Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reacto Reliabililty and Probabilistic Ass Subcommittee	r Safeguards sessment
Docket Number:	(not applicable)	
Location:	Rockville, Maryland	
Date:	Tuesday, November 16, 2004	
Work Order No.:	NRC-111	Pages 1-120

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	SUBCOMMITTEE ON RELIABILITY AND
6	PROBABILISTIC ASSESSMENT
7	MEETING
8	+ + + +
9	NOVEMBER 16, 2004
10	+ + + +
11	The meeting was convened in Room T-2B1 of
12	Two White Flint North, 11545 Rockville Pike,
13	Rockville, Maryland, at 12:10 p.m., Dr. George E.
14	Apostolakis, Chairman of the subcommittee, presiding.
15	
16	MEMBERS PRESENT:
17	GEORGE E. APOSTOLAKIS Chairman
18	MARIO V. BONACA ACRS Member
19	RICHARD S. DENNING ACRS Member
20	THOMAS S. KRESS ACRS
21	GRAHAM M. LEITCH ACRS Member
22	VICTOR H. RANSOM ACRS Member-at-Large
23	WILLIAM J. SHACK ACRS Member
24	JOHN D. SIEBER ACRS Member
25	

		:	2
1	ACRS STAFF PRESENT:		
2	MICHAEL R. SNODDERLY	Designated Federal	
3		Official	
4	CHARLES ADER	RES/DRAA	
5	JS HYSLOP	RES/PRAB	
6	DAVID LEW	RES/PRAB	
7	GARETH PARRY	NRR/DSSA	
8			
9	<u>ALSO PRESENT</u> :		
10	KEN CANAVAN	EPRI	
11	GENE HUGHES, EXELON	ERIN	
12	JOHN LEHNER	BNL	
13	RAY SCHNEIDER	WEC	
14	DOUG TRUE	ERIN	
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

		3
1	AGENDA ITEM	<u>PAGE</u>
2	OPENING REMARKS:	
3	George Apostolakis	. 4
4	DEVELOPMENT OF GUIDANCE ON TREATMENT	
5	OF UNCERTAINTIES:	
6	Mary Drouin	. 6
7	Alternate Methods	. 6
8	Confidence Levels	. 26
9	Generating Insights	. 34
10	Guidance for Alternative Approaches	. 41
11	TREATMENT OF UNCERTAINTIES INDUSTRY INITIATIVE:	
12	Ken Canavan	. 44
13	Doug True	. 49
14	<u>ADJOURN</u> :	
15	George Apostolakis	120
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	12:14 p.m.
3	CHAIRMAN APOSTOLAKIS: The meeting will
4	now come to order. This is a meeting of the Advisory
5	Committee on Reactor Safeguards Subcommittee on
б	Reliability and Probabilistic Risk Assessment. I'm
7	George Apostolakis, the Chairman of the Subcommittee.
8	Members in attendance are Mario Bonaca, Richard
9	Denning, Tom Kress, Victor Ransom, William Shack and
10	John Sieber.
11	The rules for participation in today's
12	meeting have been announced as part of the notice of
13	this meeting previously published in the Federal
14	Register on November 2, 2004. Mike Snodderly is the
15	designated federal official for this meeting. A
16	transcript of the meeting is being kept and will be
17	made available as stated in the Federal Register
18	notice. It is requested the speakers first identify
19	themselves and speak with sufficient clarity and
20	volume, so that they can be readily heard.
21	We have received no written comments or
22	requests for time to make oral statements from members
23	of the public regarding today's meeting. In our
24	September 22, 2003 report, we agreed with the staff's
25	decision to develop a separate regulatory guide on how

(202) 234-4433

to perform sensitivity and uncertainty analyses. The Committee stated in this report that if model uncertainties are not addressed explicitly, their magnitude and potential impact may not be fully appreciated and thus, the decision-making process may not be truly risk-informed.

7 This statement formed the basis for the 8 Committee's conclusion that inadequate theory, scope 9 quality may significantly affect regulatory and 10 decision-making. The EDO stated in his November 7, 2003 that the staff agreed with 11 response the 12 Committee's concern regarding the potential impact of model uncertainties. The staff went on to say "The 13 14 ASME standard explicitly requires that model uncertainties be addressed. 15 For example, the high 16 level requirement in the standard states that. 17 uncertainties in the PRA results shall be Key sources of model uncertainty and 18 characterized. 19 assumptions shall be identified and their kev 20 potential impact on the results understood." 21 Now, this is an informational meeting of

the subcommittee and we will gather information to understand what the staff is doing and report to the full Committee. The full Committee will review the draft final NUREG Report on this subject in the fall

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

(202) 234-4433

5

6 1 of 2005. So now, we can proceed with the meeting and 2 I call upon Ms. Mary Drouin of the Office of Nuclear 3 Regulatory Research to begin. 4 MS. DROUIN: Okay. I'm Mary Drouin with 5 the Office of Research. At the table with me is Gareth Parry from NRR and another member of the team 6 7 is here today John Lehner from Brookhaven, the National Lab. We're here today to share what we have 8 9 done to date, but primarily there is particular quidance and issues that we would like to discuss with 10 11 the Committee as we proceed forward on this task. We 12 did send a list of these issues that we would like to focus on today about a week or so ago, which are 13 showing up on the last two slides. 14 15 My hope is to get through these first slides relatively quickly. They are background 16 information, but what we would like to really focus on 17 is the issues that we are grappling with and that we 18 19 would like to discuss with the Committee and get 20 Sorry, Mike, I'm on background and history. quidance. 21 Ι just quoted from three primary 22 documents, because there is two topics that we are 23 undertaking in this NUREG, alternate methods, what we methods 24 call alternate in the treatment of 25 uncertainties. When you look at Reg Guide 1.174, when

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	7
1	you look at the PRA Standard and when you look at Reg
2	Guide 1.200, the Committee rightfully noted that in
3	all of these documents and other documents, but these
4	primary ones, is that you are allowed to have an out.
5	That if you have a standard that does not
6	have a particular scope covered in it or a part of a
7	technical element, all of these allow you to do
8	something else. Either do a bounding analysis, do
9	some supplementary thing, but if you chose to go that
10	route, there is no guidance out there to tell you what
11	is acceptable. And so that was a missing piece in all
12	of this that, I think, was appropriately pointed out
13	by the Committee.
14	In terms of the treatment of
15	uncertainties, when you look at these documents
16	CHAIRMAN APOSTOLAKIS: There's a question.
17	MEMBER RANSOM: I have a question.
18	MS. DROUIN: Oh, sorry.
19	MEMBER RANSOM: When you do a bounding
20	analysis, do you assume all states in between are
21	equally probable?
22	MS. DROUIN: I'm going to put you on hold
23	on that.
24	MEMBER RANSOM: Okay.
25	MS. DROUIN: Because I'm going to get into

(202) 234-4433

1 those kinds of things when we get to the issues. On 2 the treatment of uncertainties, these three documents also very similar in the sense that they all are 3 4 asking you to identify what -- your key sources of 5 uncertainty and to understand the impact. But then what's lacking again, and what the Committee pointed 6 7 out, is that once you have that information, what do 8 you do with it? How do you factor it into your 9 decision-making process? So even though you might have the standard 10 that says okay, go through and identify your key 11 12 sources of uncertainty, understand their impact, characterize it, it stops there. There is a little 13 14 bit more in Reg Guide 1.174, but it pretty much stops and Reg Guide 1.200 very similar. 15 I won't spend really a lot of time on 16 these next couple of slides. George pointed out what 17 was in the letters from the ACRS. There were the two 18 19 primary letters that pointed out these short comings. 20 In our response, we agreed. It is going to be hard 21 not to agree. But where we did differentiate is that 22 we did not think that Reg Guide 1.200 was the 23 appropriate place to develop this quidance, because the purpose of 1.200 is to endorse, primarily, the 24 25 standards and we wanted to keep that clean.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

8

9 You know, so now coming up with guidance alternate methods the of on on treatment uncertainties, that's separate from the standard. It's an addition. It's a major part of it, but we thought it deserved its own document. We're leaning right now more towards a NUREG than a regulatory guide, because this is more than just for licensees. We have had a lot of discussions on Okav.

9 what should be the objective of this NUREG, because at a high level, you know, it sounds easy, you know. 10 We're going to provide guidance for the treatment of 11 12 We're going to come up with guidance uncertainties. for acceptable approaches, for bounding analyses, what 13 14 the roles of these things are. But the more you get 15 into it, the scope of this program could be tremendous 16 and could be huge, so trying to get our arms around it and really trying to get something done in the time 17 frame that we have, but also make it worthwhile. 18

We had a lot of discussion and so this is where we are at this point in terms of what we have developed and what we are writing right now in this document. In terms of the acceptable approaches, the supplemented PRA, that is not a full scope or has some deficiencies in some of the elements. We're focusing on the appropriate use of bounding analyses, screen

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

methods or qualitative approaches. We'll have identification, performance and discuss the role of sensitivity studies.

4 What should be in terms of quantification 5 of model uncertainties and one we want to have a lot of discussion on, because we're hoping that your view 6 7 is not to have a formal quantification as you've seen in NUREG 1.150. How to use the results from the 8 9 uncertainty analyses in the decision-making process 10 and specifically get into the role and definition of defense-in-depth. So these are the objectives that we 11 have laid out for this document. 12

When we talk about the scope, we want to 13 14 make it clear that we're only addressing the uncertainties associated with the use of the PRA 15 There is a lot of other things that will get 16 results. factored into your decision-making that could have 17 uncertainties associated with them, but we're just 18 19 addressing the uncertainties associated with the PRA.

20 In terms of the alternate approaches, 21 there things that we're writing is two in the 22 We're trying to provide specific guidance document. 23 for what we call the risk contributor level. And what 24 we mean by that is if you have a PRA that does not 25 deal at all with seismic, it doesn't deal with

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

10

1

2

3

11 1 internal fire or internal flood and you are going to 2 do something else, we'll have guidance for what these something elses, what makes them acceptable. 3 4 But now, once you get into your PRA, you 5 have your technical aspects of your PRA. Maybe there is a part of the PRA itself that you don't meet. 6 Now, 7 that could be huge if we try to go through the 8 standard and address every single part. You know, you 9 might choose to do something else. So we're going to 10 address this more in a generic level to provide generic guidance if you're doing something different 11 12 on a technical element level, instead of going through each one, because it just would be unwielding. 13 Well, 14 it would take care of my retirement. I could be here 15 for the rest of my life doing that. 16 CHAIRMAN APOSTOLAKIS: That's so far in 17 the future, Mary, that you have plenty of time to 18 write many more reports, Mary. 19 DROUIN: Absolutely. Okay. MS. The 20 approach we have taken in this document, in terms of 21 the treatment of uncertainties. The process-oriented 22 approach that we have proposed and are developing and 23 it has four primary parts to it, as you see here, 24 which I'll get into and is also shown. You know, it 25 might be easier as I talk to this slide, put the slide

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	up that shows the flow chart.
2	These say the same thing. This is just
3	showing it. I apologize, the machine chopped off the
4	title, but that's okay. The whole flow chart is
5	there. So the first part, and this is also showing
б	how the document is organized, in this big box, which
7	is the primary part, the first major step is to look
8	at your PRA scope and you want to ensure that the
9	appropriate PRA scope for the decision that you're
10	making, that when you look at it that the PRA model
11	itself addresses all the significant risk
12	contributors.
13	So if your decision is going to entail
14	that you need a fire analysis or a seismic analysis,
15	you want to make sure that your model deals with that,
16	and if it doesn't deal with it directly, then some
17	alternate approach, and you can see that's coming in
18	from the side there. The next is you're going to
19	assess and identify the impact of the known
20	uncertainties, both parameter and model. And then
21	your decision is going to be based on the
22	consideration of the key uncertainties, the
23	characterization of it, and the acceptance criteria
24	that we're developing.
25	And then imposed and part of all this is

(202) 234-4433

	13
1	maintaining the defense-in-depth to address the
2	unknowns, the incompleteness. And part of this is
3	coming up with the role or definition of defense-in-
4	depth. And this is an aspect where, just on a side
5	note, we're tying it very closely with the framework
6	on advanced reactors and the definition of defense-in-
7	depth that we're developing there, because ultimately
8	we owe the Commission this definition in terms of add
9	into it to the policy statement on PRA, so we're
10	working all of these very closely together.
11	And then also on the side is we thought it
12	would be a good idea to come up with what we
13	considered a generic list of uncertainties, so when
14	you go from PRA to PRA, there is just a certain set
15	that, whether you're dealing with a Westinghouse or a
16	BWR6, they all have to deal with these certain issues
17	in their PRA and to try to come up with and identify
18	this generic list. And then the next step is whether
19	or not we should propose a resolution for consistency
20	and standardization on these different uncertainties.
21	On the alternate approaches, you know,
22	identify at a high level in terms of coming up with
23	guidance, because we aren't going to be able to write
24	detailed standards, and that's not what we're trying
25	to do, this is more of a guidance, but coming up with

(202) 234-4433

(202) 234-4433

	14
1	the attributes and characteristics for an acceptable
2	alternate approach. And then identify some particular
3	alternate approaches and what aspects of them are
4	acceptable or what they need to be to be acceptable.
5	Such as looking at the seismic margin, looking at 5.
6	If those are going to be used as an
7	alternate to the PRA Standard, what do they need to
8	entail to make them acceptable?
9	CHAIRMAN APOSTOLAKIS: Has anybody proven
10	that FIVE is a conservative approach? I mean, we all
11	say it is, but I have never really seen it.
12	MS. DROUIN: I don't know. I would have
13	to go back and look. It has been a while since I have
14	thought about 5.
15	CHAIRMAN APOSTOLAKIS: Is JS here?
16	MR. HYSLOP: I'm here. I'm not sure that
17	I've seen in the definitive frame that it is
18	conservative. Certainly, there are some parts of
19	internal events models that need to be made more
20	robust, no matter what process you are using, since
21	various operations and things. So it's not clear to
22	me. At least I haven't seen anything definitive.
23	CHAIRMAN APOSTOLAKIS: Okay.
24	MR. LEHNER: I think maybe I can answer
25	again. I think strictly speaking as to 5, it is just

(202) 234-4433

	15
1	the screening approach. It wasn't intended to be
2	quantitative. So really, I think what you have to ask
3	is whether the use of FIVE supplemented by some PRA is
4	conservative or not.
5	CHAIRMAN APOSTOLAKIS: Well, a screening
6	approach implies that it's a conservative approach,
7	right?
8	MR. LEHNER: And it's conservative in the
9	sense that it only takes I mean, I think it assumes
10	the fire engulfed room. It seems that everything
11	that's not protected is damaged.
12	CHAIRMAN APOSTOLAKIS: I'm not sure that
13	it does though, because if there is a fire in a
14	cabinet then they divert on with a 35 degree angle and
15	all that, then I really don't know whether the you
16	know, the hot plume goes up and it goes 35 degrees and
17	everything inside is destroyed and everything outside
18	is fine. I'm not sure that there I haven't seen
19	evidence that this is really a conservative approach.
20	My point really is not to discuss fire
21	right now, but if you list conservative approaches, it
22	seems to me these questions will come up, because one
23	of the things that the letters of the Committee have
24	emphasized is that when people use bounding
25	approaches, they should have some evidence that these

(202) 234-4433

	16
1	are indeed bounding approaches.
2	PARTICIPANT: Right.
3	CHAIRMAN APOSTOLAKIS: So, you know, FIVE
4	has been used now for some time and we never really
5	saw a convincing case that it is a conservative
6	approach. And there may be others. I mean, I don't
7	know about the seismic margins, most likely, because
8	the NRC guys do.
9	MR. HYSLOP: Yes, as Karen said, certainly
10	there are conservative aspects of it.
11	CHAIRMAN APOSTOLAKIS: Aspects, yes, I
12	agree, they are conservative. I think you are right
13	there. I mean, the question is whether the whole
14	MR. LEHNER: The whole package is. Okay.
15	Okay. That's a good point.
16	MR. LEW: Just a note on the PRA Branch,
17	we are in the process of doing a fire model that
18	includes 5. So we're looking at what the limitations
19	of FIVE are as part of the input or the implementation
20	of FIVE and 50.8(c). So if that's
21	CHAIRMAN APOSTOLAKIS: That's good.
22	MR. LEW: We don't have anything right
23	now.
24	CHAIRMAN APOSTOLAKIS: That's good.
25	That's good. So we'll have some evaluations. Okay,

(202) 234-4433

Mary.

1

2

3

4

5

6

7

MS. DROUIN: Okay. At this point, I would like to go now to the issues and walk through them and hopefully get some guidance and direction from the Committee. These are not necessarily in any kind of order or priority, you know. It was just the list that we came up with.

CHAIRMAN APOSTOLAKIS: Well, I would say 8 9 your first question is really the top, top question. Just out of curiosity, the whole tone of 10 your 11 presentation is that the Regulatory Guide 1.174 says 12 this, 1.200 says that, 1.150 says that. Well, is it the NRC's documents that should be the basis for all 13 14 this? I mean, having you guys are planning to review 15 what people have said about model uncertainty in the open literature, there have been meetings, there have 16 17 been conferences. I can assure you it's not that 18 much, there are many papers, but the basic approaches 19 are not that many.

But it seems to me for an issue like this, you ought to spend some time doing that and reviewing and evaluating what people have proposed. Don't just limit yourself to 1.150 for --

24 MS. DROUIN: We're not. We're not. This 25 is just an example up here. We have been looking at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	other stuff and we plan to continue looking at other
2	stuff.
3	CHAIRMAN APOSTOLAKIS: You know, there was
4	a workshop 10 years ago in Maryland. I mean, that's
5	one place.
6	MS. DROUIN: Yes.
7	CHAIRMAN APOSTOLAKIS: Okay.
8	MS. DROUIN: But I just used 1.150 here as
9	an example of, you know, there is two extremes that we
10	can go here. We can either, you know, provide
11	guidance in there. We're hoping that it's not the
12	Committee's desire that people are having to go out
13	there and do this very detailed formal quantification,
14	such as you saw in 1.150. Are we leaning more
15	towards, in terms of modeling the uncertainties, doing
16	more sensitivity type approach? And this is what
17	when we were reading, we went back and read the
18	letters from the Committee, it was unclear. You could
19	interpret it either way. So we wanted to get some
20	guidance where the Committee was coming from on this
21	issue.
22	CHAIRMAN APOSTOLAKIS: Well, as you
23	correctly stated earlier, what really matters is how
24	these things affect decision-making. So if you it
25	seems to me that ultimately let's say you find that

(202) 234-4433

an issue is important to decision-making. You do your sensitivity study and, you know, you use somebody's model and you find that you are exceeding the regulatory guidance compared to the minor slide, for example, that was CDF. What do you do? Well, you have to say something about the probability of that sensitivity study.

How likely is it that these guys' model is 8 the correct one? So if you look at decision-making, 9 you cannot avoid some quantification. Now, I'm not 10 saying that this has to be the extensive 1.150 11 12 analysis, but, you know, you have to say something. So now, in that other report on expert opinion for 13 14 seismic issue, I believe there are four categories of 15 elicitation processes depending expert on the significance of the issue. 16

MS. DROUIN: Yes.

CHAIRMAN APOSTOLAKIS: And for the Nuclear 18 19 Waste Depository of Yucca Mountain this is the wrong 20 source of the elicitation process. There is a limited 21 budget and so on. I don't expect that in routine 22 model issues you have to go to that. Maybe something 23 less than that and more informal elicitation process 24 among the smaller group and so on. That was exactly 25 what that group wrote that report had in mind. That

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

17

(202) 234-4433

19

20 1 you can't afford. It's not 1.150 or nothing. There 2 is in between. 3 And I think a lot of these issues, take 4 for example the C-LOCA issue. Where I understand 5 there is more than one model. You really don't need to do an 1.150 evaluation. Maybe inviting a few 6 7 cognizant experts to Rockville and spending half a day 8 with them and all that and then using your own 9 judgment can lead you to something. You seem to be 10 puzzled by something. MS. DROUIN: Some type of graded approach? 11 CHAIRMAN APOSTOLAKIS: Did I choose the 12 wrong example? 13 14 MR. TRUE: Yes. 15 CHAIRMAN APOSTOLAKIS: Okay. 16 MR. TRUE: Only because we've been working 17 on our CPC LOCA for 20 years. 18 CHAIRMAN APOSTOLAKIS: So you believe it's 19 resolved? 20 MR. TRUE: I believe it's as resolved as it's going to get and another day is not going to 21 22 change that. 23 CHAIRMAN APOSTOLAKIS: Okay. I'll pick 24 another example then. Although, as is always, there's 25 going to be something that can be interpreted in many

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	ways. But there aren't very many such issues in
2	1.150, I think.
3	MR. TRUE: It depends upon
4	CHAIRMAN APOSTOLAKIS: You can work out
5	many and my point is that it's not 1.150 or nothing.
6	There are two degreeing stages. You can choose to do
7	separate things, you know. Maybe some informal or
8	semi-formal elicitation. And then the judgment of the
9	staff can give some probabilities or some guidance.
10	I don't think that sensitivity studies by themselves
11	will help very much. Because eventually, you know,
12	what if you do some sensitivity study and you exceed
13	the limit? Then somehow you have to argue how likely
14	that is.
15	MR. LEHNER: Yes, but maybe, I think, the
16	difficulty comes in in arguing what that likelihood
17	really is.
18	CHAIRMAN APOSTOLAKIS: Yes.
19	MR. LEHNER: Because, in a sense, it's a
20	subjective assessment of a group of experts as to
21	whether that particular model has more credence than
22	the other models.
23	CHAIRMAN APOSTOLAKIS: Yes.
24	MR. LEHNER: So I think those were the
25	types of arguments that we went through. I mean, this

(202) 234-4433

	22
1	is almost like this is deja vu for me, because we
2	talked about this.
3	CHAIRMAN APOSTOLAKIS: All over again.
4	MR. LEHNER: Back in 1997 when we were
5	looking at Reg Guideline 1.174 and discussing the same
6	issues. The sense that, you know, we didn't want to
7	see ourselves going down the path of having to do
8	broad uncertainty distributions and folding everything
9	into a final answer, but rather have separate effects
10	analyses, if you like, so you could identify what were
11	the issues that really made you lean towards rejecting
12	an application and then assessing the worth of those
13	assumptions.
14	PARTICIPANT: Which means?
15	MR. LEHNER: Which means in a way it's
16	quantification in a sense, but only in a relative
17	sense.
18	CHAIRMAN APOSTOLAKIS: Look, I'm not
19	saying that you should come up with something that
20	says this model has .3 probability.
21	MR. LEHNER: Yes.
22	CHAIRMAN APOSTOLAKIS: But my
23	MR. LEHNER: Whether it's low or not.
24	CHAIRMAN APOSTOLAKIS: argument is that
25	you cannot avoid saying something about how likely or

(202) 234-4433

	23
1	how credible this model is.
2	MR. LEHNER: Right, right.
3	CHAIRMAN APOSTOLAKIS: Now, what that
4	something is, I don't know. We have to discuss it.
5	But there are two points I'm making. First, it's not
6	either or. It's not either 1.150 or something else.
7	There are stages in between. Second, sensitivity
8	studies by themselves I doubt very much will be very
9	helpful. At some point you have to take the plunge
10	and say well, you know, and we don't think this is to
11	lightly or this is acceptable for whatever reason. In
12	other words, say something about how likely it is a
13	particular assumption is.
14	MR. LEHNER: I think, in a sense, that's
15	always what we have had in mind.
16	CHAIRMAN APOSTOLAKIS: Yes.
17	MR. LEHNER: The sensitivity analysis
18	anyway. So say that you're doing it. You don't just
19	do it for the hell of it. You do it and you say does
20	this issue affect my decision? If it does, do I
21	really believe that this is a serious contender? And
22	if it's not, then you can reject it. And if it is,
23	then you have to
24	MR. TRUE: And you try to push it as far
25	as you can.

(202) 234-4433

	24
1	MR. LEHNER: Yes.
2	CHAIRMAN APOSTOLAKIS: I mean, take the
3	5069 thing. Originally, south Texas took all the
4	failure rates and increased them by 10. Now, why 10
5	and not 11, why 10? Then NEI comes back and says no,
6	we'll increase them by FIVE and then I think the same
7	factor there. Well, what if you find that, you know,
8	by increasing them by 10, you really violate the
9	rules? I mean, you have to say something about how
10	reasonable that 10 is.
11	MR. LEHNER: Sure.
12	CHAIRMAN APOSTOLAKIS: And that was
13	something that we discussed in 5069.
14	PARTICIPANT: That was a deciding factor.
15	CHAIRMAN APOSTOLAKIS: It is a deciding
16	factor. It was a deciding factor. So at some point
17	you have to say something about these things. It goes
18	beyond just yes, we did the sensitivity study. If you
19	do sensitivity studies and everything is fine, I don't
20	think you have a problem.
21	MEMBER SIEBER: It is
22	MR. LEHNER: Right, right. It's when it
23	doesn't work, it's the advantage.
24	CHAIRMAN APOSTOLAKIS: Yes.
25	MR. LEHNER: Although then you've

(202) 234-4433

	25
1	CHAIRMAN APOSTOLAKIS: So that's mainly my
2	point, Mary. You know, there is a whole spectrum in
3	agreeing and choosing. And we have many more
4	opportunities to discuss this.
5	MS. DROUIN: Yes.
6	MR. LEHNER: By agreement, I don't think
7	we're
8	CHAIRMAN APOSTOLAKIS: We want to finish
9	this up at 1:00, because we have many opportunities to
10	meet with Mary and Gareth and the other guys, but not
11	as many to meet with people from these, so I really
12	want to give two full hours to Gareth and whoever else
13	is a part.
14	MR. TRUE: Whoever else isn't here right
15	now, so maybe
16	CHAIRMAN APOSTOLAKIS: So let's go on.
17	When and how? Well, in September and
18	MS. DROUIN: When and how should the
19	uncertainty distribution be treated in the decision-
20	making process? I mean, do we just go with the mean
21	value and don't look at the spread?
22	CHAIRMAN APOSTOLAKIS: I don't know, Mary.
23	MS. DROUIN: I mean, we don't think that's
24	a good idea.
25	CHAIRMAN APOSTOLAKIS: Well, the mean

(202) 234-4433

	26
1	value already has is influenced by the uncertainty.
2	MS. DROUIN: Yes.
3	CHAIRMAN APOSTOLAKIS: But I think you
4	mean something more than that.
5	MS. DROUIN: Yes.
6	CHAIRMAN APOSTOLAKIS: Tom Kress is about
7	to say something here.
8	MR. KRESS: Well, you have normally,
9	when you deal with uncertainty in the decision-making
10	process, you have an acceptance criteria in the
11	circumference plan.
12	MS. DROUIN: That's right.
13	MR. KRESS: The question how do you arrive
14	at that acceptance criteria has been the question.
15	But generally, you use the loss function, utility
16	function, which is based on it's mostly an opinion,
17	but it's based on an informed opinion. But, in
18	general, when you do, you're going to deal with
19	confidence levels in your acceptance criteria. That's
20	how you do that.
21	MR. LEHNER: But let me remind you though
22	that the acceptance criteria that we use or have been
23	using when chosen to be mean to be competitive to
24	mean.
25	MR. KRESS: I'm not complaining about

(202) 234-4433

	27
1	that.
2	MR. LEHNER: Right.
3	MR. KRESS: But maybe you need a
4	confidence level, but, you know, when you say the
5	mean, I'm assuming that's 50/50 already. 50 percent
6	high or 50 percent
7	MR. LEHNER: No, it's more like 75/50
8	percent.
9	MR. KRESS: Oh, okay.
10	MR. LEHNER: Something like that.
11	MEMBER SHACK: It's 75/50.
12	MR. KRESS: That may be an appropriate
13	choice, but I don't know what the loss function is
14	associated with that. Partly it's all right, because
15	that's what some people decided.
16	CHAIRMAN APOSTOLAKIS: I tried to once to
17	have a loss function that increases as
18	MR. KRESS: As you go up?
19	CHAIRMAN APOSTOLAKIS: go up.
20	MR. KRESS: That's what it should do.
21	CHAIRMAN APOSTOLAKIS: It's very
22	MR. KRESS: It's hard.
23	CHAIRMAN APOSTOLAKIS: hard to work
24	with.
25	MR. KRESS: It's hard to come by and it's

	28
1	almost a judgment call.
2	MR. LEHNER: I think one of the things
3	that we have played around with is maybe looking at
4	the shape of the distribution, still use the mean, but
5	looking at the shape of the distribution and wondering
6	how much of the tail lies above the acceptance
7	guideline, for example, and I'm not sure that this
8	works very well. It works great for distribution for
9	defining model on multi-mobile, because the mean might
10	be way down below the guideline, but you might have a
11	little bit of a distribution that's way above that
12	corresponds to some, you know, assumption that you've
13	made or something like that.
14	Clearly, that's information worth knowing,
15	because you want to know what's driving that thing
16	that is above the guideline. But in terms of I
17	mean, we're intending to hope that we don't have to
18	develop new guidelines and new acceptance criteria,
19	because those of you who were here when we did Reg
20	Guide 1.174, you know what the agonies we went through
21	with choosing those criterias.
22	CHAIRMAN APOSTOLAKIS: I guess if you can
23	go a few small steps beyond just saying increase
24	management attention.
25	MR. LEHNER: Yes.

	29
1	CHAIRMAN APOSTOLAKIS: That would be good
2	enough at this stage. Because I think that's what
3	increase management attention means in the report.
4	But if you're close to the family, you scrutinize the
5	day of the distribution, what does it mean and so on.
6	MR. LEHNER: Yes.
7	CHAIRMAN APOSTOLAKIS: Should there be
8	guidance to use uncertainties? Why is that your job?
9	MS. DROUIN: Well, we're asking whether or
10	not. You know, as I indicated earlier, one of the
11	things that we were doing was to identify a generic
12	list of uncertainties, and we could go a step further
13	and say okay, here is an acceptable approach for that
14	uncertainty.
15	CHAIRMAN APOSTOLAKIS: So it's not really
16	to refuse things, you're just saying if you quantify
17	it this way, we'll accept it?
18	MS. DROUIN: Yes.
19	PARTICIPANT: Take it out of the equation
20	basically.
21	CHAIRMAN APOSTOLAKIS: Take out the
22	PARTICIPANT: Yes.
23	MS. DROUIN: And going that way, you know,
24	do we create I mean, do we come up with an
25	acceptable approach that is based on more bounding

(202) 234-4433

	30
1	assumptions or do we go through more of a consensus
2	process where you can end up with something that's not
3	necessarily either bounding or conservative? But the
4	biggest thing is is it worthwhile to even go that and
5	come up with an acceptable approach? Try and come up
6	with an acceptable approach.
7	CHAIRMAN APOSTOLAKIS: I think we will
8	know much better or more to be able to say something
9	intelligent about this after you do the first bullet
10	or maybe the first one.
11	MS. DROUIN: Okay.
12	MR. KRESS: Another point about your
13	second bullet here. You need to have distribution to
14	get mean.
15	PARTICIPANT: Yes.
16	MR. KRESS: So, you know, it's all right
17	to use some mean, because it's not too whatever
18	choice you use for your decision criteria, you want
19	mean to certain distribution to decide whether you are
20	there or not. That's the reason there. You can't
21	really do that with sensitivity.
22	CHAIRMAN APOSTOLAKIS: No. Okay. Next,
23	Mary?
24	MS. DROUIN: Okay. This is the next
25	point, the next one. If we do come up with and

(202) 234-4433

31
propose acceptable methods or models, you know, does
this mean that if the specific model uncertainty is
already addressed and does not need to be considered
in the decision?
MR. LEHNER: The Westinghouse C-LOCA
Model, no, sorry, the agreed upon C-LOCA Model, for
example, for Westinghouse plants.
CHAIRMAN APOSTOLAKIS: Isn't it a matter
of evaluation though? I don't understand the
question. They agreed upon where is it?
MR. KRESS: Well, you know, take for
example an Appendix K Model, you know, and, you know,
we're talking about PRAs. The Appendix K Model might
be used to develop success criteria, for example, and
just because it's an acceptable model doesn't give you
the probability that you're going to achieve that
success criteria. So I don't think actually to me,
you do need to still deal with uncertainties even if
you have an acceptable model. I don't really know
what you mean by acceptable models.
CHAIRMAN APOSTOLAKIS: Yes, it's not
clear.
MR. KRESS: It's not clear.
MS. DROUIN: Well, let's go back and use
the awful example of the C-LOCA. And let's say for
the awful example of the C-LOCA. And let's s

(202) 234-4433

1 discussion purposes what's put out there as an everybody 2 acceptable, and has decided that's 3 acceptable and that's what everybody is using, is the 4 Rhodes Model. So now, you don't have the uncertainty 5 and the variability from all the different models. Everybody has used this same model and now, you have 6 7 the same uncertainty associated with it and now, you can take it out of the equation, because you don't 8 9 have the uncertainty or the variability anymore. 10 MR. LEHNER: And I think the second, the sub-bullet, what that means is that the model itself 11 12 might have some parameters set. CHAIRMAN APOSTOLAKIS: Absolutely. 13 14 MS. DROUIN: Yes. 15 So you would still have to MR. LEHNER: deal with those. 16 17 MS. DROUIN: Right. And the other thing is that 18 MR. LEHNER: 19 you have to understand whether that model was chosen 20 because it was a somewhat conservative model and, 21 therefore, you need to recognize that, because that 22 might have an impact on certain applications. So it 23 would be a way of characterizing. This is the model 24 typically we will use, but it has these limitations 25 and, therefore, when you're making these decisions,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

32

33
you have to be careful of it. I think that's,
basically, what we're thinking of.
CHAIRMAN APOSTOLAKIS: That makes sense.
PARTICIPANT: Yes, that does make sense.
CHAIRMAN APOSTOLAKIS: It makes perfect
sense.
MS. DROUIN: Right. I mean, it's getting
to the benefit of why you would want to specify an
acceptable model.
CHAIRMAN APOSTOLAKIS: Yes. But again, I
really think that a lot of these questions can be
addressed much more intelligently after some dictates
of the various words in developing it.
MS. DROUIN: Okay.
CHAIRMAN APOSTOLAKIS: Some more specific.
MEMBER SHACK: Well, I mean, I think it is
you know, the acceptable models are acceptable for
certain things, you know.
CHAIRMAN APOSTOLAKIS: Yes.
MEMBER SHACK: If you're looking how fast
a crack goes through a wall, you want to conserve the
prediction of that. If you're trying to make a leak
before break argument, you don't want to drive the
crack through the wall faster than it really can do
it. I mean, so what's conservative for one purpose

(202) 234-4433

	34
1	may not be conservative for the other.
2	CHAIRMAN APOSTOLAKIS: Yes.
3	MEMBER SHACK: And you really have to be
4	aware of just what assumptions you're making.
5	MEMBER SIEBER: And a lot of these models
6	are part of the greater
7	MEMBER SHACK: Yes.
8	MEMBER SIEBER: thing where the
9	uncertainties are huge, and so you need to treat them
10	explicitly, I think.
11	MS. DROUIN: Okay. Next one, what are the
12	problems/issues in using bounding analyses with
13	respect to generating insights that can be used in the
14	decision-making?
15	MR. KRESS: Well, I think when you say
16	bounding analysis, you have to be a little more
17	definitive on what you mean in the sense that some
18	people say if I had a distribution, but the value of
19	the 95 percent boundary is down. You know, generally,
20	we're dealing with distributions in reality, but when
21	you say boundary analysis, you're talking about
22	something that either can't go beyond or some very,
23	very low probability. And I think we have to, somehow
24	when we talk about boundary analysis and giving
25	guidance on using it, you have to be more definitive

(202) 234-4433

	35
1	about what you mean by bounding analysis.
2	MR. LEHNER: I think that's a good
3	comment. I think that's one of the problems that we
4	try, we're going to attempt to do wasn't it, was to
5	define what was an acceptable bounding analysis.
6	PARTICIPANT: Yes.
7	CHAIRMAN APOSTOLAKIS: I think the problem
8	or one problem case might be where we use a bounding
9	analysis and you violate the criteria.
10	MR. LEHNER: Right.
11	CHAIRMAN APOSTOLAKIS: Then you have
12	PARTICIPANT: Yes, that's
13	CHAIRMAN APOSTOLAKIS: Have you been
14	overly conservative?
15	MR. LEHNER: Right.
16	MEMBER SHACK: See, my argument was is if
17	you're using a bounding analysis, if it's truly
18	bounding, you know, the hard part of the problem to me
19	is that you never almost always do a problem that's
20	overall bounding. You bound some part and then you do
21	some other part.
22	CHAIRMAN APOSTOLAKIS: Right.
23	MEMBER SHACK: And where are you really at
24	now? If I was really convinced the whole problem was
25	bounded, that addresses my concern.

(202) 234-4433
36
MR. KRESS: I don't really know what you
mean by bounded in this case, because the only thing
we're dealing with is the probability distribution.
See, that's my problem. When you say truly bounding,
I don't really know what that means. I mean, I know
what it means in mathematical sense. I know what it
means in a mathematical sense when you're talking
about truly bounding things mathematically, but from
a relative sense, I don't know what you mean.
MEMBER SIEBER: Philosophically, there is
no bounding analysis.
CHAIRMAN APOSTOLAKIS: That's true.
MR. KRESS: In a probability sense.
CHAIRMAN APOSTOLAKIS: But it's a very
unlikely
MR. KRESS: Yes, John, and it has to be
somehow defined in those terms.
MEMBER SIEBER: You have to define that.
MR. LEHNER: But I think maybe Dr. Shack
had it right, in some of the analyses that it's sort
of bounding in certain aspects. For example, a model
like FIVE, okay, just using the screening approach the
same. If you have a fire in that room that takes
everything out in that room, that is certainly
bounding under those.

(202) 234-4433

37
PARTICIPANT: That's bounding.
MR. LEHNER: But I think those are the
types of things, I think, we're going to have to bring
into the definition of what we really think is a
bounding analysis.
MEMBER DENNING: I think there is another
element here, and that is I think we're really looking
often at the trade-off between risks and as we look to
our risk-informing regulation and if you do bound,
even if you're conservative in one area, you distort
that comparison between risks.
MR. LEHNER: Yes, right.
MEMBER DENNING: I think there is concern
about this conservativeness, a more bounding element
in your analysis. How you say anything generically
about it, that's what's difficult without looking
specifically at the case that you're talking about.
MR. LEHNER: I think the good thing, a
good bit of news in regard to that though is that the
Commission has directed us to do this phase approach
to PRA quality, so if anything is a significant
contributor risk, it's supposed to be dealt with by
PRA methods and not by bounding analysis. So I think
the bounding things are always going to be, hopefully,
at the lower level rather than swamping things, but

(202) 234-4433

	38
1	yes, you have got to be careful about that.
2	CHAIRMAN APOSTOLAKIS: But seismic is
3	usually a major contributor and, yet, a lot of
4	utilities are using margins.
5	MR. LEHNER: I don't think seismic is a
6	major contributor for any
7	CHAIRMAN APOSTOLAKIS: A lot of PRAs.
8	MR. LEHNER: On the west coast maybe, I
9	don't think in very few on the east coast.
10	CHAIRMAN APOSTOLAKIS: Oh, I don't know,
11	because designation is so low on the east coast, you
12	see the problem there.
13	MR. LEHNER: I think it's quick to say if
14	you're saying that seismic
15	CHAIRMAN APOSTOLAKIS: And prior
16	contributions are among the top contributors is a
17	general statement.
18	MR. KRESS: But you're never quite sure
19	when you use such conservative analyses that you
20	CHAIRMAN APOSTOLAKIS: In the current
21	state of knowledge, this is a true statement. By the
22	way, one thing that I think is missing here, I was
23	looking at some of the regulatory decisions NRR has
24	made, risk-informed, and in several cases, you know,
25	as we all know, quantifying human error during

(202) 234-4433

	39
1	accidents is one of the major uncertainties, right?
2	And you look and the utility used a .5 for the human
3	error rate. Gee, there is no problem there. There is
4	no problem with model uncertainty here. They are so
5	close to 1. Yes, I mean, what do you want to do?
б	Make it to 1? Beat me up.
7	So I don't know. Maybe that belongs to
8	the second bullet in the previous slide, when to worry
9	about these things. I think what the applicant has
10	done what?
11	MR. LEHNER: It wasn't associated with
12	that bullet.
13	CHAIRMAN APOSTOLAKIS: Anyway, and then
14	there is no bullet related to that, but what the
15	applicant I mean, you know, everyone says model
16	uncertainty, now I have to do model uncertainty.
17	There is human error. Wow, what do I do? And then
18	the guy says .5. For me it's a non-issue, because
19	they came so close to 1 that I really don't care
20	whether there is model uncertainty.
21	As Dr. Shack likes to say, it's way down,
22	all the uncertainty is down, so I don't care. Isn't
23	it true? I mean, in other words, you can put it a
24	different way. They used the bounding analysis. They
25	bounded the human error.

(202) 234-4433

	40
1	MR. LEHNER: But they are not going to use
2	.5 for every human error.
3	CHAIRMAN APOSTOLAKIS: No, but these were
4	actual obligations by the industry and I was so
5	surprised.
6	MR. LEHNER: But if it comes up with an
7	acceptable result.
8	CHAIRMAN APOSTOLAKIS: That's why they did
9	it like this.
10	MR. LEHNER: Yes, then it
11	CHAIRMAN APOSTOLAKIS: But the reviewer
12	should be aware, because now there is no issue here.
13	MR. LEHNER: On that particular
14	application.
15	MR. KRESS: What if you use .1?
16	CHAIRMAN APOSTOLAKIS: Yes. On that
17	particular application, on that particular model
18	uncertainty.
19	MR. KRESS: Would you have had an issue if
20	they used .1?
21	CHAIRMAN APOSTOLAKIS: I don't know. It
22	would depend how sensitive they are.
23	MR. KRESS: See, I don't want to start
24	with
25	CHAIRMAN APOSTOLAKIS: Probably not. I

(202) 234-4433

	41
1	think they have to use their judgment.
2	MR. KRESS: I don't know .5 is any better
3	than .1. That's my point.
4	CHAIRMAN APOSTOLAKIS: It's much better
5	than the -3 though. It's another case where you
6	recognize it when you see it.
7	MR. KRESS: Okay.
8	CHAIRMAN APOSTOLAKIS: Okay, guys. It's
9	1:00.
10	MS. DROUIN: Okay. We'll skip the next
11	one. We could be on that forever, but the last one,
12	should the guidance for alternative approaches include
13	guidance on the use of expert panels? We had
14	originally not put that in our scope, but we're aware
15	that this is an alternative that a lot of licensees
16	are using. Instead of bounding analyses, instead of
17	doing sensitivities, they are doing expert panels. So
18	should we put this as part of our scope?
19	CHAIRMAN APOSTOLAKIS: My first reaction
20	to this is most of the work that's behind this has
21	already been done in that report on seismic, the use
22	of experts in seismic. As I say, they have
23	categories. All you have to do is take those.
24	MS. DROUIN: But that's expert
25	elicitation.

(202) 234-4433

	42
1	MR. LEHNER: That's a different issue,
2	George.
3	MS. DROUIN: Different issue.
4	CHAIRMAN APOSTOLAKIS: No, it refers to
5	expert panels.
6	MR. LEHNER: But this is more like the
7	IDPs. It's called
8	CHAIRMAN APOSTOLAKIS: They are a
9	variation of expert panels.
10	MR. LEHNER: It integrates a decision-
11	making panel, yes.
12	CHAIRMAN APOSTOLAKIS: But they are a
13	variation of those panels, I think. Even though you
14	don't elicit information formally, it's still the use
15	of an expert panel. As a group now they are telling
16	you something. So what my point is, this is not a
17	personal view. This is not worth spending too much
18	time on. It exists already. Adjust it to the problem
19	here and then later we'll see whether that's good
20	enough.
21	MEMBER SHACK: But you're implicitly
22	assuming it should be included?
23	MS. DROUIN: Included?
24	CHAIRMAN APOSTOLAKIS: Yes.
25	MS. DROUIN: We would build on whatever's

(202) 234-4433

	43
1	out there.
2	CHAIRMAN APOSTOLAKIS: Yes, yes, yes.
3	MS. DROUIN: But it's whether or not to
4	even include it?
5	CHAIRMAN APOSTOLAKIS: Yes.
6	MEMBER SIEBER: I think it's a legitimate
7	thing to do but, you know, I think every case is going
8	to be different.
9	CHAIRMAN APOSTOLAKIS: Yes, I agree with
10	you. Okay. Then you tell us that you're going to
11	come and visit us frequently?
12	MS. DROUIN: Yes.
13	CHAIRMAN APOSTOLAKIS: Is it because you
14	like us or because
15	MS. DROUIN: Oh, because we like you and
16	we value your wisdom and
17	CHAIRMAN APOSTOLAKIS: Oh, that's enough,
18	that's enough. Okay. So we're done.
19	MS. DROUIN: Thank you.
20	CHAIRMAN APOSTOLAKIS: Thank you very
21	much. Now, we go to Mr. True.
22	MR. SNODDERLY: George, do you mind?
23	CHAIRMAN APOSTOLAKIS: Yes.
24	MR. SNODDERLY: Could we take a five
25	minute break to just stretch?

	44
1	CHAIRMAN APOSTOLAKIS: Okay.
2	MR. SNODDERLY: I have got presentation
3	that are
4	CHAIRMAN APOSTOLAKIS: Five minute break.
5	(Whereupon, at 1:02 p.m. a recess until
6	1:11 p.m.)
7	CHAIRMAN APOSTOLAKIS: Okay. Let's get
8	started with Doug True.
9	MR. TRUE: No.
10	MR. CANAVAN: I'll start us off.
11	CHAIRMAN APOSTOLAKIS: Okay. Tell us who
12	you are.
13	MR. CANAVAN: Ken Canavan, Electric Power
14	Research Institute. I'm a project manager for EPRI's
15	PRA scope and quality efforts.
16	CHAIRMAN APOSTOLAKIS: Do we have copies
17	of your
18	MR. CANAVAN: It's on the way.
19	CHAIRMAN APOSTOLAKIS: Oh, okay.
20	MR. CANAVAN: They are being made as we
21	speak. As I said, I am project manager of the PRA
22	scope and quality effort at EPRI of which a framework
23	for the treatment of uncertainties is a part of,
24	granted, a fairly large part this year. And I'm going
25	to start off our presentation briefly with some

(202) 234-4433

1 overview, and then Mr. Doug True will go through the 2 details of our efforts in 2004. Can I do that? Yes. To get right into it, our goal was to 3 4 create a pragmatic process that can identify when 5 point estimate solutions are not suitable in light of parametric uncertainties, assist the utilities in 6 7 identifying and addressing key sources of uncertainty, provide a technical basis for using that in risk-8 informed decision-making, and addresses both the base 9 model and a variety of applications. 10 The is pragmatic and the 11 process 12 pragmatism is required due to the extreme amount of resources that could be required in the alternative. 13 14 And what I mean when I say pragmatic, I mean the 15 pragmatism of the process is evidenced through the adherence to several principles, and to start off with 16 those right away, I think, before Doug gets started, 17 we will give you a framework to think about as we go 18 19 through the presentation. 20 And some of those principles are, the

first one is the rigorous treatment of detailed evaluation of uncertainty due to all causes is probably not attainable. The second principle would be conservatism has been included in PRA acceptance guidelines published by the NRC to account for

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

uncertainty.

1

And then I have three other bullets to 2 3 talk about the different types of uncertainty. The 4 first one is in the case of parametric uncertainty, 5 the PRA mean value and the point estimate value are typically fairly close together. 6 In the case of 7 modeling uncertainty, there is a need to develop quidance on deciding what causes or sources of 8 9 uncertainty are key and then what to do with those key 10 sources.

In the case of completeness uncertainty, 11 12 The first one is the things that there's two types. we know about and in those cases, Reg Guide 1.200, the 13 14 PRA standards, the PRA peer reviews provide confidence 15 that we're in the completeness of those things that we In the case of the things that we don't know, 16 know. 17 the risk-informed process is laid out in Reg Guide 1.174, defense-in-depth, the safety margins 18 and performance monitoring, provide protection against 19 20 those things, the things that we don't know.

Going back to a little bit broader industry efforts, Westinghouse Owners Group has put a lot of effort into understanding uncertainty and has done the following projects. Key assumptions identification process, LOCA and LOOP uncertainty

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

impact assessment, and I believe that they have
started the PRA assumption mapping and cross
comparison activities.

In the case of EPRI, we're working on guidelines for the uncertainty characterization in risk-informed applications, and we're developing two guides as part of that. The first guide is the technical basis document and the second guide is an applications guide.

10 Here's а quick slide on the 11 interrelationship of industry activities on 12 I'm not going to go through this slide uncertainty. in detail. I will give it to you real brief. 13 That 14 center large box is our applications guide. That 15 applications guide is going to be used by Westinghouse in some form for their assumption mapping work, and we 16 also plan to pilot that guide later in 2005. 17

The technical basis document, the center 18 19 box directly below it, that is in publication now and 20 will be out by the end of the year, and that technical 21 basis document used input from the LOOP LOCA work that 22 Westinghouse had done, from the key assumptions work Westinghouse has done, as well as from the Columbia 23 24 Generating Station Reg Guide 1.200 pilot and several 25 other sources we developed. And if you would like to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

48 1 know --2 CHAIRMAN APOSTOLAKIS: Who? 3 MR. CANAVAN: Columbia Generating Station. 4 MR. TRUE: WP2. Formally, WEP. 5 PARTICIPANT: Whoops, whoops. 6 CHAIRMAN APOSTOLAKIS: Oh, okay. 7 MR. TRUE: Wasn't it in that EPRI report, 8 the bases document is going to be --9 MR. CANAVAN: Piloted. 10 MR. TRUE: But it's going to be available, 11 made available? 12 It's going to be made CANAVAN: MR. available. 13 14 MR. TRUE: So you'll be able to gain access to that. 15 CHAIRMAN APOSTOLAKIS: When will this be 16 17 published? The publication date is 18 MR. CANAVAN: 19 December 24, 2004. 20 CHAIRMAN APOSTOLAKIS: Goodnight. 21 MR. CANAVAN: And Merry Christmas. 22 CHAIRMAN APOSTOLAKIS: Wonderful. 23 MEMBER SIEBER: Yes, watch your chimneys. 24 MR. CANAVAN: Yes, it is quite large. 25 Down on the lower left hand side are our current PRA

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	Scope and Quality Committee Members. I won't go
2	through them since they are listed.
3	And we jumped ahead to status, PRA scope
4	and quality uncertainty activity status. The
5	guidelines that we're developing, the technical basis
б	document, is going to be available in December of
7	2004. The applications guide is under development and
8	we're going to try to produce a draft for January 2005
9	and that looks like it will be complete.
10	There is going to be a joint EPRI and our
11	group pilot of both the technical basis document and
12	the applications guide for 2005, and then revisions to
13	both the technical basis document and the applications
14	guide are planned for after the pilot completion by
15	the end of 2005. And that's a summary of the
16	activities. I didn't have anything else after that,
17	so it's all you.
18	MR. TRUE: Okay. It's all me. Okay. One
19	of the things that I want to also preface this with is
20	that the focus of this technical basis document and
21	the guide right now is on internal events at power,
22	basically, aligned with the ASME standard, and you
23	will see how that was done and why it is limited to
24	that, at this point, as we get into this.
25	As we get into this, we're trying to

(202) 234-4433

create a process and bases information that will help 2 utilities meet the regulatory requirements as they are 3 today, and we think a lot of what we're doing actually 4 compliments the project that Mary talked to you about just before. It overlaps some, but it also, we think, actually compliments it in a lot of ways, what they 6 have been thinking about doing.

1

5

7

25

We have gone sort of down in detail in the 8 9 internal events at power area. They have been kind of staying at the higher level, and we have had one 10 11 physical meeting and a couple of phone meetings trying 12 to coordinate activities in that area, and we expect that will continue into next year. 13

14 So we start at the mothership of what Req 15 Guide 1.174 on risk-informed decision-making. Ι brought this extra, so you could see where we started 16 from at the highest level. And basically, 1.174 says 17 that you need to deal with uncertainties and you need 18 to understand how they could affect the decision, and 19 20 well formulated sensitivity that studies or 21 qualitative arguments are a means to do that. And so 22 there was a fair amount of discussion earlier on 23 sensitivity studies and other things. We have headed 24 down the sensitivity study path.

> thought Another thing that we was

> > **NEAL R. GROSS**

1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS (202) 234-4433

important out of 1.174 is it talks about these well formulated sensitivity studies being reasonable and trying to keep them within physical reality and not be exhaustive or arbitrary. And so we have tried to help build from that into a lot more detail about what that might actually look like in trying to evaluate key sources of uncertainty in base models and in applications.

9 Reg Guide 1.200 goes on and makes a couple of other statements, which I won't read verbatim, but 10 11 the two important elements are that the key sources of 12 uncertainty are tied to the technical elements of the In the case of the ASME standard, that's things 13 PRA. 14 like initiating events, systems analysis, LERF or the 15 nine technical elements of PRA, and that you are supposed to identify them within those technical 16 elements and understand their impacts on the risk 17 results, CDF and LERF. 18

19 And the key assumptions also are driven by 20 those key sources of uncertainty, and also in Section 21 1.21, of Reg Guide 1.200, sorry, too many 1s and 2s 22 they talk about doing combinations there, of 23 sensitivity studies as a means to look at 24 uncertainties in results. And so we have tried to 25 also address that and how that is actually done,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

because beyond these high level statements, there really isn't anything written down that we could find that would really direct a licensee on how to actually tackle this subject, and that is part of what your letter addressed, but it even goes further than that, we think.

7 So we came up with a high level process, two high level process diagrams, one for the base 8 9 model and one for applications, because we think they do different things to look at uncertainties for each 10 of those uses of PRA. And then we start at the far 11 list of potential model 12 left with generic а uncertainties, and this list, I will get into it in 13 14 some more detail here, we're not going to go through it in detail, but we'll talk about how we came up with 15 it in detail, it is derived from the past work that 16 has been done, 1.150 applications that have been done 17 in our experience across the industry and the members 18 19 of our working group and the log work that have 20 identified a number of causes of uncertainty and 21 specific types of uncertainty.

That list is used, it will be used by a licensee to evaluate the applicability of those model uncertainties to their model. Do they exist? You know, obviously, if you're a BWR, you don't have the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

Westinghouse Reactor coolant pump seals, to use the tired example, but there may also be other areas of uncertainty related to room cooling or treatment of grid stability or some of the other more problematic aspects of modeling that might or might not apply to a particular PRA.

7 We also realized in the box below that 8 there may be things that are done in developing the 9 plant-specific model that in themselves have some sort of uncertainty associated with them. 10 It might be something unique to the particular plant that has 11 12 caused the model builder to have to make decisions that have had uncertainty associated with it, and they 13 14 may have done that in a conservative way. They may have tried to do it realistically. 15 It depends really 16 a lot on the specific issue.

So we're trying to create a process for the PRA analysts to look at their PRA, and we look even beyond this generic list at places where they may have introduced uncertainties into their model.

And those lists of applicable model uncertainties are then culled through to see where those have been applied with conservative biases. I'm starting at the bottom of the next little dotted box, because a lot of the times in doing PRAs, the way we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

deal with uncertainty is we use a conservative bias. It's just easier and if it's not a large contributor to the result, it facilitates getting the analysis actually done, and that's okay in a base model as long as it's not driving the result. It's perfectly acceptable to disposition a source of uncertainty in that manner.

Another way that we'll deal with our 8 9 source of uncertainty is to apply a consensus model. For example, the WOG 2000 Model, which is the newest 10 endorsed version of the Westinghouse Model and Rhodes 11 12 Model kind of married together into one. The result is now a consensus model that we would expect people 13 14 would use in doing their base PRA. And that is a way in that model to address the best source of model 15 16 uncertainty.

17 But then the other things that come through that weren't either done with a consensus 18 19 model or may have been attempted to be done as 20 realistically as possible because of their being 21 significant contributors or that was the modeling 22 approach taken by the model. For those, we're asking 23 that the PRA user assess the magnitude of the impact 24 of that uncertainty. They actually look at how 25 sensitive the result is to that particular aspect of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

	55
1	the model.
2	And what we're really after is identifying
3	this term key model uncertainties. That term is used
4	throughout the ASME standard and Reg Guide 1.200, and
5	the qualifier of key is what really drives this,
6	because there are thousands of model uncertainties in
7	a PRA, maybe millions, I don't know, there's very,
8	very many. And what we're really after are the ones
9	that are really key. And we use magnitude of impact
10	as a means to identify those key model uncertainties.
11	And then for those key model
12	uncertainties, formulate the sensitivity studies and
13	look at logical combinations of those sensitivity
14	studies, we'll talk a little bit about logical
15	combinations in a minute, and then make some
16	assessment of what those results are telling you in
17	light of the quantitative impacts of those key model
18	uncertainties.
19	The application framework is a little bit
20	different. We start off with a characterization of
21	the application down in the lower left. And then we

ask that the analyst identify what are the key

things that are really driving risk ought to be there.

Another tired example might be an EDG AOT extension.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

application-specific contributors. You know, the

(202) 234-4433

22

23

24

25

(202) 234-4433

You know you're really dealing with things that relate to LOOP, that relate to a station blackout and performance of the plant under those conditions. You can isolate the aspects of the model that are really contributing to your application and your decision.

From that look at the kind of calculation 6 7 that you're doing to try and identify the cause and 8 effect relationships that are being implicated by the 9 change to understand then how the applicable model uncertainties that we identified up front on the base 10 model apply. And you will note that we bring back now 11 12 consensus models and conservative biases as candidates that need to be considered in the application. 13 And 14 that is because we don't think that you can make the 15 case that just because I used a consensus model, that I have completely addressed the uncertainty in my 16 17 decision. You may have dispositioned it adequately in the base model, but when you're trying to measure some 18 19 difference in particular, we think you need to look at 20 that again.

Going back down to the bottom of the chart, there is a little bypass right on the bottom that introduces another set of candidate model uncertainties, and those are things like peer review findings that might still be open from the PRA that is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

57 1 being used, because a lot of times not all of those 2 have been addressed, you have got to disposition 3 those, precursors that may have happened at the plant 4 that might be relevant to the application that you 5 have going on and regulatory issues. Maybe a good example of that would be 6 7 grate issues, I mentioned grate stability and maybe containment sump issues would be something that would 8 9 be hard to sort of ignore today, because those are 10 issues that are out there that have а risk implication. So we think those come in also as a 11 means to identify those potential key sources of 12 13 uncertainty. 14 aqain formulate sensitivity Then we 15 look for logical combinations and then studies, interpret the results of those sensitivity studies. 16 And we actually are so bold or foolish to come today 17 with some suggestions on how those results could be 18 19 interpreted, which will no doubt lead to some 20 discussion. 21 MEMBER DENNING: Are you going to describe 22 formulated logical combinations more? 23 I think we ended up taking that MR. TRUE: 24 out, didn't we? Yes. The idea is that in the logical 25 -- there's not more, actually, I thought we had it in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

here, but I think we took it out in the interest of time, that we're looking for potential synergies. It's really the place where the combination of two topics could cause your results to be skewed by synergism. Yes, so they are not just added. They are multiplicative, so to speak.

7 So there are five things we want to try and go through and we got a lot to bite off, so we'll 8 9 try and cruise through this quickly. The first is this process we use for identifying sources of 10 uncertainty. Then we have some definitions for this 11 12 the key assumptions, key source of key aspect, uncertainty. We're also going to talk about consensus 13 14 approaches and models. That was one of our buckets 15 that we could disposition things into, and we think that's an important aspect that we need to wrestle 16 with, and I think Mary's presentation talked about how 17 the NRC is working on that side also. 18

19 quidance interpreting And then on 20 sensitivity study results on these key model 21 uncertainties, and then we have some information on 22 the first bullet that Ken talked about, which is when 23 do point estimate solutions from PRA models not match 24 a fully parametric uncertainty where we would counter 25 for the state exploration. And kind of some follow-on

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

59 1 work to the earlier EPRI work we did on parametric 2 uncertainties for 5069. 3 So in identifying the sources of 4 uncertainty, we have gone about creating a generic 5 list by examining the ASME standard in other PRAs, and we basically use the ASME standard elements and the 6 7 high level requirements from the ASME standard as an 8 organizing framework. So for each of the nine 9 elements, there are somewhere between two and seven, 10 I think, high level requirements that further define 11 each of those elements and what is required in the 12 standard. We have used that as an organizing framework. 13 14 And then we have come up with a list of 15 generic causes of model uncertainty. The semantics 16 here are a little bit tricky. A source is, you know, 17 something like RCPC LOCA, but a cause is what's the 18 real root cause of why we have that source of 19 uncertainty. 20 CHAIRMAN APOSTOLAKIS: It's lack of 21 knowledge? 22 MR. TRUE: We think there's a generic list 23 of those. CHAIRMAN APOSTOLAKIS: Isn't it lack of 24 25 knowledge?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	60
1	MR. TRUE: That's a very high level cause,
2	but there are other not all of them fall under lack
3	of knowledge. We'll get to this in just a second.
4	MEMBER SHACK: This would be something
5	more specific like the heat transfer authority?
6	MR. TRUE: No, this is going the other
7	way. This is
8	MEMBER SHACK: That's directing upward.
9	MR. TRUE: Directing upward, upward. So
10	we started with high level. Well, let's just jump
11	into it. We started with the nine elements of PRA,
12	initiating events. Each of those have or are
13	subdivided into high level requirements, and I have
14	kind of cryptically identified for initiating events
15	there are three high level requirements that contain
16	technical requirements.
17	First is identification of initiating
18	events. The second is grouping of initiating events
19	and the third is frequency. For each one of those
20	high level requirement areas, we went through and
21	looked for places where these seven causes could have
22	led to a source of uncertainty. So these causes I
23	talked about are a key part of this process. We
24	wanted to be derivative. We didn't want to go out and
25	just pick sources of uncertainty that we could think

(202) 234-4433

5 The first is discretization. It's really the level of resolution that you built into the model 6 7 and that works both ways. You can make a very multi-8 model and that can create certain opportunities and 9 bounding versus not bounding or non-

10 conservative/conservative issues or you can be very, very detailed, which can make interpreting the results 11 12 difficult. You can actually discretize beyond the level of information that you have if you're not 13 14 careful. And so we wanted to look for places where 15 that might apply.

for identification 16 You will see of 17 initiating events, we didn't see that as being an issue, because identification is just a scope instead 18 19 of definition. However, when you get into grouping, 20 then discretization becomes very important and we have 21 seen places where PRAs have gone off track, because 22 they are grouped inappropriately and they haven't had 23 an adequate breakdown of initiating events groups. 24 The second area is input applicability.

25 We rely on all kinds of different information either

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	62
1	generic or past performance information or even
2	assumptions. Sometimes they are just flat out
3	assumptions to go into the model to help build the
4	model. And those inputs really drive how the model is
5	constructed and how the model gets quantified, and
6	that applicability to what you're actually analyzing
7	may or may not be appropriate depending upon a base
8	model or the application that you're doing.
9	And the example I used here was
10	applicability of past performance to predicting future
11	performance. We do have a lot of PRA, but with the
12	changes in operating practices and things, that may or
13	may not be a good assumption or a good approach, and
14	it's a source of uncertainty in our results.
15	Deterministic modeling forms the backbone
16	of the whole PRA. It sets all the success criteria.
17	It sets the events sequences, and that deterministic
18	modeling is really central to all the decisions that
19	we make. And as much as we try to make that be
20	realistic and applicable and everything, there are
21	still uncertainties in whatever we apply.
22	CHAIRMAN APOSTOLAKIS: Isn't phenomenology
23	part of deterministic modeling?
24	MR. TRUE: Yes. I broke those out,
25	because I think there are aspects to and there is

(202) 234-4433

(202) 234-4433

1 overlap in some of these categories. We tried to make them fairly discreet, but there is some overlap. 2 3 Phenomenology, I kind of wanted a bin to just put 4 things like induced tube ruptures, direct containment 5 heating, atlas, core BWR atlas response, some of those kinds of things that are really more phenomena, 6 7 special. 8 CHAIRMAN APOSTOLAKIS: Spacial. 9 Spacial, yes, spacial things MR. TRUE: Deterministic 10 that are more strictly phenomena. modeling has other aspects to it like, in this case, 11 FMEAs, which are used in identifying 12 initiating events, the high level requirement we're in. 13 How 14 detailed you have gone and how complete you have been 15 in that FMEA is a source of mulling uncertainty in your model, and it could be a fairly important one. 16 17 If you miss an initiating event, then you may have an incomplete assessment. 18 19 Human performance gets its own category. 20 It's sort of the poster child for uncertainty. And

21 dependencies we broke out also. Again, you could also 22 tie dependencies back into deterministic modeling, but 23 dependencies are so important in making sure you have 24 an appropriate risk profile. It's a thing that can 25 completely overwhelm the probabilistics, is if you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

64
have a dependence that you didn't identify or you have
over-depended or overly assigned a dependence that
doesn't need to be there, you can skew your results.
And then the last category is temporal
variability, which doesn't really apply to the base
model so much, but can become very, very important in
applications. Temporal variability is that, you know,
when you get into a lot of applications, there are
going to be variations in the probabilistic values
that we use in the models, the plant conditions that
exist at the time the analysis applies and it
particularly gets in play when we get into things like
significance determination process applications, which
are a big issue right now in the industry.
There are a lot of resources spent on
looking at the significance of inspection findings at
certain plants under certain conditions. And the
averaging that we do in a base PRA doesn't always
apply, and so we wanted to break that out as another
case for application purposes.
Consensus model and approach. That term
is used in the ASME standard and it is undefined. And
as we went to kind of work our way through this, we
said oh, okay, consensus models. We get to bin things
into that category and use that as a way to

(202) 234-4433

(202) 234-4433

disposition things, but we didn't have a definition.

And so we have proposed what we call a working definition, and Mary talked about her list of NRC-acceptable models as their way of looking at it. We're hoping to dialogue on that to see if we can come to some consensus on the definition of consensus approaches.

8 There are two important aspects. One is 9 the consensuses part of the issue, which is the top 10 half of the definition. Then the bottom half is that 11 we think it's important not to just be able to say I 12 applied a consensus model, but to have the application 13 of that consensus model have been peer reviewed.

14 It's not good enough to just hang your hat 15 on some report and say oh, yes, I interpreted it and 16 put it in right. It has got to actually have been 17 reviewed to make sure it is implemented correctly and 18 consistent with the assumptions of that consensus 19 model and approach. Otherwise, we have introduced a 20 new form of modeling uncertainty.

In terms of definitions and key definitions, the terms with key in them, key source of uncertainty and key assumption, we think that the 1.200 definitions as they stand in the trial used, the 1.200s, are a little bit too broad and there are two

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

66
problem areas there.
The first is one of the criteria is
changes in relative ranking of sequences. It doesn't
take much, but a sneeze, to cause one sequence to move
above another, particularly when you get down into the
lower frequency sequences. Certainly, you wouldn't
want the dominant contributor to be moving around, but
the a notion of relative ranking of significant
sequences is, we think, a problem in trying to
implement that decision.
We also think that there ought to be some
sort of a quantitative criteria for how to decide
which ones are key. We think that's really the only
way to get to a shorter list than all the possible
sources of uncertainty.
And I guess the last area is that the
definition is written really for a base model and not
for applications, and we think we need to be able to
address both since the base model doesn't really have
an application right now. They are all done with
IPEs. There is nothing really that those are used for
as they exist. It's always an application.
So what we have done here is we have done
sort of a line in/line out form of modifying the 1.200
definition. I won't go through it word by word. We

(202) 234-4433

	67
1	also reformatted it slightly, so that it was a little
2	bit easier to follow that, the line in/line out. But
3	basically, we added introducing new functional
4	accident sequences. The previous definition had said
5	new accident sequences.
6	It's our interpretation that that was
7	actually what was meant by accident sequences. If you
8	read the definition of accident sequences, it talks
9	about personnel, but we think it's a little bit better
10	to have it explicitly identified here.
11	As I said, the changing of relative
12	importance of sequences we think should be removed,
13	and we have added a more quantitative definition to
14	the phrase that had been there before, which involved
15	affecting the overall CDF and LERF estimates that
16	might have an impact on decision-making. We think we
17	have made a cut at trying to actually define where you
18	begin to impact that decision.
19	CHAIRMAN APOSTOLAKIS: But go back,
20	please.
21	MR. TRUE: Yes.
22	CHAIRMAN APOSTOLAKIS: The words may be
23	well, they may mean different things. For example,
24	you say a key source of uncertainty is one that is
25	related to an issue where there is no consensus

(202) 234-4433

	68
1	approach or model.
2	MR. TRUE: Right.
3	CHAIRMAN APOSTOLAKIS: What if,
4	miraculously, we have an issue where there are three
5	models, but there is consensus as to what to do with
6	them? That could be a key source of uncertainty in
7	which there is consensus, but there is no consensus on
8	a single model or you can say there is a single model
9	now that consists of the three models. The words, I
10	think, need to be cleaned up a little bit. I know
11	what you mean.
12	MR. TRUE: Yes.
13	CHAIRMAN APOSTOLAKIS: But I'm just
14	playing devil's advocate now that, you know, you have
15	three models and we all agree, there is a miracle.
16	MR. TRUE: Yes.
17	CHAIRMAN APOSTOLAKIS: Including Gareth.
18	MR. TRUE: Yes.
19	CHAIRMAN APOSTOLAKIS: You see?
20	MR. TRUE: Yes.
21	CHAIRMAN APOSTOLAKIS: Yes, that this is
22	the distribution, then there is a consensus and, yet,
23	that may still be a key source of uncertainty, right?
24	MR. TRUE: And this was again from the
25	base model.

(202) 234-4433

	69
1	CHAIRMAN APOSTOLAKIS: Yes.
2	MR. TRUE: In the base model we have
3	allowed that if you have used a consensus approach,
4	that that sort of terminates the process of evaluating
5	that source of uncertainty.
6	CHAIRMAN APOSTOLAKIS: Well, I don't know,
7	I mean.
8	MR. TRUE: Well, if it's an application
9	and you're trying to make a decision, you know, based
10	on that, then we believe you need to bring that back.
11	CHAIRMAN APOSTOLAKIS: Also, something can
12	be a key source in the application.
13	MR. TRUE: Yes, it could be a not key in
14	the base.
15	CHAIRMAN APOSTOLAKIS: But not in the base
16	model?
17	MR. TRUE: It can be not key in the base,
18	but it can be key in the application.
19	CHAIRMAN APOSTOLAKIS: How does that help
20	with anything? I mean, are you
21	MR. TRUE: Because applications often only
22	deal with portions of the model, it allows you to
23	focus in on just those pieces inherent to the
24	decision. Whereas, if you try to identify everything
25	that ever possibly could be key in the base model, we

(202) 234-4433

	70
1	think you would drown in possibilities.
2	CHAIRMAN APOSTOLAKIS: How am I going to
3	use the base model? I guess now, it becomes very
4	important.
5	MR. TRUE: The base model you use in 1.174
6	space to make sure where you are on the existing.
7	CHAIRMAN APOSTOLAKIS: Horizontal axis?
8	MR. TRUE: Yes.
9	CHAIRMAN APOSTOLAKIS: Yes. All right.
10	MR. TRUE: But like I said, there is not
11	a particular application today for base models. We
12	have done IPEs. We have already made the decision
13	that there are no vulnerabilities. But they form the
14	basis for the decision-making process and also, I
15	should say, you will use base models and some
16	applications like 5069 where you're using importance
17	measures to evaluate the significance of something.
18	So the base model gets actually directly used in that
19	application.
20	But 1.200 is focused on the base model,
21	not a particular application. It's assessing the
22	quality in the base model. Key assumption.
23	Basically, the changes are parallel. There is no
24	significant difference in the way we editorially
25	propose changes. Okay. Here we go into criteria.

(202) 234-4433

71 There are two graphs. I want to focus on the left 2 hand graph first. So we're looking at a basic PRA and identified that 3 we have we have а source of 4 uncertainty that's applicable to the plant and to the PRA, and it doesn't have a consensus model associated with it, and it wasn't treated with a conservative 6 bias.

So at that point, we need to have a way to 8 identify which of those are key. Well, we already 9 said if we create a new functional sequence is one 10 way. This left hand graph is looking at what causes 11 12 it to be a key source of uncertainty based on a change, a potential change, in the CDF. And this is 13 14 based on a sensitivity study of the, you know, 15 reasonable assessment of what the model could 16 represent.

And there are, basically, you know, four 17 regions in this. I want to start in the region 18 between 10^{-4} and 10^{-6} , which is where the 2.0 is. 19 That 20 region is sort of where most of our PRA results are, 21 baseline for particular our CDFs are а risk 22 And when I say risk contributor, I mean contributor. internal events at power, seismic at power, fire at 23 24 power, low power shutdown internal events, those kind 25 of contributors. They would all be compared against

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

7
	72
1	this chart individually.
2	And the assessment will be made. If you
3	identify the model and, of course, also model
4	uncertainty and in doing your sensitivity studies you
5	found that it led to more than a factor of 2
б	difference in the CDF or LERF, that that would make it
7	a key source of uncertainty. If you're above 10^4 , if
8	you're in 1.174 space, you're allowed, essentially, to
9	go up as high as 10^{-3} . At 10^{-3} we truncate the curve
10	and cut it off at a 10 percent change in CDF.
11	And the theory there is that, basically,
12	that 10 percent on an absolute basis is the same as
13	the factor of 2 at 10^{-4} . 10 percent of 10^{-3} is 10^{-4} .
14	A factor of 2 change in 10^{-4} is 10^{-4} absolute change.
15	And the line just slopes you down at that constant
16	level.
17	Below 10^{-6} or below 10^{-7} if I go all the
18	way to the other end of the range, you're now so far
19	below any acceptance criteria that we think that it
20	should be allowed to have a lot larger uncertainty in
21	order for something to be considered key that you have
22	to really worry about it. You're well down from any
23	place where you're going to threaten safety goals or
24	subsidiary objectives or anything else, and there may
25	well be risk contributors in that region. There might

(202) 234-4433

	73
1	be high winds. There might be hurricanes in certain
2	places. There might be other things where we're not
3	so worried about the overall result and having a
4	larger factor, we think, is appropriate.
5	Between 10^{-6} and 10^{-7} , we make a
6	transition. We couldn't figure out a way to just jump
7	from 2 to 10, and so we put a little no man's land in
8	there where you're transitioning up from 2 to 10. And
9	the reason is that if you were at 9 times 10^{-7} and you
10	got a factor of 10, but you were at 1 minus 6 and you
11	got a factor of 2, it's hard to reconcile those two,
12	so we put a transition zone in.
13	Okay. If I go then to the other end, what
14	I'm doing now is a risk-informed decision. In that
15	case, and I'm talking like a 1.174 application where
16	I have a delta CDF or a delta LERF. You will recall
17	that the guidelines, basically, put you into a couple
18	of regions. One, for CDF, it starts at 10^{-5} and goes
19	down to 10^{-6} and then everything below 10^{-6} is treated
20	differently.
21	So we have done the same thing in the 10^{-6}
22	to the 10^{-5} range. We have used the factor of 2 down
23	to 10 $^{-7}$ where you're now at an order of magnitude
24	below your acceptance guidelines. We put a factor of
25	10 and put the transitional region in there. Now, you

(202) 234-4433

	74
1	might ask where did we come up with 2? Why 2?
2	MEMBER DENNING: Where did you come up
3	with 2?
4	MR. TRUE: There you go. Okay. We came
5	up with 2 after we actually started out higher than
6	that, probably up around the 3 or 5 or 10 or
7	something. We threw in different things. Some people
8	were saying oh, no, it has to be more like 10 percent.
9	What we did was we went back and looked at how do we
10	actually interpret results today, and there are a
11	couple of things that came out and became clear.
12	The first is that when we're trying to
13	define something as risk-significant, we'll use a risk
14	increase factor or a raw of 2 as the basis. So we
15	have already got some precedents. We're looking at
16	things that change the risk by a factor of 2 as having
17	enough significance different than things that are
18	less than a factor of 2. That seemed like a
19	reasonable way to look at it.
20	The second thing was that if you look at
21	the log normal distribution, and which the majority of
22	our parametric uncertainties are represented by log
23	normal distributions, for the range of error factors
24	that we have normally represented in a PRA, the mean
25	value is always more than a factor of 2 below the 95^{th}

(202) 234-4433

	75
1	percentile. So we know if we use a factor of 2, we're
2	not jumping, in a sense, outside of what we would be
3	seeing in a 95 th percentile value from a parametric
4	uncertainty. So we're within the parametric
5	uncertainties that are out there.
6	And then the third thing is that we went
7	back and looked at NUREG 1.150 at some of the
8	uncertainty analyses or importance measures that were
9	done for uncertainty, and we found that in every one
10	of the studies there were basic events in the model
11	that had more than a factor of 2 risk change at the
12	95 th percentile level. So there were individual basic
13	events in the model that, just given their parametric
14	distribution at the 95^{th} percentile, would change the
15	answer by more than a factor of 2.
16	And so we said well, if we're willing to
17	live with that kind of parametric uncertainty where we
18	have individual basic events that can change the
19	answer by a factor of 2 within the nominal bands, why
20	wouldn't we be willing to live with modeling
21	uncertainties that are within a factor of 2, because
22	the parametric is always there. We accept it. We
23	don't even think twice about it really most of the
24	time as long as we have got the right mean value
25	calculated.

(202) 234-4433

So we felt like those three reasons all kind of pointed us towards a factor of 2. There were no cases in NUREG 1.150 where the change was like a factor of 10. It was usually in the order of around factor of 2, factor of 3 for the larger contributing basic events. So we found ourselves kind of zeroing in on this factor of 2 as being the right kind of range to be using.

We also think that by using a factor of 2, 9 and this is why these pilots that Ken talked about are 10 so important, is that we won't end up with a gazillion 11 12 of them, that we'll have a manageable number of key sources of uncertainty to deal with and disposition, 13 14 because we didn't want to have a criteria that was so 15 fine like the reordering of sequences where, you know, anything could qualify as a key source of uncertainty. 16 We really wanted to be the ones that were driving the 17 answer or could drive the answer significantly. 18

19 The factor of 10 basis is really just 20 based on the decade, peer analysts always think in 21 decades, maybe one of our weaknesses, but in the fact 22 that the decision criteria are set at, basically, 23 decade levels. We felt like a factor of 10 would be 24 A, big enough that we wouldn't find lots of those in 25 these very small contributors and, B, would make sure

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	77
1	that we didn't go jumping out of bands that we were
2	in, we thought we were in and things like that
3	perspective.
4	MEMBER DENNING: Do you run into anything
5	with combinations here?
6	MR. TRUE: They would be the same. No, I
7	take that back. These are looked at individually and
8	then if they qualify on this basis, then we look at
9	logical combinations to identify the logical
10	combinations, and then we actually quantify how big
11	those are, the combinations are for the ones that, so
12	to speak, fail the key test individually. Okay? I
13	expected more dialogue.
14	This is back to the consensus model and
15	approaches. We think there are both necessary and
16	effective means of trying to deal with uncertainties
17	in the base PRA. This sort of came up in Mary's
18	presentation. When you get into applications, we're
19	not sure that just because you have a key source of
20	uncertainty or a consensus model that it dispositions
21	fully that source of uncertainty. And we talked about
22	the consensus model definition. And actually, the
23	industry is entertaining some activities next year,
24	which we didn't mention, to try to start creating
25	lists of consensus models that, we believe, meet the

(202) 234-4433

	78
1	need. Okay.
2	So now, we have gone about identifying key
3	sources of uncertainty, but we still are in a position
4	where we have got to say okay, what do we do about
5	this in terms of decision-making? How do those
6	uncertainties affect our decision-making? And what
7	we're trying to look at is a case where we have done
8	a calculation using our mean values in the base model
9	or base application of the model, and we have found
10	that the
11	MEMBER SHACK: Your point estimates
12	really.
13	MR. TRUE: Could be, it could be. It
14	depends upon how it's done. We'll get to that later,
15	too. Well, point estimate model, and we have shown
16	that we can make this decision. And now, we're trying
17	to say okay, well, are there uncertainties that might
18	influence that decision based on what we have learned
19	from looking at key sources of uncertainty and go
20	through that characterization as culled out for by
21	1.200. And as I said, the important thing is that we
22	have already met the decision criteria using our point
23	estimate model. We want to make sure that we're doing
24	that appropriately.
25	This is another one that could draw some

(202) 234-4433

(202) 234-4433

	79
1	discussion. So in this case, we have done a
2	sensitivity study on one of our key model
3	uncertainties, and the first question we ask is is it
4	less than the acceptance guideline? So I had a delta
5	CDF of 3 times 10^{-7} , began a sensitivity study and it
б	came out to be 7 times 10^{-7} . So I'm still below 10^{-6} .
7	If that's the case, I'm done and I just tell my
8	decision-maker I looked at my sensitivity studies and
9	I never exceeded the acceptance guideline.
10	MEMBER DENNING: What kind of criteria or
11	what kind of review do you have of the magnitude per
12	division you make in the sensitivity study?
13	MR. TRUE: That is part of the guidance
14	document that we're going to be working on to try and
15	lay out how you go about identifying those, what the
16	magnitude is. We don't want to directly say you
17	should go immediately to bounding assumptions. We
18	want to try and keep it within the reasonable range.
19	Articulating exactly how to do that is what we're
20	struggling with now, how to define what those limits
21	are, so that you
22	CHAIRMAN APOSTOLAKIS: You're doing the
23	sensitivity analysis?
24	MR. TRUE: Staying credible, I think, was
25	the term somebody used before. I'm sorry, George.

(202) 234-4433

80 1 CHAIRMAN APOSTOLAKIS: You're doing the 2 sensitivity analysis on what, on point values? 3 MR. TRUE: On the particular modeling 4 uncertainty. 5 CHAIRMAN APOSTOLAKIS: So the distribution? What do you mean by uncertainty? 6 7 MR. TRUE: On the individual factor, I 8 mean, not numerical factor, the individual --9 CHAIRMAN APOSTOLAKIS: Issue. 10 MR. TRUE: Issue. Yes, yes, that's the word. 11 CHAIRMAN APOSTOLAKIS: But why don't you 12 just develop a distribution for that issue? 13 14 MR. TRUE: Because I don't know how to do 15 that. 16 CHAIRMAN APOSTOLAKIS: But you don't know 17 how to do sensitivity analysis either. You're going to get questions from Rich all the time like that. 18 19 MR. TRUE: But I can --20 CHAIRMAN APOSTOLAKIS: Why is 3 reasonable 21 and not 6? So eventually, you will have to consider 22 some sort of a distribution and say 6 is unreasonable, 23 because it's way out there. 24 MR. TRUE: I don't think that's always 25 going to be the case. I mean, there are places where

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	that may happen.
2	CHAIRMAN APOSTOLAKIS: But
3	MR. TRUE: And that will be up to the
4	analysts to have to
5	CHAIRMAN APOSTOLAKIS: But you're not even
6	willing to try. You don't seem to be willing to try.
7	You are dismissing the issue of uncertainty and you go
8	straight to sensitivities, and that is what the ACRS
9	meant in the letter. What is the proper role of
10	sensitivity analysis, the proper role?
11	And the proper role is not just to take
12	point estimates, in my view, I'm not speaking for the
13	Committee now, and just start changing them. I mean,
14	why don't we do the same with the parameters? We put
15	distributions there. So here we could put some. You
16	know, at least try first to put the distribution and
17	then do sensitivities on the distribution not on point
18	values.
19	MR. CANAVAN: I think it's possible you
20	could end up there, but the reason why we're not using
21	distributions is because a sensitivity case is
22	supposed to be based on a reasonable alternative
23	hypothesis.
24	CHAIRMAN APOSTOLAKIS: And a reasonable
25	alternative hypothesis means a distribution.

(202) 234-4433

	82
1	MR. CANAVAN: Well, that's why I said you
2	may end up there. For example, if you were looking at
3	a particular source of uncertainty that you felt
4	ranged, that had three different outcomes, for
5	example, it had one where there was 30 GPM and that
6	affected the timing to X, and then you look at another
7	alternative hypothesis and that's a 40 GPM leak and
8	the timing is Y, 90, you may end up creating a
9	distribution by analyzing two or three possible
10	sensitivity cases concerning the same key assumption.
11	But the goal is to be pragmatic and not
12	jump right either to a full distribution or a range of
13	sensitivity cases when you can show that perhaps the
14	largest reasonable alternative hypothesis could be
15	dispositioned below a certain criteria.
16	CHAIRMAN APOSTOLAKIS: That's very
17	different from saying that you do sensitivity
18	analysis. You can say I started with some bounding
19	analysis and I look at the worse case and then it's
20	inevitable. Then I don't proceed. I agree with that.
21	But I am really disturbed by the fact that you are
22	really jumping into sensitivity studies.
23	Sensitivity analysis was developed in the
24	old days when the form of engineering was
25	deterministic, and people wanted to account for

83 1 uncertainties. I say okay, if I take this number, 2 which is now a 2 and make it 4, what happens? 3 In PRA space though, it's the language of 4 distributions and we keep this old --Ι mean, 5 sensitivity analysis in PRA space might be -- a ridiculous case is okay, I don't think thing it's log 6 7 normal, it might be gamma, so I will try that. Nobody in his right mind will do that, but it might be that 8 9 I have a log normal distribution and I'm not quite sure about the tail. So I say well, gee, you know, 10 11 the 95th percentile might be a little greater, so what 12 happens then? So I have a new distribution now. In other words, I'm doing my sensitivity 13 14 analysis on the distributions, on the uncertainty 15 evaluations that I have done. I am not mixing the old way of thinking, old engineering, 1940s, you know, 16 changing numbers, with the new one. I mean, we spent 17 35 years developing this thing. 18

And you see, I would like to hear we started with the uncertainties, so we might end up with sensitivity rather than the other way around, because you will always have that question. In fact, I'll tell you. In the old days, in the '70s when PRA studies were coming out, there were some ACRS members who loved, loved to take an analysis and say ah, but

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	see, if I take this number and multiply it by 10, your
2	conclusions go out of the window and they left it at
3	that.
4	Now, that is as unreasonable as saying,
5	you know, by multiplying by 10, I'm okay, because the
6	factor of 10 has to be justified.
7	MR. TRUE: Right.
8	CHAIRMAN APOSTOLAKIS: And justifying it
9	means making a probabilistic statement.
10	MR. TRUE: Well, probabilistic, is that a
11	qualitative probabilistic statement or a quantitative
12	probabilistic statement?
13	CHAIRMAN APOSTOLAKIS: Quantitative.
14	MR. TRUE: I don't know how you do that.
15	CHAIRMAN APOSTOLAKIS: In some cases, you
16	may be able to convince people, you know, by saying
17	that this is extremely unlikely.
18	MR. TRUE: Yes.
19	CHAIRMAN APOSTOLAKIS: But it seems to me
20	that that was the intent of that comment the ACRS
21	made. What is the proper role of sensitivity
22	analysis? And you are just jumping into this that,
23	you know, we're going to do a sensitivity analysis and
24	then, you know, I will support Rich Denning. Why 6
25	and not 12?

(202) 234-4433

	85
1	MEMBER RANSOM: Is there any narrative
2	calling that screening now where you simply take those
3	things I don't know much about, you simply perturb
4	them and then see what the effect is on the result, at
5	least those that are significant, to go further with?
6	CHAIRMAN APOSTOLAKIS: Oh, that's
7	perfectly all right for me. I mean, I don't have any
8	problem with that. But ultimately, you see,
9	perturbing them, again, by how much?
10	MEMBER RANSOM: Well, 10 percent.
11	CHAIRMAN APOSTOLAKIS: But why? Why 10
12	percent and not 60 percent? That's the heart of the
13	matter.
14	MR. CANAVAN: It depends upon
15	CHAIRMAN APOSTOLAKIS: If we decide to
16	skip that, then everything else follows. Yes, I agree
17	with that, but we will always have that problem. Why
18	did you change it this much and not this other much?
19	MEMBER RANSOM: But you may be able to
20	develop criteria, George, that are engineering.
21	MR. CANAVAN: It would have to be a
22	reasonable alternative hypothesis, which could include
23	using the distribution and saying well, this is at the
24	95 th .
25	CHAIRMAN APOSTOLAKIS: I am not arguing

(202) 234-4433

86 1 that you have to develop detailed distributions for 2 every single case. I'm not saying that. What I'm 3 saying is that unless you consider some element of 4 probability there, you will always be on a ground 5 where you will be vulnerable. Now, you guys got away with it in '69. 6 7 The Committee was unwilling to really challenge this 8 factor of 5 or whatever it was. But you know, I don't 9 know for how long. I mean, if south Texas says 10, 10 then we go to 5. I hope the public doesn't read those things. 11 12 PARTICIPANT: 3 to 5. 3 to 5, yes. 13 CHAIRMAN APOSTOLAKIS: Sure, 14 the licensee in six months will not make it with 3. 15 He will say well, 2, you know, is very reasonable, 16 too. 17 MR. TRUE: Right. And in doing that, he 18 has to --19 CHAIRMAN APOSTOLAKIS: There goes the 20 credibility of the regulatory system. 21 MR. TRUE: And when he does that though, 22 he has to establish his monitoring program to be able 23 to detect that change. So he has given -- that is a 24 basis for what factor he picked. 25 It still outweighs CHAIRMAN APOSTOLAKIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	that. I mean, it's 2, no, it's 3, no, it's 2 and a
2	half. I mean, you know, unless we try seriously to
3	quantify things and, again, I don't mean detailed
4	distributions, but something that would give me
5	something like some bounding analysis that is well
6	documented. Some say, you know, that we don't think
7	that the probability of this exceeds that, you know,
8	some quantitative evaluation, because you are just
9	taking it for granted that what was done in the past
10	decades on sensitivity analysis prior to PRA is
11	equally valid in PRA space.
12	MR. TRUE: Okay. Ray had wanted to say
13	something.
14	MR. SCHNEIDER: This is Ray Schneider.
15	CHAIRMAN APOSTOLAKIS: You have to come
16	closer to the microphone and tell us who you are.
17	MR. SCHNEIDER: Ray Schneider,
18	Westinghouse. I don't believe that we're really
19	saying that we're just going to randomly select
20	numbers and do sensitivities.
21	CHAIRMAN APOSTOLAKIS: Right.
22	MR. SCHNEIDER: We're going to look at the
23	distributions. We're going to look at the issues,
24	look at the different success criteria, make technical
25	judgments as to why we're selecting these for

(202) 234-4433

1	88
1	assessment, and then do the assessment. It's not to
2	be you know, I don't expect there will be a number
3	saying well, let's try 10, let's try 8, let's try 6.
4	That's not the intent of the overall scheme of where
5	we're going to go in the future with this.
6	MR. TRUE: Right.
7	CHAIRMAN APOSTOLAKIS: Which distributions
8	are you going to look at when you refuse to produce
9	distributions?
10	MR. TRUE: Well, you
11	CHAIRMAN APOSTOLAKIS: If you have the
12	distributions with you
13	MR. SCHNEIDER: But you may know the max
14	and mins. You will know like for success criteria,
15	you will know your best estimate kind of results and
16	you will know your conservative design basis results
17	and you may not be able to figure out exactly 95
18	percent or 90 percent distribution, but you can have
19	a rough idea of what your upper limits and lower
20	limits are going to be on it. So you may not get the
21	precision you're looking for, but you will have
22	CHAIRMAN APOSTOLAKIS: I'm not looking for
23	precision.
24	MR. SCHNEIDER: Right.
ΔI	

(202) 234-4433

	89
1	many times I have to say it.
2	MR. SCHNEIDER: But the thing is what you
3	will get is the engineering judgment that, basically,
4	says that the selection of what we're going to be
5	using for the sensitivity is based on risk. It's
6	based on what we expect a probabilistic tail to be, a
7	reasonable location, and trying to put a reasonable
8	estimate on it, and trying to move away from the
9	arbitrary selection of those values.
10	CHAIRMAN APOSTOLAKIS: But you are getting
11	away from the arbitrary selection of these values by
12	saying if you choose my values, then we're not
13	arbitrary anymore. That's exactly what you're saying,
14	that in 5069 the NEI argument was that 3 to 5 is
15	reasonable, a factor of 3 to 5 is reasonable. Nobody
16	challenged it, so it must be reasonable, but why was
17	it 10 before?
18	MR. SCHNEIDER: I think what we're saying
19	is we will justify and support the value using it for
20	sensitivity studies based on analyses and based on
21	CHAIRMAN APOSTOLAKIS: The sensitivity
22	studies that Doug showed earlier in the sense of how
23	much does the core damage frequency or does the CDF
24	increase by using these are legitimate sensitivity
25	studies. I am understanding. I'm trying to

(202) 234-4433

	90
1	understand how sensitive my results are to certain
2	things I have done, you know, and this is the whole
3	idea of raw and fossil vassalage, raw especially in
4	other contexts. That's perfectly all right. I think
5	it's fine. I gain insights. I understand this.
6	The other thing about, you know, the mean
7	value and the 95 th percentile, a factor of 2, that's
8	great. You are working in risk space and you're
9	changing things. You're looking at things, trying to
10	understand what is going on. But when you say we do
11	the point values and then do sensitivity analysis and
12	then go on, that's where you lose me, because now you
13	are switching back to the old way of doing business.
14	Now, on the other hand, this is too high
15	level discussion here. We will never convince each
16	other, but I'm afraid
17	MR. TRUE: I don't think we're
18	understanding each other, because I don't know that I
19	understand that there is a change even.
20	CHAIRMAN APOSTOLAKIS: You are doing
21	sensitivity studies on what?
22	MR. TRUE: On a particular issue.
23	PARTICIPANT: Modeling.
24	MR. TRUE: Modeling uncertainty issue.
25	CHAIRMAN APOSTOLAKIS: Okay. So let's

(202) 234-4433

	91
1	take human error, okay? There are five models.
2	MR. TRUE: Let's not take human error.
3	Let's do grid stability, grid stability.
4	CHAIRMAN APOSTOLAKIS: Okay. Grid
5	stability.
6	MR. TRUE: Okay. That's an issue. Every
7	model has in it a loss of off-site power initiating
8	event and I think every model now has a conditional
9	probability that the grid is lost following a plant
10	trip.
11	CHAIRMAN APOSTOLAKIS: Okay.
12	MR. TRUE: Okay? But there is a lot of
13	variation in what the results could be that may or may
14	not be well represented in a distribution for those
15	point estimate values. And so what we would expect is
16	that the analyst would go back and look at their
17	particular plan design and say well, based on what I
18	know, it could be you know, it couldn't be any
19	worse than this. It might be reasonably in this range
20	or better than this.
21	CHAIRMAN APOSTOLAKIS: What might be?
22	What?
23	MR. TRUE: The likelihood that I will lose
24	the grid
25	CHAIRMAN APOSTOLAKIS: Well, the guy is

(202) 234-4433

	92
1	quantifying his state of knowledge. I have no problem
2	with that. You are in the probability space. That's
3	fine. That's not what I understood by this.
4	MR. TRUE: Well, maybe that's why we're
5	just not communicating, because that's exactly what
6	we're
7	CHAIRMAN APOSTOLAKIS: Well, you are
8	having pilot studies?
9	MR. TRUE: I will do another. Yes.
10	CHAIRMAN APOSTOLAKIS: So at some point,
11	we will be briefed on those.
12	MR. TRUE: Yes.
13	CHAIRMAN APOSTOLAKIS: Okay. Maybe that
14	will be better.
15	MR. TRUE: Another example might be
16	battery life. This is a little more oblique.
17	CHAIRMAN APOSTOLAKIS: Yes.
18	MR. TRUE: Okay. We, you know, typically
19	will have a design calc of some kind. We'll say
20	batteries will last for four hours in the event of a
21	station blackout. Well, what we found through various
22	things is that if the diesel runs for maybe an hour,
23	that will cover a lot of the loads that the battery
24	would actually have to carry, and that battery life
25	might go from four hours now to eight hours, because

(202) 234-4433

	93
1	after that first hour, all it's doing is carrying
2	instrument loads and those kind of things.
3	So we treat all of our modeling as
4	failures occur at T equals zero, generally. So all
5	those contributions from diesel failure to run
6	occurrences get lumped in as it happened at T equals
7	zero. Therefore, we have a four hour battery life.
8	For doing some applications, you may find that that's
9	not a reasonable assumption, that really you're more
10	likely to have battery life for eight hours, and then
11	that changes your it could change your event
12	restructure. It could change your probabilities. It
13	could change all kinds of things about the way you
14	have modeled it.
15	CHAIRMAN APOSTOLAKIS: And will the
16	analyst then say I think it's eight hours and then go
17	ahead as if it's eight hours or would he say I really
18	think it's greater? So maybe, you know, there is a
19	distribution between five and nine, ten hours. See,
20	that's where I think there is a difference. He gives
21	me arguments that it's not four anymore, perfectly
22	reasonable arguments.
23	MR. TRUE: Right.
24	CHAIRMAN APOSTOLAKIS: And he thinks it's
25	eight and he goes with eight or he gives some

(202) 234-4433

(202) 234-4433

	94
1	distribution that it might be eight or nine or ten or
2	six or seven, so I have some better feeling. It
3	depends how critical the time is, of course.
4	Otherwise, it doesn't really make that much
5	difference.
6	MR. TRUE: Right, it would have to be
7	something that was important to the
8	CHAIRMAN APOSTOLAKIS: Yes. But that's,
9	I think, what the analyst should do. It's perfectly
10	all right to say this is my judgment, my state of
11	knowledge, because then we can disagree or agree, you
12	know, the usual stuff, rather than saying I think it's
13	eight and go with it. I have seen that. Some people
14	claimed 11, I thought.
15	MR. TRUE: Well, some actually can do
16	that.
17	CHAIRMAN APOSTOLAKIS: Yes.
18	MR. TRUE: Because they don't have a lot
19	of
20	CHAIRMAN APOSTOLAKIS: Yes, but they will
21	claim just 11 and that, you know, is not a judgment.
22	PARTICIPANT: But they put in a
23	probability for that 11.
24	MEMBER SIEBER: No, you can calculate.
25	For example, you can calculate

(202) 234-4433

	95
1	MR. TRUE: No, it's just a single
2	statement. It's just a single statement.
3	MEMBER SIEBER: how much the charger is
4	using the battery and how much you are not taking out
5	of it by virtue of having it supplied from the diesel,
б	and then the uncertainty comes from the fact that the
7	battery may be brand new or it may be old.
8	CHAIRMAN APOSTOLAKIS: That's right.
9	MEMBER SIEBER: And from the manufacturer
10	you get its internal resistance and you can compute
11	that, too. So you could actually, with a little bit
12	of work, a day's work rather than a year's work, you
13	can get rid of most of the uncertainty around that
14	kind of a calculation.
15	CHAIRMAN APOSTOLAKIS: And that's fine
16	with me.
17	MEMBER SIEBER: That's really what ought
18	to be done rather than the sensitivity stuff, you
19	know.
20	CHAIRMAN APOSTOLAKIS: I agree. I fully
21	agree with that, when you can do it and in this case
22	you can.
23	MEMBER SIEBER: Well, the big problem is
24	trying to model things that you don't know anything
25	about. You don't even know if it occurred. You
1	•

(202) 234-4433

	96
1	haven't defined the phenomenon. That's where the
2	problem comes in and that's where the largest, in my
3	view, source of uncertainty is.
4	CHAIRMAN APOSTOLAKIS: All these reports
5	should have chapters with the title "Everything we
6	know about things we don't know anything about."
7	MEMBER SIEBER: Right.
8	CHAIRMAN APOSTOLAKIS: That should be the
9	longer chapter.
10	MEMBER SIEBER: Right. We know less and
11	less about more and more until you know nothing about
12	everything.
13	CHAIRMAN APOSTOLAKIS: Anyway, let's move
14	on. I think there is a record now, you know. I think
15	it has to be a specific example to understand really
16	what you mean by all of this.
17	MR. TRUE: Okay.
18	CHAIRMAN APOSTOLAKIS: I mean, this thing
19	with the batteries, you understood my concern. John
20	gave us a different perspective that in this
21	particular case, you can actually do deterministic
22	calculations to figure out what it is, which is fine.
23	MEMBER SIEBER: Well, you get the
24	distribution.
25	CHAIRMAN APOSTOLAKIS: If you can do that,

(202) 234-4433

	97
1	great.
2	PARTICIPANT: I mean, he does have his
3	formulate sensitivity studies formulate logical
4	models. I mean, there is a place in here where he's
5	thinking about, you know, why he's choosing these.
6	Now, again, you know, there's always this battle about
7	why it's easier to choose a sensitivity study than it
8	is to come up with a distribution.
9	MEMBER SIEBER: It's easy.
10	PARTICIPANT: Well
11	CHAIRMAN APOSTOLAKIS: No.
12	PARTICIPANT: It's calculable, yes.
13	CHAIRMAN APOSTOLAKIS: Why this and not
14	that?
15	MR. TRUE: It's manageable actually. It's
16	part of the that's the pragmatic part of it. The
17	reality is that it's
18	CHAIRMAN APOSTOLAKIS: What is RS? RS is
19	what?
20	MR. TRUE: The risk of the sensitivity
21	study compared to the base risk. So I do a
22	sensitivity study on less than or not less than the
23	acceptance guideline, but I am within a factor of 2.
24	Normally, you wouldn't kick into that with a key
25	modeling uncertainty, but without key modeling

(202) 234-4433

(202) 234-4433

98 1 uncertainties but, I mean, I still ask that question. If you're at a factor 2, then you're kicked out, the 2 3 same logic as before. 4 Then the more controversial maybe one is 5 if now you have done a sensitivity, you're more than 6 a factor of 2 and you are above the acceptance 7 guideline, we believe that it doesn't necessarily mean 8 that the decision is unacceptable, because you --9 CHAIRMAN APOSTOLAKIS: The only place 10 where the word uncertainty appears is when it doesn't matter. Uncertainty does not impact. You know, 11 that's the only place where in this chart I see the 12 word uncertainty. You dismissed it without doing 13 14 anything about it. 15 MR. TRUE: We started with an uncertainty 16 and did a sensitivity study. Maybe I should have put 17 a box on there to start the focus. Maybe you should CHAIRMAN APOSTOLAKIS: 18 19 have. 20 It might have been a better way MR. TRUE: 21 to start the flow chart here. 22 CHAIRMAN APOSTOLAKIS: What would be wrong 23 with saying, you know, somewhere up front try to 24 quantify your state of knowledge in terms of 25 probabilities, and if you can't, go ahead and do these

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	things or in the process of doing this, do some
2	sensitivity analysis, do this, do that, you know?
3	In other words, put it in the context that
4	the really desirable result is some uncertainty
5	quantification. Then we recognize in a pragmatic
б	approach that you can't always do this and here are
7	other ways of handling it. Then I could be with you
8	100 percent. What's wrong with that? There is
9	nothing wrong with that. I mean, you still preserve
10	everything you're saying.
11	MR. TRUE: Yes.
12	CHAIRMAN APOSTOLAKIS: I think we should
13	move on though.
14	MR. TRUE: Yes.
15	CHAIRMAN APOSTOLAKIS: We only have 30
16	minutes.
17	MR. TRUE: Okay. All right. So now we're
18	back to parametric uncertainty. We're going to leave
19	the subject of model uncertainty. The situation is
20	that many PRA calculations, risk-informed applications
21	and such are based on point estimate analysis and, in
22	fact, all the tools that are currently used by
23	licensees for doing PRAs, the importance measures are
24	based on point estimate results. And we did some work
25	and we talked to you about that a year or so ago,

(202) 234-4433

	100
1	looking at that for 5069.
2	PARTICIPANT: Just before we leave though,
3	the 2 is again this argument that you're probably a
4	factor of 2 away from the 95^{th} percentile, so you're
5	
6	MR. TRUE: It's that and the raw 2
7	argument and the fact that you have parametric you
8	have basic events with parametric uncertainties that
9	exceed factor of 2. It's all three of those kinds
10	that caused us to converge on 2.
11	So our tools are, basically, oriented
12	towards point estimates. We can do uncertainty
13	analyses, and there may be cases where those point
14	estimates are not good estimates of the true mean
15	value. So what we wanted to do was to some additional
16	work to look at when those point estimate calculations
17	can be used for comparisons to mean values, and look
18	at the treatment of the whole state of knowledge
19	correlation issue. And so we're trying to look for
20	places where it's significant.
21	So I'm going to go through some background
22	and then get to some results. This chart just shows
23	the same. There is no news here. This is just the
24	same mean value of 10^{-4} and a log normal cumulative
25	distribution function for that mean value. And what

(202) 234-4433

is significant about the log normal distribution, and I'm sure you all know this, is that the black tail, 3 which is the largest error factor, extends further and 4 further out.

5 And so when you're sampling from that distribution, you will pick values that are far up 6 7 that tail and when that happens and it occurs for a 8 parameter that is in more than one event and it cuts 9 it, you get sort of a multiplicative effect of picking that high value. And if there are two basic events 10 that cuts that that have the same state of knowledge 11 12 and you sample at the high end, you get the square of that high end value. At the other end it doesn't 13 14 matter, because the value is so low, you square it and 15 it's still zero. So it's picking those ones way on the far end. 16

And so as a means to kind of explain this, 17 we went through and basically took the cumulative 18 19 distribution function and weighted it by the square of 20 the X value. So we took the PDF, took the weight in 21 that area, squared it based on that value, and if we 22 go through these you can see how, as the error factor 23 gets larger --

24 CHAIRMAN APOSTOLAKIS: That's state of 25 knowledge uncertainty.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

	102
1	MR. TRUE: Yes.
2	CHAIRMAN APOSTOLAKIS: Yes,
3	MR. TRUE: Yes, right. Okay. And what
4	you see is that error factors of 3 and 5 was not a
5	particularly large impact, but as we get up to larger
6	and larger error factors, 10, 30 or 100, the
7	distribution shifts very significantly.
8	This chart, this is partly to explain to
9	utilities, licensees, what's going on with state of
10	knowledge. So what we did was we took all the data
11	and said well, if we look at just the median value,
12	because they are pretty well behaved distributions,
13	what is the ratio of the median value with X and X $$
14	squared? And so for an error factor of 3, it only
15	changes the median by a factor of 1.6.
16	CHAIRMAN APOSTOLAKIS: So let me
17	understand this.
18	MR. TRUE: But for a larger error factor,
19	it's much larger.
20	CHAIRMAN APOSTOLAKIS: Let me understand
21	this, Doug.
22	MR. TRUE: Yes.
23	CHAIRMAN APOSTOLAKIS: The ratio is
24	between
25	MR. TRUE: It's between the dotted line.

	103
1	CHAIRMAN APOSTOLAKIS: The correct value
2	of the mean square.
3	MR. TRUE: Yes.
4	CHAIRMAN APOSTOLAKIS: And in the
5	denominator if you have a square.
6	MR. TRUE: Yes.
7	CHAIRMAN APOSTOLAKIS: Of the mean?
8	MR. TRUE: Yes, yes.
9	CHAIRMAN APOSTOLAKIS: A square of the
10	mean versus the mean of the square?
11	MR. TRUE: Yes.
12	CHAIRMAN APOSTOLAKIS: Actually, the other
13	way, the mean of the square over the square of the
14	mean, right?
15	MR. TRUE: Yes, right, right.
16	CHAIRMAN APOSTOLAKIS: Okay.
17	MR. TRUE: It's basically the ratio
18	between these two, the 50^{th} percentile value on these
19	charts.
20	CHAIRMAN APOSTOLAKIS: You are testing the
21	assertion, which is true, that the mean of the
22	function is not equal to the function of the mean.
23	MR. TRUE: Right. Okay. And the impact
24	can be quite significant, particularly for the cases
25	where we have large error factors. Like I said,

(202) 234-4433

	104
1	nothing new here.
2	CHAIRMAN APOSTOLAKIS: Do you use error
3	factors over 100 often, Doug?
4	MR. TRUE: No. That's why there's no
5	graph for 100. You know, it stops at 30.
6	CHAIRMAN APOSTOLAKIS: How unlikely is it?
7	MEMBER SIEBER: Isn't that the best PRA to
8	use?
9	MR. TRUE: I think there are some results
10	that were in that range. So we know, based on all
11	that that state of knowledge correlation effects can
12	be significant and we know or believe that the impact
13	on the risk increases as the error factor goes up, as
14	the fraction of the risk metric impacted increases.
15	So the larger fraction of, for example, the core
16	damage frequency is contributed by cuts that
17	containing these correlated events.
18	If that fraction goes up, the impact on
19	the overall result is going to be greater. So if it
20	only occurs in very, very low cut sets, it's not going
21	impact the overall result, but if it's in larger or
22	occurs in many cut sets or in a larger single
23	contributor, then it can be bigger.
24	And also, the number of coincident
25	correlated variables increases. That makes it worse,

(202) 234-4433

	105
1	because if squaring was bad, then cubed is really bad.
2	So we set about to try and investigate that by
3	creating some simple models using log normal
4	distribution and looking at how that played out.
5	We also noted that if you follow the ASME
6	standard and you have identified common cause groups
7	for your significant basic events that are plant-
8	specific and you have all the significant basic events
9	are those with fossil vassalages greater than .05 and
10	raws greater than 2, you have to have plant-specific
11	data.
12	So as you do that, you find fewer and
13	fewer cases, essentially, where you would have
14	correlated variables in the same cut set. So the
15	standard is actually driving us in a direction that
16	reduces the impact of the state of knowledge
17	correlation if you follow it with the standard ASME
18	requirement.
19	So we also wanted to look at what happens
20	if you have a common cause group in the model, because
21	what's going on there is you have got two basic
22	events, say they are 10^{-3} failure rates, but prior to
23	those is 10^{-6} , the mean is 10^{-6} , but the common cause
24	term itself might be 10^{-4} or 3 times 10^{-5} , something
25	like that, a lot larger. So that tends to kind of

(202) 234-4433

	106
1	shield you from the impact of the correlated
2	variables. So we investigated how common cause plays
3	into this, too.
4	And we were trying to come up with some
5	rules, some simple rules, to help us identify where in
6	the state of knowledge the correlation would be
7	significant, significant enough that it really needed
8	to be played out in the decision part.
9	CHAIRMAN APOSTOLAKIS: And this is in an
10	effort to justify doing just point estimates?
11	MR. TRUE: Yes.
12	CHAIRMAN APOSTOLAKIS: Because
13	computation, I think, I can do this with Monte Carlo,
14	and I don't care.
15	MR. TRUE: Yes.
16	CHAIRMAN APOSTOLAKIS: I sample correctly
17	and I get the results.
18	MR. TRUE: Yes. Except for the fact that
19	we do many, many applications, including many, many
20	applications for online maintenance and other things
21	where you will be doing many tens of calculations.
22	CHAIRMAN APOSTOLAKIS: Computations, you
23	mean at the plant?
24	MR. TRUE: Yes, at the plant.
25	CHAIRMAN APOSTOLAKIS: At the plant.

	107
1	MR. TRUE: And using the PRA.
2	CHAIRMAN APOSTOLAKIS: Not to request
3	changes of licensing?
4	MR. TRUE: No, not licensing.
5	CHAIRMAN APOSTOLAKIS: Okay.
6	MR. TRUE: Or the maintenance, no.
7	CHAIRMAN APOSTOLAKIS: Okay.
8	MR. TRUE: But also
9	CHAIRMAN APOSTOLAKIS: No, I understand
10	now.
11	MR. TRUE: But also for those. I mean,
12	and particularly when we get into a situation where
13	now we're looking at all these modeling uncertainties,
14	we're doing sensitivity studies on all those and we
15	have to go through parametric uncertainties on top of
16	all that.
17	CHAIRMAN APOSTOLAKIS: Yes.
18	MR. TRUE: Every single time we do a
19	calculation.
20	CHAIRMAN APOSTOLAKIS: Would you mind
21	changing the nomenclature here instead of state of
22	knowledge correlation just to a epistemic correlation
23	or you think the licensees will get thrown off? It's
24	now epistemic.
25	MR. TRUE: The reason that we used this

(202) 234-4433
	108
1	was it ties to an ASME standard requirement that talks
2	about state of knowledge correlation.
3	PARTICIPANT: Which ties to
4	MR. TRUE: Which ties it's now a random
5	B that Gareth and I have been working on. It ties
6	to
7	CHAIRMAN APOSTOLAKIS: Which ties to my
8	youth.
9	MR. TRUE: Okay.
10	CHAIRMAN APOSTOLAKIS: Maybe in
11	parenthesis someplace you can say now all epistemic.
12	MR. TRUE: We do have a section in the
13	report that talks about all the different epistemic
14	and aleatory, you know, how all these
15	CHAIRMAN APOSTOLAKIS: Yes.
16	MR. TRUE: Yes.
17	CHAIRMAN APOSTOLAKIS: But make sure
18	people understand it's the same thing.
19	MR. TRUE: Yes.
20	CHAIRMAN APOSTOLAKIS: State of knowledge.
21	Boy, you're doing great with time, Doug, I must say.
22	MR. TRUE: I'm actually amazed.
23	PARTICIPANT: I'm shocked.
24	MR. TRUE: The last, this slide takes the
25	results of a whole bunch of different analyses that we

(202) 234-4433

	109
1	did and tries to boil it down into one simple table.
2	Basically, what this tries to show is that it
3	identifies the fraction of the risk metric CDF or LERF
4	that is contributed by cut sets that have two
5	correlated variables in them, that is the value in the
6	table, and the error factor for those correlated
7	variables and the change in risk metric. And if you
8	want to determine that an acceptable I'm willing to
9	live with a 10 percent difference in my risk metric,
10	then the answer is in the first column. 50 percent is
11	in the right hand column.
12	So I will skip the error factor of 3 for
13	a second, because it's pretty uninteresting. Let's go
14	to error factor of 10. If I have 13 percent .13
15	fraction of my risk metric has cut sets containing two
16	correlated variables, and they have an error factor of
17	10, I can know that the change in the risk is about a
18	10 percent change in risk. If, on the other hand,
19	it's 60 percent of my CDF, then it would have had a 50
20	percent impact on my calculated CDF.
21	If I have an error factor of 3, as what is
22	present in these correlated variables, it doesn't
23	matter. I can have 100 percent of the cut sets have
24	correlated variables in them and it won't change my
25	result by even 10 percent.

So this kind of gives the field of play, so to speak, for utilities to be able to go back, do an inspection of their cut sets, see where they have these occur, tally up the fraction and as long as they are within these guidelines, they can know that their parametric or their point estimate values are tracking their correlated results from the true mean.

Those have been turned into some 9 guidelines, we have them for two correlated variables and three correlated variables, basically have to do with, you know, that chart I just showed you, and we 12 had it based on a 10 percent change in your mean value. 13

CHAIRMAN APOSTOLAKIS: Very good.

15 And I'm going to jump to the MR. TRUE: summary. So we're at a point now where we have got 16 this technical basis document in EPRI publication 17 process. It's going to be made available to the NRC 18 19 in support of the work that Mary has going on.

20 CHAIRMAN APOSTOLAKIS: What does it mean 21 quidance document now? Is that one of those documents 22 that the NRC staff will have to bless?

23 MR. TRUE: We haven't gotten to the point 24 where we have decided whether it's appropriate for 25 that to be endorsed by the NRC. We're really doing

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

10

11

14

	111
1	this to help the utilities know how to meet the ASME
2	standard. I skipped over this, but there are 30
3	supporting requirements or high level requirements in
4	the ASME standard that say you have to do this, you
5	have to address, identify key sources of uncertainty
б	and key assumptions.
7	And so there is a practical problem right
8	now in that we have a standard out there and we have
9	no process to find out how to meet that standard, so
10	this is kind of a how-to to meet that standard. And
11	then it kind of also then flows over into the
12	application side, obviously, because we talked about
13	how to interpret those results in applications.
14	So the application guide, we'll kind of
15	see where the staff goes and where our application
16	guide ends up and next year sometime we'll make some
17	decision about whether it fits into the overall plan
18	and deserves to be endorsed.
19	CHAIRMAN APOSTOLAKIS: Yes.
20	MR. TRUE: But we're developing it anyway
21	for use in the industry.
22	CHAIRMAN APOSTOLAKIS: Good.
23	MEMBER SIEBER: Another approach is to
24	modify the Standards Committee. I don't know.
25	MR. TRUE: Yes. The problem with the

(202) 234-4433

	112
1	Standards Committee is that the standards folks have
2	drawn a line that the standard defines what to do not
3	how to do it.
4	MEMBER SIEBER: Yes.
5	MR. TRUE: And this is really how to do
6	it. Now, the standards folks will probably need to
7	look at it to make sure that it's an appropriate
8	implementation to what they expected, but the
9	Standards Committee is us so, I mean, not just us, but
10	industry, so that will be played out through
11	CHAIRMAN APOSTOLAKIS: Standards
12	Committee, you mean the ASME standards?
13	MR. TRUE: Yes, ASME standards.
14	CHAIRMAN APOSTOLAKIS: Another editorial
15	comment.
16	MR. TRUE: Yes.
17	CHAIRMAN APOSTOLAKIS: We used to call
18	them modeling uncertainties, and a lot of people said
19	well, gee, modeling uncertainties, you are modeling
20	uncertainties? Can you call them model uncertainties
21	rather than modeling uncertainties? I mean, it's
22	still early in the process. Maybe you can do that.
23	MR. TRUE: Yes, we'll look at that.
24	CHAIRMAN APOSTOLAKIS: Because modeling
25	uncertainties, you know.

(202) 234-4433

113
MR. TRUE: Yes, you're right. It does
imply that it's modeling problems.
CHAIRMAN APOSTOLAKIS: It does imply.
MR. CANAVAN: It's an action word.
MR. TRUE: Yes.
CHAIRMAN APOSTOLAKIS: Sorry?
MR. CANAVAN: It's an action word.
MR. TRUE: Yes.
MR. CANAVAN: Modeling is doing the
action.
MR. TRUE: So the process that we created
now uses the sensitivity cases to identify and address
those key uncertainties, point estimate mean work as
compared to the parametric uncertainty. And as Ken
mentioned up front, the completeness uncertainty is a
whole other area. We believe that the standards in
1.200 and other reg guides for implementing the
applications help a lot in addressing completeness
within the things that we know. There is always the
things that we don't know. That's why we have a risk-
informed process and not a risk-based process.
CHAIRMAN APOSTOLAKIS: Any comments from
the Committee Members? We don't need to go around the
table, I don't think, because we're going to write a
letter.

(202) 234-4433

	114
1	PARTICIPANT: Right.
2	CHAIRMAN APOSTOLAKIS: But I, at least, am
3	very pleased to see the industry doing things like
4	that and when Doug wants to do something he does a
5	good job.
6	MR. TRUE: Thank you.
7	CHAIRMAN APOSTOLAKIS: The question is
8	when does he want to do something? No, this is really
9	very, very, very, very good. I mean, we can argue
10	about the details like we did earlier, but I think
11	you're on the right track and we've got a lot of
12	useful insights.
13	MEMBER SIEBER: I think there are more
14	sophisticated ways to do it, but I think this is
15	practical from the standpoint of coming out with a
16	reasonable product.
17	CHAIRMAN APOSTOLAKIS: Yes.
18	MEMBER SIEBER: Without spending as much
19	money as you would spend on getting the point.
20	CHAIRMAN APOSTOLAKIS: Although the
21	MR. TRUE: The soft
22	MEMBER SIEBER: The main point is
23	CHAIRMAN APOSTOLAKIS: The software
24	available now allow you to do a lot of stuff that was
25	unimaginable 15 years ago. I mean you can do

(202) 234-4433

1 uncertainty analysis and all that, but I understand 2 Doug's point that, you know, in the applications the ability really was, I think, sweeping. And the factor 3 4 of 1.2 or 2.3 here and there really doesn't matter to 5 the decisions they are making, like compilation control and all that. So I think it's a very 6 7 pragmatic approach, as promised. 8 Any comments from the members? Mike, any 9 comments? 10 MR. SNODDERLY: I quess maybe if we could go just quickly back to Mary's last letter and just 11 12 talk about, I guess, what's the next step. I mean, when do -- what's the next part we would review? 13 Ι because, obviously, we're not 14 mean, _ _ we're 15 interested and we would like to have a copy of the 16 EPRI Guideline, but we won't be reviewing that. Ι 17 guess Mary is going to come up with her NUREG and eventually we will review a draft of that. 18 19 CHAIRMAN APOSTOLAKIS: Yes. 20 MR. SNODDERLY: I'm just trying to get a 21 feel for when, in time frame. 22 MS. DROUIN: You know, our goal is to work 23 together as much as possible with what industry is 24 doing, whether that means that we take what they do 25 and endorse it or we just take advantage of their

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

115

	116
1	work. I mean, those are the details that you need to
2	work out. But the main point is that we want to take
3	advantage of what the
4	CHAIRMAN APOSTOLAKIS: Absolutely.
5	MS. DROUIN: Well, that's in our plan.
6	It's nice that they're a little bit out before us, so
7	we can see what they are doing and map our work and
8	try and work that out. Our schedule, we're still on
9	schedule to have something ready for to give to the
10	different parts of NRC like Charlie here at the end of
11	December.
12	CHAIRMAN APOSTOLAKIS: But are we getting
13	it then, too, or parts of the NRC to review?
14	MS. DROUIN: Well, they are to look at it
15	and then I don't think I'll come in January. I'll
16	need January and February at least, we could come in.
17	CHAIRMAN APOSTOLAKIS: Okay. Are we going
18	to see you again Doug?
19	MR. TRUE: Any time you would like.
20	CHAIRMAN APOSTOLAKIS: Well
21	MR. TRUE: If you would like.
22	CHAIRMAN APOSTOLAKIS: Well, what can I
23	say? No, actually, I'm very much interested in the
24	pilots of what you're doing.
25	MR. TRUE: Okay. Those will be later in

(202) 234-4433

	117
1	the year.
2	CHAIRMAN APOSTOLAKIS: Absolutely.
3	MR. TRUE: They'll be given a start early
4	in the year.
5	CHAIRMAN APOSTOLAKIS: But, you know, to
6	see how these ideas were implemented and what lessons
7	you learned and all that, I think that will be great.
8	MR. SNODDERLY: Well, I guess, all this is
9	being done as part of the phase approach to PRA
10	quality, and so just remind me, what was the I
11	guess you guys made a commitment to the Commission to
12	provide this guidance by a certain date. And then I
13	guess you would request our review of the guidance
14	prior to saying hey, Commission here is the guidance
15	on how to treat on some of these.
16	MS. DROUIN: I'm going to go back and look
17	at the face plan. I don't remember what date this
18	actual job is committed and comes up to being done.
19	What we are trying to do is, because there are so many
20	things that are being developed, but time is needed to
21	convert and they are all put in for later. So the
22	next update we're having of 1.200, this document, our
23	two primary works that we're trying to convert.
24	MR. SNODDERLY: Well, then I'll ask that,
25	you know, just let us know when that schedule takes

(202) 234-4433

	118
1	place, you know, firms up and so we can coordinate.
2	Because it is difficult to get all these, you know,
3	people, folks together.
4	MS. DROUIN: I would think we would come
5	back to you more than once.
6	MR. SNODDERLY: Yes.
7	MS. DROUIN: And you know
8	MR. SNODDERLY: George said probably after
9	the pilot maybe, you know. This has got to be put out
10	in December. It will be piloted maybe, you know, in
11	the summer.
12	CHAIRMAN APOSTOLAKIS: No, the pilots are
13	ongoing, aren't they?
14	MR. TRUE: No, they will be out the first
15	of the year.
16	MR. SNODDERLY: So it will probably be
17	late summer or even fall before.
18	MR. TRUE: No, the pilot won't be an
19	actual misconformed license application change.
20	MS. DROUIN: Asking about before the
21	summer.
22	PARTICIPANT: There is a possibility that
23	it could be.
24	PARTICIPANT: Maybe one of the 1.200
25	pilots.

(202) 234-4433

119
PARTICIPANT: Okay. Let us know when you
are ready. We're in discussion.
MS. DROUIN: Yes.
CHAIRMAN APOSTOLAKIS: Okay. Vic?
MEMBER RANSOM: Well, I've been quite
impressed with this long parametric statistical
approach to evaluating uncertainties and thermal
hydraulic codes and things of that type. It impressed
me that the 5046 and you have that kind of basis, it's
a much more powerful way of making a decision. I'm
wondering does that have any role here?
CHAIRMAN APOSTOLAKIS: They are not
addressing 5046 issues.
MEMBER RANSOM: No, I understand that.
CHAIRMAN APOSTOLAKIS: But you are right,
in 5046, I mean, you want to know the uncertainty from
the thermal hydraulic codes, right? That's the best
estimate.
MEMBER RANSOM: Well, as well, I'm
wondering can't that be extended to other
uncertainties in the process?
MEMBER SHACK: He wants to take, you know,
5046
PARTICIPANT: Even circles from all the
distribution, talk about and, you know, get a 95^{th}

(202) 234-4433

	120
1	percentile.
2	PARTICIPANT: Right.
3	CHAIRMAN APOSTOLAKIS: Why should you
4	penalize to do it?
5	MEMBER SIEBER: It's like 72.
6	MEMBER RANSOM: Then you have a good
7	statistical basis for making that decision.
8	CHAIRMAN APOSTOLAKIS: Well, I don't know
9	about that, but maybe we can discuss it when 5046
10	comes up again. Because I don't think it is relevant.
11	Any other comments?
12	Well, thank you very much. This was very,
13	very enlightening
14	PARTICIPANT: Thank you.
15	CHAIRMAN APOSTOLAKIS: to see what you
16	guys are doing.
17	PARTICIPANT: Thank you for your time.
18	CHAIRMAN APOSTOLAKIS: And on this happy
19	note, the subcommittee meeting is adjourned.
20	(Whereupon, the meeting was concluded at
21	2:42 p.m.)
22	
23	
24	
25	