Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Joint Subcommittees: Materials and Metallurgy Thermal Hydraulic Phenomena Reliability and Probabilistic Risk	Safeguards Assessment
Docket Number:	(not applicable)	
Location:	Rockville, Maryland	
Date:	Wednesday, December 1, 2004	
Work Order No.:	NRC-114	Pages 1-137
	NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers	

1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	JOINT MEETING OF THE SUBCOMMITTEES ON
7	MATERIALS AND METALLURGY,
8	THERMAL-HYDRAULIC PHENOMENA,
9	RELIABILITY AND PROBABILISTIC RISK ASSESSMENT
10	+ + + +
11	WEDNESDAY,
12	DECEMBER 1, 2004
13	+ + + +
14	ROCKVILLE, MARYLAND
15	+ + + +
16	The Subcommittee met at the Nuclear
17	Regulatory Commission, Two White Flint North, Room
18	T2B3, 11545 Rockville Pike, at 8:30 a.m., Dr.
19	William J. Shack, Chairman, presiding.
20	
21	COMMITTEE MEMBERS:
22	WILLIAM J. SHACK, Chairman
23	RICHARD S. DENNING, Member
24	MARIO V. BONACA, Member
25	F. PETER FORD, Member

		2
1	COMMITTEE MEMBERS: (cont.)	
2	THOMAS S. KRESS, Member	
3	VICTOR H. RANSOM, Member	
4	STEPHEN L. ROSEN, Member	
5	JOHN D. SIEBER, Member	
6	GRAHAM B. WALLIS, Member	
7		
8	ACRS STAFF PRESENT:	
9	HOSSEIN NOURBAKHSH	
10	CAYATANO SANTOS	
11		
12	ALSO PRESENT:	
13	DAVID E. BESSETTE, RES	
14	MARK ERICKSONKIRK, RES	
15	ALLEN HISER, RES	
16	DONNIE WHITEHEAD, Sandia	
17		
18		
19		
20		
21		
22		
23		
24		
25		

	3
1	A-G-E-N-D-A
2	Opening Remarks, William Shack 4
3	Sensitivity Studies
4	Probabilistic Fracture Mechanics, Mark
5	EricksonKirk
6	External Events, Donnie Whitehead 74
7	Peer Review Comments and Resolution
8	David Bessette
9	Mark EricksonKirk
10	Adjourn, William Shack
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
1	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:30 a.m.
3	CHAIRMAN SHACK: The meeting will now come
4	to order. This is the second day of a two-day meeting
5	of the ACRS Joint Subcommittees on Materials and
6	Metallurgy, Thermal-Hydraulic Phenomena, and
7	Reliability and Probabilistic Risk Assessment.
8	I am William Shack, Chairman of this
9	meeting. Members in attendance are Mario Bonaca, Rich
10	Denning, Peter Ford, Tom Kress, Victor Ransom, Steve
11	Rosen, Jack Sieber, and Graham Wallis.
12	The purpose of this meeting is to discuss
13	the technical basis for potential revision of the PTS
14	screening criteria and the PTS rule 10 CFR 50.61. The
15	joint subcommittees will gather information, analyze
16	relevant issues and facts, and formulate proposed
17	positions and actions as appropriate for deliberation
18	by the full committee. Dr. Hossein Nourbakhsh is the
19	designated federal official for this meeting. Also
20	Mr. Tanny Santos, ACRS staff, is in attendance to
21	provide technical support.
22	The rules for participation in today's
23	meeting have been announced as part of the notice of
24	this meeting previously published in the Federal
25	Register on November 2, 2004. A transcript of the

(202) 234-4433

ĺ	5
1	meeting is being kept and will be made available as
2	stated in the Federal Register Notice. It is
3	requested that speakers first identify themselves and
4	speak with sufficient clarity and volume so they can
5	be readily heard.
6	We have received no written comments or
7	request for time to make oral statements for members
8	of the public regarding today's meeting. We will now
9	proceed with the meeting and Mario Bonaca would like
10	to make a couple of comments before he has to leave
11	today.
12	DR. BONACA: The reason that I ask is that
13	I'm going to leave before 10:00. Yesterday I raised
14	those issues about the differences between different
15	PWRs, etc. You already heard those. It's more a
16	question of inter-run documentation to address some if
17	there are, and I believe there are.
18	The other issue was, and my memory came
19	back so I have to bring it up now, in your slide where
20	you talk about the main stream line break difference
21	on previous analysis and the current technical basis
22	for Oconee and Robinson you said main stream line
23	break was most important because LOCAs were not
24	modeled. Well, I mean, they were not stupid. The
25	people that did not model the LOCA was because they

(202) 234-4433

	6
1	did not lead to repressurization. That was the issue.
2	The issue of major concern that I remember
3	clearly now was, and I think is important for the
4	record in the documents so that there is a historical
5	understanding of why it was raised and why it was what
6	it is. The concern was for the B&W plant you have
7	very fast cool down.
8	You have a very high set point for the
9	high pressure injection. Typically they are
10	set at 1700 psi. I think Oconee is there. And they
11	are high-capacity pumps. They pump in a lot of cold
12	water and you have an extremely rapid cool down and
13	then you have repressurization. Remember that we're
14	using curves where you repressurize the 2500 psi which
15	was safest.
16	Now, why were they allowed to do that?
17	They gave no credit for operator action because this
18	was 1980. TMI had just happened and there were no
19	symptom-oriented procedures. The instruction to the
20	operator was you have a locker. Use safety injection.
21	There was a sense that maybe the operator could not
22	understand if he was in a steam line break scenario at
23	the beginning.
24	He would let the pumps run. There was a
25	high likelihood for that. There was a scenario that

(202) 234-4433

was dominant because of the cool down and repressurization. I daresay that there are good reasons today to reevaluate this decision of letting the pump running but I think it has to be dealt with.

1

2

3

4

5 In the discussion that we had last year with Alan from SAIC I remember we talked about some 6 7 operator action and he, in fact, defended them very intensely. He reviewed the Oconee procedures, spoke 8 9 with the operators, interviewed the operators during steam line break simulations. He built a case for 10 11 saying that the scenario is still there but is not a 12 significant contributor anymore because, you know, the operators will take care of it. 13

14 They will prevent this going solid. And 15 so my point is simply that in the preparation of the report it's important that this historical perspective 16 I looked at the 17 be given because there was a reason. comments from Tom Murley and he's asking the same 18 19 question. "How come the transient is not there 20 There has to be a reason. The anymore?" 21 reason is not that they forgot to include the LOCAs. 22 that they concerned The reason is were about 23 pressurized thermal shock so the thermal cool down and 24 then the repressurization.

Now, in the LOCAs you don't have

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

7

1 repressurization but I guess you don't have to be 2 concerned about that. I don't know why it's going away, the concern with repressurization. 3 It's still 4 something that has to be said because the definition 5 of transients has really changed. That's pretty much 6 it. 7 MR. ERICKSONKIRK: I certainly agree and 8 appreciate the comment that we can do a better job of 9 documenting than what has been done before and your 10 comments are very helpful in that regard. I don't 11 think it's correct to say that we're no longer 12 concerned about repressurization. Certainly we find that repressurization transients on the primary side 13 14 are, if you'll forgive me for the use of a judgmental word, bad. 15 16 It's just that on the secondary side it 17 doesn't get cold enough to drop the material toughness enough for the repressurization to matter that much. 18 19 Certainly your first comments to do a better job about 20 documentation we need to follow up on. 21 DR. BONACA: The point I wanted to make is 22 that they didn't just forget about LOCAs existing 23 there. It was simply that they did not see it as a 24 severe combination of factors. You just go down on 25 the pressurization. In the LOCA you do not have any

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

8

	9
1	pressurization taking place.
2	MR. ERICKSONKIRK: Yes, certainly.
3	Judgements were made at the time regarding what was
4	believed to be important based on the knowledge that
5	they had and based on that knowledge they excluded
6	certain things that they didn't think would be large
7	contributors just as we've done today.
8	DR. BONACA: But I'm saying, again, there
9	is a logic for justification of the elimination of the
10	sequence.
11	MR. ERICKSONKIRK: Yes.
12	DR. BONACA: Logic is symptom-oriented
13	procedures. The credibility of those actions of
14	operators following those procedures as in operator
15	training into the simulators and all those things. Of
16	course, now we've got core cooling that did not exist
17	at that time when they had those panels.
18	We had no help to the operator to do that.
19	These are elements that have to be described so that
20	one can say this transient may still exist possibly
21	but it's so likely that there's no treatment. Thank
22	you.
23	CHAIRMAN SHACK: I'll turn it back to you,
24	Mark.
25	MR. ERICKSONKIRK: Okay. Where we left

(202) 234-4433

10
off in our somewhat modified agenda yesterday was in
the middle of going through Chapter 9 which generally
talks to our ability to generalize our results from
three plant specific analyses to PWRs in general.
Yesterday before we left we heard from
Donnie Whitehead of Sandia National Laboratories about
plant to plant differences and design and operator
action and things of that nature that matter to PTS
sequences. And we also heard from Dave Bessette on
sensitivity studies regarding thermal hydraulic
analysis.
There are two portions of our
generalization work remaining that we'll talk about
this morning. The first one I'll talk about which is
sensitivity studies in PFM. Then Donnie Whitehead
will come up and talk about why we feel it's
appropriate to essentially ignore the contribution of
external events as initiators. This presentation
concerns sensitivity studies on the PFM model.
We performed those sensitivity studies
with two objectives in mind. One is to provide
confidence in the robustness of the PFM model so we
performed sensitivity studies on credible alternative
models and credible input pertivations to see if they
change the results enough to justify some change in

(202) 234-4433

	11
1	the baseline model.
2	And we've also provided I'm sorry,
3	performed sensitivity studies to provide confidence
4	that the through-wall cracking frequency results that
5	were generated for the three study plants can in fact
6	be generalized to apply to all PWRs. The focus there
7	is to perform sensitivity studies to assess the
8	influence of factors that have not been fully
9	considered in our analysis of the three study plants
10	but exist in the PWR fleet in general.
11	It was noted on the title slide there's a
12	NUREG that goes into all this information in detail.
13	That's NUREG-1808 which you should have electronic
14	copies of now. This information is also summarized in
15	Section 9.2 of NUREG-1806. Now this details the
16	sensitivity studies that we performed in each of these
17	categories and I'm going to have a slide or two on
18	each of these so we'll start with the ones to provide
19	competence and the robustness of the PRM model and
20	then we'll go on to the generalization sensitivity
21	studies.
22	We did not perform sensitivity studies per
23	se looking at doing changes to the flaw distribution.
24	Not because we believe the flaw distribution to be
25	certain but because there really isn't credible

(202) 234-4433

(202) 234-4433

alternative information out there on which to base a sensitivity study.

3 I mean, we could certainly increase the 4 density of the flaws by two, increase the size of the 5 flaws by two, and a simple examination of the PFM those things would 6 equation show that increase 7 through-wall cracking frequency. Instead of doing that or, I maybe say, in lieu of doing that, we did 8 want to provide some information here and in the 9 report on the characteristics of flaws that contribute 10 11 the most to the through-wall cracking frequency.

12 Certainly we discussed yesterday that the dominant contributor is oriented axially and that's 13 14 just a natural consequence of the driving force in the 15 The flaws are also very close to the inner vessel. diameter. I think the most important thing on this 16 realization that the flaws 17 slide is the that contribute the most to the through-wall cracking 18 19 frequency are, in fact, small in dimension.

If you have very large flaws, the cracked tips of those flaws are located too deep into the vessel to feel the effect of the thermal shock so they are essentially at a low-stress condition and they don't contribute very much at all to the through-wall cracking frequency.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

12

	13
1	DR. WALLIS: I don't understand that. Why
2	can't part of the flaw be close to the wall?
3	MR. ERICKSONKIRK: It is close to the
4	wall.
5	DR. WALLIS: It might pop the wall. If it
6	pops into the wall, it breaks through the wall if it's
7	close enough to the wall when you pull on it.
8	MR. ERICKSONKIRK: I think I might have to
9	defer to Terry on this. Perhaps you can help me why
10	we check for crack initiation at both crack tips.
11	MR. DICKSON: For embedded flaws we check
12	for the initiation at the inner crack tip, the one
13	that's closest to the clad based interface for two
14	reasons. It's the worse case for two reasons. It's
15	worse case because the stress is higher there as you
16	go out through
17	DR. WALLIS: It's closer to the surface.
18	MR. DICKSON: Yes.
19	DR. WALLIS: Right.
20	MR. DICKSON: You have a higher stress and
21	you also have a higher embrittlement.
22	DR. WALLIS: So why is that necessarily
23	further in? Maybe the center of the flaw is further
24	in but its tip isn't. It could be right next to the
25	surface.

(202) 234-4433

	14
1	MR. DICKSON: Well, it could be. This pot
2	that Mark has on the left, that's what that is talking
3	about. That is actually the inner crack tip location.
4	DR. WALLIS: But that doesn't explain why
5	the big flaws are less effective. He said they were
6	less effective because they were further in. That's
7	what I'm questioning. I don't think the tip is
8	necessarily further in. Certainly the middle is
9	further in if they are bigger.
10	CHAIRMAN SHACK: I think what he was
11	referring to if you had a one-inch deep crack so that
12	the tip was an inch from the inner wall it would be a
13	huge crack.
14	DR. WALLIS: Yeah.
15	CHAIRMAN SHACK: But, in fact, because the
16	tip is an inch in
17	DR. WALLIS: It's an inch in but it could
18	be an inch-long crack which is a thousandth of an inch
19	from the inner wall as far as its tip goes.
20	DR. RANSOM: It seems like it has to start
21	and end somewhere. Wherever it starts and end is at
22	the surface.
23	MR. ERICKSONKIRK: I apologize. I think
24	I didn't express where I was trying to go.
25	DR. WALLIS: I think you need a different

(202) 234-4433

	15
1	rationale.
2	MR. ERICKSONKIRK: Yes. What we do find
3	on the graph on the lower right-hand side is that the
4	flaws that are driving the through-wall cracking
5	frequency fully 90 percent of them are fairly small
б	flaws and that's the observation.
7	DR. WALLIS: Because there aren't very
8	many big ones? Is that what it is? It's more
9	probable that you would have a small flaw under the
10	surface?
11	MR. ERICKSONKIRK: Absolutely. There's a
12	very low probability of having big flaws and even if
13	you increase the big flaw probability by credible, or
14	even incredible factors, it wouldn't matter much. I
15	apologize for that. You are absolutely correct. The
16	first rational was erroneous.
17	DR. WALLIS: This flaw distribution is
18	based on rather skimpy evidence. This is one of the
19	areas where I mean, heat transfer Dittus-Boelter if
20	you believe that. It's based on data points. But the
21	floor distribution in these walls is based on a few
22	examinations. Isn't it?
23	MR. ERICKSONKIRK: A few examinations but
24	infinitely more than we had the first time.
25	DR. WALLIS: It's much better than you had

(202) 234-4433

	16
1	the first time.
2	MR. ERICKSONKIRK: Much better than we had
3	the first time. I think as a laboratory geek at heart
4	I have to admit I would really like to have more data
5	on this and I don't think there's anybody in the
6	technical community that would disagree with this.
7	But I think it's also important to
8	recognize that the flaw distribution doesn't rest on
9	experimental evidence alone. Certainly we started
10	with excuse me. We start with experimental
11	evidence both from destructive and nondestructive
12	evaluations but that's then also bolstered by
13	DR. WALLIS: But those were of individual
14	reactor vessels.
15	MR. ERICKSONKIRK: That's right.
16	DR. WALLIS: But there are a hundred
17	reactor vessels. I don't know how convincing it is
18	that the flaw distribution that you measured in a
19	couple of vessels which were taken apart is typical of
20	all other vessels.
21	MR. ERICKSONKIRK: No. I think it would
22	be unfair to say that a single experimental
23	distribution derived from two vessels could be just
24	looked at and thought to be representative of the
25	other vessels.

(202) 234-4433

17 1 However, the expert group that we got 2 together to help us construct the flaw distribution used physical models, used expert judgment in the 3 4 process of constructing the distribution. As I 5 indicated yesterday, in the process of constructing the distribution every time they came to something 6 7 where they felt they had to make a judgment, that 8 judgment was made in a systematically conservative direction. 9 DR. WALLIS: This is all documented in 10 11 some --12 This is all documented MR. ERICKSONKIRK: and I don't have this NUREG --13 14 DR. WALLIS: Hopefully we are going to 15 get --MR. ERICKSONKIRK: You have it already. 16 17 DR. WALLIS: We have it already. MR. ERICKSONKIRK: That was the first 18 19 document you got. Bruce, I'll get you in just one 20 Just to give a couple of examples, we second. 21 simulate surface walls to exist in the vessels despite 22 the surface-breaking flaws despite the fact that no 23 surface-breaking flaw has ever been observed so that's 24 clearly conservatism. 25 Then the other thing is all of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 inspections, destructive or indestructive, any 2 indication that was found was taken to be a planar 3 crack. In other words, something that could 4 initiative clear retractor. Whereas unquestionably if 5 you talk to any NDE person they will tell you the easiest thing to find in an inspection is not a planar 6 7 crack but a volumetric crack. The huge -- that's 8 perhaps an overstatement.

the indications 9 lot of that Δ we characterize as planar cracks and, therefore, believe 10 or treat in our calculation as contributing to the 11 probability of failure are, in fact, more akin to my 12 Magic Eight Ball and aspect ratio and, therefore, are 13 14 very unlikely to initiate a crack.

15 That's but a few of the examples of the conservatisms16 that we are taking.

17 CHAIRMAN SHACK: Is that truly a conservatism? I mean, do you have statistically --18 19 have you put in statistically such a high number of 20 surface-breaking flaws that you would be surprised 21 that you hadn't found one in the inspections you did? 22 Or is the number just small enough that if I inspect 23 25 meters of weld I wouldn't expect to find them but 24 if I expected a thousand meters of weld --25 Indeed, the motivation MR. ERICKSONKIRK:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	for including surface-breaking flaws when none have
2	been found was based on the fact that in the end while
3	we inspected much, much more material than we ever had
4	inspected before, it was still a small amount.
5	CHAIRMAN SHACK: No. But are you so
6	conservative that you should have found you know,
7	does your distribution say that you should have found
8	surface-breaking flaws in which case I would agree
9	that your inclusion is conservative or you've just in
10	a statistically realistic number of surface-breaking
11	flaws.
12	MR. ERICKSONKIRK: I would agree more with
13	your second opinion and I would say a statistically
14	realistic yes.
15	CHAIRMAN SHACK: You can't take credit for
16	conservatism.
17	MR. ERICKSONKIRK: Well, however, the
18	other thing to recognize is the only physical
19	mechanism that is capable of producing the surface-
20	breaking flaw is lack of inter-run fusion in the
21	austenitic stainless steel cladding and those are all
22	circumferentially oriented.
23	We've done, which I don't have here but
24	can provide you, sensitivity studies where we
25	increased the number of surface-breaking flaws from

(202) 234-4433

	20
1	our baseline number dramatically and the through-wall
2	cracking frequency doesn't go up much and that's
3	expected because they are circumferential. Bruce.
4	MR. BISHOP: I'm Bruce Bishop from
5	Westinghouse. I was involved as part of the industry
6	V&V of the distributions for the flaw. Both the
7	density, the depth, direction, and the aspect ratio
8	for the surface-breaking flaws, the embedded flaws,
9	and the plate flaws.
10	One point to keep in mind is for the
11	embedded flaws there is not one distribution. We
12	recognize that there is uncertainty on the limited
13	amount of data. In those three parameters I mentioned
14	there are significant uncertainties and instead of
15	generating one distribution we actually generate 1,000
16	distributions and use those in the FAVOR code so there
17	is a fair amount of uncertainty. There is not
18	just one flaw distribution. There is a family of
19	distributions with fairly big uncertainties to allow
20	for the lack of a significant amount of data.
21	MR. GAMBLE: My name is Ron Gamble and I
22	work at Sartrex and I do a lot of work in this area
23	for EPRI. I want to say one thing about flaws on the
24	surface. This is a misconception you just keep
25	hearing and hearing and hearing. All vessels that are

(202) 234-4433

manufactured and operating in the United States have 2 had inspections on the surface so there is no vessel 3 that is not in service that has not been inspected for 4 flaws on the surface.

5 Part of the fabrication process is to do a dye penetrant examination after welding to look for 6 7 defects and if they're found they're repaired. The 8 dye penetrant is done on all welds. It's a mag 9 particle which means that it has the capability to 10 detect flaws that are on the surface and slightly below the surface maybe five to 10 thousandths of an 11 12 inch.

So I think you have to remember that all 13 14 vessels are inspected on the surface of all welds. We 15 seem to get the impression that we've never had these 16 inspections or that we have some small sample from two 17 plants of a couple of meters. It's not true. Every vessel is inspected on the weld on the surface in 18 19 every plant.

20 MR. ERICKSONKIRK: Okay. I'll just note 21 that we'll get back to this topic when we go over the 22 Peer Reviewers' comments.

23 DR. WALLIS: The cladding process doesn't 24 create new flaws?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

The cladding process MR. ERICKSONKIRK:

25

1

21

	22
1	does create flaws in the cladding.
2	DR. WALLIS: But not on the vessel base
3	metal?
4	MR. ERICKSONKIRK: In fact, that's a nice
5	lead-in to my discussion of subclad cracking which
6	we'll get to in about 10 slides. Okay, weld residual
7	stresses. In the FAVOR code we conservatively assume
8	that the residual stresses produced by welding are not
9	relieved by through-wall crack propagation which, of
10	course, has to be true to meet the boundary
11	conditions.
12	In lieu of doing a detailed analysis,
13	which would have undoubtedly taken a lot more time and
14	money, what we tried to somehow systematically relieve
15	the stresses as the crack propagated through the
16	vessel wall.
17	We just took them away as soon as the
18	crack initiated but it turned out that the removal of
19	that conservatism didn't alter the through-wall
20	cracking frequency hardly at all, which is perhaps not
21	surprising because the residual stress contribution to
22	driving force is small compared to the pressure and
23	temperature components.
24	DR. FORD: Mark, that last statement may
25	well be true but that is a calculated residual study

(202) 234-4433

	23
1	profile. If you look at the data and make a
2	comparison, for instance, double-V notched pipes or
3	core shrouds, there's a considerable scatter of the
4	actual data around that theoretical line. Now,
5	if you put the upper bound of the observed residual
6	stress profiles how would that statement
7	MR. ERICKSONKIRK: I think I need to go
8	back and I'll ask Terry to tell me if I've got this
9	wrong or not. This profile was determined by
10	experimental measurements made on a thick wall vessel.
11	Was it not?
12	MR. DICKSON: Yes.
13	DR. FORD: Did that experiment how many
14	data points were there to confirm that?
15	MR. ERICKSONKIRK: Terry, do you remember?
16	I just don't have those details.
17	MR. DICKSON: I don't remember all the
18	details. That's been seven, eight, or 10 years ago we
19	did that study and wrote the paper, but it's a
20	combination of measured data and analysis from which
21	this weld residual stress distribution was derived.
22	But this is also consistent with other people in the
23	literature that had done the same type of work, the
24	same shape and the same magnitude. No doubt there is
25	probably some scatter about it but that's not

(202) 234-4433

	24
1	considered in the analysis.
2	DR. FORD: No. I have no problem at all
3	with the shape of that curve. As you see, many people
4	have seen similar shapes of the double-V notched
5	welds. My question is if you look at the data, what
6	is the upper bound of that data compared with that
7	curve that you put into the FAVOR code? If it's, you
8	know, 10 ksi more positive than that, would that
9	impact on your end conclusions?
10	MR. ERICKSONKIRK: I simply don't have
11	that information although we can certainly recover it.
12	DR. FORD: It seems to me the whole point
13	of these presentations is sensitivity.
14	MR. ERICKSONKIRK: Yes. That's a good
15	point.
16	DR. FORD: Could you have a situation
17	where the 10 ksi in the real case of the specific
18	pressure vessel you're trying to analyze, could those
19	curves be 10 ksi more positive?
20	MR. ERICKSONKIRK: We'll look into that.
21	I don't have that knowledge stored away but it's
22	certainly available.
23	Okay. Next one concerns the embrittlement
24	shift model regarding which there's been a lot of
25	discussion both within the NRC and within the ASTM

(202) 234-4433

	25
1	community. FAVOR has adopted an embrittlement shift
2	model. This is a model that calculates the shift in
3	the Charpy 30-foot pound energy transition temperature
4	as a function of copper, nickel, phosphorus, fluence
5	and so on. FAVOR has adopted a model
6	proposed by one of our contractors in the year 2000
7	that differs somewhat from the ASTM E900-02 standard
8	that was adopted two years ago. It should be pointed
9	out that the two models are similar but not identical.
10	DR. WALLIS: Now, in the figure that you
11	showed us a year or nine months ago or something,
12	there was fluence on one access and then there was
13	this shift on the other and the data seemed to be all
14	over the place.
15	MR. ERICKSONKIRK: I'll show you that in
16	just a second. You liked that plot.
17	DR. WALLIS: Well, maybe it was all over
18	the place
19	MR. ERICKSONKIRK: It wasn't
20	DR. WALLIS: Different amounts of cooper
21	or something.
22	MR. ERICKSONKIRK: It wasn't a FAVOR plot
23	but, anyway, we'll get to that. I recalled your
24	hankering for plots with lot of scatter so I've got
25	one.

(202) 234-4433

(202) 234-4433

	26
1	DR. WALLIS: No, I didn't hanker. I just
2	noticed.
3	MR. ERICKSONKIRK: Anyway, the models are
4	similar in form but certainly not identical. The
5	regulatory model includes some terms that were
6	intentionally conservative relative to the E900 model.
7	We did a sensitivity study which is
8	reported in our documentation and the use of ASTM
9	E900-02 model reduces the through-wall cracking
10	frequency relative to our baseline model in FAVOR of
11	about a factor of three.
12	We should also point out that the work by
13	our contractor has been ongoing since the year 2000
14	incorporating advancing physical understandings and
15	also incorporating new surveillance data that have
16	become available. While that model is still being
17	worked on and hasn't been adopted by either ASTM or in
18	the FAVOR code, it should be pointed out that the
19	model we're currently working on is closer to the ASTM
20	E900-02 standard than the model we are currently
21	using.
22	DR. WALLIS: This is important because
23	what the plant knows is what its fluence is.
24	MR. ERICKSONKIRK: And its copper and its
25	nickel and its phosphorus.

(202) 234-4433

	27
1	DR. WALLIS: Right. It has to deduce this
2	shift in this key thing.
3	MR. ERICKSONKIRK: That's right.
4	Absolutely.
5	DR. WALLIS: And if there is a little
6	uncertainty in that, that seems to me pretty
7	significant. If you know your fluence but you can't
8	know your RT very well, then the whole basis of your
9	analysis is this
10	MR. ERICKSONKIRK: And, indeed, that
11	uncertainty is incorporated into our analysis.
12	DR. WALLIS: It must be.
13	MR. ERICKSONKIRK: Yeah, it is.
14	DR. FORD: I was having exactly the same
15	question. The correlation factor on the Eason model,
16	for instance, is remarkably low between the model and
17	the data so it comes down to this question.
18	MR. ERICKSONKIRK: You mean like that?
19	DR. WALLIS: Yes, that's the one.
20	DR. FORD: I don't know what the
21	correlation factor is but it's got to be less than .1
22	I would imagine.
23	MR. ERICKSONKIRK: It should be pointed
24	out there are other ways to judge a model with a
25	correlation factor.
-	

(202) 234-4433

	28
1	DR. WALLIS: The spread is huge. If I
2	know my fluence, then I don't know my delta $T_{ m 30}$ within
3	maybe 50.
4	MR. ERICKSONKIRK: Before we go too far on
5	this, I want to assure everyone that that level of
6	uncertainty is incorporated in all of the calculations
7	that you've seen. We're not trying to hide or sugar
8	coat anything. It's in there.
9	DR. FORD: I know but, again, looking at
10	your hypothetical weld you're trying to analyze,
11	assume that you put it at the upper bound.
12	MR. ERICKSONKIRK: And sometimes you do.
13	DR. FORD: Okay. Does that affect your CF
14	value that much? That's the bottom line.
15	MR. ERICKSONKIRK: If it was always up,
16	yes. If 100 percent of the time it was always at the
17	upper bound, certainly
18	DR. WALLIS: This is your screening
19	criteria, or used to be. You had 270 degrees or
20	something. The guys says, "Okay, my fluence is 2E to
21	the 19." He looks there and says, "Now I've got to
22	calculate what my
23	MR. ERICKSONKIRK: But remember we are
24	asking him to calculate
25	DR. WALLIS: He takes the black line?

(202) 234-4433

	29
1	MR. ERICKSONKIRK: Remember, we are asking
2	him to calculate that value using maximal values of
3	fluence, of copper.
4	DR. WALLIS: He takes the black line but
5	what he reports is
б	MR. ERICKSONKIRK: He's plugging those
7	maximum values of copper, nickel, phosphorus, and
8	fluence into the black line calculation so he's using
9	upper-bound input values. It would be inappropriate
10	to ask them to use both upper-bound input values and
11	an upper-bound correlation.
12	DR. WALLIS: I don't know because I don't
13	know what that does to the conclusion he reaches.
14	MR. HISER: This is Allen Hiser from
15	Research Materials Engineering Branch. I don't
16	believe that upper-bound copper and nickel are used.
17	It's best estimate values.
18	MR. ERICKSONKIRK: You're right. We're
19	using the regulatory values that have been agreed to
20	between the licensee and NRR. You're right. I
21	apologize.
22	CHAIRMAN SHACK: But then he adds a margin
23	term.
24	MR. ERICKSONKIRK: No. In the current
25	regulation he adds a margin term because that

(202) 234-4433

	30
1	uncertainty wasn't accounted in the calculation.
2	CHAIRMAN SHACK: You can address your
3	uncertainty directly or you can add a margin.
4	DR. WALLIS: Don't talk about the current
5	regulation because we know that the margin compensates
6	for a very strange way of accounting for uncertainty
7	in this previously. You add something when you should
8	have subtracted it and then you add it again somewhere
9	else. We don't want to go into that ever again.
10	MR. ERICKSONKIRK: Certainly not. That we
11	all certainly agree. But, yes, in the old
12	relationship we accounted for in the current way of
13	doing things we account for this uncertainty after the
14	fact with a margin term. In this case we have
15	incorporated it into the calculation.
16	DR. WALLIS: I understand that. I
17	understand statistically you can do that. It just
18	sort of makes me a little suspicious of whether this
19	is the right way to do it when I see that sort of
20	scatter.
21	MR. ERICKSONKIRK: Is there a better way
22	to do it?
23	DR. WALLIS: No, because it seems to me
24	that you're the plant says its fluence is so and
25	so. Therefore, my RT is something plus 100. It could

(202) 234-4433

	31
1	well be 100 plus 170.
2	MR. ERICKSONKIRK: But how much of that
3	scatter is experimental error in resolving the shift?
4	A large part of it because, remember, you're trying to
5	nail down and the regulation includes some funny
6	statements. It says, "The licensee shall perform
7	Charpy testing to define the 30-foot pound shift
8	without error."
9	DR. WALLIS: If you look at the history of
10	Charpy testing, you again get all sorts of causes of
11	error. Here you see the key variable is this RT and
12	this delta T is used to calculate that $\mathtt{RT}_{\mathtt{ndt}}$ or
13	whatever. That's why I've always been I'm sure
14	you're doing very consistent stuff but it seems to me
15	you're hanging your hat on something which is somewhat
16	difficult to define.
17	MR. ERICKSONKIRK: Bruce, do you have a
18	comment?
19	MR. BISHOP: This is Bruce Bishop from
20	Westinghouse. The only comment I had to make is
21	you're right, there is a chance that the RT_{ndt} instead
22	of being 100 could be 170 but, again, it's not always
23	again, what you have to look at is what's the
24	probability that it's going to be 170 versus 100.
25	That's the distribution that's built into the

(202) 234-4433

	32
1	evaluations that we do.
2	DR. WALLIS: You're saying it's all
3	aleatory. There may be some plant which is always at
4	the top of the curve.
5	MR. ERICKSONKIRK: I don't think you find
6	that. When these correlations have been developed
7	what you find is that if you look at individual data
8	sets relative to the mean line, they are scattered
9	about the mean line. You don't see systematic biases
10	where Palisades is always
11	DR. WALLIS: So I shouldn't say that
12	Palisades might be all at the top.
13	MR. HISER: That's not universal. There
14	are some plants, some materials that have a
15	sensitivity that skews upwards. There are some plants
16	that because of their surveillance data are not
17	allowed to use the correlations in the current reg
18	guide. They are required to use a higher chemistry
19	factor to compensate for that.
20	DR. FORD: Mark, can you put a nagging
21	problem in my mind? When we were discussing the
22	research project last year, the question came up about
23	anomalies in high-nickel, low-copper alloys in Santa
24	Barbara. Is that no longer an issue?
25	MR. ERICKSONKIRK: I haven't been tuned

(202) 234-4433

	33
1	into that. Allen, do you have any comments on that?
2	MR. HISER: No. I don't have any
3	information right at hand but we can dig into it and
4	get it to you.
5	DR. FORD: It's just that looking at that
6	it seems that the welds have the highest scatter and
7	I was wondering if there is any correlation at all
8	between this question of the high-nickel, low-copper
9	that don't fall into any known correlations so far.
10	MR. ERICKSONKIRK: That, indeed, is a
11	topic of current research.
12	DR. WALLIS: I think if you're honest in
13	showing this figure, which I don't think is in the
14	handout
15	MR. ERICKSONKIRK: No, it's not. I added
16	it last night. I'm not asleep at the switch up here.
17	Since we're talking about uncertainties and what I
18	would agree is a ghastly looking plot, in constructing
19	FAVOR we had to decide it was appropriate to simulate
20	those uncertainties.
21	What we did was we start with, as Allen
22	properly corrected me, the licensing values of copper,
23	nickel, phosphorus which are taken to be best
24	estimates based on available data and then we sample
25	from copper, nickel, and phosphorus distributions.

(202) 234-4433

Where those copper, nickel, and phosphorus distributions are drawn from extremely large data sets drawn from many, many materials, and so I would argue have to be upper bound to the copper, nickel, and phosphorus uncertainty that you get in any particular material. We have mean values of copper, nickel, phos and, indeed, fluence.

Then we sample from distributions, put it 8 into the model and do that zillions and zillions of 9 What we find out is that -- that's what's 10 times. shown over here where the blue line with the Xs is a 11 12 standard deviation of simulated plot of the embrittlement shift values that's coming out of FAVOR. 13 14 And what you're finding is that down here 15 the green line, and that's simulated -- I'm sorry, for

16a weld. The green line is the standard deviation of17all this mess of scatter from the model. The reason18why the standard deviation dips down here as you go to19zero fluence is we don't allow FAVOR to simulate20negative shift so it's truncated from below so you21would expect a smaller standard deviation.

22DR. WALLIS: Almost by definition it's got23to go through the origin24MR. ERICKSONKIRK: Yes. But, anyway, the

point of this graph is to say that FAVOR is faithfully

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

reproducing the scatter in the original database in 2 its simulation. It is simulating the amount of 3 scatter that's in the database for all PWR 4 surveillance materials.

5 Again, I would argue if I did one of the PowerPoint animation things and scrubbed away all the 6 7 points except those for one particular weld, you would see much less scatter. FAVOR is simulating this much 8 9 scatter, or this much scatter if you like, but 10 unquestionably the amount of scatter in any one weld would be less or plate. 11

12 And also the other thing to point out here is that it wouldn't be appropriate to simulate the 13 14 uncertainties in copper, nickel, phosphorus, and fluence and then simulate a relationship uncertainty 15 16 of that because then we would be not on top 17 approaching the scatter in the original experimental data base but approaching a value that's approximately 18 19 twice that.

20 Now, here's one I did just for Dr. Shack 21 because he asked me yesterday. Where we got off not 22 simulating the uncertainty in the Charpy shift to 23 fracture tough and shift correlation. Here is another 24 plot with scatter in it, not quite as bad as the last 25 time, where we have on the horizontal access and, to

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1
36
be consistent, this should say delta T_{41} joules but
it's the same metric, the shift and the Charpy 30-foot
pound energy transition temperature versus the shift
in the fracture toughness transition temperature.
Both of these are experimentally measured
values made in the laboratory on RPV welds, plates,
and forgings. Both well, obviously, before and
after radiation. You have to have an unirradiated
curve and then irradiated to various levels.
DR. WALLIS: There's another thing. First
of all, you start with a fluency you know and then you
have to predict this delta T40.
MR. ERICKSONKIRK: No, this is not a
prediction.
DR. WALLIS: The delta T_0 is a much more
reasonable useful physically based thing than delta
T ₃₀ .
MR. ERICKSONKIRK: I agree completely.
DR. WALLIS: Charpy is an antique and
delta ${\tt T}_{\scriptscriptstyle 0}$ is more related to what you are trying to
predict.
MR. ERICKSONKIRK: And that's exactly why
we have to go through this relationship.
DR. WALLIS: You're solid with fluence
which you know and delta T_{30} is subject to large

(202) 234-4433

	37
1	uncertainty. Delta T $_{\scriptscriptstyle 0}$ is what you really want and
2	it's also subject to uncertainty when you get it from
3	delta T ₃₀ .
4	MR. ERICKSONKIRK: That's right.
5	DR. WALLIS: It's amazing that with all
6	this you can come up with something which makes sense.
7	MR. ERICKSONKIRK: I'm tempted to say
8	something but it goes on the record so I won't.
9	DR. WALLIS: Maybe I should be
10	congratulating you.
11	MR. ERICKSONKIRK: Thank you. I'll just
12	say thank you like in the commercials. The one thing
13	I do want to clarify is that in this plot all the
14	values are measured. Delta T_{30} is not arrived at by
15	the previous correlation. It's measured based on
16	Charpy test just as delta T_0 is measured based on
17	fractured toughness test. Anyway, there's obviously
18	considerable uncertainty apparent in the empirical
19	relationship and it's these curves that we use in
20	FAVOR.
21	The FAVOR simulation process to go back is
22	to simulate the uncertainty in copper, nickel,
23	phosphorus influence, use the main curve to calculate
24	a value of delta T_{30} shift, and then we go to this
25	relationship and simply convert it to delta ${\tt T}_{\tt 0}$ shift

(202) 234-4433

	38
1	by multiplying by these values, the slopes of these
2	lines without simulating the uncertainty. Dr. Shack
3	asked where I got off doing that.
4	DR. WALLIS: Is there a trend here with
5	individual samples or something?
6	MR. ERICKSONKIRK: No, and that's what I'm
7	about to show you. We should choreograph this better.
8	However, what we see, now, remember, these curves
9	I mean, certainly, as you pointed out, Dr. Wallis, the
10	protocols for determining delta T $_{\scriptscriptstyle 0}$ are much more
11	consistently lined out. In fact, there's an ASTM
12	standard for determining delta $T_{_{30}}$.
13	However, having said that, some of these
14	delta T_0 points can be derived using only six samples.
15	That's the minimum that's allowed. Some of them have
16	upwards of 100 or even more samples from the detailed
17	laboratory test performed at Oak Ridge and others.
18	DR. WALLIS: Each one of these points is
19	an average?
20	MR. ERICKSONKIRK: Each one of these is a
21	best estimate.
22	DR. WALLIS: So if we plotted the six
23	different tests, we would get even more
24	MR. ERICKSONKIRK: No, no, no. You can't
25	determine you need six tests to determine TO.

(202) 234-4433

	39
1	Actually, you need 12 tests to determine delta T_0 .
2	DR. WALLIS: You get transition.
3	MR. ERICKSONKIRK: That's right. Anyway,
4	the origin of this scatter I argue is not uncertainty
5	in the relationship which is to say that for some
6	materials the delta ${\tt T}_{\scriptscriptstyle 0}$ is much smaller than the delta
7	$\rm T_{\rm 30}$ and for other materials the delta $\rm T_{\rm 0}$ is much larger
8	than delta T ₃₀ .
9	But its measurement error because when we
10	wipe away the points that have been determined with
11	the small data sets and look only at the points that
12	have been determined by the large data sets, you see
13	them clustering much more closely to the line.
14	This is a cartoon. Well, it's real data
15	but it's a cartoonist attempt to do a residuals
16	analysis which is actually presented in the document.
17	For example, if there was a true material-to-material
18	dependency in this relationship, then it would be
19	equally likely that the large data set points were
20	these flyers out here as the ones populating close to
21	the line.
22	Whereas if there is truly an underlying
23	physical basis consistent relationship going on that
24	cuts across all these materials, you must expect that
25	the materials that have the best defined shifts using

(202) 234-4433

Í	40
1	the most data are going to lie closest to the line.
2	Indeed, that is the case.
3	That's our justification for not sampling
4	the uncertainty here. Another justification,
5	perhaps more practical one, is that, I mean, we can
6	measure in the laboratory the uncertainty on delta ${\rm T}_{\rm 30}$
7	and we can measure the delta $\mathtt{T}_{_0}.~$ And because delta $\mathtt{T}_{_0}$
8	is more rigorously defined, the uncertainty tends to
9	be smaller.
10	Whereas, if I went through and if I
11	sampled the uncertainty in this relationship in
12	simulating my delta T_0s , my delta T_0 uncertainties
13	would be huge relative to what I measure in the
14	laboratory. We would be overestimating the
15	uncertainty in those values relative to anything
16	that's been observed.
17	DR. WALLIS: Do you have the other plot
18	which is delta ${\tt T}_{\scriptscriptstyle 0}$ versus the fluence or has that not
19	been done in terms of experiment?
20	MR. ERICKSONKIRK: I have that. I don't
21	have that with me.
22	DR. WALLIS: Is it better or is it just
23	as
24	MR. ERICKSONKIRK: At this stage nobody
25	has attempted to develop a delta T $_{\scriptscriptstyle 0}$ embrittlement

	41
1	trend curve for a whole host of reasons. One is that
2	the testing just hasn't been going on for that long.
3	Virtually all of the delta T $_{0}$ points here come from
4	test reactors, whereas the embrittlement trend curve
5	comes from reactor pressure vessel covalents.
6	I don't have them with me. I can show you
7	curves of delta T_0 versus fluence for individual data
8	sets but not for an agglomeration of data sets.
9	Obviously that would be the best thing to get rid of
10	this artifice entirely and estimate delta ${\tt T}_{\tt 0}$ directly
11	from copper, nickel, and so on.
12	CHAIRMAN SHACK: But, again, if you have
13	uncertainties in your measurement of copper and nickel
14	you would expect to see a reasonable amount of
15	scatter.
16	MR. ERICKSONKIRK: Yes, and we simulate
17	that.
18	CHAIRMAN SHACK: And you simulate that.
19	MR. ERICKSONKIRK: What we try not to do
20	is to compound the scatter.
21	CHAIRMAN SHACK: Obviously you don't want
22	to double count. Before I was sort of wondering if I
23	took this scatter in the copper and nickel whether I
24	would reproduce the scatter that I see and you do. I
25	mean, if you run through the plot, you can attribute

(202) 234-4433

	42
1	most of that scatter in your uncertainty in your
2	copper and nickel measurements. That doesn't seem
3	unreasonable.
4	In FAVOR how is that sampling done? I
5	mean, for a vessel do you pick one? When is the
6	sampling done on the copper and nickel in Monte Carlo?
7	MR. ERICKSONKIRK: I think Terry can
8	provide a more direct answer of that. Before I let
9	Terry talk, I'm going to keep talking so he can't say
10	anything. You've got different starting or mean
11	copper, nickel, phosphorus values for each region, for
12	each weld plate forging. Now onto Terry.
13	MR. DICKSON: Well, remember we're in a
14	Monte Carlo loop here so let's take vessel No. 1, flaw
15	No. 1. Flaw No. 1 is going to be located in some
16	subregion that has a chemistry and a fluence. Those
17	are going to be treated as the best estimate or mean
18	values and then you're going to sample. You have the
19	mean and there's some defined standard deviation
20	that's input data.
21	CHAIRMAN SHACK: Okay. So I've got the
22	mean. I've got the flaw and now I'm going to sample
23	over copper and nickel.
24	MR. DICKSON: Copper, nickel, phosphorus,
25	and fluence. That gives me everything I need to

(202) 234-4433

	43
1	calculate delta ${\tt T}_{\tt 30}.~$ I have the unirradiated ${\tt RT}_{\tt dt}$ and
2	then I've continued to go through the manipulations
3	that he shows here, the .99 if it's weld, 1.1 if it's
4	plate. Does that answer your question?
5	CHAIRMAN SHACK: So at the flaw level?
6	MR. DICKSON: Each flaw.
7	MR. ERICKSONKIRK: And the only further
8	modification to that that should perhaps be pointed
9	out is if in a particular vessel two flaws are
10	simulated to occur in the same subregion so close to
11	each other, the FAVOR code then remembers that it's
12	already simulated what the copper and nickel and
13	phosphorus is in that subregion and it doesn't then
14	sample again with as big an uncertainty level.
15	DR. WALLIS: Is the copper and nickel and
16	stuff diffused?
17	MR. ERICKSONKIRK: Not once it's a solid.
18	DR. WALLIS: Is it uniform? From the
19	process of welding is it homogeneous in the weld? We
20	are getting into too much
21	CHAIRMAN SHACK: The composition is in
22	I mean, that was part of the problem they had in
23	characterizing these things. A weld sample is not a
24	weld sample.
25	MR. ERICKSONKIRK: Certainly the copper

(202) 234-4433

isn't uniform. We know it's not uniform through the thickness because the copper comes from copper coating on the weld spools and you can't fill up -- the RPV welds are so big that you can't fill up an entire axial or circumferential weld with a single weld spool.

7 Through thickness samplings of chemistry can show systematic, even step function variations of 8 9 copper through the thickness. In fact, that's something that we've attempted to simulate in FAVOR by 10 11 the procedure where every time we get to a quarter of 12 the way through the vessel and a through-wall cracking calculation when we get to the quarter point, the half 13 14 point, and the three-quarter point. We go and we 15 reassimilate the copper value knowing that it could be -- that you could be experiencing a step function. 16

One of the questions that Dr. VanWalle and 17 the Peer Review Committee asked is, "Well, that's all 18 19 very well and good but I would just be curious to know 20 what would happen if you didn't reassimilate the 21 copper?" We did that and removing that resampling 22 increases the through-wall cracking frequency by a 23 factor of 2.5 on average. The reason for that is 24 every time you resample the chemistry, two things can 25 happen.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

45 1 You could get a worse material or a better 2 material. If you get a worse material, the crack was already going through and it's going to keep going 3 4 through. If you get a better material, you stand a 5 chance of stopping it. Every time you resample, it's like giving the material another chance so the 6 7 direction of the trend is expected. DR. WALLIS: By the time you get these 8 factors of two from this and the factor of two from 9 that and a factor of two somewhere else, soon you have 10 11 a factor of 10. 12 MR. ERICKSONKIRK: But I've got many more factors going the other way and I've got a slide on 13 14 that. You want to take this show on the road 15 sometime? 16 DR. WALLIS: It just seems to me that by 17 manipulation of these factors and choosing which one you actually want to represent on your figure, you 18 19 could make this 10 to the -7 become 10 to the -9 or 10 20 to the -5. 21 MR. ERICKSONKIRK: I think I could make it 22 10 to the -9. I don't think I could make it 10 to the 23 -5. Honestly, I don't think I could drive it down considerably. I feel like I could drive it down more 24 25 than I could drive it up.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The one slide I don't have but in a spread sheet I've been tracking from the time that we first presented to you and after we wrote the December 2002 report, I've been keeping a spread sheet of every time we do a new full analysis. The through-wall cracking frequency values haven't really changed that much over all.

8 There are some changes that have affected 9 more plants than others but in bulk all the changes 10 that we've made have not shifted things around too 11 much. I have the feeling we've gotten to the point 12 where certainly when you focus on any one of these 13 things, you can say, "That's absolutely wrong," or 14 "That's a horrendously big factor."

But when they are taken all in bulk, the law of averages is actually helping us and the values just aren't changing that much. And the general direction is down rather than up.

19 DR. WALLIS: Like an expert elicitation 20 where you get sort of tremendous scatter between the 21 experts, but when you take the average it gets close. 22 MR. ERICKSONKIRK: Yes. Okav. Another 23 change motivated by our reviewers is that Dr. Schultz 24 pointed out that FAVOR has ignored the effect of 25 pressure on the crack face in calculating the crack

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

Í	47
1	driving force.
2	Originally I thought no, we couldn't have
3	ignored something that simple. Later I came
4	to learn that indeed we had ignored something that
5	simple so we put it in. For the transients where
6	pressure is a significant contributor, namely the
7	stuck-open-valve transients including the crack face
8	pressure increases the conditional probability
9	through-wall cracking by less than a factor of two, by
10	between 25 percent and 75 percent.
11	For all the other transients where
12	pressure has played a major role has virtually no
13	effect. Then when you wade in the frequency with
14	which these events occur, the rolled-up effect on the
15	overall plant through-wall cracking frequencies is at
16	most 6 percent and more typically like 1 percent.
17	We've included it in there because it certainly should
18	be there. It's obvious that it's there but it doesn't
19	make a big change.
20	DR. WALLIS: I should say at this point
21	I'm very happy to see that you seem to be much more
22	professionally responsive to questions than sometimes
23	happens in these meetings. This is a complement.
24	MR. ERICKSONKIRK: Thank you. Thank you

25 again.

(202) 234-4433

	48
1	I think this is the last one in this
2	series. Yes. Then another thing Dr. VanWalle from
3	the Peer Review group brought up is, as I said, an
4	interim model between the time we last briefed you and
5	now is we included an upper shelf toughness model but
6	instead of indexing the level of upper shelf toughness
7	to a fractured toughness property, we indexed it to
8	Charpy.
9	Dr. VanWalle looked at those correlations
10	more aghast than the one you were looking at. I have
11	elected even not to show that. I think he said
12	something like, "It's not professionally responsible
13	to do it that way."
14	DR. WALLIS: Maybe Charpy should
15	eventually disappear.
16	MR. ERICKSONKIRK: Perhaps it should, but
17	we recently had the centenary conference and everybody
18	still liked it, a 100 years of bad testing.
19	Anyway, we talked about this yesterday.
20	A new model was available where we could estimate the
21	level of upper shelf toughness directly from a
22	toughness measurement. We included that in the model.
23	The overall effect in the through-wall cracking
24	frequency was small, about a five percent change.

(202) 234-4433

	49
1	being a very good thing, is it eliminated any
2	predictions of failures in the vessel in regions
3	having low RT_{ndt} . That makes sense because now all of
4	the toughness measures, cleavage initiation toughness,
5	cleavage arrest toughness, and upper shelf toughness
6	are linked to the RT_{ndt} measure.
7	Now the more interesting things. Getting
8	into the sensitivity studies that we did to look at
9	factors that were sort of outside of our modeling.
10	Clearly in order to get up to through-wall cracking
11	frequencies around the $1X10^{-6}$ limit that we're trying
12	to get to, we've had to really crank up the
13	embrittlement beyond anything that has ever been
14	observed.
15	Now not only are we basing the irradiation
16	shift on a correlation with lots of scatter, but we're
17	extrapolating beyond the empirical database. It's a
18	good thing that correlation has a physical basis
19	because that gives us at least some confidence that we
20	are extrapolating right, but obviously data's better.
21	Anyway, there were two ways that we
22	considered artificially increasing the level of
23	embrittlement. The method that we have been using is
24	just to increase time as a free variable. Increase
25	effective full-power years.

(202) 234-4433

Alternatively we could have taken the view that we wanted to keep time in what would be considered a logical operating range and instead increase the unirradated value of RT_{ndt} and then begin embrittlement from there.

6 Both of those changes are artificial 7 because we have neither materials that are that crumby 8 before you start irradiation in the database, nor do 9 we have irradiation values out to those extended 10 periods of time. Both of them are clearly artificial 11 attempts to increase the level of embrittlement.

12 What this plot shows is that we've used the approach that is more conservative in our baseline 13 14 calculations. The points where we've got the crosses 15 and the pluses show how much the through-wall cracking 16 frequency increases using the 32 EFPY analysis as a 17 baseline, plotted versus the increase in reference temperature where the crosses and the pluses we 18 19 increase the reference temperature from the 32-year 20 base line by turning up the time meter.

The solid points, again green for Beaver and red for Palisades, we increase the reference temperature just by increasing the unirradiated value. All of the calculations you've seen are based on increasing time as a free variable which gives you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	51
1	more of a through-wall cracking frequency increase
2	than increasing unirradiated RT_{ndt} . Again, these are
3	both artificial.
4	The only thing I would say in favor of
5	increasing time over increasing unirradiated $\mathtt{RT}_{\tt ndt}$ is
6	unirradiated RT _{ndt} isn't even a factor in the
7	correlation whereas time and temporal variable and
8	time dependent variables like fluence are so there is
9	at least some belief that the correlation accounts for
10	those whereas it doesn't account for unirradiated
11	RT _{ndt} .
12	DR. WALLIS: You can find a way of getting
13	your numbers to be at the point where you would be
14	concerned with through-wall cracking, a factor of 300.
15	MR. ERICKSONKIRK: Yeah, extremely long
16	times.
17	Okay. Now, to your question about
18	forgings. People have probably noticed by now that
19	all the vessels we've analyzed are rolled plates that
20	are welded, whereas there are a good number of vessels
21	that we license that are forgings and forgings don't
22	have the same flaw populations as axial welded
23	vessels. Certainly they don't have flaws associated
24	with axial welds which are the flaws that are driving
25	this analysis.

(202) 234-4433

	52
1	So, on that basis alone, just removing the
2	axial weld flaw population you should believe that the
3	through-wall cracking frequency at equal levels of
4	embrittlement as indexed by RT_{ndt} should be much less.
5	However, forgings do have their own unique flaw
6	populations that need to be accounted for.
7	They've got both flaws that have formed as
8	part of the forging process and they've also got those
9	nasty little things called subclad flaws which form
10	perpendicular to the direction of the cladding so they
11	are axial and that's bad. We performed some
12	sensitivity studies to try to assess this.
13	The first thing we had to do was to
14	construct new flaw distributions to simulate forging
15	flaws and subclad flaws. For this we relied on the
16	help of Dr. Fred Simonen at the PNNL laboratory who
17	has done the rest of our flaw distribution work on the
18	forging flaws and this is, again, all documented in
19	our reports.
20	The forging flaw distribution was based on
21	destructive evaluation of forgings that were performed
22	at PNNL under our contract. They have a similar
23	morphology and similar sizes to plate flaws but a
24	somewhat greater density. Not very much.
25	The subclad flaws are the bigger concern

(202) 234-4433

because they form preferentially -- oh, and I should say the forging flaws, like plate flaws, they don't have a preferential orientation. Subclad flaws are the bigger concern.

5 They form preferentially in certain forging chemistries at high cladding heat inputs. 6 7 They form as dense arrays of shallow cracks that are oriented perpendicular to the clad welding direction 8 so now they are axial rather than circumferential and 9 that, of course, makes them bad. 10

The density and depth of the flaws that we put in our subclad flaw distribution were estimated by Dr. Simonen based on a review article that was published in 1978 which was the time when forging flaws were the fashion, or subclad flaws were the fashion.

The density of these things is amazing. 17 You are reading that right, 80,000 flaws per square 18 19 meter. Now, this is an extrapolation and I believe a 20 conservative one because that was based on one scaling 21 of one picture that was in the Dhooge report. All of 22 the simulated flaws have a depth of two millimeters so 23 we've got 80,000 flaws per square meter all with a depth of two millimeters. 24

Now, indeed, in the picture that we scaled

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

there was a range of depths ranging from zero to two 1 millimeters. However, the way we've coded the FAVOR 2 3 program without fundamental 4 restructuring --5 DR. WALLIS: If they have a depth, what kind of dimension do they have in the other dimension? 6 7 MR. ERICKSONKIRK: What did we simulate, 8 Terry? We simulated a range of events? 9 MR. DICKSON: Greg gave us some data on 10 that, I believe. MR. ERICKSONKIRK: They were simulated 11 with the same length aspect ratios as the --12 DR. WALLIS: The two millimeters. 13 MR. ERICKSONKIRK: Two millimeters by 14 15 generally longer. DR. WALLIS: It's not guite the raised 16 17 surface and they don't show up. 18 MR. ERICKSONKIRK: No. 19 DR. WALLIS: If they were over a 20 centimeter long, they would actually join up at this 20K --- 80K. 21 22 MR. ERICKSONKIRK: Yeah. 23 MR. DICKSON: But by definition they are 24 inner cracked, too, at the plant base interface. In 25 other words, it's as close as an embedded flaw can be

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

54

55
to the inner surface.
MR. ERICKSONKIRK: And I think the point
should be made here this is not like the external
event study that Donnie is about to talk about. Our
attempt here has not been to do something best
estimate but to do something in a bounding sense
because we believe that the results will still be
sufficiently good that we can still use our plate-
based screening criteria. Indeed, that is the case.
Certainly you can refine this an awful lot.
So the way we made up forged vessels is we
used our existing models for Palisades and Beaver
Valley but we simply assigned both the plates and the
axial welds to have material properties that were
characteristic of forgings. The forging properties
that we used we took out of the RVID database and we
used the most radiation sensitive forgings that are in
the fleet, those being Sequoyah and Watts Bar.
MR. SIEBER: How many total forged vessels
are there in service?
MR. ERICKSONKIRK: I've got that written
down. It's like a dozen. I think more. I think 12
to 16. It's not the majority of the PWR population
but it's not just one or two either. So the results
of the sensitivity studies looking at the flaws that

(202) 234-4433

	56
1	formed as part of the forging process.
2	Even at very high levels of embrittlement
3	that would normally be needed to get a plate vessel
4	close to the through-wall cracking frequency criteria
5	of 1×10^{-6} , the forged vessels have a through-wall
б	cracking frequency that's on average about three
7	percent of a plate vessel.
8	That factor is roughly consistent with
9	just removing the contribution of axial flaws which
10	is, indeed, what has happened. That makes a lot of
11	sense. We've removed the axial flaws which, if you
12	remember my graph from yesterday, contributed a 100
13	times more to the through-wall cracking frequency than
14	the plate flaws. All that's left is forging flaws
15	which had a slightly higher density than the plate
16	flaws so instead of a factor of 100 we've got a factor
17	of like 20.
18	DR. FORD: Mark, take a scenario. You've
19	got 80,000 flaws per square meter. Near the surface
20	there are nonsurface-breaking flaws but just below the
21	surface.
22	MR. ERICKSONKIRK: That's right.
23	DR. FORD: You then put a weld overlay.
24	MR. ERICKSONKIRK: That's right.
25	DR. FORD: And that could, therefore, get

(202) 234-4433

57
some of those flaws to break the original surface.
MR. ERICKSONKIRK: No, but the flaws form
as a consequence of putting the weld overlay on.
DR. FORD: So what happens if the weld
overlay stress grows cracks?
MR. ERICKSONKIRK: I have been informed
not to answer questions like that. I don't know. I
don't know.
DR. FORD: Now you've got a surface crack,
stress erosion crack.
MR. ERICKSONKIRK: Is there a mechanism to
support that, stress corrosion cracking of the
cladding?
DR. FORD: In a pressurized water reactor
probably unlikely but not completely unlikely. I
mean, if you've got copper in the system, you can get
cracking at PWR with the steam generator but that
doesn't matter. If you've got copper into the primary
system, you could crack. It could. It's a long shot
but you need one of these things to go or we don't
have a business. I'm looking at the long shot.
MR. ERICKSONKIRK: And I think like I
said, I absolutely refuse to argue stress corrosion
cracking with anyone. Least of all you. I think that
gets into is what you've just proposed does that rise

(202) 234-4433

	58
1	to the test of being a credible model. If so, then
2	the next thing I'm going to have to ask you is, okay,
3	propose some numbers and we'll run it, and we
4	certainly could. Certainly if those were surface-
5	breaking flaws, I mean, you know the answer as well as
6	I.
7	DR. FORD: I'm really going off of
8	Graham's earlier question. If you put a weld overlay
9	onto a severely defected but not surface-breaking
10	forging, would you expect some of those subsurface
11	cracks to coalesce to form one fairly large connected
12	crack?
13	MR. ERICKSONKIRK: Possibly, but I think
14	before going there you also have to if we wish to,
15	if we feel it's appropriate, to refine that part of
16	the analysis, we should also go back and refine this
17	estimate of 80,000 flaws per square meter to, again,
18	do something that is
19	MR. SIEBER: Useful.
20	MR. ERICKSONKIRK: realistic.
21	DR. FORD: But that 80,000 was measured.
22	Wasn't it?
23	MR. ERICKSONKIRK: It was measured.
24	DR. FORD: So it's realistic.
25	MR. ERICKSONKIRK: Well, it's realistic

(202) 234-4433

	59
1	for the 100X Micro it was taken off of.
2	CHAIRMAN SHACK: But I thought you were
3	asking a different one. You wanted to pop the axial
4	weld flaw through from the stresses of the clad weld,
5	not the underclad cracking that he's seeing here.
6	DR. FORD: Well, I was wondering if you
7	get some of those subsurface flaws, that these
8	small
9	CHAIRMAN SHACK: Those presumably would
10	have been sampled in the vessels that he looked at.
11	DR. FORD: I don't know.
12	CHAIRMAN SHACK: That population should be
13	part of the population they're looking at because
14	they've got welded vessel with
15	DR. FORD: I'm trying to look at a
16	realistic worse case scenario if that's not an
17	oxymoron. You've seen 80,000 of these flaws.
18	DR. WALLIS: That's caused by the welding
19	process.
20	MR. ERICKSONKIRK: That's caused by the
21	weld. Those aren't preexisting. They occur as a
22	consequence of the welding itself.
23	DR. FORD: But then you put the butter on.
24	MR. ERICKSONKIRK: No, no. They occur as
25	a consequence of the austenitic cladding process.

(202) 234-4433

	60
1	DR. FORD: Okay. Never mind. I take it
2	back.
3	MR. ERICKSONKIRK: Sorry. Clarity in
4	communication.
5	DR. WALLIS: But you are doing this
6	welding over the whole vessel so if there is something
7	waiting to happen, you would find it.
8	MR. ERICKSONKIRK: Are you proposing this
9	is nondestructive testing technique?
10	DR. WALLIS: No, but it seems to me that
11	your numbers are so small for this that one has to pay
12	attention
13	MR. SIEBER: There is surface exams as
14	part of the code.
15	MR. ERICKSONKIRK: Yeah, as was pointed
16	out.
17	DR. KRESS: How do you find these flaws?
18	They are put in there after you put the weld surface
19	on. Do you have to take it back off and then find the
20	flaws?
21	MR. SIEBER: No, no, no.
22	DR. KRESS: You use nondestructive
23	testing technique?
24	MR. SIEBER: It's UT.
25	MR. ERICKSONKIRK: I'm not qualified to

61
answer that question.
MR. SIEBER: It's a volumetric test done
every 10 years.
MR. ERICKSONKIRK: Are they close enough
to find with mag particle?
MR. SIEBER: The problem is putting all
that stuff into a vessel that you would like to use
again.
MR. ERICKSONKIRK: Okay. I'll try to go
on.
MR. SIEBER: This is vertical so mag
particle is not real good.
MR. ERICKSONKIRK: So for the subclad flaw
sensitivity study, over likely operational lifetimes
meaning up to 60 EFPY which is obviously beyond what
we are licensing today, the through-wall cracking
frequency of the forged vessel with the subclad flaws
was between 1 percent and 20 percent of that and a
comparable plate vessel.
However, as you crank of the level of
embrittlement over the longer operational lifetimes,
you got to the point where the through-wall cracking
frequency for the simulated subclad vessel based on
all these assumptions was much, much higher than it
was for the plate vessel.

(202) 234-4433

1 That leads to the first proviso that we 2 would put on our suggested screening criteria which 3 is, again, in the report that if somebody were 4 assessing the through-wall cracking frequency of a 5 forged vessel that was believed to be sensitive to subclad cracking and there are papers that tell you 6 7 based on the forging chemistry and the welding process if you've got a susceptible vessel or not. 8 9 If somebody was intending to operate the lifetimes that are much, much beyond what we are 10 11 considering today or to embrittlement levels that are 12 much, much beyond what we are considering today, certainly a more detailed analysis of this phenomena 13 14 would be warranted. 15 Now the one that I like, thickness Okay. effects on through-wall cracking frequency. You saw 16 this graph yesterday of the variation of through-wall 17 cracking -- I'm sorry, conditional probability of 18 19 through-wall cracking with break diameter for the 20 primary site pipe break. These are all pipe 21 breaks, no repressurization. 22 We argued out here that once you got to a 23 enough break diameter, it biq was the vessel 24 properties that were controlling the through-wall

25 cracking frequency and the details of the thermal

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

62

hydraulic transient were relatively unimportant. Then we started looking at this graph and saying if that's true, then why out here at the very largest break size aren't all the points just landing smack dab on top of each other?

Because we argued that assuming that 6 7 you're going down to the same temperature, which you 8 always are in this case, we argued that the things 9 that were controlling the severity of the thermal stress was the thermal conductivity of the steel which 10 is consistent from material to material and the 11 12 thickness of the vessel. The thermal conductivity hasn't changed in these analyses but the thickness is. 13

DR. WALLIS: I'm surprised that the thermal transient goes in far enough to make a difference and that you can't always treat it as an infinitely thick vessel. It's just a surface effect. Apparently thermal stresses are not just a surface effect.

20 MR. ERICKSONKIRK: No. They depend on the 21 thickness of the vessel.

DR. WALLIS: That's because double transient has penetrated it enough. If it doesn't penetrate it at all, just the surface, then it doesn't really matter how thick it is.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	64
1	MR. ERICKSONKIRK: It's a restraint
2	imposed on the structure. I mean, if I take a Coke
3	can, I can't support it.
4	DR. WALLIS: If you are only heating up a
5	very thin layer, then the restraining effect of six
6	inches and 10 inches is the same.d
7	MR. ERICKSONKIRK: Yeah. You're
8	propagating through the vessel.
9	DR. WALLIS: I'm surprised it propagates
10	in that far. The vessel propagated in quite a bit
11	then, the thermal effect.
12	MR. ERICKSONKIRK: Yeah. What you see is
13	that as the transients develop with time, pick any
14	crack and the applied K here we go the applied
15	K of the driving force fracture goes up peaks and then
16	it drops off as the thermal wave passes through.
17	Getting back to where this started, we
18	looked at this and said, okay, if our rationale is
19	correct, then all these things all the through-wall
20	cracking frequencies out here should be lined up at
21	roughly equivalent levels of embrittlement but they
22	weren't.
23	The Beaver Valley vessel, which is about
24	half an inch thinner than the Palisades and Oconee
25	vessels, was showing and this wasn't the only

(202) 234-4433

1 indication but it's the easiest illustration -- was 2 showing a systematically lower through-wall cracking 3 frequency. 4 Terry ran a number of individual crack 5 analyses where we took a crack, we put it in the vessel, and then we traced the K applied for different 6 7 transients. We did this for all the major transient 8 9 classes, main steam line break, stuck-open valves, and so on, and I'm just showing you this, for the 16-inch 10 11 LOCA but the trend is consistent that as you increase 12 the vessel wall thickness, here we've gone from an eight-inch vessel out to an 11-inch vessel and you 13 14 systematically are increasing the peak applied to 15 stress intensity factor and it's that peak that is controlling the through-wall cracking frequency by not 16 insignificant amounts. 17 And, again, I haven't showed all of the 18 19 plots here. We have them and I can provide them to 20 We looked at this for a dominant transient from you. 21 each of the major classes and it was apparent in all 22 We find that -- I quess I bypassed this of them. 23 here. You can look at different reasons why as 24 thickness qoes up should through-wall cracking

25 frequency go up or should it go down.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

65

It should go up because the thermal stresses increase which increase the applied K which is certainly true. It should also go up because as you get a thicker vessel you've got more weld fusion line area and you've got more flaws so you've got more possibility to initiate.

However, it might also go down because the thicker vessel has thickness, more opportunity to arrest a crack. However, what we found out we then did a probabilistic analysis where we looked at the 16-inch hot leg break in Beaver Valley, the four-inch surge line break, the main steam line break, and stuck-open SRV that recloses later.

We started off with the base line Beaver Valley thickness and then we just increased the -- the only thing we changed is we just increased the thickness of the Beaver Valley vessel and the vertical axis shows the ratio of the through-wall -- I'm sorry. That shouldn't be through-wall cracking frequency because these are individual transients.

That should be conditional probability of through-wall cracking ratioed to the conditional probability of through-wall cracking for that transient in the baseline Beaver Valley vessel. We find systematic and not marginal increases in through-

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

wall cracking frequency as you go out in thickness for 1 2 all the major transient classes. Then we said, okay, well, this is a plot 3 4 I should have on my wall and now I do. What wall 5 thickness is there in service? Well, certainly the great majority of the PWRs are in the eight to nine-6 7 and-a-half inch range which is the range that we 8 covered in our baseline analyses. 9 There are a few vessels. My favorite, the There 10 Kewaunee vessel, down here that are thinner. are also a few cases out here that are thicker. 11 Based on this analysis we say in general our through-wall 12 cracking frequency results can be applied without any 13 14 modifications to vessels in this thickness range. 15 The conservative for the thinner vessels 16 and, oh my gosh, we've got nonconservative results for Fortunately, the three thicker 17 the thicker vessels. vessels are the three CE vessels at Palo Verde that 18 19 all have extremely low levels of embrittlement. 20 So summary of the sensitivity studies. We 21 believe that the sensitivity studies have shown that 22 the through-wall cracking frequency predictions of the 23 PFM model is implemented in favor of 04.1 or robust 24 with regards to credible changes in either the 25 submodels or in our inputs.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

67

1 We also believe that these results are 2 applicable to PWRs in general from a PFM perspective with two minor proprisos. 3 That being if somebody had 4 a forged vessel that was known to be susceptible to 5 subclad cracking and they wanted to operate it to very high levels of embrittlement, they should be advised 6 7 that they need to do a more detailed analysis of the through-wall cracking frequency of subclad cracks, 8 9 more detailed than we've done here. Also that if you want to apply these 10 11 results to the very thick walled vessels at Palo 12 Verde, they don't directly apply. However, as I would point out, Palo Verde because it's a more recently 13 14 constructed plant is a very low embrittlement plant so 15 I wouldn't anticipate any particular problems, just to say that you can't just use the results straight. 16 On Palo Verde isn't Palo Verde 17 DR. FORD: one of those ones with the high nickel content? 18 19 MR. ERICKSONKIRK: I could not say for 20 sure. 21 DR. FORD: There are not many. It's 22 either Palisades or Palo Verde. My point is this is 23 good from the analysis that you have done. If there 24 was another embrittlement process with high nickel 25 content welds, then what you're seeing is for those

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

68

	69
1	particular ones, to go back to your previous graph for
2	the 11-inch area of wall thickness, you've got a very
3	high sensitivity of that ratio to wall thickness.
4	MR. ERICKSONKIRK: Yeah. I think I
5	mean, I'll make my plug for continued research since
6	you set me up. I mean, clearly it would be silly to
7	say that we know everything there is to know about
8	irradiation embrittlement so we should continue to
9	study that from a physical basis.
10	But also this is exactly the reason why,
11	at least in my opinion, and I'll label it as such,
12	nobody should be talking about discontinuing
13	surveillance sampling programs because while I and,
14	again, a personal view.
15	While I think in performing plant
16	assessments it's generally better to just use the
17	copper, nickel, and phosphorus and plug it into the
18	embrittlement equation and go and use that,
19	surveillance performs an important role of just doing
20	a consistency check on that because if you do continue
21	surveillance and you start to see values that are
22	deviating from this correlation, that's a clear
23	indication that something is going on that you didn't
24	anticipate.
25	I think that's it. That's it. Any other

(202) 234-4433

	70
1	questions?
2	MR. DENNING: Yeah. Let me ask a question
3	about the flaw distribution. Could you remind me
4	again how did you account for the uncertainties in
5	what that flaw distribution is since they are large?
6	MR. ERICKSONKIRK: Okay. The
7	uncertainties are accounted for by essentially putting
8	statistical bounds and they turn out to be very wide
9	statistical bounds on the available data. We sample
10	from a range of crack sizes and also a range of
11	densities.
12	If I continue talking, I'm likely to say
13	something wrong so I'll refer you to the report and I
14	can certainly get that for you. The
15	statistical distributions that we sampled from were
16	based on fits to our data derived from the inspections
17	of the vessels, both destructive and nondestructive.
18	The point I would make is that we are sampling from
19	some pretty wide uncertainty bounds both for density
20	and size.
21	CHAIRMAN SHACK: Again, how does that work
22	in FAVOR?
23	MR. DICKSON: Okay. Going back and
24	remembering that we are in a Monte Carlo loop here,
25	vessel No. 1, flaw No. 1. Okay. For vessel No. 1

(202) 234-4433

71
there is a statistical distribution that describes the
possibilities for flaws. The number of flaws, the
depth of the flaws, the width of the flaws, and the
location of the flaw in the wall of the vessel.
There's a statistical distribution that
you are going to use for that first vessel, all of the
flaws in vessel No. 1. Then as Bruce Bishop said a
minute ago, there's a thousand such distributions that
are input to FAVOR through the input data.
For each flaw you are sampling from a
distribution that has uncertainty and then in the
global picture you have a thousand such statistics so
you have a thousand distributions to sample from.
Vessel No. 1 you use statistic No. 1. Vessel No. 2,
statistic No. 2. After you get to a thousand you go
back and repeat.
DR. WALLIS: Does the through-wall
cracking frequency prediction depend on the tails of
these distributions? Is it very sensitive to the
extreme tails because this is always a problem with
extrapolating statistics and estimating what happens
way out at the end of the tail. Or is it more
sensitive to the sort of bulk of the
MR. DICKSON: Generally speaking it's more
sensitive to the bulk because what you tend to see is

(202) 234-4433
1 transients that have very low probabilities of 2 The large flaws will kick in. They will be fracture. for 3 particularly significant those low very 4 probability transients.

5 In other words, you may have to have a one-inch flaw right at the clad base interface to get 6 7 it to go. But those transients aren't going to matter 8 too much anyway since they are low probabilities. 9 Which brings me back to Dr. Wallis' question, which 10 ones matter. It's not necessarily the deeper flaws. It's just kind of the quarter-inch to half-inch flaws 11 12 that sort of dictate.

Then that concludes the presentation on 13 14 sensitivity studies. The next presentation PFM15 concerns external events the write-up on which can be found in Section 9.4 of NUREG 1806 and the presenter 16 Whitehead Sandia 17 will be Donnie of National 18 Laboratory.

19 MR. WHITEHEAD: The approach that we took 20 looking at external events, which basically for 21 determined whether or not -- the approach that we took 22 was to determine whether or not the contribution of 23 external events to our through-wall cracking frequency is greater than that which would be calculated from 24 25 internal events.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1What we used for this particular analysis2was the CPFs that had been calculated for the 603effective full power years. This analysis was4purposely conservative and we were doing that to see5whether or not we could bound the through-wall6cracking frequencies from such external events.7The specific effects are obviously plant8specific. If we were to actually do detailed analyses9and calculations for each of the plants it would be10considerable resources and cost associated with this.11What we wanted to do was to see if we were to do a12conservative analysis would that affect the bottom13line answer that we were trying to develop and that14being is there enough justification to allow a15modification to the existing rule.16The conclusion that we came to from this17particular analysis was that the results show that the18conservative approach that we took basically would19yield through-wall cracking frequencies that would be20approximately designed as we have from the internal21events at 60 EFPY. That's the conservative answer22that we would arrive at.23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.		73
2was the CPFs that had been calculated for the 603effective full power years. This analysis was4purposely conservative and we were doing that to see5whether or not we could bound the through-wall6cracking frequencies from such external events.7The specific effects are obviously plant8specific. If we were to actually do detailed analyses9and calculations for each of the plants it would be10considerable resources and cost associated with this.11What we wanted to do was to see if we were to do a12conservative analysis would that affect the bottom13line answer that we were trying to develop and that14being is there enough justification to allow a15modification to the existing rule.16The conclusion that we came to from this17particular analysis was that the results show that the18conservative approach that we took basically would19yield through-wall cracking frequencies that would be20approximately designed as we have from the internal21events at 60 EFPY. That's the conservative answer22that we would arrive at.23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.	1	What we used for this particular analysis
3effective full power years. This analysis was4purposely conservative and we were doing that to see5whether or not we could bound the through-wall6cracking frequencies from such external events.7The specific effects are obviously plant8specific. If we were to actually do detailed analyses9and calculations for each of the plants it would be10considerable resources and cost associated with this.11What we wanted to do was to see if we were to do a12conservative analysis would that affect the bottom13line answer that we were trying to develop and that14being is there enough justification to allow a15modification to the existing rule.16The conclusion that we came to from this17particular analysis was that the results show that the18conservative approach that we took basically would19yield through-wall cracking frequencies that would be20approximately designed as we have from the internal21events at 60 EFPY. That's the conservative answer22that we would arrive at.23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.	2	was the CPFs that had been calculated for the 60
4purposely conservative and we were doing that to see5whether or not we could bound the through-wall6cracking frequencies from such external events.7The specific effects are obviously plant8specific. If we were to actually do detailed analyses9and calculations for each of the plants it would be10considerable resources and cost associated with this.11What we wanted to do was to see if we were to do a12conservative analysis would that affect the bottom13line answer that we were trying to develop and that14being is there enough justification to allow a15modification to the existing rule.16The conclusion that we came to from this17particular analysis was that the results show that the18conservative approach that we took basically would19yield through-wall cracking frequencies that would be20approximately designed as we have from the internal21cHAIRMAN SHACK: We're running short here23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.	3	effective full power years. This analysis was
5whether or not we could bound the through-wall cracking frequencies from such external events.7The specific effects are obviously plant8specific. If we were to actually do detailed analyses9and calculations for each of the plants it would be10considerable resources and cost associated with this.11What we wanted to do was to see if we were to do a12conservative analysis would that affect the bottom13line answer that we were trying to develop and that14being is there enough justification to allow a15modification to the existing rule.16The conclusion that we came to from this17particular analysis was that the results show that the18conservative approach that we took basically would19yield through-wall cracking frequencies that would be20approximately designed as we have from the internal21events at 60 EFPY. That's the conservative answer22that we would arrive at.23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.	4	purposely conservative and we were doing that to see
6cracking frequencies from such external events.7The specific effects are obviously plant8specific. If we were to actually do detailed analyses9and calculations for each of the plants it would be10considerable resources and cost associated with this.11What we wanted to do was to see if we were to do a12conservative analysis would that affect the bottom13line answer that we were trying to develop and that14being is there enough justification to allow a15modification to the existing rule.16The conclusion that we came to from this17particular analysis was that the results show that the18conservative approach that we took basically would19yield through-wall cracking frequencies that would be20approximately designed as we have from the internal21events at 60 EFPY. That's the conservative answer22that we would arrive at.23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.	5	whether or not we could bound the through-wall
7The specific effects are obviously plant8specific. If we were to actually do detailed analyses9and calculations for each of the plants it would be10considerable resources and cost associated with this.11What we wanted to do was to see if we were to do a12conservative analysis would that affect the bottom13line answer that we were trying to develop and that14being is there enough justification to allow a15modification to the existing rule.16The conclusion that we came to from this17particular analysis was that the results show that the18conservative approach that we took basically would19yield through-wall cracking frequencies that would be20approximately designed as we have from the internal21events at 60 EFPY. That's the conservative answer22that we would arrive at.23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.	б	cracking frequencies from such external events.
8specific. If we were to actually do detailed analyses9and calculations for each of the plants it would be10considerable resources and cost associated with this.11What we wanted to do was to see if we were to do a12conservative analysis would that affect the bottom13line answer that we were trying to develop and that14being is there enough justification to allow a15modification to the existing rule.16The conclusion that we came to from this17particular analysis was that the results show that the18conservative approach that we took basically would19yield through-wall cracking frequencies that would be20approximately designed as we have from the internal21events at 60 EFPY. That's the conservative answer22that we would arrive at.23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.	7	The specific effects are obviously plant
9and calculations for each of the plants it would be10considerable resources and cost associated with this.11What we wanted to do was to see if we were to do a12conservative analysis would that affect the bottom13line answer that we were trying to develop and that14being is there enough justification to allow a15modification to the existing rule.16The conclusion that we came to from this17particular analysis was that the results show that the18conservative approach that we took basically would19yield through-wall cracking frequencies that would be20approximately designed as we have from the internal21events at 60 EFPY. That's the conservative answer22that we would arrive at.23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.	8	specific. If we were to actually do detailed analyses
10considerable resources and cost associated with this.11What we wanted to do was to see if we were to do a12conservative analysis would that affect the bottom13line answer that we were trying to develop and that14being is there enough justification to allow a15modification to the existing rule.16The conclusion that we came to from this17particular analysis was that the results show that the18conservative approach that we took basically would19yield through-wall cracking frequencies that would be20approximately designed as we have from the internal21events at 60 EFPY. That's the conservative answer22that we would arrive at.23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.	9	and calculations for each of the plants it would be
11What we wanted to do was to see if we were to do a12conservative analysis would that affect the bottom13line answer that we were trying to develop and that14being is there enough justification to allow a15modification to the existing rule.16The conclusion that we came to from this17particular analysis was that the results show that the18conservative approach that we took basically would19yield through-wall cracking frequencies that would be20approximately designed as we have from the internal21events at 60 EFPY. That's the conservative answer22that we would arrive at.23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.	10	considerable resources and cost associated with this.
 12 conservative analysis would that affect the bottom 13 line answer that we were trying to develop and that 14 being is there enough justification to allow a 15 modification to the existing rule. 16 The conclusion that we came to from this 17 particular analysis was that the results show that the 18 conservative approach that we took basically would 19 yield through-wall cracking frequencies that would be 20 approximately designed as we have from the internal 21 events at 60 EFPY. That's the conservative answer 22 that we would arrive at. 23 CHAIRMAN SHACK: We're running short here 24 so I would like to finish up in a relatively few 25 minutes so we have time for the Peer Review stuff. 	11	What we wanted to do was to see if we were to do a
 line answer that we were trying to develop and that being is there enough justification to allow a modification to the existing rule. The conclusion that we came to from this particular analysis was that the results show that the conservative approach that we took basically would yield through-wall cracking frequencies that would be approximately designed as we have from the internal events at 60 EFPY. That's the conservative answer that we would arrive at. CHAIRMAN SHACK: We're running short here so I would like to finish up in a relatively few minutes so we have time for the Peer Review stuff. 	12	conservative analysis would that affect the bottom
 being is there enough justification to allow a modification to the existing rule. The conclusion that we came to from this particular analysis was that the results show that the conservative approach that we took basically would yield through-wall cracking frequencies that would be approximately designed as we have from the internal events at 60 EFPY. That's the conservative answer that we would arrive at. CHAIRMAN SHACK: We're running short here so I would like to finish up in a relatively few minutes so we have time for the Peer Review stuff. 	13	line answer that we were trying to develop and that
 modification to the existing rule. The conclusion that we came to from this particular analysis was that the results show that the conservative approach that we took basically would yield through-wall cracking frequencies that would be approximately designed as we have from the internal events at 60 EFPY. That's the conservative answer that we would arrive at. CHAIRMAN SHACK: We're running short here so I would like to finish up in a relatively few minutes so we have time for the Peer Review stuff. 	14	being is there enough justification to allow a
16The conclusion that we came to from this17particular analysis was that the results show that the18conservative approach that we took basically would19yield through-wall cracking frequencies that would be20approximately designed as we have from the internal21events at 60 EFPY. That's the conservative answer22that we would arrive at.23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.	15	modification to the existing rule.
17 particular analysis was that the results show that the 18 conservative approach that we took basically would 19 yield through-wall cracking frequencies that would be 20 approximately designed as we have from the internal 21 events at 60 EFPY. That's the conservative answer 22 that we would arrive at. 23 CHAIRMAN SHACK: We're running short here 24 so I would like to finish up in a relatively few 25 minutes so we have time for the Peer Review stuff.	16	The conclusion that we came to from this
18 conservative approach that we took basically would 19 yield through-wall cracking frequencies that would be 20 approximately designed as we have from the internal 21 events at 60 EFPY. That's the conservative answer 22 that we would arrive at. 23 CHAIRMAN SHACK: We're running short here 24 so I would like to finish up in a relatively few 25 minutes so we have time for the Peer Review stuff.	17	particular analysis was that the results show that the
19 yield through-wall cracking frequencies that would be 20 approximately designed as we have from the internal 21 events at 60 EFPY. That's the conservative answer 22 that we would arrive at. 23 CHAIRMAN SHACK: We're running short here 24 so I would like to finish up in a relatively few 25 minutes so we have time for the Peer Review stuff.	18	conservative approach that we took basically would
20 approximately designed as we have from the internal 21 events at 60 EFPY. That's the conservative answer 22 that we would arrive at. 23 CHAIRMAN SHACK: We're running short here 24 so I would like to finish up in a relatively few 25 minutes so we have time for the Peer Review stuff.	19	yield through-wall cracking frequencies that would be
<pre>21 events at 60 EFPY. That's the conservative answer 22 that we would arrive at. 23 CHAIRMAN SHACK: We're running short here 24 so I would like to finish up in a relatively few 25 minutes so we have time for the Peer Review stuff.</pre>	20	approximately designed as we have from the internal
22 that we would arrive at. 23 CHAIRMAN SHACK: We're running short here 24 so I would like to finish up in a relatively few 25 minutes so we have time for the Peer Review stuff.	21	events at 60 EFPY. That's the conservative answer
23CHAIRMAN SHACK: We're running short here24so I would like to finish up in a relatively few25minutes so we have time for the Peer Review stuff.	22	that we would arrive at.
so I would like to finish up in a relatively fewminutes so we have time for the Peer Review stuff.	23	CHAIRMAN SHACK: We're running short here
25 minutes so we have time for the Peer Review stuff.	24	so I would like to finish up in a relatively few
	25	minutes so we have time for the Peer Review stuff.

(202) 234-4433

	74
1	MR. WHITEHEAD: I can do that. Basically
2	what we did was we reviewed to begin with information
3	that was available from Calvert Cliffs PRA and
4	sampling information from IPEEs. We examined
5	information from licensee event reports.
6	What we found was there was a suggestion
7	that external events would be a small contributor but
8	there wasn't anything definitive so what we did was,
9	again, we performed out detailed rather, our
10	conservative analysis looking at various types of
11	scenarios that might occur from various external
12	events. LOCAs, secondary faults, things put together
13	with both LOCA and secondary faults.
14	An example of the type of analysis that we
15	did, let's look at a small-break LOCA and we looked at
16	two cases, HCLPF value of .3 which is the review level
17	earthquake for most of the plants, and a HCLPF value
18	of .5g which is typical for the west coast plants.
19	If you look at the hazard curves for those
20	two, you'll find that the first one gives you a value
21	of about 1.6E-4 per year. The other one gives you a
22	value of 5E-4 per year. Being conservative we chose
23	the 5E-4. We combined that with the highest value
24	that we had for LOCAs at 60 EFPY and we found that
25	well, let's see.

(202) 234-4433

What we did was by doing that we have 2 assumed that the LOCA event itself would actually occur at the point 5g HCLPF value. We have assumed 3 4 that there's no credit taken for possible operator 5 actions to mitigate the response to the event. We've also assumed that there's no credit for the possible 6 7 failures of injection systems.

What we found at least follows on the next 8 This is basically the information that's in the 9 page. It gives you the bounding values that we 10 report. 11 found by going through the same type of process for 12 the small. Obviously we would look at the mediumbreak LOCA and the large-break LOCA, so forth and so 13 14 on, both for the full-power case and the hot zero 15 power case.

Information from the other analyses that 16 we did, this is all in the report. Here is one where 17 we essentially go through the same process except now 18 19 we combine both primary and secondary faults. The 20 only case that we could come up with was a seismic 21 event, again using the values with the high seismic 22 frequency using a .1 probability for concurrent 23 significant secondary fault using the worse case CPFs. 24 You end up with various through-wall cracking 25 frequency estimates.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

The overall results from this is that our best estimate through-wall cracking for internal events that we talked about previously is something a little less than 2E-8 per year. The total bounding through-wall cracking frequency for external events is about 2E-8. If you sum up all of the bounding analyses that we did, the answer is about 2E-8.

8 So what we conclude is that the external 9 event contribution to through-wall cracking frequency 10 is not any worse than what we have already calculated 11 for the internal events.

12 reality considering all of In the conservatisms that we've done by always taking the 13 14 highest for seismic events, always taking the highest 15 HCLPF value, taking no credit for operator actions in any of the analyses that we've done, things of that 16 nature, if you will, the true answer would be, and we 17 would expect to be possibly significantly less than 18 the 2E-8 that we calculated here. 19

20 So we see no reason why external events 21 should pose any problem to the determination that we 22 can move forward with rulemaking if we so choose to do 23 so.

24 CHAIRMAN SHACK: We'll take a break now 25 for 15 minutes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	77
1	(Whereupon, at 10:05 a.m. off the record
2	until 10:28 a.m.)
3	CHAIRMAN SHACK: I'd like to come back
4	into session.
5	MR. BESSETTE: I'm one of these people
6	that predates technology or something. I'm going to
7	go over the main comments we got from the Peer Review
8	people. One of the comments that doesn't appear here
9	we had six people. There were two fracture people and
10	two thermal hydraulics people and one PRA guy and then
11	Tom Murley.
12	Basically the way these things work out is
13	that the two thermal hydraulics guys say, "Well, I
14	don't know about this other stuff so I'm just going to
15	focus on thermal hydraulics." Their comments are
16	along those lines.
17	I think actually you need to keep all
18	three disciplines considered as much in an integrated
19	fashion as possible so you keep these relative
20	uncertainties and whatnot in context. For example,
21	from what Mark just showed with some of the standard
22	deviations and whatnot.
23	As I said yesterday, most of the one of
24	the set of comments first set of comments was most
25	parameters in the PIRT are system boundary conditions

(202) 234-4433

	78
1	rather than physical models, and indeed that's true.
2	There's a sensible reason why that is so. Are there
3	any questions about the effect of thermal
4	stratification and mixing and the cold leg and
5	downcomer from ECCS injection and how well this can be
6	modeled with RELAP?
7	I think I showed we looked at a lot of
8	experimental data which indicates we are getting the
9	downcomer temperature pretty accurately. Although it
10	is always large thermal stratifications in the cold
11	leg during ECC injection, these don't translate into
12	nonuniform temperatures in the downcomer.
13	There was a focus on the effective wall
14	heat transfer coefficient, convective heat transfer
15	coefficient, if you can separate this effect out and
16	how important is that to the predictions of failure
17	and questions about the use of 1D versus 2D downcomer
18	nodalization which I talked about yesterday. They
19	also took note of the fact that if you're not careful
20	you can get these numerically induced flows in 2x4
21	plants.
22	So we did a number of sensitivity studies
23	both from what I showed yesterday and what I didn't
24	talk about. We ran I would say hundreds of RELAP
25	calculations at the University of Maryland to

(202) 234-4433

	79
1	investigate the sensitivities that results to
2	different parameters.
3	These, indeed, I'll show that the boundary
4	conditions dominate the determination of downcomer
5	temperature. And so as a consequence to that, we
6	tried as diligently as possible to define specific
7	transients that would capture the important variations
8	through the boundary conditions.
9	And Mark showed some of these kind of
10	plots yesterday. This is a spectrum of results that
11	you get, in this case for Palisades, looking at the
12	center of transients that constitute small-break LOCA.
13	On the left is temperature and on the right is
14	pressure.
15	You can see that for this category of
16	events we are getting variations of at least 100
17	degrees K, 180 degrees F. It's the difference in
18	break size basically. We are getting variations for
19	these kind of pressure variations from about 100 psi
20	to 1,000 psi. There is quite a range of variations.
21	As you go to a medium break, I think as we
22	have cited a number of times, these variations are
23	thought to become smaller so now we are down to 75K
24	and maybe a few PSI within the medium-break LOCA bin.
25	And then when you get a large-break LOCA these

(202) 234-4433

	80
1	variations essentially are gone. For the three
2	plants we end up representing the large-break LOCA
3	class of events by a single transient.
4	These results are from some of the
5	University of Maryland sensitivity studies. This was
6	done for 2.8 inch break LOCA which calls into the
7	category of a small-break LOCA. They investigated 17
8	different parameters and they effect they had. In
9	this case they have chose as a figure of merit an
10	average downcomer temperature over the duration of the
11	transient.
12	You can see that if you fail all of HPI,
13	of course, you get a big benefit. You see the most
14	important benefits are from failing HPI which you
15	might expect. Put it in cold water and it doesn't get
16	so cold.
17	This is for Oconee. We did a sensitivity
18	on hold the reactor vessel vent valves open. Remember
19	that B&W plants have the potential for very large
20	opening between the upper plenum and the downcomer to
21	the vent valves.
22	In fact, this kind of effect is also
23	present in CE and Westinghouse plants because when you
24	add up the bypass area between the upper plenum and
25	the downcomer, it is still substantial. It's about

(202) 234-4433

maybe, if I can recall correctly, it's about one-fifth
of this area. It's equivalent to a hole of about one
square foot.

4 What this does is it allows in-vessel 5 circulation which has an effect on downcomer 6 temperature and so you can see that the magnitude is 7 effected. It's about 25 degrees K. Of course, things 8 like varying the break between the hot leg and cold 9 We deal with set pump curves for, let's say, HPI leq. flow and these have some uncertainties. 10 We varied that. 11

12 varied transfer coefficient We heat the total reactor cooling system 13 throughout and 14 conditions of summer and winter. This affects the 15 injection temperature to ECC and things like this is the pressure of the accumulators or core flood tanks. 16 17 So these are various things we varied. You can see the effect in terms of a downcomer temperature. 18

When you go to medium-break LOCA you see these effects substantially decrease. For large-break LOCA they are almost nonexistence. That fits in with these kind of plots here. Many things can affect small-break LOCAs but, on the other hand, the CPFs for small breaks kind of fall off the bottom of the map. That's it. There's one other thing I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

(202) 234-4433

81

	82
1	probably should have pointed out yesterday. I just
2	handed out two viewgraphs. I didn't keep a copy for
3	myself. Basically when we varied when we put
4	factors on the heat transfer coefficient we did that
5	in a conservative sense in a way in that we simply
6	took the RELAP output and put multipliers in the
7	output so we didn't do it as integral calculation.
8	When you calculate heat flux, we submit
9	three parameters to fracture people which is pressure,
10	temperature, and heat transfer coefficient, but really
11	there's only two real parameters. There's heat flux
12	and pressure.
13	DR. WALLIS: You model the wall as well.
14	You must model the wall.
15	MR. BESSETTE: We model the wall so we
16	model all the we model the total conduction in the
17	metal structures. It's interesting to note that we
18	are solving this combined convection and conduction
19	equation in RELAP. When you do that the wall
20	temperature, which is the wall surface temperature,
21	and the convective heat transfer coefficient are not
22	independent parameters. If you look
23	DR. RANSOM: You feed in the fluid
24	temperature and the heat transfer coefficient to
25	FAVOR. Right?

(202) 234-4433

	83
1	MR. BESSETTE: Yes.
2	DR. RANSOM: And it does this calculation
3	to get the (t)/dx at the surface.
4	MR. BESSETTE: Yes. So what I was
5	pointing out is that when we put multipliers on heat
6	transfer coefficient and add that to FAVOR, it's kind
7	of a conservative way of doing it as opposed to
8	actually making a change in the physical model.
9	DR. RANSOM: So from this relationship, of
10	course, the (t)/dx is increased by whatever you
11	increase the heat transfer coefficient by, the initial
12	state.
13	MR. BESSETTE: Yes. You know, this
14	interplay between these three factors, fluid
15	temperature, wall temperature, and kind of backing out
16	in the sense of the heat transfer coefficient.
17	DR. RANSOM: Incidentally, do you know
18	what the biot number is for the heat transfer
19	situation that you're in there?
20	MR. BESSETTE: Yes, it's for close
21	diagnation conditions. It's about 10. On the order
22	of 10.
23	DR. RANSOM: So it is convention dominated
24	then, I guess. The biot number is HD over K.
25	MR. BESSETTE: Yeah.

(202) 234-4433

	84
1	DR. RANSOM: If it's 10, that means
2	MR. BESSETTE: Convection dominated.
3	You're right.
4	DR. WALLIS: But d is the wall thickness.
5	CHAIRMAN SHACK: But what are you using
6	for the characteristic length?
7	MR. BESSETTE: Typically you use the total
8	wall thickness. As you have seen from these plots the
9	flaws that cause the vessel to fail are within the
10	first half inch to inch. There are really sort of two
11	characteristic lengths at play here. There's the
12	characteristic length with the whole vessel wall
13	thickness which determines the overall temperature
14	profile, the one with the forier number.
15	It determines that temperature profile of
16	the whole vessel from which you get the thermal
17	stress, but then there's the more localized effect.
18	What are the critical flaw sensing? Those were within
19	the first half inch to an inch of depth. When you
20	look at that, the biot number changes by a factor of
21	10 so instead now it's about one. The process is not
22	conducted and controlled anymore. Both convection and
23	conduction come into play.
24	DR. WALLIS: We were told that for big
25	breaks the wall governed? What you are suggesting is

(202) 234-4433

	85
1	maybe this is not quite so simple as that?
2	MR. BESSETTE: There is still the
3	overwhelming effect. If you look at fluid temperature
4	and heat transfer coefficient if you have an infinite
5	heat transfer coefficient, then the wall surface is
6	the same as the fluid temperature. The more you
7	reduce the heat transfer coefficient, more of a delta
8	T you have between the fluid and the wall.
9	If you look at the second viewgraph, you
10	can see that kind of the delta T that you get as a
11	function of heat transfer coefficient. Let's say at
12	the low end of the range for 850 watt square meter you
13	have a delta T between the fluid and the wall of about
14	23 degrees C.
15	You say how far off could I be? Let's
16	assume an infinite heat transfer coefficient you would
17	be lowering your wall surface temperature by about 23
18	degrees C. That in a sense is how much can heat
19	transfer effect the answer is basically kind of
20	equivalent to 23 degrees C change in fluid
21	temperature.
22	DR. WALLIS: This is at a particular time?
23	MR. BESSETTE: Yes.
24	DR. WALLIS: I think if you wanted to
25	demonstrate this, if you actually showed some

(202) 234-4433

	86
1	temperature profiles for different h's, as I think has
2	been done before, it showed how these temperature
3	profiles evolved with time for different h's and you
4	would probably show that after awhile h doesn't
5	matter. H matters in the beginning.
б	MR. BESSETTE: Yeah, I could do that. I
7	think I've got it some place upstairs. I just don't
8	have it here.
9	DR. WALLIS: It would be interesting to
10	know what the Tf-T wall initial. You know, how taunt
11	was the wall to start out with so that you see the
12	maximum delta T and how relative this difference is
13	compared to what it was at the initial beginning of
14	the transfer.
15	MR. BESSETTE: Well, your initial wall
16	temperature is the same as your cold leg temperature.
17	It's about 545 degrees F. You don't start cooling
18	down the wall until you get the flow stagnation
19	conditions.
20	DR. RANSOM: So you get some fluid there,
21	I guess.
22	MR. BESSETTE: Yes. In effect you don't
23	start the PTS transient until you reach flow
24	stagnation for a LOCA. But you can see on the second
25	page you can change heat transfer coefficient by a

(202) 234-4433

	87
1	factor of 10 and you are only changing heat flux by 20
2	percent. It's heat flux that really matters rather
3	than the two parameters individually.
4	DR. RANSOM: Is this $dT(t)/dx$ is governed
5	by?
6	MR. BESSETTE: Yes.
7	DR. WALLIS: It all has an interplay with
8	the flaw distribution and as you are talking about
9	that small dimension. If all the action is in a very
10	think layer near the surface, then h is very
11	important. If the action is an inch from the surface,
12	then k is much more important. Actually, I think as
13	we saw earlier, that is the region where all of the
14	flaws are sort of important but they are most
15	important near the surface.
16	MR. BESSETTE: I think the reason the
17	surface one of the reasons that surface flaws show
18	up this way is because of this near-surface metal
19	experiences that temperature more quickly than the
20	deeper so it's going to have the lowest at any
21	given time it's going to have the lowest fracture
22	toughness.
23	DR. WALLIS: So what's the sensitivity of
24	the overall result to this h?
25	MR. BESSETTE: Well, I showed you some

(202) 234-4433

	88
1	numbers yesterday. It turns out to be factors of two
2	or three.
3	DR. WALLIS: So it's not insignificant.
4	MR. BESSETTE: Not insignificant but I
5	think Mark was showing other examples of change this
6	as factor of three, change that as factor of three.
7	MR. ERICKSONKIRK: We'll have a summary at
8	the end.
9	DR. WALLIS: But if this h were bigger
10	because of the stirring we talked about yesterday,
11	bigger than Dittus-Boelter because of this mixing, h
12	would be bigger and that would be a bigger challenge
13	to the wall.
14	MR. BESSETTE: Yes.
15	DR. WALLIS: The factor of two or three
16	would be up.
17	MR. BESSETTE: But, you know, we expect h
18	I mean, we calculate h to be around 1,700.
19	DR. WALLIS: This is for Dittus-Boelter?
20	MR. BESSETTE: This is actually from
21	Churchill-Chu or Ivan. When you get down to that
22	range, Churchill-Chu gives you a higher coefficient
23	than Dittus-Boelter and RELAP will look at both and
24	choose the
25	DR. WALLIS: The factor of two is not true

(202) 234-4433

	89
1	convection with the off fluid going up near the wall.
2	MR. BESSETTE: It chooses whatever gives
3	the higher number. As you can see, of course, how the
4	T wall minus T fluid drops as you go off at h. Where
5	you get to 10,000 it's down to about 2.5 degrees C.
6	DR. WALLIS: Churchill-Chu TWISTF actually
7	feeds back to h.
8	MR. BESSETTE: Excuse me?
9	DR. WALLIS: TWISTF is in the Grashoff
10	number which affects h.
11	MR. BESSETTE: Yes.
12	CHAIRMAN SHACK: We're going to have to
13	move on.
14	MR. BESSETTE: That's basically it for me.
15	MR. NOURBAKHSH: Just one comment. There
16	was a CSNI report that the US participated, too.
17	There was comprised wall heat transfer coefficient for
18	different participating countries for a medium-break
19	LOCA. Have you looked at that and see what is the
20	range of heat transfer there? There was Frenchman
21	doing CFD calculation to get that heat transfer
22	coefficient. I don't know if they were successful or
23	not.
24	MR. BESSETTE: In fact, that's what
25	motivated us to do this sensitivity study. There's

(202) 234-4433

	90
1	been controversy going back to the early '80s about
2	whether the heat transfer coefficient is important or
3	not. If you just do a biot number analysis, you say,
4	well, it's not important.
5	But then you start looking at actual FAVOR
6	calculations and you say sometimes it's not
7	insignificant. What's the true story? The true story
8	is that you are really dealing with two characteristic
9	lengths and two characteristic times when you look at
10	this.
11	One which is the whole vessel thickness
12	and one which is where the flaws are that cause your
13	problems. That's really the source for this people
14	talking across purposes, is it important or not.
15	MR. NOURBAKHSH: But they offer different
16	heat transfer coefficient. There were some that they
17	were using upper plenum test facilities to come up
18	with this transfer coefficient.
19	MR. BESSETTE: Yes. Some people in that
20	study suggested that you don't become you have to
21	consider heat transfer coefficients up to 10,000 and
22	so that's how we picked this range is from that
23	exercise.
24	CHAIRMAN SHACK: One of the troubles is,
25	of course, you stop here. You have to integrate this

(202) 234-4433

91
whole thing out to the end. It's very difficult at
any point in here to know how this really affects the
final result.
MR. BESSETTE: That's what I was saying.
Of course, that's why you have to have a deterministic
thermal hydraulics input into FAVOR is because the
whole time/temperature history is what matters. Is
that what you were saying?
CHAIRMAN SHACK: Well, all I want to know
is you tell me if it's important or not important.
It's not important or important until I see what it
does to the vessel failure frequency.
MR. BESSETTE: Well, that's true. That's
why I said yesterday when you look at thermal
hydraulics results you can't look at them by
themselves. You only know what is important or not
important after you run them through FAVOR.
MR. NOURBAKHSH: Now, if you put 10,000
heat transfer coefficient, how much do you think the
frequency of through-wall crack is going to change?
How important is this?
MR. BESSETTE: I don't know. I know
there's a I'm going to try to find the study that
Terry did about seven years ago along these lines and
get you that answer.

(202) 234-4433

	92
1	CHAIRMAN SHACK: That's like putting a
2	factor of five on your current heat transfer
3	coefficient roughly. Right?
4	MR. BESSETTE: Yes. Yeah.
5	CHAIRMAN SHACK: It would be big.
6	MR. BESSETTE: It goes up.
7	CHAIRMAN SHACK: CPF does go up.
8	MR. BESSETTE: Two gave them an order of
9	magnitude from the '97 study. Is that what I recall
10	from yesterday?
11	CHAIRMAN SHACK: I think we're going to
12	have to move on.
13	DR. RANSOM: Just one comment, though.
14	You went through these sensitivity studies and I guess
15	these were not carried out over into FAVOR. Is that
16	right?
17	MR. BESSETTE: Well, they were
18	DR. RANSOM: To find out what the through-
19	wall cracking frequency and how it is affected by
20	these changes?
21	MR. BESSETTE: They were, in fact. Well,
22	the way they were carried forth in the FAVOR was we
23	did sensitivity studies to characterize a range of
24	behavior that constituted small-break LOCAs. And then
25	from that we picked five individual RELAP runs that

(202) 234-4433

Í	93
1	attempted to reasonably cover this range of behavior.
2	We fed those five runs into FAVOR and said
3	we have to give you a deterministic input but in order
4	to characterize a range of uncertainty as to what is
5	a small-break LOCA, we give you five runs with
6	associated probabilities.
7	DR. RANSOM: I'm just wondering why you
8	didn't plot through-wall cracking frequency instead of
9	just the temperature difference for these sensitivity
10	studies. That would have answered a lot of these
11	questions.
12	MR. BESSETTE: We do have that kind of
13	information. It's in the report from the University
14	of Maryland.
15	DR. WALLIS: I think the message should be
16	the next time you present that. Next time you should
17	present that. The same way that Mark presents the
18	effect of everything on through-wall cracking, you
19	should do it, too. Or you should get together and do
20	it or something.
21	MR. BESSETTE: There's a chapter in the
22	report from the University of Maryland which
23	CHAIRMAN SHACK: But that is the way you
24	do the calculations so you've got five bins for small-
25	break LOCAs and all the small-break LOCA sequences are

(202) 234-4433

	94
1	dumped into one of those five bins.
2	MR. BESSETTE: Yes.
3	CHAIRMAN SHACK: You've got how many bins
4	for medium-break LOCAs?
5	MR. BESSETTE: Three.
6	CHAIRMAN SHACK: Three. And one bin for
7	large-break LOCAs.
8	MR. BESSETTE: Yes.
9	CHAIRMAN SHACK: And so you hand them one
10	of those transients depending on which bin he happens
11	to be sampling from.
12	MR. BESSETTE: Yeah, so we hand them for
13	small-break LOCAs. We say here's five transients. We
14	subdivide the small-break LOCA probability five ways.
15	Each of these five is run through FAVOR and in the end
16	we sum all these up and get a total failure
17	probability.
18	CHAIRMAN SHACK: But within the bin
19	there's only transient history that you hand them?
20	MR. BESSETTE: Yeah. It's necessary to
21	hand them results from individual RELAP calculations
22	and to represent things by multiple RELAP calculations
23	instead of some sort of the multiple RELAP
24	calculations represent a probability of distribution
25	or probability of consequence distribution.

(202) 234-4433

to o do PFM. r one ≥er ial
PFM. r one eer
PFM. 7 one eer
PFM. 7 one Ser Lal
PFM. one eer ial
one eer ial
eer ial
ial
sked
ory
ere
ıst
ial
ppy
of
of
of
of
Ē

(202) 234-4433

	96
1	soon we will sign this set of reports out of research
2	and I'm going to carry the whole stack of reports
3	along with the penguin over to Matt Mitchell's office
4	in NRR and we're just going to dump it. That was
5	probably more than you wanted to know.
6	CHAIRMAN SHACK: I thought you were doing
7	it all in Linux? Linux uses the Penguin.
8	MR. ERICKSONKIRK: Oh, no. Okay.
9	Obviously there were lots and lots of individual
10	comments. I have divided them up into several
11	categories. Comments that led to model changes,
12	changes in the FAVOR model we discussed yesterday,
13	those being the addition of crack face pressure and
14	the upper shelf model. I think I've got a slide on
15	that that I'm just going to pass because we have
16	beaten that one.
17	Major comments of clarification bring up.
18	I'll skip on the minor comments and clarification.
19	Many of the reviewers made comments pertinent to
20	rulemaking which are generally not discussed here
21	unless they got into the new comments, in which case
22	I will bring them up.
23	We talked about this. We made two model
24	changes in response to Peer Reviewers' comments and
25	major comments of clarification. I've got three

(202) 234-4433

	97
1	reviewers here. Schultz and VanWalle were the PFM
2	reviewers and then Murley also made some comments on
3	PFM so we have addressed those as well.
4	Questioned the applicability of the flaw
5	distribution to PWRs in general and suggest that
6	operators should be required to demonstrate that the
7	flaw distribution is appropriate perhaps by linking
8	use of the rule to ISI.
9	Said something about a potential
10	correlation between flaw and chemistry variables.
11	Right now the flaw distribution and chemistry are
12	independently sampled. However, admitted that he had
13	no credible basis for such a correlation so we didn't
14	do anything with that.
15	Questioned our ability to accurately
16	predict multiple run-arrest events. That led to a
17	long interchange of e-mails between Dr. Schultz and
18	Richard Bass and Claud Pugh at Oak Ridge National
19	Laboratory that finally resulted in we felt that our
20	basis was adequately demonstrated in Appendix E which
21	referenced the Oak Ridge pressurized thermal shock and
22	thermal shock experiments. However, this reappeared
23	in Dr. Schultz' final comments and I don't think we
24	have convinced him yet.
25	Crack face pressure we've already talked

(202) 234-4433

1 about. There was a question and misunderstanding regarding the use of the Reg Guide 1.99, Rev. 2 2 3 attenuation function which we clarified and resolved. 4 For Dr. VanWalle question the 5 applicability of the results to PWRs in general which addressed in Chapter 9, I believe, to his 6 was 7 satisfaction. Questioned the mathematical treatment of mixed uncertainties and basically the need to treat 8 something as either fully aleatory or fully epistemic. 9 dissatisfaction that 10 Expressed there wasn't а mathematical procedure to treat that but accepted that 11 12 was the current state of practice. Ouestioned in our crack initiation and arrest model 13 14 the point where we -- I'm sorry. I'm losing it --15 where we don't sample the apparent uncertainty on the embrittlement trend and Charpy toughness shift models. 16 We shared with Dr. VanWalle the same information we 17 shared with you today. 18 19 I think generally we were less successful 20 in convincing him than convincing you if I judged the head nods appropriately so that's a residual point of 21 22 I think he still believes that we disagreement. 23 should be sampling on both chemistry uncertainty and 24 on model uncertainty. 25 Regarding the upper-shelf model he pointed

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

98

	99
1	out the inaccuracy of our then correlative approach,
2	suggest a model change, and we changed it and I
3	briefed you on that today. Questioned how we wired an
4	interdependence of K $_{\mbox{\tiny Ic}}$ and K $_{\mbox{\tiny Ia}}$ and the through-wall
5	cracking calculations.
6	When we perform a through-wall cracking
7	calculation, once the crack initiates, we then, of
8	course, have to simulate a value of K $_{\rm Ia}.$ We don't
9	allow FAVOR to simulate a value of K $_{\scriptscriptstyle \rm Ia}$ that would
10	immediately stop the crack. We allow the crack to
11	keep propagating.
12	He questioned and we provided in our
13	write-up of what we believe is a physical rationale
14	supporting that model. He questioned whether that was
15	appropriate. However, we haven't really done anything
16	with that because relative to the alternative of
17	having no correlation between the two, our model is
18	conservative whether you believe our physical
19	reasoning or not. He brought up the question of the

20 composition grading and copper for welds and we showed 21 you the results of the sensitivity study on that.

For Dr. Murley, he asked that we perform deterministic calculations of through-wall cracking to illustrate the various parts of the model which we have included in Appendix F of the report. That was

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	it for him.
2	Okay. So summary. I'm sorry I animated
3	all this. It makes it hard to go through. So in
4	general I'm not going to read this to you. In
5	general each of these three reviewers had, I think,
6	positive things to say about the project overall and
7	the PFM model in particular.
8	They all had some remaining issues with
9	regard to Dr. Schultz. It had to do with the comment
10	that he wasn't fully satisfied. That the flaw
11	distribution applied to all plants and thought that
12	there should be some obligation on the part of the
13	licensee to demonstrate that the flaw distribution was
14	appropriate.
15	He also has a remaining issue about the
16	appropriateness of our crack initiation arrest, run
17	arrest model. Again, finish with the recommendation
18	that licensees should be required to demonstrate the
19	appropriateness of the assumed flaw distribution to
20	their vessels.
21	Dr. VanWalle, again, some nice comments in
22	general. However, some particular remaining issues
23	that we've noted. He made several recommendations.
24	The continuation of in-service inspection to
25	substantiate the applicability of flaw distribution to

(202) 234-4433

	101
1	all PWRs. In fact, he made a stronger comment that he
2	felt that in-service inspection should be a
3	prerequisite to using any rule that develops our of
4	these calculations.
5	Over time he recommended the evolution
6	towards the direct use of fracture toughness
7	measurements made on surveillance specimens instead of
8	our current correlative approach using Charpys and
9	RT _{ndt} .
10	DR. WALLIS: On this mixed uncertainty
11	thing that was one of my comments before. You seemed
12	to have removed some epistemic uncertainty but it
13	didn't seem to remove the uncertainties.
14	Uncertainties still seem to be the same. Then you
15	have aleatory uncertainty.
16	It looked to me as if you were somehow
17	double counting. I haven't looked at it since then.
18	This was over a year ago. I had some problems with
19	the way you treated these mixed uncertainties. I
20	wondered if you weren't actually doing some double
21	counting along the way. That's just my memory of it.
22	MR. ERICKSONKIRK: That's the final
23	comment. Recommended continued/further validation of
24	indeed both the crack arrest models and the upper
25	shelf models by both further research to understand
1	

(202) 234-4433

	102
1	the physical mechanisms and further collection of
2	data.
3	Again, Murley finally, Murley,
4	generally positive comments. Said he had some
5	concerns that wouldn't rise to the level to seriously
6	challenge the logic of the overall approach.
7	Okay. I'm sorry. Final comments
8	continued. And he had some in the case of Murley
9	he had some what I would consider new things that he
10	raised in his final letter. Here I have only
11	attempted to summarize the ones that pertain to PFM.
12	There were some things where clearly we
13	had some errors in understanding which we have taken
14	as indications that our documentation isn't well
15	enough explained and we will be endeavoring to explain
16	it better so those understandings won't re-arise and
17	we will be communicating with him on that.
18	He also pointed out that we needed a more
19	thorough discussion of what he called the residual
20	uncertainties both conservative and nonconservative
21	that underlie our proposed screening limits. He
22	further commented that the discussion would serve as
23	a basis for decision makers in terms of whether our
24	existing screening limits could be used without the
25	need of an additional margin term if a margin term

(202) 234-4433

	103
1	would be needed.
2	We have tried to as best we can in the
3	two-day's time since we've had the comment to make a
4	more balanced approach on that. I showed that in the
5	intro and I'll show it again if I get a chance to do
6	the screening criteria presentation. We thought that
7	comment was appropriate.
8	I think also, commented on the
9	applicability for the flaw distribution of all PWRs.
10	That's the one comment that cuts across all the
11	reviewers and I think the general comment was, "Yes,
12	we understand you have more information than before.
13	Yes, we understand that you don't have a
14	really credible basis to modify this but you need to
15	do something in terms of continual monitoring to make
16	sure you are in future applications of this rule and
17	you are validating that your assumptions continue to
18	be correct where you're applying it.
19	DR. KRESS: Is that possible? I mean, you
20	have to take each of these vessels and determine some
21	sort of flaw distribution.
22	MR. ERICKSONKIRK: Well, in-service
23	inspection is now a requirement.
24	CHAIRMAN SHACK: Yes, but not with SAFT.
25	MR. ERICKSONKIRK: No. No. And I'll

(202) 234-4433

	104
1	happily leave that to rulemaking but I think the
2	general comment is there that just like continued
3	surveillance is a good idea, monitoring or somehow
4	further understanding documentation, demonstration of
5	the flaw populations that we are trying to apply this
6	to, again, a general comment across reviewers, and I
7	think it's fair to say a general comment around this
8	table, that is something that is a prudent step.
9	DR. KRESS: If you could do it.
10	MR. SIEBER: Well, with 80,000 flaws per
11	cubic meter, I don't think ISI is going to show all
12	this.
13	DR. KRESS: You may have covered it
14	already.
15	CHAIRMAN SHACK: Well, that's just under
16	clad cracking.
17	MR. SIEBER: That's right. That's just
18	one kind of flaw.
19	CHAIRMAN SHACK: The least important.
20	MR. SIEBER: But it's there.
21	MR. ERICKSONKIRK: I believe that's it.
22	DR. WALLIS: But you're inspecting the
23	clad, too, so that's easier to do.
24	MR. HISER: I think I would differ with
25	that. There really is no clad inspection in the ISI.

(202) 234-4433

	105
1	DR. WALLIS: So if there is a cracking of
2	that you wouldn't know it?
3	MR. DENNING: Do we want to pass on that
4	and move on? If we're running out of time, I don't
5	think this is a high value area.
6	CHAIRMAN SHACK: Oh. You want to just
7	pass on the
8	MR. DENNING: Yeah. I mean, if we're
9	running out of time.
10	CHAIRMAN SHACK: We are running out of
11	time.
12	MR. ROSEN: Why do you want to pass on
13	this?
14	MR. DENNING: It seems to me it's
15	comparatively clean.
16	MR. ROSEN: Murley makes a couple of
17	interesting comments. I would like to hear what the
18	staff things about it.
19	MR. ERICKSONKIRK: Okay. Back to that.
20	CHAIRMAN SHACK: Let's go through it
21	quickly then.
22	MR. ERICKSONKIRK: Okay. I've got to get
23	Donnie. Maybe just do the really pretentious ones.
24	MR. ROSEN: There's only two, I think, in
25	the PRA area with Murley.

(202) 234-4433

1 MR. WHITEHEAD: Okay. What I'll try to do 2 I'11 just try to hit the high points on the is comments. Probably the one that's caused some 3 4 discussion is the discussion about the Rancho Seco 5 event. We had a comment from Dr. Murley about that and he wanted to know basically what's changed and why 6 7 does this one not show up to be particularly important 8 in the current analysis. There's a short description of what the 9 10 event is. I'm sure that you are familiar with that so what I'll do is I'll go to the reply here. Basically 11 12 what's happened is that we've had substantial improvements in the equipment that failed in the 13 14 initial event. 15 redesign of control We've had room indications. We have better operator training and 16 procedures. We have more emphasis on overcooling 17 The fracture mechanics calculations that we 18 events. 19 currently have basically show that this type of event 20 is not particularly all that important. 21 Basically what happens is taking all of 22 these things together the Rancho Seco event would be 23 substantially less important in today's world as we know it with the information that we have than it was 24

at least initially with the calculation that we done

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	107
1	at the time that the event occurred. That's not to
2	say that this event is impossible.
3	It's just that all of the things that have
4	been changed, the modifications to the control rooms,
5	the operator training, so forth and so on, have tended
б	to reduce the frequency of such an occurrence and also
7	the fracture mechanics calculations that we would do
8	in today's world would show this would be less
9	important.
10	We demonstrated that by taking a look at
11	sequences that were similar in the analyses that we
12	did for Oconee. We identified reactor turbine trip.
13	One or two stuck open relief valves on the steam
14	generators which we believe to be a little bit worse
15	than the Rancho Seco event.
16	We had continued flow to the steam
17	generators and we had high-pressure injection until we
18	reached the shutoff point from the pressurizer safety
19	relief valves. With the current fracture mechanics
20	calculation even using an extremely artificially high
21	EFPY for Oconee of 1,000 years, we basically find that
22	there is zero estimate for this particular event that
23	we did for Oconee.
24	Because we think that this event is at
25	least as bad as what the Rancho Seco event would have

(202) 234-4433
been, we conclude that these types of events are just simply not particularly all that important. They can 3 still happen but they are just not going to be 4 important.

5 We had a comment from Dr. Murley on external events and we went through an external event 6 7 presentation here. We believe that the bounding analyses that we did is acceptable from the point of 8 9 view that even if you use the results from the 10 bounding analyses, which we believe to be very high, it would still not alter our ability to relax the PTS 11 12 rule.

We had a question about external flooding 13 14 of the reactor pressure vessel. The analyses that we 15 looked at have dealt with internal cooling of the Basically what happens is that an 16 reactor vessel. 17 external cooling of the reactor vessel wouldn't really be any worse than what we have for our main steam line 18 19 break. Main steam line breaks are not particularly 20 all that important so we think that we would be okay. 21 There are several comments that deal with the use of LERF. 22 I believe that was adequately 23 addressed yesterday by Nathan's presentation. What would happen with our oxidation and so forth and so 24 25 I'll skip that one. on.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

1 We had a question about the use of the value that we use for adjusting the frequencies for 2 3 hot zero power. Basically what I presented yesterday 4 was that the real value that we used -- the value that 5 we used in our calculation was two percent of the time per year the information from the plant suggest that 6 7 it's really between one to 1.5 percent so rounding it 8 up to two percent allows us to bound any of the near 9 hot zero power transition states as well. We had several comments that dealt with 10 11 the issue of what kinds of regulatory guidelines that 12 would be needed to ensure that utility calculations, if they were needed, what kind of standards that 13 14 should be met. It's really not a researcher's role to 15 address those. That would obviously be part of any 16 rulemaking that took place so we'll just leave that 17 one. 18 There were comments on the use of Req. 19 Guide 174 for formulating -- let's see. Okay. There 20 were several comments that dealt with the issue of 21 what the utilities would be required to submit in any 22 type of analyses that they had to do. Again, that's 23 a rulemaking issue and we decided that it was more 24 appropriate for NRR to deal with those issues since

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 that is their purview.

(202) 234-4433

(202) 234-4433

There was a question as to what kind of 2 standard the actual analyses done by the NRC what they While our analyses started before the 3 were done to. 4 issuance of the ASME standard for full power PRA calculations, the people involved in actually doing the PRA were aware of the things being discussed as part of the development of the standard.

While we never have gone back and actually 8 9 done a one-to-one check to make sure that all of the requirements in the standard have been met, we have 10 11 done a review of those and we believe that we have met 12 the intent of what the standard was trying to get at as to how to actually do a PRA calculation for power 13 14 analyses.

15 And we had a comment on the justification for the 3,000 and 6,000 second timing of the reclosure 16 of the valve and that has been discussed yesterday and 17 actually today and so we think that we have bounded 18 19 the results would that you get from such а 20 calculation.

21 That's basically the comments that we had. 22 MR. ROSEN: Have you read the new comments 23 by Murley? 24 MR. WHITEHEAD: I got those yesterday and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 I just skimmed over them.

1

5

6

MR. ROSEN: Okay. Well, I don't know if
it's fair to ask you about his second comment about
the possible valve reclosure times greater than 6,000
seconds.
MR. WHITEHEAD: Okay.
MR. ROSEN: And whether or not your
analysis would if you used it and did it beyond
6,000 second, whether that would yield even more.
MR. ERICKSONKIRK: Donnie.
MR. WHITEHEAD: Yes.
MR. ERICKSONKIRK: I would like a cut at
it after you get done.
MR. WHITEHEAD: This issue has been
presented I mean, Mark made a presentation on this
where we did actually go back and do a sensitivity
calculation varying the time at which the valve
reclosed from 3,000 seconds to somewhere around 14,000
seconds.
The curve here gives you an indication
that initially we have a very steep rise in the CPI
and CPF for valve reclosure. It maxes out somewhere
in the vicinity of about 8,000 seconds or something
like that. However, you have to remember that at very
long time frames the operators would have been
transitioning from their initial procedures into ones

(202) 234-4433

112 1 where they are actually beginning to shut the plant 2 down. I believe a slide that we had yesterday 3 4 indicated that if you look at it, what we've captured 5 is the very steep part of the curve as it's going up so I believe that we are pretty confident that, you 6 7 know, we have captured the vast majority of what the response would be. You also have to remember that we 8 9 are choosing two single points in time to represent 10 the fact that in reality a valve could close at any point in time. It could close very early in the 11 12 event. If it does, then the CPIs are going to be 13 14 very small. If it closes really late in the event, as we indicated here, the values are also going to be 15 going back down. We believe that we realistically 16 17 captured the worse that the thing could be. May I add? I quess the 18 MR. ERICKSONKIRK: 19 things I would add to that is that Dr. Murley seemed 20 to get focused on the fact that we hadn't picked the 21 absolute peak of the curve. And to amplify on what 22 Donnie said, the important thing is that we capture 23 the whole curve and so, yes, sometimes perhaps the 24 valve will reclose later in which case we would be 25 underestimating. It's also equally probable that it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The graph I prepared yesterday attempted to illustrate that what we are trying to pick is not really a maximum or any single point on this curve but we are attempting to essentially get the area under the curve right. We feel like we've done it.

over estimating the probabilities of failure.

The other point I would like to make is in 8 reading the final draft comments from the reviewers. 9 If you read Dr. Johnson's comments, his view on this 10 11 is that we have a gross over-conservatism in our model 12 because it's his viewpoint that if the valve is going to reclose, it's likely to reclose very early so he 13 14 questions where we get off with these very long 15 reclosure times c I think in looking at the Peer Review group comments, you know, we need to look at 16 them and clearly there is 17 all of а point of disagreement in what we've done here. 18

MR. ROSEN: I think I understand your points from the analytical point of view but I think from an operational point of view this chart has important ramifications and needs to be communicated well to those people who are trying to write new procedures under a new rule.

MR. ERICKSONKIRK: Yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

1

2

3

4

5

6

7

	114
1	CHAIRMAN SHACK: Are you going to go onto
2	screening criteria now, Mark?
3	MR. ERICKSONKIRK: Yes. Okay. So what
4	we're trying to do here is to use all this
5	information, put it together and see if we can come up
6	with a new screening criteria to suggest NRR
7	replacement for the current screening criteria of 270
8	and 300 F on RT_{ndt} .
9	DR. WALLIS: "Criteria" is a plural?
10	MR. ERICKSONKIRK: I've never been clear
11	on that.
12	DR. WALLIS: And "criterion" is singular?
13	MR. ERICKSONKIRK: Yes, you're right.
14	Grammar isn't my thing.
15	CHAIRMAN SHACK: We noticed that.
16	MR. ERICKSONKIRK: Yes, I'm sure you have.
17	MR. SIEBER: It's equal to your spelling.
18	MR. ERICKSONKIRK: That's right. Okay.
19	So by way of introduction and summary of where we've
20	been subject to limited equivocation, the TWCF values
21	we have from the detailed study plans we believe do
22	apply to PWRs in general and that general
23	applicability would then support the development of a
24	materials based screening criteria on the basis of our
25	analysis.

(202) 234-4433

5 wall cracking frequency when we use the reference 6 temperature that characterizes toughness at the 7 locations where the flaws are.

So we have developed through-wall cracking 8 frequency correlations versus RT correlations for the 9 10 study plants who then use those correlations to 11 estimate through-wall cracking frequency and use that 12 relationship to figure out what the screening limit would be associated with a 1E-6 LERF limit. 13 Then we 14 also compare those proposed limits to calculated 15 values of the screening limits for all of the 16 operating PWRs.

So we've been through this before. This is just to say that we need to pick the reference temperature to characterize material toughness where the flaws are. We know where the flaws are in the vessels so we can calculate the locations and these are the formulas that we would use.

I think the main thing to point out is that these formulas can be applied to calculate values of these various reference temperatures based only on

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

(202) 234-4433

	116
1	the information that is currently in the RVID database
2	that's maintained by the NRC and based on a diagram of
3	the plant showing the locations of the welds and the
4	plates.
5	DR. RANSOM: Are these values plant
6	specific then?
7	MR. ERICKSONKIRK: Yes, they are plant
8	specific as they are currently. Every plant has its
9	own $\mathrm{RT}_{\mathrm{ndt}}$ value so then every plant would have its own
10	RT axial weld plate and circ weld. This is a graph
11	that you've seen several times which shows the
12	relationship between the reference temperatures at the
13	various flaw location with the through-wall cracking
14	frequency arising from flaws at those locations.
15	Again, axial weld flaws are the things
16	that drive the through-wall cracking frequency. Plate
17	flaws make some contribution at higher embrittlement
18	levels. Circ weld flaws while they make a
19	contribution if you look at the relative effects, it's
20	very, very minor.
21	So taking those I'm sorry. Taking the
22	fits of those lines which is just a simple exponential
23	fit through the available data, we then estimate the
24	total through-wall cracking frequency is the sum of
25	the three constituent parts with only the minor

(202) 234-4433

1 modification that we multiply the through-wall 2 cracking frequency due to plate flaws by a factor of 3 two. 4 The reason that we did that is that just 5 because of the way the fit was the Beaver Valley plant, where the plate flaws make a contribution, and 6 7 because we had a lower contribution in Palisades, Beaver Valley was systematically being under predicted 8 9 so we put in the factor of two. 10 Then this qraph just shows the relationship between the FAVOR predicted values of 11 12 through-wall cracking frequency and the fit values of through-wall cracking frequency by this equation. 13 14 Okav. So now we can use the equation to 15 figure out what combination of these various RT values are either below or above any risk limit you want so 16 we'll set the limit at 1×10^{-6} and we can do that. 17 Take, for example, for an axial weld -- I'm sorry, 18 19 plate plant with axial welds. 20 There's a circ weld contribution but, as 21 we said before, it's small so just set this to a value 22 that's above any value that you expect to reach. Say 23 300. It doesn't factor in enough to matter. I'm 24 sorry, reference temperature circ weld to 300 and that 25 gives you a very small number out here.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	118
1	You know that the through-wall cracking
2	frequency total is $1X10^{-6}$ so stick in $1X10^{-6}$ there and
3	now set it up on a spread sheet to scroll through a
4	whole bunch of values for RT axial weld and figure out
5	what the RT plate needs to be to get you up to 1×10^{-6}
б	or any value that you pick and you wind up carving out
7	curves of constant through-wall cracking frequency.
8	The interpretation of this is that and I
9	highlighted the $1X10^{-6}$ limit in red because that's the
10	value that's been proposed as consistent with Reg.
11	Guide 1.174 guidance on LERF. The way a
12	plant would use this would be to say, okay, I need to
13	calculate if I have a plate welded plant I
14	calculate RT axial weld and RT plate for my plant and
15	I put a dot on this diagram. If I'm inside the red
16	curve, lift is good. If I'm outside the red curve,
17	I'm going to pay a lot of money to consultants to
18	figure out how to move the point inside the red curve.
19	Similarly, with forging plants except they
20	don't need to bother with RTAW. They just calculate
21	RT circ weld which given that the asymptotic limit is
22	over 450 degrees nobody is every going to hit so they
23	just need to worry about the RT plate value.
24	Again, the yellow box at the bottom there
25	are certain provisos to this regarding forging at very

(202) 234-4433

(202) 234-4433

	119
1	high levels of embrittlement and applicability to
2	thick vessels which we've noted.
3	So what we did is we took the information
4	in RVID. We didn't have the resources to go get the
5	diagrams of how the welds are oriented so we took a
6	conservative approach estimating the RT axial weld
7	values and just calculated the value of RTAW for each
8	of the axial weld fusion lines and forgot any length
9	averaging and just used the maximum value.
10	That's where the points lie at end of
11	license. You see none of the plants are very close at
12	all to the failure of loci and, as we discussed
13	yesterday, and I don't have this plot here but it's in
14	the report, if I crank this up to end of license
15	extension, the values move out by between 10 and 20
16	degrees but still not closely approaching the 1X10 $^{-6}$
17	limit. Of course, in general forgings are further
18	from the limits than are the plate welded vessels.
19	MR. SIEBER: Who's the plant that is
20	furthest out?
21	MR. ERICKSONKIRK: You know, I knew that
22	and I
23	CHAIRMAN SHACK: Indian Point 3.
24	MR. ERICKSONKIRK: Indian Point 3. Thank
25	you.

(202) 234-4433

	120
1	CHAIRMAN SHACK: River Keeper will be glad
2	to know that.
3	MR. ERICKSONKIRK: What's that?
4	CHAIRMAN SHACK: River keeper will be glad
5	to know that.
6	MR. ERICKSONKIRK: I've X'ed this out in
7	response to Murley's comment and I've got a whole
8	other slide looking at conservatisms and
9	nonconservatisms. Just to look at the status of
10	operating plants relative to this proposal, we find
11	that all PWRs are in order of magnitude or more away
12	from the 1×10^{-6} limit, that being controlled only by
13	this plant over here.
14	By in large they are several orders of
15	magnitude away from the limit. There is at least 60
16	degrees fahrenheit and usually much much more that
17	separate any PWR from the limit.
18	You can compare that to the situation
19	we're in today where the limiting plants are within
20	fractional degree fahrenheit from the 270 and 300 F
21	limit. As I noted before, if we extend this
22	evaluation out to EOLE, all the plants move between 10
23	and 20 degrees fahrenheit closer to the limits.
24	Now, this is again in response to Dr.
25	Murley's comment and I should point out we talked

(202) 234-4433

	121
1	about all these. Everything on here well, maybe
2	not everything. Many things on here are subject to
3	judgement. I may have missed something. We tried to
4	go through and list the conservative factors that have
5	been left in the analysis and also the nonconservative
б	factors that have been left in the analysis.
7	There are some things that I think there
8	wouldn't be too much debate about. For example, for
9	main steam line break our modeling of main steam line
10	break is unquestionably conservative because the most
11	severe transients that control the main steam line
12	break contribution are those that occur in
13	containment.
14	When you break a line in containment you
15	pressurize it so you can't boil the water at 212.
16	You're boiling it at a much higher temperature. We
17	haven't accounted for that in our model. That's an
18	unquestionable conservatism.
19	For circumferential flaws the fact that we
20	assume them to propagate instantly all the way around
21	the vessel is unquestionably conservative. Our models
22	of material variability for copper, for $\mathtt{RT}_{\tt ndt}$ we base
23	the populations that we sample from samples taken from
24	many, many materials that span the spectrum of RPV
25	materials that are available. Unquestionably

(202) 234-4433

the uncertainty associated with any plant specific analysis is going to be less.

1

2

3

4

5

6

7

8

9

25

I'm not going to go into all these except to point out that, again, some of these people may argue one side of the line or the other but I think taking it away this is an appropriate way to think about whether you would recommend to the regulator to take these limits without margin, whether the regulator should take these limits without margin.

It was the point that Dave made that it's 10 really easy to get buried and say, oh, you've got a 11 12 factor of potential two nonconservatism here or you've got a factor of three conservatism here. You really 13 14 need to try to get on one page everything that you 15 view and people's views are sometimes going to be different as being conservative or nonconservative and 16 then think about what's that telling you with regards 17 to whether if you could spend the money, spend the 18 19 time to get the right failure loci whether that would 20 in general be moving out that way or in that way. 21 I've got my own personal opinion but obviously 22 everybody is entitled to theirs. That's it. 23 CHAIRMAN SHACK: Anymore questions? Tom, 24 you had some items this morning that you felt were

real important that you wanted to get in so before we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	123
1	go around the table since you had yours articulated.
2	DR. KRESS: Yes. Considering the last day
3	and a half that we've had it seems to me like the
4	things that we need as far as the heat transfer
5	coefficient is concerned and its sensitivity, I think
6	you need to show a better technical basis for that.
7	Perhaps it's the Catton paper that
8	determines that particular heat transfer coefficient
9	based on experimental data actually taken at a
10	downcomer but I haven't seen that. Maybe that's the
11	technical basis we need.
12	I agree with Mario Bonaca's statement that
13	there is a need to better discuss why LOCAs were not
14	originally considered but now they tend to be
15	dominant. It's just a discussion of why that is.
16	On the air oxidation source term I tend to
17	buy what you're saying that the conditional
18	probability that you'll have an air oxidation event
19	along with the conditional probability that it will
20	lead to early containment failure are probably
21	sufficiently low that the 1X10 $^{-6}$ offsets the effect
22	you would have on LERF if you had an air oxidation
23	event. But I kind of thought you approached it from
24	the backside.
25	That is, you tend to deem that these

(202) 234-4433

conditionals were small enough that you didn't have to look at air oxidation events. I would prefer you approach it from the front end and say, "Give me a technical basis for what these conditional probabilities are, the condition that you'll have -that a break will lead to air oxidation. And also the condition that will not lead to an early containment failure.

9 Then based on those values, actual values, tell me what effect it would have on the acceptance 10 11 LERF that would be for probability. I thought you 12 approached it from the backside and I would prefer to see that from the front side. Along with the 13 14 thermal hydraulics choice of the heat transfer model 15 and its technical basis, I thought it was your choice of 30 percent for sensitivity had a weak technical 16 17 basis. Thirty percent probably was an epistemic --No, that's a reasonable 18 CHAIRMAN SHACK: 19 number for a well-controlled experiment. DR. KRESS: Yes, for a well-controlled 20 21 experiment. I just think there's more model 22 uncertainty involved than that and I think you need to 23 think about that a little more. Those were basically 24 my thoughts about it. 25 If I could ask a point MR. ERICKSONKIRK:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	125
1	of clarification getting to your reiteration of Dr.
2	Bonaca's comment. I understood his comment and I
3	think it was well taken that we needed a better
4	explanation of why main steam line break was important
5	before and no so much now.
6	Just with regards to why LOCAs were
7	ignored before but included now, I would ask if folks
8	have read what is said in Section 8.5.2.5 of the
9	report because that's where we go into that.
10	DR. KRESS: You may have covered it.
11	MR. ERICKSONKIRK: Okay.
12	DR. KRESS: We just didn't cover it very
13	well.
14	MR. ERICKSONKIRK: No, no. I agree with
15	that. Okay.
16	CHAIRMAN SHACK: Anybody else have any
17	further comments they would like to make as to things
18	they might see that are needed before we feel we are
19	comfortable writing a letter on this?
20	MR. SIEBER: I'd like to have the
21	documents.
22	CHAIRMAN SHACK: Well, yeah.
23	DR. FORD: Are we proceeding around the
24	table?
25	CHAIRMAN SHACK: I was just going to take

(202) 234-4433

	126
1	them at random rather than go around the table.
2	MR. SIEBER: Even the ones you've sent us
3	before.
4	MR. ERICKSONKIRK: I think just to make
5	things very clear, and I spoke with Tanny about this,
6	is we're going to get a disk to all of you that has
7	all of the presentations that were made in the past
8	day and a half in their final form and all of the
9	documents.
10	MR. SIEBER: Okay. That's going to be
11	more than one disk?
12	MR. ERICKSONKIRK: I don't think in PDF
13	form it will be more than one disk, no.
14	DR. WALLIS: The whole documentation so
15	far is only 80 megabytes. We can give you more.
16	MR. SIEBER: Yeah, put pictures in.
17	MR. ERICKSONKIRK: But just to make sure
18	that everybody's got everything, a complete new disk.
19	DR. FORD: I've got a comment. I still
20	feel I find this list of the conservatism versus
21	nonconservatism very useful so maybe my concern is
22	hidden. When I look at the high sensitivity to the
23	embrittlement shift, the function of fluence and
24	material composition I get a wee bit worried as to
25	whether, for instance, if you used the upper bound of

(202) 234-4433

	127
1	that relationship that you put up on the screen, I
2	think your words were that the situation would be
3	untenable or words to that effect.
4	Yet, that is a very realistic situation.
5	You do have materials which are offered. Maybe it's
б	because aleatory uncertainties, etc., as to why
7	they're there, but there are data points at the top
8	end of that distribution code. There is the ones that
9	are going to bite us in a practical sense.
10	Now, Bill assures me that all of this is
11	covered quite adequately by doing the Monte Carlo on
12	the mean value of that relationship. I've still got
13	a feeling of unease. One will bite you and that's
14	what worried me.
15	DR. KRESS: I thought we heard that if
16	they took a single vessel and made that plot, you
17	would still get that kind of
18	DR. FORD: No.
19	DR. KRESS: Rather than it being clean
20	they might be able to have some location that you get
21	an uncertainty.
22	MR. ERICKSONKIRK: You'd get uncertainty
23	but you would get less. You would get less.
24	DR. KRESS: But it would tend to still
25	cluster around the mean.

(202) 234-4433

1 MR. ERICKSONKIRK: I think it's fair to 2 say that in most cases it would cluster around the 3 However, as Allen pointed out, there are some mean. 4 cases that would either be systematically high or 5 systematically low. Again, I think that's also one of the reasons we do surveillance. 6 7 MR. DENNING: I do think that the way the Monte Carlo analysis is done that effectively they are 8 9 taking that upper bound in a sense in that the mean value is close to the 95th percentile value. 10 My interpretation is that effectively in 11 12 the way they are treating their mean which, again, is 95th percentile, and the way that the sampling is 13 14 done, I think they really are accounting for the upper 15 parts of that distribution rather than the mean curve 16 that went through it. That's my feeling. I may be 17 overstating that. MR. ERICKSONKIRK: I think I would 18 No. 19 agree in that the upper part -- I mean, just like the 20 tails of any of the distributions that you've seen, 21 the tails are weighted in at their relative frequency 22 if you've got the 95th to 100th percentile upper tail 23 impacts calculation five percent of the time. And the

analysis you've ever done. It's when multiple things

other thing to note is that it's like any failure

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

	129
1	go wrong that we get the high failure frequency.
2	It's when you've got a larger-than-average
3	flaw and a higher-than-average copper and all those
4	things have gone wrong so if you look at the if you
5	go in and you compare the populations of flaws or
6	chemistries or whatever that are contributing
7	dominantly to the failure frequencies and you overlay
8	those distributions on the distributions that you
9	originally sampled, you find out you've got to buy a
10	sample and you're sampling depending upon what's worse
11	the upper bound or the lower bounds of the
12	distributions.
13	CHAIRMAN SHACK: But that's sort of like
14	Rich's argument. Everything is sort of governed by
15	the guy at the top because all the other guys don't do
16	much.
17	MR. ERICKSONKIRK: Not the guy at the very
18	the one at the 8th sigma level that never occurs
19	doesn't matter.
20	CHAIRMAN SHACK: You're up very high.
21	MR. ERICKSONKIRK: It's weighed in there
22	and I guess the thing that I would ask is what's the
23	credible basis to do a biased sampling on that
24	distribution? How would you construct that
25	sensitivity study?

(202) 234-4433

	130
1	CHAIRMAN SHACK: Oh, if you think there
2	really is a plant that goes along the upper bound. A
3	plant that sits along the upper bound.
4	MR. ERICKSONKIRK: And, again, I think
5	that's something that is covered in surveillance.
6	MR. HISER: But, Mark, wouldn't the effect
7	of that be that you're moving up and down the curves
8	that have the results of through wall crack frequency
9	versus RT _{ndt} . I mean if you are skewed high, you just
10	move higher up on the curve.
11	I don't know that the curve itself would
12	change at all. In terms of doing a calculation where
13	you are going to compare any plant relative to any
14	proposed screening limits, you would need to add in a
15	biased term to account for that. But the limits that
16	you're comparing to would be unchanged.
17	I mean, you have the same relationship
18	between $\mathtt{RT}_{\mathtt{ndt}}$ and through wall crack frequency. It's
19	just where you go in to Mark's curve at. You might go
20	in at a higher value by some degree to account for
21	that increased sensitivity.
22	I think it's a plant specific application
23	and is maybe where the concern should be. In terms of
24	the simulations that they did, if the embrittlement
25	that they calculate really does span the range of

(202) 234-4433

	131
1	scatter that you see, then that's been taken into
2	account.
3	CHAIRMAN SHACK: Oh, yeah. I would agree
4	on the population. This is a plant specific
5	application that we're talking about here I think.
6	DR. FORD: So what you're saying is the
7	fact that those ones at the upper end of your scatter
8	band let's assume that they were copper plants. That
9	would come into the plant specific analysis?
10	CHAIRMAN SHACK: His RT _{aw} in that sense
11	takes care of that.
12	MR. HISER: But you would still calculate.
13	Based on the model you would still calculate an RT $_{\rm aw}$
14	or RT_{pl} that's low because that's the mean value.
15	It's not the high value that is reality for that
16	plant.
17	MR. MITCHELL: Matthew Mitchell, Materials
18	and Chemical Engineering Branch, NRR. I would just
19	like to echo Dr. Hiser's comments that I think the
20	concern that you're expressing over the potential for
21	an individual plant to have a material which is acting
22	atypical with respect to what the general model
23	predicts is a concern that is appropriately addressed
24	when that plant calculates its reference temperature
25	for the material which is acting atypically.

(202) 234-4433

	132
1	You need to look at the amount of data
2	that is available for that material so that plant's
3	plant specific surveillance program. And to determine
4	whether the amount of information that is available is
5	statistically significant relative to the amount of
6	data that is supporting the general model and whether
7	it appears to indicate that there needs to be an
8	additional factor added to that plant's determination
9	of its reference temperature for comparison to the
10	screening limits that are being specified in the more
11	general analysis.
12	I mean, that is, in effect, in large part
13	what we do today in Reg. Guide 199, Rev. 2 when we
14	have provisions available to use plant specific data
15	to override the tables which we in the Reg. Guide
16	which is, in effect, the same thing as having a model
17	like the Eason model. It's sort of the default.
18	But if you have plant specific data which
19	suggest something different, you go to that data and
20	you use it to supplement the information in your
21	general model. We would hope, however, I think that
22	given the amount of data that's being used in the new
23	embrittlement models that there will be a very low
24	likelihood that you will find a plant that has a
25	statistically significant amount of data out there

(202) 234-4433

	133
1	which shows a consistently high trend. I'm not going
2	to say that can't happen or that it is not in
3	existence but I think that will be by far the minority
4	of the cases of all the operating facilities.
5	MR. DENNING: Yes. If I can I would like
6	to make just a couple of quick comments. I echo what
7	time said about the heat transfer coefficient. That
8	hasn't been put together adequately but it's doable.
9	I think that it's definitely doable with
10	available resources to do that. One of the things we
11	do have to recognize is that 2D RELAP annulus model is
12	no better than the 1D. Both of them are wrong. The
13	flow regime is a critical element of this.
14	I think they can use better make better
15	use of comparisons with experiments that exist out
16	there to make their case. I do have one thing that I
17	really don't like about the comparison with the
18	experiments, though, and that is the use of an average
19	temperature difference and in averaging those between
20	plants is not a good characterization of how well
21	RELAP is able to model those particular things.
22	The standard deviations I didn't have a
23	problem with but the average temperature difference
24	where the pluses and the minuses are washing each
25	other out between the different comparisons. That

(202) 234-4433

	134
1	just is not a good way to characterize how well RELAP
2	represented those data.
3	DR. RANSOM: Let me make a comment along
4	those lines. From everything that I've heard it seems
5	that the thermal stress in the wall is governed more
6	by how the fluid temperature in the downcomer changes
7	with time as opposed to what the heat transfer
8	coefficient is at any given time.
9	It would seem like a better approach to
10	this would be to simply make that heat transfer
11	coefficient very large. It can be bounded more or
12	less along the lines of what Murley is talking about
13	and eliminate that as a parameter.
14	I suspect the results will not change much
15	because the thermal stress is really governed by how
16	the temperature changes with time due to the ECC water
17	or wherever the cold water is coming from. For those
18	kinds of transients which are just inventory type
19	transients RELAP5 is fairly adequate. I mean, it's
20	just how much do you over time flush out the hot water
21	from the wall.
22	MR. SIEBER: It seems to me, though, that
23	flow is a key characteristic also.
24	DR. RANSOM: What is?
25	MR. SIEBER: Flow. Downcomer flow. Since

(202) 234-4433

135 1 you don't conserve momentum, you almost have to fudge 2 the flow in order to get it to go in the right velocities 3 direction at the speeds, that the 4 experimental evidence would provide. To me that is 5 sort of a shaky kind of a --RANSOM: Well, they are two-6 DR. 7 dimensional. They are shaky that way. But the 1D 8 downcomer is --9 Well, that's --MR. SIEBER: DR. RANSOM: -- a little bit different. 10 That's an inventory problem. 11 12 Right. It's one bucket to MR. SIEBER: the next. 13 14 DR. RANSOM: That would be a simple way of 15 eliminating the some of concern about non-16 conservatisms. 17 CHAIRMAN SHACK: Well, I guess I would It seems to me that the biggest remaining 18 echo that. 19 issue is to show the relevance of the heat transfer 20 relation whether it's -- I think you need to compare 21 it with some relevant data, downcomer data. If worse 22 comes to worse CFD calculations for the right job. Somehow that just has to be -- I agree 23 24 with Tom. The .3 just doesn't do it without more 25 I'm not sure I'm convinced by Vic. justification.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

136
The 1997 calculation there when he doubled that
sucker, it really pushed it up there.
DR. KRESS: It was a significant number.
CHAIRMAN SHACK: It was a significant
number. It looks to me like the bounding number we
would need to use is like a factor of 5 and I don't
think they really want to give that up at this point.
I think you are going to have to come back and make
that case that it's a lot better than that. Hopefully
that will be included in the final documentation.
MR. ERICKSONKIRK: Hopefully it will.
CHAIRMAN SHACK: Additional comments?
MR. DENNING: Somebody had a comment what
a nice how nice the presentations were. I thought
they were very well put together and I thought the
whole package looks good. It's just some weaknesses
that still have to be cleaned up.
DR. KRESS: I think I second that. Very
nice piece of work.
MR. SIEBER: Well done.
MR. ERICKSONKIRK: So we owe you a disk of
all the presentations and all the reports to date and
then we owe you the final thermal hydraulics reports.
Is that correct?
CHAIRMAN SHACK: Yes. Now, what are you

(202) 234-4433

	137
1	going to do with these final Peer Review comments?
2	MR. ERICKSONKIRK: They are going to be
3	I'll keep talking until Allen tells me to shut up.
4	They are going to be put into, I think, Appendix B and
5	to the extent that we can, the staff will respond to
6	them. Like I said, certainly there were some things
7	in there that, you know, clearly we said A and the
8	reviewers heard B which means that we didn't explain
9	it right so we are going to change the documentation
10	to try to keep that from happening in the future.
11	DR. KRESS: But you're going to hold open
12	the option to continue to disagree?
13	MR. ERICKSONKIRK: Yes.
14	DR. KRESS: Good.
15	CHAIRMAN SHACK: If there are no more
16	comments, I think we can adjourn.
17	(Whereupon, at 11:56 a.m. the meeting was
18	adjourned.)
19	
20	
21	
22	
23	
24	
25	