Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor Safeguards
Regulatory Policies and Practices Subcomm.

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Thursday, April 1, 2004

Work Order No.: NRC-1399

Pages 1-373

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	MEETING OF THE SUBCOMMITTEE ON
7	REGULATORY POLICIES AND PRACTICES
8	+ + + +
9	THURSDAY, APRIL 1, 2004
10	+ + + +
11	ROCKVILLE, MARYLAND
12	The Subcommittee met at the Nuclear Regulatory
13	Commission, Two White Flint North, Room T2B3, 11545
14	Rockville Pike, at 8:30 a.m., Dr. William J. Shack,
15	Chairman, presiding.
16	COMMITTEE MEMBERS:
17	WILLIAM J. SHACK, Chairman
18	MARIO V. BONACA, Member
19	F. PETER FORD, Member
20	THOMAS S. KRESS, Member
21	GRAHAM M. LEITCH, Member
22	VICTOR H. RANSOM, Member
23	JOHN D. SIEBER, Member
24	GRAHAM B. WALLIS, Member
25	MICHAEL R. SNODDERLY, ACRS Staff

1	NRC STAFF PRESENT:
2	LEE ABRAMSON
3	STEVE BAJOREK
4	SUZANNE BLACK
5	BENNETT BRADY
6	ART BUSNIK
7	JOHN CLANE
8	STEPHEN DINSMORE
9	CAROLYN FAIRBANKS
10	FRANK GILLESPIE
11	CATHY HANEY
12	ALLEN HISER
13	MICHAEL JOHNSON
14	GLENN KELLY
15	MARK KOWAL
16	RALPH LANDRY
17	JAMES LAZEVNICK
18	STU MAGRUDER
19	EILEEN MCKENNA
20	MARK RUBIN
21	DAVE SKOEN
22	ROB TREGONING
23	PETER WEN
24	
25	

2

	3
1	I-N-D-E-X
2	Opening Remarks
3	W. Shack, ACRS
4	Discussion of SECY-4-0037 6
5	E. McKenna, NRR
6	G. Kelly, NRR
7	M. Rubin, NRR
8	LOCA Break Frequencies for Reevaluating 142
9	10 CFR 50.46, Appendix K and GDC 35
10	R. Tregoning, RES
11	L. Abramson, RES
12	General Discussion and Adjournment 336
13	W. Shack, ACRS
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:31 a.m.
3	CHAIRMAN SHACK: The meeting will now come
4	to order. This is a meeting of the Advisory Committee
5	on Reactor Safeguard, Subcommittee on Regulatory
6	Policies and Practices.
7	I am William Shack, Chairman of the
8	Subcommittee. Members in attendance are Mario Bonaca,
9	Peter Ford, Tom Kress, Graham Leitch, Victor Ransom,
10	Jack Sieber and Graham Wallis.
11	The purpose of this meeting is to discuss
12	the Staff's proposed approach for responding to the
13	Commission's March 31st, 2003, Staff Requirements
14	Memorandum on Risk- Informing 10 CFR 50.46, and
15	Development of Near Term LOCA Frequencies.
16	The Subcommittee will gather information,
17	analyze relevant issues and facts and formulate
18	proposed positions and actions as appropriate for
19	deliberation by the full committee.
20	Michael Snodderly is the designated
21	Federal Official for this meeting. The rules for
22	participation in today's meeting have been announced
23	as part of the notice of this meeting previously
24	published in the Federal Register on March 23rd, 2004.
25	A transcript of the meeting is being kept

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	5
1	and will be made available, as stated in the Federal
2	Register Notice. It is requested that speakers first
3	identify themselves and speak with sufficient clarity
4	and volume so that they can be readily heard. We have
5	received no written comments or requests for time to
6	make oral statements from members of the public
7	regarding today's meeting.
8	I think we'll just start in with the
9	meeting, and I call upon Michael Johnson of the Office
10	of Nuclear Reactor Regulations to begin.
11	MR. JOHNSON: Thank you. Michael Johnson,
12	Deputy Director, Division of Systems Safety and
13	Analysis. We are happy to be here, of course, to talk
14	about 50.46 and I just wanted to say a few words to
15	put in context where we are on 50.46.
16	Because I have a sense that at the time
17	that perhaps when we were thinking about scheduling a
18	status update on 50.46, and the response to the
19	Commission's SROM, we anticipated being at a different
20	place.
21	And as you can appreciate, where we are
22	today is, as we're going to discuss, we, the Staff has
23	done some thinking. We've provided some issues that
24	are open with the Commission with respect to 50.46,
25	and as we proceed and go forward in addressing those

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 issues, we're going to listen to hear back from the 2 Commission in terms of the direction that they give 3 us. 4 So, this presentation today is really a 5 good opportunity for us to talk about what we've given the Commission in February to address the direction 6 7 that they gave us in the SRM. Although, I think you'll recognize that where we are in terms of the 8 9 time line, in going further with this issue, we're in We're, again, happy to answer 10 a different place. whatever questions you have. And we look forward to 11 12 responding to those questions as best we can. CHAIRMAN SHACK: Eileen. 13 14 MS. MCKENNA: Thank you. Good morning, my 15 name is Eileen McKenna. I'm presently a Section Chief in the Policy and Rulemaking Program in NRR, but up 16 until fairly recently I was the Lead Project Manager 17 on the effort to respond to this SRM on the Large 18 19 Break LOCA Redefinition. 20 With me at the table is Glenn Kelly, who 21 is a Senior Reliability and Risk Analyst in the 22 Probabilistic Safety Assessment Branch in NRR, also. Also in the room we have other members 23 24 from our working group and we may call upon them as 25 necessary, depending on the nature of any particular

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

6

	7
1	questions.
2	This cover slide, as I said, the names of
3	who we are. Very briefly, in terms of an agenda,
4	we'll give a little bit of a purpose of why we're
5	here. Some background on where we've been and why
6	we're in this kind of situation with the status that
7	we are.
8	Some discussion of a number of technical
9	issues that relate to the question of Large Break LOCA
10	Redefinition, and finally we'll summarize and give
11	conclusions of where we are.
12	I think we, we saw, based on kind of
13	Mike's comments, we really saw two main purposes for
14	the briefing. One, is to inform the Committee where
15	we are. We've not had discussion on this topic in
16	quite a while, on some of the option three activities.
17	And secondly, I think it would be a good
18	opportunity to get feedback, at least on some of the
19	technical areas that we're struggling with.
20	Obviously, the policy direction may steer
21	us in particular avenues that we will hear back from
22	the Commission. But there is still a lot of technical
23	work that needs to be done and certainly this
24	Committee, I'm sure, has opinions and comments to make
25	in those areas.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	8
1	Just some very brief background. As you
2	recall, Option 3 was the proposal to Risk-Inform
3	Technical Requirements within Part 50. And there were
4	various candidate rules that were looked at as
5	possible areas to be studied.
6	50.44 was the vessel gas control, it was
7	the first one that kind of went through this process
8	to be Risk-Informed, and that rule was complete in the
9	fall of last year.
10	The other candidate that was put forward,
11	based on a number of considerations, was 50.46, and a
12	lot of its different aspects. The sense was that the
13	Large Break LOCA with low frequency has a major impact
14	on plant design and that maybe there was opportunity
15	to make the requirements more commensurate with the
16	frequency of the initiators.
17	And so there were a number of different
18	proposals of how anyone might approach that with
19	respect to Large Break LOCA and its set of
20	requirements.
21	There were a couple of papers that went up
22	to the Commission. There was a SECY 01-33, that
23	discussed various recommendations on actions that
24	could be taken. And a follow up paper, SECY 020-57,
25	that have updated the status of things.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	9
1	And that culminated, then, in an SRM we
2	received on March 31st, 2003, that directed the Staff
3	to undertake a number of activities. I've focused the
4	discussion here on just a couple of them because
5	they're the ones that this paper particularly was
6	responding too.
7	MEMBER WALLIS: Eileen.
8	MS. MCKENNA: Yes.
9	MEMBER WALLIS: This mentions the key role
10	of Risk-Informing?
11	MS. MCKENNA: Yes.
12	MEMBER WALLIS: And yet what we've seen is
13	mostly about frequency of pipe breaks. It isn't the
14	same thing as risk?
15	MS. MCKENNA: Well, I think we saw that the
16	frequency of pipe breaks is information one needs to
17	consider as part of the Risk-Informed decision making.
18	MEMBER WALLIS: That's right, but there's
19	a lot of other things you change.
20	MS. MCKENNA: Absolutely. And that's what,
21	I think, our effort has been focusing on, this
22	afternoon's effort we'll talk about the generation of
23	the frequencies but we see it's clearly just one input
24	into a larger process.
25	Did you want to say something, Glenn?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	MR. KELLY: My name is Glenn Kelly, and
2	it's our intention that in developing any rulemaking
3	that would come out of this effort, that we expect to
4	fully Risk-Inform the process that would come out.
5	This would include taking into account the
6	information that we have about expected frequency,
7	loss of cooling accidents, particularly the larger
8	LOCA cooling accidents.
9	We'll also take into account any potential
10	changes that might occur to the plant that would be
11	allowed due to removal of these break sizes from the
12	design basis.
13	We'd look at, potentially, the increase in
14	core damage frequency or a large early release
15	frequency, associated with any changes made to the
16	plant.
17	We'd also look at the retention of
18	adequate defense and depth in particular things such
19	as adequate redundancy and diversity. We'd be looking
20	at margins aspects and also there's issues about when
21	one takes breaks out of the design basis, ordinarily
22	something that's not in the design basis, you're not
23	required to protect against.
24	You maybe protecting against it, but
25	you're not required to protect against it. And the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1 question comes, what mitigative capabilit	y would be
2 retained for these breaks.	
3 MEMBER WALLIS: Well risk is	concerned
4 really with design, beyond design basis, :	isn't it?
5 MR. KELLY: Risk is concerned	beyond the
6 design basis because of the way we've built	the plant.
7 If we had not done such a good job of bu	ilding the
8 plants, you would have potentially signif	icant risk
9 within the design basis.	
10 However, it turns out the vast m	najority of
11 risk occurs outside of the design basis.	
12 MEMBER WALLIS: So does that	mean what
13 you're going to do is now take something what	ich used to
14 be design basis and put it into risk space	e?
15 MR. KELLY: It would, at a mini	.mum, be in
16 risk space. And it might also be in kind	of another
17 space, which has yet to be determined.	
18 It might have some additional	regulatory
19 controls on it, but exactly how that's goi	ng to play
20 out, that's not been determined yet.	
21 MS. MCKENNA: So we're talking	about the
22 March 31st, SRM and there were several, a	as I said,
23 several taskings in that SRM. One was t	to do this
24 frequency work that you'll hear about this	afternoon.
25 The second was to prepare a pro	posed rule

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	that, I guess it was to say it allows for a Risk-
2	Informed alternative to the present maximum LOCA Break
3	Size.
4	And there was a second tasking in there,
5	that I won't talk too much about, but I just want to
б	mention it here. There was also, another effort that
7	had been put forward to risk-inform the ECCS
8	Functional Reliability Requirements.
9	And this one you may recall hearing more
10	about, because that was part of some of the Staff's
11	original proposals in the earlier SECY's.
12	This was really dealing with the GDC 35-
13	type of information about the assumptions on single
14	failure, and assuming that loss of outside power has
15	occurred coincident with the LOCA, which has a
16	tendency to drive certain parts of the design and may
17	not be, again, realistic and commensurate with the
18	risk, the frequency of those kinds of events.
19	And in particular, it really dealt with
20	this coincident LOOP assumption in the analysis. And
21	we'll talk a little bit about that later. There were
22	some other parts, but I'm not going to dwell on those
23	because they're not something that we're covering in
24	the paper that has gone forward.
25	The other important thing, I think, to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	keep in mind is that SRM had a number of specific
2	statements about Commission expectations or desires or
3	direction on certain aspects of this rulemaking that
4	we needed to take into account.
5	And, I'm not going to go through the whole
6	SRM, but I wanted to just put a few of the more
7	significant, at least in terms of this effort. And
8	just to kind of put, have them in your mind when you
9	hear of some of the issues we've been trying to deal
10	with.
11	So the first one is, I think, what I
12	repeated on the earlier slide that we should develop
13	a rule allowing this alternative maximum break size.
14	And there was some suggestions in the SRM, that one
15	way this might be done is by revising the definition
16	of LOCA itself.
17	Either as it appears in 50.46 or as it
18	appears in Appendix A, which is the general design
19	criteria. Obviously, to redefine the definition, then
20	you are, in essence, redefining wherever that
21	definition is used in the respective requirements.
22	There was also discussion about the Staff
23	establishing a risk cut-off for what this new maximum
24	LOCA break size would be. And there were, again, some
25	examples of possible ways this might be done in terms

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	14
1	of a contribution either of the LOCA risk or some
2	percentage of the total risk of the plant. That that
3	might be used as the means of determining the break,
4	the cut-off, if you will, for what break sizes are in
5	the design basis or not.
6	MEMBER KRESS: When we're speaking of risk,
7	in terms of rules, you're talking about cumulative
8	risk of a lot of plants.
9	MS. MCKENNA: I'm sorry?
10	MEMBER KRESS: You're talking about
11	cumulative risk of a lot of plants.
12	MS. MCKENNA: Cumulative, yes.
13	MEMBER KRESS: And it's been my opinion
14	that the risk contribution to this cumulative of a
15	given plant, differs from plant-to-plant. So by
16	changing a rule, you're going to affect some plants
17	more than others.
18	MS. MCKENNA: Yes, I think
19	MEMBER WALLIS: And the question is, how do
20	you deal with that type of effect in terms of being
21	sure an individual plant doesn't pose an undue risk as
22	opposed to the whole fleet of plants causing an undue
23	risk.
24	MS. MCKENNA: Yes, okay, Glenn would like
25	to take that one.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MR. KELLY: We don't have a proposal of 2 exactly how it would be done. I think that the actual 3 physical process of tracking cumulative changes of 4 risk at a plant are challenging, and it's being done now for some of the risk-informed activities that are 5 going on, such as ISI. 6

7 I, the expectation is that we will, the cumulative risk would be tracked for individual 8 9 plants, rather than looking at the cumulative risk for the plants. One could then merely add up all of the 10 11 individual plant risks, but our expectation is that we 12 will be looking at the cumulative risk at an individual plant and making sure that no individual 13 14 plant should have its risk become --

15 MEMBER KRESS: I think that's the way to 16 In that respect, you will then be relying on the qo. 17 plant-specific PRAs?

MS. MCKENNA: Yes.

MR. KELLY: If --

20 MEMBER KRESS: And you'll have to have some 21 specification of scope and quality of PRAs? 22 MR. KELLY: That's our expectation. And if 23 a plant should choose to take advantage of this 24 voluntary rule, then they would become subject to the, 25 whatever requirements are in the rule that deal with

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

18

19

16
the quality and scope of the PRA.
MEMBER KRESS: So even that would be part
of the rule, you expect?
MR. KELLY: It would be part of the rule or
it may send you off to some other document that
indicates that quality of the rule.
MEMBER KRESS: It looks to me like Reg
Guide 1.174, is already a framework for doing this
tracking and this risk. Would your expectation be
that you would just implement Reg Guide 1.174, for
these changes?
MR. KELLY: That would not be my
expectation. And in the Memorandum that we sent up to
the Commission, we indicated that we thought that the
Reg Guide 1.174, provides an excellent framework
within which to follow how one does a risk-informed
process.
And that the metrics that are used within
Reg Guide 1.174, of core damage frequency, total core
damage frequency, increases in core damage frequency,
increases in LERF are probably the type of metrics
that we'd end up proposing is the ones to be used to
measure the risk at the plants.
The numbers that are in Reg Guide 1.174,
may not turn out to be the appropriate numbers to use

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	in this particular case. One of the important reasons
2	why that may be is that Reg Guide 1.174, was built,
3	the numbers were built around assuming that all of the
4	regulations are met.
5	You're able to change the licensing basis
6	under Reg Guide 1.174, but you cannot change any
7	regulations under 1.174. Now we're in a situation
8	where you're actually going to physically change the
9	regulations, and therefore it may require a more
10	stringent numerical criteria.
11	MEMBER KRESS: I'll have to think about
12	that one, because
13	CHAIRMAN SHACK: If one risk is acceptable
14	why isn't
15	MEMBER KRESS: Yeah.
16	CHAIRMAN SHACK: you know, in one
17	situation, why isn't it acceptable in another?
18	MR. KELLY: That's a good question. And
19	CHAIRMAN SHACK: I mean I can understand,
20	you know, questions of uncertainty and, you know,
21	perhaps the degree of quality that one might expect
22	from a PRA for one kind of application over another.
23	MR. KELLY: Again, it depends on, well one
24	of the things, what happens here with the changes that
25	potentially could be made under this rulemaking is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	that they would be, if they were not very carefully
2	boxed in, so to speak.
3	They could be very, very extensive changes
4	to the plant because the, for many plants the large
5	break LOCA is the design basis event that dominates
6	the thinking behind which the plant is designed.
7	And if you go, if you physically change
8	that new, you change the maximum design basis LOCA,
9	you're removing some of the mode of force behind what,
10	why we have such a strong containment. Why we have
11	all ECCS capability that we have.
12	And if you just said, okay, I'll take that
13	out of design basis, and now you're free to do
14	whatever you want to do since these are no longer
15	there, potentially, I'm not saying that we think that
16	is a good idea, but potentially one could, weaken
17	containment, one could significantly reduce ECCS
18	flows, in some cases could get rid of accumulators.
19	And some of these things may turn out to
20	be acceptable, but we want to look at them and
21	understand them. And it's not clear. EQ would change
22	the requirement and the containment would be
23	different, etcetera.
24	So we'd have to look at what all the
25	potential risks are.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	MEMBER KRESS: Well, it seems to me like
2	perhaps a slightly modified change in what we view as
3	defense and depth. And in addition to the metrics in
4	Reg Guide1.174, all that automatically takes care of
5	itself.
б	MR. RUBIN: This is Mark Rubin from the
7	Staff. We haven't chosen the metric yet and there's
8	a lot of deliberation that has to go on and your input
9	will be very useful in it.
10	But our initial thought that perhaps
11	something, something smaller may be appropriate and we
12	have to give it some thought. As Glenn said, the
13	philosophy going into 174 was no fundamental changes
14	to the regulations.
15	We are still going to keep those solid.
16	Now we are doing fundamental changes to the regulatory
17	framework, and so since we're going in with that
18	philosophical change, some of the underpinnings are
19	changing.
20	So, we thought, well, maybe a lower metric
21	is appropriate. At the same time, some of the plants
22	have much lower baseline risk to start with.
23	For example, some of the boilers are down
24	in the low ten to the minus six. And if you go with
25	a CDF limit, delta CDF at ten to the minus five, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	making a fundamental change to the plant's limiting
2	design basis accident and you allow this change,
3	you're going to allow some of the BWR 6s and BWR 5s,
4	to change their limiting a DBA and bump their baseline
5	risk up by a factor of eight.
6	Is that what we want to allow? I'm not
7	sure it is, we need to give it some thought.
8	MEMBER KRESS: Well, doesn't 1.174
9	automatically take care of that point?
10	MR. RUBIN: Well, we talked to the
11	Committee about this, about five or six years ago.
12	174 doesn't, on the surface, prohibit it, but as we
13	told the Committee and as we talked about it
14	ourselves, we would look with a lot of skepticism at
15	a licensing action that came in with an initiative
16	like that.
17	The industry, in the discussions with us,
18	said, oh no, we would never propose that. When in
19	fact at this point, no one has come in with a
20	licensing action that did that.
21	But the difference here, and I want to
22	emphasize this, this is a change to the regulations,
23	and a regulatory change that allowed an increase or a
24	decrement in safety of a factor of eight would be very
25	different.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	MEMBER KRESS: But what that amounts to is
2	a potential bunch of changes to the licensing basis.
3	That's all the changes that you're going to need, so
4	it amounts to the same thing, in the long run. And
5	just because it's a change in regulation that doesn't
6	make it different.
7	MS. MCKENNA: I think somewhat it depends
8	on how the regulation itself is actually structured.
9	MR. GILLESPIE: Let me
10	MS. MCKENNA: Okay, go ahead Frank.
11	MR. GILLESPIE: Let me, Frank Gillespie
12	from the Staff.
13	MEMBER BONACA: I mean right now I believe
14	that 1.174 said it has to be a small change, a small
15	increase. In most cases, even if are down to ten to
16	the minus seven
17	MEMBER KRESS: Yeah, so it kind of
18	automatically limits it.
19	MEMBER BONACA: And I guess what they're
20	saying is
21	MEMBER KRESS: And what I was also saying
22	is you might want to rethink your defense and depth in
23	the sense that your BWR was a prime example of what I
24	had in mind.
25	They have low, very low CDF, but sometimes

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	a pretty high conditional containment failure. You
2	might want to have in your defense and depth
3	considerations there saying, no, we're not going to
4	let BWRs change a huge amount on the CDF.
5	I mean they just invoke a defense and
б	depth contract. But anyway, I still fail to see why
7	1.174, doesn't do everything you want.
8	MEMBER BONACA: No, but just to complete my
9	thought.
10	MEMBER KRESS: I'm sorry.
11	MEMBER BONACA: The difference I see is
12	that right now, again, you're constrained to a small
13	increase, and, by definition. It doesn't matter how
14	much margin you have there, you can only cash in a
15	very small margin.
16	If you make a rule change, it
17	automatically allows you to cash in whatever the rule
18	may say, that may be a factor of eight or ten, I see
19	a difference.
20	MEMBER KRESS: No, the rule ought to say if
21	you make any changes, based on this rule change, you
22	do it according to the guidance in 1.174, and you
23	track the cumulative and let 1.174 keep track of it
24	for you.
25	MEMBER BONACA: You have to define however,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	going to define how much small
2	MEMBER KRESS: No, it's already defined
3	1.174. And you just say, for every change you make,
4	you invoke 1.174.
5	MEMBER BONACA: No, I think this goes
6	beyond. If you really want to achieve some level of
7	excession
8	MEMBER KRESS: It goes beyond that in the
9	sense that there may be a lot of changes that weren't
10	envisioned for 1.174
11	CHAIRMAN SHACK: But we don't know exactly
12	how 1.174 handled this issue of how we chop things up
13	to, you know.
14	MEMBER KRESS: Oh, there was a question
15	about how do you, how do you take the number of
16	changes in time. And there was also a question of how
17	do you accumulate risk and track it.
18	But both of those were discussed and I
19	thought handled pretty well in the 1.174 document.
20	MR. GILLESPIE: Yeah, they could. Frank
21	Gillespie from the Staff. Let me bring this back to
22	what I'm going to call plain English for a non-risk
23	guy, and someone who has been hanging around for over
24	30 years.
25	The large break LOCA, way back in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1beginning and I think there's people in this room who2can actually remember back in the beginning also, was3fundamentally kind of a worse-case surrogate for what4we didn't know.5And let me suggest that we're talking6truly about uncertainty. And before we destroy that7surrogate that had served us very well over the years,8and I think anyone would know.9Any incident we've had loss of outside10power, seems to always have some complicating switch11that didn't work, some breaker that didn't trip.12One, you have to be so certain your PRA13knows everything you don't know. That before we give14up that robustness, and this is what I think what15Glenn was trying to say.16Before you give up that robustness, you17need to know what are the impacts of what you're18giving up. And you're giving up something you don't19know.20Would, you know, and I think that's the21hesitancy and the reason you see many of the issues,22at the core of the issues in the Staff paper are the		24
fundamentally kind of a worse-case surrogate for what we didn't know. And let me suggest that we're talking truly about uncertainty. And before we destroy that surrogate that had served us very well over the years, and I think anyone would know. Any incident we've had loss of outside power, seems to always have some complicating switch that didn't work, some breaker that didn't trip. One, you have to be so certain your PRA knows everything you don't know. That before we give up that robustness, and this is what I think what Glenn was trying to say. Before you give up that robustness, you need to know what are the impacts of what you're giving up. And you're giving up something you don't know. Would, you know, and I think that's the hesitancy and the reason you see many of the issues,	1	beginning and I think there's people in this room who
 we didn't know. And let me suggest that we're talking truly about uncertainty. And before we destroy that surrogate that had served us very well over the years, and I think anyone would know. Any incident we've had loss of outside power, seems to always have some complicating switch that didn't work, some breaker that didn't trip. One, you have to be so certain your PRA knows everything you don't know. That before we give up that robustness, and this is what I think what Glenn was trying to say. Before you give up that robustness, you need to know what are the impacts of what you're giving up. And you're giving up something you don't know. Would, you know, and I think that's the hesitancy and the reason you see many of the issues, 	2	can actually remember back in the beginning also, was
5And let me suggest that we're talking6truly about uncertainty. And before we destroy that7surrogate that had served us very well over the years,8and I think anyone would know.9Any incident we've had loss of outside10power, seems to always have some complicating switch11that didn't work, some breaker that didn't trip.12One, you have to be so certain your PRA13knows everything you don't know. That before we give14up that robustness, and this is what I think what15Glenn was trying to say.16Before you give up that robustness, you17need to know what are the impacts of what you're18giving up. And you're giving up something you don't19know.20Would, you know, and I think that's the21hesitancy and the reason you see many of the issues,	3	fundamentally kind of a worse-case surrogate for what
 truly about uncertainty. And before we destroy that surrogate that had served us very well over the years, and I think anyone would know. Any incident we've had loss of outside power, seems to always have some complicating switch that didn't work, some breaker that didn't trip. One, you have to be so certain your PRA knows everything you don't know. That before we give up that robustness, and this is what I think what Glenn was trying to say. Before you give up that robustness, you need to know what are the impacts of what you're giving up. And you're giving up something you don't know. Would, you know, and I think that's the hesitancy and the reason you see many of the issues, 	4	we didn't know.
surrogate that had served us very well over the years, and I think anyone would know. Any incident we've had loss of outside power, seems to always have some complicating switch that didn't work, some breaker that didn't trip. One, you have to be so certain your PRA knows everything you don't know. That before we give up that robustness, and this is what I think what Glenn was trying to say. Before you give up that robustness, you need to know what are the impacts of what you're giving up. And you're giving up something you don't know. Would, you know, and I think that's the hesitancy and the reason you see many of the issues,	5	And let me suggest that we're talking
 and I think anyone would know. Any incident we've had loss of outside power, seems to always have some complicating switch that didn't work, some breaker that didn't trip. One, you have to be so certain your PRA knows everything you don't know. That before we give up that robustness, and this is what I think what Glenn was trying to say. Before you give up that robustness, you need to know what are the impacts of what you're giving up. And you're giving up something you don't know. Would, you know, and I think that's the hesitancy and the reason you see many of the issues, 	6	truly about uncertainty. And before we destroy that
 Any incident we've had loss of outside power, seems to always have some complicating switch that didn't work, some breaker that didn't trip. One, you have to be so certain your PRA knows everything you don't know. That before we give up that robustness, and this is what I think what Glenn was trying to say. Before you give up that robustness, you need to know what are the impacts of what you're giving up. And you're giving up something you don't know. Would, you know, and I think that's the hesitancy and the reason you see many of the issues, 	7	surrogate that had served us very well over the years,
10 power, seems to always have some complicating switch 11 that didn't work, some breaker that didn't trip. 12 One, you have to be so certain your PRA 13 knows everything you don't know. That before we give 14 up that robustness, and this is what I think what 15 Glenn was trying to say. 16 Before you give up that robustness, you 17 need to know what are the impacts of what you're 18 giving up. And you're giving up something you don't 19 know. 20 Would, you know, and I think that's the 21 hesitancy and the reason you see many of the issues,	8	and I think anyone would know.
11 that didn't work, some breaker that didn't trip. 12 One, you have to be so certain your PRA 13 knows everything you don't know. That before we give 14 up that robustness, and this is what I think what 15 Glenn was trying to say. 16 Before you give up that robustness, you 17 need to know what are the impacts of what you're 18 giving up. And you're giving up something you don't 19 know. 20 Would, you know, and I think that's the 21 hesitancy and the reason you see many of the issues,	9	Any incident we've had loss of outside
12 One, you have to be so certain your PRA 13 knows everything you don't know. That before we give 14 up that robustness, and this is what I think what 15 Glenn was trying to say. 16 Before you give up that robustness, you 17 need to know what are the impacts of what you're 18 giving up. And you're giving up something you don't 19 know. 20 Would, you know, and I think that's the 18 hesitancy and the reason you see many of the issues,	10	power, seems to always have some complicating switch
13 knows everything you don't know. That before we give 14 up that robustness, and this is what I think what 15 Glenn was trying to say. 16 Before you give up that robustness, you 17 need to know what are the impacts of what you're 18 giving up. And you're giving up something you don't 19 know. 20 Would, you know, and I think that's the 21 hesitancy and the reason you see many of the issues,	11	that didn't work, some breaker that didn't trip.
14 up that robustness, and this is what I think what 15 Glenn was trying to say. 16 Before you give up that robustness, you 17 need to know what are the impacts of what you're 18 giving up. And you're giving up something you don't 19 know. 20 Would, you know, and I think that's the 21 hesitancy and the reason you see many of the issues,	12	One, you have to be so certain your PRA
15 Glenn was trying to say. 16 Before you give up that robustness, you 17 need to know what are the impacts of what you're 18 giving up. And you're giving up something you don't 19 know. 20 Would, you know, and I think that's the 21 hesitancy and the reason you see many of the issues,	13	knows everything you don't know. That before we give
Before you give up that robustness, you need to know what are the impacts of what you're giving up. And you're giving up something you don't know. Would, you know, and I think that's the hesitancy and the reason you see many of the issues,	14	up that robustness, and this is what I think what
17 need to know what are the impacts of what you're 18 giving up. And you're giving up something you don't 19 know. 20 Would, you know, and I think that's the 21 hesitancy and the reason you see many of the issues,	15	Glenn was trying to say.
<pre>18 giving up. And you're giving up something you don't 19 know. 20 Would, you know, and I think that's the 21 hesitancy and the reason you see many of the issues,</pre>	16	Before you give up that robustness, you
19 know. 20 Would, you know, and I think that's the 21 hesitancy and the reason you see many of the issues,	17	need to know what are the impacts of what you're
20 Would, you know, and I think that's the 21 hesitancy and the reason you see many of the issues,	18	giving up. And you're giving up something you don't
21 hesitancy and the reason you see many of the issues,	19	know.
	20	Would, you know, and I think that's the
22 at the core of the issues in the Staff paper are the	21	hesitancy and the reason you see many of the issues,
	22	at the core of the issues in the Staff paper are the
23 reason accident management things in the `80s were	23	reason accident management things in the `80s were
24 left as accident management and didn't have more rigor	24	left as accident management and didn't have more rigor
25 on them, was because we said we have such a robust	25	on them, was because we said we have such a robust

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	design, in place with the rules already.
2	Now, if I take the large break LOCA and
3	take part of that robust design and put it into the
4	severe accident space, was my decision on accident
5	management and not needing to have more regulatory
6	controls on that still valid?
7	Do I have to go back and revisit every
8	decision of not regulating that severe accident space
9	we made in the `80s again, because I've removed
10	robustness.
11	And, so it is a question of uncertainty in
12	what we've done in 1.174 is, we've kind of allowed
13	that robust design in compliance with the current
14	rules, to kind of help deal with the uncertainties to
15	allow us to give certain freedoms.
16	And so, I mean that's the caution you're
17	seeing from the Staff right now, is we don't really
18	understand the impact of what we might do completely.
19	CHAIRMAN SHACK: But you make this
20	argument about robustness, as Tom pointed out, your
21	design basis didn't provide you with a robust
22	containment in the BWR.
23	You know, if you'd explicitly had a
24	conditional containment probability, you would have
25	had a more robust design. And this notion that I'm

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	going to get a robust design indirectly, you know,
2	maybe works in some cases, but why not go to what I
3	really want to have and say I have it, rather than
4	allowing, you know, this sort of indirection to, you
5	know, maybe provide it and maybe not.
6	MR. GILLESPIE: I don't disagree with that
7	because I was responsible for the study that got
8	harden vents put on the small containment back in the
9	`80s. So that came out of a NUREG I sponsored.
10	The fact that we weren't as smart as we
11	thought we were in the `60s and `70s, when these
12	plants were getting designed and originally licensed
13	is what you just pointed out.
14	Nonetheless, we're very hesitant to give
15	up even more of what we didn't know. And I think
16	that's what you're seeing in the paper. It raises
17	these kinds of issues. And I think what you're saying
18	the Staff is saying here is we don't have, necessarily
19	all the answers today.
20	But it's not clear that it's as simple as
21	saying having a better PRA. Then you do have to make
22	the judgement. Do you think the all-inclusiveness of
23	your PRA has hit everything that we've actually seen
24	in operating events?
25	CHAIRMAN SHACK: Well, that's why I like

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	conditional probability. Is that I ignore everything
2	I don't know and, you know, it can happen and
3	therefore I take care of it.
4	MR. GILLESPIE: And I'll suggest the
5	discussion we're having right here today, is what
б	caused the Staff to write the paper they wrote. We
7	actually don't have all the answers. And it was that
8	hesitancy I think you see in going back to the
9	Commission.
10	CHAIRMAN SHACK: Is this a good place to
11	discuss this kind of semi-risk argument that, you
12	know, as we look for mitigation that really isn't
13	mitigating the kind of risk that we normally consider?
14	MR. JOHNSON: This is Mike Johnson. Let me
15	suggest that actually these issues, the Reg Guide
16	1.174, issues are issues that we describe in the
17	paper, and in fact Glenn is going to get to those
18	later on and the issue you raised we're going to get
19	to later on.
20	CHAIRMAN SHACK: Okay.
21	MR. JOHNSON: I just wanted to say, you
22	know, we're not, none of us are suggesting, believe
23	that Reg Guide 1.174 is not the right framework to
24	use. We want to make sure that we examine it in light
25	of, as Frank indicated, the far-reaching potential

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	changes that could be permitted by the rule to make
2	sure it's the right, that we need to expand it, if we
3	need to expand, that we do.
4	But we're going to talk more about all
5	those issues later on.
6	MS. MCKENNA: That's actually an
7	interesting point to go to the next bullet on the
8	slide because this was kind of the more, sorry.
9	MEMBER WALLIS: I wanted to pick up on
10	something Frank said about things you don't know.
11	MS. MCKENNA: Sure.
12	MEMBER WALLIS: One thing that I haven't
13	seen mentioned in any of the paperwork that I've read
14	on this subject, is the deliberate affect by human
15	being, either deliberate or confused act by human
16	beings initiate something.
17	If you change the rule to make certain
18	sequences to far more vulnerable to certain sequences,
19	then you're obviously making them more attractive for
20	someone who wants to intentionally initiate that
21	sequence.
22	And this doesn't seem to be factored into
23	the risk that the frequencies are all dependent on
24	normal operation. It if they happen it's because the
25	happen.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	But if you change the rules, so that
2	something because more attractive, to someone who
3	wants to initiate something, then it becomes more
4	likely. You're talking about ten to the minus eight
5	for something.
6	It seems to be much more likely that some
7	disgruntled, foolish or otherwise motivated person,
8	would do something to initiate something more likely
9	than the ten to minus eight.
10	It seems a more likely event than a ten to
11	minus eight event.
12	MR. RUBIN: This is Mark Rubin again from
13	the Staff. The frequency estimates coming from the
14	Office of Research, don't include sabotage events, and
15	you might raise that with them this afternoon.
16	But the approach being taken for the rule
17	development, which is proposing retaining mitigative
18	capability for the new beyond design basis LOCA
19	redefinition, would not give up a success capability
20	for the new sizes beyond the redefinition.
21	So it would not be a very attractive
22	location or size for a saboteur or even an insider.
23	Because if we achieve the mitigative capability, if
24	the Commission endorses the preliminary approach the
25	Staff is suggesting, a break for above new definition

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	size would result in thermal hydraulic success.
2	Now, there might be some
3	MEMBER WALLIS: I think that's important,
4	I'm glad you said that. I'd almost wish you'd say it
5	again.
6	MS. MCKENNA: We probably will later.
7	MR. RUBIN: Mr. Kelly will be getting into
8	because it is our proposed
9	MEMBER WALLIS: Because I'm not quite sure
10	from all that I've read, what it is you're giving up.
11	I mean you're going to give up the large break but
12	you're going to still be able to mitigate it. Now,
13	I'm not quite sure what this means?
14	MS. MCKENNA: Again, keep in mind there's
15	the design basis space, and there's other space, which
16	a little earlier I think we were saying the Commission
17	has said they're willing to give up on some of the
18	larger breaks in design basis space the way we've
19	classically treated them, with you know, assuming
20	worst-case single failure and loss of outside power
21	and analyzing them with Appendix K and very
22	conservative models.
23	And all of these kinds of things that we
24	apply to them. I think the thing we're saying is that
25	where you don't think the Commission is willing to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	give up that, if you had a large, very large break
2	LOCA, that you have no capability and
3	MEMBER WALLIS: Well, I think this should
4	be very clear also to the public, if that's the way
5	you're going to do it. It's not as if you're simply
6	saying this thing is so unlikely, we won't even
7	consider it.
8	MS. MCKENNA: Yeah, and that's not at all
9	
10	MEMBER WALLIS: They're going to say this
11	thing is so unlikely that we're not going to give it
12	the full treatment.
13	MS. MCKENNA: That's correct.
14	MEMBER WALLIS: But that's got to be very
15	clear.
16	MR. RUBIN: But we're looking for the
17	Commission to, to confirm that to us.
18	CHAIRMAN SHACK: So we'll have a
19	conditional probability of success is mitigating a
20	DEGB?
21	MS. MCKENNA: That's one way of thinking
22	about it, yes. As a matter of fact, as I was saying,
23	this next bullet was kind of an interesting comment in
24	the SRM, because it was kind of a counter-current to
25	the, okay, you redefined the large break LOCA and come

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1up with a new break size, but then there was this2statement about the Commission would not support the3changes to functional requirements unless they were4fully risk-informed.5And it gave as an example, no changes to6ECCS coolant flow rates or containment capabilities.7And, you know, obviously we've spent a lot of time8studying this and, you know, trying to gauge what we9thought this meant, because there's a lot of10potential.11And depending on how you read that, you12could say, well, they really don't want to change much13of anything, because they're not going to change flow14rates.15Or you could take the more, okay, well16change containment capabilities, we still want to have17a robust containment because that's a good barrier for18protection.19So it did kind of give us some pause in20terms of, okay, we're redefining it but we're not, you21know, this is Option 3, changing technical22requirements, but no changes to the functional23requirements unless fully risk-informed.24So that was25MEMBER LEITCH: That discussion of a minute		32
 changes to functional requirements unless they were fully risk-informed. And it gave as an example, no changes to ECCS coolant flow rates or containment capabilities. And, you know, obviously we've spent a lot of time studying this and, you know, trying to gauge what we thought this meant, because there's a lot of potential. And depending on how you read that, you could say, well, they really don't want to change much of anything, because they're not going to change flow rates. Or you could take the more, okay, well change containment because that's a good barrier for protection. So it did kind of give us some pause in terms of, okay, we're redefining it but we're not, you know, this is Option 3, changing technical requirements, but no changes to the functional requirements unless fully risk-informed. 	1	up with a new break size, but then there was this
4 fully risk-informed. 5 And it gave as an example, no changes to 6 ECCS coolant flow rates or containment capabilities. 7 And, you know, obviously we've spent a lot of time 8 studying this and, you know, trying to gauge what we 9 thought this meant, because there's a lot of 10 potential. 11 And depending on how you read that, you 12 could say, well, they really don't want to change much 13 of anything, because they're not going to change flow 14 rates. 15 Or you could take the more, okay, well 16 change containment capabilities, we still want to have 17 a robust containment because that's a good barrier for 18 Do it did kind of give us some pause in 19 So it did kind of give us some pause in 10 terms of, okay, we're redefining it but we're not, you 11 know, this is Option 3, changing technical 12 requirements, but no changes to the functional 13 requirements unless fully risk-informed. 14 So that was	2	statement about the Commission would not support the
5And it gave as an example, no changes to6ECCS coolant flow rates or containment capabilities.7And, you know, obviously we've spent a lot of time8studying this and, you know, trying to gauge what we9thought this meant, because there's a lot of10potential.11And depending on how you read that, you12could say, well, they really don't want to change much13of anything, because they're not going to change flow14rates.15Or you could take the more, okay, well16change containment capabilities, we still want to have17a robust containment because that's a good barrier for18protection.19So it did kind of give us some pause in20terms of, okay, we're redefining it but we're not, you21know, this is Option 3, changing technical22requirements, but no changes to the functional23requirements unless fully risk-informed.24So that was	3	changes to functional requirements unless they were
 ECCS coolant flow rates or containment capabilities. And, you know, obviously we've spent a lot of time studying this and, you know, trying to gauge what we thought this meant, because there's a lot of potential. And depending on how you read that, you could say, well, they really don't want to change much of anything, because they're not going to change flow rates. Or you could take the more, okay, well change containment because that's a good barrier for protection. So it did kind of give us some pause in terms of, okay, we're redefining it but we're not, you know, this is Option 3, changing technical requirements unless fully risk-informed. So that was 	4	fully risk-informed.
7And, you know, obviously we've spent a lot of time8studying this and, you know, trying to gauge what we9thought this meant, because there's a lot of10potential.11And depending on how you read that, you12could say, well, they really don't want to change much13of anything, because they're not going to change flow14rates.15Or you could take the more, okay, well16change containment capabilities, we still want to have17a robust containment because that's a good barrier for18protection.19So it did kind of give us some pause in20terms of, okay, we're redefining it but we're not, you21know, this is Option 3, changing technical22requirements, but no changes to the functional23requirements unless fully risk-informed.24So that was	5	And it gave as an example, no changes to
8 studying this and, you know, trying to gauge what we 9 thought this meant, because there's a lot of 10 potential. 11 And depending on how you read that, you 12 could say, well, they really don't want to change much 13 of anything, because they're not going to change flow 14 rates. 15 Or you could take the more, okay, well 16 change containment capabilities, we still want to have 17 a robust containment because that's a good barrier for 18 protection. 19 So it did kind of give us some pause in 20 terms of, okay, we're redefining it but we're not, you 21 know, this is Option 3, changing technical 22 requirements, but no changes to the functional 23 requirements unless fully risk-informed. 24 So that was	6	ECCS coolant flow rates or containment capabilities.
9 thought this meant, because there's a lot of 10 potential. 11 And depending on how you read that, you 12 could say, well, they really don't want to change much 13 of anything, because they're not going to change flow 14 rates. 15 Or you could take the more, okay, well 16 change containment capabilities, we still want to have 17 a robust containment because that's a good barrier for 18 protection. 19 So it did kind of give us some pause in 20 terms of, okay, we're redefining it but we're not, you 21 know, this is Option 3, changing technical 22 requirements, but no changes to the functional 23 requirements unless fully risk-informed. 24 So that was	7	And, you know, obviously we've spent a lot of time
 potential. And depending on how you read that, you could say, well, they really don't want to change much of anything, because they're not going to change flow rates. Or you could take the more, okay, well change containment capabilities, we still want to have a robust containment because that's a good barrier for protection. So it did kind of give us some pause in terms of, okay, we're redefining it but we're not, you know, this is Option 3, changing technical requirements, but no changes to the functional requirements unless fully risk-informed. So that was 	8	studying this and, you know, trying to gauge what we
11And depending on how you read that, you12could say, well, they really don't want to change much13of anything, because they're not going to change flow14rates.15Or you could take the more, okay, well16change containment capabilities, we still want to have17a robust containment because that's a good barrier for18protection.19So it did kind of give us some pause in20terms of, okay, we're redefining it but we're not, you21know, this is Option 3, changing technical22requirements, but no changes to the functional23requirements unless fully risk-informed.24So that was	9	thought this meant, because there's a lot of
12 could say, well, they really don't want to change much 13 of anything, because they're not going to change flow 14 rates. 15 Or you could take the more, okay, well 16 change containment capabilities, we still want to have 17 a robust containment because that's a good barrier for 18 protection. 19 So it did kind of give us some pause in 20 terms of, okay, we're redefining it but we're not, you 21 know, this is Option 3, changing technical 22 requirements, but no changes to the functional 23 requirements unless fully risk-informed. 24 So that was	10	potential.
13 of anything, because they're not going to change flow 14 rates. 15 Or you could take the more, okay, well 16 change containment capabilities, we still want to have 17 a robust containment because that's a good barrier for 18 protection. 19 So it did kind of give us some pause in 20 terms of, okay, we're redefining it but we're not, you 21 know, this is Option 3, changing technical 22 requirements, but no changes to the functional 23 requirements unless fully risk-informed. 24 So that was	11	And depending on how you read that, you
 14 rates. 15 Or you could take the more, okay, well 16 change containment capabilities, we still want to have 17 a robust containment because that's a good barrier for 18 protection. 19 So it did kind of give us some pause in 20 terms of, okay, we're redefining it but we're not, you 21 know, this is Option 3, changing technical 22 requirements, but no changes to the functional 23 requirements unless fully risk-informed. 24 So that was 	12	could say, well, they really don't want to change much
Or you could take the more, okay, well change containment capabilities, we still want to have a robust containment because that's a good barrier for protection. So it did kind of give us some pause in terms of, okay, we're redefining it but we're not, you know, this is Option 3, changing technical requirements, but no changes to the functional requirements unless fully risk-informed. So that was	13	of anything, because they're not going to change flow
16 change containment capabilities, we still want to have a robust containment because that's a good barrier for protection. 19 So it did kind of give us some pause in terms of, okay, we're redefining it but we're not, you know, this is Option 3, changing technical requirements, but no changes to the functional requirements unless fully risk-informed. 24 So that was	14	rates.
17 a robust containment because that's a good barrier for 18 protection. 19 So it did kind of give us some pause in 20 terms of, okay, we're redefining it but we're not, you 21 know, this is Option 3, changing technical 22 requirements, but no changes to the functional 23 requirements unless fully risk-informed. 24 So that was	15	Or you could take the more, okay, well
18 protection. 19 So it did kind of give us some pause in 20 terms of, okay, we're redefining it but we're not, you 21 know, this is Option 3, changing technical 22 requirements, but no changes to the functional 23 requirements unless fully risk-informed. 24 So that was	16	change containment capabilities, we still want to have
19 So it did kind of give us some pause in 20 terms of, okay, we're redefining it but we're not, you 21 know, this is Option 3, changing technical 22 requirements, but no changes to the functional 23 requirements unless fully risk-informed. 24 So that was	17	a robust containment because that's a good barrier for
<pre>20 terms of, okay, we're redefining it but we're not, you 21 know, this is Option 3, changing technical 22 requirements, but no changes to the functional 23 requirements unless fully risk-informed. 24 So that was</pre>	18	protection.
21 know, this is Option 3, changing technical 22 requirements, but no changes to the functional 23 requirements unless fully risk-informed. 24 So that was	19	So it did kind of give us some pause in
22 requirements, but no changes to the functional 23 requirements unless fully risk-informed. 24 So that was	20	terms of, okay, we're redefining it but we're not, you
23 requirements unless fully risk-informed. 24 So that was	21	know, this is Option 3, changing technical
24 So that was	22	requirements, but no changes to the functional
	23	requirements unless fully risk-informed.
25 MEMBER LEITCH: That discussion of a minute	24	So that was
	25	MEMBER LEITCH: That discussion of a minute

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	or two ago seems to presuppose that the Commission is
2	going to erect a narrow approach rather than a broad
3	approach, to use the terminology
4	MS. MCKENNA: Yes, yes.
5	MEMBER LEITCH: And I guess, I don't know,
6	do we have such a signal?
7	MS. MCKENNA: Well, I think that was the
8	reason we presented the issue back to the Commission.
9	As we said, well we see signals on the one hand
10	suggesting narrow. We see signals suggesting broad.
11	And Staff, obviously, if we're going to go
12	one way or the other, we need to work harder on
13	certain issues and we wanted to get a sense of which
14	way, which direction do you want us to head,
15	Commission? And that was really the fundamental
16	reason for the paper.
17	MEMBER LEITCH: The comfort that Dr. Wallis
18	perhaps felt, would only be the case if a narrow
19	approach was taken.
20	MR. RUBIN: Excuse me, no, I don't believe
21	that to be the case at all. Either the narrow or the
22	broad approach the Staff believes would be predicated
23	on having a thermal hydraulic success for a break
24	above the new redefinition size.
25	We believe it would be a fundamental

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	change in our safety philosophy to, at least for the
2	working Staff, the working group to not have success
3	for this, for a break above the new definition size.
4	MEMBER LEITCH: Then perhaps I didn't quite
5	understand what is meant by a broad scope. I guess
6	maybe we'll get into that a little later on as we
7	proceed here?
8	MR. RUBIN: I could give you a capsule
9	description now, if it would help you, or we could
10	just wait.
11	MEMBER LEITCH: Yeah.
12	MR. RUBIN: Okay. The plant's design basis
13	accidents really provide the definition of the suite
14	of safety systems obviously for the plants.
15	You look at the Chapter 15, design basis
16	accidents, and to meet the acceptance criteria in the
17	general design criteria and the regulations and the
18	SRPs, what's needed is 2200 peak clad temperature and
19	the clad oxidation limits and the peak clad
20	temperature, excuse me, I already said that.
21	And the as meet pressure limit. To meet
22	those limits, you look at the equipment that you need.
23	The flow rates, the valve opening times, the diesel
24	generators, the loading times.
25	All the equipment propagates from the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1design basis accidents. You start taking design basis2accidents out of the plant, some of the equipment and3responses, you don't need anymore.4And they just, like the domino effect.5They start falling in and out of the plant design. A6broad scope rule, potentially, if you start taking7design basis accidents out or redefining them, like8dominoes, would go in and out of the plant.9It could be very broad. You could have10very large power outbreaks. Big changes to peaking11factors. Take diesels out. Take ECCS pumps out.12That would be a broad scope change if you were to take13a large break LOCA outage, you take many other14accidents out of the plant.15Narrow scope will perhaps you could say,16well, we're not going to allow any of that to happen.17We might change a large break LOCA, but we won't ECCS18pumps go out of the plant.19We might allow some peaking changes. We20might allow diesel start times to change.21allow, oh, valve opening times to change.22Well, the perception we get from the23industry is they're expecting a lot more for the cost24of buying into the program because of the PRA costs.25So it's unclear to us exactly what they're willing to		35
3responses, you don't need anymore.4And they just, like the domino effect.5They start falling in and out of the plant design. A6broad scope rule, potentially, if you start taking7design basis accidents out or redefining them, like8dominoes, would go in and out of the plant.9It could be very broad. You could have10very large power outbreaks. Big changes to peaking11factors. Take diesels out. Take ECCS pumps out.12That would be a broad scope change if you were to take13a large break LOCA outage, you take many other14accidents out of the plant.15Narrow scope will perhaps you could say,16well, we're not going to allow any of that to happen.17We might change a large break LOCA, but we won't ECCS18pumps go out of the plant.19We might allow some peaking changes. We20might allow diesel start times to change.21allow, oh, valve opening times to change.22Well, the perception we get from the23industry is they're expecting a lot more for the cost24of buying into the program because of the PRA costs.	1	design basis accidents. You start taking design basis
4And they just, like the domino effect.5They start falling in and out of the plant design. A6broad scope rule, potentially, if you start taking7design basis accidents out or redefining them, like8dominoes, would go in and out of the plant.9It could be very broad. You could have10very large power outbreaks. Big changes to peaking11factors. Take diesels out. Take ECCS pumps out.12That would be a broad scope change if you were to take13a large break LOCA outage, you take many other14accidents out of the plant.15Narrow scope will perhaps you could say,16well, we're not going to allow any of that to happen.17We might change a large break LOCA, but we won't ECCS18pumps go out of the plant.19We might allow some peaking changes. We20might allow diesel start times to change.21allow, oh, valve opening times to change.22Well, the perception we get from the23of buying into the program because of the PRA costs.	2	accidents out of the plant, some of the equipment and
5They start falling in and out of the plant design. A6broad scope rule, potentially, if you start taking7design basis accidents out or redefining them, like8dominoes, would go in and out of the plant.9It could be very broad. You could have10very large power outbreaks. Big changes to peaking11factors. Take diesels out. Take ECCS pumps out.12That would be a broad scope change if you were to take13a large break LOCA outage, you take many other14accidents out of the plant.15Narrow scope will perhaps you could say,16well, we're not going to allow any of that to happen.17We might change a large break LOCA, but we won't ECCS18pumps go out of the plant.19We might allow some peaking changes. We20might allow diesel start times to change.21allow, oh, valve opening times to change.22Well, the perception we get from the23industry is they're expecting a lot more for the cost24of buying into the program because of the PRA costs.	3	responses, you don't need anymore.
 broad scope rule, potentially, if you start taking design basis accidents out or redefining them, like dominoes, would go in and out of the plant. It could be very broad. You could have very large power outbreaks. Big changes to peaking factors. Take diesels out. Take ECCS pumps out. That would be a broad scope change if you were to take a large break LOCA outage, you take many other accidents out of the plant. Narrow scope will perhaps you could say, well, we're not going to allow any of that to happen. We might change a large break LOCA, but we won't ECCS pumps go out of the plant. We might allow some peaking changes. We might allow diesel start times to change. Well, the perception we get from the industry is they're expecting a lot more for the cost of buying into the program because of the PRA costs. 	4	And they just, like the domino effect.
7design basis accidents out or redefining them, like8dominoes, would go in and out of the plant.9It could be very broad. You could have10very large power outbreaks. Big changes to peaking11factors. Take diesels out. Take ECCS pumps out.12That would be a broad scope change if you were to take13a large break LOCA outage, you take many other14accidents out of the plant.15Narrow scope will perhaps you could say,16well, we're not going to allow any of that to happen.17We might change a large break LOCA, but we won't ECCS18pumps go out of the plant.19We might allow some peaking changes. We20might allow diesel start times to change.21Well, the perception we get from the23industry is they're expecting a lot more for the cost24of buying into the program because of the PRA costs.	5	They start falling in and out of the plant design. A
8 dominoes, would go in and out of the plant. 9 It could be very broad. You could have 10 very large power outbreaks. Big changes to peaking 11 factors. Take diesels out. Take ECCS pumps out. 12 That would be a broad scope change if you were to take 13 a large break LOCA outage, you take many other 14 accidents out of the plant. 15 Narrow scope will perhaps you could say, 16 well, we're not going to allow any of that to happen. 17 We might change a large break LOCA, but we won't ECCS 18 pumps go out of the plant. 19 We might allow some peaking changes. We 20 might allow diesel start times to change. 21 allow, oh, valve opening times to change. 22 Well, the perception we get from the 23 industry is they're expecting a lot more for the cost 24 of buying into the program because of the PRA costs.	б	broad scope rule, potentially, if you start taking
9It could be very broad. You could have10very large power outbreaks. Big changes to peaking11factors. Take diesels out. Take ECCS pumps out.12That would be a broad scope change if you were to take13a large break LOCA outage, you take many other14accidents out of the plant.15Narrow scope will perhaps you could say,16well, we're not going to allow any of that to happen.17We might change a large break LOCA, but we won't ECCS18pumps go out of the plant.19We might allow some peaking changes. We20might allow diesel start times to change.21allow, oh, valve opening times to change.22Well, the perception we get from the23industry is they're expecting a lot more for the cost24of buying into the program because of the PRA costs.	7	design basis accidents out or redefining them, like
10 very large power outbreaks. Big changes to peaking 11 factors. Take diesels out. Take ECCS pumps out. 12 That would be a broad scope change if you were to take 13 a large break LOCA outage, you take many other 14 accidents out of the plant. 15 Narrow scope will perhaps you could say, 16 well, we're not going to allow any of that to happen. 17 We might change a large break LOCA, but we won't ECCS 18 pumps go out of the plant. 19 We might allow some peaking changes. We 20 might allow diesel start times to change. We might 21 allow, oh, valve opening times to change. 22 Well, the perception we get from the 23 industry is they're expecting a lot more for the cost 24 of buying into the program because of the PRA costs.	8	dominoes, would go in and out of the plant.
11factors. Take diesels out. Take ECCS pumps out.12That would be a broad scope change if you were to take13a large break LOCA outage, you take many other14accidents out of the plant.15Narrow scope will perhaps you could say,16well, we're not going to allow any of that to happen.17We might change a large break LOCA, but we won't ECCS18pumps go out of the plant.19We might allow some peaking changes. We20might allow diesel start times to change.21allow, oh, valve opening times to change.22Well, the perception we get from the23industry is they're expecting a lot more for the cost24of buying into the program because of the PRA costs.	9	It could be very broad. You could have
12 That would be a broad scope change if you were to take a large break LOCA outage, you take many other accidents out of the plant. 15 Narrow scope will perhaps you could say, well, we're not going to allow any of that to happen. 17 We might change a large break LOCA, but we won't ECCS pumps go out of the plant. 19 We might allow some peaking changes. We 20 might allow diesel start times to change. We might allow, oh, valve opening times to change. 22 Well, the perception we get from the industry is they're expecting a lot more for the cost of buying into the program because of the PRA costs.	10	very large power outbreaks. Big changes to peaking
13a large break LOCA outage, you take many other14accidents out of the plant.15Narrow scope will perhaps you could say,16well, we're not going to allow any of that to happen.17We might change a large break LOCA, but we won't ECCS18pumps go out of the plant.19We might allow some peaking changes. We20might allow diesel start times to change. We might21allow, oh, valve opening times to change.22Well, the perception we get from the23industry is they're expecting a lot more for the cost24of buying into the program because of the PRA costs.	11	factors. Take diesels out. Take ECCS pumps out.
14accidents out of the plant.15Narrow scope will perhaps you could say,16well, we're not going to allow any of that to happen.17We might change a large break LOCA, but we won't ECCS18pumps go out of the plant.19We might allow some peaking changes. We20might allow diesel start times to change. We might21allow, oh, valve opening times to change.22Well, the perception we get from the23industry is they're expecting a lot more for the cost24of buying into the program because of the PRA costs.	12	That would be a broad scope change if you were to take
 Narrow scope will perhaps you could say, well, we're not going to allow any of that to happen. We might change a large break LOCA, but we won't ECCS pumps go out of the plant. We might allow some peaking changes. We might allow diesel start times to change. We might allow, oh, valve opening times to change. Well, the perception we get from the industry is they're expecting a lot more for the cost of buying into the program because of the PRA costs. 	13	a large break LOCA outage, you take many other
16 well, we're not going to allow any of that to happen. 17 We might change a large break LOCA, but we won't ECCS 18 pumps go out of the plant. 19 We might allow some peaking changes. We 20 might allow diesel start times to change. We might 21 allow, oh, valve opening times to change. 22 Well, the perception we get from the 23 industry is they're expecting a lot more for the cost 24 of buying into the program because of the PRA costs.	14	accidents out of the plant.
We might change a large break LOCA, but we won't ECCS pumps go out of the plant. We might allow some peaking changes. We might allow diesel start times to change. We might allow, oh, valve opening times to change. Well, the perception we get from the industry is they're expecting a lot more for the cost of buying into the program because of the PRA costs.	15	Narrow scope will perhaps you could say,
18 pumps go out of the plant. 19 We might allow some peaking changes. We 20 might allow diesel start times to change. We might 21 allow, oh, valve opening times to change. 22 Well, the perception we get from the 23 industry is they're expecting a lot more for the cost 24 of buying into the program because of the PRA costs.	16	well, we're not going to allow any of that to happen.
We might allow some peaking changes. We might allow diesel start times to change. We might allow, oh, valve opening times to change. Well, the perception we get from the industry is they're expecting a lot more for the cost of buying into the program because of the PRA costs.	17	We might change a large break LOCA, but we won't ECCS
20 might allow diesel start times to change. We might 21 allow, oh, valve opening times to change. 22 Well, the perception we get from the 23 industry is they're expecting a lot more for the cost 24 of buying into the program because of the PRA costs.	18	pumps go out of the plant.
21 allow, oh, valve opening times to change. 22 Well, the perception we get from the 23 industry is they're expecting a lot more for the cost 24 of buying into the program because of the PRA costs.	19	We might allow some peaking changes. We
Well, the perception we get from the industry is they're expecting a lot more for the cost of buying into the program because of the PRA costs.	20	might allow diesel start times to change. We might
23 industry is they're expecting a lot more for the cost 24 of buying into the program because of the PRA costs.	21	allow, oh, valve opening times to change.
of buying into the program because of the PRA costs.	22	Well, the perception we get from the
	23	industry is they're expecting a lot more for the cost
25 So it's unclear to us exactly what they're willing to	24	of buying into the program because of the PRA costs.
	25	So it's unclear to us exactly what they're willing to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	36
1	do for the price of the admission.
2	And Glenn will be getting into this, but
3	broad scope would be, as I said, major changes from
4	changing the design basis.
5	MEMBER LEITCH: And doesn't that take away
6	the mitigative capability beyond redefined, or breaks
7	beyond the redefined LOCA?
8	MR. RUBIN: Not necessarily. Because it
9	would be a subsidiary requirement put on top of the
10	allow changes. Remember, a design basis accident
11	requirement has all kinds of goodness requirements,
12	like qualifications, qualified models, oxidation, peak
13	clad temperatures, to the GDC requirements.
14	It's a very strict, qualified analysis
15	methods. And risk analysis, PRA best estimate
16	methods, we would say core coolable geometry, retain
17	the field in the vessel, don't fail the vessel, don't
18	fail containment, keep the core covered.
19	We want to have thermal hydraulic success
20	with best estimate methods, high confidence, in the
21	best estimate sense, that we have the core covered and
22	cooled and intact, but not qualified Appendix K
23	methods.
24	And there's a lot of space between best
25	estimate methods and full qualified methods.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	MEMBER LEITCH: Okay, that helps, thank
2	you.
3	MS. MCKENNA: And again that was the area
4	where I was just saying that you need to, I'm sorry.
5	MR. RUBIN: You're giving up a lot of
6	margin, but as long we have come confidence that
7	you're maintaining the vessel and the containment,
8	public safety is assured.
9	MEMBER BONACA: The answer to the question
10	in the beginning you implied that there wasn't, but in
11	reality you're going to best estimate. So therefore,
12	you're giving up a significant amount of margin.
13	MR. RUBIN: Yes, and we think that's
14	appropriate here.
15	MEMBER WALLIS: So what will happen is
16	instead of worrying about whether thermal hydraulic
17	codes are good enough for design basis accidents,
18	we'll worry about whether they're good enough for
19	evaluating PRA success point criteria.
20	MS. MCKENNA: Yes. But hopefully we won't
21	worry about them as much.
22	MEMBER WALLIS: We'll still have to assure
23	that they're good enough.
24	MR. RUBIN: Yes, sir.
25	MS. MCKENNA: Yes. Let me move on to just

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 a few more comments about the SRM. This is another 2 one that was in there about the licensees who seek the 3 benefit of the redefinition should use best estimate, 4 and I put in parenthetical, ECCS evaluation codes, 5 because that's where, in the SRM, it appeared under a section that was discussing changes to ECCS evaluation 6 7 methods, in particular the proposals on Appendix K and 8 other things. 9 So, again, we've read this one as saying, 10 well this would seem to suggest that in doing, as one 11 of those prices of omission of kinds of things 12 perhaps that Licensees who wanted to take this voluntary alternative would need to use, as 13 we 14 interpret it, 50.46 best estimate codes for 15 presumably, again, there is where you had interpret if whether that meant for the breaks being removed, the 16 breaks that remain, not sure. 17 So that was another area where the SRM 18 19 generated guestions in our mind about what the 20 Commission really wanted. MEMBER KRESS: Does that mean that they 21 22 will still have to use their best estimate code to evaluate a large break LOCA? 23 24 MS. MCKENNA: Again, I think --25 MR. KELLY: I wasn't clear to us exactly

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

38

	39
1	how the Commission wanted to apply this. And we've
2	indicated, in fact, to the Commission there are some
3	potential roadblocks to using best estimate codes
4	because we don't have a suite of approved best
5	estimate codes for small breaks.
б	So if they wanted it for small breaks,
7	we'd have to go ahead and get the industry to develop
8	those, submit them and we'd have to approve them
9	before we'd be able to actually apply this, if that
10	was the Commission's desire of how we would proceed.
11	MR. RUBIN: There's also, in fact, we just
12	had, there's a nuance here. These are approved best
13	estimate code, 50.46 large break LOCA codes.
14	And there may even be some space between
15	approved best estimate codes and unapproved best
16	estimate codes. Namely, there could be ones with even
17	less margin available that would be acceptable, as Dr.
18	Wallis indicated, that would give us appropriate
19	confidence in coolable core geometry.
20	MS. MCKENNA: The next one I think is one
21	that you'll all recognize this statement, I think,
22	that was in our SRM and certainly posed a considerable
23	challenge to us that, it was a statement. That once
24	the standards are in place, the PRA should be Level 2
25	internal and external initiating event, all mode PRA.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	It's just been subjected to peer review process and
2	submitted to and endorsed by the NRC.
3	That was obviously a very high standard
4	that was being placed on the PRAs that might be used
5	for this application. But, of course, as you are
6	aware, the Commission has subsequently provided
7	additional guidance on the area of PRA scope and
8	quality and is part of the action plan that those
9	considerations are being taken into account.
10	But this was something that was explicit
11	in the SRM on the LOCA redefinition and during the
12	course of our efforts over the last year of something
13	we were looking to see how we were going to try
14	fulfill.
15	And the last one, is another kind of
16	interesting point. Again, it gives some unique
17	aspects of this rulemaking compared to, perhaps,
18	others.
19	There was a statement, you know, the
20	direction was to do the frequency review and then on
21	a ten-year cycle to do some re-estimate of the
22	frequencies to see if they've changed significantly
23	with some, I think there was like a five-year look for
24	new mechanisms.
25	MEMBER KRESS: I have a question about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	that.
2	MS. MCKENNA: Yes.
3	MEMBER KRESS: The first comment, as
4	opposed to a question is, large break LOCA frequencies
5	are rare events. Ten years is not going to change any
6	estimate you have right now. That's comment Number 1.
7	Comment Number 2, it's been my impression that large
8	break LOCAs generally contribute relatively small
9	amounts to risk.
10	And, so when one talks about the frequency
11	associated with it, you're going to maybe choose a
12	frequency that still, the break size you choose is
13	contributing a small amount to the risk.
14	In terms of the LOCA contribution, not in
15	terms of changes to the plant. Is that the correct
16	interpretation of, I think, Number 1, large break
17	LOCAs are relatively insignificant in risk space, and
18	Number 2, even when you choose a new one, the large
19	break LOCA, the new LOCA you choose is probably going
20	to have a relatively insignificant contribution to
21	risk.
22	MR. KELLY: It's our understanding is, in
23	the PRA world and I think in most places, that because
24	we've actually designed the plants to handle large
25	break LOCAs, all the way up to the double-ended

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	guillotine break, that we're actually very happy to
2	see that they are small risk contributors.
3	And it's really other events normally that
4	involve multiple failures of equipment that tends to
5	drive the risk numbers. And it certainly would be our
6	intention, as we put forth to the Commission that it's
7	our thinking that we would expect it no matter what
8	happens, that the contribution to risk from LOCAs in
9	general, and in particular the larger LOCAs, those
10	that were removed from the design basis would continue
11	to remain small.
12	MEMBER KRESS: That, to me, implies that
13	just the thinking of looking at frequency and risk
14	contribution of LOCAs, in terms of redefining the
15	size, is the wrong way to think about it.
16	MS. MCKENNA: I think we've wrestled with
17	this because we kind of have a foot in both worlds.
18	One of the reasons I think you consider the issue with
19	respect to break size, is so that you know how to deal
20	with it in the design basis deterministic space and
21	you say these breaks are still in my design basis,
22	still handled the traditional way.
23	I still have my 50.46 analyses showing me,
24	and I know when to stop doing those. But you're
25	right, I mean, you know, you didn't need to use the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	break size. You could have used some other part of
2	the set of all the requirements to say I'm changing
3	this one and that's going to kind of get me to the
4	same place.
5	But that was the way it was kind laid out,
6	so that's how we've been trying to respond.
7	MEMBER KRESS: You'd have to respond in
8	SRM, the way it's put to you, I understand.
9	MS. MCKENNA: Yes, yes.
10	MEMBER LEITCH: I would have thought that
11	the third bullet would have said something about the
12	PRA would be updated every ten years, based on
13	operating and experience.
14	And if that made the CDF or LERF
15	unacceptable, that the changes would have to be
16	reversible. Why is it just based on LOCA frequency?
17	MS. MCKENNA: Well, we really, you know, I
18	can't speak to how the SRM got written. This was the
19	statement that was kind of there. I think in the paper
20	we were kind of speaking more along the lines than you
21	were.
22	That if you're looking at affects over
23	time, it may not be the frequency that changes, it may
24	be other things that change and how does that affect,
25	you know, this question of reversibility?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

44 1 It can be, you know, the concept was 2 introduced but, you know, I think we all hope that we're not going to ever be in a space where we 3 4 actually have to, quote, reverse something that we're 5 not so, either that the frequencies aren't going to change that dramatically or that we weren't so close 6 7 to the edge on where we, where the changes were made, that some change in the frequency would take it from 8 9 okay to not okay. 10 But, yes, we did, if you saw in the 11 discussion of reversibility, we were asking that 12 question about, well, suppose it's something else that's driving it. 13 MEMBER LEITCH: Right. 14 15 that, MS. MCKENNA: does Does that 16 possibility apply? 17 MEMBER KRESS: But, along those same lines, you know, I might have expected to see something like, 18 19 there is a risk level or maybe even a balance between 20 CDF and LERF that's unacceptable to us, including 21 uncertainties. 22 And therefore, if at some point in time 23 you update and change PRA and plant conditions, show 24 that you've gone outside those boundaries, then you 25 must do something to get back in.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	Not necessarily reverse any changes we do
2	to this, but you must do something to your plant to
3	get you back there. And I don't care what it is, as
4	long as it does the job and does it without a lot of
5	uncertainty associated with the way they do it.
6	That seems to me like that would be a more
7	reasonable thing to do, in terms of risk and
8	MR. KELLY: That's what we propose to the
9	Commission is how we would interpret reversibility.
10	MEMBER KRESS: Yeah, okay, so it doesn't
11	necessarily have to be reversing a particular change.
12	It might be
13	MR. KELLY: No, we would
14	MEMBER KRESS: I believe something else
15	to get you back.
16	MR. KELLY: And one could do it by
17	physically reversing the change, or one might choose
18	to perhaps change procedures, modify other equipment
19	or the things in a plant such that you achieve the
20	same type of
21	MEMBER KRESS: Except, you know, it's
22	always this thing. You don't want to use procedures
23	to, instead of hot wiring the stuff.
24	But, you know, the other thing that
25	bothers me is I wouldn't have cast this in terms of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	LOCA frequencies. I'd cast it in terms of some
2	acceptable, unacceptable risk.
3	MEMBER WALLIS: I think it has to be cast
4	in terms of PRA and its reliability and believability.
5	All they need is a couple more Davis Besse's and
6	people will say, look, you didn't know enough about
7	these things, you better go back and be more
8	conservative.
9	And that's a perfectly good reason for
10	changing your philosophy.
11	MR. KELLY: I wanted to go back to Dr.
12	Kress' comment about in ten years you're not going to
13	expect to see and changes in the frequency.
14	We certainly hope that we don't change the
15	LOCA and do any real experience associated with large
16	break LOCAs that would cause us to change the
17	frequency.
18	However, we have seen that there have
19	been, over the years, a number of unexpected
20	degradations in piping, that had not been predicted.
21	And I believe that this ten year period that the
22	Commission chose, was to act as a monitoring device to
23	make sure if these type of new processes evolve and
24	become apparent to us, that we would then take that
25	into account, in our prediction of the frequency of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	these LOCAs. And if the new numbers turned out to be
2	much higher, then we'd want to go back and potentially
3	reverse some of these changes that we've made.
4	MEMBER WALLIS: Didn't someone say it would
5	be seven years? Someone presented one of these
6	things, every seven years there's a new materials
7	degradation.
8	MR. KELLY: Yes. Mike Mayfield has noted
9	that there seems to be a periodicity to the occurrence
10	of new phenomena.
11	MEMBER FORD: Could I ask a question on
12	the word unacceptable? Could you put a metric on
13	that?
14	MS. MCKENNA: Well, I think this was part
15	of the challenge to the Staff to determine what would
16	be unacceptable, but it kind of goes back to what's
17	the cut off or what was acceptable in the first.
18	And then what might lead something to
19	become unacceptable.
20	MEMBER FORD: From the conversation I've
21	been hearing, would it not be, unacceptable would be
22	a delta CDF which contravenes 1.174. And then how
23	that feeds back into the LOCA frequency? Is that not
24	
25	MR. KELLY: There potentially are two ways.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	The way we presented the concept to the Commission
2	about how the rule might be written. There are
3	potentially two ways that it could occur.
4	One way it could occur is if something
5	were to happen, new experience to evolve. We've got
6	a better understanding about some aspects of pipe
7	break frequency.
8	It would cause us to believe that the
9	frequency was much higher. In that case, we might go
10	back and say that's a reason to reverse it.
11	The second thing might be that there were
12	some changes that might now actually, the other way of
13	looking at it is there could be changes that occur
14	that could affect the changes in core damage frequency
15	that will predict it based on how they've modified the
16	plant, due to, because, you know, just because we take
17	something out of the design basis, that doesn't change
18	anything in the plant.
19	Once you've changed the design basis and
20	now you, the utility has the go ahead to propose
21	making changes, and make changes to the plant. You
22	don't have to physically change the plant, but you're
23	going to modify your core damage frequency.
24	As so then there are other things that
25	might occur that would cause us, you know, maybe we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

thought that core damage frequency change is only going to be ten to the minus six, and some big thing occurs and it's five to the minus, ten to the minus five.

5 Well, maybe we don't like that and we think that they should go back and change that. 6 7 Exactly what the numbers are and how that would be, still has to be determined, but it would probably be 8 9 frequence of LOCAs and some kind of change in risk. MEMBER FORD: I'm going to follow up on the 10 11 comment that Dr. Wallis made about the ten years, and 12 your reply. If the concept is that ten years is going to be the buffer to cover what we don't know about, 13 14 for instance, materials degradation.

I think it's optimistic in the extreme. I've got a horrible feeling that well before ten years is out, we're going to have another equivalent to Davis Besse of one sort or the other. The history is telling us that.

20 And so if that's the reason for the ten 21 years, it's very optimistic in my view.

MS. MCKENNA: Again, I think that this was perhaps in a statement that in ten years there should be kind of this comprehensive kind of re-estimation. And there was a second sentence about a five-year

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

	50
1	look.
2	And I think Rob is probably going to get
3	into this a little more later, in fact, maybe now.
4	MR. TREGONING: Rob Tregoning, Staff. I
5	hesitate getting on the mic now, since I'm going to be
6	on the mic most of the afternoon. But just to make
7	this clear, I think what Eileen and Glenn said is both
8	right.
9	We're setting up procedures to make this
10	more of a continuous evaluation. It's not like we're
11	going to bury our head in the sand and then every ten
12	years pull it up and see if aging has affected us to
13	a greater extent than we already have.
14	Like Eileen said, to ensure that we do a
15	comprehensive frequency re-evaluation every ten years.
16	But if we see things, and the other thing, it will
17	give us a chance to build up some, there's two things
18	that could affect LOCA frequencies.
19	One, unanticipated aging or aging that we
20	didn't characterize properly. The other thing that
21	could happen is there could be allowable plant
22	changes, and changes in plant operation that might
23	develop a different experience base and we might
24	realize that our experience base of data has changed
25	in some sense.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	So we need to look at both of those
2	aspects, and that's why I think the ten years is
3	sufficient for that. But, we certainly have to
4	maintain vigilance and on a continual level to
5	evaluate degradation and try to understand its
6	implications when it surfaces in the plants.
7	So that's something that certainly plants
8	are to continue to be as vigilant as we can be to make
9	sure that we're assessing these challenges as they
10	arise.
11	MEMBER BONACA: But one thing that happened
12	was that Davis Besse was not considered, and in the
13	elicitation process, was excluded. And the question
14	I have is how many other similar events are going to
15	be excluded?
16	I mean should you have a repeat of the
17	degradation, say, due to bolting, for example, in the
18	head that results in some leakage, etcetera.
19	At some point we'll have to face the fact
20	that in fact some of the electrical and system
21	degradations and resulting in leakage is coming from
22	other kind of sources.
23	I mean you just, I'm trying to wrestle
24	with that issue because, you know, I may come and have
25	some event five years from now, while you have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	something similar and has nothing to do with the
2	present destinations process.
3	And say, well, you know, we can't account
4	for that, so we do not include it. And then I'm going
5	to worry about what Dr. Wallis was pointing out
6	before, some deliberate events that might cause
7	leakage.
8	And yet, I'm not going to include them.
9	So I'm wrestling with those events that we are
10	excluding right now from the database. And I
11	recognize that there's no way to include that now.
12	But still I'm left with
13	MEMBER FORD: But surely you can include
14	it, Mario. For instance Davis Besse, fortunately it
15	didn't give rise to a large break LOCA or medium break
16	LOCA.
17	But you could reasonably say that within
18	the next six months it might have done it. So surely
19	if that occurred, surely that should fit in here now.
20	Maybe that's a question for this
21	afternoon.
22	MS. MCKENNA: I think that one might be.
23	MR. TREGONING: And again, at the risk of
24	getting too much into this afternoon, we did consider
25	Davis Besse-type events and based on the current state

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	of knowledge, what people thought were potential
2	failure modes and mechanisms that could occur in the
3	future.
4	And it doesn't mean knowledge is perfect,
5	where we're standing now trying to project. And in
6	the elicitation we asked people to project all they
7	way out to the end of license extension.
8	Well, that is going to be a difficult
9	process. But what we ask people to do, based on what
10	we know now, based on our operating experience, based
11	on not only degradation that we've seen in the plants,
12	but information that people have based on laboratory
13	experiments where we've tried to project degradation
14	into the future.
15	What's your sense for how these things are
16	going to evolve and the challenges that we could face
17	in the future. And I think the only point of this
18	last bullet is to say, we certainly recognize that the
19	current knowledge isn't perfect.
20	If we were able to actually predict what
21	was going to happen in 30 years, we'd probably all be
22	in a different line of work. But given that, let's
23	make sure we have a mechanism in place, that we can
24	continually re-evaluate these things.
44	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	thinking every so often, to take into account, again,
2	things that maybe we didn't consider because we just
3	didn't think it credible at that time.
4	MEMBER FORD: Let me ask you a program
5	management question. Which takes into account this
6	topic. The research has got proactive materials
7	assessment program on the books, at least, which will
8	answer some of those questions you just brought up.
9	In this overall risk-informing 1046, is
10	the timing such that outputs from that proactive
11	materials management program will be input, inputted
12	to this or would this particular program on 50.46,
13	will be finished off the books for the next three
14	months or whatever it might be?
15	MS. MCKENNA: I was, certainly we're not
16	going to be done in the next three months, I think
17	that's a fair statement. We're trying to keep
18	cognizant of all the activities that the Office of
19	Research is doing.
20	Certainly the frequency work that Rob is
21	doing is a very important input to what we're doing,
22	and he'll be discussing, you know, the state, where
23	he's at in terms of having that be complete.
24	If there are other things that bear on
25	this, you know, obviously that's something we will

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

I	55
1	need to consider. But I think as you saw from our
2	paper, we're a long way from having, having this
3	project complete.
4	There's a lot of issues and work, not just
5	in materials areas, that we think we need to develop.
6	So we're trying to understand what all those things
7	that are doing and feed them in and if there's
8	additional information we need, to identify that, so
9	we can go out and get it.
10	But, so that's, I think that's kind of my
11	response on that.
12	MEMBER FORD: Okay, so this is going to go
13	on for quite some time, so inputs from this proactive
14	management could be put into it?
15	MR. KELLY: Well, I think that, I think you
16	have two different aspects here. I think as we're
17	developing the rule, as we're doing the part that
18	we're going to take into account all the information
19	the research gives up that, you know, our Division of
20	Engineering provides to us, so we can take into
21	account all of this and try to craft a good a rule as
22	we can at the surest of public health and safety.
23	And then beyond that, as time gives us
24	additional history and we learn additional things, we
25	will build feedback mechanisms into it that would, as

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	56
1	we say, if we see something that seems to require
2	reversibility, then we want to provide that ability so
3	that, you know, if we get knowledge it tells us, you
4	know, we should have done things differently, then we
5	can go back and change things.
6	MEMBER LEITCH: Have you thought about this
7	reversibility as being a, on a fleet basis or an
8	individual plant basis? For example, let's just say
9	that Davis Besse causes us to change our perception
10	about LOCA frequency.
11	And some other plant says, well, yeah,
12	I've got a good boron-controlled program, inspection
13	program. In fact, I've just replaced my head. Why
14	should I be penalized for something that happened at
15	another plant that certainly could never happen at my
16	plant?
17	How do you, how do you plan to
18	MR. KELLY: My expectation
19	MEMBER LEITCH: why should I be
20	reversed, so to speak, because of something that
21	happened up the road.
22	MR. KELLY: I think it would depend on what
23	was the mechanism that's involved. If it's a
24	mechanism that is, would involve all the plants or
25	maybe involve all the PWRs or all the BWRs, then it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	57
1	may be appropriate, on a generic basis, to require
2	them to deal with this on a reversibility basis.
3	If it's one where we see that there's
4	something that maybe, there's certain aspects of a
5	design that causes it to be more vulnerable. Or maybe
6	some plants have more mitigating capabilities than
7	other plants, and therefore they wouldn't have to,
8	they wouldn't have such a change in core damage
9	frequency or risk associate with whatever this new
10	mechanism is.
11	Then they might be okay. They wouldn't
12	have to do anything. So I think it would depend on
13	whatever the actual mechanism was.
14	MEMBER LEITCH: I see that as a potentially
15	contentious issue down the road.
16	MS. MCKENNA: Well, I think that's one of
17	the reasons we, I think that whatever this is going to
18	be, it needs to be thought out and developed and
19	written down so that we can have the contention now as
20	to what the process and the requirements are, rather
21	than if it comes up in the future.
22	Because clearly, as he was indicating,
23	Glenn was indicating is that, you know, if you recall
24	this has been a voluntary alternative and we don't
25	know yet what changes to an actual plant might

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	actually result from this.
2	And so then when you get new information
3	about, well, this potential LOCA initiator has
4	increased substantially. You know, did anything in
5	the plant that was changed, you know, how much is that
6	really going to affect those set of sequences and the
7	change that might occur there, as opposed to another
8	plant that might have made other changes.
9	And secondly, whether that particular
10	change in mechanism or experience applies to those
11	plants. So, it's not a, I don't think it's a simple
12	question. I think this kind of drives to a need for
13	some process, if you will, in the rule.
14	Whether that's a strict reversibility.
15	Whether it's this, some kind of cumulative impact type
16	of, you know, as I said, you know that there some
17	level you can't go beyond whatever is driving you
18	there. And that if you reach that, you have to take
19	some action.
20	Those are the kinds of questions that we
21	are, are thinking about.
22	MEMBER LEITCH: Can this reassessment be
23	done by the Licensee? In other words, are we implying
24	here that a ten year update of the PRA is implicit in
25	this process?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	MS. MCKENNA: Well, I think statement
2	really was a statement for the Staff to look at the
3	frequencies. Depending on the results that might lead
4	us to do something with the Licensees, in terms of
5	what PRA updating requirements will be necessary.
6	I don't think we've determined that. I
7	think that's going to come out of some of the PRA
8	quality type of initiatives.
9	MEMBER KRESS: Least, lest we leave you
10	with the impression that we all think there's PRA
11	problems with things we've left out in Davis Besse and
12	degradation mechanisms. That's the whole completions
13	issue that's been around since WASH 1400.
14	And some of us think you deal with it as
15	best you can, in PRA space. And with respect to
16	sabotage, I think you can do some things in design
17	basis space to deal with sabotage, but not very much.
18	And that's why I think we tend to do a
19	separate PRA sabotage and deal with it as best we can
20	outside of the design basis, but while still making
21	the design robust.
22	So I'm not as concerned as some others
23	about that particular type of event. But given that
24	preamble, I have a question about mitigation
25	capability here.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	And if one had in its interpretation a
2	defense in depth, that certain safety functions, one
3	of which would be ECCS, are so desirable to have and
4	maybe uncertain in PRA space, that you want to assure
5	that there's redundancy and diversity in those.
6	Now what I would expect one then to expand
7	on it and say given this large break LOCA definition
8	I've come down upon, I only need one of these. But
9	I've got two of them.
10	Wouldn't that almost automatically take
11	care of your mitigation capability for the larger
12	break LOCAs? Or could, I think?
13	MR. KELLY: There's, depending on any
14	additional changes that were made to the plant, if I,
15	let's take a hypothetical situation.
16	I could take, say, all breaks above six
17	inches and say that those breaks are now
18	MEMBER KRESS: In the some other space.
19	MR. KELLY: in the new space. And it
20	turns out that I may be able to get away with,
21	therefore, for all of those other breaks, with only
22	one train, you know. Because I don't need to perhaps,
23	I don't have to consider single failure anymore.
24	Perhaps the, I have put enough reliability
25	with my one train for that. I probably still need two

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	trains to handle my breaks below six inches because I
2	still don't have single failure and a loss of off-site
3	power, coincident loss of off-site power.
4	But let's just say that perhaps I could
5	significantly extend the outage times on some of the
6	other equipment. I think under those circumstances on
7	the, on the lesser train, that perhaps one train you
8	might be able to, as I say, extend outage times and
9	things like that and that would potentially be
10	acceptable.
11	Where you could run into problems is now
12	if I've changed, if I've taken these breaks out of my
13	design basis, I may be able to therefore make
14	significant power uprates that, and so that I still
15	retain myself within the design basis, that I still
16	have adequate peak cladding temperature, but what's
17	going to turn out is that now for the larger breaks,
18	I may no longer have adequate ECCS capability to
19	prevent these breaks from going to core damage.
20	So that's something that we have to look
21	at, is how you would handle that type of situation.
22	MEMBER KRESS: That would be the one that
23	would worry me.
24	MR. KELLY: And there may other things that
25	we haven't even thought about that are other areas of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

things that they could change. But these are the type of things that we have to consider when we're looking at, because there, you know, I haven't, I haven't reduced my ECCS capability, but what I've done is I've increased my requirements on the ECCS capability to have an okay result.

7 MEMBER KRESS: And I think that's a real 8 legitimate worry. I made a, I can only call it a back 9 of the envelope estimate that for some plants, if went 10 down to a six inch size for the break, that could mean 11 as much as 40 percent power uprate, and still stay 12 within the ECCS requirements.

13And that's a significant change. So14that's the one that would worry me more than anything.

MR. KELLY: And what that does is it also, the other thing it does, if you had that power uprate it would probably make things happen a lot faster because --

19MEMBER BONACA: But you'll still be20probably, be limited, I mean, at some point, you have21some limits of how far you can go up?

22 MR. KELLY: Ordinarily it would be, that 23 would be the expectation.

24 MS. MCKENNA: And some other break would 25 become limiting in 2200 and there you are.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	63
1	MEMBER KRESS: Yeah, most of the plants
2	could stand that anyway because the steam generator
3	MS. MCKENNA: Well, yes, obviously there's
4	other aspects that have to be brought in. Okay, I
5	think we're finished with just the background on what
б	we were facing with the SRM.
7	So then the question is what are we going
8	to do about that? As I mentioned, we have a working
9	group that had been originally developed to work on
10	some of the GDC 35 functional reliability kind of
11	tasks.
12	When we got this SRM that had this, you
13	know, kind of put more emphasis on, they get the large
14	break redefinition and, you know, a very short time
15	frame is what the Commission desired.
16	We kind of refocused the efforts of the
17	working group on this task. And I think the first
18	thing we did was go through the SRM and try to
19	understand what it was telling us.
20	Some of the implications of it. If it
21	really says redefine the break this way, and carry it
22	through, what would that really mean? And what kind
23	of information would we need to support that?
24	And what kind of criteria might we need to
25	help us make decisions as went along. So that was a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	fairly intensive effort to really try to delve in.
2	And as I mentioned, we did come to some
3	cases where we couldn't agree really as to what really
4	was the Commission's intent? You know, we could read
5	it, some people read it one way, some people read it
6	the other way.
7	And some of those areas, the ones you see
8	in the paper, we kind of went back finally and said,
9	well, you know, Commission, we really would like to
10	get some further guidance on these issues where, you
11	know, we really aren't sure we're fully understanding
12	what the Commission had in mind.
13	I think the other thing we tried to do was
14	to, since this is supposed to be a voluntary
15	alternative, you know, maximum break size, we could
16	try to get some sense from the industry of what kind
17	of changes are process of a rule might they be
18	thinking of?
19	And, again, I think there was some mixed,
20	people has different ideas. There were some that were
21	looking for, maybe broader changes, more extensive
22	changes than others. And, you know, there were,
23	obviously power uprates is a considerable area of
24	interest because it has certainly a lot of value for
25	a Licensee who could take advantage of that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

And in some cases, they may, large break may be the limiting factor with respect to those. But certainly there were other things that might give more flexibility and some of those kinds of things, Glenn was alluding to, that, you know, could also provide benefits.

7 So we did have some discussion about, and 8 also this kind of, you know, well what kind of, you 9 know, is this a, is this a, do we all get a process 10 where the Staff is reviewing every single change?

11 Or is there some way to set it up that you 12 can get reviewed once and then, you know, kind of have 13 an envelope within which a Licensee could make changes 14 provided that certain criteria were met.

Because there's obviously certain advantages one way or the other, in terms of how much review time or, you know, that might be involved.

So that led us into the last bullet on this page, which we gave some thought to, well, what kind of rule might we write? I mean there was this, okay, we could go redefine the definition somewhere, but then there was all this, well, we need to be thinking about, well, what are these criteria that might need to be satisfied.

You know, where are we going to put

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

requirements on PRA and how are we going to address these different things? And do we want to stuff them into, you know, 50.46? Or does it make more sense to, kind of like we did in 50.69, to say well let's kind of make a new place and put down here's a new way of doing this that here's what no longer applies and here's what now does apply, and put it down in that kind of fashion.

9 And then also define whether, okay, here's 10 the specific changes you can make. The kind of 11 changes that you could not make or the criteria that 12 would be used to judge whether or not the changes in 13 a particular case would be acceptable.

14 Part of that, obviously, would be this 15 question of what the new break size was going to be. 16 So, and I think Glenn mentioned this earlier, that we were trying to do this in a very integrated kind of 17 manner, you know, to be risk-informed, to bring in all 18 19 the considerations about defense and depth and 20 cumulative risk and all these things so we're not just 21 relying on, you know, the low frequency of the 22 initiator.

And, as I said here, adequately monitored and controlled over the lifetime. So, as things change, are the processes there to make sure that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	67
1	we're getting the outcomes that we're looking for.
2	In the course of doing that, we kind of
3	came to some of these issues that you see in the
4	paper. Like mitigation is a key one. How are we
5	going to do this? Do we take it out of the design
6	basis space and put it somewhere else, what is that
7	going to be that new safety envelope, if you will,
8	that says you can go this far and no further in this
9	area, because we still want mitigation.
10	And so that was as an example of some of
11	these issues and Glenn will be getting into those in
12	a little more detail.
13	And we also, as I think I alluded to
14	earlier, in some cases we said well maybe there's some
15	additional technical work and research that we might
16	want to do to look at some of these things.
17	And there were some activities initiated
18	to look at the, either thermal/hydraulic affects, if
19	you will, if you're making power uprates or other
20	potential, you know, accumulator changes, things like,
21	that as well as risk assessments of how might that
22	translate for some representative plants.
23	Kind of give us an idea, you know, of
24	where we might want to go with these things.
25	Obviously, we'll have to consider plant specific

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 aspects, but, you know, if we were going to define, 2 for example, particular changes that one might could 3 or could not do, we would have some sense of what 4 those effects are.

5 And so that work is, I'm going to say 6 power uprates is a particular area. So that work is 7 ongoing, but is not yet complete. Going back to the 8 question over there, is that we do need to bring the 9 pieces together at the right point and time, when 10 there work is done and when we're ready to move 11 forward on this.

12 MEMBER FORD: Are we going to see anything 13 on this issue, like hydraulic --

14 MS. MCKENNA: At some point n the future. 15 The work is not yet complete, so there are no results 16 to present as yet. But at a later date, we will be sharing that information when it's available. 17 As I said, we had this tasking to prepare the proposed rule 18 19 and we were wrestling internally with, well, okay, 20 what kind of rule could we really do that would be 21 responsive and that would maintain the principles that 22 we were talking about.

And we finally reached the point of saying, well, we're not sure we can really deliver on the scheduled rule that is responsive because of a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	number of the issues that I've already mentioned.
2	And we had a briefing with some of the
3	Commission Assistants and we discussed the issues that
4	Glenn will be sharing with you in a moment.
5	And then we, and we got kind of this sense
6	of the Commission, well bring these policy issues to
7	us, we would like to give you that guidance. So we
8	did turn around then, in relatively short term from
9	that time, and put forward the paper, the SECY 04037
10	that tried to weigh out for the Commission what we saw
11	as the policy areas.
12	Where we wanted the direction. And also
13	indicating that one of the reasons we needed that
14	sense of which way should we go, was to help us solve
15	the technical issues in the appropriate manner.
16	So that's kind of what led to the paper
17	that we sent forward. At this point, I think maybe
18	Glenn and I will switch chairs, perhaps.
19	MEMBER FORD: Could I ask a question?
20	MS. MCKENNA: Certainly.
21	MEMBER FORD: It seems that we're hearing
22	a lot about the impact on the regulatory issues, but
23	not an awful lot in terms of data, assumptions,
24	etcetera, on the technical issues.
25	Has anyone done a kind of back of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	paper envelope calculation as to how much time it's
2	going to take to overcome these technical issues or
3	resolve these technical issues?
4	Especially with the uncertainty associated
5	with them. Has anyone done that? To see whether you
6	can meet the goal in a reasonable time period?
7	MS. MCKENNA: I think we've, when
8	identifying the activities that we've laid out a
9	little bit later in the slides that were discussed in
10	the paper that we saw preliminary assessments of, you
11	know, how complex, you know, do we think this could be
12	done in months versus years?
13	We haven't finished that work. We haven't
14	laid it all down a page and said, you know, this one's
15	going to take three months, this one's going to take
16	two months. This one takes three months, but it can't
17	be done until the first one is done.
18	And therefore, you know, the total time
19	line is X. But that's the kind of work we are doing.
20	MR. RUBIN: It's also, Mark Rubin, again.
21	It's also predicated on the guidance from the
22	Commission on which approach they want, broad versus
23	narrow. It's a lot easier on narrow, it's much harder
24	on broad.
25	And I think we said we were able to go up,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	our rulemaking plan or action plan within six months?
2	MR. KELLY: Six months.
3	MR. RUBIN: Of being told which approach to
4	take.
5	MR. KELLY: I just wanted to make one
6	comment to something that may help, make things a
7	little bit clearer about the narrow and broad rule.
8	I think as we envision the narrow rule,
9	not only was it narrow but our expectations were that
10	it would fairly prescriptive in a sense that might
11	well say, you know, these are the following things
12	that you're able to change and you can only change
13	these things.
14	And that's part of making it narrow or
15	making it possible to do something of an easier basis.
16	Our expectation for the broad rule would that it be
17	more of a process-oriented rule.
18	Whereby one would build into the process
19	the checks and balances that are necessary to assure
20	that you get an appropriate result. This would, in
21	turn, require a lot more effort on the staff then
22	potentially the industry, to assure that you're
23	getting good results.
24	But it also would give much, much more
25	flexibility than the narrow approach. So I have a, in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	72
1	looking at these issues that came up as we tried to
2	respond to the SRM, we came up with a number of
3	tricky, technical and regulatory issues that I'm going
4	to talk to you about.
5	The first is, in essence, what are really
6	the right criteria that one should choose for
7	determining what's the appropriate new maximum break
8	size.
9	As you know, as Rob is going to be talking
10	about later this afternoon, there's a elicitation
11	process that's going to used to develop these new
12	numbers.
13	And these numbers will be the latest and
14	best estimates that we have for what are the LOCA
15	break frequencies. We need to understand, given that
16	they're the best that they are, how much confidence
17	should we have in those numbers, even though they're
18	the best?
19	Is the best good enough in this particular
20	case to allow us to modify the regulations? Or given
21	that there's going to be a significant uncertainty,
22	how much is the uncertainty and then how do we take
23	into account that uncertainty when we set some level
24	at which we want to say, okay, you know, breaks above
25	this can be excluded and breaks below this should be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	included?
2	I think that that's going to be a very
3	challenging and interesting evaluation to determine
4	that.
5	MEMBER SIEBER: How far along are you in
6	the process of determining the large break LOCA
7	frequency?
8	MR. KELLY: Well, Rob will be talking about
9	that. I think, I believe he'll be telling you that
10	the initial numbers have been put together. That
11	there, there's some additional work to be done, but a
12	lot of the documentation of the work has already been
13	performed.
14	MEMBER SIEBER: So if I wanted to ask
15	detailed questions, I should wait?
16	MR. KELLY: Yes, please.
17	MEMBER KRESS: Are you giving any
18	consideration to allowing individual plants to choose
19	their own break size?
20	MR. KELLY: We've, that's a potential.
21	They could come out of it, but we have indicated that
22	we think that that's not the way to go, because that
23	would be a regulatory nightmare with everybody having
24	different break sets.
25	MEMBER KRESS: There would be some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	problematic, but it could be done.
2	MR. KELLY: Yes, it could be done. It
3	would be a lot more work for us and for the inspection
4	work that would be done. But it has, it potentially
5	could be done.
6	My expectation
7	MEMBER KRESS: But for right now, you don't
8	think that's a way to go?
9	MR. KELLY: That's correct. Our thinking
10	is, right now is that we would probably break it out
11	and maybe you'd take PWRs and you could take maybe old
12	and new BWRs. Or maybe you'd take certain LOOP, PWRs,
13	there are a lot of different ways that it could be
14	done.
15	And you may even have, I guess you could
16	have a different break size, say for like in BWRs with
17	recirculation, movement and everything else in the
18	plant.
19	MR. RUBIN: This is very preliminary still.
20	We'll be looking at the work from research. But your
21	point, you know, is absolutely correct.
22	You could make it absolutely risk-informed
23	and generate it, back it out of the PRA, it could be
24	done that way. But every time the period changes the
25	break size definition changes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	So, it gets pretty confusing. So, maybe
2	just in the name of simplicity, develop based on the
3	frequency.
4	MEMBER KRESS: Well, you might avoid the
5	problem if every time the PRA changes your break size
6	changes by specifying a desired level of confidence in
7	your selection in the break size.
8	But I don't know how you arrive at what's
9	the right level of confidence, because that has to be
10	based on what it does to the risk and once again
11	you're back into that mismatched space
12	MS. MCKENNA: Well, I think that's what we
13	talked about earlier, where there's kind of a part of
14	the process where you're selecting the break size and
15	using it in a particular space. But there's also the
16	part of the process where are, absolutely have things
17	like plant changes and what is the impact of risk of
18	those plant changes, given that the change in break
19	size, if you will, has enabled those kind of changes
20	to occur.
21	Because before you would have said, you
22	can't make this one because you have to be able to
23	mitigate that double-ended break in this particular
24	way.
25	Now that requirement is no longer on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	table. Here's a change that might considered, but you
2	need to consider it with some other criteria in mind,
3	and make sure that you don't lead to something that
4	you weren't expecting.
5	MEMBER FORD: I must admit I don't
6	understand why you're so against this plant-specific
7	decision making. For instance, surely analyses have
8	already been done on the difference in the probability
9	of failure for, say a 316 nuclear-grade pipe versus a
10	304 pipe.
11	So if a plant has elected to this, they
12	know, reasonably well, that the probability of pipe
13	failure will be much lower if it went through this
14	mitigation action.
15	So why are they being discriminated
16	against, if you like, in this decision making process?
17	MR. KELLY: Well, in some cases, I mean
18	that may, it could be one possibility of the way we do
19	it. But there's also a trade off on resources that it
20	would take to do this work, and for us to review it.
21	Also, it's not, and you'll have to talk to
22	Rob about the extent to which we have developed
23	frequencies within different typing materials and
24	that, you know, if it goes down to the actual
25	stainless steel, you know, which alloy they're using.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	I don't think that they're probably down
2	at that level. But
3	MEMBER FORD: This afternoon's discussion
4	is going to be really good.
5	MR. KELLY: Yes, yes. And I exhort you to
6	just think those all up for Rob.
7	MEMBER KRESS: Well, let's talk about this
8	Staff resource issue just a minute. If I specify some
9	size break that's the new definition, and that implies
10	okay, I've got this new break. I'm going to do this,
11	this and this, changing my plant.
12	You've got to review all those, right?
13	MR. KELLY: That's correct.
14	MEMBER KRESS: Now, how is that more
15	resource intensive or less resource intensive than
16	saying, he's going to come in and say, this is the
17	size break I want to use and based on that size break
18	I'm going to do this, this and this. Isn't that the
19	same review?
20	MR. RUBIN: No, part of it is, Dr. Kress,
21	personally I don't believe it's a research issue, I
22	think it's a regulatory consistency issue.
23	I think having different design basis
24	LOCAs for 103 plants really introduces some lack of
25	consistency, some lack of public perception that would

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	make our job more complex than it needs to be.
2	I think the way we'll be approaching this
3	we'll be very risk-informed. We'll allow plant unique
4	features to propagate appropriately in a risk-informed
5	sense through the plants, and we don't really penalize
6	them by using the direct LOCA frequency curves
7	developed by the Office of Research.
8	And I don't think we lose much for making
9	the primary determination of the break size frequency
10	base to start the process, and then let it propagate
11	through being risk-informed through the rest of the
12	process.
13	We could use your approach, but I don't
14	think we lose much by starting with the frequency-
15	sized curves.
16	MEMBER KRESS: Well, I think that argument
17	is better than the resource argument.
18	MR. KELLY: The second technical area that
19	I wanted to talk about is this, I think it's important
20	for us to understand, what are the real practical
21	effects of taking design basis events, formerly design
22	basis events, out of the design basis and how does
23	that propagate through all of the criteria method we
24	have.
25	And as I mentioned before, there are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

79 1 potentials for changing things like equipment 2 qualifications, site containment, your radiation doses 3 to workers, many different things that could come out 4 of this and many of them are not clear at this point 5 and we have to think about them very carefully. When we go to change what's in a plant, 6 7 you know, deciding what can be changed and how could it be limited. One of the things that we've wrestled 8 9 with on the process-type rule or the broad rule is how does one actually go about limiting these things 10 without, I mean, we try to write fairly streamlined 11 12 At least that's the theory. rules. And one could see that this could become 13 14 a very convoluted rule in order to try to box in all 15 of the results. And that's, and that comes from, the first part, if you don't understand the first part, 16 which is the effect of taking it out, then how do you 17 18 box it in to make sure you're not getting the 19 unintended consequences or unacceptable consequences. 20 So I think we're very interested in these 21 two really kind of go together. And this third part 22 is really to talk about whether we're going to have a 23 narrow scope or broad scope rule. 24 As was mentioned before, the narrow scope 25 rule, the more specific rule is something that we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	believe could be more easily developed. The broad
2	scope rule would require, I think, much more thought
3	and careful preparation on our part.
4	The fourth issue is about the mitigation
5	capability. This is really an area that's totally
6	new. It's something that it would, where it is, where
7	it stands in regulatory space, where it stands in
8	legal space.
9	What it means to be something that's not
10	in the design basis, but we still have some kind of
11	regulatory requirements on it.
12	What the appropriate regulatory
13	requirements are? Where do you place it? Is it
14	something that goes, and somebody said FSAR. Somebody
15	something, you know, is it in their license? How do
16	you actually go about doing this?
17	Those are some interesting issues. Just
18	determining what is the appropriate level of
19	mitigation, and then once you determine that, how do
20	you go about demonstrating that mitigation.
21	Once we're going, are we going beyond 2200
22	degrees F? Are we allowing some core degradation by
23	retaining it within the vessel? How are we going to
24	assure that?
25	There's a lot of uncertainty. The further

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1	81
1	out you go in a core damage event, the more
2	uncertainty that arises. So how much certainty do we
3	require?
4	All interesting questions to be answered.
5	The fifth one comes back to, I think one of Dr. Kress'
6	points, is how do we assure adequate defense and
7	depth?
8	I think Reg Guide 1.174, has done a very
9	good job of listing some examples of ways that one
10	goes about assuring adequate defense and depth. But
11	again, that was based on retaining all of the
12	regulations in place.
13	One of the things that we've indicated to
14	the Commission that we want to do, is to look and see
15	are there additions that we would propose, beyond
16	what's in Reg Guide 1.174, that may be necessary to
17	help assure that adequate defense and depth is
18	retained.
19	Or do the, does the guidance that's in Reg
20	Guide 1.174, does that need additional clarification
	to make it more easy to apply it in a particular set
21	
21 22	of the utilities understands it more clearly what it
	of the utilities understands it more clearly what it means and the regulators are in a better situation to
22	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	the biggest problem you have. And the reason we have
2	large break LOCA in design basis is for defense index,
3	because we don't know?
4	We say, let's consider everything, all the
5	pipes. It's a very logical explanation. And 1.174
6	has a lot of waffle about how to apply defense and
7	depth, which is arguable, because there's no measure
8	of it.
9	So why not, this is I think the place
10	where you're going to have difficulty arguing one way
11	or the other. But the reason we have large break LOCA
12	now, in the design basis, it is for defense and depth
13	reasons. So what has changed about those reasons?
14	MR. KELLY: Well, that's a good question.
15	And I think what has changed is that we do have a much
16	larger body of experience about piping in nuclear
17	power plants that have been subject to aging and to
18	the various mechanisms that are different from, say,
19	gas line pipes or fossil fuel plants.
20	So that's one of the big changes. And we
21	do have, and we also have many thousand reactor years
22	of experience that has said that we do have additional
23	confidence, that yes, that these large breaks are
24	expected to be low frequency events.
25	We have not seen

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	MEMBER WALLIS: So if there were some
2	quantitative way of tying defense and depth to
3	uncertainty, I think you can argue that way. But
4	since defense and depth is always called a philosophy,
5	you have difficulty in making a conclusive argument.
6	MR. KELLY: No, well, but I'm not using
7	this as a basis for saying I'm going to get rid of
8	defense and depth.
9	MEMBER WALLIS: But how much is adequate,
10	you see?
11	MR. KELLY: Right, and defense, and that's
12	one of the things, as I say, one of the things here
13	that because it is so effusive, it's so difficult to
14	define exactly what we mean.
15	And we've received a lot of comments from
16	industry about that and sometimes they feel like every
17	time they propose something that we don't know what to
18	say about it, except if we don't like it, we say,
19	well, it's defense and depth.
20	And they mentioned that to us a few times.
21	And, but defense and depth is an extremely important
22	aspect of the design. And I think that we will spend
23	some time looking at this and seeing if we can do an
24	even better job.
25	I mean we had some of the very best minds

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	in NRC working on what went into Reg Guide 1.174. I'm
2	not sure that we can do any better than that.
3	If we can, we're going to try to do it,
4	but it's going to be a very difficult problem. None
5	of these are easy problems.
6	CHAIRMAN SHACK: Weren't you almost going
7	to make a quantitative statement of that when you
8	handled four? I mean somehow you're going to have to
9	put a degree of confidence that you're going to
10	mitigate this thing.
11	And to me that degree of confidence is
12	almost your defense and depth statement.
13	MR. KELLY: That's part of it. That's part
14	of it, I mean that's part of it in the sense of
15	assuring that that capability exists.
16	In the sense of you're going to have the
17	conditional core damage probability part of it. I
18	think that the, it's not going to be a strict core
19	damage frequency aspect, because my own personal
20	opinion is we're going to have exceedingly large
21	uncertainties associated with very large break
22	frequencies.
23	And when you combine those all together,
24	it will be very difficult to come up with a
25	CHAIRMAN SHACK: But if you use a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	conditional thing, then you get around that
2	uncertainty problem.
3	MR. KELLY: That's correct. That's correct.
4	And that maybe the type of thing that we end up with,
5	but and you know, we talked about resource problems.
6	One of them is that we only have so many
7	risk analysts, and if you notice, there's quite a few
8	issues here. And to try to handle all of these, it's
9	going to be a real challenge for us, because we have
10	so many risk-informed initiatives that are going on
11	right now.
12	CHAIRMAN SHACK: This a risk philosopher.
13	I mean before you can do the analysis you have to
14	decide what it is you're analyzing.
15	MEMBER SIEBER: It seems to me, though,
16	that what we're talking about is whittling away at
17	defense and depth. For example, let's say that you
18	said that it's improbable that you would have a full
19	double in the guillotine break and therefore the break
20	size we should analyze is seven inches or ten inches
21	or what have you.
22	And there's an implication for
23	containment. Containment conditions will not be as
24	severe with that kind of a blow down, as they would
25	with a double-ended break, and therefore you don't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	have to qualify all your instruments and cables to the
2	same degree.
3	And you could allow the leak rate from
4	containment to be relaxed because the driving force
5	and the radiation dose would not approach part 100 as
б	they would.
7	You could say, well, my break is only
8	going to be seven inches, the zone of influence for
9	debris generation is going to be pretty small, and I
10	don't have to do anything with my sump screens.
11	And to me, once you whittle away at
12	everything like that, then you no longer have the
13	capability of dealing in severe accidents, because of
14	a lot of scenarios. And to me that's very
15	troublesome.
16	MR. KELLY: Right, and that's why that
17	mitigation aspect is so important. And why, because
18	we understand, as we talk about in the paper, that it
19	is the robustness of the original design basis, that
20	is what allows us to do as well as we do in severe
21	accidents.
22	It's not because we designed for severe
23	accidents. It's because we designed so robustly for
24	severe accidents. So I think we have to be very
25	careful as we relax things to look at that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 I mean you are correct, Dr. Sieber, that 2 there will be some relaxation of the overall defense 3 and depth aspects here. We have done things, over 4 time, which sometimes we don't think about as defense 5 and depth, but you know, ATWS was a defense and depth thing that we added. 6 7 Station Blackout Rule was a defense and depth thing that we've added. So we have done things 8 9 that have added defense and depth, and here I think we're looking at some other areas that we 10 can 11 reasonably relax and still, but we still are retaining 12 adequate defense and depth. But it's something we have to be very 13

14 careful about.

15 MEMBER SIEBER: Well, one of things that's 16 troubling is the big accidents that have occurred. 17 Chernobyl, TMI, etcetera, I guess there's six or seven 18 of them over the last 40 years.

They've all had a human error element to it. And when we do PRAs we don't seem to be able to agree on how to treat human error consistently in every instance.

And once you have human errors with a failure path, you're into severe accident space where every inch of concrete and every gallon of water you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	88
1	can pump becomes very important.
2	And so I just feel uncomfortable taking
3	that away.
4	MEMBER KRESS: But once you start whittling
5	away with defense and depth, it naturally begs the
6	question of what's an acceptable defense and depth?
7	That's going to be a problem.
8	And in order to say what's an acceptable
9	defense and depth, we have to get away from the
10	vagueness of the definition that's in 1.174.
11	It's not really quantifiable in 1.174.
12	You have to, there are lots of things that are defense
13	and depth. Like quality assurance and operating
14	procedures and training.
15	You've got to forget those things, because
16	we're talking specifically now about, in my mind,
17	design defense and depth. Which can be more
18	quantifiable.
19	And I would suggest you need things like,
20	there's a set of key safety functions, shut down,
21	ECCS, long-term cooling, containment, maintaining
22	containment.
23	Those are key. I would say you have to
24	have specifications on the redundancy, diversity,
25	capability and reliability, of those key things.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 Now that's just the way we do a number of 2 And so you just got to have that, regardless those. what risk space you're in. 3 And then I think the 4 concept of a balance between CDF and LERF and limits 5 on CDF and LERF are actually defense and depth type of things a long with maybe even the balance among the 6 7 contribution to the sequences, like they have in the framework document. 8 But for this type of major rule change, I 9 10 think you've got to have more criteria than just CDF 11 and LERF. I think, at the minimum, you have to 12 include leg containment failure, as a limit, limiting criteria also. 13 14 MEMBER BONACA: Also you have to be 15 specific, for example, certainly you're upsetting the balance between the prevention and mitigation which 16 17 you had before. MEMBER KRESS: So you have to say why do we 18 19 want to have an acceptable balance? 20 MEMBER BONACA: The question is should you 21 have, I mean the balance was taking care of certain 22 conditions that really were not within the design 23 basis was the extra argument you have. 24 And now you have two guys are left. The 25 other issue that seems to be central is the human

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

89

	90
1	factor. You know, and common cause, potentially.
2	MR. KELLY: Well, we're, I mean we're doing
3	the best we can when we perform these PRAs to take
4	into account the, you know, the state-of-the-art and
5	human reliability analysis and common cause failure.
6	But again, and I understand, Dr. Kress.
7	I think that to the extent that we can it's good to
8	have balance amongst these things.
9	The only problem that I have about going
10	down that road, is that the reason why we have defense
11	and depth, in the first place, is to deal with things
12	that we don't about, that we're uncertain about.
13	And I think we can fool ourselves into
14	thinking if we, if we, you know, if I just only look
15	at it numerically, and what I can do in my PRA, that
16	I've handled things. I think
17	MEMBER KRESS: Yeah, that's why I said you
18	also need the, two define some key safety functions
19	and say, I don't care what the PRA says, you've got to
20	have these taken care of. And to me that will help
21	deal with that issue.
22	It might not be the complete solution, but
23	it will help, it will help deal with that. What you
24	don't know, I'm just going to say you've got to be
25	able to do this, and in a redundant and diverse way

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	with a robust capability and reliability. I don't
2	know what those numbers are.
3	MR. KELLY: Right. And that's something
4	that we probably can, type of thing that we probably
5	could prescribe for the current light water reactors.
6	MEMBER KRESS: Yeah.
7	MR. KELLY: I think one of our ratios, of
8	course, comes up and, you know, we're supposed to be,
9	what is it we call it?
10	MEMBER KRESS: Technology
11	MR. KELLY: Technology neutral, which is
12	sometimes I feel like that means, you know, technology
13	
14	MR. RUBIN: Glenn, let me give the
15	Committee an example of common cause failure in a
16	foreign reactor. Why we consider the mitigative
17	capability beyond the design basis is so important to
18	maintain, it goes into a human factors issue.
19	They were doing a maintenance evolution,
20	reassembling a major valve, some of the members may be
21	aware of this.
22	They miss-set a torque wrench and they
23	over-torqued the studs in a major recirculation
24	circuit valve at twice the value, and they were
25	reassembling the valve.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	Luckily, one of the studs broke as they
2	were reassembling it. These were contract workers.
3	If the stud had not broken, the valve would have come
4	apart as they were pressurizing the system and of
5	course the valve body would have come apart and they
6	would have had a major, double-ended guillotine break
7	in the primary system.
8	A non-fracture mechanics break, double-
9	ended guillotine break. If they redefined their large
10	break LOCA, they would have had one.
11	And it was a common cause failure,
12	contract workers, the torque wrench. And it wouldn't
13	have been caught by any PRA, it wouldn't have been
14	caught by any HRA analysis.
15	And defense and depth, the approach we're
16	taking, would have, will maintain a mitigative
17	capability success for an event such as that. That
18	was, you know, just not modeled in our risk study.
19	So, this is the type of thing that we want
20	to maintain defense and depth for.
21	MEMBER WALLIS: But that sort of event is
22	far more likely than these ten to the minus eight
23	things, and fractured mechanics
24	MR. RUBIN: Yes, sir, we believe so.
25	MEMBER WALLIS: and it's far more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	likely that someone will pick the wrong setting on a
2	torque wrench.
3	MR. RUBIN: And far more difficult to
4	quantify.
5	MEMBER WALLIS: So that's what you're going
6	to defend against.
7	CHAIRMAN SHACK: I'd like to suggest we
8	take a break at this point. Otherwise, we're just
9	going to keep going on here until noon. So, break for
10	15 minutes, back at 10:35.
11	(Whereupon, the foregoing matter went off
12	the record at 10:20 a.m., and went back on the record
13	at 10:40 a.m.)
14	CHAIRMAN SHACK: We can come back into
15	session.
16	MR. KELLY: The next issue that I'd like to
17	talk about, Issue Number 6, is what limitations should
18	be placed on the cumulative increases in plant risk
19	under the rule, and how should it be controlled?
20	Two aspects, they're very important and
21	both of them are very difficult. Do you use ten to
22	the minus four core damage frequency as you number,
23	you can say, okay, well you can only go up to ten to
24	the minus four, including internal and external
25	events?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	What about plants that don't have external
2	events? Shut down? Now there are some studies who
3	would seem to imply that shut downs usually equal to
4	about what your internal event numbers are.
5	Forty to 50 percent of the plants have
6	prior external event core damage frequency estimate
7	than they do for internal events. Sometimes based on
8	having fairly conservative external events analyses
9	because they didn't need to do the more expensive
10	detailed analyses.
11	So what, you know, what's the right
12	number? That's going to be a hard number to choose.
13	And what do you do, you say if the plant is above that
14	they can't be involved in this. We're going to look
15	at it more carefully.
16	What does that really mean they'll look at
17	it more carefully, etcetera. How do you actually
18	track cumulative risk? An even more difficult
19	problem.
20	This is one of the things that showed up
21	in things like the ISI when we've looked at tracking
22	risk. Every time I make a PRA update or I'm improving
23	the PRA based on maybe there's an area I'm modeling
24	that I've decided that maybe my HRA wasn't as good as
25	I thought it was or I looked at something else and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	maybe I really wasn't doing as good a job as I could
2	of.
3	Or I just want to spend some more money
4	and improve my PRA in that area. That's going to
5	change my risk profile, probably, somewhat. And it's
6	going to increase or decrease my risk.
7	MEMBER KRESS: But could you, could you
8	have a, like we do thermal hydraulic codes, could you
9	have a PRA that says this is your current PRA, and all
10	your risk changes due to changes, have to be referred
11	back to that one. Although they can approve the PRA
12	and use it for other things, but in order to track
13	cumulative, you need to track it from one baseline.
14	MR. KELLY: Well, that's an interesting
15	question. But really what we want to track are the
16	cumulative increases due to changes in the plant.
17	Rather than cumulative increases
18	associated, or decreases, associated with changes in
19	the PRA. Improvement in knowledge associated with how
20	well the PRA really models the plant in reality.
21	Assuming that every time we theoretically
22	improve the PRA, we're getting closer to reality.
23	MR. RUBIN: And the point, I apologize for
24	interrupting. The point Glenn is making is both those
25	changes often get done at the same time, so you can't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	separate out what's due to what.
2	MR. KELLY: And so now it can become
3	potentially very costly and very confusing to a
4	utility that has to keep a base PRA where every time
5	they make an improvement in the quality of PRA,
6	they're changing that, but they're not changing
7	changes that they made to the plant.
8	So they've got to go change this model,
9	and then they've go to do another model over here,
10	which is their up-to-date everything model.
11	MEMBER KRESS: Yeah, that would be a
12	problem.
13	CHAIRMAN SHACK: Well, it doesn't seem very
14	risk-informed either. I mean, if, you know, one you
15	think is the realistic picture of risk and the other
16	is regulatory risk, I mean, you know, we just, we went
17	from design basis to regulatory risk to real risk.
18	I'm not sure that I gain a whole lot from that.
19	MEMBER SIEBER: On the other hand, when
20	you're summing the deltas, you can use any model as
21	long as you run the model before the change and after
22	the change.
23	Get the delta and add it to all the other
24	deltas that you've got using other models.
25	MR. KELLY: Well, you can do that, but

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	here's what happens. I make a change in my PRA that's
2	based on just changing the modeling in my PRA.
3	That will affect the actual delta that I
4	had done previously.
5	MEMBER SIEBER: That's right.
6	MR. KELLY: Because maybe that delta that
7	I had done previously was small, now maybe if I do it
8	now it will become very large.
9	MEMBER KRESS: But if that's more closer to
10	reality, then all right.
11	MR. KELLY: But how do you know now that
12	that old delta has now become a large delta. Because
13	if you're only tracking an increase associated with my
14	current change
15	MEMBER KRESS: I think you're not tracking
16	actual deltas, you ought to be tracking close to the
17	speed limit on CDF and LERF.
18	And, you know, if the PRA you use is a
19	better one than the old one, you've got a better, a
20	better measure of how close you are to your speed
21	limit, regardless. That's where you need to put the -
22	
23	MR. KELLY: When you say that, Dr. Kress,
24	are you talking about just saying, you know, for
25	example my speed limit is ten to the minus four, for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	core damage frequency and therefore, so I could be a
2	ten to the minus six and if I go up to the ten to a
3	minus four, that's okay?
4	MEMBER KRESS: Yeah, but I would put a
5	confidence level on mine. I wouldn't use the mean,
6	because, unless, I might use the mean if I put a 95
7	percent confidence in the mean, or something.
8	Which allows you to do things to the PRA
9	to improve it and get a better result. Yeah, I think,
10	I know you guys have been hamstrung and I'm using
11	national limits on a given plant.
12	But I think that's the only realistic
13	reasonable way to do it. Because you're not going to
14	see this PRA at this uncertainty level, this
15	confidence level.
16	And, I'm going to watch what you do and if
17	you improve our PRA and you tell me, wow, it wasn't
18	really there. That's all right, if I think that's a
19	real improvement in the PRA, but my confidence level
20	has got to be in there in order to take care of things
21	I don't know very well.
22	I really think that's the only rational
23	way to, I mean it's the rationalist approach, but it's
24	a
25	CHAIRMAN SHACK: But I think there's a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	strong expectation that one is not going to unduly
2	increase risk. I mean to go from ten to the minus
3	six, to ten to the minus four, to me is unacceptable,
4	even if ten to the minus four is acceptable.
5	MEMBER KRESS: I think the fact that you've
6	got CDF and LERF and maybe even a late containment
7	failure in there, it will help put constraints on
8	that.
9	CHAIRMAN SHACK: Well, it may well be that
10	you've ran into other, but you know, I know that ten
11	to minus six to ten to the minus four is unacceptable.
12	What is acceptable is less clear.
13	MS. MCKENNA: Right. Because we did talk
14	in the paper about you wouldn't necessarily only have
15	cumulative, you may also have individual, you know,
16	again, that's not something we've worked out to the
17	last level of detail.
18	But I think, you know, that was one of the
19	reasons why you kind of want both, is to make sure
20	you're dealing with different parts of the problem.
21	Now the thing about whether the model
22	change means that the individual risk that you, the
23	change in risk you had before is now bigger than what
24	you expected. That's another complication, you know,
25	that has to be dealt with.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	MR. KELLY: And one of the other things is
2	now, you know, it's a volunteer rule, so I could come
3	under the rule. So now am I, under my cumulative
4	risk, am I only counting those changes that I make
5	under this rule?
6	What about changes, non-risk-informed that
7	I make, where do they go? How do I count them? I
8	mean they'll be in the PRA but should they not count?
9	If I do something there that takes me
10	above, you know, if I'm putting, and it's a, there's
11	a lot of interesting questions associated with this.
12	MEMBER SIEBER: Well, you have the question
13	of offsetting risks, too.
14	MS. MCKENNA: That's right.
15	MEMBER SIEBER: And you say I'm going to
16	take away some margin here, and when you make that
17	statement you say, then I think I'm in trouble because
18	I don't have margin.
19	So I add another feature over here and if
20	I still don't get it, I will work on improving my PRA
21	model, until I do get it.
22	MR. KELLY: Right.
23	MEMBER SIEBER: And I don't like that kind
24	of operation.
25	MR. RUBIN: Yeah, that was addressed in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	original 1.174 package called bundling changes. And
2	to get credit, to drive something up and to get credit
3	for another change that drove risk down, it had to be
4	an associated change.
5	MEMBER SIEBER: It has to be related.
6	MR. RUBIN: It had to be related, right.
7	MEMBER SIEBER: Right, yeah, we've been
8	through that several times.
9	MR. KELLY: Right, well these are related
10	to changing the design basis.
11	MR. RUBIN: No, it has to be more related
12	than that.
13	MEMBER WALLIS: Whatever happened to the
14	argument that risk would go down? Industry people sat
15	here about two years ago and said we're going to make
16	the case for removing large breaks from design basis.
17	We're going to show you that the risk
18	would go down, because now we're going to emphasize
19	better treatment of small breaks. The plant is going
20	to be safer because more likely things are less likely
21	to lead to damage.
22	And that I thought was a good argument.
23	If you could show us, then yes, do away with this
24	emphasis on large break LOCA and optimize the cooling
25	ECCS for small breaks that the plant will be safer

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	then I might go along with it.
2	But now everyone seems to be talking about
3	what's an allowable increase in risk, and that doesn't
4	go down too well.
5	MS. MCKENNA: Yeah, I think we need, we're
6	looking at it as a backstop. I think we certainly
7	hope that just what you said will happen, and it's
8	certainly the kinds of changes
9	MEMBER WALLIS: But no one has said it yet?
10	MEMBER SIEBER: Well you can make the
11	argument if you delay the start times that the diesels
12	maybe more reliable because you aren't stressing them
13	as much.
14	On the other hand, the testing and
15	maintenance programs are design to make them reliable
16	when they are stressed. So, I'm not sure that any
17	reduction in the risk you would measure in real, under
18	these circumstances.
19	MEMBER WALLIS: But what is this promise
20	from industry, just something we should not have taken
21	seriously? I mean they said they were going to show
22	us, and I haven't heard it in the discussion at all.
23	MR. KELLY: Well, we haven't talked about
24	it because, industry has mentioned it a number of
25	times and it may that an area such as diesel generator

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

reliability, that we may get increased improvement there on the reliability.

3 And it may be that in the focusing of, 4 because, you know, certainly it's our expectation that 5 small break LOCAs are going to be much more frequent than large break LOCAs, that potentially could get 6 7 some improvement in core damage frequency reduction or get more core damage frequency reduction is you were 8 to focus more on small breaks. How much reduction or 9 any real reduction would you get there? WE haven't 10 11 gotten any calculations that have come in from the industry to demonstrate that. That may exist, to what 12 13 extent --

MEMBER WALLIS: I thought that was a very 14 15 good argument because that's very difficult to argue 16 why the Agency should be working to increase risk. 17

MR. RUBIN: I can give you --

MEMBER WALLIS: I you had a very good 18 19 argument that you're actually reducing risk, I think 20 that would go down very well. You wouldn't have all 21 this problem with it.

CHAIRMAN SHACK: But then you get a power 22 23 uprate and I guarantee it's not going to do --24 MEMBER WALLIS: Well, then you go back to 25 same risk as before.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

103

1

2

	104
1	MEMBER BONACA: Just a question I had was,
2	I'm sure you haven't got that far, but assuming, for
3	example, you had a power uprates, you know, and a
4	question would come, you know, about severe accident
5	management guidelines and so on and so forth. What
б	would be expectations there?
7	MR. KELLY: With respect to what Dr.
8	Bonaca?
9	MEMBER BONACA: Well, I mean most likely in
10	some cases, you may make changes that may affect, in
11	fact, the actions that are now in those guidelines.
12	MR. KELLY: Well, whatever changes are made
13	to the plant, as they would affect severe accident
14	management guidelines, any of the other areas of the
15	plant in turn that they would be expected to be
16	upgraded to take into account those changes.
17	I mean that's something that would have to
18	be considered. The next issue is Issue Number 7. It
19	talks about the appropriate quality and scope of the
20	PRA. And I've already mentioned a little bit about
21	the scope, some issues about external events, shut
22	down risk and things like that.
23	Again, I think the Commission has
24	indicated that the more flexibility that is in an
25	application the more rigor that they'd expect would be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	in the PRA.
2	This whole issue is being addressed
3	separately as part of our response to the Commission's
4	SRM on PRAs. And so I think that they would probably
5	the appropriate people to talk about that, but we will
6	be deferring to them for the, or taking into account
7	what they're saying and incorporate it into where we
8	are.
9	MR. RUBIN: Well, yeah, this program will
10	leverage the work being done by the PRA quality
11	initiative and the requirements there will be
12	piggybacking as that work gets fleshed out.
13	MR. KELLY: Because the difference will be
14	that they'll be coming out with something that deals
15	generically without industry's, we'd like to see
16	industry applying this.
17	But in our case we'll be talking about a
18	specific rule it will be addressing this application.
19	So we'll take into account their thinking and put it
20	into the rule and apply it appropriately.
21	CHAIRMAN SHACK: It does seem it will add
22	to the complexity of your rule, though, because you're
23	going to have to some way to go through this trade off
24	of quality versus flexibility
25	MR. KELLY: That's correct.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	CHAIRMAN SHACK: I mean you can say that
2	qualitatively, but presumably you have to have some
3	way of making the rule
4	MS. MCKENNA: And also the narrow versus
5	broad. You know the broader you go the more complete
6	your PRA may need to be to deal with potential
7	CHAIRMAN SHACK: Yeah, I narrow one is much
8	easier problem to deal with.
9	MS. MCKENNA: Yes, yes.
10	MR. KELLY: Just the problem, though, with
11	the narrow one is that it
12	CHAIRMAN SHACK: It's narrow.
13	MR. KELLY: it's narrow, right. And is
14	it, would it be worth industry's time and effort,
15	would anybody go ahead and, you know, want to actually
16	use a narrow rule?
17	The eighth issue is what do we do about
18	future reactors?
19	MEMBER WALLIS: Why do you worry about all
20	this business about industry's time and effort? You
21	job is to ensure public safety.
22	MS. MCKENNA: Well, we're trying to, this
23	is supposedly a volunteer alternative rule, and if we
24	don't think that there is any use made of the rule,
25	then to what extent should we, why should we write

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	such a rule? So that's the basis
2	MEMBER WALLIS: But if it were very broad
3	interpretation, then it would seem that the price for
4	entry into this new world ought to be a real
5	improvement in PRA? And then no big deal.
б	MS. MCKENNA: Yes.
7	MEMBER WALLIS: You don't have to worry
8	about this time and effort and quibble about, well
9	you're going to make a little effort here and you get
10	a little there. Just make it absolutely clear.
11	You don't have this high quality PRA to
12	enter this new world.
13	MR. KELLY: That was the, that appeared to
14	be the Commission message in the initial SRM.
15	Industry had indicated that it felt that that was too
16	high a bar, in a number of meetings.
17	And so we've gone back and told the
18	Commission what we heard and told them our thoughts
19	about it and we'll see what we hear back from them.
20	The last area is future reactors. We've
21	proposed to the Commission in our memorandum to them,
22	that this be postponed. It's difficult enough when
23	you know what the reactor designs are to try to figure
24	out some of these issues.
25	A lot of this really has to do with, also

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

108 1 because we're talking about changing the design basis. For some of these future reactor designs, it's not 2 3 clear what's going to a design basis accident for 4 them. 5 And my expectations is that, what we'll may well end up doing is, having a risk-informed set 6 of criteria for the future reactors. And so this will 7 kind of be moot for them. 8 What will be interesting is how this is 9 10 applied for anyone who comes in with something like an 11 advanced reactor like BWR, CSIR 80 plus, AP 600 or 12 something like that, and see how it's applied in that 13 area. 14 MEMBER WALLIS: You're going to have a 15 problem with the AP 1000 and BWR, because that whole 16 design is based on creating a large break LOCA. 17 MR. KELLY: And they're very, very good at that. 18 19 CHAIRMAN SHACK: It's a start. 20 MEMBER WALLIS: So you're going to have to 21 do away, if you did away with it, they would have a 22 problem justifying their design. 23 MR. KELLY: Well, we might require them not 24 to have those breaks because --25 MEMBER WALLIS: Don't they have a 80S4, I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	mean it doesn't make any sense.
2	MEMBER SIEBER: Well, you know, if you were
3	to build a future reactor that looked like today's
4	reactors and this rule was in place, today we
5	contemplate a change to the rule in the sense that all
6	the mitigating systems are already there.
7	All the design parameters were set when
8	large break LOCA was part of the design basis. And
9	so, you know, we don't have all that much to worry
10	about.
11	But if you were building a new reactor,
12	just like the old ones, you would skip a lot of that
13	stuff, because it's no longer in the design basis.
14	And so whatever margin you think you have
15	for a new reactor, it's not going to be there.
16	MR. KELLY: All right, the question that's
17	going to come up for the future reactors, I would
18	thing, is if you're not having the same kind of design
19	basis where you're contemplating these large breaks or
20	other, you know, were limiting events that were really
21	way out there, in a sense.
22	And if you're trying to base it on your
23	knowledge, how are you going assure severe accident
24	capabilities. And in some of them severe accident
25	capabilities may not be really necessary, because

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	inherently the designs don't allow for that.
2	So, we'll see how that happens. The last
3	thing I did want to talk about here is somebody
4	brought up about sabotage. And it's correct that we
5	are not, you know, and the paper talked about sabotage
6	and issues like that.
7	The Commission has indicated, however,
8	that we are to give considerations to that process.
9	I'm sure there will be things in the rule that will
10	ask us or inquire that considerations of sabotage be
11	given.
12	And it is correct that one has to be
13	careful. I don't, I think that the major
14	considerations are, I mean today when we protect the
15	reactor, we're taking into account our various areas
16	of the plant that have to be protected.
17	It might be that fewer areas of the plant
18	would have to be protected, but, in that there are
19	fewer areas, perhaps an individual area might be more
20	important.
21	But that's still an area that has to be
22	protected. I think that that's more of a problem for
23	some of the passive designs and the future designs
24	that show that they, because they don't have the
25	active systems, inherently as long as you're not

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	111
1	disturbing the passive systems, they work well.
2	But if you can get in there and screw up
3	the active system, or the passive system by, you know,
4	putting some noncondensible or something like that.
5	Or changing the pressure balance in the system, then
6	it's much more subject to, more easy because you
7	don't, like right now what we have at our reactors is
8	very, it's much more easy because they've got all
9	these different ways of putting water into the
10	reactor.
11	You don't have those same kind,
12	potentially you don't have those same kind of
13	capabilities so it's more of than issue for them.
14	But that's all I had specifically on those
15	technical issues, unless anybody has additional
16	questions on it?
17	MEMBER LEITCH: Yeah, I had a question
18	about the coincidence loss of off-site power, I don't
19	see that discussed any place.
20	MS. MCKENNA: Okay, let me skip ahead to
21	another slide, then, since you asked the question. We
22	had the direction in the SRM about preparing a
23	proposed rule on removing incidents of LOCA/LOOP.
24	I've kind of been parallel with some of
25	the development of the Staff papers and the SRM and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	the BWR Owners Group had an initiative to look at some
2	specific plant changes that were of interest to them,
3	that are in large part derived from this coincident
4	LOOP and the resulting impacts, for instance, on
5	diesel start times, that kind of thing.
б	And they generated a set of six or seven
7	plant changes that as an owner's group they wanted to
8	pursue. And, as we said in the paper, they've been
9	busily at work over the last year or so, developing
10	the topical.
11	We're expecting submittal pretty soon.
12	You know, we've kind of had some various conversations
13	back and forth and they were in kind of final stages.
14	Where they were coming with the topical to look at
15	those changes as generically as possible and try to
16	bound the various plants and that the Staff could then
17	review the topical.
18	And then the individual plant could then
19	come in with an exemption say, I would like to
20	implement these four changes. This is how the topical
21	applies to me, and get that undertaken.
22	And what we've proposed in the paper was
23	to kind of engage on that topical and some of the
24	issues and the specific changes of interest, rather
25	than try to be doing multiple rulemaking that have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	113
1	some of these issues underlying them at the same time.
2	And it would be a way for us to make
3	progress. To respond to specific proposals and to get
4	some learning on this. So that's what we propose is
5	to do that review. And one of the changes is, would
6	be a change in the diesel start time from the ten
7	second to some, 60, I don't remember the exact number,
8	but some more reasonable time that is, you know,
9	better for the diesel performance, would still respond
10	to a large spectrum of the events in the same way.
11	But there would be some small space of
12	breaks where, you know, if you happen to have the
13	break and that event, you wouldn't get the same
14	overall result, but in some of the meetings and
15	discussions we've had, in terms of this mitigation
16	capability point that we've talked about, is that they
17	are, have been proposing to show on a true best
18	estimate kind of basis that you would, it would still
19	meet the 2200, in essence, for those large breaks
20	with, you know, if you happen to get the coincident
21	LOOP and the same time.
22	So if it's, that's kind of our proposal
23	now on the LOOP/LOCA.
24	MEMBER LEITCH: Would that require the kind
25	of plant specific PRA that we described earlier?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	MS. MCKENNA: I'm going to turn that over
2	to maybe Mark of Glenn.
3	MR. KELLY: There are two aspects of plant
4	specific analysis. One of them is we would want them
5	to go ahead and perform an evaluation of their
6	conditional probability of loss of off-site power,
7	given a LOCA for their plant.
8	It's very, very site specific. And we've
9	developed some methodology for that and we would like
10	to see them. And we have people here who could talk
11	about that, if you needed that.
12	But we have a method for determining the
13	appropriate site specific conditional probability of
14	loss of off-site power.
15	The second area is, we would be interested
16	in understanding what the conditional, with the change
17	in core damage frequency and risk would be associated
18	with these potential changes.
19	Now the BWR Owners Group had indicated to
20	us that their hope was that they could perform a
21	generic evaluation of the changes and do some kind of
22	bounding analysis to demonstration that that was
23	adequate.
24	That the change in core damage frequency
25	and risk would be small enough that we'd find it okay.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	We've discouraged that concept, because this is such
2	a plant specific issue and while we told them it's
3	potentially possible that they might be able to do it,
4	we don't believe that realistically that it's
5	possible.
б	That they are most likely going to have to
7	use plant specific analyses.
8	MEMBER LEITCH: Yeah, the off-site power
9	arrangements are so different and plant specific. And
10	the reliability of those systems is widely variable.
11	MR. KELLY: The plant's individual
12	capabilities to respond to a loss of off-site power
13	are very different also.
14	MR. RUBIN: The induced loss of grid is
15	going to depend on, is going to be site specific.
16	MR. KELLY: Sure.
17	MR. RUBIN: So we don't need plant specific
18	PRA calculations, we believe at this time.
19	MEMBER LEITCH: So then the question here
20	is, is, as you indicated before, I guess, whether the
21	benefits, which are much smaller with this, but
22	whether those benefits would be worth the price of
23	admission.
24	MR. RUBIN: They very much believe so
25	because they're fast diesel start time is a very

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	onerous issue for most plants.
2	MEMBER LEITCH: Yeah, that's tough on the
3	diesels.
4	MS. MCKENNA: And it's in our narrow
5	definition, too, of something more specific and
6	confined that's a little easier to deal with. But,
7	yeah, they wouldn't be pursuing this if they didn't
8	think it was beneficial to do.
9	MR. KELLY: The 60 second start is still a
10	fast start. And it's
11	(Several people talking at once.)
12	MR. KELLY: Right, and what is going to buy
13	them is, I don't, my own personal belief based on
14	talking to diesel experts is that it's not going to
15	significantly increase the reliability of the diesels.
16	It may not have any real impact on that.
17	But what it will do is if they're running a test and
18	it runs right now, instead of ten seconds, if it's
19	running 11 seconds, they're, they have to play with
20	the system and get it and rerun it and rerun it, rerun
21	it and show that's it's ten.
22	And there's no real different between ten
23	and 11 seconds, but the fact is that our regulatory
24	basis is ten. So if they move it to 60 seconds, they
25	have that margin and they're much better off, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	we'll have no real apparent change in risk.
2	MR. RUBIN: There's some other changes that
3	may ultimately result in some net safety increase,
4	too. There's a suite, there's a mix and match set of
5	changes.
б	One is to realign one of the LPSI trains
7	directly for suppression pool cooling instead of going
8	directly into one of the LOOPs. So for small break
9	LOCA, perhaps some of the transients may give you a
10	benefit.
11	We haven't seen any analysis yet, but
12	that's one of the things they are proposing to do as
13	part of it.
14	MEMBER LEITCH: Are you aware of any
15	similar activity in the BWR world?
16	MR. KELLY: We're not aware of any at this
17	time.
18	MR. RUBIN: Well, the PWRs, I think the WOG
19	owners' group for some time has been talking about
20	redefinition of large break LOCA. I haven't seen any
21	details from them, but they've been working on it for
22	some time.
23	MR. KELLY: But it's not a, specific to
24	LOOP/LOCA. They are talking about generically coming
25	in on large break LOCA, but not specific to LOOP/LOCA.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	118
1	The other thing that comes along with the
2	LOOP/LOCA thing is that, I think there were like seven
3	issues, seven areas that they talked about making
4	modifications.
5	At some plants you can't necessarily make
6	all seven at all plants. Some of them may, you know,
7	like two and five don't go together in certain plants
8	and cause you problems, and that's something that
9	we'll all still have to look at on a plant specific
10	basis.
11	How well, you know, these modifications
12	really work.
13	MEMBER LEITCH: Sometimes, you know, one
14	has to settle for small success, I guess. And it
15	seems to me this is perhaps a way to start the
16	project.
17	MR. KELLY: It's a step in the process and
18	it's going there. And if it works great. And one
19	nice thing that most of the PWRs have significant
20	margin in peak clad temperature.
21	MEMBER SIEBER: Most of them do? They
22	typically, PWRs typically run closer
23	MR. KELLY: The boil, the boiling test.
24	MEMBER SIEBER: And so I would think that
25	PWR owners would be interested in getting margins.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	You know every year you file changes that you find to
2	your Appendix K model.
3	And which sometimes forces them to improve
4	the model to offset whatever errors they found. And
5	I've always had the impression that most of them don't
6	have as much margin as they would like to have for
7	fuel management purposes and particularly flow design
8	in the fuel assemblies themselves.
9	MR. KELLY: Well, that's, and that comes
10	back to part of it. The boilers have significant
11	margin, most of them have a significant margin, and
12	therefore they can take advantage of that margin and
13	our understanding is their proposal is going to come
14	in with using their basic best estimate analyses
15	showing that they are still way off, even with these
16	seven changes.
17	So they're basically eating up some of
18	that margin and not really going into severe accident
19	space and now talking about exceeding 2200 degrees for
20	peak clad temperature.
21	MEMBER SIEBER: Well that margin is one of
22	the features that allows them to do the pretty good
23	size power uprates.
24	MR. KELLY: Now going to the, so I think
25	that there are issues there about, for the pressurized

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	water reactor, about how well they are going to be
2	able to do that and take advantage of that.
3	It's more of a problem for them and there
4	the importance is going to be about how mitigation is
5	defined for this, beyond design basis area. How much
6	they're going to be able to take advantage of it.
7	MS. MCKENNA: Yeah, I just to back up one
8	slide here.
9	MR. KELLY: I think we've basically talked
10	about the issues that are outlined here, and the
11	papers we gone through the various discussions. So
12	I'm just going to quickly run through them.
13	CHAIRMAN SHACK: Are these all ongoing are
14	you waiting for feedback now from the Commission or is
15	that just going to change the weighting of the effort
16	that you give these various.
17	MR. KELLY: Some of these efforts, I mean,
18	and a lot of this is really, we have a small working
19	group that's working on this. And it's ongoing in the
20	sense that we continue down this path.
21	But a lot of it is going to, I think the
22	effort will really be geared up once the Commission
23	indicates to us whether we're talking about a narrow
24	or a broad scope.
25	A narrow scope would be easier to deal

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

be to the industry. Broad scope is going to require 2 a very significant effort and may require redirection 3 4 of resources in order to be able to handle it in any 5 kind of near term. MEMBER WALLIS: These are details, it seems 6 7 to me, that I always have trouble with these changes in rules and regulations. If you get into this world 8 of looking at all these details, but the real question 9 to me is why are we doing it and what are the 10 consequences? 11 12 If we do this, well, it's going to enable industry to produce more power with less expense, is 13 14 that the purpose? And what are the consequences in 15 terms with public safety? Are we allowing them to increase risk by one percent, zero percent, minus one 16 percent? I mean what's the trade off here, and if you 17 make this decision, you go ahead with this sort of a 18 19 rule, what effect does it have on the industry, the 20 public and so on?

That never seems to come into any of these decisions. You get into the bureaucratic details of how should we write this rule to assure defense and depth or something.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

But I can't put it into a perspective, and

(202) 234-4433

25

1

	122
1	if we do that, what are we really achieving in terms
2	of things, so I can grasp, the measures of what, our
3	effect on the nuclear industry and the public?
4	MR. RUBIN: I think right now that's a
5	little bit of an unknown. I think it will, sure, I
6	realize that's a little unsatisfactory, but I think
7	that's the truth.
8	I think we're going to try to establish
9	the framework that will determine the answer to that
10	question. The framework will at worst what the answer
11	to that question be.
12	And at worst it will be retained, a robust
13	mitigative capability with a very small increase in
14	risk. Hopefully there will be a safety improvement.
15	But that will be dependent on what changes the
16	industry will make given the increased flexibility
17	from the rule.
18	But the underpinnings of the framework
19	will probably allow small increases in risk resulting
20	from this.
21	MEMBER BONACA: I believe the underpinning
22	is, I mean the whole effort is to reduce or eliminate
23	unnecessary burden. To me unnecessary burden is
24	defined in Reg Guide 1.174, as normal changes. And
25	small increases in risk and so we should certainly,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	hopefully, focus on those.
2	And the only issue that remains then is
3	the uncertainty. You know, all what is the level of
4	confidence that we have that, in fact, we do have just
5	small increases in risk.
6	And, again, depends on what I do with this
7	margin, we could find out. And that's, the next
8	question I have is so you'll have to evaluate for each
9	one of the possible changes that they may propose,
10	what will the result of this could be.
11	MR. KELLY: Well, I think that there's an
12	additional aspect to this that should be recognized.
13	And that is generally when we talk about risk-
14	informing and the reasons why you risk-inform is so
15	that one can concentrate on those things which are
16	most important.
17	Then when we go back to 50.69, the idea is
18	of having that Risk 2 category, was that there are
19	things that right now aren't covered in, you know,
20	safety significant, but they really need additional
21	treatment and we should be paying more attention to
22	it.
23	So part of what we're saying here is, you
24	know, the industry has a finite set of resources and
25	where, what are they putting these resources to?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	Where are they putting all of their effort
2	in? Industry complains that they're spending a lot of
3	money dealing with very, very low frequency events
4	that are well, you know, covered by the design and
5	that they shouldn't have to be spending all this.
6	That there are other places that can be put.
7	MEMBER WALLIS: Would they put it elsewhere
8	if they saved it?
9	MR. KELLY: It's not clear. That's part
10	of, they may or may not. Part of it may go to their
11	bottom line profit or they may decide that they want
12	to enhance the work that's going for, you know, taking
13	care of small breaks or looking at other improved
14	performance and equipment, buy better equipment.
15	MR. RUBIN: We have no knowledge where
16	MR. KELLY: WE have no control or knowledge
17	
18	MEMBER BONACA: Well, what is industry
19	giving for this? They seem to be wanting to get
20	something. Well, what are they going to give? Are
21	they going to give better safety with small breaks?
22	Or something, are they going to give something?
23	MR. KELLY: Well, the understanding is
24	that, I mean if I can, I'm speaking as if I were an
25	industry person. I would say that we believe that the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	large breaks are really not possible.
2	That the small are
3	MR. RUBIN: Not likely. Not likely.
4	MR. KELLY: I'm giving you the industry
5	version, not our version. The industry would say that
6	it is really not possible and you're not going to have
7	them.
8	That the small breaks are improbable but
9	possible and we'd like to put our emphasis there. The
10	risk numbers show very low numbers for the large
11	breaks.
12	We'd like to basically not put much effort
13	into that. We want to put out effort into the areas
14	that we think are really more risk significant. And
15	that's the proposal that's been put to us.
16	MEMBER WALLIS: Are they really proposing
17	to put more effort into something?
18	MR. KELLY: The wording that we've
19	received, the discussion has been that that's where
20	this other work will be. And to what extent they're
21	going expend additional resources in that area, or
22	redirect resources, I don't know.
23	MEMBER WALLIS: Let's get back to the point
24	I made earlier. They told us two years ago they were
25	going to show that the plants were going to be safer

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	because they were going to put more effort into things
2	that are likely to happen.
3	I haven't heard a word about that since.
4	There's nothing that's on the positive side about how
5	if we do this, the industry is going to do something
6	to use their resources better so there's going to be
7	improvement in some way in safety.
8	MR. KELLY: Well, it may be when the BWR
9	Owners Group comes in and does their generic analysis,
10	they will, they may show numbers that show an
11	improvement in core damage frequency associated with
12	what they expect will be an improvement and a
13	reliability to diesels or better mitigative capability
14	for small break LOCAs.
15	CHAIRMAN SHACK: I mean you can't discount
16	the social benefit of having greater productivity too,
17	I mean that's a real benefit.
18	MR. KELLY: Right, you get more
19	electricity, and if you can take a plant that's
20	basically been paid for, and you can generate more
21	electricity with it, that's a real benefit to people.
22	MEMBER SIEBER: It's a benefit to the
23	shareholders. The price of electricity is a market
24	price.
25	MR. KELLY: It's to the customers, too,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

127 1 that have that available, and you know, you additional 2 spinning reverses. 3 MEMBER SIEBER: Well, whatever they do it's 4 probably not our concern, how they manage their 5 company. On the other hand I think that if you're looking for a risk benefit, I think you'll spend a 6 7 fair amount of time hunting for it. MR. KELLY: Well, I think one of the, you 8 9 know, one of the aspects that one, of course, looks at in the entire risk -informed space is, you know, 10 11 people talk about in two-edged sword. And, you know, 12 are we only removing things from consideration and is there anything worth looking the other way. 13 14 And I think that, it's, I think one of the 15 Commissioners was pointing out that they felt that this was our big opportunity to see, you know, perhaps 16 push back and ask for additional programs. 17 MR. RUBIN: Let me give the Committee a 18 19 historical perspective on the risk-informed licensing 20 actions. There's always talk about there will be risk 21 decreases. Generally, we see small, small risk 22 increases on the initiatives. 23 Every once in a while, we see a decrease. 24 Occasionally a decrease on ISI because they pick 25 better locations. Occasionally a decrease on a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	128
1	bundled initiative, even a diesel generator AOT change
2	could be a decrease because they do a seismic
3	enhancement on the diesel generator building as part
4	of an extended AOT.
5	It's rare to see a decrease as part of a
6	risk-informed initiative, but it happens occasionally.
7	So there's a perspective for you.
8	MEMBER WALLIS: Well less uncertainty on
9	the PRA would be something you could buy with this.
10	And I think that would really help everybody. Really
11	it would help industry, I don't know whey they're so
12	reluctant to do it.
13	It costs them something but they can buy
14	a lot with it, too. And it helps the public to
15	understand the real risk if a PRA is more complete and
16	more believable, then we're on a much better, sort of
17	basis for making decisions.
18	So that at least would be something that
19	we could buy with this from industry. Insist on PRAs
20	being uprated where they're not, and some of them
21	probably now are quite adequate.
22	MR. KELLY: We have additional, on the next
23	slide we have additional ongoing research work on
24	thermal hydraulics and risk assessment.
25	MEMBER WALLIS: But, it's work on, what's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the objective?

1

2

3

4

5

6

7

8

MR. KELLY: These are issues associated with what are the potential changes and risk associated with, you know, if I were to make some of these plant changes that industry has indicating to us that they are anticipating being able to do, what would be the actual effect on core damage frequency and risk.

9 MEMBER WALLIS: I think the key thing here 10 is what George calls a model uncertainty. And if you 11 have all these PRAs and because of the uncertainties 12 and the predictions of the thermal hydraulics, you 13 don't really know if you're going to g into this 14 branch or that branch and what the probabilities are 15 and so on.

16 So we're getting thermal hydraulics tied 17 into the PRA, that's what you're talking about here? 18 MR. KELLY: Well, I mean thermal hydraulics 19 is always tied in and the success criteria is based on 20 your thermal hydraulics. What we're doing here is 21 we're looking at taking into account, as I said, the 22 changes that are being proposed.

I don't think we're actually working at improving the individual thermal hydraulic models that we have now and our codes, not for this particular

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	reason. We're taking into account what the best codes
2	that we have to
3	MEMBER WALLIS: I think you might get into
4	the regulation space, and you might, are you going to
5	require these codes? Are you going to require that 95
б	percent of the time they meet some success criteria or
7	what?
8	MR. KELLY: Well, you're talking about in
9	the mitigation space?
10	MEMBER WALLIS: Yeah.
11	MR. KELLY: That's one of the issues that
12	we have there. If we are, research is looking at what
13	are the capabilities of dealing with these severe
14	accident spaces and, you know, what can we say about
15	that, about how good we feel about the codes for
16	handling, once you go beyond 2200 degrees F.
17	MEMBER WALLIS: The idea of all these
18	conservatism in the traditional approach was that
19	because we're uncertain, we'll just make these
20	conservative assumptions and that will give us a lot
21	of assurance that no matter what the errors in the
22	code of these sorts of level, we still are not going
23	to cross some boundary. That was the old approach, as
24	I understand it.
25	MR. KELLY: Well, you still have the old

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	approach, as you call it, for your design basis LOCAs,
2	up to whatever the new maximum design basis is.
3	And we're proposing that there should be
4	some additional mitigative capability, although not
5	necessarily with the same assurance that we had for
6	the
7	MEMBER WALLIS: Because the rational thing
8	to do would be to rewrite the whole regulation so you
9	could apply it to small breaks as well.
10	If you understand how to balance off all
11	these mitigative capabilities and so on, why not do
12	the whole thing?
13	MR. KELLY: One could do that, but they
14	want me to do this in less than ten years.
15	MEMBER SIEBER: Well, actually the way
16	Appendix K is written, it says that you should analyze
17	the worst break up to
18	MS. MCKENNA: Up to, yeah.
19	MEMBER SIEBER: the certain rise and
20	then you put some restrictions on, for example, the
21	DKE model and some correlations and so forth that
22	you're stuck using some old techniques that the agency
23	has found satisfactory, some where back in his
24	history, and I guess those deserve another look, since
25	we're doing all this other work.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	And maybe the codes could be approved.
2	MR. KELLY: Well, we have the best estimate
3	codes that are, have been approved for evaluation,
4	model codes.
5	MEMBER SIEBER: But you're still stuck with
6	a correlation
7	MS. MCKENNA: Yeah, I mean, going back to
8	the papers that generated the SRM, there were some
9	proposals to examine changes in Appendix K and
10	MEMBER SIEBER: Well, they wanted to do it
11	piecemeal.
12	MS. MCKENNA: Of course, the Commission
13	said no, they didn't like the piecemeal approach that
14	was laid out. They said they got the best estimate,
15	let's use those.
16	MEMBER SIEBER: Well, if you change to EKE
17	models you get some margin, even though it's not clear
18	to me that you get very much. But there's some
19	margin, if already pretty close, you know, any margin
20	helps.
21	MEMBER RANSOM: It seems like this comment
22	about best estimate really needs some clarification
23	because, you know, like Professor Wallis said,
24	Appendix K was brought into play originally to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	133
1	uncertainties that were involved in this kind of
2	analysis.
3	If the PRA itself is dependent upon the
4	uncertainties that are involved in analyzing the
5	consequences of any given event that may occur.
6	And it almost seems like an ill-posed
7	problem where you want small changes in risk evaluated
8	with something with large uncertainty. And I see that
9	as a limitation of what you can do here.
10	Whether it's Reg Guide 1.174, or trying to
11	define, you know, a maximum size LOCA.
12	MR. KELLY: If you go back to my very first
13	technical issue, you'll see that it talks about what
14	are the appropriate criteria needed for confidence in
15	the elicitation results. Because we understand that
16	on top of whatever uncertainties is that that we have
17	in the numbers that we're going to be inputted for the
18	expected frequency of LOCA, were usual uncertainties
19	and issues associated with the PRAs that are used to
20	determine for are the effects on risk.
21	So I mean it's not like they cancel one
22	another out. You know, they're additive. And so we
23	have the uncertainties associated with the elicitation
24	process.
25	And then we the PRA uncertainties. And

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	they all have to be considered and that's why I talk
2	about we have to determine, you know, what is the
3	appropriate confidence that we need in all of this, in
4	order to be changing our design basis.
5	CHAIRMAN SHACK: Just from a simple minded
б	point of view, if I've got an event that's almost
7	never likely to happen, do I really need 95/95
8	confidence so that I can deal with it?
9	You know, could I live with 90/50? And
10	you know how much margin would that buy me alone? You
11	know I still have a very high likelihood that I'm
12	going to deal with the event, but since it's not very
13	likely to happen at all in the first place, it may
14	well be good enough.
15	MEMBER KRESS: The trouble with that trying
16	to decide on confidence levels, generally it's related
17	to, if the think actually happens, what loss is the
18	NRC, the utility and the world going to be subjected
19	to?
20	And those losses are monetary, life, a
21	whole lots of things. And it's a policy issue
22	because, I mean you can't just say, it's acceptable to
23	us. It's what is acceptable to society.
24	And so, you know, that was part of the
25	problem with trying to face up to what safety goals
I	·

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	are. So when you're trying to say, I need this number
2	at this confidence level, that's almost always what
3	you're faced with.
4	You're going to establish that confidence
5	level, based on what I can stand if that actually
6	happens. And I don't know of anyone to technically
7	arrive at that number, other than to try to tie it to
8	some societal acceptance and how you get those, I
9	don't know. So really you have a problem with that.
10	MEMBER SIEBER: Well, that varies from day-
11	to-day, too.
12	MEMBER KRESS: And that depends on your
13	definition of who society is, too.
14	MEMBER SIEBER: Yeah, and how close you are
15	to where ever it's going on.
16	MEMBER KRESS: Well, that's part of
17	society.
18	MEMBER RANSOM: I know I've tried to think
19	of an analogy and it's almost like designing an
20	elevator and you've got safety breaks on the elevator
21	in case the cable breaks.
22	Which is probably very unlikely and it
23	seldom happens and I'm sure there's enough statistical
24	data to really examine it. But then designing the
25	breaks so it only holds 90 percent of the load that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	the elevator could hold. Who `s going to get on that
2	kind of elevator.
3	CHAIRMAN SHACK: But I mean, you're already
4	ruling out the CDF contribution, because the frequency
5	is so small. I mean you're really asking for an
6	additional, you know, on a purely risk-informed basis,
7	you know, you take the industry, it's just not going
8	to happen.
9	And you know the associated CDF and LERF
10	with this are small.
11	MR. KELLY: Well, that would be risk based.
12	If I say I'm only going on the frequency, then it
13	would be risk based.
14	CHAIRMAN SHACK: Well I mean not just
15	frequency, but if you do the analysis for the CDF and
16	LERF, they're small. And you're asking for more and,
17	you know, it seems to me that that sort of avoids your
18	problem, that you know, well this is almost a
19	conditional sort of thing.
20	If a large break happens, you know, I want
21	a conditional probability I can deal with it and
22	MR. KELLY: As part of your defense and
23	depth capability.
24	CHAIRMAN SHACK: It's part of my defense
25	and depth, and you know, it really isn't, I've already

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	137
1	decided that my risk is small enough to be acceptable
2	with my safety goals. I'm really arguing over how
3	much defense and depth I need.
4	MEMBER RANSOM: Well, there was some
5	argument, I think in the materials I read preparatory
б	this, that if the maximum size pipes are designed to
7	the ASME code as the vessel, why aren't you
8	considering vessel rupture? And how do you rule that
9	out?
10	MEMBER WALLIS: Well for reasons that I
11	don't understand, these things get safer the bigger
12	they are.
13	(Laughter.)
14	MS. MCKENNA: Save that for later.
15	MEMBER LEITCH: Well I was trying to think
16	about this like right now we're saying vessel failure
17	in incredible, but yet there is in the present ECCS
18	systems some mitigative strategy in the event, some
19	mitigative capability in the event of vessel failure.
20	Here we're kind of moving down a little
21	bit and we're saying, well if it breaks, incredible,
22	but there's still some mitigative strategy beyond the
23	redefined break.
24	MEMBER SIEBER: Well, I guess it's like if
25	the head breaks, why you probably could mitigate that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	But if the bottom breaks, you're in trouble.
2	MR. KELLY: What we said for vessel failure
3	is that the Commission made a decision that it was, in
4	and of itself, it was considered to be an incredible
5	event.
6	And when you get incredible events, the
7	way we intended to deal with them and we make sure
8	that they remain incredible by dealing with
9	MR. RUBIN: Programmatic, there are
10	programmatic things in place for the vessel that are
11	not in place for the pipes. I think we need to defer
12	that to the Engineering which are the experts.
13	MEMBER WALLIS: If they're incredible why
14	do have all this work in the pressurized thermal
15	shock?
16	(Many people talking at once.)
17	MEMBER WALLIS: But it obviously means they
18	were credible, otherwise we wouldn't do that research.
19	MR. KELLY: Continuing with the, back to
20	Staff technical activities. We talked already about
21	the LOOP LOCA and where we've asked the Commission to
22	go ahead and work on the topical and then finish that
23	work before we go ahead.
24	Do you want to do a summary?
25	MS. MCKENNA:

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	MR. KELLY: I think we've shown that the
2	application of redefinition has to be very carefully
3	dealt with. A lot of very important, very difficult
4	technical issues. We don't want to reduce margins too
5	much.
б	We don't want to, you know, there's,
7	potentially there may be improvement in overall risk
8	has yet to be demonstrated that it would exactly work
9	out.
10	We don't want to do anything that would
11	reduce risk to the point that we would not be happy
12	with it, doing that, and doing that in manner that
13	makes sure that the rule precludes that type of thing,
14	is going to be a tricky business.
15	There are a lot of expectations about this
16	rule, from the Commission, the Staff, industry.
17	There's parts of industry, these need to reconciled
18	some way to make it to be a functional rule.
19	And to, then something that's technically
20	justifiable is going to be an interesting challenge
21	also. So we've sent our paper up the Commission and
22	asked them for their policy decision.
23	We're continuing with your efforts in the
24	meantime, but they're really going to go forward once
25	we've gotten direction from the Commission.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	We're interested certainly in what the
2	Committee thinks about this as you've been talking
3	here. We're not expecting a letter, but we are happy
4	that, you know, you've given us your feedback about
5	what's gone on here.
6	We think that these are going to be very
7	challenging, I've said it a number of times, very
8	challenging technical issues
9	And, of course, if you have any thoughts
10	about how to answer them or deal with them, we'd be
11	happy to have you.
12	MS. MCKENNA: I think that's it.
13	MR. KELLY: I think that ends our
14	presentation. Any questions?
15	CHAIRMAN SHACK: We should refer all
16	questions to Rob.
17	(Laughter.)
18	MS. MCKENNA: Yeah, we'd like that. But I
19	mean frequencies is fair game.
20	MEMBER WALLIS: Well, I don't have a
21	question but I would like to thank you for what I
22	found to be very frank and serious-minded and helpful
23	presentation.
24	MEMBER SIEBER: I agree, very well done.
25	CHAIRMAN SHACK: Well, we're actually

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	finishing ahead of schedule if nobody has any more
2	questions.
3	MEMBER KRESS: Maybe we can tack that onto
4	our lunch hour.
5	MEMBER SIEBER: Yeah, you can, you have
6	too.
7	CHAIRMAN SHACK: Well, if that's the case,
8	I suggest that we adjourn, recess for lunch, and come
9	back at 1:00.
10	MR. SNODDERLY: Yeah, and just to let you
11	know, I passed to all of you all of the slides that
12	Rob and Lee are going to present this afternoon, and
13	so those are available.
14	(Whereupon, the foregoing matter went off
15	the record at 11:40 a.m., and went back on the record
16	at 1:02 a.m.)
17	
18	
19	
20	
21	
22	
23	
24	
25	

	142
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	1:02 p.m.
3	CHAIRMAN SHACK: Time to come back into
4	session. I guess Rob Tregoning is going to tell us
5	about the results from the expert elicitation and
6	development of passive system LOCA frequencies.
7	MR. TREGONING: Thank you, Chairman.
8	As the title says, we are going to be
9	talking about, myself and Lee Abramson from the Office
10	of Research, are going to be talking about how we
11	developed these passive system LOCA frequencies for
12	risk-informed revision. The option 3 risk-informed
13	revision of 10 CFR 50.46.
14	Now the talks were out of sequence a
15	little bit in the sense that this morning we heard
16	some of the broad policy or I guess policy and
17	technical, although we focus more on technical issues
18	here concerned with possible rule revision. Here
19	we're going to focus down very carefully and talk
20	about one specific input to the regulations which will
21	come about at some point.
22	DR. KRESS: And you're supposed to answer
23	the questions that they didn't answer this morning.
24	MR. TREGONING: Yes. Yes. They did a good
25	job of deferring until this afternoon any questions

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	that were posed this morning.
2	DR. RANSOM: Have them all written down.
3	MR. TREGONING: And all I can say is to
4	the best of my ability I will try to answer anything
5	that I have knowledge of.
б	DR. WALLIS: What does passive system mean
7	in this context?
8	MR. TREGONING: Passive system in this
9	context means, and you'll see a flow chart here later,
10	we clearly separated piping, structures versus things
11	that are active.
12	DR. WALLIS: Okay.
13	MR. TREGONING: Active components like
14	pumps and even seals. Pumps, valves, seals; things
15	that we have active implies that they actually do
16	something, they just don't sit there. But also we
17	tried to exclude things that are covered by the
18	maintenance rule because there are other regulatory
19	measures that are put in place to try to maintain the-
20	_
21	DR. WALLIS: So the valve that had the
22	over bolts would be an active system.
23	MR. TREGONING: Well, the valve itself
24	would be active, but the valve body is passive.
25	DR. WALLIS: Is passive?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1MR. TREGONING: That is correct.2DR. WALLIS: But the bolts move when3they're taut, so they actually are passive.4MR. TREGONING: They move when they're5taut, but then they sit there in service.6DR. WALLIS: So they're passive? The7bolts are passive.8MR. TREGONING: The bolts are definitely9passive.10DR. SIEBER: You are basically treating11all these things the way the code, the way the ASME12code treats them that makes that differentiation?13MR. TREGONING: Right. Right. In terms14of the definition of what's active or passive system,15we tend to follow not code.16DR. SIEBER: Right.17DR. RANSOM: But I'll say sort of18historical PRA definitions in figuring out we were19going to consider and what we weren't going to20consider.21DR. SIEBER: Good.22MR. TREGONING: I just wanted to outline23the presentation here and give us a sense for where24we're going. I want to delve into at the first slide,25just the presentation history that we've had for this		144
3 they're taut, so they actually are passive. 4 MR. TREGONING: They move when they're 5 taut, but then they sit there in service. 6 DR. WALLIS: So they're passive? The 7 bolts are passive. 8 MR. TREGONING: The bolts are definitely 9 passive. 10 DR. SIEBER: You are basically treating 11 all these things the way the code, the way the ASME 12 code treats them that makes that differentiation? 13 MR. TREGONING: Right. Right. In terms 14 of the definition of what's active or passive system, 15 we tend to follow not code. 16 DR. SIEBER: Right. 17 DR. RANSOM: But I'll say sort of 18 historical PRA definitions in figuring out we were 19 going to consider and what we weren't going to 20 consider. 21 DR. SIEBER: Good. 22 MR. TREGONING: I just wanted to outline 23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,	1	MR. TREGONING: That is correct.
4 MR. TREGONING: They move when they're 5 taut, but then they sit there in service. 6 DR. WALLIS: So they're passive? The 7 bolts are passive. 8 MR. TREGONING: The bolts are definitely 9 passive. 10 DR. SIEBER: You are basically treating 11 all these things the way the code, the way the ASME 12 code treats them that makes that differentiation? 13 MR. TREGONING: Right. Right. In terms 14 of the definition of what's active or passive system, 15 we tend to follow not code. 16 DR. SIEBER: Right. 17 DR. RANSOM: But I'll say sort of 18 historical PRA definitions in figuring out we were 19 going to consider and what we weren't going to 20 Consider. 21 DR. SIEBER: Good. 22 MR. TREGONING: I just wanted to outline 23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,	2	DR. WALLIS: But the bolts move when
5 taut, but then they sit there in service. 6 DR. WALLIS: So they're passive? The 7 bolts are passive. 8 MR. TREGONING: The bolts are definitely 9 passive. 10 DR. SIEBER: You are basically treating 11 all these things the way the code, the way the ASME 12 code treats them that makes that differentiation? 13 MR. TREGONING: Right. Right. In terms 14 of the definition of what's active or passive system, 15 we tend to follow not code. 16 DR. SIEBER: Right. 17 DR. RANSOM: But I'll say sort of 18 historical PRA definitions in figuring out we were 19 going to consider and what we weren't going to 20 consider. 21 DR. SIEBER: Good. 22 MR. TREGONING: I just wanted to outline 23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,	3	they're taut, so they actually are passive.
6 DR. WALLIS: So they're passive? The 7 bolts are passive. 8 MR. TREGONING: The bolts are definitely 9 passive. 10 DR. SIEBER: You are basically treating 11 all these things the way the code, the way the ASME 12 code treats them that makes that differentiation? 13 MR. TREGONING: Right. Right. In terms 14 of the definition of what's active or passive system, 15 we tend to follow not code. 16 DR. SIEBER: Right. 17 DR. RANSOM: But I'll say sort of 18 historical PRA definitions in figuring out we were 19 going to consider and what we weren't going to 20 DR. SIEBER: Good. 21 DR. SIEBER: Good. 22 MR. TREGONING: I just wanted to outline 23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,	4	MR. TREGONING: They move when they're
7 bolts are passive. 8 MR. TREGONING: The bolts are definitely 9 passive. 10 DR. SIEBER: You are basically treating 11 all these things the way the code, the way the ASME 12 code treats them that makes that differentiation? 13 MR. TREGONING: Right. Right. In terms 14 of the definition of what's active or passive system, 15 we tend to follow not code. 16 DR. SIEBER: Right. 17 DR. RANSOM: But I'll say sort of 18 historical PRA definitions in figuring out we were 19 going to consider and what we weren't going to 20 DR. SIEBER: Good. 21 DR. SIEBER: Good. 22 MR. TREGONING: I just wanted to outline 23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,	5	taut, but then they sit there in service.
8 MR. TREGONING: The bolts are definitely 9 passive. 10 DR. SIEBER: You are basically treating 11 all these things the way the code, the way the ASME 12 code treats them that makes that differentiation? 13 MR. TREGONING: Right. Right. In terms 14 of the definition of what's active or passive system, 15 we tend to follow not code. 16 DR. SIEBER: Right. 17 DR. RANSOM: But I'll say sort of 18 historical PRA definitions in figuring out we were 19 going to consider and what we weren't going to 20 DR. SIEBER: Good. 21 DR. SIEBER: Good. 22 MR. TREGONING: I just wanted to outline 23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,	6	DR. WALLIS: So they're passive? The
 passive. DR. SIEBER: You are basically treating all these things the way the code, the way the ASME code treats them that makes that differentiation? MR. TREGONING: Right. Right. In terms of the definition of what's active or passive system, we tend to follow not code. DR. SIEBER: Right. DR. RANSOM: But I'll say sort of historical PRA definitions in figuring out we were going to consider and what we weren't going to consider. DR. SIEBER: Good. MR. TREGONING: I just wanted to outline the presentation here and give us a sense for where we're going. I want to delve into at the first slide, 	7	bolts are passive.
10DR. SIEBER: You are basically treating11all these things the way the code, the way the ASME12code treats them that makes that differentiation?13MR. TREGONING: Right. Right. In terms14of the definition of what's active or passive system,15we tend to follow not code.16DR. SIEBER: Right.17DR. RANSOM: But I'll say sort of18historical PRA definitions in figuring out we were19going to consider and what we weren't going to20consider.21DR. SIEBER: Good.22MR. TREGONING: I just wanted to outline23the presentation here and give us a sense for where24we're going. I want to delve into at the first slide,	8	MR. TREGONING: The bolts are definitely
11all these things the way the code, the way the ASME12code treats them that makes that differentiation?13MR. TREGONING: Right. Right. In terms14of the definition of what's active or passive system,15we tend to follow not code.16DR. SIEBER: Right.17DR. RANSOM: But I'll say sort of18historical PRA definitions in figuring out we were19going to consider and what we weren't going to20consider.21DR. SIEBER: Good.22MR. TREGONING: I just wanted to outline23the presentation here and give us a sense for where24we're going. I want to delve into at the first slide,	9	passive.
12code treats them that makes that differentiation?13MR. TREGONING: Right. Right. In terms14of the definition of what's active or passive system,15we tend to follow not code.16DR. SIEBER: Right.17DR. RANSOM: But I'll say sort of18historical PRA definitions in figuring out we were19going to consider and what we weren't going to20consider.21DR. SIEBER: Good.22MR. TREGONING: I just wanted to outline23the presentation here and give us a sense for where24we're going. I want to delve into at the first slide,	10	DR. SIEBER: You are basically treating
 MR. TREGONING: Right. Right. In terms of the definition of what's active or passive system, we tend to follow not code. DR. SIEBER: Right. DR. RANSOM: But I'll say sort of historical PRA definitions in figuring out we were going to consider and what we weren't going to consider. DR. SIEBER: Good. MR. TREGONING: I just wanted to outline the presentation here and give us a sense for where we're going. I want to delve into at the first slide, 	11	all these things the way the code, the way the ASME
14 of the definition of what's active or passive system, 15 we tend to follow not code. 16 DR. SIEBER: Right. 17 DR. RANSOM: But I'll say sort of 18 historical PRA definitions in figuring out we were 19 going to consider and what we weren't going to 20 consider. 21 DR. SIEBER: Good. 22 MR. TREGONING: I just wanted to outline 23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,	12	code treats them that makes that differentiation?
<pre>15 we tend to follow not code. 16 DR. SIEBER: Right. 17 DR. RANSOM: But I'll say sort of 18 historical PRA definitions in figuring out we were 19 going to consider and what we weren't going to 20 consider. 21 DR. SIEBER: Good. 22 MR. TREGONING: I just wanted to outline 23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,</pre>	13	MR. TREGONING: Right. Right. In terms
16DR. SIEBER: Right.17DR. RANSOM: But I'll say sort of18historical PRA definitions in figuring out we were19going to consider and what we weren't going to20consider.21DR. SIEBER: Good.22MR. TREGONING: I just wanted to outline23the presentation here and give us a sense for where24we're going. I want to delve into at the first slide,	14	of the definition of what's active or passive system,
17DR. RANSOM:But I'll say sort of18historical PRA definitions in figuring out we were19going to consider and what we weren't going to20consider.21DR. SIEBER: Good.22MR. TREGONING: I just wanted to outline23the presentation here and give us a sense for where24we're going. I want to delve into at the first slide,	15	we tend to follow not code.
18 historical PRA definitions in figuring out we were 19 going to consider and what we weren't going to 20 consider. 21 DR. SIEBER: Good. 22 MR. TREGONING: I just wanted to outline 23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,	16	DR. SIEBER: Right.
<pre>19 going to consider and what we weren't going to 20 consider. 21 DR. SIEBER: Good. 22 MR. TREGONING: I just wanted to outline 23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,</pre>	17	DR. RANSOM: But I'll say sort of
<pre>20 consider. 21 DR. SIEBER: Good. 22 MR. TREGONING: I just wanted to outline 23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,</pre>	18	historical PRA definitions in figuring out we were
21DR. SIEBER: Good.22MR. TREGONING: I just wanted to outline23the presentation here and give us a sense for where24we're going. I want to delve into at the first slide,	19	going to consider and what we weren't going to
22 MR. TREGONING: I just wanted to outline 23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,	20	consider.
23 the presentation here and give us a sense for where 24 we're going. I want to delve into at the first slide,	21	DR. SIEBER: Good.
24 we're going. I want to delve into at the first slide,	22	MR. TREGONING: I just wanted to outline
	23	the presentation here and give us a sense for where
25 just the presentation history that we've had for this	24	we're going. I want to delve into at the first slide,
	25	just the presentation history that we've had for this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	145
1	topic area in front of you folks, the ACRS. And talk
2	about the program milestones that we have had since
3	the last time we were here.
4	So just to give us a little flavor of
5	where we have been to set the stage of what we're
6	going to be talking about this afternoon.
7	I will remind you about the objectives and
8	scope for this effort. And I'll also delve into the
9	approach. I will say that we've covered most of these
10	areas pretty extensively in past presentations. So if
11	you notice, this talk it really focuses on the results
12	and the analyses and that's what we thought was proper
13	given the background that we've had here and also this
14	is the stuff that's new, this is the stuff that you
15	haven't seen.
16	So if it seems we're skimping on approach
17	and things like that, I mean I certainly have backup
18	slides, we'll certainly deal with questions as they
19	come up. But we really given the limited time that we
20	have, we wanted to focus on the results and the
21	analysis.
22	And in terms of the results, sort of
23	partition them into four or five different areas that
24	we're talking about here. The first one will be
25	general rationale and insights. These are sort of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	146
1	qualitative inputs that we got from the various
2	experts, what things are important, what things
3	potentially aren't important. What things did I
4	really consider when I based my estimate.
5	We could spend all day on this alone. So
6	what we've tried to do here is just give you a flavor,
7	some of the things that we heard. And a flavor of
8	some of the things that we heard more often from
9	people.
10	Again, we didn't ask the experts to
11	develop a consensus at all. So I tried to be very
12	careful when I show this rationale that, you know, I
13	don't want to couch it as being a group consensus in
14	anyway, shape or form. This is just a smattering of
15	things that we heard.
16	We'll then present the actual estimates
17	that we got. And then after we go through sort of the
18	total frequency estimates, we'll start to parse them
19	a little bit and look at piping and nonpiping
20	contributions. We'll also look at system
21	contributions. And then we'll start to look at the
22	next aspect, which was variability among the panel
23	members and uncertainty in their responses.
24	The last bullet here we'll really only
25	touch on if we have time. But we asked them

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	147
1	separately about how safety culture could effect
2	LOCAs. And we were very clear about how we define
3	safety culture realizing that that can be potentially
4	a very broad open ended discussion. So I can provide
5	you some of the insights that we got from them related
б	to the safety culture effects on LOCAs.
7	And then finally, we'll go into the
8	remaining work that we have on the effort and
9	summarize it.
10	So that's really where we're headed at
11	this point in the presentation.
12	So, as I mentioned, we've been in front of
13	the various ACRS committees a number of times. The
14	most recently, and I've sort of listed them in inverse
15	chronological order, the most recently was in November
16	which we were in front of the Subcommittee, although
17	I think a number of the main Committee members were
18	here as well. And we went into pretty good detail on
19	the expert elicitation approach and also the
20	development o the base case frequencies. And we had
21	David Harris here who was one of our base case
22	developers to go into his approach and his technique
23	for coming up with his base case frequency development
24	estimates.
25	We were here in July. We briefed the main

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Committee again on the status of the effort and also the approach at that time.

And then about a year prior in May '02 we 3 4 had а Subcommittee briefing of, again, various 5 subcommittees where we presented the results of what we're calling this pilot elicitation. When we kicked 6 7 the effort off, we had an informal staff LOCA 8 frequency evaluation effort that was much more accelerated over about 3 weeks to a month's time where 9 we actually internally came up with estimates. 10 But 11 more importantly than coming up with estimates, we can 12 up with issues and a possible framework that we could use and apply to this full elicitation. 13

So in that meeting actually presented the results of this pilot elicitation as well as the plans for this formal elicitation.

17 So we've really been in front of you probably this will be about the third or fourth time 18 19 depending on how you're counting talking about the 20 elicitation in some way, shape or form. And then even 21 back in '01 there were several presentations as part 22 of the larger effort to risk-informed 10 CFR 50.46 23 where we outlined the technical basis; why we thought 24 we had to move forward with this elicitation to do 25 break frequencies.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	149
1	So what have we done since? And even
2	though we were in November I've backed the time line
3	up to September. So what have we done just before the
4	last ACRS presentation to now?
5	Well we completed all the individual
6	elicitations and, as I indicated, we had 12 experts on
7	the panel or 12 panelists, we'll call them. And we
8	elicited each of those panelists individually and we
9	finished the last one of those on October 24th, so
10	essentially the end of October.
11	The elicitations weren't by any way shape
12	or form the final input that we got from the experts.
13	Generally what happened in these elicitation is we got
14	some initial input. We would go through the input
15	that we got and point out potential inconsistencies or
16	areas where their numbers may not be matching up with
17	some of the qualitative insights that they were giving
18	us. So I think for every expert involved after the
19	elicitation they had to go back and refine their
20	analyses.
21	And another thing we did in the
22	elicitation is there were areas where they may have
23	been unclear what we were specifically asking. So we
24	cleared up those areas as well.
25	So everyone after the elicitation had more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

work to do. And for the period from October, end of October until about mid-January we were getting sort of the first set of revised responses back from all the expert. Once we had all of those, we conducted an initial analysis of the results. That was done about at the end of January.

7 And the week of February 10th, or I guess the week of the 9th over three days we had a feedback 8 9 meeting with the panel themselves where we not only -we presented them back with their raw data as it had 10 11 been analyzed, not only by but also presented the 12 information on context of what the rest of the experts had not only said qualitatively, but also estimated 13 14 quantitatively. So we got the whole group back 15 together, we fed them back the information that they 16 gave us and we fed them back the quantitative 17 estimates that we gave as well.

That was an interesting meeting in the sense that some of the experts realized well, you know, I didn't realize that me saying this had these implications on down the line. And they also didn't realize some of what the other experts had considered in their formulation of estimates.

24 So after this meeting we gave the experts 25 another chance. Okay, based on what you've heard,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

1 based on your final outcome and how we analyzed and 2 utilized your results, if you'd like you can come back 3 and do yet another revision. And a small handful of 4 them choose to do that. And we got our last set of 5 updated responses on the 17th of March. And we completed our preliminary analysis the 19th of March. 6 7 So you can see these are relatively fresh. 8 So when we talk about results, I just want 9 to caveat it. You may see more into the results today than I've even had a chance to consider or really try 10 11 to understand. And Lee and I realize that there is 12 still some additional work. And it's a fascinating exercise because 13 14 you get so much information. It's a bit like trying 15 to drink from a fire hydrant in that you have to be careful in what you try to sample and you have to be 16 careful what you try to couch as being real versus 17 just being some sort of artifact from the way we did 18 19 in the analysis. DR. WALLIS: Did your interaction with the 20 21 experts reduce the scatter or the deviation or the 22 variation in the predictions? 23 MR. TREGONING: And I presume what you 24 mean by that is when we were here in November we 25 presented results for these base case estimates and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

151

	152
1	there was very wide variability there.
2	DR. WALLIS: Yes.
3	MR. TREGONING: And that variability was
4	a function of different analytical techniques as well
5	as some other factors. That information was
6	presented to all the experts. And they, obviously, had
7	to rectify those differences in their own testimony to
8	us. And what you'll see is it's certainly reduced
9	over that. That was a wide bit of variability
10	uncertainty, although you're going to see when we get
11	to the results that there still remains a good bit of
12	variability and uncertainty. And that's what we
13	expected going in. We didn't think we'd be able to
14	reduce that just because when you're trying to
15	estimate the frequency of something that's rare, it's
16	always a difficult process.
17	DR. WALLIS: I think you said that you met
18	with them and you gave them more information and they
19	revised their predictions. Did they come more into
20	line with the other members or did they get more
21	diverse, or did it have no effect?
22	MR. TREGONING: And I want to be clear,
23	you mean post-feedback meeting in February?
24	DR. WALLIS: Yes. Did you sort of pull
25	them into line and say look, you guys, I can't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	tolerate 10 to the tenth variation. I'm sure you
2	didn't do that?
3	MR. TREGONING: We didn't do that. We did
4	not have edicts about what uncertainty we would accept
5	or not accept. But I think what they did is and
6	this is a natural thing. When people made their
7	estimates they had certain factors that they were
8	considering. They heard qualitative arguments that
9	made some of them reconsider their estimates.
10	I think what we found when looking at the
11	analysis is that the median responses of the group of
12	experts, if I took the median of all their responses,
13	the differences between the pre-February and the post-
14	February 12th estimates was practically nil. And what
15	changed was the variability about the mean. So we did
16	see a decrease in the uncertainty pre versus post.
17	So some of the people that were more
18	outliers recognized that there were some things that
19	they hadn't considered that they wanted to go back and
20	factor into their responses.
21	DR. FORD: Rob, I've got a similar
22	question. At the last meeting I asked who was on this
23	committee, who were the materials experts either in
24	terms of analyzing or working with cracking phenomena
25	or degradation phenomena, and you said two. Karen

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	Gott and Dave Harris. But there were ten other people
2	on that panel who presumably didn't have that
3	experience of either analysis or operational physics
4	or physics of the degradation mechanism. So in light
5	the question that Graham Wallis asked, when you came
6	back and reanalyzed the initial inputs, did everyone
7	tend to veer towards the two experts or what happened?
8	MR. TREGONING: Right.
9	DR. FORD: Presumably they've got the
10	highest value input.
11	MR. TREGONING: We didn't there are a
12	lot of things that go into LOCAs, certainly material
13	understanding is one of them. I don't know what I
14	said in November. Probably have to go back and look
15	at the transcripts. But certainly I would argue that
16	most if not all of the experts had some knowledge of
17	materials and degradation mechanisms and/or modeling
18	those and their effects on LOCA frequencies. So we
19	had a number of people, for instance, that have
20	probabalistic fracture background. We have a number
21	of people we maybe didn't have a probabalistic
22	fracture background, but they had a good background in
23	service history and what degradation mechanisms
24	they've seen in service.
25	So while I think Karen was I think without

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

a doubt the most knowledgeable in material aspects per se, I would argue that all -- most. Maybe not all, but most of them panel had a sense of the importance of materials and had some experience with looking at changes in materials and how changes in materials and operating experience can effect LOCA frequencies.

7 Okay. So the objectives and scope. And, again, I'm covering old ground here but it's always 8 9 nice to start off so that we're all clear as a group what we intended to do with this effort and what we 10 11 didn't do. Because when you say LOCA frequencies, it's 12 a very broad term. There are a lot of things which could lead to a LOCA. But one of the things that we 13 14 had to do was try to minimize the scope of this 15 exercise so that we could have one expert committee that had a shot in coming up with something that was 16 reasonable. 17

And when we started these, we were really 18 19 focusing on the new reg CR-5750 LOCA frequencies which 20 were primarily concerned with estimating passive 21 system LOCA failure frequencies by considering the 22 effects of aging. So really what this effort was 23 intended to do was to provide a fresh more rigorous 24 look at those types of frequencies, realizing that 25 LOCAs can come from other sources. But we've certainly

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

1 done a lot of work as an agency trying to estimate the 2 frequencies of these other sources as well. And the 3 initial intent was we're going to provide a fresh look 4 at this piece and combine with other work that has 5 been historically but also that doesn't have ongoing at the same time. 6 7 So the primary objective really was to develop these generic BWR and PWR piping and nonpiping 8 9 passive system LOCA frequency distributions as a function of break size, so that's the size of the LOCA 10 11 and operating time. And the sort of four subbullets of that. 12 We were primarily concerned with LOCAs that initiate 13 14 in the inisolable portion, so essentially primary side 15 LOCAs. We were focusing on LOCAs related to 16 17 passive component aging, tempered by mitigation Both programmatic and actual that are in 18 measures. 19 place or that will likely be in place in the future. Even though the focus on the 50.46 effort 20 21 is really focused on large break LOCAs we thought in 22 the interest of examining total plant risk, that it

was really incumbent upon us to look at the LOCA 23 24 sizes. Because if you're doing relative risk ranking, 25 you just can't take an understanding of the large

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 break LOCAs without also a similar knowledge of the 2 small break LOCA to see how the risk changes and it's 3 effected by potential plant changes. 4 So we were very clear that we couldn't 5 just focus on large break LOCAs for this. We had to look at the whole spectrum. And the thing that we did 6 with large breaks that's different from what we've done in the past, is we further subdivided the large

7 8 9 break LOCAs into different categories depending on flow size, or either flow rate or break size so that 10 11 we would be able to determine frequencies of these 12 increasingly larger break sizes. And that's something that we haven't done, that no study has tried to do in 13 14 the past to really partition those large break LOCAs 15 in this way.

In terms of time frames, we looked at 16 three different discreet time periods. 17 We said we want to develop frequency distributions which are 18 19 applicable and now. And what's now? Well, we said 20 we've roughly got about 25 years of average operating 21 experience, so we want to define a set of estimates 22 that are applicable now.

23 We also looked at developing a set of 24 estimates which would be applicable at the end of the 25 original license. So about an average fleet life of

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	158
1	40 years or about 15 years from now.
2	And finally, we wanted to take these all
3	the way out to the end of lice extension. So, again,
4	an average plant life of about 60 years or 35 years
5	from today.
6	So although we were looking at the effect
7	of time, we were focusing on three discreet time
8	periods and changes that could occur over those time
9	periods and how the frequencies would be effected.
10	DR. FORD: Okay. Before you get off the
11	subbullets, just to make sure I understand, you talk
12	about in the second bullet mitigation measures.
13	You're talking about regulatory mitigation measures
14	not, for instance, changes in water chemistry?
15	MR. TREGONING: Both. Both.
16	DR. FORD: Both?
17	MR. TREGONING: Yes. Certainly, to use
18	IGSCC for example, there is a number of mitigation
19	techniques that are applied including pipe
20	replacement, including water chemistry, including pipe
21	sleeves.
22	DR. FORD: Yes.
23	MR. TREGONING: Including stress
24	improvement. So there are four or five different
25	mitigation techniques there

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	159
1	DR. FORD: So those are covered?
2	MR. TREGONING: Oh, yes. Yes.
3	DR. FORD: Okay.
4	MR. TREGONING: That was a primary
5	consideration. Because you can't just look at
6	unabated aging. If you look at unabated aging without
7	the effects of mitigation, you'll get a very skewed
8	picture as to what the challenges are going to be.
9	DR. FORD: So contrary to what we heard
10	this morning, those mitigation actions are plant
11	specific? Some use whatever mitigation action, others
12	don't.
13	MR. TREGONING: That's right.
14	DR. FORD: So contrary to what we heard
15	this morning, you do have the ability to quantify the
16	changes in delta CDF or ultimately delta CDF with
17	frequencies for various plant specific operating
18	conditions?
19	MR. TREGONING: Let me clear. While we
20	considered the effect of mitigation, they were
21	considered as an effect of the industry as a whole. So
22	we didn't necessarily go in for IGSCC and say okay,
23	here's a mechanism. Okay. Let me presume that I've
24	got a plant that's operating with a certain water
25	chemistry, has certain pipe materials and is applied

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	160
1	this other mitigation mechanisms, i.e, they do
2	inspections so often with this reliability, they have
3	also some stress improvement. What does that mean to
4	that plant's LOCA frequencies? We didn't go down to
5	that fine a level of detail.
6	DR. FORD: Okay.
7	MR. TREGONING: It was more of a sense of
8	this is what the industry has done as a whole.
9	They've applied these various mitigation measures as
10	a whole which vary from plant-to-plant. What do we
11	think the impact of these specific measures are on
12	these generic frequencies? So it was a little bit
13	more global in that sense than actually an attempt at
14	a rigorous look at a specific set of conditions for
15	anyone plant.
16	DR. FORD: Okay.
17	MR. TREGONING: And again, some of this is
18	very consistent with what has been done with LOCA
19	historically if you look at 5750 and other examples,
20	the estimates have tended to be generic even though
21	everyone certainly realizes that there are plant
22	specific things or plant specific aspects of this
23	which can make those frequencies go up or down. So
24	there's nothing to say that the frequencies that we
25	have in any way are limiting either positively or

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	161
1	negatively. And we didn't attempt to do that. We
2	just tried to get essentially a generic average across
3	the fleet.
4	CHAIRMAN SHACK: I mean you have hot legs
5	off 605, you have hot legs off 590 and it makes a
6	big difference, but you're going to average that out.
7	MR. TREGONING: And when you look at PWSCC
8	or CRDM cracking, that's obviously an important issue
9	and something that the experts or the panelists had to
10	rectify in their mind.
11	DR. SIEBER: So your data represents a
12	mean and not an average, right?
13	MR. TREGONING: I'm going to have to ask
14	Lee. We argue all the time about what the data really
15	represents. I'll have to let you field that one.
16	DR. SIEBER: But from a regulatory
17	standpoint if you're considering public safety, all
18	you need is one LOCA and the one that you get is
19	probably the one that is not at the mean is the worse
20	one out there. And so how do you take that into
21	account.
22	MR. TREGONING: Right. We asked just not
23	for their best estimate guesses, but we also asked for
24	the uncertainty about that best estimate.
25	DR. SIEBER: Yes, but do you focus on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	162
1	outlier worst case plant, say, I don't even want this
2	plant to have an event like this?
3	MR. TREGONING: Certainly when and I
4	don't want to even pretend to answer. We have 12
5	different panelists that provided opinions.
6	DR. SIEBER: Okay.
7	MR. TREGONING: Certainly that was a
8	consideration that we talked about.
9	DR. SIEBER: Okay.
10	MR. TREGONING: And that you would talk
11	about. So when you're dealing with uncertainty, it's
12	not just the uncertainty that you had regarding an
13	event happening, but also the uncertainty that there
14	could be another plant out there that might for
15	whatever reason would have a confluence of factors
16	that would lead to much higher LOCAs for some reason.
17	So that's what the uncertainty was
18	intended to do, although again we were pretty clear in
19	that we said we want to come up with average or
20	generic values.
21	The other thing we asked for is, oh by the
22	way, if there are specific combinations of factors
23	which you do think are risk sensitive, we want to know
24	about it because we need to do something pretty
25	quickly about that particular plant.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	163
1	DR. SIEBER: I would think so.
2	CHAIRMAN SHACK: Let me ask about that one
3	again. I mean, when I saw the 95/5 in median, I
4	assumed that those in fact were you thought most
5	plants would be the median, the worse cases would be
6	the 95th, the best cases would be the 5th. But you're
7	saying that your 95/5 are estimates of uncertainty on
8	the median?
9	MR. TREGONING: Yes. Primarily or about
10	we'll says the means, yes.
11	MR. ABRAMSON: The kind of instructions or
12	understanding, the instructions we gave to the experts
13	were that there is some under these very specific
14	conditions we're going to be asking them in, there is
15	some true LOCA frequency out there. Think of that
16	conceptually. And they're being asked to estimate
17	that.
18	And the median, we say well that's your
19	you have 50/50 chance that the true value is higher or
20	lower. That was their so called mid value estimate.
21	And the 9th percentile, you've only a 5 percent chance
22	of exceeding it.
23	However, this kind of begs the question
24	because what you're asking in effect is what it is
25	that they think they're estimating. And I would say

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	164
1	it would depend on the particular panel member or
2	expert as to what combination of things they're doing.
3	On the one hand they're asked to do kind of an
4	industry-wide average, although it's separate from
5	BWRs and PWRs. Do an industry-wide average. And at
6	the same time they need to reflect or they need to
7	have their answer somehow reflect the variability in
8	the plant specific conditions. And what kind of
9	mixture there is, we don't because we don't know.
10	MR. TREGONING: But we were pretty clear.
11	It said if there is one plant or let's say a few
12	plants that you think maybe outside of this average,
13	that's not appropriate. But let us know what these
14	conditions are so we can do something about it.
15	But if there are, let's say, a handful of
16	plants that because of the way they're arranged they
17	have a higher percentage of the risk than other plants
18	because of the materials that they're using, because
19	of the way the plant's designed; that if there's a
20	handful or more of plants that will end up driving the
21	risk, that that's appropriate to consider.
22	But, again, the amount with which each
23	expert really did that, that's a tougher thing to try
24	to address.
25	MR. ABRAMSON: We have some insight into

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	165
1	that from their rationale. Because, you know, we kept
2	emphasizing we want their reasons and their rationale
3	for their various choices they made.
4	MR. TREGONING: For instance with BWRs we
5	got some estimates from one particular panelist that
6	said, you know, for the core brace system, the core
7	brace stainless, here's what I think the estimates
8	are. If they are ferritic, here's what I think the
9	estimates are. And the estimates were quite
10	different.
11	And so my instructions back to that
12	panelist were okay, this is very good but what we
13	really need to do is get a sense for what you believe
14	is most applicable. So when he went back and thought
15	about his estimates, he said okay I've got a certain
16	percentage out there that are stainless steel. A
17	certain percentage that are ferritic. But I know the
18	industry is moving toward replacement with ferritic
19	and I expect them to get there. So I think that these
20	ferritic numbers are more applicable; more applicable
21	now and they will certainly be as we go forward into
22	the future.
23	So that was the kind of decision making
24	process that each of the experts had to utilize. Some
25	people made those decisions and did sort of an

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	average; well, I'd have this risk under this set of
2	conditions and this risk under this set of conditions.
3	I don't know how to weight them, so I'm essentially
4	going to average them. But that was a very individual
5	decision, certainly.
б	MR. SNODDERLY: Rob, I had a question on
7	frequencies associated with normal operating loads and
8	expected transients.
9	MR. TREGONING: We haven't gotten to that
10	bullet yet.
11	MR. SNODDERLY: Sorry.
12	MR. TREGONING: That's okay.
13	MR. SNODDERLY: What if the Commission
14	comes back and says because I think one of the
15	questions that the staff was asking this morning was
16	PRA scope, should it include external events and power
17	shutdown. So if the Commission comes back and says we
18	think it should include external events, could this
19	study be used to account for that or what would you
20	have to do develop frequencies, say, for external
21	events?
22	MR. TREGONING: Well, again, we had a
23	focus for this exercise which were commiserate with,
24	again, how this type of information has been used in
25	PRAs in the past and also we expected it to be used in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

167 1 PRAs in the future, which made us have the first limitation of just focusing on normal operating loads 2 3 and expected transients. 4 We certainly realized that the rarer 5 transients, let's say seismic event or a very large water hammer event, that is a very plant specific 6 7 question. And we certainly didn't believe that there 8 would be any rational way that we could develop generic frequencies for challenges associated with 9 those types of events. 10 11 So, what we had proposed to do there is we 12 did ask the experts, and this gets at Bill's question. I'm not going to talk about this today, but we did ask 13 14 the experts, you know, given the large load what's 15 your conditional failure probability given that you've got degraded either primary side piping or nonpiping, 16 17 to try to address that. I'm not going to talk about that today, but that is one area that while we had the 18 19 experts together we went ahead and asked them that 20 related question. MR. SNODDERLY: So you don't care what the 21 22 load is, but you could say you did ask given a large 23 load what's the frequency? 24 MR. TREGONING: No. We defined the load. 25 We prescribed the load.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	168
1	MR. SNODDERLY: On, you defined the load?
2	MR. TREGONING: We didn't prescribe the
3	frequency of such a load occurring.
4	MR. SNODDERLY: So this study could be
5	useful in the sense that if someone then came to you
6	and said, okay, given these seismic frequencies that
7	create these loads, then you can say here's the
8	likelihood that
9	MR. TREGONING: Yes, I think there's some
10	information I hesitate a little bit because we
11	haven't analyzed any of those responses yet. So how
12	useable or applicable they are, I'd like to withhold
13	judgment.
14	The one thing I will say with rare event
15	transients, there have a lot of work that this agency
16	has done over its history to try to address that
17	specific question. And there as no way within the time
18	frame and scope of this elicitation that we were going
19	to be prepared to majorally overturn that amount of
20	work. So I think what at least our plans are now is
21	within the context of 50.46 possible rule revision, is
22	we have got to go back, and we're certainly planning
23	to do this, and dust off some of that work and see if
24	it's still applicable or see if there's areas of it
25	that need to be refined to make it consistent with the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

intent of 50.46 revision. And some of what we need to do with follow on gets into the questions that we dealt with this morning in terms of what we get back, feedback we get back from the Commission in terms of guidance. How narrow or broad this rule is going to be? What things we need to consider or not. What PRA scope and quality are.

8 So all these things are really interrelated. 9 And at this point Research is, I think, like NRR is 10 taking a pretty cautious side because a cautious 11 approach to where we need to go because we want to 12 have a little bit more direction and guidance instead 13 of just rushing off to get to some place.

So let me move to the final bullet. There was an implicit if not explicit assumption that for the future that the plant operating profiles will not significantly change. Now what does that mean?

Well, we have a certain service history 18 that underlines in this whole effort. 19 And what we 20 were trying to do in the effort was take the service 21 history that we have, not only events with respect to 22 NOLOCA's that we'd essentially, especially for the big 23 LOCAs, but also looking at the precursor service 24 history, which is really what we focused on. Let's 25 look at the precursor events and figure out how we can

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

expand that information to evaluate LOCAs of various sizes and LOCAs into the future.

3 So we were very clear that if there were 4 plant operating changes that undermined the integrity 5 of this service experience, it would obviously invalidate whatever estimates we were making. 6 So 7 that's a pretty important consideration. And that's I think something that, we talked about the ten year 8 9 reevaluation this morning. I think that's one reason why this is so important. If we do things, as we are, 10 11 we're moving forward with power operates and things 12 like that; as we make changes we need to see how the plant responds to those changes. And what we may find 13 14 is that there are some things that we do that may 15 result in increased precursor likelihood of certain types of failures and locations that we've never seen 16 17 in the past. And that's why it's incumbent upon us to continually reassess these challenges in light of 18 19 potential changes that could be made.

And I think that's why even though the ten year reevaluation is challenging from a regulatory and a Research perspective, from a technical perspective, it's absolutely necessary. And it's a prerequisite in my opinion for moving forward rationally with anything that we're going to do here.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

170

1Okay. And, again, I've covered most2this is pretty excruciating detail in pa3presentations. So all I've done today is I've sort4encapsulated the approach that we used in t5elicitation. And I'm really going to focus on the6last two bullets here which are bolded, which is t7analyses of the results	of he se
3 presentations. So all I've done today is I've sort 4 encapsulated the approach that we used in t 5 elicitation. And I'm really going to focus on the 6 last two bullets here which are bolded, which is t	of he se
4 encapsulated the approach that we used in t 5 elicitation. And I'm really going to focus on the 6 last two bullets here which are bolded, which is t	he se
 6 elicitation. And I'm really going to focus on the 6 last two bullets here which are bolded, which is to 	se
6 last two bullets here which are bolded, which is t	
	he
7 analyzes of the results $=$	
8 CHAIRMAN SHACK: I just want to come ba	.ck
9 to this quantify base case frequency, because I this	nk
10 this is historically true but in practice you didr	.'t
11 really do this.	
12 MR. TREGONING: Okay.	
13 CHAIRMAN SHACK: What did you get the ba	.se
14 case frequency from? Is it really a serve	ce
15 experience analysis?	
16 MR. TREGONING: Well, we're going to ta	.lk
17 about the base case frequency.	
18 CHAIRMAN SHACK: You're going to ta	.lk
19 about that? Okay.	
20 MR. TREGONING: Yes. I just want to ma	.ke
21 it clear that I'm in focus on that. We did it, we h	ad
22 four analysts, we had two that used classical H	FΜ
23 techniques, we had two that used service histo	ry
24 alone. But they all had information to serve	ce
25 history data on which to calibrate or base the	ir

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	172
1	result.
2	CHAIRMAN SHACK: But thought you were here
3	in November you said that only one of the PFM analyses
4	were really thought to be valid, for example?
5	MR. TREGONING: If you asked my opinion,
6	I think one of the analyses was more rigorous than the
7	other, yes. I would say that. But what we did is all
8	the analyses were presented to the expert. I didn't
9	try to expert I'm sorry. I didn't try to bias their
10	opinion in one way or the other. But one of the
11	things we asked in the elicitation we asked them
12	comment directly on the base case evaluation efforts,
13	which ones they thought were good, which ones they
14	didn't think was good, which ones hit the mark, which
15	ones different. So that was a very important in
16	fact, that's how we opened up each elicitation was we
17	asked them for a synopsis or an evaluation of the work
18	we did to develop base case frequencies. Was it
19	helpful? Was it not helpful?
20	Not all the experts used the base case
21	work that we developed as an anchor point. Some used

other studies that they were aware of either out in

wasn't unanimous that everyone used these base case

frequencies that we developed. But I'd say most of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

the industry or other local in-house efforts.

(202) 234-4433

22

23

24

25

(202) 234-4433

So it

	173
1	the 12, at least 10 or 11 did.
2	And one of the things we asked is we said
3	okay if you had to pick one of the fours, the one that
4	you think is the best, which one would you pick and
5	which one you like to use. And everyone indicated a
б	response for that.
7	What we tried to do was just present the
8	information to the panelists without bias, as much as
9	that's possible, and let them decide what they think
10	is appropriate, what they don't think is appropriate.
11	I will say that the panelists tended to
12	confirm my expectations. So, for whatever that's
13	worth.
14	Okay. So let me briefly step through the
15	approach again. And, again, we can go into this, the
16	various aspects of the approach in as much or as
17	little detail as you'd like. I'm just sort of
18	sketching what we did here, realizing that we've got
19	a limited amount of time and wanting to focus on the
20	results.
21	But we started about two years ago. The
22	pilot elicitation, this was the internal staff effort
23	that I talked about. And we used that to develop
24	technical issues, come with a structure for the
25	elicitation and test out some sample questions just

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	with NRC staff.
2	We also developed some frequency estimates
3	as a result of that exercise, which we used at the
4	time to evaluate the feasibility of elimination of
5	LOCA/LOOP requirements that we talked about this
6	morning. And what you'll see today is I presented the
7	results a few years ago back in front of the ACRS.
8	And you'll actually see some comparisons later between
9	the news results and those earlier results.
10	The next thing we did is we selected the
11	panelists or the expert panel and the facilitation
12	team. The facilitation team, there was about six of
13	us technical experts and then we had Lee who was sort
14	of our elicitation and statistical expert to help
15	guide the process.
16	Then as a group we developed the technical
17	issues that we were going to try to address. We
18	constructed an approach for estimating LOCA
19	frequencies and we identified significant issues that
20	we wanted to address and ask about in the elicitation.
21	Then the next thing that we did which
22	we've talked about a little bit, is we developed a set
23	of base case frequencies. And the idea behind that is
24	we wanted to structure the elicitation so we were
25	asking the panelists to give us relative frequencies,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

not absolute. But relative differences between, let's 1 2 say, a base case or a set of quantified frequencies and some other set of conditions. So one of the things 3 4 we did as a group is we developed a framework for 5 those frequencies; what piping systems are we going to evaluate, what degradation measures, what mitigation 6 7 measures do we want to employ. So as a group we developed these sets of conditions and then we went 8 and carried out the analysis using a subset of four 9 the panelists. And, again, two of them used primarily 10 11 PFM and two of them used strictly operating experience 12 type of analysis.

formulate 13 The next step was to the 14 questions themselves, which we fed back to the panel 15 before we asked them the questions and they actually participated in actually formulating the questions 16 17 which was important so that we wanted to make sure they knew what they were answering. 18 And then we conducted the individual elicitation. 19

And all of this effort was finished at about the end of October. And since that work was completed, we entered the next phase which is the analysis of the results, which we've completed most of this. There's some additional work to do.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

And we're entering the final phase now,

(202) 234-4433

25

	176
1	which is the summary and the documentation of the
2	results. And as I indicated earlier, it's these last
3	two bullets that I really want to focus on.
4	I need to put this up because we're going
5	to be dealing with results. I think it's important
6	for us to view these results within context.
7	I talked about the fact that we looked at
8	historical LOCA sizes and we also looked at large
9	break LOCA sizes that we further partitioned. So this
10	is the way that we did the partitioning. And I've
11	shown this to you before, we had six different LOCA
12	categories. And when you see all the results, a lot of
13	the results are plotted as a function of LOCA category
14	1, 2, 3, 4, 5, 6. These categories are cumulative in
15	the sense that category 1 considers any break than 100
16	gpm. Category 2 is any break greater than 1500 gpm
17	flow rate. And category 6 is any break greater than
18	500,000 gpm flow rate.
19	The first three LOCA categories, 1, 2 and
20	3, are similar or analogous to historical definitions
21	we've had of small break, medium and large break
22	LOCAs. The only difference is that historically small
23	break LOCAs are defined not as a threshold of greater
24	than 100 gpm leakers, but in a range between 100 and
25	1500 while medium breaks are in a range between 1500

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

177 1 and 5,000. And then large breaks encompass anything greater than 5,000. That's historically what we've 2 So the only difference here is we're dealing 3 done. 4 with the threshold values instead of the ranges. And 5 this was something that we did at the request of the experts because they thought they could provide 6 7 estimates using this framework and structure and definition easier than they could in thinking about 8 9 ranges of flow rates. In terms of relating flow 10 DR. RANSOM: rate to break size, did you just assume that the flow 11 12 rate or volumetric flow rate is proportional to the cross sectional area or is it more complicated? 13 14 MR. TREGONING: It's a little bit more 15 And I might ask someone from ALARA. complicated. What we did is we developed correlations and there are 16 17 different correlations for steam and liquid and PWRs and BWRs based on simple correlations, closed form 18 19 solutions but they were not simplistic as simply 20 saying flow rates equal to break size. 21 And, Steve, do you want to --22 MR. BAJOREK: This is Steve Bajorek from 23 Research. 24 What we did is first we wanted to try to 25 establish a framework for this because as we went back

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	178
1	to some of the earlier work, some people had been
2	using codes to predict this, others had been hand
3	calculations. So we used Moody break flow for the
4	larger sized breaks assuming that for a break of that
5	size you'd be hypothesizing a double ended type of
6	break or rapid depressurization of the system. And
7	then as we got to down smaller break sizes, the break
8	size would start to challenge the thickness of the
9	pipe. So we thought we would be looking at something
10	closer to an orifice, so we used the modified Zaloudek
11	for the smaller break size areas.
12	DR. RANSOM: And what? These are all the
13	initial pressure?
14	MR. BAJOREK: No. We would assume that
15	they would vent down to a pressure that was
16	corresponding to well, initial pressure for the
17	BWRs. For the PWRs it would rapidly go down to a
18	saturation pressure corresponding to hot leg
19	temperature. And that's typically where you would see
20	it get to in the first few seconds of a
21	MR. TREGONING: I put the correlations we
22	actually used. And they were a function of the
23	normalized pipe, as Steve has mentioned as well as
24	also the transport fluid.
25	DR. WALLIS: But the experts weren't asked

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	179
1	about flow rate?
2	MR. TREGONING: No.
3	DR. WALLIS: They were asked about size.
4	MR. TREGONING: The experts were asked
5	about size.
6	DR. WALLIS: And what sort of break shape-
7	_
8	DR. RANSOM: They were asked about size,
9	not flow rate?
10	MR. TREGONING: Even though we defined the
11	LOCA categories in terms of flow rate, we gave them
12	correlations which I just showed you that relate them
13	to size. And I will say all the experts when they
14	developed their frequencies, they had break sizes in
15	mind and then used that correlation at the end to
16	partition their frequencies into a specific LOCA
17	category.
18	DR. WALLIS: What did the breaks look
19	like? What shapes did they have?
20	MR. TREGONING: Again, that was up to each
21	expert. And each expert had to make the assumption or
22	make the determination for a specific type of
23	degradation mechanism and location. Not only
24	degradation mechanism, but location what those breaks
25	might look like.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	180
1	DR. WALLIS: Well, did they have
2	breaks, axial
3	MR. TREGONING: They very well could,
4	although again
5	DR. WALLIS: So they could have a 19 inch
6	break in a 42 inch pipe?
7	MR. TREGONING: Oh, yes. Yes. One of the
8	things they had to consider was not only complete
9	failure of a pipe but also partial failures within a
10	pipe. And that was a challenging aspect of the
11	elicitation. And that's very much state of the art
12	trying to understand what the extent of damage is
13	going to be given that you got a rapidly propagating
14	failure event. It's not something that's easily
15	calculable at this point. But people do have there
16	is a lot of experience out there, I'll say benchtop,
17	laboratory experience as well as operating experience
18	to know what sort of failures, you know, what sort of
19	degradation mechanisms can lead to certain failures.
20	For instance, with FAC, we've got
21	experience that FAC can lead to very large sudden
22	failures where some of the more stress I'll say
23	thermal fatigue or something like that or areas where
24	you have maybe an isolated crack, you tended to more
25	likely get a much smaller confined failure when you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2	So there is some of that experiential
3	evidence that people relied on when they were
4	determining again the potential severity of a break
5	for a certain degradation mechanism. And when you get
6	to things like, you know, potentially it's common
7	cause, bolting failures and things like that, then you
8	have to consider potentially that because it's common
9	cause, that you have the entire casing that's split
10	apart. So that was definitely a prime consideration
11	that they all had to have.
12	DR. WALLIS: Well, did they have things

DR. WALLIS: Well, did they have things like valve bodies where the some bolts fail and it breaks open on one side and squirts out?

15 MR. TREGONING: That was something that 16 they had to consider, so yes. When we looked at bolt 17 failures we said, you know, obviously you have redundancy with bolt patterns and things like that. 18 19 And I'll be honest, this is a very difficult thing to You know, so you have to make an 20 try to access. 21 assessment well how many bolts do I need to fail 22 before I'm going to get leak of any size? I mean, 23 what sort of pattern? If they form -- if they failed 24 in let's say a star pattern versus all in one 25 location, you could have a totally different break

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

181

	182
1	size that would result from a certain number of bolts.
2	So its, you know, I don't want to give the
3	impression that this was easy but that was certainly
4	what we asked them to do and to consider in their
5	analyses.
6	CHAIRMAN SHACK: I mean, did people
7	actually go out and do an analyses for the flange
8	defemination when four bolts fail on a manway cover?
9	MR. TREGONING: No. Not that I saw. I
10	didn't see an analysis like that. But what people
11	did, I mean people analyses like that have been
12	done and people relied on those type of analyses and
13	their recollection of what the results were from those
14	types of analyses when making their estimate.
15	I don't want to downplay what these guys
16	had to do. This was like challenging. I had a number
17	of them come up to me and say this is probably the
18	hardest thing I've ever had to do over my engineering
19	career. And I was actually happy to hear them say
20	that, because if they didn't say that it was an
21	indication to me that they hadn't properly considered
22	all the interactions and all the variables that come
23	into play with leading to a break of a certain size.
24	So the ones that told me that, I actually had
25	increased confidence in their results because I knew

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	183
1	that they properly weighed the things that they needed
2	to weigh.
3	And this is the kind of thing at the end
4	of the day, I mean it's almost like you know, a lot
5	of us do this as engineers, but we have sort of gut
6	check engineering. And there was a lot of this that
7	they had to apply in their analyses. You know, does
8	this seem right to me? Does it not seem right based
9	on what I know?
10	And that's why when we made up this panel,
11	you know the panel selection was obviously, if not the
12	most important thing, certainly a key step. We really
13	looked for people that: (a) had a lot of experience
14	in the nuclear industry and I think all of our
15	panelists had a minimum of 25 years. But not only
16	that, but had not necessarily focused knowledge in a
17	certain area like materials, although that was
18	certainly important, but we were looking for people
19	that were really broad based that knew at a minimum
20	sort of a little bit about a lot of things. So we
21	were looking for generalists.
22	DR. WALLIS: Do you have any idea about
23	how a valve actually fails when you overtighten the
24	bolts and how a manway actually fails or is it all
25	theoretical?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	184
1	MR. TREGONING: Again, there has been work
2	done, not just in nuclear but in other industries that
3	have looked at those types of things.
4	DR. WALLIS: Yes, I was worried about it.
5	You said they were all experience in the nuclear.
6	Well, nothing ever happens in the nuclear, so there's
7	no basis.
8	MR. TREGONING: But we postulate things
9	happening quite a bit. And we quite often as an
10	industry, and there's certainly lots of precedence for
11	this going outside and looking at related industries
12	and related events in our industries to see how they
13	may be applicable here.
14	DR. RANSOM: What sort of stresses were
15	they told to consider? And I'm thinking like
16	earthquake, water, hammer, over temperature, over
17	pressure? Were all of those considered or
18	MR. TREGONING: Well, again, I'll go back
19	to the bullet that's up there now, the primary focus.
20	We were primarily concerned with normal operating
21	loads and expected transients. What are expected
22	transients? We defined them as transients that one
23	would expect over the 60 year life of a plant. So
24	certainly smaller water handlers are something that

(202) 234-4433

	185
1	heat up and cool down, those types of things. And all
2	we tried to do was isolate those loadings which are
3	truly rare; seismic and, again, maybe the large water
4	handler from consideration. But any other transients
5	were not only were they fair game, but certainly
6	they were stressed that they need to be considered.
7	I don't need to stress this but I will,
8	it's the transients that will lead to the failure
9	usually. You will have condition that will develop
10	usually and then you'll have a transient which will
11	exacerbate that pre-existing condition and lead to a
12	problem. Usually, not always, but usually.
13	DR. RANSOM: You're saying things like
14	fatigue or something else, stress corrosion cracking.
15	MR. TREGONING: Stress corrosion cracking
16	that has been evolving over some time period and then
17	you have a minor pressure transient where the crack is
18	close enough that it gets it to run and fail; those
19	types of things.
20	CHAIRMAN SHACK: We're going to have to
21	move along if we're going to get to the results here
22	somewhere along the way.
23	MR. TREGONING: If you limit your
24	questions, I can promise that we'll be there quickly.
25	This is the structure that we used. And,

(202) 234-4433

(202) 234-4433

	186
1	again, I've presented this before. I just want to
2	touch on it here so that we're all thinking about the
3	same thing when we evaluate these results.
4	So we have LOCA contributions which come
5	from a variety of sources. And I've just focused on,
6	I'll say, primary system LOCAs here. Not any LOCA
7	that you could get. But we split the primary up into
8	passive and active system LOCAs. But the focus of the
9	elicitation was the passive system LOCAs.
10	We further partitioned that into piping
11	and nonpiping contributions. And then we defined
12	piping system and nonpiping components which could
13	lead to a primary system LOCA. And then we had for
14	each of these systems and components, we had what we
15	called variable classes. So these were areas where
16	the variables within these variable classes would
17	determine our LOCA likelihood. So it's like geometry,
18	what your pipe geometry was, how big it was, what the
19	layout was, what the loading history of the system
20	was, what mitigation and maintenance is applicable,
21	what materials are, what materials make up that system
22	and what aging mechanisms are appropriate for those
23	materials.
24	So what we did for all these systems was
25	brainstormed all the possible variables that we would

(202) 234-4433

1 expect in these classes and then for a given either 2 given or component, we matched the geometry, loading 3 histories, materials, aging mechanisms and mitigation 4 systems together to try to at least come up with a 5 finite set of variables that the experts had to We did the same thing with nonpiping, 6 consider. 7 although we did it for pumps, steam generators and then the vessel itself pressurizers and valves. 8 9 Again, the base case work, again, this has 10 been presented before. 11 For piping specified specific we conditions. 12 And what do I mean by that? Well, we specified a piping system, size, material, loading, 13 14 degradation mechanism and mitigation procedures. We 15 specified all those as a group. We had five different piping systems that we looked at, 2 BWR and 3 PWR. 16 17 And then we had four people estimate the frequencies of those defined conditions as a function of operating 18 And two of those people, as I mentioned, use 19 time. 20 primarily operating experience and two used PFM. For nonpiping we didn't use the same 21 22 approach, just because the types of failures that you 23 could get were so variable. With piping, piping 24 designs are all similar, they all follow ASME code. 25 The components are all piping. With nonpiping you're

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

187

dealing with bolts and you're dealing with -- you know, you're dealing vessel, you're dealing with control rod drive mechanisms. You're dealing with a wider disparity of components and to come up with a base case for each of those components just wasn't trackable, given not only the time but the resources available.

And the other thing with nonpiping is we just don't have the richness or wealth of precursor information that we do with piping. We've got a lot of information on piping precursors. Not nearly as many on non piping.

So what we did for nonpiping is 13 we 14 actually developed a precursor database. We had two 15 of the panelists go back to 1990 through LERF searches to identify precursor events and precursor events are 16 And then also partial leak or 17 components leaks. cracking events. And we supplemented those, this 18 19 precursor database, with some targeted PFM studies that were done by another panelists to look at CRDM 20 21 ejection failures and BWR vessel challenges. And by 22 BWR vessel challenges, they would look at normal operating loading and LTOP. 23

Now, I've excluded PWR from here, although
we did consider PWRs. We were very clear to the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

1 panelists to not consider the effects of the PTS on vessel failures. Well, why is that? Well, we've got 2 3 this whole effort as a research community that we've 4 had ongoing over the last four or five years now to 5 evaluate those frequencies. And those frequencies are driven by the LOCA frequencies. So we didn't want to 6 7 get into a circular argument sort of estimate where we 8 were trying to -- we were going to be changing the change 9 frequencies which would LOCA the PTS challenges. So we didn't want to base PTS failures on 10 11 some study that could be fluid. 12 So what we had them do is we said consider vessel failure for the Ps, but don't consider PTS, 13 14 consider everything else. So consider head 15 degradation, consider failure due to -- I don't know, fatique even though people have said for years that 16 17 fatigue is not realistic for the vessel. But consider anything that's none PTS as being a fair game for the 18 19 vessel. CHAIRMAN SHACK: Now for the BWR Pete came 20 21 up with his ten to the minus 35th again? 22 DR. WILLIAMS: 23 MR. TREGONING: No. That was not the base 24 case number for the BWRs. 25 DR. WALLIS: What's the relationship

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

189

	190
1	between these base cases and then the later cases?
2	You've got a very small number of panelists doing the
3	base case?
4	MR. TREGONING: Yes.
5	DR. WALLIS: But don't they influenced
6	then what everybody else does later on?
7	MR. TREGONING: The quantitative estimates
8	potentially impact what everyone else does later on.
9	That's why we had the base case the way we set this
10	up, is the four people that developed these estimates,
11	they came back. We had a meeting in June. We defined
12	what they were going to be analyzing. Then they came
13	back in June and presented the results of their
14	analysis to the entire panel, which the panel had a
15	lot of comments about it, some good some bad. And as
16	a result of that June meeting, the base case
17	developers went back and did some more sensitivity
18	analysis, they did some additional analysis. But the
19	idea was while they influenced the results, we wanted
20	to present exactly what was done to each panelist, and
21	that way with them having a clear understanding of
22	what was done if they wanted to adjust frequencies in
23	any way they could go and do that essentially.
24	So while they do form the framework, each
25	panelist was free to adjust these numbers however they

(202) 234-4433

	191
1	saw fit. And, of course, they all did. And, again,
2	some of them did not use those estimates at all. So
3	we really gave each panelist the freedom to approach
4	this in the way that made them most comfortable.
5	I showed this, and this Graham had
6	mentioned this before, the wide disparity in the base
7	case estimates. I think I presented this in November
8	and we talked about this slide quite a bit. I
9	hesitated putting it up, because I didn't know if we
10	could get past it in the allotted time, but I thought
11	I needed to do that again just to refresh everyone's
12	memory about what we put up in November and use this
13	as saying this was the basis for some of this work.
14	So what you see here at the two BWR base
15	cases and the 3 PWR base cases plotted side-by-side.
16	And these are the estimates at 25 years. So what the
17	analysts predicted were the LOCA frequency estimates
18	for the base cases right now.
19	And you see failure frequencies as a
20	function of these LOCA categories that we define. So
21	LOCA category 1 is the small LOCA, LOCA category 6 is
22	the large LOCA.
23	The way we defined the categories, the
24	numbers all decrease because category 1 also include
25	category 6. So when we look at all the plots that I'm

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	192
1	going to show today, they all have to be going down
2	DR. WALLIS: Except number 5 is peculiar.
3	Well, it's just the bottom end has disappeared. It's
4	sort of everything's come together again.
5	MR. TREGONING: Oh, well
6	DR. WALLIS: Very peculiar.
7	MR. TREGONING: It's not that it came
8	together. So you're looking at BWR 2 base case. It
9	was that expert did not give us an estimate for
10	DR. WALLIS: It was just off scale. You
11	didn't show it.
12	MR. TREGONING: No, no, no. I've shown
13	you. The scale is down to ten to the minus 18, so you
14	know I didn't have to go too much further off scale.
15	So, no, these are all the results as actually
16	developed.
17	DR. FORD: Oh, I see. So the two points
18	for each of the cases are the two panelists?
19	MR. TREGONING: Yes. The number of points
20	that you see here are the number of panelists that we
21	got an estimate from of the four. Of the four, we
22	didn't get an estimate for everything.
23	For instance, one of the analysts did not
24	feel that he had sufficient expertise in BWRs, so he
25	didn't give us any BWR estimates. He only gave us PWR

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	193
1	estimates. That's why you see a fourth data point for
2	the Ps and why there are only like three for the Bs.
3	And even for the Bs, not all of them gave
4	us estimates for every LOCA size.
5	DR. FORD: Now just to calibrate myself on
6	the BWR cases you've got to deformation mechanisms.
7	The one is IGSCC presumably at 304 and the other one
8	is transgranular cracking and assisted corrosion
9	presumably in carbon steel piping.
10	MR. TREGONING: That's correct.
11	DR. FORD: Looking at category 1, there's
12	a lot of data in industry for failures around the
13	world for those two failure modes. Do those
14	frequencies observed frequencies correspond to
15	those frequencies that give an
16	MR. TREGONING: Well, again, the service
17	history estimates certainly base their estimates on
18	that information, on the available information of
19	precursor events that
20	CHAIRMAN SHACK: There's no failure data,
21	Peter. There's plenty of cracking and leaking data,
22	but there's no failure
23	MR. TREGONING: There's precursor data.
24	Precursor.
25	DR. FORD: Well, cracking data.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	194
1	CHAIRMAN SHACK: Yes. Well
2	DR. FORD: But looking at category 1
3	CHAIRMAN SHACK: But a crack a crack
4	has well, no, no. A 100 gallon leak
5	DR. FORD: No.
6	MR. TREGONING: Yes.
7	MR. TREGONING: Category 1 is a 100 gallon
8	leak. A gallon what we did what we did is we
9	defined a LOCA category zero, which is not on here.
10	But on LOCA category zero is essentially a leak.
11	DR. FORD: A drip?
12	MR. TREGONING: Yes. And we didn't define
13	it that precisely. It was essentially through
14	DR. FORD: But what my question is really
15	driving at is there must be some kind of qualification
16	of those opinions.
17	MR. TREGONING: Again, those opinions were
18	qualified by the amount of precursor data that's out
19	there. So that category zero information.
20	DR. FORD: Well, let me have a follow up
21	question. Taking the BWR 1 situation IGSCC. That
22	might well have been the situation, say, 20 years ago
23	when we were operating at .5 per centimeter. Now
24	it's literally even for a drip, it's essentially zero.
25	MR. TREGONING: Well, essentially zero,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	195
1	but it's much lower than it was.
2	DR. FORD: Way down at the bottom. It's
3	way down at the bottom. So if you're looking at
4	current fleet, how does that fact meld into your
5	prediction?
6	MR. TREGONING: And that's one of the
7	reasons that certainly service history when you
8	look at service history data you have to have a very
9	keen eye to evaluate it because knowing the changes
10	that have been made and how it potentially effects
11	things, you can have dramatically different estimates.
12	And IGSCC is a great example of that because we had so
13	much data that we generated on IGSCC in service in the
14	mid-'70s up to sort of mid '80s.
15	So what we did specifically for IGSCC, we
16	developed estimates pre and post mitigation. And we
17	defined mitigation time as roughly being 1983 or so.
18	DR. FORD: Well, okay.
19	MR. TREGONING: So the way we defined the
20	base case we said, all right, was normal water
21	chemistry. Okay. Normal three or four stainless, but
22	it's got a weld overlay. So we had on particular
23	mitigation mechanism that we applied. And that's
24	something that we felt could model with PFM as well as
25	capture through the service history database. So

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	196
1	while we didn't you know, there's no plant out
2	there that has that specific set of conditions, those
3	were the conditions that we defined to analyze our
4	base case results.
5	DR. SIEBER: What's the reason for the 15
6	orders of magnitude variability in category 4 for
7	BWRs?
8	MR. TREGONING: I can address that one,
9	and this is why it's important to feed this back to
10	the experts. The PFM analysis that was done was, even
11	though the conditions defined we're evaluating both
12	thermal fatigue and flow accelerated corrosion
13	failures, that particular PFM algorithm did not have
14	an appropriate so they really only estimated
15	thermal fatigue. And as you might imagine, the thermal
16	likelihood of failure for the feed water is pretty
17	low.
18	And these differences this is why we
19	had this meeting with the expert to point out exactly
20	these differences. And these differences have been the
21	things that I think in the past is what we've always
22	aught ourselves on. Because we've had these PFM
23	estimates and we've had service history estimates.
24	We've never really tried to rectify them in some way.
25	It's been even, I'll say, quasi-rigorous.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

197 1 Here we at least said okay, go do your 2 estimates, provide the basis for these estimates to the expert and then let them decide what's more 3 4 appropriate when they make their assessment. 5 So there's clearly some big differences, and those big differences are due to a variety of 6 7 things, not the least bit of which is limitations of the specific analytical technique. 8 DR. SIEBER: That's probably the biggest 9 difference I've ever seen in any analysis. 10 11 MR. TREGONING: Yes. For LOCA I've seen -- this did not surprise 12 frequencies, no. 13 me. 14 Т see Bill shaking his head. It's 15 disconcerting but it's not something that's unusual, unfortunately. It's one of the reasons that PFM has 16 17 got a bad rap over the years for this stuff because you come back --18 CHAIRMAN SHACK: Well, but I mean they're 19 20 really not comparable. If one guys looking only at 21 thermal fatigue and the other guy's looking at FAT --22 DR. SIEBER: Well, on the other hand, it's 23 on the same chart and you ask yourself the question 24 what do you make out of this when you have such a huge 25 variation.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	198
1	MR. TREGONING: Right. I know, again, I'm
2	doing a little bit of a disservice to the information
3	to plot it all on one chart.
4	DR. SIEBER: Yes. It'd been better had you
5	not even told us.
6	MR. TREGONING: No. In the interest of
7	disclosure, you know, I have to tell you. And this was
8	information that was provided to the experts. And,
9	again, I'm not
10	DR. SIEBER: But this is the first round
11	and then they got an opportunity to sit there and
12	ponder?
13	MR. TREGONING: No. Let me be clear. This
14	is the base information. So this was information
15	before the experts went off and gave us any judgment
16	as to what these frequencies were.
17	DR. SIEBER: Oh.
18	MR. TREGONING: This was just I'll call it
19	underlying technical information that we provided to
20	each expert.
21	DR. SIEBER: Okay.
22	MR. TREGONING: And believe me, the people
23	that developed the base cases, they realized
24	themselves, obviously, that there were limitations in
25	their approach.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	199
1	DR. SIEBER: Right.
2	MR. TREGONING: So, you know, the guy who
3	came back with ten to the minus 18, he didn't say well
4	that's the frequency of the B water line failures
5	because he realized that he had limitations in his
б	analysis to cause that frequency to increase. And
7	those were something that he had to consider in his
8	elicitation.
9	DR. FORD: So for the BWR case, one panel
10	member said you've got to be kidding, you're never
11	going to get 25,000 gallons per minute from that fact?
12	MR. TREGONING: That's right. That's
13	right.
14	DR. FORD: Presuming that fact situation.
15	MR. TREGONING: Yes.
16	DR. FORD: Whereas the other guy, said,
17	yes there's a
18	MR. TREGONING: Right.
19	DR. FORD: It was as uncomplicated as
20	that? Is that right?
21	MR. TREGONING: It was as simplistic as
22	that.
23	DR. FORD: Simplistic.
24	MR. TREGONING: Where what we did with the
25	base case people is we met as a group and we had

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	200
1	weekly phone calls to make sure we were analyzing as
2	close as we can the same thing, you know the same set
3	of conditions. But then we turned them off and said
4	don't consult with each other. Do your analyses and
5	come back and tell us what you get.
6	DR. FORD: Okay.
7	MR. TREGONING: So then they came back and
8	told us what they got. And, of course, you look at
9	this and you say well, you know, that's a pretty big
10	disparity.
11	DR. FORD: Yes.
12	MR. TREGONING: And the next thing we did
13	as a group is we looked at this and we said well let's
14	identify some possible reasons for this disparity that
15	we can give to the experts or the panelists so that,
16	again, when they make their assessment they have these
17	things clear in their mind. And, again, that's the
18	way we structured it.
19	DR. SIEBER: I would be delighted if we
20	would move on.
21	DR. RANSOM: Well, this thermal fatigue
22	thing are those frequency units supposed to be
23	different on those two graphs? Yes, you got like cal
23 24	different on those two graphs? Yes, you got like cal per year and then you got R per year.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	201
1	calendar year. That's just a typo.
2	DR. RANSOM: It means calendar year?
3	MR. TREGONING: Yes, per calendar year.
4	No, I apologize for that.
5	DR. RANSOM: So the minus one should be
б	outside, I guess, the bracket, right?
7	MR. TREGONING: Well, yes.
8	DR. RANSOM: And what is the R year.
9	MR. TREGONING: That's reactor, but they
10	should be calendar. So that's a typo, so I apologize
11	for that.
12	DR. WALLIS: Well this thermal fatigue for
13	instance, he got such a small number. He must assume
14	something about a very mild thermal condition and it's
15	probably quite likely that that it's a probability of
16	ten to the minus six or something that you could get
17	very severe thermal conditions, but he doesn't know
18	that.
19	MR. TREGONING: Well, no what and I
20	know you want to move on.
21	DR. WALLIS: It all depends on what goes
22	in. If you move garbage in you're going to get
23	garbage out.
24	MR. TREGONING: Right. At the danger of
25	belaboring this point, this is all the same person.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	202
1	DR. WALLIS: Yes, but has to have some
2	inputs to his analyses.
3	MR. TREGONING: Of course. What he said
4	here is that there's a relatively high likelihood that
5	he gets a small LOCA at a thermal leak. And transient
6	is really what's driving how quickly that crack goes
7	through a wall. What drives here are the
8	characteristics of that crack as it goes through a
9	wall. Because one of the things we made very clear,
10	hey, if this thing goes through a wall and we get
11	leaks that are greater than 1 gpm, we have to assume
12	that it's detected at that point. Because we have a
13	lot of regulatory basis for ensuring that that
14	happens.
15	So what this guy is saying, not that the
16	likelihood of a thermal fatigue is small
17	DR. WALLIS: Could you use the microphone?
18	MR. TREGONING: Oh, I'm sorry. Sorry.
19	DR. WALLIS: The thermal figure has
20	happened and there have been pipes that have failed in
21	reactors due to thermal fatigue.
22	MR. TREGONING: Yes. But, again, let me
23	be clear. What he's saying is not that thermal
24	fatigue likelihood is unbelievably small, but that the
25	likelihood of getting a very large LOCA from thermal

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1fatigue is very small. And that's a different thing.2That's a totally different statement.3And the thermal conditions for the most4part I would argue are going to be more important in5determining this. And it's the characteristics of the6cracking and the failure which are going to determine7that.8CHAIRMAN SHACK: In the simple-minded term9the crack goes through a wall at about a two to one10ratio. So that by the time you go through a wall an11inch and a half, you've got a three inch long crack.12Well, in a 22 inch diameter line, a three inch crack13doesn't mean much except that you've got water on the14floor.15MR. TREGONING: And that's our leak before16break philosophy, which is again17DR. SIEBER: This is why the big pipes are18better than the small ones?19MR. TREGONING: That's right. You asked20this morning, and that's definitely one reason.21Definitely. And it's a strong reason. Even though22they're designed to the same nominal margin, that's23one reason why they tend to be more robust.24Okay. Moving right along. This is the25flow chart which we used, not only to analyze the		203
3And the thermal conditions for the most4part I would argue are going to be more important in5determining this. And it's the characteristics of the6cracking and the failure which are going to determine7that.8CHAIRMAN SHACK: In the simple-minded term9the crack goes through a wall at about a two to one10ratio. So that by the time you go through a wall an11inch and a half, you've got a three inch long crack.12Well, in a 22 inch diameter line, a three inch crack13doesn't mean much except that you've got water on the14floor.15MR. TREGONING: And that's our leak before16break philosophy, which is again17DR. SIEBER: This is why the big pipes are18better than the small ones?19MR. TREGONING: That's right. You asked20this morning, and that's definitely one reason.21Definitely. And it's a strong reason. Even though22they're designed to the same nominal margin, that's23one reason why they tend to be more robust.24Okay. Moving right along. This is the	1	fatigue is very small. And that's a different thing.
4part I would argue are going to be more important in determining this. And it's the characteristics of the cracking and the failure which are going to determine that.7that.8CHAIRMAN SHACK: In the simple-minded term 99the crack goes through a wall at about a two to one ratio. So that by the time you go through a wall an inch and a half, you've got a three inch long crack.12Well, in a 22 inch diameter line, a three inch crack doesn't mean much except that you've got water on the floor.15MR. TREGONING: And that's our leak before break philosophy, which is again DR. SIEBER: This is why the big pipes are better than the small ones?19MR. TREGONING: That's right. You asked this morning, and that's definitely one reason. Definitely. And it's a strong reason. Even though they're designed to the same nominal margin, that's one reason why they tend to be more robust.24Okay. Moving right along. This is the	2	That's a totally different statement.
5determining this. And it's the characteristics of the cracking and the failure which are going to determine that.7that.8CHAIRMAN SHACK: In the simple-minded term 99the crack goes through a wall at about a two to one ratio. So that by the time you go through a wall an inch and a half, you've got a three inch long crack.12Well, in a 22 inch diameter line, a three inch crack doesn't mean much except that you've got water on the floor.15MR. TREGONING: And that's our leak before break philosophy, which is again DR. SIEBER: This is why the big pipes are better than the small ones?19MR. TREGONING: That's right. You asked this morning, and that's definitely one reason. Definitely. And it's a strong reason. Even though they're designed to the same nominal margin, that's one reason why they tend to be more robust.24Okay. Moving right along. This is the	3	And the thermal conditions for the most
 cracking and the failure which are going to determine that. CHAIRMAN SHACK: In the simple-minded term the crack goes through a wall at about a two to one ratio. So that by the time you go through a wall an inch and a half, you've got a three inch long crack. Well, in a 22 inch diameter line, a three inch crack doesn't mean much except that you've got water on the floor. MR. TREGONING: And that's our leak before break philosophy, which is again DR. SIEBER: This is why the big pipes are better than the small ones? MR. TREGONING: That's right. You asked this morning, and that's definitely one reason. Definitely. And it's a strong reason. Even though they're designed to the same nominal margin, that's one reason why they tend to be more robust. Okay. Moving right along. This is the 	4	part I would argue are going to be more important in
7that.8CHAIRMAN SHACK: In the simple-minded term9the crack goes through a wall at about a two to one10ratio. So that by the time you go through a wall an11inch and a half, you've got a three inch long crack.12Well, in a 22 inch diameter line, a three inch crack13doesn't mean much except that you've got water on the14floor.15MR. TREGONING: And that's our leak before16break philosophy, which is again17DR. SIEBER: This is why the big pipes are18better than the small ones?19MR. TREGONING: That's right. You asked20this morning, and that's definitely one reason.21Definitely. And it's a strong reason. Even though22they're designed to the same nominal margin, that's23one reason why they tend to be more robust.24Okay. Moving right along. This is the	5	determining this. And it's the characteristics of the
8CHAIRMAN SHACK: In the simple-minded term9the crack goes through a wall at about a two to one10ratio. So that by the time you go through a wall an11inch and a half, you've got a three inch long crack.12Well, in a 22 inch diameter line, a three inch crack13doesn't mean much except that you've got water on the14floor.15MR. TREGONING: And that's our leak before16break philosophy, which is again17DR. SIEBER: This is why the big pipes are18better than the small ones?19MR. TREGONING: That's right. You asked20this morning, and that's definitely one reason.21Definitely. And it's a strong reason. Even though22they're designed to the same nominal margin, that's23one reason why they tend to be more robust.24Okay. Moving right along. This is the	6	cracking and the failure which are going to determine
 the crack goes through a wall at about a two to one ratio. So that by the time you go through a wall an inch and a half, you've got a three inch long crack. Well, in a 22 inch diameter line, a three inch crack doesn't mean much except that you've got water on the floor. MR. TREGONING: And that's our leak before break philosophy, which is again DR. SIEBER: This is why the big pipes are better than the small ones? MR. TREGONING: That's right. You asked this morning, and that's definitely one reason. Definitely. And it's a strong reason. Even though they're designed to the same nominal margin, that's one reason why they tend to be more robust. Okay. Moving right along. This is the 	7	that.
10 ratio. So that by the time you go through a wall an 11 inch and a half, you've got a three inch long crack. 12 Well, in a 22 inch diameter line, a three inch crack 13 doesn't mean much except that you've got water on the 14 floor. 15 MR. TREGONING: And that's our leak before 16 break philosophy, which is again 17 DR. SIEBER: This is why the big pipes are 18 better than the small ones? 19 MR. TREGONING: That's right. You asked 20 this morning, and that's definitely one reason. 21 Definitely. And it's a strong reason. Even though 22 they're designed to the same nominal margin, that's 23 one reason why they tend to be more robust. 24 Okay. Moving right along. This is the	8	CHAIRMAN SHACK: In the simple-minded term
 inch and a half, you've got a three inch long crack. Well, in a 22 inch diameter line, a three inch crack doesn't mean much except that you've got water on the floor. MR. TREGONING: And that's our leak before break philosophy, which is again DR. SIEBER: This is why the big pipes are better than the small ones? MR. TREGONING: That's right. You asked this morning, and that's definitely one reason. Definitely. And it's a strong reason. Even though they're designed to the same nominal margin, that's one reason why they tend to be more robust. Okay. Moving right along. This is the 	9	the crack goes through a wall at about a two to one
Well, in a 22 inch diameter line, a three inch crack doesn't mean much except that you've got water on the floor. MR. TREGONING: And that's our leak before break philosophy, which is again DR. SIEBER: This is why the big pipes are better than the small ones? MR. TREGONING: That's right. You asked this morning, and that's definitely one reason. Definitely. And it's a strong reason. Even though they're designed to the same nominal margin, that's one reason why they tend to be more robust. Okay. Moving right along. This is the	10	ratio. So that by the time you go through a wall an
 doesn't mean much except that you've got water on the floor. MR. TREGONING: And that's our leak before break philosophy, which is again DR. SIEBER: This is why the big pipes are better than the small ones? MR. TREGONING: That's right. You asked this morning, and that's definitely one reason. Definitely. And it's a strong reason. Even though they're designed to the same nominal margin, that's one reason why they tend to be more robust. Okay. Moving right along. This is the 	11	inch and a half, you've got a three inch long crack.
 14 floor. 15 MR. TREGONING: And that's our leak before 16 break philosophy, which is again 17 DR. SIEBER: This is why the big pipes are 18 better than the small ones? 19 MR. TREGONING: That's right. You asked 20 this morning, and that's definitely one reason. 21 Definitely. And it's a strong reason. Even though 22 they're designed to the same nominal margin, that's 23 one reason why they tend to be more robust. 24 Okay. Moving right along. This is the 	12	Well, in a 22 inch diameter line, a three inch crack
 MR. TREGONING: And that's our leak before break philosophy, which is again DR. SIEBER: This is why the big pipes are better than the small ones? MR. TREGONING: That's right. You asked this morning, and that's definitely one reason. Definitely. And it's a strong reason. Even though they're designed to the same nominal margin, that's one reason why they tend to be more robust. Okay. Moving right along. This is the 	13	doesn't mean much except that you've got water on the
16 break philosophy, which is again DR. SIEBER: This is why the big pipes are better than the small ones? MR. TREGONING: That's right. You asked this morning, and that's definitely one reason. Definitely. And it's a strong reason. Even though they're designed to the same nominal margin, that's one reason why they tend to be more robust. Okay. Moving right along. This is the	14	floor.
17DR. SIEBER: This is why the big pipes are18better than the small ones?19MR. TREGONING: That's right. You asked20this morning, and that's definitely one reason.21Definitely. And it's a strong reason. Even though22they're designed to the same nominal margin, that's23one reason why they tend to be more robust.24Okay. Moving right along. This is the	15	MR. TREGONING: And that's our leak before
18 better than the small ones? 19 MR. TREGONING: That's right. You asked 20 this morning, and that's definitely one reason. 21 Definitely. And it's a strong reason. Even though 22 they're designed to the same nominal margin, that's 23 one reason why they tend to be more robust. 24 Okay. Moving right along. This is the	16	break philosophy, which is again
19MR. TREGONING: That's right. You asked20this morning, and that's definitely one reason.21Definitely. And it's a strong reason. Even though22they're designed to the same nominal margin, that's23one reason why they tend to be more robust.24Okay. Moving right along. This is the	17	DR. SIEBER: This is why the big pipes are
20 this morning, and that's definitely one reason. 21 Definitely. And it's a strong reason. Even though 22 they're designed to the same nominal margin, that's 23 one reason why they tend to be more robust. 24 Okay. Moving right along. This is the	18	better than the small ones?
21Definitely. And it's a strong reason. Even though22they're designed to the same nominal margin, that's23one reason why they tend to be more robust.24Okay. Moving right along. This is the	19	MR. TREGONING: That's right. You asked
22 they're designed to the same nominal margin, that's 23 one reason why they tend to be more robust. 24 Okay. Moving right along. This is the	20	this morning, and that's definitely one reason.
 23 one reason why they tend to be more robust. 24 Okay. Moving right along. This is the 	21	Definitely. And it's a strong reason. Even though
24 Okay. Moving right along. This is the	22	they're designed to the same nominal margin, that's
	23	one reason why they tend to be more robust.
25 flow chart which we used, not only to analyze the	24	Okay. Moving right along. This is the
	25	flow chart which we used, not only to analyze the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

responses but also to develop the responses that we got from the experts. And they're very similar for piping and nonpiping, a similar structure. But at the starting point for each of these and these sort of pink shaded regions and it doesn't show up very well here, are the panel input areas. And then at the lower right are the results that we got.

8 So we asked from each panel member to select a 9 base case for each -- either piping system or 10 nonpiping components. Then we asked for their 11 adjustment ratios. How would you adjust for that 12 system these base case frequencies as a function of 13 time and LOCA size.

14 Based on these two inputs we developed a 15 set of system related frequencies for either a piping system or subcomponent frequencies for a nonpiping 16 17 component. The sum overall either the piping systems or the subcomponents, and there's another adjustment 18 19 to adjust for the percent contribution that the expert 20 thought that they were providing us with. We didn't 21 ask them to evaluate every single thing or every 22 single piping system or issue. We said focus on the 23 ones that you think are most risk significant, or I'll 24 say LOCA significant. Let me clear. Not risk, but LOCA significant. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	205
1	And what we defined significancy, we said
2	essentially consider those systems which in your
3	opinion give us 80 percent of the LOCA contribution.
4	So this percent
5	DR. FORD: Or more.
6	MR. TREGONING: Or more. Some considered
7	all the systems. So for those people there would be
8	no percent contribution adjustment. Some didn't even
9	make it up to 80 percent. Some were at 70 percent
10	based on their opinion. So we adjusted
11	DR. WALLIS: So if they did nothing, you
12	divide by zero, is that right?
13	MR. TREGONING: That was not an opinion.
14	That was not opinion.
15	DR. WALLIS: If they did very little,
16	though.
17	MR. TREGONING: Yes, but this was a minor
18	adjustment and it doesn't affect the result. It was
19	usually again 81 over, you know, eight or 1.125. So
20	in the LOCA frequency game, it's almost imperceptible.
21	But then once we make that adjustment then
22	we get for each panel member either piping or
23	nonpiping frequencies. And Lee's going to go into the
24	analysis framework a little bit in more detail now if
25	there are no more specific we're going to come back

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	206
1	to this, because he's going to show you how the
2	responses factors into each of these blocks.
3	MR. ABRAMSON: Okay. We start with the
4	flow chart idea, the participants used the base case
5	conditions and the frequencies and then they provide
6	the ratios. And the ratios, as we mentioned before,
7	we asked them always three numbers. Their mid values
8	and then what we called their upper bound and their
9	lower bound. The mid values was like the medians and
10	the upper bound was like a 95 percent confidence
11	bound, if you like at 95 percent and the lower bound
12	was 5 percent.
13	So we asked this for everything that they
14	gave us. All the numbers they gave us.
15	And we also, as Rob indicated, focused on
16	the important contributing factors. They didn't have
17	to consider everything because there was just so much
18	to consider, but just what were the big contributors.
19	What we did is we took each panel member's
20	results and we took those and then we, as I'm going to
21	show you in the next couple of slides, we propagated
22	all those numbers through to their final estimate for
23	each panel member. So we got individual estimates for
24	each panel member and then you'll show how we compared
25	them and so on and so forth.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

so called kind of consensus approach or something like that. But our main results and essentially everything you're going to see today is all based on the individual panel results.

A big advantage of this is that they're so 6 7 consistent. If you try to do any kind of a consensus 8 approach, they you always have the problem of how do 9 you know that the answer for this part, this 10 component, is consistent with that part. Because like 11 you have, you know, it's a big Chinese menu. You have 12 one from group A and one from group B and one from group C and so on. 13

14 And we took a lot of -- I mean, certainly 15 I'm sure the panel members did and also we in our elicitation took a great deal of effort and time to 16 try to have their results be as consistent 17 as possible. So from this perspective, you can say that 18 19 we've gotten -- well, in the case of -- I think we had 20 8 panel members. We had enough information to get, 21 Eight PWR estimates and 9 for BWR what was it? 22 estimates. 23 MR. TREGONING: Reverse. 24 MR. ABRAMSON: Reverse? Okay. Eight for

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 the Bs and 9 for the Ps. All right.

(202) 234-4433

1

2

3

4

5

Now what did we get? What we were interested in our bottom line is we want to get some 2 kind of distribution. 3 We're assuming there's some 4 kind of distribution to express all of the uncertainties. And we did this, and we did this separately from the Bs and the Ps in the piping and 6 nonpiping, as we indicated and you're going to see the details of those results. 8

As far as the distribution is concerned, 9 we got four parameters for each of the distribution; 10 11 the mean, the median, the 95th percentile and the 5th 12 I estimate that this 95th percentile is percentile. not the same thing as what we got from the experts, 13 14 the 95th bound because all of these were propagated 15 through. But you think of that the final answers we got, the LOCA frequency, there is an uncertainty 16 distribution and what we're trying to do for each 17 expert again is to estimate what the parameters, these 18 19 four parameters of that distribution are.

20 And in addition, we're going to calculate the confidence intervals for these parameters, and 21 22 we'll go into the detail of that later.

23 Now, it's very important as we've of 24 course emphasized and you're well aware, that our 25 estimates reflect what we call both uncertainty and

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

7

1 variability. By uncertainty we're trying to be pretty 2 consist here. Uncertainty we mean the uncertainty comes out of 3 that the individual panel member 4 responses. And that is driven by the fact that we got 5 not only their mid values, but their upper bounds and the lower bounds. And so these upper bounds and the 6 7 lower bounds are their expression of their uncertainty 8 about the numbers they're giving us. 9 And we propagate that through, that's 10 uncertainly. And that propagates through into the 11 95th percentile, the 5th percentile of those final 12 distributions. Then we have variability. And variability 13 14 it just has to do with the fact that we had 12 panel 15 members so each one is giving us a different answer. panel variability. 16 that's So that's the So distinction. Uncertainly is based on the individual 17 uncertainty and variability is the difference between 18 19 different panel members' responses. 20 Now as far as the, say, the mathematical 21 details of the propagation, we made the usual 22 assumption about lognormal distribution. This seemed very appropriate because everything here in effect is 23 24 on a log scale. We're always asking for ratios in 25 their responses. And every indication is that this

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

209

is, you know, this as good as an assumption as any.

So to start with we assumed that for each question that we asked that we asked the experts that their mid value, their upper bound and their lower bound were points on a lognormal distribution for that particular expert. And then we propagated that through.

Now there's one problem with that, because 8 it is a lognormal. See, the upper bound is supposed 9 to be the 95 percentile and the lower bound 10 is 11 supposed to be a 5th percentile. If this is a 12 lognormal distribution, they'll be symmetric in a ratio sense about the mid value. Sometimes they were, 13 14 they gave us those answers. And it was a natural 15 thing for them to do. But sometimes they weren't.

If that's the case, what we did we is we 16 17 assumed in effect what we called a split distribution. And in fact the distribution was two parts. There was 18 19 an upper part and a lower part. And so the upper part 20 was a lognormal, but just -- and determined by the mid 21 value on the upper bound. And you can do that because 22 we just have to parameter for the lognormal. And 23 similarly the lower part was another lognormal 24 determined by the lower bound and the same mid value. 25 So what we did is we propagated these

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

6

7

	211
1	things through separately. That's how we did it.
2	Okay. So this set the stage as far as
3	what we were assuming
4	CHAIRMAN SHACK: Yes, I went through your
5	numbers. They were surprising lognormal to me when I-
6	- you know, I just did the quick check. Either they
7	were cheating or they think lognormally.
8	MR. ABRAMSON: Well, each one knew what
9	they were giving us, so they said you know, they
10	gave us a number, say, a ratio of say five to one. I
11	said all right what's your uncertainty in this? Well,
12	I think it's a factor of ten. On the high side. What
13	is on the low side? Oh, maybe a factor of ten there,
14	too.
15	MR. TREGONING: Yes, it was the latter.
16	They tended to think lognormally.
17	MR. ABRAMSON: They tended to think
18	lognormally. So in a sense this was partially forced
19	but not everybody you know, they weren't going
20	locked stepped this way. Some people did give us
21	asymmetric numbers and we had to deal with that as
22	well.
23	MR. TREGONING: So, there were two or
24	three estimates which were very asymmetric that a
25	signal lognormal distribution would not have been

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

212

applicable.

1

2

3

4

5

6

7

MR. ABRAMSON: Yes. And, of course, I think needless to say what I think what everybody's interested in is on the upper end not on the lower end. The lower end is going to drive the 5th percentile, that's the upper end that's going to drive the 95th percentile.

Another way of putting this is that even 8 though we assumed a lognormal distribution for each, 9 what really matters is the upper part of 10 this 11 distribution as far as what we're concerned about 12 here. We're not interested in how low the lowest can We're interested much more in how high they can 13 be. 14 be.

15 All right. Then going back again to the flow chart, if you recall that, you have in the box 16 17 there is an adjustment ratio. So you see the first two boxes there's a multiplication. All right. So 18 each one of those, the base numbers are assumed 19 20 lognormal and the adjust ratios are assumed lognormal. So what we need to do is to multiple these two 21 22 We're multiplying two lognormals. numbers.

Well, the product of lognormals is always a lognormal distribution, so it's very easy to do that and calculate the parameters.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

213 1 We also assumed that those two were 2 independent; that is the base case frequencies and the statistically 3 ratios were independent, that's 4 independent. And this seemed like a very plausible assumption 5 because they come from completely different, you know, sources. The base cases were, as 6 7 I said, developed by these and maybe adjusted by the 8 base case panelists. But then each panel member decided what his ratio would be to that base case. 9 So seemed very plausible 10 this that it would be 11 independent, and we assumed that. 12 And what did then we is just we calculated, you have a product of two lognormals, you 13 calculate the mean and the percentiles for that 14 15 product given the initial assumptions. Then the next step, as you see, we have to 16 17 sum things. So we have a sum of lognormals. Now, a sum of lognormals is not a lognormal distribution in 18 19 general. It never would be unless they happened to be 20 perfectly correlated. How do we handle that? 21 Well, we have a sum of these log normals. 22 Well, we're interested, of course, ultimately in the 23 Well, the mean of the sum is the sum of the mean. 24 means regardless of what -- correlated or not. So it 25 was very easy to get the mean of that sum, because we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	214
1	had the individuals means.
2	Then as far as the variance is concerned,
3	we had to consider the fact that these are correlated.
4	In fact, what you have there is the very system
5	frequencies. It's the system frequencies their
6	distribution that we're adding. Now, they would tend
7	to be correlated and they would tend to be correlated,
8	maybe even highly correlated but they are positively
9	correlated. Because if somebody, some expert said well
10	this is high, we would also tend to think that the
11	others are high as well. So it was plausible to
12	assume they were positively correlated.
13	If that's the case what we can do is we
14	can say that the results are bounded in two ways.
15	First of all, you have the independent case which is
16	zero correlation. And then you have you consider
17	the perfect correlation case where the correlation is
18	as high as it can possibly be.
19	And where we used that was in calculating
20	the variance. Because we're doing the writing of
21	random variables. And all you need for the sum is you
22	need the mean and the variance. Because ultimately
23	we're going to assume that the final results is
24	lognormal. That's what we did. So we need its mean
25	and variance.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	215
1	We have the means already because we just
2	add up the means of the individual components. And
3	then if you assume that they're perfectly correlated
4	this perfect correlation case which gives you an upper
5	bound on the variance. It's very easy to show that.
6	It's going to give you an upper bound on the variance,
7	so that's a conservative situation. And you can then
8	calculate what the variance of the sum would be with
9	the perfect correlation. And that's exactly what we
10	did.
11	We're also do, as Rob's going to note
12	later, as a sensitive case we can look at a lower
13	bound, which is an independent case. And we've done,
14	I think, some partial calculations and it turns out
15	that it doesn't really make much difference.
16	MR. TREGONING: No, we've done this
17	calculation. You can bound the uncertainty by either
18	assuming full correlation or independence.
19	MR. ABRAMSON: Independence, right.
20	MR. TREGONING: And the variance doesn't
21	matter very much.
22	MR. ABRAMSON: The variance doesn't matter
23	very much.
24	MR. TREGONING: That's a truism about all
25	the results.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	216
1	MR. ABRAMSON: Yes.
2	MR. TREGONING: I haven't seen one case
3	where that assumption affected the variance.
4	MR. ABRAMSON: Yes. One partial rationale
5	for that is we're adding up a number of things, but
6	generally in this there's going to be one or maybe two
7	dominant cases. If there's one dominant contributor,
8	then it doesn't matter what the others are. If there
9	two, well then maybe it does matter a little bit. So
10	this is why I think one reason why you have the
11	difference why these the actual variance is
12	bounded pretty closely on top and bottom, where the
13	two bounds are fairly close.
14	All right. So this is the methodology we
15	used. We just added up all the various system
16	frequency distribution. We got their means and then
17	we got the variances. And now we have a variance.
18	And then we assumed that the results was a lognormal
19	distribution. And then from that you can back
20	calculate what the median is and what the 95th and 5th
21	percentiles are.
22	I should also say we do this separately
23	for this upper bound and the lower bound for the split
24	distribution. So we carried that thing through all
25	the way.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	217
1	And that's essentially the structure that
2	we used. If anybody has any questions about this.
3	So the final results, and that's what
4	you're going to be seeing now that Rob will go into
5	the details, is based on this analyses. And it's all
6	based on the assumption that what you finally have is
7	from a lognormal distribution. And what you see,
8	again, is we're summarizing this by in various cases
9	the means, the medians, the 95th percentile and the
10	5th percentile.
11	MR. TREGONING: Okay. Thanks, Lee.
12	DR. SIEBER: Thank you.
13	MR. TREGONING: Now next I've got, and
14	I'll let you decide as a Committee where you'd like to
15	go. I've got a number of slides that present or
16	provide sort of general rationale and insights. These
17	are qualitative opinions that we got from the panel.
18	Again, this isn't exhaustive. It's just some things
19	I wanted to highlight.
20	I wanted to use these first to set the
21	stage for the results so you can understand the basis
22	of the results better. But if you would like to go
23	right to the quantitative estimates and come back to
24	these qualitative rationales as need be, we can follow
25	that approach as well.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	218
1	Is there any sense for would you like
2	to hear this first? That was my original intent, or
3	would you like to jump right the numbers and start
4	looking at the numbers and then trying to understand
5	them maybe through some of this rationale and insights
6	later?
7	CHAIRMAN SHACK: Well, without the
8	rationale and insights, the numbers are just numbers.
9	MR. TREGONING: Okay.
10	CHAIRMAN SHACK: Let's data, hopefully.
11	DR. SIEBER: Before you'd launch into
12	this, I have a question
13	CHAIRMAN SHACK: It's data with a small
14	"d" at least.
15	DR. SIEBER: that relates to this. For
16	example, if I look at operating history, to me a
17	significant event was the crack in the RCS piping at
18	Summer. Now, I presume, you know, that pipe cracked
19	and leaked on the floor, but I presume a fracture
20	mechanics analysis would have shown that that crack
21	would have arrested before it became a large break.
22	Is that correct? If that's correct, then that is
23	really not a precursor to a full blown LOCA. Are
24	these fair statements for me to make? Because right
25	now I worry about the existence of that event and how

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	219
1	it impacts what it is you're telling us here. And the
2	numbers that I see are pretty small, the frequency
3	numbers. On the other hand here's an example of a
4	crack that leaked and arrested, and my question is how
5	far away were we at that point in time from having a
6	major LOCA?
7	MR. TREGONING: And that's why when you
8	look at service history and you apply it and look at
9	precursors, and I'll use precursors globally to mean
10	cracks or leaks.
11	DR. SIEBER: Right.
12	MR. TREGONING: It's a very difficult
13	assertion. Because cracks like the cracks that were
14	found in Summer don't tend to be LOCA challenges just
15	because they axially oriented instead of
16	circumferentially oriented.
17	DR. SIEBER: Right. And they're arrested.
18	MR. TREGONING: Yes. Well, it would have
19	arrested in the base material if it
20	DR. SIEBER: Right.
21	MR. TREGONING: At some point
22	DR. SIEBER: You would have found some
23	MR. TREGONING: Yes, that's the
24	expectation.
25	DR. SIEBER: Okay.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	220
1	MR. TREGONING: And the experts, I'd say
2	to a person, certainly understood that distinction.
3	And when they looked at service history they were
4	concerned with, again, estimating the challenges of
5	those types of degradation and flaws which can lead to
6	LOCAs, which again tend to be the circumferentially
7	oriented cracks or mechanisms where you have a more,
8	I'll say, global erosion of the material, something
9	like FAC or something like we had Davis-Besse
10	DR. SIEBER: See, I bring this issue up
11	because a member of the public who has superficial
12	knowledge of what is going on but knows about that
13	event would point to what you're saying and say you're
14	wrong. And so I think at least for the sake of the
15	record we ought to say that what you're doing is not
16	inconsistent with what's been observed.
17	MR. TREGONING: Right. And I would argue
18	all of these things are precursors.
19	DR. SIEBER: Right.
20	MR. TREGONING: But the challenge
21	associated with the precursors varies dramatically.
22	And what happened at Summer has ramifications that the
23	panel, I think, expressed pretty clearly. But not
24	related to that particular event, but related to their
25	concerns that that may event may uncover more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	221
1	widespread degradation where we could have
2	circumferentially oriented cracks, it could be leading
3	the larger LOCA challenges for the fleet in general.
4	DR. SIEBER: Well see now, I share that
5	kind of concern. But to me there doesn't seem to be
6	a lot of actual real data out there that would allow
7	you to draw that conclusion with any certainty.
8	MR. TREGONING: It's coming. We're
9	starting to see it, I fear. We've started to see over
10	the last year or so we certainly have that
11	indication and at the risk of Dr. Shack would be
12	much more eloquent than me at speaking about this.
13	But similar degradation as we saw at Summer we have
14	indication of that happening in base material on a
15	pretty wide spread nature within the CRDM mechanisms.
16	and we have
17	DR. SIEBER: Yes. But I don't worry so
18	much about that because that has a a hole size.
19	MR. TREGONING: Okay. But
20	DR. SIEBER: And it's in a pretty good
21	position as far as taking care of the core.
22	MR. TREGONING: Right. But what the
23	experts what you need to do then is you need to
24	say, okay, that's a specific location.
25	Are there features of that degradation

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	222
1	which lend themselves to
2	DR. SIEBER: How about the surge line?
3	MR. TREGONING: Exactly. And we've started
4	to see some surge line indications potentially. So
5	and certainly pressurizers in other places. So PWSCC
6	was something that was considered very there was a
7	lot of concern. And I would say across the board for
8	Ps, and we're going to get to that, but that was the
9	mechanism that the panelists were far away most
10	concerned about for Ps.
11	And they I think at the expert I mean
12	what I was told, they really looked at where we are in
13	the history of Ps and their opinion is being somewhat
14	commiserate with where we were back in the late '70s
15	with IGSCC and boiler.
16	DR. SIEBER: Right.
17	MR. TREGONING: So they take it that
18	seriously.
19	DR. SIEBER: So I can rest assured that as
20	you attempt to risk-inform 50.46 that these factors
21	are well known to you and are taken into account,
22	including this recent history?
23	MR. TREGONING: Again, we're continually
24	updating our knowledge. I don't want to use well known
25	because there's a lot about PWSCC that we're still

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	223
1	trying to understand.
2	DR. SIEBER: Well, the only things that
3	are well known are the things that you know well.
4	MR. TREGONING: Right.
5	DR. SIEBER: If you don't know it, you
6	know, you don't.
7	MR. TREGONING: And that's why as Dr. Ford
8	said, you know, ten years is not always sufficient.
9	And that's why we need to be continually updating.
10	You don't do this effort and say all right
11	we're done, that's stop, we don't need to worry about
12	this stuff anymore. That's not the intent. And I
13	don't think that was the expectation of any of the
14	panelists.
15	You continue to try to increase your
16	understanding as you go and you evaluate things as
17	they come up and look at their severity and potential
18	generic implications just as we have all along. In
19	fact, you hopefully try to do it better and more
20	intelligently. That's why, you know, proactive
21	degradation programs are becoming more the vogue
22	because of the potential ability to do this more
23	intelligently with more foresight than we have in the
24	past where we've just said we're going to wait until
25	something happens and then address it. The idea is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	224
1	now that we're evolving to, let's be smarter about
2	where we think things are going to happen so that we
3	can try to nip it before we really see it.
4	All of these things are inner related and
5	philosophically they all have to be considered when
б	you're developing these estimates. And I will say the
7	panelists were, again, very serious in their task in
8	terms of making those types of assessments.
9	DR. SIEBER: Well, I do have a concern
10	about what the agency is doing with 50.46. And the
11	questions I just asked reached to one of the roots of
12	that concern. So I guess I will wait and see where we
13	go as to whether my concern goes away or gets worse.
14	But I appreciate your explanation.
15	MR. TREGONING: Sure.
16	Okay. Again
17	DR. RANSOM: Has this elicitation process
18	been used in other industries? Did you model what you
19	have done after
20	MR. ABRAMSON: I would say it's probably
21	most developed in the nuclear industry. It's been used
22	a lot in quite a number of cases, 11.50 used part of
23	it and so on. And we also used it for PTS that was
24	reported on a few years ago, and so on. They also had
25	a big elicitation, we had a panel of 17 people there.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

225
Although it's been developed in a sense
independently of the nuclear industry by decision
analysts and applied psychologists and so on, some of
the techniques and so on, it's been around a long time
maybe even before there was a nuclear industry here.
Remember the Delphi method? There was a Delphi which
is a predecessor to this. So there were things that
were done maybe 40 years or so ago which led into
this.
In other words, how do you take a group of
people and get expert opinion with them as a
substitute for data and so on. Data theory modeling
and so on.
So in this sense, it's evolved. I'd say
it's in most used in the nuclear industry.
MR. TREGONING: But, yes, there have been
a number of pretty well known instances in the nuclear
industry. Seismic curve determination, flawed
evaluation flawed distribution evaluation for PTS.
Doe, through the Yucca Mountain, they're using quite
a bit of elicitation to address material and other
issues. So it's a fairly well established tool, not
only outside the industry but certainly within the

industry.

б

MR. ABRAMSON: And I think the reason for

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	226
1	that I think is, you know, it's fairly clear as to
2	why. Because you would only want to use this when you
3	have issues of really of great concern and also for
4	which there is very little data and available
5	information, and which there's no essentially no
6	so in the nuclear industry, certainly, you're trying
7	to estimate these very low risks, very low frequencies
8	it's very important for regulatory purposes for things
9	like this, for earthquakes, for PTS and so on to try
10	to get some kind of answer. And also the NRC and the
11	industry things has enough resources to be able to
12	carry this through. Because, as you know, it takes
13	quite a bit of time and effort to do this.
14	DR. WALLIS: They're not really measuring
15	a frequency? They're giving you a state of knowledge,
16	is what they're giving you?
17	MR. ABRAMSON: Well, of course. That's
18	right.
19	DR. WALLIS: And of course as more
20	experience develops, the state of knowledge will
21	evolve. You shouldn't think that they're actually
22	predicting something.
23	MR. ABRAMSON: No. I mean, as a
24	statistician I like to kind of think of it as an
25	estimate. It's an estimate.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	227
1	DR. WALLIS: But there's no test which
2	could tell you whether or not something like ten to
3	the minus 8 estimate is correct. There's no way you
4	could test that, it seems to me. You're going to test
5	a huge number of large pipes.
6	MR. ABRAMSON: That's correct. And that's
7	exactly why
8	MR. TREGONING: Well, in this case that's
9	exactly right.
10	MR. ABRAMSON: you do this. However,
11	we never asked the experts what do you think the
12	frequency of this LOCA is and in which case we never
13	asked directly what this number is, because I think
14	that would be a meaningless thing they would have no
15	basis for it. That's why we took a great deal of
16	effort, we and the panel of course, to break this down
17	into these small pieces and to start with the base
18	cases about which we do have some information. We
19	both have data, and we have models and so on. And
20	then to extrapolate from there in small pieces, so to
21	speak, where you say what is the effect of, say,
22	changing the degradation mechanism or what's the
23	effect of this different material. So you try to
24	break this down into this relatively small parts for
25	which the experts have this is what they're expert

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	228
1	in. They're expert in the physical phenomenon. And
2	so you try to relate this, in this particular case the
3	physical phenomenon.
4	And then, of course, we bring this all
5	together. And that's why when you multiple and so on
б	and so forth, and you extrapolate and of course
7	starting from the low frequencies from the base cases,
8	this is why you get these low numbers.
9	So you have to look both at the process
10	and, of course, at the components of the numbers that
11	we finally generate to see to what extent this is
12	credible or not and to what frequency you're going to
13	give to it.
14	DR. WALLIS: Well, I think what my
15	colleague may have been getting at, though, is this
16	all sounds very good but is there any measure of
17	whether or not it really does it work? There's a sort
18	of history of expert elicitation where they've been
19	way off.
20	MR. ABRAMSON: Well, what we do have, and
21	I use this in the training, we train them on so called
22	almanac type questions; that is things that we know
23	the answers to and they don't.
24	DR. WALLIS: Hey, you told us about that.
25	MR. ABRAMSON: That's right. And the idea
•	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	229
1	there is that we demonstrate there, and I think this
2	is useful that N heads are better than one. That even
3	though each person might feel rather uncomfortable and
4	has very wide uncertainty on a particular question,
5	still the group opinion there is some wisdom and
6	there's some knowledge, there is some information
7	there and it kind of encompasses in a way the answer.
8	So you do this kind of by analogy in that way. And
9	this where I think people have done this you
10	know, this is how you in a sense the validation of the
11	process. Because ultimately, of course, you're only
12	doing this for things that you have no data on and you
13	never expect and never hope to have any data on, at
14	least for these frequencies we're talking about.
15	MR. TREGONING: Okay. I guess I'll
16	caution given where we are in the presentation. We're
17	going to introduce now in my opinion entering in the
18	interesting areas of the talk. So I'm concerned about
19	length of time, but I'm certainly prepared to stay
20	here as long as ACRS would like me to. But I'll say
21	we've got a lot to get through.
22	CHAIRMAN SHACK: Just keep going.
23	MR. TREGONING: We want to answer all your
24	questions, but we want to make sure that we give you
25	some what we've covered so far is really just prior

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	230
1	ground. Now we're really starting to enter the new
2	ground from here on out because we're going to talk
3	about results from here on out.
4	So I've got a number of slides, six or
5	seven, which talk about, again, sort of general
б	rational and insights. As I mentioned, this isn't
7	exhaustive. This is just sort of a smattering of some
8	of the information that we got that I've decided to
9	share. I can't share all of it just in the interest
10	of time.
11	And this first slide talks about sort of
12	generic rationale and insights about LOCA frequencies.
13	The first sort of insight, and I think this was shared
14	by most if not all of the panels, service history
15	precursor events which we just talked about, and by
16	precursor we mean cracks and leaks, they are a good
17	barometer of LOCA susceptibility.
18	DR. WALLIS: Right.
19	MR. TREGONING: Now you have to keep in
20	mind these certain caveats that not all precursors
21	result in the same LOCA challenge. But the fact that
22	you have a preponderance of precursors in one system
23	or one location due to a certain degradation is
24	valuable information as far as the panelists were
25	concerned. We tried to assess the potential

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	231
1	challenges that you may have due to a given
2	degradation mechanism or a specific, I'll say, system
3	or location.
4	Just about all the panel members used
5	service history in one way shape or form for anchoring
6	their responses which, again, I think is a rational,
7	reasonable way to go.
8	DR. SIEBER: It's probably the only choice
9	one has.
10	MR. TREGONING: My opinion would be that
11	I would agree with that, that that is clearly to
12	answer difficult questions the easiest thing to do is
13	to try to base it on the body of knowledge that we do
14	have.
15	DR. SIEBER: Right.
16	MR. TREGONING: Service history of data
17	and these are some of the reason why service history
18	data was preferable. If they're degradation mechanisms
19	and they show up, they're in the service history
20	database. So you can postulate that a mechanism is
21	important. If you never see it, then maybe it is or
22	it isn't important. So I think that was something
23	that people focused on; the fact that if a degradation
24	mechanism is important, it will show up at some point
25	in time. And you certainly have later blooming

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

degradation mechanisms that may not show up until much 2 further o in the service history. And one might argue 3 that PWSCC could be one of those. And that's not to 4 say that that's not a consideration. But just that 5 service history is good at finding what our challenges have been in the past. 6

7 Again, with service history, the loading that the plant has seen and the mitigation implicitly 8 9 considered. If your mitigation works, you don't see 10 evidence of precursor leaks and cracks. IGSCC is a good one when you look at pre and post-mitigation 11 12 data.

PFM approaches, many people said -- and we 13 14 large disagreements between the PFM people in the 15 group and the non-PFM people in the group. So I put this up at the risk of offending somebody, which I'm 16 sure I will. But I think there was a general sense 17 that PFM's great for identifying trends for well 18 19 defined mechanisms. But coming with absolute numbers 20 for LOCA frequencies is just a very difficult thing to 21 And a number of people use service history and do. 22 then PFM insights to determine what the effects of continuing operation time would be and the relative 23 24 likelihood of a failure as a function of break size. 25 So they found those particular attributes of PFM to be

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	233
1	helpful in making projections from that baseline
2	service history data.
3	DR. SIEBER: Do you have to group the
4	whole service history record into small classes of
5	events and then somehow sum those in relation to the
6	probability of their occurrence?
7	MR. TREGONING: That's right. That's
8	exactly right.
9	DR. FORD: On using service history as a
10	barometer of the analysis, the failure history you see
11	is really the beginning of a distribution which is
12	moving forward with time. So what you're seeing is the
13	first events of what could quite possibly be a big
14	maybe a big subset. And generally those are, I was
15	going to say bathtub effects, but that's not exactly
16	what I meant. Things such as cold work. Much of the
17	cold work effects on surface cold work, a piece of
18	grinding, which are not covered I suspect in the PFM
19	approaches. So how do you take into account the
20	pragmatic aspects and the first of the distribution
21	tree that you see coming up towards you are things
22	like cold work effects, a piece of grinding at the
23	surface, which are not taken into account into the
24	analysis, as far as I know?
25	MR. TREGONING: Right. And, you know, I'd

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	234
1	say Summer is a good example of that. A very atypical
2	weld, weldable repairs that were some documented,
3	some not. And so you had a set of conditions that led
4	to the evidence of this cracking maybe sooner than
5	they would have been expected otherwise.
6	DR. FORD: So are those physical
7	phenomenon taken into account in your thinking?
8	MR. TREGONING: Again, I don't want to
9	speak for each expert. With 12 different experts, I
10	can honestly say that we had 12 different approaches
11	to tackling this. But it's something that we
12	certainly discussed and talked about in the meetings.
13	And it's something that I will say that several of
14	them explicitly mentioned that, yes, this was a
15	consideration.
16	DR. FORD: Because that can alter your
17	frequency by an order of magnitude.
18	MR. TREGONING: Of course. But we have
19	some historical precedents as well. And, again, I'll
20	go back to IGSCC and things like that where, you know,
21	some of the earliest failures were again more atypical
22	in nature. But then when you started to look, you
23	really found out that you had a big problem. So I
24	think, again, there is some historical evidence to
25	fall back on that the members did try to make that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 ascertain. And that's one reason why PWSCC, which if 2 you look at the service history, you would say this is 3 not an important event. Okay. Really not -- we've 4 only got a relatively small number of piping PWSCC 5 events in our databases. It's like one or two at this point. Got a large number of CRDMs, but not piping. 6 7 So if you say that, you'd look at that and 8 you'd say this isn't important. Well, the experts 9 didn't say that at all. They said, no, this is important and here's why it's important. 10 11 of Okay. These next two are sort 12 motherhood statements. I think they're probably obvious, but it's good when you look at calibrating 13 14 the panelists that they came up with these assertions. 15 There's certainly greater uncertainly in making estimates, and they all said this is the LOCA -- not 16 only the LOCA size increases, but as it increases the 17 relevancy of the precursor events becomes less. 18 So 19 the precursors may have more relevance to smaller 20 LOCAs than they do for larger LOCAs. 21 And then this last bullet in is, I guess, 22 to quote Lee, you know, prediction is always difficult 23 especially of the future. Well, I think this is an 24 obvious statement. But as we go out in time there's 25 certainly more uncertainty association with assessing

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

235

236 1 LOCA frequencies. Again, especially out at the end of the license extension period. So these last two 2 3 bullets are maybe obvious but I think, nonetheless, 4 they're important to state. 5 DR. RANSOM: One thing on the license extension, I thought the philosophy was that the 6 7 plants were held to their initial licensing base and through aging management programs that there would be 8 no increase in likelihood of accidents. This seems to 9 be in contradiction to --10 11 No, no, no. MR. TREGONING: There's no 12 I just said estimating is more trend in here. uncertain into the future. Because you're trying to 13 14 project further out. If I jumped to our results, we 15 asked them to estimate over three different time There wasn't huge differences --16 periods. 17 DR. RANSOM: What are those time periods? You mean in the future? 18 19 MR. TREGONING: The 25, which is current 20 day and 40 years and 60. 21 DR. RANSOM: Right. That's assuming the 22 same component has been in use all that time or --23 MR. TREGONING: Not always. I mean for 24 some things like steam generators, and when we talked 25 about steam generator tube ruptures, a number of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 panelists took into account the idea and the belief 2 that many, if not all of the licensees are going to 3 move toward replacement. So, in fact, one of the 4 things that they did is they said well I think a lot 5 of these are going to replace by 40 years, which would cause a decrease possibly in steam generator tube 6 7 ruptures, but these new ones will probably -- there'll be an increased frequency out at 60 years because they 8 9 will start to age. And even though we'll be using improved materials and hopefully better management of 10 11 secondary and primary site chemistry, I think we've 12 proven historically with steam generator tubes is they've been fairly frequency -- you know the failure 13 14 frequency has been relatively high even though we've 15 made various improvements. DR. SIEBER: Well, I think it's also fair 16 17 to say that when you think about license extension, we are not assuming that the risk stays 18 constant 19 throughout 60 years of plant life. 20 MR. TREGONING: Right. 21 DR. SIEBER: And, in fact, you don't know 22 how the risk changes necessarily because PRAs do not 23 contain aging mechanisms unless they're explicitly put 24 in there.

MR. TREGONING: Right.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

(202) 234-4433

237

	238
1	DR. SIEBER: And you rely on the ongoing
2	set of rules and the inspection programs to assure
3	that the plant remains acceptably safe for operation
4	for the next day or the next week or the next month.
5	There may be a plant out there that has
б	enough degradation in enough areas that they will
7	decide not to run the full 60 years and say it's just
8	economic to do the kinds of replacements that we have
9	to do with the short remaining lifetime.
10	MR. TREGONING: But just again, let me
11	restate this point and make sure it's obvious. We had
12	panelists that said the frequencies would go up
13	somewhat. We had panelists that said they would go
14	down somewhat. We had panelists that said they would
15	stay the same. But across the board for the most part
16	they said my uncertainty about this trend increases
17	with time.
18	DR. SIEBER: Yes.
19	MR. TREGONING: That's all I'm trying to
20	make here. It's not necessarily the trend's
21	preordained to go one way or the other. But what they
22	all felt was preordained was that their uncertainty in
23	that trend was certainly going to go up. And I think
24	to me that's just common sense at this point. And if
25	they didn't say that, I would sort of raise my

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	239
1	eyebrows at each of the panelists. Because, again,
2	you're not considering all the possible things that
3	could happen over that time period.
4	DR. WALLIS: It could actually go down.
5	MR. TREGONING: Of course.
6	DR. WALLIS: All we need is a few LOCAs
7	and then your uncertainty goes down.
8	DR. SIEBER: Or you need a lot of
9	confidence in piping.
10	MR. TREGONING: Yes. We're not
11	anticipating and we're certainly not planning to have
12	that have that sort of those sort of events
13	happen.
14	DR. RANSOM: Well, typically, too, there's
15	a learning curve involved in any system. And so you
16	might expect that these things might actually decrease
17	with time. But then as they age and another mechanism
18	might come in and cause them to increase.
19	MR. TREGONING: That's right. That's
20	right. And, again, those were factors that people had
21	to weigh when they were looking at predicting effects
22	in the future.
23	Okay. All I've done now with these next
24	couple of slides is I've got one slide that gives a
25	few insights on BWR plants, one slide that gives some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	240
1	insights on PWRs plants, one that gives some insights
2	on piping in general and one that gives some insights
3	on nonpiping. And then I've got a slide that goes at
4	future trends qualitatively to get to Dr. Ransom's
5	points here.
б	So for BWRs these were, again, I'm just
7	sort of listing some of the degradation mechanisms
8	that the people though were most important. And there
9	were really four or five.
10	Thermal fatigue certainly for Bs was
11	and these are in no particular order of severity.
12	These are just some things that came up time and time
13	again.
14	Thermal fatigue was important especially
15	for the Bs. You have a larger temperature
16	fluctuations due to operating performance than you do
17	with the Ps.
18	IGSCC even with all the mitigation that
19	we've done, that was still a paramount concern with
20	the panel. And many said that even though we've done
21	things like weld overlay and things like that, and
22	while we've shown that it reduces the cracking rate
23	and improves the margin on the piping, it does some
24	things like potentially increase the residual stresses
25	of the cracks that are there that may actually have a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	241
1	deleterious effect.
2	So IGSCC even thought they all agreed that
3	we had done a lot of good mitigation work, this was
4	still a concern and still a challenge for them in
5	terms of mitigation.
6	Mechanical fatigue or vibration fatigue at
7	the small diameter lines was sort of unanimous here.
8	Here's an area that where we do have probably more
9	actual data to base failure frequencies on. And not
10	only small diameter lines, but the socket-welded lines
11	were certainly a concern. We certainly had a number
12	of historical problems associated with those lines.
13	Flow accelerated corrosion. This was not
14	something that was shared unanimously by the panel.
15	Certainly the industry has many good inspection
16	programs in place today and a lot of the panelists
17	said that these programs were sufficient to really
18	reduce or eliminate the FAC concerns. But we had some
19	conflicting opinions that said, hey, we're doing so
20	good at controlling SCC through hydrogenated water
21	chemistry but you have to be careful because as you
22	reduce the oxygen that can potentially accelerate FAC.
23	And, oh, by the way it could accelerate it in areas
24	that you hadn't expected to see it before. So not
25	necessarily in just flow transition regions or regions

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	242
1	where you get turbulence.
2	DR. FORD: That's not strictly true
3	currently. Hydrogen water chemistry may be, if it's
4	not well controlled, but it's certainly will improve
5	the FAC resistance.
б	MR. TREGONING: Yes. And this is
7	specifically hydrogen water.
8	DR. FORD: I'm just putting a plug in
9	there.
10	MR. TREGONING: I know. And I put a lot
11	of this stuff up at the risk of being shouted down. I
12	realize that. But and again, I don't want to imply
13	that any of these points that have any sort of
14	panelist consensus. There's no consensus among the
15	panel.
16	All I'm doing is highlighting some of the
17	more interesting things that came up.
18	The other things with Bs that people
19	talked about is and we talked about the
20	consideration of transients. Well, with Bs especially
21	water hammer and things like that you do have compared
22	to the Ps an increased number of operating transients.
23	And most of the panelists certainly considered this
24	fact in their analysis.
25	This was an interesting point that many

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	243
1	people raised, and I guess I hadn't expected it, but
2	there was this notion that, you know, the BWR
3	community because of what they had to go through with
4	IGSCC, they've got a lot more experience identifying
5	and mitigating for degradation than does the PWR
б	community. And for that reason they said, you know,
7	if new mechanisms were to emerge, we would expect the
8	BWR community sort of in general to be further up the
9	learning curve so to speak in both identifying,
10	inspecting and finding those challenges. And of
11	course, several of them also reflected the opinion
12	that, however, PWSCC may also get the PWRs up on that
13	same learning curve as well. So this was an
14	interesting point that several people expressed.
15	And we talked about this point, the fact
16	that even though service history is important, you
17	really have to carefully evaluate it because and
18	IGSCC is a great example. You have mitigation and
19	post-mitigation data. And really if you look at any
20	degradation mechanism, you have to look at the service
21	history in context with whatever mitigation or
22	operating procedures were in place at the time that
23	that data was developed. So I think that's what makes
24	even just evaluating the service data particularly
25	challenging for this.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

For PWRS. Again, I wanted to list some of the important degradation mechanisms. Certainly we've talked about PWSCC and mainly concerns there in the Inconel welds and then the alloy 600 base materials like we have in CRDMs.

6 Certainly there's a realization that 7 there's a strong material temperature dependence that's been exhibited or certainly on a laboratory 8 scale with PWSCC, although there was certainly a 9 realization from many of the panelists that we've seen 10 11 evidence and service of what appears to be PWSCC in 12 regimes that we wouldn't have expected it initially, i.e., lower temperature. Some of the lower head 13 14 cracking like at South Texas was obviously a bit of a 15 surprise.

But that's a different 16 DR. SIEBER: 17 mechanism.

MR. TREGONING: I don't know that -- I'm 18 19 not going to comment on that, but if somebody else would like to. 20

DR. SIEBER: All right. 22 MR. TREGONING: It's not my understanding 23 that it necessarily was. 24 DR. SIEBER: Well, it had elements that it

25 was a unique situation.

NEAL R. GROSS
COURT REPORTERS AND TRANSCRIBERS
1323 RHODE ISLAND AVE., N.W.
WASHINGTON, D.C. 20005-3701

1

2

3

4

5

21

	245
1	MR. TREGONING: There's certainly
2	realization of this strong dependence, but also a
3	concern that just because we've demonstrated and it
4	doesn't necessarily mean that those are the only
5	considerations, so that lower temperature couldn't
6	evolve PWSCC problems, and that you couldn't see
7	things in lower temperature heads or cold legs versus
8	hot legs. You still could. They could be delayed,
9	but you could see them at some point in time.
10	DR. SIEBER: On the other hand, the
11	hottest place in the plant is pressurizer heater
12	sleeves. You know, the hottest surface temperature.
13	And, of course, there's failures in the Inconel 600
14	sleeves. On the other hand, it is not at a rate that's
15	anymore alarming than CRDM welds that are probably
16	operating 30 to 40 degrees lower temperature.
17	MR. TREGONING: Right. So, I think just
18	the understanding that while temperature's important,
19	it's not paramount.
20	DR. SIEBER: Right.
21	MR. TREGONING: There are things like
22	stress history, stress state, fabrication that comes
23	into play
24	DR. SIEBER: Right.
25	MR. TREGONING: when determining if

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	246
1	you're going to have potential cracking events.
2	DR. SIEBER: Yes, it's just one factor.
3	MR. TREGONING: It's just one factor.
4	Again, thermal fatigue is important for
5	PWSCCs and mechanical fatigue as well. So those were
6	some and again, we talked about a number of issues
7	here and certainly boric acid corrosion and things
8	like that were degradation mechanisms that we talked
9	about and assessed. But the ones I've listed are the
10	ones that came out time and time again that the
11	panelists said these are our biggest challenges for
12	the most part.
13	And, again, I said earlier as far as PWR
14	plants, PWSCC would really I think that was a
15	paramount concern for the panel just because the fact
16	that many of them felt that we were on the precipice,
17	maybe, of seeing many more PWSCC events. And that's
18	why many of them said hey, near term frequency
19	increases due to PWSCC are potentially likely because
20	as we learn more about this and we learn really the
21	extent of the PWSCC in the plant, you know as we learn
22	more that might cause those frequencies to increase
23	somewhat.
24	Now, most of the panelists expected that
25	we would have mitigation techniques that would be

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	247
1	developed and employed and that would be successful.
2	However, several of them said it may take ten to 15
3	years before
4	DR. SIEBER: To get there.
5	MR. TREGONING: To really get there in a
6	comprehensive fashion. And, again, I think a lot of
7	them looked back on the experience we had with IGSCC
8	for a model there.
9	DR. FORD: Would you not say that 15
10	years, saying you're going to wait for 15 years
11	essentially before well, I was about to say
12	irresponsible, but I don't mean it quite that way.
13	You know, if you look at
14	MR. TREGONING: Read what I say. I said
15	they would be successful resolved within the next
16	DR. FORD: Yes, but if you could have a
17	whole lot of really bad things happening within that
18	15 years.
19	MR. TREGONING: Of course.
20	DR. FORD: And therefore you not be using
21	your analysis to address not when the median of that
22	particular problem is going to occur and give rise to
23	such-and-such of LOCA, but the first one use extreme
24	value statistics that come up with when are you going
25	to have the first bad LOCA event? And that gives you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	248
1	time frame, and you'd better darn well come up with a
2	resolution to this problem.
3	MR. TREGONING: Yes. I guess I would say,
4	you know, use sort of extreme value statistics. I
5	mean, there has to be a framework to do that.
6	MR. ABRAMSON: You'll need some statistics
7	to have extreme value statistics.
8	DR. FORD: Well, I know. But you pointed
9	out all we need is one really bad event to occur and
10	we're in deep trouble. And should we not be using the
11	expert panel to come up with some sort of judgment for
12	when the first one.
13	MR. TREGONING: Well, that's what they did
14	here.
15	DR. FORD: Okay. You've been talking
16	about the mean
17	MR. ABRAMSON: No, if you look at the
18	frequency, the frequency, the expected return time is
19	a reciprocal of that, you know. I mean, that's the
20	frequency. That's the number of years to wait.
21	I think the numbers are still going to be
22	very, very small.
23	DR. FORD: Which is
24	MR. ABRAMSON: I don't believe you don't
25	expect this to happen within the lifetime of the plant

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	249
1	at all. But then we might consider if you have a 100
2	well, you've raised another issue. You have 100
3	plants
4	DR. FORD: I'm sure at Davis-Besse, you're
5	awfully close to getting to 100 gallons per minute
6	MR. ABRAMSON: All right. Well, to put
7	this into perspective, this is all of course per
8	calendar year.
9	CHAIRMAN SHACK: And I don't think that
10	this particular one is probably the hot leg cracking.
11	The reactor head problem is going to be resolved, I
12	think, considerably sooner than 15 years.
13	DR. SIEBER: As fast as they can make
14	heads.
15	MR. TREGONING: The key phrase is within
16	the next 15 years. It's not that it's going to take 15
17	years.
18	DR. FORD: I guess I'm just responding to
19	the ten years that we saw this morning and now the 15
20	years we've seen now. I think we've been far too
21	complacent about the time frame in which you got to
22	resolve these problems.
23	MR. TREGONING: And, again, I don't mean
24	that I don't mean this in any implication that we
25	as an industry are going to be cavalier about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 addressing these issues. This was just the expected opinion that when the panelists looked at their 2 3 frequencies as a function of time, they expected 4 resolution of this issue to not so that the 5 frequencies would decrease again out by about 15 years. And that doesn't mean that we don't -- that's 6 7 due to this particular issue. 8 Of course, in the interim we've got to 9 maintain due vigilance to assess and address these 10 things aggressively. 11 DR. FORD: If you're talking about, you 12 know, one event is going to be very bad, a 100 gallons per minute, aren't you talking about a 99 percent 13 14 confidence limit on these evaluations? I'm not a 15 statistician. I don't know. You'll have 16 MR. ABRAMSON: to look at the numbers and see what that implies for 17 the 100 plants or as many has --18 19 DR. FORD: Right. All we need is one. That's right. 20 MR. ABRAMSON: And you 21 could certainly make that calculation. That's right. 22 Yes. 23 I think this is CHAIRMAN SHACK: Okay. 24 probably a time for a break. We're about due. And this is kind of natural place to do it. 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	251
1	So let's take a 15 minute break.
2	(Whereupon, at 3:09 p.m. a recess until
3	3:27 p.m.)
4	CHAIRMAN SHACK: Back into session.
5	MR. TREGONING: Okay. Thank you, Mr.
6	Chairman.
7	The next thing that we want to look at
8	with general rationale and insights just relate to
9	piping contributions to LOCA alone. And, again, these
10	are just a smattering of opinions and sort of
11	interesting insights that we've got within the whole
12	laundry list of rationale and insights.
13	I think many people, when you had to
14	access the piping contributions for a LOCA category,
15	each LOCA category was associated with a certain flow
16	rate. And certain pipe failures could lead to flows
17	of that size or not. Pipe that were too small,
18	obviously, couldn't lead to a 500,000 gpm flow.
19	So one of the things you had to do is for
20	a given degradation mechanism make the assessment well
21	is complete failure of the smallest pipe more likely
22	or is a partial failure of the larger pipe more likely
23	for a given degradation mechanism. And I can say in
24	general what most of the panelists came back with when
25	they did their assessments is they thought, you know,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5 So when you see the results, and you see the important systems for a given LOCA category, they 6 7 tend to be systems that are the systems with the smallest pipes that could lead to that LOCA. Tend to 8 9 be, not in all cases but tend to be. And then there's another set of I'll say variables associated with 10 11 those systems or component which make them potentially 12 sensitive to LOCAs, i.e., the environment could be -the loading could be such that they see large thermal 13 14 transients. There could be areas where they see water 15 It could be areas where, let's say, the hammer. environment's relatively stagnate so they were worried 16 about effects of, I'll say, environmental cracking. 17 It could be areas that had alloy 82, 182 welds that 18 19 would be associated with PWSCC. So there'd be other 20 reasons that would make them be important or not. But 21 in general if you look at a LOCA category, it'll be 22 some system where the smallest pipe is sort of the smallest pipe that could lead to that LOCA tends to be 23 24 the one that's most important.

I think one of the things that we saw was

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

252

	253
1	that aging, most people predicted that aging would
2	have the biggest effect on the intermediate size
3	piping.
4	What do I mean by intermediate size?
5	Well, piping that's about 6 to 14 inches.
6	Why is that? The smallest piping, say
7	less than 6 inches but potentially or specifically 4
8	inches or less, we've got a lot of data and a lot of
9	history applicable to those pipes more than we do so
10	the large pipes. Those are where we've actually had
11	failures, those are where we've seen a lot of
12	precursors. Those are the pipes that we've tended to
13	have mechanical fatigue problems. Those include
14	things like the steam generator tubes. Of course
15	DR. SIEBER: Vents and drains.
16	MR. TREGONING: Vents and drains, things
17	like that.
18	Most of the panelists felt like the
19	surface history failure rates that we had were most
20	applicable for those. And because of that, that
21	service history failure makes those pipes less
22	susceptible to aging because we already have a body of
23	failure knowledge and they didn't necessarily expect
24	those to be effected by aging any worse than they had
25	been in the past.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The largest piping, those are more robust of two reasons. One we have higher quality inspections in general. And more importantly, we have primarily increased leak before break margins. So for any given mechanism the likelihood of having a leak before a break is higher for the largest piping than it is for a smaller piping.

I think if you look at sort of 8 So, 9 deviations and if you look at panel variability, what you see in the results is for the smaller piping and 10 11 the smaller LOCAs there's much less panel variability. 12 And you go to the biggest LOCAs, and the biggest pipes there's actually much less panel variability and even 13 14 sometimes more on the less uncertainty. But when you 15 go to the intermediate pipes, that's when you have a lot more panel variability where the panelists 16 expected much more effects of aging and where the 17 because of all 18 uncertainty even goes up these 19 potential variables which are more important for those 20 types of pipes.

21 Ι think information like this is 22 important, even as gualitative information. When we 23 set and define an alternative break size, you know, 24 even this sort of qualitative insight is valuable 25 because it gives you a threshold to say okay, you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

255

4 we'll go with this, but it's part of the knowledge and 5 part of the information that you want to use when you make these decisions, other than just the raw numbers. 6 7 DR. LEITCH: It surprises me that it's not mentioned there about the number of welds in those 8 9 various piping systems. I would think the smaller piping had a lot more welds than intermediate, kind of 10 11 an intermediate number and the large would have a

fairly small number of welds.

Aqain, I didn't put 13 MR. TREGONING: But when people made their 14 everything up here. 15 assessment they looked at what we called them were risk relevant locations. 16 Welds are certainly an important consideration, as are things like elbows and 17 Ts and things like that which, in the elbows may be 18 19 cast -- for a lot of people.

20 So certainly systems with higher or more 21 sensitive locations tend to elevate their failure 22 frequency.

What a lot of people, though, really focused on is that the number of welds is important. But for any given system you may only have a small

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

12

handful of welds sort of weakest link philosophy that 2 are really driving the risk. So that minimizes some of 3 the contributions from systems that have a lot of 4 welds and some that don't.

5 But some panelists, they did do essentially a weld census approach that they tied to 6 7 estimate for each system what a per weld failure frequency would be. And then they essentially just 8 9 multiplied by the number of welds for that system, and that's how they came up with their total numbers. So 10 11 they just made the assumption that, hey, I'm going to 12 assume all my welds are with this risk significance even though I know that's not true. 13

14 DR. LEITCH: Yes. Some of them did take 15 that approach.

Some of them did. 16 MR. TREGONING: Τn 17 fact, quite a few did. And, again, I didn't put up 18 everything.

> DR. LEITCH: Understand that.

20 MR. TREGONING: But that was certainly a 21 consideration. 22 DR. WALLIS: Now, there's less focus on 23 large break LOCA, presumably there'll be less focus on

24 inspecting large pipes?

> There could be. MR. TREGONING: And

> > NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

256

1

19

25

1 that's something that when we design programs we have 2 to make sure that we keep that in mind. I think there 3 were a number of opinions expressed by various 4 panelists that, you know, just because the largest 5 piping is more robust, it doesn't mean that you don't You know, you continue to 6 do inspections on it. 7 validate and verify that -- and why not? Because it potentially has high consequences of failure. 8 9 So we didn't really get into the question of risk reward type of analysis. And I think many of 10 11 the panelists had the implicit assumption and even 12 cautioned us to the fact that, yes, but you still need to keep inspecting large pipes. 13 It's not that you 14 don't inspect large pipes. 15 And this really led into the next topic of risk-informed ISI. And we talked a lot about that. 16 17 Of course, that's an area that the industry as a whole is moving into more uniformly and more comprehensibly. 18 19 I think the general expectation from the panelists 20 were is this is generally good thing. That inspecting 21 the risk-informed areas, that philosophy is very 22 sound. It's a very rational thing to do. However, you

have to be concerned and you have to be concerned

certainly about the consequences. And I'd just point

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

a couple of concerns.

23

24

25

(202) 234-4433

257

You know, our inspection locations that we 2 picked, they're largely based on experience. And we 3 have to be particularly vigilant if we see precursors in other areas that we assess those, address them and 4 if necessary, modify our inspection programs accordingly very aggressively to account for that. 6

7 So, the concerns that people had were not so much about risk-informed ISI, but the fact that we 8 would be continually maintaining due diligence and 9 updating these things, making them sort of like -- we 10 11 talk about living PRAs, but almost like living risk-12 informed ISIs where you're continually assessing your challenges as they may occur and you're updating those 13 14 as necessary. And that's why with risk-informed ISI 15 there is a certain percentage still of low risk significant yet high consequence systems that have to 16 be inspected. 17

Well, section 11 is based 18 DR. SIEBER: 19 partly on the consequence situation and your ability 20 to protect against certain kinds of defects. And 21 section 11 does not call anyplace where you would 22 inspect a straight length of piping. It always looks 23 at welds, elbows, fixtures and fittings. 24 MR. TREGONING: Right. Right.

DR. SIEBER: And so that's where the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

5

	259
1	likelihood of failure is. And size and consequence
2	are related.
3	MR. TREGONING: Right. And I think the
4	notion here is just that if for some unforeseen reason
5	straight piping started to become an issue for
6	whatever reason, that
7	DR. SIEBER: You'd change the code.
8	MR. TREGONING: we would not only
9	change the code, but change the way that we were
10	dealing with addressing risk relevant issues. So that
11	was sort of a caveat on I'll say the general optimism
12	or general advantageous features of risk-informed ISI.
13	Okay. Nonpiping. This was much more
14	interesting in a way, just because of the variety and
15	the disparity of the possible failure modes are so
16	huge. I think across the board, and again this is one
17	of those things that if they didn't say this, I would
18	have questioned their appropriateness for the panel,
19	but they indicated that the estimation of these
20	nonpiping contributions was clearly more challenging.
21	You have widely varying operating requirements among
22	the nonpiping components. The design margins vary
23	dramatically from things as small as steam generator
24	tubes up to steam generator shells. You know, you
25	have potentially a wide array of design margins. The

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

260 1 materials and the inspectability also vary 2 dramatically. The failure modes and scales are also very 3 4 disparate. Again, you have steam generator, small 5 penetration failures. You have to worry about common cause bolting failures, which we've talked about. And 6 7 even things like component casing failures. Another issue that all the panelists 8 recognized is that we tend not to have the same wealth 9 of precursor information for the nonpiping components 10 11 that we do for piping. There have been a lot of 12 efforts addressing that have qone into and accumulating piping degradation precursor events. 13 14 There's been much less focus, I would say in general, 15 on nonpiping precursors. And part of that's related to the inspection compliance as well. 16 A lot of the nonpiping stuff just doesn't -- it's not subject to 17 the same inspection quality or quantity. 18 DR. SIEBER: Did this study include gasket 19 20 material --21 MR. TREGONING: No. 22 DR. SIEBER: -- like the flex --23 No, we didn't consider MR. TREGONING: 24 qaskets at all. Gaskets or seals. Mainly again 25 metallic, passive system component failure.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	261
1	DR. SIEBER: And the leaks usually aren't
2	very big.
3	MR. TREGONING: Usually not. I mean, we
4	would classify those as sort of active system LOCAs,
5	even though a seal is not maybe active. But it's
б	something that you do maintenance and testing on to
7	try to see if you're having degradation. So it's
8	certainly an area that you have to be concerned about
9	with generating LOCAs, but it was outside the scope of
10	this.
11	Again, you have larger components which
12	I've mentioned. The larger components can have a
13	bigger design margin compared to piping, but that's
14	sort of degraded by the fact that the inspection
15	quality and quantity could be decreased compared to
16	piping.
17	The smaller components, again
18	DR. WALLIS: What about manufacturer? I
19	mean, we always seem to assume that big pipes are made
20	to the same standards as small pipes and welds on big
21	things are just as good as welds on small things. It
22	probably is okay, but
23	MR. TREGONING: Sometimes you get
24	DR. WALLIS: making something so big
25	that you can't make it very well.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	262
1	MR. TREGONING: I mean there are and
2	certainly this is one of the things with the vessels.
3	I mean, thick section materials tend not and I'm
4	talking base materials, you tend not to have as good
5	the properties tend not to be as good as you would
6	with a small section component. Because you can do a
7	lot more hot work for the most part. But in some
8	areas, like welds, you might actually get a benefit
9	with bigger components. Because even in small pipe,
10	you only got one or two weld, if that one weld is bad
11	you're in trouble for that small pipe. But a big
12	pipe, you happen to have one bad weld, then that's
13	okay. You've still got plenty of other margin with
14	respect to
15	DR. WALLIS: But you can cover them all up
16	with a surface weld. So you have to inspect inside.
17	MR. TREGONING: Yes, you have to do
18	subsurface inspection, no doubt. No doubt. And
19	that's another challenge with the larger pipes. Is
20	the larger the inspection regime, the quality and the
21	resolution that you're inspection technique can have
22	will go down because you're trying to penetrate more
23	material.
24	With the small components, and by those I
25	mean the CRDM nozzles and the steam generator tubes,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 people thought that these where improved are 2 inspection and mitigation program in the future can really have a benefit and really act to reduce the 3 4 future failure frequency. So the expectation was 5 these programs will likely benefit the smaller component failures more than they would the larger 6 7 component failures with respect to nonpiping.

8 I've got a slide up on future trends, and 9 again these are sort of qualitative insights that we 10 got from the panel. As with many of these things, 11 there's a number of compensating factors in the 12 future. And I don't list them all, but just a few. 13 So they're both advantageous and detrimental factors.

Some of the advantageous factors. Well, as we go into the future we'll certainly have more operating experience, and that operating experience will hopefully transmit into knowledge. So by more operating experience we'll also have more knowledge.

19 There's the hope and the expectation based 20 on the past that we'll also continue to improve 21 inspection and mitigation procedures in the future. 22 And so an expectation that as plants continue to age, 23 that people would continue to do material replacement 24 and repair to address degradation mechanisms that they 25 find in service.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	264
1	So these three factors many people thought
2	were advantageous to minimizing the effect of the
3	LOCAs in the future; to either keep them constant or
4	actually decrease the LOCA frequencies in the future.
5	What are some detrimental factors or
6	challenges? Well, you always worry about the unknown.
7	So what happens when we get aging in either new or
8	unexpected locations and new degradation mechanisms
9	pop up? That's certainly a challenge.
10	We heard today that every seven years we
11	have a new degradation mechanism. So, you know, if
12	that's true and that continues on into the future,
13	then every time we have a new challenge it's incumbent
14	upon us to try to meet that challenge while minimizing
15	these LOCA frequencies.
16	Possible detrimental factors or changes in
17	the operating profile. If temperature range, if
18	pressure transients increase, if pressure increase; if
19	there are things which change the operating
20	environment, those could potentially be detrimental
21	toward the future. And it's something that we have to
22	be, again, particularly vigilant about.
23	And finally, this was an interesting one
24	I thought, but that a couple of people expressed.
25	They said one of the concerns they have with the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 nuclear industry and that many other industries as 2 they're designing new components and building new 3 components, they get design benefits because of 4 research that's gone into the new designs and 5 fabrication that they can turn around and apply to their current fleet potentially. And there was just 6 7 а concern that, you know, we haven't had this continual refreshment of ideas and technology in the 8 9 nuclear community. And that's not to say that we 10 won't in the future. But just a concern that that's helping in the material realm or the 11 not us 12 degradation realm as much as it could.

qiven these, I'll say competing 13 So 14 factors, what most of the panel said in large was that 15 these things tend to be compensating in a way. And that if I looked at all the 12 responses, most of the 16 17 12 expected the future LOCA frequencies to be pretty similar to the current frequencies. And why is that? 18 19 Well, future problems they didn't expect to be 20 significantly different from what we have seen 21 historically. They expect degradation will continue 22 to surface through precursor events and that we as an 23 industry will take appropriate measure to mitigate the 24 effect of those precursor events in a timely manner.

25

Í	266
1	And, again, what they supported their
2	prognoses of the future on was, again, not just past
3	response to degradation, but what we're doing
4	currently to combat some of the degradation issues
5	that we're dealing with now.
6	DR. FORD: That it rather a sad reflection
7	of our industry. I don't think it's correct for the
8	PWRs, the boilers.
9	MR. TREGONING: That future problems
10	DR. FORD: I think that things will
11	improve. But that's just my personal opinion.
12	MR. TREGONING: And, again, I don't want
13	to say that everyone had this opinion.
14	DR. LEITCH: I didn't quite hear you.
15	DR. FORD: I said that things will improve
16	as far as the boiling water reactors. I think there
17	are improvements being made. But that's purely my
18	personal opinion.
19	MR. TREGONING: Well, again, and people
20	recognize the improvements that have been made
21	historically in boilers and they focus that into their
22	estimates of the current day frequencies.
23	DR. FORD: Right.
24	MR. TREGONING: I think that the
25	expectation was based on today they didn't expect them

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	267
1	to necessarily improve that dramatically in the
2	future. It doesn't mean it won't happen. That was
3	just what sort of the typical opinion was.
4	DR. LEITCH: The changes in the operating
5	profile, that could be positive or negative.
б	MR. TREGONING: It could be.
7	DR. LEITCH: It's listed there as a
8	negative, I assume because they're thinking in terms
9	of power upgrades. But many plants have many fewer
10	cycles than was the case 20 years ago. It's a make it
11	or break it.
12	MR. TREGONING: Right. And that's a good
13	instance of compensating factors; the fact that we
14	have outage times or the length between outage times
15	in some ways is a very good thing because we reduce
16	the heat up and cool down transients that the plants
17	see. That's a good thing.
18	Now the bad part of that is you can't
19	inspect as frequently. So there were a lot of these
20	things that the issues had compensating factors that
21	in many peoples' mind tended to neutralize them in
22	some sense.
23	This qualitative information is really
24	born out in the numbers as well. So when I start
25	showing you results in here, they're only results for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the current day estimates. I'm not going to show you, for maybe incidence, except one any future And I'm really basing that on these predictions. qualitative reasons that the panel just gave. And again, it's born out in their numbers. So, what we are going to see from this point forward is current day or 25 year estimates.

So the first thing I'm going to show - and 8 we're going to start globally and then was as we have 9 10 time, and people are interested, I'm qoing to 11 deconvolve these frequencies into pieces. So I'm 12 going to start out with the total frequencies for BWR and PWR plants and then again, I'll say partition them 13 14 in many ways to try to get more insight into the 15 panelists' responses.

What I've shown here is just simply the 16 17 frequency plotted as a function of the LOCA category. So again, each higher number LOCA category as higher 18 19 number break size or flow rate. And these are 20 cumulative categories so that category 1 encompasses 21 category 6. So these curves will naturally go down. 22 What this shows - there's four curves on here. The 23 BWRs in red, the PWRs in blue. The solid lines are the mean results and the dashed lines are the 95^{th} 24 25 percentile estimates. These are based on the median

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

of the panelists' responses for each of these. Okay. 2 there's nothing in here that So shows panel 3 variability at this point. It's on the median 4 panelist's response.

5 The BWR, you see more gradual decreases with LOCA category and you see the slope there is a 6 7 little bit flatter than it is with PWR. Well why is It's primarily driven by the IGSCC concerns. 8 that? 9 And IGSCC was the one case, as we'll see later, that sort of violated the axiom that smallest pipes tend to 10 11 have the biggest challenges. With IGSCC, the re-circ 12 system showed up the biggest 28 inch re-circ showed up in all LOCA categories as being relatively important. 13 14 So that's why the BWR decrease is much more gradual. 15 Because you have contributions from these big piping 16 systems due to IGSCC that are happening in all the 17 LOCA categories.

Generally the BWR's -- they're actually a little 18 19 bit lower for category 1 LOCAs and they're pretty 20 consistent, though, for categories 2, 3 and 4. 21 They're higher for category 5 and then they decrease 22 greatly for category 6. Now why is that? Well, 23 again, they're higher for category 5 primarily due to 24 the remaining concerns with IGSCC. They decrease 25 rapidly for category 6 because of the PWR pressures

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

and piping sizes. You don't really expect any category 6 LOCAs out of piping. So really what's driving the PWR category 6 failure are failures of the big things like the vessel. In fact, primarily the vessel because even pumps and valves you're not going to get that flow rate size out of a pump and valve even splitting apart at that point. So that's why you see a big decrease with the Bs between five and six.

9 The Ps are highest for category 1 and highest for category 6. Well, why are they high for 10 11 1? Well, that's really driven by steam generator tube 12 rupture, as you might expect. And for the higher LOCA categories, the nonpiping contributions tend to be 13 14 important just because there are so many possible 15 contributions that you get from Ps. You could have failures, pressurizer failures 16 vessel or steam 17 generator failures. And that's help buttress the category 6 results somewhat or increase them somewhat. 18

19 Again, there's a lot of similarities in 20 the frequencies between those middle LOCA categories. 21 And the other thing that's similar is sort 22 of the ratio between the and the 95th means percentile. And that doesn't even vary dramatically as 23 24 a function of LOCA size. You get fairly consistent 25 ratios there, which was a little bit surprising to me.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

(202) 234-4433

270

I would have expected, if anything, that we would have seen the uncertainty possibly increase with LOCA size. But we don't, at least in the median responses we don't really see that.

5 DR. RANSOM: They seem pretty high, Because if you look at the category 1 LOCA 6 though. 7 for PWR, which is about ten to the minus 2, that would 8 mean that we would have one LOCA per year. We should 9 have had 30 or 40 LOCAs. Have we really had that 10 many?

11 MR. TREGONING: Again, look at the 9th 12 percentile verses the mean. The mean response is pretty consistent with sort of -- if we went back and 13 14 looked at the number of steam generator tube failures 15 greater than 100 gpm that we've had since '87, and there's been four of them since '87 in about 1200 16 17 reactor operating years, that works out to be about 3.5 times ten to the minus 3. And it ended up being 18 19 pretty close to where that mean estimate ended up 20 being.

21 So there actually is a pretty high 22 evidence of steam generator tube type failures.

DR. RANSOM: Have there ever been any other tube failures that have led to a LOCA by your definition?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	272
1	MR. TREGONING: By other tube failures,
2	piping failures.
3	DR. RANSOM: Piping failures, right.
4	MR. TREGONING: Not that there have
5	been some small pipe failures that we've had some
6	fairly large leaks. But I'd say a relatively small
7	handful.
8	DR. RANSOM: Bit enough to be a category
9	1?
10	MR. TREGONING: I want to not to my
11	knowledge, but we've had several that have been
12	approaching that potentially. And I don't want to say
13	several. We've had a handful that have approached
14	that.
15	I'm going to divulge this in a minute. If
16	you look at what's driving this for PWRs it's purely
17	steam generator tube failures. So, you know, what
18	tends to happen is the biggest contributor, and in
19	this case it ends up being steam generator, that
20	dominates. And that's clearly the case here with PWRs.
21	DR. RANSOM: Is there any significance to
22	the fact that the 95 percentile looks like it's about
23	four times the mean?
24	MR. TREGONING: I guess let me make
25	sure I sure

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	273
1	DR. RANSOM: That's a general
2	characteristic of lognormal distributions. I wonder
3	if the experts knew that.
4	MR. TREGONING: No. I mean, lognormal
5	distribution can have different error factors
6	associated with it.
7	DR. RANSOM: The 95 percentile seems about
8	four times the mean.
9	MR. TREGONING: It doesn't have to be. It
10	can be any error factor.
11	CHAIRMAN SHACK: You just use a standard
12	error factor.
13	MR. TREGONING: What many people assumed
14	in earlier LOCA estimates was that and this is the
15	way they were done in 57.50 and also I think 1400, but
16	they calculate the mean responses. And then what they
17	did is they said all right, for all of these I'm going
18	to assume that they're lognormally distributed and I'm
19	going to apply an error factor that's relatively
20	small, an error factors that's 3 on the small LOCAs,
21	but then I'm going to use a relatively large error
22	factor of ten on the larger LOCA.
23	So, no, you can certainly have more spread
24	in your lognormal distributions. So the fact that
25	this ended up being and I don't even know what the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	274
1	average is. I haven't calculated. But I'll believe
2	you when you say it's four. That's not a function of
3	the fact that we assumed lognormal distribution.
4	DR. LEITCH: Did I understand you to say
5	in the BWR, the reason that drops off so fast in the
6	category 6 LOCA is that you really can't have a piping
7	failure that leads to a category 6 LOCA? It's got to
8	be a nonpiping failure?
9	MR. TREGONING: I'm sorry. Could you
10	repeat that. There were two conversations playing
11	out.
12	DR. LEITCH: I'm sorry.
13	MR. TREGONING: I'm sorry. Go ahead.
14	DR. LEITCH: Did you finish your thought?
15	I didn't mean to did I understand you to say that
16	in the BWR you cannot have a category 6 LOCA due to a
17	piping failure, that it must be something nonpiping?
18	MR. TREGONING: Primarily, yes.
19	DR. LEITCH: So a double ended guillotine
20	break of the resert plate does not give you a category
21	6 LOCA?
22	DR. WALLIS: It would be a 5.
23	MR. TREGONING: We didn't couch things in
24	terms of whether the break as single or double. We
25	couched things in terms of effective whole sizes or

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	275
1	effective diameters.
2	So you could get a double ended and I'm
3	not a thermal you know, Dr. Wallis would be better
4	able to answer this. I don't have to hazard a guess
5	whether a double ended guillotine break you could
6	break flows that large. But it would take a double
7	ended you couldn't for a single hole of that
8	equivalent break size, you couldn't get it in BWR
9	piping.
10	What you would get for a double ended
11	break is unknown to me.
12	DR. SIEBER: Double ended breaks are
13	MR. TREGONING: If you make that
14	assumption, then no you can't get up to a category 6.
15	DR. SIEBER: Doubled ended breaks are
16	idealistic and hardly never occur anyplace.
17	DR. LEITCH: But what I'm saying is that's
18	what 50.46 requires at the moment.
19	MR. TREGONING: Requires you to do.
20	DR. SIEBER: Yes.
21	MR. TREGONING: If you look at our
22	correlations you get up to about a little bit over
23	that in the BWRs with the resert pipe. So, you know,
24	double that and not with that simple correlation that
25	we used, you don't get up

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	276
1	DR. SIEBER: And they're not
2	MR. TREGONING: Okay. Now all I'm showing
3	here is just the mean results for BWR and PWR plant.
4	And all I've done is partition into the piping and the
5	nonpiping contributions. And these piping
6	contributions are blue. And the nonpiping
7	contributions are red. You see Bs on the left and Ps
8	on the right.
9	BWRs you get the nonpiping and the piping
10	are pretty similar for categories 1 and 2. Again,
11	and what's driving the nonpiping response is up for
12	those categories and Bs are stuff certainly a
13	concern. And, in fact, that was really it. Was
14	probably the biggest concern for 1 and 2s that really
15	elevated them.
16	But then when you get to the larger LOCAs
17	and you move away from potential stub tube failures,
18	it's the piping that tends to dominate for the Bs.
19	And then the piping runs out at category 5 and you're
20	only left with these essentially vessel failures
21	that you could get up to that category in the Bs.
22	With PWRs you've got a bit of a you've
23	got a different trend. You have the nonpiping which
24	clearly dominates for categories 1 and 2. Category 1
25	are driven by steam generator tube failures where

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 category 2 is governed by primarily CRDM failure 2 concerns, but then you also have pressurizer heater sleeves that also factored in to both 1 and a little 3 4 LOCA category 2. So these smaller LOCA sizes were 5 really -- the nonpiping for the Ps were far and away the most important consideration. 6 7 Beyond category 2 you have roughly equivalent contributions as a function of LOCA size. 8 9 And several experts just expressed a sort of rule of thumb opinion that, hey, I would expect for large 10 11 LOCAs to get about the same contribution for large 12 LOCAs for piping as I would for non. And then when the results came out that way, a number of people felt 13 like their gut was satisfied in some sense. 14 15 DR. KRESS: Why is the PWR acting in categories 1 and 2, smaller than the BWR in the same 16 17 category? MR. TREGONING: Again, primarily the BWRs, 18 19 and again it's -- they're pretty close for category 1. 20 And, again, these things are plotted on a --21 DR. KRESS: But they should be the same. 22 Yes, BWRs a little bit MR. TREGONING: 23 higher because, again, I'd say remaining IGSCC 24 concerns. A little bit. Category 1 they're very 25 close and it's on a log scale. I mean PWRs about 1E4

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

277

	278
1	for piping and you're looking at about two to three E4
2	for BWRs. Within this game, that's essentially almost
3	identical.
4	CHAIRMAN SHACK: There might even be more
5	small diameter piping in a BWR, too, which would
6	DR. KRESS: That I wondered about. There
7	might be.
8	DR. SIEBER: That's hard to say.
9	MR. TREGONING: Yes. We separated the
10	instrument and drain line piping from the rest of the
11	system. So we treated those as separate systems. And
12	what you saw for both the Bs and Ps, that's what
13	dominated the category 1s and then the category 2s is
14	that small instrument in drain line where you not only
15	got failures due to degradation mechanisms, but you
16	get failures due to things like human error. And much
17	more likely to get human error type failures. Driving
18	into it with a fork lift, you know.
19	DR. LEITCH: The Bs you have all that
20	in certain withdrawal piping, too.
21	MR. TREGONING: Yes.
22	DR. LEITCH: I mean, there's a couple
23	hundred of those.
24	MR. TREGONING: Yes. Any of the inserts
25	for the most part were treated as nonpiping. Any of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

279 1 the big vessel penetrations or input. We lumped with 2 nonpiping. 3 DR. LEITCH: Nonpiping. Yes. 4 MR. TREGONING: That's why the CRDMs for 5 the Ps end up being so big. That included CRDMs, but ICIs and things like that. 6 7 So we tended to follow the ASME definition between what was pipe and what was not a pipe, 8 9 although some people said, hey, you know it receives pressure, it looks like a pipe, it was fabricated like 10 11 a pipe, it's a pipe. But, you know, we didn't--12 If it looks like a duck and DR. KRESS: walks like a duck. 13 14 DR. WALLIS: So if I gave you \$2 and if 15 there were a LOCA in the category 6 in the pipe in the PWR, you'd give a billion? 16 17 MR. TREGONING: I want to make sure I understand the question before I make my wager. 18 19 DR. KRESS: He's betting there will be and 20 it's your bet that there won't be. 21 Yes, and I've given you a DR. WALLIS: good break. Two against a billion. That's pretty 22 23 good. MR. TREGONING: Repeat the question again. 24 DR. WALLIS: Well, look at that blue dot 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	280
1	over there at 6, right.
2	MR. TREGONING: The Ps, right.
3	DR. WALLIS: I give you two, and your
4	chance of losing is so low that you could afford to
5	bet a billion against it, couldn't you?
6	MR. TREGONING: That's where consequences
7	comes into play. I would look at the consequence of
8	losing a billion dollars versus the reward
9	DR. WALLIS: Well, \$2 is sure.
10	MR. TREGONING: Yes, but \$2 doesn't buy me
11	much economic at the risk of trivalizing it, I
12	think
13	DR. KRESS: How about if he bets he
14	gives you 2 billion against
15	DR. SIEBER: Four dollars.
16	DR. KRESS: What's the product
17	MR. TREGONING: I'm not an economist, so
18	at some point
19	CHAIRMAN SHACK: Now you're talking real
20	money.
21	DR. KRESS: The trouble is you have to
22	wait too long before you get your winnings.
23	MR. TREGONING: Well, we didn't define the
24	time
25	DR. KRESS: Because this is 25 years.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	281
1	MR. TREGONING: This is sort of current.
2	DR. KRESS: Oh, this is the current. This
3	happens per year. So you only have to wait a year.
4	MR. TREGONING: I only have to wait a
5	year. Only have to wait a year.
6	DR. WALLIS: Two bucks a year, that's all
7	right.
8	MR. TREGONING: Yes, I don't think I would
9	I don't think I would take that bet for several
10	reasons.
11	DR. SIEBER: Declare bankruptcy.
12	MR. TREGONING: The next several slides
13	I've got, I'll leave this. In the next eight slides we
14	delve into system contributions for these LOCAs both
15	piping and nonpiping. We can skip those and come back
16	if there's time. We can I'd planned to do maybe
17	one or two of these and then say the rest of them are
18	in the packet. We could do that. Or we could try to
19	plow through them all.
20	CHAIRMAN SHACK: Let's go ahead to the
21	uncertainty and panel variability and come back.
22	MR. TREGONING: Okay. That's fine.
23	And there's 2 of these slides. One for Bs
24	and one for Ps. I can we'll go through one and
25	then we can go quickly through the other.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

One of the things I will say, we haven't done statistical confidence bound assessment yet. And so what did we did here? Well, we just expressed variability in terms of what is called an interquartile range. And what the interquartile range is, it's the difference between the third and first quartile of the responses that we got.

8 So the symbols are essentially the median 9 of the panelists' response for the -- and then those 10 bands are the difference between the 25th and the 75th 11 -- or the lower one is the 25th and the upper one is 12 the 75th percentile. So that bar contains 50 percent 13 of the panelists' responses.

One of the things we still need to do and that we plan on doing shortly is calculate rigorous statistical confidence bounds on this data.

MR. ABRAMSON: We expect the 95 percentconfidence will be a little bit wider than that.

MR. TREGONING: Yes. So one thing you see is -- and while the ratios between the 95 percentile and the means didn't change much with LOCA size, what you do see is the uncertainty obviously increases with LOCA size. And, again, this was certainly an expectation that we had going in, that this would indeed happen.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	283
1	And the other thing which we saw which we
2	certainly expected is that there is more variability
3	amongst the panelists in their 95th percentiles than
4	there is in either of their median estimates. And
5	I've shown median up here because the means effected
6	more radically by the relationship between 95th and
7	the median percentile. So that's the only reason I've
8	shown medians here to make the point that there's much
9	less variability in the median for 50th percentile
10	responses than there are in the 95 percentiles.
11	MR. ABRAMSON: In fact, it's the mean is
12	the percentile, somewhere between the 50th and the
13	95th.
14	MR. TREGONING: Not necessarily.
15	MR. ABRAMSON: No, but I think for these
16	cases it probably is, isn't it?
17	MR. TREGONING: Yes.
18	MR. ABRAMSON: For these cases?
19	MR. TREGONING: For these cases.
20	MR. ABRAMSON: For these cases that's
21	right. These were skewed for a lognormal, which is
22	what these all are, it will be. It will be bigger
23	than the median.
24	MR. TREGONING: Right. Right. But it's
25	not necessarily less than the 95th for a lognormal.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	284
1	MR. ABRAMSON: That's true. Right.
2	MR. TREGONING: They are in all these
3	cases.
4	MR. ABRAMSON: Correct. That's right. If
5	it's really skewed, then it would be bigger.
6	MR. TREGONING: And if they were that
7	skewed, then we've got to go back and look at our
8	analysis techniques.
9	DR. WALLIS: These are cumulative things,
10	aren't they, you told us?
11	MR. TREGONING: The categories themselves
12	are cumulative.
13	DR. WALLIS: So how can one up as you go
14	to the right, even if it's a
15	MR. TREGONING: That's artifact that's
16	an optics artifact.
17	DR. WALLIS: Because it looks as if it
18	goes up, but it doesn't.
19	MR. TREGONING: Right.
20	DR. WALLIS: It's actually level. It's
21	actually level.
22	MR. TREGONING: It's essentially the same.
23	It's essentially the same.
24	DR. WALLIS: Okay.
25	MR. TREGONING: Yes. I spent some time

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	285
1	looking at that, because I obviously had the same
2	question myself.
3	DR. WALLIS: Maybe if I stood up, it would
4	look clearer.
5	MR. TREGONING: You can squint, it still
6	looks it looks like it's higher.
7	DR. LEITCH: Did you say last time, and I
8	think you did I'm just trying to refresh my memory
9	accurately, that the panel was specifically told not
10	to consider acts of terrorism, sabotage, disgruntled
11	employees, those types of things?
12	MR. TREGONING: Yes. Yes. We asked them
13	not to consider that.
14	MR. ABRAMSON: That's not normal operating
15	conditions.
16	MR. TREGONING: With any of the rare event
17	stuff, you get into the quandary of estimating the
18	frequency of the event itself.
19	DR. WALLIS: It's hard to exclude with ten
20	to the minus 9.
21	MR. TREGONING: Well and that's that
22	this is why when we look at this information as
23	just and again, somebody from NRR will obviously
24	need to jump in. But we don't look at this as the
25	total picture. We look at this as one piece of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

286 information. And I think based on this information, 1 2 that really determines the other things you need to consider as well and the amount of rigor you put into 3 4 evaluating these other things. 5 I mean, some of the these numbers you're getting to where the large seismic earthquake risk 6 7 could start to become important again. So we certainly realize consequential 8 9 LOCAs need to be evaluated in some way, including the terrorist 10 LOCAs that you could get through a 11 challenge, but that's something that as we as an 12 agency, and we've got this combined working group with Research and NRR, one of the things we'll be doing 13 14 with these numbers first is looking at them and trying 15 to make a rational assessment of what other challenges we really need to assess to provide a good basis for 16 17 going forward. So there's certainly an expectation that 18 when we consider the rule or consider what ever 19 20 regulation, while it may be based on LOCA frequencies 21 such as these, there will be consideration of other 22 challenges as well. 23 Are these frequencies per DR. KRESS: 24 plant or is it frequencies for 100 plants? 25 MR. TREGONING: These are per plant per

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	287
1	calendar year.
2	DR. KRESS: Per plant?
3	MR. TREGONING: Per plant for calendar
4	year.
5	Okay. So that's Bs. This is Ps. The
6	thing that you notice about the Ps is the IQR ranges
7	are generally larger than the BWR ranges. Well why is
8	that? Well, we had a lot of disagreement about the
9	importance of things such as PWSCC as we move forward.
10	Some people thought it was going to really elevate
11	frequency, some people thought it was no never mind.
12	So, I think that was one of the things that was
13	driving the PWR increased variability. And you see
14	that really in the categories 3 to 5, which are again
15	that LOCA that are fractures in pipes of the 6 to 14
16	inch range that people thought were most susceptible
17	to aging. So I think that, along with the fact of the
18	difference of opinions and PWSCC is one of the things
19	driving the variability, the increased variability in
20	the Ps plants.
21	I guess one point I'd like to make is
22	these large ranges, they're really not surprising.
23	We're trying to estimate things that are rare. We
24	would expect that the ranges would be large. If they
25	weren't large, we would probably have to question the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 underpinning for our entire approach and whether we 2 had somehow biased the group opinion in some way. 3 So I personally believe that the large 4 variability is a good thing, and it's an indication 5 of, I think, the quality of the estimate. Now, that doesn't mean that there's not challenges that we're 6 7 going to have an agency to try to come up with decisions based on information that has a lot of 8 9 variability in it. And, again, I talked about this. Some of 10 11 the reasons for this variability are not only the 12 nonpiping contributions, but also the PWSCC concerns. This is always interesting I think, and we 13 14 could spend a lot of time on these types of plots. 15 But what this shows you is the BWR total frequencies and uncertainties, and these are just plots for each 16 And the experts have been identified by a 17 expert. letter. These were all the ones that answered -- that 18 provided frequencies for us for the BWRs that answered 19 20 all the various BWR questions. 21 And what this plot shows is really it just 22 gives you a sense of the range and where the experts 23 fell relative to each other. 24 So the bar represents the fifth median and 25 the 95th percentile estimate provided for each expert.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

288

	289
1	And these are the show of frequencies.
2	And the dash line just connects the
3	medians to give you some idea of what the trends
4	what the consistency in the trends were.
5	So the things you see here, I mean again
6	the uncertainty intervals that the experts gave us
7	were wide. Again, this is what we would have
8	expected. To get anywhere and this is LOCA
9	category 5, two to four orders of magnitude
10	variability. And it's actually the uncertainly was
11	greater than the panel variability in the medians
12	here.
13	So the experts were much closer in their
14	predictions of what their best guess estimates were
15	than they were in the uncertainty about that best
16	guess.
17	One of the things I don't show, but if I
18	showed all the LOCA categories, these uncertainty
19	intervals for each expert increases as LOCA size
20	increases. Not dramatically, but it does increase. It
21	goes anywhere from one to three orders for the
22	smallest LOCAs up to what you see here, two to four
23	orders for category 5.
24	DR. WALLIS: You probably can't estimate.
25	It would be interesting to see how it goes with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

290 1 expertise. If the person who knows more, gives a 2 wider range than the person who is sort of naive and 3 only considers a few things to give them a narrow 4 range. 5 MR. TREGONING: You tend to see the opposite. People that thought --6 7 DR. WALLIS: Know more are more certain? 8 MR. TREGONING: Yes. That tended to be 9 the expectation. 10 DR. SIEBER: But that's a fact, that's a 11 fact of normal life. People who know the least are --12 MR. TREGONING: You know, it's interesting, you know a good comparison is you look at 13 14 D there which had the smallest uncertainty compared to 15 E which is the largest. I mean they're one right next to each other. And D's total uncertainty range is 16 encompassed within E's upper bound uncertainty range. 17 You know, I will say that D had a lot of experience 18 19 with BWR plants, and that was one of the things --20 probably more --probably more experienced than E did. 21 DR. SIEBER: IS there any pattern to the 22 order of those are they just random? 23 They're random. DR. KRESS: 24 MR. TREGONING: You mean in terms of --DR. SIEBER: Who is A, who is B --25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	291
1	MR. TREGONING: Well, I'm not going to
2	tell you who they are. They were assigned randomly.
3	DR. SIEBER: Oh, okay. So this is like
4	the order in which they came through the door?
5	MR. TREGONING: And all I've done is
6	plotted them alphabetically. That's all I've done.
7	So these were assigned randomly and they're just
8	plotted up there alphabetically. I didn't make any
9	attempt at ordering or anything. I didn't think that
10	was necessary or appropriate.
11	MR. ABRAMSON: I guess it's A through H,
12	I think you had to say you assigned them randomly for
13	the 8 people who gave you BWR answers.
14	MR. TREGONING: No. We assigned them
15	randomly in general. It just so happened that I, J,
16	K and L didn't give us Bs.
17	If you look at the Ps, for instance, see
18	there's no D, there's no F because they only gave us
19	B. Some people gave us one estimate or the other and
20	some people gave us both.
21	So we assigned them randomly. It just so
22	happened that A through H were the ones that gave us
23	the B estimates where I, J, K and L did not give us B
24	estimates.
25	DR. KRESS: Those of us who believe in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	292
1	randomness, would say that's a highly unlikely
2	outcome.
3	MR. TREGONING: Possibly.
4	DR. WALLIS: Yes, that's true.
5	MR. TREGONING: You know, I didn't assign
6	the letters. I know who did. And maybe it was not as
7	random as you would think.
8	DR. SIEBER: Well, it's certainly not
9	important to us since we don't have a clue.
10	MR. TREGONING: But I will say when those
11	numbers were assigned, we didn't necessarily there
12	were some people that hadn't provided us their BWR
13	estimates at that time. So, again, I I still think
14	that's serendipitous, but whatever.
15	DR. SIEBER: Okay.
16	MR. TREGONING: The other thing that we
17	found which was interesting, and again we've just
18	started looking at these trends to try to determine
19	more about it, but one of the things we saw with Bs is
20	that the relative ranking of the panelists was pretty
21	consistent as a function of LOCA size. So what's that
22	mean?
23	Well, that means, you know, let me pick
24	out C for instance. C was about the highest for this
25	LOCA category 5. If I go back and look at all the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	293
1	LOCA categories, C was about the highest for every
2	LOCA category.
3	If I look at E or G or H, they're about
4	the lowest for this LOCA category. They were also
5	about the lowest for the other categories. So it's
6	interesting that you see the variability for smaller
7	LOCA in the ranking almost tracking for Bs as a
8	function of LOCA size. So that's an indication of the
9	importance of whatever base frequencies you started
10	out with.
11	MR. ABRAMSON: It says the experts had to
12	be self consistent.
13	MR. TREGONING: Yes. Look at the same
14	plot for Ps. And here I'm showing a smaller LOCA
15	category just to spice it up because this is one of
16	the LOCA categories that people expected to have,
17	again, bigger detrimental effects, bigger effects due
18	to aging. Again, I think we see it here, again,
19	larger uncertainty in the PWR estimates. Two reasons
20	for that which we've talked about. One it was really
21	the unknown extent that we've got currently at PWSCC.
22	And the second one, we've just got a lot more
23	potential nonpiping LOCA contributors in the PWR
24	plants that the people were just more uncertain about
25	in their estimates.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	294
1	So again with category 1 you're about at
2	one to three orders, about the same order of magnitude
3	uncertainty as you were with the Bs. Again, that's
4	driven by the small piping, so that's to be expected.
5	When you get up to the large LOCAs, LOCA
6	categories 3 and 6, you can see as much as five orders
7	of magnitude uncertainty for some of the experts,
8	which is really obviously quite a lot.
9	The other thing we noticed with the Ps is
10	relative ranking of the panelists was not as
11	consistent with LOCA size as it was for the Bs. So if
12	somebody was high for category 1, they weren't
13	necessarily they didn't necessarily remain
14	relatively one of the higher ones for category 6.
15	The other thing we see and, again, you
16	see more variability in the median responses. And
17	this we saw in the earlier plot as well for those
18	higher LOCA categories where we had much bigger spread
19	in the median number.
20	I want to go ahead and show this. I've
21	got a couple of slides just comparing these results
22	with some prior studies. And what you see here, this
23	is just targeted selection.
24	I think PWR MB LOCA comparison and a BWR
25	LB LOCA comparison. And I'm showing three sets of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 numbers of here. The black ones are the WASH-1400 2 which were originally primarily based on oil and gas transmission pipeline failure frequency data. The red 3 4 curve or the red dots at the NUREG CR-5750 estimates 5 which we have been using since about '96/'97 time And then the green one here are our current 6 frame. 7 estimates for the same effected break size.

Now when I get to this one and when I show 8 the large break LOCAs, I show all of our different --9 I show LOCA categories 3, 4 and 5. 10 Why is that? 11 Because the break size associated with a large LOCA in 12 5750 of about 6 inches falls between category 3 and It's actually a little bit closer to 13 category 4. 14 category 4. That's why I show both of those estimates 15 on there.

Generally what you see is that our estimates were obviously lower than WASH-1400. I think that's no surprise. They were generally pretty comparable, actually, with 5750. And I'll show the breakdown here later.

The biggest difference occurred with the PWR MB LOCAs, which is what I'm showing there. Here we got about an order of magnitude difference higher than they were estimating within 5750. And, again, that's really largely driven by PWSCC concerns as well as the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	296
1	number of LOCA sensitive areas within the PWR plants.
2	DR. KRESS: Refresh my memory. How did
3	NUREG 5750 get their numbers? Is that a probability
4	of fracture mechanics?
5	MR. TREGONING: What they did is they
6	looked at service history data for leaks. And they
7	found all the leaks that they had in class 1 piping
8	for the most part. And they said, okay, this is my
9	frequency of leaks. Now I'm going to have a
10	conditional probability of failure to get a certain
11	LOCA size. And that was based on some mechanistic
12	work. And that was done by Helmet Schulz and Belizi
13	in Germany where they looked at data and they also
14	tried to look at experiments to come up with
15	conditional as a function of pipe size failure
16	probability curves. But that curve was only you
17	know, if you talked to Helmet Schulz, it was only
18	developed for fatigue type of failures. And they
19	applied in 5750 for anything.
20	So they just said I've got leaks and apply
21	this conditional failure probability and that's going
22	to give me my LOCA frequencies.
23	So very different estimate. Very
24	different technique. And the reason that we're coming
25	up as similar in some ways is comforting, but it's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	297
1	almost irrelevant because we used totally different
2	basis to establish that estimates.
3	DR. LEITCH: Did I understand you to say
4	that prior to this solicitation process, the NRC did
5	an internal assessment?
6	MR. TREGONING: Yes.
7	DR. LEITCH: And I was just wondering how
8	those numbers compare?
9	MR. TREGONING: That's on the next slide.
10	DR. LEITCH: Okay.
11	MR. TREGONING: And this table. And all
12	I've done, I didn't want to plot all these, but I just
13	had a table comparing the means. And the table's a
14	little bit convoluted, so let me walk you through it.
15	But the upper four at plant type Bs versus
16	Ps. And then the next column is historical LOCA size,
17	either small, medium or large. There are two large
18	breaks, and why is that? Because I've compared them
19	against our LOCA categories either 1, 2, 3 or 4. So
20	because the large break historical falls in the break
21	size with between our LOCA categories 3 and 4, I make
22	both those comparisons.
23	Do the next column gives the comparison of
24	the current elicitation ratio with respect to the 5750
25	estimates. So that's here. So this is current

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	298
1	divided by 5750.
2	This last column is current divided by
3	pilot. It has a pilot elicitation result.
4	The only difference to keep in mind is
5	5750 is making current day estimates. When we did the
6	pilot study, we only wanted to look at one time. So
7	we went all the way out to the end of license
8	extension. So these results that I do with the ratio
9	are actually the current elicitation results that we
10	got out of 60 days so I could make a direct
11	comparison.
12	So if I focus on first the column that
13	shows a comparison with NUREG CR-5750, generally I'm
14	within a factor of three from those estimates for all
15	the categories except that PWR MB LOCA, which I'm a
16	factor of again, about 7 or 8 higher than the
17	current estimates. So all the rest of them are
18	actually within a factor of three, which again for
19	these estimates is actually pretty close. And that
20	certainly wasn't the intent, but it's just how it
21	ended up.
22	DR. WALLIS: There is a four am I
23	misreading it?
24	MR. TREGONING: Well, you have to be
25	careful because, again, the LB break size really falls

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	299
1	in between this.
2	DR. WALLIS: Oh, okay.
3	MR. TREGONING: And it's actually our 4
4	inch size start at about 7 inches where these start at
5	about 3 inch break. So the 6 inches is actually closer
6	to a LOCA category 4, which is about within a
7	factor of two, which is actually pretty close. So,
8	there is that factor.
9	But if you look here, the biggest you
10	know, generally we got higher estimates for the MB
11	LOCAs. And, again, this is consistent with the fact
12	that the aging effects were thought to be more
13	detrimental to the intermediate size pipe. It tended
14	to be a little bit lower on the other break sizes,
15	either small breaks or large breaks, but not
16	dramatically so.
17	If I make comparisons with the pilot
18	elicitation, they're a bit more despairing, but still
19	not I wouldn't consider them dramatically so. But
20	we did see a difference between the Bs and Ps.
21	The BWR, the current elicitation results
22	are always lower and they're up to almost ten times
23	lower.
24	The PWR results are currently in the
25	current study are higher and they can be almost up to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	300
1	ten times higher. So you have wider disparity with
2	the earlier elicitation results that we had.
3	DR. FORD: So you're saying that if you do
4	it for 60 years, the LOCA frequency is going to be
5	lower than currently?
6	MR. TREGONING: No. No.
7	DR. FORD: It's the other way around?
8	MR. TREGONING: No. These are just
9	comparisons with the other study. And all I'm saying
10	is compared to the other study our current BWR
11	estimates are up to ten times lower than this other
12	study. Where with the PWRs they're about ten times
13	higher. That doesn't say actually the trends that
14	we got are relatively constant, relatively.
15	You see some small I'd say relatively
16	small increases out to 60 years of maybe factors of
17	three or something like that. But it's not again,
18	it's not dramatic.
19	DR. FORD: You don't expect them to go up?
20	MR. TREGONING: For the most part it's the
21	60 year estimates in the current elicitation, they're
22	slightly higher than the current day estimates. But,
23	again, a factor of 3 or less usually.
24	You saw the uncertainty we have in the
25	current day estimates. There's even more uncertainty

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1in the 60 year estimates. But the median responses2are only about a factor of three or less higher.3And the 40 year estimates, depending on4LOCA size, some of them go down, some of them go up.5There's no consistent. But they're all, again,6relatively minor trends and usually within a factor of7two or so, which given the uncertainty you know, we8don't consider many of these trends to be9statistically significant until you get up to about a10factor of five or so.11DR. WALLIS: So is that just saying if12it is that was considering it's a linear it's13purely linear the time? Like 25 60 over 25 is14roughly15MR. TREGONING: These are comparative16numbers. And these are comparing against two different18studies. All that you can say here is that the pilot19elicitation, right, we got much higher frequencies at2060 years for the pilot elicitation than we did in the21current elicitation. And conversely at 60 years in22the current elicitation, we got higher estimates at 6023years than we did in the pilot study.24DR. WALLIS: They're both at 60 years?		301
And the 40 year estimates, depending on LOCA size, some of them go down, some of them go up. There's no consistent. But they're all, again, relatively minor trends and usually within a factor of two or so, which given the uncertainty you know, we don't consider many of these trends to be statistically significant until you get up to about a factor of five or so. DR. WALLIS: So is that just saying if it is that was considering it's a linear it's purely linear the time? Like 25 60 over 25 is roughly MR. TREGONING: These are comparative rations. These don't say anything about the absolute numbers. And these are comparing against two different studies. All that you can say here is that the pilot elicitation, right, we got much higher frequencies at 60 years for the pilot elicitation than we did in the current elicitation. And conversely at 60 years in the current elicitation, we got higher estimates at 60 years than we did in the pilot study.	1	in the 60 year estimates. But the median responses
LOCA size, some of them go down, some of them go up. There's no consistent. But they're all, again, relatively minor trends and usually within a factor of two or so, which given the uncertainty you know, we don't consider many of these trends to be statistically significant until you get up to about a factor of five or so. DR. WALLIS: So is that just saying if it is that was considering it's a linear it's purely linear the time? Like 25 60 over 25 is roughly MR. TREGONING: These are comparative rations. These don't say anything about the absolute numbers. And these are comparing against two different studies. All that you can say here is that the pilot elicitation, right, we got much higher frequencies at 60 years for the pilot elicitation than we did in the current elicitation. And conversely at 60 years in the current elicitation, we got higher estimates at 60 years than we did in the pilot study.	2	are only about a factor of three or less higher.
5There's no consistent. But they're all, again, relatively minor trends and usually within a factor of two or so, which given the uncertainty you know, we don't consider many of these trends to be statistically significant until you get up to about a factor of five or so.10factor of five or so.11DR. WALLIS: So is that just saying if it is that was considering it's a linear it's purely linear the time? Like 25 60 over 25 is roughly15MR. TREGONING: These are comparative rations. These don't say anything about the absolute numbers. And these are comparing against two different studies. All that you can say here is that the pilot elicitation, right, we got much higher frequencies at 60 years for the pilot elicitation than we did in the current elicitation. And conversely at 60 years in the current elicitation, we got higher estimates at 60 years than we did in the pilot study.	3	And the 40 year estimates, depending on
<pre>6 relatively minor trends and usually within a factor of 7 two or so, which given the uncertainty you know, we 8 don't consider many of these trends to be 9 statistically significant until you get up to about a 10 factor of five or so. 11 DR. WALLIS: So is that just saying if 12 it is that was considering it's a linear it's 13 purely linear the time? Like 25 60 over 25 is 14 roughly 15 MR. TREGONING: These are comparative 16 rations. These don't say anything about the absolute 17 numbers. And these are comparing against two different 18 studies. All that you can say here is that the pilot 19 elicitation, right, we got much higher frequencies at 20 60 years for the pilot elicitation than we did in the 21 current elicitation. And conversely at 60 years in 23 the current elicitation, we got higher estimates at 60 23 years than we did in the pilot study.</pre>	4	LOCA size, some of them go down, some of them go up.
two or so, which given the uncertainty you know, we don't consider many of these trends to be statistically significant until you get up to about a factor of five or so. DR. WALLIS: So is that just saying if it is that was considering it's a linear it's purely linear the time? Like 25 60 over 25 is roughly MR. TREGONING: These are comparative rations. These don't say anything about the absolute numbers. And these are comparing against two different studies. All that you can say here is that the pilot elicitation, right, we got much higher frequencies at 60 years for the pilot elicitation than we did in the current elicitation. And conversely at 60 years in the current elicitation, we got higher estimates at 60 years than we did in the pilot study.	5	There's no consistent. But they're all, again,
8 don't consider many of these trends to be 9 statistically significant until you get up to about a 10 factor of five or so. 11 DR. WALLIS: So is that just saying if 12 it is that was considering it's a linear it's 13 purely linear the time? Like 25 60 over 25 is 14 roughly 15 MR. TREGONING: These are comparative 16 rations. These don't say anything about the absolute 17 numbers. And these are comparing against two different 18 studies. All that you can say here is that the pilot 19 elicitation, right, we got much higher frequencies at 20 60 years for the pilot elicitation than we did in the 21 current elicitation. And conversely at 60 years in 22 the current elicitation, we got higher estimates at 60 23 years than we did in the pilot study.	6	relatively minor trends and usually within a factor of
9 statistically significant until you get up to about a factor of five or so. 11 DR. WALLIS: So is that just saying if 12 it is that was considering it's a linear it's 13 purely linear the time? Like 25 60 over 25 is 14 roughly 15 MR. TREGONING: These are comparative 16 rations. These don't say anything about the absolute 17 numbers. And these are comparing against two different 18 studies. All that you can say here is that the pilot 19 elicitation, right, we got much higher frequencies at 20 60 years for the pilot elicitation than we did in the 21 current elicitation. And conversely at 60 years in 22 the current elicitation, we got higher estimates at 60 23 years than we did in the pilot study.	7	two or so, which given the uncertainty you know, we
10factor of five or so.11DR. WALLIS: So is that just saying if12it is that was considering it's a linear it's13purely linear the time? Like 25 60 over 25 is14roughly15MR. TREGONING: These are comparative16rations. These don't say anything about the absolute17numbers. And these are comparing against two different18studies. All that you can say here is that the pilot19elicitation, right, we got much higher frequencies at2060 years for the pilot elicitation than we did in the21current elicitation. And conversely at 60 years in22the current elicitation, we got higher estimates at 6023years than we did in the pilot study.	8	don't consider many of these trends to be
11DR. WALLIS: So is that just saying if12it is that was considering it's a linear it's13purely linear the time? Like 25 60 over 25 is14roughly15MR. TREGONING: These are comparative16rations. These don't say anything about the absolute17numbers. And these are comparing against two different18studies. All that you can say here is that the pilot19elicitation, right, we got much higher frequencies at2060 years for the pilot elicitation than we did in the21current elicitation. And conversely at 60 years in22the current elicitation, we got higher estimates at 6023years than we did in the pilot study.	9	statistically significant until you get up to about a
<pre>12 it is that was considering it's a linear it's 13 purely linear the time? Like 25 60 over 25 is 14 roughly 15 MR. TREGONING: These are comparative 16 rations. These don't say anything about the absolute 17 numbers. And these are comparing against two different 18 studies. All that you can say here is that the pilot 19 elicitation, right, we got much higher frequencies at 20 60 years for the pilot elicitation than we did in the 21 current elicitation. And conversely at 60 years in 22 the current elicitation, we got higher estimates at 60 23 years than we did in the pilot study.</pre>	10	factor of five or so.
13 purely linear the time? Like 25 60 over 25 is 14 roughly 15 MR. TREGONING: These are comparative 16 rations. These don't say anything about the absolute 17 numbers. And these are comparing against two different 18 studies. All that you can say here is that the pilot 19 elicitation, right, we got much higher frequencies at 20 60 years for the pilot elicitation than we did in the 21 current elicitation. And conversely at 60 years in 22 the current elicitation, we got higher estimates at 60 23 years than we did in the pilot study.	11	DR. WALLIS: So is that just saying if
14roughly15MR. TREGONING: These are comparative16rations. These don't say anything about the absolute17numbers. And these are comparing against two different18studies. All that you can say here is that the pilot19elicitation, right, we got much higher frequencies at2060 years for the pilot elicitation than we did in the21current elicitation. And conversely at 60 years in22the current elicitation, we got higher estimates at 6023years than we did in the pilot study.	12	it is that was considering it's a linear it's
MR. TREGONING: These are comparative rations. These don't say anything about the absolute numbers. And these are comparing against two different studies. All that you can say here is that the pilot elicitation, right, we got much higher frequencies at 60 years for the pilot elicitation than we did in the current elicitation. And conversely at 60 years in the current elicitation, we got higher estimates at 60 years than we did in the pilot study.	13	purely linear the time? Like 25 60 over 25 is
rations. These don't say anything about the absolute numbers. And these are comparing against two different studies. All that you can say here is that the pilot elicitation, right, we got much higher frequencies at 60 years for the pilot elicitation than we did in the current elicitation. And conversely at 60 years in the current elicitation, we got higher estimates at 60 years than we did in the pilot study.	14	roughly
17 numbers. And these are comparing against two different 18 studies. All that you can say here is that the pilot elicitation, right, we got much higher frequencies at 60 years for the pilot elicitation than we did in the current elicitation. And conversely at 60 years in the current elicitation, we got higher estimates at 60 years than we did in the pilot study.	15	MR. TREGONING: These are comparative
18 studies. All that you can say here is that the pilot 19 elicitation, right, we got much higher frequencies at 20 60 years for the pilot elicitation than we did in the 21 current elicitation. And conversely at 60 years in 22 the current elicitation, we got higher estimates at 60 23 years than we did in the pilot study.	16	rations. These don't say anything about the absolute
<pre>19 elicitation, right, we got much higher frequencies at 20 60 years for the pilot elicitation than we did in the 21 current elicitation. And conversely at 60 years in 22 the current elicitation, we got higher estimates at 60 23 years than we did in the pilot study.</pre>	17	numbers. And these are comparing against two different
20 60 years for the pilot elicitation than we did in the 21 current elicitation. And conversely at 60 years in 22 the current elicitation, we got higher estimates at 60 23 years than we did in the pilot study.	18	studies. All that you can say here is that the pilot
21 current elicitation. And conversely at 60 years in 22 the current elicitation, we got higher estimates at 60 23 years than we did in the pilot study.	19	elicitation, right, we got much higher frequencies at
22 the current elicitation, we got higher estimates at 60 23 years than we did in the pilot study.	20	60 years for the pilot elicitation than we did in the
23 years than we did in the pilot study.	21	current elicitation. And conversely at 60 years in
	22	the current elicitation, we got higher estimates at 60
24 DR. WALLIS: They're both at 60 years?	23	years than we did in the pilot study.
	24	DR. WALLIS: They're both at 60 years?
25 MR. TREGONING: They're both at 60 years.	25	MR. TREGONING: They're both at 60 years.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	302
1	At 60 years.
2	MR. ABRAMSON: I think we'd also have to
3	say that the pilot, since it was a pilot and I think
4	we feel that this study has much more credibility than
5	that. That was just a pilot study.
6	MR. TREGONING: Well, the other thing, the
7	pilot was two years ago and I think PWSCC has sort of
8	exploded on the scene since then, too.
9	MR. ABRAMSON: It was done in a much
10	quicker time frame and so with all NRC people, too,
11	I should mention.
12	MR. TREGONING: I think these trends are
13	actually relatively consistent with a lot of the
14	qualitative rationale that we heard from people.
15	MR. ABRAMSON: Yes.
16	MR. TREGONING: Even though again the
17	techniques that I'll say the pilot, the current
18	elicitation and 5750 used to estimate frequencies were
19	very different. We did it the structure that we
20	used in the pilot elicitation ended up being quite
21	different than the structure we used in the formal
22	elicitation because we had a different panel. And
23	that's the question Tom asked me before; hey you did
24	a different panel, what would you expect the
25	differences with that different panel?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	303
1	Well, you see here. But I would argue
2	that that earlier panel even though they did a very
3	good job, we weren't able to apply the same rigor just
4	because it was an accelerated exercise.
5	MR. ABRAMSON: And also it was all NRC
6	staff.
7	MR. TREGONING: And it was all NRC staff.
8	So one heard arguments, that well you
9	MR. ABRAMSON: They're bias.
10	MR. TREGONING:numbers from thatI
11	don't know that that's true, but I've heard arguments.
12	DR. KRESS: I know it's not your job, but
13	you have any notion of these new values and
14	distributions can be used to establish a new
15	definition of a large break LOCA size?
16	MR. TREGONING: You're asking my opinion
17	or
18	DR. KRESS: It's not your that's
19	somebody's else job.
20	MR. TREGONING: No, it's not I'm going
21	to explain how we're going to go about doing it or the
22	process and then I'll give you my own opinion, and I'm
23	sure I'll be shouted by others in the room. But we've
24	got a working group formed between Research and NRR
25	that the charter of that working group is to address

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	304
1	those very issues. And that's why our working group
2	compatriots have been very vocal about understanding
3	the basis and the scope for this elicitation exercise.
4	Because we've got to take that as a group and turn
5	around and make decisions potentially for limiting
6	for altering the design basis.
7	MR. SNODDERLY: Well, not just the group.
8	All of us. I mean, that's what it comes down to.
9	MR. TREGONING: Of course. But first it's
10	going to be the working group. And one of the things
11	I would argue is that this is just a piece of the
12	information. We've got some work going on now that's
13	looking at thermal hydraulic response, responses from
14	plants. And what we're going to do, I think this
15	information is going to be very useful to: (a) to
16	sort of focus the efforts that we need to from here on
17	out. And what do I mean by that?
18	Well, we've broken these numbers down into
19	system related LOCA frequencies. And I can show some
20	of that. But we predicted systems that we expect to
21	be specifically challenging for LOCAs.
22	One of the things we're going to do is
23	before we're going to postulate breaks in those
24	systems of various sizes that are commiserate with the
25	frequencies that we expect here. And we're going to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

develop or we're going to determine what the thermal hydraulic response is.

I think those frequencies along with the 3 4 thermal response predictions or plant operating 5 characteristics that we predict to responses for those breaks as well as the risk sensitivity to breaks in 6 7 various systems and locations, those three pieces of information will be what we will be basing any 8 9 postulated rule or design basis changes on. And I really think you have to consider all those things 10 11 equally. You just can't take the LOCA frequencies and 12 say, haha, based on this frequency this is going to be my break size. I think it would be --13 14 DR. KRESS: That's too simplistic. 15 MR. TREGONING: -- too simplistic. 16 DR. KRESS: If you were to do that, why would they choose? Ten to the minus six? 17 MR. TREGONING: I don't know. 18 We talked 19 about that today. That's a challenge. DR. KRESS: 20 That's traditionally what 21 they call a break between design basis and other 22 plates. 23 Right. MR. TREGONING: One of the 24 challenges in this was discussed guite a bit this 25 morning. So at the risk of retreading on the ground,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

305

	306
1	one of the challenges with this is how do you use
2	frequency information that has quite a bit of
3	uncertainty in it and develop regulation from that. So
4	that's the challenge that we
5	DR. KRESS: Yes, I was wondering how you'd
6	use this. Say the 95 percentile numbers or whatever.
7	MR. TREGONING: Yes. I think our intent
8	is and, again, it's too early to determine and
9	we're just we're hashing this out. I mean, I think
10	we want to use
11	DR. KRESS: First you got to get the
12	numbers.
13	MR. TREGONING: First we got to finalize
14	the numbers. But I think we'd be looking at high
15	failure probability, high competence type of numbers
16	to base part to base this regulation on.
17	MR. ABRAMSON: I would just add I think we
18	would have to consider both the uncertainty and the
19	variability. That is each the uncertainty for any
20	one expert plus the variability in the panel. We'd
21	have to consider that. But how, of course, is the big
22	question. Well, of course, we would have to do
23	anything, it goes without saying, in a somewhat
24	conservative way because we're doing this in a
25	regulatory framework. But that's all we can say this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	307
1	morning.
2	DR. KRESS: How did they put that together
3	in NUREG 1150? Didn't they have the same problem
4	there?
5	MR. TREGONING: I don't know if anyone
6	else I don't feel
7	MR. ABRAMSON: My general impression there
8	is they got one distribution at the end. And, you
9	know, they had the means and the 95 percentile.
10	DR. KRESS: Yes, but how did they put it
11	together it, though?
12	MR. ABRAMSON: You mean how was that I
13	don't know. I can't answer that.
14	MR. TREGONING: Yes, I can't address that.
15	I don't know if anyone
16	MR. ABRAMSON: I was not involved in 1150,
17	so I couldn't answer that.
18	MR. TREGONING: That's something that
19	we're as we look at going on and how to use these
20	numbers, obviously looking for precedents within the
21	agency is going to be important. But even though
22	understanding that history is important, we're also as
23	we talked about this morning, we're breaking a little
24	bit of new ground. So we can't rely totally on
25	precedent either. So we just have to be and I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 think there's general understanding of а the 2 challenges ahead. on the solution to the Not 3 challenges, but at least the challenges that exist. 4 And I think as an agency the sense that I get, and 5 this is my opinion of course -- is that you know these things are going to be weighed very carefully and 6 7 really discussed very thoroughly before we really move 8 forward with anything that we propose. 9 So, I don't know that I've answered your question, but --10 DR. KRESS: Well, I didn't really expect 11 12 an answer. You gave me more than I expected, frankly. MR. TREGONING: Okay. We're not going to 13 14 touch on safety culture. We'll spend the rest of the 15 day on that. 4:30 we're scheduled to be -- I've got 16 17 three slides. Let me try to finish up. MR. SNODDERLY: Rob, if we could try to 18 19 quickly summarize safety culture? It was essentially, 20 the impression I got from the paper was that in our 21 past experience if a plant with a poor safety culture 22 is discovered, it's usually quickly rectified within a year to two years. And that pattern would tell you 23 24 that the current framework is capable of account for 25 that or correcting for it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

308

309 1 MR. TREGONING: Well, not entirely. Now you've dragged me into it. So to address the question 2 I've got to go to this slide. 3 4 Safety culture is, again, a bit of a 5 nebulous thing. It means different things to different people somewhat. But when we had an initial panel 6 7 discussion there was an overwhelming sense that, yes, 8 safety culture can effect LOCAs. All the panelists 9 agreed to that fact. And then we said okay given that it can have an effect, how do we deal with that? 10 And 11 what we decided in the discussions is that there was 12 a decision made that safety culture is not a function really of piping system or piping component. It's not 13 14 function of those things. So because it's а 15 independent of these other variables, we separated that from the rest of the discussion. 16 We asked a 17 separate question that just said, okay, what do you think is the future safety culture effect, what could 18 19 it be on LOCAs? We asked for their best guess and 20 their uncertainties.

And, you know, that's why we decided to separate it. It made it clean in the sense that when we looked at the piping failures, we were really just considering just aging and mitigation and things like that. We weren't considering safety culture on that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

310

And then we said, okay, now just consider safety culture in general. What do you think those effects will be. Well, these were some of the results that we got.

And we had further subdivided it into 5 utility and regulatory safety culture. So the first 6 7 result we got back was that most, if not all of the panelists, felt that utility and regulatory safety 8 cultures were highly correlated. Well, what's that 9 mean? Well, that means that something that one body 10 11 does it going to effect the other and they're almost 12 going to move in locked step. So this notion that there's not a separate regulatory utility safety 13 14 culture, that there's really just this overriding 15 safety culture that's at play here, most of the 16 panelists that we talked about expected either 17 improvements or no change in the future due to safety cultures effects. And we talked quite a bit about 18 19 Davis-Besse in this area of it and how peoples' 20 expectation of the Davis-Besse event is and would 21 continue to shape evolving safety culture within the 22 whole industry and how we would treat passive system 23 degradation.

24 So, however, even though that people that 25 in general that safety culture would continue to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

improve, there was a recognition that a lot of the uncertainties developed by or due to plant-to-plant variability. And that while generally you could be moving toward a better safety culture, your concern is always the one or two plants that for whatever reason has a deficient safety culture.

7 So if you look at the results we got from people when they calculated their 95th percentile, 8 9 many experts did say, hey, my 95th is driven by sort of the -- the rogue plant that for whatever reason is 10 11 more safety deficient than the other. But because of 12 this we noted and we tabulated all of these results, but we didn't apply any sort of safety culture 13 14 adjustment to the frequencies that we developed.

And, again, most of what people recognized is -- you know, and we didn't want to get into addressing safety culture in the sense that providing ways to improve it, that wasn't the focus of this panel.

20 DR. BONACA: You know, I totally agree 21 with your approach in that you're looking for a 22 technical result. And I think the other one, safety 23 culture, it's really intangible with respect to what 24 the expertise of the individuals are and what you're 25 looking for.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	312
1	However, when you translate these results
2	into regulatory requirements, then I am puzzled by how
3	we can include them, if there is any way. I mean,
4	that's two different things. One is a deviation of
5	certain insights coming from probabilistic fracture
6	mechanics and past experience, and that's one thing.
7	And then the other one is to establish a regulation
8	that is based on this and ignoring other I could
9	content that maybe I mean I am concern that at
10	times, you know, we like to create boxes and to put
11	our problems inside there. So we had Davis-Besse,
12	we're all puzzled and troubled by that. So we create
13	a box called safety culture and put it inside there.
14	It's like saying it won't happen again because we're
15	going to recognize that and fix it.
16	You know, I could contend that it is a
17	broad organizational failure. A truly cognitive
18	failure where they kept thinking that leakage was
19	coming from the flanges. They all convinced
20	themselves. And they weren't the only one to be
21	convinced. There were other oversight functions.
22	And I'm just wondering if one of these
23	days we're going to have another organizational
24	failure, you know, about some other issue. I don't

know what it is. Some bolting thing that we will not

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	313
1	recognize and we will call it safety culture. The
2	fact is it's going to come back and bite us.
3	So I'm not saying I have a solution. I
4	just am troubled about not considering events such as
5	this as possibilities and sabotage, of course, we
6	discussed this morning.
7	DR. WALLIS: You're concerned with the
8	human aspect, really?
9	DR. BONACA: Yes. Absolutely.
10	MR. TREGONING: Yes, we did consider the
11	human aspect in the sense of mitigation that we
12	considered the human errors as potentially being a
13	contributor. So, for instance, bolt over-torquing,
14	that was something that we specifically talked about
15	and we asked people to consider.
16	Many people talked about usually
17	mitigation is a good thing, but you have things like,
18	you know, people leave wrenches in steam generators
19	and things like that. And a lot of the panelists did
20	have anecdotal if not actual data on those types of
21	events.
22	So I know a number of them did really
23	consider those effects when they said, you know, I
24	expect due to aging potentially that the frequency
25	will be X. But, I know these other factors, human and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

otherwise, are going to continue to keep it elevated in the future.

3 DR. BONACA: And I guess, you know, the 4 way I view it a little bit, one way is to talk about 5 the design basis risk. I mean, if we are moving, going to smaller breaks and the issue we discussed 6 7 this morning about, you know, how much now you have left beyond design basis, you know, maybe there is one 8 9 way and the way you can control the risk beyond design for example, by pretend inspecting 10 basis, that 11 whatever changes you make, you'll still have a small 12 increase in risk in total. Then you're taking care of possibly of these other events because you are 13 14 considering performance of systems. You know, the --15 of the systems, most likely. They're going to take care of beyond design basis event that way, through 16 small increase in risk. 17 But anyway, we can talk about that later 18 19 on when we talk about, you know, members perspective. 20 MR. TREGONING: Do we want to forge ahead, 21 Mr. Chairman?

CHAIRMAN SHACK: Yes, I think so.
MR. TREGONING: Okay. As I mentioned,
we've had a first look at the results and we've done
a good bit of analysis. But one of the things that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

314

	315
1	we're continuing to do to examine the robustness of
2	these results is we have a number of sensitive studies
3	that we already have conducted, but that we are also
4	ongoing. And I just wanted to list a couple of things
5	that we've got ongoing, and this is, again, we're
б	doing these things to increase our confidence in the
7	final estimates that we will be using for these LOCA
8	frequencies.
9	One we're doing sensitivity studies where
10	we're evaluating individual uncertainties. And did
11	you want to do this slide?
12	MR. ABRAMSON: Yes, I can.
13	MR. TREGONING: I'm going to defer to Lee.
14	He said for me to do this, but I'm going to go ahead
15	and defer to you on this slide.
16	MR. ABRAMSON: Okay. Yes. The first one
17	is the over confidence adjust. It's been well
18	established or we accepted wisdom in the elicitation
19	community that X for anybody not just X, but
20	anybody tends to be over confident. And when they
21	give you, say, a 95 percent and 5 percent bound, that
22	includes 90 percent of their it's suppose to be 90
23	percent confidence. In fact, based on almanac type
24	questions for which you know the answer, they're off
25	by about a factor of two. So that 90 percent is more

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	316
1	like 50 percent. And this has been established over
2	and over again. And in some of the training exercises
3	I did with them, they can kind of see this. So people
4	tend to be over confident.
5	And so what we're planning to do is to do
6	what we call a targeted adjustment or at least to try
7	that as a sensitivity study.
8	Some of the experts had rather narrow on
9	confidence bands, uncertainty bands. Others had very
10	broad ones. So we're going to see what happens if we
11	take the ones that are very narrow, and I think there
12	were just there in particular who were extremely
13	narrow, relative to the others, and adjust them a
14	little bit. And say instead of these being really 90
15	percent coverage, maybe it'll be something like 80
16	percent coverage or 75 percent coverage and see what
17	effect this would have on the answers.
18	This will be a sensitivity study.
19	Another thing which I already mentioned is
20	when we're adding up the lognormal distributions, we
21	had to make assumption to generate the variants. We
22	assumed that they were perfectly correlated, which
23	gave you an upper bound. A lower bound you can get by
24	assuming they're independent. And so we'll look at
25	that as a lower bound.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	317
1	Then under panel variability, what we've
2	done so far you've seen a lot of that, is we took the
3	panel numbers and we replaced them with the medians.
4	Essentially, this is very much in the spirit of a box
5	plot, that's in fact what we did.
6	But instead of the medians, one thing to
7	do is to take the geometric means and we'll try that.
8	And another one is a so called trim geometric means.
9	This is like Olympic type scoring where you throw out
10	the high and the low values, so they won't be effected
11	by it.
12	So this will be another way of taking the
13	information or the results we get from the panel and
14	seeing what's a reasonable way to replace them with a
15	single number instead of just the median.
16	MR. TREGONING: Yes, and these are
17	different ways to get the central value of these
18	various parameters of the distribution.
19	MR. ABRAMSON: That's right. Yes. Because
20	that's what we did to get a lot of the
21	MR. TREGONING: And we've actually done
22	this. And what you find out is the medians, there tend
23	not to be much difference for the smaller LOCA sizes.
24	But for the bigger LOCA sizes you can haver about an
25	order of magnitude difference just in the way you

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	318
1	estimate the central values.
2	Medians for this exercise always gave us
3	higher estimates. Geometric means always gave us the
4	lowest estimate. And the trimmed geometric means, as
5	one might expect, was somewhere in the middle.
6	DR. KRESS: I would recommend you go see
7	what they did at 1150, because at least you'd have an
8	NRC precedent on how to deal with that issue. You may
9	not want to use it. But it would at least be worth
10	looking into.
11	MR. ABRAMSON: That's right. But we'll
12	certainly we'll certainly take a look at that.
13	And then as was already mentioned, we've
14	used so far the interquartile ranges as our measure
15	variability. What we are going to do, and probably
16	make that our main measure of variability, will be the
17	95 percent statistical confidence bounds.
18	Then we're going to calculate what we call
19	group estimates for BWRs and PWRs. What we'll do is
20	we'll take the piping numbers where you haven't seen
21	those because you didn't have a chance to do the
22	separate piping and nonpiping.
23	MR. TREGONING: They saw the means.
24	MR. ABRAMSON: Pardon me?
25	MR. TREGONING: I showed the means.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	319
1	MR. ABRAMSON: What we'll do is we'll take
2	those and we'll get an answer for the piping well,
3	let me just back up a minute.
4	What we did for the total estimates with
5	BWRS and PWRs we based this on individual each
6	expert was propagated individually. What we planned
7	to do here is to do what we call a group estimate to
8	get a group number for the piping, which will be based
9	say on the medians and a group number for the
10	nonpiping and add those up. So this will be a kind of
11	a group consensus. This is, again, backing away from
12	just propagating individual estimates.
13	And then along those lines, we'll get what
14	we call a panel estimates. We'll assume there's a 13th
15	panel member. And the 13th panel member, how will we
16	get his results? Well, we're going to take the
17	responses for each of the panel members. We have
18	literally, I don't know, hundreds probably hundreds
19	of responses altogether and we'll just take the
20	medians of those responses. And we'll say all right,
21	we have our 13th panel member who is the median of
22	each one of all the panel members who answered those
23	questions and we'll just propagate that through and
24	see what it looks like.
25	It'll be an interesting exercise to see

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	320
1	how this compares to our results that we've gotten so
2	far.
3	So these are some of the sensitivity
4	studies that we're planning to do. And probably as we
5	go along with these, we'll probably maybe thing of
6	some others. If we have time, we'll certainly do
7	those.
8	MR. TREGONING: I think we're planning on
9	the final estimates are clearly going to be these
10	individually derived estimates just because of
11	MR. ABRAMSON: Yes, I think so. I would
12	say so. Yes. We're leaning very strongly
13	MR. TREGONING: We're not planning to
14	deviate from that philosophy.
15	MR. ABRAMSON: Yes, that's right. And
16	these are sensitivity studies to see, obviously, that
17	the question is well suppose you had done this
18	differently, how would the results have changed.
19	DR. WALLIS: Well, that's very
20	interesting. But, really, what you do here should
21	depend on what you're going to do with the answers you
22	get. Because, I mean, how you look at your
23	sensitivity to uncertainties may depend upon how
24	you're going to use that in some regulation later on.
25	MR. TREGONING: Well, again, we need to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	321
1	find the statistical confidence intervals, those
2	confidence intervals could be based on
3	MR. ABRAMSON: I'm not sure
4	DR. WALLIS: Yes, but suppose the
5	regulation comes back that you have to be 99 percent
6	confident about
7	MR. ABRAMSON: Oh, yes, that's true.
8	MR. TREGONING: Right. That's right. We
9	just said 95th percentile. But once we develop those
10	bounds, we can obviously determine any
11	DR. WALLIS: You can massage it?
12	MR. TREGONING: Yes. Any percentile of
13	confidence we want to apply can be determined.
14	MR. ABRAMSON: I would characterize what
15	we're going to do, what we're going to come out with
16	we're going to try to be as, let's say, as honest and
17	thorough as we can be in summarizing the results of
18	this whole big elicitation exercise. And so in other
19	words, we want to give I mean, this working group
20	and of course many other people in the NRC are going
21	to take these numbers and use them as part of a much
22	larger project. At least we want to feel as confident
23	as we can that what we're giving them to start with a
24	reasonable, let's say, unbiased expression of what we
25	got out of the panel of this whole exercise.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	322
1	MR. TREGONING: And as Lee mentioned,
2	we've done several of these sensitivity studies
3	already, so some of these are completed. Some of them
4	are ongoing. Some of them are yet to be initiated.
5	So what do we have remaining
6	DR. WALLIS: This is going to be a NUREG,
7	this whole thing?
8	MR. TREGONING: That's the plan. That's
9	the plan.
10	So what do we have remaining to do with
11	respect to the elicitation only, not with respect to
12	the whole risk-informed rulemaking exercise?
13	Well, the first thing we have to do is we
14	have to complete the analysis, which we're close. I
15	think we're estimating another two to three weeks
16	before we're done with our initial analysis.
17	We have to finish our sensitivity studies.
18	We have to develop statistical confidence intervals
19	and determine our final frequency recommendations that
20	we'll use as the basis for moving forward with
21	regulation.
22	Another important component that we have
23	to do is we've gotten feedback from our panelists
24	throughout the entire process, which I will say has
25	been generally good. I think at every stage I think

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

we have good buy-in from the panelists themselves, which is important. If we didn't have buy-in from the panelists, we'd certainly question the integrity of the results. And we've provided these initial results to them, but we also have to present the results, the final results in the sensitivity studies back to the panel.

And we'll be doing that -- in fact, 8 they'll get some information within the next couple of 9 days that will show what the final initial set of 10 11 results are. But the main thing we're going to use 12 for feedback is once we're finished with the sensitive studies, we'll complete our draft NUREG on the process 13 14 and we'll actually submit that to the panel members 15 for some initial feedback, as well as internal comments before we move too far down the process of 16 17 getting that NUREG published.

Once we have the NUREG available for public consumption, we're going to solicit feedback from, obviously, all interested parties and that would ACRS, stakeholders and the public at large. So we really are expecting to get quite a bit of feedback on this NUREG when it's out.

And then the final part of the process is some independent peer review. We're planning very

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

324 1 shortly to initiate a peer review process of these 2 estimates. 3 The peer review that we're planning is not 4 going to focus on the input that we got from the 5 experts. We don't want to re-derive that. But we do want to review the process to questions that we used 6 7 in the analysis to make sure that they are -- that they were suitable and not biased in anyway and that 8 9 the analysis and the process that we followed have 10 been rigorous. 11 Suppose the peer reviewers DR. KRESS: 12 say, hey, you shouldn't have ought done that? You aren't going to go back and redo it, are you? 13 14 MR. TREGONING: It's a little premature to 15 If they had significant issues with something say. that we did in the process, then potentially we would 16 17 have to. I think you're putting the 18 DR. KRESS: 19 cart before the horse. I would have done that peer 20 review on the process and the questions first and then worried about -- but after the fact, I don't know --21 22 MR. TREGONING: We couldn't do it first 23 because a lot of the structure involved in --24 DR. KRESS: Yes, I understand that. 25 MR. TREGONING: We talked about doing it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	325
1	in parallel with. And there would have been some
2	possible benefits to that. I agree with that. But
3	that's that's just not how we choose to do it.
4	DR. KRESS: Yes, it's a little hard for me
5	to believe you'll go back and redo the expert
6	elicitation based on a peer review.
7	MR. TREGONING: There is precedent for
8	that.
9	DR. KRESS: I guess you could, yes.
10	DR. WALLIS: All your experts are somehow
11	tied up with the nuclear business it seems to me? It
12	would be good to have a peer review that brought in
13	some outsiders who were honest and experts in
14	something else that was related to this but who could
15	not be cited as being all part of the nuclear club.
16	MR. TREGONING: Right. And I think our
17	idea was we really wanted people that were experts in
18	elicitation and minding
19	DR. WALLIS: Right. Right. Right.
20	MR. TREGONING: What community they come
21	from, we hadn't necessarily considered.
22	MR. ABRAMSON: But there are certainly
23	some who are not, let's say, identified with the
24	nuclear industry, although they may very well have
25	done some work at one time or another, but not

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	326
1	identified with the nuclear industry.
2	MR. TREGONING: Right. But you're right,
3	that's an important consideration. We haven't gotten
4	far enough down this peer review process to really
5	know what structure it's going to take, other than a
6	couple of these principles that we want to try to
7	follow. But this is something that we hope to
8	initiate in the spring. And I think when we come back
9	to talk to you about the NUREG, we'll have some more
10	information at that time about the peer review
11	process. And certainly if you'd like to weigh in
12	before that, we'd certainly welcome it.
13	Summary. So just quickly, I'll just be
14	pretty quick here. We've covered most of this.
15	We used formal elicitation to estimate
16	generic BWR and PWR LOCA frequencies as a function of
17	both flow rate and operating time considering both
18	piping and nonpiping contributions.
19	We developed quantitative estimates
20	DR. WALLIS: I think it's not really a
21	function of flow rate. Really it's a function of hole
22	size.
23	MR. TREGONING: Okay. Break size, which
24	we correlated back to flow rate.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	327
1	the experts considered?
2	MR. TREGONING: Yes.
3	DR. WALLIS: They didn't sort of do their
4	thermal hydraulic calculations.
5	MR. TREGONING: Right, we correlated it
6	back to flow rate.
7	DR. WALLIS: An gallons per minute of
8	steam is a very strange measure, as I've said before.
9	MR. TREGONING: Yes.
10	DR. KRESS: Well, you have to have a
11	special bucket
12	MR. TREGONING: You'll get no argument
13	from me on that. Although, I will say the way it
14	evolved, we defined as a group the LOCA categories
15	based on flow rate. That's how they were defined. And
16	then we did the correlation for the pipe size later.
17	So we did the initial definition based on flow rate.
18	And we got some input from Westinghouse on that
19	because they said, you know, when you parse the large
20	break, you know, look at this partitioning because
21	that will determine the different mitigated
22	capabilities that need to be brought to bear.
23	So we actually did initially partition
24	with respect to flow rate. Then once we got the
25	correlations, all the estimates were based on those

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	328
1	break sizes. There's no argument there.
2	DR. KRESS: The trouble with break size,
3	a peak is a given size in a BWR will give you a
4	different flow rate than a given break size in a PWR.
5	I like flow rate better, frankly.
6	MR. TREGONING: Not only break size, but
7	break location and all those things will reflect your
8	flow rate, there's no doubt.
9	One of the things that I think are nice
10	about these is if you develop them versus pipe break,
11	if you can make an argument that you've got a better
12	correlation for a break in a certain system and
13	location that's applicable there. So, for instance,
14	this might consider that as a small break LOCA when in
15	reality maybe it's a medium break or the other way.
16	Maybe it's not even a small LOCA.
17	I think you have the opportunity to make
18	those sort of evaluations given these numbers.
19	I think that's why what we did will have
20	maybe some more use downstream as people continue to
21	estimate and look at the effects that these breaks may
22	have on plant system response.
23	We developed quantitative estimates for
24	these base cases that we used as anchoring the
25	elicitation responses.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 We asked the panelists not only for quantitative estimates, but we wanted to support it by 2 3 qualitative rationale. And as a group we determined 4 these important contributing factors. And what are 5 they? Well, they're piping and nonpiping systems, degradation mechanisms, things which govern LOCA 6 7 frequencies. And then we asked the experts to provide the relationship between these factors and the base 8 9 So that's where they earn their money. case. 10 In terms of the results, we got relatively 11 good agreement about the important contributing 12 factors within the community of panelists. So there fairly good consensus on what things 13 was were 14 important. There was, obviously, much more 15 disagreement uncertainty and variability in quantifying the frequencies associated with those 16 17 And that will certainly be the various issues. challenge that people face. 18 At the end of the day we got results, 19 20 again, maybe serendipitiously, but they ended up that 21 they were generally comparable to some of the earlier 22 estimates that we got not only in 5750 but they 23 weren't too far from the pilot elicitation estimates 24 that we got.

And that was all I had. If there's any

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

329

	330
1	further questions?
2	DR. WALLIS: How long does it take before
3	the NUREG is actually finished and out there and can
4	be used?
5	DR. SIEBER: As long as you want it to be.
6	MR. TREGONING: I'll tell you that the
7	schedule that we have now, we're looking to finish up
8	our sensitivity analyses by the end of April. And
9	we're looking to have the draft NUREG completed by
10	about end of any time frame. And the only thing at
11	that point that we'll and then we'll have a public
12	I'll say an internal comment period within just our
13	working group and then also the panelists.
14	DR. WALLIS: And a peer is going on then
15	MR. TREGONING: The peer review will be
16	going on simultaneously. But I think the plan is end
17	of June time frame we'll have something that will be
18	ready for consideration by this panel. That's the
19	hope. Assuming we can get buy-in from the experts.
20	That's the unknown at this point. You know, if the
21	NUREG is so contentious that I have a number of
22	experts that just won't buy off on it, then I've got
23	a decision to make. We've got a decision to make
24	whether we move ahead with it or not. So that's my
25	big unknown at this point.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	331
1	I don't think that that's going to be an
2	issue, but I don't want to
3	DR. SIEBER: But that's an important piece
4	of information
5	MR. TREGONING: Yes. Of course.
6	DR. SIEBER: should it come out.
7	MR. TREGONING: And if it does come out,
8	then I think what we would have to do, we'd try to
9	encapsulate that in the NUREG somehow.
10	DR. SIEBER: Yes.
11	MR. ABRAMSON: I think also the theory
12	here, too, I mean you know we certainly would want to
13	take account of consider any feedback we're going
14	to get from the peer review. If they have some
15	problems with it, then we may have to
16	MR. TREGONING: Right. But I think we
17	want to make the NUREG available, at least a draft
18	NUREG available for consumption before that peer
19	review process is completed. That would be my
20	opinion. Because the peer review is going to take a
21	little bit of time. And we want to get these results
22	documented and out to people like the ACRS, and maybe
23	even in advance of that.
24	And if the peer review comes back and it's
25	particularly detrimental to the effort, then

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

332 CHAIRMAN SHACK: Well, Ι had the impression that you were going that you were going to issue a draft new reg for public comment and, presumably then the draft, the final new reg would incorporate both the peer review and any public comment that you got. Is that the process you have in mind? MR. TREGONING: Essentially, yes. DR. KRESS: What's the purpose of public comments on something like this? I just don't see it. I mean, I can see the value of a peer review. But, you know, you have public comments on particular rules when you get around to making the rule, which would incorporate this stuff. I don't see -- you know, I don't see the value added of going out for public comment for a NUREG like this. DR. SIEBER: Well, part of the public are the vendors and the licensees. And that's where the comments will probably come from. MR. SNODDERLY: And if they don't buy-in

21 to these frequencies, they may not be as willing to 22 participate in the --

23 MR. TREGONING: But there's also precedent 24 within the NRC. I think it's the package performance 25 study and things like that which have potentially

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

333 1 sensitive issues that have followed a similar path. 2 And I think that this is of the same level of 3 importance that I think that's going be to а 4 prerequisite. 5 DR. SIEBER: Let me ask a real quick question that's, perhaps, frivolous. But if you were 6 7 to task the category flow rates in terms of mass flow rate instead of volumetric flow rate, would that 8 9 really distort things? You know, because the mass flow rate is from a thermal hydraulic sense and a 10 11 mitigating system performance --12 MR. TREGONING: Yes, did you want to say something? 13 CHAIRMAN SHACK: Yes, I mean it is a mass 14 15 flow rate. You just kind of them put in a funny unit. 16 DR. SIEBER: Well --17 MR. TREGONING: It's calculated as a mass It's converted to a volumetric flow rate. 18 flow rate. 19 DR. SIEBER: Yes. So you could actually go 20 back the other way and not hurt anything. MR. TREGONING: Well, again, and one of 21 22 the things I like -- one of the things I like about 23 our results is the results aren't a function of that 24 correlation. If you don't like the correlation, you 25 can run your own calculations to determine -- and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	334
1	again, I don't have to tell you folks, but it's
2	simplified, it's usually not applicable. I mean, we
3	know that especially for large breaks we have an
4	evolution of flow rate through the break size as a
5	function of pressure and everything else. So these
6	things aren't constant by any stretch of the
7	imagination.
8	So, you know, it was just something hat we
9	did to give us a link between the definition of a LOCA
10	size and the pipe size.
11	DR. SIEBER: Right.
12	MR. TREGONING: And that's something that,
13	you know, that I think in the future if people want to
14	evaluate the acceptability of that, they'll be easily
15	able to do.
16	The one thing that I found actually
17	troubling, and we talked a little bit about this, when
18	I looked back historically and tried to find the basis
19	for the correlations that we had been using since
20	really, about the time the NUREG 1150, very scant
21	basis at all. And especially for the Ps. At least
22	the BWRs I was able to find some documented results.
23	But they were really based on GE neode studies where
24	for certain plant types they postulated breaks in
25	certain locations and assumed certain mitigating

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1systems were applicable. Ran the best estimate codes2of the time and made a prediction as to what the flow3rate would be. And then did a number of these things4and essentially picked a correlation based on that.5So it's you know, I would argue that6what was done in the past was no better than this in7terms of correlations, and maybe even weaker8technically. Especially given the evolution of the9codes over the last 20 years.10DR. WALLIS: Well, I think the idea is11though if you cover all sizes from smallest up to the12double ended break, that sort of the uncertainty in13the codes gets washed out except perhaps at the very14highest end.15MR. TREGONING: Right. Right. No. I'm16only talking about the codes with respect to the17correlations to break size.18DR. WALLIS: Yes. I know what you mean.19I mean, usually we say that you know, no one has20actually broken up pipe under these circumstances and		335
 rate would be. And then did a number of these things and essentially picked a correlation based on that. So it's you know, I would argue that what was done in the past was no better than this in terms of correlations, and maybe even weaker technically. Especially given the evolution of the codes over the last 20 years. DR. WALLIS: Well, I think the idea is though if you cover all sizes from smallest up to the double ended break, that sort of the uncertainty in the codes gets washed out except perhaps at the very highest end. MR. TREGONING: Right. Right. No. I'm only talking about the codes with respect to the correlations to break size. DR. WALLIS: Yes. I know what you mean. I mean, usually we say that you know, no one has actually broken up pipe under these circumstances and 	1	systems were applicable. Ran the best estimate codes
 and essentially picked a correlation based on that. So it's you know, I would argue that what was done in the past was no better than this in terms of correlations, and maybe even weaker technically. Especially given the evolution of the codes over the last 20 years. DR. WALLIS: Well, I think the idea is though if you cover all sizes from smallest up to the double ended break, that sort of the uncertainty in the codes gets washed out except perhaps at the very highest end. MR. TREGONING: Right. Right. No. I'm only talking about the codes with respect to the correlations to break size. DR. WALLIS: Yes. I know what you mean. I mean, usually we say that you know, no one has actually broken up pipe under these circumstances and 	2	of the time and made a prediction as to what the flow
5So it's you know, I would argue that6what was done in the past was no better than this in7terms of correlations, and maybe even weaker8technically. Especially given the evolution of the9codes over the last 20 years.10DR. WALLIS: Well, I think the idea is11though if you cover all sizes from smallest up to the12double ended break, that sort of the uncertainty in13the codes gets washed out except perhaps at the very14highest end.15MR. TREGONING: Right. Right. No. I'm16only talking about the codes with respect to the17correlations to break size.18DR. WALLIS: Yes. I know what you mean.19I mean, usually we say that you know, no one has20actually broken up pipe under these circumstances and	3	rate would be. And then did a number of these things
 what was done in the past was no better than this in terms of correlations, and maybe even weaker technically. Especially given the evolution of the codes over the last 20 years. DR. WALLIS: Well, I think the idea is though if you cover all sizes from smallest up to the double ended break, that sort of the uncertainty in the codes gets washed out except perhaps at the very highest end. MR. TREGONING: Right. Right. No. I'm only talking about the codes with respect to the correlations to break size. DR. WALLIS: Yes. I know what you mean. I mean, usually we say that you know, no one has actually broken up pipe under these circumstances and 	4	and essentially picked a correlation based on that.
 terms of correlations, and maybe even weaker technically. Especially given the evolution of the codes over the last 20 years. DR. WALLIS: Well, I think the idea is though if you cover all sizes from smallest up to the double ended break, that sort of the uncertainty in the codes gets washed out except perhaps at the very highest end. MR. TREGONING: Right. Right. No. I'm only talking about the codes with respect to the correlations to break size. DR. WALLIS: Yes. I know what you mean. I mean, usually we say that you know, no one has actually broken up pipe under these circumstances and 	5	So it's you know, I would argue that
 technically. Especially given the evolution of the codes over the last 20 years. DR. WALLIS: Well, I think the idea is though if you cover all sizes from smallest up to the double ended break, that sort of the uncertainty in the codes gets washed out except perhaps at the very highest end. MR. TREGONING: Right. Right. No. I'm only talking about the codes with respect to the correlations to break size. DR. WALLIS: Yes. I know what you mean. I mean, usually we say that you know, no one has actually broken up pipe under these circumstances and 	6	what was done in the past was no better than this in
 9 codes over the last 20 years. 10 DR. WALLIS: Well, I think the idea is 11 though if you cover all sizes from smallest up to the 12 double ended break, that sort of the uncertainty in 13 the codes gets washed out except perhaps at the very 14 highest end. 15 MR. TREGONING: Right. Right. No. I'm 16 only talking about the codes with respect to the 17 correlations to break size. 18 DR. WALLIS: Yes. I know what you mean. 19 I mean, usually we say that you know, no one has 20 actually broken up pipe under these circumstances and 	7	terms of correlations, and maybe even weaker
DR. WALLIS: Well, I think the idea is though if you cover all sizes from smallest up to the double ended break, that sort of the uncertainty in the codes gets washed out except perhaps at the very highest end. MR. TREGONING: Right. Right. No. I'm only talking about the codes with respect to the correlations to break size. DR. WALLIS: Yes. I know what you mean. I mean, usually we say that you know, no one has actually broken up pipe under these circumstances and	8	technically. Especially given the evolution of the
11 though if you cover all sizes from smallest up to the 12 double ended break, that sort of the uncertainty in 13 the codes gets washed out except perhaps at the very 14 highest end. 15 MR. TREGONING: Right. Right. No. I'm 16 only talking about the codes with respect to the 17 correlations to break size. 18 DR. WALLIS: Yes. I know what you mean. 19 I mean, usually we say that you know, no one has 20 actually broken up pipe under these circumstances and	9	codes over the last 20 years.
12 double ended break, that sort of the uncertainty in 13 the codes gets washed out except perhaps at the very 14 highest end. 15 MR. TREGONING: Right. Right. No. I'm 16 only talking about the codes with respect to the 17 correlations to break size. 18 DR. WALLIS: Yes. I know what you mean. 19 I mean, usually we say that you know, no one has actually broken up pipe under these circumstances and	10	DR. WALLIS: Well, I think the idea is
13 the codes gets washed out except perhaps at the very 14 highest end. 15 MR. TREGONING: Right. Right. No. I'm 16 only talking about the codes with respect to the 17 correlations to break size. 18 DR. WALLIS: Yes. I know what you mean. 19 I mean, usually we say that you know, no one has 20 actually broken up pipe under these circumstances and	11	though if you cover all sizes from smallest up to the
<pre>14 highest end. 15 MR. TREGONING: Right. Right. No. I'm 16 only talking about the codes with respect to the 17 correlations to break size. 18 DR. WALLIS: Yes. I know what you mean. 19 I mean, usually we say that you know, no one has 20 actually broken up pipe under these circumstances and</pre>	12	double ended break, that sort of the uncertainty in
MR. TREGONING: Right. Right. No. I'm only talking about the codes with respect to the correlations to break size. DR. WALLIS: Yes. I know what you mean. I mean, usually we say that you know, no one has actually broken up pipe under these circumstances and	13	the codes gets washed out except perhaps at the very
<pre>16 only talking about the codes with respect to the 17 correlations to break size. 18 DR. WALLIS: Yes. I know what you mean. 19 I mean, usually we say that you know, no one has 20 actually broken up pipe under these circumstances and</pre>	14	highest end.
<pre>17 correlations to break size. 18 DR. WALLIS: Yes. I know what you mean. 19 I mean, usually we say that you know, no one has 20 actually broken up pipe under these circumstances and</pre>	15	MR. TREGONING: Right. Right. No. I'm
DR. WALLIS: Yes. I know what you mean. I mean, usually we say that you know, no one has actually broken up pipe under these circumstances and	16	only talking about the codes with respect to the
19 I mean, usually we say that you know, no one has 20 actually broken up pipe under these circumstances and	17	correlations to break size.
20 actually broken up pipe under these circumstances and	18	DR. WALLIS: Yes. I know what you mean.
	19	I mean, usually we say that you know, no one has
	20	actually broken up pipe under these circumstances and
measured flow out of it. So it's all based on ideal	21	measured flow out of it. So it's all based on ideal
22 MR. TREGONING: Not in a plant, anyway.	22	MR. TREGONING: Not in a plant, anyway.
23 Not in an actual plant. Try to do it on scaled	23	Not in an actual plant. Try to do it on scaled
24 experiments and things like that.	24	experiments and things like that.
25 DR. WALLIS: But even then they tend to	25	DR. WALLIS: But even then they tend to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	336
1	just take a straight pipe with an orifice at the end
2	at something.
3	MR. TREGONING: Yes. Yes.
4	DR. WALLIS: They don't get a real break
5	in a real pipe.
6	MR. TREGONING: Exactly right. So we
7	realize that we're on shaky ground with whatever we
8	try to develop here. That's why we tried to keep
9	simplistic for this analysis. Stay simplistic.
10	MR. SNODDERLY: Bill, I just want to take
11	an opportunity to thank Rob and Lee. They've both
12	been outstanding in their support of this Committee on
13	this issue, in keeping me up to speed and getting me
14	the information that I needed to try to bring this
15	meeting together. So I just wanted to thank them.
16	CHAIRMAN SHACK: If there are no further
17	questions for Rob and Lee, then I think we can thank
18	them. It was a superb presentation I thought. And,
19	actually, you know all things considered, pretty close
20	to on schedule.
21	DR. SIEBER: It depends on the schedule
22	you're on.
23	CHAIRMAN SHACK: At this point, you know,
24	although Mr. Kelly this morning said that staff wasn't
25	expecting a letter, I think at least we want to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	337
1	consider a letter, you know, with some of our
2	positions on some of the technical and policy issues
3	and perhaps what we know about the elicitation process
4	if we want to comment on that.
5	So, at this point I'd just like to go
6	around the table to see if people, you know, have
7	issue they think we ought to be addressing in a letter
8	or, you know, opinions on where 5046 is going, some of
9	the technical and policy issues that we heard about
10	this morning.
11	MR. SNODDERLY: And one other thing,
12	though, we should consider is we have a 2 hours and 15
13	minute schedule for April 15th to brief the full
14	Committee. So if we could give Rob and Eileen some
15	idea of what we want them to present. And also if we
16	think it might be a good idea well, we'll
17	definitely invite NEI to say something, but we need to
18	figure out what we want to tell the full Committee in
19	that 2 hours and 15 minutes.
20	DR. SIEBER: Well, I guess I'm not
21	prepared to address the latter point that you made.
22	But as far as would we send a letter at this point, I
23	personally don't have any issues with what's been
24	presented today. You know, I have some concerns that

are broader in scope, but until we discuss those and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	338
1	examine those issues thoroughly, you know, I would not
2	want to comment on it.
3	So, I think what was done to get to this
4	point in the expert elicitation was done very well.
5	And I think the results are reasonable, and I look
6	forward to reading the NUREG and any comments coming
7	out of the peer review.
8	CHAIRMAN SHACK: The comments on the
9	broader issues, for example, of narrow scope versus
10	broad scope application or, you know, this question
11	about what kind of mitigation should be kept in mind
12	for beyond design basis?
13	DR. SIEBER: When we look at risk-based
14	relaxation of requirements, I would prefer that the
15	hardware part of the plant stay the same and meet the
16	same criteria as the original Appendix K which had the
17	assumption of the double ended guillotine break. Now,
18	when you change things like diesel start times or
19	allowed outage times and so forth, I think that is
20	within the realm of being reasonable. But if you
21	carve out a class of accidents that you can't mitigate
22	because you decide, well, you know, my high head
23	safety injection pumps really don't pump very good
24	anymore and so you can't really deal with a double
25	ended break, I would prefer the licensee fixed his

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5 The other thing that concerns me is maintaining the independence of 6 barriers. For 7 example, even though you say that the most likely break size is smaller than the double ended break of 8 the large pipe, the containment should still in my 9 opinion be capable of taking the full pressure that 10 11 you would have with a double ended break, the 12 environmental envelope should be the same, the zone implements for debris generation should be the same. 13 14 And those are not areas where you would, in my opinion 15 where I would feel comfortable in granting relief or saying, for example, I don't need to modify my screens 16 because I'm not going to blow all that stuff around in 17 containment because I'm going to have little breaks 18 19 instead of big ones.

And so that's sort of my feeling on where 20 21 50.46 ought to go. There ought to be some separation 22 and independence between the characteristics, the 23 design and engineering characteristics of the barriers 24 so that we don't make a decision in mitigation space 25 that degrades defense-in-depth as we go through.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

1Of course, I'm willing to listen to other2people's arguments in that area, but that would be my3feeling, if I had to express it right now. And since4you asked me, I guess I have to express it.5MR. SNODDERLY: Jack, as far as the latter6question that we asked, do you think we just discuss7the 04-0037 SECY at the April 15th meeting or should8we discuss both that SECY and the LOCA frequency9distribution work?10DR. SIEBER: Well, I think the most11important product right now that's reaching a12culmination is the LOCA frequency distribution. To13me, I think that's the item of most interest.14On the other hand, we aren't done yet.15You know, the NUREG has to be published, there's16additional statistical work that you want to do. And17so I'm not sure that that's appropriate.18DR. BONACA: Well, on May 1st, or the May	
3 feeling, if I had to express it right now. And since 4 you asked me, I guess I have to express it. 5 MR. SNODDERLY: Jack, as far as the latter 6 question that we asked, do you think we just discuss 7 the 04-0037 SECY at the April 15th meeting or should 8 we discuss both that SECY and the LOCA frequency 9 distribution work? 10 DR. SIEBER: Well, I think the most 11 important product right now that's reaching a 12 culmination is the LOCA frequency distribution. To 13 me, I think that's the item of most interest. 14 On the other hand, we aren't done yet. 15 You know, the NUREG has to be published, there's 16 additional statistical work that you want to do. And 17 so I'm not sure that that's appropriate.	2
4 you asked me, I guess I have to express it. 5 MR. SNODDERLY: Jack, as far as the latter 6 question that we asked, do you think we just discuss 7 the 04-0037 SECY at the April 15th meeting or should 8 we discuss both that SECY and the LOCA frequency 9 distribution work? 10 DR. SIEBER: Well, I think the most 11 important product right now that's reaching a 12 culmination is the LOCA frequency distribution. To 13 me, I think that's the item of most interest. 14 On the other hand, we aren't done yet. 15 You know, the NUREG has to be published, there's 16 additional statistical work that you want to do. And 17 so I'm not sure that that's appropriate.	7
5 MR. SNODDERLY: Jack, as far as the latter 6 question that we asked, do you think we just discuss 7 the 04-0037 SECY at the April 15th meeting or should 8 we discuss both that SECY and the LOCA frequency 9 distribution work? 10 DR. SIEBER: Well, I think the most 11 important product right now that's reaching a 12 culmination is the LOCA frequency distribution. To 13 me, I think that's the item of most interest. 14 On the other hand, we aren't done yet. 15 You know, the NUREG has to be published, there's 16 additional statistical work that you want to do. And 17 so I'm not sure that that's appropriate.	2
question that we asked, do you think we just discuss the 04-0037 SECY at the April 15th meeting or should we discuss both that SECY and the LOCA frequency distribution work? DR. SIEBER: Well, I think the most important product right now that's reaching a culmination is the LOCA frequency distribution. To me, I think that's the item of most interest. On the other hand, we aren't done yet. You know, the NUREG has to be published, there's additional statistical work that you want to do. And so I'm not sure that that's appropriate.	
7 the 04-0037 SECY at the April 15th meeting or should 8 we discuss both that SECY and the LOCA frequency 9 distribution work? 10 DR. SIEBER: Well, I think the most 11 important product right now that's reaching a 12 culmination is the LOCA frequency distribution. To 13 me, I think that's the item of most interest. 14 On the other hand, we aren't done yet. 15 You know, the NUREG has to be published, there's 16 additional statistical work that you want to do. And 17 so I'm not sure that that's appropriate.	2
<pre>8 we discuss both that SECY and the LOCA frequency 9 distribution work? 10 DR. SIEBER: Well, I think the most 11 important product right now that's reaching a 12 culmination is the LOCA frequency distribution. To 13 me, I think that's the item of most interest. 14 On the other hand, we aren't done yet. 15 You know, the NUREG has to be published, there's 16 additional statistical work that you want to do. And 17 so I'm not sure that that's appropriate.</pre>	3
9 distribution work? 10 DR. SIEBER: Well, I think the most 11 important product right now that's reaching a 12 culmination is the LOCA frequency distribution. To 13 me, I think that's the item of most interest. 14 On the other hand, we aren't done yet. 15 You know, the NUREG has to be published, there's 16 additional statistical work that you want to do. And 17 so I'm not sure that that's appropriate.	£
10DR. SIEBER:Well, I think the most11important product right now that's reaching a12culmination is the LOCA frequency distribution.13me, I think that's the item of most interest.14On the other hand, we aren't done yet.15You know, the NUREG has to be published, there's16additional statistical work that you want to do.17so I'm not sure that that's appropriate.	7
11 important product right now that's reaching a 12 culmination is the LOCA frequency distribution. To 13 me, I think that's the item of most interest. 14 On the other hand, we aren't done yet. 15 You know, the NUREG has to be published, there's 16 additional statistical work that you want to do. And 17 so I'm not sure that that's appropriate.	
<pre>12 culmination is the LOCA frequency distribution. To 13 me, I think that's the item of most interest. 14 On the other hand, we aren't done yet. 15 You know, the NUREG has to be published, there's 16 additional statistical work that you want to do. And 17 so I'm not sure that that's appropriate.</pre>	-
13 me, I think that's the item of most interest. 14 On the other hand, we aren't done yet. 15 You know, the NUREG has to be published, there's 16 additional statistical work that you want to do. And 17 so I'm not sure that that's appropriate.	ì
14 On the other hand, we aren't done yet. 15 You know, the NUREG has to be published, there's 16 additional statistical work that you want to do. And 17 so I'm not sure that that's appropriate.)
15 You know, the NUREG has to be published, there's 16 additional statistical work that you want to do. And 17 so I'm not sure that that's appropriate.	
<pre>16 additional statistical work that you want to do. And 17 so I'm not sure that that's appropriate.</pre>	•
17 so I'm not sure that that's appropriate.	5
	£
18 DR. BONACA: Well, on May 1st, or the May	
	7
19 meeting we have a meeting with the Commission. We are	5
20 on the agenda. I would expect that they would want to)
21 have our views on policy issues. Because, I mean, on	l
22 this issue at the level of the Commissioners we can	l
23 comment as to the quality of the work and the value	j
24 that we attribute to that. And I think that would be	j
25 probably just part of what they expect to hear from	n

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	341
1	us. So I think we should be prepared to discuss the
2	other issues, too. Don't you think so?
3	CHAIRMAN SHACK: Yes. But I do think we
4	probably also want to have I think we do want to
5	have both present at the Committee meeting.
6	MR. SNODDERLY: Yes, I agree.
7	DR. BONACA: I agree.
8	DR. KRESS: But in terms of relative
9	times.
10	MR. SNODDERLY: That's what I'm trying to
11	get out.
12	DR. KRESS: You want to put a lot more on
13	the NUREG what's the number again?
14	MR. SNODDERLY: SECY-04-0037.
15	DR. KRESS: Yes. Because I think there
16	will be a lot more contentions and a lot more
17	problems.
18	I don't think the Committee will have any
19	particular problems with this.
20	MR. SNODDERLY: I agree with that.
21	CHAIRMAN SHACK: I think this afternoon's
22	presentation could be just summarized as to the
23	results, a couple of those key slides that we saw. I
24	think the methodology and the
25	DR. KRESS: Yes, and the Committee's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 already hea	ard a lot leading up to this, like Rob says.
2 So they're	very familiar with what is going on.
3	MR. TREGONING: Sort of pick ten slides
4 out of her	e, maybe even that's too many.
5	DR. KRESS: Yes. Maybe.
6	DR. SIEBER: Have some backups.
7	DR. BONACA: I would almost say, you know,
8 half an ho	ur for this and two hours for the other.
9	DR. KRESS: That would be my guess as
10 reasonable	
11	DR. BONACA: As the breakdown, I would
12 say. Becau	use that's really where the hard spots are.
13 And that's	where we, hopefully, can influence.
14	MR. TREGONING: I'm sorry. You said a half
15 hour or an	hour for this?
16	DR. BONACA: A half hour.
17	MR. TREGONING: Okay.
18	DR. BONACA: It seems very short. But the
19 issues that	at we discussed that we discussed this
20 morning as	re going to be contentious and I think
21 there's go	ing to be a lot of questions.
22	MR. TREGONING: Right. I just wanted to
23 make sure s	so I can prepare toward it. And I think ten
24 slides wil	l be too much. But, okay.
25	CHAIRMAN SHACK: Well, that's 2 minutes

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	343
1	per slide.
2	DR. BONACA: What a sign of success.
3	That's a sign of success, I believe. I mean, in part,
4	I don't think there will be any arguing about.
5	Anyway
6	CHAIRMAN SHACK: But no more than ten
7	slides I guess is the answer. You've been known to
8	come in with packages, Rob.
9	MR. TREGONING: I don't want to get
10	it's probably not an unfounded
11	DR. SIEBER: It should be greater than one
12	and less than ten.
13	MR. TREGONING: I will be careful.
14	DR. KRESS: Very good.
15	CHAIRMAN SHACK: Peter?
16	DR. FORD: As far as letter, we just
17	discuss that.
18	As far as the LOCA frequency, I think it's
19	great work, as we have all come to that conclusion.
20	Obviously, there's debate on some specifics. I'll
21	send a note to you on four specifics.
22	One is a question of uncertainties, the
23	physical aspects of the uncertainties.
24	A question of calibration of the
25	predictions against historical evidence.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	344
1	The third item is that I would recommend
2	that we do some plant specific calculations, for
3	instance, water chemistry for BWRs and temperature,
4	things for the PWRs. The reason why I say it is, is
5	that gives the business driver for the licensees to
6	use this methodology.
7	The final one is that I still think we
8	should be concentrating on the upper end, the 95 plus
9	aspects because we're a bit concerned about the first
10	incidence is going to kill us, not the mean.
11	But I'll send a note separate expanding on
12	those ideas. That's it.
13	DR. LEITCH: I would like to differentiate
14	between this morning's presentation and this
15	afternoon's presentation pretty clearly.
16	I think this afternoon's presentation is
17	an excellent piece of technical work. You know, I
18	think it's as good as can be. I think it's been
19	accomplished very professionally. We're dealing with
20	great unknowns, great uncertainties here, but I don't
21	know a better way to go about it. I think it's been
22	done very well.
23	And as, as I've already said, I think the
24	next full presentation to the full committee I think
25	this can be greatly condensed just to show the results

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

345 1 and not get into too much of the methodology. I think 2 some of the insights, a couple of those slides on insights might be important and the basic results I 3 4 think is about all we need. 5 I think by far the bigger issue, though, in the discussion we heard this morning 6 comes 7 concerning the revision to 50.46. And I would say that I have a great deal of problems with that. First 8 of all the application of this afternoon's conclusions 9 But I also have a problem with this whole 10 to 50.46. 11 concept of narrow versus broad application. 12 Т think on one hand I'm very much concerned that the broad application is too much of a 13 14 relaxation and the narrow may not give sufficient 15 benefit for the utility to want to invest the time and money in the PRA that would be required. 16 So I basically don't know how that's going to work. 17 And I have a great deal of concerns about it. 18 19 Some of the other concerns are the -- I 20 don't have a clear understanding in my mind at the 21 moment as to if we do revise the maximum break size, 22 just what are those systems going to look like that are designed to mitigate between the maximum break 23 24 size and the DBA or the double ended break of the 25 largest pipe. All the hardware still in place?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	346
1	DR. SIEBER: Maybe.
2	DR. LEITCH: But maybe. And how would
3	that hardware be maintained? Would it still be in the
4	tech specs? Would there still be surveillance tests
5	required for that? Still be quality assurance of the
6	environmental qualification? I just don't know the
7	answer to those questions. I don't know what's being
8	proposed. But I think we do need to hear the answer
9	those, because all those things have an impact on the
10	reliability of that equipment. I mean, it's one thing
11	have a core spray pump sitting there, but if you never
12	test it, if you don't check the logic and so forth,
13	how do you know that it's going to work when you need
14	it? By the same token, if you continue testing it, in
15	what way is that different than what we have today?
16	So I just don't have a clear understanding
17	of what's being proposed. In fact, I guess that's the
18	essence of the discussion here, is we're looking for
19	policy direction as to what is being proposed.
20	I also have a concern about terrorism and
21	security in this that I've expressed before as it
22	relates to public confidence. I really have a concern
23	about whether this is the time that we should be
24	moving to redefine break sizes. I think some of these
25	potential for terrorist attack, although we don't know

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

what those potentials are and can't quantify them, I think they are probably higher than some of these break number probabilities that we've seen here. Not only external terrorist attack, but the concept of a disgruntled employee either because of labor relations situation or perhaps even an internal terrorist I think can do significant damage.

8 So I'm just really -- this afternoon; 9 that's fine, that's good, I understand that. But I'm 10 really concerned about what I heard this morning or 11 maybe more importantly, what I didn't hear. I mean, 12 there's the uncertainties that are still on the table, 13 I think are big concerns.

14 CHAIRMAN SHACK: Well, of course, those 15 are policy issues that do have to be addressed. And 16 we sort of could take a position on just how some of 17 these could go.

DR. LEITCH: Yes. Yes. And I think we could -- you know, if we wanted to frame a letter, we could develop some thoughts about just what are the level of readiness, so to speak, of these systems that mitigate the delta between the new LOCA and the current LOCA.

24DR. BONACA: Yes. I share some of the25views.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1 First of all, on the the development of LOCA frequency, I think is a very good 2 3 effort. But I expressed before the concern I have 4 with the really human factor, as they were, and I 5 think that's really the issue. To the point where I would say that I see 6 7 this estimation as very valuable and useable, but my level of uncertainty about those is much higher 8 because of some considerations like human factor, 9 sabotage or terrorists or things like that have not 10 11 been taken into consideration. And yet when I go to 12 develop a regulatory basis, I have to take into consideration in my mind these are the factors in some 13 14 way. 15 And so in a way that pushes me is to what is a narrow rule rather than a broad rule. 16 And now I'm talking about this morning's presentation. 17 You know, in a narrow rule I would see relaxations that 18 19 are favorable to the licensees, for example in diesel 20 start times and other -- many of those things which 21 are really a pain to the licensees right now, but 22 they're not used to then get power upgrades and so on 23 and so forth, and so therefore to -- so I would view 24 a narrow rule in that sense, and I think that's the 25

way it was presented this morning.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Now, whichever way we go, narrow versus 1 2 broad rule, I do believe that there had to be 3 mitigated capability for beyond design basis LOCA. 4 They should be retained at some level. I mean, there 5 had to be some assurance that you have no low vessel failure, no containment challenges that will cause 6 7 more likely large releases, early releases. And I think one way to address it is to focus on the 8 9 criteria Reg. Guide 1.174.

What I mean by that is that if I could 10 11 show that I make changes there, whatever changes I 12 make, that will increase risk by a very small amount, that assures me that also the scenarios beyond design 13 14 basis which are modeled in the PRA are contained to no 15 risk. So that would be one way, it seems to me, that I could verify. So in that sense that would be for an 16 17 application that still expects a very small increasing risk. 18

I mean, I don't think that the burden reduction should be interpreted as you're taking in the margin you got and you can do whatever you want with that. It seems to me that burden reduction means you're reducing the burden, but you're still contained to a small increasing risk, because that's really what we license there. That's where we are today with the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

349

risk appreciation for these power plants. And I think that's the baseline where we should stay. And that's my view.

4 On the reversibility issue, I think that 5 the reversibility issue should not be subjected to --I think that this is almost like an 6 analysis. 7 agreement that the staff develops into a contract, I mean into the regulation whereby in fact if these 8 9 estimations are used and then there are changes that are agreed to -- I mean, are coming in, that show that 10 11 the change was not appropriate, there shouldn't now be 12 a burden on the staff to demonstrate robust ___ It doesn't analysis that the reversal can be done. 13 14 make sense to me there should be one.

I think we should establish criteria for what it means that you would reverse. You know, you reverse by what? Some insights and then maybe you can translate it into medians or means or, you know, percentiles.

20 On the best estimate evaluation methods, 21 I really don't have a judgment. It seems to me more of 22 a concern of the staff with the fact that right now 23 there are small break LOCA models that do not allow 24 you best estimates, and that would be a burden on the 25 licensees. But I -- I think still if you go a risk-

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

(202) 234-4433

350

informed way, I mean, also depending how much you 2 relay on that, you would want to have best estimate 3 methods even for LOCA, even for small break LOCA. And 4 then may not have to have an Appendix K pedigree. But 5 something that certainly supports best estimate for LOCAs -- for PRAs. 6

7 I think application to future plants it's a little bit far in the future it seems to me now. I 8 9 think we have to resolve this issue for the existing That will give us some insight on where we 10 plants. But I don't have an idea about that. 11 qo.

12 And finally, on defense-in-depth, again, I mean if you contain the risk increases through 13 14 criteria such as the one on Reg. Guide 1.174 and you 15 say that they're going to be very small, that should resolve some of the concern about defense-in-depth. 16 It doesn't resolve still the concern with the proper 17 balance between prevention and mitigation, maybe. And 18 19 so -- but some of those criteria, prevention and 20 mitigation, human factors and common cause has to be 21 dealt with. I mean, those are issues that are 22 important. And I think that maybe there have to be some specific consideration on how the defense-in-23 24 depth is applied there.

That's pretty much my thoughts.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

	352
1	CHAIRMAN SHACK: Suppose we pick the ten
2	to the minus six frequency cut off.
3	DR. BONACA: Yes.
4	CHAIRMAN SHACK: By definition, you know,
5	the risk associated with ten to the minus eight
б	accidents would then be small, would you want a
7	mitigative capability for those ten to the minus eight
8	accidents or you're willing to live with the fact that
9	the risk is small and you don't need a mitigative
10	capability?
11	DR. BONACA: That's a good question.
12	There is a certain point where you have a cut off
13	point. And I think the one on the main issue is what
14	uncertainty I have on those results.
15	CHAIRMAN SHACK: Okay.
16	DR. KRESS: With respect to this
17	afternoon's presentation, I agree with most of the
18	comments. There was not much to complain about. It's
19	a very good presentation. And I don't know how it's
20	needed information
21	MR. TREGONING: We could work on
22	something.
23	DR. KRESS: Yes. I don't know how else you
24	could get this information.
25	I do think there's an issue about how you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	353
1	glomerate the results to get a final single
2	distribution. And I reiterate my comments that they
3	ought to check what they did in NUREG 1150 there.
4	And I have some doubts about the value of
5	peer review in here, but it looks like it's one of the
6	things you do.
7	What I would do with the results of peer
8	review is not go back and redo the elicitation. I
9	would try to figure out how to adjust the results of
10	the elicitation I have based on the peer review
11	comments. But that's just a comment.
12	With respect to this morning's stuff,
13	that's where I think the meat of the thing is. I
14	believe we have such diverse views and sort of a
15	conundrum as a result of the fact that we have never
16	articulated a good connection between design basis
17	base and risk base. And that articulation needs to be
18	done.
19	The question is how do you choose design
20	basis base and why. Well, the philosophy is really
21	that you look at all the types of accidents you have
22	and you try to include those types. And you do it in
23	a conservative way with things like the single failure
24	criteria and how you calculate and what you have to
25	meet in terms of acceptance criteria. And you hope

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

354 1 then that this renders the plant in a state of 2 acceptable risk, acceptable uncertainty, acceptable balance; all those things that you're really after. 3 4 We've never articulated that, and what 5 we're now in the process of doing has said we have a design basis space for the plants that exist. 6 We're 7 talking about changing that. But what we're really 8 after is controlling the risk, controlling the 9 uncertainty, controlling the balance to acceptable There again, we've never articulated what 10 levels. 11 those acceptable levels is. What's a quantitative 12 acceptable level of defense-in-depth? I recall a letter that ACRS wrote about 7 13 14 8 years ago saying these things need to be or 15 quantified, they need to be articulated better, they need to be applied on a plant specific basis. We got 16 kicked in the teeth and shot down I don't know how 17 many times for that. 18

19 Ι still think those are absolutely 20 necessary things to make this change. They have to be 21 articulated somewhere, and they're not. They are in 22 a sort of an ad hoc manner now in Reg. Guide 1.174. 23 So if I were doing this, I would grab hold 24 of 1.174 with both arms and I would pull it into this 25 thing and say this is the thing that's going to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	355
1	control how I deal with this issue, because it's going
2	to limit risk increases to acceptable errors, it's
3	going to track them in a accumulative basis, it's got
4	already balance between LERF and CDF. It's got in it
5	the things we need to control this.
6	So I would certainly never throw 1.174
7	out. I would grab onto it with both hands.
8	DR. BONACA: And deal with design basis
9	DR. KRESS: That's right. And with
10	respect to the question of maintaining mitigated
11	capability, I think if we're going to go risk-
12	informed, we ought to go risk-informed.
13	CHAIRMAN SHACK: There's only one kind of
14	risk?
15	DR. KRESS: That's right. Well, there's
16	balance and defense-in-depth and those things have to
17	be properly accounted for. But let's go risk-
18	informed. And otherwise you're using this kind of
19	stuff to decide on what stays and what doesn't.
20	With respect to the terror issue, once
21	again I say keep that separate. Let them deal with
22	that some other way.
23	And with respect to the new plants, I
24	think I would just say okay, we'll relegate that to
25	the new framework for technology neutral and let that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	356
1	take care of it for us, maybe. I don't know.
2	CHAIRMAN SHACK: Do you have any thoughts
3	on cumulative risk and how much it can accumulate?
4	DR. KRESS: Yes, let Reg. Guide 1.174 do
5	it for you.
6	CHAIRMAN SHACK: Okay. That works.
7	DR. KRESS: I was looking to see if I had
8	any other notes. Ah, that ought to be enough for now.
9	DR. BONACA: Reversibility is an important
10	issue.
11	DR. KRESS: Well, I think reversibility
12	shouldn't be an issue at all. I think if you do the
13	Reg. Guide. 1.174 you will have limited risk due to
14	the change cumulative. And if once some new
15	information comes about that says you've gone beyond
16	an acceptable risk, then the back fit rule will be
17	there for you and you can say, okay, put something
18	back in there to fix this. And it'll pass the back
19	fit rule. If it's still an acceptable risk, it won't
20	pass the back fit rule and you can't do it.
21	CHAIRMAN SHACK: I think it'll be more
22	like the pressure vessel; that you will then have an
23	aging management program that will maintain a LOCA
24	frequency to
25	DR. KRESS: You may have that, yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	357
1	CHAIRMAN SHACK: to a certain level.
2	DR. KRESS: Yes. And I think the business
3	of CDF and LERF will take care of mitigation
4	capability for both the containment and the core for
5	you properly. So, you know, that's my opinion right
6	now.
7	CHAIRMAN SHACK: Vic?
8	DR. RANSOM: Well, I think the elicitation
9	work, it's certainly a good start and like a piece of
10	the puzzle which is the break sizes or the
11	probability of the break is a function of size.
12	The thing that puzzles me in 50.46 is the
13	benefits are not clear. I'm not seeing what is coming
14	out of this. Maybe I haven't been around long enough
15	to understand completely why eliminate the large break
16	LOCAs from the design basis accident. I guess I'd like
17	to hear a little more what are we gaining by doing
18	that.
19	It's not clear what the safety
20	implications are if you do this and what it means in
21	terms of defense-in-depth, which is sort of a vague
22	term anyway.
23	And in terms of risk informing the
24	methods, I believer the uncertainty of consequences
25	predicted by system simulation are still one of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

biggest uncertainties in this whole puzzle. And the best estimate methods are quoted without really quantifying what that is. I don't know that anybody has really -- I think the methods exist for establishing that, but we've not established that.

And that's still, I think, a strong piece 6 7 of the puzzle and there needs to be more effort in that. And not only that, the NRC seems to have backed 8 off in the past 20 or 30 years of being able to 9 provide a measure of what is best estimate. And the 10 11 words I'm hearing, this is more up to the licensee to 12 prove or provide what that is. And I think we've heard of statistical methods recently that could be 13 14 used to quantify these terms.

15 personally believe that a Ι better 16 approach is to treat to the break size as а 17 statistical variable, like we heard in the S-RELAP5 presentation from Framatome where the probability of 18 19 this break is simply incorporate into the other 20 sources of uncertainty that exist in predicting the 21 consequences of an event. And to me that seems like 22 a stronger way of doing this, and it's consistent with 23 risk informing completely.

I guess as a last thought, is what happened ALARA. You know, a lot of this defense-in-

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	359
1	depth in ALRA were philosophies that you did whatever
2	was reasonably achievable in terms of reducing risk
3	and throwing out a part of the history of this is
4	somewhat disturbing to me because I don't really know
5	what I'm gaining by doing that.
6	CHAIRMAN SHACK: Graham?
7	DR. WALLIS: Well, the expert elicitation
8	work I think is very good. It's near completion. I
9	don't think we need to say much more than that.
10	The big picture is very interesting. I
11	think the staff did a very good job this morning of
12	describing the issues and things that needed to be
13	considered and in some ways indicating how they might
14	be treated. But this agency's going to have to, I
15	think, reexamine some fundamentals of how it regulates
16	and why it regulates. I don't understand how you take
17	something out of a design basis accident and yet you
18	sort of require mitigation as if you were in the
19	design basis. That's a sort of mysterious thing
20	there. That's why I think that they are, the agency
21	has to examine why do we have design basis accidents
22	and what are we trying to achieve and is mitigation
23	and risk the only measure of what we're trying to
24	achieve. If it is, then let's use it.
25	But, you know, I'm sort of waiting for the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	360
1	agency to decide because I think an awful lot of this
2	is going to be at the policy level.
3	I think that the agency will have to be
4	more explicit about what defense-in-depth means, as my
5	colleague Dr. Kress says. Give more specific
6	descriptions. Even dare to try to quantify it.
7	I'm not sure that 1.174 is adequate.
8	DR. KRESS: No, that's the one part of
9	1.174 I'd say needs augmenting.
10	DR. WALLIS: Right. It's too waffly. It
11	doesn't really say what is adequate defense-in-depth
12	and how you decide.
13	In two specific areas or one specific
14	area, I do have this concern with human actions. I
15	think deliberate or accident human actions could well
16	have far more influence than these ten to the minus
17	eight ten to the minus 9th material events that we've
18	been discussing.
19	That's the
20	CHAIRMAN SHACK: Although to the extent
21	that the service related things include things like
22	human events
23	DR. WALLIS: They can do that.
24	CHAIRMAN SHACK: you know, an obviously
25	the odds of having included a human event on the ten

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	361
1	to the minus eight scale is about the same as a
2	material event on the ten to the minus eight scale
3	DR. WALLIS: But you never know what
4	humans are going to get up to. I would be very
5	CHAIRMAN SHACK: No. I's just saying that
6	experience base may not include all the human actions
7	that we have to be concerned about.
8	DR. WALLIS: And this whole society may
9	change in the ten years between now and the next time
10	when you want to reevaluate all this.
11	I suspect that an awful lot of this is
12	going to be decided at the policy level. That
13	someone's going to make some policy maybe not having
14	considered all these things that need to be
15	considered, how much do we want to get involved in
16	that?
17	I think some of the main issues the big
18	issues that my colleagues have been talking about here
19	really represent policy. And sometimes the Commission
20	hasn't been receptive to us getting involved in
21	policy.
22	CHAIRMAN SHACK: That's a question, yes.
23	DR. WALLIS: Although I think this is one
24	of those things where as representatives of the
25	public, we may want to get involved. Again, I'm

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	362
1	waiting to see how that plays out.
2	DR. KRESS: Interesting comment. You got
3	any? We want to hear your views. You can't get out
4	that easy as far as the Chairman.
5	CHAIRMAN SHACK: I have to write the
6	letter. So you're going to get my views.
7	DR. KRESS: We'll get yours. Okay.
8	DR. SIEBER: That's one of the advantages
9	of being chairman.
10	DR. BONACA: You know, policy or not, I
11	mean set of issues that use of Reg. Guide 1.174 as a
12	guidance solves a lot of these issues. You think
13	about beyond design basis, within design basis, we
14	change the envelop but the PRA fits both. There
15	are distinctions. So therefore, you know, it will
16	address if you have a quality PRA and you have good
17	CHAIRMAN SHACK: No. But I'm more
18	sympathetic to this notion of having a mitigated
19	capability for things beyond design basis as my method
20	of quantifying of defense-in-depth. That's what I
21	mean by quantifying defense-in-depth.
22	DR. KRESS: I think some of that ought to
23	be part of the defense-in-depth, and I agree with you.
24	How you do
25	CHAIRMAN SHACK: what defense-in-depth

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	363
1	means, I think in this case that could well be what I
2	mean by
3	DR. KRESS: It could well mean that you,
4	regardless of the risk results, you have some sort of
5	mitigating capability that's redundant and diverse and
6	has certain capabilities. I think that could be
7	DR. WALLIS: That's why the large break
8	LOCA is in here, in the design basis.
9	DR. KRESS: What?
10	DR. WALLIS: For this very reason is
11	defense-in-depth.
12	DR. BONACA: that it is much more less
13	stringent than 2200 degree
14	CHAIRMAN SHACK: Yes, I think there's a
15	great deal of difference between a mitigative
16	capability and a design basis accident.
17	DR. SIEBER: On the other hand, when you
18	choose a design basis it's unlikely for the accidents
19	that are likely that provides margin and robustness,
20	the same as defense-in-depth. The problem is for the
21	last 45 years we have not sufficiently quantified what
22	kind of margin there is or ever said you got to have
23	this much margin, you know. And so we talk about it
24	and say that we have it, but nobody really knows what
25	they're talking about.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	364
1	DR. WALLIS: Well, isn't the ECCS there
2	simply for mitigation?
3	DR. SIEBER: Yes.
4	DR. WALLIS: And it's there to maintain a
5	coolable geometry and to prevent the accident getting
6	out of hand. That is mitigation, isn't it? So how do
7	you take
8	CHAIRMAN SHACK: Yes, but it mitigates to
9	an extreme
10	DR. WALLIS: Well, the degree of
11	mitigation maybe. That's where you can start.
12	DR. KRESS: You have to recognize that we
13	don't mitigate all accidents anyway. We do have core
14	melt accidents in PRA, they're the problem. So we
15	don't mitigate all of them.
16	DR. WALLIS: We mitigate the LOCA because
17	there was a great folderol about LOCA and hearings and
18	it went on for a couple of years.
19	DR. KRESS: There was a history behind it,
20	that's right.
21	DR. BONACA: had the best estimate done
22	after they were meeting Appendix K to from, you know,
23	like keeping temperatures so low, especially BWRS,
24	that you have no damage at all, you know. So
25	therefore there's no margin there in the criteria that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1right now2DR. KRESS: Even the rules that we have3now where we talk about ESSC having some redundancy4and some capability don't specify the reliability. So5you could have two systems that aren't very reliable6at all and have a bad ESSC. I mean, so you know, I7think some of those things need to be specified better8in terms of defense-in-depth if we're going to change9the design basis space.10DR. LEITCH: I think there's a good11example and a distinction between a system that's12operable and a system that's available. I mean,13operable is a tech spec word and in order for this14hypothetical core spray pump to be operable it has to15meet all those requirements. Now, if you seismic16support out someplace on the system whose pedigree is17guestionable, the system's not operable.18DR. SIEBER: It's not operable.19DR. LEITCH: But is it available? Well,20sure it's available. I mean, it'll run. It'll run21just fine. But it's not operable and from a tech spec22sense you can't count it's operable. And it's all23those little kind of things that drive the power24plants crazy.25And I think there's room for relaxation of		365
now where we talk about ESSC having some redundancy and some capability don't specify the reliability. So you could have two systems that aren't very reliable at all and have a bad ESSC. I mean, so you know, I think some of those things need to be specified better in terms of defense-in-depth if we're going to change the design basis space. DR. LEITCH: I think there's a good example and a distinction between a system that's operable and a system that's available. I mean, operable is a tech spec word and in order for this hypothetical core spray pump to be operable it has to meet all those requirements. Now, if you seismic support out someplace on the system whose pedigree is questionable, the system's not operable. DR. LEITCH: But is it available? Well, sure it's available. I mean, it'll run. It'll run just fine. But it's not operable and from a tech spec sense you can't count it's operable. And it's all those little kind of things that drive the power plants crazy.	1	right now
and some capability don't specify the reliability. So you could have two systems that aren't very reliable at all and have a bad ESSC. I mean, so you know, I think some of those things need to be specified better in terms of defense-in-depth if we're going to change the design basis space. DR. LEITCH: I think there's a good example and a distinction between a system that's operable and a system that's available. I mean, operable is a tech spec word and in order for this hypothetical core spray pump to be operable it has to meet all those requirements. Now, if you seismic support out someplace on the system whose pedigree is questionable, the system's not operable. DR. LEITCH: But is it available? Well, sure it's available. I mean, it'll run. It'll run just fine. But it's not operable and from a tech spec sense you can't count it's operable. And it's all those little kind of things that drive the power plants crazy.	2	DR. KRESS: Even the rules that we have
5 you could have two systems that aren't very reliable 6 at all and have a bad ESSC. I mean, so you know, I 7 think some of those things need to be specified better 8 in terms of defense-in-depth if we're going to change 9 the design basis space. 10 DR. LEITCH: I think there's a good 11 example and a distinction between a system that's 12 operable and a system that's available. I mean, 13 operable is a tech spec word and in order for this 14 hypothetical core spray pump to be operable it has to 15 meet all those requirements. Now, if you seismic 16 support out someplace on the system whose pedigree is 17 questionable, the system's not operable. 18 DR. LEITCH: But is it available? Well, 19 DR. LEITCH: But is it available? Well, 20 sure it's available. I mean, it'll run. It'll run 21 just fine. But it's not operable and from a tech spec 22 sense you can't count it's operable. And it's all 23 those little kind of things that drive the power 24 plants crazy.	3	now where we talk about ESSC having some redundancy
6 at all and have a bad ESSC. I mean, so you know, I 7 think some of those things need to be specified better 8 in terms of defense-in-depth if we're going to change 9 the design basis space. 10 DR. LEITCH: I think there's a good 11 example and a distinction between a system that's 12 operable and a system that's available. I mean, 13 operable is a tech spec word and in order for this 14 hypothetical core spray pump to be operable it has to 15 meet all those requirements. Now, if you seismic 16 support out someplace on the system whose pedigree is 17 questionable, the system's not operable. 18 DR. LEITCH: But is it available? Well, 20 sure it's available. I mean, it'll run. It'll run 21 just fine. But it's not operable and from a tech spec 22 sense you can't count it's operable. And it's all 23 those little kind of things that drive the power 24 plants crazy.	4	and some capability don't specify the reliability. So
think some of those things need to be specified better in terms of defense-in-depth if we're going to change the design basis space. DR. LEITCH: I think there's a good example and a distinction between a system that's operable and a system that's available. I mean, operable is a tech spec word and in order for this hypothetical core spray pump to be operable it has to meet all those requirements. Now, if you seismic support out someplace on the system whose pedigree is questionable, the system's not operable. DR. LEITCH: But is it available? Well, sure it's available. I mean, it'll run. It'll run just fine. But it's not operable and from a tech spec sense you can't count it's operable. And it's all those little kind of things that drive the power plants crazy.	5	you could have two systems that aren't very reliable
 in terms of defense-in-depth if we're going to change the design basis space. DR. LEITCH: I think there's a good example and a distinction between a system that's operable and a system that's available. I mean, operable is a tech spec word and in order for this hypothetical core spray pump to be operable it has to meet all those requirements. Now, if you seismic support out someplace on the system whose pedigree is questionable, the system's not operable. DR. LEITCH: But is it available? Well, sure it's available. I mean, it'll run. It'll run just fine. But it's not operable and from a tech spec sense you can't count it's operable. And it's all those little kind of things that drive the power plants crazy. 	6	at all and have a bad ESSC. I mean, so you know, I
9 the design basis space. 10 DR. LEITCH: I think there's a good 11 example and a distinction between a system that's 12 operable and a system that's available. I mean, 13 operable is a tech spec word and in order for this 14 hypothetical core spray pump to be operable it has to 15 meet all those requirements. Now, if you seismic 16 support out someplace on the system whose pedigree is 17 questionable, the system's not operable. 18 DR. SIEBER: It's not operable. 19 DR. LEITCH: But is it available? Well, 20 sure it's available. I mean, it'll run. It'll run 21 just fine. But it's not operable and from a tech spec 22 sense you can't count it's operable. And it's all 23 those little kind of things that drive the power 24 plants crazy.	7	think some of those things need to be specified better
10DR. LEITCH: I think there's a good11example and a distinction between a system that's12operable and a system that's available. I mean,13operable is a tech spec word and in order for this14hypothetical core spray pump to be operable it has to15meet all those requirements. Now, if you seismic16support out someplace on the system whose pedigree is17questionable, the system's not operable.18DR. SIEBER: It's not operable.19DR. LEITCH: But is it available? Well,20sure it's available. I mean, it'll run. It'll run21just fine. But it's not operable and from a tech spec22sense you can't count it's operable. And it's all23those little kind of things that drive the power24plants crazy.	8	in terms of defense-in-depth if we're going to change
<pre>11 example and a distinction between a system that's 12 operable and a system that's available. I mean, 13 operable is a tech spec word and in order for this 14 hypothetical core spray pump to be operable it has to 15 meet all those requirements. Now, if you seismic 16 support out someplace on the system whose pedigree is 17 questionable, the system's not operable. 18 DR. SIEBER: It's not operable. 19 DR. LEITCH: But is it available? Well, 20 sure it's available. I mean, it'll run. It'll run 21 just fine. But it's not operable and from a tech spec 22 sense you can't count it's operable. And it's all 23 those little kind of things that drive the power 24 plants crazy.</pre>	9	the design basis space.
12operable and a system that's available. I mean,13operable is a tech spec word and in order for this14hypothetical core spray pump to be operable it has to15meet all those requirements. Now, if you seismic16support out someplace on the system whose pedigree is17questionable, the system's not operable.18DR. SIEBER: It's not operable.19DR. LEITCH: But is it available? Well,20sure it's available. I mean, it'll run. It'll run21just fine. But it's not operable and from a tech spec22sense you can't count it's operable. And it's all23those little kind of things that drive the power24plants crazy.	10	DR. LEITCH: I think there's a good
operable is a tech spec word and in order for this hypothetical core spray pump to be operable it has to meet all those requirements. Now, if you seismic support out someplace on the system whose pedigree is questionable, the system's not operable. DR. SIEBER: It's not operable. DR. LEITCH: But is it available? Well, sure it's available. I mean, it'll run. It'll run just fine. But it's not operable and from a tech spec sense you can't count it's operable. And it's all those little kind of things that drive the power plants crazy.	11	example and a distinction between a system that's
14 hypothetical core spray pump to be operable it has to 15 meet all those requirements. Now, if you seismic 16 support out someplace on the system whose pedigree is 17 questionable, the system's not operable. 18 DR. SIEBER: It's not operable. 19 DR. LEITCH: But is it available? Well, 20 sure it's available. I mean, it'll run. It'll run 21 just fine. But it's not operable and from a tech spec 22 sense you can't count it's operable. And it's all 23 those little kind of things that drive the power 24 plants crazy.	12	operable and a system that's available. I mean,
15 meet all those requirements. Now, if you seismic support out someplace on the system whose pedigree is questionable, the system's not operable. 17 questionable, the system's not operable. 18 DR. SIEBER: It's not operable. 19 DR. LEITCH: But is it available? Well, 20 sure it's available. I mean, it'll run. It'll run 21 just fine. But it's not operable and from a tech spec 22 sense you can't count it's operable. And it's all 23 those little kind of things that drive the power 24 plants crazy.	13	operable is a tech spec word and in order for this
<pre>16 support out someplace on the system whose pedigree is 17 questionable, the system's not operable. 18 DR. SIEBER: It's not operable. 19 DR. LEITCH: But is it available? Well, 20 sure it's available. I mean, it'll run. It'll run 21 just fine. But it's not operable and from a tech spec 22 sense you can't count it's operable. And it's all 23 those little kind of things that drive the power 24 plants crazy.</pre>	14	hypothetical core spray pump to be operable it has to
<pre>17 questionable, the system's not operable. 18 DR. SIEBER: It's not operable. 19 DR. LEITCH: But is it available? Well, 20 sure it's available. I mean, it'll run. It'll run 21 just fine. But it's not operable and from a tech spec 22 sense you can't count it's operable. And it's all 23 those little kind of things that drive the power 24 plants crazy.</pre>	15	meet all those requirements. Now, if you seismic
18DR. SIEBER: It's not operable.19DR. LEITCH: But is it available? Well,20sure it's available. I mean, it'll run. It'll run21just fine. But it's not operable and from a tech spec22sense you can't count it's operable. And it's all23those little kind of things that drive the power24plants crazy.	16	support out someplace on the system whose pedigree is
DR. LEITCH: But is it available? Well, sure it's available. I mean, it'll run. It'll run just fine. But it's not operable and from a tech spec sense you can't count it's operable. And it's all those little kind of things that drive the power plants crazy.	17	questionable, the system's not operable.
20 sure it's available. I mean, it'll run. It'll run 21 just fine. But it's not operable and from a tech spec 22 sense you can't count it's operable. And it's all 23 those little kind of things that drive the power 24 plants crazy.	18	DR. SIEBER: It's not operable.
21 just fine. But it's not operable and from a tech spec 22 sense you can't count it's operable. And it's all 23 those little kind of things that drive the power 24 plants crazy.	19	DR. LEITCH: But is it available? Well,
22 sense you can't count it's operable. And it's all 23 those little kind of things that drive the power 24 plants crazy.	20	sure it's available. I mean, it'll run. It'll run
23 those little kind of things that drive the power 24 plants crazy.	21	just fine. But it's not operable and from a tech spec
24 plants crazy.	22	sense you can't count it's operable. And it's all
	23	those little kind of things that drive the power
25 And I think there's room for relaxation of	24	plants crazy.
	25	And I think there's room for relaxation of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	366
1	some of that stuff and still have this theoretical
2	pump available without having all those "i's" dotted
3	and "t's" crossed. But then the question is how far
4	one goes in that direction and still has a confidence
5	that it still is available.
6	DR. KRESS: Well, you know, in spite of
7	all the things we keep saying and keep assuring, I
8	think when we do this change, I personally think we're
9	going to increase risk and let's bite the bullet and
10	say that is the nature of risk informing some of this
11	stuff. We're going to increase risk and reduce
12	burden. I think that's almost a given to me. The
13	question is how much is a risk can go to be increased.
14	And I think 1.174 has already given those limits.
15	CHAIRMAN SHACK: Yes. I don't think
16	changing our focus, you know, all of the things will
17	not remain equal. You know, we then introduce changes
18	that will increase risk.
19	DR. KRESS: Right. That's my opinion, yes.
20	CHAIRMAN SHACK: Does the staff have any
21	last comments they'd like to make?
22	DR. KRESS: Oh, is the staff here? I
23	might have been a little more if I had known it.
24	MR. KELLY: This is Glenn Kelly from the
25	staff.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	367
1	If I gave you the impression this morning
2	that it was not our intention to follow the Reg. Guide
3	1.174 process, then I then if I gave you that
4	impression, then I made an error in how I spoke about
5	it.
6	I think we tried to write in the paper
7	that it's our intention to follow Reg. Guide 1.174.
8	We think generally it does provide exactly the type of
9	process that we want to be using. And it probably
10	uses exactly the type of metrics that we want to be
11	looking at, and possibly as we've said, we've talked
12	a lot internally about the need to consider metrics
13	leg containment failure because we have some concerns
14	about how well that's covered if you're only looking
15	at core damage frequency.
16	DR. KRESS: I definitely would have that
17	as a metrics
18	MR. KELLY: And you brought up some
19	interesting things for us to think about should you
20	know, if it's okay to make these changes in ten to the
21	minus five change and core damage frequency for
22	licensing basis change, why isn't that okay for a
23	change in the regulations? And I think part of it
24	comes there are so many things that are inner
25	related and changes in the large LOCA design basis

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	368
1	makes such a fundamental change in so many areas of
2	the plant. This whole issue is so unbounded at this
3	point that we were not easily prepared to say that a
4	ten to the minus five increase was okay. Because
5	number one, it wasn't clear that I could come in this
6	week for a ten to the minus five increase
7	DR. KRESS: And come in next month with
8	the ten to the minus five.
9	MR. KELLY: But there's really nothing
10	even in Reg. Guide 1.147 that limits you ten to the
11	minus to four. I mean, potentially you could just
12	all it says is, you know, you're going to get extra
13	attention. Well, maybe that means that you're not
14	DR. KRESS: Well, we asked Gary Holihand
15	that one time. And he said if you got it in a certain
16	range, you would be putting into question adequate
17	protection a certain level. And he didn't want to
18	say what that level was.
19	MR. KELLY: That number's pretty high,
20	though. That number is really a pretty high number.
21	And I think I would have thought he would feel
22	probably uncomfortable for a
23	DR. KRESS: He didn't say what that number
24	was, but he said that would be the implication. He
25	would putting into question adequate protection.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	369
1	MR. KELLY: Right. I mean, we had talked
2	internally about being uncomfortable about taking a
3	plant from ten to the minus six and bringing it up to
4	ten to the minus four or even higher. And that's a
5	big policy decision. And that's one of the things that
6	we intend on bringing forward with a paper, with these
7	numbers on saying here's what we think because I
8	think it has to go together as a package. You have to
9	say that, you know, I can't just take this one number
10	and go forward.
11	DR. KRESS: You know, those ten to the
12	minus sixes generally are BWRS.
13	MR. KELLY: Right.
14	DR. KRESS: Your LERF is going to protect
15	you there because they got such a high conditional
16	containment failure.
17	MR. KELLY: Right.
18	DR. KRESS: The higher CDFs are generally
19	PWRs, but they've got the LEF protected by their
20	containment.
21	So I think in principle you're probably
22	pretty well protected from those potentialities. But
23	you may have to look at it.
24	MR. KELLY: We certainly hope so. And as
25	you say, we have to look at it.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	370
1	The other area and the last thing is
2	see if I can still pull it out here after my brain's
3	sitting here for the whole day.
4	I think that in looking at the overall
5	package give me one second here to hold my thoughts
6	back together.
7	DR. KRESS: Take your time.
8	MR. KELLY: Yes. Well, if I think before
9	I sit down
10	DR. KRESS: I have that problem, but I'm
11	older than you are.
12	DR. RANSOM: I have just a couple of
13	comments with regard to removal of the large break
14	LOCAs a design basis accident. It seems like we know
15	more about that accident from research in the past and
16	can predict its course more reliability than even a
17	small break LOCA. There are probably more unresolved
18	issues in small break than there are in large break.
19	And the second one is the advance light
20	water reactors are turning are large break as a means
21	of mitigating the accident. So I'm not sure what is
22	being gained, again, by eliminating
23	DR. KRESS: You're eliminating a lot of
24	burden. They can make a lot of hay out there. You're
25	giving them some flexibility that they think they

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	371
1	need.
2	DR. WALLIS: The advanced reactors create
3	the large break at the right time under the right
4	conditions.
5	DR. KRESS: Absolutely.
6	DR. WALLIS: They don't just let it
7	happen.
8	DR. KRESS: It's not a random event. And
9	in fact
10	CHAIRMAN SHACK: We got to a lot of
11	trouble to make sure it doesn't happen at the wrong
12	time.
13	DR. KRESS: That's right.
14	DR. SIEBER: You know only once
15	DR. WALLIS: And also you need it in order
16	to let gravity do the work. You have to depressurize
17	the system, which isn't the case with the other
18	reactors. It's an interesting point, but it's good
19	for this and bad for that.
20	MR. KELLY: The other point that I wanted
21	to make was the industry had shared with us a white
22	paper that they had prepared on this process that they
23	would propose for risk information 50.46. And in that
24	process they included many of the concepts that we had
25	put forward in our paper to our Commission in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	372
1	discussing the various areas. But the important thing
2	I think there was that industry had indicated that
3	they expected that in essence, where we would go with
4	50.46 would constitute a precedent for a process of
5	how the industry would like to risk-inform the rest of
6	Part 50. And therefore, not only have we been
7	concerned with the implications that this process
8	would have directly on changing of large break LOCA,
9	but potentially changing all of the other design basis
10	accidents, but changing anything from code acceptance
11	to whatever it is that you might look and it's covered
12	in Part 50.
13	And so therefore, also when we were
14	talking cumulative risk, are we talking about
15	cumulative risk associated with only the change to
16	Part 50 50.46 or is it all the other changes that
17	might be proposed under a similar process?
18	And so we've tried to keep this in the
19	back of our minds as we've looked at what we should be
20	doing here. And so that's just I think something else
21	to think about.
22	DR. KRESS: I think you're wise to think
23	about this thing carefully, because I can see the
24	potential for real criticism from certain groups. I
25	think this would be one issue that they really would

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	373
1	latch onto, if it's not done property and with good
2	justification.
3	CHAIRMAN SHACK: Do the bystanders have
4	any comments they'd like to make?
5	MR. BUTLER: John Butler, NEI.
6	It was a very interesting day, and I too
7	enjoyed this afternoon's discussion.
8	As far as the morning's discussion, we're
9	very interested in the process, obviously, and are
10	looking for ways to in part short circuit some of the
11	issues that we're dealing with here to utilize the
12	option 3 thinking in addressing GSI 191 sump
13	performance. So I imagine that this Committee will be
14	involved in some of those discussions.
15	And I know that we're going to participate
16	in a Subcommittee meeting in June on sump performance,
17	but I would hope that there's an earlier opportunity
18	to make some progress and we can speak with you, we'll
19	take advantage of that.
20	CHAIRMAN SHACK: Well, I think with that,
21	it's time to adjourned. Thank you very much.
22	(Whereupon, at 5:57 p.m. the meeting was
23	adjourned.)
24	
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433