Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Reactor Fuels Subcommittee
Docket Number:	(not provided)
Location:	Rockville, Maryland
Date:	Thursday, December 16, 2004

Work Order No.: NRC-142

Pages 1-36

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

1
UNITED STATES OF AMERICA
NUCLEAR REGULATORY COMMISSION
+ + + +
ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
(ACRS)
REACTOR FUELS SUBCOMMITTEE
+ + + +
THURSDAY, DECEMBER 16, 2004
+ + + + +
The Subcommittee met at the Nuclear Regulatory
Commission, Two White Flint North, Room T2B3, 11545
Rockville Pike, at 8:30 a.m., Dr. Dana A. Powers,
Chairman, presiding.
COMMITTEE MEMBERS:
DANA A. POWERS Chairman
MICHAEL T. RYAN ACNW Chairman
MARIO V. BONACA Member
ALLEN G. CROFF ACNW Member
RICHARD S. DENNING Member
F. PETER FORD Member
STEPHEN L. ROSEN Member
VICTOR H. RANSOM Member
JOHN B. SIEBER Member
GRAHAM B. WALLIS Member
RUTH WEINER ACNW Member

		2
1	ACRS STAFF PRESENT:	
2	MAGGALEAN WESTON	
3		
4	ALSO PRESENT:	
5	DAVID BROWN	
6	STU MAGRUDER	
7	REX WESCOTT	
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

1 I-N-D-E-X 2 Fag 3 Introductory Remarks - Dana Powers, ACRS 4 Technical Presentations 5 Upper Subcritical Limit for MOX Powders 6 David Brown, NMSS 7 Subcommittee Discussion - Dana Powers, ACRS 8 1 9 Intervention 10 Intervention 11 Intervention 12 Intervention 13 Intervention 14 Intervention 15 Intervention 16 Intervention 17 Intervention 18 Intervention 19 Intervention 10 Intervention 11 Intervention 12 Intervention 13 Intervention 14 Intervention 15 Intervention 16 Intervention 17 Intervention 18 Intervention 19 Intervention 10 Intervention			3
2 Introductory Remarks - Dana Powers, ACRS 4 Technical Presentations 5 Upper Subcritical Limit for MOX Powders 6 David Brown, NMSS 7 Subcommittee Discussion - Dana Powers, ACRS 8 9 9 10 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1	1	I-N-D-E-X	
3 Introductory Remarks - Dana Powers, ACRS 4 Technical Presentations 5 Upper Subcritical Limit for MOX Powders 6 David Brown, NMSS 7 Subcommittee Discussion - Dana Powers, ACRS 8 9 10 11 12 13 14 15 15 16 17 18 19 20 21 22 23 Upper Subcritical Limit for MOX Powders	2		Page
4 Technical Presentations 5 Upper Subcritical Limit for MOX Powders 6 David Brown, NMSS 7 Subcommittee Discussion - Dana Powers, ACRS 8 9 9 10 11 12 12 13 14 15 15 16 17 18 19 19 20 11 21 22 23 14	3	Introductory Remarks - Dana Powers, ACRS	
5 Upper Subcritical Limit for MOX Powders 6 David Brown, NMSS 7 Subcommittee Discussion - Dana Powers, ACRS 8 9 9 9 10 11 12 11 13 11 14 11 15 11 16 11 17 11 18 11 19 11 10 11 11 11 12 11 13 11 14 11 15 11 16 11 17 11 18 11 19 11 10 11 11 11 12 11 13 11 14 11 15 11 16 11 17 11 18 11 19 11 12 11 13 </td <td>4</td> <td>Technical Presentations</td> <td></td>	4	Technical Presentations	
6 David Brown, NMSS 7 Subcommittee Discussion - Dana Powers, ACRS 8	5	Upper Subcritical Limit for MOX Powders	
7 Subcommittee Discussion - Dana Powers, ACRS 8 9 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 2 23 1	6	David Brown, NMSS	
8 9 9 9 10 9 11 9 12 9 13 9 14 9 15 9 16 9 17 9 18 9 19 9 20 9 21 9 22 9 23 9	7	Subcommittee Discussion - Dana Powers, ACRS	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	8		
10 11 12 13 14 15 16 17 18 19 20 21 22 23	9		
11 12 13 14 15 16 17 18 19 20 21 22 23	10		
12 13 14 15 16 17 18 19 20 21 22 23	11		
13 14 15 16 17 18 19 20 21 22 23	12		
14 15 16 17 18 19 20 21 22 23	13		
15 16 17 18 19 20 21 22 23	14		
16 17 18 19 20 21 22 23	15		
17 18 19 20 21 22 23	16		
18 19 20 21 22 23	17		
19 20 21 22 23	18		
20 21 22 23	19		
21 22 23	20		
22 23	21		
23	22		
	23		
24	24		
25	25		

	4
1	M-O-R-N-I-N-G S-E-S-S-I-O-N
2	8:31 a.m.
3	CHAIRMAN POWERS: Let's come into session.
4	This is the second day of the Subcommittee meeting for
5	the Subcommittee on Reactor Fuels and we're, of
6	course, discussing the proposed MOX Fuel Fabrication
7	Facility. We have on our agenda a discussion of open
8	items related to Criticality Safety. Unfortunately,
9	our speaker has come down with bronchitis. It seems
10	unlikely that he will be able to review this material
11	with us.
12	He had been kind enough to provide us his
13	view graphs. An examination of those view graphs
14	shows that they are sufficiently arcane that they are
15	not easily gone through. So what I'm going to ask is
16	if Dave Brown will give us first of all just acquaint
17	us with what the criticality issues were at our
18	previous meeting, what the status is now and not
19	attempt to go through all the technical details. We
20	will chase that down at another time and move on with
21	our own business. So, Dave, tell us what you can and
22	don't lead us astray. Okay?
23	MR. BROWN: We'll try not to lead you
24	astray. What I'll do is try to just summarize as you
25	say where we were last time, where we are now. On the

(202) 234-4433

	5
1	second slide of this presentation, what the areas of
2	applicability are (AOA) are areas where the design
3	applications are distinctly different. In other
4	words, in one area of applicability we have design
5	applications in the MOX plant with plutonium nitrate
6	solutions and then another area where we may have
7	plutonium dioxide powder handling. A third would be
8	mixed oxide (MO) powder handling and so on all the way
9	up to fuel assembling handling. So the computer codes
10	that are used to model those situations are verified
11	and validated within those areas of applicability.
12	One of the important components of that
13	is, of course, what is the set of available benchmark
14	experiments that can support that kind of validation.
15	As of last year, we still had open items on two of
16	those areas of applicability for plutonium powders and
17	for MOX powders. We did close both of those items as
18	I've indicated here on the third slide. We determined
19	for mixed oxide powders that there were only
20	sufficient benchmark experiments to support the use of
21	a subcritical limit with an additional one percent
22	non-parametric margin. I mentioned that briefly
23	yesterday. That's AOA(4).
24	MEMBER RYAN: Why do you use the word
25	"non-parametric"? Why don't you just say "margin"?

(202) 234-4433

(202) 234-4433

	б
1	What does that mean?
2	MR. BROWN: Well, the parametric and non-
3	parametric refers to the distribution of results
4	whether nominally distributed or not. I'm at the
5	limits of my understanding of that concept, but that's
6	fundamentally where the word comes from.
7	CHAIRMAN POWERS: Basically, you assume a
8	distribution for the parametric cases and for the non-
9	parametric, you don't assume a distribution. Isn't
10	that correct?
11	MR. BROWN: Well, I think set as I
12	understand it, and again at this point, I'm going to
13	say I'm almost speculating, that the set is tested for
14	whether there is a normal distribution. Failing that
15	test, then a non-parametric margin is applied.
16	CHAIRMAN POWERS: That's right.
17	MR. BROWN: Okay. The method that we're
18	applying here, all of these tests and the methodology,
19	is in a technical report, the NUREG/CR-6698 and those
20	are the methods that were applied in order to
21	determine what margins are appropriate. This slide
22	five, the summary there is that there were 49
23	applicable benchmark experiments to support the
24	validation and so that there was no additional non-
25	parametric margin applied to the k-effective limit

(202) 234-4433

	7
1	there. But it was, again going into more detail,
2	slide six, for the reasons stated, there is additional
3	margin applied to AOA(4).
4	I will not attempt to go through slides
5	seven and eight. I think there is some additional
6	explanation of what was done to support our conclusion
7	with regard to $AOA(3)$ and (4) .
8	MEMBER WALLIS: Well, seven looks pretty
9	fantastic. I don't think we need to go into it.
10	MR. BROWN: Okay. Do you have a question?
11	MEMBER WALLIS: No, I'm just intrigued
12	with the spikes.
13	MR. MAGRUDER: Dave, let me jump in. This
14	is Stu Magruder from the Staff here.
15	MR. BROWN: Yes.
16	MR. MAGRUDER: I just wanted to say that
17	if there are some technical questions we'd be happy to
18	take them down and provide you a written response to
19	the questions. We've already said we apologize that
20	Chris is not able to sit in today. We'll be happy to
21	do that.
22	CHAIRMAN POWERS: Stu, what our plans are
23	is first of all I'm going to ask Jack Sieber to take
24	the lead on this particular area. We do have a
25	consultant looking at the area. Once we've gotten

(202) 234-4433

	8
1	that information and Jack's had a chance to look at
2	all the stuff, we will look at where we stand on that
3	and either provide you some questions that we think
4	can be answered in a phone call or in writing.
5	MR. BROWN: Okay.
6	CHAIRMAN POWERS: Or we have an
7	opportunity perhaps to get together immediately toward
8	the end of January for it, I'm sure. It depends on
9	how many other questions emerge. As I explained
10	yesterday, the members have had limited time to review
11	all this material. Many of them have seen the
12	material before, but we're really pulling it all
13	together now. So if enough questions emerge, we may
14	try to get together prior to the February meeting of
15	the ACRS if we think things need to be clarified.
16	MR. BROWN: Right.
17	CHAIRMAN POWERS: So there are a couple of
18	ways to recover from this. I don't think we're in
19	desperate shape yet and we'll just keep the lines of
20	communication open for what happens here.
21	MR. MAGRUDER: Okay. Good. Thank you.
22	MR. BROWN: I would like to bring your
23	attention to the last slide of that presentation. One
24	of the things we did in order to draw our conclusion
25	was to use a certain code, a module, of the SCALE 5

(202) 234-4433

1 code. We drew some of our conclusions based on the 2 use of that code. That code was not available to the applicant at the time we were using it. 3 We gave 4 ourselves some assurance that some of the assumptions 5 the applicant had made were correct. But we now feel 6 while that's okay, we would like to be sure that 7 applicant in this case has that as part of their 8 documented safety case on their side, in other words, 9 that they do use analyses to back up some of the 10 assumptions that they have made. So while we have drawn the conclusion in 11 12 the SER that it's okay to approve construction based on the Staff's evaluation, we're working with the 13 applicant at this point to see if they can include 14 of 15 these additional calculations and some 16 justifications in their safety case even before we 17 issue this final SER in February. While we had some 13 follow-on areas as we've described here, that 18 19 perhaps by February 2005 there would only be a few 20 areas where the applicant would still be working on some additional justifications or calculations to 21 22 support their assumptions. 23 MEMBER WALLIS: Do you still believe the 24 statement on page 602 "the criticality of safety is 25 based on skill of the craft independent, requires an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

9

	10
1	intuitive understanding of neutron physics."
2	MR. BROWN: I agreed that that is a
3	component of certainly an expert criticality of
4	safety.
5	MEMBER WALLIS: There must be something
6	more than that. There must be something better.
7	MR. BROWN: It is that and much more.
8	MEMBER WALLIS: It must be rules. Right.
9	MR. BROWN: I agree. I would like to go
10	back to your question about the nexus between fire
11	safety and criticality safety if this is an
12	appropriate time to do that. Rex Wescott has agreed
13	to come back and maybe go through that a little bit
14	with us. Is that okay?
15	CHAIRMAN POWERS: That's fine. Let me
16	just cover a couple of things in criticality safety.
17	MR. BROWN: Okay.
18	CHAIRMAN POWERS: Now my understanding is
19	that the applicant will continue to, is committed to
20	follow the double contingency principle.
21	MR. BROWN: Yes, a requirement.
22	CHAIRMAN POWERS: Okay. Any other
23	questions particularly on criticality safety to the
24	extent that we can go through it here? I think we
25	have a strategy on criticality safety. Now let's go

(202) 234-4433

	11
1	to the cross issue of fire protection and criticality
2	safety and particularly the issue of water moderation.
3	MR. BROWN: Okay. Rex.
4	MR. WESCOTT: Good morning. I don't
5	completely understand the question at this point. I
6	would be happy to give you a couple quick words about
7	fire protection at the MOX plant. Of course, the
8	fires protection as reviewed by NRC is primarily for
9	the purpose of meeting the performance requirements of
10	Part 70.
11	At the same time, we have an MOU with
12	OSHA. So we're also interested in the worker safety
13	aspects of fire protection, in other words, making
14	sure that escape routes are proper, that it meets the
15	life safety code and that type of thing. But our main
16	emphasis is on meeting the performance requirements in
17	regard to releases of radioactivity and chemicals that
18	are regulated under 70.61.
19	The plant is basically designed so that
20	suppression is really a defense-in-depth aspect. I
21	think almost all the fire areas, fire is designed that
22	the fire would be contained in these areas through a
23	mixture of combustible loading controls and the design
24	of the fire barrier itself meeting at least a two-hour
25	fire barrier, in some places possibly even more as far

(202) 234-4433

	12
1	as the actual fire resistance rating is concerned.
2	What that basically means is that if there
3	was a fire in there and the suppression system failed
4	the fire would still not result in a release that was
5	exceeding the performance requirements. You might
6	have a lot of property damage. You might hold your
7	mission up for a number of months, but you'd basically
8	still be within your safety limits. I'm not sure if
9	I'm answering your concerns.
10	CHAIRMAN POWERS: The question really is
11	then where you've selected to use clean-agent fire
12	suppressants. The question is are they going to put
13	the fire out.
14	MR. WESCOTT: Well, there's not a 100
15	percent certainty anymore than there is with a
16	sprinkler system. Of course, as a fire protection
17	engineer, I'd probably prefer water, but a case where
18	if these are moderation control areas, we keep water
19	out of them because of criticality controls. So we
20	went to gaseous suppression which we feel has a
21	significantly high enough reliability to work.
22	Like I said, if it's doesn't work, these
23	are what we call defense-in-depth fire routes. In
24	other words, they're not really accounted for in
25	making the determination the performance requirements

(202) 234-4433

	13
1	will be held. The performance requirements according
2	to the design will be met without the operation of the
3	suppression systems.
4	MEMBER WALLIS: Now you said that there
5	might be significant damage, but no releases.
6	MR. WESCOTT: That's correct.
7	MEMBER WALLIS: But then there's a
8	question of what do you do with this plant which is
9	significantly damaged and has all these various
10	reactants and things which were going to be reacting
11	and now they are presumably in vessels which have some
12	damage around them. What do you do now? Are you
13	going to restart the plant? Are you going to
14	fossilize it or build a mausoleum or something?
15	MR. WESCOTT: Well, really for the most
16	part except where there may be a safety aspect, that's
17	kind of a DOE concern as to how they're going to
18	protect their property and get back in operation as
19	soon as possible.
20	MEMBER WALLIS: That's not your concern.
21	MR. WESCOTT: Well, as a citizen, it's
22	certainly my concern. As an NRC fire protection
23	engineer, it's kind of outside my authority.
24	MEMBER WALLIS: Well, if the fire's out
25	and there's no release, then your responsibility

(202) 234-4433

	14
1	stops.
2	MR. WESCOTT: Well
3	CHAIRMAN POWERS: Pretty much.
4	MR. WESCOTT: Yes.
5	CHAIRMAN POWERS: I think that's the
6	answer.
7	MR. WESCOTT: Yes, that's the answer. As
8	bad as it may sound, that's the answer. Yes.
9	CHAIRMAN POWERS: Let's come back to the
10	clean agents just a second. I mean we've, Steve and
11	I, have both looked at the San Onofre fire. I think
12	that's the most recent example over and over and over
13	again in which I think they discharged every ${ m CO}_2$
14	extinguisher they had on the site and all they
15	succeeded in doing was creating a char layer that
16	assured that there was lots of fire and as soon as
17	they opened up the cabinets again, the fire came back
18	on and eventually, what is it, 16 feet up we still had
19	cables being fried and things like that.
20	MR. WESCOTT: Well, all I can say to that
21	is I think cable insulation is a special case. You're
22	probably much more likely to get a deep-seated fire,
23	I think. Unfortunately Sharon's not here who was a
24	reviewing fire protection engineer, but I think in a
25	lot of the areas where you have glove boxes and so on.

(202) 234-4433

	15
1	Probably the combustible you might be most concerned
2	with is PMMA which is in there for shielding.
3	MEMBER RYAN: What's that?
4	MR. WESCOTT: PMMA.
5	MEMBER RYAN: Yes.
6	MR. WESCOTT: Polymerthiculate or
7	whatever.
8	CHAIRMAN POWERS: Plastic.
9	Polymethylmethacrylate.
10	MR.WESCOTT: It looks like polycarbonate.
11	MEMBER RYAN: Okay.
12	MR. WESCOTT: And that's not very
13	combustible. It's a combustible but you really have
14	to work to get that to go. I don't think just
15	proximity to the PMMA is going to do it, but the PMMA
16	does burn. It burns quite rapidly. It burns quite
17	hot. I think that's going to be the major problem.
18	But still, it's more like a pool fire, more like a
19	hydrocarbon fire. It's not going to give you the
20	deep-seated fire. I mean I would expect the gaseous
21	suppression to deal quite well with the PMMA.
22	MEMBER RYAN: Could I come back to the
23	point you made about there not being a release?
24	MR. WESCOTT: Right.
25	MEMBER RYAN: Would you expand on that?

(202) 234-4433

	16
1	MR. WESCOTT: Well, it's designed, there
2	are a number of factors. First of all like I said, we
3	don't expect the fire to get out of the compartments
4	in regard to the HEPA filter protection. That's
5	basically protection through dilution.
6	In other words, you have fires in a couple
7	fire areas. You can get temperatures up to 2,000
8	degrees Fahrenheit but still the amount of other flow
9	that comes from areas which are not fire protected is
10	enough to keep the temperature at the filters below
11	their ignition temperature or actually below their
12	damage temperature, I should say.
13	MEMBER RYAN: So even though one of the
14	ventilation streams coming from the glove box or the
15	area that's involved in the fire would be highly
16	contaminated.
17	MR. WESCOTT: Right.
18	MEMBER RYAN: And filled with smoke and
19	polymethylmethacrylate fumes or whatever the
20	decomposition products thereof are which I would guess
21	are hydrochloric acid and some other things, nice
22	things like that.
23	CHAIRMAN POWERS: No. Not much HCl.
24	MEMBER RYAN: But whatever, it's all going
25	into the HEPA filter system.

(202) 234-4433

17
MR. WESCOTT: Well, I want to be a little
bit careful because they have the option. I think
they are putting manually controlled dampers on the
glove boxes right now. So they're going to have
probably the option of shutting off the exhaust or
leaving it on. So what they do with a glove box is
probably I don't think decided yet. I think they are
going to work that out as they get farther in the
design as to how they're going to handle it for a
particular fire.
MEMBER RYAN: Well, the question though
getting to a manual damper would be interesting if
that area was involved in the fire.
MR. WESCOTT: Right.
MEMBER RYAN: You wouldn't be able to get
at the damper probably.
MR. WESCOTT: Well, I assume these are
going to be remote controlled.
MEMBER RYAN: I thought you said "manual
dampers."
MR. WESCOTT: Well, by an automatic
damper, I mean one that's going to be temperature
controlled. In other words, when the room temperature
reaches a certain amount, the damper is going to
close. When I say "manual," I mean somebody someplace

(202) 234-4433

	18
1	is going to have control of it whether it be in the
2	control room or whether it be in an area that's maybe
3	closer than the control room. But it's not just going
4	to go shut and stay shut.
5	MEMBER RYAN: I think the central piece of
6	your argument is that deep-seated fire is not likely.
7	MR. WESCOTT: Yes.
8	MEMBER RYAN: Because a deep-seated fire,
9	you really do have to cool it off before you let
10	oxygen back in. Otherwise what we found is the same
11	intervention at San Onofre, you can have a reflash.
12	But even more disturbing is some recent evidence that
13	if you leave a deep-seated fire in place in a closed
14	area where there are lots of cable insulation and
15	other things, you can create a detonable mixture. You
16	can have detonation not just deflagration when you
17	reenter when you let oxygen back in.
18	This is a real concern in terms of being
19	able bound the extent of the subsequent fire and
20	causality. My view of this is that I understand that
21	there's a tension here between criticality safety and
22	fire but that more could be done other than simply
23	saying we're going to let criticality safety be
24	predominant. For example, one could say, "Yes,
25	criticality safety is predominant and we're not going

(202) 234-4433

	19
1	to put water in this thing, but we'll have a way of
2	getting water to this area, a dry pipe or something
3	like that, that firefighters could later on say, "We
4	have simply to get this fire out, cool it off" and
5	there's not enough inventory in there to go critical.
6	We know that now. So they could make some judgments.
7	MR. WESCOTT: To the best of my
8	understanding, that is the case. There will be stand
9	pipes. There will be, I think, the crew would be
10	equipped with hoses, the fire brigade, and I think one
11	and a half inch hoses with spray nozzles. It's my
12	understanding that they won't use solid-stream nozzles
13	in the plant.
14	Of course, that's another criticality
15	concern. You don't want to upset geometry controls on
16	materials anymore than you want to add a moderator.
17	But it's my understanding that they, the fire brigade,
18	will be able to put water on areas and they will be
19	able to do it with spray nozzles. I think that
20	concern would be handled by the fire brigade.
21	But you're absolutely right as far as the
22	gases. I think what you're referring to is something
23	that is called a "back draft condition" when you have
24	gases that are heated above their ignition
25	temperature, but you're also above the upper flammable

(202) 234-4433

(202) 234-4433

	20
1	limit as far as concentration goes. Then you add air
2	and of course, it's able to combust your detonator or
3	deflagrator or whatever the situation is with it.
4	MEMBER RYAN: Yes.
5	MR. WESCOTT: But that's certainly a
6	concern. Those types of things based on materials are
7	the kinds of things we try to work with the pre-fire
8	plans. That's usually done right before operation as
9	opposed to back at this stage. You look at the
10	materials in your room and -
11	MEMBER RYAN: But I agree. The pre-fire
12	plan is very important, but you have to have the
13	connections and the limited amount of hardware there.
14	It's not just the question of taking the hose up.
15	It's the question of having a place where you can
16	perhaps screw in a hose, they could quick connect and
17	spray through the dry action sprinklers or deliver
18	water to an area that's remote from another area.
19	That kind of thinking needs to be done up front in my
20	view even in areas where moderation control is
21	important.
22	MR. WESCOTT: Yes, to my knowledge I don't
23	believe there's any dry system or something that could
24	be activated remotely. Again, that's more of a detail
25	question for Sharon.

(202) 234-4433

	21
1	MEMBER RYAN: That's an ISA question you
2	would say?
3	MR. WESCOTT: Well
4	MR. BROWN: I don't think so. One of the
5	things that Rex pointed out and I just want to
6	reemphasize is when we're looking at the fire barriers
7	in this facility which are two-hour and three-hour
8	fire barriers what DCS did is looked at what is the
9	combustible load in the room that would challenge that
10	fire barrier. So while they certainly have provided
11	for putting the fire out with fire suppression, the
12	barriers are designed to withstand the full
13	combustible load.
14	MEMBER RYAN: I'm not questioning the
15	integrity of the barriers.
16	MR. WESCOTT: Right.
17	MR. BROWN: But I think you are
18	questioning whether they're going to be able to
19	suppress this fire and what we're saying is that the
20	confinement and containment of that fire will be
21	sufficient to provide for safety. The HEPA filters
22	will withstand the full soot load and the high
23	temperature to the completion of that fire. No doubt
24	that will be a tremendous problem for DCS in terms of
25	operations, but our focus is on material confinement

(202) 234-4433

	22
1	and they've shown that they can do that.
2	MR. WESCOTT: Yes, one thing I would like
3	to say to backtrack a little bit to Dr. Rosen's
4	concern is I think the possibility of explosion in a
5	room because of the deep-seated fire and build up of
6	gases is certainly a great danger to the personnel
7	particularly that firefighting personnel that might go
8	in there later. But in regard to actual danger to the
9	plant, I guess it would have to be looked at, but
10	these are walls of substantial construction,
11	reinforced concrete and so on and I would tend to
12	expect that unless you really had a tremendous
13	detonation of some type in there, one that normally
14	doesn't occur just from overheated gases and so on,
15	that it should be a problem to plant safety.
16	MEMBER RYAN: My concern is that the
17	detonation that occurs that it damages the ventilation
18	system as well. It's not a concern -
19	MR. WESCOTT: Pressure wave up this.
20	MEMBER RYAN: Yes, not for the walls
21	themselves necessarily.
22	MR. WESCOTT: Yes. I don't believe that
23	was ever to my knowledge a design-basis sequence in
24	that.
25	MEMBER RYAN: Well, it may be. One of our

(202) 234-4433

	23
1	jobs is to try to probe into areas where that may be
2	ought to be design-basis.
3	MR. WESCOTT: It might be a question for
4	DCS.
5	MR. BROWN: And certainly the filter
6	assembly are designed to 10 inches of over-pressure.
7	I don't know if this would be a fast over-pressure.
8	MEMBER RYAN: We're not talking about
9	entrance of over-pressure.
10	MR. BROWN: Keeping in mind if this would
11	come from one area and there are 350 fire areas in the
12	plant, this would be going into a common manifold
13	prior to hitting any final filters. A lot of effects
14	of what's happening in the one fire area, over-
15	pressure, soot loading, temperature, are mitigated
16	before they reach the final assemblies.
17	MR. WESCOTT: Right. If you have a
18	deflagration, basically you're going to get an
19	increase in pressure probably four or five times over
20	atmospheric and when you look at that as just one area
21	as compared to hundreds of areas that are all feeding
22	into the system, it probably would, I would suspect,
23	only increase the pressure in the filter by a very
24	small amount.
25	MEMBER WALLIS: Can I ask you about these

(202) 234-4433

	24
1	plastic and PMMA, polymethylmethacrylate, it's
2	plexiglass essentially?
3	MR. WESCOTT: Right. Plexiglass.
4	MEMBER WALLIS: On page 6023, there's some
5	mention of polystyrene. I can't imagine why it's
6	there, but there is some mention of polystyrene, too.
7	MR.WESCOTT: That would be a combustible,
8	too.
9	MEMBER WALLIS: That would be a
10	combustible. Not only they burn, but when they get
11	hot enough, they soften and they flow.
12	MR. WESCOTT: That's correct.
13	MEMBER WALLIS: So they flow around some,
14	they are pretty good moderators, too. They flow
15	around some plutonium and then you have to worry about
16	criticality induced by the flow of the plastic
17	creating a reflector or moderator and so on. I assume
18	this is all considered, but it's not just a question
19	of the burning of these plastics. It's the changing
20	of their geometry in some way.
21	MR. WESCOTT: No. I don't know if that's
22	been considered or not.
23	MEMBER WALLIS: Well, it must have been
24	surely.
25	MR. BROWN: Generally, especially if it's

	25
1	geometrically-safe equipment, there was an assumption
2	of full reflection provided by a hypothetical water
3	jacket or something. So that would encompass this
4	possibility.
5	MEMBER WALLIS: So that's an assumption
6	then.
7	MR. BROWN: As part of, right, the safe
8	design of the equipment for geometry.
9	MR. WESCOTT: And of course, once again
10	you have to assume the failure in the suppression
11	system to get to that state. Because as soon as it
12	start flaming your suppression system, it's expected
13	to go off and should stop the fire right there.
14	CHAIRMAN POWERS: Any other questions on
15	this subject? Let me ask you one question, a little
16	general philosophical question on the design of this
17	system. Actually, I have two philosophical design
18	questions. It seems to me that we have set a classic
19	nested design here and then the flow comes through a
20	single HVAC system. Is that correct?
21	MR. BROWN: The areas where there are
22	dispersible material is what we call "the C4 area."
23	It's the innermost of this tertiary confinement
24	system.
25	CHAIRMAN POWERS: Right.

(202) 234-4433

	26
1	MR. BROWN: That goes through one set of
2	online HEPA filters essentially in one housing.
3	That's right. Upon failure of a glove box though,
4	beyond the state of design-basis breach, the secondary
5	confinement system is what we call C3 which covers all
6	of the process rooms where there are glove boxes.
7	That's a much larger set of filters. I think more
8	than 150 HEPA filters that support that area and
9	several blowers and that sort of thing.
10	Then beyond that is the C2 confinement
11	system which covers the hallways and corridors and
12	accessible spaces around process rooms. That's where
13	we get and of course, that is HEPA filtered at the
14	outlet as well.
15	MEMBER WALLIS: This is the way that the
16	plant was designed I think that we visited in France.
17	They gave us a presentation that talked a lot about
18	this tertiary confinement. I assume this is the same
19	thing because it's called the same.
20	MR. BROWN: It is the same philosophy. Cl
21	of course is spaces that can be open to the outdoors
22	like truck base just to finish that up.
23	CHAIRMAN POWERS: That's good. Let me
24	come back also to this question of for some reason the
25	process systems particularly the centering furnaces

(202) 234-4433

	27
1	and the aqueous polishing lines have to be promptly
2	stopped and we can argue what "promptly" means or
3	discuss what "promptly" means, but immediately and
4	that stoppage is for weeks. Have we looked at the
5	consequences of that?
6	MR. BROWN: Certainly some of the design
7	basis we talked about yesterday were to address that
8	very situation. For red oil phenomena and for the
9	HAN/hydrazine phenomena, some of the safety functions
10	of the safety controllers is to monitor the duration
11	of that stoppage if you will or it's actually to
12	monitor the total contact time during normal
13	operations and during any stoppages.
14	For example for the solvent to ensure that
15	there's no build-up of degradation products that could
16	lead to the red oil explosion or to flammable
17	offgases, for the HAN prevention, the Department of
18	Energy's experience has been just that, that they left
19	the facility in an improperly deactivated state that
20	should have been taken to a full complete safe
21	condition. So we have in the case of the HAN
22	explosion a commitment from DCS that they will not
23	leave solutions of hydroxylamine nitrate and hydrazine
24	for long periods of time.
25	As a practical matter, you could ask,

(202) 234-4433

	28
1	"What then would they do?" They do have provisions at
2	the tailend of that part of the process for an
3	oxidation column. They have an oxidation column which
4	serves the purpose of destroying hydroxylamine nitrate
5	and hydrazine. So what I could further speculate that
6	safe shutdown of this plant would probably mean at
7	least taking the process that far which is to ensure
8	the solvent is clean and to ensure that any residual
9	hydroxylamine nitrate and hydrazine has been
10	destroyed. I'm going beyond what we know for the
11	construction approval speculating on how the plant
12	could be brought to a safe shutdown.
13	CHAIRMAN POWERS: Dave, you'll be coming
14	in, though the point is that in your examination there
15	is nothing inherent in the design that's inamicable
16	for that kind of operating philosophy.
17	MR. BROWN: There's nothing I'm aware of
18	that prevents this plant from being brought to a safe
19	shutdown almost automatically.
20	CHAIRMAN POWERS: Okay.
21	MEMBER WALLIS: And staying safe.
22	MR. BROWN: I'm sorry?
23	MEMBER WALLIS: And staying safe.
24	MR. BROWN: And staying safe. Right.
25	MEMBER WALLIS: For a period of weeks.

(202) 234-4433

	29
1	MR. BROWN: Correct.
2	MEMBER DENNING: Dana?
3	CHAIRMAN POWERS: Yes sir.
4	MEMBER DENNING: Could we pursue this
5	emergency planning part and I wasn't thinking so much
6	offsite questions. But it wasn't obvious to me
7	yesterday and I don't know that much about how
8	chemical plants are handled. Are there advanced plans
9	for what happens if you get into some of sort of off-
10	normal condition? How do you bring the plant to a
11	safe, stable condition and are there operators that
12	are trained in the use of these procedures and they
13	know just what to do and this kind of stuff?
14	MR. BROWN: I only hesitate because this
15	is going to sound very familiar. The emergency
16	planning, something that DCS is working on now, the
17	NRC has not received yet. They have committed to
18	onsite emergency response capability and we know that
19	the plan has certain features that are consistent with
20	good planning for emergency response like the
21	provision for safe havens for workers to escape to
22	that have separate ventilation systems that include
23	chemical hazard removal cartridges, that sort of thing
24	to provide a habitable safe place for workers to be.
25	The details of which operators during

(202) 234-4433

	30
1	which situations will be required to go to the
2	emergency control room for example to monitor the
3	plant's automatic safe shutdown, we don't know at this
4	point. They certainly are going to provide for that
5	and some of that were it to be an emergency that DCS
б	were to require offsite assistance, they are making
7	those arrangements as well.
8	I know that they are working on an annex
9	to the site-wide emergency plan that would allow for
10	DCS to call for support from the onsite fire response
11	organizations from the Savannah River security forces
12	if they need it, that sort of thing. But I think
13	getting back to your question, the details of who will
14	do what when, we don't have at this point. That's
15	something we would expect with the license
16	application.
17	CHAIRMAN POWERS: Now I want to
18	MEMBER RYAN: Could I just follow up one
19	second?
20	CHAIRMAN POWERS: Please.
21	MEMBER RYAN: I'm reminded of the picture
22	we were shown yesterday of the nitrogen tetroxide
23	cloud and thinking about egress routes for operators.
24	We just went through on the reactor side quite a lot
25	of discussion about credit for operator manual actions

(202) 234-4433

	31
1	post fire and the Commission is now considering
2	certain proposals in that regard. In part of that
3	discussion, there was a lot of talking about how
4	operators would get from where they were to where they
5	needed to be to take these manual actions including
6	discussions of formulation of time lines, how long it
7	would take and therefore how they would go from point
8	A to point B.
9	Is that kind of analysis and thinking that
10	you're suggesting to us will be done at the time that
11	the emergency plans and pre-fire plans are available?
12	Are you actually thinking about making those kinds of
13	analyses to show that an operator given a given
14	circumstance in a position can make an egress through
15	an area perhaps with nitrogen tetroxide atmosphere at
16	some concentration into the safe haven?
17	MR. BROWN: Sure. Our evaluation again
18	with the license application would be to evaluate
19	their onsite emergency response. What are they going
20	to be capable of doing? Then that was certainly
21	included with what I'll call these "time-motion
22	studies."
23	If someone is way over here and there are
24	several security barriers and closed doors and other
25	features, are they really going to be able to make it

(202) 234-4433

(202) 234-4433

	32
1	to a safe haven? For example, again to speculate, if
2	there were only one safe haven on one side of the
3	plant, I think it would be reasonable to be concerned
4	that perhaps not everybody could get there.
5	MEMBER RYAN: Well, it's a five level
6	plant, right, or six levels?
7	MR. BROWN: Several levels, right.
8	MEMBER RYAN: So it's not just one
9	dimension.
10	MR. BROWN: That's true. That's right.
11	I think there are perhaps in the aqueous polishing
12	process. I think there are only three with some
13	mezzanine levels in the powder process. But
14	nonetheless, you possibly do have to go down and then
15	out to get into one of these areas. We'll have to
16	evaluate whether that's
17	MEMBER RYAN: I would remind you that the
18	Agency has a regulatory guide that was created in the
19	discussion of credit for manual actions in reactors
20	post fire.
21	MR. BROWN: Okay.
22	MEMBER RYAN: That lays out how to do this
23	analysis and the fact that you need to consider stress
24	on the operators. Obviously, these people will be
25	concerned for their own life safety. The plant

(202) 234-4433

	33
1	itself. The conditions, lighting, etc. The degree of
2	proceduralization that they have. The degree of
3	training in those procedures. All those things are in
4	the reg guides. So I commend it to you for your
5	review.
6	MR. BROWN: Okay. That's something. Can
7	you tell me what reg guide that is?
8	MEMBER RYAN: Not offhand, but I'm sure
9	Marvin Sykes of our staff can tell you.
10	MR. BROWN: Okay. I certainly would want
11	to be aware of that while we're doing that review.
12	MEMBER RYAN: You have the number.
13	CHAIRMAN POWERS: Any questions? I mean
14	we're ranging far and wide. What I'd like to come
15	back to is the red oil and HAN issues I think just a
16	little bit. In the course of the presentations that
17	were made yesterday, they showed the various regions
18	where red oil excursions could occur. The question
19	that I really have is what magnitude of inventory
20	would be involved in those, not the inventory of the
21	red oil, but the inventory of radioactive material.
22	MR. BROWN: Well, let me start this way.
23	My understanding of the closed system which is the
24	system where I think we expressed we had the most
25	concern, that is a system that could not relieve the

(202) 234-4433

1 overpressures created by a red oil reaction, that's 2 the system that's closed is the acidic recovery 3 evaporator. This is an evaporator essentially at the 4 end of the process that treats the raffinate from the 5 PUREX process which has been stripped of uranium and plutonium and so it does contain residual amounts, 6 7 that aqueous phase that's being evaporated, of uranium 8 and plutonium, but not the full load that was at the 9 front end. Any solvent which would get into that part 10 of the process also during normal operations would have been unloaded, would have been stripped. 11 So it contains residual quantities. 12 What does that mean in terms of gross 13 14 quantities? I think it could mean anywhere from tens 15 to several hundreds of grams of plutonium just to 16 speculate as a worst case scenario, but not the 17 inventory of plutonium one would envision if, for example, I were to take dissolved plutonium nitrate 18 19 from the electrolyzer and dump it right into the 20 That would be a far off-normal condition. evaporator. However, one of the things that's kind of 21 22 different about the new Part 70, and I say different 23 from say the Department of Energy has done things in 24 the past for example, is we also have to provide

protection for the worker and with plutonium, it's

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

34

	35
1	something like one microgram that is sufficient to
2	exceed our performance requirements for the safety
3	assessment. So it doesn't really take much for the
4	residual level to create a safety concern, but
5	certainly the explosion does not involve the kinds of
6	quantities that we see elsewhere in the plant.
7	CHAIRMAN POWERS: And the same question
8	with respect to the HAN events. Are there any of them
9	that take place that can potentially take place in the
10	areas of high inventory?
11	MR. BROWN: Yes. Where the HAN explosion
12	that could occur is in areas where plutonium is being
13	stripped from the, what I think has been coined "the
14	pregnant organic phase" if you will.
15	CHAIRMAN POWERS: Yes.
16	MR. BROWN: So there could be significant
17	quantities of plutonium present in areas where there's
18	a HAN explosion risk.
19	CHAIRMAN POWERS: Good. I just wanted to
20	get it on the record. Okay. Any other questions?
21	Thank you very much and we will try to repay on the
22	criticality once we're better prepared and your
23	speaker is healthy.
24	MR. BROWN: Okay.
25	CHAIRMAN POWERS: And we can go off the

(202) 234-4433

	36
1	record at this point and move into our discussion
2	session.
3	MR. BROWN: Thank you.
4	CHAIRMAN POWERS: Thank you.
5	MEMBER: Before you run away, would this
6	be the right time to take a break?
7	CHAIRMAN POWERS: It probably would be.
8	Why don't we take a break until 9:30 a.m. Off the
9	record.
10	(Whereupon, the foregoing matter went off
11	the record at 9:14 a.m.)
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	