Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards
	Subcommittee on Early Site Permits

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Wednesday, September 7, 2005

Work Order No.: NRC-581

Pages 1-*

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	+ + + + +
6	SUBCOMMITTEE ON EARLY SITE PERMITS
7	+ + + +
8	WEDNESDAY,
9	SEPTEMBER 7, 2005
10	+ + + +
11	ROCKVILLE, MARYLAND
12	+ + + +
13	The subcommittee met at the Nuclear
14	Regulatory Commission, Two White Flint North, Room T-
15	2B3, 11545 Rockville Pike, at 8:30 a.m., Dana A.
16	Powers, Chairman, presiding.
17	SUBCOMMITTEE MEMBERS:
18	DANA A. POWERS, Chairman
19	MARIO V. BONACA, Member
20	THOMAS S. KRESS, Member
21	WILLIAM J. SHACK, Member
22	JOHN D. SIEBER
23	ACNW MEMBER:
24	WILLIAM J. HINZE, Member
25	
	I

		2
1	ACRS/ACNW STAFF:	
2	MEDHAT EL-ZEFTAWY	
3	PANELISTS:	
4	DON ANDERSON	
5	ALLIN CORNEL	
6	EDDIE GRANT, Exelon	
7	KATHERINE HANSON	
8	BOB KENNEDY	
9	MARILYN KRAY, Exelon	
10	WILLIAM MAHER	
11	THOMAS MUNDY, Exelon	
12	CARL STEPP	
13	ROBERT YOUNGS	
14	<u>NRC STAFF:</u>	
15	TOM CHENG	
16	BRAD HARVEY	
17	CLIFF MUNSON	
18	JOHN SEGALA, Office of Nuclear Reactor	
19	Regulation	
20		
21		
22		
23		
24		
25		
ļ	NEAL R. GROSS	
	(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 (202) 234-	4433

	3
1	A-G-E-N-D-A
2	Introductory Remarks 4
3	Exelon Generation Company
4	Overview of application 6
5	NRC Staff Presentation 60
6	Geology, Seismology and Geotech
7	Dr. Anderson
8	Dr. Stepp
9	NRC Staff Presentation in Seismic Area 181
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:31 a.m.
3	CHAIRMAN POWERS: The meeting will now
4	come to order.
5	This is a meeting that would ACRS Early
6	Site Permits Subcommittee. I'm Dana Powers, the
7	Chairman of the Committee. The other ACRS members in
8	attendance are Mario Bonaca, Tom Kress, William Shack,
9	Jack Sieber. Graham Wallis has the intention of
10	joining us later in the day.
11	We also have the benefit of Bill Hinze
12	from the ACNW attending and participating in this
13	meeting. Welcome, Bill. Glad to have you here.
14	As you're all aware this is our third
15	meeting dealing with early site permits. For today's
16	meeting the Subcommittee will review and discuss the
17	NRC's Staff's draft safety evaluation report regarding
18	the Clinton early site permit and the Applicant's
19	submittals for the ESP.
20	The Subcommittee will, as usual, gather
21	information, analyze relevant issues and facts and
22	formulate proposed positions and actions as
23	appropriate for deliberation by the full Committee.
24	Dr. Mel El-Zeftawy is the cognizant ACRS
25	Staff engineer for this meeting.
ļ	I

(202) 234-4433

	5
1	Rules for participation in today's meeting
2	have been announced as part of the notice of this
3	meeting previously published in the Federal Register
4	on August 17, 2005.
5	A transcript of this meeting is being kept
б	and this transcript will be made available as stated
7	in the Federal Register notice. To prepare this
8	transcript it is required that speakers first identify
9	themselves and speak with sufficient clarity and
10	volume so they can be readily heard.
11	We have received no written comments or
12	requests for time to make oral statements from members
13	of the public.
14	This third permit is a little bit
15	different from the ones that we've looked at in the
16	past. For one thing we're not going to have to look
17	at any depth at the direct effects of hurricanes. We
18	will, however, delve somewhat deeper in seismic
19	issues, again looking further at the New Madrid
20	seismic zone.
21	The organization of this meeting is to
22	treat the non-seismic aspects of the Applicant this
23	morning and devote this afternoon to looking at the
24	seismic issues and the rather novel approach to
25	seismic embodied in this application.
	I

(202) 234-4433

	6
1	In this time of what I would call all
2	Katrina all the time news, I can't resist commenting
3	on some issues pertinent to other early site permits
4	that have come up.
5	I note that Gary Yohe of Wesleyan
6	University indicates in his study that hurricanes are
7	becoming stronger and longer lasting than in the past.
8	Chris Landsea of the National Oceanic and
9	Atmospheric Administration indicates hurricane
10	activity is in a natural cycle of increasing
11	intensity.
12	William Gray of the Tropical Meteorology
13	Project argues that the past 35 years has been a mild
14	and unusual hurricane activity, but we may be entering
15	an era of greater than normal hurricane activity.
16	Staff, however, clings to its belief that
17	past hurricane activity can be, in fact, inferred
18	directly to the future in assessing these early site
19	permits.
20	With that introduction, I think we turn
21	now to unless other members have introductory
22	comments they would like to make? Then we will turn
23	to the Clinton early site permit. Again, it's not
24	very dependent on hurricanes. And understand, Marilyn
25	Kray, you will begin the discussion. Welcome.
I	

(202) 234-4433

	7
1	MS. KRAY: Yes, sir. Thank you.
2	CHAIRMAN POWERS: Tell us about Clinton.
3	MS. KRAY: Thank you. And good morning.
4	My name is Marilyn Kray. I'm the Vice President of
5	Project Development for Exelon Nuclear.
6	We appreciate the opportunity to be here
7	with you this morning. We recognize today's meeting
8	is a milestone, not only for Exelon within the scope
9	of our project, but also as within the Dominion and
10	the Grand Gulf meeting it is a milestone for the
11	industry within the scope of the new plant
12	considerations.
13	We acknowledge the significant effort
14	taken by the Staff to result in the issuance of both
15	the draft 6 evaluation report and its supplement. If
16	you turn to the next slide, Exelon will be presenting
17	the information in the following order:
18	We will provide with an introduction of
19	the Exelon team members as well as our extended
20	project support organization.
21	We will also provide overall information
22	regarding our ESP applications form and content and
23	definition of the applicant.
24	With respect to the site, we'll share with
25	you a perspective at the state and county level, then
	I

(202) 234-4433

	8
1	honing in down to the actual site layout.
2	We'll share with you also the project
3	objectives; that is why Exelon has taken on this
4	project and how it fits with our overall strategy.
5	The overview of the site safety evaluation
6	report and the emergency preparedness will also be
7	provided.
8	And then lastly we'll address the safety
9	issues. As you mentioned, however, we'll be reserving
10	the seismic issues for the afternoon session.
11	The Exelon project team, if I could just
12	take a minute to introduce. I served as the project
13	executive sponsor. To my left is Tom Mundy, he is the
14	project manager. To my right is Eddie Grant, you'll be
15	hearing from him. He was responsible for both the
16	safety and the emergency preparedness aspect. And
17	then Bill Maher who is the back of the room has been
18	our lead for the environmental issues.
19	With that, I'll turn it over to the
20	project manager Tom Mundy.
21	MR. MUNDY: Thanks, Marilyn.
22	I just want to spend a moment introducing
23	the project support team, the individuals that were
24	the primary developers of the application and have
25	been the primary means of support for the NRC review
I	I

(202) 234-4433

	9
1	of the application.
2	Exelon's prime contractor in the
3	development of RESP application was CH2M Hill. They
4	were also responsible for the preparation of the
5	environmental and redress portions of the application,
6	geotechnical information and the emergency planning
7	information provided in our application.
8	Subcontractors to CH2M Hill supporting the
9	development of the application are WorleyParsons, the
10	former Gilber Commonwealth entity, then Parsons now
11	WorleyParsons.
12	Responsible for the site safety analysis
13	report contained within our application, Geomatrix
14	Consultants was responsible for the seismic related
15	information.
16	As part of our project team CH2M Hill
17	retained a Seismic Board of Review responsible for the
18	review of all seismic and geotechnical information
19	prepared by CH2M Hill and Geomatrix. That board is
20	chaired by Dr. Carl Stepp. The other participants to
21	that board are Drs. Allin Cornel, Dr. Walt Silva and
22	Dr. Kevin Coppersmith. Some of those individuals will
23	be here today for the afternoon session. At that time
24	I'd like to reintroduce them. We also have some other
25	individuals here this morning that supported our
I	

(202) 234-4433

	10
1	seismic effort and seismic related information. I'll
2	introduce them this afternoon.
3	There are a number of other subcontractors
4	used by CH2M Hill that played a smaller role,
5	particularly in the site field exploration work, the
6	geotechnical information. I won't list them, but there
7	was a number of other supporting groups.
8	Exelon retained directly RPK Structural
9	Mechanics Consulting to support our seismic review
10	effort, particularly around a performance-based
11	methodology.
12	We also utilized the services of Sargent
13	and Lundy to perform an independent technical review
14	of all information in the application excluding the
15	seismic and geotechnical information. So they were
16	our independent reviewer for the application before it
17	was submitted to the NRC.
18	Geotechnical information in the
19	application was independently reviewed by the
20	Department of Energy's Idaho Geotechnical branch,
21	Idaho National Laboratory Geotechnical branch.
22	And the seismic and geotechnical
23	information was also independently assessed by our
24	Seismic Board of Review.
25	And lastly, legal counsel support has been
I	

(202) 234-4433

	11
1	provided by Morgan Lewis.
2	Let me introduce a few people that are
3	today in support of this morning session.
4	From Morgan Lewis is our attorney Steve
5	Frantz.
6	From WorleyParsons we have John Ioannidi
7	the site safety analysis report project manager and
8	task leader responsible for the preparation of the
9	SAR.
10	We have Mike Cambria also a task leader
11	for the preparation of the site safety analysis report
12	and the technical leader for the rad consequences
13	analysis.
14	And we also have Dr. Bernie Holcomb from
15	CH2M Hill, our environmental report lead responsible
16	for the preparation, development of the environmental
17	report.
18	We have a number of other individuals
19	here, but their participation relates to the afternoon
20	session. I'm going to hold introductions of those
21	individuals until that time.
22	And that we're moving to slide 5, and I'd
23	like to turn it over to Eddie Grant.
24	MR. GRANT: All right. Good morning. My
25	name is Eddie Grant. As Tom mentioned, I was the lead
ļ	1

(202) 234-4433

	12
1	for the site safety information and for the emergency
2	planning.
3	What I'd like to do this morning is lead
4	you through some of the general information related to
5	the early site permit. As part of the background
6	certainly you're aware that the early site permits are
7	submitted in accordance with Subpart A of Part 51. The
8	application content is in according §51.17. And our
9	particular application contained five parts, as
10	indicated here in this slide:
11	The administrative information in
12	according with 50.33 which identifies the applicant
13	and its relationships.
14	The major portion that you would be
15	interested in the site safety analysis report, where
16	we've identified primarily the site characteristics
17	and done any analysis, and provided that analysis.
18	The emergency planning information that
19	was provided to identify what particular situations
20	are available there at the site for providing
21	emergency response.
22	We also had an environmental report that
23	was a complete report that addressed the construction
24	and operation of a future plant.
25	And then optional piece under 52.79 is to
	I

(202) 234-4433

1 provide a site redress plan, which Exelon did choose to do. Our application included a site redress plan, 2 and that addresses the information that would occur or 3 4 how we would replace the site or restore the site 5 should we begin to do any work under a limited work authorization that would be authorized under the ESP 6 7 and then decide not to continue for some reason. This 8 would identify what we would do to restore the site to its original condition. 9 10 I'd like to start on a wide level, statewide here in this case. State of Illinois, the 11 site location is near the city of Clinton in central 12 Illinois on Clinton Power Station property. 13 14 AmerGen owns this property and it's 15 approximately 13,000 acres. There's plenty of room 16 for additional stations. It was originally designed 17 for two units. Clinton Power Station was going to have two units. A second unit was subsequently 18 19 canceled and therefore, there's available space and/or 20 water supplies there for that unit. 21 The Applicant Exelon Generation is 22 Company, a limited liability corporation, who is a 23 wholly owned subsidiary of Exelon Corporation. And as 24 indicated above, AmerGen which actually owns the 25 property then is a subsidiary of Exelon Generation.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

13

Í	14
1	As you can see, I indicated that this is
2	in the center of the state. I'm not sure how well you
3	can read these, as they're fairly small. But off to
4	the southwest there is the city of Springfield.
5	Directly south of Clinton is Decatur. To the right is
6	Champaign Urbana. And north of the site and the city
7	of Clinton is the Bloomington normal area.
8	CHAIRMAN POWERS: Can you give me specific
9	distances?
10	MR. GRANT: I can. Decatur is 22 miles.
11	CHAIRMAN POWERS: Is that 22 miles to the
12	city center or to the boundary?
13	MR. GRANT: I'm not certain of that. I
14	believe, actually, that these are distances from the
15	site and they would be not a lot of difference since
16	the site boundary is about a half mile
17	CHAIRMAN POWERS: There could be a
18	substantial difference between the boundary of the
19	city, the city limits of the city and the center of
20	the
21	MR. GRANT: The Decatur city boundary,
22	yes. I'm not certain. I do not know of these
23	distances. Decatur, however, the distance again
24	approximately 22 miles. Bloomington is then
25	approximately equal distance, it's almost 22 miles
	I

(202) 234-4433

	15
1	north. Normal is just beyond the Bloomington area
2	there, so they make up a metropolitan area. Champaign
3	Urbana is 40 miles to the east, Urbana a little bit
4	further. Springfield is 45 miles to the southwest.
5	There are airports at Bloomington,
6	Decatur, Springfield, Champaign and Peoria, Peoria
7	being a little further way there to the northwest.
8	This gets us in a little closer and
9	provides a 50 mile EPZ, ingestion pathway EPZ circle
10	is the outer dotted circle. As you can see, there are
11	a few urban areas within the 50 mile area. Some of
12	those we've discussed already. The one that we've
13	mentioned so far that's outside of the 50 miles would
14	be Peoria, although it's just barely outside.
15	Some of the populations in these areas:
16	For instance, Bloomington is around 65,000 people;
17	Champaign is about the same size, 65/68,000; Urbana
18	adds to that as they're just east of Champaign,
19	another 36,000; Springfield is approximately 113,000.
20	They're the largest metropolitan area in that circle.
21	Peoria is about the same size as that, another
22	113,000. But a large portion of this 50 mile ingestion
23	EPZ has a population density of less than 20 people
24	per square mile. Were it not for these large
25	metropolitan areas it would very low population.
I	I

(202) 234-4433

	16
1	The average including those is
2	approximately 97 people per square mile. So less than
3	a 100.
4	One thing or one item I would point out
5	here is a railroad that does run near the site. And it
б	runs along this highway 54 near the site, which is
7	here and then on up highway 54. And that is the
8	nearest railroad to the site.
9	MEMBER SIEBER: That's the old Wabash
10	Railroad?
11	MR. GRANT: It was the
12	MEMBER SIEBER: Or the Illinois Central?
13	MR. GRANT: Illinois Central, correct.
14	It's now Canadian National, I believe. They changed
15	over and they call it the Gilman line for some reason.
16	I'm not sure why that is.
17	CHAIRMAN POWERS: Will you in the course
18	of the presentation get into your population
19	projections?
20	MR. GRANT: I did not have a plan for
21	that, but we can discuss that if you would like.
22	CHAIRMAN POWERS: Yes. I was confused
23	about how it was done.
24	MR. GRANT: Okay.
25	CHAIRMAN POWERS: I understood that for
I	

(202) 234-4433

	17
1	the population centers out away from the site, at some
2	distance that you used Census data to do the
3	projections. But in closer you used projections from
4	the University of Illinois for the counties?
5	MR. GRANT: I do not recall using the
б	University of Illinois. My recollection is that it
7	was all based on Census data that we had taken the
8	last two sets and projected using the differences
9	there.
10	You may recall that it indicated that
11	we're actually looking at a drop in the Census in the
12	area.
13	CHAIRMAN POWERS: That is what I found
14	remarkable, since all the population centers went up
15	and yet in the local area things went down. And I
16	didn't quite understand why that would be.
17	MR. GRANT: Well, one possibility for that
18	is that most of the area is farming community. And as
19	the farms get larger, combined operators, there are
20	fewer people to operate those farms so the density
21	would drop.
22	Bill, can you help me with that? Do you
23	have any information on the population distribution
24	information?
25	MR. MAHER: This is Bill Maher with Exelon
I	

(202) 234-4433

	18
1	Corporation.
2	Part of the population projections deals
3	with some of the manufacturing capabilities within the
4	area of the site. Recently what has fed into the
5	population projections is a drop in certain large
6	employers within that area, and that feeds into the
7	population projection drop.
8	MR. GRANT: Thank you.
9	CHAIRMAN POWERS: I guess what I'm
10	struggling with is I don't understand where you got
11	the data on the population drop. And I had thought,
12	apparently incorrectly, that you had used some stuff
13	from the University of Illinois.
14	MEMBER SHACK: Actually, it's Illinois
15	State University.
16	CHAIRMAN POWERS: Okay. And so I said
17	okay, that's a different source but I don't know too
18	much about source. And things like you're talking
19	about changing employments of major industrial
20	concerns or whatnot; I'm left confused on why I'd have
21	all these population centers with not huge, but some
22	growth over the next 40 years and locally it's
23	dropping down. I just don't know how you got that
24	number.
25	MR. GRANT: Well, it depends a little bit
I	1

(202) 234-4433

	19
1	on what you refer to as locally. If you're talking
2	about within the ten mile EPZ, the next slide does
3	provide a little bit of information there. Those
4	cities within ten miles are very small cities. We're
5	talking cities of 200, 300, 400
6	CHAIRMAN POWERS: And 80 going to 78 and
7	things like that.
8	MR. GRANT: Right.
9	CHAIRMAN POWERS: I would have expected
10	overlaying any trends in the way we do agriculture in
11	this country or employment, if you would, have a
12	trend of suburbanization of major population centers
13	on top of it. And so I came away saying I don't know
14	how they got these numbers.
15	MR. GRANT: I do not have an answer for
16	you. On that I would have to look into it further.
17	CHAIRMAN POWERS: Okay. Please continue.
18	MR. GRANT: All right. Going on then to
19	slide 8, this does take a look at a little closer, ten
20	mile EPZ in this case. As I indicated, it is mostly
21	rural. You'll see to the left there a little bit of
22	gain in population, and it's the city of Clinton. To
23	the west Dewitt is the little blue square slightly
24	north and mostly east of the site. Weldon is
25	southeast there and the little city of Wapella to the
	I

(202) 234-4433

	20
1	northwest.
2	As I indicated earlier, these cities are
3	very small. Dewitt is the closest city. It has a
4	population of approximately 200, and it's about $2\frac{1}{2}$
5	miles from the site. So it's fairly close.
6	Weldon to the southeast is 450 people, and
7	it's about 5½ miles from the site.
8	Clinton at 7 miles is the largest within
9	the ten mile area, and it has a population of
10	approximately 7500.
11	Within the ten mile circle there is a
12	population currently or at the last Census of
13	approximately 12,000 people.
14	And as indicated by the light color there,
15	most of the areas I indicated before is less than 20
16	people per square mile. You really only get in those
17	smaller cities any other population densities, higher
18	population densities.
19	CHAIRMAN POWERS: You have in your text a
20	treatment of transients and, by in large, they appear
21	in the winter months to be people that work at
22	companies here but don't live within the ten mile
23	zone. But you have thus curious phraseology in there
24	that says these are conservatively treated as
25	transients. Conservative relative to what? Ignoring
I	1

(202) 234-4433

	21
1	them altogether or
2	MR. GRANT: Certainly.
3	CHAIRMAN POWERS: Okay. I just read the
4	word and I didn't understand conservative relative to
5	what.
б	MR. GRANT: Okay. Now this, as you
7	indicated in the close in area within the ten mile is
8	where we are projecting a drop in the population. If
9	I remember correctly, there was a slight increase in
10	the 50 mile EPZ, but not significant.
11	CHAIRMAN POWERS: Not major.
12	MR. GRANT: But still an increase over
13	there. And that would account for, as you indicated,
14	the metropolitan areas and the increases that would
15	occur there. This would, again, mostly be farming
16	communities and small industries.
17	I'd like to move in a little closer to the
18	site. This particular one shows the site area. The
19	boundaries run roughly parallel to the two arms of the
20	lake there. And the AmerGen property, as I indicated
21	before, is just under 14,000 acres.
22	The Clinton Lake takes up about almost
23	5,000 acres of that, 4895 acres. This lake was
24	constructed specifically to provide cooling for the
25	Clinton Power Station. The dam in the lower left
I	I

(202) 234-4433

	22
1	there was constructed by Illinois Power. It dams up
2	the Salt Creek, which is the larger this particular
3	area here is Salt Creek. And the other arm is the
4	North Fork of Salt Creek. It just below the confluence
5	of those two arms where they come together and such
6	that you get this U shaped lake.
7	The lake goes approximately 14 miles back
8	up the arm there of Salt Creek and approximately 8
9	miles up the North Fork.
10	There are three highways that cross the
11	property. The largest one there is highway 54 that I
12	mentioned before, this line here. Highway 10 comes
13	across the southern boundaries. And highway 48 is this
14	north/south area here. They all cross the property.
15	A couple of other major highways in the
16	area. Back over here in Clinton is a highway 51
17	that's heavily traveled. And you see up here is an
18	interstate highway, 74.
19	As I also had previously indicated that
20	the one railroad that it runs closest to the site runs
21	roughly parallel to highway 54 in the area of the
22	site. There is another railroad back down here, but
23	it's not used much and is quite a bit further from the
24	site.
25	CHAIRMAN POWERS: In the course of your

(202) 234-4433

	23
1	planned presentation will you discuss any of the
2	details of the dam construction?
3	MR. GRANT: I can tell you yes. We'll see
4	if it is sufficient detail for your purposes, but I
5	will provide some details there.
6	CHAIRMAN POWERS: Just a question. I
7	confess a substantial ignorance in dam construction.
8	MR. GRANT: All right. There are well,
9	that's probably sufficient.
10	I would point out a few other items on
11	this slide. As it indicates here, normal pool
12	elevation for this particular lake is about 690 feet.
13	I will identify some other elevations later that will
14	give you some relationships there.
15	The discharge flume from the site; the
16	water comes out of the plant and runs along this item
17	here, which is the discharge flume, such that the
18	water then must travel back down this direction to get
19	out the dam. And is unlikely to flow back up stream
20	here to go into the intakes, which are on this arm of
21	the lake.
22	The other thing I would point out is the
23	ultimate heat sink. Now that's the ultimate heat sink
24	for the Clinton Power Station. It would also provide
25	makeup water for the ultimate heat sink, which would

(202) 234-4433

	24
1	be a cooling tower if we need one. It depends on the
2	design that we decide to build, which we have not yet
3	decided. But if we do require an open heat sink, then
4	the Clinton Power Station open heat sink would provide
5	makeup water for that cooling tower, which is the type
6	of ultimate heat sink that we would use.
7	The ultimate heat sink was originally
8	constructed for both Units 1 and 2 of the Clinton
9	Power Station. With Clinton Unit 2 being canceled,
10	there is quite a bit of capacity available there. And
11	we've identified that there is sufficient for all of
12	the designs that we are looking at.
13	MEMBER SIEBER: How much flows are in
14	those creeks?
15	MR. GRANT: Flow in the creeks? That was
16	in the application but I did not pull those numbers
17	out to bring with me.
18	MEMBER SIEBER: That's the major factor in
19	the heat capacity of that system is how much flow.
20	MR. GRANT: Certainly. Again, I would say
21	that there was the original purpose for the lake
22	was for two units, Clinton Power Station 1 and 2. And
23	we did look at the heat capacity. We believe that
24	there is plenty for the additional units that we're
25	looking at depending on the designs that we use. But

(202) 234-4433

	25
1	of all those that we looked at and the plant parameter
2	envelop methodology that we used that had the highest
3	value for heat load. But I don't remember the
4	numbers.
5	MEMBER SIEBER: I would presume, not to
6	belabor the point, since this summer has been pretty
7	dry that the flow isn't very high. Because in effect
8	what that lake does is collect rain water.
9	MR. GRANT: Correct. I'm not sure what
10	you mean or how that works.
11	MEMBER SIEBER: Well, if it collects rain
12	water and it doesn't rain, that means there's no flow.
13	CHAIRMAN POWERS: I got the impression
14	that was the reason for the change in thermal design
15	for the second plant.
16	MEMBER SIEBER: Right. Okay.
17	MR. GRANT: Okay. For the next slide I'd
18	like to move again even a little closer in such that
19	we're now between the two arms of the lake and showing
20	an exclusion area boundary for the specific site. The
21	exclusion area boundary is a 1,025 meters from the
22	center of the early site permit property. And that
23	property or the main footprint for the power block is
24	the large blue rectangle. It does show blue up here?
25	Yes. Okay.

(202) 234-4433

1 The other rectangle, blue rectangle there 2 to the southwest would be for the normal heat sink 3 cooling towers are projected there. And although it's 4 somewhat unrecognizable just to the southeast of the 5 larger rectangle for the power block footprint there is a small rectangle there as well. 6 And that's where 7 the ultimate heat sink cooling towers would be placed. 8 Just in case you can't see it, it's this little area 9 here that almost looks like a smudge. build 10 We would also another intake structure about 65 feet from the existing intake 11 12 structure for Clinton Unit 1. This yellow line here, what we've done is 13 14 tried to indicate as had shown that the ultimate heat 15 sink was this area here, and what happens is for Clinton Unit 1 there is a discharge on this side. This 16 is a berm that runs down the length here and the 17 discharge is on this side such that then during an 18 19 accident situation water runs around this berm and 20 then back to the intake so that there is cooling in 21 that portion while it is moving through that area. 22 There is also a submerged dam across this 23 point that keeps water from flowing out through the other dam should there be a breach in that dam or some 24 25 other problem. So that water is held in this piece.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

26

	27
1	And again, this flow here for the ultimate heat sink
2	for Clinton Power Station.
3	Again, here you can see the discharge
4	channel very clearly. Where it goes out here, that
5	runs about 3½ miles out to the other arm of the lake
6	to provide cooling.
7	There would be some switchyard expansion
8	as well. The switchyard is over on this side. This,
9	again, is highway 54 and the railroad runs, again,
10	parallel to that that is closest to the site.
11	Another shot here to provide a little
12	different perspective and to provide information on
13	the ESP location. The yellow outline here is where we
14	anticipate putting the major structures. This area is
15	where the Clinton Power Station is, this being Unit 1.
16	Here is what would have been Unit 2.
17	We did look using Unit 2 area but because
18	of the interferences with some of the other existing
19	structures, we decided that it would simpler to simply
20	move back over into this area where there is plenty of
21	open space. When Unit 1 was constructed this was lay
22	down area, so it's already been impacted and it's a
23	pretty flat area.
24	Back over here again is the ultimate heat
25	sink area and the discharge comes out this way and
ļ	

(202) 234-4433

	28
1	back down.
2	MR. HINZE: Excuse me.
3	MR. GRANT: Sure.
4	MR. HINZE: Would you do the cooling
5	towers again, the proposed cooling towers where they
6	
7	MR. GRANT: This area is much large
8	this is all of those areas combined. The major power
9	blocks would be in this portion here. The normal heat
10	sinks would be back towards this side. And the
11	ultimate heat sink would be in this area.
12	MR. HINZE: Thank you.
13	MR. GRANT: Again, normal discharge would
14	be back out over here to the discharge channel, but
15	ultimate heat sink makeup would be from the Clinton
16	Power Station ultimate heat sink.
17	This is just a slightly different view
18	from a different direction. Again, here's Clinton
19	Power Station, the Unit 2 hole, the overlap for the
20	area is here. and, again, wide flat area that was lay
21	down area.
22	In this I would point out, this is the
23	Unit 1 intake structure. We would be looking at
24	another intake structure in this area here. A berm is
25	not drawn in, but it runs back out this way. Out flow
	1

(202) 234-4433

	29
1	from service water for Unit 1 comes here, and we'd
2	back around here to provide cooling and makeup for
3	ultimate heat sink purposes.
4	This view is from the north/northwest.
5	You won't find these last two pictures in the
6	application anywhere, but they're provided to help
7	with understanding.
8	MR. HINZE: Could you give us just a brief
9	idea of the berm construction?
10	MR. GRANT: I'm sorry.
11	MR. HINZE: The berm construction.
12	MR. GRANT: Berm construction. Yes, sir.
13	Can I hold off on that just a few minutes?
14	MR. HINZE: Sure.
15	MR. GRANT: I believe I do have some
16	information on that later that can provide you some
17	information.
18	At this point, though, that's the brief
19	overview of the site location and the related
20	information around that.
21	I'd like to take a second and tell you
22	about our project objectives. Certainly the main
23	objective is to reserve the site for future use. I
24	mean, that is the purpose of an early site permit
25	overall. Along with that, though, we wanted to
I	

(202) 234-4433

demonstrate the ESP process. As you're certainly
aware, this being the third one that you've looked at,
this is a new process. We wanted to see that it can
work smoothly, that is of value. And so one of the
things that Exelon was looking at was to establish the
ESP cost and value associated with an early site
permit.
We wanted to exercise and test these new
processes for early site permits. And later on then,

10 that early site permit would be referenced, hopefully, 11 by a COL application and that interface and see how 12 that interface would work as well.

There are some new methods out there. Part 14 100 has been revised since the last plant was built. 15 Now it calls for the PSHA and more than using the site 16 historical information. So we wanted to test that 17 method and along with the regulatory guide that goes 18 with it.

19 We wanted to look at finality. This is 20 kind of a new concept with regard to plants that are 21 not yet constructed. Getting an early site permit is 22 intended to establish finality on certain issues ahead 23 of time so that those are resolved and complete. And 24 one interesting point we'll be looking at is when the 25 ESP is referenced then in a COL how that finality

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

	31
1	carries through.
2	We wanted to establish a precedent for
3	early site permits. We've seen three of these now and
4	in some areas we are very much alike, and so we expect
5	that the process is repeatable and predictable. But
6	in some areas you've seen differences. And so it will
7	be interesting, not only to this Committee I'm sure,
8	but to the rest of us to see how that proceeds then in
9	the future early site permits.
10	CHAIRMAN POWERS: Suppose that for reasons
11	unknown to any of us that DeWitt became the yippee
12	haven of Illinois ten years from now and the
13	population screamed up to 10,000.
14	MR. GRANT: Yes.
15	CHAIRMAN POWERS: Then what?
16	MR. GRANT: Well, that would be an impact.
17	I'm presuming that this is a projection beyond the
18	time when the early site permit has been approved.
19	CHAIRMAN POWERS: Right.
20	MR. GRANT: Okay. And we've established
21	area demography already under the early site permit.
22	However, under Par 52 when you get into the COL
23	application, 52.79 requires that you take a look at
24	what was established under the early site permit. If
25	there are major differences, those would be required
ļ	I

(202) 234-4433

	32
1	to be addressed in the COL application. So certainly
2	that major difference in demography would be something
3	we would need to look at, both with projects on dose
4	calculations and certainly in the emergency planning
5	area.
б	With that, I'd like to get into the
7	approach there that was used for the application in
8	the safety area. There was, as I indicated, two sets
9	of documents related to the safety area.
10	The site safety analysis report. In
11	developing the site safety analysis report we tried to
12	make maximum use of the existing information. We had
13	an awful lot of information based on Clinton Power
14	Station. It is the site that we're trying to get
15	approval for to place an additional site on. So it
16	seemed logical at the time to use as much of that
17	information as we possibly could. This afternoon
18	you'll hear one good example of where we were able to
19	make use of quite a bit of that information.
20	CHAIRMAN POWERS: In fact, I found in
21	reading the safety analysis report it would have been
22	useful if I'd had at hand the FSAR for the existing
23	unit. It wasn't essential, but it would have been
24	useful to have reviewed that.
25	MR. GRANT: Okay. It could have been
ļ	I

(202) 234-4433

1

-	provided apon requese.
2	The major purpose of the site safety
3	analysis report is to establish the site
4	characteristics. Those are one of the major features,
5	I guess, of the that is the major feature of the
6	site safety analysis report to establish the basis
7	then for how that would be referenced and compared to
8	whatever plant we might build under a COL application.
9	Because we had not decided what plant we
10	might build at some future date, we established a
11	plant parameter envelop. Took a look at seven
12	different designs. Took many of the bounding area or
13	bounding parameters from those seven designs and
14	developed a box, essentially, that says that if we
15	build something within this box meaning certain flow
16	rates and certain sizes, power capabilities that then
17	the evaluations that were done for dose consequences,
18	thermal discharges those types of things would be
19	bonded by what we have identified in the site safety
20	analysis report analyses.
21	CHAIRMAN POWERS: I can very much
22	appreciate how you would do that with those plants,
23	the six or seven that you looked at that have been
24	cortified

24 certified.

25

In your text when it was written you were

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	very confident that ESBWR would be here in 2004 going
2	through the certification process. Well, it's fallen
3	a bit short on that. So they don't really have an
4	established plant parameters for the ESBWR or the
5	pebble bed or the gas reactor that were in your set.
6	MR. GRANT: Yes, sir.
7	CHAIRMAN POWERS: And you're more of a
8	gambler than I might be here.
9	MR. GRANT: Well, yes and no. It isn't
10	imperative that we had final parameters established,
11	design parameters established for the various designs.
12	We took the best information that was available at the
13	time for those various designs and used those bounding
14	parameters recognizing, as you've just pointed out,
15	that should some of those parameters change and they
16	would then be found to not be within the bounding
17	parameters, that if we reference one of those designs,
18	certified designs in this early site permit in a COL
19	application that we would have to reconcile the
20	difference between the actual plant characteristics
21	and the plant parameter envelop bounding value that we
22	used.
23	MS. KRAY: Marilyn Kray.
24	You are correct as far as there is a risk
25	associated with that. And we, as the Applicant,

(202) 234-4433

together with the other three applicants communicated with the respect reactor vendors to essentially put that risk on them.

4 So in this case with General Electric we 5 said to them provide us your bounding cases. Now, they had the benefit of having the ABWR, which in most 6 7 cases did bound those parameters. But as they go forward and continue to develop the design of the 8 9 ESBWR, they recognize that should they go outside that, then they would place themselves for these three 10 ESPs in the scenario that Eddie described, which is 11 12 not where they want to be, and that is that they would not be covered by the existing permits should they be 13 14 approved.

15 So there was a lot of interaction among 16 the three applicants and the reactor vendors to share 17 with them what that situation was and for them to 18 provide us with the appropriate values.

19 MR. GRANT: And I would like to stress 20 that even though we used seven different designs to 21 come up with that plant parameter envelop, that in no 22 way limits us to any of those seven designs. Should 23 there be another design developed tomorrow, as long as 24 it fits within that plant parameter envelop it should 25 be acceptable on the site.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

1 In the emergency planning information under the early site permit again, maximum use of the 2 3 existing plans. There is an existing plan for Clinton 4 Power Station that is in two parts. There is a 5 standard Exelon plan and then there is an appendix to that specifically addresses Clinton Power 6 that 7 Station. And then there are the state and local plans that are existing as well. And they really are not 8 9 dependent on the station that would be at a particular site. They are really developed based on an event at 10 location such that they're almost directly 11 а 12 applicable in all aspects for the new site. There are a couple of options within 13 14 52.17, which is the necessary information to be 15 provided in an early site permit application. One of is to provide a complete and integrated 16 those emergency plan. We did not choose to do that at that 17 We chose the other option, which is to 18 time. 19 establish major features. Now some difficulty has been encountered 20 21 in establishing exactly what is a major feature. The 22 utilities did all not have the same understanding of 23 a major feature that the staff had at the time that we 24 bequn. We have since come to agreement on those major 25 Still not necessarily what we would like features.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

36

	37
1	them to be, but
2	CHAIRMAN POWERS: As you may well be
3	aware, the Committee has written on that particular
4	subject.
5	MR. GRANT: We did see your writing on
б	that subject, yes.
7	But we are pursuing those major features.
8	The Staff has, I believe, identified approval for the
9	major features. And we're moving forward in that area.
10	In the SAR, again site characteristics are
11	the major thing that we're trying to establish within
12	the early site permit. Geography/demography which is
13	dependent on the location, for example, identifies the
14	nearest city. We've talked a little bit about that
15	earlier which city was the closest, which is of course
16	Clinton Power Station or city of Clinton. I'm sorry.
17	We talked a little bit about nearby
18	hazards. We identified the railroad. There is a
19	pipeline also near the site that was evaluated. We
20	looked at chemicals in the nearby area and we'll
21	project what chemicals would be utilized at the
22	station and then at Clinton Power Station
23	CHAIRMAN POWERS: I have to comment that
24	I particularly enjoyed reading that section. It's
25	fascinating by in the hell did they get this piece of
I	1

(202) 234-4433

	38
1	information.
2	MR. GRANT: I'm sure it was a lot of
3	investigation.
4	CHAIRMAN POWERS: It reflected a lot of
5	investigation, I'll have to say that.
6	MR. GRANT: Another particular area of
7	site characteristics is the meteorology. We looked at
8	wind speeds, of course, dispersion, tornados; those
9	types of things.
10	Hydrology was quite well reviewed.
11	CHAIRMAN POWERS: Meteorology. I did not
12	understand quite your treatment of snow pack and
13	maximum 48 hour precipitation. Just to refresh your
14	memory, I think if you go through the formula that are
15	given, you end up with something like a 110 pounds per
16	square foot loading on your structures. You indicated
17	you did not think that was reasonable.
18	MR. GRANT: Correct.
19	CHAIRMAN POWERS: And then set out to
20	prove that you had about 35 pounds per square foot.
21	And I have to say I did not follow that at all.
22	MR. GRANT: I'm sure I am not prepared to
23	explain it to you either.
24	I would point out that although the
25	application does say 35 pounds, there was some
	I

(202) 234-4433

	39
1	extensive review of that by the Staff. And I believe
2	we did result in a change to that such that the number
3	is now 40 pounds per square foot.
4	CHAIRMAN POWERS: I'm aware of that, too.
5	MR. GRANT: It has changed a bit.
6	CHAIRMAN POWERS: But we started at 110.
7	And I couldn't get to 35, going to 40 didn't help me.
8	MR. GRANT: Yes. The 110, there was a
9	methodology process that we went through and
10	identified and said when you do this it comes out at
11	110. That did not make sense to us either, which is
12	why we went through another process and
13	CHAIRMAN POWERS: I understood that the
14	results seemed to be a little heavy and that you set
15	about doing something else. I just didn't follow what
16	the something else was.
17	MR. GRANT: All right. We can take a look
18	at that.
19	Geology and seismology is the last area.
20	Certainly that is covered as far as site
21	characteristics. All of this information is contained
22	in Chapter 2. You'll find these are like 2.1, 2.2, 3,
23	4, 5.
24	And there is a table that identifies the
25	site characteristics in Chapter 1, along with the
	1

(202) 234-4433

	40
1	plant parameter envelop. And they are separate
2	categories or separate columns because they are
3	separate numbers where we identify something
4	associated with the site or we just picked a value to
5	use.
б	CHAIRMAN POWERS: And I have to admit that
7	that particular table confused me at first. But by the
8	time I was done with it, I said no this is a good
9	idea. It actually made it much clearer what came from
10	where.
11	MR. GRANT: Thank you. We had similar
12	comments from the Staff.
13	CHAIRMAN POWERS: Yes. It took me a while
14	to get use to it. Eventually I said yes, it was a good
15	idea.
16	MS. KRAY: It took us a while internally
17	as well.
18	CHAIRMAN POWERS: Okay. I'm glad I'm not
19	the only one that's struggling with that.
20	MS. KRAY: No. And we had a lot of
21	internal discussion about design feature versus site
22	characteristics. It was a very philosophical
23	discussion for a while.
24	MR. GRANT: Right.
25	CHAIRMAN POWERS: I can well imagine.
I	I

(202) 234-4433

	41
1	MR. GRANT: The difference between a site
2	characteristic and a site parameter and a design
3	parameter and design characteristic and which ones are
4	actuals and which ones are chosen for use. And it was
5	lots of fun.
6	CHAIRMAN POWERS: Okay.
7	MR. GRANT: This is a slide that we've put
8	in to provide some of the elevation information that
9	I mentioned earlier and to identify a couple of the
10	site characteristics. One is the site grade, which is
11	approximately 735 feet mean sea level and the
12	resulting probable maximum flood, not the one that you
13	saw in the original application but the resulting one
14	after discussions and interactions with the Staff,
15	715.5 feet mean sea level.
16	And just to put this in relation then to
17	the rest of the station
18	CHAIRMAN POWERS: I've got to ask.
19	MR. GRANT: Certainly.
20	CHAIRMAN POWERS: 715.5, presumably not
21	716 or not 715?
22	MR. GRANT: Yes.
23	CHAIRMAN POWERS: You really honest
24	believe these numbers to this accuracy?
25	MR. GRANT: No. But the calculation
	I

(202) 234-4433

	42
1	methodology gives you a number and
2	CHAIRMAN POWERS: Can you give me some
3	idea of
4	MR. GRANT: I could probably give you
5	range there. For instance, if you come down a little
6	further, 708.9 is the probable maximum flood
7	calculation still water level. If you then begin to do
8	the additional calculations to worry about wave runup
9	and any kind of sloshing or surge or whatever might go
10	along with that, then it get really difficult.
11	CHAIRMAN POWERS: Yes.
12	MR. GRANT: That builds that then up to
13	the 715.
14	CHAIRMAN POWERS: You did a good job on
15	that wave washup.
16	MR. GRANT: Thank you.
17	We certainly could have rounded these off
18	a bit. But the calculations come out. And you got
19	these wonderful calculators now that give you seven
20	digits. We did at least cut that back to one digit
21	beyond the decimal point.
22	A little bit about the dam for the lack,
23	not the dam on the ultimate heat sink but the lake
24	dam. The top of that is at a 711.8. So you can see
25	that once you begin all this wave movement that
I	

(202) 234-4433

	43
1	overtops the dam there. But keep in mind that this
2	probable maximum flood does not effect site grade.
3	There's nearly 20 feet of difference there between the
4	probable maximum flood and site grade. So it really
5	is not an issue for this site.
б	Again, some other numbers there. The 100
7	year flood is approximately 697 feet mean sea level,
8	which is about seven feet above the normal pool level
9	for the lake.
10	The 100 year drought would drop that down
11	to 681 or so.
12	Minimum allowed operating level, that is
13	the number that is used at this point, 677, for
14	Clinton Power Station where they have tech spec that
15	once the lake drops below 677 they're required to take
16	action. We expect that our site would have a similar
17	restriction or our plant once it is built.
18	We get down to that ultimate heat sink
19	then and the baffle that I mentioned that runs down
20	the middle there and the dam back over at the point,
21	from the point that runs across the lake there to keep
22	the water in the ultimate heat sink should something
23	happen to the lake dam, which is further down at the
24	confluence. The top of the baffle is at 676, which
25	keeps the water separated because it would be at
I	I

(202) 234-4433

	44
1	approximately 675 feet mean sea level, which is the
2	top of that dam underneath that is under the water.
3	There was quite a bit of detail in, I
4	believe, the application on the dam construction. I
5	believe the bottom portions of it have some concrete.
6	I don't know all the detail there.
7	CHAIRMAN POWERS: You mentioned something
8	called riprap.
9	MR. GRANT: Riprap. Yes, sir.
10	CHAIRMAN POWERS: And what is riprap?
11	MR. GRANT: A bunch of big rocks.
12	CHAIRMAN POWERS: Big rocks. Okay. I
13	just saw the word and I looked it up in my dictionary.
14	Did not help at all.
15	MR. GRANT: Yes. When you drive across an
16	earthen highway that goes across the lake and you look
17	down along the side there, you see all those big
18	rocks. It's riprap.
19	CHAIRMAN POWERS: Big rocks wouldn't do;
20	we had to call it riprap?
21	MR. GRANT: Some civil engineer came up
22	with that, I suppose. I don't know.
23	MR. HINZE: It's usually big gravel rather
24	than big rocks, isn't it?
25	MR. GRANT: I'm not qualified to tell you
	I

```
(202) 234-4433
```

	45
1	the difference between gravel and rocks.
2	CHAIRMAN POWERS: I'm stunned at the
3	knowledgeability of my colleagues and as usual,
4	humbled.
5	MR. GRANT: The bottom of the ultimate
6	heat sink 668.5 so you can see there that the depth of
7	the ultimate heat sink $6\frac{1}{2}/7$ feet, somewhere in that
8	range.
9	Towards the bottom of the slide there as
10	it indicates in Chapter 3, you're probably familiar
11	with FSARs for larger applications for the operation
12	of a plant which has 18 or 20 chapters, depending on
13	how many subjects you're covering these days. For the
14	site safety analysis report I'm sure you noticed we
15	have only the introductory chapter, the site
16	characteristics chapter and then some analysis which
17	we placed in Chapter 3. Those safety assessments or
18	analyses include the radiological effluents, the
19	thermal discharges and the accident dose consequences.
20	These are the areas required, again, to be addressed
21	under 52.17 as part of the application.
22	A couple of other areas that are in there,
23	"there" being Chapter 3 of the SAR, is security plan
24	development and emergency plan development. Primarily
25	there we're looking only to affirm that we would not
I	1

(202) 234-4433

	46
1	anticipate any significant impediments to development
2	of either of those plants. Certainly we did not expect
3	to identify any impediments since there are in place
4	security plan and emergency plan for the station that
5	exists there now.
6	CHAIRMAN POWERS: You go through some
7	substantial discussion and even critique of the
8	Gaussian plume model because of the location of the
9	lake and whatnot. And discuss things like the change
10	in friction on the ground. But in the end you end up
11	with a Gaussian plume, is that correct?
12	MR. GRANT: To the best of my
13	recollection, yes.
14	CHAIRMAN POWERS: And it was an
15	interesting discussion of it because the lake does
16	perturb things quite a bit.
17	MR. GRANT: I'm not sure that we would
18	CHAIRMAN POWERS: But in the end you come
19	back and say well we're going to use a Gaussian plume,
20	but here are the issues that lead to questions here.
21	MR. GRANT: Right.
22	CHAIRMAN POWERS: And then you use a
23	plausibility argument and say well it's not much of
24	perturbation.
25	MR. GRANT: We would expect that there
l	I

(202) 234-4433

	47
1	wouldn't be much of a perturbation. It is one of the
2	things, however, that we would look at the COL
3	application once we've decided what type of tower we
4	would use.
5	CHAIRMAN POWERS: Well, I guess my
6	question I mean, that's about the level of which
7	it's written; somehow we don't think this is a big
8	perturbation.
9	MR. GRANT: Yes.
10	CHAIRMAN POWERS: And I said, gee, I
11	wonder how they know.
12	MR. GRANT: Well, that good be a long
13	philosophical discussion. But I would indicate that
14	certainly once the plant begins to operate if we saw
15	something different
16	CHAIRMAN POWERS: I mean, you do draw
17	analogy to your plume coming out of your existing
18	cooling towers and make arguments there. And I
19	wondered if that's how you knew, and things like that.
20	MR. GRANT: Those existing cooling towers
21	would be at other locations and, hopefully, similar
22	locations. But, yes, we draw the best analogies that
23	we can.
24	A little bit about the emergency planning
25	area. As I indicated just moments ago, we concluded
	I

(202) 234-4433

	48
1	that there were no significant impediments to
2	developing adequate emergency plans for this area.
3	Again, no surprise since there is one in place
4	already.
5	We did establish the contacts with the
6	proposed response agencies. That is a requirement of
7	52.17 for the application. That's one of the things
8	that we must do.
9	In fact, both of those first two bullets
10	are not optional. Those are requirements for the early
11	site permit.
12	And the third bullet there to establish
13	the major features, that was an option. It was not
14	requirement, but we did choose to provide that
15	information and establish those major features.
16	Again, to get some finality in those particular areas.
17	This information is, again, contained in
18	the emergency plan document and also a little bit of
19	it in Chapter 3 were required by the discussions.
20	A short summary here of the draft safety
21	evaluation issues, other than the seismic ones. This
22	would be the draft SER portion that came out in
23	February. We certainly since had interactions with the
24	staff. We believe all these items to be resolved such
25	that there are no outstanding safety issues in these
I	I

(202) 234-4433

	49
1	areas. There may be one or two minor points that
2	we're still working on. But, again, no significant
3	issue.
4	Just a short summary. There was one legal
5	item, one QA item, 3 meteorological items, 6 emergency
6	planning items and 21 hydrology items. But these don't
7	reflect by their numbers the significance, by any
8	means. Any one of the individual items could
9	overwhelm the rest of those as far as significance.
10	I would also indicate that the emergency
11	planning area, each one of those had several parts.
12	So those were not necessarily, again, indicative.
13	And, again, we understand these all to be
14	satisfactorily resolved at this point.
15	There were five confirmatory items which
16	are all Staff actions to be taken. Four of those have
17	been completed. The one remaining item is that they
18	would confirm that when we submit a revised
19	application that it actually includes the information
20	that we've provided in the responses to the request
21	for additional information. We expect to provide that
22	in the November time frame, so that should be easy to
23	resolve and complete the item as well.
24	The original February draft SER also
25	contained 14 proposed permit conditions and 8 proposed
ļ	I

(202) 234-4433

	50
1	COL action items. I think the Staff is planning to
2	tell you a little bit more about what they've been
3	doing in those areas as they begin their discussions.
4	I would only say that we expect those will change
5	somewhat.
6	Just a quick note on the schedule. I
7	think the Staff is going to cover this in more detail.
8	We're currently looking at approximately a 46 month
9	schedule for our early site permit with a final
10	Commission decision in May of '07. I think we'll see
11	you again, supposedly, in March after a final SER
12	comes out in February assuming everything goes on
13	schedule.
14	In summary, we have provided an
15	application for an early site permit with a site
16	that's next to an existing operating plant.
17	MEMBER KRESS: Tell me a little more about
18	the status of that plant with respect to extending
19	power upgrade. So you have one or do you plan on going
20	in for one?
21	MR. GRANT: For Clinton Power Station?
22	MEMBER KRESS: Yes.
23	MR. GRANT: They have been upgraded.
24	Let's see if I can find the numbers on that.
25	Got the original operating license in
I	I

(202) 234-4433

	51
1	1986. I don't seem to have the numbers on the power
2	upgrade. Oh, here we go.
3	In 2002 there was a 20 percent power
4	upgrade. They were originally 2894 megawatts thermal,
5	current operating license is 3473 megawatts thermal.
б	So they've already been upgraded approximately 20
7	percent.
8	MEMBER KRESS: And the license extension?
9	MR. GRANT: I don't know that there's been
10	a decision made on that yet. I would presume that they
11	will. It's a fairly modern plant, runs well.
12	MEMBER KRESS: '86, that's pretty modern.
13	MR. GRANT: Yes.
14	MS. KRAY: '86, right. We haven't for any
15	of our younger plants in Clinton is about the
16	youngest.
17	MEMBER KRESS: That's the youngest one.
18	MS. KRAY: We have not made that decision.
19	The inclination, assuming the economics would be
20	favorable, would certainly to be extended. But there's
21	been no deliberation or decision at this time.
22	MEMBER KRESS: Thank you.
23	MEMBER SIEBER: This is a BWR/6.
24	MEMBER KRESS: MARK 3 BWR/6.
25	MEMBER SIEBER: MARK 3.
ļ	

(202) 234-4433

	52
1	MR. GRANT: Correct. A similar design at
2	Grand Gulf, Perry and River Bend.
3	MEMBER SIEBER: Perry is a sister to
4	CHAIRMAN POWERS: They've got at least
5	another year of training and indoctrination on this
6	plant before they can come in with a license
7	extension.
8	MEMBER KRESS: Oh, that's right. Has to
9	many years experience, yes.
10	CHAIRMAN POWERS: They just don't quite
11	know enough about this. You guys go learn a little
12	more before you graduate.
13	MR. GRANT: All right. Again, we have
14	fulfilled our purposes of identifying the site
15	characteristics.
16	We have established a plant parameter
17	envelope that says that if we build something within
18	this envelop, that the plant should fit within this
19	site and be acceptable.
20	We have made use of the existing emergency
21	plans. We believe that certainly there are no
22	significant impediments and the development of the
23	plans will not be a problem.
24	We've addressed all the open items from
25	the February draft SER, the non-seismic items.
	I

(202) 234-4433

	53
1	And all the confirmatory items have been
2	completed or the one final one is in the works.
3	And again, final permit conditions and COL
4	action items are under consideration by the Staff.
5	You'll see those in the final SER.
6	And with that, I would open to other
7	questions.
8	CHAIRMAN POWERS: March time frame for the
9	final is that's what I had on my original agenda
10	for that. So it represents some sort of a delay.
11	MR. GRANT: That schedule is a delay that
12	was identified most well, the schedule values, the
13	dates, was most recently identified to us mid-August,
14	I believe. 16th if I recall correctly was the date of
15	the letter that provided that schedule.
16	We had some discussions with the Staff a
17	little bit earlier on that. So it is a change. Yes,
18	sir.
19	MR. MUNDY: Eddie, let me go back to at
20	least one question posed by the board that we didn't
21	have an answer for, and that has to do with the
22	confusion expressed around how we arrived at our
23	population projects.
24	MR. GRANT: Yes. Good.
25	MR. MUNDY: Let me turn this over to Bill
Į	1

(202) 234-4433

	54
1	Maher. I think he has some more recent information.
2	MR. MAHER: Bill Maher, Exelon.
3	The question was rationale and why a
4	population decreased when common sense would lead you
5	to believe, and I'm paraphrasing here, some
б	urbanization that typically happens in agricultural
7	lands.
8	In table 2.1-2, which is the population
9	projections for the zero to 10 mile range, there does
10	show a population decrease in all sectors. And the
11	rationale is for that population decrease is in a
12	footnote to that particular table. It goes into a
13	little bit more detail in the environmental report and
14	the social and economic section where we deal with
15	zero to 10 mile social/economic impacts.
16	The rationale provided there is due to the
17	lowering manufacturing activity within that areas and
18	migration out of agricultural areas.
19	The following table, the footnote to that
20	particular table which discusses some of the Illinois
21	state rationales for their projected increases or
22	decreases deal with fertility rates, mortality rates
23	and migrations out of those areas.
24	The following table 2.1-3 deals with
25	population projections in the zero to 50 mile range
	I

(202) 234-4433

	55
1	out to a certain time frame within the area of the
2	application. If you look at the sector qualifications
3	of those population projects, in areas or in sectors
4	where there are population centers you do see
5	population increases which would reflect a certain in
6	those population centers.
7	In sectors or areas where there are no
8	population centers, you see population either staying
9	static, relatively static or a slight decrease or
10	slight increase with the time frame for the permit.
11	CHAIRMAN POWERS: As I understand what you
12	did was you took the projections for 2010 and 2020
13	from Illinois state and then said whatever trend that
14	they came up with for 40 years ahead continued for the
15	next 40 years.
16	MR. GRANT: I believe that's correct. I'm
17	not sure.
18	MR. MAHER: That's correct. And that is a
19	typical methodology that is used within environmental
20	reports, within licensuring also.
21	MR. GRANT: The only thing I wasn't sure
22	about there in your statement was the 2010/2020
23	projections. My recollection was the 2000 and 2010
24	numbers were used to do the projections. But, I may
25	have to go back.
	1

(202) 234-4433

	56
1	MR. MAHER: Well, the footnote says
2	2010/2020.
3	MR. GRANT: Does it?
4	MR. MAHER: Yes.
5	MR. GRANT: That's why I don't base things
6	on my recollection.
7	CHAIRMAN POWERS: I mean while I'm seeing
8	here is saying, yes, I mean we're dealing with small
9	numbers so it's a trivial point actually. But why
10	wouldn't you just say okay, well it fell to this level
11	at 2020, just leave it static?
12	MR. GRANT: That would have been
13	conservative it sounds in this particular area. But
14	I believe the guidance asked for projections, and
15	those were our best projections.
16	CHAIRMAN POWERS: I mean, does somebody
17	come with these ideas based on I did it for 1910 to
18	1950 and it worked? So doing it from 2005 to 2060 it
19	ought to work, too?
20	MR. MAHER: And I'm speaking more in the
21	environmental area. When the population projections
22	would this is a standard methodology that's used
23	for judging social/economic impacts in the
24	environmental area.
25	I would anticipate, however, as part of
I	I

(202) 234-4433

	57
1	going to COL that we would reverify those population
2	projections and make sure that we fall within the
3	envelope.
4	CHAIRMAN POWERS: Yes, I understand that.
5	But I'm just wondering, you know somebody says it's a
6	standard methodology. I just want to treat these
7	things up. It's not what I would have offhand done.
8	On these particular numbers, I mean there's nothing
9	wrong with it because I'm not going to argue with you
10	over 83 versus 78. And for the increasing areas you
11	did just I mean, you were consistent. And so I
12	can't fault you, I just wondered why.
13	MR. GRANT: We typically don't go into the
14	details and the history of the development and
15	methodology unless we have a concern with the
16	methodology, which we did not have in this area.
17	CHAIRMAN POWERS: Okay.
18	MR. MUNDY: One other question posed was
19	around the snow load computations. I don't know if we
20	have a response mow or not, but we're looking into it.
21	So if we don't okay. So later this morning or this
22	afternoon we'd like to try and make a comment on that
23	and address your question.
24	CHAIRMAN POWERS: That would be
25	appreciated because I just didn't follow the argument.
Į	I

(202) 234-4433

	58
1	MR. MUNDY: Okay.
2	MR. GRANT: Maybe the closure on that is
3	for us to take a look at the discussion that is in the
4	application and see if we can clarify it a bit.
5	CHAIRMAN POWERS: Well, I suspect we'll
6	get into it with the Staff. There'll be time to
7	revisit this topic.
8	Any other questions for the speakers?
9	MR. HINZE: If I may, please. Have you
10	considered global warming in your predictions of 100
11	year drought, etcetera?
12	MR. GRANT: Not specifically. What we
13	believe there is that generally global warming is a
14	discussion of the average changes. And when we're
15	establishing site characteristics we tend to look at
16	the extremes. If we take the temperatures, for
17	example, the average temperatures in the Clinton area
18	run between 20 degrees and 90 degrees, or thereabouts.
19	I don't have the exact numbers, but something like
20	that. Whereas, when we're looking at the ultimate
21	heat sink design we use a zero exceedance number, the
22	maximums. And those run between about minus 36 degrees
23	and 117 degrees. So we do not see that the minor
24	variations within the average numbers are going to
25	have a significant impact on the extremes.
I	I

(202) 234-4433

	59
1	We would point out, however, that there
2	are two opportunities to look at that in the future.
3	One of those when the COL application comes in. And if
4	we have seen something change in that time frame, then
5	we would address that in the application.
6	The second opportunity is as an operating
7	plant almost every plant has something called a
8	condition report, a problem report, a concerns report
9	of some type where if something is identified to be
10	beyond the extremes that is identified in the site
11	safety analysis report or the final safety analysis
12	report, then that would be documented and evaluated.
13	So that would be the second opportunity. If we're 40
14	years into the life of the plant and we find that
15	we've got higher temperatures than we thought we would
16	see, then that would be documented and evaluated.
17	CHAIRMAN POWERS: 1990 seemed to be a
18	particularly bad year.
19	MR.GRANT: That's certainly possible. As
20	I get older I can't really remember that far back. But
21	it could have been.
22	CHAIRMAN POWERS: Yes.
23	MEMBER KRESS: Are the plans for at least
24	two more plants on the site?
25	MR. GRANT: It depends on the design.
I	

(202) 234-4433

	60
1	Some of the designs that we looked at were a single
2	plant. But on the other end of that spectrum the PBMR
3	design that we looked at had eight modules. So
4	anywhere in between. I think it was a single AP1000
5	no, I'm sorry. A single ESBWR, 2 AP1000s, 3 high
6	temperature gas reactors, 8 PBMR modules; you know a
7	wide variety. Three ACR 700s, if I recall.
8	MS. KRAY: Right. In the plant parameter
9	envelope it acknowledged how many we were assuming
10	because in some cases, depending on heat loads or
11	whatever, that made the difference.
12	MR. GRANT: Right.
13	MS. KRAY: But you know our interests
14	since then has been I'd say refined to the ESBWR, in
15	which case it would accommodate one, which I think is
16	approximately 1550 Met Electric or two AP1000 which
17	each individual I think are 1117.
18	MR. GRANT: So yes, one or two.
19	CHAIRMAN POWERS: Any other questions.
20	Well, thank you very much.
21	MR. GRANT: Thank you.
22	MS. KRAY: Thank you all.
23	CHAIRMAN POWERS: And we will recess until
24	10:15.
25	(Whereupon, at 9:47 a.m. off the record
	I

1until 10:16 a.m.)2CHAIRMAN POWERS: Let's come back into3session.4We're going to move to the Staff's5discussion of the non-seismic aspects of the Clinton6early site permit. And our first speaker is John7Segala.8MR. SEGALA: Okay. Thank you for having9me here.10If you'll turn to the next slide. I'm John11Segala, the lead project manager for the Exelon early12site permit safety review. We will brief to the13Subcommittee on the Exelon early site permit14application and the status of the NRC's Staff's15review. And we'll provide support to the16Subcommittee's review and subsequent interim letter,17and hopefully answer some of the Subcommittee's18guestions.19Next slide, please.20I will be touching on the schedule21milestones. Some key features of the ESP application,22key review areas, open items, permit conditions, SSE23action items and some DSER conclusions.24Next slide, please.25For the completed milestones, Exelon		61
3 session. 4 We're going to move to the Staff's 5 discussion of the non-seismic aspects of the Clinton 6 early site permit. And our first speaker is John 7 Segala. 8 MR. SEGALA: Okay. Thank you for having 9 me here. 10 If you'll turn to the next slide. I'm John 11 Segala, the lead project manager for the Exelon early 12 site permit safety review. We will brief to the 13 Subcommittee on the Exelon early site permit 14 application and the status of the NRC's Staff's 15 review. And we'll provide support to the 16 Subcommittee's review and subsequent interim letter, 17 and hopefully answer some of the Subcommittee's 18 questions. 19 Next slide, please. 20 I will be touching on the schedule milestones. Some key features of the ESP application, 2 key review areas, open items, permit conditions, SSE 23 action items and some DSER conclusions. 24 Next slide, please.	1	until 10:16 a.m.)
4We're going to move to the Staff's5discussion of the non-seismic aspects of the Clinton6early site permit. And our first speaker is John7Segala.8MR. SEGALA: Okay. Thank you for having9me here.10If you'll turn to the next slide. I'm John11Segala, the lead project manager for the Exelon early12site permit safety review. We will brief to the13Subcommittee on the Exelon early site permit14application and the status of the NRC's Staff's15review. And we'll provide support to the16Subcommittee's review and subsequent interim letter,17and hopefully answer some of the Subcommittee's18questions.19Next slide, please.20I will be touching on the schedule21milestones. Some key features of the ESP application,22key review areas, open items, permit conditions, SSE23action items and some DSER conclusions.24Next slide, please.	2	CHAIRMAN POWERS: Let's come back into
 discussion of the non-seismic aspects of the Clinton early site permit. And our first speaker is John Segala. MR. SEGALA: Okay. Thank you for having me here. If you'll turn to the next slide. I'm John Segala, the lead project manager for the Exelon early site permit safety review. We will brief to the Subcommittee on the Exelon early site permit application and the status of the NRC's Staff's review. And we'll provide support to the Subcommittee's review and subsequent interim letter, and hopefully answer some of the Subcommittee's questions. Mext slide, please. I will be touching on the schedule milestones. Some key features of the ESP application, key review areas, open items, permit conditions, SSE action items and some DSER conclusions. Mext slide, please. 	3	session.
 early site permit. And our first speaker is John Segala. MR. SEGALA: Okay. Thank you for having me here. If you'll turn to the next slide. I'm John Segala, the lead project manager for the Exelon early site permit safety review. We will brief to the Subcommittee on the Exelon early site permit application and the status of the NRC's Staff's review. And we'll provide support to the Subcommittee's review and subsequent interim letter, and hopefully answer some of the Subcommittee's questions. Next slide, please. I will be touching on the schedule milestones. Some key features of the ESP application, key review areas, open items, permit conditions, SSE action items and some DSER conclusions. Next slide, please. 	4	We're going to move to the Staff's
7 Segala. 8 MR. SEGALA: Okay. Thank you for having 9 me here. 10 If you'll turn to the next slide. I'm John 11 Segala, the lead project manager for the Exelon early 12 site permit safety review. We will brief to the 13 Subcommittee on the Exelon early site permit 14 application and the status of the NRC's Staff's 15 review. And we'll provide support to the 16 Subcommittee's review and subsequent interim letter, 17 and hopefully answer some of the Subcommittee's 18 questions. 19 Next slide, please. 20 I will be touching on the schedule 21 milestones. Some key features of the ESP application, 22 key review areas, open items, permit conditions, SSE 23 action items and some DSER conclusions. 24 Next slide, please.	5	discussion of the non-seismic aspects of the Clinton
8 MR. SEGALA: Okay. Thank you for having 9 me here. 10 If you'll turn to the next slide. I'm John 11 Segala, the lead project manager for the Exelon early 12 site permit safety review. We will brief to the 13 Subcommittee on the Exelon early site permit 14 application and the status of the NRC's Staff's 15 review. And we'll provide support to the 16 Subcommittee's review and subsequent interim letter, 17 and hopefully answer some of the Subcommittee's 18 questions. 19 Next slide, please. 20 I will be touching on the schedule 21 milestones. Some key features of the ESP application, 22 key review areas, open items, permit conditions, SSE 23 action items and some DSER conclusions. 24 Next slide, please.	6	early site permit. And our first speaker is John
 me here. If you'll turn to the next slide. I'm John Segala, the lead project manager for the Exelon early site permit safety review. We will brief to the Subcommittee on the Exelon early site permit application and the status of the NRC's Staff's review. And we'll provide support to the Subcommittee's review and subsequent interim letter, and hopefully answer some of the Subcommittee's questions. Next slide, please. I will be touching on the schedule milestones. Some key features of the ESP application, key review areas, open items, permit conditions, SSE action items and some DSER conclusions. Next slide, please. 	7	Segala.
10If you'll turn to the next slide. I'm John11Segala, the lead project manager for the Exelon early12site permit safety review. We will brief to the13Subcommittee on the Exelon early site permit14application and the status of the NRC's Staff's15review. And we'll provide support to the16Subcommittee's review and subsequent interim letter,17and hopefully answer some of the Subcommittee's18questions.19Next slide, please.20I will be touching on the schedule21milestones. Some key features of the ESP application,22key review areas, open items, permit conditions, SSE23action items and some DSER conclusions.24Next slide, please.	8	MR. SEGALA: Okay. Thank you for having
11Segala, the lead project manager for the Exelon early12site permit safety review. We will brief to the13Subcommittee on the Exelon early site permit14application and the status of the NRC's Staff's15review. And we'll provide support to the16Subcommittee's review and subsequent interim letter,17and hopefully answer some of the Subcommittee's18questions.19Next slide, please.20I will be touching on the schedule21milestones. Some key features of the ESP application,22key review areas, open items, permit conditions, SSE23action items and some DSER conclusions.24Next slide, please.	9	me here.
 site permit safety review. We will brief to the Subcommittee on the Exelon early site permit application and the status of the NRC's Staff's review. And we'll provide support to the Subcommittee's review and subsequent interim letter, and hopefully answer some of the Subcommittee's questions. Next slide, please. I will be touching on the schedule milestones. Some key features of the ESP application, key review areas, open items, permit conditions, SSE action items and some DSER conclusions. Next slide, please. 	10	If you'll turn to the next slide. I'm John
13Subcommittee on the Exelon early site permit14application and the status of the NRC's Staff's15review. And we'll provide support to the16Subcommittee's review and subsequent interim letter,17and hopefully answer some of the Subcommittee's18questions.19Next slide, please.20I will be touching on the schedule21milestones. Some key features of the ESP application,22key review areas, open items, permit conditions, SSE23action items and some DSER conclusions.24Next slide, please.	11	Segala, the lead project manager for the Exelon early
 14 application and the status of the NRC's Staff's 15 review. And we'll provide support to the 16 Subcommittee's review and subsequent interim letter, 17 and hopefully answer some of the Subcommittee's 18 questions. 19 Next slide, please. 20 I will be touching on the schedule 21 milestones. Some key features of the ESP application, 22 key review areas, open items, permit conditions, SSE 23 action items and some DSER conclusions. 24 Next slide, please. 	12	site permit safety review. We will brief to the
15 review. And we'll provide support to the 16 Subcommittee's review and subsequent interim letter, 17 and hopefully answer some of the Subcommittee's 18 questions. 19 Next slide, please. 20 I will be touching on the schedule 21 milestones. Some key features of the ESP application, 22 key review areas, open items, permit conditions, SSE 23 action items and some DSER conclusions. 24 Next slide, please.	13	Subcommittee on the Exelon early site permit
 Subcommittee's review and subsequent interim letter, and hopefully answer some of the Subcommittee's questions. Next slide, please. I will be touching on the schedule milestones. Some key features of the ESP application, key review areas, open items, permit conditions, SSE action items and some DSER conclusions. Next slide, please. 	14	application and the status of the NRC's Staff's
17 and hopefully answer some of the Subcommittee's 18 questions. 19 Next slide, please. 20 I will be touching on the schedule 21 milestones. Some key features of the ESP application, 22 key review areas, open items, permit conditions, SSE 23 action items and some DSER conclusions. 24 Next slide, please.	15	review. And we'll provide support to the
<pre>18 questions. 19 Next slide, please. 20 I will be touching on the schedule 21 milestones. Some key features of the ESP application, 22 key review areas, open items, permit conditions, SSE 23 action items and some DSER conclusions. 24 Next slide, please.</pre>	16	Subcommittee's review and subsequent interim letter,
 19 Next slide, please. 20 I will be touching on the schedule 21 milestones. Some key features of the ESP application, 22 key review areas, open items, permit conditions, SSE 23 action items and some DSER conclusions. 24 Next slide, please. 	17	and hopefully answer some of the Subcommittee's
I will be touching on the schedule milestones. Some key features of the ESP application, key review areas, open items, permit conditions, SSE action items and some DSER conclusions. Next slide, please.	18	questions.
21 milestones. Some key features of the ESP application, 22 key review areas, open items, permit conditions, SSE 23 action items and some DSER conclusions. 24 Next slide, please.	19	Next slide, please.
22 key review areas, open items, permit conditions, SSE 23 action items and some DSER conclusions. 24 Next slide, please.	20	I will be touching on the schedule
 23 action items and some DSER conclusions. 24 Next slide, please. 	21	milestones. Some key features of the ESP application,
24 Next slide, please.	22	key review areas, open items, permit conditions, SSE
	23	action items and some DSER conclusions.
25 For the completed milestones, Exelon	24	Next slide, please.
	25	For the completed milestones, Exelon

(202) 234-4433

1 provided their application in September of 2003. We 2 issued RAIs in July 27, 2004. We also issued some 3 evaluation time estimate RAIs in December of 2004. 4 And the applicant responded in January of 2005. 5 However, that was not in time for us to factor that into the draft safety evaluation report. So many of 6 7 the open items in Chapter 13 on emergency planning were nothing more than placeholders for us to review 8 9 the response to those RAIs. 10 The draft safety evaluation report was issued in February of 2005. And the Applicant has 11 provided two letters responding to our open items on 12 April 4th of 2005 and April 26, 2005. 13 14 We issued the supplemental draft safety 15 evaluation report on August 26th and we provided an 16 advance copy to the ACRS. The supplemental draft yet publicly 17 safety evaluation report is not It is in the process of a 14 day available. 18 19 proprietary review period which ends on September 9th. 20 Next slide. 21 The remaining milestones is we have a full 22 Committee meeting tomorrow. We're requesting an The Staff is 23 interim letter by September 28th. 24 scheduled to provide the final SER to ACRS. This will 25 be an advanced copy in February 8, 2006 and issue the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

62

	63
1	final SER on February 17, 2006.
2	CHAIRMAN POWERS: Now let me understand
3	just a little bit what we're going to do here. You're
4	going to come to us, the Committee is going to be
5	familiar with this draft SER which does not reflect
б	the responses from the Staff? I mean from the
7	licensee.
8	MR. SEGALA: Yes. Today's meeting we
9	issued our draft and what's happened here is that
10	normally for the other two ESPs we issued our draft
11	and then immediately had a meeting. In this case
12	because we wanted to combine the meeting for the
13	supplemental draft and the draft together in one
14	meeting, there's been some time lag between now and
15	the issuance of the draft. So we've had time to
16	interact with the Applicant to resolve those open
17	items.
18	So we're in the process right now of
19	putting together our final safety evaluation report
20	for the rest of the document, except for the
21	supplemental, which is section 2.5.
22	CHAIRMAN POWERS: What I'm struggling with
23	is, and maybe it's okay, but if we write an interim
24	letter that speaks to things, you've got a lot of open
25	items that you don't have any more. I mean, I'm not
Į	I

(202) 234-4433

	64
1	sure this is serving anybody's use here.
2	MR. SEGALA: I'm not sure I fully
3	understand. I mean, typically the letters that you
4	provide point out shortcomings or things that we've
5	missed.
6	CHAIRMAN POWERS: Yes.
7	MR. SEGALA: So I would think that would
8	be applicable regardless.
9	CHAIRMAN POWERS: Okay.
10	MR. SEGALA: And we could still factor
11	that in to our final safety evaluation report if
12	needed. Okay?
13	CHAIRMAN POWERS: A general summary of
14	what our letter to submit.
15	MR. SEGALA: And again, I guess Exelon had
16	touched on the full Committee meeting in March of
17	2006. And then a possible final letter in March 30th
18	of 2006 so that we could issue our NUREG in May 1st.
19	And then we have a mandatory hearing and
20	a Commission decision.
21	MEMBER KRESS: Who reviews the
22	environmental impact statement? Does your people do
23	that, too?
24	MR. SEGALA: We have two groups. We have
25	the safety review which is done in my organization.
	I

(202) 234-4433

	65
1	And then we have also an environmental group who has
2	another project manager like me who is in charge of
3	doing the review. And we have contractors from PNNL
4	that are doing the actual review of the environmental
5	report and writing the environmental impact statement.
б	MEMBER KRESS: Are these reviews more or
7	less separate. You do one thing and they do the
8	other?
9	MR. SEGALA: They're on separate
10	schedules. We do have some common people on both. So
11	you will have like for instance the hydrology review
12	was done by PNNL, but they also did work on the
13	environmental impact statement. So there is some
14	consistency there between the two reports.
15	Well, I did want to mention that the
16	issuance of the final SER on February 17th is
17	contingent on us resolving all the open items with
18	regard to the supplemental DSER by the end of October.
19	We have eight lead reviewers for the
20	technical review of the safety side. We have Brad
21	Harvey with meteorology. Goutam Bagchi on hydrology
22	with support from PNNL. Kaz Cample on site hazards.
23	Cliff Munson and Tom Cheng on geology/seismology and
24	geotechnical with support from the U.S. Geologic
25	Survey and BNL. Jay Lee looked at a demograph,
ļ	I

(202) 234-4433

	66
1	geography and radiological dose consequence analysis.
2	Bob Moody looked at emergency planning with
3	consultation from FEMA. Pal Prescott reviewed quality
4	assurance. And All Tardiff looked at physical
5	security.
6	Goutam Bagchi and his contractor were
7	unable to attend today because of a tsunami conference
8	in Asia. So if we get into details on those, I'll
9	have to get back to you.
10	CHAIRMAN POWERS: And we have 21 items in
11	this hydrology area.
12	MR. SEGALA: Yes, sir.
13	CHAIRMAN POWERS: And it's the area that,
14	quite frankly, just confuses me to death.
15	MR. SEGALA: Yes.
16	MEMBER SIEBER: We might have a tsunami.
17	CHAIRMAN POWERS: Tsunamis don't confuse
18	me. I don't worry about them into Mexico. We very
19	seldom have tsunamis. If we have a tsunami that
20	effects New Mexico, it's going to effect other things
21	a lot worse.
22	MEMBER KRESS: We have them in Tennessee.
23	It rains a lot and it all comes down at one down, and
24	we're getting some tsunamis.
25	MR. SEGALA: I'd also like to say that Jay
	I

	67
1	Lee and Kax Cample also were unable to attend today.
2	I'd like to point out that we did a lot of
3	independent evaluations and calculations to verify
4	what the Applicant had done. And that was accomplished
5	through the Staff and their contracts.
6	Next slide, please.
7	I'll try to go through some of these
8	quickly because I know that Exelon touched on a lot of
9	this.
10	The ESP site is approximately 700 feet
11	south of the existing Clinton Power Station.
12	The ESP Applicant is Exelon Generation
13	Company and AmerGen owns the CPS, the Clinton Power
14	Station and the early site permit sites. And as
15	Exelon had pointed out, that they seek authorization
16	for limited work and have proposed or submitted a site
17	redress plan.
18	Exelon's requesting approval for a total
19	core thermal power rating between 2400 and 6800
20	megawatts thermal. They're proposing either a single
21	reactor or multiple reactors or modules of the same
22	reactor type.
23	CHAIRMAN POWERS: When you look at the
24	early site permit does the lower bound make any
25	difference at all?
I	

(202) 234-4433

	68
1	MR. SEGALA: In terms of the power rating?
2	CHAIRMAN POWERS: Right. I mean does it
3	effect things or is it just all the upper bound?
4	MR. SEGALA: I would think it's mostly the
5	upper bound, but I don't know for sure.
6	Exelon has chosen to follow the plant
7	parameters approach, which Exelon had already spoke
8	about. They looked at the ABWR, AP1000, ESPWR, ACR
9	700, the pebble bed modular reactor an the GTMHR as
10	well as IRIS.
11	CHAIRMAN POWERS: Because of the
12	speculative nature of the plant parameter envelope
13	when you do your review do you keep track of which one
14	of those parameters are really salient? I mean, I
15	find a list that says oh gosh, if this particular
16	plant parameter changes, you need to look at this
17	section, this section and this section?
18	MR. SEGALA: Well, going from the DSER to
19	the final SER we put together a list of what we call
20	bounding plant parameters.
21	CHAIRMAN POWERS: Yes.
22	MR. SEGALA: An we're still in the process
23	of putting that together for the Clinton site. But we
24	call out those plant parameters that were crucial to
25	the Staff's safety review, and those will be called
Į	I

(202) 234-4433

	69
1	out in the SER as well as become part of the actual
2	permit itself.
3	MEMBER KRESS: Do those parameters include
4	a CDF and LRF?
5	MR. SEGALA: No.
6	MEMBER KRESS: They're not part of it?
7	CHAIRMAN POWERS: Nobody cares about CDF
8	and LRF for a piece of property in the middle of
9	Illinois flat lands.
10	MEMBER KRESS: Good question.
11	MR. SEGALA: And again, the Staff's review
12	of the plant parameter envelope was more to look at
13	whether they are reasonable. And we took a similar
14	approach for design certification where we look at the
15	site parameters to make sure that they were reasonable
16	for the design.
17	Next slide, please.
18	CHAIRMAN POWERS: And there's nothing
19	particularly exceptional in the plant parameters that
20	Exelon chose. I mean, they look kind of nominal to
21	me.
22	MR. SEGALA: Yes. So we sort of look at
23	them and see if they look reasonable.
24	CHAIRMAN POWERS: As Exelon pointed out,
25	the original Clinton Power Station was designed for
I	I

```
(202) 234-4433
```

	70
1	two identical units and construction of the second
2	unit was halted. The existing switchyard will be
3	expanded to accommodate the output from the new
4	facility.
5	The normal heat sink will be compromised
6	of either a mechanical or a natural draft cooling
7	towers. And the ultimate heat sink if needed, will be
8	comprised of a mechanical draft cooling tower.
9	And Exelon is seeking a 20 ESP term.
10	The next slide I think Exelon covered, so
11	I'm not going to get too much into it. We have the
12	same, the power block for the early site permit and
13	area for the normal heat sink, and the area for the
14	ultimate heat sink, cooling towers. And this is where
15	the Unit 2 switchyard would be expanded. And this is
16	the approximate location of the new structure and the
17	ultimate heat sink.
18	MEMBER KRESS: When one specifies the
19	limit on the ESP, like 20 years, what is the thing
20	that limits? Is it population projections or I mean
21	why not 40 years? What difference would the SER have
22	in it if it were 40 instead of 20?
23	MR. SEGALA: Well, the requirements for
24	how long an ESP can go is written in Part 52. They
25	can propose either a 10 or a 20 year
I	I

(202) 234-4433

	71
1	MEMBER KRESS: Oh, that's specified in
2	the
3	MR. SEGALA: Yes, in Part 52. Now, as to
4	the exact reasoning of how we came up with 20 years in
5	Part 52, I could find out for you. But I don't know
6	offhand.
7	MEMBER KRESS: The only thing I could
8	think of would be changing the environmental
9	population and
10	CHAIRMAN POWERS: But in fact if you look
11	in the detail, whereas it last for 20 years, it
12	actually has a lifetime that just goes on forever. I
13	mean, it doesn't really disappear.
14	MR. SEGALA: I think there's a process
15	where they can ask for
16	CHAIRMAN POWERS: And it can be extended.
17	But even if you don't, it's kind of there for a long
18	time, isn't it? It's less official but it's still
19	there for I mean, it just doesn't seem to die.
20	MR. SEGALA: Next slide. This slide is
21	sort of a visual of Exelon provided a slide of all the
22	elevations.
23	CHAIRMAN POWERS: Is it a slide you
24	requested.
25	MR. SEGALA: What's that?
ļ	I

	72
1	CHAIRMAN POWERS: This is a slide you
2	requested from Exelon?
3	MR. SEGALA: No. This is a slide that our
4	contractor, PNNL. And I liked it because it helped me
5	understand.
6	CHAIRMAN POWERS: I like it, too.
7	MR. SEGALA: The only problem is this
8	maximum flood I have the old number on there. The
9	number is 715.5, which Exelon had pointed out, which
10	would be above the top there. But it sort of gives a
11	depiction of it's not to scale, but it's pretty
12	close to where the creekbed is. And this is the
13	ultimate heat sink with the submerged dam and the
14	intake to the ultimate heat sink for the Clinton Power
15	Station. And this is the early site permit grade.
16	So it just gives you an overview of how
17	all the different elevations. 690 is the normal pool
18	level.
19	So, I just thought that was a good visual.
20	MR. HINZE: John, where would the proposed
21	excavation bottom on this diagram?
22	MR. SEGALA: In terms of putting the power
23	block?
24	MR. HINZE: The excavation for the power
25	block, right.
ļ	I

(202) 234-4433

	73
1	MR. SEGALA: I believe I don't have those
2	slides in front of me. I don't know if Exelon would
3	MR. HINZE: What's the scale on this?
4	MR. SEGALA: It's not to scale.
5	MR. HINZE: Oh, okay.
6	MR. SEGALA: This drawing is not to scale.
7	MR. HINZE: All right.
8	CHAIRMAN POWERS: Well, what we know is
9	that the bottom penetrates through the 35 level or
10	penetrates through the 700 level I'm sorry.
11	MR. SEGALA: I think it goes down 140
12	feet, yes.
13	MR. HINZE: 140 feet I read, is that
14	right?
15	MR. SEGALA: Yes, I think it's 140 feet
16	and then they may go a little bit below that for
17	evening out or regrading.
18	MR. HINZE: So where would that occur on
19	this diagram then?
20	CHAIRMAN POWERS: Down below the bottom of
21	the creekbed.
22	MR. SEGALA: I think it would be 140 below
23	this.
24	MR. HINZE: Okay.
25	MR. SEGALA: Where exactly that would be
l	I

(202) 234-4433

	74
1	MR. HINZE: It would be below the whole
2	diagram?
3	CHAIRMAN POWERS: Somewhere.
4	MR. SEGALA: Yes. And I think that was a
5	bounding value. So that would be the lowest it would
6	be depending on what design was used.
7	MR. GRANT: If I might, Eddie Grant with
8	Exelon.
9	The 140 foot is, I believe, the PBMR
10	design. Most of the other designs are much less.
11	MR. HINZE: Maybe we're getting ahead of
12	the game here, but you also discussed removing some of
13	the potential zones of liquefaction if I understand
14	correctly.
15	MR. GRANT: Correct.
16	MR. HINZE: But would that take you even
17	below this 140 or does that
18	MR.GRANT: No, sir. If you recall again,
19	as you indicated that's this afternoon's discussion,
20	but the proposed permit condition is that we would be
21	required to remove the upper 60 feet.
22	MR. HINZE: Sixty feet? Right. Okay.
23	Sixty/140. Okay. I understand now.
24	MR. SEGALA: As Exelon had pointed out
25	there, seeking a major features option in Part 52 the
	1

(202) 234-4433

	75
1	Staff's using supplement to the NUREG-0654 to perform
2	their review. As indicated in the other ESP meeting
3	industry has a concern with the degree of finality
4	with the major features option. And the Staff
5	believes that we can grant finality as to the overall
6	description, but we'll need to address the
7	implementation details at the COL.
8	One of the open items in Chapter 13 is
9	regarding major features H, which is on the emergency
10	facilities and equipment.
11	Regarding the OSC and the TSC details, the
12	Staff didn't believe that the Applicant provided
13	sufficient information in order to approve this major
14	features option. So the Staff is going to not
15	approving major features H for Exelon.
16	CHAIRMAN POWERS: You're going to have
17	MR. SEGALA: This was also true for North
18	Anna as we took the same approach.
19	CHAIRMAN POWERS: You're going to have to
20	remind me. Major features H?
21	MR. SEGALA: It's for the facilities and
22	the equipment as to
23	CHAIRMAN POWERS: Oh, okay.
24	MR. SEGALA: The key review areas I'm not
25	going to read through all of them. The seismology and
l	I

(202) 234-4433

	76
1	geology will be discussed in the afternoon session.
2	This is an overview of the open items in
3	what areas they fell into. There were 33 open items
4	in the draft safety evaluation report and 7 open items
5	in the supplemental draft safety evaluation report.
6	And Exelon as pointed out, the number of open items
7	are not necessarily indicative of the significance of
8	the issues.
9	Resolution of all the open items will be
10	discussed in the final safety evaluation report.
11	MR. HINZE: John, I don't know whether I'm
12	ahead or behind the curve, but I looked at the list of
13	open items that I was given and it didn't include the
14	seismology and geology. Do you have a list for us of
15	the open items or are we supposed to extract them from
16	the verbiage?
17	MR. SEGALA: I'll be presenting those open
18	items in the afternoon session.
19	MR. HINZE: Okay. Could we have those
20	before the presentation by the Exelon Company.
21	MR. SEGALA: Sure.
22	MR. HINZE: If that would be possible, I
23	would appreciate it.
24	MR. SEGALA: We could hand those out right
25	after I finish talking.
	I

(202) 234-4433

	77
1	MR. HINZE: That would be very kind. Thank
2	you. Very helpful.
3	MR. SEGALA: All the open items in the
4	DSER resolved except for the 7 supplemental draft
5	safety evaluation report open items. And there's one
6	hydrology open item that we've come to the conclusion
7	that there's adequate water in the ultimate heat sink,
8	but we're working out what the appropriate site
9	characteristic value is for the maximum ice thickness.
10	The list of open items, as you pointed
11	out, are provided as background. I wasn't planning to
12	discuss all the open items today unless there were
13	specific ones you wanted me to touch on.
14	As Exelon pointed out, there are five
15	confirmatory items and the one that remains open is
16	regarding the Staff verifying that the SAR markups
17	provided in RAI and open item responses get reflected
18	in the application.
19	Next slide, please.
20	In the combination of the draft safety
21	evaluation report and the supplemental draft safety
22	evaluation report there are a total of 15 proposed
23	permit conditions and 17 proposed COL action items.
24	Like we did for North Anna when we went from the draft
25	safety evaluation report to the final safety
I	I

(202) 234-4433

1 evaluation report we developed a list of criteria for 2 permanent conditions and COL action items, which we didn't have for the draft reports. And so we're 3 4 currently going through that exercise right now to 5 make sure that we apply the new criteria to the draft safety evaluation report items. And like North Anna, 6 7 we expect that the number of permit conditions are 8 going to go down and the number of COL action items 9 will increase. And the list of permanent conditions and 10 11

COL action items that are in the draft report are also provided in that attachment.

To recap the three circumstances under 13 14 which we use permit conditions is when the Staff's 15 evaluation rests on an assumption that it's practical 16 to support only after the ESP issuance or a site physical attribute that exists that is not acceptable 17 for design of the system structures and components 18 19 important to safety and the Staff's evaluation depends 20 on a future act.

And for the COL action items it's a list of work that needs to be looked at the COL stage. We're using similar approach that we use for design certification. And those COL action items will be listed as an attachment to the permit itself.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

12

	79
1	Next slide, please.
2	For those sections of the draft safety
3	evaluation report that had no open items, I'm listing
4	here the conclusions that were drawn from those
5	sections because those will be the same conclusions
б	that will be in the final safety evaluation report.
7	Potential hazards associated with nearby
8	transportation routes, industrial and military
9	facilities pose no undue risk to the facility that
10	might be constructed on the site.
11	Next slide, please.
12	The proposed site is acceptable for
13	construction for constructing a plant falling within
14	the plant parameter envelope with respect to the
15	radiological effluent release, dose consequences from
16	normal operation.
17	Site characteristics are such that an
18	adequate security plan and measures can be developed.
19	And the focus there was looking at if there was
20	appropriate standoff distance.
21	In summary, as I said before, all open
22	items are resolved except for the 7 seismic open items
23	and the one hydrology open item on the maximum ice
24	thickness.
25	CHAIRMAN POWERS: Let me talk about that
	I

(202) 234-4433

	80
1	ice thickness. I read their analysis of the ice
2	thickness as they were following a prescription. Is
3	it the prescription that you object to?
4	MR. SEGALA: The Staff, you know, through
5	RAIs and open items has looked at initially when we
6	did our calculation and they did their calculation, we
7	got drastically different results. And we went back
8	and figured out what the differences were.
9	There was a difference in the I'm
10	trying to remember. There was the ice thickness
11	estimation equation. The Applicant used a U.S. ACE
12	standard and the Staff used an Assur's equation from
13	1956. The Staff went back and looked at that and
14	found that the approach the Applicant was using, that
15	equation was the industry-wide accepted value or
16	equation to be used. So we've since gone back and
17	redid our calculation using that.
18	The other difference that we found was the
19	method for estimating the maximum accumulative
20	freezing degree days. We used a fixed date and the
21	Applicant used an estimated freeze-up onset date. The
22	Staff is still in the opinion that we should be using
23	a fixed date of December 1st.
24	So now that we know the differences and
25	we've done the calculations, the Staff has a
ļ	I

(202) 234-4433

81 calculated maximum thickness that's a little bit 1 2 thicker than the Applicant's. And we still need to 3 have further discussions to get to an appropriate site 4 characteristic value. 5 MEMBER KRESS: What does this ice thickness impact? The intake to the --6 7 MR. SEGALA: We look at the ice thickness. It effects the design of the intake structure. 8 Ιt needs to be able to handle that. It also effects the 9 10 excess capacity in the ultimate heat sink. The Staff looked at a scenario --11 That's the ICD part of it? 12 MEMBER KRESS: And I think they looked at a 13 MR. SEGALA: scenario where the dam breaks and there's ice on top 14 15 The level goes down and the ice sticks of the water. in the ultimate heat sink in that dam. And they look 16 17 at that scenario and is there excess capacity in the ultimate heat sink to be able to provide makeup to the 18 19 ultimate heat sink for the ESP site. 20 And so we've qone through those 21 Even assuming the Staff's thicker ice, calculations. 22 and we've concluded that there is excess capacity in 23 the ultimate heat sink. And what we're wrestling with 24 now is, you know, what's the appropriate way to 25 calculate what the thickness is and what the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

82 1 appropriate site characteristics should be that we 2 include in the permit itself. 3 CHAIRMAN POWERS: Well let me ask you 4 about these standards. You have a 56 equation that 5 you were using and then you find that there's a more What is the technical basis for these? 6 modern. Is 7 there sufficient technical basis to have any confidence in these standards? 8 MR. SEGALA: I don't know the answer to 9 10 that. And I don't have my expert here today to touch on that. But that's something I could --11 Well, it's just 12 CHAIRMAN POWERS: interesting for us to know. 13 14 I'm not sure which category it falls in, 15 but as I indicated in the presentation by the previous 16 speaker, I did not follow the arguments concerning the amount of snow load that they had to count. 17 18 MR. SEGALA: Okay. 19 CHAIRMAN POWERS: And what I especially 20 don't follow is how this application is being treated 21 that differs from what happens in Vicksburg, 22 Mississippi as far as snow load. They, too, got what 23 seemed to be an unreasonable number. And you told 24 them to live with it. 25 MR. SEGALA: Okay.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	CHAIRMAN POWERS: Can you explain what all
2	transpired here.
3	MR. SEGALA: This is Brad Harvey. He did
4	the meteorology review.
5	MR. HARVEY: Hi. This is Brad Harvey with
6	the Staff.
7	The standard Reg. Guide 1.70, which is the
8	former contents for the final safety analysis report
9	discusses providing 100 year snow pack plus a 48 hour
10	probable maximum precipitation as data to be included
11	in the SAR. And there was some point of confusion on
12	basically both the Staff and the Applicants as to how
13	do you combine those numbers.
14	And what you see here is a sequence of
15	thoughts evolving in the Staff and the order which the
16	Applicant came in and the Staff dealt with them.
17	Started with North Anna, then Clinton and then Grand
18	Gulf, which is not the order the ACRS is reviewing
19	these applications.
20	So what you saw in Grand Gulf is really
21	the final thought process that the Staff has come
22	with. And subsequent to writing the DSER the Staff has
23	come across a 1975 branch technical position which
24	discusses the use of the 100 year snow pack in
25	defining the normal live load for roofs. And then the
I	

(202) 234-4433

	84
1	combination of 100 year snow pack plus the 48 hour
2	probable maximum precipitation for the extreme life
3	loads for roofs.
4	And so basically what the wording in this
5	area for the Clinton SER is going to look at bit
6	different than what you see in the DSER in that we're
7	going to call out two different climate site
8	characteristics; one being a 100 year return snow load
9	and the second being the 48 hour winter probable
10	maximum precipitation.
11	CHAIRMAN POWERS: Okay. That's good. How
12	do I get from 110 pounds per square foot to 85 and
13	then back to 40?
14	MR. HARVEY: Okay. Well, the 40 will not
15	end up showing in the final SER. The way that number
16	came is I believe they took the 100 year snow pack,
17	which is around 30 pounds, and they added what they
18	considered the worst case snowfall historically, which
19	they extrapolated, assumed the monthly maximum
20	reported snowfall in the site, and added that to the
21	snow pack. That's how I believe they came up with the
22	40 pounds. But like I said, that value will not show
23	up in the final SER.
24	MEMBER SHACK: What number will show up?
25	MR. HARVEY: There will be two numbers.

(202) 234-4433

5 So the idea is is that the COL applicant can take those two values and depending on the shape 6 7 and design of his roof, argue that for instance the 8 16.6 inches of water on top of the snow pack would not 9 stay on the roof because of the design of the roof. 10 But now we start getting into design issues and so part of the exercise the Staff went through here was 11 12 trying to separate site characteristics from design issues. So these are values that the designer needs to 13 14 look at the COL stage and say my roof is designed to 15 hold that load or it's not because it's not physically 16 possible for that load to stay on top of the roof. 17 Either because it's sloped, it's a dome containment, 18 etcetera, etcetera.

19 CHAIRMAN POWERS: It shall forever remain 20 a mystery how we go from 110 pounds. H ow much is 21 16.6 inches of water? I can figure that real quickly 22 here. 23 Well, that's where the 100, MR. HARVEY:

so it's got to be 60 to 70 pounds per square foot.

The problems with maximum with the precipitation is

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

1

2

(202) 234-4433

85

	86
1	really a theoretical type number as opposed to an
2	actual number, which is why it's two or three times
3	higher than what has been historically observed in
4	this site.
5	CHAIRMAN POWERS: Yes. Water is about
6	roughly 64 pounds a cubic foot. So it gets you up
7	close to 110. I now understand. Okay.
8	And you've separated the two and they're
9	just site characteristic, and we no longer add them.
10	That's somebody's else job to do?
11	MR. HARVEY: That's the design engineer to
12	look at that.
13	CHAIRMAN POWERS: Okay. And the folks in
14	Mississippi still got to wrestle with their 22 inches
15	of snow plus 22 inches of maximum precipitation; they
16	happened to be the same thing? But they need to
17	wrestle with it?
18	MR. HARVEY: They need to wrestle with it.
19	And, again, they will do that at the design phase.
20	CHAIRMAN POWERS: Okay. Okay. Well, as
21	long as we've got you here, I think, Bill, you want to
22	repose your question about global warming or even more
23	importantly, just weather cycles?
24	MR. HINZE: Yes. How have they been
25	factored in or have they been?
I	I

(202) 234-4433

87 1 MR. HARVEY: Generally the extreme 2 climatic site characteristics that are presented in 3 the application as well as in the SER are based on 4 historical data that has typically been extrapolated 5 out to 100 year recurrence intervals. So depending on the length of that historic data, depending on the 6 7 parameters that's being measured, and you come up with statistical methodology for doing that. 8 9 MR. HINZE: Sure. But no climatic model to 10 predict into the future are being used in these at 11 all? 12 That is correct. MR. HARVEY: Not at this point in time. I think in the future that might 13 14 change, but we basically are using values that, for 15 instance, the American Society of Civil Engineers uses for building loading, wind loads as well as roof loads 16 and the ASHRAE, which is American Society of Heating 17 and Air Conditioning Engineers. They publish data to 18 19 be used for extreme. 20 Is anyone contacting NCAR on MR. HINZE: 21 any of these topics in terms of climatic models for 22 the next 40/50 years? 23 I suspect that that is MR. HARVEY: 24 probably a work in process. I know that the Federal 25 Government has organized a group that is looking at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 climate change, are in the process of doing that. 2 Which is one reason why the SER is worded -- discusses 3 very briefly climate change. And if in the future the 4 methodology for coming up with the design loads 5 changes to reflect potential global warming climate change, that the regulations allows the Staff to go up 6 7 and change the site characteristics to reflect the new 8 methodology, evolving methodology. Well, it looks like they're 9 MR. HINZE: doing a better job predicting climate in the next 10 decades than they are predicting weather for the next 11 12 day. Well, what I find 13 CHAIRMAN POWERS: 14 interesting is that we do see trends that show 15 multiple cycles, some of which are converging. And reenforcing at this period of time associated with the 16 the Gulf 17 band around of Mexico. And it has consequences to the north and the south. 18 I mean, 19 there are entire journals devoted to this stuff and 20 individuals with differing opinions. But all opinions 21 seem to be that the weather in the last 50 years is 22 somewhat milder than the weather that they are 23 anticipating in the next 50 years. The reasons for it differ. 24 25 Well, in the ACNW we're MR. HINZE: Yes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

88

	89
1	worried about 10,000 or
2	CHAIRMAN POWERS: Yes. I know you guys
3	are really out in the middle of nowhere.
4	MR. HINZE: This is a no never mind.
5	CHAIRMAN POWERS: You guys are in the
6	imponderables. But fortunately no matter what
7	prognostication made, there's no one to claim you're
8	wrong or prove you wrong. They can claim you're wrong,
9	but they can't prove it.
10	MR. HINZE: Yes.
11	CHAIRMAN POWERS: Here we have some chance
12	of finding out who is wrong.
13	MR. HARVEY: It does seem reasonable,
14	though, as to what the climate models can show us.
15	CHAIRMAN POWERS: Well, we've asked in the
16	Staff previous communication with them to address
17	that, and they think they don't have the
18	responsibility.
19	Please continue.
20	MR. SEGALA: I only have the last item
21	left. Was we're looking forward to receiving your
22	interim letter and open for comments.
23	CHAIRMAN POWERS: Well, I'm left a little
24	bit uncertain what to comment on in this area.
25	Because I don't know what's resolved and what's not
I	I

(202) 234-4433

	90
1	resolved. I guess everything is resolved, save what
2	one little ice thing.
3	MR. SEGALA: Yes.
4	CHAIRMAN POWERS: And so everybody's in
5	life?
б	MR. SEGALA: Yes.
7	CHAIRMAN POWERS: And so to if we don't
8	have anything unusual about this application, and in
9	this area there's not much.
10	MR. SEGALA: We'll be coming to you, you
11	know you'll receive the final SER which will have the
12	full explanation of how we resolved all the open
13	items. And we'll come before you again for the final
14	and we can discuss those items as well at that time.
15	CHAIRMAN POWERS: Yes. Members have any
16	questions they'd like to pose in this area?
17	MR. HINZE: Well, one of those that I was
18	rather interested in was the 2.418, the potential
19	impact of the construction on the piezometric surface
20	and piezometric levels. What lead to your concerns in
21	the first place and how were they resolved?
22	MR. SEGALA: Okay. Again, I don't have my
23	expert here, but I have some notes which I may be able
24	to the Staff felt that the Applicant did not bound
25	the possible indirect impact of an overall drop in
ļ	I

(202) 234-4433

	91
1	lake pool elevation caused by additional consumptive
2	use, water associated the ESP facility which might
3	alter the piezometric surface of the ESP facility.
4	The Staff wasn't clear of construction down to the
5	plant parameter envelope embedment death. It could be
6	performed without dewatering systems that could
7	possibly reverse the piezometric radiant for the
8	existing Clinton Power Station unit. So the Staff
9	asked the Applicant to provide the potential impact of
10	future construction for the ESP facility on the
11	piezometric gradient for the ESP site.
12	The Applicant stated that there will be no
13	scenario where the liquid radioactive effluent could
14	be released about the ambient ground water table,
15	including the scenario where the effluent holding
16	facility could be flooded raising the release point
17	above the ambient ground water table.
18	The Staff agreed that under these
19	circumstances release of liquid radioactive effluent
20	to ambient ground water can be precluded. And the
21	Staff is proposing a permanent condition to ensure
22	that the hydraulic radiant will always point inwards
23	into the rad waste holding and storage facility from
24	the ambient ground water during construction and
25	operation of the ESP facility, including the time
ļ	I

(202) 234-4433

	92
1	during which recovery of ground water occurs to near
2	its PD water elevation.
3	So the permit condition will be put on the
4	permit that at COL they'll have to show that the
5	gradient always points inwards.
6	MR. HINZE: So the excavation to 140 feet
7	below grade will be associated with the watering. But
8	then what you're talking about here is the final
9	piezometric gradient, right?
10	MR. SEGALA: Yes.
11	MR. HINZE: Is what I said appropriate?
12	MR. SEGALA: I believe so, yes.
13	MR. HINZE: Okay. Thank you.
14	CHAIRMAN POWERS: I'd like to just ask a
15	question of clarification on COL 3.1-1 which states
16	"Verify the calculated radiological doses to members
17	for the public when radioactive gaseous and liquid
18	effluents for the ESP facility are bounded by the
19	radiological doses in the SER for the ESP
20	application."
21	What are you looking for here? You just
22	comparing one number to another number?
23	MR. SEGALA: I think is, you know, we've
24	done a dose calculation looking at the source term and
25	the chi over Qs. And I believe that this is to verify
ļ	

(202) 234-4433

	93
1	when the COL comes in that the Staff's calculation is
2	still bounded when they come in at a COL.
3	CHAIRMAN POWERS: In the application when
4	they get to this stage, they're going to end up using
5	a Gaussian plume model and they're going to calculate
6	the chi over Qs. But they go through and discuss why
7	the Gaussian plume might be perturbed on the lake
8	there on both sides of the plant. And in fact, they'd
9	look at that and think about Gaussian plumeness here?
10	MR. SEGALA: Brad, do you have any
11	insights on that?
12	MR. HARVEY: Brad Harvey with the Staff
13	again.
14	There's is a potential that the difference
15	in surface roughness over the water will impact the
16	plume as compared to surface roughness over land. And
17	the model is, I wouldn't consider it really refined
18	enough to start making the differential differences in
19	the surface roughness from one area to another. As a
20	matter of fact, if you look at the amount of water
21	that's in the site vicinity in terms of surface area,
22	maybe 20 percent on an average if you look around the
23	site.
24	And so what's happening is that if you
25	have wind coming up to your release point, that the
I	1

(202) 234-4433

1 wind strives to the characteristics that it sees in 2 the underlying surface and then once you -- and not the piece of wind, you may have your release. 3 And the 4 wind characteristics may change down wind as the plume 5 disperses again because of the changing in the surface characteristics as the effluent travels down wind. 6 7 So it's really a hodgepodge of different 8 things happening depending on where and when the wind 9 has been and where it's going. And there's really not 10 a homogeneous surface cover in that site, but a combination of trees, buildings, water surface and 11 flat grassland. So I think in all-in-all, it starts 12 to too much average out in the long run. 13 14 CHAIRMAN POWERS: In the Applicant comes back and says well I don't know what to do about this 15 16 but my suspicion is that I'm conservative ignoring 17 this effect, you guys agree with him? MR. HARVEY: Conservative, but I don't 18 19 think it has a major impact given the overall 20 uncertainty of what's being done here. 21 I believe the regional dispersion is based 22 on miles that were -- empirical data was capped out in 23 Kansas in the middle of a corn field. So --

24 CHAIRMAN POWERS: Well, there's a rather 25 famous comparison between Gaussian plume and what

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

94

	95
1	happened up on the Idaho National Laboratory in which
2	there is essentially no comparison between reality and
3	the Gaussian plume.
4	MR. HARVEY: Yes. It's a 30 year old
5	process. But, again, I think it's a fairly
6	conservative 30 year old model that we've been using.
7	CHAIRMAN POWERS: Well, members have any
8	other questions they'd like to pose to the speaker?
9	Thank you very much.
10	MR. GRANT: Dr. Powers, if I might jump in
11	with a couple of responses on questions that we
12	weren't able to answer during our presentation.
13	CHAIRMAN POWERS: Please. Please.
14	MR. GRANT: One item you asked about was
15	the distances to the cities.
16	CHAIRMAN POWERS: Right.
17	MR. GRANT: And we have looked into that
18	and identified that those are distances to the city
19	centers, the population centers.
20	CHAIRMAN POWERS: So now begs the question
21	is how far is it now from the city center to the city
22	limits and whatnot. I don't want anything to three
23	significant digits. A mile?
24	MR. GRANT: That depends certainly on the
25	city. For DeWitt, which is only 200 people, I mean
ļ	

(202) 234-4433

	96
1	there's probably less than a half of a mile distance.
2	But when you talk about Springfield, for instance
3	CHAIRMAN POWERS: I'm only interested in
4	cities over 25,000 population.
5	MR. GRANT: All right.
6	MEMBER SIEBER: And you only got two.
7	CHAIRMAN POWERS: Yes, I got two left.
8	MR. GRANT: You get out to Springfield and
9	Bloomington, those types of cities, then you're can
10	somebody help me with the geographic distances? But
11	my guess would be somewhere on the order of five to
12	ten miles from center to the edge.
13	CHAIRMAN POWERS: Okay. Fine. Thank you.
14	MR. GRANT: One other item here just
15	recently I believe I mentioned to you that the 140
16	foot depth with a PBMR value, and I've been told that
17	it's the other gas reactor, it's the GTMHR. Yes.
18	That is that deep. And the others, of course, are
19	even closer to ground surface.
20	One last thing I'd like to comment on is
21	I think I heard some confusion early in the Staff's
22	discussion about the responses to the RAIs being
23	reflected in the DSER. And I'd like to clarify, if I
24	could, that the only thing that I understand did not
25	get reflected in the DSER was one late letter on
ļ	

(202) 234-4433

	97
1	emergency planning. That the rest of the responses
2	occurred in the September to October time frame of
3	last year, and those are reflected in the February
4	DSER.
5	MR. SEGALA: That is a true statement. It
6	was just the evacuation time estimate response that
7	MR. GRANT: That did not get reflected?
8	MR. SEGALA: that did not come in late.
9	CHAIRMAN POWERS: Okay. So we're much
10	more complete?
11	MR. SEGALA: Yes.
12	CHAIRMAN POWERS: Good. If there are no
13	questions, we will recess until 1:00 and then approach
14	the rather simply and easy topic of seismic.
15	MR. SEGALA: Thank you.
16	(Whereupon, at 11:07 a.m. the meeting was
17	adjourned, to reconvene this same day at 1:00 p.m.)
18	
19	
20	
21	
22	
23	
24	
25	
	I

	98
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	1:07 p.m.
3	CHAIRMAN POWERS: Let's come back into
4	session.
5	The afternoon session we're going to focus
6	on the seismic issues associated with this site.
7	And just to alert people, I am fairly
8	confused on the approach taken. I think I've got
9	myself wrapped around the axle plowing through all the
10	factual information and not understanding quite what
11	the philosophical approach is. So to the extent that
12	you can help me cut through the thicket of factual
13	information, you can safely assume I understand
14	glaciation and things like that, and even some of the
15	geological terms. But I'm a little lost on the
16	overall approach. That would help a lot.
17	And I guess we're starting with Dr.
18	Anderson.
19	MR. MUNDY: Yes, if I may, let me
20	introduce. Because I think we have the right group of
21	people here to help.
22	CHAIRMAN POWERS: Sure. And this is Tom
23	Mundy, correct?
24	MR. MUNDY: Yes, it is. Tom Mundy from
25	Exelon.
ļ	I

(202) 234-4433

	99
1	To help all of you in your understanding
2	of what we presented in our application.
3	Starting at the back of the table there
4	with the microphones to the left is Katherine Hanson.
5	She is with Geomatrix. She was the lead on our
б	application for the seismic source characterization
7	and the basic geology work.
8	Next is Dr. Robert Kennedy, consultant to
9	Exelon on the performance-based methodology.
10	Next to him is Dr. Allin Cornel, a member
11	of the Seismic Board of Review and his area of review
12	was seismic criteria and PSHA methodology.
13	And then finally Dr. Robert Youngs. He's
14	also with Geomatrix. He was responsible for the ground
15	motion and the probabilistic hazards analysis
16	presented in our application.
17	Appearing up here on the panel and our
18	speakers for this afternoon, Dr. Don Anderson will do
19	the geotechnical and geology information and the
20	overview of that material followed by Dr. Carl Stepp,
21	who is also our Chairman of the Seismic Board of
22	Review. He will do the seismology related information
23	in our presentation.
24	With that, as far as our agenda on slide
25	2, we will start with the geotechnical geology
I	1

(202) 234-4433

	100
1	information, an overview. We'll go into the
2	seismology and talk about some of the site specific
3	information. Discuss the evaluation methodology that
4	we presented in our application and the results that
5	we obtained from that methodology. And then briefly
6	touch upon the open issues that are in the draft
7	supplement to the SER.
8	With that, I'd like to turn it over to Don
9	Anderson to pick up with the investigative approach.
10	DR. ANDERSON: Thank you.
11	Again, my name is Don Anderson. I'm a
12	geotechnical engineer with CH2M Hill. I was the task
13	lead for the geology geotechnical work that was done
14	on the Exelon ESP site.
15	Over the next several slides, I think 7,
16	I'll try to give a brief overview of what we did, and
17	then at the end make some conclusions on why we feel
18	the site is suitable for the development of another
19	power generating unit.
20	So, we started off with the existing
21	Clinton Power Station site. It's located, as you saw,
22	about 700 feet from or the Exelon ESP site is
23	located 700 feet from the Clinton site to the
24	southwest.
25	The ground surface between the Clinton
	I

(202) 234-4433

	101
1	site and the ESP site with relative with that.
2	Clinton Lake was about 800 to the north,
3	down about 35 feet. So those are general conditions.
4	Clinton site had a large amount of
5	geotechnical geology information developed during the
6	preparation of the PSER or FSER. And so that existing
7	database for the general area, just being so close to
8	the Exelon site, we had a complete description of
9	regional geology, and we wouldn't expect that to
10	change much within that short distance.
11	As part of the work done at the Clinton
12	site, they did a lot of site geology work. They did
13	explorations. So a lot of drilling and sampling work,
14	geophysical, refraction, uphole/downhole work. In the
15	drilling and sampling at this Clinton site, the CPS
16	site, the collective soil samples, rock samples and
17	performed a large number of laboratory tests on it.
18	So all that work dated from back in the mid-1970s when
19	the work was done for the Clinton site. What we were
20	doing is moving 700 to the southwest and saying, well
21	we think this condition 700 feet to the southwest
22	looks pretty similar from the ground surface. And we
23	expect conditions to be very similar, but we need to
24	go through an evaluation to find out how those
25	conditions are at this new site.
	1

(202) 234-4433

	102
1	So that was the primarily purpose of the
2	ESP work done for Exelon. It was to determine the
3	suitability of the new footprint.
4	We also because 25 or 30 years had elapsed
5	between the work that was done on the Clinton site and
6	today, there was some data that we wanted to
7	methods had changed over the last 30 to 40 years and
8	specifically in some of the dynamic testing methods.
9	And so we wanted to collected some new dynamic
10	information to just confirm that we had the correct
11	data for doing site characterization.
12	CHAIRMAN POWERS: Now let me ask you a
13	question on just reading the document. When you go
14	through this description of, particularly the site
15	geology, it will episodically come down and include a
16	paragraph by saying "additional details can be found
17	in the FSAR." And I would read that I said, well I
18	didn't know I didn't needed I don't know what I'm
19	not missing by not looking at the FSER. I mean, the
20	descriptions seemed to be adequate to me for the site
21	permit.
22	DR. ANDERSON: What did you miss?
23	CHAIRMAN POWERS: What am I missing by not
24	looking at the FSAR?
25	DR. ANDERSON: You probably missed about
I	1

(202) 234-4433

	103
1	200 pages of reading and minute details of
2	CHAIRMAN POWERS: That's ten percent of
3	what I've got. So, I mean, it's a minor perturbation.
4	DR. ANDERSON: Okay. And we could have
5	presented that. It was available.
6	What's in the FSAR is when you look at
7	regional and site changes, very detailed descriptions
8	of all the stratigraphy of the site, the origin of the
9	site; just a lot of characterization information for
10	the general region as well as the local site. And we
11	said rather than burden the reader with
12	CHAIRMAN POWERS: Well, that wasn't your
13	motivation. I don't believe that was your motivation.
14	DR. ANDERSON: No, well part of it was
15	because I would have had to write all of that, too.
16	CHAIRMAN POWERS: Now that was the reason.
17	DR. ANDERSON: Very fair, though. It was
18	time saving on my part. And we thought, well, the
19	person that is interested in that additional
20	information would be able to
21	CHAIRMAN POWERS: Well, I guess what I'm
22	asking you is I'm not missing anything salient by not
23	going back to that SFAR?
24	DR. ANDERSON: As a geotechnical engineer
25	I would say no you're not missing anything.
I	

	104
1	Now a geologist could argue with me on
2	that, because
3	CHAIRMAN POWERS: We'll let him do that on
4	his time, okay?
5	DR. ANDERSON: Okay. Next slide.
6	Okay. We did review the geology of the
7	area and then concluded the general regional geology
8	that was presented in the FSAR or the USAR, as well as
9	we looked more recently at some of the geological
10	hazards that might exist in the area.
11	So our concerns are what is the formations
12	that exist, how did they get there and that helps us
13	understand the uniformity of the site.
14	We're still concerned about geologic
15	hazards. And by geological hazards that could be
16	faults, tectonic faults or non-tectonic faults.
17	And it could be karst terrain. Certainly
18	in the southeast U.S. you have the sink holes and you
19	don't want to have power blocks over sink holes. And
20	mining and landslides, all those sort of things.
21	So we looked at the geology, regional
22	geology in the USAR and made sure that there hadn't
23	been any significant developments over the last 30
24	years.
25	We also went to the State of Illinois
I	1

(202) 234-4433

	105
1	records to see if any geologic hazards had been
2	identified in the site specific area. And the
3	conclusion was the general geology hasn't changed. We
4	wouldn't expect it to. And the site hazards remain
5	unchanged and there's no particular site hazards that
6	are to put the plant, existing plant or a new plant
7	in any type of jeopardy.
8	Now the little inset here, just to give
9	some idea. You mentioned the glacial actions.
10	There's been at least three that have gone over the
11	site, and you can see this green area. Here's our
12	site right there. The green area is the last
13	glaciation, that was in Wisconsin. One of the earlier
14	glaciations came down through here and then some
15	portions even south.
16	What those glaciations do from a
17	geotechnical standpoint is they load the soil. They
18	deposit soils there, but they also load the soil. By
19	loading the soil it does a couple of beneficial
20	things. One is it makes the soils hard and stiff, so
21	it gives it good things like bearing capacity, limits
22	the amount of settlement that occurs. So from a
23	foundation standpoint those are desirable.
24	It also takes out some of the variations
25	that occurs. With all this weight it makes the soil

(202) 234-4433

(202) 234-4433

	106
1	more uniform. And so that's one of the things that
2	we'll show here as a look at the soil pool file.
3	MR. HINZE: While you have that up there,
4	could we keep that up there for a moment if I might
5	please? A couple of questions.
6	I notice that the bedrock contour map that
7	you show in one of these reports shows a valley, a
8	bedrock valley extending to the west/northwest. Is
9	that part of the Mohomet River Valley system? Is that
10	a tributary to it?
11	DR. ANDERSON: I am going to have call on
12	one of our geological experts. My interest was right
13	at the site and there is a slight of that on the
14	site. But the Mahomet River bedrock valley is?
15	MS. HANSON: My name is Katherine Hanson.
16	I am the consultant with Exelon on the geology.
17	I would have to check on that. There is
18	a major system, a drainage system there. And I
19	believe that it is
20	MR. HINZE: Well, you can see it right
21	there on the map.
22	MS. HANSON: Part of that drainage system.
23	But I can't answer that question directly right now.
24	MR. HINZE: It's interesting because it
25	may be part of a large drainage system going down
l	

(202) 234-4433

	107
1	towards the Mississippi, the ancestorial Mississippi.
2	Another question while you have this slide
3	up, you talk about the compaction from Wisconsin.
4	We're very close to the edge of the Wisconsin.
5	DR. ANDERSON: Yes.
6	MR. HINZE: Have you done any real
7	calculations, any quantitative calculations on this?
8	I mean, I've walked over a lot of glaciers in my life
9	and there's quite a nose on that. So the question is
10	how thick was the Wisconsin glaciation at that point,
11	and what would be its quantitative impact upon the
12	clays and lasustrian materials?
13	DR. ANDERSON: I can't tell you how thick
14	it was, but it wasn't very thick.
15	MR. HINZE: That's right.
16	DR. ANDERSON: What I can tell you is from
17	the geotechnical work we've done, we do test in the
18	laboratory, consolidation tests. And those
19	consolidation tests can be used to determine what is
20	the pressure that it's seen at its maximum in the
21	past. And then we compare that to the current
22	pressure, and that is the over consolidation ratio.
23	It's not highly over consolidated in the Wisconsin
24	layer. And that indicates to me as a geotechnical
25	engineer that it didn't have a large amount of ice
I	

(202) 234-4433

	108
1	over the top.
2	MR. HINZE: Right. So there's a lot more
3	compression that's going to be possible there? Is
4	that something?
5	DR. ANDERSON: That's a good point in that
6	upper 50 foot layer where the Wisconsin is. But as
7	we're going to discuss a result mentioned later, we're
8	going to take that layer out for some reasons. And so
9	the actual in site construction, and I think Eddie you
10	may have mentioned that this morning, that we've got
11	an upper 50 foot layer that's going to be removed and
12	replaced with an engineering fill.
13	MR. HINZE: It would be interesting to
14	calculate how much real pressure there was on there,
15	because we used to think the glaciers were very thick
16	and that's not the prevailing wisdom.
17	DR. ANDERSON: No. And I agree
18	completely. I went through just a quick chat the other
19	night just not realizing that this question would come
20	up. And I'd say oh that's not really that much ice
21	would be taken to create that.
22	MR. HINZE: Right. Thank you.
23	DR. ANDERSON: As I said, we started with
24	a large database of geotechnical information at the
25	Clinton site. And just to give you an idea of that
I	I

(202) 234-4433

	109
1	database, all the bullets there that you see are soil
2	borings. There are 76 of them. Twelve of them went
3	down to bedrock. And what those shows is there is a
4	thickness of soil that's somewhere in the neighborhood
5	of 250 to 300 feet in thickness. And then you get
б	into rock. And so these, there's various boreholes.
7	Some go down to 100 feet, some do enter the rock at
8	300 feet. And there is I think a borehole that was
9	done to 500 feet or thereabouts below the ground
10	surface.
11	The actual ESP site is going to be, I
12	think, right in this area. And then the footprint for
13	the CPS site is there. So they abut next to each
14	other.
15	The key is that with the footprint down in
16	this area, we have some more explorations that were
17	done during the CPS study that extend beyond the ESP
18	footprint. So all that information was available at
19	the time that we were doing our planning for the ESP
20	site. We had boreholes all around it. And we said
21	well with that existing information and with the
22	information about the geological processes that went
23	into forming the soil at the site, then this is what
24	we're going to do in the way of exploration. We're
25	going to fill in some gaps just to confirm what they
l	I

(202) 234-4433

	110
1	saw during the CPS and to confirm that there's no
2	unusual conditions within the footprint.
3	So the explorations for the Exelon
4	footprint were fairly limited. The red dotted area
5	shows the size of that footprint. The types of
6	explorations that we did there, we did drilling and
7	sampling at four locations. The purpose of the
8	drilling and sampling was to collect soil samples for
9	both classification and for laboratory testing.
10	Two of those borings extended 315 feet or
11	thereabouts into the rock at the base of the soil
12	profile. The other two extended down to about 100
13	feet. So that information was to confirm data that
14	had already been collected at the CPS site.
15	We also conducted cone penetrometer
16	soundings at four locations. And you've probably heard
17	in previous presentations, maybe at Grand Gulf cone
18	penetrometers pushing a rod into the soil. You have
19	a load cell on the end of the rod, it gives you an
20	indication of resistance of penetration which then we
21	can look at and see how the stratigraphy is varying as
22	far as we can push the rod. We can also correlate
23	that information and do engineering soil properties,
24	which could be valuable for some of our analysis.
25	With the cone penetrometer we also
I	I

(202) 234-4433

performed some seismic cone tests. Seismic cone tests are, instead of pushing this load cell into the ground, we pushed a geophone velocity transient stream into the ground and performed basically a down hole seismic test which gave us the sure way velocity of the soil.

7 Those cone penetrometers we were only able 8 to push about 50 to 80 feet into the ground. That was 9 pushing with about a 25 ton truck. It was hard enough that we ran out of pushing capability. And that's 10 probably when we got to the top of or through the 11 12 probably likely over Wisconsin layer, which is consolidated into the Illinois layer that appears to 13 14 be more heavily over consolidated.

15Other tests. Nope, I've got more tell.16MEMBER SIEBER: And bedrock is 300 feet,17roughly?

18DR. ANDERSON: Bedrock is 287 feet,19standard feet close enough. And we went probably 2020feet to 30 feet into the bedrock.

MEMBER SIEBER: Yes.
DR. ANDERSON: And I'll show a soil
profile and describe the characteristics. Yes.
MEMBER SIEBER: Okay. I can't read this.
DR. ANDERSON: Okay.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

6

	112
1	MEMBER SIEBER: My eyes aren't good
2	enough.
3	DR. ANDERSON: Well, we apologize for
4	that.
5	Other tests that we did at the site, as I
6	said, we did drilling and sampling. We installed some
7	ground water monitoring wells, piezometers to see
8	where the water table is at the site. So 800 feet
9	from the lake.
10	We also did a deep shear wave compression
11	wave velocity profile using a PS suspension logging
12	tool. This is a procedure that wasn't available back
13	when they did the CPS site. It's a fairly new tool
14	that the Japanese developed 15 years ago. Somewhat
15	similar to the old Schlumberger borehole logging
16	tools. But it gives a very good measurement of sheer
17	and compressional wave velocity in the rock and the
18	soil that went from approximately 315 feet below the
19	ground surface up to the ground surface. And we got
20	velocity values about every foot and a half in that
21	range.
22	MEMBER SIEBER: And you're able to pick
23	out these various strata?
24	DR. ANDERSON: Yes. And we'll show that
25	later how in previous days back in the CPS studies,
I	1

(202) 234-4433

	113
1	they used up hole and down hole procedures. Got a
2	very average profile compression in sheer waves.
3	MEMBER SIEBER: Right.
4	DR. ANDERSON: And this time we'll see
5	very detailed variation.
6	MEMBER SIEBER: You can actually see the
7	boundaries?
8	DR. ANDERSON: Yes.
9	MEMBER SIEBER: Okay.
10	DR. ANDERSON: Just the stratification
11	interlayering that occurs.
12	MR. HINZE: Did you do any shale hole
13	reflection work?
14	DR. ANDERSON: We did no shale reflection
15	work.
16	MR. HINZE: Why not?
17	DR. ANDERSON: Because we didn't feel that
18	it would help us it would tell us where some of the
19	tops of the hard layers were, but we felt that we had
20	quite a bit of data from the existing CPS site to tell
21	us where those different major horizons were and then
22	with the cone penetrometer and the drilling and
23	sampling we felt that that would give us a good
24	indication of where the different soil layers were.
25	MR. HINZE: The Staff has raised concerned
	I

(202) 234-4433

	114
1	about a lack of drilling. I thought perhaps you might
2	think about doing some seismic reflection to fill in
3	the gaps?
4	DR. ANDERSON: It's certainly a
5	consideration. WE have been discussing the need for
6	additional characterization in the material. And one
7	way of doing it would be with some type of refraction
8	procedure.
9	MR. HINZE: While I'm asking a question
10	about seismic reflection, in the previous site
11	characterization studies were there any seismic
12	reflection studies made of the sediments?
13	DR. ANDERSON: There were reflection
14	refraction surveys done in the original site survey.
15	And I think you can see the top of the rock. I don't
16	think you can
17	MR. HINZE: Top of the bedrock? The
18	bedrock surface or the
19	DR. ANDERSON: Well, you can see the rock
20	at roughly 300 feet, 250 to 300 feet below the ground
21	surface. So you'd pick up major soil layers. You see
22	where the rock is. You don't see anything below the
23	rock.
24	MR. HINZE: This is an area, that you well
25	know, is in the LaSalle Anticline area and I imagine
I	

(202) 234-4433

	115
1	there are some faults in the nearby vicinity. I
2	wondered if the previous work had shown any of that
3	and if not, certainly technology has improved vastly
4	in this area.
5	DR. ANDERSON: Vastly, that's right.
6	MR. HINZE: Even in the last decade. And
7	I'm wondering if any thought was given to if it hasn't
8	been done, to doing some reflection work to really
9	determine whether there are some structures not only
10	folds, but faults in the bedrock?
11	DR. ANDERSON: I guess from the ESP
12	standpoint we felt that with the available information
13	and the explorations we had enough to justify or
14	determine whether the site was suitable. Now, in
15	terms of the geology studies, Katherine any thoughts
16	on that?
17	MS. HANSON: Well, our approach was to
18	evaluate to look for sort of secondary evidence for
19	strong ground shaking in the site vicinity, too, see
20	if there was any evidence for recency or activity.
21	MR. HINZE: Guarternary.
22	MS. HANSON: Guarternary. So that was our
23	general approach was that the structures had been
24	fairly well mapped and were well known from some of
25	the state surveys and mapping. And so we used the
	I

(202) 234-4433

	116
1	published
2	MR. HINZE: But that wouldn't give you the
3	detail of your site unless they've got a lot more
4	detail in that area than they have in most areas.
5	MS. HANSON: Yes. But the LaSalle, the
6	structures I think are about 16, sort of 20 miles to
7	the east are some of the closet folds
8	MR. HINZE: Where's the nearest fold and
9	fault that one could ascribe to the LaSalle Anticline
10	and associated monoclines?
11	MS. HANSON: I can double check on that.
12	I believe it's about 16 miles to the east.
13	MR. HINZE: Is that because we have
14	information shows that they aren't there or that's the
15	nearest place that we have information on them?
16	MS. HANSON: That's based on the published
17	mapping from the state.
18	MR. HINZE: Okay. Thank you.
19	DR. ANDERSON: Just a side note looking at
20	my notes. The one thing in looking over the CPS data
21	what we did include is they have done a good job in
22	the characterization of the site with the exception
23	maybe of some of the seismic dynamic methods they used
24	good techniques that haven't changed a lot since
25	during the drilling and sampling was done back in the
I	I

(202) 234-4433

Í	117
1	1970s. The laboratory testing was old ASTM methods,
2	and those haven't changed a lot over the last 35 years
3	in the non-seismic areas.
4	We're going to be looking at this cross
5	section, CC I think in the next slide. And that goes
б	through the footprint of the ESP site and into the CPS
7	site. So here's the ESP footprint and it's picking up
8	two of the boreholes that we drilled for the ESP. One
9	went down to bedrock. And then the P21, P18, P22 are
10	boreholes that were drilled as part of the CPS site.
11	So the soil conditions what we learned was
12	much of what was recorded in the CPS. There's an
13	upper layer of Loess that's recent with load silt
14	material. And then there's a soil to clay, clay silt
15	layer in the Wisconsin period, and that has been
16	overridden, not a lot but it's strengths in the
17	consolidation characteristics it's still pretty good
18	material. A deep thickness of Illinoisan till, so one
19	of the earlier glaciation. There's a less period
20	in between and then this pre-Illinoisan and some
21	people refer to it as a Kansan till. By in large, the
22	properties throughout the soil layer are soil to clay,
23	clay tills with occasional gravels, sand layers.
24	Rock is located down at 280 feet, 287 feet
25	at the ESP footprint location. Over at the CPS
I	

(202) 234-4433

	118
1	footprint is 250 feet. So there's about a 30 to 40
2	foot gradual decrease in the layer, the top of the
3	rock layer probably caused by erosion sometime in the
4	past. The rock is primarily shale, has some limestone
5	in it. Very good rock as far as we were concerned.
6	When we got back the rock ore they had we'll refer to
7	as high RQD values. That means you get a nice intact
8	section of rock. It's got high strengths, 15,000 psi
9	or more. Shear wave velocities were 4,000 feet per
10	second or thereabouts.
11	CHAIRMAN POWERS: I have a technical
12	question about this particular it has nothing to do
13	with your application, but a curiosity to me.
14	You have this glacial outwash located in
15	a couple of places. And you've drawn it in, but your
16	boreholes are through the middle of it. How do you
17	know where it ends?
18	DR. ANDERSON: Like for example
19	CHAIRMAN POWERS: Yes. The little ellipse
20	there.
21	DR. ANDERSON: That's probably the best
22	way of putting it.
23	MR. HINZE: That's what the seismic
24	reflection could do for you.
25	CHAIRMAN POWERS: Yes, but he doesn't have
I	

(202) 234-4433

	119
1	a seismic reflection here.
2	MR. HINZE: Right. Right. But that's what
3	it could
4	CHAIRMAN POWERS: All you know is that two
5	drill holes went through a gravel area?
6	DR. ANDERSON: Yes. Yes.
7	CHAIRMAN POWERS: Okay.
8	MR. HINZE: While we're chatting about
9	that, is that glacial outwash such that that could be
10	subject to liquefaction?
11	DR. ANDERSON: In shallower depths, yes.
12	Typically we see what fashion occurring in the upper
13	75 feet of material or so. After that it gets pretty
14	deep. And this gets back to the discussion or comment
15	that we made earlier. We're going to take out the
16	upper 50 feet, which comes down to I think right in
17	this down to 736 less 50, so it's somewheres right
18	in this very region. The reason for that was that as
19	we did our explorations we found a few areas that had
20	softer materials and so it would be prone to
21	settlement. Some of that material from the ground
22	water elevation, which is around minus 30 to minus 60
23	has some sand layers. And that sand layers we found
24	when we did and that's basically what they found
25	back in the CPS study as well. So what the CPS they
I	I

(202) 234-4433

	120
1	did is they evacuated down I think 55 feet and then
2	they actually built back up 30 feet to get to the
3	foundation level of their power block unit.
4	MEMBER SIEBER: I guess you could also put
5	piling in there, right?
6	DR. ANDERSON: That's another alternative.
7	MEMBER SIEBER: Frankie piles or something
8	like that.
9	DR. ANDERSON: Yes, or improve the ground
10	by densification processes.
11	MEMBER SIEBER: Yes. That's pretty tough.
12	DR. ANDERSON: Yes. It would have to be
13	at the bottom of the excavation to do that.
14	MEMBER SIEBER: Yes.
15	DR. ANDERSON: But other key things here.
16	Overall the layering was very uniform from my
17	perspective just considering the distances here and
18	other exaggerations and scales, but we're talking
19	about 4,000 foot difference. And almost pancake like
20	in layering.
21	MEMBER SIEBER: How thick is the lens? I
22	would call that a lens?
23	DR. ANDERSON: Yes. I think it's ten feet
24	or thereabouts.
25	The materials, again if you have clay and
ļ	

(202) 234-4433

	121
1	silts sort of non-identifiable. It's just the size
2	sands and sometimes gravels.
3	Water table, I said before, is located
4	about 30 feet below the ground surface. And that
5	occurs at about 35 feet or the average ground surface.
6	We had some parched water which is the water
7	infiltrates and hits a clay layer and perches on
8	that. And so we have some water up close to the
9	surface. But the permanent ground water elevation is
10	around 30 feet below the ground surface.
11	What they found when they did the
12	excavations at the site is infiltration water into the
13	excavation was very low. And, again, it reflects these
14	very rarely silty clays, clay to silt materials.
15	As part of the work that we did on the ESP
16	site, we did data comparisons between the results of
17	laboratory tests and that we collected at the ESP site
18	to the data that had been published in the USAR for
19	the Clinton site. And all that information is
20	presented in the ESP.
21	By and large, if you look at the layer,
22	the ranges and properties, classification properties,
23	the strength properties they're very similar. And so
24	what we were able to do was by looking at the
25	engineering properties at Clinton versus the

(202) 234-4433

1 engineering properties at the Exelon ESP site, we're 2 able to say it looks the same, behaves the same when 3 we do laboratory tests. And so it's reasonable to --4 and we expect it to be the same just from the 5 geological processes. And so we can say that with confidence that the materials that you find at the 6 7 Exelon site are consistent with the materials that you find at the site on the Clinton site. 8 9 By and large, though, those materials are 10 fairly stiff, the clays and the silts. And that's evidence by over consolidation of the clay materials, 11 12 the strengths of the tests when we did strength tests were higher than what you'd see with just a soil that 13 14 hadn't been overridden. 15 Can I interrupt you again, MR. HINZE: 16 Doctor, and just for a second if I might. We see a lot of variation in the sheer 17 wave velocities here, of course. And we get some 18 19 pretty low velocities down around 1800 something like 20 that in a couple of zones. Are those zones that you 21 can trace over the site? Can you do stratigraphic 22 work on those? And if so, what are they caused by and 23 are they of any concern to us? 24 DR. ANDERSON: It's a question. So we're 25 talking here --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

122

123 1 MR. HINZE: Well, I'm talking about down 2 in the main -- the Illinoisan I think that probably 3 is. 4 DR. ANDERSON: Yes, there's one right 5 here. One there and one above, 6 MR. HINZE: 7 right. DR. ANDERSON: And I think those are --8 9 you can go back to look at the soil profiles. And they 10 are related to the lacustrine or the finer grain layers there. 11 12 Let me just go back for maybe the benefit of some others with shear wave velocity versus depth. 13 14 And I said we did two types of velocity measurements 15 at the ESP site, one is the suspension. And that was 16 every foot and a half we made a measurements. That's what all these little dots are. And up at the ground 17 surface we did the sheer wave velocity using the cone 18 19 procedures. They just went down in this vicinity, 20 right here on the surface. 21 Also shown here in black is the velocity 22 values that used in the work they've done for the CPS 23 site. And so that was using some older procedures, 24 explosive sources, up-hole down-hole procedures. 25 Now once again, you know you see fairly

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	good you know, the average data goes through you
2	know, all these little points here. And what we're
3	saying is that we've got some high layers here down at
4	100 feet. There was probably a little gravel there
5	that the velocity logging tool picked up. And this
6	is the layer we were concerned about. There is a soft
7	layer. And in fact when we had our board review to
8	look at our data, they were concerned about how we
9	modeled this or how Bob Youngs has modeled in this
10	site response study.
11	This is still 1500 feet per second shear
12	wave velocity. And so relative to many conditions
13	it's still a fairly stiff these values here or the
14	red values there are around 2,000 feet per second,
15	which is getting into soft rock or west coast we call
16	it rock. There's another low layer here that's down
17	to about 1200 feet per second.
18	If you modeled these, and this is where
19	the debate. Because if you model those they become a
20	base isolator and they actually and this was we
21	used averaging as we went through some of these
22	layers.
23	MR. HINZE: Now do you find them
24	consistent through the area?
25	DR. ANDERSON: On the CPS study, the
ļ	

(202) 234-4433

	125
1	original study, they didn't pick up those layers.
2	MR. HINZE: Okay.
3	DR. ANDERSON: When we did it, we just did
4	a single deep PS logging method, suspension logging
5	method. We were able to pick them up. They seemed to
6	be correlated to a couple of the soil layers. The
7	soil layers had been picked up in different layers but
8	we didn't have velocities at those different or the
9	spacial and locations.
10	MR. HINZE: Do you have holes available so
11	that you could check this?
12	DR. ANDERSON: No. The holes are
13	backfilled.
14	MR. HINZE: Okay. All right.
15	DR. ANDERSON: Lab data, another key
16	element of the program was some of our laboratory
17	testing that was done. And this is the dynamic
18	testing. Over the last 25/30 years one of the test
19	procedures that has really advanced is dynamic testing
20	methods. And the procedure we used on samples from the
21	ESP site is using this torsional shear procedure. The
22	tests were conducted at the University of Texas by Ken
23	Stokee. And what those tests provide is an indication
24	of how the stiffness of the soil changes with level of
25	displacement or sheering strength. And so we have got
I	

(202) 234-4433

	126
1	set of what are referred to as modulus ratio versus
2	shearing stream values. And also got material damping
3	versus shearing stream.
4	This information goes into site response
5	studies that Bob Youngs conducted.
6	What we did is we compared those
7	laboratory results to the EPRI curves that were
8	generated back in the early 1990s. There's a set of
9	curves for modulus ratio and damping ratio. And
10	overall the comparisons were quite good. And as a
11	result of that we opted in the site response analyses
12	to use the EPRI curves for doing our site response
13	analysis.
14	CHAIRMAN POWERS: It says that in the
15	text. Is there a plot or something that I can look at
16	that I missed?
17	DR. ANDERSON: Yes, there is a plot in
18	appendix B, the plot you never went to figure was.
19	CHAIRMAN POWERS: Because I looked, and
20	DR. ANDERSON: Yes. We were going to show
21	it and we said well it's too much detail.
22	CHAIRMAN POWERS: And I'm not sure I knew
23	what I was looking at.
24	DR. ANDERSON: 4.2-6 in appendix B. Yes.
25	Two through six in appendix B.
	I

(202) 234-4433

	127
1	CHAIRMAN POWERS: Well, I have to look
2	when we get a chance.
3	DR. ANDERSON: Yes. But it was
4	encouraging again from my standpoint as a geotechnical
5	engineer to see how well the lab data compared to
6	these generic EPRI curves.
7	Well, in conclusion from the geotechnical
8	studies, our original objective was to conclude or to
9	determine whether the site was suitable for
10	development of a power block structure. And what we
11	concluded was that the properties that we measured for
12	the ESP site was very similar to the properties that
13	were obtained the CPS site.
14	We also updated some dynamic information.
15	There when they updated the shear weight velocity
16	measurements they tended or they were fairly similar
17	to the average velocities that were measured at the
18	CPS site. And then when we updated the dynamic soil
19	properties, those properties were consistent with the
20	EPRI curves.
21	And so what we concluded there is we
22	didn't have anything particularly unusual at the site.
23	And certainly nothing different than what had occurred
24	at the CPS site. What that allowed us to do is look
25	forward and say well given these conditions, we've got
I	1

(202) 234-4433

	128
1	a stiff site. If we go in with a power block unit
2	similar to what we have at the CPS site, we should
3	expect similar settling characteristics. And those
4	settlement values were very small, they were less then
5	predicted. So that was a real good sign.
6	The CPS site had high bearing capacities.
7	And so that's good because it means the foundation
8	won't undergo a bearing capacity failure.
9	So overall from a development of a power
10	block unit it looked like the design could be
11	accomplished with no significant concerns.
12	From a construction standpoint we knew we
13	had constructed a down to elevation line is 55
14	feet. At the Clinton CPS site without having
15	significant difficulties with excavation slope
16	stability or dewatering issues. And so based on the
17	similarity of properties between the two locations, it
18	is fair to say that we would expect similar ability to
19	have an efficient construction at the Exelon ESP site.
20	So in summary, it was the conclusion of
21	the people that worked on this was that this site was
22	suitable for future development.
23	And that concludes my presentation.
24	MR. HINZE: Are we going to discuss open
25	items now or are we going to come back to that? I
ļ	I

(202) 234-4433

	129
1	understood there was an open item related to
2	geotechnical, and I'm just wondering how you handle
3	that and where that stands at this time?
4	DR. ANDERSON: If I may suggest we handle
5	it later.
б	MR. HINZE: Okay.
7	DR. ANDERSON: For questions and answers.
8	MR. HINZE: Good show.
9	DR. ANDERSON: Other questions for me or
10	Carl Stepp will
11	DR. STEPP: Well, good afternoon. My name
12	is Carl Stepp, as you heard earlier. And I'm going to
13	summarize in the next dozen or so viewgraphs the work
14	performed for the Clinton ESP site leading to the
15	development of the ground motion earthquake for the
16	site.
17	First of all, I'd like to just briefly
18	describe the purpose of the evaluation and the
19	regulations that we satisfied during the evaluations,
20	and the regulatory guidance that we used and followed
21	to satisfy the regulation.
22	The purpose of this work was to compile
23	and update, evaluate new data that has been developed
24	since the mid-1980s when the EPRI SOG seismic source
25	characterizations for the central and eastern United
I	

(202) 234-4433

	130
1	States were completed. Reg. Guide 165 provides
2	guidance that starting with those evaluations is the
3	proper place to develop a new seismic design
4	characterizations for sites in the central and eastern
5	United States. And we adopted that approach.
6	We in the process evaluated any changes in
7	the site region seismotectonic environment. And I will
8	describe some changes that we identified that impacted
9	the PHSA and the seismic design for the site.
10	And finally, we determined the SSE ground
11	motion for this ESP site following the guidelines in
12	165.
13	The regulations that are pertinent here
14	and that we followed in this development is the 10 CFR
15	Part 100.23. That was issued in early 1997, effective
16	January 1997. And it replaced the old deterministic
17	regulation Appendix A to Part 100, updating the
18	approaches to modern technologies in particular. It
19	requires now the use of probabilistic hazard analysis
20	or sensitivities analyses to address uncertainties in
21	the entire data set that goes into determining the SSE
22	ground motion. That's a critically important
23	development which we have followed and attempted to
24	update in this evaluation, and you will hear more
25	about that later.
ļ	

(202) 234-4433

	131
1	Regulatory Guide 1.165 we followed,
2	essentially in total. I will point out where we
3	departed from that guide in later viewgraphs. That
4	guide implements the new regulation, 100 Part 23. And
5	we also implemented the guidance in the standard
б	review plan Rev 3 section 2.5.2 Rev 3 updating that
7	with some new information that's been developed in
8	NUREG-6728. And I will mention that later as well.
9	CHAIRMAN POWERS: Let me just clarify for
10	a point for philosophical.
11	You're required to address uncertainties
12	and it's using either a probabilistic seismic hazard
13	analyses or a sensitivity analyses. Well, the two
14	aren't the same or even similar are they?
15	DR. STEPP: Not necessarily. But the
16	regulation does permit one to do either. The guidance,
17	however, it gives in 165 gives strong guidance to
18	follow a probabilistic hazard approach.
19	CHAIRMAN POWERS: And the uncertainties
20	that it's asking you to address are really parametric
21	uncertainties, aren't they?
22	DR. STEPP: They characterized in the
23	regulation as data uncertainties. And I would say they
24	are a combination of parametric uncertainties and
25	variability and epistemic uncertainties in knowledge
l	1

(202) 234-4433

	132
1	base. All of these get factored into the PSHA
2	methodology that we follow.
3	CHAIRMAN POWERS: Well, when I look at the
4	world of seismologists, which is actually a surprising
5	a small community, if you ask me, you find a consensus
6	group and then you always find this one guy that's the
7	wildman out there and views the world somewhat
8	orthogonal to the rest. I mean, how do you factor in
9	the fact that he might be right?
10	DR. STEPP: This is a very significant
11	point, and I will ask Allin Cornel to comment on this
12	I think also. But this is a very significant point
13	and it has been a troublesome point in the past in
14	making seismic hazard evaluations using subjective
15	interpretations as inputs.
16	In regulation an expert has to be given
17	equal weight. And we have attempted to develop
18	mechanisms by which we could devise weights to give
19	expert, but we've not been successful in implementing
20	those in regulation. And so the way we approach this
21	is a rather complicated process approach in which we
22	very carefully select the experts that performed the
23	evaluations on the recommendations of the scientific
24	community. And then we go through a process of giving
25	the experts a certain amount of grounding in
I	I

(202) 234-4433

	133
1	subjective probability assessments. We give them a lot
2	of guidance as to what their roles and
3	responsibilities are as evaluators. And we hold series
4	of workshops that are designed to: (1) Give the
5	experts the state of current scientific knowledge
6	about the particular elements of their evaluation that
7	are being addressed in a workshop and to give them an
8	opportunity, them the experts, an opportunity to
9	interact with each other in the discussion of the
10	competing hypothesis, parameters, models and so on
11	that they will be evaluating.
12	By this process we have been, I would say,
13	reasonably successful in eliminating really egregious
14	departures or outliers in the evaluations.
15	And perhaps, Allin, you would like to
16	amplify?
17	DR. CORNEL: I'm Allin Cornel, a
18	consultant to Exelon.
19	I think Carl has given a very good general
20	summary of this process.
21	I think it's fair to say the probabilistic
22	seismic hazard analysis has gone as far or farther
23	than many fields of science in which we have lack of
24	100 percent consensus on multiple hypothesis and
25	models and parametric values. And the process that
I	

(202) 234-4433

134 1 Carl discusses has been applied in a variety of major 2 studies. And I think the primary factor that avoids 3 the single orthogonal expert, to use your term, is in 4 fact to make sure this becomes some kind of 5 interactive process among the experts to make sure that there are not what we often find is basically 6 7 misunderstandings, simple misunderstandings amonq 8 themselves as to how my model compares with your model 9 to make sure that kind of exercise is open and at the 10 table and as opposed to a questionnaire which you put a weight on a model. 11 So we try to make that sort of interactive 12 process that Carl discusses. And this was done very 13 14 extensively, particularly in the EPRI project, EPRI 15 SOG project in the mid-'80s. 16 CHAIRMAN POWERS: To be sure seismic 17 expert elicitations that I'm familiar with, one where there was a substantial orthogonality of opinion 18 19 rested heavily on a misinterpretation. But I hasten 20 to point out the British study of expert panels which 21 found that if you had to bet on panels prognosticating 22 the future, you always bet on the wildman. You're 23 about 60 percent chance of being right if you always 24 bet on the most extreme opinion and something less 25 than 30 percent right if you bet on the consensus

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	opinion.
2	Be that as it may, let's continue.
3	MR. HINZE: Well I think there's a good
4	example of your orthogonal in the New Madrid area. We
5	all know who I'm talking about, an expert who I think
6	has very great concerns about the use of PSHA. And
7	I'm talking about Kriznesky. Because there are
8	differences of opinion, among strong PHSAers feel that
9	you should do both PHSA and a deterministic. Do you
10	have any comment on that, Carl?
11	DR. STEPP: Well, yes. Again, I might ask
12	Allin to reenforce here and expand on what I have to
13	say.
14	This, of course, has come up from the very
15	beginning of our attempts to apply PHSA in the manner
16	that we now apply. And the real situation is that a
17	deterministic evaluation is just one realization of an
18	uncertain range of interpretations. And so we
19	actually perform the PHSA evaluations in an effort to
20	capture that full uncertainty that is required by Part
21	100.23.
22	MR. HINZE: It gives different results?
23	DR. STEPP: It gives different results
24	because it properly weights interpretations across the
25	broad range of uncertainty.
I	

(202) 234-4433

	136
1	Allin?
2	DR. CORNEL: Yes, that's well stated. I
3	think the fact that you may have differences of
4	opinions about critical paramatrics, mean return time
5	of New Madrid events is the first order issue. How do
6	you deal with that is what you're addressing.
7	And I know when the considerations were
8	given to modifying Part 100 in which PSHA was
9	recommended and the concern about the deterministic
10	method that was brought forward was its failure to put
11	all of these cards on the table, including the
12	orthogonal ones, and that's when the notion of well
13	maybe you could use something which is not
14	probabilistic but at least you do a sensitivity study.
15	So you would at least have to do multiple so called
16	deterministic analyses. And once you start working in
17	that manner, the question comes up well what do you do
18	with all of these multiple deterministic analyses when
19	you have them all laid out in front of you. And that's
20	why I believe the primary weight in 1165 is that you
21	ultimately go through the kinds of exercises Carl had
22	identified to weight these alternatives and opposed to
23	taking the worse case of the many worse cases.
24	DR. STEPP: Okay. I will proceed then to
25	the next slide to give you a brief overview of the
I	

(202) 234-4433

	137
1	regional tectonic and geologic setting. It's
2	primarily the tectonic setting of the area.
3	What this slide shows a series of basis
4	and archs in the continental stable platform. These
5	are basically what are referred to as epiorogenic
6	features. They're very broad scale features that are
7	formed in the otherwise stable tectonic continental
8	interior.
9	Prominent among these are the Illinois
10	Basin, and I'll point out where the site is located.
11	It's in this area. And as Professor Hinze pointed
12	out, it's very near the LaSalle Monocline, which cuts
13	down through the middle of the Illinois Basin here.
14	These contours are structural contours on a limestone
15	horizon. I believe it's a lower or emission
16	limestone.
17	The prominent basis, Michigan Basin, the
18	Illinois Basin. And these are generally separated by
19	archs which end in domes. Just an example of these,
20	the Kankakee Arch over here, the Cincinnati Arch and
21	the Nashville Dome. And here's the prominent Ozark
22	Dome over in this area. These are all structural
23	features that form in the late paleozoic more than 200
24	million years ago. And they've been effectively
25	unchanged since this by any internal tectonic activity
ļ	I

(202) 234-4433

	138
1	within the stable continental regions.
2	There are many faults in the area,
3	prominently in this area south of the Illinois Basin
4	and basically throughout. And that faults are in some
5	instances associated with small earthquakes. But the
6	point that I would make strongly here is there are no
7	internal, known internal tectonic forces operating in
8	this region. Basically a passive continental region
9	that is responding to stresses plate balance.
10	The exception here is the Mississippi
11	Embayment which is imprinted on this table of
12	continental fabric, tectonic fabric in the Mesozoic
13	time. And it arguably remains active now if you take
14	earthquakes as a measure of activity, it's been very
15	active in historic times in the upper Mississippi
16	Embayment.
17	So this is the tectonic environment of the
18	site region.
19	Go onto the next one.
20	Starting with the regional seismicity, the
21	earthquake catalog. I'll first show in this slide the
22	catalog that was developed by EPRI for the EPRI SOG
23	study back in the mid '80s. It expands the time period
24	from the earliest earthquake in 1777 to 1985.
25	This slide shows relatively few seismicity
I	I

(202) 234-4433

	139
1	through this stable platform region. It does show
2	concentrations of earthquakes within 200 miles of the
3	site in the Wabash Valley area. And it shows
4	prominently this active zone known as New Madrid
5	seismic zone in the upper Mississippi Embayment just
6	beyond 200 miles of the site at its closest reach.
7	And this, of course, is a famous well-known
8	earthquake zone for three large earthquakes that
9	occurred in 1811 and '12 and it remains an area of
10	active ongoing earthquake activity.
11	MEMBER SIEBER: Where's the Wabash Valley
12	again?
13	DR. STEPP: It's up to the northeast in
14	this region.
15	MEMBER SIEBER: Okay.
16	MR. HINZE: Carl, some of us have talked
17	about another seismic zone that occurs within your
18	envelope there, within your ellipse, and that's the
19	Beloit Zone near the junction of Wisconsin and
20	Illinois. The Beloit earthquake is prominent in that.
21	I notice in the National Seismic Hazard
22	Mapping Project of the U.S. Geological Survey that
23	they still show an ellipse type of affair up in that
24	area and west of Chicago. I'm wondering what basis
25	you dismissed that as a seismic zone to be considered,
I	

(202) 234-4433

	140
1	particularly because it's within a relatively short
2	distance of the site.
3	DR. STEPP: Okay. I'll comment and then
4	I'll ask Katherine to help me out with some of the
5	details of the faulting in the area.
6	I think that area that you're referring is
7	probably in the area of the Sandwich fault zone in the
8	Plume River. And it's really the point I was making
9	earlier, this platform has numerous faults in it and
10	we have seen some localization of earthquakes
11	associated with those faults in Ohio there at the
12	Sandwich fault zone. And I'm sure there are others
13	that we could identify as well.
14	But the characteristics of these faults
15	are pretty consistently the same. You know, they
16	formed in the mid-Paleozoic. They show no evidence of
17	displacing horizons above Paleozoic. And they
18	basically are passively responding in the most
19	prominent interpretation or the dominant
20	interpretations they're responding to stress fill at
21	the plate boundary, and occasionally there are small
22	earthquakes associated with it. But they are not
23	considered to be active in the sense of having local
24	ongoing sources of tectonic stress or strain
25	deformation as for example a member of the San Andreas
ļ	I

(202) 234-4433

141 1 fault system would have. So I think this distinction 2 is critically important. And from a hazard assessment point of view 3 4 what has typically been done by the experts is to 5 group these faults which have similar characteristics and behaviors into a single larger source zone. 6 And 7 the flexibility of the evaluation process allows one to then cluster earthquakes within the source zone or 8 9 to replicate the historic pattern of earthquakes or to 10 smooth the earthquakes in the source zone depending on the interpretations of the experts. 11 So that's really the explanation I think 12 in response to your question. It's a better process 13 14 than the way we handled them --Carol, I'd like to add a 15 MS. HANSON: couple of things. We did consider and describe some 16 17 of the recent small earthquakes, maybe 2, 3 4 earthquakes that have occurred up in northern Illinois 18 19 along that structure, which is actually the northern 20 part of the LaSalle Anticlinorium, some of those 21 structures. 22 We started from a source characterization 23 standpoint from the EPRI SOG models. And several of 24 the expert teams identified some local sources up in 25 that vicinity that would capture the slightly higher

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	rates of seismicity that are occurring kind of
2	localized along those structures. So we felt that
3	from a seismic source characterization standpoint
4	those models captured that.
5	MR. HINZE: The you would feel that the
6	seismic hazard mapping project was ill-advised to have
7	a peak acceleration focal point up there in the area?
8	I guess that's what you're saying?
9	DR. YOUNGS: Perhaps I could answer that?
10	This is Bob Youngs, a consultant to Exelon.
11	The National Hazard Mapping Project
12	primarily used a smoothing process in which the
13	earthquake rates were mapped based on the density of
14	earthquakes in a local area as opposed to taking one
15	very large zone and assuming a uniform rate. So if
16	there is a concentration of, as you can see on this
17	figure, there is a somewhat concentration of
18	seismicity in upper Illinois and that would translate
19	into a higher rate in upper Illinois compared to
20	central Illinois. And so a seismic hazard map based on
21	that approach would show a higher hazard in that
22	location. So their map reflects primarily the
23	observed pattern of earthquake density across the
24	whole map.
25	The EPRI SOG interpretations that were
l	I

(202) 234-4433

1 performed in the mid '80s also used or included the 2 option for the expert teams to include spatially 3 varying rates of activity. And so whether or not they 4 actually drew a box around that particular source 5 area, they still had the option of having a higher rate in northern Illinois compared to central Illinois 6 7 based on the differences in the observed numbers of 8 earthquakes. So their models do incorporate a similar concept implements slightly differently, but a similar 9 concept to what has been applied by the National 10 Hazard Mapping. 11 12 I believe if we had conducted an So analysis of the northern area we would also product a 13 14 somewhat higher hazard than we would in central Illinois. 15 Well, while I'm asking, I 16 MR. HINZE: notice that you treat central Illinois basin seismic 17 area and then you treat central Illinois basin seismic 18 19 zone. And those are all with small letters except for 20 Illinois. 21 Can you tell me where this central? Can 22 you draw on there the central Illinois basin zone? 23 DR. YOUNGS: I tried to burn Eddie's eyes 24 out. 25 There are actually six versions of what

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

143

the central Illinois seismic zone looks like, because 1 2 there were six EPRI teams that developed seismic 3 source map. And so there are six general versions of 4 what this zone looks like. But it basically encompasses the area north of -- this is the Wabash 5 Valley and to the west is the st. Genevieve arm, which 6 7 also had а source zone. So typically this concentration in southern Illinois north of the New 8 9 Madrid zone had it's own source zone boundary. And 10 then various zones were drawn up that encompassed this area of low seismicity, sometimes with a source zone 11 up here and sometimes this was just part of a very 12 large stable background region. 13 14 MR. HINZE: So Illinois basin is then used 15 not as a tectonic term, but as simply a geographic 16 term? 17 DR. YOUNGS: As a geographic term. And some of the --18 19 MR. HINZE: I think that's the point that 20 needs to be made very clear to the reader. Because 21 when you see central Illinois basin seismic zone our 22 usual procedure is to relate that to a tectonic 23 feature. And you're sending this off into the Kankakee Arch and all the rest. 24 25 I would have liked to have seen, I think

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

144

	145
1	it would have helped me in my review of this, if I had
2	had a map with that shown. I never did see that. And
3	even if the boundaries have to be diffused, I think
4	that would have been helpful.
5	DR. YOUNGS: Yes. I believe there are
6	figures in appendix B which show the various
7	interpretations of the experts.
8	MR. HINZE: I hope a figure hasn't slipped
9	by me, but it probably has.
10	CHAIRMAN POWERS: The genre seems to be
11	designed to make difficult finding figures and
12	whatnot. Not your fault. I understand.
13	MR. HINZE: Okay.
14	DR. STEPP: Let's see, where was I? I
15	think I was down to talking about central Illinois
16	seismic zone. And generally this area is, as you see
17	from this map, and was treated in the work as a region
18	of relatively diffused low level earthquake activity
19	with magnitudes in historic record less than mb 6,
20	which the mb is the magnitude of measure we were using
21	at that time. So what's really constitutes the known
22	earthquake catalog in the mid-1980s.
23	Now for this project that catalog was
24	updated using first the USGS catalog between 1985 and
25	'95. And this CNSS is no longer a group. It was known
ļ	I

(202) 234-4433

	146
1	as the I'm not sure I remember exactly. The
2	National Seismic System. But it's really been
3	replaced by the Advanced National Seismic System, also
4	a part of the USGS. And so we have relied on USGS
5	catalogs for the updating of the EPRI SOG catalog.
6	And what you see here is, the important
7	point is that we are not seeing a change in the
8	spacial pattern of earthquake activity. We still have
9	relatively concentrated activity in the upper
10	Mississippi Embayment. And we have additional
11	earthquakes showing up in a diffused way generally
12	within 200 miles of the site, perhaps a little more
13	frequently in the Wabash Valley region.
14	We also updated the catalog to include
15	Paleoearthquake. During the past 20 years or more
16	there have been, I guess, a major contributions to our
17	understanding of past earthquakes in this region and
18	in the New Madrid zone have been studies that use the
19	liquefaction features to interpret the occurrence of
20	earthquakes in the prehistoric record where they were
21	preserved to evaluate.
22	What this information has shown is
23	repeated large earthquakes in the upper Mississippi
24	Embayment, the New Madrid seismic zone. Large
25	earthquakes in the Wabash Valley zone. This outlying
I	I

(202) 234-4433

	147
1	of dotted area here shows general outline, the
2	liquefaction features of that larger quake and
3	identified a couple of earthquakes here near the site
4	just referred to typically as the Springfield
5	earthquake about 40 miles southwest of the site with
6	a center like this liquefaction features. And there
7	was associated with that apparently also a smaller
8	earthquake in the same region in the magnitude 5
9	range.
10	MR. HINZE: How do we know that? How do
11	we know that that's a different earthquake? What's
12	the basis of that? You know, the test here goes from
13	one to two and back to two and one, and so forth.
14	DR. STEPP: Yes.
15	MR. HINZE: There's some slippage here and
16	I'm wondering is there one or are there two or what's
17	the evidence that would indicae that there might be
18	two?
19	MS. HANSON: In the vicinity of
20	Springfield there's evidence for Paleoliquefaction
21	features are formed at distinctly different times. So
22	there's evidence that there was a feature that formed
23	some classic dykes, liquified sands ejected up to a
24	cap of silty material. And there's clear evidence
25	from the soils and from dating that there was a second
I	I

(202) 234-4433

	148
1	pulse or period of classic dyke formation.
2	MR. HINZE: Excuse me. I'm going to
3	interrupt you for just a moment because I want to make
4	certain I understand. The range of ages, you got have
5	carbon 14, do not overlap?
6	MS. HANSON: In the case of the
7	Springfield area they're interpreted by McNulty &
8	Obermeier who did the mapping to suggest that there's
9	a second pulse or a second period of time. All the
10	features that they identified seemed to be localized
11	in the Springfield area. And on that basis they've
12	identified a potential energy center there at
13	Springfield.
14	There is elsewhere throughout the southern
15	part of the state they identified Paleoliquefaction
16	features have been identified at numerous sites.
17	Through radiocarbon dating they have identified and
18	correlated features that they identify essentially a
19	felt area for specific event. The large events in the
20	Wabash Valley have gotten the most study. And there
21	are clear indications from radiocarbon dating that you
22	have events of different ages throughout southern
23	Illinois.
24	In some cases there is overlap and you
25	can't preclude that Paleoliquefaction you see at one
	I

(202) 234-4433

	149
1	site may be do to a more distant earthquake. And
2	we've factored that into our analysis of a number of
3	events and size of earthquakes based on interpretation
4	of Paleoliquefaction data.
5	MR. HINZE: Let me ask you a question then
6	as a follow-up to that. In terms of the work that you
7	did on the study of the possible Paleoliquefaction
8	features, you concentrated your studies in areas where
9	the information was present, is that correct, because
10	that's a legitimate zone for Paleoliquefaction? Could
11	you tell us a little bit about your choice of that and
12	how widely distributed the Henry is and if we have a
13	lack of Henry, are we mapping out areas could we be
14	failing to map them simply because we don't have the
15	right kind of surficial zones?
16	DR. STEPP: We'll put up the next slide,
17	which speaks to that.
18	MR. HINZE: Okay. I'm sorry.
19	MR. SEGALA: No, no, that's fine. I mean,
20	we were coming to that.
21	MS. HANSON: I'll respond when the slide
22	is up.
23	DR. STEPP: Well, you could go ahead.
24	MS. HANSON: We initially through the
25	literature search, the work that had been prior to in
I	I

(202) 234-4433

	150
1	the last 10/15 years had identified Paleoliquefaction
2	fractures in the vicinity of Springfield. And that's
3	indicated by this ellipse.
4	On this figure the green dots represent
5	Paleoliquefaction features or sites. The size of the
б	dot represents the relative size of the dyke or the
7	feature at that location.
8	So in this case for the Springfield event
9	there were the larger features were localized near
10	Springfield but there were features that were
11	identified out as far as sort of a radius of about 35
12	kilometers which they felt there were some dating at
13	specific localities that suggested that this event
14	occurred between 57000 and 66000 plus years.
15	There was also some indications at
16	specific sites in that general area for a slightly
17	younger event which looked like it had smaller
18	features it was inferred to be at the threshold of
19	developing Paleoliquefaction which would suggest it
20	was like a magnitude 5 event. Based on the felt area
21	for the Springfield or what they call the Springfield
22	event, using empirical data from the liquefaction
23	sites worldwide they can look at the general distance,
24	they call it magnitude bound curves, which relates the
25	distance from an inferred energy center to the more
ļ	I

(202) 234-4433

	151
1	distant features and correlate that to magnitude. And
2	on that basis they inferred a magnitude of about 6.2
3	to 6.8 for this particular earthquake.
4	They have since revised these curves and
5	based on the newest curves the magnitude would be
6	probably be pushed to that lower part of the estimate,
7	more like a 6.3. That's just a recently published
8	paper.
9	We started with the understanding that the
10	work that had been done by McNulty & Obermeier and the
11	mapping, the extent that their mapping is indicated by
12	the green which is extending along drainages in this
13	region. They had also done some work along the upper
14	Sangamon River to the east of Clinton site. But their
15	work was fairly limited to this portion southwest of
16	the site.
17	We choose to do additional reconnaissance
18	to essentially look for some more kinds of evidence
19	for the presence or absence of Paleoliquefaction to
20	the east and the north of the site. In particular our
21	reconnaissance we focused along the LaSalle
22	Anticlinorium structures trend through this general
23	area. One of the features or one of the maps in our
24	appendix 1 or attachment 1 to appendix B shows the
25	location of the LaSalle Anticlinorium structures.
Į	I

(202) 234-4433

1 Your question about the Henry formation. 2 The Henry formation is a glacial fluvial deposit. As the glaciers retreated the ice was covering this whole 3 4 area. As the glaciers retreated the melt water would 5 form and would be distributed forming along fluvial channels. And in those drainages the Henry formation 6 7 is a silty sand or a sand deposit. These are the types of deposits that will liquify. 8 They're the 9 appropriate grain size. And the ideal environment to look for Paleoliquefaction in central and southern 10 11 Illinois based on previous studies has been to look 12 for these types of deposits along drainages where they're well exposed and where they're overlain by a 13 14 cap of fine silty material. And this is very conducive 15 forming preserving of to and record а Paleoliquefaction. 16 So we focused our study along the larger 17

drainages, the upper part of Salt Creek to the north 18 19 of the site. We did identifv and east some 20 liquefaction features in the vicinity of Farmer City. 21 We did some additional reconnaissance along the upper 22 Sangamon, too, because of where we had found these 23 deposit and because of previous work that had done further to the southeast to define the extent of the 24 25 larger events associated with Wabash Valley.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

152

	153
1	We also moved to the north and picked some
2	of the larger drainages where we would have these
3	types of deposits.
4	You're correct that in this type of
5	environment, unlike New Madrid where there's more
6	extensive uniform deposits that they have used to
7	evaluate or look for evidence for Paleoliquefaction,
8	it's a little bit more uneven. It's basically confined
9	to these drainages, but there is sufficient drainages
10	in the area comparable to where these features have
11	been mapped in detail in Springfield area to make a
12	reasonable assessment of the present or absence of
13	comparable features in the site vicinity.
14	MR. HINZE: Are there more drainage areas
15	with the Henry formation in that area to the north,
16	west northwest?
17	MS. HANSON: There are some areas. One of
18	the issues is also the time of year, the size of the
19	drainage. We chose to go out in the late summer when
20	the water levels were lowest so we'd have more
21	extensive exposure. But this is pretty much along the
22	larger drainages.
23	The smaller drainages, in fact, some of
24	these drainages that were studied by Steve Obermeier
25	and McNulty earlier they did after a particularly
I	

(202) 234-4433

	154
1	strong spring flooding event, these are smaller
2	drainages and they are heavily vegetated and so
3	there's only limited times that you can look at it.
4	There are some additional Henry formation
5	along the Mackinaw River to the south. We felt that
6	based on the work that we had conducted that we felt
7	confident that we could say that the site vicinity if
8	there was an event comparable in size or larger than
9	the Springfield event, we would have seen evidence for
10	it based on the reconnaissance we had conducted for
11	this study.
12	We did reconnaissance along about 41 mile
13	of streams and drainages in the area.
14	MR. HINZE: A final question while you
15	have that up there, if I may. I believe that's
16	McNulty & Obermeier's inferred location of the
17	Springfield earthquake. What kind of an error
18	envelope might we put on that? Because it is very
19	much an inferred star. And how far could we move
20	that?
21	MS. HANSON: I think that we addressed
22	that there is uncertainty and various people would
23	I mean some of the concerns about using
24	Paleoliquefaction are that you see the features where
25	there are susceptible deposits that may be related to
ļ	I

(202) 234-4433

	155
1	more distant sources.
2	In the case of Springfield there is a
3	fairly the pattern of the size and the distribution
4	of the features was, you know, Steve Obermeier felt
5	strongly that you see the largest features in the
6	center and you see the smaller features. So the
7	spacial patterns suggested that the energy center,
8	that this was a legitimate interpretation.
9	For our characterization of the size and
10	location of moderate size earthquakes that may occur
11	in the Illinois basin or in this region, we did not
12	assume that the Springfield event occurred at
13	Springfield. We allow for the possibility of a
14	moderate size event throughout the region. And we
15	considered uncertainties in the magnitude and the
16	number of possible Paleoearthquakes that could be
17	inferred from not only the previous Paleoliquefaction
18	studies but the work we had done.
19	MR. HINZE: But you used that for your
20	characteristic high frequency earthquake, right?
21	DR. YOUNGS: This is Bob Youngs. I just
22	wanted to amplify on that.
23	In terms of the probabilistic seismic
24	hazard, the implication of the Springfield event was
25	that wed needed to modify the maximum magnitudes for
	1

(202) 234-4433

In terms of the frequency of earthquakes 6 7 in the region, we compared the rate of earthquake 8 activity that you calculate from the observed 9 seismicity that was calculated as a part of the EPRI 10 SOG analysis primarily from events in the magnitude 3 to 4 range. And if you extrapolate that out to the 11 12 magnitude 6 range and compare it with ranges of estimates of earthquakes of the size of Springfield, 13 14 the observed seismicity from the historical record 15 would adequately represent the frequency of Paleo events in Springfield area. In other words, there 16 would not be a -- in the case of 17 New Madrid we have Paleo evidence that the events are more frequent than 18 19 would by extrapolation of historical we qet 20 That is not the case in central Illinois seismicity. 21 or has been found to be the case in, say, the Wabash 22 Valley where a number of researchers have shown that 23 if you extrapolate the observed seismicity rate of 24 magnitude 5s and 4s out to magnitude 7s, the frequency 25 of Paleo events is below that rate.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

(202) 234-4433

156

	157
1	So the modern seismicity rate would
2	adequately represent the frequency of Springfield type
3	events in the region. The only thing that we needed
4	to do to modify the EPRI SOG interpretation was to
5	increase the maximum magnitudes for these sources so
6	they would allow for Springfield events to occur.
7	MR. HINZE: And you used the 6.2 rather
8	tan 6.8 because of this new
9	DR. YOUNGS: No. The determination of the
10	controlling of earthquake shapes was based on solely
11	on the disaggregation of the hazard result. In other
12	words, it was not tied to a particular structure or a
13	particular event. They are representative of events
14	like Springfield, but they are not representative of
15	the Springfield event per se. The actual occurrence
16	or location or size. so they determined solely by
17	taking the relative frequencies of earthquakes that
18	contribute to the hazard from the hazard model and
19	then normalizing them according to the procedure in
20	Appendix C. They are not specifically a Springfield
21	event. They're of a type and, you know, the language
22	we sort of loosely associated them, but that perhaps
23	may have caused some confusion. But they are not
24	specifically a Springfield events or distant events.
25	MR. HINZE: I think I become confused as
ļ	I

(202) 234-4433

	158
1	I read that as a result of that.
2	DR. STEPP: Perhaps it would be best to go
3	back to the previous slide and I'll summarize I think
4	what you've already heard mentioned here. But if I
5	could just put it in context.
6	This really is the information that
7	required the updating of the EPRI SOG seismic sources.
8	And the updating was not in the source configuration
9	but in the characterization of the rates of maximum
10	magnitudes of earthquakes associated with those
11	sources.
12	And the principal change are to the
13	increase in magnitude for the central Illinois source.
14	None of the EPRI sources anticipated I shouldn't
15	say none of them. But in total they did not fully
16	capture the larger earthquake in the central Illinois
17	source that we observed in the Paleo records. So that
18	was updated.
19	And the next and perhaps the most
20	important but not necessarily so with regard to the
21	Clinton site is the New Madrid seismic zone the
22	liquefaction studies there show more frequent large
23	earthquakes of the magnitude comparable to the 1811
24	and '12 sequence of three earthquakes that occurred in
25	that zone. So that was updated. And these were then
	I

(202) 234-4433

	159
1	factored into the PSHA assessment for the Clinton
2	site. So we conducted that PSHA with a fully updated
3	characterization of those sources.
4	CHAIRMAN POWERS: I struggled to
5	understand how you characterized the intensity of an
б	earthquake that you'd have at the New Madrid site.
7	Can you explain that a better to me?
8	DR. STEPP: Yes. I think I'll again ask
9	Katherine to respond.
10	CHAIRMAN POWERS: The trouble that I
11	promptly encountered was the citation of a Bokun and
12	Hopper 2003 paper
13	DR. STEPP: Yes.
14	CHAIRMAN POWERS: Which doesn't seem to
15	exist?
16	DR. STEPP: I think it does exit, but I'm
17	not sure.
18	MS. HANSON: The Bokun and Hopper paper
19	was at the time we submitted the initial submittal in
20	September was in press or it was in review. It has
21	subsequently been published as a 2004 paper as part of
22	one of the
23	CHAIRMAN POWERS: I could find the 2004.
24	I could not find anything in 2003.
25	MS. HANSON: Exactly. It was published
	I

(202) 234-4433

	160
1	and the conclusions regarding the magnitude of the
2	earthquakes changed. We subsequently in response to
3	one of the RAIs considered that new information and
4	reevaluated the magnitude distributions based on that
5	paper as well as other new data.
6	CHAIRMAN POWERS: Now could you describe
7	for the Subcommittee how you do the distributions?
8	DR. YOUNGS: How we assess them or how we
9	use them?
10	CHAIRMAN POWERS: Yes.
11	DR. YOUNGS: Okay. Again, this is Bob
12	Youngs from Geomatrix.
13	In terms of the assessment we looked at
14	there are three basic groups that are doing
15	interpretations of the size of the New Madrid sequence
16	that occurred in 1811/1812. And we basically gave each
17	of those sets of interpretations equal weight in
18	developing our assessment of what the size of those
19	events were.
20	The one group is Bokun and Hopper. One
21	group is primarily led by Arch Johnston at CERI. And
22	the third is Susan Hough and her coworkers. And each
23	of these has basically done different and slightly
24	different interpretations of what methods should be
25	used to assess the size of those events. And as a
I	I

(202) 234-4433

	161
1	result they come up with a range of magnitude
2	estimates that vary by around magnitude, 7½ plus or
3	minus, maybe a quarter of a magnitude in terms of the
4	estimated size of those of earthquakes.
5	So in our analysis in the revised analysis
6	which is presented in the response to the RAI we gave
7	equal weight to each of their interpretations to
8	determine the size of that sequence. So we now have
9	a distribution with weights as to the possible sizes
10	of New Madrid earthquakes that will occur in the
11	future. And we run the seismic hazard analysis with
12	each of those interpretations and then gave equal
13	weight to the results of those interpretations that
14	developed the estimate of the hazard.
15	CHAIRMAN POWERS: Are you claiming then
16	that the maximum earthquake that can occur at the New
17	Madrid site is that that was observed, whatever that
18	may be, 1811/12?
19	DR. YOUNGS: In doing this analysis we use
20	a model in terms of predicting or forecasting future
21	earthquakes. We use a recurrence model of which I
22	termed the characteristic earthquake model, which I am
23	a coauthor of. And it involves putting a variability
24	of plus or minus a quarter of a magnitude about our
25	central estimate of what the size of the event would
	I

(202) 234-4433

be.

1

2

3

4

5

6

7

8

9

10

25

So in terms of the largest possible event that we have in our seismic hazard model for New Madrid, it's a quarter magnitude larger than the estimates that we use for what we call the characteristic event, which would be our best estimate of what the characteristic event would be. So that considered just a variability in the size of future events about our estimates of the size of the past event.

11 The information that we have in terms of 12 the sizes of the previous Paleo events, the ones that occurred in 900 and ones that occurred that 1450 are 13 14 that they were, as best that could be told, of 15 comparable size to the size of the New Madrid 16 In other words, they were not a lot larger sequence. Some of them may have been smaller 17 than New Madrid. and we factored that possibility into our various 18 19 scenarios. But clearly the evidence suggests that at 20 least two of the events in the previous sequences were 21 of comparable size. And I think that the application 22 of this model which has a plus or minus quarter 23 variability would cover, you know, typical variations 24 we might expect to see in future events.

MR. HINZE: While we're asking some

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 questions, one of the new pieces of data that have 2 come along and I don't see it in this report, that 3 doesn't mean it isn't it there, but that I haven't 4 seen in the report is the report on the strain measurements, GPS measurements in the June Nature 5 interesting, 6 article, which are provocative and 7 probably wrong. But these certainly are -- it's 8 published in a very reputable journal. 9 DR. YOUNGS: Yes. 10 MR. HINZE: And even quoted in the USA Today, which I guess puts the -- how are you going to 11 12 deal with that in this report and how much credence should it be put on in the review of the site 13 14 suitability of the Clinton site? 15 Well, as you're fully aware, DR. STEPP: there's a lot going on to explain why there should be 16 a large repeated major earthquake in the New Madrid 17 typical 18 seismic with no tectonic driving zone 19 mechanism that we know of and no manifestation of 20 those earthquakes. 21 Curiosity. MR. HINZE: 22 Well, the answer is that DR. STEPP: Yes. 23 we really don't know. People have put out the strain 24 measurements. They have put forward a hypotheses that 25 tried to explain the earthquakes as a relaxation

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

163

	164
1	phenomena.
2	To speak to the specific article that
3	you're referring to, I think I would ask Katherine
4	MR. HINZE: Well, this is Arch Johnston
5	and his group coming up
6	DR. STEPP: Yes.
7	MR. HINZE: with 1.25 centimeters per
8	year, which
9	DR. STEPP: Yes.
10	MR. HINZE: on that kind of velocities.
11	But it's published. This is new information.
12	MS. HANSON: There have been over the
13	years various results based on geodetic data and
14	earlier on there were some studies that suggested
15	there was very little or high rates occurring across
16	New Madrid and then very little measurable rates
17	across the zone.
18	We have considered the longer term, the
19	Paleoliquefaction record there. As Carl mentioned,
20	there are people that have postulated mechanisms
21	whereby you can sort of initiate this process of some
22	kind of loading and relaxation and triggering repeated
23	events. Those models which are models would suggest
24	that we're in the cycle and that we'll continue.
25	I think at this point we would be hard
l	I

(202) 234-4433

	165
1	pressed not to relay or use the sort of longer term
2	Paleoliquefaction record as a reliable or a best
3	estimate.
4	I don't know if Carl has any other
5	additional
6	MR. HINZE: Well, excuse me. But I think
7	the answer that Professor Johnston, who was a very
8	credible researcher as we all know, is that this is a
9	sign that we have episodic movement in the New Madrid
10	region and that the former measurements which did not
11	detect movement we're in period when there wasn't.
12	You know, I'm having a hard time keeping a straight
13	face. But nonetheless, these are some of the verbiage
14	that's going around.
15	I really believe that it's incumbent upon
16	your report to at least acknowledge the presence of
17	these kinds of measurements and look at the
18	implications of them.
19	MS. HANSON: I think that in seismic
20	hazard source characterization this issue comes up for
21	other faults in stable craton regions, the Meers fault
22	and other faults in the United States have had
23	evidence for repeated Holocene events and then a
24	period as long as 100,000 years to the preceding
25	event. So the issue of clustering of events and
I	

(202) 234-4433

whether you're in a cycle where you're in the cluster or if you're now in the longer period, the quiescent period is something that we grapple with. But at this point I think we can definitely address those issues. We did try to summarize the information on geodetic information was available through the publication of our report.

The other comment on this, the 8 DR. STEPP: evaluation of these kinds of information that we have 9 done in this study, we used what is called the Level 10 2 SSHAC approach which Katherine and Bob and others 11 12 involved in the formation and the evaluations and compiled all the 13 updating of the sources new 14 information. They consulted the people including Arch 15 Johnston and others who are working in this area who are respected as having particular knowledge of 16 17 importance in his evaluations. And the weights that you see on the interpretations really reflect that 18 19 process of canvassing the state of knowledge.

20 So I think where we come down on this, at 21 least, is the only really solid information that we 22 can rely on fully for these repeated large earthquakes 23 liquefaction studies. The geodetic the are 24 measurements may hint of things, the various 25 hypotheses that have been put forward make an array of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	167
1	assumptions to support the hypotheses. They may be of
2	some value in explaining the seismicity, but we do not
3	know what that value is at this point, very frankly.
4	MR. HINZE: But at the risk of stating the
5	obvious, those measurements are now Paleoliquefaction
б	is 6,000 years ago and we're worried about now.
7	I guess I would like to ask one more
8	question and then I'll shutup for a while. My voice
9	is going. But let me ask the question one of the
10	things that has come along since the site was
11	previously licensed is far-field triggering. Do you
12	have any feel, Carl, for the impact of far-field
13	triggering on our seismic risk assessment in the mid-
14	continent region?
15	DR. STEPP: I do not. The information
16	base that I'm aware of is associated with the
17	earthquake in California, Mojave earthquake I believe
18	it was called a number of years ago triggered
19	earthquakes throughout the western part of Nevada and
20	eastern part of California.
21	MR. HINZE: And on Yucca Mountain, too.
22	DR. STEPP: Yes. Yes. I didn't mention
23	that, but yes.
24	I think that you're dealing with a very
25	different crust in that region, in fact I know you
I	

(202) 234-4433

ĺ	168
1	are. It's a much softer, hotter crust in which the
2	earthquake strain release of that magnitude can get
3	transmitted to a very large region. And I would favor
4	that as I mean, if that is correct I should say, my
5	perception of that is correct, then that would argue
б	against the likelihood that you would get this kind of
7	triggering effect in these very stiff thick
8	continental crustal environments in the east. That
9	would be my conclusion.
10	MR. HINZE: Thank you.
11	DR. STEPP: Others may have a different
12	point of view.
13	Okay. I think we are now at the
14	determination of the SSE ground motion. The material
15	I've gone through to now really i s describing to you
16	in a very overview sort of way the studies that were
17	done and the necessary updating of the seismic sources
18	that we did to compute the hazard at the site.
19	We did update the seismic sources. We did
20	redo the PSHA with the updated information. And we
21	used that to develop the SSE ground motion, that is
22	that being the PSHA results.
23	We believe the SSA ground motion complies
24	fully with the intent of 10 CFR 100 Part 23. And we
25	applied the regulatory guidance 1.165 with one
	1

(202) 234-4433

	169
1	variation. Instead of using the reference hazard
2	approach, as is now contained in the guidance in 1.165
3	we elected to use the ASCE Standard 53-05 approach.
4	This standard is a newly developed standard titled
5	"Seismic Design Criteria For Structure Systems and
6	Components in Nuclear Facilities." It is performance-
7	based and we consider it to be a significant update in
8	our approach to deriving SSE ground motion. That is
9	consistent with the direction of risk-informed
10	regulation of nuclear plants.
11	This is an industry consensus standard.
12	And we believe in has in that context the credibility
13	for and support for the application that we have used
14	it for in this project.
15	The next series of slides shows some
16	comparison of Reg. Guide 1.65 requirements and
17	guidance with the application that we followed in the
18	EGC SSE development.
19	First of all, with respect to the
20	investigations that are required, they are the same.
21	We did not depart in anyway from 1.165. We
22	implemented those sections of the guidance fully.
23	With regard to the seismic source updates,
24	similarly we implemented those sections of the
25	guidance fully.
ļ	I

(202) 234-4433

	170
1	We applied a SSHAC level 2 assessment
2	methodology to update the seismic source
3	characterizations. That is not specifically called for
4	in the regulatory guidance, but it is certainly
5	consistent with the language in the regulatory
б	guidance. So we characterized that as the same.
7	We did a PSHA, a full new PSHA for the
8	site as required by the regulatory guidance.
9	The departure, as I pointed out, is with
10	respect to determining the SSE ground motion,
11	establishing the basis for determining the ground
12	motion. We used the performance-based ASCE 43-05
13	approach rather than the relative hazard probability
14	criterion, which is contained in 1.165
15	Next.
16	MR. HINZE: Excuse me.
17	DR. STEPP: Yes.
18	MR. HINZE: Where has this performance-
19	based been used on any nuclear sites or hazardous
20	sites? Has it been used previously?
21	DR. STEPP: I'll ask Bob Kennedy to
22	respond. But performance-based in a similar contest is
23	also being used at Yucca Mountain. I will just
24	mention that, as you know.
25	Go ahead, Bob.
Į	

(202) 234-4433

	171
1	DR. KENNEDY: This is Bob Kennedy.
2	CHAIRMAN POWERS: And that's an
3	endorsement for it?
4	DR. STEPP: I'm sorry?
5	CHAIRMAN POWERS: That's an endorsement
6	for it?
7	DR. KENNEDY: This is Bob Kennedy,
8	consultant to Exelon.
9	Basically the performance-based approach
10	that's in ASCE 43-50 was originally developed in the
11	early 1980s for use on Department of Energy
12	facilities, originally in a report UCRL 15910 from
13	Lawrence Livermore Labs followed up by, I believe it
14	was in '84, with the DOE standard 1020. And then has
15	been gradually gone through the DOE system for DOE
16	facilities because of a wide variety of risk and a
17	feeling that different kinds of complexes needed to be
18	designed for different performance levels.
19	ASCE 43-05 was actually developed by the
20	American Society of Civil Engineers at the request of
21	the DOE to have an industry consensus standard to
22	ultimately replace DOE standard 1020. It has in it
23	five different quantitative performance levels in
24	terms of annual frequency of unacceptable seismic risk
25	and four different qualitative performance levels as
ļ	I

(202) 234-4433

172 1 to what constitutes a limit state for acceptable 2 performance. The category that has been selected here 3 4 is the highest category in ASCE 43-05. It forces to 5 state to a limit state of essentially elastic behavior at an annual frequency of exceedance of about one 6 7 times ten to the minus five or better. Typically between .5 times ten to the minus five and one times 8 9 ten to the minus five for staying on the onset of significant inelastic behavior. 10 Subsequent studies which were submitted to 11 12 the NRC some time ago on this project and some studies that I'm not sure have yet been submitted to the NRC 13 indicated that leads to core damage frequencies 14 15 typically for central and eastern U.S. sites in the neighborhood of one to four times ten to the minus 16 17 six. The idea that DOE had for the performance-18 19 based criteria is there's a very wide of sites. 20 Western sites have hazard curve slopes that are steep. 21 Central and eastern sites have hazards curves that are 22 fairly shallow. And they shouldn't be designed for the 23 same annual frequency of exceedance of the ground 24 motion. With a steep hazard curve you could design 25 for a more frequent ground motion than with a shallow

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	173
1	hazard curve to achieve the same performance goal.
2	But this whole idea also is being
3	developed more and more into conventional design. The
4	idea of performance goals, in fact it's the idea
5	behind the IBC code is instead of designing for a 500
6	year earthquake, which is what conventional facilities
7	used to be designed for, now you design for two-thirds
8	of the 2500 year earthquake. That helps to account
9	for this slope effect.
10	So it's been a gradually evolving area
11	since the early '80s.
12	DR. STEPP: Thank you.
13	MEMBER KRESS: Has NRC staff reviewed this
14	DR. KENNEDY: I'm sorry.
15	MEMBER KRESS: Has the NRC Staff reviewed
16	this procedure?
17	DR. KENNEDY: The NRC Staff has seen the
18	procedure. This is one of the open issues between the
19	Applicant and the NRC Staff. So I think we need to let
20	the NRC Staff answer to the details.
21	Dr. Cornel reminded me. I may have been
22	incorrect. 15910, I'm sorry I said early '80s.
23	Actually started in 1985, UCRL 15910. And the first
24	DOE standard 1020 came out in the early '90s. So I had
25	my dates slightly wrong. I think that needs to be
I	I

(202) 234-4433

corrected.

1

2

3

4

5

6

DR. STEPP: Okay. Going on then with the comparisons of the methodology, we followed completely the Reg. Guide 1.165 guidance for de-aggregating the hazard and determining the controlling earthquakes for the site.

7 We followed generally the intent. We followed the intent, I will say, of the standard 8 review plan in developing the site response analyses, 9 but we updated the information in the standard review 10 11 plan with NUREG/CR-6728 approach. And we used that 12 approach which has not yet gotten into the standard review plan to develop the site response analyses. 13

14 Continuing with the comparison, I think 15 we've discussed some of this already up to now. The reference probability is the annual probability level 16 such that 50 percent of the set of the most modern 17 seismic design currently operating plants has a median 18 19 annual probability or annual medial probability of exceeding the SSE that is below this level. 20 And it's 21 set at 10 to the minus 5 or it is determined to be 10 22 to the minus 5 for a hazard response spectra levels of 5 to 10 Hz with 5 percent damping. 23

24The performance-based approach, the SSCs25will have a target mean annual frequency of 1E-5 per

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	175
1	year for seismic induced onset of significant
2	inelastic behavior.
3	This provides a significant margin against
4	SSC failures that might lead to core damage. So there
5	is a substantial margin of safety built in by keying
6	this to the metric of inelastic onset of inelastic
7	deformation.
8	Generally, as you just heard Dr. Kennedy
9	say, this leads to seismically induced core damage
10	frequencies that are significantly less than those for
11	the existing population of well designed plants, or I
12	should say for the population of plants that have PRAs
13	or where PRAs have been performed.
14	MR. HINZE: What's wrong with a
15	performance-based? It sounds good.
16	DR. STEPP: I say yes.
17	MR. HINZE: Is that a straight line?
18	What's the major disadvantage? Everything has a
19	disadvantage.
20	DR. STEPP: I don't know the details of
21	any disadvantage. It seems to me that the performance-
22	based approach is the next logical progression in
23	steps to implement a fully risk-informed seismic
24	design quote and a risk-informed regulation
25	methodology. That's really the position that we are
I	

(202) 234-4433

	176
1	coming forward with. Others may wish to comment on
2	this in more elaboration.
3	DR. KENNEDY: Bob Kennedy.
4	Basically the performance-based seismic
5	design procedure requires you to make certain
б	decisions. What is an acceptable annual frequency of
7	unacceptable seismic performance, what constitutes
8	unacceptable seismic performance, how much seismic
9	margin exists in our existing codes and standards.
10	Decisions have to be made on each of these aspects.
11	Now, in the ASCE committee which had, as
12	I recall, approximately 30 members on that committee,
13	those decisions were made.
14	As to what is wrong with it, I don't think
15	there's anything wrong with it but I think it is
16	something that the NRC Staff has only recently started
17	to look at and legitimately they need to decide
18	whether they are comfortable with the decisions that
19	were made. And so I think it's a matter of gaining
20	some comfort.
21	MR. HINZE: That's very helpful. Thank
22	you.
23	DR. STEPP: I would make just one other
24	point that's critically important in that use of the
25	performance-based approach does not in anyway impact
	I

(202) 234-4433

	177
1	the basic fundamental decision that the Commission
2	made when it went from deterministic to probabilistic
3	approaches that the existing population of plants are
4	adequately safe, can be used as the basis for
5	establishing designs of future plants.
6	CHAIRMAN POWERS: Well, we have to inject
7	that the Commission also said they had an expectation
8	that future plants would be safer.
9	DR. STEPP: Shall I go on to the next
10	slide?
11	CHAIRMAN POWERS: Please.
12	DR. STEPP: Yes. This is the final
13	viewgraph that I will show. I think we do have open
14	items after this, but this is the final viewgraph in
15	my presentation.
16	And what you see is the derived SSE design
17	spectrum, both vertical and horizontal plotted against
18	the Reg. Guide 1.60 standardized spectrum scaled to
19	.3g at 33 Hz. And the essential points to make here
20	I think is that the design spectra generally fall
21	below the Reg. Guide spectra scale of 33 Hz in the
22	frequency range below about 16 Hz here, the horizontal
23	spectra actually begins to exceed the standardized
24	spectra scale of .3g. At a level of about 20 Hz the
25	vertical spectra begins to exceed. And the maximum
I	I

(202) 234-4433

	178
1	exceedance is about 25 percent at 33 Hz.
2	Our view is that this is an equitable
3	exceedance that is in the range where structures of
4	system and components of nuclear plants do not are
5	unlikely to be damaged. It's really in this range
6	here where we where the Reg. Guide entered at .3g
7	significantly exceeds the design response spectra. I
8	should say the SSE ground motion spectra that the
9	plant tests its maximum response.
10	Perhaps, Bob, you'd like to comment on
11	this further?
12	DR. KENNEDY: Bob Kennedy again.
13	Generally a nuclear power plant's
14	structure systems and components if you tried to say
15	what is the natural frequency content of the input
16	motion that is most potentially damaged to structure
17	systems and components of nuclear power plants, I
18	believe it's generally agreed that the dominant
19	contributor to damage is spectral accelerations
20	typically in the 5 to 10 Hz range. This being a fairly
21	stiff structure, conventional facilities would be
22	lower frequencies then that. But there's very little
23	damage potential from spectral accelerations greater
24	than about 10 Hz because it takes displacements to
25	produce damage and the spectral displacement or
I	

(202) 234-4433

1 spectric acceleration is divided by the quantity 2 pi 2 frequency quantity squared. And so there's very little 3 spectral displacements on these higher frequencies. 4 This is, of course, the reason why in Reg. Guide 1.165 5 when the NRC developed their relative approach, they concentrated their relative approach on comparing 6 7 spectric accelerations from the probabilistic hazard curves with existing plant SSEs by averaging the 8 9 comparison in the 5 to 10 Hz range. The same thing These higher frequencies simply are not 10 applies here. 11 considered to be very damaging. I know the NRC Staff 12 is doing internal studies on this issue because it is an open issue. All these central and eastern U.S. 13 14 spectra are having high frequencies and there's a 15 large study going on on the part of NEI being done by EPRI on this issue. And the NRC Staff is being kept 16 aware of those studies. 17 So at this stage it's still an open issue, 18 19 the high frequencies. But this level of exceedance at 20 high frequencies, for instance, is much less than the

21 level of exceedance that you might see on some other 22 ESP applications. It is a small level of exceedance 23 and it only occurs above 16 Hz.

24 DR. STEPP: That's my final viewgraph.25 Thank you.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

179

	180
1	CHAIRMAN POWERS: Any other questions for
2	the speaker?
3	Thank you.
4	MR. GRANT: Eddie Grant with Exelon.
5	We did recently get the seismic supplement
6	on the draft SER. It does contain seven open items.
7	We're still looking at those seven open items and
8	determining how we're going to respond to those. So
9	we're not really prepared at this point to give you
10	much information in those areas.
11	CHAIRMAN POWERS: That's fine.
12	MR. GRANT: I think that the Staff is
13	going to discuss those further.
14	CHAIRMAN POWERS: I think our objective is
15	more to understand why they're open than what the
16	resolution is right now.
17	MR. GRANT: Okay.
18	CHAIRMAN POWERS: Unless you just had some
19	particular insights you wanted to offer, that's fine.
20	MR. GRANT: Actually, we're kind of hoping
21	to get some insights.
22	CHAIRMAN POWERS: Okay. Good.
23	Well, I thank you for a very deliberate
24	effort to try to straighten this out for me. I can't
25	congratulate for success. I'll still need to study
l	I

	181
1	this a letter more.
2	Any other questions? Seeing none, I will
3	declare a recess for the next 15 minutes.
4	(Whereupon, at 3:10 p.m. off the record
5	until 3:29 a.m.)
6	CHAIRMAN POWERS: Okay. Let's come back
7	into session.
8	We'll turn to the Staff presentation in
9	the seismic area. And, again, our speak is John
10	Segala
11	MR. SEGALA: Yes. I'm John Segala, the
12	lead project manager for the Exelon early site permit
13	safety review.
14	If you want to go to the next slide.
15	We're today to provide an overview of the
16	Staff's geology, seismology and geotechnical review,
17	and specifically to discuss the open items that we
18	issued in the supplemental draft safety evaluation
19	report on August 26, 2005. Since the supplemental was
20	recently issued, the Applicant hasn't had time to
21	provide a response. Staff is prepared today to
22	discuss the open items but not to get into possible
23	resolutions of the items. And we plan to have a
24	meeting later this month with the Applicant to go
25	through all the open items in detail.
	I

(202) 234-4433

	182
1	Dr. Cliff Munson is the lead reviewer for
2	the seismology review. And Tom Cheng is the reviewer
3	for the geotechnical review as well as his contractor,
4	Carl Costantino.
5	We had two main open items on the
6	performance-based approach that Exelon is proposing,
7	open item 2.5.2-4 and open item 2.5.2-5. And I'm not
8	going to get into the details of this slide. I think
9	Exelon pretty much covered this in their presentation.
10	With regard to open item 2.5.2-5 down at
11	the bottom of the slide, the Staff had questions
12	regarding some of the assumptions used in the
13	performance-based methodology. And I believe there's
14	like five or six sub items that we asked the Applicant
15	to
16	CHAIRMAN POWERS: Can you go through those
17	for four?
18	MR. SEGALA: Well, I can sort of read to
19	them. The first one is justify the assumption of a
20	linear hazard curve in logarithmic space and the
21	appropriateness of solely using 10 $^{-4}$ to 10 $^{-5}$ interval
22	to determining the amplitude ratio. That was the
23	first one.
24	Justify why a B value of .4 was used and
25	show the DF I think it's a design factor varies
l	

(202) 234-4433

	183
1	with different B values over the range of the
2	amplitude ratios.
3	The next one was clarify the meaning of
4	onset of significant inelastic deformation,
5	specifically the words "onset" and "significant" with
6	regards to the failure of system structures and
7	components and core damage and the relationship of
8	onset of significant inelastic deformation to
9	essentially elastic behavior.
10	Justify the long term stability of the
11	target performance goal 10^{-5} in comparison to the
12	hazard based approach reference probability in Reg.
13	Guide 1.165.
14	Since the target performance goal of 10^{-5}
15	is based on seismic PRAs for current light water
16	reactors justify the use of this value for advanced
17	reactor designs which may differ from current light
18	water reactors.
19	And the last one, since system structures
20	and components for nuclear power plants are designed
21	using the seismic criterion in the standard review
22	plan, clarify how the design criteria in the ASCE
23	Standard 43-05 are similar enough that systems
24	structures and components design following the
25	standard review plan would also achieve a 1 percent or
I	I

(202) 234-4433

	184
1	lower probability of unacceptable performance.
2	So that's the assumptions that the Staff
3	had questions on regarding the methodology.
4	With regard to open item 2.5.2-4 the Staff
5	made some observations about that performance-based
6	safe shutdown earthquake spectrum for the early site
7	permit site is approximately equal to the mean 10^{-4}
8	uniform hazard spectrum. The performance-based SSE of
9	10^{-4} may not adequately represent the seismic hazard
10	from local earthquakes.
11	Next slide, please.
12	And sort of in conclusion to these items,
13	the performance-based approach with a target of 10 $^{-5}$
14	annual performance goal may not be suitable for
15	determining the safe shutdown earthquake for the
16	Clinton early site permit site.
17	Next slide, please.
18	Other seismic open items 2.5.1-1. We
19	discussed this earlier. I think when Exelon was
20	giving their presentation. This is regard to the Bokun
21	and Hopper preprint that was originally used by the
22	Applicant to come up with the magnitudes for the New
23	Madrid earthquakes. And when it went to press in 2004
24	the Staff they came out with higher magnitudes. So
25	the Staff had the Applicant go back and redo that
l	I

(202) 234-4433

	185
1	analysis.
2	CHAIRMAN POWERS: Now, as I look at those
3	analyses, you know preprint to final published, I see
4	things like everything got kicked up by about .4 on
5	this moments scale that they were using. Yet when the
6	Applicant spoke he talked about a quarter, .25 being
7	the relative uncertainty here. Well, obviously, in
8	the case of the Bokun Hopper they had a uncertainty of
9	.4 between one publication and the other. So I mean,
10	how do you look upon these kinds of uncertainties that
11	the Applicant is ascribing to his earthquake
12	magnitudes?
13	MR. MUNSON: This is Cliff Munson from the
14	Staff.
15	The Applicant used, I believe, six
16	different models to represent the New Madrid seismic
17	zone. And each of these models have different moment
18	magnitude values for each of the three different
19	ruptures. And they range from the low sevens up to
20	about 7.9, I believe was the highest one.
21	CHAIRMAN POWERS: Right.
22	MR. MUNSON: And they weight the middle
23	range of magnitudes, which is 7.6, 7.8 and 7.5. They
24	give the highest weight to that set of magnitudes.
25	So the staff, we evaluated that range of
I	1

(202) 234-4433

(202) 234-4433

	186
1	magnitudes to determine if it was an appropriate
2	representation of what the current thought is on the
3	New Madrid and those events during 1811/1812.
4	CHAIRMAN POWERS: Does the Staff do an
5	independent seismic hazard analysis or do they just
б	really weight the inputs that go into this?
7	MR. MUNSON: No. We have consultants with
8	the U.S. Geological Survey. We have our geologic
9	experts that look into the Applicant's
10	characterization of the source.
11	CHAIRMAN POWERS: So it's really the
12	inputs to the analysis that you look at?
13	MR. MUNSON: Right. Right.
14	CHAIRMAN POWERS: Yes. Good.
15	MR. SEGALA: Okay.
16	CHAIRMAN POWERS: You speak to the New
17	Madrid. I mean, we've got other seismic sources here.
18	And we have the treatment of the Springfield
19	earthquake. Now you had no troubles with their
20	analyses on those sources?
21	MR. MUNSON: This is Cliff Munson again.
22	That's one of our main open items with
23	regard to the performance-based approach and the final
24	safe shutdown earthquake ground motion spectrum is
25	whether that adequately captures the Springfield
ļ	I

(202) 234-4433

5 CHAIRMAN POWERS: Just as a point of curiosity to my mind, when we have a seismic source 6 7 such as New Madrid that's been looked at more times than I'd care to think about, and it has a prescribed 8 9 return frequency now of somewhere between every 200 10 and 800 years? Am I correct? And it's been, what, 200 years since the last major shift in that fault 11 Do we take the likelihood of having a major 12 zone? earthquake from that source in the next year as one 13 14 over 500 as an average or do we do something different 15 because of the relative well established frequency?

I think we certainly factor 16 MR. MUNSON: 17 in the uncertainties in those recurrence estimates which are based on Paleoliquefaction studies. 18 And 19 recurrence intervals are mean values those and 20 definitely not exact estimates of recurrence for the 21 New Madrid source zone.

22 So, I mean, that's one of the benefits of 23 the PSHA, although the old deterministic method is 24 that it captures this recurrence interval which was 25 not previously part of the deterministic approach. So

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

(202) 234-4433

187

	188
1	definitely that's one of the reasons why we updated
2	in the late '90s using 1.165.
3	DR. YOUNGS: If I may, this is Bob Youngs.
4	CHAIRMAN POWERS: Yes.
5	DR. YOUNGS: I wanted to add an additional
6	point of clarification.
7	In our application or model of the New
8	Madrid seismic zone we used two types of recurrence
9	models. One was we used a Poissionian model, which
10	this has the rate of one over 500. And the second
11	model is we apply what is called a renewal model which
12	provides for time dependent probabilities which
13	accounts for the elapsed times in the most recent
14	event.
15	CHAIRMAN POWERS: That's really the
16	question I was asking is if you look at that. And so
17	you look at it both ways?
18	DR. YOUNGS: Yes, we looked at both of
19	those and to see what difference.
20	CHAIRMAN POWERS: Sure.
21	DR. YOUNGS: It made some difference, some
22	small difference.
23	CHAIRMAN POWERS: Well, I'm sure it does.
24	But the question is whether it's smoke compared to
25	your old law uncertainty or not?
ļ	I

```
(202) 234-4433
```

	189
1	DR. YOUNGS: I think the overall
2	uncertainty of actually calculating the rate is
3	probably larger than the effect of those models.
4	CHAIRMAN POWERS: It was just an item of
5	curiosity to me. Thank you.
6	Let us continue.
7	MR. SEGALA: Okay. With respect to open
8	item 2.5.2-1 the Staff is asking the Applicant to
9	clarify and justify the EPRI ground motion attenuation
10	study distance-conversion method. When the Staff read
11	through the Applicant's description, it wasn't clear
12	to them the process. So this question just asked for
13	clarification.
14	CHAIRMAN POWERS: If the Applicant had
15	done it in the hypothesized way instead of what is it,
16	the joiner or something distance, does it make a huge
17	amount of difference?
18	MR. MUNSON: For the sources that the
19	most amount of difference, it would be for close in
20	sources, sources very close to the site it would make
21	a difference on what type of distance measurement
22	you're using. But for most cases, say 20 kilometers
23	and on out, it doesn't really have that much
24	difference.
25	CHAIRMAN POWERS: I would think not. But
	1

(202) 234-4433

	190
1	it's a question of spectra versus linear distance.
2	MR. MUNSON: Right.
3	MR. SEGALA: Next slide, please.
4	The next set of open items are related to
5	the geotechnical review.
6	For open item 2.5.2-2 the Staff reviewed
7	responses from the Applicant and found large
8	variabilities in strength and stiffness of the soil as
9	demonstrated by shear wave velocities and standard
10	penetration test blow counts. So this open item is
11	saying that the site response model does not
12	adequately represent the variability of the soil
13	properties.
14	CHAIRMAN POWERS: You're speaking of the
15	soil properties below the foundation of the proposed
16	plant?
17	MR. SEGALA: I believe this is the soil
18	properties in the top 60 feet or so.
19	CHAIRMAN POWERS: But if he is going to
20	remove the top 60 feet and place an engineering fill
21	of
22	MR. CHENG: This is Tom Cheng.
23	My understanding about it, the Applicant's
24	intent is to try to remove the first top 60 feet of
25	soil before they put a foundation there. That's the
I	1

(202) 234-4433

	191
1	layer we're talking about here.
2	CHAIRMAN POWERS: I guess I'm struggling
3	to know what the uncertainty is here.
4	MR. CHENG: Would you please repeat your
5	question again, please?
6	CHAIRMAN POWERS: Well, I mean if your
7	concern is the top 60 feet and the Applicant says he's
8	going to take that out and put an engineering fill in
9	is it that fill that you're worried about?
10	MR. CHENG: It's the original soil.
11	CHAIRMAN POWERS: But that's going to be
12	gone.
13	MR. CHENG: Yes.
14	MR. MUNSON: I think when we originally
15	wrote this open item we were I guess we overlooked
16	that commitment to remove the top 50 feet. So I think,
17	for example, this is probably one of the open items
18	that will be easily
19	CHAIRMAN POWERS: Yes, it's not going to
20	be there anymore, is that correct? Am I missing
21	something here? Okay. Okay. Fine.
22	MR. SEGALA: Open item 2.5.2-3 the Staff's
23	questioning if the EPRI shear modulus and damping
24	curves are appropriate for the site.
25	And for open item 2.5.2-4 this was just
Į	I

(202) 234-4433

1 another clarification point. The application states 2 that at the COL stage they're going to determine 3 whether additional drilling and sampling is needed. 4 And the Staff is basically saying there's enough 5 variability in soil properties within the ESP site to necessitate further exploration at the COL stage. 6 And 7 so we're just looking for some clarification words in 8 the application. 9 CHAIRMAN POWERS: Is this again this top 10 60 feet or is this something deeper that I don't know about? 11 12 Well, yes, let me speak to MR. MUNSON: All our regulatory guidance calls for 13 that. of 14 additional soil borings, especially for critical 15 structures such as the reactor building, aux building. And there was a statement in the application that 16 17 basically said they would assess the need to do further borings at COL. And we viewed that as kind of 18 19 a lukewarm commitment and we wanted to clarify that 20 they would actually be doing several more borings as 21 our regulatory guidance directs. 22 CHAIRMAN POWERS: Well, the regulatory 23 quidance can direct it. Is it really necessary? Ι 24 mean, I'm not sure what you're driving at. They seem 25 to have made, both in their document and their oral

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

192

	193
1	presentation, quite a discussion of gee these things
2	kind of look alike from the old site to the new site.
3	MR. MUNSON: Measurements of stability of
4	the foundation static stability especially for
5	critical structures, they need to know that in great
6	detail. So they're going to need to do additional
7	borings. And I think they would agree with this on
8	that point.
9	CHAIRMAN POWERS: Okay.
10	MR. SEGALA: And that concludes my
11	discussion. We're going to be working to resolve the
12	open items and open for any additional questions.
13	CHAIRMAN POWERS: And your schedule is to
14	attempt to have a final SER in late February?
15	MR. SEGALA: Yes. The initial, the early
16	milestone is to have all these open items resolved by
17	the end of October.
18	CHAIRMAN POWERS: October.
19	MR. SEGALA: We need that in order to meet
20	the FSER date.
21	CHAIRMAN POWERS: Did you have any other
22	questions for the speaker? You're happy and content?
23	Why do I think you know more about this than you're
24	telling me?
25	Well, I guess you're done.
ļ	

(202) 234-4433

	194
1	MR. SEGALA: Yes.
2	CHAIRMAN POWERS: You're done. The
3	Committee is not done yet.
4	MR. SEGALA: Thank you.
5	CHAIRMAN POWERS: I think we can go off
6	the transcript record now.
7	(Whereupon, at 3:48 p.m. the meeting was
8	concluded.)
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	