant. That amendment is under staff review and is 3 4 one of the open items that Kaly had mentioned in his 5 introduction. We have in those analysis bounded what our 6 7 control room inleakage is under both modes of 8 operation of our control room. Our control room will 9 go into what we call a recirculation mode on receipt 10 of a safety injection actuation signal or a high radiation signal at the intakes. And that is a mode 11 where you recirculate and filter the air which is in 12 the control room. 13 14 There is also a pressurized mode which the 15 operators can select and can put the control room in. And when they do that, there is approximately 200 CFM 16 of filtered intake flow that comes into the control 17 room to pressurize it. 18 19 Our analysis have assumed values that 20 bound the measured inleakage. We assume 100 CFM in the 21 recirculation mode. It bounds a 79 CFM measured value 22 and we assume a 65 CFM value in the pressurized mode 23 that bounds a 36 CFM measured value. 24 DR. DENNING: Can you help us a little bit 25 on that?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	When these pressurized area, it's above
2	atmosphere?
3	MR. SICARD: Yes, it is above atmosphere.
4	DR. DENNING: But you're assuming that
5	there's still some inleakage even though it's above
6	atmosphere?
7	MR. SICARD: We have performed the tracer
8	gas test, which is consistent with the guidance of the
9	generic letter and the NEI industry guidance. And,
10	you know the result of that test gave a value of 36
11	CFM for the inleakage.
12	Part of the reasoning behind doing that
13	trace gas testing is that there may be certain areas
14	of the control room where the differential pressure
15	may be different than what the measurement is, the
16	isolated rooms that connect up to the control room,
17	for instance. And I would let the staff provide more
18	explanation on the logic of that this afternoon, if I
19	may suggest. But, you know, we have conducted the
20	analysis in order to bound the results that we have
21	over here.
22	The next slide. One of the concerns for
23	the Waterford dose analysis is that we do have
24	relatively high chi-over-Q values. The atmospheric
25	dispersion values do to the location of these
I	I

(202) 234-4433

1 atmospheric dump valves to the control air intake for 2 most of the non-LOCA transient events. One is cooling 3 down the plant with the atmospheric dump valves, so 4 that is the point of the release for the transient. 5 That is why that is of interest for these analysis. 6 We have assumed a steam generator leakage 7 of 0.375 GPM per generator for steam generators under faulted conditions such as for a main steamline break 8 or a feedwater line break condition. This is the 9 10 value which is supported by the operational assessments that are done, each reviewing for the 11 steam generator consistent with NEI 97-06. 12 We have assumed the operational leakage value for 13 steam 14 generators that are intact that have not been subject 15 to a large transient. We have assumed a 75 gallon per day limit for the small break LOCA and all the other 16 17 events assume a 150 gallon per day value for that. And we have credited the existing operator 18 19 actions for selecting the preferred control room air 20 intake when the operators go to pressurized mode 21 within the analysis. 22 CHAIRMAN WALLIS: How close is this 23 proximity that you have? 24 MR. SICARD: It is approximately 21 feet 25 from the closest atmospheric dump valve to one of our

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

84

	85
1	control room remote air intakes.
2	CHAIRMAN WALLIS: That's not very far?
3	MR. SICARD: No, it is not. That is what
4	has
5	CHAIRMAN WALLIS: So you will be ingesting
6	not just some radioactivity, but steam, presumably?
7	MR. SICARD: If one
8	CHAIRMAN WALLIS: It gets pretty warm in
9	there, like a Turkish bath in the control room.
10	MR. ROSEN: When you switch to the
11	preferred intake, do you get much more distance?
12	MR. SICARD: Yes, we have a better
13	geometry with the preferred intake. The chi-over-Q
14	value goes down by a factor of two for that.
15	MR. ROSEN: How big is the separation?
16	You said it was 21 feet in the non-preferred intake?
17	MR. SICARD: I do not recall that number.
18	It is more than twice the 20 feet. The other intake
19	is also oriented in a different direction.
20	This presents the results for the limiting
21	events that we analyzed for alternative source term.
22	This shows that we meet the regulatory limits of Reg.
23	Guide 1.183 of the alternate source term 10 CFR 50.67
24	and the five rem GDC19 general design criteria
25	requirement on the control room dose.
	I

(202) 234-4433

	86
1	MR. ROSEN: Usually we put units on tables
2	that were shown to us.
3	MR. SICARD: I apologize. These are rem
4	TEDE, total effective dose equivalent.
5	CHAIRMAN WALLIS: What is the requirement
6	
7	MR. SICARD: The requirement is 5 rem for
8	all events.
9	CHAIRMAN WALLIS: So you're getting fairly
10	close to that?
11	MR. SICARD: Yes, we are. Fairly close on
12	a couple of events.
13	MR. SIEBER: If you had left the allowable
14	steam generator leakage at 150, you would have been
15	above five in your small break LOCA, I take it?
16	MR. SICARD: Under the analysis we did if
17	that was the only change we made, yes we would have
18	been above five for small break LOCA. We do have some
19	conservatisms in that calculation. Because of the
20	relatively small time that we had to work with in
21	between the tracer gas testing and wanting to get a
22	submittal into the NRC for that event, we have a
23	relatively conservative release calculation for small
24	break LOCA. We do have the option of going back and
25	performing a more sophisticated analysis of the
I	I

(202) 234-4433

	87
1	releases which has the potential of improving that
2	margin.
3	MR. SIEBER: Okay. Thank you.
4	MR. ROSEN: On line four you have the
5	steam generator tube rupture, an acronym?
6	MR. SICARD: Oh. That is for the
7	preexisting iodine spike. One assumes two different
8	iodine spike characteristics for events that do not
9	involve fuel failure of a preexisting iodine spike and
10	an accident generated iodine spike.
11	MR. ROSEN: So this is sort of with the
12	preexisting?
13	MR. SICARD: Yes, that is the worse of the
14	two scenarios for the steam generator tube rupture.
15	So we have demonstrated that we meet the
16	acceptance criteria for the alternative source term
17	and this supports our
18	CHAIRMAN WALLIS: Well, let me go back to
19	the last one. You have a fuel failure of 100 percent
20	for the small break LOCA. What kind of a fuel failure
21	are you talking about that's a 100 percent?
22	MR. SICARD: That is a clad failure. That
23	is meant to be fuel failure, the same as
24	CHAIRMAN WALLIS: Just the gas between the
25	clad
I	I

```
(202) 234-4433
```

	88
1	MR. SICARD: Yes.
2	CHAIRMAN WALLIS: It's not the whole fuel?
3	MR. SICARD: No, it is not the whole fuel.
4	Because you would not be uncovering the fuel until
5	approximately 15 minutes into the event where the
6	decay heat would go down. You would not be subject to
7	the fuel melt for that event.
8	CHAIRMAN WALLIS: Well, that's reassuring.
9	MR. SICARD: And that is an analysis
10	assumption that is consistent with the dose analysis
11	for the small break LOCA that have been done in the
12	industry.
13	So that concludes my review of the safety
14	analysis aspects. And if there are no further
15	questions, Jerry Holman our manager of nuclear
16	engineering will present the risk considerations.
17	CHAIRMAN WALLIS: He's going to present
18	after the break. We're going to have a break now until
19	quarter to 11:00. And we'll try to catch up because
20	we're taking twice as long as we scheduled.
21	(Whereupon, off the record at 10:28 a.m.
22	until 10:45 a.m.)
23	CHAIRMAN WALLIS: Let's come back into
24	session.
25	We're looking forward to Jerry Holman's

	89
1	presentation. We hope that he can get us back on
2	time.
3	MR. SIEBER: They said it's not risky
4	MR. MITCHELL: This is Tim Mitchell. If I
5	could interject one minute. We are ready to talk about
6	the heat balance question as far as how we did and
7	what percentages of delta T if now is an acceptable
8	time?
9	CHAIRMAN WALLIS: Well, why don't you do
10	that right after lunch when we're in a good mood?
11	MR. MITCHELL: Okay. We can wait until
12	after lunch.
13	CHAIRMAN WALLIS: Yes, I think we should
14	go ahead with this now since he's up there.
15	MR. MITCHELL: Okay.
16	MR. HOLMAN: Okay. I'll go ahead and get
17	started. I'm Jerry Holman, manager of nuclear
18	engineering. I've been with Waterford for 22 years.
19	I'm going to discuss the risk impact of
20	the power uprate.
21	We looked at all the major elements of the
22	PRA model for its impact on power uprate. That
23	includes the initiating event frequencies, success
24	criteria. We looked at the failure rates. We've
25	particular concentrated on operator response times and
	I

(202) 234-4433

	90
1	the human reliability analysis. We quantified the
2	core damage frequency and the large early release
3	fraction. And we also looked at external events and
4	shutdown risk.
5	DR. KRESS: Now you have your own PRA, I
6	take it?
7	MR. HOLMAN: That's correct.
8	DR. KRESS: And through the industry
9	review?
10	MR. HOLMAN: Yes. We have gone through a
11	owner's group certification process.
12	DR. KRESS: Yes.
13	MR. HOLMAN: And addressed those issues.
14	There are no change in plant operation
15	that would cause any new initiating events to be
16	included into the PRA model.
17	DR. FORD: What is your basis for saying
18	that?
19	MR. HOLMAN: There's
20	DR. FORD: Your factual basis?
21	MR. HOLMAN: We've looked at the operation
22	of the plant after power uprate. There is no
23	significant procedure changes, there's no changes in
24	the way the plant is operated, operator actions. So
25	there's no impact on initiating events.

(202) 234-4433

	91
1	DR. FORD: And materials degradation
2	doesn't come under that sub-bullet?
3	MR. HOLMAN: No. In fact, what we would
4	look at is in any cases where there might be some
5	additional wear or degradation
6	DR. FORD: Right.
7	MR. HOLMAN: we have monitoring
8	programs to ensure that we capture that wear and do
9	preventative maintenance prior to it getting to the
10	point where it would result in any failures or
11	initiating events.
12	DR. FORD: Well, you mentioned flow-
13	induced vibration. What would happen, you got a
14	higher flow rate going through the steam generator and
15	the steam generator internals will presumably vibrate
16	more and wear more on anti-vibrations bars, for
17	instance.
18	MR. HOLMAN: Correct.
19	DR. FORD: What happened if it went so
20	fast that you go through a tube wall within one
21	operating cycle?
22	MR. HOLMAN: Right. We have Don Siska
23	here, but I think we would not expect to see those
24	types of differences and changes where the wear rate
25	would increase to get failure within that one cycle.
I	I

(202) 234-4433

	92
1	DR. FORD: Well, that was the objective of
2	my question. What's your technical basis for saying
3	that it wouldn't? The reason why we're so sensitive
4	to that is, as you know in the BWRs, the steam dryers,
5	we've had this problem. And no problem, no problem
6	based on analysis there was a problem.
7	MR. HOLMAN: Yes.
8	DR. FORD: So what is your technical basis
9	that you're so sure that there will not be a problem
10	within one fuel cycle.
11	MR. HOLMAN: Right. Don?
12	MR. SISKA: I'm Don Siska from
13	Westinghouse.
14	I can speak to the issue of the flow-
15	induced vibration, particularly within the steam
16	generator.
17	We looked at the higher flow rates and did
18	a much more detailed type of analysis than we had done
19	originally for these steam generators. And all of the
20	stability ratios, if you will, and the critical areas
21	all remained well within the below an acceptance
22	criteria such that we would not predict any sort of
23	onset of instability or any kind of significant wear
24	at all, certainly much less than a structural limit of
25	a tube within one fuel cycle. And I believe Waterford
I	I

(202) 234-4433

	93
1	does 100 percent inspection of all active tube during
2	an inspection, so we don't anticipate any problems in
3	that area.
4	DR. FORD: What would the impact be if you
5	were wrong?
б	MR. HOLMAN: Well, we have had occasions
7	back in the original licensing of San Onofre and St.
8	Lucie 2 where we did have vibration in what we call
9	the diagonal bars or bat wings and actually had a
10	small leak in less than one cycle. However, these
11	were small controlled leaks and the plant was able to
12	shutdown without any significant issues. We
13	subsequently have done plugging in that region. And
14	in some cases put stabilizers in an area to make sure
15	that this doesn't continue to happen.
16	DR. FORD: Are there other combustion
17	engineering designs similar to yours which are
18	operating at similar conditions to this?
19	MR. HOLMAN: Similar to the outbreak
20	conditions you mean?
21	DR. FORD: Yes, correct.
22	MR. HOLMAN: Well, Palo Verde has very
23	similar designs. The actual support, tube supports in
24	the Waterford steam generator are more robust than at
25	Palo Verde. They have three partial supports at the
I	I

(202) 234-4433

	94
1	top of the two bundles as opposed to two. And the
2	supports in the supper two bundle on the vertical
3	grids connect directly to I-beams where at Palo Verde
4	they float. So we would expect at Palo Verde we would
5	have much more vibration problems than would
6	Waterford.
7	DR. FORD: Okay.
8	MR. MITCHELL: This is Tim Mitchell on
9	what if we're wrong.
10	DR. FORD: Yes.
11	MR. MITCHELL: We do follow the EPRI
12	guidelines on responding to indications of leakage
13	within the steam generators. Those indications would
14	have us shutting down much sooner than the 75 gallons
15	per day limits that we talked about earlier. So it
16	would be something that we would take very seriously
17	and respond to operationally and take conservative
18	action. So it's not anything that we expect, but our
19	procedures are built to make sure that that is
20	evaluated seriously and there is clear shutdown
21	criteria. I don't remember the exact criteria, but
22	it's well below any of analyzed numbers.
23	DR. FORD: Okay.
24	DR. KRESS: On your initiating event
25	frequencies, do you use the generic values for that or
I	

(202) 234-4433

	95
1	do you have plant specific values?
2	MR. HOLMAN: Yes, we use a combination.
3	We start with the generic data. And for those events
4	where we have seen plant specific events, such as loss
5	of feedwater, we roll in the plant specific.
6	DR. KRESS: So the only way you can assess
7	whether there is a change in frequency is mostly
8	judgment. You just look at the things that might cause
9	the frequency to change?
10	MR. HOLMAN: That's correct. And when we
11	do model updates, we go back and look at actual
12	history and we will roll any experience into those
13	model updates and changes.
14	DR. KRESS: Okay.
15	MR. MITCHELL: This is Tim Mitchell one.
16	The one thing we did do as a result of
17	industry experience, it was within the scope anyway
18	but we expanded it, was to go look at where the
19	industry has experienced problems with components as
20	a result of changes in power uprates, even just valves
21	operating in a different region than what they did
22	before.
23	DR. KRESS: That's where I was leading
24	with my question.
25	MR. MITCHELL: We've tried to look at
	I

(202) 234-4433

	96
1	those cases and even look at our maintenance practices
2	of what do we need to do from a maintenance standpoint
3	to make sure those aren't issues. But our final catch
4	is we have performance monitoring program within
5	system engineering that after all the testing is done,
6	we'll continue to monitor parameters, especially on
7	the secondary but the primary also, to look for deltas
8	over consistent conditions that we would have seen
9	prior to the update. And we'll go evaluate those as
10	part of our corrective action process if there are
11	any.
12	We do have some Arkansas Nuclear 1 that
13	tells us that even two or three cycles later you can
14	have problems with things like static water cooling
15	system. So our performance monitoring program will be
16	very detailed and very rigorous at looking at changes
17	and evaluating those changes and looking within
18	industry experience as a guide at what things should
19	we be concerned about as a result of those.
20	MR. HOLMAN: Okay. We also looked at our
21	success criteria. We ran the CENTS code to do some
22	analyses in order to confirm that the success criteria
23	for power uprate would not change. And we found that
24	it does indeed
25	DR. KRESS: Your success criteria was
l	1

(202) 234-4433

(202) 234-4433

	97
1	what, two out of the three pumps?
2	MR. HOLMAN: That's correct. It would be
3	things like one emergency feedwater pump required to
4	mitigate and prevent core damage versus two or how
5	many flow paths for safety injection.
6	Okay. The power uprate team did
7	comprehensive reviews of equipment for its impact due
8	to power uprate. We found that all the systems
9	operate within allowable limits. EPU will not
10	overstress any equipment or there was no impact on any
11	of the PRA failure rates as the result of power
12	uprate.
13	As we've mentioned before, we do have
14	existing monitoring programs that are in place to
15	capture and monitor for any increased degradation or
16	wear. We have a strong incentive to make sure we
17	catch that degradation prior to it actually turning
18	into equipment failures.
19	DR. KRESS: Do you use CHECWORKS or the
20	MR. HOLMAN: We use CHECWORKS for the
21	flow-accelerated corrosion, yes.
22	Okay. We looked at operator response
23	times. We ran again the CENTS computer code in order
24	to determine times that are available for recovery of
25	offsite power and the time to core uncovery. In
	1

(202) 234-4433

	98
1	general the higher decay heat as a result of a power
2	uprate reduced operator available action times.
3	The major impact is the PRA model was a
4	reduction in the time to recover from a loss of
5	feedwater and the time to recover from offsite power,
6	a loss of offsite power. Typically what we're looking
7	at is the time to uncover the core here and with the
8	higher decay heat, that is a little bit shorter.
9	CHAIRMAN WALLIS: This is where you have
10	these reductions from 40 minutes to 2 minutes?
11	MR. HOLMAN: That was result of more
12	rigorous analyses and looking at different brakes
13	sizes for that range, that's correct.
14	CHAIRMAN WALLIS: You concluded that two
15	minutes was too short that you'd assumed that they
16	failed?
17	MR. HOLMAN: In cases where the time frame
18	was too short to credibly have operators take action,
19	we just assumed that that action was taken.
20	Okay. So this slide shows the impact of
21	the dominate operator recovery actions before power
22	uprate and after power uprate and after power uprate.
23	The time to core uncovery before power uprate coming
24	out of the CENTS analysis was 82.6 minutes. And after
25	power uprate because of the higher decay heat, it's
I	1

(202) 234-4433

	99
1	reduced to 68 minutes. That shorter time available
2	translates into a small increase in the failure
3	probability or the nonrecovery probability. So that's
4	an example of the tech 92 that we're talking about for
5	power uprate.
6	CHAIRMAN WALLIS: You have aux feed. What
7	is this feedwater recovery? You got two sources of
8	feedwater.
9	MR. HOLMAN: Yes. We have our main
10	feedwater. We have three emergency feedwater pumps,
11	two motor driven and one is a turbine drive EFW pump.
12	We also have a separate pump that we call an auxiliary
13	feedwater pump. It comes off of the main condenser.
14	So those are the type of actions that we would be
15	CHAIRMAN WALLIS: So what's being
16	recovered here? Which of those different sources of
17	feedwater is being recovered?
18	MR. HOLMAN: We'll step through a
19	progression of what the operators would do given a
20	loss of feedwater.
21	The first thing they would do would be try
22	and start emergency feedwater. If that does not work,
23	they'll go the next thing. If it continues not to
24	work, we've also got an action to depressurize the
25	steam generators and try and use the condensate pump.
I	

(202) 234-4433

	100
1	So there's a progression of actions.
2	The only thing that's changing for power
3	uprate is the total amount of time that's available to
4	complete those actions before we reach core uncovery.
5	MR. SIEBER: This is a side question. You
6	now have declared your atmospheric dump valves as
7	safety related and they're required to be operable
8	above 70 percent power?
9	MR. HOLMAN: Correct.
10	MR. SIEBER: For mitigation of a small
11	break LOCA. Was the fact that you now need them, that
12	becomes a new event with a different frequency; is
13	that figured into your risk calculation?
14	MR. HOLMAN: The credit for the
15	atmospheric dump valve was required for the
16	conservative licensing basis small break LOCA model
17	that has the Appendix K conservatisms.
18	For the PRA model we're looking more at a
19	realistic small break LOCA. On a realistic analysis
20	basis we do not require that same automatic feature of
21	the ADV. So we did not have to change or in corporate
22	that ADV as part of our success criteria for the PRA
23	model.
24	MR. SIEBER: But you have some
25	documentation that it establishes the reasoning path
ļ	I

(202) 234-4433

	101
1	where you document that conclusion?
2	MR. HOLMAN: That's correct. That's part
3	of the CENTS analysis.
4	MR. SIEBER: All right. Thank you.
5	MR. HOLMAN: Okay. We quantified the core
6	damage frequency increase as a result of power uprate
7	and determined to be 3.5 times 10 to the minus 7.
8	That's a small increase that meets the Reg. Guide
9	1.174 guidance.
10	We also quantified the large early release
11	frequency to be less than one times 10 to the minus 7.
12	So at the end of power uprate our new core damage
13	frequency is 5.9 times 10 to the minus 6.
14	MR. ROSEN: Now have you had a peer review
15	of your PRA?
16	MR. HOLMAN: Yes. We did a peer review
17	coming out of the owner's group. For the power uprate
18	model we've addressed all of the major items that came
19	out of the peer review with the exception of three
20	significant ones. Those were all related to the level
21	two analysis model.
22	For this effort on power uprate we did not
23	use the full level two. We did a simplified alert.
24	MR. ROSEN: Now you're saying that peer
25	review looked at your power uprate calculations as
I	

(202) 234-4433

	102
1	well?
2	MR. HOLMAN: No. The peer review was for
3	a previous version of the PRA model that we built the
4	power uprate off of.
5	MR. ROSEN: And the peer review had no
6	quarrel with 6E to the minus 6 for internal events at
7	Waterford?
8	MR. HOLMAN: That's correct.
9	MR. ROSEN: What in your opinion gives a
10	result that low? I would expect it would be twice
11	that or maybe three times of that in a PWR.
12	MR. HOLMAN: Right. Prior to the latest
13	update, LOCA frequencies, small break LOCA in
14	particular had dominated, had been a significant
15	contributor. The last update revised the initiating
16	event for LOCAs consistent with the latest NRC
17	guidance. And that reduced the core damage frequency.
18	The other thing is the convolution
19	approach that we take to recovery of loss of offsite
20	power, that was also a benefit.
21	Some detailed look at the different
22	combinations of recovery of offsite power. So, again,
23	it's a more improved and detailed analysis which has
24	given us that benefit.
25	MR. ROSEN: While I've interrupted your
I	1

(202) 234-4433

discussion here today will be about the large transient testing and the desire on the part of Entergy to not do the large transient tests at Waterford.

Now in the attachment 5 to the supplement 6 7 testing, the startup testing supplement rather, there 8 is a statement I want you to help me understand. It's 9 talking about a SCRAM from full power, from the new extended power. It says "A SCRAM or the potential for 10 SCRAM from a high power level results in an 11 а unnecessary and undesirable plant transient cycle on 12 the primary system. And the risk associated with the 13 14 intentional introduction of a transient initiator while small, should not be incurred unnecessarily." 15

Now, that statement does not quantify what the word "small" means. And I'd ask you to help me with that. What is your view of the risk of a full power SCRAM?

20 MR. HOLMAN: We have not quantified that 21 specific transient and the impact of doing that test. 22 I think it was meant to be a more general statement 23 that anyway time you initiate you reactor trip, there 24 is some consequence to that.

MR. CONSTANCE: Hello. I'm David

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

	104
1	Constance. And I'm with Entergy, and I'll be
2	presenting testing later on day.
3	Jerry, we did get some of those numbers in
4	for the event specific risks for turbine trip. I don't
5	recall what the numbers were, but they were indeed in
6	our opinion small but should not be discounted.
7	MR. ROSEN: What do you mean by small?
8	You mean
9	MR. CONSTANCE: Less than ten to the minus
10	6.
11	MR. ROSEN: Less than ten to the minus 6?
12	MR. CONSTANCE: Right.
13	MR. ROSEN: Okay.
14	DR. KRESS: Refresh my memory about this
15	Waterford site. What sort of population density does
16	it have around it, do you recall those numbers?
17	MR. HOLMAN: No, I don't recall those
18	numbers.
19	DR. KRESS: Is it near a big city.
20	MR. HOLMAN: Waterford is about 35/40
21	miles outside west of the city of New Orleans.
22	DR. KRESS: That would be a low population
23	density side.
24	MR. LEONARD: This is Ted Leonard, the
25	project lead.
ļ	1

(202) 234-4433

	105
1	The site's situated in a rather low
2	population area. There's a lot of industry on the
3	river, petro-chem industry on the river near the site.
4	Probably the largest town of LaPlace is about five
5	miles away from the plant as the crow flies. New
6	Orleans is like 50 miles away.
7	CHAIRMAN WALLIS: It's getting further
8	away. It says 35 miles in the SER.
9	MR. MITCHELL: It probably is 25 miles to
10	the suburbs for sure.
11	MR. SIEBER: It's a fluid situation.
12	MR. HOLMAN: Okay. This slide shows the
13	relative contribution of different sequences. As you
14	can see, the risk at Waterford is dominated by total
15	loss of feedwater and station blackout events.
16	MR. SIEBER: There was question about how
17	much fuel oil that you have to sustain the loop in
18	that. And it says you will increase the capacity of
19	your diesel tanks by the end of next year. What do you
20	plan to do? Install additional tanks or
21	MR. MITCHELL: Yes. This is Tim Mitchell.
22	David Viener will talk about it in more
23	detail during part of his presentation. But we do
24	plan on adding additional tanks to address operator
25	concerns or our concerns about the operators tend to
ļ	

(202) 234-4433

	106
1	fill the tanks so full with little room to the
2	overflow. Now the overflow is captured, but the fact
3	that after a surveillance we'll have prompt action to
4	go refill the tank each time. And the frequency of
5	doing that, we think we can improve our margin and
б	improve or harden ourselves against operator error
7	with respect to things like overfilling the tank.
8	MR. SIEBER: So you don't plan to put in
9	additional tanks. You just plan to keep it fuller?
10	MR. MITCHELL: No. I'm sorry. The
11	immediate is we will keep it fuller until we get the
12	additional added, which is by December of 2006. So we
13	are working on pursuing that design right now to add
14	that additional tank.
15	MR. SIEBER: Will that be an underground
16	tank?
17	MR. MITCHELL: It will probably be a tank
18	located in our cooling tower areas. Do we have an
19	exact spot picked? There's three spots.
20	MR. SIEBER: And that single third tank
21	will feed multiple diesel generators?
22	MR. MITCHELL: Yes. We have a cross
23	connect between the qualified tanks that this third
24	tank will be able to supply both tanks. But, Joe?
25	MR. REESE: This is Joe Reese with
I	

(202) 234-4433

	107
1	engineering with Entergy at Waterford 3.
2	Currently we're completing a scoping study
3	to let an engineering contract on the design of the
4	tank.
5	The predominate location selected right
6	now is in our wet cooling tower area. And the
7	predominate design would be looking at a safety
8	related seismic tank that would have the ability to
9	feed either diesel generator storage tank.
10	MR. SIEBER: So it's a safety related
11	tank?
12	MR. REESE: That's correct.
13	MR. SIEBER: Okay. Thanks.
14	DR. KRESS: Could I see your previous
15	slide a moment? Could you tell me, is that the did
16	the sequences that contribute to the core damage
17	frequency at the extended power uprate condition, is
18	that what
19	MR. HOLMAN: That's correct, yes.
20	DR. KRESS: Okay. When you do a delta
21	CDF, then do you just look at the dominate sequences
22	in your
23	MR. HOLMAN: Yes, we quantified the entire
24	model so we captured all of the sequences.
25	DR. KRESS: Oh, you capture all of them.

(202) 234-4433

	108
1	
2	MR. HOLMAN: Yes.
3	DR. KRESS: Okay. Okay. Thank you.
4	MR. SIEBER: What is the delta CDF between
5	non-uprate and uprate conditions?
6	MR. HOLMAN: The delta CDF due to power
7	uprate was 3.5 times ten to the minus 7.
8	MR. SIEBER: Okay.
9	MR. HOLMAN: Okay. We looked at external
10	events. There was a slight increase in the fire core
11	damage frequency as a result of the small decrease in
12	available recovery times. We quantified the delta CDF
13	for fire to be seven times ten to the minus ten.
14	There were no other impacts to any of the other
15	external events as a result of power uprate.
16	We also looked at the
17	MR. ROSEN: What is the fire portion of
18	CDF? Not the delta, the total?
19	MR. HOLMAN: The percent?
20	MR. ROSEN: Yes.
21	MR. HOLMAN: I don't have that number off
22	the tope my head. It's
23	CHAIRMAN WALLIS: Well, the fire risk I
24	have is 8.15E to the minus six, which is bigger than
25	your internal events CDF.
I	

	109
1	MR. HOLMAN: The fire risk value that we
2	calculate is based on the very conservative approach
3	in the FIVE methodology. So it's hard to make a
4	apples-and-apples comparison to the internal risk.
5	MR. ROSEN: But based on what our Chairman
6	just said, it would roughly equivalent
7	MR. HOLMAN: Roughly equivalent.
8	MR. ROSEN: to the internal events
9	risk.
10	MR. HOLMAN: That's correct. And the
11	delta
12	CHAIRMAN WALLIS: The delta is minute.
13	MR. HOLMAN: Right. That's correct.
14	MR. ROSEN: The change is minute because
15	of this. But an important contributor to fire, the
16	CDF effort is based on the FIVE analysis at Waterford
17	is fire?
18	MR. HOLMAN: That's correct.
19	MR. HOLMAN: Okay. We've looked at
20	shutdown risk. There were no unique aspects of power
21	uprate that would cause us to change the risk at
22	shutdown conditions. We looked specifically at
23	maintaining safety functions during shutdown. There
24	were no changes to our shutdown operations protection
25	plan.
	I

(202) 234-4433

	110
1	We did look specifically at some of the
2	calculations that we have to determine time to boil
3	under shutdown conditions, and have made those updates
4	as a result of the higher decay heat, folded that into
5	operating procedures.
6	Therefore, overall we looked at all the
7	PRA major elements for its impact on power uprate.
8	There was a minor reduction in the available recovery
9	time for several operator actions dominated by the
10	recovery of offsite power.
11	Power uprate has a very small increase of
12	the risk, the 3.5 times ten to the minus seven.
13	So that concludes my presentation on risk
14	considerations. If there are no other questions, I'll
15	turn it to Dave Viener to talk about our engineering
16	impact.
17	DR. KRESS: You said your LERF calculation
18	was not the full level two, but just the simplified
19	methodology that the NRC uses?
20	MR. HOLMAN: That's correct. Yes. The
21	simplified LERF.
22	CHAIRMAN WALLIS: Thank you. And you've
23	gained us a little bit of time.
24	DR. KRESS: Yes. Thank you.
25	MR. HOLMAN: Thank you.
ļ	I

111 1 MR. VIENER: Good morning. My name is 2 David Viener. I'm the extended power uprate mechanical 3 lead on the project. I've been at Waterford for 14 4 years, all in the design organization. I'm here to 5 discuss the engineering impacts as a result of the power uprate. 6 7 The project team reviewed all plant 8 system, components and structures the plant could 9 uprate safely operate to the extended power 10 conditions. If the design was inadequate, mods were 11 proposed and they were scoped and designed. If the 12 design margins were acceptable, the design basis was clearly updated to demonstrate acceptance for power 13 14 uprate. 15 Some of the significant modifications for power uprate includes the replacement of our high 16 17 pressure turbine steam path, that's due to the increase in volumetric flow as a result of power 18 19 uprate. 20 We are rewinding the generator to accept 21 the new electrical load as a result of the thermal 22 power increase. 23 We are replacing our generator output 24 breakers and switching station and bus work and so 25 forth. That's again is to accept the new electrical

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	load as a result of power uprate.
2	We are replacing our alpha transformer and
3	increasing cooling in our bravo transformer. Again, to
4	increase the design to accept the new electrical load.
5	MR. ROSEN: David, your first bullet on
6	that slide, replacing the turbine steam path. Could
7	you be more specific? That's short of shorthand. Tell
8	me in some detail what you're actually doing.
9	MR. VIENER: The steam path replacement
10	includes a new full reaction rotor, the inner cylinder
11	and flow guides to the turbine. The valves are not
12	being replaced.
13	MR. ROSEN: Any piping changes?
14	MR. VIENER: No piping changes at all.
15	Just well the nozzles because we're going to a full
16	arc admission machine. Right now we're at a partial
17	arc admission machine. And we're going from that one
18	nozzle to four nozzles. So there will be some machine
19	work at the turbine for that.
20	MR. ROSEN: So some piping changes,
21	obviously to match up
22	MR. VIENER: To match up with the new
23	turbine. That's correct.
24	MR. ROSEN: But no new valving?
25	MR. VIENER: No new valving.
Į	

(202) 234-4433

	113
1	MR. ROSEN: The valving will be upstream
2	of those piping changes, is that correct? The
3	existing valving?
4	MR. VIENER: The existing valving will
5	remain. There's no change to the steam chest at all as
6	a result of the steam path in place.
7	MR. ROSEN: And what about the position of
8	the valves, the control valves?
9	MR. VIENER: They are not moved. There's
10	no physical modification at all.
11	MR. ROSEN: Okay. But they will operate at
12	a different point.
13	MR. VIENER: That is correct.
14	MR. ROSEN: Because of the higher steam
15	flow?
16	MR. VIENER: The higher steam flow.
17	MR. ROSEN: Now how close to valves wide
18	open are you?
19	MR. VIENER: We have designed the
20	operating point for the turbine to accommodate a 1000
21	tubes plugged and also include a one percent valve
22	margin on top of that. So that's should roughly give
23	us about 12 pounds of margin from the steam outlet
24	moving forward with the power uprate. Our design
25	should assure us that we do not operate with valves
I	

(202) 234-4433

	114
1	wide open.
2	MR. ROSEN: But you're close, it sounds
3	like.
4	MR. VIENER: We will be close. But our
5	current tube plugging is about 550 on one generator,
6	450 on the other. We're going to a 1000 on both
7	generators. Accommodating that pressure drop as a
8	result of that, as well as add another one percent of
9	margin on top of that.
10	MR. ROSEN: So when are you going to I
11	guess you'll have the experience of setting those
12	valves as you creep up towards full power? What's
13	your planning there?
14	MR. VIENER: The valve David Constance
15	is maybe better to answer this question.
16	MR. CONSTANCE: I'm David Constance and
17	I'll be doing the static testing at Waterford.
18	And two aspects of the turbine control
19	system that we'll be validating during startup is the
20	turbine valve curve, which is the megawatt to valve
21	position curve and also the megawatt to turbine first
22	stage pressure curve; both will be validated during
23	plant startup.
24	MR. MITCHELL: This is Tim Mitchell.
25	Valve setup will actually occur prior to
I	I

(202) 234-4433

1 rolling the turbine the same time. So the validations 2 will occur after the turbine is on line. But the 3 biggest change with valve positions is going to the 4 full arc versus partial arc. Instead of having three 5 valves full open and one valve throttling, we will have all four valves throttling even at 100 percent 6 7 power. And I believe the projection is that'll be 8 roughly 80 percent open. Is that close? 9 MR. CONSTANCE: Yes, sir. Approximately 10 80 percent open. I guess the only impact that 11 MR. SIEBER: 12 the governor valve position has is on the governor an overspeed. And presuming that the 13 action on 14 governors have some impact as they tried to close 15 before the throttle valves trips. But typically that's not the deciding factor. And so that's the only safety 16 issue that I can see that comes out of that, other 17 than you may not be able to get the full power. 18 If 19 you don't, that's the way it goes. 20 CHAIRMAN WALLIS: So you're only changing 21 one stage in the turbine? 22 It's a whole rotor change. MR. VIENER: 23 CHAIRMAN WALLIS: It's a whole rotor. 24 It's one stage though? 25 High pressure. MR. ROSEN:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

115

116 1 MR. VIENER: High pressure and is eight 2 stages. CHAIRMAN WALLIS: You have eight stages in 3 Well, that makes more sense. 4 that one. 5 MR. VIENER: Right, eight stages in that one. 6 7 CHAIRMAN WALLIS: I was puzzled by it. So 8 by a stage you mean eight stages --9 MR. VIENER: That's correct. MR. SIEBER: Five for him in the rotor 10 11 section. 12 Now you're also not doing MR. ROSEN: anything to the low pressure end of the turbine? 13 You 14 have two low pressure? 15 MR. VIENER: We have three. 16 MR. ROSEN: Three. 17 MR. VIENER: Low pressure and no changes are required on the low pressure turbines. 18 19 DR. RANSOM: Does that mean the power 20 distribution among the high pressure and low pressure 21 turbines, all of the power increase is in the high 22 pressure turbine? MR. CARUSO: I do not know the balance of 23 24 the way the power -- you know, between high and low. 25 High takes the majority of it, but --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	MR. SIEBER: Since you're getting it by
2	more steam flow, it would be essentially divided
3	between high pressure and low pressure.
4	MR. VIENER: Yes. I'm not sure of the
5	balance.
6	MR. SIEBER: Because you've got more steam
7	flow.
8	MR. MITCHELL: This is Tim Mitchell.
9	Because of the HP turbine modification, it
10	will be carrying more load.
11	MR. SIEBER: Right.
12	MR. MITCHELL: But the LPs will be picking
13	up some portion of that load. I can't either tell you
14	the percentage or the percent change, but it will be
15	distributed over the entire turbine train. However,
16	the HP will be redesigned to be a more efficient rotor
17	and it will take the majority of the increase.
18	MR. SIEBER: Well, it's not evenly divided
19	anyway. The very first row of blades produces a lot
20	of horsepower compared to everything else.
21	MR. MITCHELL: That is correct.
22	MR. VIENER: Okay. We also are planning
23	some changes on our heater drain valves. We are going
24	to be doing some tube staking in our condenser to make
25	sure we do not have tube vibration movements with
	I

(202) 234-4433

	118
1	power uprate.
2	And we do have some control system and
3	instrumentations which include setpoint, range and
4	scale changes. And results in about four transmitters
5	to be replaced.
6	MR. ROSEN: What's the material of
7	construction of the condenser tubes?
8	MR. MITCHELL: The condenser tubes are
9	stainless.
10	MR. VIENER: Stainless.
11	Okay. With the higher decay heat, it
12	didn't result in any physical changes to our safety
13	systems with the ultimate heat sink. The system will
14	still be capable of dissipating the heat loads the
15	normal shutdown and accident conditions.
16	The water sources are still adequate to
17	maintain cooling to the essential plant equipment. And
18	equipment operating times, this will increase post
19	accident which does impact our fuel oil. And I think
20	we did talk about some plans to increase margin at the
21	site on fuel oil.
22	MR. ROSEN: Let's go back to 41 again, the
23	previous slide.
24	MR. VIENER: Sure.
25	MR. ROSEN: What are these transmitter

	119
1	that are being replaced and the setpoint, range and
2	scale changes. And what instrumentation are you doing
3	that on?
4	MR. VIENER: I'd like to turn that
5	question to Ralph Schwartzbeck, our BOP lead.
б	MR. SCHWARTZBECK: I'm Ralph Schwartzbeck
7	with Enercon Services.
8	The four transmitters that are being
9	replaced are two main steam pressure transmitters and
10	two boric acid makeup level transmitters.
11	The setpoint changes are basically
12	operating points for those transmitters. We had to
13	recalibrate some of the transmitters to give them
14	increased range of operation. We have to rescale some
15	of the board meters to show with the new operating
16	conditions.
17	The setpoints that we really did one
18	major setpoint was the low steam generator pressure
19	trip that was done in the reactor protective system.
20	But other than that, it was just minor movements
21	around just to make sure the controls worked like for
22	the feed pump turbines and things like that. Just to
23	make sure that they will operate within their design
24	conditions at uprated power.
25	MR. ROSEN: You said low steam generator
I	

(202) 234-4433

	120
1	pressure?
2	MR. SCHWARTZBECK: Yes. That's the only
3	plant protective system setpoint that is being
4	changed. And that was discussed earlier.
5	MR. SIEBER: That's a pretty big change.
6	You go from 764 to 662. Why are you changing that
7	again?
8	MR. SICARD: This is Paul Sicard.
9	The reason why we are changing that value
10	is to provide operational margin for the plant. We
11	are lowering what the full power steam generator
12	pressure is based upon our operating point for the
13	power uprate conditions, therefore we wanted to lower
14	that setpoint such that it was not going to cause any
15	increase in probability of an inadvertent trip.
16	And we ran some analysis in order to see
17	where it would make sense to push that number looking
18	at various ramp rates and the impact on plant
19	temperature. As a result of that, we adopted the
20	analysis value that is associated with that number
21	that's approximately 100 pounds lower than that in our
22	safety analysis and we're able to demonstrate
23	acceptable performance in the safety analysis based
24	upon that value.
25	Does that answer your question?
I	I

(202) 234-4433

	121
1	MR. SIEBER: Yes.
2	MR. VIENER: Okay. Go the fuel slide.
3	DR. RANSOM: Let me go back to the pumps
4	for a minute. The main coolant pumps. As near as I
5	can, if I'm not wrong, they'll see about a three
6	percent increase in load. And there's been no
7	discussion of what effect that has on the system.
8	MR. VIENER: The limiting condition on the
9	reactor cooling pump is during startup.
10	DR. RANSOM: Is what?
11	MR. VIENER: Is during startup where
12	reactor coolant is actually cooler and higher mass
13	flow as a result during startup and provides more draw
14	on our motors.
15	DR. RANSOM: Right. The motors will take
16	that and
17	MR. VIENER: We're not changing the
18	startup sequencing in the reactor coolant pump motors.
19	Once you get up to nominal $ extsf{T}_{ extsf{cold}}$ temperature, they're
20	fine. They're operate well within the design limits.
21	MR. SIEBER: Most coolant pump motor
22	failures are when the plant's cold, and in particular
23	from the in rush when you first start the pump. Once
24	you're operating, they'll run for a long time.
25	MR. VIENER: Okay. On the emergency
I	I

(202) 234-4433

	122
1	diesel generator fuel oil, we are raising the minimum
2	capacity requirement in our storage tank to maintain
3	the seven day supply for our current licensing basis.
4	We do have a commitment to add additional storage.
5	That should be complete by the end of 2006. And Tim
6	described and Joe described what our plans were for
7	that.
8	MR. SIEBER: Now, there is actually no
9	additional fuel oil consumption caused by the EPU.
10	This was an error that's been around for a long time,
11	I take it.
12	MR. VIENER: There will be more
13	consumption as a result of EPU because our ultimate
14	heat sink equipment, some of it has to operate a
15	little bit longer as a result of extended power
16	uprate. Therefore, more fuel will be required.
17	MR. SIEBER: But those are those cooling
18	tower pumps, right?
19	MR. VIENER: That's the wet cooling tower
20	fans.
21	MR. SIEBER: Right.
22	MR. VIENER: And our aux component cooling
23	water pump.
24	MR. SIEBER: Okay.
25	MR. MITCHELL: This is Tim Mitchell.
l	

(202) 234-4433

	123
1	But you're right. There was design and
2	issue with margins that existed for quite some time,
3	and this is predominately driven the modification
4	is predominately driven to eliminate really both
5	issues. But the significance of it is is preexisting
6	to EPU.
7	MR. SIEBER: Okay. Thank you.
8	MR. ROSEN: This commitment to add the
9	additional storage, that will be completed prior to
10	the EPU?
11	MR. MITCHELL: That additional storage
12	will be provided prior to December of 2006. Not prior
13	to EP, I'm sorry.
14	MR. VIENER: On our emergency feedwater
15	system, it was reviewed and our system flow is still
16	capable of mitigating against feedwater demand events.
17	And our normal and backup condensate
18	sources are still adequate to bring the plant to
19	shutdown cooling conditions.
20	On our shutdown cooling system, the system
21	still will be capable of achieving cold shutdown in
22	accordance with Reactor System Branch, Branch
23	Technical Position 5-1.
24	And our refueling technical specification
25	time limits to reduce shutdown flow will remain
ļ	

(202) 234-4433

1 unchanged as a result of power uprate due to the 2 conservatisms that were in the current analysis. 3 Fuel pool cooling, power uprate is 4 proposing a 1 and a half percent increase in decay 5 heat for the fuel pool cooling analysis. We reracked in 1008 and the analysis assumed an 8 percent power 6 7 uprate at that time. This uprate is basically captured in the Appendix K on recapture, margin 8 9 recapture. Delay heat removal analysis does bound the 10 capacity of the fuel pool. We will still maintain the 11 12 licensing basis temperature limits as a result of extended power uprate. And the bounding time to boil 13 14 analysis will remain unchanged as a result of power 15 uprates. How is that possible? 16 MR. ROSEN: I mean, 17 if you're putting more fuel into the pool and your assumption in the time to boil analysis is set, you 18 19 lose cooling to the pool at the worst time, how do you 20 end up with the -- I would expect there would be 21 change of one and a half change? 22 The licensing amendment in MR. VIENER: 23 1998 used the ASB 9-2 decay heat and there's a typo in 24 that decay heat equation that was used at that time. 25 Calculating the decay heats used in that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

124

ĺ	125
1	typo provided very conservative results. Extended
2	power uprate easily masked those conservatisms, and
3	therefore the time the bounding analysis which is
4	the full core offload, will remain unchanged.
5	MR. ROSEN: I understood up to the point
6	where you said there was a typo. And the bounding
7	analysis of the EPU remains unchanged because of the
8	typo is taken out or not? I don't understand.
9	MR. VIENER: No. Well, moving forward we
10	used the correct ASB 9-2 equation.
11	MR. ROSEN: I see. okay. And the next
12	sentence remains unchanged because you changed the
13	analysis to correct a prior error?
14	MR. VIENER: That's correct. That's
15	correct.
16	MR. ROSEN: Okay. But "unchanged," you
17	mean it's not higher than it was?
18	MR. VIENER: It's not higher than it was
19	docketed before. It was roughly a little less than
20	three ops.
21	MR. ROSEN: And now we're confident that's
22	right?
23	MR. VIENER: I'm very confident that's
24	right.
25	As far as EPU impact on ongoing industry
I	

	126
1	issues concerning containment overpressure, currently
2	Waterford 3 does not credit containment overpressure
3	in the net positive suction head analysis on emergency
4	core cooling pumps. EPU will still maintain that
5	assumption.
6	As far as EPU has no impact on the safety
7	injection sump performance as discussed in the
8	recently released generic letter.
9	EPU has not proposed any system change
10	inside containment, as well as our minimum containment
11	sump level and our sump temperature in containment
12	remain really unchanged as a result of power uprate.
13	MR. SIEBER: What you say on this slide is
14	it doesn't tell the whole story, right? You increased
15	the minimum temperature of containment to make sure
16	you had enough pump suction head?
17	MR. VIENER: No. No. We do not credit
18	containment pressure at all for the NPSH analysis on
19	the emergency
20	CHAIRMAN WALLIS: That's a mistake in
21	something that we got in our literature.
22	MR. SIEBER: Right.
23	CHAIRMAN WALLIS: That has given the
24	impression that there was a
25	MR. SIEBER: Right.
I	I

	127
1	MR. HOLMAN: This is Jerry Holman.
2	The change in minimum containment
3	temperature was the result of the large break LOCA
4	ECCS performance. It is not factored into the net
5	positive suction head analysis.
6	MR. SICARD: This is Paul Sicard.
7	Let me point out the change is to move the
8	existing requirement from our technical requirements
9	manual to the technical specifications. So it is not
10	a change in any analysis assumption, but merely in how
11	we are enforcing that assumption.
12	MR. SIEBER: I guess I need some
13	clarification, though. If you increase the
14	temperature of the containment and thereby the
15	potential stored energy there, why would you do it
16	for what reason would you do it other than to make
17	sure you had enough pump suction at the sump? I'm
18	missing something here.
19	MR. SICARD: Okay. This is Paul Sicard.
20	For the NPSH analysis or prepower uprate
21	conditions as well as post power uprate conditions we
22	do not consider any increase in containment pressure
23	that occurs because of the loss of coolant in the mass
24	and energy release to the containment. That analysis
25	for net positive suction head and pump performance
Į	

(202) 234-4433

	128
1	assumes that the containment stays at its initial
2	pressure for the purpose of evaluating the pump
3	performance.
4	Now, when one gets into the loss of
5	coolant accident, there one does account for the
6	minimum containment response, minimum pressure
7	response. And that is part of the approved
8	Westinghouse LOCA methodology for determining peak
9	clad temperature.
10	CHAIRMAN WALLIS: So there is an effect of
11	containment pressure on net positive suction head?
12	MR. SIEBER: Well, it is in a way and it
13	isn't in a way.
14	CHAIRMAN WALLIS: Two separate
15	calculations.
16	MR. SICARD: If we had considered
17	MR. HOLMAN: There are two analysis.
18	MR. SICARD: Yes. If we had considered
19	containment over pressure for net positive suction
20	head, that would give us improved margin because that
21	would give you more pressure to assist the pump. We do
22	not consider that additional term for the net positive
23	suction head analysis.
24	MR. SIEBER: You're not taking credit for
25	the LOCA pressure? You're taking credit for the

(202) 234-4433

	129
1	containment condition? Is that a way to state it?
2	MR. SICARD: We are taking credit for the
3	containment initial pressure of approximately one
4	atmosphere.
5	CHAIRMAN WALLIS: That's all.
6	MR. SICARD: And that is all.
7	CHAIRMAN WALLIS: That's easy to
8	understand.
9	MR. SIEBER: Well, yes. The
10	MR. VIENER: We follow the reg. guide
11	requirements as far as design and the ECCS pumps. And
12	if I'm not mistaken, it's the containment pressure and
13	the vapor pressure you assume will cancel out. Okay.
14	So all you have is the NPSH required of the pump less
15	the pressure drop from the containment sump to the
16	ECCS pump and the elevation. That's the only factors
17	you credit in the NPHS analysis.
18	DR. KRESS: And what did you do about the
19	sump screen blockage in this analysis?
20	MR. VIENER: Power uprate does not impact
21	that sump blockage analysis at all.
22	MR. SIEBER: Yes, it's the same sump.
23	Same debris.
24	CHAIRMAN WALLIS: But you still have the
25	problem if there was one with sump screen blockage.
I	I

(202) 234-4433

	130
1	It doesn't go away.
2	MR. SIEBER: It doesn't get worse even.
3	MR. VIENER: Yes. We do plan on following
4	the guidelines of the generic letter that was issued.
5	And we have taken some actions and we've got future
6	actions that are upcoming.
7	CHAIRMAN WALLIS: What kind of insulation
8	do you have on your steam generators?
9	MR. VIENER: What I'd like to do is
10	introduce Maria Rosa Gutierrez. She's the one that's
11	our lead in this issue.
12	MS. GUTIERREZ: My name is Maria Rosa
13	Gutierrez. I work at Waterford 3 in design engineering
14	department.
15	The question was insulation on the steam
16	generators?
17	CHAIRMAN WALLIS: Yes.
18	MS. GUTIERREZ: We have reflective
19	encapsulated insulation and also some Nukon blankets.
20	CHAIRMAN WALLIS: So it's all reflective
21	metal?
22	MS. GUTIERREZ: No, not reflective metal.
23	The only place we have reflective metal insulation is
24	on our reactor.
25	CHAIRMAN WALLIS: So you have fiberglass
I	I

(202) 234-4433

	131
1	on the
2	MS. GUTIERREZ: Yes.
3	CHAIRMAN WALLIS: steam generators?
4	MR. MITCHELL: And on the piping.
5	MS. GUTIERREZ: And on the piping also.
6	MR. ROSEN: Any calcium silicate?
7	MS. GUTIERREZ: No, we do not.
8	CHAIRMAN WALLIS: But you have those 70
9	truckloads of fiberglass or whatever it is that we
10	were talking about.
11	MS. GUTIERREZ: I wouldn't say 70
12	truckloads, but yes we do.
13	CHAIRMAN WALLIS: Okay. Well, that's
14	another question.
15	MR. ROSEN: For another time.
16	MR. SIEBER: Yes.
17	CHAIRMAN WALLIS: For another time. We'll
18	probably see you again.
19	MR. VIENER: Okay. Due to operating
20	experience, we looked at vibration pretty in depth. On
21	a steam generator Don Siska talked about we did do
22	extensive evaluations on our steam generator and
23	determined that we should not experience any problems
24	due to vibration.
25	DR. FORD: Could I just return to this
l	

(202) 234-4433

	132
1	particular one? When you say "evaluated," you really
2	mean analyzed? You didn't do any experiences or
3	comparison with plant data, is that correct?
4	MR. VIENER: Let me turn that question
5	over to Don Siska?
6	MR. SISKA: As far as the tube bundle
7	evaluation, that was a full analytical evaluation, you
8	know building the models and based on test data,
9	coming up with analytical results.
10	DR. FORD: Can you tell me more about the
11	test data?
12	MR. SISKA: The test data for the tubes
13	were based on the tests that combustion engineering
14	had done back in the 1970s for that particular tube
15	bundle design. Triangular pitch, you know one inch
16	apart. And comes up with essentially constants that
17	fit into these Connor's equations and such to predict
18	flow induced vibrations.
19	DR. FORD: And those experiments, that
20	combustion covered conditions that you'll be having
21	under EPU?
22	MR. SISKA: That's correct. Yes.
23	DR. FORD: Okay. On the Palo Verde
24	design, the dry design. First of all, is the dryer a
25	safety related component?
ļ	

(202) 234-4433

	133
1	MR. SISKA: No, we do not consider it
2	safety related.
3	DR. FORD: So if there's a loose parts of
4	that and it impacts on the main steam isolation valve,
5	does that not make it a safety component?
6	MR. SISKA: Well, one could postulate some
7	pieces. I mean, probably the biggest thing would be
8	the dryer bolts. Those are the only thing we've ever
9	seen actually fall apart from there. And in general,
10	those fall down onto the separator deck. But it's not
11	impossible to say something couldn't get into the
12	steam dryer or into the main steamline, but it would
13	seem very unlikely.
14	DR. FORD: Okay. Now the question at Palo
15	Verde design, it is not exactly the same, is it?
16	MR. SISKA: The dryer design is exactly
17	the same.
18	DR. FORD: The dryer? Okay. But the
19	steam flow will be different, won't it, because
20	there's different there's only one steam outlet at
21	Waterford and there's three at Palo Verde? So the
22	steam flow will be different?
23	MR. SISKA: The steam flow up in the upper
24	drum in particular, yes, it has higher steam flows
25	through Palo Verde. The dryer, it's unusual to say,
	I

(202) 234-4433

	134
1	but the actual Palo Verde which runs at a little
2	higher power than the Waterford EPU actually has less
3	dryers because it's a smaller steam drum.
4	DR. FORD: So if you take the experience
5	that we're unfortunately learning from the boilers
6	where vibrations in the boiling water reactor steam
7	dryers, certain designs of them, gave and you can't
8	say therefore in your particular design at Waterford
9	that you could not get unexpected vibrations?
10	MR. SISKA: I will never say never, sir.
11	DR. FORD: Because you don't have anything
12	to compare it with, because you don't have data to
13	compare it against?
14	MR. SISKA: Yes. We actually have two
15	pieces of data. The initial testing that was done on
16	these dryers looked at pressures from 600 to about
17	1200 psi and 30 to 60 kilopounds per hour, which is
18	within this range. Now, again, that was not done from
19	a structural sense. That was done mainly to determine
20	moisture carryover capabilities. But, you know, it was
21	some rather significant testing.
22	And then secondly, Palo Verde which has
23	been operating for nearly 20 years with exactly the
24	same design and higher flow rates, in particular the
25	dynamic pressure through Palo Verde's dryers is about

(202) 234-4433

135 1 15 percent, 18 percent higher than what we expect at 2 Waterford during EPU. So we would expect that that 3 type of work at Palo Verde would bound anything that 4 Waterford will see. 5 MR. MITCHELL: One other point. This is Tim Mitchell. 6 7 The dryers on а boiler are vastly 8 different than what are in the steam generators. So 9 we have compared it to the best data that we have 10 available to the most stringent experience, which would be the Palo Verde experience as well as the 11 12 original testing. FORD: And you're still 13 DR. Okay. 14 discounting that there could be any impact on the 15 operation of the main steam isolation valves if you The loose parts coming off and --16 were wrong? 17 MR. MITCHELL: The loose parts from industry experience would be captured within the steam 18 19 I am not aware of any industry experience generators. 20 at all with dryer problems ending up anywhere other 21 than, as Don said --22 Again, I come back from the DR. FORD: 23 boilers. We were told no it could never happen, but it 24 did happen. And that's why we're pushing it. 25 I'll never say never, sir. MR. SISKA:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	MR. ROSEN: Now you did talk about some
2	bolts coming loose. Is that your own experience?
3	MR. SISKA: Yes. We have gone in there on
4	occasion. There are a total of 16 half inch bolts that
5	hold these dryers together. I believe there's five on
б	each side that hold it to the dryer support or
7	excuse me. Three on each side that hold it to the
8	support and then five that hold it to another dryer on
9	each side. So there's upwards of 2,000 bolts in
10	there. And on occasion we find some. We go in there
11	to take some dryers out, and find one missing.
12	And to my knowledge we've never actually
13	found one that was missing. You know, it probably
14	ended up just getting beat up and it's just a carbon
15	steel, so it probably eventually just turned into
16	sludge.
17	CHAIRMAN WALLIS: Maybe it was never put
18	there in the first place.
19	MR. SISKA: That's entirely possible as
20	well.
21	MR. SIEBER: Look at your tube sheets.
22	MR. SISKA: Oh, believe me, we do a lot of
23	that.
24	MR. SIEBER: That would be the first place
25	I would look.
l	I

(202) 234-4433

1 MR. SISKA: Yes. 2 DR. FORD: And the failure of those boods 3 by what, fatigue or by what? 4 MR. SISKA: I have no idea really. 5 CHAIRMAN WALLIS: They never found the 6 They have no idea. 7 MR. SISKA: And the reason there are seen any of these bolts in there is not really from 9 structural standpoint. It's just to try to keep to 10 steal so that you don't get any of the moisture 11 seeping through there without going through to 12 Chevrons. 13 DR. FORD: Okay. Thank you. 14 MR. ROSEN: But you didn't say anything	m. o a he
 by what, fatigue or by what? MR. SISKA: I have no idea really. CHAIRMAN WALLIS: They never found the They have no idea. MR. SISKA: And the reason there are s many of these bolts in there is not really from structural standpoint. It's just to try to keep t steal so that you don't get any of the moisture seeping through there without going through t chevrons. DR. FORD: Okay. Thank you. MR. ROSEN: But you didn't say anythin 	m. o a he
4 MR. SISKA: I have no idea really. 5 CHAIRMAN WALLIS: They never found the 6 They have no idea. 7 MR. SISKA: And the reason there are s 8 many of these bolts in there is not really from 9 structural standpoint. It's just to try to keep t 10 steal so that you don't get any of the moisture 11 seeping through there without going through t 12 chevrons. 13 DR. FORD: Okay. Thank you. 14 MR. ROSEN: But you didn't say anythin	o a he
5 CHAIRMAN WALLIS: They never found the 6 They have no idea. 7 MR. SISKA: And the reason there are s 8 many of these bolts in there is not really from 9 structural standpoint. It's just to try to keep t 10 steal so that you don't get any of the moisture 11 seeping through there without going through t 12 chevrons. 13 DR. FORD: Okay. Thank you. 14 MR. ROSEN: But you didn't say anything	o a he
6 They have no idea. 7 MR. SISKA: And the reason there are s 8 many of these bolts in there is not really from 9 structural standpoint. It's just to try to keep t 10 steal so that you don't get any of the moisture 11 seeping through there without going through t 12 chevrons. 13 DR. FORD: Okay. Thank you. 14 MR. ROSEN: But you didn't say anythin	o a he
7 MR. SISKA: And the reason there are s 8 many of these bolts in there is not really from 9 structural standpoint. It's just to try to keep t 10 steal so that you don't get any of the moisture 11 seeping through there without going through t 12 chevrons. 13 DR. FORD: Okay. Thank you. 14 MR. ROSEN: But you didn't say anythin	a he
 8 many of these bolts in there is not really from 9 structural standpoint. It's just to try to keep to 10 steal so that you don't get any of the moisture 11 seeping through there without going through to 12 chevrons. 13 DR. FORD: Okay. Thank you. 14 MR. ROSEN: But you didn't say anything 	a he
9 structural standpoint. It's just to try to keep to 10 steal so that you don't get any of the moisture 11 seeping through there without going through to 12 chevrons. 13 DR. FORD: Okay. Thank you. 14 MR. ROSEN: But you didn't say anything	he
<pre>10 steal so that you don't get any of the moisture 11 seeping through there without going through t 12 chevrons. 13 DR. FORD: Okay. Thank you. 14 MR. ROSEN: But you didn't say anythin</pre>	
<pre>11 seeping through there without going through t 12 chevrons. 13 DR. FORD: Okay. Thank you. 14 MR. ROSEN: But you didn't say anythin</pre>	he
<pre>12 chevrons. 13 DR. FORD: Okay. Thank you. 14 MR. ROSEN: But you didn't say anythir</pre>	he
13DR. FORD: Okay. Thank you.14MR. ROSEN: But you didn't say anythir	
14 MR. ROSEN: But you didn't say anythir	
15 about the condition of the drivers. You said that	g
	he
16 bolts were found loose a couple of bolts, a few bol	ts
17 out of the 1600 that are in there. Well, what abo	ut
18 the condition of the dryers themselves? Had you	1
19 inspected them?	
20 MR. SISKA: Waterford I know was looki	ng
21 at that effect. That was something that they we	re
22 looking at doing. I don't know if it was this out	age
23 or later on.	
24 MR. LEONARD: This is Ted Leonard, the	
25 project lead.	:

(202) 234-4433

1 In our last refueling we performed a rather thorough inspection of our steam generator 2 3 secondary side after we did a chemical cleaning of the 4 steam generators. Our dryers have corrosion, some 5 type of deposits on them. And we evaluated it quite extensively, probably more from an aspect of trying to 6 7 quantify is there a pressure drop across the dryers. 8 Some of the dryers there was more build up on them 9 than on some of the others. And we couldn't even with a lot of industry help, we couldn't quantify if we 10 would pick up anywhere from three to four pounds more 11 12 pressure if we took all the dryers out one at a time and cleaned them. We decided to go through the next 13 14 outage and do an inspection, and go from there. Well, I'm really not 15 MR. ROSEN: 16 concerned--17 MR. LEONARD: But they're not in like new condition, but they're not structurally degraded. They 18 19 more have some deposits on them. 20 Were you actually able to get MR. ROSEN: 21 a fiberoptics probe in there or some other method to 22 have a look at them. 23 It was mainly all the MR. LEONARD: Took photos. 24 exterior. 25 MR. SISKA: Yes. These dryers are only 12

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

138

	139
1	inches high. So, you know, you can see a good part of
2	them from right underneath.
3	MR. ROSEN: Although they have deposits on
4	them, they don't show any signs of distress?
5	MR. LEONARD: No. It was just the
6	deposit, and some of them more than others. I would
7	not wasn't they weren't all as dirty.
8	MR. MITCHELL: This is Tim Mitchell.
9	There was no evidence of any structural
10	issues at all with the dryers.
11	MR. VIENER: Okay. We also looked at heat
12	exchanger equipment in our secondary system, namely
13	the feedwater heaters, moisture separator and
14	condenser. And as mentioned earlier, the only impact
15	we have is that we do have to perform some tube taking
16	on the condenser. The feedwater heaters and moisture
17	separator, the heater will be fine moving forward with
18	the power uprate.
19	We do have a vibration monitoring program
20	ongoing. We do have probes on some key piping systems
21	that we're getting baseline data. That will remain
22	moving forward with power uprate. And, you know, if
23	there are some unexpected results, which we don't
24	expect, but if there are we will take compensatory
25	action

(202) 234-4433

	140
1	MR. ROSEN: Can you tell me what the
2	extent of that is? Are you looking, for instance, at
3	the feedwater heaters or the condenser tubes? Where
4	do you have the monitoring program probes?
5	MR. VIENER: We will have a program
6	through our power ascension testing and our power
7	ascension testing lead
8	MR. ROSEN: Well, let me tell you where
9	I'm going with that. Would you be able to detect
10	incipient conditions that could lead to failure in key
11	components or are we going to wake up one morning and
12	hear that you've had failures, or are you going to
13	write an LER that says you detected vibration and went
14	and stopped it ahead of time?
15	MR. VIENER: What I'd like to do is turn
16	that question over to our test lead, David Constance.
17	MR. CONSTANCE: Hi. I'm David Constance.
18	Based upon recent operating experience
19	we've extended our vibration monitoring during the
20	extended power uprate startup testing beyond what was
21	committed to in the testing submittal.
22	Our testing is going to our monitoring
23	is going to extend from the reactor coolant system
24	through the entire plant to the switchyard. It's kind
25	of a graded approach. The more important systems will
I	

(202) 234-4433

	141
1	have a higher level of monitoring and closer level of
2	monitoring than the systems that are either less
3	impacted by EPU or have less of a safety impact.
4	And I do have a backup slide where I can
5	go over that monitoring in detail during my
6	presentation, if you would like.
7	MR. ROSEN: Yes. I would like to see that.
8	MR. CONSTANCE: I'll make sure that's
9	prepared.
10	MR. VIENER: Flow accelerated corrosion.
11	The power uprate effects have been evaluated using our
12	CHECWORKS model. We do not we have determined that
13	no component replacements are required as a result of
14	going up with power uprate.
15	We did increase outage inspection sampling
16	based on the EPU conditions. That's basically to get
17	some additional baseline data that we don't have.
18	And moving forward, our program will
19	continue to monitor and detect any deviation from
20	predicted wear rates.
21	On alloy 600, on the reactor cooling
22	system, our reactor cooling hot leg temperature is
23	going up approximately about 0.8 of a degree. Our
24	cold leg temperature is going up or going down
25	about 2 degrees. And the impact on crack initiation
	I

(202) 234-4433

	142
1	due to PWSCC that we have determined is negligible as
2	a result of these operating condition changes.
3	MR. SIEBER: The two degrees on this slide
4	is not consistent with the larger degrees that you
5	show on other slides.
6	MR. VIENER: Yes. This two degree
7	decrease is basically hot full power at 543, it
8	doesn't include the ramp, not hot zero power spot 41,
9	which is the four degrees.
10	MR. SIEBER: All right.
11	DR. FORD: Could you remind us as to what
12	the situation about your inspections for the reactor
13	vessel head?
14	MR. VIENER: That's a good question. We
15	have Jamie Gobell here to entertain those questions
16	for you.
17	DR. FORD: Thank you.
18	MR. GOBELL: I'm Jamie Gobell, engineering
19	for Alloy 600 Entergy South.
20	And we are following the NRC order,
21	revised order 03-0009 and that is the volumetric
22	inspection of the nozzles. We performed a volumetric
23	inspection of the nozzles last outage. Did not find
24	any indications to make any repairs. We also performed
25	a visual inspection of the bare metal of the top
I	I

(202) 234-4433

	143
1	surface.
2	DR. FORD: And no indications?
3	MR. GOBELL: No indications. The head is
4	in good shape.
5	MR. ROSEN: What sort of access have you
6	got on the top for bare metal?
7	MR. GOBELL: They had blanket insulation
8	up there that we removed and we could put a crawler in
9	or go in with a baroscope. Except for the very center
10	of the head still has some of the metal insulation and
11	we have to lift that and go in with a baroscope to
12	inspect that.
13	MR. ROSEN: You did do that, because that
14	was at the famous plant I won't mention did not
15	inspect that area because it was hard to do.
16	MR. GOBELL: Yes, we did the full
17	inspection.
18	MR. ROSEN: Three sixty around each of
19	the
20	MR. GOBELL: Yes.
21	MR. ROSEN: Good.
22	MR. VIENER: Okay. In our steam
23	generators, our NEI 97-06 program we continue to
24	ensure true integrity is maintained post EPU.
25	Grid stability. Short circuit, transient
I	I

(202) 234-4433

144 1 stability and offsite voltage studies were reperformed 2 as a result of power uprate. Our short circuit study 3 determined that our main generator output breakers 4 were marginal and we are replacing those in this --5 well, we replaced one in the last refueling outage, and we're replacing the other one in this upcoming 6 7 refueling outage. MR. SIEBER: What's the nominal increase 8 9 in interrupting capability that you expect to put in 10 there? Do you know? MR. VIENER: What I'd like to do, I have 11 12 Singh Matharu who does have those details and he can answer that question. 13 14 MR. SIEBER: Okay. 15 MR. MATHARU: My name is Singh Matharu. I'm an electrical engineer at Waterford. 16 The original breakers that we had were oil 17 circuit breakers with a short circuit interrupter 18 19 rating of 63 kA. We have now gone to the SF6 type, 20 which now have an excess of 80 kA. 21 MR. SIEBER: Okay. 22 The model that --MR. MATHARU: 23 MR. SIEBER: So that's a pretty substantial increase? 24 25 MR. MATHARU: That is correct.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	145
1	MR. SIEBER: Yes. And they're OCBs?
2	MR. MATHARU: Excuse me?
3	MR. SIEBER: You say they're oil circuit
4	breakers?
5	MR. MATHARU: The original ones were oil
6	circuit breakers. The new ones are SF6.
7	MR. SIEBER: Okay. Thank you.
8	MR. VIENER: Okay. In conclusion with the
9	proposed modifications I've described Waterford 3's
10	plant design can safely operate at the proposed
11	extended power uprate condition.
12	And that concludes my presentation. If
13	there's no more question, what I'd like to do is turn
14	it over to Gene Wemett, he's our assistant operations
15	manager at Waterford.
16	CHAIRMAN WALLIS: Thanks.
17	MR. VIENER: Thank you for your time.
18	CHAIRMAN WALLIS: What I'd like to do is
19	hear this presentation, and then I think it would be
20	a good time to take a lunch break. We'll come back
21	for what remains, which is a rather small amount. And
22	at that time, you can have anything you wish to add,
23	additional information on any of the questions asked
24	this morning. And then you can wrap up and then we'll
25	hear from the staff.
	I

(202) 234-4433

	146
1	And I assume it'll take maybe 20 minutes,
2	a half an hour up until lunch something like that at
3	most.
4	Please go ahead.
5	MR. WEMETT: My name is Gene Wemett,
6	Waterford 3. I'm the assistant ops manager at the
7	plant. And I have been with the Waterford operations
8	since 1980.
9	The first thing I'd like to do is address
10	the question I was asked earlier that had to do with
11	evaluation of the control room or promote shutdown
12	habitability.
13	The power uprate had no effect on actual
14	operations habitability at the area of the remote
15	shutdown panel. The only changes to their occurring
16	down there are basically banding of the meters due to
17	the new ranges for power uprate.
18	CHAIRMAN WALLIS: Does it change any of
19	the times that the operators have to 0
20	MR. WEMETT: No, sir.
21	CHAIRMAN WALLIS: go there or take
22	action and whatever that you know?
23	MR. WEMETT: No, sir.
24	CHAIRMAN WALLIS: It doesn't change
25	anything like that?
I	I

	147
1	MR. WEMETT: That's correct.
2	On the first slide we have here is the
3	operations oversight slide. We assigned two full time
4	individuals from the operations staff were assigned to
5	the power uprate project.
6	MR. SIEBER: Sir, could you talk a little
7	louder, please.
8	MR. WEMETT: Two full time individuals
9	from the operations staff were assigned to the power
10	uprate project from the start. We assigned a third
11	senior reactor operator shift technical advisor was
12	assigned to review power uprate modifications and
13	evaluations. The responsibility that was given to
14	these individuals has been to identify and respond to
15	operations and training issues, identify and
16	coordinate revisions of operations procedures and to
17	support startup test development.
18	Operations management has received weekly
19	briefings of the project status from these
20	individuals. And that is still ongoing.
21	Underneath the training, it's in a three
22	phase program. Phase 1 was introduced last year. It
23	consists of seminars on the overall large overview of
24	power uprate effects on plant systems, technical
25	specifications and operations procedures. And that was
	1

(202) 234-4433

	148
1	performed during the 2004 training cycle.
2	During phase 2 that's presently in
3	progress, which is cycle 1 of 2005, plant
4	modifications is presently being addressed to all the
5	operators.
6	In cycle 2 of 2005 is phase 3. This full
7	cycle is dedicated to power uprate training. In this
8	we will be training on operations procedures, setpoint
9	changes and technical specifications. During this
10	period of time the crews will all be evaluated on the
11	uprated plant simulator and the changes in procedures
12	and the setpoints and technical specifications.
13	MR. ROSEN: Now you said operator plant
14	simulator. I take that to mean that the simulator has
15	been modified to model the uprated plant, is that
16	correct?
17	MR. WEMETT: That's correct. Prior to
18	cycle 2 the completion of the changes that are being
19	brought by power uprate will be in place in the
20	simulator to train the operators.
21	The operators will be examined. They will
22	have an evaluated session on the simulator with the
23	power uprate. They will also have a written
24	examination that they will also take like procedures
25	and setpoints and technical specifications.
ļ	I

(202) 234-4433

	149
1	MR. ROSEN: What's the biggest impact you
2	see on operating during normal times?
3	MR. WEMETT: During normal times?
4	MR. ROSEN: Yes.
5	MR. SIEBER: Nothing.
6	MR. WEMETT: Huh?
7	MR. SIEBER: Nothing.
8	MR. ROSEN: Don't answer. Give him a
9	chance at it. Well, I'm sure you can answer.
10	MR. WEMETT: Well, there were three
11	concerns that I've had, and I think ops shares that.
12	One was the ability of the secondary plant
13	systems to adequately perform with the increase flow
14	rates that we're going to see with the steam flow and
15	the feedwater flow and condensate flow.
16	The other is the ability of core cooling
17	for decay heat removal on both normal plant shutdown,
18	shutdown cooling type conditions as well as with
19	underneath accident situations.
20	And as we go through here, all the
21	information I've received from the individuals that
22	have reviewed the modifications, the power rate that
23	have been with that, I think they have addressed those
24	concerns from an operations standpoint.
25	MR. SIEBER: You have no hardware changes
Į	

(202) 234-4433

	150
1	to the control room, right?
2	MR. WEMETT: There is one hardware change.
3	It's actually in the PAC system. And I'm going to get
4	to that in this, and I'll explain a little bit. It has
5	to do with atmospheric dump valve.
6	MR. SIEBER: Okay.
7	MR. WEMETT: They're going to add one card
8	to a PAC system.
9	MR. SIEBER: Okay.
10	MR. WEMETT: And I'll explain that a
11	little bit. They've allowed me to do that.
12	MR. SIEBER: But your meter readings will
13	be different and the transient times will be different
14	from an operator's standpoint?
15	MR. WEMETT: The meter reads? What do you
16	mean?
17	MR. SIEBER: Well, you know, a 100 percent
18	is a different number now.
19	MR. WEMETT: That's correct. It'll be
20	about 8 percent higher than what we're at right now.
21	MR. SIEBER: Right.
22	MR. WEMETT: But it'll look 100 percent
23	power to us.
24	MR. SIEBER: Yes. It'll still say 100
25	percent.
	I

```
(202) 234-4433
```

	151
1	MR. WEMETT: All the banding and
2	corrections of the transmitter rescales will be done.
3	MR. SIEBER: Okay.
4	MR. WEMETT: All right. One of the things
5	that we have agreed to, all operations personnel will
6	be trained and evaluated on the power operated
7	training that we're giving right now prior to be
8	allowed to take a shift and operate the plant.
9	This is kind of getting to your point. On
10	the controls and displays, there are very minimal
11	changes that we've seen. One is to allow a more
12	precise setting of atmospheric dump valve. This is
13	the piece I was talking about, a hardware change.
14	They're adding a card, and what this will
15	allow us to do is perform a more precise setpoint
16	change to the atmospheric dump valve setpoint. And
17	basically what it's going to be, it's an interface
18	with our plant monitoring computer and it's just
19	visual only for indication. And then at the control
20	room will be able to adjust the setpoint. And that
21	setpoint actually provides impacts there is a card
22	being added for us to see that. And that's the only
23	hardware that I know of that's in the control room
24	that's being changed at this time.
25	The other is the main turbine valve
Į	

(202) 234-4433

1 operation, which we talked earlier, is going to be 2 changed from a sequential valve operation to single 3 valve or partial arc admission type control. Our 4 present turbine has that capability and we do do that 5 during turbine valve test, and we go from sequential to single valve. Stroker valves testing, and then we 6 7 go back into sequential valve. We also startup in 8 single valve and go to single valve. 9 MR. SIEBER: Again, that's not a hardware change to the nozzle blocks. It's just different 10 settings in the --11 12 This is the valve programming MR. WEMETT: controller. Digital hydraulic program. 13 Correct. 14 MR. SIEBER: Right. 15 Technical specifications. MR. WEMETT: Changes to the technical specifications and the 16 17 operations procedures are changes in parameters due to the higher decay heat, thermal power and secondary 18 19 flow changes that we're seeing. 20 There are going to be no new procedure 21 changes to the normal or off-normal procedures. 22 And the emergency operating procedures 23 there's really no change to the type and nature of the actions that are in those, and there's actually no 24 25 action.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

152

	153
1	There is a change that is in there, and
2	they talked about it earlier, and that is just the
3	time frame which is kind of like a parameter change to
4	initiate hot leg injection.
5	MR. SIEBER: Right.
6	MR. WEMETT: It's going from two to four
7	hours to two to three hours. And operations feels
8	that's acceptable to be able to do that. That's just
9	based on a larger break loss of coolant accident.
10	And in conclusion, the power uprate has
11	worked really hard to minimize the impact of the plant
12	operations at Waterford. The result is the changes
13	brought about by power uprate to the units operation
14	are minimal and are found to be acceptable to the
15	operations department.
16	Our next priority is the post power uprate
17	power ascension testing to the new power level. To
18	address this priority, Operations had assigned a
19	senior reactor operator for whom this afternoon, I
20	assume after lunch, is David Constance. And he'll be
21	taking that up from me.
22	And that's basically all I have in my
23	presentation. If there's any questions?
24	MR. SIEBER: Why did you choose link the
25	change in partial to full arc admission to the EPU?
ļ	I

(202) 234-4433

	154
1	It's not part and parcel of EPU. You could have done
2	that anytime, right?
3	MR. WEMETT: That's correct.
4	MR. SIEBER: Why don't you do it now?
5	MR. WEMETT: Well, actually right now I
6	think the optimum valve position in our type of
7	turbine that we have in this present age, we actually
8	have better efficiency sequential valve than we do
9	with single operation.
10	MR. SIEBER: Well, when you go to full arc
11	admission the impulse stage efficiency goes down.
12	MR. WEMETT: That's correct.
13	MR. SIEBER: On the other hand, the reason
14	why you would want to do it is to minimize the
15	temperature differential around the nozzle block so
16	you don't get cracking. So you either got have
17	some symptoms of cracking or that you're willing to
18	trade for a couple of Btus someplace. But a lot of
19	people have changed and decided I'll waste the BTUs
20	and maybe a few kilowatts to avoid damage to the
21	turbine. I'm sort of wondering why you've linked it to
22	the EPU? It's a curiosity, it's not a safety issue.
23	MR. WEMETT: David Viener can probably
24	answer that a little bit better.
25	I do know that in the original discussion
Į	I

(202) 234-4433

	155
1	it was an option, we could go either way.
2	MR. SIEBER: Yes.
3	MR. VIENER: I'm not an expert in turbine
4	design.
5	This is David Viener, EPU lead.
6	But right now our turbine has a control
7	stage followed by seven stages of reaction. The new
8	turbine is going with all reaction bladding. We're
9	not going to have the control stage.
10	MR. SIEBER: Oh, really.
11	MR. VIENER: And that's why we're going to
12	full arc admission.
13	MR. SIEBER: Thank you. Understand.
14	MR. WEMETT: All right. Are there any
15	other questions?
16	MR. SIEBER: Okay. Thank you.
17	MR. WEMETT: Thank you very much.
18	CHAIRMAN WALLIS: We've gained some time.
19	I wonder how much time will the next presentation
20	take?
21	MR. MITCHELL: Fifteen, 20 minutes I
22	believe is a fairly good estimate.
23	CHAIRMAN WALLIS: We could move ahead with
24	that and then maybe shorten the lunch break. Let's
25	see. Is that agreeable with the Committee? We just
I	

(202) 234-4433

	156
1	move ahead with this one? Let's move ahead.
2	MR. WEMETT: All right. Then I'll present
3	David Constance.
4	MR. CONSTANCE: Hello. I'm David
5	Constance. I've been at Waterford for 17 years. I'm a
б	shift technical advisor and hold a senior reactor
7	operator license on the unit. I've been assigned to
8	power uprate full time for the past power. And I'm
9	performing engineering reviews and I'm responsible for
10	testing. And this segment I'm here to talk about
11	testing.
12	Power ascension testing consists of
13	reactor engineering tests and power verification,
14	transient and baseline steady state data records,
15	plant modification testing I'm sorry, post
16	modification testing, one plant maneuvering test from
17	100 percent to 90 percent to 95 percent, post 100
18	percent testing, data collection and surveys and
19	vibration monitoring.
20	Now part of that post 100 percent testing
21	will include a moisture carry over test where we will
22	find out what the impact on moisture carry over has
23	been due to extended power uprate.
24	MR. SIEBER: Will that be a sodium test,
25	sodium isotope test?
ļ	I

(202) 234-4433

	157
1	MR. CONSTANCE: Yes, it will be a tracer
2	injection. I don't know what the trace is going to be
3	used.
4	MR. SIEBER: Okay.
5	MR. CONSTANCE: The next slide here shows
6	our power ascension profile. You'll find seven power
7	plateaus followed by a plant maneuvering test from 100
8	percent to 90 percent.
9	CHAIRMAN WALLIS: How does this fit in
10	with your various shifts or actually in the control
11	room? It doesn't look like it's of the usual division
12	of time. So there's going to be overlap between these
13	ten hours?
14	MR. CONSTANCE: This testing extends for
15	five days. So it will go through multiple
16	CHAIRMAN WALLIS: I know. But your steps,
17	they don't seem to be related to the shifts in the
18	control room in any logical way; that's my question.
19	MR. SIEBER: No, it's not.
20	CHAIRMAN WALLIS: It's not.
21	MR. MITCHELL: This is Tim Mitchell.
22	It is not tied to a time on shift to make
23	a power maneuver. At this point we do have
24	CHAIRMAN WALLIS: But you don't want to be
25	doing something just as one shift is leaving or
ļ	I

(202) 234-4433

	158
1	something.
2	MR. MITCHELL: That is correct. Turnover
3	times will be observed and adhered to.
4	MR. CONSTANCE: What we have, is we'll
5	have during refueling outages we go to two operating
6	crews. And both operating crews will be trained on
7	this power ascension.
8	Next slide.
9	MR. SIEBER: Does that mean 12 hour
10	shifts?
11	MR. CONSTANCE: That's correct. Twelve
12	hour shifts.
13	MR. ROSEN: Is that a real hold at 50
14	percent power, very short?
15	MR. CONSTANCE: Right. The hold at 50
16	percent power is to recalibrate our excore nuclear
17	instruments. It typically only takes a couple of
18	hours. We'll just take that opportunity to collect
19	some steady state data recognizing it's not truly
20	steady state, not the steady state data that we need
21	for that we wish for for our other power plateaus.
22	CHAIRMAN WALLIS: What's that zigzag at
23	the 100 percent? Does that just mean it's
24	continuously 100 percent?
25	MR. CONSTANCE: No. That's actually meant
I	1

(202) 234-4433

	159
1	to represent the plant maneuvering tests from 100
2	percent to 90 percent. And it is not unrelated in
3	time to the power ascension.
4	CHAIRMAN WALLIS: Okay. Okay.
5	MR. CONSTANCE: Next slide.
6	A low power physics testing remains
7	unchanged for an extended power uprate. So the startup
8	will be the same as a normal refueling, which is still
9	very similar to our initial startup on the unit.
10	During power ascension following low power
11	physics testing, data sets will be collected very 10
12	percent from 20 percent to 100 percent. They'll also
13	be collected at seven different power plateaus.
14	Approximately 1000 parameters will be monitored. And
15	the data will be automatically collected, processed
16	and evaluated against predetermined acceptance
17	criteria.
18	CHAIRMAN WALLIS: So it will be evaluated
19	right then and there?
20	MR. CONSTANCE: That's correct. All the
21	data will dump to an Excel spreadsheet. It'll be
22	compared to the acceptance criteria.
23	CHAIRMAN WALLIS: So it's essentially
24	online? There's no delay while you do this
25	evaluation?
ļ	I

(202) 234-4433

	160
1	MR. CONSTANCE: That's right. There's no
2	delay determining which parameters meet the acceptance
3	criteria.
4	MR. SIEBER: Is this all stuff that comes
5	from your plant computer or do you install some
6	special instrumentation just for this test?
7	MR. CONSTANCE: All the data sets come the
8	plant monitoring computer. There will be a subset
9	which will have to be collected manually at each of
10	the power plateaus. That will be a small subset.
11	MR. SIEBER: By hand?
12	MR. CONSTANCE: Right.
13	MR. SIEBER: Okay.
14	MR. CONSTANCE: Moving on, the Plant
15	Safety Subcommittee will review a results report at
16	each power plateau graded in 68 percent. The results
17	report will include testing results, a list of
18	equipment out of service and the calculation of the
19	plant safety index.
20	The plant safety subcommittee recommends
21	continued power ascension. And the plant manager,
22	operations manager and test director approval is
23	required to commence or to recommence power ascension.
24	CHAIRMAN WALLIS: So he recommends
25	continue ascension no matter what?
I	I

(202) 234-4433

	161
1	MR. CONSTANCE: No. Their recommendation
2	is required for continued power ascension.
3	CHAIRMAN WALLIS: Or not to. Okay.
4	MR. ROSEN: Who is this Plant Safety
5	Subcommittee? A subcommittee of what? Of who?
6	MR. CONSTANCE: Of the Plant Safety
7	Committee. We call it the OSRC, they have different
8	names at different plants.
9	MR. ROSEN: And this is comprised of who
10	are those people? Not by name, but whether they're
11	MR. CONSTANCE: Right. We'll have an
12	operations representatives. I'm sorry. An operations
13	representative, a system engineering representative,
14	a design engineering representative, QA representative
15	and at least one other OSRC regular member.
16	MR. ROSEN: So they're all site people on
17	the subcommittee, right?
18	MR. CONSTANCE: That's correct.
19	MR. ROSEN: What about the OSRC, who are
20	those?
21	MR. CONSTANCE: That is a site Safety
22	Review Committee.
23	MR. ROSEN: So you just gave me the
24	membership of the
25	MR. SIEBER: Onsite.
	1

	162
1	MR. MITCHELL: This is Tim Mitchell.
2	Let me correct me. The Onsite Safety
3	Review Committee is a larger group that includes a
4	couple of additional people like projects and I'm not
5	sure I remember the full licensing's also on it.
6	Design engineering is on it. So this is a
7	subcommittee that reports to the OSRC on their review
8	of essentially the startup.
9	MR. ROSEN: And there is no offsite
10	corporate review during this testing?
11	MR. MITCHELL: During the testing there is
12	not a Safety Review Committee is what we call it in
13	the Entergy. They do not review online with the data.
14	They will review what we're doing beforehand and
15	review after hand. But it's not during the actual
16	power ascension profile.
17	CHAIRMAN WALLIS: Is there going to be an
18	NRC inspector observing what this safety subcommittee
19	does?
20	MR. CONSTANCE: Of course, we have our NRC
21	resident. And I have not yet spoke to him what his
22	information requirements are. But we'll provide him
23	with any information that he requires at whatever
24	points in the power ascension he desires it.
25	CHAIRMAN WALLIS: I think it would be
	I

(202) 234-4433

	163
1	useful to have him around.
2	MR. CONSTANCE: Right.
3	CHAIRMAN WALLIS: While you're making
4	these decisions.
5	MR. ROSEN: Right. We can ask them when
6	they come up, and I'm sure they will point someplace
7	to observe.
8	CHAIRMAN WALLIS: They will find some
9	reason to be absent or something?
10	MR. SIEBER: Well, there's a lot of good
11	places for him to be during this phase.
12	MR. RULAND: If I could just add
13	something? My name is Bill Ruland, I'm the Project
14	Director for PD3.
15	There's a specific inspection module
16	associated with power uprates. It looks at both the
17	some of the modifications that the licensee had
18	and also directs the inspectors to look at power
19	ascension testing, I believe. We'll confirm that for
20	you later.
21	DR. DENNING: The 92.5 percent, is that
22	the old operating power and so you can do comparisons
23	with the familiar level? And then 95, 97 that's just
24	kind of creeping up; is that the logic?
25	MR. CONSTANCE: That's correct. 92.5 is
	I

(202) 234-4433

	164
1	the previous license power level. And the other ones
2	are just intermediate levels that we selected as being
3	prudent.
4	MR. SIEBER: On slide 61 where will you
5	take your flux maps?
6	MR. CONSTANCE: The question is where will
7	we take our flux mapping. At each one of those power
8	plateaus, those are largely driven by what we
9	committed to in racked engineering testing. The
10	specific tests that are done at the racked
11	engineering tests that are done each plateau. I have
12	somewhere here in my documentation, but I don't have
13	it on the top of my head.
14	MR. SIEBER: But basically you're going to
15	do three or four?
16	MR. CONSTANCE: Yes. Many of the normal
17	startup tests that we do during power ascension will
18	be repeated multiple times during this power
19	ascension.
20	MR. SIEBER: Okay. Good enough.
21	MR. CONSTANCE: If I can go to my backup
22	slide now on vibration testing.
23	MR. CARUSO: You're going to have to flip
24	up the mirror. The other way.
25	MR. SIEBER: Perfect.
	I

	165
1	MR. CARUSO: Now focus.
2	MR. SICARD: All these backseat drivers.
3	MR. ROSEN: That's our job, Paul.
4	MR. SIEBER: Now you have to lay over this
5	one here.
6	MR. CONSTANCE: All right. For vibration
7	testing we have a fairly extensive detail vibration
8	monitoring plan that extends from the racked cooling
9	system and all the way through the plant to the
10	transformer yard. We've taken a graded approach based
11	upon the impact of power uprate on that specific
12	system and upon the importance of that system to
13	safety.
14	Basically what you're looking at is a
15	break up of systems based upon the level of detail of
16	monitoring. So the first set is the main steam and
17	main feed piping that is safety related. For that
18	we're doing a 100 percent baseline inside and outside
19	containment vibration collection using installed
20	vibration monitoring equipment which we've installed
21	full power upgrade. We'll be collecting that data at
22	92.5 percent, 95, 97.5 percent and the new 100 percent
23	and comparing it to prebaseline data.
24	For the main feed and main steamlines
25	outside containment that are seismic quality, which is
I	I

(202) 234-4433

a larger set of main steam main feed piping, we'll be taking data collection using hand held vibration equipment at 100 percent power and comparing it to the pre EPU baseline data. Visual inspections will be performed at 92.5, 95 and 97.5. So for that piping we'll be taking a data set only at 100 percent, the new 100 percent.

For turbine building piping, we will be 8 performing a walkdown of the turbine building at 100 9 10 percent power prior to shutdown. The members of that walkdown team are going to be our performance 11 12 monitoring engineer, civil engineer and two operators. From that walkdown we will identify any areas that may 13 14 have additional vibration and either film them, take video records of that piping and hand held vibration 15 data. Then we will re-perform those walkdowns with 16 those same personnel at 92.5, 95 and 97.5 percent. 17

Now for the main turbine feed pump at the racked cooling pump we have permanently installed instrumentation. It's spectral analysis instrumentation. And the data will be reviewed at 92.5, 95, 97.5 and 100 percent power and compared to pre EPU conditions.

For the equipment in the turbine building we will perform rough data collection using hand held

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	167
1	vibration equipment at 95 percent and 100 percent.
2	That will be compared to the current data that we have
3	on that equipment from our performance monitoring
4	program.
5	Since we are crediting the atmospheric
6	dump valve we have more reliance on the atmospheric
7	dump valve, we have a plan to collect vibration data
8	on the atmospheric dump valve during a full stroke at
9	normal operating pressure, normal operating
10	temperature with steam.
11	And the condenser, we are going to perform
12	an acoustic survey of the condenser at 100 percent and
13	compare it at the new 100 percent and compare it to
14	pre EPU baseline data which will be collected prior to
15	shutdown.
16	We also have a valve and loose parts
17	monitoring system on the reactor cooling system. That
18	data will be reviewed at 92.5 percent, 95 percent,
19	97.5 percent and 100 percent power and compared to pre
20	EPU baseline data.
21	DR. DENNING: Could you tell me, is that
22	system that's in normal operation, what do you have
23	for monitoring and loose part monitoring during normal
24	operation all the time? Is it this last thing or how
25	much of this equipment is in effect all the time in

(202) 234-4433

	168
1	normal operation?
2	MR. CONSTANCE: Of this equipment normally
3	that's in service during normal operation, the valve
4	and loose parts monitoring system is always in service
5	and it's an alarm system. So it has preset conditions
6	which will provide a control room alarm annunciation.
7	We also have vibration monitoring installed on the
8	main turbine, on the feed pumps and on the reactor
9	cooling pumps. That's normally installed equipment.
10	We have installed some sensors for EPU
11	which will remain installed, but you have to go and
12	connect them and collect that data.
13	DR. FORD: Now you've got all these
14	monitoring systems in place. Is there any way of using
15	that data to determine what might be happening in an
16	unmonitored place like the dryer or the condenser
17	tubes and the steam generator tubes? Is that global
18	to local evaluation?
19	MR. MITCHELL: This is Tim Mitchell.
20	I can't tell you that we'd be able to pick
21	up something on a steam dryer in the steam generator.
22	But you can use this data to triangulate and point you
23	in a direction as far as something abnormal that is
24	occurring and where is that occurring.
25	DR. FORD: That's what I was getting at.
I	I

(202) 234-4433

	169
1	That's what I was getting at.
2	MR. MITCHELL: So this data, and we have
3	experience within Entergy Nuclear South we're doing
4	that because there were some feedwater vibration issue
5	at Arkansas Nuclear One Unit 2. And we actually did
б	a lot of that with similar type data to be able to
7	point us in which direction. You know, is it a feed
8	reg valve, you know that type of stuff that will help
9	us narrow it down if we see something abnormal.
10	DR. FORD: Okay. Thank you.
11	MR. CONSTANCE: Okay. Ready to go to the
12	next slide.
13	DR. DENNING: Let me ask you another
14	question, and that is would it be prudent to continue
15	to have an expanded monitoring program for a period
16	longer than just the power ascension? I mean like for
17	the first six months of operation or something like
18	that. Have you considered that?
19	MR. CONSTANCE: Yes, it's been considered.
20	Keith Kunkel is our performance monitoring individual.
21	He's not here today and it is not part of our plan.
22	We're not committing to it now. But we have discussed
23	that at approximately six months, every six months
24	through the next cycle we should do a turbine building
25	walkdown with those same personnel.
l	I

(202) 234-4433

	170
1	MR. MITCHELL: Yes. This is Tim Mitchell
2	again.
3	And that's something that I was referring
4	to earlier with the performance monitoring program
5	that system engineering does. We have a plan to
6	collect data prior to the outage or pre EPU conditions
7	and then to go through system-by-system methodically
8	identify any deltas after we reach full power
9	conditions.
10	So the performance monitoring program will
11	be a living ongoing thing that we'll continually look
12	for any deviations and then go evaluate what those
13	deviations might effect on other systems. But we've
14	also scheduled for ourselves an assessment with
15	industry participation for next June or July, I forget
16	which month, to bring them in and get industry
17	experience to look at the data that we're looking at
18	from a performance monitoring standpoint and get their
19	input. Like, for example, ANO 2 will certainly be a
20	part of that because they've gone through this same
21	type exercise.
22	MR. SIEBER: I note in your chart of
23	planned testing you don't have any provision for a
24	trip from full power. Why is that?
25	MR. CONSTANCE: The question concerns a
I	

(202) 234-4433

1 trip from full power testing, and I think I've best 2 addressed with the next two slides where we talk about 3 our testing considerations, what things we considered 4 in selecting the suite of testing that we're going to 5 do for extended power uprate. So, if I may continue. All right. This next slide is testing 6 7 considerations. Some of the things that we considered when selecting the suite of testing for post uprate 8 9 conditions is that the proposed modifications either 10 have no significant impact on transient response or the effect on transient response has been evaluated 11 using a calculational model which is suitable for 12 predicting the effect on plant transient response due 13 14 to that modification. We noted that there are no physical 15 16 changes to nuclear steam supply system, that there are no new interactions that affect system response and 17 that there are no changes to controller algorithms. 18 19 All changes to controllers are being accomplished 20 through setpoint changes. MR. SIEBER: However, you would agree that 21 22 if you trip from higher power level than your previous 23 maximum power level, the forces are greater on 24 structure systems and components like pump seals, 25 hangers, snubbers, dampers that the plant has never

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

171

	172
1	experienced before. And that was not apparently one of
2	your consideration?
3	MR. CONSTANCE: Right. The question
4	concerns the structural integrity of the plant and its
5	ability to endure large transient. I
б	MR. SIEBER: Sooner or later you're going
7	to have one.
8	MR. CONSTANCE: That's correct.
9	MR. SIEBER: And the question is would you
10	like to have instrumentation available and learn
11	something from it or just have one, you know which is
12	a different kind of thing.
13	MR. CONSTANCE: Well, the instrumentation
14	that we would have available, we currently have
15	installed. Most of the information that we would want
16	to gain from a transient test we would gain from the
17	data points that are monitored by the plant monitoring
18	computer.
19	MR. SIEBER: Well, you may want to think
20	about that because the movement of components on skid
21	plates and strain gauges on various structural members
22	of snubbers, hangers and so forth are not permanently
23	installed. So if you're interested in that kind of
24	stuff, you may want to think about that.
25	MR. MITCHELL: Okay. This is Tim
	I

(202) 234-4433

	173
1	Mitchell.
2	We did go through and look at what the
3	effects would be from the higher power level. We've
4	used the LTC code to help us predict how system
5	performances would be. We validated that against past
6	operating experience both at Waterford during
7	transients and at other plants that have gone through
8	extended power uprate. And we believe that we
9	understand what the affects of 100 percent load
10	rejection or whatever the transient would be upon our
11	secondary with the testing that we are doing.
12	MR. CONSTANCE: Let me continue on with
13	these next two slides, and then I'll come back to your
14	question.
15	MR. SIEBER: Okay.
16	MR. CONSTANCE: Where we at? All right.
17	So our approach to testing is at the post
18	modification testing demonstrates that components and
19	systems will perform as designed. That the power
20	ascension data collection confirm acceptable
21	operation. That the maneuvering test provides further
22	confirmation and that we've used a benchmark
23	calculation model to evaluate postulated transient
24	conditions.
25	Two other things that we considered when
I	1

(202) 234-4433

	174
1	considering a large transient test is one is the
2	limitations of a large transient test. A large
3	transient test is a single test transient test. It
4	demonstrates a single transient and demonstrates that
5	at a single set of initial conditions. The majority
6	of our changes that impact transient response are to
7	control systems where they're changing our control
8	system setpoints so they control at the new operating
9	point. There is no clear maximum or minimum or
10	bounding condition for transient that we could select
11	to know that our control systems will interact
12	properly.
13	So the approach we used was to utilize the
14	LTC code, which is a computational method that has
15	been used since the early '80s, specifically in the
16	design of control system interactions. Using that, we
17	were not restricted to a single point test. Instead
18	we ran 38 cases from different transient from
19	different initial conditions.
20	The second consideration that we used
21	other than the limitations of a single point transient
22	test is that the risk and you quoted this earlier
23	the risk associated with the introduction of a
24	transient initiator, while small, should not be
25	incurred unnecessarily. So the question that we have
	I

(202) 234-4433

(202) 234-4433

	175
1	to answer is will the transient test provide us a
2	specific discrete piece of information that would make
3	our introduction of the transient initiator worth
4	doing.
5	MR. ROSEN: From our standpoint you've
6	already told us the risk of doing so is small. Less
7	than 1E to the minus six. So we have no nuclear safety
8	risk to do it.
9	MR. CONSTANCE: That's correct. It is
10	small, but it shouldn't be discounted. It is small,
11	and it's acceptable but it shouldn't be discounted.
12	So it's
13	MR. ROSEN: There's no risk argument being
14	made or offered here. It's simply that Entergy
15	believes it's unnecessary.
16	MR. CONSTANCE: Right. It's not a risk
17	argument. It's an alternate methods argument, that
18	we've used alternate methods to validate that the
19	plant will operate properly during a transient at the
20	new operating point with the new control system
21	setpoint
22	MR. ROSEN: That's the side of the glass
23	you're looking at. I'm looking at the other side
24	which says that Entergy offers no argument that it's
25	too risky.
	1

(202) 234-4433

	176
1	MR. CONSTANCE: That's correct.
2	MR. ROSEN: You can SCRAM this plant or do
3	a turbine trip from 100 percent full power without
4	encountering any undue risk?
5	MR. SIEBER: If there was a significant
6	risk, then we would be remiss in allowing the EPU in
7	the first place.
8	MR. CONSTANCE: That's correct. We're not
9	arguing that it is an unacceptable risk. It is an
10	acceptable risk.
11	MR. SIEBER: You don't want to do it.
12	MR. ROSEN: So it's an economic argument,
13	not a risk argument.
14	MR. SIEBER: Yes, they don't want to do
15	it.
16	DR. DENNING: I still think there's a
17	safety argument. As a risk analyst I still think that
18	there is a consideration here. And I don't think we
19	want to push too there is a cost benefit question
20	here and I don't think you want to ever induce a trip
21	like this unless there is good reason. So there is a
22	cost benefit we really have to consider here. So I
23	wouldn't let them bull you too much here in saying
24	that ten to the minus six means that it's acceptable
25	for us to go ahead to do that.
I	

(202) 234-4433

	177
1	MR. ROSEN: Well, he didn't say it was ten
2	to the minus six.
3	DR. DENNING: Yes.
4	MR. ROSEN: He said it was less than ten
5	to the minus six. Well I maintain there's no risk
б	argument to and I'm just recording your own words.
7	MR. CONSTANCE: Right. We do not intend to
8	forward a risk argument here. We intend to
9	MR. ROSEN: So it's an economic argument.
10	MR. CONSTANCE: Well, we intend to forward
11	an alternate methods argument in that we can gain the
12	same information through an alternate method and we do
13	not need to incur the small but not insignificant
14	risk. The risk was on the order on eight times ten to
15	the minus seven. So it was less than ten to the minus
16	six.
17	MR. SIEBER: That's insignificant.
18	MR. ROSEN: We have to sit and listen to
19	a lot of stuff that's not all that thrilling, but this
20	stuff is interesting and we'll come back to it. We'll
21	come back to it, I'll guarantee you later today when
22	the staff presents. So I would suggest that maybe you
23	don't go away.
24	MR. CONSTANCE: Okay. I will certainly be
25	around.
	I

(202) 234-4433

	178
1	CHAIRMAN WALLIS: Well, eight times ten to
2	the minus seven may seem small, but it's not small
3	compared to the ten to the minus six for a CDF we have
4	already, it seems to me. A significant perturbation
5	on your CDF for the year, isn't it? Or is it not?
6	MR. MITCHELL: This is Tim Mitchell.
7	We did look at it and we tried to evaluate
8	what the risks were. And I agree that the risks are
9	small. But there is, as stated, some amount of risk
10	even if it is small, and in this case we concluded we
11	were not going to get any significant value out of
12	doing a large transient test.
13	CHAIRMAN WALLIS: Let's take this up with
14	the staff this afternoon.
15	MR. ROSEN: Oh, yes, we will take it up
16	with the staff.
17	CHAIRMAN WALLIS: I think that Steve will
18	probably do that.
19	I'd like to take a break. And since we are
20	behind, would the Committee agree to come back here at
21	1:15. Take 45 minutes for lunch. So we'll take a
22	break until 1:15.
23	(Whereupon, at 12:30 p.m. the Subcommittee
24	was adjourned, to reconvene this same day at 1:17
25	p.m.)
l	I

(202) 234-4433

	180
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	1:17 p.m.
3	CHAIRMAN WALLIS: Let's come back into
4	session.
5	We'll finish the Entergy presentation and
б	then we'll hear from the staff. And I believe Entergy
7	is going to answer a few of the questions we had this
8	morning that didn't get covered.
9	MR. SICARD: Yes. This is Paul Sicard from
10	Entergy again.
11	CHAIRMAN WALLIS: Quiet please.
12	MR. SICARD: There were questions
13	retarding RCS flow and the role of the increased
14	density versus temperature rise in the power uprate.
15	We have prepared a slide to try to address that, which
16	we have on the screen right now comparing the current
17	prerate conditions with the conditions for power
18	uprate. And this comparison shows what the mass flow
19	numbers are that correspond to those two different
20	conditions and the corresponding enthalpy rise. This
21	shows that out of the 8 percent uprate from those
22	initial conditions over there to the uprate conditions
23	that three percent of that eight percent is due to the
24	mass flow component and approximately five percent is
25	due to the enthalpy rise associated with those change
	I

(202) 234-4433

	181
1	in conditions. And we hope that this illustrative
2	calculation does answer the question regarding how we
3	are achieving the increased power through the core.
4	And I will point out again that these are
5	nominal flow values. That the technical specification
6	minimum flow requirement of 148 million pounds per
7	hour is not being revised for power uprate. And that
8	these mass flows are in the middle of the range in
9	between that minimum flow and the 115 percent maximum
10	flow value that we use in analysis where a maximum
11	flow is called for.
12	So, I hope that this answers any questions
13	or if not, we will entertain them either now or
14	subsequent to the meeting as you desire.
15	CHAIRMAN WALLIS: Thank you.
16	So you have an enthalpy change, enthalpy
17	rise change of 3.6, I guess, which I agree that sounds
18	much more reasonable to compare with my calculations.
19	In the SER it says the average core
20	enthalpy rise goes from 81.5 to 88, which is quite
21	different from your numbers in the 70s. And it seemed
22	to be far too big a change. So something is
23	inconsistent about the staff's enthalpy numbers to
24	yours and mine.
25	MR. SICARD: I would suspect that the
I	I

(202) 234-4433

182 1 staff numbers that they are reporting there are based 2 upon the minimum flow rate rather than a nominal flow 3 rate. CHAIRMAN WALLIS: Well, these are BTUs per 4 5 pound. They've based on temperature. And I don't see how they could ge so different. So there's something 6 7 to be sorted out between your numbers and the staff's 8 numbers for enthalpy change. And they're getting all 9 their eight percent out of the enthalpy change and none of it out of flow rate, which again is not 10 consistent with what you have. So there's something 11 12 very different about what you're saying and what the staff is saying about something which is so simple 13 14 that it just needs to be corrected, I'm sure. 15 MR. SICARD: And noted. And I would have 16 the question of is that based on the minimum flow 17 which is not changing. But --

CHAIRMAN WALLIS: But you're still not 18 19 going to get 88 BTUs per pound delta H without a much 20 bigger temperature rise. Even 541 I think doesn't do 21 But anyway, the staff can sort that out. it. 22 Thank you. That's been very helpful. 23 MR. SICARD: Okay. I will turn this over 24 to--25 CHAIRMAN WALLIS: Will you put this in the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	183
1	record so we have a copy of this.
2	MR. CARUSO: I have a copy on this
3	computer. Just leave it on the computer and I'll have
4	a copy of it.
5	MR. SICARD: Okay.
6	CHAIRMAN WALLIS: Thank you.
7	MR. SICARD: I will turn this over to Tim
8	Mitchell for concluding remarks.
9	MR. MITCHELL: Again, I am Tim Mitchell.
10	There was a flow accelerated corrosion
11	question this morning early in the presentation which
12	we said we'd get to it later. And we did present some
13	information on flow accelerated corrosion, but I
14	wanted to confirm. I don't even remember where the
15	question came from. But the effects on the secondary
16	from a flow accelerated corrosion standpoint are very
17	minimal, and we can go into more detail if you would
18	like. Okay.
19	First, I'd like to thank you for this
20	opportunity for us to come talk to you. We believe
21	that this power uprate project, like I started off
22	with, has improved Waterford as a plant, that it's
23	safe for us to go do and that we're actually improving
24	our design basis as part of it.
25	We appreciate the staff's challenges. I
I	

(202) 234-4433

	184
1	believe they have challenged us in a number of areas
2	and approved our product as a result.
3	And I want to thank the Committee for this
4	opportunity to present again.
5	This does conclude our presentation.
б	We're available for any other questions. But I thank
7	you for the time. That's it.
8	CHAIRMAN WALLIS: Thank you.
9	Can we now move on to the staff's
10	presentation?
11	CHAIRMAN WALLIS: I think we're waiting
12	for the computer, is that what we're doing?
13	MR. KALYANAM: Sorry about that.
14	My name is Kaly, I am the Project Manager.
15	And we are going to start the presentation from the
16	staff side.
17	And the first presenter we have is Jim
18	Medoff who is the reviewer for the vessel. Jim?
19	MR. MEDOFF: Good afternoon, Committee
20	members. My name is Jim Medoff. I'm the materials
21	engineer with the Materials and Chemical Engineering
22	Branch of NRR. I was responsible for reviewing the
23	reactor vessel integrity and reactor vessel internals
24	integrity issues and to assess the impact of the EPU
25	on the integrity of these components.
ļ	I

(202) 234-4433

Basically as part of my review we used Matrix 1 of the Review Standard RS-001 and my review responsibilities fell under sections 2.1.1 through 2.1.4.

The first area of interest that I looked 5 at was the impact on the 10 CFR Part 50 Appendix H 6 7 withdraw schedule for the facility. And what we determined as part of the uprate is that the latest 8 9 capsule report for the facility had a new withdraw schedule in it and the withdrawal schedule did not 10 11 include the impact of the uprate on the withdrawal 12 time for the final capsule for the vessel. They've already pulled two capsules, they're required to pull 13 14 one more in accordance with their delta RTNDT for 15 their limiting material.

We determined that 10 CFR Part 50 Appendix H requires you to follow ASTM standard E185-82 in terms of the withdrawal schedule criterion. And the final capsules to be pulled at a time between one and two times the projected end-of-life fluence for the vessel --

22 CHAIRMAN WALLIS: Can we take down this 23 transparency projector which is --24 MR. ROSEN: This thing in front of it.

CHAIRMAN WALLIS: This thing in front.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

MR. MEDOFF: What we determined is the projected final withdrawal for the third capsule will continue to be withdrawn in accordance with the ASTM standard, and therefore we concluded that the impact of the uprate did not impact conformance with the ASTM standard in terms of the withdrawal time. And we found that to be acceptable.

8 Section 2.1.2 of the impact requires us to 9 look at the impact upper shelf energy assessment for 10 the vessel and on the P-T limits. I'll get into the 11 upper shelf energy first.

Basically the staff uses the Charpy impact upper shelf energies as a measure of the remaining ductility in the vessel after you irradiated. And it requires that the upper shelf energy for the limiting vessel material remain above 50 foot pounds Charpy impact absorbed energy at the end-of-life of the plant.

19 The Waterford 3 reactor vessel is plate 20 limited. It's a low copper vessel and has sufficient 21 remaining margin even under the uprated conditions and 22 we made sure that we got approval of their fluence 23 methodology and fluence calculations by Dr. Lambros 24 Lois, who is my counterpart in the Reactor System 25 Branch of NRR.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	187
1	We calculated an end-of-life upper shelf
2	energy of 71 foot pounds. And this jived with what the
3	licensee calculated under the uprated conclusions, and
4	that satisfies the 50 foot pound criterion in the
5	rule, so we found that to be acceptable.
6	MR. SIEBER: That's 40 years into the
7	life?
8	MR. MEDOFF: They're under a current 80
9	year design basis, so it's 32 effective full power for
10	40 year license life.
11	MR. SIEBER: Okay.
12	MR. ROSEN: And 80 percent capacity.
13	MR. MEDOFF: Capacity factor is what
14	they're using.
15	MR. SIEBER: But that's a lot of margin
16	anyway.
17	MR. MEDOFF: Right. They have
18	MR. ROSEN: I don't suppose the Entergy
19	management would be real happy with 80 percent, but
20	nevertheless it's plenty of margin.
21	MR. MEDOFF: They have to make that call.
22	I can't force them to do it.
23	MR. ROSEN: We've had this debate before.
24	MR. MEDOFF: Right.
25	For the pressure temperature limits, they
Į	1

(202) 234-4433

	188
1	did not propose new pressure temperature limits for
2	the EPU application. However, in a previous license
3	amendment application they did submit new heat up and
4	cool down curves for the unit. And what I did was Tom
5	McLennan in my branch was the reviewer for that
6	license amendment. And what I did confirm was that the
7	license amendment did include the upgraded fluences to
8	establish the P-T curves and therefore, we concluded
9	that his approval was based on the upgraded conditions
10	was acceptable.
11	The next one. The next slide us we look
12	at in 2.1.3 of the Matrix tells us to look at the
13	impact under 10 CFR 50.61 PTS assessment. Again, it's
14	limited by a copper material. And the criterion for
15	the limiting shelf plate is 270 degree F in accordance
16	with the rule. And we calculated a RTPTS or adjusted
17	reference temperature value of 49 degrees F. And this
18	has a wide margin in the
19	CHAIRMAN WALLIS: It's amazingly low.
20	MR. MEDOFF: It's because it's a low
21	copper vessel.
22	CHAIRMAN WALLIS: How does it get to be so
23	low?
24	MR. MEDOFF: Low copper.
25	CHAIRMAN WALLIS: The low copper?

(202) 234-4433

	189
1	MR. MEDOFF: Usually the plants have
2	low copper materials have better RTPTS values, lower
3	value.
4	So there's not much of an affect on the
5	RTPTS value by the upgrade. So we concluded that it
6	was acceptable against 10 CFR 50.61 criteria.
7	Okay. The next slide. And we also looked
8	at the impact on the structural integrity of the RV
9	internals. Currently the ASME code, which is invoked
10	by 10 CFR 50.55a requires visual inspection of these
11	components. But there is some we may anticipate all
12	of the Dresden/Quad City steam dryer issue, that some
13	of these power uprates may impact some cracking in the
14	component failure. So we looked at the impact on the
15	structural integrity of the RV internals.
16	When the applicant came in with its
17	application it basically assessed them on the gama
18	radiation. And if you Matrix 1 of the Review Standard,
19	there's a footnote on section 2.1.4 and it invokes a
20	couple of industry topical reports in assessing void
21	swelling and irradiated-assisted stress corrosion
22	cracking. And we used the Westinghouse topical as our
23	guideline, our topical report for this. And
24	Westinghouse establishes a threshold on cracking of
25	one times ten to the 21 neutrons per square
ļ	

(202) 234-4433

	190
1	centimeter. And the energy is .1 MeV on the neutrons.
2	What we did was we asked them a question
3	a request for additional information on what the
4	fluences would be for their internals. And they came
5	back with something of the order three to five times
б	ten to the 22 neutrons per square centimeter. And
7	since that's above the threshold, the applicant is
8	willing to give us a commitment on participating on
9	the EPRI studies on internals and to implement the
10	activities that result from them. And they're going to
11	send in an inspection plan for review and approval.
12	We're ironing out the wording for the commitment, but
13	that will be resolved before the SE gets written.
14	DR. KRESS: Where do they stand on
15	inspecting their upper head?
16	MR. MEDOFF: On nickel alloy components?
17	DR. KRESS: No, just the upper head.
18	MR. MEDOFF: The upper head?
19	DR. KRESS: Yes.
20	MR. MEDOFF: I think if I'm not mistaken,
21	Entergy indicated that they just at their outage just
22	did a bare metal visual and the volumetrics and didn't
23	find anything.
24	But we're going to iron out the exact
25	wording of that commitment before the SE gets written.

(202) 234-4433

	191
1	CHAIRMAN WALLIS: So at the present moment
2	it's a conditional component ironing this thing out
3	before you issue the final SER, is that it?
4	MR. MEDOFF: Well, we incorporate the
5	commitment into the SE, so we're going to have to
6	alter a little bit. But pending the final wording
7	that we work out with Entergy, but that will go into
8	the final SE.
9	CHAIRMAN WALLIS: So if they don't meet
10	some requirement, it's okay to then join some
11	imitative?
12	MR. MEDOFF: Well, the way the initiatives
13	work, and Materials and Chemical Engineering Branch
14	encourages the industry to go out and do industry
15	initiatives studies on degradation and cracking of
16	vessel and internals components. And for PWR, the
17	EPRI/MRP is the organizations that's initiating the
18	studies on these components. We've already had a
19	number of assessments come in from the MRP on nickel
20	alloy cracking. And I think they're starting to
21	initiate the studies on the internals and with the
22	intent down the road that they would submit something
23	to us on what they're recommending for inspections on
24	a plant initiative basis for internal components. And
25	then we would look those over and have dialogues with
ļ	I

(202) 234-4433

	192
1	the EPRI/MRP to work out what a final approved program
2	would be. And that's sort of the way we've done this
3	for the BWR VIP with the boilers and we're trying to
4	initiate something similar with the MRP.
5	Are there any other questions on the
6	vessel and the vessel's internal components? Dr.
7	Wallis is pondering them. Any further questions.
8	CHAIRMAN WALLIS: That's okay. You can go
9	ahead.
10	MR. MEDOFF: Thank you very much.
11	Mr. Bob Davis will now address what the
12	impact of the EPO on the leak before break analysis
13	and the nickel alloy components integrity.
14	MR. DAVIS: My name is Bob Davis. And I'm
15	with the Engineering Materials Chemistry Branch in the
16	Piping Integrity and NDE Section. And I reviewed the
17	portion of the application that deals with reactor
18	coolant pressure boundary materials and leak before
19	break.
20	The increase in hot leg temperature only
21	being .8 degrees will have a minimal impact on the
22	Alloy 600. I think somebody asked about the upper
23	head. I believe they're scheduled to, in accordance
24	with the order, inspect their reactor pressure vessel
25	head this spring. I think other than maybe a small
I	I

(202) 234-4433

	193
1	relaxation from the order on coverage on their
2	nozzles, they are complying with the order for the
3	bare high susceptibility. So this small temperature
4	increase really doesn't do anything to change that.
5	And, of course, a decrease in temperature is obviously
б	advantageous as far as PWSCC goes.
7	So the staff concluded that the increase
8	in temperature will have only a minimal impact on
9	crack initiation and growth.
10	I did a gentleman this morning from
11	Westinghouse mention that the temperature increase in
12	the hot leg was actually 1.6 degrees rather than the
13	.8 degrees. So I think I will have to somewhere we'll
14	have to address that.
15	I think somebody this morning asked a
16	question and got a response, and the hot leg
17	temperature is a little bit more. Even at 1.6 degree
18	increase that will have a negligible impact on
19	increased susceptibility to PWSCC. They have a fairly
20	aggressive program. They've replaced some of their
21	nozzles already on their hot leg piping and their
22	initiatives are to replace a lot of their 600 with
23	Alloy 690 using Alloy 52 and 152.
24	CHAIRMAN WALLIS: With these questions
25	about what the temperature change actually is, is
I	I

(202) 234-4433

	194
1	someone going to find out what it actually turns out
2	to be so that after the EPU has been implemented we
3	can find out what it actually is?
4	MR. DAVIS: Yes. And part of my question
5	based on what the gentleman said this morning from
6	Westinghouse is the range. The .8 plus or minus,
7	point .8 plus or .8 plus or minus two and at what
8	point would they really need to come back and talk to
9	us if it was greater than a certain number?
10	Okay. Any other questions.
11	DR. FORD: Could I ask, it's more of a
12	general question than this specific one, to what
13	extent does the staff take into account emerging
14	issues with respect to cracking in this case for the
15	primary water site in a PWR? And I'm thinking
16	specifically in terms of the effect of ripple loading,
17	which might occur because you've got increased flow
18	rates and the effect that that would have on thermal
19	fatigue of some of these pipings. And it recognizes
20	an emerging issue because it's not in the rules, it's
21	not in bulletin, etcetera, right now. But at what
22	point does the staff become involved in addressing
23	those emerging issues?
24	MR. DAVIS: On that issue I don't have an
25	answer for.
I	1

(202) 234-4433

	195
1	MR. TSAO: This is John Tsao from
2	Materials and Chemical Engineering Branch.
3	To respond to your questions, the staff is
4	working with the industry to come up with some sort of
5	resolution of the issues, particularly we are looking
б	at the PWSCC, the primary water stress corrosion
7	cracking and leak before break. Right now the EPRI,
8	industry are trying to come up with some type of
9	inspection and enforcement guidelines. And the staff
10	also is trying to find out if we need some type of
11	generic communication to make sure that PWSCC is not
12	a potential degradation.
13	DR. FORD: Thank you very much.
14	And the reason why I bring it up is that
15	when you talk about thermally induced ripple loading
16	in piping, it falls between the cracks of the ASMI
17	corrosion fatigue evaluations and MRP stress
18	corrosion. It's between the two ends of the spectrum
19	and it's not addressed. And yet when you look at, for
20	instance, socket welds in these systems where you have
21	eddies associated with a socket weld, you could have
22	a potential decrease in the integrity of those
23	components.
24	But from your answer, this is ongoing. It
25	is not covered in this particular item because there
I	I

(202) 234-4433

	196
1	is not enough information, is that correct?
2	MR. DAVIS: Well, the PWSCC is what I
3	would be familiar with. And we are, as John
4	mentioned, there are a lot of ongoing issues and
5	discussions with industry. As far as the other issue
6	you brought up, I'm not aware.
7	DR. FORD: And as you point out, this is
8	not specific to Waterford. It is a generic EPU topic.
9	CHAIRMAN WALLIS: It only occurs at EPUs?
10	DR. FORD: Well, it occurs when you
11	increase the flow rate and now you're starting to put
12	in thermal fatigue issues, which are dominate in for
13	instance socket welds.
14	MR. MEDOFF: Dr. Ford?
15	DR. FORD: Yes.
16	MR. MEDOFF: So far for the cracking of
17	the nickel alloy components, Mechanical has been
18	looking at fatigue aspects and the Materials Branch
19	has been looking at PWSCC. We haven't considered
20	ripple loading, we will raise the issue with my
21	management and see what will be taken from there for
22	you. And we'll get back to you.
23	DR. FORD: Okay. Thank you.
24	MR. DAVIS: Any additional questions on
25	Alloy 600?
ļ	

(202) 234-4433

	197
1	Okay. I also review the section on leak
2	before break. And the operating conditions under the
3	uprated conditions will not alter the conclusions of
4	the previous leak before break analysis for Waterford
5	3. It's still valid.
6	Are there any additional questions?
7	I'll turn it over to John Tsao.
8	MR. TSAO: I'm John Tsao from the
9	Materials and Chemical Engineer Branch. I reviewed
10	five sections; coding system, flow accelerated
11	corrosion programs, steam generator tube inspections,
12	steam generator blowdown systems and chemical and
13	volume control systems.
14	I will be talking about only two systems
15	here; flow accelerated programs and steam generator
16	tube inspections because they are more significant in
17	terms of power uprate.
18	For the flow accelerated corrosion
19	programs, this morning there was some issue as to how
20	much you increase. I have this backup slide.
21	The FAC program measure the wear rates in
22	terms of mils per year. And these are the changes
23	that would be due to power uprate conditions.
24	Also, I want to show you another slide
25	that gives the effectiveness of the FAC program. This
I	I

(202) 234-4433

	198
1	is provided by the licensee. And as licensee said, it
2	is more in the they used CHECWORKS. It's a
3	computer program that considers hydrodynamics, heat
4	balance, temperature in particular.
5	As you can see the predictive method is
6	conservative considered to actual measurement.
7	DR. FORD: I'm sorry. Could you explain
8	that?
9	MR. TSAO: Okay.
10	DR. FORD: It looks as though it's equally
11	scattered around the one to one line. So why are you
12	saying it's conservative?
13	MR. TSAO: Well, for example, you can see
14	let's see.
15	You can see just for example, this point
16	here the measurement is about 300 mils. The predict
17	value, let's say, from here to here is about 240 mils.
18	So what it says is that the methodology will predict
19	that the tube wall thinner than measured, therefore it
20	also indicated that the licensee may need to do some
21	monitoring or replacement of that pipe.
22	DR. FORD: But equally there are points on
23	the other side which are not, what you call it
24	MR. TSAO: Well, that's true. Yes, that's
25	correct. But as you know this is only a prediction.
I	

(202) 234-4433

	199
1	Predictions, hopefully well, from the data point
2	you can see they are scattered toward the conservative
3	side. And also the FAC program according to EPRI is
4	that it's a process. In other words, the licensees
5	would go out, make an inspection, UT or ultrasonic
б	measurements or the pipe thickness and then they will
7	come back and they input that data into the computer
8	code so that to make sure there is a certain accuracy
9	in their predictions.
10	Also predict that the in the prediction
11	method they include some safety factors.
12	DR. FORD: It seems to me as though
13	there's a huge amount of scatter around that one-to-
14	one line. And so the question immediately arises as
15	to what is the impact of that in terms of could you
16	get a through wall erosion event taking place when you
17	had predicted it would not have done so?
18	MR. TSAO: It could.
19	DR. FORD: Did you go through that sort of
20	"what if" argument? I mean if you look at that data
21	base, you don't really have too much confidence in
22	CHECWORKS.
23	MR. TSAO: Well, I wouldn't say they would
24	be relying on CHECWORKS per se. The licensees, not
25	only Waterford but other licensees, you know they
ļ	

(202) 234-4433

ĺ	200
1	include other factors. For example, other industry
2	experience. You know if some plants have some problem
3	with FAC water lines, then they will consider
4	DR. FORD: I recognize that.
5	MR. TSAO: Right.
б	DR. FORD: But this particular EPU is
7	putting a lot of basis on CHECWORKS to manage this
8	problem. And if this a general observation as to how
9	good CHECWORKS is, my confidence is a little bit
10	shattered.
11	MR. TSAO: I should point out that
12	Waterford is not unique. I did the review for license
13	renewal, and I also asked questions. And this is type
14	of plot that, you know, other licensee has shown me.
15	DR. FORD: Yes, I know.
16	MR. TSAO: In other words, I don't think
17	that licensee is depending solely on what prediction
18	is. They also, you know, include other experiences and
19	inspections. Not only the inspections for the fact,
20	but there are other SME code inspections they have to
21	perform.
22	DR. FORD: I'll ask again. Did you go
23	through the "what if" scenario?
24	MR. TSAO: I have Kris Parcziewski from my
25	branch to elaborate on this.
I	

	201
1	DR. FORD: With that amount of uncertainty
2	in your modeling capability and therefore your
3	management capability, do you not feel uncomfortable?
4	MR. TSAO: No.
5	DR. FORD: No?
б	MR. PARCZIEWSKI: Kris Parcziewski from
7	the Chemical Engineering Branch.
8	To answer your question, those points are
9	predicted. CHECWORKS predicts but in addition there
10	is a correction factor for each individual line which
11	is here at the top right hand side, line correction
12	factor which indicates that it is corrected for each
13	individual line all the points predicted in the line
14	are corrected by this line correction factor. And the
15	line is defined as a portion of the system which has
16	the same chemistry but not necessarily the same
17	temperature. If I answer your question.
18	So all those points are already corrected.
19	Ideally, if they were ideal, they would lie in the 45
20	degree line, the middle line. However, obviously,
21	there is some scatter.
22	DR. FORD: I understand the physics
23	MR. PARCZIEWSKI: Yes.
24	DR. FORD: of the erosion process.
25	It's highly dependent on ph. High dependent on
I	I

(202) 234-4433

1 temperature. Highly dependent on corrosion potential 2 and all of those things are interacting. So that if 3 you're a little bit off on your definition of one of 4 those parameters, then you're going to get a big 5 change. So I can understand why there is a scatter 6 there because you're not able to define your system 7 adequately enough, and therefore that's the physical 8 origin of your LCF. But I still feel uncomfortable 9 about that huge scatter and how you use it in management from their point of view and in terms of 10 regulation from your point of view. 11 12 Okay. For regulation, MR. TSAO: basically there's no regulation on FAC program. 13 14 DR. FORD: That's what worries me. 15 The FAC program is instituted MR. TSAO: because of the bulletin. Back in the '80s it was 16 result of Bulletin 87-01 where Surry had a --17 18 DR. FORD: Yes, sure. 19 TSAO: -- a rupture. And Generic MR. 20 Letter 89-08 that required the licensees to institute 21 some type of program, FAC program. And then the 22 industry, you know, with EPRI guidance come up with 23 this program. And so --24 DR. FORD: I understand all that. I'm 25 just looking at what the history has been since then.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

202

	203
1	And, you know, a few months ago we had fatalities in
2	Japan because of this phenomenon, which was not
3	managed well. And you know if this is supposed to be
4	the state-of-the-art of prediction of management and
5	therefore regulation, I just don't feel comfortable.
6	MR. TSAO: Okay. Speaking of the
7	Japanese, again from my understanding is that Japanese
8	did not inspect, you know, the last 20, 30 years.
9	DR. FORD: Correct.
10	MR. TSAO: Where here under FAC program
11	the licensees will have to inspect at least they say
12	50 to 100 inspection points for their large bore
13	piping and small bore piping they probably sometime
14	inspect 100 percent. And so there's a constant
15	inspections going on to make sure that the
16	DR. FORD: I understand that.
17	MR. TSAO: Right.
18	DR. FORD: All I'm pointing out is
19	everyone bows to CHECWORKS and says yes, yes that's
20	the best thing that's around. And I'm just
21	questioning it. Is it adequate?
22	MR. HOWE: This is Allen Howe.
23	And I'd just like to add in at this point
24	that we understand the question and we will be happy
25	to get back with you with a response on that.

(202) 234-4433

	204
1	DR. FORD: Thank you.
2	MR. TSAO: Okay. Next slide.
3	Next slide I will be talking about is the
4	related to steam generator tube inspections.
5	This morning you also raised about the
6	question that sorry.
7	Next slide. The power operator will effect
8	the anti-vibration tubes for locations. What it does
9	at the increase of feedwater flow will cause the tube
10	to vibrate a little bit more. And the possible
11	degradation is where the anti-vibration bar, they call
12	the bat wings on top of that square shape, hitting the
13	supports.
14	Now, we have the requirement in tech spec
15	that we have the leakage requirement, which the
16	licensee has reduced to 75 gallons per day of a steam
17	generator. This is pretty significant in that the
18	normal primary to secondary leakage limit is 150
19	gallons per day. And Waterford is willing to go down
20	to 75 gallons per day. And that it is very good
21	limits to detect any potential leakage. Because 75 for
22	tech spec translate into administrative limit.
23	Control probably would be at even lower. Therefore,
24	if there's any leak, you know they would probably go
25	into a special administrative control actions
ļ	I

(202) 234-4433

205 1 additional monitoring. So that's one area that is 2 going to help Waterford. 3 The second one is in tech spec requirement 4 any flaws cannot exceed 40 percent through wall, 5 through a tube's wall. For the wear indication usually the average is about 5 percent per cycle. In 6 7 other words, the crack growth for tube wear type of indication usually it grows five to ten percent. So I 8 remember you mentioned the possibility whether the 9 crack can grow in one cycle and through wall. And that 10 is not likely. 11 12 Why do you say that? DR. FORD: Because crack grows -- every 13 MR. TSAO: 14 crack grows for tube wear is about five to ten 15 percent. So even if you have, let's say, 39 or 38 16 percent crack --Maybe I'm misunderstanding. 17 DR. FORD: That statement there and from what I've understood 18 19 about the situation, you're looking at two distinct 20 degradation mechanisms. One is tube wear. 21 MR. TSAO: Right. Yes. 22 DR. FORD: And the other one is cracking. 23 Two entirely different atom degradation mechanism. 24 MR. TSAO: Okay. 25 MEDOFF: And they may be MR.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	206
1	interconnected, but they don't necessarily have to be.
2	And so I'm trying to sort the two different
3	degradation mechanisms and trying to understand how
4	your control criteria of make it 75 gallons per day,
5	and you're saying that's great. I just don't follow
6	why is 75 gallons per day adequate when you've got two
7	different wear mechanisms operating under different
8	rate limiting steps? Why is it an adequate regulation
9	and manager?
10	MR. TSAO: Okay. You talk about the two
11	separate. Cracking. IDSCC, inside diameter stress
12	corrosion cracking.
13	DR. FORD: Yes.
14	MR. TSAO: And then PWSCC. Okay.
15	DR. FORD: Sure.
16	MR. TSAO: And then this tube wear it's a
17	I would say it was kind of pitting. You would say
18	pitting or some type of mechanical metal-to-metal
19	contact the cause.
20	DR. FORD: Sure.
21	MR. TSAO: Okay. Now the 75 gallons per
22	day it lower the threshold for licensee to do certain
23	administrative controls, and that is a big plus.
24	Because normal plant it is 150 gallons per day. So
25	there, you know because this is this leakage
I	·

(202) 234-4433

	207
1	limit is defense-in-depth. Wherever there is a crack-
2	_
3	DR. FORD: I'm hearing all the words. I'm
4	looking at what's on that paragraph there and what
5	I've read in the SER.
6	MR. TSAO: Right.
7	DR. FORD: I'm seeing at least two
8	different atomistic degradation mechanisms. I'm
9	seeing NEI 97-06, which takes into no account the
10	mechanism I'm aware of. And then I'm looking at 75 per
11	gallons per day. And I'm having a problem of
12	interconnecting all of these things that are on that
13	graph and trying to relate them to what is the danger
14	that I might expect to have a thorough wall hole
15	regardless of the mechanism in one fuel cycle. And I
16	don't have the data and I haven't seen the analysis.
17	MR. TSAO: The bottom line is that they
18	have a very good leakage limit. Regardless if they
19	pipe break or anywhere, they have 75 gallons per day
20	that would make sure that would make them to shutdown,
21	they have a shutdown if it goes up to 75. Some of the
22	plants they don't shutdown until 150 gallons per day.
23	Now as for NEI 97-06, that is the industry
24	guidelines that provide a descriptive guidance for
25	them to do inspections and to do certain controls.
I	I

(202) 234-4433

	208
1	DR. FORD: Okay. You sound as though
2	you're defending the licensee rather than questioning
3	the licensee. You're saying that they can do this.
4	And this is good for them.
5	MR. TSAO: Well, technically in fact,
6	I raise the question that their current tech spec is
7	720 gallons per day. And I questioned them. And then
8	I kind of twist their arm, so to speak, and they come
9	down to 75. And so I wouldn't defend them if
10	DR. FORD: Okay.
11	MR. TSAO: In other words, I'm very happy
12	they come down to 75. I'm very surprised. And
13	actually I give, you know, a pat on back on that in
14	terms of tube degradation and terms of controlling any
15	potential leakage.
16	DR. FORD: Okay. Thank you.
17	MR. TSAO: Okay. This is pretty much
18	straightforward and this ends my talk.
19	DR. FORD: Is someone going to tackle this
20	question about the flow induced vibration in the
21	dryer? Is that going to be discussed by yourself,
22	well obviously not yourself, but is that going to be
23	covered later on?
24	MR. TSAO: Speaking of flow induced
25	vibration, I not review that section, but this morning
I	1

(202) 234-4433

	209
1	someone asked a question about loose parts.
2	DR. FORD: Yes.
3	MR. TSAO: Even if the bolts on a dryer
4	are forced down into the steam generator, usually the
5	licensee, including Waterford, they have the secondary
6	site inspection and they usually go through a foreign
7	object search and retrieval, the FOSR. And what they
8	do is they stick a optical camera down the secondary
9	site and they go down to a tube sheet to find any
10	loose parts. Also loose parts can be detect by the
11	bobbin inspections.
12	DR. FORD: Are you happy that you could
13	never get a loose part into the main steam isolation
14	valve, which was stated this morning?
15	MR. TSAO: Right. Now I have not heard the
16	cases of going to a main steam valve. Usually if there
17	are loose parts, it falls down
18	DR. FORD: Usually.
19	MR. TSAO: Into bundles.
20	DR. FORD: Always?
21	MR. TSAO: I have not heard I have
22	heard of the loose parts come from regular internals
23	that flow into the steam generator on secondary side.
24	And then there are some feedwater gaskets that falls
25	into steam generator site. But I hadn't heard of loose
ļ	

(202) 234-4433

	210
1	parts in the main isolation valve.
2	MR. MANOLY: Good afternoon. I'm Kamal
3	Manoly, the Section Chief in the Mechanical Branch in
4	NRR. And the lead reviewer for the Waterford power
5	uprate at an audit at Dresden in Chicago looking at
6	the work being done by Dresden/Quad on their dryers.
7	So I know this topic is dear to your hearts, and we're
8	still working on that aspect of it on the boilers.
9	So if you have any questions beyond what
10	I got from him, I'll take notes and we'll get back to
11	on that, because I don't have benefit of the questions
12	discussion with the licensee.
13	As typical we look at the there is some
14	overlap between our work and the Materials Branch
15	work. We focus primarily in the vessel internals on
16	the stress analysis and the fatigue usage factors.
17	And small loose vibration concentrations. But,
18	obviously you heard the Materials focus is different
19	than ours.
20	The same thing we do for the steam
21	generator components and the electrical pump.
22	Obviously, and the pressurizer and supports,
23	structural supports also we look at that, too. And
24	balance-of-plant piping and supports and the safety
25	related valves and we saw what we focus on in that
I	I

(202) 234-4433

	211
1	area.
2	Next slide.
3	We look at the methodology and the loads
4	that they used, that they're consistent with the
5	design basis, the stresses and the fatigue and the
6	agenda and the codes that they're committed to under
7	SER. And also look at the functionality of the valves
8	and their impact on the EPU based on the findings from
9	the Generic Letters 89-10, 95-06 and 96-06 for the
10	pressurization of segments of piping.
11	Next slide.
12	Okay. The next slide addresses the NSSS
13	and BOP piping and supports. We talk about the EPUI
14	evaluation that incorporates the approved leak before
15	break methodology for elimination of the primary loop
16	pipe breaks in the original design basis. So that's
17	a change from the original design basis for the
18	facility. And now that everything breaks out in the
19	branch piping, the largest branch piping from the main
20	steam and feedwater and otherwise.
21	Finite element analysis for the revised
22	loads. Understand that the change in temperature
23	obviously, as we all know, was very small in terms of
24	effect on the stress allowable. But apparently they
25	were doing that as part of the upgrade of their design
Į	1

(202) 234-4433

(202) 234-4433

	212
1	basis documents.
2	I guess until earlier today I was under
3	the impression that they meet the ASME limits for all
4	the allowables on all lines, except look at this
5	bullet on that slide. Due to EPU the licensee
6	discovered that the component cooling water shutdown
7	cooling, heat exchanges at the piping was operating at
8	a higher temperature than they initial thought. The
9	design basis is 175 degrees. They have done
10	evaluations for operability up to 225, which means
11	that they don't quite meet the ASME limits above 175.
12	So my understanding is that they will have to start by
13	50.59 utilizing Generic Letter 91.18 and supplement
14	the one with the nonconformance that they have to
15	ultimately correct to meet the code allowance.
16	Because when they start the 175 for that system, they
17	will be exceeding the ASME code limits.
18	The last slide is about flow induced
19	vibration. And I guess we have three bullets there.
20	One relates to the testing and
21	instrumentation on the feedwater at critical locations
22	to monitor during power ascension. And they would be
23	meeting the OM3 standards for monitoring of vibration.
24	The concern about flow induced vibration,
25	obviously on the dryer, is raised several times. And
ļ	I

(202) 234-4433

(202) 234-4433

	213
1	I think the vigor lies on the applicant on the work or
2	on the operation of experience to Palo Verde, which
3	has more power than their plant after the power
4	increase. And I considered that operation of a plant
5	for many years probably is far more proof than just
6	testing for you know, limited testing. So we know
7	what Palo Verde's experience is and their dryers are
8	bigger, I believe, than Waterford dryer. So we did
9	not feel that there was real issues.
10	I just heard that during the licensee's
11	presentation that they found that some bolts had
12	broken off at Palo Verde and that's an aspect, I
13	guess, we're going to have to think about.
14	DR. FORD: What was also brought up this
15	morning was that Palo Verde is not the same design of
16	the steam in the upper plenum, because they have more
17	than just one steam exit point.
18	MR. MANOLY: I see. I know that the boiler
19	are much larger, because you have four steamlines and
20	the interplay between the four steamlines has a lot to
21	do with the loads on the plates. So the issue is not
22	as exacerbated as the boilers. But I think there's a
23	lot of reliance here on the Palo Verde experience.
24	And the concern about broken bolts is that they go,
25	you know, where they're not desired to be. So I think
	I

(202) 234-4433

	214
1	we still need to think about the significance of that
2	in terms of operability.
3	On the steam generators, the analysis
4	shows that they meet the stability ratio below .8. So
5	the limit is one, and they basically also said that
6	the steam generators are more robust than the Palo
7	Verde. So I wouldn't expect that they would have an
8	issue there.
9	So that's basically the section on the
10	Mechanical part. If you have any questions, I'll be
11	glad to take it.
12	MR. ROSEN: Well, I think you hit on a
13	couple of good issues, Peter. And I wonder if we
14	could have a little more information at the full
15	Committee on this, especially on the reliance on the
16	Palo Verde experience which may or may not be
17	applicable, I guess.
18	MR. MANOLY: My understanding is that
19	their dryer is bigger than the Palo Verde dryer.
20	MR. ROSEN: But from our experience in
21	talking about the BWRs and specifically the problems
22	addressed in Quad and how that translates to the rest
23	of the fleet, there was discussion about the
24	differences in configuration are very important.
25	MR. MANOLY: Yes.
	1

(202) 234-4433

215 1 MR. ROSEN: And so I would draw from that 2 the same conclusion here; that the differences in 3 configuration between Palo Verde and Waterford may 4 also be very important. So using Palo Verde as a 5 stocking horse for Waterford may or may not be appropriate. We need a more fundamental look at this 6 7 than just simply saying well it's kind of like Palo Verde and they haven't had a problem. Not very 8 9 substantive. MR. MANOLY: Well, yes. The power at Palo 10 11 Verde is higher than at Waterford after the power 12 uprate. Well, yes. But the question MR. ROSEN: 13 14 really is about forcing functions for vibrations. 15 MR. MANOLY: Yes, I understand. MR. ROSEN: Not just because the power is 16 17 higher doesn't necessarily mean that the flow induced vibration is. 18 19 MR. MANOLY: But the geometry I understand 20 of the dryer at Waterford is very similar but it's 21 larger dryer. So --22 Maybe we could have some MR. ROSEN: 23 pictures of Palo Verde's dryers and the Waterford 24 dryers. 25 MR. MANOLY: Okay.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	216
1	MR. ROSEN: And at least quality of
2	discussion about where the
3	CHAIRMAN WALLIS: I'd like to know also
4	because this morning some of the speakers seem to say
5	it was the same, these were the same dryers. They'd
б	also been tested at CE over a wider range of flow rate
7	and pressure. So maybe we could get this more
8	definite; are they same, are they not the same, have
9	they been tested or not been tested, has something
10	similar been tested or the same? You know, get it
11	absolutely straight.
12	DR. FORD: And also I the other aspect I
13	think, Graham, is this whole question what's going to
14	happen to the loose parts which are created if it does
15	fail or is it just a no nevermind?
16	MR. ROSEN: Well simply because the loose
17	parts that were talked about here were found down on
18	the top of the tube sheet doesn't necessarily mean
19	that's where they'll always go.
20	DR. FORD: Exactly.
21	MR. ROSEN: I mean, they may go down the
22	steamline.
23	DR. DENNING: But that's probably an
24	analyzable condition.
25	DR. FORD: Absolutely, but there hasn't
I	I

	217
1	been, that's the point. We don't know it's been
2	asked.
3	MR. MANOLY: It was not supported
4	MR. ROSEN: We're a little bit sensitive
5	on this issue because of history.
6	MR. MANOLY: Right. Any additional
7	questions?
8	CHAIRMAN WALLIS: So we've agreed that
9	before the full Committee you're going to have a
10	MR. MANOLY: A comparison, I guess,
11	between the
12	CHAIRMAN WALLIS: A more definite
13	comparison?
14	MR. MANOLY: Yes. The Palo Verde dryers
15	and
16	CHAIRMAN WALLIS: Maybe besides that you
17	could actually provide my colleague here with a
18	written document which actually has pictures of things
19	so that rather than have the full Committee have to go
20	through all the details so that somebody here can go
21	by an certify
22	MR. MANOLY: Yes, that's possible.
23	CHAIRMAN WALLIS: that he has seen
24	drawings, and indeed they are the same or they are
25	not, or whatever.
I	

(202) 234-4433

	218
1	MR. MANOLY: Yes. That's more efficient I
2	think. Okay. Thank you.
3	CHAIRMAN WALLIS: Thank you.
4	MR. STUBBS: Okay. Good afternoon.
5	My name is Angelo Stubbs. And I'm a
б	reviewer with the Plant Systems Branch. And the
7	review that we performed was for the balance of plant
8	size, plant systems.
9	Go the next slide. Okay. We'll start off
10	with the scope.
11	We followed the Review Standard and
12	there's a detailed breakdown of the things that's
13	included in our review scope in Matrix 5 of the Review
14	Standard. I'm going to summarize here things that
15	were in our scope of review. And that included the
16	secondary plant systems; that was the secondary plant
17	waters systems, circulating water systems, the steam
18	heat water, condensate, the ultimate heat sink and
19	cooling water systems, the main turbine and protection
20	from pipe failures, floods, and internally generate
21	missiles.
22	Also the spent fuel pool cooling and
23	cleanup system, the emergency feedwater system,
24	fission product control and waste management systems
25	and the emergency diesel generator fuel oil storage
I	I

(202) 234-4433

	219
1	and transfer systems.
2	So for our review what we did was we began
3	by looking at what things in the uprate would impact
4	the balance of plant systems. And there were things
5	that we thought of that were of major concern. One,
6	the increase in decay heat associated with the EPI
7	operation. The second was a modification that they
8	were making on the main on their pressure turbine.
9	And the third was there could be changes in system
10	operating parameters, that is the pressure, the
11	temperature. There's an increase flow, steam flow by
12	8.5 percent.
13	Okay. Next. Okay.
14	I'm going to start off by talking about
15	the turbine. The change that was made to the turbine
16	was the physical modification of high pressure
17	turbine. And that modification included installation
18	of new high pressure turbine rotors with reaction
19	rating, I think they talked about that earlier. And
20	including the inner cylinder, stationary blades and
21	inlet flow guide.
22	The EPU evaluation was performed for that,
23	and what we found was the maximum rotor speed
24	following the reactor trip will still be less than 120
25	percent rates speed, so it will continue to provide
ļ	1

(202) 234-4433

	220
1	adequate protection against overspeed, turbine
2	overspeed.
3	Okay.
4	DR. RANSOM: Was the entire high pressure
5	and turbine replaced or did they just put a new rotor
6	in it?
7	MR. STUBBS: Okay. No okay. Go back to
8	the last one. The changes that were made was in the
9	turbine speed paths was in addition to the turbine
10	rotor there was also inlet flow guides, steam sealing
11	components that were replaced.
12	DR. RANSOM: How many stages around the
13	high pressure turbine?
14	MR. STUBBS: Does somebody want to I
15	don't recall.
16	MR. VIENER: This is David Viener from
17	Entergy.
18	There's eight stages.
19	DR. RANSOM: Pardon?
20	MR. VIENER: Eight reaction stages.
21	DR. RANSOM: Eight stages?
22	MR. VIENER: Eight stages.
23	DR. RANSOM: So you changed all the
24	staters and the rotors I guess in that?
25	MR. VIENER: That is correct.
I	

	221
1	MR. STUBBS: Okay. As I already
2	mentioned, as far as we're looking at it to see that
3	the overspeed protection, the overshoot would stay
4	within the design and the results were we still
5	maintained the overspeed to be less than 120 percent.
6	CHAIRMAN WALLIS: And 120 percent is okay
7	because of what? Why is 120 percent okay?
8	MR. STUBBS: Well, 120 percent is the
9	design overspeed that's currently water turbine. The
10	trip I think the trips are at 111, the control is
11	at 111 or 111 and a half. And there could be some
12	overshoot.
13	There was study done to confirm that 120
14	that the 120 percent wasn't exceeded at the EPU.
15	That's the current overshoot for the current turbine
16	and its design overshoot that the plant is designed
17	for in terms of the turbine protection system.
18	MR. SIEBER: There actually should be very
19	little change in what speed you achieve because
20	MR. STUBBS: Right.
21	MR. SIEBER: at a lower pressure, you
22	actually have less stored energy and you're getting
23	all of the additional output from higher steam flow,
24	which doesn't contribute to the overspeed.
25	MR. STUBBS: Right. And the reason we
l	I

(202) 234-4433

222 1 looked at it is because you're actually making 2 physical changes and what we might do to change to 3 inertia in the turbine, we just wanted to make sure 4 that that was not --5 MR. SIEBER: And those factors are going to be small. 6 7 That's right, it turned out MR. STUBBS: 8 to be small. 9 MR. SIEBER: Yes. 10 MR. STUBBS: Okay. What happens on loss of load 11 DR. RANSOM: 12 in terms of overspeed. In terms of loss of load? 13 MR. STUBBS: 14 DR. RANSOM: Right. 15 It still protects -- it's MR. STUBBS: 16 still protect that same overshoot. The control will 17 _ _ Shut down? DR. RANSOM: 18 19 MR. STUBBS: Particularly at 111 percent 20 and even after that, the overshoot will maintain it --MR. ROSEN: Does this turbine have 21 22 electrical overspeed and mechanical overspeed both? 23 MR. STUBBS: Yes. 24 MR. ROSEN: So what are the setpoints for 25 the electrical overspeed protection and the mechanical

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	223
1	overspeed protection?
2	MR. STUBBS: I believe one is 111 and the
3	other is 111.5.
4	MR. SIEBER: Unless you have governor
5	valve action.
б	MR. SCHWARTZBECK: Yes. Ralph
7	Schwartzbeck with Enercon Services.
8	The electrical overspeed is 103 percent
9	and the mechanical is 111 percent.
10	MR. ROSEN: So the first thing that
11	happens is the control valves try to control it,
12	right?
13	MR. SIEBER: Right.
14	MR. SCHWARTZBECK: Yes. They close down.
15	MR. ROSEN: If they don't control it, then
16	you get electrical overspeed trip?
17	MR. SCHWARTZBECK: Yes.
18	MR. ROSEN: If that doesn't come in, you
19	get a mechanical overspeed trip at 111. And if that
20	doesn't control it, then you just
21	MR. SIEBER: Run. Get out of the way.
22	MR. ROSEN: Well, then the turbine's
23	designed to if you have a loose part, it has to be
24	a very big one to come through the casing. And if so-
25	_
I	

(202) 234-4433

	224
1	MR. SIEBER: Yes. They usually keep
2	everything inside.
3	MR. ROSEN: Yes, it's usually contained.
4	But not always and the orientation of the turbine is
5	looked at vis-à-vis safety related equipment and so
6	on.
7	MR. SIEBER: Right. And other turbines.
8	MR. STUBBS: Okay. We'll move on.
9	Okay. The next area that we looked at was
10	spent fuel pool. And the reason for this was because
11	there's increased decay heat associated with the EPU,
12	so the fuel being offloaded to the spent fuel pool
13	could if it was offloaded at the same time would
14	have higher decay heat associated with it.
15	There was a question this morning
16	concerning why there was discussion in the SE, the
17	extent of the discussion in the SE on this. And the
18	reason is we did our initial review of this and what
19	we saw was that the current analysis, there was very
20	little margin between the calculated peaks and the
21	pool limits. So as a result of that, we asked for
22	additional information from the licensee, and they
23	provided that information. And we wanted to be
24	assured that we weren't exceeding the pool
25	temperatures.
	I

(202) 234-4433

In the inlet what happened, what we found out was or the way this is being controlled is they're using administrative controls to control the amount of decay heat that's actually in the spent fuel pool at any given time after the offloads so that they be control the decay heat to be below the heat removal rate available from the spent fuel pool cooling system.

9 This way they ensure that they stay below 10 the temperature limits of the pool and they ensure --11 by staying below the temperature limits and having the 12 decay heat within -- below -- really at about the same 13 but slightly below what was used in the previous 14 analysis, the time to boil remains down by the current 15 analysis.

16 CHAIRMAN WALLIS: What does
17 "administrative control" mean? Does it mean that you
18 unload the stuff slower or something, or you unload -19 MR. STUBBS: Okay. Administrative

20 controls, in this case it sets offload limits for the
21 total amount of fuel that could be in the fuel pool
22 for any given time after the reactor is shutdown.

The tech spec requires 72 hours before you can start offloading fuel. In this case here it's controlled so that the maximum heat load in a pool

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	226
1	will be for the normal offload will be 29 million
2	BTUS
3	CHAIRMAN WALLIS: So you might wait longer
4	to offload, is that what you might do?
5	MR. STUBBS: Yes.
б	MR. SIEBER: That's one thing.
7	MR. STUBBS: Well, the rate at which you
8	offload
9	CHAIRMAN WALLIS: Or offload at a slower
10	rate?
11	MR. STUBBS: may be slower. The one
12	thing, you can wait longer and begin to offload later.
13	That's also an option. But if you begin to offload at
14	72 hours after shutdown, you know, the rate of at
15	some point you're going to get to the point where you
16	would be approaching the maximum heat load and your
17	offload would have to be slowed so that you don't
18	exceed that maximum heat load allowable.
19	MR. ROSEN: Is that the licensee's answer
20	to that question?
21	MR. STUBBS: What?
22	MR. ROSEN: That you control the rate of
23	offload?
24	MR. VIENER: This is David Viener, again
25	from Entergy.
I	I

(202) 234-4433

	227
1	And Angelo described it perfectly.
2	CHAIRMAN WALLIS: Sot his increases your
3	time that you have to take to reload and everything?
4	MR. VIENER: No. What we would do is
5	control how many assemblies that we can offload based
6	on time after shutdown to control the amount of heat
7	that we can put in the pool.
8	MR. ROSEN: Well, I would say that's sort
9	of surprising. I think that may be the first time
10	I've heard that, that a plant is so limited with
11	respect to spent fuel pool heat rejection capacity.
12	MR. MITCHELL: Yes, this is Tim Mitchell.
13	There is typically a tech spec limit on
14	like at a 100 hour point on how many assemblies you
15	can have offloaded.
16	MR. ROSEN: Yes, I understand.
17	MR. MITCHELL: And it's really not that
18	we're going to slow down the offload, is that we might
19	either have to stop the middle because we have a
20	certain number of assemblies until we reach some hour
21	point post shutdown or you would start later, which is
22	more likely.
23	MR. ROSEN: Is that something you do now?
24	MR. MITCHELL: That is something that we
25	do now actually our current outage schedules have
ļ	I

(202) 234-4433

	228
1	not challenged it, so we haven't had to. But I have
2	seen it done at other plants within our system where
3	there is a specific evaluation and depending on things
4	like late temperature or cooling temperature that has
5	to be done on a per cycle basis to determine
6	MR. ROSEN: It sounds like it's a pretty
7	marginal design to me.
8	MR. VIENER: We've had administrative
9	controls in place prior to even this submittal.
10	CHAIRMAN WALLIS: So this might increase
11	your outage time? You got elements to unload and
12	you've got to do it slower?
13	MR. MITCHELL: At this point we wouldn't
14	expect to increase our outage time. But there may be
15	a point where outage times if they are improved, could
16	be effected by it. It would be something that we
17	would have to evaluate.
18	CHAIRMAN WALLIS: So you increase the
19	power of the reactor, but then you increase your
20	outage times, so your net energy production stays the
21	same?
22	MR. MITCHELL: No. My answer actually was
23	right now it would not effect our current outage time.
24	CHAIRMAN WALLIS: But it seems that it
25	might.
ļ	I

(202) 234-4433

	229
1	MR. MITCHELL: It might if we shorten the
2	outage.
3	MR. ROSEN: Shouldn't you be increasing
4	the capacity of this heat rejection capability here
5	instead of being so marginalized?
6	MR. SIEBER: That's controlled by the
7	river temperature, right?
8	MR. ROSEN: Is it the river temperature
9	that's controlling it or your heat exchanger size and
10	pumping capacity?
11	MR. VIENER: It's controlled by our heat
12	removal component cooling water system and the size of
13	our heat exchanger.
14	MR. ROSEN: It sounds pretty marginal, as
15	I said.
16	MR. SIEBER: It's down south.
17	MR. VIENER: Yes, we're talking that we
18	can remove a partial offload at approximately five
19	days after shutdown. This is if we start to offload
20	at about 72 hours, then it becomes critical because
21	the decay heat is very high in the core three days
22	after shutdown. But the system can remove the whole
23	partial offload of 106 assembles assumed within about
24	five days.
25	MR. LEONARD: This is Ted Leonard.
I	

(202) 234-4433

	230
1	And that's using all the worse case design
2	assumptions? And a train of cooling?
3	MR. VIENER: That is correct. That is
4	following the Standard Revenue Plan criteria of a
5	single failure which we lose a train of cooling.
6	MR. STUBBS: The analysis was performed
7	with a single failure and also bounding. I'm looking
8	at the last offload which would fill the pool to
9	capacity, so it bounds all their offloads in the
10	future.
11	CHAIRMAN WALLIS: Okay. So we'll move on.
12	MR. STUBBS: Okay. Another area that the
13	decay heat also effects the increased decay heat
14	also effects is the alternate heat sink in terms of
15	the long term cooling. So EPU evaluation were
16	performed and the results showed that wet and dry
17	cooling tower has sufficient capacity to accommodate
18	post-LOCA heat loads and sufficient water volume is to
19	continued to be available either in the one basin to
20	meet the 30 day heat removal criteria.
21	The conclusion that we drew for alternate
22	heat sink is pending resolution of how the licensee
23	account for measurement of certainty, which is one of
24	the issues I think that was introduced earlier in the
25	introduction.
ļ	I

	231
1	CHAIRMAN WALLIS: So this 30 days is if
2	the cooling towers aren't used at all, they just cool
3	with the water basin, is that what that means?
4	MR. STUBBS: Excuse me. Can you repeat
5	that?
6	CHAIRMAN WALLIS: Is the 30 day heat
7	removal criteria, that means you just use the water in
8	one basin, you don't actually cool it with a cooling
9	tower?
10	MR. STUBBS: Well, if the water in one
11	basis is sufficient to meet that.
12	CHAIRMAN WALLIS: That is just a pool,
13	isn't it?
14	MR. STUBBS: Huh?
15	CHAIRMAN WALLIS: A basin is a pool?
16	MR. STUBBS: Yes. Yes.
17	CHAIRMAN WALLIS: A big basin is a pool.
18	MR. STUBBS: Yes.
19	CHAIRMAN WALLIS: And it means that you
20	just draw in that water without cooling that water
21	over the cooling tower, is that what it means?
22	MR. STUBBS: No. You still utilize the
23	cooling tower, but
24	CHAIRMAN WALLIS: So it operates from the
25	cooling water, is that what it's making up?

(202) 234-4433

	232
1	MR. STUBBS: Yes.
2	CHAIRMAN WALLIS: Okay. How about the
3	river? The river doesn't count for all of this?
4	MR. STUBBS: Well, to meet their 30 day
5	requirement, their primary heat sink is a wet
6	cooling tower basin.
7	CHAIRMAN WALLIS: Well, why aren't they
8	allowed to use the Mississippi?
9	MR. SIEBER: They need two.
10	MR. TATUM: This is Jim Tatum from the
11	Plant Systems Branch.
12	The criteria that we look at, we rely on
13	seismically qualified capability for the design basis,
14	and so that's why the licensee has to rely on the
15	cooling tower. The cell that they're relying on is
16	seismic category one. And the intake structure, I
17	believe, is not seismically qualified.
18	CHAIRMAN WALLIS: I see.
19	MR. ROSEN: Now as a matter for follow up,
20	these places where the staff conclusion is incomplete,
21	is it planned that they'll come back to the full
22	Committee and give us a
23	MR. STUBBS: Yes. Right now we're working
24	on I think Kaly mentioned this morning, resolution.
25	We think we have a path to resolution for the
Į	I

```
(202) 234-4433
```

233 1 measurement uncertainty. And as soon as that's 2 resolved --Well, there are a couple. The 3 MR. ROSEN: 4 other one is the AST, alternate source term. And there are several other things that we've talked about 5 as being pending resolution. It seems to me we're 6 7 getting a little ahead of ourselves here where the 8 staff isn't done with the licensee and yet they're at 9 Subcommittee. This is Herb Berkow. 10 MR. BERKOW: As Kaly indicated this morning, we have 11 agreement, conceptual agreement with the licensee on 12 these three issues. And they will be resolved before 13 14 we come to the full Committee. 15 And you'll give us a brief of MR. ROSEN: 16 how they were resolved? 17 MR. BERKOW: Yes. 18 MR. ROSEN: Okay. 19 MR. BERKOW: We will. 20 Okay. Another area, again it MR. STUBBS: 21 was a result of the increase in the decay heat, we 22 reviewed the impact on the emergency feedwater system. 23 And the initial water source for those are the 24 condensate storage pool with the backup source being 25 the cooling tower and basin. The evaluations so that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	234
1	increased demand for the emergency feedwater for the
2	plant will continue to be met at operating conditions,
3	at the plant operation of operating conditions.
4	Okay. And the final one which we looked
5	at was the emergency diesel generator fuel oil storage
6	and transfer system. And because of the increased
7	decay heat, this required that some of the equipment
8	for decay heat removal operates for a longer period of
9	time. And that results in an increased demand on the
10	turbine in the four to seven day range and a slight
11	increase in the fuel oil requirements.
12	The licensee's current fuel the current
13	fuel oil levels did not support the seven day
14	operational requirements once the uprate was factored
15	in. It was only they were only supplying six and
16	three quarter days for the fuel oil supplier. So the
17	licensee has proposed change their tech spec to
18	increase the minimum required volume in the fuel oil
19	storage tank to meet the seven day criteria. And we
20	reviewed that and we found that the new tech spec
21	requirement added enough additional fuel to satisfy
22	seven day post seven day operation.
23	And as they mentioned this morning,
24	there's also a commitment to add additional fuel oil
25	storage capabilities to the plant by December of 2006.
I	I

(202) 234-4433

	235
1	Is there any other questions?
2	CHAIRMAN WALLIS: Does that bring it to
3	the end of your presentation?
4	MR. STUBBS: That would be the end of my
5	presentation.
6	CHAIRMAN WALLIS: I'm trying to look ahead
7	to the rest of the day here. Someone's going to talk
8	about LOCAs and transient and that's the next time,
9	huh?
10	MR. STUBBS: Rich Lobel is going to talk
11	about containment systems.
12	CHAIRMAN WALLIS: That includes LOCAs and
13	various transients?
14	MR. STUBBS: Yes.
15	CHAIRMAN WALLIS: Okay. Not from the
16	Appendix K standpoint.
17	Well, I think we should take a break.
18	Thank you very much for your presentation.
19	MR. STUBBS: Okay.
20	CHAIRMAN WALLIS: Five minutes to 3:00 we
21	need to be back.
22	(Whereupon, at 2:41 p.m. a recess until
23	2:56 p.m.)
24	CHAIRMAN WALLIS: Come back into session,
25	please.
I	I

236 1 We're now going to complete the NRR 2 presentation. I have one question. 3 MR. KALYANAM: 4 Before Rich Lobel goes, we have two experts, one of 5 the FAC CHECWORKS program, the other one on the steam generator tubes. So we had some questions before the 6 7 break, and I'm sure they'll be able to provide their 8 response to that. Is that okay. 9 Well, I've been bagging on the DR. FORD: 10 head about this FAC business. Ι understand it perfectly. The other members might enjoy having a 11 12 presentation on that. Okay. Either way is fine. 13 MR. KALYANAM: 14 CHAIRMAN WALLIS: If it's something we're 15 going to enjoy, I think we should do it. 16 MR. ROSEN: As many times as possible. 17 MR. SIEBER: That's one time. I have Ken Karwoski from 18 MR. KALYANAM: 19 EMCB 20 MR. KARWOSKI: I quess I understand this 21 morning there were questions from the steam generator 22 two integrity standpoints some questions about whether 23 or not the power uprate, what effect it would have on 24 wear and cracking along the length of the tubes as a 25 the increased flow through the steam result of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	237
1	generator. And then there may have also been a
2	question about the adequacy of the 75 gallon per day
3	leakage link.
4	In terms of the effect of the power uprate
5	on the increased flow through the steam generator,
6	there is a potential effect on the amount of wear that
7	can happen at the various support locations, whether
8	it be at the vertical straps, the diagonal bars or at
9	the egg crate supports. There could be an effect on
10	the wear.
11	In addition, Waterford has exhibited
12	stress corrosion cracking at a number of locations
13	along their steam generator tubes. Both of those
14	mechanisms could be effected by the power uprate.
15	However, the change in the conditions in terms of the
16	flow, the temperatures and the pressures across the
17	steam generator tubes are relatively small and well
18	within the bounds of what exists at other plants. And
19	it's been our experience at the other plants which
20	have uprated power that these small changes have
21	negligible increases in corrosion rates, negligible
22	increases on wear rates. And by "negligible," I mean
23	that it's well managed from one inspection to the
24	next; that when they go in and do an inspection after
25	a power uprate or after an interval, that they still
I	1

(202) 234-4433

	238
1	have tube integrity. That the tubes have adequate
2	regulatory margin
3	CHAIRMAN WALLIS: This is where? On the
4	inside of the tubes you're talking about?
5	MR. KARWOSKI: On the outside.
6	CHAIRMAN WALLIS: Are the tubes rattling
7	and wearing.
8	MR. KARWOSKI: Rattling and wearing. And
9	that happens at almost every
10	CHAIRMAN WALLIS: These fluid interactions
11	are a little hard to predict, aren't they?
12	MR. KARWOSKI: Actually, they're quite
13	reliable. I mean there are some instances where some
14	tubes, and this is usually in the life of a steam
15	generator, where some tubes will wear quicker than
16	others because of the placement of the anti-vibration
17	bars or the diagonal straps in the case of Waterford.
18	So some tubes may wear more than others,
19	but in general these phenomenon are very predictable.
20	Plants leave wear scars in service, and in general
21	they're very predictable. The wear rates tend to be
22	very low and they're left in service for many cycles
23	before they exceed the tech spec.
24	MR. ROSEN: Do they tend to decrease in
25	rate because they kind of wear off whatever the
I	I

(202) 234-4433

	239
1	contact point and that's it?
2	MR. KARWOSKI: That has been the
3	experience, and I can't comment on the combustion
4	engineering data, but I know that that's definitely
5	been the experience at Westinghouse design steam
б	generators. But the wear rates decrease with time
7	because of the contact issue point.
8	MR. ROSEN: Now the question is brought up
9	how about the effect of vibration, vibrational
10	stresses on the kinetics of stress corrosion cracking?
11	MR. KARWOSKI: Once again, you know, it is
12	possible that that would increase the rate of
13	cracking, may even change the initiation of cracks.
14	But it's been our experience that any change that does
15	occur: (1) It's not readily measurable, and; (2) that
16	it can be managed within the normal frequency of in
17	service inspections. And certainly if there is a
18	change, we will detect that as we review the annual
19	reports that the plant sends in regarding their
20	inspections. And we would expect them to take
21	corrective action, and that would be something we
22	would followed up. But in general we have not
23	observed that. And in the case of Waterford, it's been
24	their practice that when they find a crack, they plug
25	that crack on detection. It's not like some of the
ļ	I

(202) 234-4433

240 1 other plants which leave cracks in service and try to 2 manage cracks that --3 MR. ROSEN: My questions on those two 4 issues. The displacements are 5 MR. SIEBER: extremely small and the number of cycles is extremely 6 7 large. So if there is going to be failure, it would 8 show up fairly early, I would expect. MR. KARWOSKI: That would be for like the 9 10 cycle type of fatigue failure. MR. SIEBER: Right. 11 12 MR. KARWOSKI: In this case it's more just the wearing of the tube, which it can be low cycle--13 14 MR. SIEBER: But that's not fatigue failure. 15 16 MR. KARWOSKI: No, that is not fatigue. 17 Yes, that's correct. 18 Right. It's just wearing MR. SIEBER: 19 out. 20 MR. KARWOSKI: That's just wear. 21 FORD: Jack, there's a problem DR. 22 discussed earlier on. It's not trangranular fatigue, 23 cracking you see. Right. 24 MR. SIEBER: 25 DR. FORD: And therefore it's not covered

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

241 1 by the ASME 3 code or anything like that. Similarly 2 stress code in cracking that's it's just been 3 accelerated. 4 MR. SIEBER: But wear phenomenon is 5 covered by the ASME code. 6 DR. FORD: Yes. 7 MR. KARWOSKI: Through the plugging limits 8 and what not and through the plant technical 9 specifications. 10 DR. FORD: Right. CHECWORKS? 11 MR. KARWOSKI: I think Louise Lund was 12 going to talk about CHECWORKS. 13 14 DR. FORD: Maybe if I could just state what my problem was, Louise, and that would make it 15 16 more efficient for you to answer it. Should I introduce myself first 17 MS. LUND: for the record? 18 19 DR. FORD: Yes. 20 MS. LUND: I'm Louise Lund. I'm the 21 Section Chief for the Steam Generator and Integrity 22 and Chemical Engineering Section, NRR. And, anyway, 23 I was asked to come over and discuss the FAC program. 24 DR. FORD: My concern was that the way 25 that they're using CHECWORKS right now, it is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 primarily a prioritization tool as to where you're 2 going to look in the carbon steel piping. From the 3 measures that were shown this morning, it's apparent 4 that CHECWORKS is not good on one-to-one correlation. 5 Therefore, it's quite possible that you may use CHECWORKS to say that I should not look at that pipe 6 7 because of the particular operating conditions of that 8 pipe, but I should look at this pipe. But in fact that 9 pipe there might well be eroding at quite a large rate, but you wouldn't look at it for one, two, three 10 In that time you could go through wall. 11 cycles. So 12 that was essentially my worry that you're using a model which is not precise to make prioritization 13 14 decisions.

15 Right. And I just want to say MS. LUND: 16 off the top, you know we have a very active interest 17 in the FAC programs. Specifically we've had generic letters or generic correspondence that has asked 18 19 industry to put together these type of programs which 20 manage FACs and also have these predictive 21 methodologies. However, it's not a case of just using 22 the predictive methodologies blindly and looking at 23 information on one line or another; there's a number 24 of things that inform the decision as far as what's 25 inspected and how it's inspected. Because it is a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

242

tool, but it's not a blind tool in that particular way. And, in fact, this gentleman I believe is from Waterford and he was mentioning, we had a kind of offline discussion about it and that's why I asked him to come up here and help discuss this, and specifically for Waterford.

7 I also wanted to say that for these FAC 8 programs, I think that we have an interest in looking 9 at them through power uprate and license renewal in that we ask that the licensee provide information on 10 their most susceptible lines with their measures 11 versus their predicted and whether it gave them 12 information such that they could replace the lines, 13 14 you know, in a timely manner. Because that's really 15 what we want to know is, is it giving you the information at the time that you need it in order to 16 17 make the decisions you need to make good decisions 18 about running your plant.

So that's the kind of questions we ask. We 19 do not do a re-review of their CHECWORKS data. 20 We do 21 not take all their raw data and subsequently do an 22 Okay. So I just wanted to kind of audit of it. 23 clarify what it is that we do, you know, in our review 24 process. Usually through a request for additional 25 information we usually will ask them for the most

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	244
1	susceptible lines.
2	MR. ROSEN: We call that a performance-
3	based regime?
4	MS. LUND: Right. Right. And when we put
5	out that generic letter where we asked the licensees
6	to put together a FAC program and also have these
7	predictive methodologies, we did inspections of those
8	programs at that time. Okay. In fact, to make sure
9	that these programs were in place and in fact doing
10	what we thought that they were doing. Okay.
11	Now, I now in license renewal, true
12	license renewal we've been asked to come and give a
13	presentation to the ACRS on FAC and FAC programs. And
14	we've actually been in contact with CHECWORKS user
15	script to ask them to come in and help present this
16	information such that you can look industry-wide at
17	how well these FAC programs are working, specifically
18	with the CHECWORKS program and give you a lot of sense
19	instead of looking at just one graph, kind of get
20	a sense for generically how this is working and where
21	it may be challenged in certain ways or another,
22	because they think that they have a very good story to
23	tell.
24	Now maybe if you could introduce yourself,
25	and then also explain how programmatically it's a much
I	

(202) 234-4433

	245
1	lighter look at how you choose the lines and
2	because there's a surrogate aspect to it where, you
3	know, if you see something you look at other things
4	that are like that. There are a lot of things that go
5	into the program that don't rely on just this
6	measurement.
7	So, anyway
8	MR. ALEKSICK: Good afternoon. My name is
9	Rob Aleksick. I'm with CSI Technologies representing
10	Entergy today.
11	Real quick about my background. I've had
12	the opportunity to be involved with flow accelerated
13	corrosion since 1989 and in particular have modeled or
14	otherwise addressed approximately 20 EPU efforts in
15	the last two years.
16	Dr. Ford made a very good point earlier
17	when he said that the graph that we looked at did not
18	display a very good correlation between the measured
19	results and the predicted results out of CHECWORKS.
20	Programmatically well, let me back up a second.
21	That is certainly true in the example that we looked
22	at. That is not always the case.
23	CHECWORKS models are on a per line or per
24	run basis. The run
25	CHAIRMAN WALLIS: Could we go back to that

(202) 234-4433

	246
1	graph that we saw? The graph was a plot of thickness
2	versus predicted thickness.
3	MR. ALEKSICK: That's correct.
4	CHAIRMAN WALLIS: Because if you looked at
5	amount removed versus predicted amount removed, it
6	seems to me the comparison will be even worse.
7	MR. ALEKSICK: That's correct. In fact
8	CHAIRMAN WALLIS: That's what you're
9	really trying to predict is how much is removed.
10	MR. ALEKSICK: Yes, that is true. And my
11	point is that in some subsets of the model, the one
12	that we looked at here which was high pressure
13	extraction steam, the correlation between measured and
14	predicted is not so good. And in some subsets of the
15	model, the correlation is much better.
16	CHAIRMAN WALLIS: It looks to me that in
17	some cases it's predicting no removal whereas in fact
18	there's a lot of removal. So the error is percentage
19	wise enormous?
20	MR. ALEKSICK: Yes, exactly. Exactly.
21	Some runs results are imprecise and some more precise.
22	And we look at both accuracy and precision.
23	Programmatically we account for that, that reality, by
24	treating those runs that have what we call well
25	calibrated results, i.e., precise and accurate results
I	I

(202) 234-4433

1 coming out of the model that are substantiated by 2 observations, piping we treat those segments 3 differently programmatically than we do areas where 4 the model is less good. If the model results do not 5 correlate well with reality, different actions are taken primarily increased inspection coverage to 6 increase our level of confidence that those systems 7 8 can continue to operate safely.

9 In addition to the CHECWORKS results many 10 other factors are considered to assure that the piping retains its integrity, chief among these are industry 11 experience as exchanged through the EPRI sponsored 12 CHUG group. Plant experience local to Waterford in 13 14 this case. And the FAC program owner maintains an 15 awareness of the operational status of the plant so for example, modifications 16 that, or operational 17 changes that occur are taken into account in the inspection of the secondary site FAC susceptible 18 19 piping.

20 DR. FORD: And my final question on this 21 particular subject was given the uncertainties in the 22 model, changed by this performance based aspect that 23 you just talked about, is there any way that you can 24 come up with a quantification of the risk associated 25 with a failure of a specific pipe?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	248
1	MR. ALEKSICK: There's currently no
2	accepted methodology to quantify that risk, no.
3	However, it is accounted for primarily on a judgment
4	basis through industry experience and information
5	exchange through the EPRI CHUG group.
6	DR. FORD: Okay.
7	MR. MITCHELL: Yes, this is Tim Mitchell.
8	Just to give you a feel for how we're
9	addressing for this upcoming refueling outage, we have
10	increased our scope for a couple of reasons. One to
11	get additional data and we always do more than just
12	exactly what CHECWORKS supports. So you're always out
13	validating and getting more data to be able to help
14	predict where do you need to be looking. But in
15	addition, we're taking some additional points to make
16	sure we have good baseline data for the next cycle to
17	ensure that those points give us a good indication
18	going forward after the EPU.
19	The analysis for flow accelerated
20	corrosion shows very minimal changes as a result of
21	power uprate. But we are taking seriously our
22	inspection program and expanding it for this upcoming
23	outage to ensure that we know what's happening not
24	just what we're predicting.
25	MR. ROSEN: Let me roll that back now,
ļ	

(202) 234-4433

	249
1	Tim. Can you tell me like for the last three or four
2	outages have you done some actual replacement of
3	piping based on predictions of FAC from the CHECWORKS
4	code or have you never replaced anything? What are
5	you seeing at Waterford?
6	MR. MITCHELL: I can give you non-
7	Waterford data better than I can give Waterford to
8	ponder.
9	MR. CHOWDHURY: My name is Prasanta
10	Chowdhury and I'm working with Entergy design for last
11	20 years.
12	I was involved with FAC also for several
13	years in the past.
14	It's not the CHECWORKS model that
15	determines what replacement is to be done. We base it
16	on actual measurement we take during the refuel
17	outage. So we also project based on actual measurement
18	that what will be our future projected thickness in
19	next refueling outage. So you can survive until next
20	cycle. And then we do some evaluation based on our
21	criteria that makes the stress criteria or based on
22	the code requirement. Like make all the equation.
23	Now code allows to go thinning in local
24	area but the FAC is a local thinning. So we do some
25	local thinning evaluation to make sure that it goes to
Į	

(202) 234-4433

	250
1	the next cycle.
2	Does that answer your question?
3	MR. ROSEN: No.
4	MR. MITCHELL: Did we replace any piping
5	in the last three outages?
6	MR. CHOWDHURY: I don't recall. I don't
7	recall. But we did extensive modification on
8	extraction steamline in the past. But it changed to
9	crack piping or stainless steel piping or chrome moly,
10	which is more corrosion resistance piping. I don't
11	answer your question
12	MR. ROSEN: You say you have made
13	extensive modifications
14	MR. CHOWDHURY: In the past.
15	MR. ROSEN: you changed to chrome moly?
16	MR. CHOWDHURY: Several years back, yes.
17	MR. ROSEN: Okay.
18	MR. CHOWDHURY: So whatever we did, see
19	the corrosion of thinning, we took it out and made
20	modifications.
21	MR. ROSEN: Yes, well, that's typically
22	the plant's response. If you find substantial
23	thinning, then you just don't go back and put in
24	carbon steel back in the same place.
25	MR. CHOWDHURY: Right.
I	1

(202) 234-4433

	251
1	MR. ROSEN: Because what happened before
2	will happen again.
3	MR. CHOWDHURY: I mean we have also made
4	a procedural entry into this FAC that anytime we do a
5	replacement, we use a better corrosion resistant
6	material or EPRI guidelines.
7	MR. ROSEN: Okay. So you're saying you
8	have made those kinds of modifications.
9	MR. CHOWDHURY: Yes. But still we are
10	ongoing and doing things. If we see something we need
11	to change, we change it.
12	Does that answer your question, sir?
13	MR. ROSEN: It's a little better. Not a
14	100 percent.
15	MR. CHOWDHURY: Okay.
16	MR. ROSEN: I would prefer something, and
17	maybe for next meeting you can come back with some
18	real data that there are 11 locations that you changed
19	in the last five years or something.
20	MR. CHOWDHURY: Yes, we can do that.
21	Because I don't have the data with me. I can get in
22	touch with the FAC program engineer and get those
23	information. Thank you.
24	CHAIRMAN WALLIS: That would be excellent.
25	DR. FORD: Thanks very much indeed. I
I	I

(202) 234-4433

	252
1	appreciate it.
2	MR. KALYANAM: Next we have the
3	Containment Systems group Richard Lobel.
4	MR. LOBEL: Good afternoon. My name is
5	Richard Lobel. I'm with the Probabilistic Safety
6	Assessment Branch but in the Containment System area.
7	Next slide, please.
8	I wanted to talk about the review of the
9	analysis that were done for the containment accident
10	analysis. This slide lists the areas that were looked
11	at. Basically the analysis of containment response to
12	a LOCA both the mass release and the containment
13	response and the containment response to a main
14	steamline break, both mass and energy into the
15	containment and the containment response and
16	subcompartment analysis also, which is a type of LOCA.
17	Next slide.
18	CHAIRMAN WALLIS: You mean that PSA Branch
19	actually does this sort of thermal-hydraulic analysis?
20	MR. LOBEL: We're the orphan section. We
21	go to the branch meetings but don't understand what
22	they're talking about, because it's all acronyms
23	dealing with risk and we just sit there and listen.
24	But that's where they put us.
25	The mass and energy for the LOCA was
	I

(202) 234-4433

	253
1	calculated using NRC approved Westinghouse methods,
2	Ceflash for the blowdown and Flood 3 for reflood and
3	Contrans for the long term mass and energy release.
4	The calculations for LOCA were previous
5	approved by the staff and the license amendment
6	issued, I think in Amendment 165 that had to do with
7	changing the number of operable fan coolers. And I
8	think that was issue around 2000. So the mass and
9	energy release and the containment response for LOCA
10	haven't changed for the Waterford EPU because the
11	analyses were initially done at EPU conditions.
12	A subcompartment is defined in the SRP,
13	for those who are familiar, as any partially or fully
14	enclosed volume within the primary containment that
15	houses a high energy piping and limits the flow out of
16	that volume so that the subcompartment pressurizes
17	faster than the global response to the containment.
18	And the item of interest is the structural integrity
19	of the walls of the subcompartment.
20	The license reexamined this and found that
21	there was significant margin to any limits. And used
22	approved methods.
23	The main steamline break analysis was done
24	using the NRC approved code, SGNIII that was approved
25	back with CESAR and calculates the mass and energy

(202) 234-4433

release from a ruptured steamline into the containment.

3 The containment response to both the LOCA 4 and the steamline break were calculated with the 5 GOTHIC code. The staff back in this Amendment 165 had approved GOTHIC 5 for use by Waterford and the 6 7 licensee went to the more recent version of GOTHIC, GOTHIC 7. The staff had reviewed GOTHIC 7 on another 8 docket and found it acceptable with some limitations 9 or restrictions that had to do with modeling of heat 10 transfer. The licensee used the code in a way that 11 model 12 didn't of the that found use any we unacceptable. So the calculations done with GOTHIC 7 13 14 were benchmarked to GOTHIC 5 calculations and found to 15 be very close. 16 CHAIRMAN WALLIS: So you accepted the 17 calculations made by the applicant? MR. LOBEL: Yes, we didn't do --18 19 CHAIRMAN WALLIS: You didn't any confirmatory calculations? 20 21 MR. LOBEL: No, because of the fact that 22 change wasn't all that the much in terms of 23 containment and the licensee used methods, mass and 24 energy methods had been used for decades now for 25 analysis and CE designed plants. And like I said,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

254

	255
1	GOTHIC 7 we reviewed on another docket and the
2	licensee was asked to verify that they were using the
3	code consistent with that review, and they answered
4	that they had. So it really didn't qualify for
5	analysis that required an independent audit.
6	The environmental qualification analysis
7	the licensee stated that the containment pressure and
8	temperature for EPU conditions were bounded by the
9	existing plant accident profile except for the time at
10	elevated temperatures, which was slightly longer. And
11	the licensee confirmed that the electrical equipment
12	was still qualified for the longer time and the
13	containment flood level remained unchanged.
14	MR. SIEBER: It would seem to me that with
15	respect to the scored energy contained in fluids, they
16	would be equal to or perhaps slightly lower than the
17	current conditions at the plant. And the only thing
18	that's different is the decay heat of the core.
19	MR. LOBEL: Yes.
20	MR. SIEBER: And so whatever differences
21	you see are the result of the, perhaps, ten percent
22	higher level of decay heat, which would tell me
23	everything stays about the same.
24	MR. LOBEL: Yes. Basically these codes
25	because typically when we do an audit calculation, we
ļ	

(202) 234-4433

	256
1	ask the licensee which we didn't do in this case.
2	When we do, we ask the licensee for his mass and
3	energy calculations. So really this is just a heat
4	balance check.
5	MR. SIEBER: That's right.
б	MR. LOBEL: And a check of the heat
7	transfer models and that kind of stuff accounting for
8	the inventory of liquid, what's condensing on the
9	walls and what's falling in the sprays and what's in
10	the sump, and all that.
11	MR. SIEBER: Right. Right.
12	MR. LOBEL: So it's basically true.
13	There were slight differences in the
14	calculations, some assumptions, but really not
15	CHAIRMAN WALLIS: But you could almost
16	estimate the change in pressure by a global energy
17	balance or put it into the containment and see what
18	happened. And you've come fairly close in terms of an
19	increment.
20	MR. LOBEL: Yes.
21	MR. SIEBER: That's why it's small.
22	CHAIRMAN WALLIS: Yes.
23	MR. LOBEL: Next slide, please.
24	CHAIRMAN WALLIS: So you do it on the back
25	of an envelop confirmatory calculation.
ļ	I

(202) 234-4433

	257
1	MR. SIEBER: Yes.
2	CHAIRMAN WALLIS: That's what I would do.
3	MR. SIEBER: You would not even need the
4	whole envelop.
5	MR. LOBEL: These are the results of the
6	calculations for the LOCA. Like I say, these were
7	done for a previous license amendment that the staff
8	approved. And the next slide for the steamline break.
9	Let me just point out there should have been change to
10	the slide. The numbers for the pressure and
11	temperature are very slightly different than what I
12	have here. This was from the licensee's original
13	submittal and they made a modification, which didn't
14	make it onto the slide.
15	The pressure, I think, was 41.87 instead
16	of 41.83. So not really significant.
17	CHAIRMAN WALLIS: These temperature
18	acceptance limits are so different because steam has
19	a different effect than water or something on
20	MR. LOBEL: On a LOCA in the main
21	steamline break?
22	CHAIRMAN WALLIS: On equipment, is that
23	what it is or was it
24	MR. LOBEL: Yes. We asked the license
25	about this and the licensee claims that the acceptance
I	

(202) 234-4433

	258
1	level they've always used for main steamline break is
2	this high temperature, which is an environmental
3	qualification temperature. So we did ask the licensee
4	well how does that address the issue of structural
5	integrity of the containment. And the licensee came
6	back in response and said that they had looked at that
7	and they were calculating a temperature below the
8	structural temperature.
9	CHAIRMAN WALLIS: Well, did the
10	containment sprays come on during all this?
11	MR. LOBEL: Yes.
12	MR. SIEBER: Yes.
13	CHAIRMAN WALLIS: So why is the steam
14	break inherently different from a water steam break?
15	MR. LOBEL: Well, typically the
16	CHAIRMAN WALLIS: Everything is wet and
17	soggy no matter what, isn't it?
18	MR. LOBEL: Well, typically the enthalpy
19	of the break is higher and the timing is different for
20	the steamline break.
21	MR. SIEBER: More mass.
22	CHAIRMAN WALLIS: But the environment is
23	wet and soggy in either case, and the temperature is
24	very different in the two cases. I can't understand
25	why equipment qualification or whatever should be so
	I

(202) 234-4433

	259
1	different.
2	MR. LOBEL: Well, I can't answer what the
3	basis for that limit is. Maybe the licensee can. But
4	I'm sure it's based on
5	CHAIRMAN WALLIS: Don't you set the
6	acceptance limit?
7	MR. LOBEL: Pardon?
8	CHAIRMAN WALLIS: Doesn't the agency set
9	the acceptance limits rather than the licensee?
10	MR. LOBEL: Well, we set the criteria, but
11	no the licensee typically sets the value because it
12	depends on the design of his containment and any
13	equipment in his containment. So
14	MR. SIEBER: Generally the EQ profile, you
15	have a lot of electrical equipment in containment and
16	each one has an EQ profile that it has been tested to.
17	MR. LOBEL: Right.
18	MR. SIEBER: So you look at the most
19	restrictive of those, and that becomes the design
20	acceptance form below which you must keep the
21	containment response to a steamline break.
22	MR. LOBEL: It's a very conservative
23	calculation. For instance, the staff guidance allows
24	the licensee to take credit for what's called
25	revaporization where some of the liquid that is
I	

(202) 234-4433

ĺ	260
1	condensed goes back into steam again and takes some
2	energy out of the system. But Waterford didn't take
3	credit for that.
4	DR. RANSOM: Are these results for LOCA a
5	large break LOCA?
6	MR. LOBEL: Yes. That's typically limiting
7	for containment.
8	MR. SIEBER: What's that, the LOCA?
9	Steamline break?
10	MR. LOBEL: Well, for a LOCA, the large
11	break LOCA is typically limiting for containment.
12	MR. SIEBER: That's right.
13	MR. ROSEN: The previous slide.
14	MR. SIEBER: Okay.
15	MR. LOBEL: In general, some licensee
16	predict that the steamline break is a higher
17	temperature and
18	MR. SIEBER: Yes. I thought that
19	generally the case, that there's more energy release
20	from a steamline break than a LOCA.
21	MR. LOBEL: Yes.
22	CHAIRMAN WALLIS: Well, the SER is full of
23	all kinds of transients that were analyzed. And there
24	is nothing of interest in any of that, is that right?
25	It's just these few that are the limiting ones that we
	I

```
(202) 234-4433
```

	261
1	worry about?
2	MR. LOBEL: For the containment, yes.
3	MR. SIEBER: It depends on who
4	CHAIRMAN WALLIS: Well, for anything else.
5	I mean, for any other criteria, all these other
6	transients that are in the SER, that presumably you're
7	not going to talk about, were not interesting because
8	they never challenged any limits?
9	MR. LOBEL: Well, not containment limits.
10	DR. DENNING: Radiological. Some of them
11	are radiological.
12	MR. LOBEL: This review concentrates on
13	the structural capability of the containment.
14	CHAIRMAN WALLIS: Just on containment.
15	All those other things that were in the SER that we're
16	not going to discuss perhaps?
17	MR. LOBEL: Well, I think they're going to
18	be discussed after I'm done. We have people here to
19	discuss them. But it's not something I review.
20	CHAIRMAN WALLIS: Maybe they just
21	summarize in a minute or two or something all these
22	events. We're going to get to that next, are we?
23	MR. LOBEL: Yes.
24	CHAIRMAN WALLIS: Okay. So are you
25	finished?
1	

(202) 234-4433

	262
1	MR. LOBEL: I'm finished.
2	CHAIRMAN WALLIS: Thank you very much.
3	MR. KALYANAM: Next we have Sam Miranda
4	from the Reactor Systems Branch.
5	CHAIRMAN WALLIS: We still have about half
6	of your slides to go through, is that real? I'm just
7	looking at the schedule and the mass of slides here.
8	MR. KALYANAM: And hopefully Sam will be
9	able to skip quite a few of them.
10	CHAIRMAN WALLIS: Okay. Thank you.
11	MR. MIRANDA: My name is Sam Miranda. I
12	work in the Reactor Systems Branch as a technical
13	reviewer. And could I have the next slide, please?
14	Our review areas are listed in the
15	following slides. They're based on Matrix 8 of the
16	Review Standard-001.
17	Okay. At this point in general, I could
18	summarize the review areas as those accidents or
19	transients that are sensitive or effected by the power
20	uprating or have been analyzed using different
21	methods. In the case, the principle change in the
22	non-LOCA accidents was the transition from CESEC to
23	CENTS.
24	As part of our review we have also done an
25	audit of several key analyses, a detailed review both
	I

(202) 234-4433

	263
1	in-house and at Westinghouse's offices in Connecticut.
2	And we concentrated on these accidents for various
3	reasons.
4	For example, the loss of feedwater
5	analysis is a loss of heat sink event which would be
б	effected by the power uprating.
7	The feedline break analysis is one of the
8	more complicated non-LOCA events which requires a
9	detailed model of the secondary side.
10	Steamline break analysis in this instance,
11	we noticed that there was a change in the licensing
12	basis for the steamline break. Besides using the
13	CENTS code, there was the licensee was reporting a
14	fuel failure for the inside containment steamline
15	break with loss of offsite power and where they had
16	not been doing so in the past in the FSAR.
17	Furthermore, this fuel failure was due to
18	incipient centerline melting. And we discussed it with
19	the licensee and they agreed that in the future that
20	there would be fuel management and shutdown margin
21	available to prevent centerline melting of fuel.
22	However, they do predict two percent fuel failure due
23	to clad damage.
24	We also looked at the small break LOCA and
25	long term cooling, and Dr. Len Ward, my colleague,
I	

(202) 234-4433

	264
1	will discuss this in further detail after me.
2	MR. SIEBER: As far as long term cooling
3	is concerned, it seemed to me that was where one of
4	the shortfalls was, slightly. And the question is do
5	you retain a coolable geometry for the long term?
6	MR. MIRANDA: I didn't get the first part
7	of your question.
8	MR. SIEBER: Well, it seemed to me that
9	one of the questions was the capability to do long
10	term cooling. And my question is does Waterford
11	retain coolable geometry for the long term period,
12	which is 30 days plus?
13	DR. WARD: Yes. I'm Len Ward from the
14	Reactor Systems Branch. I'm going to talk about that
15	right after this discussion in about ten minutes.
16	MR. SIEBER: Okay. All right.
17	DR. WARD: And it's in regard to boric
18	acid precipitation where you can block the entire core
19	with boric acid.
20	MR. SIEBER: Okay.
21	MR. MIRANDA: Yes, we have a detailed
22	discussion on that coming up.
23	These are some results of our calculations
24	we did. We did the details reviews, we did the audits
25	and Len Ward also did some independent calculations.
I	1

(202) 234-4433

	265
1	And this is a brief summary of those results. And
2	he'll be going into this in further detail later.
3	As you can see, we have the fuel clad
4	failure of 2 percent in the steamline break.
5	For the large feedline break, one of the
6	concerns is RCS over pressurization. And the licensee
7	predicts a peak pressure of 2753 psia and our staff
8	calculations predict 2709 psia.
9	The next slide.
10	CHAIRMAN WALLIS: And that 3000
11	parenthesis, that's an acceptable?
12	MR. MIRANDA: That is the limit for this
13	event, yes.
14	The loss of condenser vacuum, we also got
15	good agreement between the submittal and our
16	independent calculation, as well as the small LOCA. We
17	were predicting within half a foot of core uncovery.
18	Next slide.
19	CHAIRMAN WALLIS: And that's okay to have
20	the core the top half of the core uncovered for
21	over 1,000 seconds is okay? Maybe I've forgotten this
22	kind of thing, but it seems sort of surprising to me
23	to have it uncovered for so long.
24	MR. MIRANDA: Yes. This morning there was
25	a peak clad temperature reported for this break of
ļ	I

(202) 234-4433

	266
1	2018.
2	CHAIRMAN WALLIS: Right. That is
3	presumably because it's climbing up steadily during
4	all that time and it's dry.
5	MR. MIRANDA: These slides I'm going to go
6	through very quickly. I have them in case anyone
7	wants to ask questions or discuss them, but basically
8	what these are are a checklist or a worksheet that I
9	was using to be sure that all of the events were
10	addressed. And for a power uprating submittal, not
11	all the accidents really need to be reanalyzed. You
12	have to look at the ones that are effected by the
13	power uprating and the ones that are effected by
14	changes in methodology. And there are a lot of
15	accidents that are bounded by others. And you need to
16	be careful about reviewing the ones that are bounded
17	by others to be sure that you're comparing apples-and-
18	apples, that the same criteria apply for these events.
19	And that's where the ANSI Condition II, III and IV
20	come in. And this is an expansion you might consider
21	of Matrix 8 of the Review Standard where I'm looking
22	at these events to be sure that claims of one accident
23	bounding another really are valid.
24	So that's the rest of the slides.
25	CHAIRMAN WALLIS: Why do you need to
11	

(202) 234-4433

	267
1	consider so many things? I mean, presumably very few
2	of them turn out to be significant?
3	MR. MIRANDA: Exactly. And some of them
4	many of them are not analyzed.
5	CHAIRMAN WALLIS: But you knew from
6	previous experience before the uprate that many of
7	them didn't come close to challenging the system.
8	MR. MIRANDA: Yes.
9	CHAIRMAN WALLIS: Yet you still have to go
10	through it all again for a relatively small change in
11	power?
12	MR. MIRANDA: Just to be sure that it was
13	looked at, yes. And a lot of them, as you'll see,
14	they're not even analyzed. They're bounded.
15	MR. SIEBER: Is that because of the way
16	the Review Standard is written?
17	MR. MIRANDA: Yes. The Review Standard
18	covers all of these, that's right.
19	MR. SIEBER: What's your opinion of the
20	Review Standard the way it is right now easy to use,
21	difficult to use, does it make more work for you, does
22	it have a value added to it?
23	MR. MIRANDA: I have used it. I do think
24	it has a value added. I think it's too long. But I
25	use the parts that I find useful, and the parts that
	I

(202) 234-4433

	268
1	I found useful were the Matrix 8.
2	And, frankly, I think the Review Standard
3	should be used as a guide to revise the Standard
4	Revenue Plan, which need revision anyway. So this is
5	a good starting point for the revision, and we should
6	rely mainly on the Standard Revenue Plan which should
7	have provisions in each Standard Revenue Plan section
8	to deal with situations such as upratings. If you're
9	looking at uprating, consider decay heat, consider
10	power level, consider so on.
11	MR. SIEBER: It seemed to me that it did
12	allow the staff to produce pretty good SER. To me
13	it's one of the best that I've seen.
14	MR. MIRANDA: Thank you.
15	If there are no more questions, I'd like
16	to have Dr. Len Ward come up and discuss the
17	independent calculations and the long term cooling.
18	DR. WARD: My name is Len Ward. I'm in the
19	Reactor System Branch. And I just wanted to show you
20	some calculations that I did, some audit calculations.
21	The large feedline break. We looked at the limiting
22	small break LOCA and I looked at post-LOCA long term
23	cooling, and that's dealing with boric acid
24	precipitation.
25	And we picked these because when you have
I	I

(202) 234-4433

269
increase in power like that, small breaks will uncover
deeper, they'll be exposed longer, you're really
taxing the ECCS. And this limiting small break I'm
going to show you is controlled by the high pressure
safety injection safety only, one HPSI pump.
Post-LOCA long term cooling is important
because you're putting in borated water into a system
that's boiling. You're building up boric acid. And
once you reach the solubility limit, you'll get
precipitation. So clearly what's CE/Westinghouse does
is they would provide a guidance document to the EOPs
to their customer, and they would recommend a time to
switch to simultaneous hot and cold side injection.
And that is initiated to control the boric acid and
prevent it from building up. And I'll show you the
results of some of some the calculations that we did
and
CHAIRMAN WALLIS: You're going to have a

19 much higher concentration of boric acid, too?

20 DR. WARD: That's right. That's right. 21 The source is higher, the power is higher. I'll get 22 into it, but basically our calculations showed that --23 I couldn't reproduce the results, and the reason was 24 there was an error in it. But we fixed it and I'll 25 get into the details later.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

б

7

8

9

10

11

12

13

14

15

16

17

18

	270
1	CHAIRMAN WALLIS: There was an error in
2	your calculations?
3	DR. WARD: No. There was an error in their
4	calculation.
5	CHAIRMAN WALLIS: Oh, okay.
6	DR. WARD: I was asked to speed this up,
7	do you want me to jump to the small break LOCA and the
8	boric acid
9	CHAIRMAN WALLIS: Because yours may be one
10	of the more interesting presentations.
11	DR. WARD: Okay. Let me ask the Chairman
12	here, or the Committee, do you want me to talk about
13	feedline break okay. I mean, it's up to you.
14	CHAIRMAN WALLIS: These are important.
15	DR. WARD: Okay. The large feedline
16	break, basically I verified their peak pressure and to
17	get to the bottom line here, they really overwhelmed
18	this, they did it to death. They assumed the
19	feedline break was at the bottom of the tube sheet so
20	that they expelled all the liquid from the system in
21	about 20 second due to break. Now clearly, you know,
22	it's a boil off problem if you put the break up at the
23	actual location. You're going to have a heat sink
24	for a longer period of time and you're not going to
25	probably use your heat sink while you're at full
l	I

(202) 234-4433

	271
1	power. But I consider this analysis pretty much beat
2	to death, and so I didn't want to emphasize this too
3	long because I'd like to get to the small break
4	because of Dr. Wallis' concerns.
5	But the staff calculation are the circles.
6	And this is the cold leg pressure. And the I
7	calculated a pressure within 50 pounds pressure. And
8	basically what happens, as the next slide will show
9	you, when you put the break at the bottom of the tube
10	sheet, you basically drain the generator in about 20
11	seconds and so you degrade the heat transfer, you have
12	full power. Because you don't have full heat
13	transfer, the pressure goes up. And you hit the
14	safety valve opens, you get a trip. And the pressure
15	decreases and it slowly increases again later on
16	because the other generator, because of the
17	conservative assumption they made on aux feed, they
18	really delayed that. You start to pressurize again a
19	little bit at the end. But I was more focused on that
20	initial pressure and wanted to confirm that peak
21	pressure. Because this is an event that challenges the
22	design pressure of the plant.
23	Now, I mentioned small break LOCA.
24	DR. DENNING: Len, did you all assume
25	looking at water levels in the vessel and fuel
	1

(202) 234-4433

	272
1	failure?
2	DR. WARD: No, I didn't look at that. I'm
3	just looking at the thermal-hydraulics. I'm looking
4	at peak pressure. I didn't look at or anything like
5	that. Well, I didn't get into that.
6	DR. DENNING: But this is the case, isn't
7	it, where there's two percent clad failure?
8	DR. WARD: You know, I can't remember. No,
9	I don't think so.
10	DR. DENNING: It's a different case?
11	DR. WARD: I don't think so.
12	MR. SICARD: This is Paul Sicard.
13	The feedwater line break is a
14	pressurization event. It does not challenge the DNBR.
15	There is no fuel failure for that event.
16	DR. RANSOM: Were these independent
17	calculations or were they using methods that
18	DR. WARD: And I'd better mention that I
19	didn't have six months to set up RELAP5. We didn't
20	have a Waterford plant deck. So I used a model that I
21	had put together, that I had developed about 15 years
22	ago. I'm going to document that calculation as part
23	of this submittal that the staff will get. It's very
24	similar to what you saw on AP1000. It's basically the
25	same model, but I put drift flux in there. It's got
1	·

(202) 234-4433

1 and thermal dynamics. It solves a network, a 2 nodalization network simultaneously for pressure and The drift flux model 3 system flow rate, semi-implicit. 4 has been benchmarked against a lot of the data that 5 you've seen at low pressure as well at intermediate It's got all of the required Appendix K 6 pressures. 7 models in there; Henry-Fauske, critical flow. There's 8 a pump coastdown model. 9 could probably spend an easy hour Ι 10 describing it, but I would rather wait so that you could see -- you'll see the documentation on this 11 12 later on when I document it. But you may have seen most of the model documented in the AP1000 submittal, 13 14 the work that I did on that plant. 15 CHAIRMAN WALLIS: Why is there no credit for accumulator injection? 16 17 DR. WARD: That is a conservative assumption they made, and I'll show you. The primary 18 19 system pressure for this break decreased below the SIT 20 accutation pressure of about 580, but they didn't 21 credit it for this break. 22 The most limiting small break -- when you 23 have fairly low capacity HPSI pumps or HPSI pumps that 24 are SI pumps that CE has, their classic 2700 megawatt 25 plant Millstone/Calvert Cliffs, low capacity HPSI

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

273

	274
1	pumps, 200 pound accumulators. So because of that you
2	get these long uncoveries. So this kind of uncovery
3	transient that you're seeing is very typical of a CE
4	type plant.
5	But I wanted to mention that that this
6	calculation is still conservative. And there is no
7	credit for the accumulator injection. If they took
8	credit for that, you would have terminated the
9	transient earlier and the P clad temperature a 100 to
10	a couple hundred degrees lower.
11	Now remember, too, we're assuming the
12	decay heat is 20 percent higher and there's a diesel
13	failure, which means you're only taking credit for
14	three-quarters of one high pressure pump.
15	The actual power distribution is TOC
16	skewed. When you expose the core for a small break,
17	you want to look at a shape with a peak in the top
18	because that'll heat up the worse. And this shape
19	happens to be it's not a shape that's going to set
20	for decay heat. It's a shape that was chosen from a
21	transient analysis that would be momentary. The actual
22	decay heat shape will be less skewed because you've
23	been operating, you know, for months with that kind of
24	power shape.
25	So I just wanted to list some of the
ļ	

(202) 234-4433

	275
1	conservatisms in the analysis.
2	If we look at the pressure transient for
3	this break, this is an 0.055 square foot break at the
4	bottom of the discharge leg, and that's about a three
5	inch break. So it's pretty small.
6	When the break opens, the system
7	depressurizes, you lose the subcooling and you'll
8	establish a pressure plateau just over 1,000 pounds.
9	And that's because the break is too small to continue
10	to depressurize and so you have to rely on heat
11	removal through the generator.
12	The secondary side is sitting at the
13	relief valve setpoint. Actually, it's the ADV valve in
14	this case, and this is a good thing that CE did. They
15	qualified their ADVs to open at a lower pressure.
16	And so what does that do? That lowers the system
17	pressure from up here around 1200 down here, and that
18	means during this 1200 second tier, you're going to
19	get more injection into the system. So from a safety
20	standpoint, that was a good thing to do.
21	Now this is an Appendix K calculation, of
22	course, so there's 20 percent more decay heat.
23	This primary system is a giant U tube.
24	And the break in the cold leg, the fluid levels
25	drained down to the elevation of the break critical
ļ	I

(202) 234-4433

	276
1	flow of liquid going out of the system. Now once the
2	level drops down below the bottom of the cold leg,
3	you're going to get steam out. And so for the
4	remainder of the transient, it's a simple boiling pot.
5	You've got a head of water supporting a two phase
6	mixture on the core lower plenum side. And because of
7	the steaming rate going out the break, that that flow
8	is greater than the steaming rate in the core it
9	depressurizes. But at these higher pressures, the
10	high pressure pump cannot match boil off. So I'll
11	show you the level. The level is decreasing. And it's
12	a race so the pressure falls low enough so that the
13	high pressure injection can now match the decay heat
14	boil off and then the level will recover again.
15	And you can see the pressure. Small break
16	is a pretty simple transient. It's just a hydrostatic
17	fluid balance. The only mass in the system for the
18	majority of this event from 600 seconds out to an hour
19	is in the downcomer and in the core and lower plenum.
20	And to get steam elsewhere in the system, there's no
21	spacial variation in pressure. It's probably a tenth
22	of a psi pressure difference between the upper plenum
23	and the core. So you don't need a lot of cells to
24	model that. And that's why with the calculation I
25	did, it's basically got two volumes in the primary
Į	

(202) 234-4433

(202) 234-4433

	277
1	system. But I have a drift flux model to calculate
2	the level swell.
3	And that's probably the single most
4	important parameter that one
5	CHAIRMAN WALLIS: What does it matter
6	because if the top's dry, who cares what's happening
7	to the swelling below it?
8	DR. WARD: Well, I mean that's the point,
9	though. But you want to calculate the amount of
10	liquid mass that's in the core. You're voiding the
11	core
12	CHAIRMAN WALLIS: What I'm worried about,
13	though, that dotted line at the top which says top of
14	the core.
15	DR. WARD: Right, right here.
16	CHAIRMAN WALLIS: It's exposed for 1500 or
17	2000 seconds or something.
18	DR. WARD: Right. And I guess, that's
19	from
20	CHAIRMAN WALLIS: That's the worse.
21	DR. WARD: When you look at that, that's
22	kind of alarming, isn't it?
23	CHAIRMAN WALLIS: It is. Yes.
24	DR. WARD: But let's look at the reason
25	why that is. We've got 20 percent more decay heat
	1

```
(202) 234-4433
```

	278
1	than is actually there. If you decrease the power by
2	20 percent, that's just like increasing the capacity
3	of the high pressure pump by the same pump.
4	If you increase the flow rate from the
5	pump by 20 percent of a 12 and a half foot core,
6	you're going to increase that level by another two and
7	a half feet. It's going to be up here. And the
8	temperature is going to drop by 500 degrees.
9	Now, the accumulator came on right about
10	here, but they didn't credit it. And that would have
11	jumped the level up anyway. And they could have
12	credited that and we have accepted it. But they wanted
13	to make this conservative because you want to show the
14	most limiting small break in this range is the one
15	when the system depressurized on that previous plot,
16	the primary system pressure hangs up just above the
17	accumulator pressure. So the only thing that's
18	controlling this break is HPSI flow, and at about this
19	point here the system has depressurized enough. So
20	three quarters of one high pressure pump is now
21	exceeding the boil off and it's slowing filling back
22	up.
23	So now there is two-phase nucleate boiling
24	in the bottom. And as long as the plant's tripped,
25	that's okay. The clad temperature is probably within

(202) 234-4433

	279
1	ten degrees of the sink temperature. But up here now
2	we've got steam in this part.
3	CHAIRMAN WALLIS: That's 40 minutes for
4	that time for when it's exposed?
5	DR. WARD: It's exposed for yes, the
6	peak is probably somewhere right about here.
7	CHAIRMAN WALLIS: Yes. But TMI
8	DR. WARD: TMI drained completely.
9	CHAIRMAN WALLIS: was destroyed long
10	before 40 minutes.
11	DR. WARD: Yes. If this two-phase level
12	drops probably another foot, half a foot, it's going
13	to go over 2200 degrees. I mean with Appendix K
14	assumptions, they're probably at the limit they
15	probably can't drop that level too much more, like a
16	half a foot.
17	CHAIRMAN WALLIS: It's the fact that the
18	top's dry that
19	DR. WARD: This is steam cooling now. You
20	can cool a rod with steam.
21	MR. SIEBER: It's not dry.
22	CHAIRMAN WALLIS: But you could drop the
23	level to zero, you still haven't changed what you're
24	doing to the top of the core.
25	DR. WARD: Then you're not producing any
I	I

(202) 234-4433

	280
1	there's no boil off. There's no steam flow. It'll
2	heat up very it'll melt.
3	CHAIRMAN WALLIS: Okay.
4	DR. WARD: So we're taking credit you
5	have
6	CHAIRMAN WALLIS: So you need the depth to
7	make the steam.
8	DR. WARD: Right. If the two-phase level
9	is at the top, you're boiling at a 100 pounds per
10	second of this thing. If it's down here just above the
11	middle, it's about 60 pounds per second. Okay.
12	CHAIRMAN WALLIS: Okay.
13	DR. WARD: And so 60 pounds per second of
14	steam flowing up the top of that rod is enough. The
15	heat transfer coefficient is about 25 BTUs per hour
16	per square foot per degree F. And that includes
17	convection and radiation. The THTF test down at Oak
18	Ridge shows that thermal radiation to steam represents
19	about 20 to 30 percent of the heat transfer. So it's
20	pretty significant.
21	If they didn't credit that, the
22	temperature would be over 2200 degrees. But they
23	benchmarked against the G2 bundle uncovery data and
24	all the THTF data, we reviewed that. And they did a
25	good job.
I	I

(202) 234-4433

	281
1	I mean, so this core is uncovered for this
2	long, this is not best estimate. If this was a best
3	estimate CSAU calculation, I'd have a lot of heartburn
4	with this because I don't think they can calculate the
5	two-phase level over that period of time within a half
6	of foot out of 12 feet. But this has one HPSI pump,
7	three quarters of one pump, it's got 20 percent more
8	decay heat and they are also the steam super heats
9	right at the two-phase surface. And if you look at G@
10	data and THTF, it really doesn't super heat for about
11	six inches to a foot because you've got this froth and
12	it's throwing bubbles and it's closer to Tsat there.
13	So they don't credit that.
14	So, yes, it's a little alarming to see
15	something like this, but remember it's Appendix K. If
16	they made all best estimate assumptions and they only
17	had one HPSI pump, the two-phase level would be
18	somewhere up here. Temperatures would probably be
19	around 1500.
20	So I guess what I'm saying is, yes,
21	there's still margin there. You're getting this
22	response because of the conservatism in Appendix K,
23	and there's that margin.
24	MR. SIEBER: It goes beyond that. It's
25	self imposed conservatism
ļ	I

(202) 234-4433

	282
1	DR. WARD: Well, plus the accumulator,
2	that's right, because that would even lower further.
3	MR. SIEBER: Right.
4	DR. WARD: They could take credit for
5	accumulator injection.
6	MR. SIEBER: Right.
7	DR. WARD: Because for that break size and
8	larger ones, accumulators are coming on. And the
9	accumulators are overwhelming the system. And the
10	accumulators are there not for large breaks, but for
11	small breaks, probably more so I would say. It keeps
12	the small breaks really low temperatures. Okay. So
13	accumulators are a good thing. They're your friend.
14	But they didn't credit it.
15	So that in itself, you know, I can say
16	I can stand up here and say it's a conservative
17	calculation. You know, it's alarming to see a core
18	exposed like that for a three inch break but it's that
19	way for a reason and it's prescribed in the law. And
20	they have met that.
21	The next thing I looked at was the post-
22	LOCA long term cooling. And when I did that I couldn't
23	reproduce their results. And it turned out that when
24	I assumed now the mixing volume for mixing boric
25	acid in their model with the core and the upper plenum
	I

(202) 234-4433

	283
1	below the elevation of the bottom of the hot leg. And
2	when I assumed that that was true liquid, I matched
3	their result. Let me show what I'm talking about
4	here, maybe if I could illustrate it.
5	MR. ROSEN: It would be better right side.
6	DR. WARD: Their mixing volume is
7	basically the core region and the fluid level up to
8	the bottom of the cold leg. They're about the same,
9	they're off set by half a foot, but it's right there.
10	What they assumed I calculated a void
11	fraction of 35 percent average at about three hours.
12	I put that in, and I precipitated it about an hour.
13	They're getting about four hours. So this initiated
14	some discussion with the vendors
15	CHAIRMAN WALLIS: Yours sounds worse.
16	Yours sounds worse.
17	DR. WARD: Yes. I calculated an hour.
18	They corrected their model and put in 35 percent void
19	fraction and got basically the same thing. Let me
20	show you what that looks like.
21	Now this is the calculation I did
22	CHAIRMAN WALLIS: They have one where it
23	turns around.
24	DR. WARD: Right. Well, I'll show you that
25	in a minute. Well, I'll get to that second, but let
	I

(202) 234-4433

	284
1	me go through this first.
2	This is just pumping in borated water and
3	it's building up. And when you do that, they
4	calculated, you know, over four hours. And this is my
5	calculation but it also reproduced theirs. But this
6	is with the error. If you assumed the void fraction
7	is 35 percent liquid, this is a steam void, then it
8	precipitated in an hour.
9	CHAIRMAN WALLIS: So what appears in the
10	documentation that we saw
11	DR. WARD: You see this curve right here
12	and then you see between three and four
13	CHAIRMAN WALLIS: It's the wrong curve?
14	DR. WARD: Yes, it's the wrong curve.
15	Between three and four hours they initiate hot and
16	cold side injection, so when that happens all you
17	need to do is inject in excess of the boil off at
18	about 25 GPM you will you'll turn it over and it
19	will with their high pressure injection pump, it
20	was asymptotically reach a value somewhere down
21	CHAIRMAN WALLIS: Now you're saying they
22	have to do this before an hour instead of the four
23	hours?
24	DR. WARD: No. You can't switch before
25	two hours because
	1

(202) 234-4433

	285
1	CHAIRMAN WALLIS: So
2	CHAIRMAN WALLIS: Because when you split
3	half the injection between the hot and cold side, at
4	that point if you switch any earlier than two hours,
5	you'll uncover the core, you can't match the steam
6	rate.
7	CHAIRMAN WALLIS: So you're saying you're
8	going to plug up the core?
9	DR. WARD: Well, no. I'm just saying that
10	they need you know
11	MR. SIEBER: They're overheat.
12	DR. WARD: What'll happen is if you
13	precipitate, yes, it'll block the core. I'm not going
14	to guess what's going to happen, but you'll fill the
15	core up with boric acid salt and it will block the
16	core. And then it will heat up and something else will
17	happen. So it's a long term cooling that's why you
18	don't that's why you want to switch to simultaneous
19	injection at some time enough earlier so that you can
20	control it.
21	CHAIRMAN WALLIS: Can you do it with the
22	real mixing volume?
23	DR. WARD: No, you can't do it this way.
24	They assume the pressure in the upper plenum is 14.7
25	which is basically the containment pressure. And with
Į	I

(202) 234-4433

286 that volume, it won't work. So what I had done is 1 2 some calculations to look what I would call basically 3 an envelop of where they need to be in for us to be --4 for this to work. 5 And so what I did -- but what I did, I did a calculation where I calculated the mixing volume. 6 7 Now the mixing volume will grow with time. It'll 8 start off in the core, this is a large break LOCA, and 9 it will grow as the steaming rate drops and the loop 10 pressure drops. You'll get more and more two-phase in the system. 11 12 What I did is I calculated a two-phase mixing volume that includes the core and the upper 13 14 plenum. And as it grew, I took credit for that increase in the mixing volume until it got up to 15 within about a half foot of the hot leg and then I 16 didn't let it get any bigger because the steam that's 17 disengaging the two-phase surface and collecting in 18 19 the upper head, it's got to go somewhere. Where is it 20 going to go? It's going to go out the hot leg, so 21 that defines a pressure to drive steam around the loop 22 and it won't let the two-phase go any higher. So I 23 held it at that point.

And even if I did that, if I assumed 14.7 in the upper, I'm still precipitating at about an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	287
1	hour. It didn't help very much. But if you assume now
2	that your upper plenum pressure is 20 pounds pressure,
3	which is what CD has done; they have changed from 14.7
4	to a 20 psi limit, and they are using a mixing volume
5	that is no greater than to a region near the top of
6	the hot if you do that now, you will precipitate at
7	somewhere in the neighborhood of near four hours. So
8	if they switch to simultaneous injection in the two to
9	three hour time frame, you know, this envelop suggests
10	they're okay.
11	Now, they just finished doing these
12	calculations in the last week and I haven't seen them,
13	but I talked to them on the phone. They're in the
14	envelop.
15	One of the things that we're going to have
16	to do is review they're going to submit their
17	containment analysis. They used GOTHIC. It's a
18	licensed methodology, too, and they ran it in a
19	minimum containment pressure mode where they maximize
20	the heat transfer on the surfaces, maximized made
21	all the assumptions pertinent to minimizing the
22	pressure. And they calculated at 4 hours 21 psia,
23	right? So, you know, I eager await that calculation
24	to take a look at it. And they're also going to
25	document their boric acid calculations that they did
	l

(202) 234-4433

	288
1	that's consistent with my values at 20 pounds.
2	So the bottom line is they had to make
3	some they corrected the error. There is still
4	margin remaining to support this power uprate.
5	And I wanted to mention some of the other
6	things that would show that this is still
7	conservative.
8	The two-phase level is up into the it's
9	up into the hot leg region to the top of the hot leg.
10	I mean, the two-phase level after about two hours is
11	up in this region here. And there's a large volume
12	there. And that's not considered. They were able to
13	show the four hour precipitation limit with that
14	without crediting the hot legs. And I think the hot
15	legs are going to increase the mixing volume. That's
16	about another couple hundred cubic feet.
17	The other thing is this is a large break
18	LOCA. The steam that's coming off the core is in
19	entraining liquid and it's throwing out in the hot
20	legs in the generator. So it's removing liquid with
21	boric acid in it, so it's not really concentrating, at
22	least it's not going to concentrate at that level.
23	So did I show that? So anyway, I guess
24	CHAIRMAN WALLIS: So if they had somehow
25	vented the containment and hadn't gotten this
	I

(202) 234-4433

	289
1	pressure, then they would plug up the core?
2	DR. WARD: Then you let the containment
3	door open and you stayed 14.7, I guess you'd have a
4	problem.
5	MR. SIEBER: Nothing would come out.
б	DR. WARD: You know, I mean, containment
7	doors don't open that readily, so
8	CHAIRMAN WALLIS: Where did this 20 psia
9	number come from?
10	DR. WARD: They did it. It was a
11	calculation that I had done that showed that it works.
12	They did a GOTHIC minimum containment pressure
13	calculation to show that they can justify 20 psi with
14	that. And that's a licensed methodology run to
15	minimize containment pressure, maximize condensation
16	on the walls, maximize energy removal, I think. Well,
17	all four
18	CHAIRMAN WALLIS: Sounds like NPSH all
19	over again.
20	DR. WARD: Well, it does, doesn't it.
21	It's
22	CHAIRMAN WALLIS: Well, this is
23	interesting. I'm very glad that you did some
24	independent calculations which lead you to find an
25	error, and then that you cleaned up the mess created
I	I

(202) 234-4433

	290
1	by the error.
2	DR. WARD: Right.
3	CHAIRMAN WALLIS: Helped to.
4	DR. WARD: And I think, you know
5	CHAIRMAN WALLIS: Then the end of the
б	story seems to be happy, we think.
7	DR. WARD: Right. I couldn't say it any
8	better. And I guess we
9	CHAIRMAN WALLIS: How many other
10	calculations you need to do independently.
11	DR. WARD: Excuse me.
12	CHAIRMAN WALLIS: How did you know to do
13	this one?
14	DR. WARD: Well, you know, I just you
15	know, you pick one.
16	CHAIRMAN WALLIS: Yes.
17	DR. WARD: The plant power levels going
18	up
19	CHAIRMAN WALLIS: You picked one which was
20	important.
21	DR. WARD: Yes. I mean, there's 8 eight
22	percent power increase. I mean, you're going to build
23	up boric acid a lot faster, the sources are higher
24	concentration. I mean, you're going to get there
25	quicker.
	I

(202) 234-4433

	291
1	And I consider this is important because
2	this phenomenon is consistent with any break size in
3	the cold leg where the system will not refill, so it
4	boils. If you if the break size is small enough and
5	eventually the high pressure injection system or the
6	ECC fills the system, you'll disperse the boric system
7	throughout the system. But this a break size probably
8	down in the neighborhood of two-tenths of a square
9	foot or larger where they never refill. And so all
10	you need is a break. I can't have as many HPSI pump
11	the full that's all. You're going to be in this
12	region.
13	So it's important that the guidance that
14	CE gives excuse me. Westinghouse gives their
15	customer is a switch time to assure: (1) when they
16	switch you've got enough injection so the core won't
17	uncover but it's early enough so that you can control
18	the boric acid. And that's important. That's why I
19	wanted to look at this calculation.
20	MR. SIEBER: Let me ask a question about
21	that from an operator's viewpoint. The time that
22	you're predicting there, really depends on the way you
23	do your calculation and the assumptions that you make.
24	DR. WARD: That's right.
25	MR. SIEBER: Now the operator isn't going
Į	1

(202) 234-4433

to sit there looking at his watch saying no, it's going to be time in 15 minutes to switch my injection mode. He has to look at other parameters. What does he look at to tell when it's the right time to make that change?

Well, he has that -- and it's 6 DR. WARD: 7 a large break, he has no other indication except a 8 time. And he's got to adhere to that. Hopefully, 9 there's usually one hour or more for him to do that. They would be told at -- if they're told to switch to 10 11 simultaneous injection at $2\frac{1}{2}$ hours, no later than $3\frac{1}{2}$ 12 hours, that two hours the guidance will say prepare to line up the system because as early as but no later 13 14 than X you will be in simultaneous injection. And my 15 experience at Northeast Utilities when I was working 16 with the SRO there when we were modifying the 17 procedure, those guys follow it exactly. 18 MR. SIEBER: I know.

DR. WARD: This is a LOCA. In post TMI days, now that was my experience at Northeast, that this SRO is real sensitive to what that procedure says. And he's not going to touch those pumps and he's going to do whatever it says. And he's going to do when it says it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. SIEBER: Yes, there's no doubt that

(202) 234-4433

25

1

2

3

4

5

	293
1	the operator 99 percent of the time will do what he's
2	told to do.
3	DR. WARD: Right.
4	CHAIRMAN WALLIS: On the other hand, it's
5	not clear to me that what the analysis tells him to do
6	is going to match to the way the plant's responding at
7	a given time because of all these conservatisms and
8	assumptions and everything that are built into this.
9	And I'm having a little difficulty reconciling all of
10	that to what does the operator really do.
11	DR. WARD: Okay. Well, assuming he
12	follows his procedure, what within this envelop if
13	he follows it, if he was late by half an hour or an
14	hour, my gut feeling is I haven't done any
15	entrainment calculations, I haven't included the
16	mixing in the hot legs.
17	MR. SIEBER: Right.
18	DR. WARD: You know, we were trying to get
19	there so we could have this meeting.
20	CHAIRMAN WALLIS: You ought to put in some
21	uncertainties and you ought to show what's the spread
22	of likely results.
23	DR. WARD: Okay. Well
24	CHAIRMAN WALLIS: And suppose he that he
25	injects at a time
	I

294 1 DR. WARD: There's 20 percent more decay 2 heat to secure, so if you get rid of that, it's going 3 to give you another 30 minutes. If you take credit for 4 entrainment, my guess is -- now that's going to move 5 it out at least another half an hour. I mean, I can't speak -- I haven't done that calculation, but --6 7 MR. SIEBER: He's probably hoping for 8 shift change. 9 DR. WARD: Yes. 10 MR. SIEBER: Let the other guy do that. DR. WARD: Well, I don't want to go there. 11 But, I mean, there is conservatisms in this, too. 12 There isn't as much as there was before. 13 14 CHAIRMAN WALLIS: This is going to be 15 resolved unequivocally by the time of the full 16 Committee meeting? They have committed to document 17 DR. WARD: everything they have done. 18 19 CHAIRMAN WALLIS: Is that going to resolve 20 everything unequivocally? 21 MR. SIEBER: Well, but this isn't unique 22 to the EPU condition, right? This will occur in any 23 plant that does this configuration? 24 DR. WARD: Well, that --25 CHAIRMAN WALLIS: There will be a lot more

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	295
1	boric acid now.
2	DR. WARD: We're getting ready to send a
3	letter out. We're going to mention that we found a
4	nonconservatism in a vendor's model, please review
5	your long term cooling analysis and, you know, show us
6	that your model remains acceptable.
7	CHAIRMAN WALLIS: But this is work in
8	process?
9	DR. WARD: Right now.
10	CHAIRMAN WALLIS: Less than three weeks
11	before the meeting, or two weeks before?
12	DR. WARD: Well, their calculations are
13	done. They haven't documented them yet. And I'm
14	expecting to get them well, hopefully before the
15	SER goes out. I mean, there will be a reference. The
16	project manager can address that.
17	MR. KALYANAM: Before February 2.
18	MR. SIEBER: Can you hear that? You need
19	to talk into a microphone somewhere.
20	MR. KALYANAM: Okay.
21	MR. SIEBER: Pick one. You can talk into
22	his tie, if you want to.
23	MR. KALYANAM: I was saying that we have
24	the next meeting here on the full meeting on
25	February 10th. Before that we would unless these
I	I

(202) 234-4433

	296
1	calculations will be dockets.
2	CHAIRMAN WALLIS: Okay. So there's no
3	uncertainty in management decisions. There may be in
4	engineering, but there's never uncertainty in
5	management decisions.
6	MR. KALYANAM: I think we work in unison.
7	DR. WARD: Thank you.
8	DR. RANSOM: I think it's very good to see
9	calculations like this. The only difficult I guess I
10	have with it, it's not TRACE, it's not TRAC, it's not
11	RELAP5, but yet another methodology that presumably
12	has not been benchmarked and
13	DR. WARD: Well, it has. I've benchmarked
14	it against LOFT, Semiscale, SO-710D is a Semiscale
15	test that has a long term core recovery.
16	MR. BROWN: Well, the point is I don't
17	believe you've documented that and
18	DR. WARD: Well, you haven't seen it, but
19	I'm going to give it to you. I mean, there's only so
20	much I can do in a month, you know. If I could break
21	into three people
22	MR. BROWN: Why are we developing TRACE
23	when you can do this?
24	DR. WARD: Well, we didn't have a plant
25	we did not have a Waterford we don't have plant
Į	1

```
(202) 234-4433
```

	297
1	decks for every plant, so we got to do the best we
2	can. The best I could do is I have a methodology that
3	I I mean, I did hand calculations, too, to verify
4	minimum levels and peak pressures, but I wanted to see
5	the transient. And if I've matched separate effects
6	data for two-phase level swell over a full range of
7	pressures and heat up data, I'm going to run that. In
8	lieu of doing nothing, I think what I have done
9	verifies their analyses. I've predicted the break
10	spectrum with that code for Millstone running a .5
11	square foot, .2 square foot, .05 I mean, a small
12	break is something easy to model. It's a boiling pot.
13	You don't even need to do a momentum
14	balance. And you can take the liquid mass, balance
15	them hydrostatically, off set the fluid levels by the
16	steam flow, which is decay heat in the loop, and
17	you're going to get the same thing that TRAC or RELAP
18	gets, only I'm going to get it in 15 seconds and I'm
19	not going to wait for five hours for the answer. And
20	I can run maybe 15 or 20 of these.
21	DR. RANSOM: Well, is the NRC going to
22	make this a part of their inventory of codes to use
23	and methods?
24	DR. WARD: Well, no. We haven't talked
25	about that. But anybody that, you know, in the branch
ļ	I

(202) 234-4433

	298
1	that wants to use the code, you know I will show them
2	how to use it.
3	DR. RANSOM: That's the only problem I
4	have with it, is
5	CHAIRMAN WALLIS: Well, Vic, this isn't
6	going to be licensed based on his calculations.
7	MR. BROWN: No, I understand that. But
8	you use it as an audit.
9	DR. WARD: I mean, my calculation gave me
10	enough comfort it says that limiting 055 square foot
11	break, I didn't feel comfortable. When I saw that, I
12	was going like whoa.
13	CHAIRMAN WALLIS: It's not a code, is it?
14	It's just a one node
15	DR. WARD: Well, no, it's three volumes.
16	There's one on the hot side, there's one on the cold
17	side, there's a pressurizer that's not equilibrium
18	because of that over pressurization event. I compare
19	it against the MIT pressurization tests that Pete
20	Griffith did very nicely. A whole slew of level swell
21	tests.
22	I mean, the most important parameter for
23	a small break to govern, to judge its performance is
24	two-phase level swell. And there isn't a level swell
25	test out there that I haven't run. And I have run
I	I

(202) 234-4433

	299
1	CHAIRMAN WALLIS: Now when you get more
2	and more boron in there, doesn't the drift flux
3	change?
4	DR. WARD: Good question. I guess the
5	density changes.
б	CHAIRMAN WALLIS: Well, the interfacial
7	properties change when you got all this gop in there.
8	DR. WARD: That's right. I didn't
9	CHAIRMAN WALLIS: It concentrates at the
10	interfaces, it changes whether or
11	DR. WARD: You're right.
12	CHAIRMAN WALLIS: not the bubbles are
13	glommery. And I think the drift flux is going to
14	change as you get more and more boron concentrating.
15	Do we have any basis for knowing what it is?
16	DR. WARD: I have not done that
17	calculation. And that is a good
18	CHAIRMAN WALLIS: I would think it would
19	froth up more as you
20	DR. WARD: I think it would tend to retard
21	the steam velocity and it would froth it up. It would
22	swell more even in this small break
23	CHAIRMAN WALLIS: Are there those studies
24	of level swell with concentrated boron
25	DR. WARD: I've seen none in that area.
	I

(202) 234-4433

	300
1	I mean, I'd like to see.
2	CHAIRMAN WALLIS: There should be.
3	DR. WARD: I haven't seen any tests that
4	says here's the mixing volume. Those don't even
5	exist.
б	CHAIRMAN WALLIS: Yes. But you're assuming
7	you could take a drift flux correlation for pure water
8	and apply it to boric acid, which is almost on the
9	point of precipitating?
10	DR. WARD: Well
11	CHAIRMAN WALLIS: It's like taking
12	DR. WARD: That's a good question.
13	CHAIRMAN WALLIS: It's like taking your
14	first correlation for boiling water and applying it to
15	boiling milk. And you know what happens when you boil
16	one or the other.
17	DR. WARD: Yes. Yes.
18	Well, if this saving grace, there's
19	Appendix there are conservatisms in there that say,
20	you know, I believe it's in the envelop but I have not
21	done that calculation with boric acid in there.
22	CHAIRMAN WALLIS: I don't think you can
23	believe anything about boric acid unless you
24	DR. WARD: I mean what test data would I
25	compare it to?
Į	I

(202) 234-4433

	301
1	CHAIRMAN WALLIS: You have to have a test.
2	DR. WARD: Right. I mean, you have a good
3	point. I mean, I didn't think of that. I guess that's
4	one of the good things about standing up here and
5	talking with you, too. You get some good input,
6	right?
7	CHAIRMAN WALLIS: And how long does it
8	take to resolve something like that?
9	DR. WARD: Gee, I don't know. I mean
10	MR. ROSEN: Oh, probably a year or two.
11	DR. WARD: I mean, I'd like to see some
12	test data on what is the mixing volume? What does it
13	look like? What does the debris from the sump do when
14	it's in there? I don't know what that
15	CHAIRMAN WALLIS: There's probably more
16	mixing in the lower plenum than they assume.
17	DR. WARD: No mixing in the lower plenum.
18	CHAIRMAN WALLIS: There probably is.
19	DR. WARD: I think there is.
20	CHAIRMAN WALLIS: Because at psi 184 it's
21	a completely
22	DR. WARD: Right. I think it will mix down
23	there, because it's heavy, it's going to drain
24	CHAIRMAN WALLIS: Well, you've also got
25	jets coming in through the colander. You got a
	I

(202) 234-4433

	302
1	colander down there? Maybe not in this design.
2	DR. WARD: That's right. Well, there's a
3	there's a flow skirt. But, yes, there's a big
4	lower head. There's about ten, fifteen feet in the
5	lower plenum.
6	CHAIRMAN WALLIS: Well, there's some jets
7	of liquid coming in. It's not just a big
8	DR. WARD: Yes, it's coming no.
9	CHAIRMAN WALLIS: It goes through
10	something like
11	DR. WARD: It goes through a flow skirt
12	and then it's directed upward into the core. But your
13	
14	CHAIRMAN WALLIS: You have a problem I
15	think though with drift flux through a concentrated
16	boric acid mixture. Maybe it throws it up more, which
17	would be better, wouldn't it?
18	DR. WARD: Yes. I think it would swell up
19	faster and it would mix it out into the hot legs and
20	CHAIRMAN WALLIS: And it might actually
21	carry over more, which would be worse.
22	DR. WARD: Could be. And the entrainment,
23	don't forget there's an entrainment mechanism, too,
24	that's throwing liquid out in the hot legs even before
25	the two-phase level gets up there. So it's not really
l	I

(202) 234-4433

	303
1	going to concentrate in my opinion in the first hour
2	because if you look at the reflood test, for every
3	pound of steam exiting the core, there's two to three
4	pounds of liquid flying out of there. And I assume
5	that that all stayed in the core.
6	CHAIRMAN WALLIS: Well, what shall we do
7	with this? When you have you have to have a drift
8	flux to get the swell here.
9	DR. WARD: Right. Right.
10	CHAIRMAN WALLIS: And that's very
11	important for cooling core.
12	DR. WARD: Well, in this case
13	CHAIRMAN WALLIS: It's not so important
14	for the boron concentration, because you're just
15	pulling it off.
16	DR. WARD: Provided the two-phase I
17	don't it's going to be a cooling problem if the
18	two-phase level drops back into the core.
19	CHAIRMAN WALLIS: But if the two-phase
20	level rises, then you're boiling it off faster and
21	you're concentrating faster. You have more heat
22	transfer. It rises, it covers more of the core. You
23	get more boiling.
24	DR. WARD: That's right. That's right.
25	CHAIRMAN WALLIS: And so it will
	I

(202) 234-4433

	304
1	concentrate faster?
2	DR. WARD: You're right, it'll concentrate
3	a little faster provided there's no such thing as
4	entrainment.
5	CHAIRMAN WALLIS: I'm quite sure you'll
б	resolve this issue.
7	DR. DENNING: Graham, I would agree. I
8	mean, I think that it's really very interesting work.
9	I'd be curious whether the applicant has a comment at
10	this point. But how do we go forward with this issue
11	as it currently stands? You know, it's just too up in
12	the air.
13	DR. WARD: Well, we plan, as I mentioned,
14	we're going to issue a letter shortly and we're going
15	to ask them to re-review to look at this model and
16	tell us you know, demonstrate that your modelit
17	remains applicable. And there will be a laundry list
18	of other things that will be addressed.
19	CHAIRMAN WALLIS: Someone going to respond
20	to this drift flux question?
21	DR. WARD: Well, that's another question
22	on the list.
23	CHAIRMAN WALLIS: But we know that putting
24	contaminants in water easily changes the drift flux.
25	DR. WARD: Yes. I haven't looked at that,
I	I

(202) 234-4433

ĺ	305
1	to be honest with you. I have not done that.
2	MR. ROSEN: When did you plan to come back
3	to the full Committee? I mean
4	MR. CARUSO: Two weeks.
5	MR. ROSEN: That's what I thought.
6	CHAIRMAN WALLIS: And the management has
7	stated everything is going to be resolved.
8	MR. ROSEN: Two weeks is hardly time for
9	us to finish up our business here, go home, change
10	clothes and come back.
11	CHAIRMAN WALLIS: Well, we can write a
12	letter which says you got to resolve this issue.
13	MR. SIEBER: Well, this issue is not
14	Waterford EPU specific.
15	DR. WARD: Yes, it's not specific to it.
16	MR. ROSEN: It also applies to Waterford.
17	DR. WARD: Well, it does.
18	MR. SIEBER: That's right.
19	MR. ROSEN: And we're asked to
20	MR. SIEBER: And we have a couple of
21	those.
22	MR. ROSEN: recommend a license change
23	
24	MR. SIEBER: We got two of those now. We
25	got the instrument issue, too.
Į	

	306
1	MR. ROSEN: We got the what?
2	MR. SIEBER: Instrument issue, too, that
3	needs to be resolved and they're both industry wide.
4	CHAIRMAN WALLIS: Well, I think this is a
5	case history of where the staff by actually doing its
6	own analysis begins to review features which it
7	wouldn't review if it just reviewed what someone else
8	has done.
9	MR. SIEBER: That's right.
10	CHAIRMAN WALLIS: And it indicates how
11	important it is to do this sort of thing.
12	MR. HOLMAN: This is Jerry Holman from
13	Waterford 3.
14	We've talked with Len quite a bit about
15	these issues. We agree he's got some good concerns
16	and things that we need to look at. Overall, however,
17	we believe there are still some remaining
18	conservatisms in the calculations to show that we're
19	still conservative with the power uprate.
20	You are correct that this is not just a
21	Waterford 3 power uprate issue, it's more a generic
22	issue that applies to all the plants. And we'll be
23	looking forward to finally resolving this in a generic
24	basis and approving the model.
25	CHAIRMAN WALLIS: What concerns me is that
	I

(202) 234-4433

1 this may be fairly long discussion. If we get into satisfying ourselves that this issue is resolved, it 2 may take an hour or two. We can't do that at a full 3 4 Committee meeting. We have to have another Subcommittee meeting. 5 We can't take the full Committee through all the details of something like 6 7 this. There isn't time to do that.

No. Maybe you could take the 8 DR. WARD: 9 approach that if you look -- although there are some 10 weaknesses, and we recognize that there are other weaknesses in this method. But if you look at the 11 12 model collectively, are there enough overwhelming assumptions that would ease your conscious a little 13 bit. And that's where I'm at. But, you know, you 14 15 mentioned the effect on drift velocity, and that's 16 something that I want to look at. Because now you've 17 spiked my interest in it.

CHAIRMAN WALLIS: Well, you could do 18 19 interesting tests. You could two vertical tubes, you 20 could put distilled water in one, you can put boric 21 acid about to precipitate in the other --22 DR. WARD: And see what it does. 23 CHAIRMAN WALLIS: -- and bubble or boil, 24 whatever. 25 DR. WARD: Right.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

307

	308
1	CHAIRMAN WALLIS: One may go way up here
2	and one may just go up there.
3	DR. WARD: Yes.
4	CHAIRMAN WALLIS: Then you can say
5	DR. WARD: Right.
б	CHAIRMAN WALLIS: there's obviously a
7	big change or there isn't. But that takes time. You
8	can't just do that overnight. Maybe you need a rest,
9	so you can do it over night.
10	DR. WARD: It's something to consider,
11	certainly.
12	DR. DENNING: So where are we, Graham?
13	CHAIRMAN WALLIS: I'm not convinced. I'm
14	just waiting for I don't know what they're going to
15	do. Something is going to happen between now and the
16	full Committee
17	DR. WARD: Well, they're going to document
18	their calculations.
19	CHAIRMAN WALLIS: Well, how do we know?
20	We don't want to go to the full Committee meeting with
21	something which is half baked.
22	DR. WARD: Well, maybe there's something
23	that
24	MR. HOLMAN: This is Jerry Holman again
25	from Waterford.
I	I

```
(202) 234-4433
```

	309
1	As Len showed and pointed out, there are
2	some remaining significant conservatisms in the model,
3	namely the entrainment, the mixing volume, those types
4	of things that we believe shows there's still margins
5	available for this issue.
б	MR. SIEBER: I think the difficulty you
7	have is that we're faced with recommending the
8	acceptance of the SER that the staff wrote, and in the
9	next two weeks they're not going to revise that SER.
10	So I'm not sure what it is we're going to do in two
11	weeks.
12	I think the work that's been done has been
13	very good. I just don't think that you can finish in
14	time.
15	DR. WARD: Yes, I don't think I could
16	address that one.
17	MR. SIEBER: So, we have to decide what
18	we're going to do next.
19	CHAIRMAN WALLIS: Well, ideally, we'd like
20	to give you more time to get the story together.
21	MR. SIEBER: Yes.
22	CHAIRMAN WALLIS: And say that we don't
23	want to come to the full Committee until everything is
24	up and done, in which case we have to put it off for
25	a month or something. And we're already putting off
	I

(202) 234-4433

things and we have nothing to do in February if we put this off, too. That's okay, I suppose. We go home earlier. There is a real question about whether or not you should bring something like this to the full Committee.

Well, maybe there's some 6 DR. WARD: 7 sensitive -- there's some calculations that I can do 8 to show the sensitivity to it and maybe if it shows 9 that you need to get out into the time where it's 10 after you had switched to simultaneous injection where it becomes important, that it would help alleviate the 11 concerns somewhat. But, you know, that's an approach. 12 I mean, I can do -- obviously, I'm not going to do any 13 14 tests, but we can do some calculations. And I can get 15 together with Westinghouse and maybe do a literature search and take a close look at it and see what's out 16 17 there and see what we can do. I mean, there's a lot of stuff in the chemical industry that might be useful 18 19 that, you know, I haven't tried to look into.

20 MR. SIEBER: On the other hand, if we all 21 rush to get done, the chances of making an error or 22 overlooking something becomes greater. And I don't 23 want to be in that situation.

24 CHAIRMAN WALLIS: Well, maybe you should 25 do an independent study of some of the other things.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	311
1	MR. ROSEN: Especially some things that
2	are coming up in the near term.
3	CHAIRMAN WALLIS: No, I mean some other
4	aspects of this application.
5	MR. ROSEN: Oh. Yes.
6	DR. WARD: Okay.
7	CHAIRMAN WALLIS: We're going to move on
8	the rest of the presentation and we're going decide
9	what to do with this one.
10	MR. SIEBER: Thank you.
11	CHAIRMAN WALLIS: Let's hear the rest of
12	what the staff has to say.
13	Do we need a break or not? Can we last?
14	We're going to be behind, but do we keep going? Shall
15	we try keeping going and see where we get? Just take
16	breaks as you have to, okay?
17	MR. KALYANAM: Michelle Hart from our
18	Containment and Accident Dose Assessment Section.
19	MR. SIEBER: You have to talk to the
20	microphone.
21	MR. KALYANAM: Okay. The next speaker is
22	Michelle Hart from our Accident Dose Assessment.
23	MS. HART: Hi. I'm Michelle Hart. I'm in
24	the Probabilistic Dose Assessment Branch. I did the
25	design-basis accident dose analysis review.
ļ	I

(202) 234-4433

The regulatory requirements for this plant, because they are not an alternative source term for the EPU when they first submitted it, we looked at then versus 10 CFR Part 100 and GDC-19. And the review was conducted in accordance with the applicable SRP sections as noted in Matrix 9 of the Review Standard.

8 The licensee's analyses followed all 9 applicable guidance. Any differences were justified 10 and found acceptable by the staff. And we did perform 11 confirmatory dose analyses, although the acceptance is 12 based on their analyses.

The design-basis accidents that 13 were 14 evaluated for radiological analyses are the following 15 on this slide. It's the Chapter 15 type design-basis 16 accident analyses. And there is one draft SE open item, it is the control room habitability. Why that 17 was an open item is when they originally submitted the 18 19 EPU control room dose analyses in their original 20 submittal, they only looked at the LOCA and the fuel 21 handling accident and compared it to GDC-19 for whole 22 body and thyroid. And they noted that the unfiltered 23 inleakage assumption for the control room was not 24 based on testing, but they would be doing testing and 25 they would update it as necessary.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

When they came back with the tracer gas test results, the analyses in the original submittal did not bound the results. So they decided to submit a separate full scope alternate source term application. They did this in July of last year. And it's been supplemented through October of this past year as well.

All of the control room dose analyses in 8 9 the AST were for all of the accidents in the Chapter 10 16, not just the LOCA and the fuel handling accident, included all of them. And it supplants all of those --11 12 the only two that were in the EPU, which were the LOCA and the fuel handling accident. And so that the 13 14 control room unfiltered inleakage assumptions bound --15 that would bound the tracer gas testing.

16 And the ASTU review is currently 17 undergoing. I have finished most of the review and it is scheduled for completion by the end of March. 18 19 Actually, by the middle of March. And I don't see any 20 technical issues at this time that would prevent its 21 approval.

22 DR. KRESS: Are you reviewing the chi over 23 Q values? 24 MS. HART: Another person in our branch is 25 reviewing those. They did have new chi over Q values

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	314
1	for the control room, and those have been reviewed,
2	yes.
3	DR. KRESS: And they look like they're
4	okay for that
5	MS. HART: They look like they're okay.
6	There is the ABV release point, which was not looked
7	at previously in their current FSAR because they only
8	looked at the fuel handling accident and the LOCA, and
9	that was not a release point. Those ADVs are r close
10	to the control room intake. We have evaluated that
11	and determined that the valve, even though it's very
12	high, is reasonable and they take care of that by
13	selecting a more favorable intake at two hours into
14	the accident, for most cases.
15	DR. KRESS: You have a special code you
16	use for those that takes care of the building wakes
17	and the close in?
18	MS. HART: ARCON 96 is the control room
19	code that is used. And it does take account of
20	building wakes. It is not the models break down
21	under ten meters. It was not benchmarked under ten
22	meters, the distance between the intake and the
23	release point.
24	DR. KRESS: Okay. And these were closer
25	than ten meters?
I	1

(202) 234-4433

	315
1	MS. HART: There is one release point that
2	is, yes.
3	DR. KRESS: But the alternate release
4	point is a little further?
5	MS. HART: That is correct. That is
6	correct.
7	CHAIRMAN WALLIS: Well, this is going to
8	be resolved by March the 10th.
9	DR. KRESS: I think she said it's already
10	
11	MS. HART: Yes. The alternative source
12	term amendment is under review right now. It's a
13	separate amendment. It includes offsite and onsite
14	control room.
15	CHAIRMAN WALLIS: So the approval by
16	February 10th should be contingent upon this working
17	out okay?
18	MS. HART: Yes. The EPU is not found
19	acceptable with respect to term habitability with the
20	current information in the EPU submittal itself. In
21	that the EPU would not be able to be implemented until
22	the AST is also implemented.
23	DR. KRESS: The site dose calculation uses
24	the worst two hours?
25	MS. HART: That's correct. The offsite.

	316
1	DR. KRESS: Does the control room do that
2	also?
3	MS. HART: No. The control room is for the
4	30 day extent of the accident, or if it's a shorter
5	accident for the shorter time period. So it's the
6	entire duration.
7	DR. KRESS: It's the entire duration?
8	MS. HART: Right.
9	Next slide.
10	The exclusionary boundary and low
11	population zone doses with the EPU submittal comparing
12	it to the 10 CFR Part 100 does meet that dose criteria
13	and all of the dose criteria within the SRP sections
14	of Chapter 15.
15	The control room doses are not yet found
16	acceptable for the EPU, the AST which does use the EPU
17	conditions is under review and will be approved in the
18	near term.
19	DR. KRESS: What kind of leakage
20	containment do they have for the site dose? One
21	percent, one tenth of a percent for that?
22	MS. HART: I can't recall off the top of
23	my head. I'm sorry. Do you remember, Paul?
24	MR. SICARD: Yes. This is Paul Sicard.
25	The containment leakage that is assumed is
Į	1

(202) 234-4433

	317
1	0.5 volume percentage per day for the first day and
2	0.25 after 24 hours.
3	DR. KRESS: Yes, that accounts for the
4	pressure that you get.
5	MR. SICARD: That is correct, that
6	accounts for the pressure.
7	CHAIRMAN WALLIS: So you're sure that
8	everything's going to be okay?
9	MS. HART: Until it is absolutely
10	CHAIRMAN WALLIS: You don't know?
11	MS. HART: issued, we don't know that
12	for sure.
13	CHAIRMAN WALLIS: So this is a little like
14	the previous matter?
15	MS. HART: It is an open item, yes.
16	CHAIRMAN WALLIS: Okay.
17	DR. DENNING: Let me pursue that just a
18	little bit. When is the earliest that it could be
19	closed?
20	MS. HART: It is now aiming at March, the
21	middle of March.
22	DR. DENNING: The middle of March. So does
23	that mean if the ACRS doesn't review this until the
24	middle of March, it doesn't make any difference as far
25	as the moving forward?
ļ	

(202) 234-4433

	318
1	DR. KRESS: We have reviewed things based
2	on what the staff tells us and what the preliminary
3	results are and say that pending closure of these
4	items, satisfactory matter, that we approve the SER.
5	We've done that before.
б	DR. DENNING: Yes. Where I was headed,
7	Tom, was really the previous issue. I mean, I
8	wouldn't have any problems with this particular issue.
9	The previous issue is the one that we're going to have
10	a hard time dealing with it two weeks.
11	MR. SIEBER: Right.
12	CHAIRMAN WALLIS: Well, this seems to be
13	based on understood physics, this alternative source
14	term, I hope.
15	DR. KRESS: Well, we've had extensive
16	hearings on the alternative source term. And we have
17	agreed in the past that it is an appropriate thing to
18	use.
19	DR. DENNING: You know there's another
20	element of it, too. And that is whether it's five rem
21	in the control room that they get, or 10 rem in the
22	control room, that's not going to make a whole heck of
23	a lot of difference to the world. If you melt down the
24	core, it's a different issue. Not that and also, we
25	know that there's a lot of conservatism in these
I	I

(202) 234-4433

	319
1	methods anyway. But it's just what are the
2	implications in the long term.
3	DR. KRESS: Well, I feel good about the
4	fact that they actually measured in the inleakage use
5	and the tracer gas. You have to repeat that
6	measurement at particular intervals or is it a one
7	time thing?
8	MR. SICARD: This is Paul Sicard.
9	Right now there is not a definite time
10	period that has been established for periodic testing
11	of the tracer gas testing. That is an item which is
12	being worked on by NEI on a generic industry basis.
13	And when there is agreement on how to proceed on that
14	periodic testing, such as the frequency, Waterford
15	will be consistent with that generic industry
16	approach.
17	DR. DENNING: I'm still curious as to how
18	with positive pressure they're getting inleakage,
19	although you can get it with wind pressure, I guess,
20	on the building. But it still is curious to me that if
21	they really go to a positive pressure, that they're
22	seeing inleakage.
23	DR. KRESS: I think you hit on it. It's a
24	delta P
25	DR. DENNING: It's a delta P with the
ļ	I

(202) 234-4433

	320
1	wind?
2	DR. KRESS: at various local positions.
3	And that could vary inside and outside.
4	MR. SIEBER: You've got a lot of rooms
5	surrounding the envelop and some of them are
6	pressurized and some are vacuumed.
7	DR. DENNING: And some aren't.
8	MR. SIEBER: And it's a matter of delta P.
9	CHAIRMAN WALLIS: I think there may be
10	duct switch may have a different pressure from the
11	environment, too, go through that.
12	DR. KRESS: Yes. And they may have
13	MS. HART: They have noticed in previous
14	in previous testing that there's been pressurized
15	ducts that have been pressurized higher than the
16	control room itself, and that's actually what caused
17	the pressurization in the control room, helped the
18	system itself pressurize the control room. So that's
19	what one of the issue that started off the whole issue
20	with control room habitability and unfiltered
21	inleakage and the testing and started us off on that
22	whole route.
23	CHAIRMAN WALLIS: It was also a big issue
24	that they do a test. Of course they prepare for the
25	test and everything is fine. But as you know when
	I

(202) 234-4433

	321
1	sort of you're weather proofing your house and you're
2	weather proofing and a few weeks later there are
3	leaks.
4	DR. KRESS: Well, that's why I asked them
5	about the frequency.
6	CHAIRMAN WALLIS: Right. How often do
7	they test?
8	DR. KRESS: Well, they're going to wait
9	for NEI guidelines on that.
10	CHAIRMAN WALLIS: Oh, wait for NEI. Okay.
11	MS. HART: Are there any more questions on
12	the design-basis accident analyses?
13	Thank you.
14	MR. KALYANAM: Okay. The next presenter
15	is Paul Prescott, and he will discuss our test
16	program.
17	MR. PRESCOTT: Good afternoon, gentlemen.
18	My name is Paul Prescott. I'm with the Plant Support
19	Branch of NRR.
20	Up to this point ACRS has heard the
21	licensee's and staff's reasons for granting the EPU.
22	Underlying the safety conclusions is the fact that
23	SSCs are installed correctly. A large part of this is
24	that they undergo required post-maintenance tests and
25	that all tech specs surveilliances have been
I	I

(202) 234-4433

	322
1	completed.
2	We challenged the licensee and the
3	technical branches to ensure that they have considered
4	the need for any specific testing. This includes any
5	larger scale testing beyond routine post-maintenance
6	tests.
7	A specific area considered in SRP 14.2.1
8	is large transient testing per RG 1.68.
9	Next slide, please.
10	Per the SRP, the licensee may propose
11	alternatives to certain testing. The most justified
12	exclusion to EPU testing is for large scale testing.
13	Typically this is the main steamline isolation valve
14	closure and the generator load reject tests.
15	The alternate method argument related to
16	analytical methods, that is the method chosen by the
17	licensee.
18	In accordance with SRP 14.2.1 the staff
19	reviews the proposed EPU test program to adequate
20	demonstrate the performance of SSCs important to
21	safety, checks the performance of SSCs impacted by the
22	EPU related modes, and reviews the integrated effect
23	of the EPU modifications.
24	Next slide, please.
25	As you may be aware, Waterford 3 was the
ļ	I

1 first EPU that was conducted using the guidance 2 developed with SRP 14.2.1. However, it was not truly 3 the first EPU for large transient testing that was 4 considered by our group. Duane Arnold, which recently 5 came for license amendment, I applied the principles behind this to review their license amendment to defer 6 7 their large transient testing. 8 The next slide, please. 9 CHAIRMAN WALLIS: So even if there were 10 really good arguments for doing large transient testing, you'd have to fight your precedent of having 11 approved 12 EPUs without requiring it? You'd have to 12 then presume they give really good reasons why 13 14 something was different about Waterford, even if there 15 are good reasons for doing LTT? 16 MR. PRESCOTT: Not necessarily. I mean, 17 we still look at each one, at least I do. I still 18 look at each one individually. 19 CHAIRMAN WALLIS: You have to say what's 20 different about Waterford? 21 MR. PRESCOTT: What's different about each 22 one. 23 CHAIRMAN WALLIS: Yes. But then they're 24 going to come back and say you allowed 12 which 25 covered the range, why are you picking on us.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

323

	324
1	MR. PRESCOTT: Again, this wasn't
2	that's not truly how we look at it. I look at it as
3	each one comes in, I review it for the SRP.
4	CHAIRMAN WALLIS: Yes.
5	MR. PRESCOTT: I consider what's happened
6	in the past and apply that to the review. I think I'm
7	justified in doing that. The SRP gives me that
8	guidance, as a matter of fact, to consider operating
9	experience. And this could be applied, you know, as
10	an example of a similar PWR that had done a power
11	uprate to a similar extent.
12	MR. CARUSO: How does the fact that they
13	put together ANO 2 properly tell you that they put
14	together Waterford properly?
15	MR. ROSEN: What do you mean put together?
16	You mean built it?
17	MR. CARUSO: Build it, made the
18	modifications of ANO 2 correctly. How does the fact
19	that that was done correctly at ANO 2 tell you that it
20	was done correctly at Waterford 3?
21	MR. PRESCOTT: All right. One of the big
22	discussions that we've had in the past is what gives
23	me assurance, what gives us, staff assurance of the
24	plant's adequacy for the modifications that they
25	performed for the power uprate.
	I

(202) 234-4433

	325
1	I believe that guidance is there in 50.59,
2	in the post-maintenance tests that are performed per
3	the regulations. And then our tech spec surveillances
4	that are required to assure operability of systems
5	important to see. That's what I base that on.
6	MR. CARUSO: Are there any startup tests
7	or surveillance requirements that would require an
8	integrated assessment of whether all these systems
9	that are individually tested will actually work the
10	way they are expected to operate?
11	MR. PRESCOTT: To assist us in that
12	review, we break down the EPU really into two separate
13	parts; that is the low power physics testing portion
14	of it and then power testing that's done 80 percent
15	and above. So you kind of break it down in steps. And
16	as the licensee as stated previously, the low power
17	physics testing portion, there was no impact on that.
18	So now that really leaves me with what modifications
19	were done for the power uprate and what post testing
20	or analytical methods that they propose to use.
21	MR. CARUSO: So how does this tell you
22	that it's all going to work in an integrated fashion?
23	MR. PRESCOTT: Again, I believe that the
24	post-maintenance tests are adequate and the analysis
25	that have been approved by the not just approved
	1

(202) 234-4433

	326
1	but reviewed by the staff give assurance that the
2	plant will perform at uprated power.
3	MR. ROSEN: Yes, but those are just words.
4	I mean, the post-maintenance test, I assume you mean
5	post-mod tests as well?
6	MR. PRESCOTT: That's correct.
7	MR. ROSEN: The modification that they've
8	done, the principle one, is on the high pressure end
9	of the turbine.
10	MR. PRESCOTT: That's correct.
11	MR. ROSEN: You can't test that at zero
12	power or low power because there's not steam flow. The
13	idea of the initial startup tests was to test that
14	component, that whole series of components out through
15	the turbine with a turbine trip from full power.
16	MR. PRESCOTT: Right. But you have to look
17	at what the modification is. The modification is the
18	replacement of a HP rotor. The HP rotor was there
19	previously.
20	MR. ROSEN: And that's why I questioned to
21	move out the valving and all of that. And I got
22	answers that said it's mainly the steam path and not
23	the valving. But you're still talking about the
24	principle component for which the turbine trip test is
25	done at full power; that is the response of the
ļ	I

(202) 234-4433

	327
1	turbine to the shut off of steam.
2	MR. PRESCOTT: That's correct.
3	MR. SIEBER: Yes, but none of that is
4	safety related.
5	MR. ROSEN: Oh, I know it's not safety
6	related.
7	MR. SIEBER: And it doesn't effect the
8	MR. ROSEN: No, wait a minute. Wait a
9	minute.
10	MR. SIEBER: safety aspect of the
11	point.
12	MR. ROSEN: I know it's not safety
13	related. We've shown hundreds of times, if I could
14	find one example I could find a 100, where non-safety
15	related components have impacts on the plant. And, in
16	fact, the turbine of course is treated, in some
17	respects, as a safety related component with the
18	turbine missile strike probability analyses and all
19	the rest.
20	So to just say it's not safety related
21	doesn't really inform me a whole lot. I mean, it's
22	true, but it doesn't inform me a whole lot, nor does
23	it provide a basis for the decision making.
24	MR. PRESCOTT: That's correct.
25	MR. ROSEN: I still want to know what the

(202) 234-4433

1 substantive basis is for not requiring the test at full power, the new full power, just as the staff did 2 at the original full power. And so I probed this 3 4 morning is it a risk basis? No. Turbine trip and the 5 SCRAM that results is not a risky situation. We're told that it's a very low risk, so it can't be risk. 6 7 So it's purely economic. So the staff must be 8 responding to а licensee's economic pressure 9 incentives, and I don't think that's appropriate. I 10 think you need to --MR. PRESCOTT: I don't think that's the 11 12 staff intent here. The staff looks at -- we don't narrow the purview of the review to safety -- just 13 14 important to safety equipment. We look at the overall 15 scope --Well, that's right. 16 MR. ROSEN: PRESCOTT: -- of the EPU that was 17 MR. And, again, you have -- at least I -- we 18 performed. 19 ask the staff to ask themselves what would it gain you 20 if you asked for the test to be performed. And so far 21 when we were writing -- obviously, when we were -- as 22 you know, this SRP is relatively new. You know, we 23 developed it within the last couple of years. And as we went around -- and there was a 24 25 DPO involved with this also questioning whether or not

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

328

	329
1	large transient testing should have been performed.
2	And there's also a requirement that we go back and
3	look at the other sites that had performed large
4	transient testing at a later date to review whether or
5	not they should perform it.
6	When we again, it's not just my
7	opinion, it's the staff's opinion. They have to come
8	forward with a technical justification as to why the
9	test should be performed. Is there something new
10	MR. ROSEN: Well who the staff must
11	come forward with a technical justification as why the
12	staff the test should be performed, is that what
13	you just said?
14	MR. PRESCOTT: There has to be a basis to
15	ask for them to perform the test.
16	MR. ROSEN: Well see now, that's precisely
17	why the Review Standard was changed and the SRP was
18	changed to reverse the burden of proof. That's the
19	way it was, but shouldn't be now. The idea at least
20	was that intended was that the licensee should come
21	forward with a justification that people can agree to
22	for why the test should not be performed; otherwise
23	the test should be performed. And I think what you've
24	done is taken on the licensee's burden, and it's not
25	necessary.
I	I

(202) 234-4433

	330
1	The licensee in his application should
2	carry that burden. I don't think they have. And I
3	don't think you should have agreed to it.
4	MR. JONES: This is Steve Jones in the
5	Plant Systems Branch, Acting Section Chief.
6	We did look at this from the perspective
7	of what is the basis for not performing the test, the
8	large transient tests in particular, general load
9	reject and mainsteam isolation valve testing. Those
10	tests perform certain functions or at least the
11	initial test program had certain design criteria that
12	they were intended to demonstrate. And in this case,
13	they didn't really have anything to do with the
14	turbine performance.
15	What we did consider is: The extent of
16	the modifications associated with the power uprate and
17	the overall change in power of the plant; the
18	operating experience this plant has had; what
19	analytical models they could use to evaluate transient
20	response to the plant in an integrated fashion, and;
21	how those models were benchmarked.
22	When we looked at Waterford, this is just
23	barely over the threshold for an EPU, 108 percent and
24	we only consider EPUs above 107, a percent of original
25	license power. And then we're looking at the
I	I

(202) 234-4433

modifications were largely outside of the areas that would effect integrated response in those two large transients tests in that the turbine response is fairly independent and then the other factors like the feedwater heater drain valve response is also relatively small effect on the transient response of the plant to those types of tests.

Also, in this case the licensee had models 8 that considered how each controller performed. 9 And in this case the controllers were, as the licensee 10 mentioned this morning, the algorithms 11 of the 12 controllers weren't changed, just the setpoints. So they were able to change that in their model and model 13 14 the response. And those models have been benchmarked 15 to both Waterford's experience with those types of transients that already have occurred from their 100 16 percent of their current licensed power, and also 17 operating experience at the -- at a similar CE and 18 19 NSSS plant, ANO 2 at a higher than original license 20 power from a power uprate condition, effectively. 21 And on that basis we concluded that there 22 would be very little information gained from a large 23 transient test.

24 MR. CARUSO: Can I ask a hypothetical? 25 Suppose Entergy decided to build Waterford 4, and they

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	332
1	decided to build it just like Waterford 3? Would you
2	expect them to perform this test at the startup of the
3	new Waterford 4 plant?
4	MR. JONES: Yes.
5	MR. CARUSO: Why?
6	MR. JONES: One of the principle reasons
7	would be that Waterford 3 has already essentially gone
8	through the tests from what's 93 percent of their
9	uprated power level. They just haven't done it at 100
10	percent. And then
11	MR. CARUSO: Well, why would you require
12	Waterford 4 to do the test?
13	MR. JONES: Because there are a series of
14	new components that have never been never responded
15	to a transient and may have other problems.
16	MR. CARUSO: But they would say well we
17	tested these components in the factory. This pump
18	worked, this control circuit behaved properly, we did
19	the individual tests before we even started up the
20	plant pumping water, opening the valves that all the
21	valves worked, the turbine was tested in the factory,
22	the overspeed was tested, the control valves were
23	tested. Why do I have to run one of these tests?
24	MR. JONES: New plants have a lot of
25	experience with things like foreign materials being
I	I

(202) 234-4433

	333
1	left inside components. And that's not going to
2	MR. CARUSO: And operating plants don't?
3	MR. JONES: Within the scope of the area
4	that of the plant that plant systems is concerned
5	with, these modifications don't have any credible
б	likelihood of introducing those types of foreign
7	materials that would change a transient response.
8	MR. CARUSO: They don't do maintenance
9	during outages?
10	MR. JONES: Every plant does. Then we
11	would be talking about every plant doing transient
12	testing coming out of each outage. I think what we're
13	looking at is the delta and whether or not the extent
14	of the modifications has a credible likelihood of
15	introducing some type of new interaction that can't be
16	detected by the normal post-modification testing of
17	that individual component.
18	What we see at Waterford was a lot of
19	setpoint changes that are non-disruptive to the
20	controllers. And then the only really invasive mods
21	are downstream of the steam inlet valves to the main
22	turbine or pretty upstream with regard to the
23	feedwater heat drains. But from what I understand of
24	that modification, that's not a mod that's actually
25	invasive to the valve either. That's mainly a
I	I

(202) 234-4433

	334
1	controller setup.
2	CHAIRMAN WALLIS: It may happen by itself
3	anyway
4	MR. SIEBER: Well, it certainly will
5	happen.
6	CHAIRMAN WALLIS: after operating for
7	a while.
8	MR. ROSEN: At 2:30 in the morning.
9	CHAIRMAN WALLIS: And the only question is
10	is whether you'd rather do it that way or do it now.
11	For the first time.
12	MR. JONES: For the first time, that's I
13	think the key.
14	What we're expecting is that the response
15	will be very similar to the last time it happened
16	based on what we've just discussed. And we're using
17	the criteria that were laid out in the Standard
18	Revenue Plan for determining that.
19	DR. RANSOM: Well, to some degree is the
20	ascension to power test a test of this type because if
21	any problems are encountered, I presume they shut it
22	down, you know, and restart the test after they've
23	resolved whatever problems are encountered?
24	MR. JONES: Certainly a large majority of
25	the test systems that Plant Systems Branch are
	I

(202) 234-4433

	335
1	concerned with are tested during the normal operating
2	and power ascension portions, and the maneuvering
3	transient that's included in their power ascension
4	test.
5	DR. RANSOM: One thing I'm curious about
6	on the turbine and the generator, isn't it rotated
7	before they begin this power ascension testing? How do
8	they do that?
9	MR. PRESCOTT: Put it on turning gear.
10	MR. SIEBER: Rotate it.
11	DR. RANSOM: Drive it in some way?
12	MR. PRESCOTT: Yes.
13	MR. SIEBER: Oh, yes. The turning gear.
14	MR. PRESCOTT: Yes. The turning gear.
15	MR. SIEBER: There's a motor on it.
16	DR. RANSOM: Well, I would say that this
17	uprate given, as you suggests, it's borderline
18	percentage wise, but it is not borderline in the sense
19	that to the extent to which modifications have been
20	made or are being made. As we said the high pressure
21	turbine will be upgraded and replaced, generator's
22	going to be rewound, associate auxiliaries will be
23	changed, higher capacity main generator output circuit
24	breakers, disconnect switches and bus work will be
25	installed, control valves for the heat drain system
l	I

(202) 234-4433

	336
1	will be either upgraded or replaced, atmospheric dump
2	valve controls, we heard a little about them, will be
3	replaced.
4	MR. JONES: I believe no. The atmospheric
5	dump controls
б	MR. ROSEN: They're going to be modified?
7	MR. PRESCOTT: To a finer setpoint.
8	MR. ROSEN: The setpoint changes.
9	MR. PRESCOTT: Yes, sir.
10	MR. ROSEN: Okay. Well lower steam
11	generator trip pressure setpoint, reheat system safety
12	valves will be modified, condenser modifications will
13	be performed staking the condenser.
14	I mean, that's a long list of stuff. And
15	my feeling about all that stuff is it has to work as
16	an integrated whole. And the only way to know that is
17	to do an integrated test, the large transient test at
18	the new EPU. And I wouldn't expect that to be done the
19	day the instant you get there, but at a reasonable
20	time after you get to the EPI conditions and after
21	you've taken steady state data, and at a time
22	convenient to the system and the plant when management
23	and all the control systems, the proper control
24	systems are in place, additional resources as
25	necessary both people and equipment. And it would
I	I

(202) 234-4433

	337
1	seem to be that that would be an appropriate time to
2	take it rather at some undetermined time in the future
3	decided by the plant, not by the plant management.
4	MR. MITCHELL: Yes. This is Tim Mitchell.
5	I guess I feel like we are testing each of
6	those components you listed. And we are doing LTC
7	code predictions on their performance. But things like
8	turbine valves, which would be the primary concern I
9	believe with everything along the turbine train, are
10	they capable of moving and closing, you know we will
11	demonstrate that they are capable of moving and
12	closing or opening as part of the power ascension
13	profile, plus the maneuvering from 100 percent power
14	to 90, to 95 also shows our ability to move those
15	valves from the new 100 percent power plateau.
16	So to me we are testing the plant.
17	MR. ROSEN: Individual, I agree.
18	Individual here, individual there. But your reliance
19	on calculations and analyses to predict the transient
20	response of a plant from full power at the extended
21	power conditions is purely analytical. And I don't
22	think we would have ever accepted that in the past.
23	And I see no reason to do so in the future.
24	You can continue to address this subject
25	and provide more documentation, but I've been through
l	I

(202) 234-4433

	338
1	all of the stuff that's been provided, I think, both
2	by the staff and the applicant. And I don't think
3	you've carried the burden. My reaction to it is well,
4	if that's the best you can say, why don't you just do
5	the test and get it over with.
6	CHAIRMAN WALLIS: Steve, I'm not sure that
7	this Subcommittee is going to take the position one
8	way or the other. I don't know how the members feel
9	about this, but we may turn out to be evenly split.
10	MR. ROSEN: Well, that may very well be.
11	That may very well be. And I was just feeling my
12	burden to let the applicant and the staff know.
13	CHAIRMAN WALLIS: Well, I'm saying if
14	we're going to go to the full Committee, it would be
15	good if we could go with a recommendation. You know,
16	we've actually gone through the arguments and as a
17	Subcommittee we recommend that they do or do not do
18	these tests.
19	MR. ROSEN: Well, we could take a soft
20	vote if you want. I felt my burden was to say how I
21	felt.
22	CHAIRMAN WALLIS: Yes, I think you should.
23	I think that's very good that you did.
24	DR. DENNING: I mean if we're going to get
25	to a soft vote, then I'd like to talk a little bit
ļ	I

(202) 234-4433

	339
1	more about it. Because my feeling is
2	CHAIRMAN WALLIS: Well, I thought we'd
3	talk about it after they've finished their
4	presentation.
5	DR. DENNING: Sure. After. Absolutely.
6	CHAIRMAN WALLIS: When we start asking
7	ourselves whether or not we should go to the full
8	Committee and what are the issues and so on.
9	MR. JONES: This is Steve Jones in Plant
10	Systems. I just wanted to bring up one more point.
11	We have accepted in the past when during
12	initial startup tests when plants have had inadvertent
13	trips at lower power levels then initially plans, we
14	have accepted those as satisfying the startup test
15	requirement.
16	MR. ROSEN: Up to that power level, not
17	extrapolated beyond that power level?
18	MR. SIEBER: No, extrapolated.
19	MR. JONES: I mean, we've accepted those
20	as satisfying the generator load reject tests for 100
21	percent power if it occurred at 80 percent power.
22	MR. PRESCOTT: And we also accepted for
23	initial startup of plants, we also accepted as logic
24	for not performing certain tests at other plants that
25	were being constructed afterwards with the same
I	I

(202) 234-4433

	340
1	vintage or the same make, they're not performing a
2	certain test based on a test performed at other
3	plants.
4	MR. ROSEN: I understand.
5	MR. PRESCOTT: So NRC has long
6	MR. ROSEN: I understand that you've told
7	me that you've accepted it at other plants and at
8	lower power levels in the past.
9	MR. PRESCOTT: Yes.
10	MR. ROSEN: We're talking about the
11	future, not the past here I thought. And so I would
12	prefer to talk about the future. And given the fact
13	that either you make a change here with the past or
14	you use the past essentially forever as prologue. In
15	other words, we give every licensee the signal that
16	they may rely on the past precedent of not requiring
17	this. Their burden has been reduced effectively to
18	zero, when in fact their purpose the change of the
19	standard was to transfer the burden to the licensee.
20	It was not the staff's job to argue with the agency
21	reviewers that the licensee could waive transient
22	testing, which was part of normal startup programs. It
23	was not the staff's job to do that. It was the
24	applicant's job to do that. To make that case
25	convincingly.
I	

(202) 234-4433

	341
1	MR. PRESCOTT: And then the SRP covers
2	that. It gives them the option of supplying us
3	information analytically or performing the test. It
4	doesn't weigh the option for them.
5	MR. RULAND: Let me add about Duane
6	Arnold. As you probably are aware, Duane Arnold when
7	we approved their power uprate, they had a license
8	condition that required them to do large transient
9	testing.
10	Recently they came in for a license
11	amendment to eliminate that license condition. And
12	the staff basically said to the licensee but we
13	haven't issued this license amendment by the way, yet.
14	That they hadn't performed sufficient justification to
15	eliminate large transient testing at this point.
16	So what I'm arguing is that the staff has
17	shown that we're applying this as the Review Standard
18	has suggested on a case-by-case basis. And in fact, at
19	least at this stage in Duane Arnold they haven't
20	provided us sufficient justification to justify
21	eliminating the large transient testing. So that's
22	just an example.
23	MR. ROSEN: Well, I appreciate that.
24	MR. PRESCOTT: And there was a significant
25	RAI associated with this EPU at trying to address
	1

(202) 234-4433

	342
1	large transient testing.
2	CHAIRMAN WALLIS: Can we perhaps move on
3	and revisit this later?
4	MR. PRESCOTT: Finally, this is just to
5	give a little more background on some of the things
6	that we take a look at, and we also take a look at
7	operator training and familiarization, any changes
8	that were done to the ELPs and the benchmarking of
9	analysis codes and models as extra consideration for
10	whether or not large transient testing.
11	Next slide, please.
12	Finally, this is just a conclusion slide
13	to give an overall view of that SRP 14.2.1 has options
14	available to a licensee for ways of justifying large
15	transient testing and testing in general. And that
16	there have been 12 domestic LWRs or light water
17	reactors that have implemented staff approved EPUs.
18	CHAIRMAN WALLIS: But at Duane Arnold you
19	are requiring?
20	MR. PRESCOTT: No, it's a licensed
21	condition right now that's on there to perform the
22	testing. They're doing their power uprate in phases
23	and they haven't reached the phase yet where they're
24	required to do the testing
25	CHAIRMAN WALLIS: There have to be LWRs

(202) 234-4433

	343
1	where you have required large transient testing.
2	MR. PRESCOTT: I'm sorry.
3	CHAIRMAN WALLIS: You said there were 12
4	were you have not required large transient tests. Are
5	there other ones where you have required large
6	transient tests?
7	MR. PRESCOTT: No, sir.
8	CHAIRMAN WALLIS: No. So this is 12 of
9	12?
10	MR. PRESCOTT: Yes.
11	CHAIRMAN WALLIS: There's no example where
12	you have required them?
13	MR. PRESCOTT: No, sir.
14	And that's it.
15	MR. HOWE: This is Allen Howe. Let me
16	just clarify something.
17	Duane Arnold has a license condition which
18	requires them to do large transient testing. As the
19	context here, they haven't gotten to the point yet
20	where they would need to do it, and they've submitted
21	an application for removal of that license condition.
22	But, in fact, you could say the answer is that Duane
23	Arnold has been required or has a requirement to do
24	large transient testing.
25	CHAIRMAN WALLIS: Can we move into the
I	I

(202) 234-4433

	344
1	next item now?
2	Thank you very much.
3	MR. KALYANAM: The last presenter of the
4	day will be Martin Stutzke to talk about the
5	probablistic safety assessment.
6	MR. STUTZKE: Good evening, gentleman. I'm
7	Martin Stutzke from the Probability Safety Assessment
8	Branch. Unlike the two members of my branch
9	previously, I'm an actual PRA analyst.
10	MR. ROSEN: Rather than an orphan in the
11	PRA group, right?
12	MR. STUTZKE: I look at them as my foster
13	children.
14	MR. ROSEN: Well, that's nice.
15	MR. STUTZKE: We're reviewed the risk
16	evaluation that Waterford submitted to us, primarily
17	for two reasons. One, we want to make certain that
18	the risks are acceptable. And two, we want to
19	determine if special circumstances exists as defined
20	in the Standard Revenue Plan Chapter 19 Appendix D.
21	Special circumstances are items that could rebut a
22	presumption of adequate protection that's provided by
23	meeting current regulations.
24	The point behind this is that the
25	Waterford EPU application is not a risk-informed

(202) 234-4433

345 1 application. So strictly speaking RG 1.174 does not apply. However in the course of developing the Review 2 Standard RS-001 there, the staff has concluded in fact 3 4 that special circumstances may exist for all EPUs, and hence we do a review for that purpose. 5 One of the things that's different when 6 7 you're looking at the risk of a nonrisk-informed 8 application, the focus on adequate protection means we 9 tend to look at the overall risk. We're not so concerned about the change in risk, the delta risk 10 calculation, although you will see that we have in 11 fact looked at them. 12 Next slide, please. 13 14 The review scope basically consists of 15 examining the internal events, the following types of 16 external events. Internal floods. The license has a 17 conservative screening approach that's used. 18 19 Internal fires where they've relied on 20 EPRI methodology, the fire induced vulnerability 21 evaluation approach. 22 Seismic events or where they've relied on 23 seismic margins analysis. 24 The so called HFO events; high winds, 25 floods and other external events where external

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	346
1	they've used NUREG-1407 screening. 1407 is the IPEEE
2	submittal guidance.
3	Their Level 2 PRA which is basically a
4	LERF calculation based on NUREG/CR06595.
5	A qualitative assessment of shutdown risk
6	based on questions out of the Standard Review Plan
7	Chapter 19.
8	And we've also examined the PRA quality.
9	I should point out with concern to PRA quality, the
10	Review Standard is basically I looked at Regulatory
11	Guide 1.174, the SRP Chapter 19 and section 19.1. As
12	you know for Regulatory Guide 1.200 has been issued
13	for trial use, which talks about industry peer reviews
14	and the ASMI PRA standard. I will confess that I
15	looked at this, but you will not see that I referenced
16	it. It is not the basis of my decision of adequate
17	quality for this license application.
18	Next slide.
19	The overall results are as shown on the
20	slide. I did not have them up on this slide because
21	the internal floods and internal fires, in fact, are
22	conservative approaches. In fact, I went ahead and
23	added them up over lunch. The total core damage
24	frequency is about two times ten to the minus five per
25	year, that's including all the internal events and
I	I

(202) 234-4433

	347
1	external events.
2	The change in core damage frequency is on
3	the order of four times ten to the minus seven per
4	year. When you do compare that to Regulatory Guide
5	1.174 you find they're in Region III, which means it
б	is a very small increase in risk.
7	DR. KRESS: Did you look at late
8	containment failures at all?
9	MR. STUTZKE: No, sir. No, sir.
10	MR. ROSEN: Say again what Region III is?
11	MR. STUTZKE: Region III equates to a very
12	small change in risk.
13	MR. ROSEN: You mean that's what's
14	allowed?
15	MR. STUTZKE: Yes.
16	MR. ROSEN: It's not no change?
17	MR. STUTZKE: It's not no change.
18	MR. ROSEN: Right.
19	MR. STUTZKE: The language is very small.
20	Region II is small.
21	MR. ROSEN: Allowed?
22	MR. STUTZKE: Right. And Region I is not
23	allowed.
24	With respect to their internal events PRA,
25	I focused on several things. One had to do with the
ļ	I

1 frequency of loss of offsite power because the power 2 of the plant was being increased and we had an event 3 in August of 2003 that blacked out large amounts of 4 power in this country, we needed to have a look at the 5 loop frequency. In fact, the licensee's approach to estimating loop frequency is to take a list of offsite 6 7 power events, loss of offsite power events that have 8 occurred and screen out those that clearly don't apply 9 to their sites such as snow or ice or things like 10 that. Even though I'll note that it apparently supposedly snowed in New Orleans a couple of week ago. 11 12 MR. ROSEN: For the first time, and in south Texas. 13 14 MR. STUTZKE: And in south Texas. 15 MR. ROSEN: Eight inches in my back yard. 16 MR. STUTZKE: It's amazing how probability 17 sometimes come true. That was once in a 100,000 18 MR. ROSEN: 19 years. 20 I look at that loop MR. STUTZKE: 21 frequency and compared it to work that the Office of 22 Research has recently done in support of the staff's 23 action plan on grid related issues. And the Waterford 24 frequency is in fact higher. I'll also point out that 25 Waterford operates in a regulated environment and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

348

	349
1	there's no intention to become deregulated. Office of
2	Research and NRR has tentatively reached a conclusion
3	that regulation versus deregulation does have some
4	influence on the likelihood of loss of offsite power.
5	I like that.
б	In addition, I looked at success criteria.
7	We've talked about that earlier today. The fact that
8	that the deterministic conservative calculations
9	require or the atmospheric dump valves to mitigate
10	small LOCAs. The PRA calculation, realistic
11	calculation indicated that those valves were not
12	needed to mitigate the LOCA.
13	My conclusion goes all the way back to the
14	Commission's PRA policy statement, the third bullet
15	says "PRAs should be as realistic as practicable." So
16	in fact when I use a realistic one, the licensee used
17	a realistic calculation. He determined that the
18	valves were not necessary, and hence there was no
19	change to their success criteria between the pre and
20	the post EPU plants.
21	I think our branch continues to wrestle
22	this as we find indications where one applies the
23	traditional deterministic approaches and reaches one
24	conclusion and comes in with a PRA calculation that
25	may refute this.

(202) 234-4433

1 In addition, the licensee recalculated 2 operator response times using the CENTS code. They're pre-EPU PRA appears to be a mixture of some plant 3 4 specific analyses, some generic analyses and some good 5 old fashioned engineering judgment. What you found in some cases that when they calculated using CENTS, the 6 7 operator had more time than before, even though the 8 power level had gone up. So I asked them to do a 9 sensitivity calculation where they left the loop 10 recovery probabilities the same and they changed only 11 the human errors in the model. And in fact the change 12 in core damage frequency only went down by ten to the minus nine. So it's a negligible effect. So in fact 13 they adjusted the pre-EPU PRA to account for the 14 15 correct times out of CENTS, and then they bumped up the power level and recalculated those. And I think 16 it's a reasonable calculation. 17 For seismic risk, in NUREG-1407 Waterford 18 19 was classified as a reduced scope plant. The licensee 20 has stated that an increase in power level is not 21 affect equipment survivability expected to or 22 There's no change in the safe shutdown response. 23 passways using the seismic margin analysis. 24 For HFO events, they were screened out in 25 IPEEE; there's no way that an increase in power level

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

350

	351
1	will increase the frequency, the current frequencies
2	of HFO events. So there's no contribution from them.
3	For shutdown risk, the Standard Review
4	Plan Chapter 19 contains four questions to help us to
5	decide if impacts on shutdown risks could be
6	important. The questions are as follows:
7	Will the changes affect shutdown schedule?
8	As you see indicated here, the answer is no.
9	Will the changes affect the operator's
10	ability to respond? And remember we're talking about
11	responds to events while the plant is in fact
12	shutdown. The licensee maintains a shutdown
13	operations protection plan that maintains a variety of
14	important functions. And they would propose to
15	control the plant using the same way.
16	The third question is will the changes
17	affect the shutdown equipment reliability? Again, the
18	answer is no.
19	Or would it affect the availability of
20	equipment or instrumentation used for contingency
21	planning? And again the conclusion was no.
22	So the fact that all of the questions
23	resulted in no lead me to the conclusion that the
24	proposed EPU had no or small impact on shutdown risk,
25	and we didn't pursue it any further.
ļ	I

(202) 234-4433

	352
1	With respect to PRA quality, you'll see
2	dates and times of when the licensee submitted their
3	IPE and IPEEE and when the staff accepted them. As
4	stated earlier this morning, the licensee had an
5	owner's group peer review in January of 2000. My
6	impression is the licensee maintains a living PRA
7	program, and I think this is true for all the Entergy
8	plants. You can see there's been several PRA updates,
9	the latest being in June of 2003. They maintain their
10	PRA as quality records.
11	I would say in my experience that's about
12	half of the plants do that, actually maintain these as
13	formal engineering calculations like that.
14	So in order to confirm the quality of the
15	PRA, I looked at the resolution of the IPE, IPEEE and
16	peer review findings. They have addressed all but
17	three of the category A findings from their peer
18	review, and all but 19 of the category B findings.
19	To give you a flavor of what this means is
20	most of the category A findings pertain to the Level
21	2 PRA. For the EPU they didn't use their existing
22	Level 2 PRA. Instead they used NUREG/CR-6595 and so
23	it's not necessary to resolve the questions. There's
24	some comments on model documentation and things like
25	this.
Į	

(202) 234-4433

	353
1	So the conclusions are, the PRA has
2	technical adequacy. I think it's modeling the post-
3	EPU plant reasonably so we can have some confidence in
4	its results. The risks are acceptable because, in
5	fact, the licensee meets the Regulatory Guide 1.174
6	guidelines even though they didn't need to. And we
7	have seen nothing in our review that indicates the
8	proposed EPU creates special circumstances, so we have
9	no reason to rebut a presumption of adequate
10	protection based on my review.
11	Questions?
12	CHAIRMAN WALLIS: The CDF for this plant
13	is low enough that it's more adequate protection
14	compared with the average plant.
15	MR. STUTZKE: That's right.
16	DR. KRESS: Besides it's a large dry
17	containment.
18	MR. STUTZKE: It's a large dry
19	containment.
20	DR. KRESS: Those are two pretty good
21	things to
22	MR. STUTZKE: Yes.
23	CHAIRMAN WALLIS: So does the staff have
24	any kind of summary to present. It's on the schedule
25	here.
I	

(202) 234-4433

	354
1	MR. RULAND: Just one thing I owe you from
2	this morning's meeting had to do with what our
3	procedures said concerning the inspector witnessing of
4	initial power ascension testing.
5	Our inspection procedure, which is
б	specifically called power uprate, and this inspection
7	procedure requires the inspector to witness initial
8	power ascension after they implement the changes that
9	were made for the power uprate and to witness a review
10	test of any major plant tests. So those are what the
11	guidance we give our inspectors.
12	Secondly, you've heard of course a number
13	of our technical staff stating that this the first
14	time that we've completely used our RS-001 Review
15	Standard.
16	CHAIRMAN WALLIS: Right.
17	MR. RULAND: And as part of that program
18	we're going to solicit from the technical staff for
19	not only this power uprate for PWR, but for the next
20	BWR power uprate review, to take that input from the
21	technical staff to see how we need to revise it, if
22	any. I suspect there's a number of changes that we're
23	going to make as the staff actually used the Review
24	Standard. So that's also part of our process, and we
25	intend to do that.
	I

(202) 234-4433

1 But that concludes our presentation. I 2 think Allen, you got some closing remarks. 3 MR. HOWE: Yes. Thank you, Bill. This i 4 Allen Howe. 5 And first of all, I'd like to say that we 6 appreciate the opportunity to come before the ACRS and 7 to present the information related to the Waterford 3 8 extended power uprate. 9 The staff has done an extensive review or 10 this process. When we came in today we identified a 11 couple of open items that we have conceptual agreement	5
 MR. HOWE: Yes. Thank you, Bill. This is Allen Howe. And first of all, I'd like to say that we appreciate the opportunity to come before the ACRS and to present the information related to the Waterford 3 extended power uprate. The staff has done an extensive review or this process. When we came in today we identified a 	
 Allen Howe. And first of all, I'd like to say that we appreciate the opportunity to come before the ACRS and to present the information related to the Waterford 3 extended power uprate. The staff has done an extensive review or this process. When we came in today we identified a 	
5 And first of all, I'd like to say that we 6 appreciate the opportunity to come before the ACRS and 7 to present the information related to the Waterford 3 8 extended power uprate. 9 The staff has done an extensive review or 10 this process. When we came in today we identified a	.s
 appreciate the opportunity to come before the ACRS and to present the information related to the Waterford 3 extended power uprate. The staff has done an extensive review or this process. When we came in today we identified a 	
7 to present the information related to the Waterford 3 8 extended power uprate. 9 The staff has done an extensive review or 10 this process. When we came in today we identified a	j
8 extended power uprate. 9 The staff has done an extensive review or 10 this process. When we came in today we identified a	1
9 The staff has done an extensive review or 10 this process. When we came in today we identified a	3
10 this process. When we came in today we identified a	
	1
11 couple of open items that we have conceptual agreement	Ĵ
	-
12 on the resolution of them. We need to nail down some	ž
13 of the details, and we are going to be working	ł
14 diligently to do that.	
15 In addition, during the course of the	ž
16 dialogue today I took some notes, and I know that	-
17 others took some notes on some other items that were	ž
18 of interest that we should be prepared to discuss at	-
19 the ACRS full Committee. And we will be working to	
20 manage that and assure that we address those issues at	-
21 the time that we come before the full Committee.	
22 Thank you.	
23 CHAIRMAN WALLIS: Thank you very much,	
24 staff.	
25 Is it appropriate, Ralph, we come off the	ž

(202) 234-4433

	356
1	record at this time?
2	MR. CARUSO: I think so.
3	CHAIRMAN WALLIS: So we don't need the
4	transcript anymore. Thank you.
5	MR. MITCHELL: Chairman Wallis, I do have
6	some FAC data that was requested.
7	CHAIRMAN WALLIS: Let's go back on for
8	these bits of factual data.
9	MR. MITCHELL: Okay. The flow accelerated
10	corrosion, going back on the question of past outage
11	history. All of the items I'm going to talk about were
12	predicted either by CHECWORKS or by our program
13	itself. As I think everybody's probably aware,
14	CHECWORKS does not do small bore, so we rely on our
15	program to do small bore.
16	In refueling 10, which would have been
17	three outages ago, we did some weld buildup on
18	stainless steel overlay that was predicted by the
19	program. This is not CHECWORKS either. That's
20	outside the bounds of CHECWORKS.
21	RF 11, the next outage
22	MR. ROSEN: Well, where did you do that
23	weld overlay? What system? You didn't say.
24	MR. MITCHELL: It's a cross under piping
25	on the turbine.
ļ	I

(202) 234-4433

	357
1	RF 11 extraction steam elbow, a 20 inch.
2	That was based on a CHECWORKS prediction from the
3	previous outage. And we went in and replaced that with
4	chrome moly.
5	Then in RF 12 there are two two inch main
6	steamlines that replaced based on data that we had
7	collected in previous outages in this predictions. But
8	those were not but those are small bore, they
9	weren't CHECWORKS. And that's it.
10	MR. ROSEN: So some cross under piping was
11	built up?
12	MR. MITCHELL: That's correct. One 20
13	inch elbow.
14	MR. ROSEN: One 20 inch elbow was replaced
15	with chrome moly.
16	MR. MITCHELL: Right. And two
17	MR. ROSEN: That's a small bore piping.
18	MR. MITCHELL: And then two lines of small
19	bore piping.
20	MR. ROSEN: In the main steam system?
21	MR. MITCHELL: That's correct. And again,
22	all of those were predicted.
23	MR. ROSEN: All of those were predicated,
24	but not necessarily by CHECWORKS.
25	MR. MITCHELL: Just one was even in the
I	I

(202) 234-4433

	358
1	scope of CHECWORKS, that's correct. So the one that
2	CHECWORKS had an opportunity to predict, it did
3	predict. But that's the only one in the last three
4	outages that was within the scope of the CHECWORKS.
5	MR. ROSEN: Thank you.
6	CHAIRMAN WALLIS: Okay.
7	MR. MITCHELL: That's all my FAC data. We
8	could discuss some more on the boron precipitation
9	question that Dr. Ward presented if you would like,
10	but I'll leave that up to the Committee.
11	CHAIRMAN WALLIS: Well, you didn't have
12	any info when he was talking and maybe you should,
13	since that looks as if that might be a very important
14	issue.
15	MR. MITCHELL: We have looked at it and
16	Joe's going to talk about it in more depth, but in
17	summary we have gone back and done the calculations.
18	Those calculations have supported our position, that's
19	even with the conservatisms that Dr. Ward described.
20	And those conservatisms more than bound any open
21	issues with the calcs. Those calcs will be QA'd next
22	week, I believe. If that's not correct, Joe, please
23	correct that. But I'm going to turn it over to Joe
24	and let him talk about it as well.
25	MR. CLEARY: Yes. What we plan to do is

(202) 234-4433

	359
1	expand the calculation that we've done today to
2	address Len's concern to include as quantitatively as
3	possible or semi-quantitatively some other
4	conservatisms that we haven't discussed in the meeting
5	today and also some of the ones that we have.
6	We would start off that recalculation by
7	attempting to implement into the calculation the
8	affect of the increase in the boric acid density on
9	the phase separation model that will determine the
10	void fraction in the mixing volume.
11	CHAIRMAN WALLIS: Now, do you have a basis
12	for doing that?x
13	MR. CLEARY: To be honest, we do not have
14	a basis at this point in time. The intent of the
15	calculation would be to show that hopefully over a
16	wide range of void fractions after accommodating
17	relaxing these other conservatisms, we would have a
18	bounding result that would cover any expected impact
19	that a more detailed and therefore time consuming
20	evaluation of the effect of boric acid
21	CHAIRMAN WALLIS: Well, when you boil a
22	mixture close to saturation, the vaporization
23	concentrates this substance on the interface and you
24	will probably will tend to precipitate boric acid on
25	the interface of the bubbles. So you now have a
I	I

(202) 234-4433

1 mixture which is not homogeneous. It has interfacial 2 characteristics which are different from the bulk and 3 which may actually involve precipitation of this 4 soluble. 5 MR. CLEARY: I can't argue --

CHAIRMAN WALLIS: That would change the --6 7 it seems to me, that would change the drift flux or have the potential to change the formability of the 8 9 drift flux and quite a few other of the hydraulic characteristics of this mixture, the same way that you 10 boil certain things in the kitchen, when you boil 11 12 candy and so on, when you start to get conditions where you're going to change the structure of the 13 14 stuff, you begin to get very different boiling 15 behavior of that material.

16 MR. CLEARY: I agree. And that's why the 17 purpose of these calculations would be to show that start relaxing these very conservative 18 once we 19 assumptions we would remain far enough below the 20 solubility limit that these effects would not. 21 significantly enough change the answer to lead to the 22 expectation of boric acid precipitation.

In the longer time frame, there are test data out there that can be brought into the evaluation. The MHI has done tests on the Backus

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	361
1	facility. The Finnish have done some tests that the
2	NRC staff is aware of that can help bring more factual
3	information to bear on the issue.
4	CHAIRMAN WALLIS: So these tests would
5	include boiling of boric acid solution near the limit
б	of solubility.
7	MR. CLEARY: That's correct.
8	CHAIRMAN WALLIS: And the resultant drift
9	flux or whatever it is that's necessary to calculate
10	the void fraction?
11	MR. CLEARY: At this point I don't know
12	the extent of the instrumentation that was in these
13	facilities to know what could be brought to bear on
14	trying to benchmark current models
15	CHAIRMAN WALLIS: Now, is this something
16	that can be done in two weeks?
17	MR. CLEARY: What I'm describing, bringing
18	in the results of these test studies, they certainly
19	cannot be done in two weeks. Again, the intent of the
20	work we would propose doing in the next two weeks is
21	to show that once we relaxed the very conservative
22	assumptions, that we would lower the maximum
23	concentration recalculate well below the solubility
24	limit to give a high degree of confidence that in the
25	long term on a generic basis Waterford as well as
	I

(202) 234-4433

362 1 other Westinghouse and GE-designed NSSSs would not 2 have a problem. What would concern me 3 CHAIRMAN WALLIS: 4 about going to the full Committee with this is that 5 you have this analysis, it looks important enough that it would have to be examined very carefully and 6 7 critically. We'd have to probably have some written 8 material we could study. And this would be --9 certainly it would have to occur at the Subcommittee level. We couldn't expect the full Committee to 10 digest new technical material which they hadn't had a 11 chance, no one had a chance to fully critique. 12 So I wonder if we should go to the full 13 14 Committee with something like that? 15 MR. MITCHELL: I guess it is important to 16 note that this is not a Waterford issue, that it is a 17 generic issue that we will be pursuing pushing to resolution. 18 19 CHAIRMAN WALLIS: You may have created a 20 generic issue, yes. MR. CLEARY: I believe the staff has 21 22 recognized that it is a generic issue and the draft 23 SER talks about pursuing it on a generic basis. Albeit this is before Len Ward's consideration of the 24 25 affect of the void fraction on the mixing volume. But

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	363
1	in general, the staff had these issues which they were
2	planning to pursue on a generic basis.
3	MR. SIEBER: Well, it's not particularly
4	helpful for Entergy or any applicant to believe that
5	an issue becomes a generic issue and therefore they
6	should get their application approved because this
7	issue moved to some other category. And it could well
8	be that the applicant would want to move rapidly to
9	resolve it, at least in their case, so that the EPU
10	would move forward. You know, just making it a
11	generic issue doesn't help.
12	MR. CLEARY: I could expand on it a bit
13	more, the type of work we can do within the two week
14	time frame.
15	MR. SIEBER: When you get to the end of
16	the two week time frame, you're going to have a
17	calculation that's probably not been reviewed, is not
18	QA, not part of the application, not reviewed and
19	reviewed by the staff, not a part of the SER. And I'm
20	not sure how we can deal with that. I mean, there's
21	more that has to be done than I think is possible to
22	do in two weeks.
23	MR. RULAND: Clearly, Jack, at this stage,
24	you know, I think the staff needs an opportunity to go
25	back and talk to the applicant, talk to our management
ļ	

(202) 234-4433

	364
1	and get back to you very rapidly about what we see as
2	our approach out of this problem.
3	MR. SIEBER: Promptly.
4	MR. RULAND: And promptly. Yes, sir.
5	MR. SIEBER: I'm not saying that anybody
6	did anything wrong. I congratulate both the staff and
7	the applicant for reaching the point that they've
8	reached. It's just that I think that we need to
9	resolve it and document it to a greater detail than
10	you can do in two weeks.
11	CHAIRMAN WALLIS: I think really from my
12	point of view, the desirable process would be for you
13	folks and the staff to work hard on this and come back
14	to the Subcommittee.
15	MR. SIEBER: Yes.
16	CHAIRMAN WALLIS: And when we're
17	satisfied, we can say it's ready to go to the full
18	Committee.
19	MR. SIEBER: right.
20	CHAIRMAN WALLIS: I don't see that
21	happening between now and February 10th. This will
22	upset the management that wants to get something out
23	of the way of the ACRS by the February meeting, but I
24	don't quite see how we're going to do that. That's
25	the feeling I have. Maybe my colleagues have a
I	I

(202) 234-4433

	365
1	different feeling about it.
2	MR. SIEBER: I agree.
3	MR. ROSEN: Are we on the record still.
4	CHAIRMAN WALLIS: We're still on the
5	record. We can go off the record, if you like.
6	We stayed on the record because we were
7	getting input from the applicant. If we have ceased
8	getting input from the applicant and the staff, then
9	I think we should go off the record and discuss among
10	ourselves.
11	Are we really ready to go off the record
12	now? In that case, I'll thank everybody who has
13	contributed to it. Thanks very much.
14	And go off the record.
15	(Whereupon, at 5:36 p.m. the Subcommittee
16	was adjourned.)
17	
18	
19	
20	
21	
22	
23	
24	
25	
Į	1