Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Advisory Committee on Reactor Safeguards Reliability & Probabilistic Risk Assessment Subcomittee
Gubconnitee

- Docket Number: (not applicable)
- Location: Rockville, Maryland
- Date: Thursday, November 17, 2005
- Work Order No.: NRC-741

Pages 1-318

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	+ + + +
б	RELIABILITY & PROBABILISTIC RISK ASSESSMENT
7	SUBCOMMITTEE MEETING
8	+ + + +
9	THURSDAY,
10	NOVEMBER 17, 2005
11	+ + + + +
12	
13	The meeting was convened in Room T-2B3 of
14	Two White Flint North, 11545 Rockville Pike,
15	Rockville, Maryland, at 8:30 a.m., Dr. George E.
16	Apostolakis, Subcommittee Chairman, presiding.
17	MEMBERS PRESENT:
18	GEORGE E. APOSTOLAKIS Chairman
19	MARIO V. BONACA ACRS Member
20	RICHARD S. DENNING ACRS Member
21	THOMAS S. KRESS ACRS Member
22	ACRS STAFF PRESENT:
23	ERIC A. THORNSBURY ACRS Staff, Designated
24	Federal Official
25	
	I contract of the second se

(202) 234-4433 (202) 234-443 (202) 234-444 (202) (202)

		:	2
1	ACRS STAFF PRESENT (Cont:	inued):	
2	ASHOK C. THADANI	Deputy Executive	
3		Director, ACRS/ACNW	
4	NRC STAFF PRESENT:		
5	CHARLES ADER	RES/DRAA	
6	PETER APPIGNANI	RES/DRAA/OERAB	
7	MICHAEL CHEOK	RES/DRAA/OERAB	
8	NILESH CHOKSHI	RES/DRAA/OERAB	
9	DON DUBE	RES/DRAA/OERAB	
10	ELI GOLDFEIZ	RES/DRAA/OERAB	
11	CHAD HUFFMAN	RES/DRAA/OERAB	
12	CHRIS HUNTER	RES/DRAA/OERAB	
13	STEVE LONG	NRR/DRA	
14	DON MARKSBERRY	RES/DRAA/OERAB	
15	JEFF MITMAN	RES/DRAA/OERAB	
16	LYNN MROWCA	NRR/DRA/APOB	
17	DAN O'NEAL	RES/DRAA/PRAB	
18	JAMES VAIL	NRR/DRA/APOB	
19	ALSO PRESENT:		
20	ROBERT BUELL	Idaho National Laboratory	
21	STEVE EIDE	Idaho National Laboratory	
22	JOHN SCHROEDER	Idaho National Laboratory	
23			
24			
25			
1	1		

	3
1	<u>CONTENTS</u>
2	PAGE
3	Opening Remarks, George E. Apostolakis 4
4	SPAR Model Development Program, Nilesh Chokshi . 5
5	Level 1 Internal Events, Michael Cheok 9
6	SPAR Model Demonstration, Dr. Robert Buell 46
7	Major Modeling Assumptions, Dr. Robert Buell . 135
8	PRA Quality Reviews, Donald A. Dube 255
9	Status of Modeling Uncertainty in SPAR,
10	Dr. John Schroeder
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	I contraction of the second seco

4
<u>PROCEEDINGS</u>
(8:33 a.m.)
CHAIRMAN APOSTOLAKIS: The meeting will
now come to order.
This is a meeting of the Advisory
Committee on Reactor Safeguards, Subcommittee on
Reliability and Probabilistic Risk Assessment.
I am George Apostolakis, Chairman of the
subcommittee.
Members in attendance are Mario Bonaca,
Rich Denning, and Tom Kress.
The purpose of this meeting is to discuss
the standardized plant analysis risk model development
program. The subcommittee will gather information,
analyze relevant issues and facts, and formulate
proposed positions and actions, as appropriate, for
deliberation by the full committee.
Eric Thornsbury is the Designated Federal
Official for this meeting.
The rules for participation in today's
meeting have been announced as part of the notice of
this meeting previously published in the Federal
Register on November 1, 2005. A transcript of the
meeting is being kept and will be made available as
stated in the Federal Register notice.

(202) 234-4433

	5
1	It is requested that speakers first
2	identify themselves and speak with sufficient clarity
3	and volume so that they can be readily heard.
4	We have received no written comments or
5	requests for time to make oral statements from members
6	of the public regarding today's meeting.
7	We will now proceed with the meeting, and
8	I call upon Mr. Nilesh Chokshi to begin the
9	presentations.
10	MR. CHOKSHI: Thank you.
11	And I would like to begin by thanking the
12	committee for reviewing our station blackout study as
13	a part of the SPAR model development program and
14	giving us feedback with respect to fire attributes
15	which are used by the committee in the evaluation.
16	I think in going forward not only on this
17	project, but in other SPAR model developments, this
18	experience will serve us well in looking at the fire
19	attributes and use them as a bench product against
20	theoretically to measure our progress and monitor, you
21	know, how we are meeting those fire attributes. I
22	think it will serve as a good check as we move
23	forward.
24	I also want to thank you for giving us
25	opportunity to discuss SPAR models development in
	I contraction of the second

(202) 234-4433

	б
1	detail, I think, and this is really a good time for us
2	to do that as we are in the formative stages in
3	several areas of model development. I think as you
4	will go through the presentation, you will see that.
5	As you will see here, we're going to cover
6	the full spectrum of the SPAR model developments,
7	internal events, external events, LERF, low power
8	shutdown, and they are at varying stages. You know,
9	they are in varying stages in their degree of maturity
10	and in their sophistication.
11	I think as, again, the committee noted in
12	the quality report, the SPAR model development is
13	making use of the existing state of the art and is
14	very closely tied to the plant specific plant PRA
15	models. So one of the key factors in development of
16	models is the availability of the plant models and the
17	nature of these models.
18	So as a result, I think in each of these
19	areas there are different types of challenges, you
20	know, in terms of what technical approach to be used,
21	how to develop models where there are no plant
22	specific models available, and what do you do about
23	the performing QS, the approach used and internally
24	arranged was a bit different because of the
25	availability of models, the maturity of the practice
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	7
1	is much developed.
2	So I think we are looking forward to
3	getting feedback on some of these challenges and
4	thoughts, you know, as you move along the development
5	of these other areas.
б	What I would like to do is now introduce
7	the team which is going to be up here today and
8	tomorrow, and from the staff you'll have the principal
9	staff members who are project managers in each of the
10	technical areas.
11	I think, as you know, Dr. Pat O'Reilly for
12	many years led the staff team, you know, in this and
13	also the oral SPAR model development program.
14	Don Marksberry is here, and I think he has
15	taken over that responsibility.
16	We also have principals from the Idaho
17	National Laboratory and Brookhaven who will give
18	detailed presentations on some of the aspects, and I
19	think it's leading off at the level of internal
20	events. I think it's very important. You'll see a
21	lot of details and how that is being developed.
22	So from the staff we have Don Marksberry.
23	Selim Sancaktar is going to talk about external
24	events. Eli Goldfeiz is living the live model
25	development, and Jeff Mitman will join us, just simply

(202) 234-4433

	8
1	the branch, and he's leading the low part in shutdown
2	effort.
3	And from Idaho, we have Dr. Buell and Dr.
4	Schroeder. Schroeder doesn't talk about the leaders
5	of the internal events.
б	And Dr. Lehner will be here tomorrow.
7	Mike Cheok is going to lead off the
8	presentation with all of you. We also have Don Dube,
9	and we would like to give you some perspective on
10	lessons learned from the use of SPAR models in the
11	MSPI activities, and I think Mike is going to discuss
12	that as sort of an area I don't what to agenda.
13	I think I'd like to before I have Mike
14	talk about the overview, I'd like to make one point.
15	I think to me it's very important. You know, people
16	you are going to hear from and today I introduced,
17	they are the project managers, and they are obviously
18	in each of the model development, but there are many
19	other contributors in terms of many activities, you
20	know, directly or indirectly.
21	And also as Mike is going to very shortly
22	this is a very integrated effort involving SPAR
23	model and input development, which you are not talking
24	today, and also the strong user application interface
25	and feedback mechanism.
1	

(202) 234-4433

	9
1	Everything I think we do in my branch,
2	offering expert evaluation is very closely tied to the
3	SPAR models. So you'll see that, and you will see
4	clearly when Mike shows what we do and how these thing
5	are. So it just follows you throughout.
6	And so it's integrated. So I think
7	hopefully when we go through these presentations, you
8	will see some of the perspectives clearly, and with
9	that, Mike.
10	MR. CHEOK: Good morning. We'll be
11	touching upon a lot of topics, as you see, and these
12	topics are, I guess, preagreed upon in our agenda.
13	The one new topic that Nilesh touched upon is the one
14	on the MSPI lessons learned.
15	The agency currently is implementing the
16	mitigating systems performance index. As part of this
17	implementation, we are doing a review of the
18	licensee's PRAs and comparing the results from those
19	PRAs to SPAR models, and as a result of this
20	comparison, we are coming up with a lot of good
21	insights and lessons learned, and we would like to
22	share this with this committee.
23	So if you would like, we would like to a
24	half an hour slot with Don Dube to discuss the MSPI
25	lessons learned.
	I contraction of the second

(202) 234-4433

	10
1	CHAIRMAN APOSTOLAKIS: You say you are
2	comparing your results with those of licensees, PRAs.
3	I thought you are doing it routinely as part of the
4	SPAR development. So what is this comparison?
5	MR. CHEOK: We are doing that anyway, and
6	we will discuss some of our QA activities as part of
7	Idaho's discussions today. What we're doing in the
8	normal basis is going to the plants, looking at their
9	PRAs, and now looking at their cut sets and comparing
10	cut sets.
11	This is another level of detail. We're
12	looking at influence measures. The bow and bar
13	(phonetic) measures that are used in MSPI, and they
14	give us a different perspective as to what components
15	in the plant can become important.
16	And in theory if you compare the high
17	level cut sets, you would be looking at perhaps the
18	top 90 to 95 percent of your CDF for some initiating
19	events that will not contribute as much to your CDF,
20	but they could have components that could become
21	important, and they will show up in your
22	(unintelligible) importances (phonetic).
23	We do not see that many differences, but
24	the differences we do see are quite enlightening.
25	MR. DENNING: the answer to the question,

(202) 234-4433

	11
1	George though is probably yes, right? We do want to
2	hear the MSPI.
3	CHAIRMAN APOSTOLAKIS: Especially from
4	Dube.
5	MR. CHEOK: All right. What are SPAR
6	models? SPAR models are small event trees, large
7	fault PRA models. They are plant specific in that
8	they model plant specific system configurations, and
9	to a certain extent they model small
10	CHAIRMAN APOSTOLAKIS: What did you say?
11	You said model fault trees? Say it again.
12	MR. CHEOK: They are small event trees and
13	large fault trees. So they're similar to the cap
14	during a neutral models and not quite similar to the
15	risk MAN models. They are standardized in other
16	areas, and we will discuss the standardization later
17	on today with INL.
18	We used the SPAR-H methodology to estimate
19	human error probabilities, and we will discuss SPAR-H
20	in December, in a December subcommittee meeting.
21	Component failures and initiating event probabilities
22	and frequencies are based on national generic plant
23	experience data for older models.
24	We would like to point out that the
25	purpose of the SPAR model development program is to
	I contract of the second se

(202) 234-4433

Í	12
1	provide the NRC staff with literally available and
2	easy to use PRA models for use in performing risk
3	informed regulatory activities, and that's basically
4	our sole objective of the program.
5	CHAIRMAN APOSTOLAKIS: So the idea was
6	that the complete PRAs are not easy to use; is that
7	the point?
8	MR. CHEOK: Well, we are not saying the
9	complete PRA is not easy to use, and I wouldn't even
10	imply that the SPAR models are not complete PRAs. I
11	would like to think that they are complete PRAs. They
12	are standardized and they have similar methodologies.
13	Thereby the staff can now, if you're familiar, one
14	SPAR model you can use it for all 72 plants. You do
15	not have to use different methodologies for each
16	different plant. You do not
17	CHAIRMAN APOSTOLAKIS: What would be the
18	difference, say, between two PRAs that the SPAR model
19	would eliminate and standardized? Would one PRA be
20	produced by risk MAN so it has huge event trees and
21	small fault trees, and you do your SPAR model for that
22	plant or you switch the other way? Is that one of the
23	differences you are eliminating?
24	MR. CHEOK: That's one of the differences
25	we eliminate.
ļ	1

(202) 234-4433

	13
1	CHAIRMAN APOSTOLAKIS: Are there any
2	others?
3	MR. CHEOK: Well, the other differences
4	would be how people would classify the basic events,
5	the terminology, how you would enter the standard
6	methodologies as to how we would classify basic events
7	by the component name, the tag number, and failure
8	mode. Other different plants and utilities would have
9	different terminology that we would have to learn,
10	same with initiating events, human failure events.
11	The other things would be the
12	standardization, and we'll talk about this later on.
13	It would be the standard success criteria that we
14	would use. We would have you assume two out of two
15	PORVs, for example, for feed and bleed.
16	The licensees may use other models to
17	justify perhaps one out of two PORVs for feed and
18	bleed.
19	CHAIRMAN APOSTOLAKIS: But is there any
20	detail in the licensee's PRA that is not inspired?
21	MR. CHEOK: The licensee's PRAs would tend
22	to be a little bit more detailed than SPAR in terms of
23	breaking down a system into different components. We
24	may not be as detailed in terms of the number of basic
25	events in the whole model, but we will capture all of
	1

(202) 234-4433

	14
1	the main initiators and during our plant visits, and
2	during the MSPI evaluation process, we would add
3	support system initiators that are important.
4	MR. DENNING: Is it the human reliability
5	analysis you would expect to be in more detail or more
6	specific for the utilities PRA or is that not true?
7	MR. CHEOK: We would expect that the
8	utility PRAs would be more detailed than ours because
9	they will have access to their own EOPs and plant
10	procedures that we may not have access to.
11	MR. DENNING: And component failure data,
12	you didn't mention that, but that is another.
13	MR. CHEOK: Correct. The other thing, the
14	utilities would use plant specific data. We would use
15	our generic data for the whole industry for each plant
16	mode.
17	CHAIRMAN APOSTOLAKIS: Why?
18	MR. CHEOK: I think in a sense, that's
19	part of our standardization objective when we want to
20	compare results across the 72 plants. We would like
21	to think that it's not being influenced at this point
22	by plant specific data. We can obviously incorporate
23	plant specific data into our models, and we have done
24	that on event specific cases doing ASP analysis. When
25	we are analyzing a very specific event, we will apply
	1

(202) 234-4433

	15
1	plant specific data if we think that it's appropriate.
2	CHAIRMAN APOSTOLAKIS: I mean, this
3	comparison across the industry is not very clear to me
4	because you can compare on the basis of CDF and LERF,
5	and the dominant contributors. You don't have to have
6	the same component failure distributions to say, oh,
7	now they're comparable. I mean, you do have the two
8	major metrics. So you could compare that way.
9	I mean, the whole idea is to have plant
10	specific PRAs, isn't it? The standardization can go
11	only so far.
12	MR. CHEOK: Well, we are trying to achieve
13	an optimum balance between standardization and being
14	plant specific, and I think and I don't want to
15	steal too much thunder from our INL staff. They will
16	discuss standardization to a lot bigger degree than I
17	am doing now, and I will sit in the side and we will
18	discuss this again later when they come up.
19	CHAIRMAN APOSTOLAKIS: Rich, did you want
20	to say something?
21	MR. DENNING: Yeah, I'll say it now. I'm
22	sure we're going to come back to it. I think it's
23	really a very interesting philosophical question as to
24	what the best direction is here, and at least from
25	where I'm sitting now, I really like the idea of using

(202) 234-4433

	16
1	the generic data, but with sensitivity studies.
2	You know, you do the generic study and
3	then you look and see what did the plant itself really
4	predict for the similar thing, and then you try to
5	understand what the reasons are for the differences.
6	But again, I'm sure this is something
7	that's going to be an important philosophical question
8	for us.
9	CHAIRMAN APOSTOLAKIS: The generic data
10	may not apply to that plant.
11	MR. DENNING: Well, that's true, and I
12	think with sensitivity studies, I think you always go
13	back and try to understand, well, what's the
14	difference between
15	MR. CHOKSHI: You're going to see some of
16	these as a part of the presentation as well, this kind
17	of comparisons, and we invite you to come back to this
18	point, I think, after you see this.
19	DR. BONACA: How do you deal with updates?
20	I mean, the plants change and they have data PRAs.
21	MR. CHEOK: That's an issue that we are,
22	in essence, struggling with. We update our models
23	each revision, Revision 2 or Revision 3 and enhanced
24	revision. As the plants update their PRAs, there is
25	really no requirement for them to come to us, to give

(202) 234-4433

	17
1	us what they use for the updates.
2	CHAIRMAN APOSTOLAKIS: Unless you have a
3	significant determination process.
4	MR. CHEOK: Correct, unless we have an SDP
5	or an ASP finding, and they will come and tell us,
6	"Oh, by the way, we changed this configuration and you
7	should do it," and we will do it at that time, but
8	there's no formal process at this point.
9	CHAIRMAN APOSTOLAKIS: The use of generic
10	data, of course, eliminates the influence of safety
11	culture, doesn't it?
12	MR. DENNING: Well, it certainly averages.
13	MR. CHEOK: I would agree that it averages
14	since it is generic data.
15	All right. Evolution of SPAR models.
16	SPAR models evolved from the two event trees we
17	originally used as art of our ASP program. We had one
18	event tree for PWRs and one for BWRs. In Revision 2
19	we basically went to a 72 model set, one for each
20	plant site. It linked fault trees and event trees.
21	In Revision 3 we had support systems, more
22	initiating events, and uncertainty analysis
23	capability. In this case we basically have
24	uncertainty distributions for each of our parameter
25	estimates and subjected the models to benchmarking

(202) 234-4433

	18
1	against the licensee's PRA.
2	And we are now working on low power
3	shutdown, external events and LERF models as part of
4	the effort.
5	CHAIRMAN APOSTOLAKIS: Now, all of these
6	models are in SAPHIRE, right?
7	MR. CHEOK: All of these models use the
8	SAPHIRE code engine to run. That's correct.
9	CHAIRMAN APOSTOLAKIS: Now, you k now that
10	several years ago there were proposals from Franz to
11	go to BDDs, binary decision of Bayesian decision
12	diagrams or binary decision diagrams, and slowly that
13	approach is catching up in this country.
14	I was informed that a few weeks ago there
15	was an EPRI report that was issued on BDDs. Now, I
16	realize that switching to a new code is going to
17	create a lot of problems for you because you already
18	have the models, and so on.
19	On the other hand, wouldn't it be a good
20	idea to have a small project somewhere where a team of
21	you guys looks at this new approach and decides, you
22	know, what we're doing is good enough or we may do
23	this ten years from now.
24	What bothers me about it is that, you
25	know, a lot of people especially at conferences talk
	I contract of the second se

(202) 234-4433

	19
1	about these things, and we, the agency, seem to be
2	oblivious to all of that or we're rejecting it out of
3	hand.
4	The truth of the matter is that they claim
5	you don't need cutoff frequencies, okay, because you
6	can solve the exact problem. There is a price you pay
7	for that, of course. One is that I don't believe
8	they produce minimal cut sets automatically. You have
9	to do some things together, which, of course, for us
10	is a major drawback because we really want to
11	understand the modes of failure.
12	But I would suggest that you gentlemen get
13	a copy of this EPRI report. I have it electronically
14	if you want it.
15	MR. CHEOK: Yeah.
16	CHAIRMAN APOSTOLAKIS: Oh, you have it.
17	MR. CHEOK: No, if you can send it.
18	CHAIRMAN APOSTOLAKIS: Sure. I'll give it
19	to Eric, and maybe, you know, some time in the future
20	next year you come back and say, "Yeah, we
21	investigated it. We analyzed it, and we concluded A,
22	B, C."
23	You may very well conclude that what
24	you're doing is good enough, but at least we'll have
25	some ammunition to defend it, considering, of course,
	I

(202) 234-4433

	20
1	the effort it would take to change all of these models
2	out to a new code. I mean, the benefit, cost-benefit,
3	Nilesh, I mean, these are new ideas for this agency,
4	right?
5	The record should show that I was smiling
6	when I said that.
7	(Laughter.)
8	CHAIRMAN APOSTOLAKIS: Okay, Mike.
9	MR. CHEOK: All right. As Nilesh said
10	earlier, our branch does offering experience risk
11	assessments, and this is an integrated effort. We
12	know that we analyze data in three cuts. The first
13	cut is at the industry-wide performance level, and we
14	do that in terms of industry-wide performance trends.
15	A second cut is to provide plant specific
16	performance indicators.
17	And the third cut basically is to go even
18	one level below, and that's to analyze the risk
19	significance of operating events. So where do we
20	begin?
21	At the beginning of this chart we collect
22	data from sources such as the licensee event reports,
23	the monthly operating reports, the INPOs/EPICs
24	database, and FAR events from various sources, and we
25	do look at the ROP, reactor oversight process, input
1	

(202) 234-4433

	21
1	from SSUs and now MSPI.
2	We collect and code this data using our
3	integrated data collection and coding system and input
4	this data into our RADS database and our CCF database.
5	We also input all our data into the NRC
6	Website to be available for all staff to use. We are
7	in the process of putting this Web site to be
8	available for external stakeholders.
9	We use this data in our SPAR models, and
10	we use our SPAR models and our data, like I said
11	earlier, in several programs, the industry TRANS
12	program, the ROP, the ASP program, inspection
13	programs, and in licensing reviews.
14	CHAIRMAN APOSTOLAKIS: What is RADS?
15	MR. CHEOK: I'm sorry?
16	MR. CHOKSHI: Reliability and data
17	MR. CHEOK: RADS would be
18	CHAIRMAN APOSTOLAKIS: Can you go back?
19	MR. CHEOK: Back? How do I do that?
20	CHAIRMAN APOSTOLAKIS: There's another
21	arrow. One more.
22	MR. CHEOK: Yes. Okay. RADS?
23	CHAIRMAN APOSTOLAKIS: Yeah.
24	MR. CHEOK: RADS would be the reliability
25	and availability data system.

(202) 234-4433

	22
1	CHAIRMAN APOSTOLAKIS: And availability
2	data. Now, I think that when one implements the
3	significance determination process, one really needs
4	details, doesn't it? Because these are findings that
5	are not typically in PRAs.
6	Is that when you take your SPAR model and
7	then you work with a utility to make sure that that
8	detail is there?
9	MR. CHEOK: We try to do that. To the
10	extent possible we will basic our staff in the
11	regions and NRR would use the SPAR models to come up
12	with the finding, and in many cases I would say
13	most cases it would match what the licensee would
14	come up with.
15	CHAIRMAN APOSTOLAKIS: Now, this process
16	has three phases or something.
17	MR. CHEOK: That's correct.
18	CHAIRMAN APOSTOLAKIS: Phase three is the
19	most detailed one.
20	MR. CHEOK: That's correct.
21	CHAIRMAN APOSTOLAKIS: That's when the
22	licensee possibly disagrees with you, and they want to
23	argue that, you know, things are not the way you
24	think.
25	So I assume at that level you really have

(202) 234-4433

	23
1	to go down to the details.
2	MR. CHEOK: Well, not quite. Phase two is
3	basically the use of notebooks, plant notebooks.
4	CHAIRMAN APOSTOLAKIS: Yeah.
5	MR. CHEOK: And then phase three is when
6	we say phase two is a little bit too conservative.
7	Let's do a PRA model.
8	CHAIRMAN APOSTOLAKIS: Yeah, that's what
9	I mean.
10	MR. CHEOK: And in that case we will do
11	our own SPAR model analysis and the licensees in most
12	cases would do their own analysis using their own
13	models, and as I said earlier, in many cases they
14	would actually match, and the results would be the
15	same.
16	If they are not the same, then we would
17	try to reconcile the differences, and at that point,
18	you know, we would make changes to the SPAR models or
19	perhaps even suggest to the licensee that their PRA
20	models are different because of certain things.
21	CHAIRMAN APOSTOLAKIS: Do we know off hand
22	how many cases like that you have? I mean, does that
23	happen routinely or is it very rare?
24	MR. CHEOK: I think I'll defer this to Don
25	Marksberry. He works a lot more with the ASP
	1

(202) 234-4433

	24
1	analysts.
2	In terms of phase three analysis, are you
3	talking about how often we use the SPAR models or how
4	often
5	CHAIRMAN APOSTOLAKIS: How often do you
6	disagree with a utility?
7	MR. CHEOK: I guess we'll get you the
8	statistics, George, but I don't have it off the top of
9	my head.
10	John. John might know.
11	MR. LONG: My name is Steve Long. I work
12	in the Office of Nuclear Reactor Regulation, and I do
13	some of the significance determination modeling.
14	Basically if the results are not green, we
15	usually end up in a discussion with the licensee. A
16	lot of the argument comes down to not what is in
17	either the licensee's IPE or a SPAR model, but in some
18	particular aspect that's not really a detail yet
19	modeled and how to model that. The worse the color,
20	the more arguments we get into, but there's quite an
21	incentive to get a green if you're a utility company.
22	So there's almost always some sort of
23	discussion back and forth on the modeling anything
24	that's not green.
25	CHAIRMAN APOSTOLAKIS: So it's not that
1	I contract of the second se

(202) 234-4433

	25
1	the utility's model is more detailed. It's that
2	usually both models don't have some detail that the
3	utility feels is important.
4	MR. LONG: Well, some things will turn out
5	to be green because we will look at the utility's
6	model and we'll figure out that we like the way they
7	model it and we agree that it gives the right answer
8	or reasonable answer and it's green and the discussion
9	is over.
10	CHAIRMAN APOSTOLAKIS: But wouldn't you
11	change the SPAR model then?
12	MR. LONG: The SPAR models are not really
13	a collection of everything we've ever done in the past
14	for a particular plant because you end up with a lot
15	of detail which is done on sort of an ad hoc way,
16	maybe not a very complete way, and it's not uniform
17	across the model in that level of detail. You're just
18	going down deep in one thing for one particular set of
19	conditions so that you've already sort of solved the
20	model. You've focused on certain sequences. You
21	maybe have focused on certain cut sets, and now you're
22	just extending the modeling for those particular
23	sequences or cut sets.
24	And the way you've done that may not even
25	be applicable for a full model solution. So you just

(202) 234-4433

Í	26
1	have to be careful, and we would create an intractable
2	problem, I think, for our contractors if every time
3	that was done we told them to maintain that at a
4	quality level. Then from then on we would quickly
5	build up a morass of details that you couldn't count
6	on for the next event actually modeling the situation
7	accurately.
8	CHAIRMAN APOSTOLAKIS: Okay.
9	MR. LONG: Does that make sense?
10	CHAIRMAN APOSTOLAKIS: Go ahead. That's
11	fine. Thank you.
12	MR. CHEOK: John Schroeder from INL will
13	report some insights on this. When we have a SPAR
14	model help desk, so to speak, and when analysts from
15	the headquarters or from the regions have problems or
16	have differences with the licensee models, they could
17	call INL for some guidance, and John can give you some
18	input.
19	DR. SCHROEDER: Yes, I can offer a couple
20	of comments on that.
21	CHAIRMAN APOSTOLAKIS: Name, please.
22	DR. SCHROEDER: John Schroeder, Idaho
23	National Laboratory.
24	I provide a lot of support to the region
25	personnel when they enter into these conferences, and

(202) 234-4433

what often happens is that the licensee comes to the 2 table with a set of cut sets that they believe 3 reflects the risk from the condition or the event, and 4 the SRAs have another set of cut sets that have been 5 produced by the SPAR model.

And in the cases where those disagree, and 6 7 how often that happens is probably -- I mean, we get calls on this sort of thing probably at least one or 8 9 two a month, sometimes it may be only one and a quarter, but frequently there are issues, and what 10 will happen is the SRA will look very closely at the 11 12 cut sets and there will be recoveries. There will be system alignments represented in the licensee cut 13 14 sets, and the SRA typically comes from an inspection 15 background. So they will use their inspector's skepticism and investigate those things. 16

And those things that they buy off on will 17 be fed back into the SPAR model to readjust their 18 19 result. if those things have generic and 20 applicability, they'll go into the baseline model and 21 stay there.

22 If it's a special case, unusual details, 23 a one time only type circumstance, then those things will be discarded and not maintained. 24

> So by and large CHAIRMAN APOSTOLAKIS:

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

	28
1	then your team, Nilesh, is satisfied with the current
2	state of the SPAR models. You don't expect any
3	revolutionary change any time soon.
4	I mean, we all appreciate that here and
5	there you have to tweak the model a little, but by and
6	large, you believe that every unit in the United
7	States now has a good SPAR model for internal events.
8	MR. CHOKSHI: I think so. You know, the
9	process you have implemented, I think, is working out.
10	CHAIRMAN APOSTOLAKIS: Okay. How many
11	years did it take to get there?
12	MR. CHOKSHI: Oh, that
13	MR. DENNING: How many man-years?
14	CHAIRMAN APOSTOLAKIS: Calendar years. I
15	mean, started what, in the early '90s?
16	MR. CHOKSHI: Looking for that, Don.
17	MR. MARKSBERRY: Don Marksberry, Office of
18	Research.
19	It started around 1994 with the Rev-1
20	models, and the total cost so far is \$7.2 million for
21	the iterative approach, and each time we went to a rev
22	model we were happy at that time, and then something
23	new comes about, and then we up the details of the
24	model to fit.
25	CHAIRMAN APOSTOLAKIS: Something new in
	1

(202) 234-4433

	29
1	what sense?
2	MR. MARKSBERRY: Different purposes, such
3	as the ESP program. We wanted higher fidelity models
4	to do more analysis.
5	DR. BONACA: That's a bargain.
6	CHAIRMAN APOSTOLAKIS: Seven million?
7	DR. BONACA: Yeah.
8	CHAIRMAN APOSTOLAKIS: Reported in the
9	context of what we spent elsewhere.
10	DR. BONACA: I have a question. We heard
11	about cases where there are disagreements. There are
12	a lot of disagreements, except for minor details, and
13	the observations that you draw from SPAR are agreed to
14	by the licensee.
15	What's the success rate?
16	MR. DENNING: Let me ask a slightly
17	different question maybe, and that is, you know, you
18	looked at kind of the general agreement at the high
19	level, CDF level, and now you're looking at the cut
20	set level. Do you see significant differences? As
21	you look intensively at cut set level, do you see
22	significant differences that require modification?
23	DR. SCHROEDER: This is John Schroeder
24	again.
25	Some of the plots that we'll present later
	1

(202) 234-4433

1 on in the presentation address this in a global way. 2 We see a lot of differences and big differences in 3 relatively unimportant components. We see very few 4 differences in really important events because from 5 the beginning of the SPAR model development process, we have been trying to calibrate our models against 6 7 what is risk significant, and the more we learned, the 8 deeper we had to go. 9 So what you'll see in the importance

10 comparison plots is a triangle where there's tight 11 agreement on very important events and increasing 12 scatter as we move down into very low importance 13 events.

14 Now, the issue becomes when you do a 15 significance determination or ASP analysis that the baseline risk or the conditions in effect for the 16 17 analysis change what is important, and that requires a certain attention to those low probability events 18 19 that wasn't received early in the program, and that 20 generates the discussions and the investigations on 21 the part of the SRAs, and that generates modifications 22 to the SPAR models. 23 CHAIRMAN APOSTOLAKIS: Okav.

24 MR. CHEOK: Okay. The next slide would be 25 the users of the SPAR models, and we have already

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

30

discussed a lot of this. Obviously we use it as part of the SDP Phase 3. We use it in ASP analysis. We use it to improve the quality of PRAs through the ASP program, through MSPI.

5 You know, we find a lot of things that may 6 or may not be modeled in current PRAs. For example, 7 common cause interactions of events and operator 8 recovery actions. These are things that we notice 9 through use of the SPAR models, and we can feed it 10 back to our models and to the licensee models.

We use it to perform analysis in support 11 12 of generic safety issue resolution. For example, on GSI-189, which is the combustible gas control issue 13 14 and GSI-191, which is the PWR sump issue, we use it to support risk informed reviews of licensing amendments, 15 and we use it to provide an independent capability to 16 17 evaluate risk issues across plant populations. For example, the MSPI effort and also the LOOP/SBO study, 18 19 which the subcommittee has reviewed.

Agency interfaces. We involve our users a lot for the SPAR model development process. The SPAR model users group, SMUG, was formed in 1999, the members from Research, NRR, and the regional offices. This group basically provides the direction for how we develop our SPAR models. They form the SPAR model

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

32 1 development plan, and this plan has been approved by 2 all user management organizations. 3 We currently have two NRR user need 4 requests for SPAR model development. We attend SRA 5 counterpart meetings twice a year to perform training, to provide guidance on the use of SPAR models. Ι 6 7 think this is important. It think it's very important 8 to continually train our users. 9 Two, I think it's very important for us to 10 continue to update our models depending on what the users want and what they tell us they want. 11 And I think it's important to get feedback 12 from all of our users. 13 14 DR. KRESS: Do you have severe accident 15 models in SPAR with fission products? MR. CHEOK: We currently do not have 16 17 fission product severe accident models. We have the LERF models, but that ends in a release, and we do not 18 19 have --20 DR. KRESS: Are there any plans to go in 21 that detail? 22 Well, not in the SPAR program. MR. CHEOK: 23 I think there are other programs that may go into that 24 arena, but not through SPAR. 25 KRESS: So you would never then DR.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	33
1	consider Level 3 either?
2	MR. CHEOK: I guess I wouldn't say
3	"never," but we are not considering that at this
4	point.
5	And again, the last bullet basically says
6	that we do have a help desk which John Schroeder
7	talked about where all SPAR users can call us for
8	support when they need it.
9	Program development activities, and I'll
10	go through these quickly. In Level 1 internal events
11	at full power, we do have 72 Revision 3 SPAR models
12	available, and we are in the process of enhancing
13	these models, and we'll talk about these today.
14	We have low plant shutdown models. We
15	have ten models completed with on-site QA for four
16	models completed. We intend to have four more
17	completed in FY '07. We will talk about these
18	tomorrow.
19	The Level 2 largely released frequency
20	models, we are intending to complete ten models by
21	2008 for the ten lead plant classes. Currently we
22	have three models completed, and for external events
23	which covers fires plus seismic events, we currently
24	have six models drafted. This is the most recent of
25	our efforts. We are in this for six months. We have
l	I

(202) 234-4433

	34
1	six models done, and will continue to refine the model
2	development process as we go along.
3	MR. DENNING: One thing I'm not
4	understanding here is what are your objectives. I
5	know it's difficult to go back, but go back to the low
6	power shutdown models. Do you plan to have a low
7	power shutdown model eventually for every plant?
8	MR. CHEOK: At this point, no. We
9	probably will end up with between 15 to 20 models. As
10	Nilesh said earlier, these models are very dependent
11	on our reactions with the licensees, and whether they
12	have staff that can help us out in these models,
13	especially in cases like low power shutdown, which are
14	very plant specific.
15	If licensees do not have these models, it
16	will make it harder for us to come up with models of
17	our own.
18	DR. BONACA: But wouldn't your developing
19	these models spur the licensees to develop their own?
20	MR. CHEOK: It may. You're right. I
21	mean, the fact that the licensees think that the staff
22	has one, maybe they should have something that would
23	I wouldn't say counteract, but to have their own
24	models, but I guess I kind of answered that for sure.
25	DR. THADANI: I think it seems to me,
	1

(202) 234-4433

	35
1	Mario, that that's an important point because the PSA
2	conference in September, NEI, indicated that they
3	thought that the low power shutdown models were not
4	that important, that they had lower priority.
5	And so I think this could be an
6	important
7	CHAIRMAN APOSTOLAKIS: Because they have
8	a lot of human actions, and we know that human actions
9	are very reliable.
10	DR. THADANI: Yes.
11	MR. DENNING: I mean, obviously one of the
12	issues is can you get the funding to do it. I mean,
13	obviously there is an issue here, and I think it's an
14	issue that, you know, the ACRS doesn't get directly
15	involved with, other than if we recognize the need,
16	then we make a lot of noise about it, and so as we
17	look at the low power shutdown and also the external
18	events and this type of thing, I mean, my own feeling
19	is that they are extremely important and that our
20	objective should be to have each of SPAR covering
21	each of these models and then the question is are
22	there really enough funds to do it, as well as keeping
23	everything updated and this kind of stuff.
24	But I'm curious as and you gave a good
25	answer as to why it's difficult to do this, but it

(202) 234-4433
	36
1	does seem to me that our objective should be to have
2	a full complement for every plant, and I'm curious.
3	Is that what you really think?
4	MR. CHOKSHI: And I think you will see
5	that, you know, maybe as you'll pulling through that
6	one of the objects is to sort of see if there is a way
7	to develop those things, and how robust and how
8	useful, and you will see in some of the detailed
9	presentations the type of issues that come up, you
10	know, how you can be sure that it's capturing enough
11	plant specific features.
12	They're so plant specific, externally
13	DR. BONACA: And that's a decision, I
14	mean, depending on how the average is being managed.
15	MR. CHOKSHI: And what applications we are
16	trying to make of it.
17	CHAIRMAN APOSTOLAKIS: So the goal here is
18	to have eventually a good set of Level 1 and Level 2
19	full power and low power shutdown model for each
20	plant. Is that the goal?
21	MR. CHEOK: The goal is to have enough
22	models that we can use, and I was going to answer your
23	question that way, that we can use on a regular basis
24	to assess events or to help in licensing applications.
25	As we go along, we may find that we are depending a
	I

(202) 234-4433

1 lot more on our lower power shutdown models or a lot 2 more on our external events models, and if that's the case, then it would give us the justification to 3 4 continue to develop these models for the full set of 5 plans.

But, on the other hand, we do not use 6 7 these models as much and we can adapt one model or one 8 plan to the next plan in the time we need to use it 9 and perhaps we will stick with a representative step.

CHAIRMAN APOSTOLAKIS: You are talking about the mechanics of doing it.

12 Well, maybe, George, but the MR. DENNING: question that you've raised, I mean, that was exactly 13 14 what got us into this discussion, is we looked and saw 15 that as far as their established goals, they're much more limited than saying we're going to have one for 16 17 every operating plan, and that's the question. Is it necessary? Is it a technical -- and I quess we're 18 19 hearing kind of two sides of this. One is that not 20 all of the plants have them or a lot of the plants 21 don't have them so that it makes their job that much 22 more difficult to develop them.

23 But then I quess the most recent just made 24 is perhaps if you look at classes of plants and have 25 models for those, that when you get to the other

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

10

11

	38
1	specific one, you can do that.
2	But let me make one more point and that is
3	that as the ACRS looks at these various risk informed
4	decisions that are being made now, virtually every
5	time we address that the question arises as have they
6	really also looked at and everything is oriented
7	towards internal events, and you say, "Well, have they
8	really looked at low power shutdown? Have they looked
9	at seismic? Have they looked at fire risk?"
10	And the answer is no a large fraction of
11	the time, and we certainly aren't comfortable with
12	that situation at the moment.
13	DR. BONACA: But it seems to me one thing
14	that one could certainly gain from this number of
15	models of low power shutdown is an understanding of
16	whether practices used in different plants, a similar
17	design may make a difference to risk because really we
18	don't know that exactly.
19	Now, I'm not at all familiar with I'm
20	not saying that they are all using different
21	approaches to the refueling, but there are
22	differences, and that would be certainly an important
23	objective.
24	CHAIRMAN APOSTOLAKIS: Yeah, because
25	unless I misunderstood you, one of the major results
	1

(202) 234-4433

of the flurry of activities in the '80s and '90s to do PRAs was that they have to be plant specific because there are features in one plant that you don't find in 3 4 another.

5 You know, there's something bothering me about this continuing debate on whether low power 6 7 shutdown models should be developed, and we'll see if 8 there is a need. I recall there was a report, a very 9 good report, in fact, that was developed as part of the ATHENA project several years ago that listed all 10 sorts of human errors during shutdown operations. 11

12 So significance how do we do а determination process for these? 13 I mean, if we don't have the model, it seems to me we're going to arm wave 14 15 a lot, and in other words, there is evidence that 16 stuff happens during low power shutdown, and because 17 of the state of the plant, it may be more risky. Right? 18

19 it to me that there is So seems an 20 incentive to do this. Now, again, Michael started 21 talking about the mechanics of it and the resources 22 and so on, but maybe if you start using your models 23 which may be crude at the beginning, then the 24 licensees will see the light and say maybe it's 25 worthwhile developing something more detailed here.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	40
1	MR. CHOKSHI: I think, yeah, that's
2	important. We are learning more and developing as we
3	apply to the situations, I think, and this is what
4	we're waiting to see.
5	CHAIRMAN APOSTOLAKIS: But my point,
6	Nilesh, is that there is evidence. First of all, one
7	major piece of evidence is that PRAs have shown that
8	the contribution to core damage frequency from low
9	power shutdown operations is comparable to that from
10	power operations. That's already a major incentive,
11	and the second one in fact, I think that was the
12	last time when the PRA community was surprised by a
13	result, about 15 years or so ago. All right? That
14	was a surprise.
15	And second, as I said, you know, there is
16	evidence, I mean, produced by this agency that a lot
17	of things happened there and because, you know, the
18	vessel may be open and so forth. It's important to
19	understand those and have a tool to evaluate them.
20	MR. CHEOK: And I think the agency
21	supports the CRS obviously in terms of
22	CHAIRMAN APOSTOLAKIS: Do you have any
23	evidence for that?
24	MR. CHEOK: If you look at Reg. Guide
25	1.174 and 1.200, it basically states that we should

(202) 234-4433

	41
1	consider all modes of operation and everything else,
2	and it's our job, I guess, to provide the tools for
3	the staff to be able to carry out
4	CHAIRMAN APOSTOLAKIS: Mike, you're
5	touching a sore point with me because we always use
6	those words "consider."
7	MR. CHEOK: That's correct.
8	CHAIRMAN APOSTOLAKIS: Since 1998 when the
9	regulatory guide came out, and that word has more
10	meanings in the English language than any other word.
11	DR. KRESS: Let me make a comment about
12	low power and shutdown tools. There's two types of
13	low power and shutdown risk. If you're doing a
14	significance determination process, you have a good
15	idea of the plant configuration and you can do that
16	for given events for a given plant, but a lot of the
17	need for low power and shutdown risk is to have just
18	like we do with full power an integrated risk over the
19	lifetime of the plant. This is what we end up with.
20	We do it on a per year basis, but it's actually an
21	integrated risk over the lifetime of the plant.
22	Now, over the lifetime of a given plant,
23	the configuration during shutdown varies markedly over
24	different configurations for different times. Now, in
25	order to actually model that in a low power and
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

ĺ	42
1	shutdown risk, that you're interested in that aspect
2	of it, you're going to have to have a database.
3	You're going to have to go to all of these plants and
4	look at how long they're out, what equipment is out,
5	and get some sort of a database on all of these
6	configurations and somehow average them or get plant
7	specific ones, and that doesn't look like an easy task
8	to me. It looks like a development of PRA that's
9	needed, and nobody seems to be working on that part of
10	it. That's what bothers me.
11	MR. CHEOK: I think we agree with you.
12	It's a challenge and to get it to be plant specific
13	enough to give us good insights for the overall risk
14	and even for evaluating events as they arise because
15	they are so plant specific and so issue and event
16	specific.
17	MR. CHOKSHI: I think you will also see it
18	in the schedules, why it takes so long to develop, and
19	you know, it's also a burden on QA with license
20	established, much more involved for low power and
21	shutdown. So that's I think the simple point in that
22	availability of licensing staff may not convey that,
23	but it's a major effort.
24	CHAIRMAN APOSTOLAKIS: What do you mean
25	contingent on availability? Just start using it.

(202) 234-4433

(202) 234-4433

	43
1	PARTICIPANT: That's the QA part of it.
2	CHAIRMAN APOSTOLAKIS: Just start using
3	it. You know the recommendation from President
4	Johnson.
5	MR. CHEOK: All right. Are we ready to
б	move on?
7	Related topics I'm sorry.
8	DR. KRESS: Before you move on I notice on
9	the previous slide your focus, probably rightly so, is
10	on LERF, but quite often this committee is interested
11	in late containment failures, or maybe even the
12	conditional containment failure probability.
13	Now, that is a little harder to analyze
14	because with LERF you can do this Brookhaven
15	simplified approach which just requires thermal
16	hydraulics, but for late containment failure you're
17	going to need a different approach, I think, and I
18	think somewhere along the line you need to start
19	thinking about adding late containment failures to the
20	SPAR models.
21	MR. CHEOK: We have and I guess John
22	will talk about this tomorrow a little bit more our
23	LERF models defined such that we can proceed to the
24	late containment failures and the large lates quite
25	easily so that the endpoints are there.
	1

(202) 234-4433

	44
1	DR. KRESS: Yeah, I don't want
2	MR. CHEOK: It's just not developed.
3	DR. KRESS: our conditional containment
4	failure probability, which includes large and small.
5	MR. CHEOK: Right.
6	DR. KRESS: But I think these are good
7	things to think about, how to model.
8	MR. CHEOK: We have thought about it, and
9	like I said, the capability is there to expand to the
10	large lates.
11	Related topics, and George brought this up
12	earlier. The SPAR model development process is very
13	closely linked to the SAPHIRE code development and
14	SAPHIRE Revision 8 will be an important tool for using
15	the latest SPAR models. We will demonstrate the
16	SAPHIRE and SPAR models a little bit later today.
17	And proposed future ACRS presentations.
18	In December we'll be coming back to talk to you all on
19	the SPAR-H methodology as part of your HRA
20	subcommittee meetings. We are proposing that in the
21	summer or spring of next year that we would come to
22	you to talk to you about our collection of data and
23	how we use industry data and SPAR models and in the
24	rest of our programs. Again, we will work that out
25	with you if you're interested.

(202) 234-4433

	45
1	And Dr. Sieber recently had inquired about
2	a staff briefing on SECY 05-0129, which is our annual
3	SECY on the status of the SPAR and ASB programs.
4	Again, if the committee is interested we can come back
5	at your request.
6	CHAIRMAN APOSTOLAKIS: Yes. In fact, I'm
7	glad that you have your schedule up there because I'm
8	sure we will discuss this later, but we plan to be
9	involved in your activities as much as we can and give
10	whatever advice we can.
11	So perhaps after the review of this
12	subcommittee meeting, you will come to the full
13	committee meeting at some point where, February? And
14	maybe we can have a letter then on the overall
15	program, and then maybe we can have individual
16	meetings, especially SPAR-H.
17	I have great interest in SPAR-H, and then
18	write individual letters as appropriate.
19	MR. CHOKSHI: Yeah, because I think during
20	the discussion a lot of talks about what we should be
21	looking at and what are this it is sort of best if
22	captured in ACRS later and then maybe coming to full
23	committee we can, you know
24	CHAIRMAN APOSTOLAKIS: Absolutely,
25	absolutely, but I think it's a model that it's an

(202) 234-4433

	46
1	effort, not just a model; it's an effort on the part
2	of the agency that is becoming now central to the
3	agency's activities, and I think we will all benefit
4	by having this exchange maybe every three, four, five
5	months.
6	MR. CHEOK: Okay. I'd like to turn this
7	over to INL for presentations.
8	CHAIRMAN APOSTOLAKIS: Which I hope will
9	finish faster than you, Mike. You're always so slow.
10	(Laughter.)
11	CHAIRMAN APOSTOLAKIS: So slow.
12	MR. DENNING: Did you notice how clever he
13	was that he planned just enough time even though we
14	dragged it out? I think he's right on schedule.
15	CHAIRMAN APOSTOLAKIS: He's right on
16	schedule. Oh, if he's been here before.
17	Oh, this is nice. This is part of SPAR?
18	DR. KRESS: Oh, throw that in.
19	DR. BUELL: That's Idaho.
20	MR. DENNING: It's not like Idaho today.
21	DR. BUELL: I'm Robert Buell from the
22	Idaho National Laboratory and this is John Schroeder,
23	and we're here just to provide some overview and some
24	depth of discussion for the SPAR modeling project,
25	some of the history and as well as some of the issues
	I contract of the second se

(202) 234-4433

	47
1	that we're working on now and possibly some future
2	tasks.
3	DR. KRESS: You guys lost your two Es.
4	DR. BUELL: Yes.
5	DR. KRESS: Good, good.
6	DR. BUELL: We're just a laboratory now.
7	So anyway, we were asked to talk about the
8	SPAR models and where we've been. We've broken that
9	down into seven topics that's on your agenda. You
10	have those seven topics. They deal with standardized
11	structure, and that's what I'm going to be presenting
12	right now. Then we go into a model demonstration that
13	John will present, and then I'll come back and do
14	major assumptions in our modeling of the SPAR models,
15	as well as some of the quality review procedures and
16	techniques that we use as we develop these SPAR
17	models.
18	We also have some of the modeling issues
19	that we've found. We've been around as part of the
20	STP plant visits, and we've gathered a lot of
21	intelligence, a lot of insight from looking at a broad
22	cross-section of the PRAs out there, and we're trying
23	to incorporate some of that into our models also.
24	And then John will talk about modeling for
25	uncertainty, some of the uncertainty issues that we've
	I contract of the second se

(202) 234-4433

	48
1	identified and how we're dealing with those.
2	And then finally if we have time we'll
3	just give you a sample of our model documentation and
4	what we do there.
5	CHAIRMAN APOSTOLAKIS: Yeah, the modeling
6	parameter uncertainties are of particular interest to
7	this committee. And I've seen a write-up of nine
8	models where you describe how you reconcile the
9	differences between your
10	DR. BUELL: We'll make sure to save plenty
11	of time for that then.
12	CHAIRMAN APOSTOLAKIS: So there should be
13	plenty of time for this, yes.
14	DR. BUELL: Okay, good.
15	CHAIRMAN APOSTOLAKIS: Because finally
16	somebody is looking at model uncertainty.
17	DR. BUELL: We look at both the parameter
18	uncertainty and the structural and John will go into
19	that in a little more detail.
20	CHAIRMAN APOSTOLAKIS: I know you do.
21	Parameter uncertainty is not that crucial.
22	DR. BUELL: Okay. Just a brief
23	background. You've already heard some of this, but
24	this is just history. Basically this whole program
25	even though it wasn't the SPAR models per se, but it

(202) 234-4433

	49
1	had its genesis back in the late '70s with the daily
2	events manual. That's when we started in some sim.
3	flight event trees that had split fractions.
4	We took that and used that as a starting
5	point and converted that into the SPAR 2QA models
6	after we had a review of Sandia. That became the 2QA
7	models.
8	At that point they did not have any
9	support systems. They had a very limited set of event
10	trees.
11	We took that to the next point in the 3I
12	models. We added additional event trees. We added
13	support systems. We also did a preliminary review by
14	going to all of the STP visits throughout the country.
15	We gathered information and additional insights during
16	that point.
17	We rolled all of that up into them, and
18	then we called them Rev. 3 models at that point.
19	CHAIRMAN APOSTOLAKIS: So this is what we
20	have now.
21	DR. BUELL: What we have now are Rev. 3
22	models. That is correct.
23	CHAIRMAN APOSTOLAKIS: And 3P is in
24	progress.
25	DR. BUELL: That is in progress. Those
	1

(202) 234-4433

	50
1	are the ones where we have done the detailed cuts at
2	level review.
3	As part of the Rev. 3, we didn't give it
4	a new rev. number, but we did go through all of the
5	models and add new steel LOCA information after the
6	log information was approved. We added that to all of
7	the models, the steel LOCA information.
8	We also went in and had a significant
9	effort to link all of the data to template events that
10	we could rapidly update in a batch routine. So now we
11	have the ability to go in and rapidly update all of
12	our data throughout the models, as well as the
13	consistency issue.
14	With as many analysts as we had working on
15	the project, as many data sources as we had, sometimes
16	there were some inconsistencies with in the data. By
17	linking them all, the templates having one master list
18	now, we're able to maintain a real consistent set of
19	data.
20	We also updated some of the as part of
21	the seal LOCA logic we went ahead and typed that we
22	updated some of the LOOP and SBL logic since they were
23	interrelated in many cases.
24	CHAIRMAN APOSTOLAKIS: So it seems that
25	you're extremely reluctant to abandon Rev. 3. I, 3,

(202) 234-4433

	51
1	and then P. When will you go to four?
2	DR. BUELL: Well, I will defer on that
3	discussion.
4	CHAIRMAN APOSTOLAKIS: That's part of
5	DR. BUELL: Yeah, there's a lot of
6	discussion on that.
7	So anyway, right now we're on the Rev. 3.
8	The P stands for plus in this particular instance. We
9	just had to name it, and that has to do with the
10	detail reviews that we're in the process of doing now.
11	CHAIRMAN APOSTOLAKIS: Good, good. Let's
12	go on.
13	DR. BUELL: That's the history and the S
14	in SPAR stands for standardized now. It used to stand
15	for simplified back in the 2QA days. Now it stands
16	for standardized. There's some real advantages to
17	have standardized models, and some of them have
18	already been discussed, but one of the advantages is
19	you can use a single engine to drive these. Okay?
20	There's a variety of them out there, new
21	prod cath (phonetic), risk MAN, and some of the
22	secondary
23	CHAIRMAN APOSTOLAKIS: What is it, GEM?
24	I used to know.
25	DR. SCHROEDER: Graphical evaluation
	1

(202) 234-4433

	52
1	model. It's sort of like a macro environment tailored
2	to doing either event assessment or condition
3	assessment, and it's used typically for the Phase 3
4	STP.
5	CHAIRMAN APOSTOLAKIS: So it's what,
6	graphical?
7	DR. SCHROEDER: Graphical evaluation
8	module.
9	CHAIRMAN APOSTOLAKIS: Thank you.
10	DR. BUELL: So we have a common tool that
11	we can use. You can be trained on that. NRC has an
12	extensive training program to train on that particular
13	program so they can run all of the models as well as
14	the peripheral analyses that we do.
15	CHAIRMAN APOSTOLAKIS: Apparently the
16	industry is very much interested now in SAPHIRE
17	because I was approached by a company several months
18	ago, and they asked me specifically whether I had a
19	student graduating who knew SAPHIRE.
20	DR. BUELL: Well, with the MSPI program
21	there's a lot of interest in our models, and you have
22	to run them all, but also SAPHIRE has been developed
23	to the point now that it has a lot of capabilities
24	that it never used to have.
25	So one of the advantages of

(202) 234-4433

1 standardization is also uniformity of the models. By 2 having uniform assumptions, uniform level of detail, 3 all of these uniform construction techniques you can 4 actually identify some of the real outliers as opposed 5 to in some instances in the industry you can make an will obscure 6 assumption that а lot. of these 7 differences in the building of your models. 8 I mean, like I say, with having that 9 standard set of assumptions and such, you can identify outliers and have some confidence that those are real 10 outliers as opposed to being based on assumptions. 11 One of the other key advantages of this 12 complete tool set and the uniformity of the models is 13 14 that we can do industry-wide looks. Let's say we want to look and see how a particular failure rate affects 15 the overall industry or, you know, if we want to look 16 at initiating event frequencies and how they impact 17 the industry. We have the ability to run through 18 19 those now and just look at all 72 models in short

20 order and see what that does to the industry risk.

So next page there.

22 Some of the standardized elements I just 23 started. I just touched on some of those that deal 24 with methodology. It has been mentioned before that 25 we're a small event tree, large fault tree linked set-

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

21

	54
1	up. Now if you see some of our BWR even trees you
2	might not they are small event trees, but they're
3	small event trees.
4	CHAIRMAN APOSTOLAKIS: What's small?
5	What's a small event tree?
б	DR. BUELL: Well, small event trees
7	typically is where you do not have the operator
8	actions and the conditional failures in
9	CHAIRMAN APOSTOLAKIS: But you still have
10	the major headings.
11	DR. BUELL: Yes, you still have the major
12	headings, but you can collapse those down in some
13	plant PRAs to three or four nodes across the top, and
14	you do everything hidden in the rules and in the
15	combinations. We think we've struck an optimum
16	balance there as far as what you see in the event tree
17	versus what's hidden in fault trees.
18	CHAIRMAN APOSTOLAKIS: Right.
19	DR. BUELL: So anyway, we've got a
20	standard set of assumptions, too, that we use to build
21	or fault trees and our event trees, you know, the way
22	we do common cause modeling, what type of components
23	we model, what type of things that we exclude, you
24	know, that type of thing so that we have a standard
25	set of assumptions that we use when we build these
	1

(202) 234-4433

	55
1	models.
2	Did you have a comment?
3	Okay. We also have a standard set of
4	initiating events, and that's based on published data.
5	NUREG 5750 was the origin of that. Since then a few
б	of the values have been updated, and that will be
7	talked about this spring in the data analysis section.
8	CHAIRMAN APOSTOLAKIS: Now, again, coming
9	back to the site specific nature of these things, in
10	the PRA that I was involved in, we always found that
11	the I mean, there was a standard list of initiators
12	there for PWRs and BWRs, 15, 20 or so, but there were
13	always two or three that were unique to that site,
14	like if a truck drives and hits something which in
15	other sites you didn't have.
16	How do you handle that?
17	DR. BUELL: Well, we'll get into that
18	later as a part of the detail at that level review.
19	Basically we have a threshold that if it's important,
20	you know, and we define important as one percent of
21	their contribution to their overall CDF, if they have
22	a unique set of initiators like that, we will add that
23	to ours and try to understand it well enough that we
24	can model that.
25	But anything that they show that's

(202) 234-4433

	56
1	important that's outside of our standard set of
2	initiators, we will add that. We try to capture all
3	of the risk associated at that time.
4	MR. DENNING: When you talk about generic,
5	if you look at like B&W plants and things like
6	integrated control systems and failure rates for
7	those, do you use that set of plants to come up with
8	generic for like BMW plants?
9	Because I know that, for example, there
10	have been periods in which they had a large number of
11	failures and then they improved them, and so
12	generically the failure rates of those are lower.
13	When you talk about generic, does that mean generic
14	for like B&W plants of a certain vintage or is it even
15	broader than that?
16	DR. BUELL: It's broader than that
17	typically. In some initiators the statisticians have
18	looked at this at INL when they generated this report,
19	and they've done all of the statistical magic on that
20	and looked at, you know, if there's any pools of data
21	that they should separate.
22	We have separated many of the initiators
23	by Ps and Bs. Obviously that's a logical break, but
24	beyond that typically we don't break it into any finer
25	groups than that, and like I say, that is based on a
	I contract of the second se

(202) 234-4433

	57
1	statistical look by the statisticians at INL when they
2	generated this data.
3	MR. DENNING: And they don't see a
4	difference because it seemed to me that it really did
5	have a big impact on frequency of turbine trips, you
6	know, for just that particular
7	DR. BUELL: Okay. Well, I can't speak to
8	the details of it. Like I say, the statisticians will
9	look at all of those issues and they felt they were
10	grouped at the appropriate level. So beyond that, I
11	don't have any insight on that.
12	And you notice I have a bullet there that
13	says no support system initiating event fault trees.
14	This is an issue that we're going to hit a little bit
15	later or address in a little later presentation
16	because this is an issue that at INL at least we feel
17	needs to be addressed in the industry, and we have
18	some feelings on that and some thoughts on that, and
19	we'll discuss that in a little bit more detail later
20	on.
21	Right now probably two thirds of the
22	industry uses initiating event fault trees for some of
23	their sports S (phonetic) initiators. The remaining
24	third use a point value just like we do at this point.
25	So anyway, that's a point that we're going
	I

(202) 234-4433

	58
1	to discuss in more detail later.
2	The event trees, they're standardized to
3	a point. They were based on standard event trees that
4	came out of the groupings of the daily events manual,
5	but as we get more and more detail in the models and
6	we need more of that detail, we have to start taking
7	into account more and more plant specific differences.
8	So we I don't know if you'd call it deviate from that
9	standard, but it's basically we have to pick up
10	additional elements that are plant specific, and so we
11	add that to our event trees.
12	So they were reviewed in the two 2QA
13	level. We still use that as our standard, but, like
14	I say, as we come across plant specific instances that
15	need additional detail, we do add that into the event
16	trees.
17	Fault trees, the key systems, the diesel
18	generating system, the electric power system,
19	RCCI/HPCI, those type of systems are based on logic
20	that was put together as part of the system studies
21	performed at INL several years ago. So we have that
22	same standard set of logic there also.
23	Some additional standardized elements in
24	SPAR model, failure data, that's something that's
25	going to be talked about in much more detail in the

(202) 234-4433

	59
1	spring. I just give you a highlight of that.
2	We recently changed to EPIX based data
3	when we're on to the templates.
4	Did you have a comment?
5	CHAIRMAN APOSTOLAKIS: No.
6	DR. BUELL: Okay. We recently
7	transitioned from basically old generic data sources
8	and the system study information to a common EPIX
9	based data set, and that 1998-2002 was a period of
10	interest that we use as the pool of data.
11	We have a standard common cause failure
12	methodology as well as application. The method you're
13	probably all familiar with based on NUREG 5485, the
14	alpha factor methodology. We use that completely
15	throughout the models.
16	Data, the data for the common cause
17	failure is the alpha factors themselves come from a
18	mixture of data sources.
19	CHAIRMAN APOSTOLAKIS: I'm just curious.
20	The alpha factor method produces long expressions for
21	the probability of failure of, say, two pumps in
22	parallel. Three it's even longer.
23	You use that expression?
24	DR. BUELL: That expression is used within
25	SAPHIRE. SAPHIRE takes that and manipulates that, the
	1

(202) 234-4433

	60
1	code itself, and gives us the appropriate number.
2	DR. SCHROEDER: There's a SAPHIRE plug-in
3	or module that automates those calculations. It
4	requires as inputs the independent events in a group
5	and the alpha factors for that group, and it generates
6	the common cause failure probabilities using the
7	methods from that NUREG. Those expressions are long,
8	and they're hard wired into the calculational module
9	that's good for six strains or a six strain group.
10	CHAIRMAN APOSTOLAKIS: So the multiple
11	Greek letter method is not used anymore.
12	DR. SCHROEDER: That is correct.
13	DR. BUELL: The module has the capability
14	to use that, but since all of the uncertainty
15	parameters associated with the common cause
16	calculation are calculated in terms of alpha factors.
17	We use the data as provided.
18	CHAIRMAN APOSTOLAKIS: Now, have you seen
19	a significant difference between the two models, the
20	results of the two models?
21	DR. BUELL: Actually we have, and in a
22	later slide we've identified ten significant issues
23	where there is either variability within the industry
24	or differences between us and the industry. The
25	common cause is one of those with this latest update
	I contract of the second s

(202) 234-4433

1of the alpha factors. That has essentially went away2or been much reduced, but in the past we had common3cause factors that were significantly higher than the4industry.5CHAIRMAN APOSTOLAKIS: I know that the

alpha factor approach is more rigorous, especially in 6 7 handling the data, the information, but you lose that 8 nice feature of the multiple Greek letter of 9 communication where you say, you know, the base 10 failure rate is this. Now, you know, if this has failed, at least one other component has failed. 11 So 12 the probability is usually ten percent or something. Then gamma is if two have failed; then at 13 14 least one more has failed. In the alpha model you 15 lose that, and it's not so nice. It's just an 16 expression. Well, that's all rolled up 17 DR. BUELL: within that SAPHIRE plus, but all of the mechanics and 18 19 the information needed to generate those are there, 20 but, yes, they're not quite as transparent. 21 CHAIRMAN APOSTOLAKIS: It's not easy to

21 communicate it. 22 communicate it. 23 DR. BUELL: That's correct. 24 CHAIRMAN APOSTOLAKIS: Now, you say you're 25 going to come back to this?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

61

	62
1	DR. BUELL: Yes, in later slides we deal
2	with this in much more detail.
3	CHAIRMAN APOSTOLAKIS: Okay.
4	DR. BUELL: Okay. The additional data
5	points or data that we've updated is lost at off site
6	power frequency and recovery data. This is an ongoing
7	effort right now or just recently at INL to update all
8	of that, and we've incorporated that into our models.
9	Back there is a NUREG pending just in very short order
10	with that new information in it.
11	And we used the SPAR-H methodology, NUREG
12	6883 for modeling our human errors.
13	CHAIRMAN APOSTOLAKIS: That's another
14	thing we're going to spend some time on, right?
15	DR. BUELL: Okay. We're going to spend a
16	little bit of time on it, but there's going to be a
17	more detailed presentation in December, I believe. So
18	that will be covered in detail at that point.
19	Okay. Next, please.
20	One of the big advantages of using this
21	standardized structure is that we can look across the
22	industry and we can do it in a relatively short order.
23	Right now once we set up a model or a query as far as
24	what we want to do to a model, we can utilize SAPHIRE
25	macros to run all 72. I can set it up, push the
	I contract of the second se

(202) 234-4433

	63
1	button on my computer and come back in four or five
2	hours, and we'll have an output. Now, you know, it
3	may not be the right output, but there's all this
4	tweaking you need to do.
5	But the bottom line is once you identify
6	a series of issues in short order, half a day, we can
7	end up with the results across all of our plants, and
8	that
9	CHAIRMAN APOSTOLAKIS: I don't want to
10	take away your thunder, but it seems to me that even
11	if you had 72 plant specific models that utilize, say,
12	plant specific information, you could still produce in
13	a relatively short period of time an industry-wide
14	profile.
15	DR. BUELL: Oh, that can be done.
16	CHAIRMAN APOSTOLAKIS: What are we doing
17	here?
18	DR. SCHROEDER: Let me address that at
19	least in part. During the benchmarking process with
20	the SDP notebooks we went on site and we watched the
21	NRC question the licensees about what is your risk
22	profile given this failure or that failure. In
23	effect, we watched the licensees run these sensitivity
24	studies, and to ask them to generate a result for,
25	say, what happens when DGA has failed, they might

(202) 234-4433

64 1 disappear into the back room half the morning. 2 Their models are complex, and they are slow to run, and it requires a high level of 3 4 expertise, and even at the licensees, they may only 5 have one or two people on their staff that can do these calculations. 6 7 Now we have something that's similar enough across all models, and it runs fast enough that 8 we have a large number of people that are trained that 9 There is a body of expertise that can 10 can do this. make this happen rather quickly, and I would suggest 11 12 licensees have nowhere near that this kind of capability to respond rapidly. 13 14 CHAIRMAN APOSTOLAKIS: That's not a matter 15 of the licensees having the capability. You should have it. 16 DR. SCHROEDER: Well, we would have to 17 learn probably four different analysis platforms, and 18 19 there's dreadful details in how to actually accomplish 20 those calculations on each platform. 21 MR. DENNING: And you'd have to go and 22 independently do every one of them, whereas with this 23 common platform, it sounds like you may be able to 24 make some --25 But you give us CHAIRMAN APOSTOLAKIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	something.
2	MR. DENNING: But you give up something,
3	and that's part of what we have to discuss.
4	CHAIRMAN APOSTOLAKIS: That's what I'm
5	afraid of. Speed versus accuracy.
6	DR. BUELL: Well, these are detailed
7	models. It isn't that we're using an astandard model.
8	I mean we have detailed, plant specific models, and
9	I'll show you just a graph here in a moment of
10	CHAIRMAN APOSTOLAKIS: Now, the seventh,
11	does that cover all units?
12	DR. BUELL: That is correct. Some of the
13	potential uses of this capability are some data
14	sensitivities, if you want to do some sensitivities
15	across the industry, MSPI importance measures. Let's
16	say you wanted to look at, you know, the mean diesel
17	importance across all the plants or unit specific
18	diesels or whatever. You can look at that on an
19	industry-wide basis and say, you know, this is the
20	impact of that change or that sensitivity, and I think
21	that's a significant issue.
22	Next page, please.
23	And this is the SBL study that just
24	recently or is to be published shortly. This is just
25	a graph that we pulled out of that. We've been

(202) 234-4433

	66
1	running these different scenarios and combinations,
2	but you can see it's got a CDF with an error band on
3	either 95.5 band on those.
4	I might say this doesn't mean anything
5	other than the fact that it's just an example of the
6	type of runs we can do in short order.
7	CHAIRMAN APOSTOLAKIS: What are we looking
8	at now? This is the 90 percent interval, right?
9	DR. BUELL: That's correct.
10	CHAIRMAN APOSTOLAKIS: And the mean value,
11	and the reason why there is plant-to-plant variability
12	here is the different number of diesels they have?
13	DR. BUELL: That's part of it. The number
14	of diesels, the seal types they have in their pump
15	seals, you know, the reliability.
16	CHAIRMAN APOSTOLAKIS: Is the loss of off-
17	site power frequency more or less constant across the
18	country?
19	DR. BUELL: That study has just come out,
20	and Jonathan, do you want to address that?
21	CHAIRMAN APOSTOLAKIS: I mean, that's not
22	the major driver I don't think.
23	DR. BUELL: No.
24	DR. SCHROEDER: It's not the major driver.
25	CHAIRMAN APOSTOLAKIS: I mean, there are

(202) 234-4433

67 1 differences, but it's not the major driver. 2 DR. SCHROEDER: And I don't recall what 3 was used in this curve, but when they actually did the 4 loss of off-site power study, they looked very hard 5 for regional differences in recovery times and loop frequencies, and they looked for differences by plant 6 7 design, and they looked for any kind of difference that they could justify in the statistics, and they 8 9 ran some of those numbers, and they made a lot of 10 decisions about whether to represent the analysis with generic data. 11 And if you wanted all of the rationale for 12 that, you'd have to get one of the people involved in 13 14 the study that's --15 CHAIRMAN APOSTOLAKIS: So there is more than an order of magnitude difference between the best 16 17 and the worst, right? Two orders. 18 DR. BONACA: 19 CHAIRMAN APOSTOLAKIS: Two? 20 DR. BONACA: Two almost, yeah. 21 But the way you treat it MR. DENNING: 22 now, there would be no difference in recovery time 23 regionally. Like a plant that is likely to have 24 hurricanes, potential for hurricanes, is not going to 25 have a different recovery time.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	DR. SCHROEDER: Right now in our base SPAR
2	models we do not differentiate that.
3	MR. DENNING: But you can always go in and
4	do that.
5	CHAIRMAN APOSTOLAKIS: So this graph then
6	represents which failures, failures that can be
7	restored in an hour and a half, two hours?
8	DR. BUELL: These are the ones that you
9	actually have a plant blackout. You've had a loop and
10	then you go to a plant blackout.
11	CHAIRMAN APOSTOLAKIS: Right. I
12	understand that, but this doesn't say for how long.
13	DR. BUELL: That's correct. Within each
14	one of these points you have some sequences that are
15	two hours. Some you have the equivalent to operate;
16	you might have four hours. So this is a composite for
17	all of those different sequences for each plant.
18	CHAIRMAN APOSTOLAKIS: Because as Rich
19	just said, if the loss of off-site power is due to an
20	external event, it may take days or even weeks to
21	restore it.
22	DR. BUELL: That's correct.
23	CHAIRMAN APOSTOLAKIS: Those losses of
24	power are included here.
25	DR. BUELL: That is correct.
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

69 1 CHAIRMAN APOSTOLAKIS: The duration is 2 not. DR. SCHROEDER: The duration is. 3 I'11 4 speak to that. We have rolled into the baseline loss 5 of off-site power model all classes of loss of offsite power. The recoveries and the frequencies, while 6 7 the frequencies stand from what the statisticians gave 8 us, but the recoveries are frequency weighted. 9 And in the last iteration of the model, I 10 believe we're to four classes again. That's been subject to a lot of change, three classes, five 11 classes, four classes. 12 But every plant gets the 13 MR. DENNING: that the South doesn't 14 thing so have same а 15 different --16 CHAIRMAN APOSTOLAKIS: This is the 17 probability that in any one year, Plant X will have a station blackout. 18 19 DR. SCHROEDER: This is the frequency of blackouts for Plant X. 20 21 DR. KRESS: Core damage. 22 MR. DENNING: Core damage frequency from station blackouts. 23 24 CHAIRMAN APOSTOLAKIS: Yeah, core damage 25 from station blackouts.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	70
1	DR. BONACA: Curiosity. Just you have a
2	small set of plants there with CDF on the order of
3	ten to the minus seven. It would be low. What is so
4	unique about those plants?
5	DR. BUELL: Well, there's a couple of
6	plants out there that have hydroelectric backup which
7	are extremely reliable, underground cables, those
8	types of things. So there's a few plants at that end
9	that have a unique configuration. It does account for
10	that.
11	DR. SCHROEDER: What you would see if you
12	started looking at the basis for that, and again, the
13	authors of the blackout study looked at that pretty
14	carefully, and they could tell you what's driving the
15	risk at each end, but you have a lot of plants in the
16	country that have four electrical division and
17	blackout generators and other aspects to their
18	emergency power system that drive it way down, whereas
19	at the upper end you might have a plant that has a
20	seal cooling weakness and only two divisions of AC
21	power and no auxiliary backups.
22	I mean, that's the spectrum of things out
23	there.
24	CHAIRMAN APOSTOLAKIS: Are the members
25	interested in pursuing this in more detail in the

(202) 234-4433

71
future, this kind of study?
MR. DENNING: Yeah, but you know, that's
exactly what we did look at in the station blackout,
the specific one that we
CHAIRMAN APOSTOLAKIS: We said there was
another report coming up.
MR. DENNING: Oh, it's something coming
up.
DR. BUELL: It's in draft stage right now.
It's waiting to be published, and this may be the one
that you're reviewing. I don't know.
MR. CHEOK: What the committee reviewed
was the draft report that was provided in February.
The final version of the report is coming out in
December.
CHAIRMAN APOSTOLAKIS: Oh, so it's the
report we reviewed. There is no more information.
MR. CHEOK: That's correct.
DR. BONACA: That to me shows the value of
SPAR very much here.
MR. DENNING: Absolutely.
DR. BONACA: You have the ability of in
fact, yes, I think it would be a good exercise.
CHAIRMAN APOSTOLAKIS: Well, they say we
reviewed it, but, again
72 1 MR. DENNING: Well, in a sense we've 2 already seen this example. 3 CHAIRMAN APOSTOLAKIS: But I think we 4 should go over it again, and maybe with the full 5 committee. This is important. But I don't know. The 6 worst plant is at what, one or two ten to the minus 7 six. 8 DR. KRESS: Several worse plants. 9 MR. DENNING: Why did you say that? 10 You've got one times ten to the minus five. That's a fie, yeah. 11 DR. KRESS: 12 CHAIRMAN APOSTOLAKIS: That's a five. You're right. And we get that even though we have a 13 station blackout rule. Huh. I wonder what that was 14 15 before the rule 16 MR. DENNING: That's a good questions. 17 DR. BUELL: Are there any other questions 18 on that? 19 CHAIRMAN APOSTOLAKIS: No. Well, there 20 are many, but --21 DR. BUELL: We just put this up there just 22 as an example --23 CHAIRMAN APOSTOLAKIS: Little did you 24 know. 25 DR. BUELL: -- of what we could do with

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	73
1	the capabilities of SAPHIRE and these automation
2	techniques.
3	DR. BONACA: Now, just one last question.
4	If I look at these curves, I mean, and I had the
5	licensees here, would they agree to these results
6	generally?
7	DR. SCHROEDER: No.
8	DR. BONACA: They wouldn't.
9	CHAIRMAN APOSTOLAKIS: No.
10	DR. SCHROEDER: The licensee that has this
11	one takes great exception to that.
12	MR. DENNING: Where do you put it,
13	incidentally.
14	CHAIRMAN APOSTOLAKIS: On what basis?
15	MR. DENNING: I mean, what would his CDF
16	be for that? Do you know offhand?
17	DR. SCHROEDER: I don't remember the
18	details. Do you?
19	DR. BUELL: I don't know what the CDF is,
20	but the bottom line is that they take credit. They
21	have a unique surface water system. The only BWR with
22	that particular type of service water system, and
23	because of that vulnerability or because of that
24	design configuration, they're much more dependent on
25	other systems and they use some of these other systems

(202) 234-4433

	74
1	in ways that are not standard in the industry, and
2	until they give us information, in our estimation it's
3	very marginal use of it, and so until they get us
4	information that they can validate their use of that,
5	we're agreeing to disagree at this point and we're
6	saying until you can provide documentation that we're
7	satisfied with, we're not going to go there because
8	that is a non-standard application or a non-
9	standard
10	CHAIRMAN APOSTOLAKIS: Which is what it
11	is.
12	DR. SCHROEDER: And the NRC SRAs for that
13	region have looked at the licensee's claims very
14	closely, and they have not given us a decision on what
15	they think ought to be done about the utility's
16	claims.
17	MR. CHEOK: For just a quick perspective,
18	we have been engaged with the licensee, and as Bob was
19	saying, they do have different processes that we are
20	not familiar with. We're asking for more
21	documentation from them, and after we review the
22	documentation and agree that it's feasible or the
23	recoveries, we will incorporate them, but at this
24	point we will have to wait to see what we will get.
25	MR. DENNING: But at this point it has

(202) 234-4433

	75
1	little relevance unless they come in with a risk
2	informed request for change or something like that?
3	Because the fact that it's one times ten to the minus
4	five that we say it is and they say it was something
5	else doesn't make any difference.
6	CHAIRMAN APOSTOLAKIS: No, but it makes a
7	difference because there are CDF
8	MR. DENNING: But if you go with a risk
9	informed decision, then it could be a big
10	DR. BUELL: It quickly comes to a head if
11	there's a finding or an issue related to these design
12	issues.
13	Next slide there.
14	Some more of the standardized structure.
15	Basically we've already hit this or identified this
16	before as small even tree, large fault tree, linked
17	methodology. We have a standard set of initiating
18	event candidates, and I'm not sure if all of these
19	make sense to you, but they're basically and I'll
20	go across the list it's a large LOCA, medium LOCA,
21	small LOCA, and excessive LOCA or a vessel rupture,
22	interfacing or intersystems LOCA, loss of off-site
23	power, loss of condenser heat sink, loss of main
24	feedwater, transient with PCS initially available.
25	And then we go into variance of the
	I contraction of the second seco

(202) 234-4433

	76
1	transient tree here, the loss of AC buses, the loss of
2	DC buses. Then we have loss of service water and loss
3	of instrument air.
4	That's pretty much our standard look, and
5	we had talked about before that this is the one
6	percent rule. If you look down here at the bottom if
7	we find a plant that has an initiator that doesn't fit
8	within this category, then we'll add that with this
9	one percent rule to make sure we cover the significant
10	portion of the plant risk.
11	Something that's boiling water, reactor
12	specific as an inadvertent open relief valve, and on
13	PWRs there's two type specific initiators there, the
14	steam generator tube rupture and the loss of component
15	cooling water.
16	So that's our standard set, and like I
17	say, we go beyond that if there's anything significant
18	showing up in it.
19	CHAIRMAN APOSTOLAKIS: What is LOCCW?
20	DR. BUELL: Loss of component cooling
21	water.
22	CHAIRMAN APOSTOLAKIS: That's a support
23	system, isn't it?
24	DR. BUELL: That is a support system.
25	CHAIRMAN APOSTOLAKIS: So you are
	I contract of the second se

(202) 234-4433

	77
1	including some support systems.
2	DR. BUELL: We include many support
3	systems. The AC and DC buses, the service water, the
4	instrument air
5	CHAIRMAN APOSTOLAKIS: Well what did you
6	say about support systems? They're not initiating
7	events?
8	DR. BUELL: We do not have fault trees.
9	There's two ways to generate a frequency or support
10	system initiator.
11	CHAIRMAN APOSTOLAKIS: Yeah.
12	DR. BUELL: You can either look at an
13	industry average and come up with a point value, or
14	you can build a fault tree based on a system unique
15	configuration that will generate a probability.
16	That's the difference.
17	CHAIRMAN APOSTOLAKIS: And why don't you
18	do it that way?
19	DR. BUELL: Well, we're going to get to
20	that shortly in one of these other slides, but number
21	one, there are some developmental issues and some
22	issues that haven't been completely researched yet,
23	and we're looking at that, but there are some down
24	sides of not having it in there, and we'll talk about
25	those in a few minutes.
	I

(202) 234-4433

	78
1	CHAIRMAN APOSTOLAKIS: Okay.
2	DR. BUELL: Next slide, please.
3	Okay. Within the event trees, we have
4	front line system fault trees. Most of the fault
5	trees, the critical fault trees are based on systems
6	studies that were performed at the INL in years gone
7	by. That includes the reactor protective system, the
8	emergency power system, auxiliary feedwater, the high
9	pressure coolant injection, and the RCI system.
10	Some of the other front line fault trees
11	include or the modeling of those include active
12	components. That's an obvious inclusion in the
13	models, and the obvious or important operator actions,
14	and then we use a standard set of fault tree
15	guidelines to simplify those since there's a lot of
16	information that we don't have, detailed information
17	that we don't have, relay positioning and that type of
18	thing.
19	We made some simplifications on some of
20	the instrumentation information in our modeling. So
21	there are some ways to simplify these, yet still
22	retain the essence and the importance of these
23	components.
24	MR. DENNING: When we look at the
25	standardized system fault trees, for example,
	1

(202) 234-4433

1 auxiliary feedwater or something like that, how many 2 different versions do you have to have of this system 3 fault tree to cover the spectrum of plants or are 4 they --

5 DR. BUELL: Well, I believe there was 11 different systems, okay, and as time goes on and we 6 7 need more and more detail and nuances, we modify those If we find there's another back-up 8 somewhat. 9 condensate source or another back-up long term cooling 10 source or whatever, we expand those models, but I 11 believe on AFW there were 11 system models originally, 12 and we have taken those and made them plant specific, put the supports underneath them, plant specific 13 14 supports, and you know, plant specific valving and 15 thing, but there's 11 basic that type of configurations for that. 16

17 And we've touched on the common cause event modeling also, and some of the ways that we 18 19 apply common cause we have our own standard set of 20 rules that we look at. We don't typically put common 21 cause across multiple systems. All of the common We have different 22 cause is within a given system. 23 components that types of qive common we cause 24 consideration to.

So we have, like I say, rules that allow

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	80
1	us to model these in a standard format.
2	The support system fault trees are the
3	ones that we just added in the last three or four
4	years. We're expanding the level of detail of those,
5	but some of the rules that go into those or some of
6	the modeling detail is we typically don't take power
7	all the way down to 480 volt, 120 volt, that type of
8	thing. We typically leave them at the divisional
9	level.
10	Now, as we need more and more detail,
11	that's not hard and fast. We are realizing in some
12	cases we have to add more detail to be able to get the
13	understanding of the plant, and we have been doing
14	that, but as a minimum we model it at the divisional
15	level.
16	MR. DENNING: Now, a typical utility would
17	go to a lower level, wouldn't it?
18	DR. BUELL: A typical utility would go to
19	a lower level. They'd go to a 180 volt level
20	typically, and like I say, we've been doing it more
21	often than not now because we need able to do that be
22	able to get the nuances of utilities model, but in the
23	past, and we don't have all of the models at that
24	level, but as we go in and look at them in the
25	detailed level, we've been adding much more AC and DC
	1

(202) 234-4433

	81
1	power.
2	MR. DENNING: Okay.
3	CHAIRMAN APOSTOLAKIS: This is great
4	though that you're doing this. I mean, I was worried
5	the first time you said that we're not doing support
6	systems because it really
7	DR. BUELL: No, we model support systems
8	in detail.
9	CHAIRMAN APOSTOLAKIS: They are so
10	important.
11	DR. BUELL: You bet.
12	CHAIRMAN APOSTOLAKIS: Okay, great. Now,
13	the next time we meet I would really like to
14	understand why you guys felt you needed to develop
15	SPAR-H and you did not use a female
16	MR. DENNING: Actually are you going to
17	talk about
18	CHAIRMAN APOSTOLAKIS: Don't smile, don't
19	smile.
20	MR. DENNING: I know you mentioned. Are
21	we going to talk more about SPAR-H today? Because I'm
22	not going to be here in December, and I realize you're
23	going to get into it, but there's philosophical
24	questions about what we're trying to do with SPAR
25	versus what a utility might attempt to do with its PRA

(202) 234-4433

	82
1	that could relate to this, and I wanted to get into
2	that.
3	DR. BUELL: Okay. Like I say, there's
4	going to be another meeting on that in December, and
5	I don't have the depth of knowledge to be able to
6	address philosophical concerns or whatever on SPAR-H.
7	I can tell you how we use it, how we apply it, but I
8	don't
9	CHAIRMAN APOSTOLAKIS: Yeah, we'll do that
10	in December though.
11	MR. DENNING: I'm not going to be here in
12	December, but I do want to say something and that is
13	I'm going to be in Vienna. Isn't that great?
14	CHAIRMAN APOSTOLAKIS: Just send me an E-
15	mail. I'll say what you want to say. Go ahead.
16	MR. DENNING: And that is that I think
17	that there are different purposes for what the NRC is
18	really using their PRA for versus the things, the
19	breadth of things the utility can use its PRA for.
20	CHAIRMAN APOSTOLAKIS: Absolutely.
21	MR. DENNING: And that if you look at this
22	question like ATHENA, that a utility ought to be using
23	a really detailed HRA kind of approach because they
24	ought to be looking at that emergency operating
25	procedures and things like that, seeing what the

(202) 234-4433

	83
1	impact of those is on their rates.
2	CHAIRMAN APOSTOLAKIS: Well, they're not
3	using ATHENA though.
4	MR. DENNING: Well, no, but
5	philosophically the reason.
6	Now, here, we're not "we" being you
7	guys really you're not really going to the depth of
8	looking at specific emergency operating procedures.
9	You're coming up with and that really limits
10	obviously what you can do and what your objectives
11	are, and so I think that there's some objectives the
12	utility should have for its PRA that differ from your
13	objectives and that it doesn't make sense, you know,
14	for you to go to an extremely complex human
15	reliability model when, indeed, all you're going to be
16	doing is kind of looking at generic values across a
17	variety of plants rather than looking in detail at a
18	specific plant.
19	The same may be true of common cause.
20	CHAIRMAN APOSTOLAKIS: Yeah, but that's
21	where since they went to the alpha model there's no
22	excuse now. That means they can handle complexity
23	and
24	MR. DENNING: But complexity is to some
25	extent plant specific complexity that they're not

(202) 234-4433

84
going to get into, and I don't think that they have
to. I mean have to because of philosophically what
we're using SPAR for versus the variety of things that
I think that a utility can use its PRA for that
CHAIRMAN APOSTOLAKIS: Two or three years
ago, Rich, the guys could develop a thing that came
before the full committee. A major piece of advice
they got was make sure you simplify so that people can
use it. Okay?
So the big question is now has that
happened, and do we have a de facto proof that it did
not happen.
MR. DENNING: Did not happen because of
SPAR-H.
CHAIRMAN APOSTOLAKIS: And we can put you
on a video from Vienna, by the way.
Can we go to 12?
DR. BUELL: Okay. Basically this is a
layout of our transient model for BWRs, which
everything is built on with the exception of the
LOCAs. It's a real quick run through there. We look
at reactivity control. We look at reactor system or
the coolant integrity, the SRBs, the open, stay open.
We look at some of the high pressure injection sources
if you don't have those. It's standard logic. You

(202) 234-4433

depressurize. You go to low pressure systems, and we have a variety of those as well as the VA, which is some alternate systems, you know, some of the back-up, the cross-ties, service water cross-ties and fire water and all of the other ancillary type systems that you can add.

7 We also have, as you are well aware, BWRs 8 are typically heat removal limited. That's what will 9 get you to core damage quicker than anything. So we try to look at all the different aspects of heat 10 removal, and then finally we look at late injection, 11 and this has to do with long-term injection, and it 12 also has to look at potentially after containment 13 14 fails, and we'll talk about that in later slides.

15 CHAIRMAN APOSTOLAKIS: Excuse me. You are 16 starting now a relatively new topic, the assumptions, 17 and I suspect we're close to the break time. So why 18 don't we take a break now before you start talking 19 about assumptions?

DR. BUELL: Okay.

CHAIRMAN APOSTOLAKIS: And we should be
back around 10:30. That's the median.
Off the record.

24 (Whereupon, the foregoing matter went off25 the record at 10:11 a.m. and went back on

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

20

	86
1	the record at 10:32 a.m.)
2	CHAIRMAN APOSTOLAKIS: Okay. Let's go on.
3	DR. BUELL: George, can I say something
4	real quickly before we start?
5	CHAIRMAN APOSTOLAKIS: Sure.
6	DR. BUELL: We have 13 more slides on
7	standardized structure, and we go into a lot more
8	details into each one of those event frees. We were
9	just wondering if the committee wants to hear in
10	detail about all of those event frees or do we want to
11	just go ahead and finish the one event for Bs and one
12	for Ps and then maybe skip to the demo? It's up to
13	you all.
14	CHAIRMAN APOSTOLAKIS: I think that's a
15	good idea. The committee members agree?
16	MR. DENNING: If we're hurt for time, yes,
17	but otherwise
18	CHAIRMAN APOSTOLAKIS: I think we probably
19	are. So your proposal, Mike is what?
20	MR. CHEOK: My proposal is that we will go
21	through the transient tree for the Bs and then one for
22	the Ps and the assumptions, the major assumptions for
23	the Bs and the Ps.
24	CHAIRMAN APOSTOLAKIS: Yes.
25	MR. CHEOK: And then perhaps we can go

(202) 234-4433

	87
1	through to the demo because later on I think we again
2	come back through the major assumptions for all the
3	models.
4	CHAIRMAN APOSTOLAKIS: Okay. So we are
5	skipping then the slides that Bob is preparing now, is
6	presenting now? Is that what you are
7	MR. CHEOK: We will be probably going
8	through two or three more of these slides and then
9	skip about ten of them.
10	CHAIRMAN APOSTOLAKIS: Okay. That's a
11	good idea.
12	DR. BUELL: Okay. For the sake of time,
13	I'll skip even some of these bullets here.
14	On key BWR assumptions, event tree
15	assumptions, I'm just going to hit the last two.
16	Containment venting fails all injection. This is a
17	carryover from some of the early modeling, and like I
18	say, in a period of transition through a little more
19	detailed modeling. That's not acceptable anymore. So
20	what we're researching is putting some logic in there
21	that allows that to be tuned depending on the specific
22	plant.
23	Also the assumption that containment
24	failure causes a loss of all injection, that's going
25	to be coming up again in our top ten items, and I'll

(202) 234-4433

	88
1	discuss this further, but there's a lot of plants out
2	there that take credit for injection beyond
3	containment failure, and NUREG 1150 also did that, and
4	like I say, this is a transition issue, and I'll
5	explain that later in detail.
б	Next slide.
7	The general layout of a PWR transient
8	event tree, similar to the Bs we start out with the
9	reactivity issue. Then we look at the secondary
10	cooling through the steam generators with main
11	feedwater and AFW, and all of these acronyms, they're
12	all fault tree tops with detailed logic underneath
13	them.
14	So there's detailed logic underneath each
15	one of these tops here. Then we look at the reactor
16	coolant system integrity. Did the pores open or stick
17	open? And also, what's the status of the seals? And
18	so we check that for coolant system integrity.
19	We looked at the high pressure injection
20	and once through cooling, and then we look at
21	secondary site cool down and depressurization, and
22	finally containment heat removal, RHR and HPR. A
23	pretty standard structure, real similar to what you'll
24	see in standard PRAs.
25	So it's a
l	

(202) 234-4433

	89
1	MR. DENNING: If we looked at the event
2	trees, it's that simple, and then all of the logic is
3	down in the fault tree?
4	DR. BUELL: That's correct. If you'll
5	count those up, those are typically the number of
6	fault tree tops, you know, nodes across the top.
7	MR. DENNING: The event tree tops.
8	DR. BUELL: The event tree tops, across
9	the top of your event tree, and then each one of them
10	have a detailed fault tree underneath.
11	So some of the key assumptions here,
12	you'll see the two pour is required for feed and
13	bleed. This is an issue in about half of the plants
14	in the country. About half of them say we require two
15	pours. About half of them say we require one pour.
16	We globally require two pours, and there's
17	a variety of reasons for that, number one of which we
18	don't do detailed thermal hydraulics, and it appears
19	that a lot of the thermal hydraulics that were done
20	would lean towards the two pour of success criterion,
21	and we'll discuss that in more detail later on.
22	But like I say, if we have successful feed
23	and bleed, that gives us time to recover secondary
24	cooling then at some point in the future.
25	CHAIRMAN APOSTOLAKIS: How do you
	1

(202) 234-4433

	90
1	determine the success criteria?
2	DR. BUELL: Well, we rely heavily on NUREG
3	1150 for success criteria. Like I say, because we
4	structure very similar to what they structure as far
5	as event tree logic. We rely heavily on NUREG 1150.
6	CHAIRMAN APOSTOLAKIS: And 1150, they
7	develop their own success criteria or they relied on
8	the vendors?
9	MR. DENNING: I would say it's their own.
10	I mean, I don't remember how much going back to
11	vendors there was.
12	CHAIRMAN APOSTOLAKIS: Yeah.
13	DR. BUELL: And typically most of the
14	equipment that are used in the success criteria is
15	real binary. I mean, you either have it or you don't
16	and there's only a few instances where you would
17	possibly need thermal hydraulics to ascertain whether
18	you could get by with something. So that's typically
19	not a real big deal.
20	Okay. What was our next slide?
21	DR. BONACA: Well, the question I have on
22	the PORV, I do believe that some PORVs you have to
23	show that they could, in fact, bleed. I mean, they
24	could stay open for a lengthy period of time.
25	And are the licensees typically dealing
	I

(202) 234-4433

	91
1	with that issue there or
2	DR. BUELL: Are you talking about long
3	term operations?
4	DR. BONACA: Yes.
5	DR. BUELL: The licensee, many of them
6	look at that. We look at it as far as battery
7	depletion. You know, when the batteries are gone,
8	then the pours are gone also if you're talking about
9	like a station blackout long term or if you lose air
10	in some instances long term.
11	DR. BONACA: So the licensees do make a
12	rational decision.
13	DR. BUELL: They do look at those issues
14	also.
15	Okay, and we're just going to skip all of
16	the rest of this. This is just some of the nuances
17	and details of how we look at some of the component
18	cooling water and such, some of the support system
19	initiated and how we model that.
20	John is going to give you a demonstration
21	of SAPHIRE now.
22	CHAIRMAN APOSTOLAKIS: Good.
23	DR. SCHROEDER: The SAPHIRE program is the
24	main engine for all of the SPAR models, and it's used
25	in conjunction with the GEM program, which are two
1	I contract of the second se

(202) 234-4433

	92
1	aspects of the same underlying calculation of
2	machinery. SAPHIRE is actually an acronym, and it
3	stands for something like safety analysis package for
4	hands-on integrated reliability evaluations. And GEM
5	is the graphical evaluation module.
б	And there's not much graphical about GEM.
7	I'll show you that, although the original design
8	vision was to make it sell.
9	Typical SAPHIRE model looks very much like
10	any other PRA model in that it has a bunch of risk
11	related objects. It has end states. It has
12	sequences, event trees, fault trees, and it has a lot
13	of basic events, and primarily it's a cut set solver,
14	but it also has some facilities to do off-line
15	calculations to come up with common cause failure
16	probabilities.
17	Off-site power recovery probabilities, de-
18	solar recovery probabilities, and it can do some sums
19	for you know, has utility options to come up with
20	fail to run probabilities that are like compound
21	curves, and I'll show you a little bit of that stuff.
22	When we start looking at a risk model, we
23	typically start with event trees, and this is a
24	typical list for a boiler. This is for the model that
25	you saw in advance, the pilgrim model. Some of these
1	

(202) 234-4433

	93
1	are quite complicated.
2	The large LOCA is one of the simplest
3	event trees that we have. This is an example of it.
4	We would have an initiating event and then the front
5	line system questions or concerns. Then we would
6	resolve those into core damage end states, and in some
7	cases these can be transferred to other event trees
8	for further processing, and there are models for which
9	we do that.
10	What I'm in now is a simple graphical
11	editor. I can modify this. I mean, I can add
12	branches and the like. I can access some of the major
13	components of the model this way, for instance, the
14	pressure pool cooling model, and then with that I can
15	bring up the fault tree logic. I can modify the fault
16	tree logic. I can modify the basic events. All of
17	these are fairly common capabilities.
18	SAPHIRE has many user ease functions.
19	I'll get to some of the add in capabilities later, but
20	this is one that I think is fairly important to point
21	out. The SPAR-H method is actually built into
22	SAPHIRE. The design of SPAR-H was to provide
23	something that an analyst could use to make quick
24	assessments for the SDP or for ASP evaluations, and
25	the capability looks something like this.

(202) 234-4433

	94
1	If we have a human related human action,
2	we would be able to specify whether there's a
3	diagnosis involved, and the event that I just happened
4	to pick does not have a diagnosis. It's a step down
5	the line in a procedure. The issue of whether the
6	right procedure has been selected has already been
7	determined. So it's basic. It's a basic action.
8	And what we would do is ask the user to
9	make judgments about the performance shaping factors
10	that apply, and they can do that by just entering in
11	values over here.
12	Now, as part of our attempt to do better
13	with uncertainty in the models, there is a capability
14	here to hedge your bets, to say that the experience
15	and training that's applicable to this event we
16	believe it is high with a high level of confidence,
17	but we could say that, well, maybe the analyst is only
18	90 percent certain that the experience and training is
19	high.
20	He might say that, well, maybe I feel ten
21	percent confident that it's only nominal, and you
22	would get an uncertainty distribution out of this
23	calculator appropriate to those inputs.
24	CHAIRMAN APOSTOLAKIS: So why don't you do
25	that so we can see?
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	95
1	DR. SCHROEDER: Okay. I'm not sure that
2	I can generate the uncertainty right here, but let's
3	put this in.
4	CHAIRMAN APOSTOLAKIS: Would five percent
5	low?
6	DR. SCHROEDER: Okay.
7	CHAIRMAN APOSTOLAKIS: Twenty percent
8	nominal, and let's see now. Twenty-five
9	MR. DENNING: Let's make it 75 percent.
10	CHAIRMAN APOSTOLAKIS: No, I want things
11	sufficient, too.
12	MR. DENNING: It's automatic. You
13	can't
14	CHAIRMAN APOSTOLAKIS: Seventy?
15	MR. DENNING: Oh, now, wait a second. Can
16	you do this?
17	CHAIRMAN APOSTOLAKIS: An insufficient
18	five.
19	DR. BUELL: As a default we typically
20	since we don't have that level of knowledge, we put
21	100 percent in whatever our shaping factor is.
22	CHAIRMAN APOSTOLAKIS: Do they add up to
23	one now? Yeah.
24	DR. SCHROEDER: I think the module is
25	going to enforce it one way or another.

(202) 234-4433

	96
1	CHAIRMAN APOSTOLAKIS: Okay.
2	DR. SCHROEDER: Now, when an analyst does
3	this, the advice given is that it is not sufficient
4	just to throw in numbers. He ought to make notes on
5	why he specified those numbers and the code would
6	maintain these things.
7	And there's a possibility to do a
8	dependency calculation as well, although just
9	declaring the dependency here doesn't solve the
10	problem. I mean, you have to go into a SAPHIRE rules
11	capability and make sure that this dependent event is
12	applied in the right place in the cut set, and that's
13	something that takes a fair amount of training that's
14	not a trivial action.
15	But at any rate, this event didn't mode
16	any dependency on previous events.
17	CHAIRMAN APOSTOLAKIS: So what do we see
18	how? It's seven ten to the minus four?
19	DR. THADANI: Right.
20	CHAIRMAN APOSTOLAKIS: And it's not going
21	to show us the range?
22	DR. SCHROEDER: We can attempt to show the
23	range here, but I am not sure.
24	MR. DENNING: Well, what you might do is
25	if that's difficult is you could go through and change
1	

(202) 234-4433

	97
1	those again and see what it does to the value.
2	DR. SCHROEDER: Right. The nominal value
3	is 5E minus four. When I distributed the degree of
4	belief here, I changed it to 7E minus four, and Curtis
5	Smith would be the person that would describe the
6	algorithm. I don't know that the algorithm for
7	distributing this is printed anywhere yet, whether
8	it's part of the SAPHIRE documentation or not. That
9	would have to come from the co-development people.
10	CHAIRMAN APOSTOLAKIS: But when we view
11	this in December, presumably we'll have access to
12	this, right? That's the whole point. Huh, Mike?
13	MR. CHEOK: I guess we can provide this
14	again in December if you would like.
15	CHAIRMAN APOSTOLAKIS: We have a report on
16	SPAR-H.
17	MR. CHEOK: That's correct.
18	CHAIRMAN APOSTOLAKIS: That report does
19	not explain these things?
20	MR. CHEOK: I don't believe it does
21	because this is a nuance of the SAPHIRE code, but we
22	can again bring this up.
23	CHAIRMAN APOSTOLAKIS: That's a key, you
24	know. And you can do this with all of the PSF showing
25	there, right? Complexity, available time, stress.
I	1

(202) 234-4433

	98
1	DR. SCHROEDER: And i can show that it
2	was.
3	CHAIRMAN APOSTOLAKIS: Okay, okay. So you
4	can't show us the uncertainty range right now, can
5	you?
6	DR. SCHROEDER: I believe so. Let's try.
7	CHAIRMAN APOSTOLAKIS: Let's try.
8	DR. SCHROEDER: I specify those factors.
9	The calculated probability now shows there, and
10	normally this event would be calculated with the
11	constrained noninformative, but if I go over here and
12	look at the uncertainty distribution, it looks like I
13	broke it.
14	Call Curtis.
15	CHAIRMAN APOSTOLAKIS: You broke it.
16	DR. SCHROEDER: When something like this
17	happens to a suer and it happens
18	CHAIRMAN APOSTOLAKIS: He calls Curtis.
19	DR. SCHROEDER: we call Curtis, but
20	actually that's not the right answer. The right
21	answer is I mean, that's the real answer, but it's
22	not the right answer. The right answer is that all
23	SAPHIRE users have access to the SAPHIRE Web site, and
24	there is a trouble reporting system there, where
25	events like this are logged, and when you log into the
	I contraction of the second seco

(202) 234-4433

	99
1	SAPHIRE Web site, you register one of these
2	observations. then it goes into the SAPHIRE tracking
3	system, and the same process is now in place for the
4	SPAR models, by the way.
5	It goes into a tracking system where they
6	have to respond to this and fix it if they can. So
7	I'm going to restart that here.
8	CHAIRMAN APOSTOLAKIS: Maybe you needed to
9	put numbers on the other PSFs, too. Is that possible?
10	DR. BUELL: Well, I think typically we
11	don't use that function in our base models. We
12	default over we use a performance shaping factors,
13	but we default to 100 percent for each one of them,
14	but we typically don't have that level of knowledge of
15	understanding of the particular action.
16	CHAIRMAN APOSTOLAKIS: But this is one of
17	the more significant uncertainties, isn't it?
18	DR. SCHROEDER: In many ways, yes.
19	CHAIRMAN APOSTOLAKIS: Well, you had to go
20	all the way back there.
21	DR. SCHROEDER: I had to restart SAPHIRE.
22	CHAIRMAN APOSTOLAKIS: Yeah, okay.
23	DR. SCHROEDER: Because that was a fatal,
24	fatal error.
25	CHAIRMAN APOSTOLAKIS: I assume if the
	1

(202) 234-4433

100 1 operators don't know what they're doing, it's a fatal 2 error, right? DR. SCHROEDER: Yeah. 3 4 CHAIRMAN APOSTOLAKIS: In more ways than 5 one. 6 DR. SCHROEDER: Okay. So I was sort of 7 showing the large loca event tree and walking down --8 CHAIRMAN APOSTOLAKIS: Yeah, let's look at 9 that because --10 DR. SCHROEDER: -- through many of the capabilities. 11 CHAIRMAN APOSTOLAKIS: -- we discussed 12 that yesterday, too, didn't we, Rich? This is BWR. 13 DR. SCHROEDER: This is BWR. 14 15 MR. DENNING: Oh, you're wondering about 16 like no credit for contained over pressure. 17 CHAIRMAN APOSTOLAKIS: Yeah, is there any place there where it asks whether the containment is 18 19 intact? 20 MR. DENNING: Well, the containment venting gets relevant to that. 21 22 It is implied. DR. SCHROEDER: For 23 instance, if you have --24 CHAIRMAN APOSTOLAKIS: No. You have to 25 have it before the core spray though, right?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

DR. SCHROEDER: These are laid out more or less in time order for the demand. For instance, you would need to have core spray immediately, and then some time very shortly after that demand, you would need suppression full cooling, and if you had that, you're basically find.

7 If the suppression cool cooling system is unavailable, we would credit core spray -- well, in 8 9 this case it's containment spray. Excuse me --, and since there's a fault tree linking going on here, 10 about the only way that you could fail this guy and 11 12 credit this quy is if the suppression pool cooling discharge valves were failed because the other 13 14 components of the model are the same.

15 But then we come over here to containment 16 venting. We're out in time a fair ways now, and we're trying to resolve the containment over pressure issue. 17 If containment venting is required because we don't 18 19 have any cooling and the containment is pressurizing, 20 we will question vent, and then we will question the 21 survival of any late injection. 22 Remember those.

23 MR. DENNING: That's kind of where it is 24 though because it's a question of weight injection.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

CHAIRMAN APOSTOLAKIS: No, but I thought

(202) 234-4433

25

	102
1	that the Loch Lepsian (phonetic) core spray do depend
2	on whether you have a
3	DR. SCHROEDER: But it's not their early
4	performance. They perform Okay early. It's late then
5	that they would fail.
6	CHAIRMAN APOSTOLAKIS: Or you could have
7	it the other way. They put the NR system. They put
8	the IP up front and they say if you have significant
9	leakage, then you don't get the right NPSH.
10	MR. DENNING: That's right.
11	CHAIRMAN APOSTOLAKIS: So it's relevant
12	both places, isn't it? That's what I saw.
13	MR. DENNING: No, but actually the failure
14	in cooling occurs late. Even though it's preexisting,
15	leakage from the containment that could cause I
16	mean obviously it's not included in this event tree.
17	CHAIRMAN APOSTOLAKIS: The Web site of the
18	NRC under GSI 193, for a fast, large LOCA, the LPSI
19	and CS pumps fail within seconds if you don't have
20	sufficient NPSA. So you don't even reach the lab.
21	MR. DENNING: They have sufficient NPSH
22	early. It's late when they heat up the pool. You
23	know, in this case we were looking at yesterday, you
24	know, we don't want to get into this in any detail,
25	but it's not that mode of failure isn't shown on

(202) 234-4433

	103
1	there, but that I think is because every plant is
2	taking credit for the NPSH being there and
3	CHAIRMAN APOSTOLAKIS: Yeah, this does,
4	too, right? This event tree?
5	MR. DENNING: Yes, this absolutely does,
6	but in their PRAs they don't take into account the
7	exercise which
8	CHAIRMAN APOSTOLAKIS: But if I wanted to
9	take into account, I would modify this because John
10	told us you can do that. You can go back and change
11	the branches and all of that, but right now it assumes
12	that you have sufficient NPSH.
13	MR. DENNING: And obviously the things
14	that we saw that Marty presented yesterday, he must
15	have done that, right?
16	CHAIRMAN APOSTOLAKIS: He used SPAR.
17	That's what he says. so he modified the three.
18	Okay. Let's keep going then and look at
19	the probability again.
20	DR. SCHROEDER: You want to look at the
21	probability calculations again?
22	CHAIRMAN APOSTOLAKIS: Yeah, just one
23	example.
24	DR. SCHROEDER: Okay. Let's access it
25	from a different place in the code. Typically when we
	1

(202) 234-4433

	104
1	deal with basic events, we come over here and bring up
2	the basic event list, and a typical basic event is
3	identified with nomenclature that comes from a NUREG.
4	It's a fairly old NUREG, but at least it's some
5	reference that can establish uniformity in the models.
6	In this particular basic event I have an
7	AC power distribution system, and I have an AC bus,
8	and I have a low power or no power failure mode, and
9	a key detail in all of this is that this is a plant
10	specific event, but it uses a generic event in its
11	quantification. We link it to something called a
12	template.
13	In this case the template is the AC bus
14	component template. That defines the failure rates
15	the mission time and the uncertainty parameter for
16	that particular system, component, and failure mode,
17	and there's an entire library of these things in every
18	model. Part of our ability to use automation depends
19	on this standard library of templates, and those would
20	be visible at the end of a model.
21	They start with Zs. This is the template
22	library, and it is anticipate that there will be a
23	NUREG that describes how these failure rates and
24	probabilities were determined because all of them have
25	associated parameter uncertainties.
	1

(202) 234-4433

(202) 234-4433

	105
1	CHAIRMAN APOSTOLAKIS: So if we go to the
2	human error matter we tried to do before?
3	DR. SCHROEDER: Well, we can go back to
4	that one. Let's see. Which one did I RHR/SPC.
5	Let's see. I think that was the one we tried to deal
6	with.
7	CHAIRMAN APOSTOLAKIS: Okay, yeah. Five
8	times ten to the minus four, yeah.
9	DR. SCHROEDER: That was the nominal. I
10	didn't save the calculation when it crashed.
11	CHAIRMAN APOSTOLAKIS: Okay.
12	DR. SCHROEDER: I'd hate to attempt to go
13	into this one again because if there's some error in
14	this model, we could just fumble around with that for
15	some time. I could try to default here, but
16	CHAIRMAN APOSTOLAKIS: Is it possible that
17	you have to go to the edit there? No, down. Yeah,
18	that edit.
19	DR. SCHROEDER: If you want to go to the
20	human factor calculator, you can go back to it.
21	CHAIRMAN APOSTOLAKIS: Yeah, okay.
22	DR. SCHROEDER: And is there anything else
23	here you'd like to see?
24	CHAIRMAN APOSTOLAKIS: Well, if we try to
25	do what we attempted earlier.

(202) 234-4433

	106
1	DR. SCHROEDER: Okay.
2	MR. DENNING: Let's not do it the same
3	way.
4	CHAIRMAN APOSTOLAKIS: Let's go to
5	available time and see what it says. Okay. So let's
6	put just enough, 20 percent, and nominal 60, and extra
7	time, well, that's a difference, but 20, and see what
8	happens now.
9	DR. SCHROEDER: Okay. We had change in
10	the value.
11	CHAIRMAN APOSTOLAKIS: It went up.
12	DR. SCHROEDER: And I fear that if we try
13	to go to the quick and dirty uncertainty
14	CHAIRMAN APOSTOLAKIS: No, there.
15	DR. SCHROEDER: We got one this time.
16	CHAIRMAN APOSTOLAKIS: We got one.
17	DR. SCHROEDER: Okay.
18	CHAIRMAN APOSTOLAKIS: So the 95th
19	percentile is 5.28 ten to the minus three, and the
20	fifth is ten to the minus six. So there is a
21	significant, three orders of magnitude, range.
22	Yeah, we certainly have to look at how
23	these things are determined, Nilesh. At least you get
24	some results.
25	Has there been any coordination here with
	1 I I I I I I I I I I I I I I I I I I I

	107
1	the guys who are developing ATHENA?
2	MR. CHEOK: We have talked to them once in
3	a while to see where they are and what we're doing.
4	CHAIRMAN APOSTOLAKIS: But they have not
5	reviewed this in detail.
6	MR. CHEOK: Oh, they have reviewed them.
7	We have provided the SPAR-H NUREG to them, and all the
8	authors of ATHENA have given its comments and they
9	have been incorporated.
10	CHAIRMAN APOSTOLAKIS: Okay. So anyway,
11	for December it would be nice to address these
12	questions. Okay.
13	DR. SCHROEDER: One of the other features
14	of SAPHIRE that we rely on heavily, this is all
15	related to the compound event. The HRA add-in is sort
16	of an aspect of this compound event calculation,
17	although that was a special case. The more general
18	case when you declare a compound event, we come over
19	here to this compound event tab, and what we look for
20	is a series of libraries.
21	These are all special code capabilities
22	that aren't necessarily needed by the general
23	population of users, but have been developed for one
24	special user or another. The SPAR model development
25	program uses this common cause failure calculation.
1	

(202) 234-4433
108 1 It uses the plug utility calculation. It uses this 2 four group LOOP DOL and then there's another LOOP 3 recovery DOL that are used to calculate various 4 quantities used in the SPAR program. 5 This particular event that I brought up is a common cause failure calculation. Other events that 6 7 are very important are these off-site power recovery events. Again, we use the compound event to calculate 8 9 those, and the inputs to the calculation would be the frequencies of each loss of off-site power category, 10 the plant center, the grid, the switch yard, et 11 cetera, and the medians for the assumed distribution, 12 and the error factors for the distribution. 13 14 This will allow SAPHIRE, when it does its 15 Monte Carlo solution to, in effect, calculate the recovery probability from a different trial 16 or different curb definition. 17 There's a family of recovery curves for each of these, and I can talk 18 19 about that a little bit more when you go to our 20 uncertainty calculations. 21 But the reason that we went to the DOL on 22 this is that in any given SPAR model, they will 23 probably use at least half a dozen of these events, and for event evaluation, it is frequently necessary 24 25 to recalculate those for a class of loss of off-site

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	power initiator.
2	The GEM module makes that happen without
3	the user having to recalculate anything and enter new
4	values. I will demonstrate that in a little bit.
5	Okay. So we have event trees, and we have
6	fault trees and basic events. Let me show you a
7	fairly complex event tree just to show you the range
8	in size. The TRAN event tree will be hard to see
9	here, but this is probably as large an event tree as
10	there is in the SPAR program, and in fact, this event
11	tree is much larger than you see here because these
12	represent transfers for other aspects of the model.
13	For instance, this is another event tree
14	for a stuck open you see in the text that describes
15	that here. It's more legible down here. This is for
16	one stuck open relief valve. This is for two stuck
17	open relief valves, and this is ATWS. Those are
18	really all technically part of this event tree, except
19	those are reusable pieces that other event trees
20	reference as well.
21	Now, in the SAPHIRE paradigm, you need to
22	link those event trees to create sequences. So what
23	we are looking at is really no more than a graphic,
24	and when SAPHIRE creates the sequences, it stores them
25	at a different place. You will come over here, and we

(202) 234-4433

	110
1	can select sequences, and then we can look at our
2	results through the sequences. This is what SAPHIRE
3	solves to give us a core damage frequency.
4	And we have many editing capabilities
5	within the SPAR model. We can display the cut sets
6	for all of the sequences or groups of sequences, and
7	this is a typical result, cut set list for the overall
8	model. We can slice and dice this. There's a
9	capability to collect cut sets. Say if I wanted to
10	look at loss of off-site power cut sets that have a
11	core spray check valve failure in them. I can apply
12	that, and if there's anything that meet that criteria
13	in this case there was nothing that met the
14	criteria I could do that.
15	Something that would definitely be here
16	would be like EPS failures, emergency power system
17	failures. If we had a failure of the diesel to run,
18	we could add that, and we'd probably get quite a few
19	of those, and we can reference the full list, what's
20	included in our particular slice of the result, and we
21	can see what's excluded from the slice.
22	And more to the point, we can save this in
23	an end state for later review and for additional
24	sliding.
25	CHAIRMAN APOSTOLAKIS: And these are run
	1

(202) 234-4433

	111
1	according to the frequency?
2	DR. SCHROEDER: yes.
3	CHAIRMAN APOSTOLAKIS: But, my goodness,
4	look at that. All of them are very low.
5	DR. SCHROEDER: Well, I picked cut sets
6	with a very particular criteria. You had to have a
7	LOOP initiator and failure of just DGA. There are
8	only 500 of these cut sets in the model, and if we
9	were to look at how many cut sets are in the model,
10	this particular model has 10,000 cut sets in it at
11	this truncation level.
12	CHAIRMAN APOSTOLAKIS: Can we for this
13	system now look at the CDF?
14	DR. SCHROEDER: We can look at the CDF for
15	any system, but we have to
16	CHAIRMAN APOSTOLAKIS: And for the whole
17	plant, can we look at the system?
18	DR. SCHROEDER: Yes.
19	CHAIRMAN APOSTOLAKIS: Yeah, let's look at
20	that.
21	DR. SCHROEDER: We were looking at CDF for
22	the whole plant. That was what I was showing you.
23	There's more than one way to look at it. For
24	instance, if we want to look at the CDF sequence by
25	sequence and get the overall result, here is the
	I

```
(202) 234-4433
```

	112
1	total, and here is how it breaks down by sequence.
2	In SAPHIRE the sequence specified by a
3	sequence number and the event tree name, and we use
4	very standard abbreviations so that a person that has
5	used the SPAR model for a little while would just
6	glance at this list and automatically recognize that
7	we had an inadvertent open relief valve or we have a
8	large LOCA or a transient or a loss of condenser heat
9	sink.
10	That's part of the advantage of
11	standardization.
12	Now, the SAPHIRE environment that I've
13	been demonstrating here is the main tool of the model
14	developers. It's the main tool to maintain models,
15	and it's the tool that you need if you're going to do
16	a very detailed analysis.
17	But for most routine analyses, we try to
18	make life easier for the user. We go to the GEM
19	framework, and I went to the GEM environment here, but
20	there's something else I want to point out. In all of
21	the SPAR models we have this disclaimer, and there has
22	been an issue with people grabbing a model and trying
23	to use it without really understanding what the major
24	issues associated with the use of that model were.
25	So in an attempt to mitigate against that,
	1

(202) 234-4433

	113
1	we've provided a screen that says, well, I know all
2	about the limitations of this model and I'm ready to
3	go on, and if I don't know all about them, I'm really
4	supposed to come over here and look at them.
5	And there would be a summary like this
6	that's plant specific for each model that says, well,
7	you know, this is the number one hitter for us on this
8	model. We really have an impact here that needs to be
9	represented or accounted for or considered in our
10	analysis, and these impacts are in ones, twos, and
11	threes. Well, what do they mean?
12	This is what a one, two, or three means in
13	the impact. An evaluation of this kind exists for all
14	of the models, and it is the major part of our attempt
15	to deal with structural uncertainties in the model.
16	CHAIRMAN APOSTOLAKIS: So this is the
17	impact of the whole sequence there. Well, it's
18	actually groups of sequences, right?
19	DR. SCHROEDER: This summary over here is
20	based on the total impact of core damage frequency on
21	the whole model.
22	Okay. So if I've looked at this and
23	decided that I understand them, then I can go on and
24	do my analysis. One of the key facilities in the
25	initiating event assessment capability here, and the
	1

(202) 234-4433

114 1 reason that that's important is because we get the 2 substitutions for our class of loss of off-site power. 3 I need to declare one, and it might be 4 something like a PC, plant centered, loss of off-site 5 power, and I know that it's a loop initiator. I have a list here. This is special. The other initiators 6 7 wouldn't ask this question, but I have an opportunity to tell the module what kind of loss of off-site power 8 9 event I am dealing with, and if I select plant 10 centered, I'm going to get a bunch of automated calculations. 11 The first thing it does is it goes through 12 and sets all of my initiating event frequencies to 13 14 zero and the LOOP frequency to one or true and false, 15 as the case may be. And then it goes out and it recalculates all of my off-site power recoveries. 16 Now, GEM doesn't know which of these are 17 It just goes and calculates all of them, and used. 18 19 some of them will be hanging around and unused, but it 20 will recalculate the ones that are needed. CHAIRMAN APOSTOLAKIS: There is a detail 21 22 there hour by hour of the recovery. 23 DR. SCHROEDER: Yes. 24 CHAIRMAN APOSTOLAKIS: How is that used? 25 DR. SCHROEDER: Well, I can show you that,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	although it would be best not to show it in the GEM
2	environment. I need to switch back. So let me do
3	that. Let me cancel this process.
4	CHAIRMAN APOSTOLAKIS: I mean the result
5	should be an integral value, right?
6	DR. SCHROEDER: Yes.
7	DR. BUELL: We put a full set of those
8	hour by hour for 24 hours even though we don't use
9	them all. It's just part of the library of events
10	that we put in there. So that's standard for every
11	model. We'll have every hour in there.
12	DR. SCHROEDER: Switch back to SAPHIRE
13	again.
14	CHAIRMAN APOSTOLAKIS: But in a particular
15	situation, you may have a thermal hydraulic
16	calculation that says, you know, in 45 minutes you're
17	going to be in trouble. Then you will go and pick the
18	appropriate value for recovery of power.
19	DR. BUELL: Exactly.
20	CHAIRMAN APOSTOLAKIS: I see.
21	DR. SCHROEDER: This is how it works.
22	this is the station blackout model for this plant.
23	CHAIRMAN APOSTOLAKIS: Yeah, yeah. Okay.
24	DR. SCHROEDER: And many of the things
25	that we have to talk about today involve what the

(202) 234-4433

	116
1	right time is to credit in this column. For this
2	particular model, if we have a HPCI or RCCI success
3	and we're able to depressurize at some point down the
4	line and bring on fire water and extend our battery
5	lifetime sufficiently by accredited load shedding
6	procedures at the plant, we would have a 14-hour
7	limitation
8	CHAIRMAN APOSTOLAKIS: Okay.
9	DR. SCHROEDER: recovery for the
10	sequence.
11	In another sequence, we
12	CHAIRMAN APOSTOLAKIS: So the quote then
13	would be peak just
14	DR. SCHROEDER: Well, that's already coded
15	in the fault tree, and what the code needs to do, it's
16	automated. See, the model developer has to do all of
17	this.
18	CHAIRMAN APOSTOLAKIS: Right, but
19	DR. SCHROEDER: There are basic events in
20	there for each, and if we look at one of the
21	graphics
22	CHAIRMAN APOSTOLAKIS: But from the series
23	of values you showed us, only the value corresponding
24	to that time would be selected.
25	DR. SCHROEDER: Right.
	1

(202) 234-4433

	117
1	CHAIRMAN APOSTOLAKIS: Okay, okay.
2	DR. SCHROEDER: In this particular
3	sequence that I just selected the fault tree for, this
4	would be the default, the smallest value in the model.
5	All of the others are bigger than this. I could
б	credit off-site power recovery in 30 minutes. I could
7	credit the operator failure to recover a diesel in
8	that 30 minutes, and then there's some credit for
9	ability to align off-site or optional power supplies.
10	There's a blackout generator at this
11	plant. There is another off-site line that they want
12	to take credit for, and because this is a 30-minute
13	sequence, there are probably operator actions in these
14	that are more restrictive than the general case here.
15	At any rate, the calculation that GEM is
16	going to do for you is going to change this number
17	depending on what class of loop you had. For
18	instance, if this was a grid related analysis that I
19	was doing, this would be a very different number than
20	if it was a weather related analysis that I was doing.
21	CHAIRMAN APOSTOLAKIS: Sure.
22	DR. SCHROEDER: And because that's
23	difficult to calculate, GEM does it. In fact, SAPHIRE
24	does it for the base case by doing a frequency
25	weighted average of the loop classes.
I	1

(202) 234-4433

	118
1	CHAIRMAN APOSTOLAKIS: If I change
2	something, how long will it take for the model to
3	recalculate overloads?
4	DR. SCHROEDER: Not very long. I could
5	generate this one here. I started to do that PC LOOP.
6	We could look at this change set. What I was doing in
7	GEM is reflected in SAPHIRE, and if I start to run
8	this, I would get a result based upon just a nominal
9	loss of off-site power.
10	And because loss of off-site power is a
11	fairly complicated thing, I might want to change the
12	truncation for that when I go to run it.
13	SAPHIRE is now making the values that I
14	selected the temporary values to use in the
15	calculation. If I come over here to the sequences,
16	select all of the sequences and ask the code to solve
17	it, I don't want to attempt to solve this model at D
18	minus 12 anymore because I've changed the initiating
19	event frequency by three orders of magnitude.
20	On a desktop engine, it might be
21	reasonable to solve it here, but just for the sake of
22	a demonstration, let me knock that back to I was
23	trying to go for ten there and see how long it
24	takes.
25	It's not working the problem, and each
l	1

(202) 234-4433

	119
1	time you see a flash down here, it's finishing up a
2	sequence.
3	CHAIRMAN APOSTOLAKIS: Gez.
4	DR. SCHROEDER: And it's done. So if I
5	wanted to see the results associated with that
6	analysis, and I can sort them by the
7	CHAIRMAN APOSTOLAKIS: I want to see the
8	total. Can we look at the total CDF?
9	DR. SCHROEDER: Yes. That is there.
10	CHAIRMAN APOSTOLAKIS: So it was done in
11	15 seconds, right?
12	DR. SCHROEDER: Yeah, and this is the
13	result.
14	CHAIRMAN APOSTOLAKIS: So the total CDF is
15	and if I want to look at the uncertainty on that?
16	DR. SCHROEDER: If I want to look at the
17	uncertainty on that, I'll have to write an additional
18	calculation. I'll have to go to uncertainty, and I
19	could probably run 5,000 samples fairly quickly.
20	CHAIRMAN APOSTOLAKIS: Okay.
21	DR. SCHROEDER: But so that we're not here
22	too long, I'll try it with 1,000, and down here you
23	have the running sample count.
24	CHAIRMAN APOSTOLAKIS: This is straight
25	Monte Carlo.
	1

```
(202) 234-4433
```

	120
1	DR. SCHROEDER: I believe that's what I
2	selected. The LSH option is available. Those are the
3	only two options.
4	MR. DENNING: Now, what did it do before?
5	It did a point estimate before?
6	DR. SCHROEDER: That was just a point
7	estimate, and doing this sort of by sequence here, the
8	project.
9	CHAIRMAN APOSTOLAKIS: It probably takes
10	a minute or so. It did it?
11	DR. SCHROEDER: So now I want to
12	display
13	CHAIRMAN APOSTOLAKIS: No, the previous
14	one, the uncertainty, yeah.
15	DR. SCHROEDER: Yeah, display uncertainty?
16	CHAIRMAN APOSTOLAKIS: Yeah.
17	DR. SCHROEDER: This is the result I have
18	now.
19	CHAIRMAN APOSTOLAKIS: Now, in the
20	previous one you had things like yeah, here, the
21	cyrtosis, skewness. You are obviously working with
22	statisticians.
23	(Laughter.)
24	DR. SCHROEDER: Right, although for
25	someone who is not a statistician, we have current
	1

```
(202) 234-4433
```

	121
1	quantile display and we have a plot, and the plot is
2	based on a fairly limited number of data points. In
3	other words
4	CHAIRMAN APOSTOLAKIS: Maybe we should
5	have Regulatory Guide 1174 that uses the mean CDF and
6	its cyrtosis.
7	(Laughter.)
8	CHAIRMAN APOSTOLAKIS: Huh?
9	MR. CHEOK: No comment.
10	CHAIRMAN APOSTOLAKIS: No comment.
11	PARTICIPANT: I thought that had to do
12	with the Atkins diet.
13	(Laughter.)
14	CHAIRMAN APOSTOLAKIS: Great, John. This
15	is very good. This is very, very good.
16	DR. SCHROEDER: There's one thing that I
17	really wanted to show you in GEM, and to show it I
18	really need to get to the back end of the calculation
19	because I think it's an important feature. So let's
20	try to go and do a real quick assessment here without
21	changing anything.
22	And I'm going to change the cutoff even
23	lower here. So it won't be a very meaningful
24	calculation, but it will be fast.
25	CHAIRMAN APOSTOLAKIS: Now, you have done
I	1

(202) 234-4433

	122
1	sensitivity studies to appreciate the significance of
2	the cutoff value?
3	DR. SCHROEDER: Yes, yes, and we maybe
4	don't do a sensitivity study on each plant each time
5	because we make a judgment that E minus 12 is deep
6	enough for all of the models, and generally it is more
7	than deep enough.
8	And since the code only takes a minute or
9	two to solve, if a person wants to knock that down to
10	E minus 15, they can. In fact, when I benchmark a
11	model, I often have to go to E minus 15 to make sure
12	that very low importance events show up in the cut
13	set. We don't ship it that way, but you know, it's a
14	five minute calculation at my desk.
15	Now, the reason I wanted to show you
16	this
17	CHAIRMAN APOSTOLAKIS: So you take a
18	break?
19	DR. SCHROEDER: Pardon me?
20	CHAIRMAN APOSTOLAKIS: During those five
21	minutes you take a break?
22	DR. SCHROEDER: Yes. Get some more
23	coffee.
24	I have a solution here from that
25	calculation. These are the sequences that survive my

(202) 234-4433

	123
1	very high truncation. There's not much there.
2	But I wanted to show you the reporting
3	function, and it's fairly crude, but it's important
4	because the idea in creating GEM was to have something
5	that produced a quick report that totally documented
6	the result.
7	In this case I had a conditional core
8	damage probability which is the metric for initiating
9	event assessments, a 3.5 E minus 6, but if I printed
10	this thing off and stuck it in a binder someplace and
11	somebody asked me how I got that result later, well,
12	the model would have all of the details necessary or
13	the report would have all of the details necessary.
14	For instance, I have the probabilities
15	that the original base case had and then the current
16	case has. The current case is namely my analysis
17	circumstances. I have the initiating event value and
18	then all of the recovery values, and if I had changed
19	any other components in here, those would show up in
20	the list.
21	Then I summarized the sequences in the
22	conditional core damage frequency of each sequence
23	that contributes to my result. Then I go and I tell
24	the reviewer what the definition of the sequence is in
25	terms of systems.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	124
1	For instance, loss of off-site power,
2	sequences 32-9 would actually be a blackout sequence,
3	and a person would need to go and look at the station
4	blackout event tree to understand that quickly, but if
5	they didn't go to the event tree, they can see the
6	sequence logic. There was a success of the reactor
7	protection system with the failure of emergency power
8	with a stuck open relief valve, with failure of the
9	RCCI system and failure of the HPCI system.
10	And because I know what those
11	abbreviations are, I didn't have to come down here and
12	read it, but if I needed to know what the systems
13	were, I would come down here and find out in my fault
14	tree list.
15	This is just the fault trees that were
16	actually used in any of the sequences that showed up
17	in the results.
18	CHAIRMAN APOSTOLAKIS: Very good.
19	DR. SCHROEDER: Then I would come down and
20	I would look at the cut sets associated with each
21	sequence, and when I get all done with that I
22	CHAIRMAN APOSTOLAKIS: Do you have an
23	importance measure someplace?
24	DR. SCHROEDER: Not here, but that's
25	because I didn't ask for that. I can go back and I
1	I contract of the second se

(202) 234-4433

	125
1	can request those.
2	CHAIRMAN APOSTOLAKIS: No, that's fine.
3	By the way, I remember you're calculating
4	Fussell Vesely, right? No, actually you call it
5	something else.
6	DR. SCHROEDER: We calculate almost
7	anything that anybody has thought of that they might
8	want to see in the model.
9	CHAIRMAN APOSTOLAKIS: No, but you call it
10	something else. You call it risk reduction work,
11	right? At least in the earlier versions it was a risk
12	reduction work. It still is.
13	DR. SCHROEDER: They get the same results,
14	yes.
15	CHAIRMAN APOSTOLAKIS: Except you do some
16	calculation, right?
17	DR. SCHROEDER: That's right.
18	CHAIRMAN APOSTOLAKIS: The fossil vessel.
19	DR. SCHROEDER: At any rate, if I go
20	back
21	CHAIRMAN APOSTOLAKIS: Now, since you've
22	done all of these things, do you have a plot of the
23	CDFs of all these reactors?
24	DR. SCHROEDER: I don't have one right
25	CHAIRMAN APOSTOLAKIS: A base case?

```
(202) 234-4433
```

	126
1	DR. SCHROEDER: I don't have such a thing
2	ready to hand out, but in effect, it can be generated
3	rather quickly using the automation that we talked
4	about earlier. It's just that we don't keep such a
5	thing ready to hand out. We would have to go back to
6	our desk and run the macro, and it would probably come
7	out in 15, 20 minutes once it
8	CHAIRMAN APOSTOLAKIS: I mean, if you get
9	like the one you showed for the station blackout.
10	DR. BUELL: We could run that, and we have
11	some automatic macros that will dump that out into a
12	report function and
13	CHAIRMAN APOSTOLAKIS: Okay. You can run
14	it. Have you run it before?
15	DR. BUELL: At various times we've looked
16	at that.
17	CHAIRMAN APOSTOLAKIS: And what was the
18	conclusion? I mean, are there any CDFs that are close
19	to ten to the minus four or higher?
20	DR. BUELL: There was a couple of them,
21	but we've since knocked them down. There's none above
22	ten to the minus four at this point.
23	CHAIRMAN APOSTOLAKIS: None?
24	DR. BUELL: There are some that are close,
25	but there's none above ten to the minus four at this
	I contract of the second se

(202) 234-4433

	127
1	point.
2	DR. SCHROEDER: There was one plant that
3	showed up right at the line, and they took great
4	exception to that and have been arguing with us about
5	it since, and pending resolution by the SRAs on what
6	to credit at that plant, it could be substantially
7	lower than that.
8	CHAIRMAN APOSTOLAKIS: Well, that's
9	significantly different from the conclusions of the
10	IPE project, right?
11	DR. BUELL: Well, there's been a lot of
12	pencil sharpening in the intervening years.
13	CHAIRMAN APOSTOLAKIS: That was my
14	question. Is it because of pencil sharpening or they
15	actually did something? But this is not for you. I
16	mean, somehow we will ask this question of somebody
17	else. Nilesh, is that you? Is it your group?
18	MR. CHEOK: My guess is it's both. I
19	mean, plants have done improvements since the IPEs,
20	and they've done improvements as part of the IPEs, but
21	there's also improvements in technology and how we
22	define things, and that has brought down the CDF.
23	CHAIRMAN APOSTOLAKIS: So is it fair to
24	say, Mike, there are no units in the United States
25	that are above the goal for internal events at power?
	1

(202) 234-4433

	128
1	MR. CHEOK: It's probably fair to say that
2	SPAR models at this point do not show too many units
3	or any units that are above the goal for internal
4	events, but that's for the scope of SPAR models.
5	DR. THADANI: George, why is there ten to
6	the minus four? A reactor year core damage frequency
7	goal for internal events?
8	CHAIRMAN APOSTOLAKIS: No. This is the
9	total
10	DR. THADANI: That's what I thought. So
11	internal events would be some
12	CHAIRMAN APOSTOLAKIS: Yeah, but we're
13	calculating internal events only.
14	DR. THADANI: And to answer your earlier
15	question, you might recall that there was a NUREG
16	prepared that provides insight scan from IPE reviews
17	and IPEEE reviews, and that describes briefly some of
18	the things that the licensees have done.
19	CHAIRMAN APOSTOLAKIS: There were 19 PWR
20	units whose CDF was above the goal.
21	DR. THADANI: Yes.
22	CHAIRMAN APOSTOLAKIS: So if now there's
23	only one and even that is in doubt, that's a
24	significant change, it seems to me. Somebody should
25	come here and brief the committee about that. Is it
	I

(202) 234-4433

	129
1	a former IPE guys or somebody, or maybe you? Give us
2	a profile from what you've got from a CDF.
3	MR. CHOKSHI: I think whoever does it will
4	have to study it. We'll have to study and look at all
5	of these pieces and
6	CHAIRMAN APOSTOLAKIS: Take your time.
7	Take your time. So tomorrow at noon, you'll probably
8	do it.
9	(Laughter.)
10	CHAIRMAN APOSTOLAKIS: No, it's really an
11	important insight because the committee, not just the
12	subcommittee, the committee has been left with the
13	impression that was created by the IPEs. I mean their
14	report that Mr. Thadani just mentioned, and if now we
15	have a change, it would be nice to know that, right?
16	Because the IPEs didn't look at the low power shutdown
17	either.
18	DR. THADANI: No, they did not.
19	DR. BUELL: There have been many plant
20	mods in the intervening years. There's been a lot
21	of
22	CHAIRMAN APOSTOLAKIS: I appreciate that.
23	DR. BUELL: And even recently we just
24	receive updates of plant mods.
25	CHAIRMAN APOSTOLAKIS: When NUREG 1150
I	

(202) 234-4433

	130
1	came out and it was reviewed, that was one of the
2	issues that was addressed. How are the results of
3	NUREG 1150 different from those of the reactor safety
4	study? And there was a significant reduction in all
5	of the metrics, and that was a very nice thing to see.
6	And, again, it was really a combination of
7	both better analytical methods and plant
8	MR. CHEOK: And plant experience,
9	operating experience. We show in our trending
10	analysis that component reliabilities are going up and
11	initiating frequencies are coming down.
12	CHAIRMAN APOSTOLAKIS: So you produced a
13	report that made that very clear.
14	MR. CHEOK: That's correct.
15	CHAIRMAN APOSTOLAKIS: But it seems to me
16	that kind of information would be useful to the
17	Commissioners as well. I mean, this gives a picture
18	of the industry, right? This is where we are now.
19	MR. DENNING: But Dana is going to say,
20	"Well, what's the seismic risk then?"
21	CHAIRMAN APOSTOLAKIS: Dana is not here.
22	So he cannot say it.
23	MR. DENNING: No, I agree.
24	CHAIRMAN APOSTOLAKIS: No, but really,
25	it's nice to see every several years that we are

(202) 234-4433

	131
1	improving this. I mean, there was a very impressive
2	result and figures were produced comparing 1150 with
3	reactor safety study. Very impressive.
4	MR. DENNING: But it is as part of that
5	important to say, "Well what has the plant actually
6	done?" It has reduced it
7	CHAIRMAN APOSTOLAKIS: Absolutely.
8	MR. DENNING: versus how much as
9	sharpening your pencil.
10	CHAIRMAN APOSTOLAKIS: You have to
11	understand that. So maybe, Nilesh, it's your group
12	that will have to do this at some future time because
13	you guys have access to all this, and all you have to
14	do is go back to the IPE lessons learned, and they
15	have a couple of tables. I mean, it's not a big deal.
16	MR. CHOKSHI: Well, also we're to look at
17	this is plant journey analysis (phonetic). What are
18	the features? Both sides you need to look at
19	carefully and see.
20	CHAIRMAN APOSTOLAKIS: Yeah, yeah. See
21	there is no other side. I don't think the IPE group
22	exists anymore.
23	MR. CHOKSHI: Charlie's group will take it
24	under advisement.
25	CHAIRMAN APOSTOLAKIS: Typical staff
	I

132 1 response. "We'll think about it," which is okay. We 2 really want you to think about it before you come 3 here. 4 No, but I think that's important. It may 5 even be worth issuing a report on that, a small --MR. CHOKSHI: Well, I think it's very 6 7 interesting as you said, a question inside that you 8 can get. 9 APOSTOLAKIS: Absolutely, CHAIRMAN 10 absolutely. Well, have we exhausted the usefulness of this example, John. 11 12 DR. SCHROEDER: Yes. CHAIRMAN APOSTOLAKIS: Wonderful. 13 14 DR. SCHROEDER: In fact, that's all that 15 I had prepared to show. The only thing that --16 CHAIRMAN APOSTOLAKIS: Well, I still 17 hadn't seen though for this plant the CDF with its uncertainty. Can we see that? 18 19 DR. SCHROEDER: Oh, yes, we can see that. 20 CHAIRMAN APOSTOLAKIS: And then maybe LERF 21 as well? 22 DR. SCHROEDER: No. 23 CHAIRMAN APOSTOLAKIS: Are you calculating 24 LERF? 25 DR. SCHROEDER: I can't do that. That's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	133
1	not incorporated in this model.
2	CHAIRMAN APOSTOLAKIS: Okay.
3	DR. SCHROEDER: And that actually is an
4	issue that we'll talk about later.
5	CHAIRMAN APOSTOLAKIS: Okay.
6	DR. SCHROEDER: It's a model maintenance
7	issue.
8	CHAIRMAN APOSTOLAKIS: So let's just look
9	at CDF.
10	DR. SCHROEDER: Okay. I'll have to resell
11	(phonetic) the sequences here.
12	CHAIRMAN APOSTOLAKIS: Now, when you do
13	these changes, the code preserves somewhere the base
14	case that you've already done, right?
15	DR. SCHROEDER: Yes.
16	CHAIRMAN APOSTOLAKIS: Okay. You don't
17	have to go back and restore it.
18	DR. SCHROEDER: No. Well, in this case
19	I'm recalculating it because it's not easy to copy the
20	base case into the current case. It's really designed
21	to go the other way for comparison purposes. The
22	current case can be copied into the base case and used
23	as a later reference, but when I want to reestablish
24	the current case, I have to go and make a run, which
25	I've already done.

(202) 234-4433

	134
1	CHAIRMAN APOSTOLAKIS: Okay. So let's
2	look at it.
3	DR. SCHROEDER: And I have to do the
4	uncertainty though, and I'll try 1,000 samples here.
5	Like I say, I don't know how far okay. This is
6	going fairly fast.
7	CHAIRMAN APOSTOLAKIS: So?
8	DR. SCHROEDER: Of course, the code is
9	having to recalculate all of the probabilities in the
10	model about 1,000 times for us, and it is taking some
11	time.
12	MR. DENNING: While we're waiting, you
13	know, we should have asked Dr. Shack's question
14	earlier.
15	CHAIRMAN APOSTOLAKIS: I did I thought.
16	MR. DENNING: Did you?
17	CHAIRMAN APOSTOLAKIS: They said they
18	follow 1150.
19	MR. DENNING: I guess that's right. So
20	they're not doing anything new.
21	CHAIRMAN APOSTOLAKIS: Okay. Here we are.
22	Base. Where are we looking, base or current?
23	DR. SCHROEDER: We're looking here.
24	CHAIRMAN APOSTOLAKIS: Okay. So it's ten
25	to the minus five and 95th is what? A factor of five.
	I contract of the second se

```
(202) 234-4433
```

	135
1	Okay. I don't like the skewness value, but that's
2	okay. I think it's too high.
3	Do we really know that stuff so well, a
4	factor of five? And this is a plot of what?
5	DR. SCHROEDER: Well, this is
6	CHAIRMAN APOSTOLAKIS: CDF?
7	DR. SCHROEDER: the probability density
8	function for the core damage frequency.
9	CHAIRMAN APOSTOLAKIS: It looks like
10	normal, huh?
11	DR. SCHROEDER: And, again, that's not a
12	lot of data points. It gets a little jaggy because
13	this plot really only uses 20 or 30 points.
14	CHAIRMAN APOSTOLAKIS: Okay. Good. Let's
15	move on.
16	DR. SCHROEDER: That was all that there
17	was in the demonstration unless there was something
18	specific you would like to see.
19	CHAIRMAN APOSTOLAKIS: Good, excellent.
20	This was very good.
21	So what's the next subject?
22	DR. BUELL: Major modeling assumptions was
23	the next topic.
24	CHAIRMAN APOSTOLAKIS: Are we going back
25	now to your slides?
	1

	136
1	DR. BUELL: Yes, going back to the slides.
2	CHAIRMAN APOSTOLAKIS: And that would be
3	Slide 31? Okay.
4	DR. BUELL: Okay. Given any PRA, you've
5	got to make assumptions on how you model what are some
6	of the key criteria. These are some of the major
7	model assumptions that we use in the SPAR model.
8	Okay?
9	And they're not ranked in order or
10	anything, but this happens to be no recovery of DC
11	power after battery depletion happens to be one of our
12	most important assumptions.
13	CHAIRMAN APOSTOLAKIS: And why is that
14	there?
15	DR. BUELL: Well, the reason that okay.
16	This is a legacy item that has been ongoing since the
17	beginning of the program, but what this assumption
18	says is after the battery is deplete, we're not taking
19	any credit for aligning power onto your emergency
20	buses again after that point.
21	And there's a variety of rationale that
22	goes underneath that. The fact that some of your
23	emergency lighting could be out, the fact that you
24	don't have remote control of your buses at that point;
25	you would have to manually bring them on, you know,
	1

(202) 234-4433

	137
1	one at a time. It's a complex evolution.
2	CHAIRMAN APOSTOLAKIS: But I thought there
3	was a significant time to core uncover after that.
4	DR. BUELL: There is, okay, but like I
5	say, this is a limiting assumption right now that we
6	have that we're looking at, and this is one of our
7	not only is it a major modeling assumption, but it's
8	a major modeling uncertainty as well.
9	CHAIRMAN APOSTOLAKIS: Now, is there also
10	uncertainty to the time of battery depletion?
11	DR. BUELL: Every plant has their own
12	battery depletion time basically.
13	CHAIRMAN APOSTOLAKIS: Seven hours, 12
14	hours? I mean, it's
15	DR. BUELL: It goes anywhere from
16	approximate two hours to I think the longest we model
17	is 12 hours.
18	CHAIRMAN APOSTOLAKIS: So how do you
19	handle that?
20	DR. BUELL: We handle that explicitly in
21	the event trees.
22	CHAIRMAN APOSTOLAKIS: Do you use one
23	value or do you put uncertainty distribution on these
24	values?
25	DR. BUELL: There's uncertainty on the
	I contraction of the second seco

(202) 234-4433

	138
1	recovery values, but there's no uncertainty on the
2	battery
3	CHAIRMAN APOSTOLAKIS: Why not? I mean,
4	what if the licensee says 11 hours and you suspect
5	it's more like seven?
6	DR. BUELL: We don't have any way to check
7	that. Basically we have to rely on what they tell us.
8	CHAIRMAN APOSTOLAKIS: Can't you put that
9	uncertainty distribution on the time?
10	DR. BUELL: We could run sensitivity
11	studies on that. We would
12	CHAIRMAN APOSTOLAKIS: But not
13	uncertainty.
14	DR. SCHROEDER: There's no capability
15	right now to build that into the Monte Carlo sampling
16	scheme. It would require use of the plug-in
17	capability.
18	CHAIRMAN APOSTOLAKIS: Isn't that another
19	parameter though, John? I mean, why isn't
20	DR. SCHROEDER: I said there's no
21	capability now, but it could be built into the DOL.
22	The plug-in capability is what we use to model these
23	things because they are specific to our application.
24	All it would take is a decision to go that direction
25	and it could be done. There's no real difficulties

(202) 234-4433

	139
1	there.
2	CHAIRMAN APOSTOLAKIS: Yeah, I mean that
3	would make much more sense, it seems to me.
4	DR. SCHROEDER: Of course, the biggest
5	difficulty is assigning the degree of belief to the
6	distribution, you know, determining a model.
7	CHAIRMAN APOSTOLAKIS: But I think it's
8	easier to argue about what the distribution is rather
9	than argue about what the right point estimate is
10	because then, you know, the stakes are higher. If you
11	put probability, even a small histogram, it doesn't
12	have to be a continuous distribution, you know. Two
13	or three or four values, and you know, you weigh them
14	appropriately. That probably would be a better and
15	easier way of doing it.
16	DR. SCHROEDER: Okay.
17	DR. BUELL: And that's something that
18	could be done, but right now we do not have that
19	capability in there, nor do we
20	CHAIRMAN APOSTOLAKIS: Okay. Well, we're
21	here to help. We're here to help.
22	DR. BUELL: Okay. That's a significant
23	one, and one of the reasons it's significant is like
24	you indicated, you may have several hours beyond that
25	point for core uncovery (phonetic) core damage, but we
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	140
1	don't take any credit for that intervening period
2	beyond the battery life.
3	CHAIRMAN APOSTOLAKIS: And that also could
4	be something that would be handled probabilisticly.
5	DR. BUELL: That could be.
6	CHAIRMAN APOSTOLAKIS: Could be.
7	DR. BUELL: And we're going to deal with
8	that particular issue later on. Common cause is not
9	modeled across different systems. That's one of our
10	assumptions.
11	CHAIRMAN APOSTOLAKIS: That's a standard
12	assumption.
13	DR. BUELL: That's pretty standard. There
14	are some plants out there that try to do that, but
15	that's the exception rather than the rule.
16	Okay. Pre-accident human errors are not
17	modeled.
18	CHAIRMAN APOSTOLAKIS: Really? That means
19	during routine test and maintenance?
20	DR. BUELL: We do have fail to recover
21	equipment from test and maintenance, but this refers
22	to more like miscalibration of instrumentation level,
23	instrumentation, those type of
24	CHAIRMAN APOSTOLAKIS: But if they do
25	maintenance and forget to reopen valves, that's part
	I contract of the second se

(202) 234-4433

	141
1	of it.
2	DR. BUELL: We have that in our model.
3	That's explicitly modeled.
4	CHAIRMAN APOSTOLAKIS: So it's part of the
5	human errors.
6	DR. BUELL: That's correct, for failure to
7	recover equipment.
8	Okay. Basically we assume in station
9	blackout and LOOP events that all run failures occur
10	at time zero, and that's an issue that will come up
11	later on again.
12	CHAIRMAN APOSTOLAKIS: But not in other
13	initiating events? You don't assume that in others?
14	DR. BUELL: We do in other initiating
15	events, too, but typically this is where it's most
16	important.
17	CHAIRMAN APOSTOLAKIS: But, again, there
18	has been a series of very interesting reports coming
19	out of the same shop where analysts look at various
20	incidents that have occurred, and they look not only
21	at the unavailability of the thing, you know, on
22	demand, but also the unreliability over a period of
23	time, and then you can lump the two together if you
24	want and say this is the unreliability of the thing,
25	failed to start or it starts successfully and fails

(202) 234-4433

	142
1	some time later.
2	So I'm a bit surprised that you're not
3	including that.
4	DR. SCHROEDER: We are including that. I
5	think there's a failure to communicate exactly what
6	we're meaning by it fails to run at time zero. In a
7	cut set for, say, loss of off-site power station
8	blackout, you might have Diesel A fails to run and
9	Diesel B fails to run. Both are characterized by fail
10	to run in the first hour and fail to run during the
11	24-hour mission.
12	But that particular cut set at least with
13	respect to recovery considerations, both failures
14	occur immediately at the beginning of the loss of off-
15	site power. We do not try to attempt to do the
16	mathematics where Diesel 1 fails at ten hours and
17	Diesel 2 fails at 15 hours.
18	CHAIRMAN APOSTOLAKIS: But then how do you
19	calculate the probability of recovery, which is time
20	dependent?
21	DR. SCHROEDER: That's right. We assume
22	that there's a criterion that has to be met, for
23	instance, the time to core uncovery and that it starts
24	at time zero when the loop occurs and the clock begins
25	running on that recovery.

(202) 234-4433

	143
1	There are mathematics that we have used in
2	the past to try to convolve (phonetic) the probability
3	distribution so that we assume we do an
4	integration, in effect, of the fail to run
5	distributions and the recovery time so that you get a
6	credit for Diesel A running for one hour and Diesel B
7	then failing at ten hours, and then the clock starts
8	running on our recovery at zero to whatever your
9	accumulated time is.
10	And if you integrate across all such
11	times, you're basically doing a convolution integral,
12	and we can't automate this easily. So we haven't
13	applied it now, but it would in the worst case give us
14	a reduction to 20 percent of the current run-run type
15	of cut sets. It's just very
16	CHAIRMAN APOSTOLAKIS: So that time you
17	assume somebody has calculated, by doing the actual
18	calculation that involves the time dependent failure
19	of the diesels. I mean it can't be arbitrary. It has
20	to be related to that.
21	DR. SCHROEDER: The time constraint for
22	recovery is sequence and cut set dependent, and it
23	depends on what systems have operated and what
24	failures have occurred.
25	As I showed you in the station blackout
	1

(202) 234-4433
	144
1	tree, this particular model might credit 14 hours, but
2	in the particular cut sets, that particular 14 hour
3	recovery is 14 hours from when the loop occurs. In a
4	particular cut set for that sequence, it may mean that
5	we can go 14 hours from when cooling is initially lost
6	or when the diesels initially fail, and if we go to a
7	convolution type technique, then we take credit for
8	all possible combinations of run-run failures, one
9	occurring at one hour and ten hours, two hours, 12
10	hours, all of that.
11	CHAIRMAN APOSTOLAKIS: But the assumption
12	of 14 must include in it some estimate of how long the
13	diesels might operate.
14	DR. SCHROEDER: The diesels in our model
15	have to operate
16	CHAIRMAN APOSTOLAKIS: Even though you
17	don't include them.
18	DR. SCHROEDER: No, our diesels have to
19	CHAIRMAN APOSTOLAKIS: You don't include
20	the actual time of failure. You don't model the time
21	dependent failure of the diesels. You are assuming
22	that they fail at time zero, but then you have an
23	assumption that as far as recovery of off-site power
24	is concerned, we are interested in 14 hours. Is it
25	going to be recovered in 14 hours?
	1

(202) 234-4433

	145
1	That number 14 must have come from some
2	kind of calculation.
3	DR. SCHROEDER: Right.
4	CHAIRMAN APOSTOLAKIS: And what I'm saying
5	is that that number probably includes an average time
6	for the diesels to operate.
7	DR. SCHROEDER: No, not in our models.
8	CHAIRMAN APOSTOLAKIS: So what did it come
9	from?
10	DR. SCHROEDER: For a given sequence, like
11	the sequence that I described that number would be
12	based on the battery depletion time because for that
13	particular sequence, the limiting issue is how long
14	the batteries will support operation of the turbine
15	driven systems.
16	CHAIRMAN APOSTOLAKIS: Well, yeah,
17	assuming that you have no AC power, which is a strong
18	assumption.
19	DR. SCHROEDER: Correct. Well, that
20	defined in the cut set. I mean we have many cut sets
21	for many different circumstances. In that particular
22	scenario I would have cut sets for two diesels failing
23	to start on demand, and I would have cut sets for one
24	failing to start on demand and another failing to run,
25	and then I would have one for the run-run failure.

(202) 234-4433

	146
1	The mathematics of the start-start failure
2	are exactly correct. This assumption applies to the
3	run-run failure where we say that the clock starts
4	counting on recovery when the LOOP occurs, not when
5	the second diesel fails.
6	CHAIRMAN APOSTOLAKIS: So that's ignored
7	completely, the time until the second diesel failure.
8	DR. SCHROEDER: We ignore it in computing
9	the recovery. We don't ignore it in computing the
10	probability of diesel failure.
11	CHAIRMAN APOSTOLAKIS: But for the
12	recovery, it probably makes much more has more
13	impact.
14	DR. SCHROEDER: It has a big impact.
15	CHAIRMAN APOSTOLAKIS: And the utilities
16	have not complained about this?
17	DR. SCHROEDER: Yes. Now, some of the
18	utilities will actually do the convolution. What
19	you'll see out there is those that have four redundant
20	trains of emergency power feel no need to undertake
21	the complicated mathematics. Those that have two
22	trains feel a desperate need to undertake the
23	mathematics, and they pretty well do it.
24	CHAIRMAN APOSTOLAKIS: Yeah, you don't
25	have to do it exactly. I mean, you can have an

(202) 234-4433

	147
1	estimate of an average time. It doesn't have to be a
2	convolution, in other words. You take System 1 out of
3	two systems. You have the failure rate of the diesel
4	system. You say, "What's the mean time to failure of
5	this system?"
6	It's five and a half hours. Okay. I'll
7	use five and a half hours. So then the battery
8	deletion issue starts after five and a half hours
9	rather at the beginning.
10	That's a very simple way of doing it. You
11	don't have to go to complicated mathematics. In fact,
12	these formulas are available in books. So that's
13	something that you may want to think about.
14	DR. BUELL: Well, that's one of our issues
15	that we're going to address later on.
16	CHAIRMAN APOSTOLAKIS: So what you are
17	listing here is modeling assumptions that you plan to
18	revisit?
19	DR. BUELL: Some of these we'll plan to
20	revisit if they're significant enough. Some of them
21	definitely there are several of them here that we
22	are going to revisit. Some of them we're just stating
23	as a fact.
24	CHAIRMAN APOSTOLAKIS: Yeah, the CCF, for
25	example, you don't have to revisit. I don't think
	1

(202) 234-4433

	148
1	there is any evidence that common cause failures
2	across system have been a problem.
3	DR. BUELL: No.
4	CHAIRMAN APOSTOLAKIS: But the time to
5	failure of the diesels I think is important because
6	the recovery curve for the off-site power is fairly
7	steep, as I recall. So by changing the time, you
8	change the probability significantly.
9	DR. SCHROEDER: We have a side technical
10	thread where we could demonstrate the method, but the
11	bottom line is that for a typical run-run cut set that
12	would be solved with convolution, the resulting cut
13	set is about 20 percent of the result that you would
14	get if you just assumed that the run-run failures
15	occur at time zero.
16	So we're missing on those particular cut
17	sets by maybe a factor of five, but while it sounds
18	real big, those run-run cut sets are only a small
19	fraction of all of the cut sets so that the impact on
20	the model isn't that big. It's something less than
21	that.
22	CHAIRMAN APOSTOLAKIS: Anyway, we can
23	DR. BUELL: Anyway, this is one of the
24	issues that we'll talk about later also, but the next
25	item is failure of subsequent AC power recovery
1	1

(202) 234-4433

	149
1	station blackout sequences can be neglected.
2	Basically after you went to a station blackout once we
3	get power back on, we stop the clock. We say we've
4	got enough redundancy that the probability of those
5	failures is negligibly small. That's just an
6	assumption that we make.
7	CHAIRMAN APOSTOLAKIS: Good.
8	DR. BUELL: I know that's a little bit
9	optimistic, but we have looked at that issue, and it's
10	a pretty minimal impact.
11	Successful diagnosis is implied in all
12	sequences with a couple of exceptions. One is a steam
13	generator tube rupture where you have to diagnose
14	which generator it's in. The other one is in ISLOCA
15	events where you have to diagnose where your failure
16	was and try to isolate it.
17	Those are the two exceptions to that, but
18	in pretty much all of
19	CHAIRMAN APOSTOLAKIS: What was the second
20	one? The second one was?
21	DR. BUELL: Is an ISLOCA sequences where
22	you're diagnosing where your rupture was and how to
23	isolate that. Everything else we assume that you are
24	in the right procedure and that you are following the
25	correct path.
1	

(202) 234-4433

	150
1	Okay. The next one is instrumentation and
2	control, not explicitly
3	CHAIRMAN APOSTOLAKIS: So how do you model
4	diagnosis in those two situations?
5	DR. BUELL: You do not model those
6	explicitly. We assume that they're followed. They're
7	in the correct procedure at that point. They're big
8	picture items.
9	CHAIRMAN APOSTOLAKIS: Oh. So then the
10	statement is correct. The successful diagnosis is in
11	naught (phonetic) sequences.
12	DR. BUELL: oh, with
13	CHAIRMAN APOSTOLAKIS: In those two, in
14	those two.
15	DR. BUELL: In those two exceptions we
16	have an operator accident that we have generated based
17	on
18	CHAIRMAN APOSTOLAKIS: Probability?
19	DR. BUELL: yes, based on the input of
20	trying to ascertain which generator you're in.
21	CHAIRMAN APOSTOLAKIS: So SPAR-H becomes
22	more and more important every day, huh? Yeah.
23	DR. BUELL: So anyway, yeah, we do go
24	through a detailed analysis.
25	CHAIRMAN APOSTOLAKIS: Who developed SPAR-
	1

(202) 234-4433

	151
1	H? Who's the guy who will be presenting it?
2	MR. CHEOK: Dave Gooden.
3	DR. BUELL: The next one is
4	instrumentation and control is not explicitly modeled
5	for a variety of reasons. Number one is we don't have
6	that level of information. The other one is typically
7	it's not a driver as far as risk. Okay?
8	Errors of commission not modeled because
9	you can get into an infinite number of combinations of
10	that, and typically that's not been shown to be
11	important at least in the PRAs.
12	CHAIRMAN APOSTOLAKIS: That's where ATHENA
13	was supposed to help us, errors of commission.
14	DR. BUELL: Okay. Well, we don't model
15	that as part of the SPAR mode.
16	Limited recovery modeling, this varies
17	across the industry and the PRAs, but basically we
18	don't look at recovery modeling with a couple of
19	exceptions. In a station blackout we look at getting
20	off-site power back. We look at getting the diesels
21	back, and on a loss of service water, we look at
22	getting the system back. We don't give it much
23	credit, but there's some issues there.
24	Service water environmental issues are not
25	modeled. This has to do with water quality, and

(202) 234-4433

	152
1	that's something we're going to discuss in more detail
2	later. So we can go to the next slide.
3	Okay. Some BWR specific assumptions.
4	Containment binning, cause of loss of injection when
5	you're on the suppression pool, that's something that
6	we're looking at.
7	The next one, containment failure because
8	of loss of injection, that's something we're in the
9	process of changing actually right now. We're taking
10	some credit. The early modeling that we did, the 2QA
11	which was based on daily events, did not take any
12	credit for that. The NUREG 1150 took credit for that.
13	We're transitioning to more credit for that.
14	The problem is we have to depend on what
15	the PRA people at the plant tell us as far as a
16	success or failure probability on that.
17	Okay, and SORB
18	CHAIRMAN APOSTOLAKIS: Rich, the time
19	available for this is long, right? To cool. I
20	remember it was four hours they said. They have to
21	initiate cooling in four hours?
22	MR. DENNING: That's what was used by
23	Marty.
24	CHAIRMAN APOSTOLAKIS: Yesterday.
25	MR. DENNING: Yeah.

	153
1	CHAIRMAN APOSTOLAKIS: That's a long time.
2	MR. DENNING: That's correct.
3	CHAIRMAN APOSTOLAKIS: That's a long time.
4	DR. BUELL: And on PWR specific
5	assumptions we're already addressed all three of
6	these, except for the PORV challenge rate as not a
7	plant or initiator specific, and that's a data issue
8	that we haven't tracked down yet, but we make an
9	assumption that it is constant.
10	Next page.
11	The next section is the quality reviews,
12	and I can just continue on into that. The quality
13	review of the new models, we've looked at the history
14	before basically on the 2QA models. That was a peer
15	review subcontracted out. Sandia and SAIC did the
16	peer review of our Rev. 2QA models.
17	Okay. The next level of renew, we went to
18	all the plants in the country as part of the STP
19	process. We gathered information, fed that back into
20	our models, and in the most recent level of QA is
21	we're doing detailed cuts at level benchmarking
22	against the PRA results that we gather from the
23	plants.
24	So there's three different levels. As we
25	expand the models obviously we need to do additional

(202) 234-4433

	154
1	layers of QA, and we're doing that now.
2	MR. DENNING: Now, I'm not sure that as
3	far as the term QA or validation of the models or
4	verification validation of the models, I'm not sure
5	that you haven't combined two concepts here in that
б	under the second bullet, the QA reviews and detailed
7	procedure and independent analyst, okay, that's QA.
8	I mean
9	DR. BUELL: Yes, this last step is not a
10	formal QA per se, but it does give us assurance of
11	correlation with the models or with what the plant is
12	expecting.
13	MR. DENNING: Right, okay. Now, with
14	regard to future change, let's go to real QA, and
15	that's with regards to as you make changes in the
16	models, what's the process of making sure that some
17	person doesn't screw it up?
18	DR. BUELL: I'm going to deal with that in
19	a future slide in a little more detail.
20	MR. DENNING: Okay. Then don't bother
21	with it now.
22	DR. BUELL: Next slide.
23	MR. DENNING: And I wanted okay. I
24	understand. You can go on.
25	DR. BUELL: In fact, this is the slide.
l	1

(202) 234-4433

	155
1	Right now whenever we go in and let's say
2	an SRA calls us up. We're making a minor change, a
3	small change. We've got this. We've added this piece
4	of equipment, or we don't think that you've got the
5	power supply or whatever modeled correctly.
6	What we do is we get that information and
7	we incorporate that information, but we also have a
8	couple of additional items. I maintain an open items
9	list from previous calls or inputs from all the people
10	that give us input. That didn't get incorporated that
11	we have an open items list for basically that plant.
12	What issues do we need to resolve on the next
13	iteration?
14	So we go to that. We incorporate that
15	information, and then once we're done with that
16	information, we have a checklist of about 20 items
17	that we go and say, "Did we do this? Did we do that?
18	Do our results make sense?"
19	And so we go through this completion
20	checklist. It has also got some documentation issues
21	in there. Did we take care of that?
22	MR. DENNING: Who approves making a
23	correction to a model?
24	DR. BUELL: If they're minor, if they're
25	minor modifications, I do.

(202) 234-4433

	156
1	MR. DENNING: And is there somebody then
2	that goes back? I mean, did you have a one-on-one
3	overview or somebody goes back in and they check to
4	make sure it was put in correctly?
5	DR. BUELL: I look at the results of the
6	model that goes out. Every model that goes out I look
7	at the results.
8	MR. DENNING: You look at the results.
9	DR. BUELL: The analyst does the analysis,
10	and then I look at the results to make sure that they
11	haven't changed significantly
12	MR. CHEOK: And he has the follow-up to
13	that. I think, every time a model gets changed the
14	staff will also look at the results and go through the
15	models to make sure that we understand the changes.
16	MR. DENNING: Okay. Is that a detailed
17	review or is it kind of
18	DR. BUELL: It depends on the level of the
19	modification.
20	MR. DENNING: Okay. I'm just getting a
21	feeling.
22	MR. MARKSBERRY: In some cases when
23	modifications are made to support a detailed, then an
24	ASP analyst or SRA would spend a week dissecting the
25	results just to make sure that the results make sense.

(202) 234-4433

	157
1	So in most of the plant specific
2	modifications, there is a very detailed one-on-one
3	review of the mod.
4	DR. BUELL: And when we do global changes
5	like we just did with the seal LOCAL modeling and that
6	type of thing, it goes through a complete review
7	process before we do any global type changes.
8	Okay. The next level is model
9	configuration control. Right now this is an issue for
10	us as we're expanding the models. You know, LERF
11	models are built on the SPAR models. Low power
12	shutdown models are built on the SPAR models. Some of
13	these other peripheral applications are all built on
14	the Level 1 SPAR models.
15	So as people start using the models more
16	and more, controlling the base model is getting to be
17	more of an issue, and we're looking at implementing
18	some software controls, a library basic function that
19	allows you to check out a model to use before you can
20	make any changes to it. So that's just a programmatic
21	issue that we're looking at.
22	A model of software currency. The
23	software has a B&B process that they go through before
24	they give us a new version of the model or a new
25	version of their software.
	I

(202) 234-4433

	158
1	As far as the model itself, we go through
2	these steps and these procedures before we send it out
3	and also to whoever we send it. Typically it goes
4	through a detailed review also.
5	We also have a trouble reporting system
6	that John alluded to or mentioned earlier. They can
7	go in and formally file these issues, and we respond
8	to those.
9	And then the next step is lower the
10	process we're in right now is where we compare cut
11	sets from the industry to our SPAR models in this
12	proceduralized review, and we have a multiple page
13	procedure that we go through when we do that.
14	The purpose of the work that we're doing
15	now and these detailed cuts at level reviews is to
16	identify significant differences between our models
17	and their models and understand the reason why, and in
18	some cases they require modifications to the SPAR
19	models. Either we had incomplete information or the
20	information that we had was out of date, old,
21	whatever, and we can make some changes to our SPAR
22	models.
23	We're not trying to mimic the PRAs. We're
24	just trying to gather information from them, and this
25	is a very efficient way of gathering that information,
	1

(202) 234-4433

	159
1	by looking at what they're saying is important and
2	seeing if we have similar issues.
3	We have several steps in the review
4	process. The first step in the review process is to
5	gather that information. Typically the plants provide
6	information all the way down to the normal truncation,
7	the normal truncation. That entails ten to 30 or
8	40,000 cut sets, and we take that information. We
9	reformat it, manipulate it to make it so that it will
10	load into SAPHIRE, and then once we get it into
11	SAPHIRE, it allows us to look at importance measures
12	and do filters and sorts on it.
13	The next key step in this process is we
14	identify approximately 150 of the most important basic
15	events in their model. We take their basic event ID
16	that corresponds to that model. We put that into an
17	alternate field that we have in SAPHIRE so that
18	there's a one-to-one link for these analogous events.
19	CHAIRMAN APOSTOLAKIS: Very good.
20	DR. BUELL: So we can generate a one-to-
21	one importance comparison for 150 of the most
22	important events, and if you pick these events
23	correctly, typically there may be 500 events or 600
24	events that show up at their truncation level, but if
25	you pick these events with a little bit of thought,
	1

(202) 234-4433

	160
1	these 150 events pretty much cover all of the systems,
2	all of the major issues that you need to cover.
3	So like I say, that's the next issue or
4	the next step that we do, is making that link, and
5	then I'll show you how we use that in a moment.
б	MR. DENNING: One second though, and that
7	is when you do that, do you often find cases where you
8	don't have an event that corresponds to theirs?
9	DR. BUELL: Yes, and that's part of this
10	whole process, is to try to understand why they have
11	an event. We look at their importance measures, look
12	at our importance measures.
13	In addition to just going down the
14	first step we do is we just do a sweep through all of
15	the systems, pick up the major components. Then we
16	look at their importance measures, everything that
17	they're saying is important. We're wanting to
18	identify everything that we're saying is important.
19	We want to identify it and make sure we have a good
20	one-to-one correspondence.
21	But, yes, we have added events in our
22	model because of what we're finding.
23	DR. SCHROEDER: Just as an aside on that,
24	the truncation issue has become rather important
25	because often we have components in our models that we
	1

(202) 234-4433

	161
1	know they have in theirs, but they don't show up in
2	their cut sets. So we can't benchmark, say, our RHR
3	trained C against their RHR trained C. If they would
4	take a deeper cut, we could do it.
5	DR. BUELL: Most plants have a truncation
6	level of approximately ten to the minus 11, but there
7	are some plants out there that still have a ten to the
8	minus nine truncation. At that truncation we don't
9	have enough information to do a comparison of some of
10	the lower level events.
11	MR. DENNING: Is this automatically a
12	guarantee that the PRA is inadequate?
13	DR. BUELL: No, not in my opinion. I'm
14	not
15	CHAIRMAN APOSTOLAKIS: No, I don't think
16	so.
17	DR. BUELL: I would not make that.
18	DR. SCHROEDER: And in fact, when you look
19	at the top 150 events, you spent probably five,
20	sometimes close to ten orders of magnitude on your
21	component importances, and that's getting down to
22	very, very small things, and Bob has plots that
23	demonstrate that.
24	CHAIRMAN APOSTOLAKIS: I'm afraid we're
25	going to have to stop now, a little ahead of schedule.

(202) 234-4433

	162
1	I have to do something. So we'll continue at 1:30.
2	MR. DENNING: So we will have an hour and
3	a half you're saying?
4	CHAIRMAN APOSTOLAKIS: Yeah. I mean, the
5	schedule was an hour and 15 minutes or whatever.
6	(Whereupon, at 11:58 a.m., the meeting was
7	recessed for lunch, to reconvene at 1:30 p.m., the
8	same day.)
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	1 I I I I I I I I I I I I I I I I I I I

	163
1	AFTERNOON SESSION
2	(1:29 p.m.)
3	CHAIRMAN APOSTOLAKIS: We are back in
4	session.
5	Now, tell us please what the Birnbaum
6	measure is. I know, but I forgot. What is the
7	Birnbaum importance measure?
8	DR. BUELL: the Birnbaum is an important
9	measure that if you take the cut set with it set to
10	true
11	DR. SCHROEDER: Yeah, its' F of one minus
12	F of zero.
13	CHAIRMAN APOSTOLAKIS: Quiet please.
14	Yeah.
15	DR. BUELL: It's a cut set with it set to
16	one or to true, basically fail, versus it to set to
17	false, and it looks at the difference between that.
18	CHAIRMAN APOSTOLAKIS: It doesn't use
19	probabilities?
20	DR. BUELL: No, it does not. Basically it
21	takes out the that's one of the reasons they use a
22	Birnbaum. It looks at the maximum spread. If that
23	event was set to true and to false, it looks at the
24	maximum spread that you'll get there and gets rid of
25	that variability in the Birnbaum.

(202) 234-4433

	164
1	CHAIRMAN APOSTOLAKIS: Maximum spread in
2	what?
3	DR. SCHROEDER: In the core damage
4	frequency. It is the total core damage frequency with
5	the basic event value set to 1.0 minus the total core
6	damage frequency with the plant with the basic event
7	set to zero.
8	CHAIRMAN APOSTOLAKIS: Is that the risk
9	achievement worth?
10	DR. SCHROEDER: Risk achievement
11	CHAIRMAN APOSTOLAKIS: Birnbaum does not
12	deal with probabilities I don't think. What you
13	described is the risk achievement worth.
14	DR. SCHROEDER: I guess I'd have to look
15	at the false. The risk achievement worth ratio
16	CHAIRMAN APOSTOLAKIS: You set the
17	probability at one?
18	DR. SCHROEDER: It's a ratio. This is a
19	difference.
20	CHAIRMAN APOSTOLAKIS: So it's just the
21	difference.
22	DR. SCHROEDER: The difference.
23	DR. BUELL: From setting that event to
24	true.
25	CHAIRMAN APOSTOLAKIS: And why is that

(202) 234-4433

	165
1	more important than RAW? I mean, RAW is the fraction
2	of change in the CDF.
3	DR. BUELL: they're similar, and we could
4	have used that.
5	CHAIRMAN APOSTOLAKIS: But everybody uses
6	RAW. I don't understand why.
7	DR. BUELL: The MSPI program is using the
8	Birnbaum also. So there's some correlation there.
9	CHAIRMAN APOSTOLAKIS: All right.
10	DR. BUELL: So where we left this last is
11	we had linked these basic events, the analogous basic
12	events come out of the PSA. We linked those to our
13	equivalent events in SPAR models, and what we're doing
14	in this whole review process is we generated some
15	metrics, and these are metrics that tell us that we've
16	spent enough time basically trying to understand the
17	issue.
18	And one of the metrics that we looked at
19	is when we look at theirs versus ours is our overall
20	CDF within a factor of two. Okay? This is just the
21	level of effort.
22	CHAIRMAN APOSTOLAKIS: Is this the mean
23	CDF?
24	DR. BUELL: That is correct.
25	CHAIRMAN APOSTOLAKIS: Not the point
1	1

(202) 234-4433

	166
1	value?
2	DR. BUELL: Well, it's the point value as
3	they report it to us.
4	CHAIRMAN APOSTOLAKIS: But there are
5	differences between the point value. How is the point
6	value estimated? By putting in point values for the
7	probabilities and you don't know what they are, right?
8	DR. BUELL: Yeah, we have no information
9	on their distributions.
10	CHAIRMAN APOSTOLAKIS: Can you ask them to
11	give you mean values? I'll make them do it. Because
12	the point values, I don't know. We want to use PRA,
13	but we don't want to do it rigorously.
14	And your results earlier that you showed,
15	John, there were slight differences between the point
16	and the mean.
17	DR. SCHROEDER: Yes. It varies much from
18	model to mode, but usually before we post a final
19	model one of our completion checks is to run the
20	uncertainty distribution and look at the difference
21	between the point estimate and the mean, and for a
22	typical SPAR model they're very close.
23	There are times when we spot a divergence
24	in those two numbers, and when we do we suspect
25	something's wrong and we look for it. There's

(202) 234-4433

	167
1	something that probably isn't right in the model if
2	there's a big difference between the point estimate
3	and the mean.
4	CHAIRMAN APOSTOLAKIS: Well, if you have
5	distributions that are very wide, in general the
6	results are different. If you have distributions that
7	have an error factor of three, then you don't expect
8	much.
9	DR. BUELL: For this level of comparison
10	we haven't looked at it in that depth. So when we're
11	all done with this process, our overall CDF within a
12	factor of two, we look at the conditionals for each
13	one of the initiators. That broadens out just a
14	little bit from about a .5 to a three range.
15	And then we have a dimensionless metric
16	that we generated that I'll show you here in a couple
17	of slides, and we use a .2 value. These were
18	determined based on level of effort and how much time
19	it takes to generate.
20	CHAIRMAN APOSTOLAKIS: Rich, I remember
21	from 1150 that the CCDP was practically between zero
22	and one. It was really a very wide conditional
23	probability. I mean, most of the cases I looked at it
24	was a very maybe not quite up to one, but it was way
25	up there.

(202) 234-4433

168 1 MR. DENNING: Well, what you're doing is 2 just talking about the initiating event you're 3 frequency. 4 DR. BUELL: That's right. This is a 5 conditional setting the initiator to one. We're looking at the difference. Given you have an 6 7 initiator, what's your residual? 8 And we compare that --9 CHAIRMAN APOSTOLAKIS: Oh, it's still core 10 damage. DR. BUELL: That's right. 11 MR. DENNING: This is core damage. 12 CHAIRMAN APOSTOLAKIS: Oh, okay. It's not 13 14 containment. Okay, core damage. 15 MR. DENNING: Yeah, I was initially 16 confused about that, too. 17 DR. BUELL: Okay. So these are our metrics that we've generated, and that's just to tell 18 19 us that we're close on the comparison or close enough 20 that we can stop the comparison. 21 CHAIRMAN APOSTOLAKIS: But I don't 22 understand that. Why are you allowing a higher number 23 here? I mean, do you think that CCDPs are what? 24 DR. BUELL: As you get to lower levels of 25 the things that drive the differences detail,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

169 1 sometimes are such that they're outside of our charter 2 as far as how we model the models. 3 On the overall CDF, you know, you've got 4 some of them that are a little more conservative in 5 here, some of them that are not. Overall CDF, they balance out a little bit, but as you get to these 6 7 lower and lower levels of detail, you know, the 8 nuances tend to make them lighter as far as the 9 comparison. 10 DR. SCHROEDER: Let me add a little bit about, you know, an aside to what we just said. This 11 is one measurement per model. 12 This is 15 or so measurements per model. This is 150 measurements per 13 14 model. So the number of comparisons implied by 15 each of these levels is varying in the order of 16 17 magnitude. I quess George is wondering 18 DR. KRESS: 19 why the .5 still shows up in that middle bullet. Why 20 isn't that different also? 21 MR. DENNING: Well, that would be a .3. 22 That would be a .3 if you're DR. BUELL: consistent on either side of it. We didn't want to be 23 24 under, you know. If we're considerably less, if we're 25 throwing a CCDP that's less than there, that's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	something you'd want to look at and not just accept
2	it. If we're a little bit higher on that, then that's
3	okay in our first cut, but if we're considerably lower
4	than they are, we just thought we'd look into that a
5	little more, in a little more depth.
6	CHAIRMAN APOSTOLAKIS: And the licensee
7	provides you all of this information that you need?
8	DR. BUELL: So far they have. That is
9	correct.
10	CHAIRMAN APOSTOLAKIS: You don't have to
11	do any calculations yourselves.
12	DR. BUELL: No. We just take it; we
13	format it and load it right into SAPHIRE. There's no
14	calculations associated with that.
15	Next slide, please.
16	Okay. This is just a little more of a
17	description of the method. Basically what we do, if
18	our points or their points, if our model was identical
19	to their model with values and logic, what you'd end
20	up when you compare these Birnbaums, you'd have a Y
21	equals X line, slope equals one. It would be
22	identical. All of these points would be on that line.
23	Okay?
24	We don't have any ideal cases out there.
25	So what we've done is we've generated a metric that
I	

(202) 234-4433

	171
1	basically just looks at the distance these points lie
2	from that Y equals X line, and we sum those up.
3	We also have a weighting factor because we
4	have such a wide range. A lot of cases we'll have
5	seven or eight orders of magnitude. You don't want
6	one point that's a little bit off at the top end
7	outweighing a million points at the bottom end. So we
8	have a logarithmic scale, a weighting factor that
9	we've looked at, and we incorporate into this metric.
10	Okay?
11	The next slide.
12	Basically this is a before picture. This
13	is a comparison of their model results to our model
14	results without us making any modifications. Okay?
15	And if you'll look at this line here our
16	metric, the distance from this line is what we're
17	measuring and summing up to give us that metric. So
18	as those converge on that Y equals X line, that metric
19	is going to get smaller.
20	And right now that metric is 1.9, and we
21	picked one that had a pretty broad range between what
22	we started with and what we finished, and you'll see
23	in successive slides that
24	DR. KRESS: Do you add up all of the log
25	distances and divide by the number, then take the

(202) 234-4433

	172
1	analogue?
2	DR. BUELL: That's correct. So you'll see
3	that there's quite a bit of scatter on this. Okay?
4	This is the starting point before, right as we loaded
5	the information into our models. Okay?
6	The next slide.
7	This slide you'll see that the scatter is
8	collapsed along the line. We've made the logic fixes,
9	but we haven't done anything with the data yet. Okay?
10	As part of this process, because there's
11	two variables in any model, there's the data and the
12	logic. To be able to just focus in on the logic, what
13	we do is we build a change set that includes their
14	data. It overlays our data with their data. It's
15	just a temporary thing. That way the data values are
16	not a variable any longer. We can just look at the
17	logic.
18	We haven't done that yet, but this is the
19	kind of math you would see after we made the logic
20	fixes.
21	CHAIRMAN APOSTOLAKIS: So if I take the
22	low point there between ten to the minus six and ten
23	to the minus five.
24	DR. BUELL: Okay.
25	CHAIRMAN APOSTOLAKIS: This the ratio of
I	

(202) 234-4433

	173
1	your Birnbaum over theirs.
2	DR. BUELL: And you can see because it's
3	higher in ours that it's much more important in our
4	model than it is in their model.
5	DR. KRESS: And that's for a specific
6	basic event?
7	CHAIRMAN APOSTOLAKIS: Wait a minute.
8	DR. BUELL: That is correct. That's for
9	one basic event.
10	CHAIRMAN APOSTOLAKIS: Theirs is higher.
11	Therefore, it means that it's more important in your
12	model?
13	DR. BUELL: No. These are the SPAR
14	Birnbaums. That point right there is more important.
15	It has a higher SPAR Birnbaum than it does a PSA
16	Birnbaum.
17	CHAIRMAN APOSTOLAKIS: Well, so it's not
18	a ratio.
19	DR. SCHROEDER: No, it is a plot.
20	CHAIRMAN APOSTOLAKIS: Yeah, yeah.
21	DR. SCHROEDER: It's just a plot of the X-
22	Y values.
23	DR. BUELL: Yes.
24	DR. SCHROEDER: For instance, this point
25	that you called out, the SPAR Birnbaum value for that
	1 I I I I I I I I I I I I I I I I I I I

```
(202) 234-4433
```

	174
1	thing is like bigger than E minus six. The PSA
2	Birnbaum for that value is less than minus seven.
3	DR. BUELL: Is mid-minus eight.
4	So anyway, as we make the logic fixes, you
5	know, based on what we're finding in the cut sets, we
6	get a convergence as you'll see along this line.
7	Okay?
8	And the final comparison that I wanted to
9	show you is the same model that we have just seen in
10	the previous slide without the data variability. We
11	basically put their data in the change set,
12	superimpose that on our model, and you can see there's
13	a significant additional convergence on the model.
14	Okay?
15	So each one of these successive steps
16	shows a greater and greater convergence. Now, there's
17	some of these points, and if you'll look at the
18	metric, it's basically, like I say, you want that line
19	to be a heavy black line with all of those dots. The
20	greater the importance based on our weighting factor
21	is basically an angle from this point, from the one-
22	one point.
23	So the greater the angle, the more
24	important the points, and these four points here are
25	the most important points in the contribution to that

(202) 234-4433

	175
1	metric. So we say, well, what are these points. What
2	do they relate to?
3	We look into that and try to see what's
4	driving those points, and that's what we do. This is
5	an iterative process. We look at their cut sets. We
6	look at our cut sets. These are the ones driving the
7	number. What's going on here?
8	And we continue to look at that, and for
9	these particular points when we go to the next slide,
10	they do have a story.
11	CHAIRMAN APOSTOLAKIS: So the most
12	important points are the ones on the upper quadrant.
13	DR. BUELL: Yeah, these because there's a
14	weighting factor. As you get closer to one, you want
15	a higher weighting factor. Those are more important
16	with the higher Birnbaums.
17	If you've got something down here, an
18	order of magnitude down here, ten to the minus seven
19	is not as important as an order of magnitude
20	difference at ten to the minus two. So we have a
21	weighting scale that goes along that.
22	CHAIRMAN APOSTOLAKIS: Yeah, sure.
23	DR. SCHROEDER: This is the triangle I
24	referred to in this morning's presentation where
25	there's increasing scatter at the bottom that we don't
1	

(202) 234-4433

	176
1	attempt to address on the idea that it is just not
2	worth our time.
3	DR. BUELL: Okay. So like I say, I
4	mentioned that these four points have the biggest
5	contribution to that metric, and if we go to the next
6	slide, there is an explanation of what those events
7	are.
8	This goes back to some of these events
9	we've already mentioned, some of these differences and
10	uncertainties. Okay? It comes about from having the
11	diesel generator and DC bus failures are those points.
12	Okay? That's the analogous points, but what the
13	rationale is or why they're different is the fact that
14	there's much more credit for recovery of off-site
15	power in the St. Lucie model than what we give. Okay?
16	They've generated their own curves through recovery of
17	off-site power. We don't use those curves. We use
18	ours that we've generated in the SBO study.
19	So what that does is that gives much more
20	importance on the diesel generators because they can
21	recover power with a higher likelihood. We don't. So
22	our diesels are more important.
23	The same thing on the feed and bleed. ON
24	a loss of DC bus, you fail our feed and bleed in our
25	model because we require two PORVs. They only require
l	

(202) 234-4433

	177
1	one PORV. So a DC bus is not that important to them
2	because it doesn't fail that additional heat removal
3	bath.
4	But in ours because it fails feed and
5	bleed, it's much more important in our models.
6	CHAIRMAN APOSTOLAKIS: So you will change
7	your model then?
8	DR. BUELL: No. We don't change them.
9	This is just an area we've understood the differences.
10	We're not going to go there. We have a standard
11	charter in the SPAR models. Two PORVs is our success
12	criteria. Unless we get detailed thermal hydraulics,
13	in fact, we haven't received any yet that we've
14	incorporated, but we use a two PORV success criteria.
15	That is our model.
16	CHAIRMAN APOSTOLAKIS: Wouldn't the
17	licensee in this case provide to you that thermal
18	hydraulic analysis.
19	DR. BUELL: If we pursued that further, we
20	could possibly get that information, but for now we
21	are, I guess, satisfied with using two PORV success
22	criteria.
23	CHAIRMAN APOSTOLAKIS: Because you're not
24	using it in any decision making situation, but if
25	there is a need for an SDP at St. Lucie 2, they're
l	

(202) 234-4433

	178
1	going to fight you.
2	DR. BUELL: Well, at that point then the
3	SRAs will make that decision, and if they come back
4	and say, "We feel that there is sufficient
5	justification to use a single PORV success criteria,"
6	then we would
7	CHAIRMAN APOSTOLAKIS: Well, why don't you
8	do it now? I mean, I don't
9	MR. CHEOK: Well, George, I think the
10	issue is a little broader than described. A lot of
11	the licensees would be using the map code to justify
12	the two PORV and one PORV success criteria, and the
13	agency now has an initiative to look at the map code
14	to see if it's sufficient in quality to be used for
15	two-phase flow type success criteria determinations.
16	CHAIRMAN APOSTOLAKIS: The agency has
17	never reviewed the map code?
18	MR. CHEOK: We have, I think, agreed to
19	disagree at this point as to what the map code is
20	capable of doing, but we said that
21	CHAIRMAN APOSTOLAKIS: But was it ever
22	reviewed?
23	MR. CHEOK: We looked at the map code, and
24	we had several decisions in the past, in the IPD
25	stage, where we said that we think that the GAP code

(202) 234-4433

	179
1	is good enough to use to identify vulnerabilities, but
2	for licensing applications, we will have to determine
3	on a case-by-case basis.
4	DR. KRESS: Yeah, the map code now is a
5	lot different than the one they had in IPE.
6	MR. CHEOK: That's correct, and we are
7	looking at the newer versions of the map code.
8	MR. DENNING: But whether it's appropriate
9	for use in determining success criteria is still an
10	issue.
11	MR. CHEOK: That's correct, and I guess
12	this is in a sense a little bit outside the scope of
13	the SPAR model development program because it's a
14	different initiative in the agency.
15	CHAIRMAN APOSTOLAKIS: You are not using
16	any other code. We just see whether what they did
17	with map is reasonable.
18	MR. CHEOK: At this point that's correct.
19	MR. DENNING: Do you also have a public
20	relations concern here that obviously it's important
21	to you that the utilities work cooperatively with you,
22	and I would imagine that if you turn every issue into
23	something that potentially looks to them like it's a
24	question of inadequacy, that they would not be as
25	cooperative with you, or do you not run into that at
	I contract of the second se

(202) 234-4433
	180
1	all?
2	DR. BUELL: We haven't run into that. The
3	utilities have been very forthcoming with the
4	information. That has not been an issue to date, and
5	if you look at this, this has almost no impact on
6	baseline CDF, but it does have importance when you
7	look at a single component, you know, some of these
8	individual components.
9	CHAIRMAN APOSTOLAKIS: Or their sequence.
10	DR. BUELL: Say again? Or on a particular
11	sequence, and it has significant impact when you do a
12	determination with one of these components involved.
13	CHAIRMAN APOSTOLAKIS: Have you found many
14	instances where there was an issue of success
15	criteria?
16	DR. BUELL: Typically not.
17	CHAIRMAN APOSTOLAKIS: Typically not.
18	DR. BUELL: this is one of the examples
19	that at this point we just agreed to disagree on.
20	DR. SCHROEDER: One more observation on
21	this particular one. The reason that it is one of our
22	large structural uncertainties in the model is that if
23	you go and look at all of the plants that credit one
24	valve and all of the plants that credit two valves,
25	there is no discernable reason why. They could be

(202) 234-4433

	181
1	sister plants with virtually identical size and
2	capacities and the like, and one of them will credit
3	one PORV and the other PORVs, and when we look at that
4	what we see is that, well, one guy had an adequate
5	core damage risk without doing the additional analyses
6	and the other guy didn't.
7	So they did an expensive analysis to
8	demonstrate the capability, and we in Idaho don't have
9	the ability to review those analyses and determine
10	that they're adequate.
11	DR. THADANI: These valves are not really
12	I mean are they test data in terms of performance
13	of these valves under these conditions? I know the
14	Germans tested them, but I don't know of any other
15	place where they can say these valves would actually
16	perform properly.
17	DR. BONACA: Yeah, that's the question I
18	was asking before. I mean, would they stay open?
19	DR. BUELL: Well, it depends. Like I say,
20	under some circumstances the PRAs themselves do not
21	take credit formula if the supports are gone and that
22	type of thing. We don't look at it beyond this level.
23	MR. DENNING: And we probably shouldn't
24	either at this point since this is for review, but I
25	think it's really interesting and something we have to
l	

(202) 234-4433

	182
1	keep in the backs of our minds here, and maybe there
2	are some lessons to be learned here, but obviously
3	it's not a SPAR question in that sense.
4	CHAIRMAN APOSTOLAKIS: What isn't?
5	MR. DENNING: It's a PORV question.
6	CHAIRMAN APOSTOLAKIS: No. The identity
7	of the model is a SPAR, isn't it?
8	MR. DENNING: Yeah, but you know, when we
9	get to these detailed questions of whether one PORV or
10	two PORV is necessary, as they've been saying, they
11	really can't get into that. That's too much of a
12	distraction. You know, they have to put together the
13	structural thing.
14	Now, eventually if the issue comes up
15	where it makes a difference, then they have to get
16	into it, and you know, NRR has to get into it.
17	CHAIRMAN APOSTOLAKIS: Well, I thought the
18	idea was to have SPAR models that are reasonable
19	presentations of the plants so we can use them. What
20	you're saying here is, yeah, there may be situations
21	where either the licensee or we are right, but we
22	don't know, and whenever we have to deal with them on
23	such an issue, then we'll decide.
24	But at the same time they are telling us
25	that there are not very many instances where they have
	1

(202) 234-4433

	183
1	these differences. But I don't see. Maybe we can
2	just resolve it now.
3	But Mike said that they are going to get
4	the map code, right? And so perhaps there will be a
5	resolution then. Always Mike comes with a solution.
6	DR. BUELL: Like I say, at that point we
7	identify the top outliers and the reasons for those,
8	and that's the extent of our comparison, but you can
9	see throughout that progress or that progression that
10	there's quite a convergence, and most of the
11	differences are what we pick up in support system
12	information, and that's what
13	CHAIRMAN APOSTOLAKIS: So the Columbia
14	seems to be different, 3.1, 6.3, 10 to the minus six.
15	DR. BUELL: Okay. What this table is is
16	the SPAR CDF with our normal template data that we
17	have, our final model with the normal data that we
18	have. Okay?
19	The next column is the completed model,
20	same model, only with the key data from the SPA, and
21	then the final one is the results as reported by the
22	utility themselves.
23	CHAIRMAN APOSTOLAKIS: So you're closer
24	when you use that data.
25	DR. BUELL: Yes. As you can see, we put
	1

(202) 234-4433

	184
1	their data in. These converge.
2	CHAIRMAN APOSTOLAKIS: But I still don't
3	know why you have to give the column with the nominal
4	data. I mean then your SPAR model should be the
5	column before last. I mean if you agree with their
6	data this doesn't imply that you agree.
7	DR. BUELL: Yeah, this doesn't imply.
8	This is just a comparison. We're not saying we agree
9	with the data or we disagree with their data. We have
10	our own data analysis. Well, that will be taken care
11	of in the spring. I'll just let it go at that because
12	that's a whole discussion.
13	CHAIRMAN APOSTOLAKIS: And it's
14	interesting that for some plants the PSA of the
15	licensee gives a fire CDF, huh?
16	DR. SCHROEDER: That is often the case
17	once we apply the new SPAR template set. Our CDFs
18	tend to drop somewhat below what theirs are.
19	CHAIRMAN APOSTOLAKIS: Most of them seem
20	to be below.
21	DR. BUELL: With the exception of about
22	three of those, I believe, they're below, and one of
23	the reasons for that, like I say, it will be
24	elaborated on when the data is presented this spring,
25	but most PRAs use old generic data that they update

(202) 234-4433

	185
1	with plant specific data through a Bayesian process.
2	Okay. What that does is it shifts the
3	mean a little bit toward the plant specific data, but
4	essentially it's the old generic data. With the new
5	data that we used, we used a current five-year period,
6	and it is somewhat lower than what the old generic
7	data is, and there could be a variety of explanations
8	for that.
9	CHAIRMAN APOSTOLAKIS: It seems to me that
10	plant specific data should be used no matter what
11	Bayesian does. Plant specific data should be the
12	appropriate ones to use, and since you have done the
13	calculations,go with that.
14	MR. DENNING: Well, you're saying the
15	plant specific data is correct, and that isn't
16	necessarily true. I mean, I've seen plant specific
17	data that just when you put it all together doesn't
18	make sense.
19	I mean, I think
20	CHAIRMAN APOSTOLAKIS:
21	Well, then there should be some mechanism to make sure
22	this doesn't happen, but I mean, again, if you look at
23	the experience of PRAs the last 25 years, they're
24	plant specific. They have to be plant specific.
25	DR. BUELL: Okay. Well, the plant
	I

(202) 234-4433

	186
1	specific aspect of it, like I say, is just shifting
2	that generic data a little bit.
3	CHAIRMAN APOSTOLAKIS: Sure.
4	DR. BUELL: And there's no standard out
5	there for industry data collection and analysis as far
6	as what events get thrown out for nonapplicability and
7	that type. There's a lot of variability in the way
8	the different PRAs calculate plant specific data.
9	DR. SCHROEDER: One of the uncertainty
10	contributors that we have identified in previous
11	slides and we'll get to again is this issue of generic
12	versus plant specific. We don't exactly know which is
13	the most appropriate. The data collection effort is
14	demonstrating that depending on what snapshot you
15	take, the plants can look either very good or very
16	bad.
17	And if you take the wrong snapshot, just
18	a random snapshot, a plant could look horrible, and
19	there may be no real operational difference or quality
20	difference between the plant in this snapshot and the
21	plant in that snapshot. So what is the correct way to
22	deal with that issue?
23	That is something that the data people are
24	struggling with.
25	CHAIRMAN APOSTOLAKIS: What is it that

(202) 234-4433

	187
1	tells us that your nominal data are reasonable? You
2	have thrown out some stuff, too. I mean, it's not
3	that we are supreme beings and everybody hasn't been
4	making mistakes.
5	MR. CHEOK: You're right, George. I mean,
6	that's why I think we would like to come back to you
7	in the spring and the summer to discuss with you our
8	process.
9	CHAIRMAN APOSTOLAKIS: Mike is always
10	asking.
11	MR. CHEOK: We do have a process.
12	CHAIRMAN APOSTOLAKIS: You must have been
13	before this committee before.
14	MR. CHEOK: I think so.
15	CHAIRMAN APOSTOLAKIS: I think that's an
16	excellent point, and you get the flavor of the
17	questions you're going to get in the spring.
18	MR. CHEOK: Right. We're not a supreme
19	being. You're right.
20	CHAIRMAN APOSTOLAKIS: I have seen PRAs
21	when I was actually participating in the actual doing.
22	In one plant you have the generic distribution, and
23	for some components, in fact, there is a paper out of
24	it. Based here and pushed the distribution so high
25	because of that time we had to discotize (phonetic),

(202) 234-4433

	188
1	it really pushed it outside the range. The plant was
2	very bad from that point of view.
3	For other plants, it was what Bob said.
4	In most plants, in fact, in most components, you have
5	a slight shift, which is okay, but there are several
6	plants where this happened, and in fact, the question
7	that was raised then was is the plant really too bad
8	or is the generic distribution too optimistic.
9	Have you seen that paper?
10	MR. CHEOK: I'm not sure. I mean, I may
11	have.
12	CHAIRMAN APOSTOLAKIS: This is one of the
13	very early papers that came out. Well, hell, it's my
14	paper. Okay?
15	(Laughter.)
16	MR. CHEOK: I was going to say I wasn't
17	born yet, but
18	(Laughter.)
19	MR. DENNING: You'd better move on.
20	MR. CHEOK: Let's move on here.
21	CHAIRMAN APOSTOLAKIS: The quality of your
22	comments reflect that. You're stealing mine, too.
23	DR. BUELL: Okay. this slide is just
24	something for reference. This is not a rigorous
25	analysis of this one here, but basically what I did is

(202) 234-4433

I just took the mean of the ratios of the CDFs with the PSA data to the PSA CDFs with their data. So that kind of looks at the logic. I show that there's not much difference in the mean, and there's not much variance there.
I also did it with the nominal data,

7 looked at that column versus the PSA CDF. You see that the mean drops down, which implies that the SPAR 8 9 with our data, you know, and the logic being 10 equivalent are the equivalence we can get is a little bit less, and that implies that our data, if you go 11 12 down to these next two slides, our data that we're using now tends to be a little bit lower than their 13 14 Okay? And there's a variety of reasons for data. 15 I just picked a couple of them that are that. 16 important.

The failure rates for the emergency diesel generators are typically a bit lower than what the industry is using. The turbine driven pumps is a little bit lower than what the industry is using. The transient initiating event frequency is a little lower. Those are contributors.

There are some that are higher, too, but in general these are things that drive it down lower. Did you have question?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	190
1	CHAIRMAN APOSTOLAKIS: Well, no, just a
2	comment. I want to reinforce what you said earlier
3	about, you know, how does one decide that something is
4	a failure or not, how to handle it, to include it, not
5	to include it. This is probably the most important
6	issue in data analysis. Once you decide what the
7	number of failure is, the number of tests is, the
8	Bayesian calculation is a matter of seconds, and I
9	remember in the old days they would send two or three
10	experienced engineers, the company that was doing the
11	PRA, to the plant where they would spend at least a
12	week going over the logs and deciding what is a
13	failure.
14	For example, when the utility replaces a
15	component because it's about to fail, but it has not
16	failed, is that a failure or not? Should it be
17	included or not?
18	They replaced it. It didn't fair. It
19	would have worked, right? But you know, being
20	cautious they said, okay, we'll replace it.
21	This issue was huge in the PRA that NASA
22	was doing for the shuttle las year because there, you
23	know, being a one of a kind system, every time they
24	see something they change the design process. So now
25	the guys quit doing the PRA come in and say, "Well,
	I

(202) 234-4433

	191
1	this failure counts as .1 of a failure."
2	Why? Engineering judgment, you know. In
3	other words, there are several reasons as to why you
4	should reject or include an apparent failure in the
5	database, and that is really a major issue, a really
6	major issue, and maybe you guys can think about it a
7	little harder because it does not affect on the plant
8	specific information. It affects the distributions,
9	too.
10	I mean, there is nothing magical about the
11	reactor safety study generic distributions, and I gave
12	you an example. In the plant there were many
13	components, surprisingly many that had failure rates
14	that were beyond the 95th percentile of the reactor
15	safety study distributions, which created a question
16	about the generic distributions themselves because one
17	or two you might say, "Well, okay. This plant is
18	really bad here," but consistently?
19	So I think this is something that as a
20	team we should spend more time on in thinking about
21	it. I don't know what else to say, but these are real
22	issues. I mean, I know the NASA folks had a hell of
23	a time, you know. The analysts would agree that,
24	yeah, we'll count this as a failure. A week later we
25	can't do that. Our managers disagree. They spend

(202) 234-4433

	192
1	half a million dollars fixing this, and you are
2	telling them it's still a failure?
3	And they had a point, too. They said,
4	"Why on earth did I spend all of this money if the
5	projection in the future accounts these things as
6	failures?
7	So that is a very important point, and I'm
8	glad we're getting back together in this way.
9	DR. BUELL: And this last bullet if you
10	look at we have a mean of 1.1 with the PSA data in,
11	suggests that we may be a little less optimistic than
12	they are. We've got some things that are a little bit
13	more conservative, possibly the two PORV success
14	criteria, no recovery out for battery depletion, but
15	you can see with that 1.1 mean that there's not much
16	difference.
17	CHAIRMAN APOSTOLAKIS: I think this is a
18	very my personal view now this is a very
19	detailed and thorough process that you guys have
20	developed to compare with the licensee because you are
21	using analysis, you know, sensitivity studies and so
22	on. That's very good. That's very good.
23	So ultimately the SPAR models will be
24	represented.
25	DR. BUELL: That's the intent, but like I

(202) 234-4433

	193
1	say, with specified differences that we just agree to
2	disagree on until we get further resolution.
3	CHAIRMAN APOSTOLAKIS: Yeah, sure.
4	DR. BUELL: Okay. I'll just roll right
5	into this next issue here. The modeling issue is
6	being worked. Some of these we've already talked
7	about at length. Some of them we haven't.
8	Where this list came from, we went around
9	and visited all of the plants in the country basically
10	as part of the STP process. During those visits we
11	looked at and tried to keep track of issues that when
12	we compare our model results to theirs we try to note
13	the differences as we went from Plant X to Y to Z.
14	We'd say, "Well, that guy did it this way. This plant
15	is doing it this way and it doesn't seem to be any
16	difference in the plant. Is that just an assumption
17	driven difference or, you know, who is modeling it?"
18	and everything.
19	But anyway, based on the information we
20	gleaned during those visits, we generated ten items.
21	CHAIRMAN APOSTOLAKIS: Isn't it surprising
22	that human error is not there? You mean they all
23	agreed?
24	DR. BUELL: That wasn't one of the issues
25	that was driving
	1

	194
1	CHAIRMAN APOSTOLAKIS: Really?
2	DR. BUELL: was driving the
3	differences.
4	CHAIRMAN APOSTOLAKIS: So maybe all of
5	them use the EPRI mysterious method. I can't believe
6	that human error is not an important modeling issue.
7	DR. BUELL: Well
8	CHAIRMAN APOSTOLAKIS: Let's stop
9	immediately all of the work we're doing here.
10	MR. DENNING: Well, you know, again, as we
11	look at SPAR and what its use is, at the moment
12	CHAIRMAN APOSTOLAKIS: No.
13	MR. DENNING: we're not going to have
14	human error be an important element in
15	CHAIRMAN APOSTOLAKIS: That's not what
16	they're saying.
17	MR. DENNING: No, no.
18	CHAIRMAN APOSTOLAKIS: They're saying that
19	these were differences between you and the utilities,
20	right?
21	DR. BUELL: Yeah. Let me clarify that for
22	a moment. You know, possibly there's some obscuring
23	going on here. A lot of utilities use a dependent HRA
24	methodology that rolls up four and five and six events
25	into composite events, and they use them in different
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	195
1	combinations, and there's, you know, almost an
2	infinite number of combinations of these events that
3	they roll up.
4	So the HRAs or the HEPs are hard to
5	correlate and know exactly. You know, we have an
6	operator action. They had an operator action, but
7	because of all the dependency analyses and stuff that
8	are going on, it's awful hard to do a direct
9	comparison of our numbers versus their numbers.
10	Now, we didn't look at like a fossil
11	vessel (phonetic) of all of the ATPs or anything like
12	that in a rigorous way.
13	CHAIRMAN APOSTOLAKIS: But didn't you
14	subject you just showed us a very nice and detailed
15	staged or phased way of identifying differences, and
16	the human error didn't come out there?
17	DR. BUELL: Well, this was based on
18	information we gathered before we did any of these
19	types of analyses. We're early into that detailed
20	comparison process.
21	This was just a qualitative look at the
22	plants that we visit.
23	CHAIRMAN APOSTOLAKIS: I mean, one of the
24	striking results of the IPE lessons learned volume
25	NUREG was that the wide range of human error
	1

(202) 234-4433

probabilities was, in fact, in one plant the probability of failing to initiate standby liquid control was ten to the minus six or lower, and in other plants it was ten to the minus three, and they were almost sister plants. So that tells you that there is tremendous difference in modeling, and I'm surprised that it's not here.

Well, I'd like to say 8 DR. SCHROEDER: 9 something about that. When we do the benchmarking 10 process, keep in mind the procedural steps we went through. One of the procedural steps in trying to 11 12 align the logic is to apply their probability to our events, and when you do that, those disagreements in 13 HEP values don't drive the metric. I mean by design 14 15 of our process, they are taken away.

What is checked is that we have an event 16 like their event, and it affects the overall structure 17 of the model in the same way. When we ship the model, 18 19 it goes with the SPAR-H method, and we don't really 20 care what they have. What we do --

21 CHAIRMAN APOSTOLAKIS: I don't understand 22 this. 23 DR. BUELL: Okav. 24 CHAIRMAN APOSTOLAKIS: I mean if you 25

compare your PRA, your SPAR, with their PRA and you

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 196

1

2

3

4

5

6

7

	197
1	use a number like ten to the minus three from SPAR-H
2	and they use ten to the minus six, wouldn't you catch
3	that?
4	DR. SCHROEDER: We would, and if we go to
5	our plots like on a first St. Lucie plot let me
б	back up to that one if we can remember the page that
7	we're on here.
8	There might be HEP disagreements in this
9	range here. In fact, many of these things might be
10	HEP disagreements because we have a human error event
11	that looks like their human error event, for instance,
12	failure to initiate SLICK (phonetic), and if we were
13	E minus three and they were E minus two, or vice
14	versa, that would show up as a big disagreement here.
15	But when we apply the PSA data, that
16	difference would vanish if the logic model was the
17	same.
18	MR. DENNING: Now tell me. That means
19	you're effectively using their value for?
20	DR. SCHROEDER: For this part of the
21	comparison we're using their HEP.
22	MR. DENNING: Yeah, I meant in that part
23	of it.
24	CHAIRMAN APOSTOLAKIS: But that's
25	artificial.
I	

	198
1	DR. BUELL: And we've been focusing, and
2	the reason we do that is we've been focusing on the
3	structural logic of the model as opposed to the value.
4	So we've been purposely trying to get rid of the
5	variability in the value so we could focus on the
6	structure.
7	DR. SCHROEDER: And then when we finish we
8	go back and put in our data set with our SPAR-H HEPs,
9	and there may still be outliers related to those
10	events, but we will simply agree to disagree on those.
11	CHAIRMAN APOSTOLAKIS: But you have not
12	done this. I mean that
13	DR. SCHROEDER: Yes.
14	CHAIRMAN APOSTOLAKIS: is something
15	that could be done, but you haven't.
16	DR. SCHROEDER: No, that's what we do.
17	CHAIRMAN APOSTOLAKIS: And I'm still
18	surprised that you couldn't find it. I mean you found
19	differences in CCF modeling, which you know, both of
20	you have an event that says common cause failure of
21	the thing. So it's the number that is different. So
22	I can't imagine that there weren't any human errors
23	that both of you had in the model, but the numbers
24	were different.
25	DR. SCHROEDER: There are many of those.

(202) 234-4433

	199
1	CHAIRMAN APOSTOLAKIS: Yeah.
2	DR. SCHROEDER: But they don't come to us
3	in our reporting to you as a modeling issue we're
4	concerned about because SPAR-H is our method and our
5	numbers are our numbers.
6	CHAIRMAN APOSTOLAKIS: So you are saying
7	this is not an issue because you have declared what
8	you're going to do anyway.
9	DR. SCHROEDER: pretty much.
10	DR. KRESS: No, they declare SPAR-H as
11	DR. BUELL: As the preferred method.
12	Let me throw out one example. These are
13	our top ten issues. There is one HRA or HEP value
14	that falls down about 15th or so as we rank these
15	things, and that one issue deals with the initiation
16	of decay heat removal in a BWR. You know, we have
17	some ground rules that we use. Typically the utility
18	uses an order of magnitude or so lower than what we
19	use, and because BWRs are driven by decay heat removal
20	and you have that common operator action to initiate
21	those systems, that is one of the items that is on the
22	list, but it's down further. It doesn't show up in
23	the top ten. But that's the only one that we've
24	identified.
25	CHAIRMAN APOSTOLAKIS: But if you guys
	1

(202) 234-4433

	200
1	resolve that issue by declaring that you will use
2	SPAR-H, why waste your time? Why didn't you do the
3	same thing here?
4	For PORV, it's two. For CCF it's alpha.
5	No issue. We're declaring that this is the way to do
6	it. So what's different about human reliability that
7	was handled that way from these?
8	MR. CHEOK: Well, George, I think even in
9	the industry PRAs they have different methodologies to
10	perform or to obtain HEPs.
11	CHAIRMAN APOSTOLAKIS: That's a modeling
12	issue.
13	MR. CHEOK: That's a modeling issue, and
14	we cannot, in essence, go to each PSA and adopt their
15	value because then we are saying we will now not be
16	standardized in our analysis because we are not
17	exactly adopting a single
18	CHAIRMAN APOSTOLAKIS: No, no, no, no, no.
19	MR. CHEOK: methodology. We're just
20	saying the methodology
21	CHAIRMAN APOSTOLAKIS: That's not what I'm
22	saying.
23	MR. CHEOK: we'll adopt at this point
24	is the SPAR-H for consistency throughout all of our
25	models.
	I contraction of the second

(202) 234-4433

	201
1	CHAIRMAN APOSTOLAKIS: But you can still
2	identify it as a modeling issue.
3	MR. CHEOK: We could. You're right.
4	CHAIRMAN APOSTOLAKIS: Because what you
5	just said supports what I'm saying. Even the
6	utilities don't agree with each other.
7	MR. CHEOK: Agree. Okay. That's true.
8	I mean, I
9	CHAIRMAN APOSTOLAKIS: It is a modeling
10	issue.
11	MR. CHEOK: I think what we're showing
12	up there in the list of ten is the issues that we
13	would work on.
14	CHAIRMAN APOSTOLAKIS: You know, this
15	issue will never be resolved in this agency. Why?
16	Because when we make important licensing decisions, we
17	don't scrutinize it. We just accept what the licensee
18	says.
19	When it comes to this issue, you're
20	dismissing it because you're going to use SPAR-H. The
21	decision makers, the Director of NRR or even the
22	Commission, maybe are not even aware there is an issue
23	there because nobody is telling them there is an
24	issue.
25	And they look here at nine important

(202) 234-4433

	202
1	modeling issues. Human error is not there. You know,
2	if I were Commissioner Merrifield, I would say at the
3	next budget cycle eliminate all work on human error.
4	My guys tell me that it's not important.
5	MR. CHEOK: It's a good point. I think
6	you bring up a good point, and we will have to either
7	caveat this list very well or
8	CHAIRMAN APOSTOLAKIS: The reason why I'm
9	reacting to it is
10	MR. CHEOK: You're right. I agree.
11	CHAIRMAN APOSTOLAKIS: not just because
12	of this, but as I said
13	MR. CHEOK: You make a good point.
14	CHAIRMAN APOSTOLAKIS: licensing,
15	utilities requested extend power up rates. We all
16	know that the time available to the operator shrinks
17	a little bit, and then what? Well, that's okay, you
18	know, essentially, or the licensee says it goes down.
19	It increases by ten to the minus 100, and everybody
20	says that's fine.
21	Well, why then continue pursue doing a
22	better job? There is no reason.
23	MR. CHEOK: You're right.
24	MR. DENNING: I think it would be
25	interesting to look at your results and just ask the
	1 I I I I I I I I I I I I I I I I I I I

```
(202) 234-4433
```

	203
1	question: how important was human reliability
2	modeling to the results? Because I think you've got
3	the data to answer that questions.
4	DR. BUELL: We can probably extract that.
5	MR. DENNING: If you kind of looked at
6	CHAIRMAN APOSTOLAKIS: That's a very good
7	point, and also, have you guys consulted these reports
8	we keep referring to, the IPE reports?
9	DR. BUELL: In what respect?
10	CHAIRMAN APOSTOLAKIS: In insights, in the
11	insights gained.
12	DR. BUELL: Like in NUREG 1560 and those?
13	CHAIRMAN APOSTOLAKIS: I guess. You know
14	more than I do.
15	DR. BUELL: Yes, we have looked at those.
16	CHAIRMAN APOSTOLAKIS: I mean they've
17	clearly identified it as an important issue.
18	MR. CHEOK: I think we need to also
19	realize that in the past five years or so licensees
20	have gone through the certification process, and one
21	of the first things that the reviewers look at are the
22	HEPs and the HIPs, and sine the last five years,
23	there's a normalization or a condensation of the HEPs
24	so that we do not see that ten to the minus six was in
25	the ten to the minus three range.
1	1

(202) 234-4433

	204
1	CHAIRMAN APOSTOLAKIS: No, I'm sure they
2	changed that. They raised it, but still it was an
3	issue.
4	I mean, is it this subcommittee or
5	somebody else's subcommittee? We are meeting in
6	December on human error?
7	PARTICIPANT: Yes.
8	CHAIRMAN APOSTOLAKIS: Might as well
9	cancel it. It doesn't seem to be an issue, especially
10	since you've not done it.
11	I'm serious. Why should I come here and
12	waste two days on an issue that is irrelevant to the
13	agency?
14	MR. DENNING: Because you don't know, but
15	that's all right.
16	Okay. Incidentally, if you'd solve the
17	fifth one, that would help, too, I think.
18	CHAIRMAN APOSTOLAKIS: Now, you se, it's
19	so nice to number things when you have a long list
20	rather than putting bullets.
21	DR. BUELL: Okay. We'll do that.
22	CHAIRMAN APOSTOLAKIS: So I have to count,
23	number five.
24	DR. BUELL: Sump plugging (phonetic).
25	CHAIRMAN APOSTOLAKIS: Yes, sump plugging.

```
(202) 234-4433
```

	205
1	DR. BUELL: Well, like I say, these are
2	the top ten issues that we've identified.
3	CHAIRMAN APOSTOLAKIS: You've seen the
4	ACRS letter on that?
5	DR. BUELL: I have not.
6	CHAIRMAN APOSTOLAKIS: Then you will
7	insist on putting it number one.
8	DR. BUELL: Okay. Loss of off-site power
9	modeling, that was a big there's a lot of
10	variability in the industry. We've got an approach
11	now that we feel is adequate. You know, it may still
12	vary a little bit from what the plants do, but there's
13	a lot of variability within what the plants do.
14	So we have a solution. Maybe that needs
15	to be tweaked or whatever, but we do have a solution
16	for that.
17	RCP seal failure modeling
18	CHAIRMAN APOSTOLAKIS: Are we going to
19	discuss each one?
20	DR. BUELL: Yes. I've got to explain each
21	one of these. I'll just go through them real quickly.
22	We've got the new WOG 2000 out there.
23	We've incorporated that information in. Common cause
24	modeling, it was being driven by alpha factors that we
25	had, some old alpha factors a little bit higher than
	1

(202) 234-4433

	206
1	what the industry was showing.
2	Data values, we've got a standard template
3	that we use now. We've converged some on that.
4	Sump plugging, you know all about that.
5	Support system initiating fault trees.
6	We're working on a methodology or going to be trying
7	to work on that this coming year.
8	Power recovery after battery depletion,
9	we've touched on that one. You know, how much credit
10	can you give? We don't give any credit. The industry
11	gives some credit, and it has a significant impact at
12	some plants.
13	Continued injection after containment
14	failure. This is a BWR issue. How much credit can
15	you take for your continued injection after you over
16	pressurize and fail the containment?
17	PORV success criteria. We've beaten that
18	one to death.
19	And the time to core uncovery, we're going
20	to talk about that also.
21	Like I say, we've put the issues we've
22	worked at the top and then going down the list, these
23	are some of the ones that we still need to address.
24	CHAIRMAN APOSTOLAKIS: Now, these are
25	being worked on because you found disagreements with

(202) 234-4433

	207
1	the utilities?
2	DR. BUELL: Yes, disagreements between
3	utilities in conjunction with disagreements between us
4	and utilities.
5	CHAIRMAN APOSTOLAKIS: Okay.
6	DR. BUELL: So there was just a tremendous
7	variability, and these were important impacts on the
8	models. In fact, these are structural issues that
9	have a lot of uncertainty between models.
10	CHAIRMAN APOSTOLAKIS: So I suspect then
11	that the reason why errors of commission are not here
12	is because nobody is doing it.
13	DR. BUELL: That is correct.
14	CHAIRMAN APOSTOLAKIS: Wouldn't it be
15	though a modeling issue? Do you think that we have
16	resolved that, that the operators now have procedures
17	for everything? There is no possibility of
18	misdiagnosing anything? Is that a settled issue or
19	DR. SCHROEDER: Well, let's address that
20	this way. The SPAR models don't necessarily reflect
21	original research on issues. What they are is a
22	compendia of things that we believe are mostly well
23	known, and we wouldn't know how to do the errors of
24	commission modeling. So they're not even on our radar
25	screen.
	I contract of the second se

(202) 234-4433

	208
1	CHAIRMAN APOSTOLAKIS: I agree. I agree,
2	and it's not your job to do it. I fully agree with
3	your scope, but when you say important modeling issues
4	and status, you could say errors of commission TBD or
5	somebody is working on them, not us.
6	Notice I view this as a more general list
7	of modeling issues related to PRA, but apparently for
8	you it means something else.
9	MR. CHEOK: The title should probably say
10	modeling issues that are being worked on to make the
11	SPAR models more uniform with the licensee PRAs.
12	CHAIRMAN APOSTOLAKIS: More consistent
13	with licensee PRAs
14	MR. CHEOK: That's correct.
15	CHAIRMAN APOSTOLAKIS: but if the
16	licensees also miss something, then you'll be happy to
17	miss it also.
18	MR. CHEOK: Well, remember we list it
19	under model assumptions in the beginning. We
20	understand that it's missing from our PRA or from our
21	model, and we list it there, and it's something that
22	we may have to work on later.
23	CHAIRMAN APOSTOLAKIS: Well, you know,
24	this is the first time actually that I see a
25	presentation from the staff where there is such a

(202) 234-4433

	209
1	thing on the screen, "modeling issues." Most of the
2	time we say, "Yeah, there are modeling issues we're
3	going to do something about."
4	And in fact, I believe Mary Drewing is
5	supposed to do something about it. Have you talked to
6	her at all?
7	MR. CHEOK: Yes, we have been talking to
8	Mary.
9	CHAIRMAN APOSTOLAKIS: So this is very
10	good actually. I mean, I really like this, but it has
11	to be well, first of all, as Mike said, the heading
12	has to be very clear what you're trying to do, but
13	this is an excellent opportunity to also say these are
14	the modeling issues. Maybe you can have a separate
15	list that says, "And here are broader modeling issues
16	that nobody knows how to handle. We have made the
17	assumption that you showed us earlier," and leave it
18	at that.
19	MR. CHOKSHI: I think, you know, as you
20	said, the problem that PRA issues, aging and other
21	effects, we are dealing within the context of
22	CHAIRMAN APOSTOLAKIS: I understand that,
23	but it would be a good opportunity to document those,
24	although the human error probability we were talking
25	earlier about, I think, belongs here.

(202) 234-4433

	210
1	You're instigating very interesting
2	discussion, gentlemen.
3	DR. THADANI: Yes. Let me add one issue,
4	George, here and actually it's a question. If I take
5	a plant, a BWR, you have a SPAR model for that plant,
6	and I want to increase power level by 20 percent. I
7	suppose I could take success-failure criteria from
8	whatever the utility might say, but you can look at
9	that information and see the changes in available time
10	for operator actions and human reliability issues and
11	estimate change in core damage frequency.
12	DR. BUELL: If we had that information
13	from a particular
14	DR. THADANI: The successful criteria you
15	would need, yeah.
16	DR. BUELL: And if it was different from
17	ours, we could feed that into our models and come up
18	with
19	DR. THADANI: So because the times will be
20	narrower. So you could actually do a fairly quick
21	calculation, it seems to me.
22	DR. BUELL: Well, depending on, like I
23	say, the level of modification.
24	DR. THADANI: Sure.
25	DR. BUELL: But that could be done in the

(202) 234-4433

	211
1	SPAR model.
2	DR. SCHROEDER: That could be done, but it
3	would also presume that you understand all of the
4	consequences of that. I believe there's an ASP
5	analysis currently pending that deals with issues of
6	unforeseen circumstances of a power up rate, and we
7	wouldn't have been able to catch those any more than
8	anyone else would have.
9	DR. THADANI: Sure. No, I understand
10	that, yeah. Your structure allows that is what you're
11	saying. That's useful information.
12	DR. BUELL: Okay. I'll just go through
13	these next ten slides relatively quickly because they
14	deal with the details of each one of these. Okay. As
15	you noted up there, we said we had updated the models
16	for this particular issue. We've got new LOOP
17	recovery curves updated, the most current information
18	we have available or that can be generated
19	We have updated seal LOCA models. We've
20	included that in all of the PWRs based on WOG 2000 and
21	the other information as far as there.
22	We've changed our diesel generator mission
23	time to a 24-hour mission. We had some statistical
24	run time or our run times were based on some
25	statistical analysis. We got away from that.

(202) 234-4433

	212
1	CHAIRMAN APOSTOLAKIS: So I don't
2	understand. I'm sorry. I missed it.
3	DR. BUELL: We have 24-hour diesel
4	generator mission time, a standard 24-hour mission
5	time now. Before
6	CHAIRMAN APOSTOLAKIS: So you would
7	calculate the unreliability for 24 hours
8	DR. BUELL: That's correct.
9	CHAIRMAN APOSTOLAKIS: and put it up
10	front.
11	DR. BUELL: That's right. Before we had
12	varying time based on the plant location and
13	everything. It wasn't working out well.
14	CHAIRMAN APOSTOLAKIS: So now, you know,
15	as we were saying earlier trying to figure out the
16	mean value, if you have two diesels or three diesels,
17	each one well, the mean time to failure is
18	different though. You're going to get a long mean
19	time to failure.
20	That's okay. Go ahead.
21	DR. BUELL: Okay, and as part of the data
22	changes of the new template data, we have a two power
23	diesel generator hazard curve for failure at one hour
24	and greater than one hour, before it was a half hour
25	to two hours, and then greater than that. So we've
1	I contract of the second se

(202) 234-4433

	213
1	changed that.
2	CHAIRMAN APOSTOLAKIS: And that comes from
3	experience or
4	DR. BUELL: That's what we're getting out
5	of the data, and like I say, I don't know the origin
6	of that.
7	CHAIRMAN APOSTOLAKIS: You mean they do
8	have tests where they run the business for 20 hours?
9	I thought most of the tests were a couple of hours.
10	DR. BUELL: I'm not part of the data
11	analysis.
12	CHAIRMAN APOSTOLAKIS: It's probably
13	judgment.
14	DR. BUELL: I'm not sure.
15	CHAIRMAN APOSTOLAKIS: It's okay. It's
16	okay. This is a preview of the questions for the
17	spring in color, in vivid color.
18	MR. CHEOK: We'll make sure we study the
19	tape before the spring so we can have all of these
20	questions answered.
21	CHAIRMAN APOSTOLAKIS: I should make sure
22	you do.
23	MR. CHEOK: We will make sure we do.
24	DR. BUELL: And this last item you just
25	touched on again, and we have talked about before.
	1

```
(202) 234-4433
```

1 Some of the plants with only two diesels, they rely 2 heavily on involving the failure distributions to buy 3 more time. We don't do that right now. We have 4 methodology to do that, but we have not applied that 5 to our models, and that's just a judgment call as far as the effort to get where we need to go, and there 6 7 are some other issues associated with that, but we 8 have not implemented that in our models. But that's another issue where we deviate 9 10 from some of the plants. They use it, especially the ones with only two diesels. We have not incorporated 11 12 that yet. The next slide. 13 Okay. 14 Everyone is familiar with the seal LOCA 15 modeling, The WOG 2000, we have I'm sure. incorporated that into all of the Westinghouse plants. 16 17 The core uncovery times are per the Westinghouse emergency procedure quidelines. It's a generic curve 18 19 There is some variability based on the that we use. 20 number of loops you have in that outer thing, but it's 21 for our estimates. That's a pretty close estimate if 22 we use a single curve. 23 CHAIRMAN APOSTOLAKIS: So what are you 24 saving? When you say four seal failure modes with 25 probability and associated leak rates, what does that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

214

	215
1	mean?
2	DR. BUELL: You have different stages.
3	You have staging within your seals, and they look at
4	the probabilities of failing this first
5	CHAIRMAN APOSTOLAKIS: Oh, so you're just
6	describing what the
7	DR. BUELL: It's within the WOG log
8	CHAIRMAN APOSTOLAKIS: You're now telling
9	us what the agreement was.
10	DR. BUELL: That's correct, exactly.
11	CHAIRMAN APOSTOLAKIS: Okay, okay, okay.
12	DR. BUELL: I'm just replicating the WOG
13	2000 information. We've also got the CE information
14	in all of the CE plants, okay, and on B&W plants
15	typically they're either a Westinghouse or a
16	Combustion Engineering seal package in the
17	Westinghouse plants. We have put the appropriate
18	and we have just done this in the last months we
19	have put the appropriate seal packages in the $B\&W$
20	plants.
21	CHAIRMAN APOSTOLAKIS: Okay. So what was
22	the resolution?
23	DR. BUELL: The resolution was to put in
24	the new WOG 2000 and the pending information.
25	CHAIRMAN APOSTOLAKIS: To use the WOG 2000
	216
----	---
1	model for all?
2	DR. BUELL: That's for all of the
3	Westinghouse plants.
4	CHAIRMAN APOSTOLAKIS: And the industry
5	agreed?
6	DR. BUELL: Well
7	CHAIRMAN APOSTOLAKIS: You're using the
8	WOG model for CE plants?
9	DR. BUELL: No, no. There's a CE study
10	out there that's pending, and we were directed to put
11	that in pending final resolution on that.
12	CHAIRMAN APOSTOLAKIS: I don't understand
13	what the difference was. What was the disagreement?
14	I mean, your
15	DR. SCHROEDER: Our previous SPAR models
16	had nothing like the WOG 2000 model in them. They had
17	an extremely simplified model that yielded very
18	conservative results.
19	So when the NRC issued a safety evaluation
20	report on the WOG 2000 model, we were directed to go
21	ahead and put that in as a replacement for the old
22	reactor coolant pump seal LOCA model that we had in
23	the models.
24	CHAIRMAN APOSTOLAKIS: I was under the
25	impression that there were at least two competing

(202) 234-4433

	217
1	models for RCP of the came manufacturer.
2	DR. SCHROEDER: There is a Rhodes model
3	yet, and that would be used for the very few cases in
4	which there are not high temperature seal packages.
5	CHAIRMAN APOSTOLAKIS: What you're telling
6	me is something different. You're saying we had a
7	conservative model before. Westinghouse had this
8	model, and then we were directed to go and use that.
9	MR. CHEOK: Well, we were directed yes,
10	we directed INL to do that because we now have an
11	agency position so to what seal models that we can
12	endorse. When Westinghouse submitted the topical to
13	use for their review, the agency reviewed the topical.
14	I guess I misspoke a little bit. The
15	agency reviewed the topical, and we wrote a valuation
16	report on that that says that we agree with your
17	model. In that case we said that we now have an
18	agency endorsed model, which we can now incorporate
19	into the SPAR model for Westinghouse plants.
20	CHAIRMAN APOSTOLAKIS: And the CE plant
21	is
22	MR. CHEOK: Is close to endorsing a
23	similar topical report.
24	CHAIRMAN APOSTOLAKIS: And BW plants would
25	be one or the other.
	I

	218
1	DR. BUELL: They use one of those, too.
2	CHAIRMAN APOSTOLAKIS: It was never really
3	an issue of model uncertainty in the sense that there
4	were two or three competing models. Is that what
5	you're saying?
6	MR. CHEOK: I think at one time five or
7	six years ago there was a Westinghouse model and there
8	was a Rhodes model and there was a Sandia model.
9	CHAIRMAN APOSTOLAKIS: Yeah.
10	MR. CHEOK: And I guess there was
11	disagreement as to which is the best model to use.
12	CHAIRMAN APOSTOLAKIS: Exactly. That's
13	what I remember.
14	MR. CHEOK: At this point there is a
15	submittal to the staff, and the staff has looked at
16	the Westinghouse models and
17	CHAIRMAN APOSTOLAKIS: Did Westinghouse
18	compare their approach with those other models?
19	MR. CHEOK: I am not sure.
20	CHAIRMAN APOSTOLAKIS: Is it possible
21	I mean, you mentioned names. Rhodes?
22	DR. BUELL: There was the Rhodes model.
23	That was one of the models.
24	CHAIRMAN APOSTOLAKIS: Is that the fellow
25	whose name is Rhodes?

(202) 234-4433

	219
1	DR. THADANI: Rhodes is the Westinghouse.
2	He did that for Westinghouse. Limited testing was
3	done in Canada, but basically you don't have data for
4	beyond 30 to 45 minutes in terms of at these
5	temperatures and pressures, performance of these
б	seals, and so this is clearly large uncertainty in
7	whatever model you use.
8	DR. KRESS: There was a workshop last week
9	in Aux-en-Provence on uncertainties. You had some
10	people there, and I went. There wasn't much new on
11	model uncertainty, but there was one paper that talked
12	about using something called the Dempster-Schafer
13	theory on fuzzy numbers, and they claimed that that
14	was a better way to look at model uncertainty because
15	the distributions they use represented a whole family
16	of distributions rather than just one, and that they
17	claimed it to be a superior way.
18	I just wanted to call that to your
19	attention in case you wanted to get hold of that paper
20	from Basu. Sud Basu would have a copy of it, and you
21	might look into it.
22	I didn't have time to read it in detail to
23	see if their claims are real, but I know what they
24	claimed. They claimed it was a good way to do it.
25	CHAIRMAN APOSTOLAKIS: Can I comment on
	I contract of the second se

(202) 234-4433

	220
1	that?
2	DR. KRESS: Yeah, please.
3	CHAIRMAN APOSTOLAKIS: Don't do it.
4	DR. KRESS: Oh, okay.
5	CHAIRMAN APOSTOLAKIS: I think your
б	statement was correct, that they claim.
7	DR. KRESS: Yeah.
8	CHAIRMAN APOSTOLAKIS: But we have enough
9	problems with probabilities. You want to bring in
10	Dempster-Schafer? We would have Dempster-Schafer in
11	form regulations? Oh.
12	DR. BUELL: The next item on our list was
13	common cause modeling.
14	CHAIRMAN APOSTOLAKIS: Well, it's not
15	equivalent to MGL. They treat the data differently,
16	don't they?
17	DR. SCHROEDER: The equivalency that we're
18	referring to is that you can transform any alpha
19	factor into an MGL parameter through a series of
20	equations.
21	CHAIRMAN APOSTOLAKIS: But not the other
22	way, can you?
23	DR. SCHROEDER: I don't know.
24	CHAIRMAN APOSTOLAKIS: That's why they
25	developed the alpha factor. If they were completely
	I contract of the second se

(202) 234-4433

221
equivalent, they wouldn't. It's the way you handle
the data. Amazingly enough, it was a stupid way that
MGL would handle the data.
DR. BUELL: Well, the bottom line is we
were showing consistently higher common cause numbers
than the industry was, and it ended up being a data
issue, as we updated and expanded the data pool to
appropriate levels. That issue went away.
CHAIRMAN APOSTOLAKIS: And you guys have
this GEM thing that does the calculations. I'll tell
you most analysts that do things by hand are terrified
by the alpha factor model because you have a simple
one out of two system, and they tell you here is an
equation now that you have to use. Forget it. I'll
go with lambda beta gamma and I'm done, you know.
PARTICIPANT: Point, one.
CHAIRMAN APOSTOLAKIS: Point, one.
Actually there is strong evidence that the average is
.1. Ali Moseley developed some curves, and you know,
he was really remarkably close.
Only some valves tended to go to .2 in the
BWRs, but then again, for PRA .1, .2, I mean.
DR. BUELL: Okay. Next slide, please.
Another issue that we identified was the
data values. Typically in the past we had a little

(202) 234-4433

	222
1	bit higher data, but also the data was old and there
2	was significant differences sometimes in our data and
3	their data on a variety of data failure types.
4	So there's been a significant effort over
5	the last couple of years to generate new data for the
6	SPAR models, and we've got that in now. A lot of it
7	was based on system studies around 1990, and we've now
8	used EPIX based data, and you're going to get a
9	presentation on that in the spring.
10	MR. DENNING: Could you give us just a
11	little bit. What does EPIX based data mean there?
12	DR. BUELL: EPIX is a database that is
13	maintained by INPO that we have access to and we
14	analyze data out of that. It's a real broad database,
15	has failures, and I'm not a big guru on any of that,
16	but that's the source. It's an INPO maintained
17	database.
18	MR. DENNING: And what used to be national
19	reliability database or something, did that evolve
20	into that?
21	DR. BUELL: My belief is that that was the
22	predecessor to this.
23	MR. CHEOK: EPIX replaced NPRDS.
24	CHAIRMAN APOSTOLAKIS: You know, the first
25	paper that appeared proposing Bayesian update for

(202) 234-4433

	223
1	generic distributions was written by Stan Kaplan and
2	me in 1981. Why do I say that?
3	Because I have real problems with the
4	update. I'll tell you what. It's a property of Bayes
5	Theorem that no matter how wide your prior
6	distribution is you need very few real data to make it
7	very narrow. One failure in ten, 20 trials, whew, the
8	posterior becomes very narrow.
9	But if you go to the reactor safety study
10	which introduced the concept of generic information,
11	they don't claim that the distributions are broad
12	because of statistical uncertainty. They say they
13	represent plant-to-plant variability, and a range of
14	accident conditions.
15	Now, the plant-to-plant variability, you'd
16	say, well, if I use plant specific data, that's fine
17	because then I specialized in my plant, but what about
18	these accident conditions. I mean the long tail of
19	the log normally introduced was supposed to account
20	for those harsh environments, but all of your data
21	come from normal tests.
22	And what happens, of course, is you're
23	wiping out the long tail by using Bayes Theorem
24	because Bayes Theorem deals only with the statistical
25	uncertainty due to the fact that you don't have, you
1	1

(202) 234-4433

	224
1	know, a billion failures in a trillion trials, and
2	this is something that as a community we never really
3	paid much attention to.
4	But the truth of the matter is when you
5	specialize distributions using Bayes Theorem, you are
б	wiping out the long tail that the original guys in '72
7	said was there. I mean they justified the use of the
8	log normal. They said there were two fundamental
9	reasons. One was easy to work with analytically. At
10	that time they didn't have the computers we have now.
11	And, two, it skewed to the right, has a
12	long tail to account for these harsh environments, and
13	these harsh environments disappear the moment you run
14	two tests because the Bayes Theorem pushes everything
15	down.
16	And one idea that I had is maybe we can
17	separate this interval of high failure rates and don't
18	touch it. Use it as a generic distribution. Don't
19	update it with anything because you don't have any
20	data from those environments, and then the rest of it
21	update.
22	Now, somebody has to look into it in more
23	detail, but it seems to me that this is something that
24	we have perpetuated for the last 25, 30 years, and
25	Bayes Theorem does what it's intended to do, but our
	1

(202) 234-4433

	225
1	generic distributions had a different meaning.
2	So I don't know if you guys want to think
3	about it. Maybe we can talk again about it in June or
4	whatever.
5	And, again, I appreciate that nobody has
6	done it, but I think it's an important point or maybe
7	you can come back and say we did it and we decided
8	it's not that important. Because that has to be
9	viewed in the context of another observation, that in
10	terms of the useful results from the PRA, namely, the
11	core damage frequency, of course, but also the
12	dominant contributors; the failure rates lambda are
13	not that important because of the extreme redundancy.
14	You see, it's common cause failures that
15	are important. Human errors are that important, but
16	whether you take a distribution of a lambda and you
17	stretch it a little bit, the fact that you have two or
18	three of those tends to diminish the significance of
19	that change.
20	So in the context of that, we have to
21	revisit the issue. Okay? And that's why we're paying
22	more attention to model uncertainty and all of that,
23	because we know that all success criteria I mean,
24	these are big things. These are big things that do
25	affect the results in the sense that the dominant
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	226
1	contributors might be different.
2	But the pool failure rate, I mean, because
3	for the shuttle that's not the case because they don't
4	have that kind of redundancy, you see. We do.
5	By the way, can you believe the number of
6	accident sequences contributing to the damage of the
7	shuttle? And they were all almost equally important.
8	In other words, single element minimal cut sets
9	surrounding to 1,300.
10	I'll tell you. The next time you see an
11	asteroid, kiss his hand.
12	(Laughter.)
13	CHAIRMAN APOSTOLAKIS: I mean, in PRAs for
14	reactors, the dominant contributors are less than 20,
15	and none of them is a single event sequence, right?
16	None of them; 1,300.
17	DR. BUELL: Okay. This last item is a
18	data value, but it's also a research issue that we're
19	looking at. Basically service water, water quality,
20	plugging. Nobody in the industry or very, very few
21	people try to address that. Yet there's been quite a
22	few plant shutdowns because of it, and from our
23	perspective, that's a significant issue that needs to
24	be addressed and needs to be looked at.
25	We're going through that this year. So

(202) 234-4433

	227
1	it's a data issue once we develop the way of looking
2	at that and trying to do a study on that.
3	Here's your issue here that you'd like us
4	to resolve. Sump plugging, all I did on this was
5	there's been a variety of numbers bandied about. This
6	is the last set of numbers that I heard. Maybe this
7	is way out of date, but if you take our initiating
8	event frequency times the conditional plugging
9	failure, these are the potential impacts in our model.
10	So you can see if you sum those all up,
11	you're about 1E to the minus five if the worst case
12	happens in all of these.
13	CHAIRMAN APOSTOLAKIS: What does that
14	mean? I'm not following that.
15	DR. BUELL: Okay. Basically what I did is
16	I took our initiating event frequency over there where
17	it says large LOCA. Okay? It's 5E to the minus six,
18	is our initiating event frequency, and the numbers
19	that I'm hearing, like I say, I know it's all replaced
20	with no set number, but the last number I heard for a
21	larger LOCA was .6 conditional of failing the
22	containment sump.
23	So if you multiply those together, you
24	have a potential 3E to the minus 6 increase in the CDF
25	using our frequency in the last set of numbers that I

(202) 234-4433

	228
1	heard.
2	Whatever this ends up being, if they're
3	large numbers like this, it could have a significant
4	impact. You're all aware of that. That's not new
5	news, but it is a big structural uncertainty in our
6	models right now.
7	MR. DENNING: What about the new large
8	LOCA frequencies, that kind of stuff? You have not
9	adopted that at this point, have you?
10	CHAIRMAN APOSTOLAKIS: The result of the
11	expert opinion in the solicitations?
12	DR. BUELL: No, we have not.
13	CHAIRMAN APOSTOLAKIS: Maybe you ought to
14	look at that.
15	DR. BUELL: Okay.
16	CHAIRMAN APOSTOLAKIS: You will find 20
17	different estimates. So good luck.
18	DR. BUELL: Okay. We're using the older
19	data from NUREG 5750 right now.
20	DR. SCHROEDER: The last that was talked
21	about I understood that was still in the review
22	process.
23	MR. DENNING: It is.
24	CHAIRMAN APOSTOLAKIS: I don't know about
25	that. I mean, the NRR guys are developing a rule

	229
1	based on
2	DR. THADANI: the proposed rule is out.
3	CHAIRMAN APOSTOLAKIS: Huh?
4	DR. THADANI: The proposed rule is out on
5	the streets now.
6	CHAIRMAN APOSTOLAKIS: Yeah.
7	MR. CHOKSHI: And that report is in our
8	component, the expert solicitation report. So
9	MR. DENNING: It would certainly be
10	interesting to see what the implications are because
11	they're going to be big. I mean, I'm sure they're
12	going to further reduce.
13	CHAIRMAN APOSTOLAKIS: No, but you say
14	you're assuming ten to the minus six. That's on the
15	low side, I think.
16	DR. BUELL: Five E to the minus six for
17	large LOCA right now is the number we've got in our
18	models.
19	CHAIRMAN APOSTOLAKIS: Five? It depends
20	on how you combine expert opinions.
21	DR. THADANI: It's low, George. You're
22	right. It's low if you look at the expert
23	solicitation results. Plus I think this large LOCA
24	is a break larger than what, six inches roughly,
25	right? Basically, and if you look at the expert
	•

(202) 234-4433

	230
1	elicitation, this is off by more than an order of
2	magnitude.
3	MR. CHOKSHI: Yeah, in that categories,
4	you know, greater than six, you're right.
5	DR. KRESS: But your main message is that
6	the effect on CDF is actually driven by frequency.
7	DR. BUELL: Well, it's a combination.
8	It's proportional to frequency and the conditional
9	plugging. So either one of those is going to adjust
10	the number.
11	DR. KRESS: Yeah, but the condition
12	plugging is I mean, we're only concerned about it
13	for the large break LOCA, and it's .6. So that makes
14	in PRA's place that's not much.
15	CHAIRMAN APOSTOLAKIS: Shouldn't you worry
16	also about LERF?
17	DR. KRESS: Yeah, you should, but
18	CHAIRMAN APOSTOLAKIS: That's where you'd
19	probably see the bigger difference.
20	DR. KRESS: Yeah, it comes to kind of be
21	a long-term cooling issue.
22	DR. THADANI: But it affects the core
23	spray, too.
24	CHAIRMAN APOSTOLAKIS: The what?
25	DR. THADANI: The recirculation impacts

(202) 234-4433

	231
1	everything.
2	CHAIRMAN APOSTOLAKIS: Right, sure.
3	DR. THADANI: So I think George is
4	correct. It will have also significant effect on
5	LERF.
6	MR. DENNING: Well, will it or is it just
7	going to be late and not lead to early failure?
8	CHAIRMAN APOSTOLAKIS: Well, I mean, if
9	that's the case, you're saying that this is not a very
10	significant issue, right?
11	DR. BUELL: No. I'm just saying it can be
12	significant depending on what the final large LOCA
13	number is, what the final conditional plugging number
14	is.
15	Once that gets all resolved, it has the
16	potential to be as high as in fact, if you increase
17	the large LOCA probability, it could even be higher
18	than that impact on the models. It could be a ten to
19	the minus five impact on the models and increase.
20	DR. KRESS: I would be more than ten to
21	the minus five.
22	DR. BUELL: Yeah, if you increase the
23	large LOCA frequency it could be more than ten to the
24	minus five.
25	CHAIRMAN APOSTOLAKIS: But you will not.

(202) 234-4433

	232
1	You will not. The expert opinion solicitation says it
2	is low. I think I misspoke earlier.
3	DR. BUELL: Okay.
4	CHAIRMAN APOSTOLAKIS: The large range
5	they show in that report is for LOCAs of a frequency
6	of ten to the minus five because the larger pipes,
7	what we now call large LOCA, have a frequency much
8	lower than ten to the minus five.
9	So I don't think that number is going to
10	go up significantly.
11	MR. CHOKSHI: No, but from the PRA
12	standpoint, it's a 16 this is large LOCA, right?
13	DR. THADANI: Exactly.
14	MR. CHOKSHI: This is not a double ended
15	pipe break.
16	CHAIRMAN APOSTOLAKIS: Eight inches.
17	DR. THADANI: It's six inches.
18	CHAIRMAN APOSTOLAKIS: Or eight. Anyway,
19	yeah.
20	MR. CHOKSHI: So but in the expert
21	elicitation, the number that they're deriving to the
22	different categories.
23	CHAIRMAN APOSTOLAKIS: Yeah.
24	MR. CHOKSHI: So but if you look at the
25	numbers from the six or 18 Gs, it's higher.
1	I contract of the second se

(202) 234-4433

	233
1	CHAIRMAN APOSTOLAKIS: It's higher. I
2	don't think it's a very low number, isn't it?
3	MR. CHOKSHI: Not at that range.
4	CHAIRMAN APOSTOLAKIS: It's less than ten
5	to the minus five.
6	MR. CHOKSHI: No. Well, we'll talk about
7	this, what distribution, and which
8	CHAIRMAN APOSTOLAKIS: Well, the
9	aggravation of course makes a big difference.
10	MR. CHOKSHI: I think if I remember right
11	for PWR, and their base case was a ten to the minus
12	five was about seven inches.
13	CHAIRMAN APOSTOLAKIS: Eight.
14	MR. CHOKSHI: Yeah, seven or eight. You
15	are right.
16	CHAIRMAN APOSTOLAKIS: And then NRR says
17	14. That's good.
18	MR. CHOKSHI: So three at ten to the minus
19	five using the geometry was about
20	CHAIRMAN APOSTOLAKIS: And plus I'm
21	correct. No, but is this finding, Rich and Tom,
22	consistent with the big deal the ACRS made on that
23	letter on the sump performance?
24	DR. KRESS: Well, we thought there were
25	issues of defense in depth that went beyond effects on
1	1

(202) 234-4433

234 1 CDF 2 MR. DENNING: This is an accident within the design basis at least current. 3 DR. KRESS: Yes, it is design basis space. 4 5 MR. DENNING: And of course, that .6 is awfully close to "I don't know." 6 7 CHAIRMAN APOSTOLAKIS: One? MR. DENNING: The .6 is "I don't know." 8 9 We actually thought for a DR. KRESS: 10 large LOCA that the condition was probably close to one, and --11 Could be. 12 MR. DENNING: CHAIRMAN APOSTOLAKIS: Well, that's why 13 14 they're certainly here. 15 It's close enough. DR. KRESS: MR. DENNING: Yeah, but if this remains as 16 17 part of the design basis accident, if one were done, it had better be a lot lower number than that or we're 18 19 not going to buy it. 20 MR. CHOKSHI: Once we resolve the issue. 21 MR. DENNING: Once we resolve the issue, 22 it had better be a much lower number than that. Let's 23 qo on. CHAIRMAN APOSTOLAKIS: 24 Why? Is there a 25 cutoff thing for design basis accidents?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	235
1	MR. DENNING: Well, it's not .5. I mean,
2	the probability that we would not be able to survive
3	a design basis accident? I mean it has got to be a
4	high degree of confidence. Point, five is not a high
5	degree of confidence.
6	CHAIRMAN APOSTOLAKIS: No.
7	DR. KRESS: That is the problem.
8	CHAIRMAN APOSTOLAKIS: There you would
9	have to postulate a single failure, right? It's a
10	design basis. You'd do a different kind of
11	calculation.
12	MR. DENNING: Analysis?
13	CHAIRMAN APOSTOLAKIS: Yeah.
14	MR. DENNING: Well, this is for a
15	realistic analysis here, which is probably
16	CHAIRMAN APOSTOLAKIS: You would say I
17	have a large LOCA, and I will postulate the worst
18	possible single failure, and I should be able to
19	contain that.
20	DR. KRESS: That's what you do.
21	CHAIRMAN APOSTOLAKIS: This has nothing to
22	do with frequencies.
23	DR. KRESS: That's right.
24	CHAIRMAN APOSTOLAKIS: This has nothing to
25	do with frequencies. So I don't understand why it

(202) 234-4433

	236
1	would be lower when we're done with it.
2	MR. DENNING: Well, okay. They do a
3	realistic analysis. Okay? We do a licensing analysis
4	for the design basis accident, right? For that
5	licensing analysis, we put in a lot of conservatism
6	and it survives, right?
7	Well, when they do a realistic analysis,
8	then they're going to say, "Man, that's a really low
9	number, this probability that it's"
10	CHAIRMAN APOSTOLAKIS: Oh, you mean
11	DR. KRESS: That was the reason we put in
12	our letter that perhaps you ought to risk inform this
13	issue.
14	CHAIRMAN APOSTOLAKIS: And then you go to
15	these guys.
16	DR. KRESS: Yeah, that was the reason,
17	because we felt like that on the basis of CDF and LERF
18	that it probably wasn't that serious.
19	CHAIRMAN APOSTOLAKIS: And I have a hard
20	time believe it's .6, the condition of probability.
21	Huh?
22	DR. KRESS: Repeatedly.
23	CHAIRMAN APOSTOLAKIS: So high?
24	DR. KRESS: It won't be that high for a
25	BWR.
l	1

(202) 234-4433

	237
1	DR. BUELL: Well, it generated that
2	discussion on it, but the bottom line is that it could
3	have some impact on the results.
4	DR. THADANI: Well, you had a real event
5	with a BWR.
б	CHAIRMAN APOSTOLAKIS: Say again.
7	DR. THADANI: There was a real event at a
8	BWR, and we know what happened.
9	DR. KRESS: You plugged it in and spall
10	sump (phonetic).
11	DR. THADANI: It was called Barseback, and
12	we have had some partial events called that.
13	CHAIRMAN APOSTOLAKIS: It's still called
14	Barseback.
15	MR. DENNING: But it might not have been
16	under different circumstances.
17	CHAIRMAN APOSTOLAKIS: They shut down one
18	year. You remember that? Not because of this.
19	DR. KRESS: They fixed their sump.
20	DR. THADANI: Yes.
21	DR. BUELL: The next issue on our list
22	here is support system initiating event fault trees.
23	Okay. Right now the industry, probably two-thirds of
24	them I'm just going off, you know, experience
25	here probably two-thirds of them use initiating
	1

(202) 234-4433

	238
1	event fault trees if you carry that information into
2	the model. One-third of them use a point value, and
3	there's pros and cons of both, but right now we use a
4	point value in SPAR models, and we use that value
5	based out of NUREG 5750.
6	There's a problem with that. The problem
7	is or several problems that you can get the
8	right CDF out of it, but when doing the MSPI program
9	and other programs, you don't get the correct event
10	importance because you're not getting the contributor
11	coming up through the fault tree on the initiating
12	event.
13	CHAIRMAN APOSTOLAKIS: So you're
14	supporting the fault tree approach.
15	DR. BUELL: We are, and we're looking at
16	researching that and developing that methodology.
17	Okay?
18	The other down side of using a point value
19	is you don't have any latitude based on system
20	configuration or levels of redundance.
21	CHAIRMAN APOSTOLAKIS: Sure.
22	DR. BUELL: You're just using a generic
23	number.
24	CHAIRMAN APOSTOLAKIS: I don't think you
25	need to give anything, any argument.

(202) 234-4433

	239
1	DR. BUELL: Okay. Well
2	CHAIRMAN APOSTOLAKIS: It is a system. It
3	has components. We analyze it.
4	DR. BUELL: Well, I'm just saying this is
5	a model uncertainty because right now we use a point
6	value. So we use the same that.
7	DR. BUELL: So we use the same number.
8	CHAIRMAN APOSTOLAKIS: But there's no
9	excuse for point values. Then why don't they do the
10	same with the high pressure injection system? Just
11	because it's front line?
12	In a PRA if you have a system, you analyze
13	it.
14	DR. KRESS: Like the control system?
15	CHAIRMAN APOSTOLAKIS: No. No, but this
16	is of the kinds of systems we analyze.
17	MR. DENNING: I agree. It's made up of
18	the same kinds of components.
19	CHAIRMAN APOSTOLAKIS: Yeah, hydraulic
20	systems, you know, pushing water here and there.
21	DR. BUELL: Okay. Well, like I say, this
22	is an issue that needs to be resolved at some point,
23	and we're looking at doing that.
24	CHAIRMAN APOSTOLAKIS: You just declare it
25	is all.
1	

(202) 234-4433

	240
1	DR. SCHROEDER: One of the reasons this is
2	an issue is that in visiting many, many plants, we saw
3	the result of fault tree initiating event models that
4	predicted service water failures much, much, much
5	lower than we were seeing in the data.
6	So there was a huge question about whether
7	those were valid, and if we undertake that ourselves,
8	we have to be very careful to get something that is
9	consistent with the data.
10	CHAIRMAN APOSTOLAKIS: No, but that means
11	the fault tree calculations were not right.
12	MR. DENNING: Exactly.
13	CHAIRMAN APOSTOLAKIS: It doesn't mean
14	that you should switch the point values. Like with
15	anything else, you know, if you find discrepancies,
16	you question why and I'm sure you will find the
17	problem with their analysis.
18	DR. BUELL: And our feelings are, along
19	with the same issue, and we're going to get to it in
20	a minute, is that most plants do not look at the water
21	quality issues. The common mechanism of storm surges
22	and grass attacks and fish runs and the other myriad
23	of things that will shut plants down
24	CHAIRMAN APOSTOLAKIS: You know, I really
25	think the major value of using PRAs is exactly what
	I

(202) 234-4433

	241
1	you just said. There are people on opposite sides
2	questioning, debating detailed issues and so on. The
3	actual numbers I'm not sure are that important, but
4	now you will go to the licensee who doesn't do that
5	and say, "Water quality is important. Have you
б	thought about it? How do you handle it?" and so on.
7	I think this is really the value, that
8	it's a framework within which all of these issues come
9	up, and I think raises the level of safety that we
10	have. I really like that, the give and take that you
11	guys are having with the licensees.
12	MR. DENNING: Let me understand. With
13	your old approach the frequency of turbine trips,
14	things like that, would you not have modeled you
15	don't model that? Currently you just put in a value
16	for turbine trips or do you model?
17	DR. BUELL: No, currently we use a point
18	value for every initiator. We don't do any fault tree
19	specific modeling for those. Something like a turbine
20	trip would be extremely difficult because of all the
21	control systems and protective systems, but there are
22	some other systems like service water and some of
23	these other fluid type systems that are easier to
24	model and you can approximate.
25	DR. SCHROEDER: Not to be misunderstood,

(202) 234-4433

	242
1	we have service water fault tree models now. We don't
2	use them for the initiating event frequency
3	determination. We use them in a support system
4	capacity.
5	The reason we don't use them for the
6	initiating event is that there are assumptions that
7	might apply to a 24-hour mission that wouldn't
8	necessarily apply to an initiating event calculation.
9	CHAIRMAN APOSTOLAKIS: So you would need
10	a different analysis.
11	DR. SCHROEDER: We need a different
12	analysis. It look very much
13	CHAIRMAN APOSTOLAKIS: Well, that's fine.
14	DR. SCHROEDER: like the existing fault
15	tree, but it might be different in key ways, and one
16	of the things that we are planning to do is try to
17	settle that, and we would like to do it by achieving
18	a consensus with the industry, but in any event, we're
19	going to do it in some way that makes sense to us.
20	DR. BUELL: And two of those issues are
21	the basis approach or basic methodology. One of them
22	is a multiplier method where you use a regular 24-hour
23	mission time and you multiply it by a factor to get
24	the extended mission time for the year, and there are
25	some up sides and down sides with that.
I	

(202) 234-4433

	243
1	And the other one is to have separate
2	events for the year long mission time versus the 24-
3	hour mission time, and there are up sides and down
4	sides to that when you calculate importance measures
5	and all kinds of things.
6	So there's no perfect way of doing this,
7	but there is probably an optimal way, and we just need
8	to look at that and determine that. And that will be
9	going on at some point in the future.
10	CHAIRMAN APOSTOLAKIS: Very good.
11	DR. BUELL: We're down to the last couple
12	here. Power recovery after battery depletion is an
13	issue, and it has shown up in the MSPI comparisons.
14	SPAR models right now give no credit for power
15	recovery beyond battery depletion. Okay?
16	This is somewhat conservative, possibly
17	conservative. It does have a big impact on the SBO
18	CDF as well as the diesel importances.
19	MR. DENNING: I don't know the technical
20	issue here. What's really the technical issue?
21	DR. BUELL: Okay. The bottom line is you
22	typically do not do core uncovery for many hours
23	beyond battery depletion. There's also additional
24	systems that are not dependent on the batteries per se
25	for injection.
	1

(202) 234-4433

	244
1	You may have a plant that has a diesel
2	driven AFW pump. That pump can continue to inject,
3	you know. So you can actually also have seal failure.
4	You might go out 18, 20 hours
5	MR. DENNING: So you wouldn't give any
6	credit at the moment
7	DR. BUELL: We wouldn't give credit for
8	that because we're saying when the batteries go dead,
9	the complexity of the evolution to bring off-site
10	power back into the plant without having remote
11	control ability on those breakers
12	MR. DENNING: And you can't really monitor
13	and know what's happening.
14	DR. BUELL: Yeah, and typically plants
15	have sketchy procedures at best. Some plants have
16	better than others.
17	Because of all the uncertainty there, we
18	have not modeled anything beyond battery depletion.
19	That has been our standard for many years, but it's a
20	big difference between us and some of the plants.
21	Now, a lot of the plants do go without and
22	say we're going to cut it at that point, but there are
23	some plants, you know, especially the ones that have
24	like diesel driven AFW pumps, you know. They're
25	saying, "Hey, I've got this system and I can't use it
	I

(202) 234-4433

	245
1	because my batteries go dead." So they want a credit.
2	Some of the considerations down here, you
3	know, just off the cuff here, you know, diesel driven
4	injection sources, you know, how much credit should we
5	give for that? You know, availability and quality of
6	procedural guidance. You know, some plants just say,
7	"We'll give it 50 percent chance because we don't have
8	detailed procedures. We're not going to take much
9	credit for it," but they take a little credit for it.
10	There's other issues. You know, the
11	duration of emergency lighting. Can you realistically
12	say, "I'm going to get 20 hours of operation when I
13	can't see anything in the plant"?
14	You know, switch yard battery life.
15	There's batteries that a lot of plants have separate
16	batteries in the switch yard, you know. Manipulating
17	those breakers is much more complex than manipulating
18	four kV breakers. You can go out and pump up the
19	breakers with a small breaker. You don't do that with
20	a switch yard breaker.
21	So there are some of these issues that
22	we're looking at we're going to try to distill it down
23	to the key issues and see if possibly we can't change
24	that assumption that we fail at battery depletion.
25	But that is a big issue at some plants.

(202) 234-4433

	246
1	At some plants it's not an issue at all, but the MSPI
2	program has identified this separately from us as an
3	issue, and I think he's going to be talking about that
4	later today, but we're looking at ways of resolving
5	this and coming up with an optimal way.
6	Here's a BWR issue that is a significant
7	issue at some plants. This issue deals with continued
8	injection after containment fails on over pressure.
9	You know, it fails. You've had a long term heat
10	removal failure. You've pressurized the containment,
11	and you fail the containment. If you have injections
12	or, let's say, CRD or some other injection source, did
13	you continue to credit after containment fails?
14	MR. DENNING: And when you say "fails,"
15	this is a hard vent that
16	DR. BUELL: Yeah, this is either a rupture
17	or a tear in the containment itself.
18	MR. DENNING: But not a hard vent?
19	DR. BUELL: Not a vent. We look at that
20	separately.
21	MR. DENNING: Oh.
22	DR. BUELL: Now, that does have a similar
23	impact at some plants, but that's a separate issue.
24	So the bottom line is how much credit you give for
25	that continued injection can significantly impact your
l	I

(202) 234-4433

	247
1	decay heat removal importance for those components.
2	It can also significantly impact your
3	overall CDF for some BWRs. So some of the related
4	issues, you know, the environment, the steam, the
5	depressurization rate, you know, if it just tears
6	versus completely depressurizes, that eliminates some
7	of your low pressure injection systems because if you
8	sit there at 150 pounds and just bleed off enough
9	pressure, you're never going to get fire water
10	injection.
11	So there are some of these issues that
12	need to be resolved and looked at.
13	NUREG 1150 gives complete credit for that.
14	The old daily events manual didn't give any credit for
15	that, and we're transitioning towards more credit, but
16	we're looking at this issue in more depth.
17	The next slide.
18	Poor success criteria, we've already
19	talked about this one. John mentioned also I've
20	looked at as much information as I can find. I've
21	looked at plants that have identical relief capacity.
22	They have the same injection pumps, the same thermal
23	output. One will take two; one will take one as a
24	success criteria.
25	Now, that could be from the fact that they
1	I contract of the second se

(202) 234-4433

248
just didn't want to put the additional effort into the
analysis or it could be that they ran an analysis. We
don't know, but there's a big variability in that
assumption.
CHAIRMAN APOSTOLAKIS: But you will find
out.
DR. BUELL: Say again.
CHAIRMAN APOSTOLAKIS: You will find out.
DR. BUELL: We will look into it, but I'm
not sure we'll get an answer soon on that one.
So next slide.
And this is the last of the ten issues.
This is time to core uncovery. SPAR in the past has
been conservative and went if you didn't have any
information and you had no knowledge, you basically
went to a half an hour core uncovery time. Okay?
That was a little bit too conservative.
What we did is we went and did a literature search,
tried to gather all of the old NUREGs, all of the
thermal hydraulic analyses that we've come up with,
put those in a master table, and take a composite or
extrapolate between those studies, and most of the
time now, even on a most conservative modeling it's
closer to an hour.
And that brought us closer in line to what

(202) 234-4433

	249
1	the industry was saying. So we identified that as an
2	issue. We went and made a reasonable fix. Short of
3	having any detailed thermal hydraulics, that's
4	probably an acceptable fix.
5	MR. DENNING: It does seem that this is an
6	analyzable problem, you know.
7	DR. BUELL: It is analyzable with enough
8	resources, and is it worth that effort is a question
9	that
10	CHAIRMAN APOSTOLAKIS: Good.
11	DR. BUELL: So those are the top ten
12	issues that we have identified by going to all of
13	these different plants and comparing our models to
14	theirs. We've got a resolution for half of them
15	that's already incorporated. The other half we're
16	working on getting those fixed.
17	CHAIRMAN APOSTOLAKIS: Now, you're
18	beginning with your next slide, another topic, right?
19	Or you're going to?
20	DR. BUELL: I still have one. I thought
21	that was my last one. I have one additional slide
22	here. No, I've got a couple.
23	MR. DENNING: A couple.
24	DR. BUELL: Did you want okay.
25	CHAIRMAN APOSTOLAKIS: No, but these were

(202) 234-4433

	250
1	not part of the nine. Are these new?
2	DR. BUELL: Yeah, this is just a
3	continuation of the general topic. I did a slide for
4	each one of those, the bullets, and now I'm just
5	looking at general.
6	MR. DENNING: So three more slides. After
7	that would be a natural break point.
8	DR. BUELL: That's correct.
9	CHAIRMAN APOSTOLAKIS: Good.
10	DR. BUELL: Okay. I'll hurry through
11	these.
12	We talked about the loss of service water
13	initiating event frequency. A key element that we
14	don't see being modeled in these support system
15	initiators is water quality, and there's been 30-some
16	plant shutdowns because of those, including a couple
17	of service water failures. We just don't see that
18	being modeled in the PRAs. We need to come up with
19	some type of methodology that maybe they would
20	incorporate or something we at least feel
21	MR. DENNING: This is like organic
22	contamination or some sort?
23	DR. BUELL: Yes. Debris loading silt,
24	fish runs, that type of stuff, collapsed trash rakes,
25	overloaded trash rakes, something along those lines.

(202) 234-4433

	251
1	MR. DENNING: Every one of them different.
2	DR. BUELL: Every one different, you bet.
3	Addition of low importance initiators. As
4	we went to these plants there's a lot of them that
5	were low initiators, one or two percent. We're adding
б	that as part of this MSPI or the detailed cuts at
7	level comparison.
8	We've changed our steam generator tube
9	rupture logic to include some benefit or some credit
10	for long-term RWST refill and continued injection. So
11	we made that change.
12	General modeling of common cause, we've
13	talked about that.
14	Simplified modeling of emergency diesel
15	alignments. We've made some modifications. This is
16	something that won't go away completely because of all
17	the myriad ways you can align diesel, especially if
18	you have many of them and a lot of cross-ties. We
19	just don't have the resources to model every possible
20	combination explicitly.
21	So what we do is we set an arbitrary
22	alignment that gives us the most benefit, and then if
23	there's an analysis, we let the analyst correct that
24	alignment for the alignment that he's actually
25	modeling.
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433
	252
1	So there's just no way for us to
2	explicitly model every combination and look at that in
3	the base model.
4	So recent changes to the model that we've
5	made over the last year. We have put in the new CCF
6	alpha factors. We've linked and included new template
7	events. We've put in a new seal pump or RCP pump
8	logic. We've put in LOOP initiator logic as well as
9	off-site power recovery data, and we've converted from
10	the per hour to per year. Nobody likes the per hour.
11	so we made that conversion. So our results come out
12	on a per-year basis.
13	CHAIRMAN APOSTOLAKIS: So the question is
14	really who liked it.
15	DR. KRESS: Why was it there in the first
16	place?
17	DR. BUELL: Not very
18	CHAIRMAN APOSTOLAKIS: Why was it there in
19	the first place?
20	DR. SCHROEDER: It was there because that
21	was the format used in the daily events manual, and
22	the only reason that it was there is that most of the
23	conditions that they were trying to evaluate for X
24	number of hours and it made the multiplication easy.
25	Along come computers, and you can automate
	I

(202) 234-4433

ĺ	253
1	all of that, and we took the opportunity of a global
2	model update to change what had just festered for a
3	long time.
4	MR. DENNING: I think we accept that.
5	CHAIRMAN APOSTOLAKIS: You know, there is
6	always a reasonable explanation.
7	DR. BUELL: Future enhancements, things
8	that we're looking at right now and things that we're
9	doing. We're performing these detailed cuts at level
10	reviews.
11	We're splitting the transient event trees
12	into some sub-trees. That gives the analyst just a
13	little better definition. They're not relying on all
14	of these conditional probabilities.
15	We've added the new steam generator tube
16	rupture logic, the credit for RWST refill for those.
17	We are giving more definition for multiple
18	unit sites, for whether it's a single or dual unit
19	loop. That affects the cross-ties.
20	We've added the consequential seal LOCA
21	logic, and we're adding lower importance initiators,
22	anything greater than one percent.
23	We're adding additional detail. Before in
24	the PWR models, we had split fractions for main
25	feedwater. Now we're trying to do a more detailed

(202) 234-4433

	254
1	model, including the support systems.
2	We're standardizing the IS local
3	methodology for both Ps and Bs; benchmarking the PSA
4	test. That's our major task over the next year,
5	finishing up or continuing these detailed comparisons.
6	We're also the HEP calculator that you
7	saw John demonstrate in SPAR, that's a relatively new
8	edition. Now we've got to go back and take all of our
9	HEPs, put them into those shaping factors.
10	And we've talked about these items already
11	at the bottom here. These are pending resolution of
12	some outstanding issues. The initiating event
13	modeling, as well as integrating all of these models
14	into a single model that is based on the SPAR Level 1
15	model.
16	So that's some of the future plans we're
17	going to be looking at during this next year or so.
18	CHAIRMAN APOSTOLAKIS: Great.
19	DR. BUELL: And I think John is going to
20	talk to you about
21	CHAIRMAN APOSTOLAKIS: Starting a new
22	topic now. So let's take a break until 3;25.
23	(Whereupon, the foregoing matter went off
24	the record at 3:06 p.m. and went back on
25	the record at 3:30 p.m.)
	1

(202) 234-4433

	255
1	CHAIRMAN APOSTOLAKIS: Are you ready?
2	MR. DUBE: Well, good afternoon. I'm Don
3	Dube, and this is not a presentation on the MSPI.
4	It's really on the PRA quality reviews that we
5	performed as part of the MSPI implementation, and it
6	kind of follows on the presentation by John and Bob
7	regarding the SPAR versus licensees' PRA comparisons.
8	Along those lines we did something
9	similar, although in a very compressed time and a much
10	more narrow focus.
11	I'm just going to take one slide to
12	refresh your memory on what the MSPI is and why we
13	choose the Birnbaum as the measure figure of merit,
14	and in words, the MSPI is a measure of the deviation
15	of the plant system unavailability and component
16	unreliabilities from baseline values. So it's really
17	a delta.
18	But each unavailability or unreliability
19	is weighted by plant specific risk importance
20	measures. So the MSPI is the sum of an unavailability
21	contribution and an unreliability contribution. For
22	example, for the unreliability, a very simple
23	expression here would be ${\tt B}_{\rm i}$ times, in parentheses, the
24	unreliability of, let's say, a diesel generator
25	running minus the unreliability of a baseline diesel
I	1

(202) 234-4433

generator based on an industry average failure rate. So it's a deviation of plant specific

performance from the norm, but it's weighted by a Birnbaum average. The reason why we choose Birnbaum is because it falls out of the derivation, Birnbaum being a change in core damage frequency for a given change in unreliability.

And so when we perform the comparison, 8 9 since the Birnbaum of a basic event is a figure of merit using the MSPI, it's ingrained in the MSPI 10 calculation and algorithm. It makes sense that what 11 we want to do is compare a Birnbaum value derived from 12 the SPAR mode with the Birnbaum value the licensee has 13 14 in their model and see if they make sense and if not 15 why don't they make sense.

16CHAIRMAN APOSTOLAKIS: Now, the B is what17makes this plant specific?

18 MR. DUBE: Correct. It falls out of the19 plant PRA.

20 CHAIRMAN APOSTOLAKIS: Right, and baseline 21 values are the plant values. The UR, the first term, 22 is the plant specific unreliability. The second term, 23 the minus term, is a baseline value that's an industry 24 average.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

CHAIRMAN APOSTOLAKIS: Oh, it's not a

(202) 234-4433

25

1

2

3

4

5

6

7

	257
1	plant specific value.
2	MR. DUBE: No, it's an industry average.
3	CHAIRMAN APOSTOLAKIS: In the ROP I
4	believe we looked at the deviations from what the
5	utility has told us or in the maintenance rule. Isn't
6	that what we do?
7	MR. DUBE: Yeah, but this is the way
8	the MSPI was set up, it's a deviation from the
9	industry norm.
10	CHAIRMAN APOSTOLAKIS: And the industry
11	didn't complain about that?
12	MR. DUBE: No. They helped derive this.
13	No.
14	CHAIRMAN APOSTOLAKIS: Okay.
15	MR. DUBE: So that's all I want to say
16	about that, but to implement MSPI it was decided that
17	there were some quality requirements, PRA quality
18	requirements, that needed to be set. So a PRA quality
19	task group was formed of three NRC and two industry
20	members. Mike Cheok and Gareth Perry were two of the
21	five members, the names you're probably the most
22	familiar with.
23	And they came up with a set of
24	recommendations, and I provide this as background, why
25	we did what we did. They established two

(202) 234-4433

What every licensee did for their PRA is 5 they had a team of reviewers from other contractors, 6 7 consultants, and utility representatives, and they did a focused review on each licensee's PRA; came up with 8 9 a number of facts and observations, the As and Bs being the most important because it could impact the 10 PRA quantitative results, whereas like C, for example, 11 12 might be a documentation issue.

So we said if you're going to move forward 13 14 the MSPI, you need to resolve those or at least go 15 through the ones that are not yet closed, that are still open and explain why it would not impact the 16 17 MSPI approach, the method.

The second part was the performance self-18 19 assessment using NEI 0002 endorsed by Appendix B of 20 Req. Guide 1.200, which you've seen for the ASME level 21 requirements identified by the task group.

22 So what they had to do was say supporting 23 requirements. There were 41 that were level 24 identified from the ASME PRA standard that says we 25 believe these SLRs are important to the MSPI because

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	259
1	whether you met them or not, these requirements could
2	impact the MSPI in a quantitative way.
3	And licensees would have to do a self-
4	assessment and say, "Yeah, we meet all 41 of these
5	requirements," or if not, "this is why we don't think
б	it will have an impact."
7	CHAIRMAN APOSTOLAKIS: Isn't the PRA
8	review you're referring in A the one that is
9	implemented using NEI 0002? I think that's correct.
10	MR. CHEOK: Yes, that's correct.
11	CHAIRMAN APOSTOLAKIS: That's correct.
12	MR. CHEOK: That's why we require the B
13	part of it, so that they can reconcile the NEI 0002
14	to the ASME standards.
15	CHAIRMAN APOSTOLAKIS: Okay. So the Bs
16	MR. CHEOK: B ties it back to the
17	standards.
18	CHAIRMAN APOSTOLAKIS: thing into the
19	picture.
20	MR. CHEOK: Correct.
21	MR. DUBE: Now, when the industry surveyed
22	their members, they found a substantial number would
23	not be able to meet both A and B and proposed an
24	alternative to B which was that they do a cross-
25	comparison of their PRAs, and I'll explain that in a
	1

```
(202) 234-4433
```

	260
1	little bit.
2	CHAIRMAN APOSTOLAKIS: I don't understand
3	that. Why would they not be able to do this? I mean
4	it sounds like straightforward to me. Do they give
5	any reason?
6	MR. DUBE: I mean, it entailed quite a bit
7	of effort to do both.
8	CHAIRMAN APOSTOLAKIS: So it's a likely
9	amount of effort.
10	MR. CHEOK: I think it's a resource issue.
11	That's correct. I man, they will require a lot more
12	effort to be able to meet A and B than they thought
13	was possible in the time that's needed for
14	implementation.
15	MR. DUBE: In the time frame.
16	MR. CHEOK: Right.
17	CHAIRMAN APOSTOLAKIS: So a cross-
18	comparison of PRAs is the alternative, but the PRAs as
19	they are today may be missing a few system level
20	requirements of the ASME code. So essentially you are
21	defeating B, right? Because the PRAs, a lot of them
22	were done, in fact, before the ASME code was issued.
23	MR. CHEOK: That's correct, but a lot of
24	the PRAs have gone back and backfit to be consistent
25	with the ASME code. So I think the process that Don

(202) 234-4433

	261
1	will talk about is they will do a cross-comparison
2	among themselves first before they make a submittal to
3	us, and after they make the submittal to us, we'll
4	make a cross comparison between their distribution and
5	our SPAR distribution, and Don will talk about that.
6	CHAIRMAN APOSTOLAKIS: But the ASME SLRs
7	are out. You are not going to go to the ASME SLR,
8	right?
9	MR. CHEOK: That's correct, but some of
10	the licensee PRAs would have gone through the ASME
11	SLRs.
12	MR. DUBE: They may have gone through
13	some, but not necessarily all.
14	CHAIRMAN APOSTOLAKIS: Again, a cross
15	comparison of PRAs. PRA presumably are plants of a
16	similar vintage.
17	MR. DUBE: Yes, right.
18	CHAIRMAN APOSTOLAKIS: So what if they
19	compare with five other PRAs? One of them has
20	included additional inputs and the four did not. What
21	do they do? Do they say, "Well, we'll ignore the
22	fifth one"?
23	MR. CHEOK: I think Don is going to
24	explain this.
25	CHAIRMAN APOSTOLAKIS: Okay.
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	262
1	MR. DUBE: So the staff said fine, but to
2	have further confidence, we performed an additional
3	cross-comparison of the PRA Birnbaum values to SPAR
4	values and developed a process to do that.
5	You might not be able to read this, but
б	there was a logical, systematic process to identify
7	outlier Birnbaum importance measures, and it started
8	by compiling the industry Birnbaums, and for the MSPI
9	that represents about 5,000 components or 10,000
10	Birnbaums if you have two failure modes per component;
11	assigning them to plant groups based on similar plant
12	designs and vintages; identifying whether they were in
13	the appropriate group or not; if necessary,
14	reassigning them; and then if there were a substantial
15	difference between the Birnbaum values, they became
16	candidate outliers.
17	CHAIRMAN APOSTOLAKIS: Is it the same as
18	the figure that Bob and John showed us when they
19	compared the Birnbaums of the SPAR with the industry
20	PRAs? Is it the same thing?
21	MR. DUBE: Again, I have different the
22	same concept, but different approach, a little bit
23	different approach.
24	CHAIRMAN APOSTOLAKIS: Different approach.
25	DR. KRESS: They use the same metric?
	1

(202) 234-4433

	263
1	MR. DUBE: We're using the comparison of
2	the Birnbaum values, right.
3	CHAIRMAN APOSTOLAKIS: Well, that's what
4	they did. So what's the difference?
5	MR. DUBE: Well, you'll see.
6	CHAIRMAN APOSTOLAKIS: Oh, I will. I
7	will.
8	DR. KRESS: We'll wait.
9	MR. DUBE: If there was a candidate
10	outlier, then we did forensic PRA and try to determine
11	if it was because of an identifiable design
12	difference, and if so, we reviewed the modeling of
13	that. That's the first decision box there, the
14	diamond.
15	If not, was it because of an operational
16	feature, such as electrical cross-tie procedure,
17	emergency operating procedure or something along those
18	lines? And if not, was it because of an identifiable
19	modeling method difference?
20	CHAIRMAN APOSTOLAKIS: Can we have a full
21	page copy of this figure? It's impossible to read it.
22	Not now, but I mean when I go home and I want it.
23	MR. DUBE: So the Westinghouse owners
24	group and the BWR owners group did cross-comparison,
25	and here I'm just showing one graph. It's a little
1	

(202) 234-4433

	264
1	bit busy, but one graph, and I kind of hid the plant
2	names, although this is generally proprietary Class 3,
3	which means it's not proprietary.
4	Each group of bars
5	CHAIRMAN APOSTOLAKIS: Mr. Reporter, can
6	you hear? Okay.
7	MR. DUBE: Each group of bars is one
8	plant, and each individual bar is the Birnbaum value,
9	and this is on the scale of ten to the minus six, ten
10	to the minus five, ten to the minus four for the
11	emergency diesel generators, and what you see kind of
12	naturally falls out is that these are the group of
13	Westinghouse and Combustion Engineering plants with
14	two emergency diesel generators. These are the plants
15	with three emergency generators, and these are the
16	plants with more than three diesel generators.
17	And also plotted on here are mean values,
18	median values. And what you see is the Birnbaum
19	values is a strong function of plant design and for
20	diesel generators, a strong function of the number of
21	emergency diesel generators.
22	What that basically means is two diesel
23	generator plants have on average Birnbaum values that
24	are higher than three diesels, which is higher than
25	four or more, meaning that the core damage frequency
I	1

(202) 234-4433

Í	265
1	is very sensitive to the performance of a diesel
2	generator.
3	And given that you have two diesel
4	generators, one diesel generator is more important to
5	a two-diesel plant than it is to a three-diesel plant
6	or four. I mean, it kind of makes sense.
7	CHAIRMAN APOSTOLAKIS: Is the plot the
8	birnbaum for a single diesel?
9	MR. DUBE: yes.
10	CHAIRMAN APOSTOLAKIS: Regardless of how
11	many they have.
12	MR. DUBE: Right. And this sump asymmetry
13	in some cases is three because they also included a
14	non-safety related like a station blackout diesel to
15	show its value just for purpose even though it's
16	not in the MSPI.
17	CHAIRMAN APOSTOLAKIS: Let's take the two
18	extremes or maybe the first one on the left and the
19	third one from the end.
20	MR. DUBE: This one?
21	CHAIRMAN APOSTOLAKIS: Yeah, this one and
22	the third one. No, the other one, all the way down,
23	all the way to the right, the third one.
24	MR. DUBE: This one?
25	CHAIRMAN APOSTOLAKIS: The third one.
	1

```
(202) 234-4433
```

	266
1	They seem to have the same Birnbaum. How can a diesel
2	generator in a four diesel plant have the same
3	Birnbaum as a diesel generator in a two diesel plant?
4	MR. DUBE: Well, this shows the category-
5	to-category variation, but what it shows is within
6	here there may be other plant specific it could be
7	one of three things: a real design difference, a real
8	performance difference in terms of failure to run and
9	failure to start rates or a mod difference (phonetic).
10	CHAIRMAN APOSTOLAKIS: Most likely the
11	latter unless the numbers are completely off. I mean
12	how can, you k now, one out of two systems, a
13	component has a certain importance. You know, one out
14	of four you just have much less importance.
15	MR. DUBE: Well, what you find is it's a
16	combination of the three, and the reason why we use
17	the SPAR models as a benchmark Bob and John kind of
18	mentioned that is that it removes two out of the
19	three factors. It removes data because we're using
20	the same performance data in the SPAR models. It
21	removes modeling differences because we're using a
22	standard process, and what you see in the SPAR model
23	is what's left is really primarily design difference.
24	So what we do by comparing the SPAR
25	Birnbaums with the licensee's Birnbaum is remove two

(202) 234-4433

	267
1	out of those three differences, and
2	CHAIRMAN APOSTOLAKIS: There may be real
3	differences, right?
4	MR. DUBE: Yes.
5	CHAIRMAN APOSTOLAKIS: Still though,
6	wouldn't it be interesting to find out why these two
7	seem to be the same?
8	MR. DUBE: And that's what we do based on
9	the process that we used, which was we were concerned
10	with outliers where the industry's value deviated
11	significantly from the norm within its group and
12	significantly from the SPAR value, and we had a set of
13	criteria that went through all 5,000 components; used
14	a screening approach to say which ones had significant
15	deviation, and then dove into the model, the cut sets
16	and looked at the modeling differences; determined if
17	it was a design difference or a modeling different
18	that would explain the difference between the Birnbaum
19	values.
20	CHAIRMAN APOSTOLAKIS: So you're
21	investigating the causes.
22	MR. DUBE: The reason for the differences.
23	CHAIRMAN APOSTOLAKIS: Yeah.
24	DR. KRESS: You're looking for something
25	outside of the range of

(202) 234-4433

	268
1	MR. DUBE: Outside of the norm.
2	DR. KRESS: outside of the red.
3	CHAIRMAN APOSTOLAKIS: Even within the
4	class, significant differences, huh?
5	MR. DUBE: That's right, and when you dig
6	down to it you find this particular plant, for
7	example, might have installed independent reactor
8	coolant pump seal cooling capability so that in the
9	event of a station blackout they would line up with,
10	say, fire water or some other system to cool the
11	reactor coolant pump seal, or they may have had
12	installed some other AC independent system. In other
13	cases, you may find that they installed an independent
14	cooling system for a charging pump that provides that
15	cooling pump.
16	But you find that there may be very real
17	design differences that explain one set of values from
18	the other set of values.
19	If you can't explain it because of a
20	design difference or because of a performance
21	difference, what's left is a modeling difference.
22	CHAIRMAN APOSTOLAKIS: Very interesting,
23	very interesting.
24	MR. DUBE: This was done for all of the
25	components for all of the systems installed in the
	I

(202) 234-4433

	269
1	MSPI, and then the Westinghouse owners group even went
2	further. They looked, and we talked about changes
3	like VOS-VOS like power frequency, and there they
4	found it was a pretty tight distribution for a plant.
5	They also looked at small LOCA frequency,
6	which varied significantly. They looked at
7	conditional core damage probability, a contribution to
8	core damage frequency from lots of service water, and
9	according to their grouping, compared the results
10	from
11	CHAIRMAN APOSTOLAKIS: So, Don, you expect
12	the industry to do this for all components?
13	MR. DUBE: All the MSPI in scope
14	components.
15	CHAIRMAN APOSTOLAKIS: How many?
16	MR. DUBE: Primarily pumps and diesels.
17	CHAIRMAN APOSTOLAKIS: So how many of
18	those are we talking?
19	MR. DUBE: Three thousand components.
20	MR. CHEOK: Now, remember we didn't expect
21	them to do it. They proposed that they would do it in
22	place of the two requirements we showed you.
23	CHAIRMAN APOSTOLAKIS: So 3,000 pictures
24	like this is preferable than doing little B?
25	MR. DUBE: No, not 3,000 pictures. I

(202) 234-4433

	270
1	mean, this is two times. This is already what, a
2	couple hundred or a hundred, a couple hundred right
3	here. So it's not 3,000.
4	CHAIRMAN APOSTOLAKIS: Well, I mean, 3,000
5	divided by
6	MR. DUBE: Yeah.
7	CHAIRMAN APOSTOLAKIS: That's interesting.
8	MR. DUBE: Well, so we
9	CHAIRMAN APOSTOLAKIS: But the important
10	point here other vendor groups will do the same thing.
11	MR. DUBE: These are group groups that are
12	similar. B&W, since they're a small population it's
13	hard to get
14	CHAIRMAN APOSTOLAKIS: Yeah, but it's
15	interesting that this is done by the owners group,
16	right?
17	MR. DUBE: Right.
18	CHAIRMAN APOSTOLAKIS: Not by individual
19	utilities.
20	MR. DUBE: We derived our own set of
21	groups, and we actually for the six systems in the
22	MSPI developed about 30-something groups.
23	The next shows one example of a group.
24	Now, this is actually a histogram fitted with a curved
25	fit to it because we had groups, cases we were

(202) 234-4433

271 1 overlapping four or five histograms at a time, and the 2 typical histogram bar chart doesn't show up very well 3 when you overlap it. 4 Really what this is is this point right 5 here, for example, means that there are, in the industry, there are 55 diesel generators -- oh, by the 6 7 way, this is from the category of diesel generators 8 that are really more than two but less than or equal 9 three. So what that means is three diesel to generator plants and kind of two and a half diesel 10 generator plants. 11 12 how can you have diesel So ever а generator, but there might be a shared diesel between 13 14 two units, and so we counted that as a half. It might 15 have been a station blackout. It may have been, you know, a non-safety related, small diesel generator 16 17 that provided limited AC power. 18 had a routine to do it, So we but 19 basically it's three diesel generator plants is 20 another way to look at it. 21 So this means that there are 55 diesel 22 in this grouping with Birnbaum values generators between ten to the minus six and ten to the minus 23 24 five, and you can go through that. 25 The blue is the industry distribution.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	272
1	The pink is the SPAR distribution, and what this shows
2	is for well, this graph says a lot of things, but
3	just the shape of the graph says a lot of things.
4	The fact that the SPAR and the industry
5	overlap says there's pretty darn good agreement on the
6	Birnbaum values, and if you look at what is behind the
7	Birnbaum value, what determines the Birnbaum value is
8	a loss of off-site power frequency, the nonrecovery of
9	off-site power and probability, the reliability of
10	diesel generators, and equipment that you use to
11	mitigate a station blackout, such as a steam driven
12	pump.
13	This tells us that at least for this
14	category of plants, there's pretty darn good agreement
15	in the overall Birnbaum values, at least on the whole
16	or the population as a whole for this group.
17	The width of the curve tells us a lot of
18	things, too, because the fact that the widths are
19	about the same tells u we have about the same
20	variability, and since the SPAR only has design
21	variability and the industry may have design and data
22	and model variability. That kind of tells us that the
23	way everybody is modeling loss of off-site power and
24	station blackout kinds of sequences and the kinds of
25	loss of off-site power frequencies that are being used
	I contraction of the second

(202) 234-4433

	273
1	and the kinds of diesel generator unreliabilities are
2	probably not all that far different.
3	CHAIRMAN APOSTOLAKIS: Well, unless you
4	look at the range, which is from ten to the minus
5	seven to ten to the minus three.
6	MR. DUBE: Yeah, but then
7	CHAIRMAN APOSTOLAKIS: Well, that's kind
8	of different, Don.
9	MR. DUBE: But then you look at those and
10	you say why is that, and it's probably because sine
11	the SPAR value has moved out, differences in data and
12	differences in modeling method, this tells you that
13	there are probably still differences in design
14	capability between a value here and a value here, when
15	you find such things as I mentioned before, additional
16	mitigation strategies for loss of off-site power or
17	station blackout.
18	CHAIRMAN APOSTOLAKIS: Oh, I would say
19	that it's a combination of all the things you
20	mentioned. I don't know how you can conclude that
21	everyone models it more or less the same.
22	It could be modeling differences. It
23	could be design differences, right?
24	MR. DUBE: But not in the SPAR because the
25	SPAR is using
	I contract of the second se

```
(202) 234-4433
```

	274
1	CHAIRMAN APOSTOLAKIS: Not in the SPAR.
2	MR. DUBE: the same modeling and the
3	same overall generic data. So what can explain a
4	plant here, a diesel generator here and a diesel
5	generator here is it's involved. There are still
6	additional design differences between three diesel
7	plants that account for several orders of magnitude
8	and susceptibility to a loss of off-site power event.
9	And you'll find that there are some two or
10	three diesel plants where you have a loss of off-site
11	power and failure of the diesels. You have limited
12	battery capacity, limited steam drive aux. feed pumps,
13	and the conditional probability of core damage is
14	relatively high, whereas others, you still have three
15	diesels, but they may have a number of mitigation
16	features. You know, all it takes is one or two.
17	Given a station blackout, it only takes one or two
18	mitigation features to reduce the susceptibility by
19	one or two or three orders of magnitude.
20	DR. KRESS: I think George's correct me
21	if I'm wrong point was that the blue curve, if
22	there are three different things that influence its
23	position, shape, and location, some of those could be
24	pluses and some of them could be minuses, and you end

25 up by coincidence being that close together.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	275
1	CHAIRMAN APOSTOLAKIS: That could be, too.
2	MR. DUBE: Could be.
3	CHAIRMAN APOSTOLAKIS: Could be. Don
4	doesn't believe it though.
5	MR. DUBE: yeah. I believe it can be a
6	combination, but
7	CHAIRMAN APOSTOLAKIS: But also this
8	supports, I think, very strongly what I said earlier,
9	not because I said it; because it's a widely held
10	belief that the PRAs really should be plant specific.
11	MR. DUBE: Should be what?
12	CHAIRMAN APOSTOLAKIS: Plant specific.
13	DR. KRESS: Yeah, that really supports
14	that.
15	CHAIRMAN APOSTOLAKIS: This really
16	supports that statement, right? I mean, if you have
17	a plant where the band bone (phonetic) is on the order
18	of ten to the minus six and another one close to ten
19	to the minus four, as you said, there are real
20	differences.
21	It can't be just analysis, and if I do a
22	generic PRA, I'll probably be either unfair or you
23	know.
24	DR. KRESS: You'll be unfair to some of
25	them, yeah.
1	

(202) 234-4433

	276
1	CHAIRMAN APOSTOLAKIS: So don't you agree,
2	Don, that they should be plant specific?
3	MR. DUBE: Yeah, I come from that school
4	to begin with, but
5	CHAIRMAN APOSTOLAKIS: But you are trying
6	to liberate yourself?
7	(Laughter.)
8	MR. DUBE: No, I think the SPAR has
9	CHAIRMAN APOSTOLAKIS: Look at what the
10	SPAR shows then.
11	MR. DUBE: has allowed us this
12	comparison allowed us to rule out two out of the
13	three
14	CHAIRMAN APOSTOLAKIS: I understand that.
15	MR. DUBE: causes of variability.
16	CHAIRMAN APOSTOLAKIS: But even the SPAR
17	variability is due to design features, right?
18	MR. DUBE: That's definitely true.
19	MR. CHEOK: That's correct.
20	CHAIRMAN APOSTOLAKIS: Therefore, the PRA
21	should plant specific means, you know, not just the
22	data. The whole thing. It's a very strong statement
23	support
24	MR. DENNING: The structure is plant
25	specific. The structure that they're doing is plant
I	

```
(202) 234-4433
```

	277
1	specific. It's the data
2	CHAIRMAN APOSTOLAKIS: I am not implying
3	any criticism.
4	MR. DENNING: I mean we come back again
5	and again to what is really an important issue and one
6	that
7	CHAIRMAN APOSTOLAKIS: It is a very
8	important issue.
9	MR. DENNING: we're going to debate for
10	quite a while.
11	CHAIRMAN APOSTOLAKIS: It's very important
12	issue, but this is really a nice figure.
13	MR. DUBE: Now, we were in a situation
14	where we couldn't go through and review the modeling
15	structure and data behind some 3,000 components that
16	are within the scope of the MSPI. So we had a process
17	to identify significant differences, and I'm not going
18	to dwell on it, but here is a case where we identified
19	a candidate outlier where I call it Plan B, had a
20	Birnbaum value. This is the industry value. I show
21	a vertical line, but it's basically around ten to the
22	minus sixish.
23	CHAIRMAN APOSTOLAKIS: Would I care about
24	that? Why would I care about that? That's a pretty
25	good plant or am I missing.

(202) 234-4433

	278
1	MR. DUBE: The SPAR value said it was
2	CHAIRMAN APOSTOLAKIS: Oh, it's for the
3	same plant.
4	MR. DUBE: Oh, yeah.
5	CHAIRMAN APOSTOLAKIS: Oh, okay, okay.
6	MR. DUBE: three times ten to the minus
7	five.
8	DR. KRESS: That one you should worry
9	about.
10	MR. DUBE: So now we had a process where
11	we looked at significant differences between plant
12	specific values within a particular group. So we
13	started by grouping them and say they have this
14	feature of three diesel generators, but within the
15	group, why would the plant be here and why would the
16	SPAR say it's here?
17	And that
18	CHAIRMAN APOSTOLAKIS: Aren't you
19	duplicating what Bob showed us? I mean he showed a
20	straight line, and he took the Birnbaum from SPAR,
21	Birnbaum from the utility, and if it's way below the
22	line, he does something about it.
23	MR. DUBE: It is similar. It's similar.
24	CHAIRMAN APOSTOLAKIS: They're the same.
25	You're just showing it in a different way.
	I contract of the second se

(202) 234-4433

	279
1	MR. DUBE: Whereas you're developing it on
2	a systematic process for
3	CHAIRMAN APOSTOLAKIS: You are not
4	systematic.
5	(Laughter.)
6	MR. DUBE: long term over several
7	years, by the time we received the data, we had
8	basically three months to input the data, do this
9	comparison, identify candidate outliers
10	CHAIRMAN APOSTOLAKIS: But it's the same
11	thing essentially though, and go through from 200
12	yeah. I mean, in the end we had 260-such cases where
13	there was a significant
14	CHAIRMAN APOSTOLAKIS: Really? That many?
15	Two hundred sixty cases of this component?
16	MR. DUBE: Of significance variance
17	between the licensee's value and the SPAR. And then
18	we have to dig in and identify one of three things.
19	Is it SPAR anomaly, a licensee anomaly? Is there a
20	real design difference? Is there a modeling
21	difference? Is it a data difference?
22	CHAIRMAN APOSTOLAKIS: And what were the
23	insights that you drew from this?
24	MR. DUBE: That's coming up in two slides
25	three slides.

```
(202) 234-4433
```

280 1 CHAIRMAN APOSTOLAKIS: Can I wait for 2 three slides? 3 MR. DUBE: Now, here's a case where we 4 showed the distributions for RHR pumps for a two-pump 5 system with a high pressure recirc. booster pump. What that means is for many Westinghouse plants and 6 7 some B&W plants, in a high pressure recirculation 8 mode, they have a piggyback mode where a low pressure 9 pump draws from the containment sump and provides 10 suction to a high pressure and safety injection pump, which then injects them to the core. 11 12 So for that class of plants with that capability. 13 14 MR. DENNING: And it's a subset of the 15 figured that we saw before. MR. DUBE: No, this is a whole -- this is 16 for RHR folks. 17 MR. DENNING: Oh, I'm sorry. 18 I'm sorry. 19 Absolutely. I Understand. 20 This is one of 30 groups. MR. DUBE: Now what you see here, remember the size and shape of the 21 22 I mean, this is just for graphical aid, but it curve. 23 blue curve is the industry shows here the 24 distribution. The pink is the spine distribution. 25 You see an offset between the two.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 And now you have to ask yourself why is 2 there an offset. Why does there appear to be a bias 3 in one or the other? And you have to ask yourself did 4 the utilities for 103 plants all congregate together 5 and systematically bias their values, and in this case to the high side. So why would they do that, or is 6 7 there something in the SPAR model that seems to systematically bias it to the low side compared to the 8 licensee's PRA models? 9 And you say, well, it's probably more 10 11 likely the latter since it's using standard method, 12 standard models, standard data. And when you dig into this particular case, you find that the licensees --13 14 you know, this is driven for sequences of small LOCA 15 where you rely on high pressure recirculation. So when you dig in a little bit deeper, you'll find that 16 the licensees did use a distribution of small LOCA 17 frequencies. In fact, it was quite wide. 18 But the SPAR models use a small LOCA 19 20 frequency significantly lower than what the industry 21 In fact, the small LOCA frequency here was was using. 22 almost an order of magnitude lower than the average in 23 the industry used, which because the dominant cut sets are small LOCA and failure of high pressure recirc. 24

so on and so forth, systematically bias the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

and

25

(202) 234-4433

281

	282
1	Birnbaum values for these RHR motor driven pumps to
2	the point that it shifts in the curve to the left, and
3	when you dig into it, you find that the small LOCA
4	frequency in the SPAR models for 4E to minus four,
5	whereas most industry values use two or 3E to minus
б	three, like a factor of
7	CHAIRMAN APOSTOLAKIS: What is the reason
8	SPAR used such a lower number?
9	MR. DUBE: The gentleman here might
10	answer, but you know, when you looked into it, it's
11	because of a different definition of small LOCA. This
12	small LOCA is kind of considered the high end of the
13	small LOCA pipe breaks, whereas many of the industry
14	values included historical stop open relief valves and
15	reactor coolant pump, mechanical seal failures, and
16	the 400 and 500 gallon a minute kinds of leaks,
17	whereas this was predominantly a pipe break, which
18	could be several thousand gallons a minute, and I
19	think that's what it is.
20	I mean, it's something we'll have to look
21	into.
22	CHAIRMAN APOSTOLAKIS: So did the SPAR
23	people change their frequency?
24	MR. DUBE: I don't know because I just saw
25	this graph.
	1

(202) 234-4433

(202) 234-4433

	283
1	(Laughter.)
2	CHAIRMAN APOSTOLAKIS: So it's somebody
3	else's graph?
4	MR. CHEOK: This MSPI comparison is
5	ongoing as we speak and
6	CHAIRMAN APOSTOLAKIS: This is not MSPI
7	now. This is Birnbaum.
8	MR. CHEOK: That's right, but it
9	becomes Don is going to pass this over to the SPAR
10	model development people, and we're going to use these
11	crash to help us as another QA tool, so to speak.
12	That's why we thought this was an interesting thing.
13	CHAIRMAN APOSTOLAKIS: So we are seeing
14	the relations here.
15	MR. CHEOK: Right, correct.
16	MR. DUBE: This is hot off the press.
17	But these vertical lines show that while
18	the absolute values of the Birnbaums used by SPAR and
19	industry were pretty much the same, it showed that the
20	industry value was right at the median or mode, pretty
21	much the median, whereas the SPAR value was to the
22	high side.
23	So this would be another candidate outlier
24	because if you correct for the fact that the SPAR is
25	using appears to be a low loss of small LOCA

(202) 234-4433

	284
1	frequency, the industry is an outlier because to
2	correct for that, the SPAR Birnbaum is to the high
3	side in the industry, is in the norm.
4	So based on our criteria and screening,
5	this might have been caught. We would have taken a
6	look at that, notwithstanding the bias introduced by,
7	you know, what appeared to be a systematic small LOCA
8	frequency.
9	MR. CHEOK: Now, this is a class case if
10	you just looked at the Birnbaums from both the
11	industry and the SPAR for a particular plant. You
12	would think that they are almost exactly the same, and
13	you would think that there would be no bias, but we're
14	thinking that it actually could be different because
15	the industry distributions are shifted, which makes
16	this the plant specific values are biased.
17	MR. DUBE: This is not just a visual tool
18	to aid us in identifying outliers and out of the 3,000
19	or so components we started with we screened that
20	down to 260-something, and then myself, Peter
21	Appignani, Jim Vail, and other contractors, some SRAs
22	from the regions went through all 260 one at a time to
23	disposition them and identify is it a real design
24	difference. Is it a SPAR modeling issue? Is it a
25	licensee's modeling issue?
ļ	1

(202) 234-4433

	285
1	DR. THADANI: Don, if I may just make a
2	quick comment on back to what George said. The
3	earlier slide when you talked about modeling of the
4	sump issue, you had four times ten to the minus six
5	increase in core damage frequency using SPAR model for
б	small LOCA. If you had increased this by an order of
7	magnitude, you would presumably get four times ten to
8	the minus five.
9	CHAIRMAN APOSTOLAKIS: I thought it was
10	large LOCA, Ashok.
11	DR. THADANI: Pardon me?
12	CHAIRMAN APOSTOLAKIS: I thought what they
13	showed earlier was for large LOCA.
14	DR. THADANI: Three, three. No, they
15	showed for large LOCA, medium LOCA and small LOCA, and
16	I'm saying small LOCA contribution would have been
17	four times ten to the minus five then if you follow.
18	MR. DUBE: But maybe not because it would
19	have been the small LOCA from pipe breaks, which would
20	loosen up the insulation, where if you add relief
21	valves that dump into a quench tank for RCP seal, they
22	may not have generated the debris. So
23	DR. THADANI: They're safety valves also,
24	but anyway.
25	MR. DUBE: So we summarize the licensee's
l	

(202) 234-4433

	286
1	PRA issues into the following. After going through
2	260-odd candidates and narrowing it down, what did we
3	find?
4	Well, some of these aren't quite candidate
5	allied issues, but we had situations where open A and
6	B facts and observations could possibly affect the
7	MSPI, and we're holding these issues open until the
8	licensees address them. We found 16 cases of that out
9	of the hundred or so plants out there.
10	Model truncation and convergence issues,
11	14. What
12	CHAIRMAN APOSTOLAKIS: Model truncation,
13	you mean the cutoff frequency?
14	MR. DUBE: What we found is that a number
15	of licensees could not lower their truncation value on
16	their PRA quantification enough to insure that the
17	model was
18	CHAIRMAN APOSTOLAKIS: What's "enough"?
19	Ten to the minus 12?
20	MR. DUBE: Well, some of them were using
21	ten to the minus nine and ten to the minus ten.
22	CHAIRMAN APOSTOLAKIS: But it's not a
23	sufficient cut of leverage, ten to the minus 12, I
24	think.
25	MR. DUBE: But they couldn't get low
	I

(202) 234-4433

	287
1	enough.
2	CHAIRMAN APOSTOLAKIS: Right. Isn't that
3	what you guys told us?
4	DR. BUELL: We used ten to the minus 12,
5	is what we used.
6	CHAIRMAN APOSTOLAKIS: So it just be
7	sufficient.
8	(Laughter.)
9	CHAIRMAN APOSTOLAKIS: Boy, you guys are
10	so modest today.
11	MR. DUBE: In some cases the model is so
12	complex that the software just didn't accommodate
13	going lower and lower. So they could not assure that
14	the CDF was converged and that the Birnbaums were
15	convergent, and usually you have to go even lower to
16	converge importance (phonetic) measures like Fussell-
17	Vesely and Birnbaum than you do to converge a core
18	damage frequency.
19	CHAIRMAN APOSTOLAKIS: Now, the Birnbaum
20	measure is related to the risk achievement worth, is
21	it not?
22	MR. DUBE: Yeah, and it's proportional to
23	the Fussell-Vesely, too.
24	CHAIRMAN APOSTOLAKIS: How can that be?
25	Fussell-Vesely is a separate, different model.
	288
----	--
1	MR. DUBE: I can show you algebraicly that
2	they're
3	CHAIRMAN APOSTOLAKIS: Are you saying that
4	Fussell-Vesely and RAW are related?
5	MR. DUBE: Yes.
б	CHAIRMAN APOSTOLAKIS: No, they're not.
7	MR. DUBE: Yes.
8	CHAIRMAN APOSTOLAKIS: Let's go back then
9	to the graded quality assurance and all that stuff.
10	They're supposed to be independent. I mean they're
11	related because they're referring to the same PRA.
12	MR. DUBE: Algebraicly the Birnbaum is
13	equal to the Fussell-Vesely divided by the failure
14	probability of the basic event, failure probability
15	times the core damage frequency.
16	CHAIRMAN APOSTOLAKIS: And the Birnbaum is
17	the core damage frequency times RAW, right? No? Oh,
18	no, because it's a difference, but it must be related.
19	Come on. It's one minus the RAW or something like
20	that or RAW minus one.
21	DR. KRESS: You've got to have a two in
22	there.
23	MR. DUBE: It's approximately equal to one
24	plus Fussell-Vesely over P.
25	CHAIRMAN APOSTOLAKIS: No. Where P is
l	1

(202) 234-4433

	289
1	what?
2	MR. DUBE: Failure probability.
3	CHAIRMAN APOSTOLAKIS: No. Can't be. RAW
4	and Fussell-Vesely are not related at all. Maybe
5	you're confusing it with the risk reduction worth.
6	That's related to Fussell-Vesely. Risk reduction
7	worth is
8	MR. DUBE: I'll show you the derivation.
9	CHAIRMAN APOSTOLAKIS: Oh, my God, yes.
10	I do want to see. It can't be true.
11	MR. DUBE: Loss of off-site power
12	frequency showed up in nine, and this is, as I
13	mentioned, we found a generally the licensee's loss
14	of off-site power frequency has agreed very much with
15	the SPAR and within themselves, but we found cases
16	where the loss of off-site power frequency were
17	factors of three, four, and five lower than what you
18	would expect, even one case where the licensee's plant
19	was in the middle of the northeast blackout, and yet
20	their loss of off-site power frequency is still an
21	order of magnitude lower than
22	CHAIRMAN APOSTOLAKIS: What is it that
23	makes them an issue, these? Because they disagree
24	with SPAR?
25	DR. KRESS: They become an outlier.
	1

(202) 234-4433

	290
1	MR. DUBE: We could not explain it, and it
2	was at first cut an outlier because it was not a bona
3	fide design difference. It was the use of an
4	initiating frequency or a failure probability or a
5	modeling issue that was I guess you would say outside
6	the norm.
7	CHAIRMAN APOSTOLAKIS: Well, that was
8	based strictly on the industry developed code, not the
9	SPAR.
10	MR. DUBE: We used the SPAR curve and the
11	industry curve to provide us a screening criteria for
12	first identifying differences at a high level, and
13	then we dug down into the issue to identify why is
14	there a difference, and in these cases we would find
15	that the licensee used the reason why the Birnbaum
16	is different by an order of magnitude is because the
17	licensee's losses of off-site power frequency is an
18	order of magnitude lower than the norm.
19	CHAIRMAN APOSTOLAKIS: But you didn't
20	compare a high percentile of the blue curve with a low
21	percentile of the blue curve and try to figure out
22	what is the difference.
23	MR. DUBE: No.
24	CHAIRMAN APOSTOLAKIS: It was between
25	industry and SPAR.
	I

	291
1	MR. DUBE: Right. That was just our
2	starting point.
3	CHAIRMAN APOSTOLAKIS: Okay, all right.
4	MR. DUBE: Low loss of service water
5	frequency issues, here we even saw greater
6	variability, and Bob alluded to it, but we saw cases
7	where the experience base loss of service water
8	frequencies like 4E to the minus four. Yet there were
9	some licensees one, two in one case, one almost three
10	orders of magnitude lower than that. They were in the
11	realm of below ten to the minus six per year, which
12	was once in every million years.
13	DR. KRESS: Yeah, that's never.
14	MR. DUBE: It just stood up. I mean, it
15	just doesn't pass the standard.
16	And these issues were found by doing these
17	kinds of screenings and zeroing in on what the
18	difference is.
19	This has to do and I won't get into too
20	much detail is that as Bob mentioned, if you don't
21	have a support system, initiate a fault tree like a
22	loss of service water fault tree. You could
23	underestimate the Fussell-Vesely contribution. So
24	there are five instances of that.
25	Here, Bob mentioned this as well. The

(202) 234-4433

292 licensees took credit for reactor pressure vessel 1 2 injection after containment. Now, it's possible that these might get resolved. At the time that we had to 3 4 generate the summary list we had not yet received 5 analysis and justification for that. DR. KRESS: Now, do some of these plants 6 7 show up in more than one of these? 8 MR. DUBE: Yes. Yes, some of them show up 9 in at least -- I've seen some in at least three of systems or three -- I mean, if you add them all up, 10 it's less than one issue per plant, which isn't too 11 bad. That tells you a lot right there. 12 Station blackout mitigation strategies 13 14 having to do with the way they might have modeled 15 recovery of off-site power, the way they may have taken credit for mitigation strategies, 16 some AC 17 dependent pump, for example. Off-site power 18 recovery issues, Bob 19 mentioned this, taking credit for operating circuit breakers which are DC powered after battery depletion. 20 21 It's kind of a catch-all and explains --22 CHAIRMAN APOSTOLAKIS: Well, that doesn't 23 -- I mean, it was explained to us earlier that the 24 time to core uncovery after you lose complete power is 25 not included in SPAR. So that may have something to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	293
1	do with it, too.
2	MR. DUBE: It could. For example, one
3	licensee said that their procedure would be something
4	along the lines of if they're running out of battery
5	power and they're operating a turbine driven aux. feed
6	pump, it would be to run it full out, fill the steam
7	generators all the way to the top before they run out
8	of battery power to control the turbine.
9	And if you consider decay heat in eight or
10	ten hours into an event, that buys them a lot of time
11	before you dry out the steam generators, given that
12	time. So there are some issues like that.
13	This is kind of related, control of
14	turbine driven power. One case of a low line to DC
15	bus initiator frequency, and missing test and
16	maintenance on a basic event diesel generator.
17	So this is our list of PRA issues that we
18	developed focusing just on MSPI specific components
19	and trying to understand the reasons for the
20	differences.
21	Any questions on this?
22	And then the final one is a summary of the
23	generic FAR issues, and most of these have already
24	been covered by Bob and John, but I'll just summarize
25	them. We did find, but we appear to have

(202) 234-4433

	294
1	introduced remember that curve where I showed a
2	bias where this appears to be possibly because of a
3	low small LOCA frequency. We found a case of an
4	opposite bias in the other direction because of what
5	appears to be a high loss of emergency AC bus
6	initiator frequency, which appears to be an order of
7	magnitude higher than all the industry values.
8	I'm not quite sure why. It could be
9	having to do with the counting of the number of buses
10	that could possibly be affected. It could be a number
11	of reasons that may not account for recovery.
12	It looks like the emergency AC bus
13	initiator frequency in SPAR is representative of a
14	spurious opening of a circuit breaker, whereas the
15	industry values tend to be more bus fault failure
16	rate, which is generally an order of magnitude lower,
17	and that might account for the differences there.
18	But there is a difference of
19	systematically of about an order of magnitude.
20	Bob mentioned the pressurizer PORV success
21	criteria. I kind of differ a little bit. I kind of
22	have a different perspective because, you know, I did
23	manage best estimate LOCA success criteria for two
24	PRAs, Connecticut Yankee and Millstone 2, and we did
25	multi-man-year RELAP 5 analyses to develop success
	1

(202) 234-4433

(202) 234-4433

295
criteria for feed and bleed, and we saw that it can
vary. You know, it's a function of the pressurize of
PORV relief capacity, the thermal power, whether one
had relatively low head-high head safety injection
forms like a CE plant may have only 1,200 psi shutoff
safety injection pumps, where many Westinghouse plants
have high capacity, high shutoff charge pumps.
And we found differences that can be plant
to plant variation in success criteria. It is
possible to feed and bleed with one PORV in some
plants. In other plants it might require two PORVs
just because of the relief capacity and the
differences in high head safety injection.
And we saw differences there between SPAR
and licensees. So in a couple of cases we asked the
licensees to provide us information, and Duke Power
sent us a 1.000 page calculation of RELAP 5 where they

15 and licensee 16 licensees to sent us a 1,000 page calculation of RELAP 5 where they 17 showed two PORVs would be successful, and under a 18 number of circumstances one PORV would be successful 19 20 as well.

21 So I think the jury is still out, and it's 22 a good opportunity here for additional research into the success criteria. 23

24 DR. THADANI: But, Don, on the B&W I 25 thought there was only a one inch PORV in B&W plants

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

	296
1	so that they have very limited capacity, don't they?
2	MR. DUBE: B&W, we saw a difference. We
3	saw cases with one and some cases with two PORVs
4	successful.
5	DR. BONACA: It also depends, as we were
6	discussing before, on the entry time. I mean, it
7	depends on a number of parameters.
8	MR. DUBE: Yes.
9	DR. BONACA: For some plants like the C
10	plants, I mean, they have the PORVs. They're
11	successful in fitting only if you can fit early
12	enough.
13	MR. DUBE: Yeah, that's an important
14	criteria which is how early do you attempt to feed and
15	bleed because what tends to happen is when you lose
16	your decay heat and pressurize, the pressure goes up,
17	and you can open a PORV, and if it can't relieve
18	capacity, the pressure keeps rising, and it goes above
19	the shutoff of the safety ejection pumps and it will
20	never turn around.
21	That's why a CE plant with 1,200 PSI HPCI
22	pumps and very low capacity charging pumps, timing is
23	everything. You take it early enough and if you also
24	use the steam generator atmospheric dump valve, you
25	can crash the RCS pressure to a low enough pressure
1	I

(202) 234-4433

that the safety injection pumps start injecting, and then they start injecting cold water, and you get a 3 positive feedback situation where injecting cold water 4 further cools you down, which further depressurizes, which gives you more cooling water, which further depressurizes you and cools you down, and you can self-sustain that.

Whereas Westinghouse plants with high head 8 shiving (phonetic) pumps with 2,300, 2,400 PSI cutoff 9 10 aren't as sensitive to that because if you open a PORV, you get the pressure down and then can inject 11 12 almost enough flow to meet decay heat at the PORV's shutoff, and so you tend to find that C plants are 13 14 more likely to have two PORV success criteria whereas 15 many Westinghouse plants with high head charging pumps could possibly do it with one PORV. 16

17 All right. So enough of that issue. We did find modeling asymmetries. We're in some of the 18 earlier SPAR models they modeled only loss of DC power 19 20 on one bus and not the other bus, and that cause 21 asymmetry in the Birnbaum values. I think that has 22 since been corrected, but at least the models that we 23 use, that accounted for a significant number of 24 variation.

Bob mentioned the single value loss of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

5

6

7

1 service water frequency. I think that's an issue. 2 plant-to-plant Whereas, you know, there are 3 differences and we saw cases in the industry values 4 where they had bona fide design reasons, site reasons 5 why one could account for differences in loss of service water frequency, and maybe an order of 6 7 magnitude, you know, or one and a half orders of 8 magnitude could account for that. I'm not quite sure, and I don't personally 9 believe three orders of magnitude differences in loss 10 of service water frequency. 11 But we found a couple of cases of higher 12 failure probability for local manual control of 13 14 turbine driven aux. feed pumps, whereas the licensee 15 had provided us an approved procedure and a training program where they routinely train on this process. 16 They might justify a lower human error probability 17 that's in the SPAR model, for example. 18 19 At least back in the spring when we 20 collected the data, some of the B&W plants had old 21 sealed LOCA models. This has since been corrected in 22 the last month, but you know, that did account for some of the differences in the SPAR model. 23 24 I mention the small LOCA frequency. In 25 several instances where the SPAR did not model test

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

298

	299
1	and maintenance for some point performance.
2	I mentioned most of these issues are being
3	addressed, but you know, we kind of independently
4	verified a lot of this.
5	So where am I? I guess summary is the
6	process we used was narrowly focused on some 3,000,
7	5,000 components within scope of the MSPI. It was a
8	three-month focused effort on understanding the
9	differences between the SPAR values and the industry
10	values, trying to disposition the differences as being
11	a bona fide design difference, data difference or
12	modeling differences, and where it appeared to be a
13	licensee modeling issue, it's an issue that we've put
14	on the table for requesting the licensee to provide
15	further justification before we disposition it or it
16	may not be dispositioned.
17	CHAIRMAN APOSTOLAKIS: You're done?
18	MR. DUBE: Yes.
19	CHAIRMAN APOSTOLAKIS: Can you remind me
20	what the MSPI is used for?
21	MR. DUBE: It's a performance indicator
22	for measuring the performance of six systems.
23	CHAIRMAN APOSTOLAKIS: It's replacing
24	which performance?
25	MR. DUBE: Safety system unavailability.
1	

(202) 234-4433

	300
1	CHAIRMAN APOSTOLAKIS: Okay.
2	MR. DUBE: It's strictly unavailability.
3	CHAIRMAN APOSTOLAKIS: So it includes the
4	reliability over a period of time.
5	MR. DUBE: Right, right.
6	CHAIRMAN APOSTOLAKIS: Very nice.
7	Any questions to Don from the members?
8	(No response.)
9	CHAIRMAN APOSTOLAKIS: Thank you very
10	much.
11	DR. THADANI: Outstanding work.
12	CHAIRMAN APOSTOLAKIS: As Dr. Thadani
13	noticed, expressing a personal view.
14	(Laughter.)
15	DR. KRESS: Not necessarily that of the
16	committee?
17	CHAIRMAN APOSTOLAKIS: Because the
18	committee will what will the committee do?
19	DR. KRESS: We don't. We just make
20	recommendations and comments.
21	CHAIRMAN APOSTOLAKIS: Yeah.
22	DR. KRESS: To the full committee.
23	CHAIRMAN APOSTOLAKIS: For deliberation by
24	the full committee.
25	DR. KRESS: Yeah. That might very well be
I	1

	301
1	something we'll say.
2	CHAIRMAN APOSTOLAKIS: But did Dr. Dube
3	speak with sufficient clarity and volume?
4	DR. KRESS: The clarity was good. The
5	volume was
6	CHAIRMAN APOSTOLAKIS: The volume was kind
7	of low.
8	Oh, my God, you guys again. Alone this
9	time, John?
10	DR. SCHROEDER: I think he's got
11	laryngitis by now.
12	CHAIRMAN APOSTOLAKIS: How much time do
13	you need?
14	DR. SCHROEDER: Well, I don't have a lot
15	to say about this particular subject.
16	CHAIRMAN APOSTOLAKIS: Wow. You know we
17	have a lot to say about this particular subject.
18	DR. SCHROEDER: I understand that.
19	CHAIRMAN APOSTOLAKIS: Go ahead. Thank
20	you.
21	DR. SCHROEDER: In the next few slides,
22	I'll try to tell you where we're at with respect to
23	modeling uncertainty in the SPAR model program.
24	As in any other PRA, we try to account for
25	both data uncertainty and modeling uncertainty.

```
(202) 234-4433
```

	302
1	However, out quantification code gives us the tools to
2	deal with data uncertainty fairly easily and modeling
3	uncertainty is still very hard.
4	The data uncertainty I think we have
5	fairly well in hand. We have a standard template list
6	that gives us our failure rates and tries to model the
7	failure rates with appropriate uncertainty
8	distributions.
9	The uncertainty distributions these days
10	are largely gamma functions for rate related
11	parameters and beta distributions for the demand
12	related items. Human error probabilities are largely
13	the constrained, noninformative prior type
14	distribution.
15	Now, there are other data uncertainty
16	items within the SPAR models that we are capable of
17	dealing with. The initiating event frequencies, the
18	component failure rates, and a few other things are
19	coming from the data template set that is being
20	developed for us and that there's going to be a NUREG
21	issued on.
22	A couple of other items. The off-site
23	power recovery, the diesel generator recovery failure
24	distributions are a little harder to calculate
25	uncertainty distributions on. For those, the
	1

(202) 234-4433

	303
1	statisticians have provided us with uncertainty
2	distributions on the parameters for the recovery
3	curves.
4	And using the off-site power recovery
5	module, we can then propagate, in effect, the family
6	of curves through the model.
7	CHAIRMAN APOSTOLAKIS: Now, what do you
8	mean by data uncertainty? I mean, you as a SPAR
9	developer and user have these needs? Is that what you
10	mean?
11	DR. SCHROEDER: Yes.
12	CHAIRMAN APOSTOLAKIS: Because some of
13	them are model uncertainties. Some are parameter,
14	right?
15	DR. SCHROEDER: When I'm talking about
16	data uncertainty, I'm talking about failure rates and
17	the uncertainty parameters that describe them.
18	There's also
19	CHAIRMAN APOSTOLAKIS: These are not all
20	failure rates. I mean, recovery parameters, these are
21	not a failure rate.
22	DR. SCHROEDER: The off-site power
23	recovery curves are not failure rates, but they're
24	something for which data has been collected, and there
25	is a model for the distribution, be it log normal or

(202) 234-4433

	304
1	YABLE (phonetic). I think the current generation of
2	models uses a log normal model, and when I say
3	modeling uncertainty, I'm not talking about the choice
4	of statistical model for the data value or for the
5	curve.
6	When I talk about model uncertainty, what
7	I'm talking about basically are structural issues
8	rather than choice of distribution or selection of
9	parameter to describe the distribution.
10	One more source of uncertainty that kind
11	of crosses over into model uncertainty is whether we
12	use plant specific or generic data in all of this data
13	uncertainty analysis. We don't know exactly what the
14	right approach is, and that is being studied now, and
15	I'm not sure where it's going to land.
16	It is fairly easy for us to take plant
17	specific data and plug it into these models because of
18	our generic template set, and on many failure rate
19	issues or initiating event frequency issues, plant
20	specific values are calculated, but it's sort of a
21	management decision as to whether those are
22	appropriate to use in the SPAR program.
23	I can't say much more about those items
24	than that. We can do the Monte Carlo analysis. We
25	have failure rates. We have uncertainty distributions
1	

(202) 234-4433

	305
1	on the failure rates, and we can propagate those.
2	There will be a data report that describes those in
3	more detail.
4	CHAIRMAN APOSTOLAKIS: I mean, I do
5	appreciate the issue of structural uncertainty, but it
6	seems to me that model uncertainty where you have a
7	multiplicity of models, you guys are resolving very
8	quickly by just approving one model or taking one
9	model.
10	I mean, we like Westinghouse. We really
11	don't care about human error because we have SPAR-H,
12	and I don't know that I mean, I'm pretty sure that
13	a lot of that is justified, what you do, but I
14	wouldn't dismiss those uncertainties offhand.
15	You know, the structure of uncertainty is
16	extremely important, as is incompleteness, but I don't
17	know. I get the feeling that you are really
18	dismissing that.
19	MR. CHEOK: I'm not quite sure you're
20	dismissing them, George. I think we understand that
21	they are there, and I think one of the keys to
22	decision making is to know where your uncertainties
23	are and to understand that their contributions to your
24	decision is such-and-such.
25	So they're not quite dismissing them. I
l	

(202) 234-4433

	306
1	think what you would like for us to do is to maybe
2	quantify it more.
3	CHAIRMAN APOSTOLAKIS: No, no, no.
4	MR. CHEOK: We are not, in a sense,
5	quantifying the uncertainties.
6	CHAIRMAN APOSTOLAKIS: I like the idea of
7	starting with a decision. Didn't we talk to you about
8	something we did?
9	MR. CHEOK: You might have.
10	CHAIRMAN APOSTOLAKIS: One, one, seven,
11	four, for example.
12	MR. CHEOK: That's correct.
13	CHAIRMAN APOSTOLAKIS: If the licensee
14	comes in there and says, "Look. I did my calculations
15	and this is the point on the diagram," the famous
16	diagram, and then you ask yourself, okay, they use the
17	human error probability, for example. If I change
18	that, would I affect the decision?
19	MR. CHEOK: Sure.
20	CHAIRMAN APOSTOLAKIS: And then you ask
21	the second question: is it reasonable to change it by
22	that much?
23	And I was much surprised when I saw an
24	SER, in fact, where they were reviewing one of the
25	submittals, and the licensee used the value for the
	I contraction of the second seco

(202) 234-4433

	307
1	relevant human error of .5. I don't care. If I make
2	it one, it doesn't really matter.
3	So even though there is model uncertainty
4	in the human error part
5	MR. CHEOK: It doesn't matter.
б	CHAIRMAN APOSTOLAKIS: it doesn't
7	affect this decision because the licensee used the
8	high value.
9	MR. CHEOK: Absolutely.
10	CHAIRMAN APOSTOLAKIS: So it's the two
11	elements that are very important. Okay?
12	By the way, I think there are two papers.
13	There is a very interesting just one that I remember,
14	a paper by several authors from PLG, the old PLG,
15	where they documented several cases where different
16	model assumptions made a big difference to their PRA.
17	And you know those guys were doing a lot of PRAs at
18	that time. It's a 20 year old paper.
19	But you know
20	DR. THADANI: I can give you a more recent
21	example, George, and Mike knows this very well. It's
22	the steam generator tube failure event at Indian
23	Point. When you brought and model uncertainty, and
24	this analysis was done, redone, to fold in some
25	uncertainties, particularly human reliability model

(202) 234-4433

	308
1	that was used, you came to different plausible
2	conclusions about that event and whether it was red,
3	yellow, white, you know.
4	This is a big issue, and I think, Mike,
5	you recall that. You might recall the results as I
6	do.
7	MR. CHEOK: Yes.
8	CHAIRMAN APOSTOLAKIS: No, but I think,
9	Mike, back to your point, the thinking up until
10	recently was, indeed, to do what you said, develop a
11	whole probability distribution across models, which
12	is, of course, very difficult to do, although we do
13	it. I mean, the expert opinion elicitation process
14	does that, right? For seismic or for pipe failures
15	and so on.
16	But now that we have decision rules like
17	1174, it's much easier to handle it because the first
18	thing you do is you're asking yourself how important
19	is it to the decision.
20	MR. CHEOK: Correct.
21	CHAIRMAN APOSTOLAKIS: Even if I raise it
22	to one, I move a little bit. So why should I care?
23	So I think this and in fact, there was
24	a paper from NEI or somebody at the recent PSA
25	conference in San Francisco, where they follow an

(202) 234-4433

	309
1	approach like that. Okay?
2	MR. CHEOK: Right. And I guess that's the
3	smart use of what we would call a sensitivity study.
4	CHAIRMAN APOSTOLAKIS: Absolutely,
5	absolutely.
6	MR. CHEOK: You're saying I'm trying to
7	bound my answer by plausible parameters, and if it
8	doesn't make a difference to my decision, then this
9	parameter is not important.
10	CHAIRMAN APOSTOLAKIS: It's a decision
11	focused or decision centric approach because
12	ultimately what matters is the decision.
13	MR. CHEOK: Right.
14	CHAIRMAN APOSTOLAKIS: That's what really
15	matters. I mean, that was really an eye opener. When
16	I looked at that and the guy said we put a probability
17	of .5, I said there goes the issue then. Who cares?
18	If they had put ten to the minus three
19	though, it would have been different.
20	MR. CHEOK: I think what was lost a little
21	earlier when Bob and John was showing you the caution
22	screens at the beginning of the SPAR models, one of
23	the objectives of those screens were the total user.
24	This is our assumptions, and these are the items that
25	could impact your answers if you are using the SPAR
	1

(202) 234-4433

	310
1	models to evaluate this event and your event concerns
2	one of these issues. Then you have to be somewhat
3	careful because our models, the answers from these
4	SPAR models are somewhat sensitive to these issues.
5	CHAIRMAN APOSTOLAKIS: That would
6	certainly well, first of all, for them it's a
7	little difficult because they are not really dealing
8	with any decision. They're just developing a model.
9	But having something like this would be an
10	excellent starting point because ultimately what you
11	need is the decision making context, which you don't
12	have right now unless the licensee comes back to you
13	and saying, "I'm requesting, you know, to eliminate a
14	diesel," or something. So that you cannot anticipate.
15	But you can have a nice list of issues,
16	modeling issues that could, could affect the decision
17	without passing judgment on whether they do or not.
18	MR. CHEOK: Right.
19	DR. SCHROEDER: I can show you that list.
20	CHAIRMAN APOSTOLAKIS: Well, I'm sure
21	you'll have a contribution.
22	DR. SCHROEDER: If you'll allow me to,
23	I'll do it right now.
24	During the plant visits I need to start
25	at the beginning of this, Guy during the STP review

(202) 234-4433

1 and during our detailed model reviews, we started to 2 see many things coming up over and over again that seemed to make a big difference in our results versus 3 4 the licensee's results. We didn't just sit down and 5 try to guess at what the issues were. We just started 6 to keep track of the things that were causing 7 differences in the models and the things that maybe were different from one licensee to the next because 8 9 in some cases we might think we're right and we don't 10 care what they think, but we're keeping track of the 11 issues anyway. And we came up with a rather long list of 12 They're identified across the top row 13 those issues. 14 here. Most of these are on our top ten list, but this 15 is how we got the top ten list. 16 CHAIRMAN APOSTOLAKIS: Well, that's a very 17 good start, yes. And it's a fairly 18 DR. SCHROEDER: 19 comprehensive list. 20 CHAIRMAN APOSTOLAKIS: It's wonderful. Τs that documented anywhere or it's still in progress? 21 22 DR. SCHROEDER: Well, this is done, but 23 this is in the applications now. When you go through 24 that issues list, when you log into a SPAR model and 25 you have to get through that disclaimer screen, what

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

311

	312
1	you basically get is a summary if you are opening the
2	Calloway model. You would get a summary of that row
3	of this matrix, and these numbers in here are what we
4	described earlier, the one, two, and three.
5	They're our attempt to quantify the impact
6	of this issue on that model. In other words, it could
7	change your core damage frequency by 50 percent or 100
8	percent, and we also kept track of the particulars at
9	a given model. We have these annotations in here that
10	say, well, why did we get this result at that plant.
11	CHAIRMAN APOSTOLAKIS: No, I think this is
12	very good. If you look at, for example, the third or
13	fourth column from the right, number of calls
14	required.
15	DR. SCHROEDER: Yes.
16	CHAIRMAN APOSTOLAKIS: I would say that's
17	a structural uncertainty issue.
18	DR. SCHROEDER: Right.
19	CHAIRMAN APOSTOLAKIS: It has to do with
20	success criteria and all of that.
21	The one next to it though, no, on the
22	left, "credit for RPV injection following containment
23	failure in BWR models," you have one event now,
24	injection, right? But there may be differences of
25	opinion as to what the probability of that is. That's
	1

(202) 234-4433

	313
1	the model uncertainty I'm referring to.
2	DR. SCHROEDER: The way it actually works
3	out in our model is that there are end states that we
4	quantify as core damage that the licensee insists are
5	okay, largely because of the
6	CHAIRMAN APOSTOLAKIS: Oh, so it's a
7	different thing. It's still
8	DR. SCHROEDER: It's still a structural
9	issue, success criteria issue.
10	CHAIRMAN APOSTOLAKIS: Well, then the
11	credit for recovery of off-site power is one of those.
12	DR. SCHROEDER: Yes.
13	CHAIRMAN APOSTOLAKIS: Because both of you
14	have the same event.
15	DR. SCHROEDER: Yes.
16	CHAIRMAN APOSTOLAKIS: But there is
17	disagreement as to what probability value to use.
18	DR. SCHROEDER: In particular, that's
19	CHAIRMAN APOSTOLAKIS: That's a model
20	uncertainty.
21	DR. SCHROEDER: This first one here
22	CHAIRMAN APOSTOLAKIS: Of one kind, of one
23	kind.
24	DR. SCHROEDER: This value K is a bright
25	illustration of that.
1	I contraction of the second

```
(202) 234-4433
```

	314
1	CHAIRMAN APOSTOLAKIS: I think you have a
2	great starting point there to put together a nice
3	report or white paper summarizing these things in the
4	language that I'm using, and you know, for guidance in
5	the future.
6	DR. SCHROEDER: What we did is kind of
7	took an average of the values for each of these
8	columns and used that to sort of prioritize these
9	issues, and those that affected a lot of plants and
10	had the potential to change the core damage frequency
11	a lot became our top ten issues
12	CHAIRMAN APOSTOLAKIS: Sure.
13	DR. SCHROEDER: that we needed to
14	address and resolve.
15	CHAIRMAN APOSTOLAKIS: That's great.
16	DR. SCHROEDER: And resolving an issue
17	doesn't mean that we will agree with the licensee on
18	it. It means that the NRC will establish a position
19	that they have strong confidence in.
20	Now, in the meantime, we have no real
21	mechanism to automate any of this in the context of
22	the SPAR model. In the HRA, we showed you how a
23	degree of belief might come into the calculation,
24	might actually be something that we could handle with
25	automation and the calculational tool.

(202) 234-4433

1 But these issues really at present need to 2 be handled by sensitivity or some sort of off-line 3 consideration that the analyst does when he goes to 4 draw a conclusion about whatever it is he's analyzing, 5 and that's the state of uncertainty in the SPAR model. CHAIRMAN APOSTOLAKIS: 6 There's another 7 element here that we are not including, and there's a 8 good reason for that. It's irrelevant to you. But if 9 we come back to the earlier comment about decision 10 making, you see, what matters there, again, if you go to 1174, the famous diagram with the regions; what 11 matters is not just the CDF and how sensitive it is to 12 model uncertainty. It's the delta CDF, okay, because 13 14 many times what you find is that the CDF itself, it's 15 a little sensitive. Even if you double it, it doesn't 16 really matter. But if you start doubling or tripling the 17 delta CDF, you may very well go above the line and 18 19 enter the forbidden region. So you need, you know, 20 both, and I think what these gentlemen are addressing 21 here is really the model uncertainties that affect the 22 CDF itself. 23 MR. CHEOK: Sure. 24 CHAIRMAN APOSTOLAKIS: And there may be 25 different sensitivities when you start talking about

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

315

	316
1	delta CDF.
2	MR. CHEOK: Agree. Yes, I agree with
3	that, and I guess it's actually a harder thing to deal
4	with because that is more issue specific.
5	CHAIRMAN APOSTOLAKIS: It is very issue
6	specific. That's true. That's very true.
7	Didn't we talk to you about all of this,
8	Mike, or you were not there?
9	MR. CHEOK: I as there.
10	CHAIRMAN APOSTOLAKIS: Oh, you just wiped
11	it out of your mind. It was some university people
12	talking?
13	Okay. Good. Anything else?
14	DR. SCHROEDER: Not on model and parameter
15	uncertainties.
16	CHAIRMAN APOSTOLAKIS: Okay. So what else
17	would you like to tell us?
18	DR. SCHROEDER: Well, we're really done
19	with what we had planned to present.
20	CHAIRMAN APOSTOLAKIS: Wow.
21	DR. SCHROEDER: There is a slide or two on
22	model documentation, but I don't know whether you
23	consider that valuable or not.
24	CHAIRMAN APOSTOLAKIS: Okay. Very good.
25	any questions from the members or other people

```
(202) 234-4433
```

	317
1	present?
2	(No response.)
3	CHAIRMAN APOSTOLAKIS: Well, gentlemen,
4	this has been extremely informative. Thank you very
5	much, and we'll see you again tomorrow. Is that what
6	it is?
7	DR. SCHROEDER: Yes.
8	CHAIRMAN APOSTOLAKIS: And we seem to be
9	finishing sooner than scheduled because you don't have
10	much to say, huh?
11	MR. DENNING: It's because we're so
12	cooperative.
13	CHAIRMAN APOSTOLAKIS: We're so
14	cooperative. Well, I really appreciate your coming
15	here and presenting this. This was a really good
16	piece of work, and our comments are given in the
17	spirit of being constructive, even though we may not
18	sound that way sometimes, but I think this is good.
19	MR. CHEOK: And we actually appreciate the
20	comments, especially on these issues, and tomorrow
21	when you're doing models that are kind of in the
22	formative stages, I think it's important that we get
23	your comments at this point.
24	CHAIRMAN APOSTOLAKIS: Good. No, that's
25	wonderful. That's wonderful.
	I contract of the second se

(202) 234-4433

	318
1	Thank you.
2	DR. SCHROEDER: Thank you.
3	CHAIRMAN APOSTOLAKIS: And this meeting is
4	recessed.
5	(Whereupon, at 4:46 p.m., the meeting in
6	the above-entitled matter was adjourned, to reconvene
7	at 8:30 a.m., November 18, 2005.)
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	