Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Thermal-Hydraulic Phenomena & Materials and Metallurgy Subcommittees

- Docket Number: (not applicable)
- Location: Rockville, Maryland
- Date: Wednesday, February 4, 2004

Work Order No.: NRC-1283

Pages 1-390

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

1UNITED STATES OF AMERICA2NUCLEAR REGULATORY COMMISSION3+ + + + +4JOINT MEETING5ADVISORY COMMITTEE ON REACTOR SAFEGUARDS6(ACRS)7SUBCOMMITTEES ON MATERIALS & METALLURGY AND8THERMAL-HYDRAULIC PHENOMENA9+ + + + +10WEDNESDAY, FEBRUARY 4, 200411+ + + + +12ROCKVILLE, MARYLAND13+ + + + +14The Subcommittees met at the Nuclear15Regulatory Commission, Two White Flint North, Room16T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter17Ford and Graham Wallis, Co-Chairmen, presiding.18COMMITTEE MEMBERS PRESENT:19F. PETER FORD, Co-Chairman20GRAHAM B. WALLIS, Co-Chairman21MARIO V. BONACA, Member22THOMAS S. KRESS, Member23VICTOR R. RANSOM, Member24STEPHEN L. ROSEN, Member25JOHN D. SIEBER, Member		1
 +++++ JOINT MEETING ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS) SUBCOMMITTEES ON MATERIALS & METALLURGY AND THERMAL-HYDRAULIC PHENOMENA +++++ WEDNESDAY, FEBRUARY 4, 2004 +++++ ROCKVILLE, MARYLAND +++++ The Subcommittees met at the Nuclear Regulatory Commission, Two White Flint North, Room T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter Ford and Graham Wallis, Co-Chairman COMMITTEE MEMBERS PRESENT: F. PETER FORD, Co-Chairman GRAHAM B. WALLIS, Co-Chairman MARIO V. BONACA, Member VICTOR R. RANSOM, Member STEPHEN L. ROSEN, Member 	1	UNITED STATES OF AMERICA
4JOINT MEETING5ADVISORY COMMITTEE ON REACTOR SAFEGUARDS6(ACRS)7SUBCOMMITTEES ON MATERIALS & METALLURGY AND8THERMAL-HYDRAULIC PHENOMENA9+ + + + +10MEDNESDAY, FEBRUARY 4, 200411+ + + + +12ROCKVILLE, MARYLAND13+ + + + +14The Subcommittees met at the Nuclear15Regulatory Commission, Two White Flint North, Room16T2E3, 11545 Rockville Pike, at 8:30 a.m., F. Peter17Ford and Graham Wallis, Co-Chairmen, presiding.18COMMITTEE MEMBERS PRESENT:19F. PETER FORD, Co-Chairman20GRAHAM B. WALLIS, Co-Chairman21MARIO V. BONACA, Member22THOMAS S. KRESS, Member23VICTOR R. RANSOM, Member24STEPHEN L. ROSEN, Member	2	NUCLEAR REGULATORY COMMISSION
5ADVISORY COMMITTEE ON REACTOR SAFEGUARDS6(ACRS)7SUBCOMMITTEES ON MATERIALS & METALLURGY AND8THERMAL-HYDRAULIC PHENOMENA9+++++10WEDNESDAY, FEBRUARY 4, 200411+++++12ROCKVILLE, MARYLAND13+++++14The Subcommittees met at the Nuclear15Regulatory Commission, Two White Flint North, Room16T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter17Ford and Graham Wallis, Co-Chairmen, presiding.18COMMITTEE MEMBERS PRESENT:19F. PETER FORD, Co-Chairman20GRAHAM B. WALLIS, Co-Chairman21MARIO V. BONACA, Member22THOMAS S. KRESS, Member23VICTOR R. RANSOM, Member24STEPHEN L. ROSEN, Member	3	+ + + +
 (ACRS) SUBCOMMITTEES ON MATERIALS & METALLURGY AND THERMAL-HYDRAULIC PHENOMENA +++++ WEDNESDAY, FEBRUARY 4, 2004 +++++ ROCKVILLE, MARYLAND +++++ The Subcommittees met at the Nuclear Regulatory Commission, Two White Flint North, Room T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter Ford and Graham Wallis, Co-Chairman, presiding. COMMITTEE MEMBERS PRESENT: F. PETER FORD, Co-Chairman GRAHAM B. WALLIS, Co-Chairman MARIO V. BONACA, Member THOMAS S. KRESS, Member VICTOR R. RANSOM, Member STEPHEN L. ROSEN, Member 	4	JOINT MEETING
 SUBCOMMITTEES ON MATERIALS & METALLURGY AND THERMAL-HYDRAULIC PHENOMENA +++++ WEDNESDAY, FEBRUARY 4, 2004 +++++ ROCKVILLE, MARYLAND +++++ The Subcommittees met at the Nuclear Regulatory Commission, Two White Flint North, Room T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter Ford and Graham Wallis, Co-Chairmen, presiding. <u>COMMITTEE MEMBERS PRESENT</u>: F. PETER FORD, Co-Chairman GRAHAM B. WALLIS, Co-Chairman MARIO V. BONACA, Member THOMAS S. KRESS, Member VICTOR R. RANSOM, Member STEPHEN L. ROSEN, Member 	5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
 8 THERMAL-HYDRAULIC PHENOMENA 9 + + + + + 10 WEDNESDAY, FEBRUARY 4, 2004 11 + + + + 12 ROCKVILLE, MARYLAND 13 + + + + + 14 The Subcommittees met at the Nuclear 15 Regulatory Commission, Two White Flint North, Room 16 T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter 17 Ford and Graham Wallis, Co-Chairman, presiding. 18 <u>COMMITTEE MEMBERS PRESENT:</u> 19 F. PETER FORD, Co-Chairman 20 GRAHAM B. WALLIS, Co-Chairman 21 MARIO V. BONACA, Member 22 THOMAS S. KRESS, Member 23 VICTOR R. RANSOM, Member 24 STEPHEN L. ROSEN, Member 	6	(ACRS)
 +++++ WEDNESDAY, FEBRUARY 4, 2004 +++++ ROCKVILLE, MARYLAND +++++ The Subcommittees met at the Nuclear Regulatory Commission, Two White Flint North, Room Regulatory Commission, Two White Flint North, Room T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter Ford and Graham Wallis, Co-Chairmen, presiding. COMMITTEE MEMBERS PRESENT: F. PETER FORD, Co-Chairman GRAHAM B. WALLIS, Co-Chairman MARIO V. BONACA, Member THOMAS S. KRESS, Member VICTOR R. RANSOM, Member STEPHEN L. ROSEN, Member 	7	SUBCOMMITTEES ON MATERIALS & METALLURGY AND
 10 WEDNESDAY, FEBRUARY 4, 2004 11 + + + + 12 ROCKVILLE, MARYLAND 13 + + + + + 14 The Subcommittees met at the Nuclear 15 Regulatory Commission, Two White Flint North, Room 16 T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter 17 Ford and Graham Wallis, Co-Chairmen, presiding. 18 COMMITTEE MEMBERS PRESENT: 19 F. PETER FORD, Co-Chairman 20 GRAHAM B. WALLIS, Co-Chairman 21 MARIO V. BONACA, Member 22 THOMAS S. KRESS, Member 23 VICTOR R. RANSOM, Member 24 STEPHEN L. ROSEN, Member 	8	THERMAL-HYDRAULIC PHENOMENA
 +++++ CCKVILLE, MARYLAND +++++ The Subcommittees met at the Nuclear Regulatory Commission, Two White Flint North, Room T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter Ford and Graham Wallis, Co-Chairmen, presiding. COMMITTEE MEMBERS PRESENT: F. PETER FORD, Co-Chairman GRAHAM B. WALLIS, Co-Chairman MARIO V. BONACA, Member THOMAS S. KRESS, Member VICTOR R. RANSOM, Member STEPHEN L. ROSEN, Member 	9	+ + + +
12ROCKVILLE, MARYLAND13+++++14The Subcommittees met at the Nuclear15Regulatory Commission, Two White Flint North, Room16T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter17Ford and Graham Wallis, Co-Chairmen, presiding.18COMMITTEE MEMBERS PRESENT:19F. PETER FORD, Co-Chairman20GRAHAM B. WALLIS, Co-Chairman21MARIO V. BONACA, Member22THOMAS S. KRESS, Member23VICTOR R. RANSOM, Member24STEPHEN L. ROSEN, Member	10	WEDNESDAY, FEBRUARY 4, 2004
 13 +++++ 14 The Subcommittees met at the Nuclear 15 Regulatory Commission, Two White Flint North, Room 16 T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter 17 Ford and Graham Wallis, Co-Chairmen, presiding. 18 <u>COMMITTEE MEMBERS PRESENT:</u> 19 F. PETER FORD, Co-Chairman 20 GRAHAM B. WALLIS, Co-Chairman 21 MARIO V. BONACA, Member 22 THOMAS S. KRESS, Member 23 VICTOR R. RANSOM, Member 24 STEPHEN L. ROSEN, Member 	11	+ + + +
14The Subcommittees met at the Nuclear15Regulatory Commission, Two White Flint North, Room16T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter17Ford and Graham Wallis, Co-Chairmen, presiding.18COMMITTEE MEMBERS PRESENT:19F. PETER FORD, Co-Chairman20GRAHAM B. WALLIS, Co-Chairman21MARIO V. BONACA, Member22THOMAS S. KRESS, Member23VICTOR R. RANSOM, Member24STEPHEN L. ROSEN, Member	12	ROCKVILLE, MARYLAND
 Regulatory Commission, Two White Flint North, Room T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter Ford and Graham Wallis, Co-Chairmen, presiding. <u>COMMITTEE MEMBERS PRESENT</u>: F. PETER FORD, Co-Chairman GRAHAM B. WALLIS, Co-Chairman MARIO V. BONACA, Member THOMAS S. KRESS, Member VICTOR R. RANSOM, Member STEPHEN L. ROSEN, Member 	13	+ + + +
 16 T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter 17 Ford and Graham Wallis, Co-Chairmen, presiding. 18 <u>COMMITTEE MEMBERS PRESENT</u>: 19 F. PETER FORD, Co-Chairman 20 GRAHAM B. WALLIS, Co-Chairman 21 MARIO V. BONACA, Member 22 THOMAS S. KRESS, Member 23 VICTOR R. RANSOM, Member 24 STEPHEN L. ROSEN, Member 	14	The Subcommittees met at the Nuclear
 17 Ford and Graham Wallis, Co-Chairmen, presiding. 18 <u>COMMITTEE MEMBERS PRESENT:</u> 19 F. PETER FORD, Co-Chairman 20 GRAHAM B. WALLIS, Co-Chairman 21 MARIO V. BONACA, Member 22 THOMAS S. KRESS, Member 23 VICTOR R. RANSOM, Member 24 STEPHEN L. ROSEN, Member 	15	Regulatory Commission, Two White Flint North, Room
 18 <u>COMMITTEE MEMBERS PRESENT</u>: 19 F. PETER FORD, Co-Chairman 20 GRAHAM B. WALLIS, Co-Chairman 21 MARIO V. BONACA, Member 22 THOMAS S. KRESS, Member 23 VICTOR R. RANSOM, Member 24 STEPHEN L. ROSEN, Member 	16	T2B3, 11545 Rockville Pike, at 8:30 a.m., F. Peter
19F. PETER FORD, Co-Chairman20GRAHAM B. WALLIS, Co-Chairman21MARIO V. BONACA, Member22THOMAS S. KRESS, Member23VICTOR R. RANSOM, Member24STEPHEN L. ROSEN, Member	17	Ford and Graham Wallis, Co-Chairmen, presiding.
 20 GRAHAM B. WALLIS, Co-Chairman 21 MARIO V. BONACA, Member 22 THOMAS S. KRESS, Member 23 VICTOR R. RANSOM, Member 24 STEPHEN L. ROSEN, Member 	18	COMMITTEE MEMBERS PRESENT:
 21 MARIO V. BONACA, Member 22 THOMAS S. KRESS, Member 23 VICTOR R. RANSOM, Member 24 STEPHEN L. ROSEN, Member 	19	F. PETER FORD, Co-Chairman
 THOMAS S. KRESS, Member VICTOR R. RANSOM, Member STEPHEN L. ROSEN, Member 	20	GRAHAM B. WALLIS, Co-Chairman
 23 VICTOR R. RANSOM, Member 24 STEPHEN L. ROSEN, Member 	21	MARIO V. BONACA, Member
24 STEPHEN L. ROSEN, Member	22	THOMAS S. KRESS, Member
	23	VICTOR R. RANSOM, Member
25 JOHN D. SIEBER, Member	24	STEPHEN L. ROSEN, Member
	25	JOHN D. SIEBER, Member

1	<u>ACRS STAFF PRESENT</u> :
2	B.P. JAIN
3	MAITRI BANERJAN
4	BILL BATEMAN
5	CHRIS BOYD
6	JIM DAVIS
7	BOB DOWNIG
8	DON FLETCHER
9	MICHELLE HART
10	ALLEN HISER
11	KEN KARWONSKI
12	WILLIAM KROTIUK
13	DAVID KUPPERMAN
14	STEVE LONG
15	LOUISE LUND
16	JOE MUSCARA
17	JOEL PAGE
18	WILLIAM SHACK
19	ROY WOODS
20	
21	
22	
23	
24	
25	

2

	3
1	C-O-N-T-E-N-T-S
2	PAGE
3	Thermal Hydraulic Conditions During
4	Severe Accidents:
5	Joseph Muscara 5
6	Christopher Boyd 6
7	Don Fletcher
8	Primary System Component Response to Severe
9	Accident Conditions, Saurin Majumdar 227
10	Integrated Methodology for PRA of Sefvere
11	Accident Induced SG Containment Bypass,
12	Dave Bradley
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:33 a.m.)
3	CO-CHAIRMAN FORD: The meeting will now
4	come to order.
5	I'll just repeat the salient points of the
6	introduction I gave yesterday.
7	This is the second day of the meeting of
8	the Advisory Committee on Reactor Safeguards, joint
9	Subcommittees on Materials and Metallurgy and Thermal
10	Hydraulic Phenomena.
11	I'm Peter Ford, Chairman of the Materials
12	and Metallurgy Subcommittee, and my Co-chair is Graham
13	Wallis, Chairman of the Thermal Hydraulics Phenomena
14	Subcommittee.
15	Subcommittee members in attendance are
16	Mario Bonaca, John Sieber, Tom Kress, and Vic Ransom.
17	The purpose of the Joint Materials and
18	Metallurgy and Thermal Hydraulic Phenomena
19	Subcommittee meeting is to review the staff's
20	resolution of certain items identified by the ACRS in
21	NUREG 1740, voltage based alternative repair criteria.
22	I will not reproduce what was said
23	yesterday about speaking clearly, et cetera, et
24	cetera.
25	MR. SIEBER: Why not?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	5
1	(Laughter.)
2	CO-CHAIRMAN FORD: I have a request from
3	the members at the end of today's session I'd like
4	their advice about the need for a lecture on this
5	topic. The staff view this as an informational
6	meeting, and they're not requiring a letter, as I
7	understand it, but we may decide to issue a letter
8	regardless.
9	And I'd also like their advice to the
10	staff on their two-hour presentation to the full
11	committee on Thursday. It's my understanding that the
12	staff are just going to give a summary of each of the
13	tasks. I'm not too sure if this is correct,
14	presumably with back-up slides on salient points. But
15	I'm sure you would like advice from the members on
16	what goes into that two-hour meeting.
17	With that I'll pass it on to you, Joe, to
18	introduce your speakers.
19	MR. MUSCARA: Okay. Thank you, Peter.
20	I think today we'll continue with our
21	topics on thermal hydraulics and the premises and
22	component behavior in the severe accident conditions
23	in the PRA. So these areas relate essentially to
24	severe accidents.
25	Just one other point. I did bring a few

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	6
1	copies of our integrated program plan that I'll share
2	with the members, and I think without delaying very
3	much we'll start with the hydraulics work and Chris
4	Boyd is going to start off in that area.
5	MR. BOYD: Okay. My name is Christopher
б	Boyd. I work in the Office of Research.
7	And I'm going to be going over the thermal
8	hydraulic work that has been done in the past year and
9	a half in support of the steam generator action plan.
10	The outline for what I'll go over is a
11	quick overview of the thermal hydraulic work, some of
12	the background issues.
13	We have a note about the ARTIST program,
14	which is one of the steam generator action plan items.
15	I'm not directly involved with that, but will give a
16	note.
17	And then the bulk of my presentation will
18	be on the SFD related work, steam generator action
19	plan Item 3.4(e), and then Don Fletcher from ISL,
20	Information Systems Laboratories, will give the
21	SCDAP/RELAP 5 analysis, which is tied into the CFD
22	work. The CFD work feeds that, and we'll take a look
23	at how that has worked.
24	What we're looking at in general, the
25	thermal hydraulic analysis predicts the thermal and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1mechanical loads that are applied to the reactor2coolant system. We're going through a process of3updating our predictions for the ZION plant during the4TMLB prime station blackout transient.5We've updated our boundary conditions.6We've got more realistic conditions and assumptions.7We've significantly updated the mixing parameters8based on a reanalysis of the one-seventh scale test,9as well as the CFD data or predictions which I will10present.11CO-CHAIRMAN WALLIS: Are these the more12realistic boundary conditions, more realistic than the13ones that we saw in the material that you sent us?14MR. BOYD: I don't believe we have a final15report that we sent you.16CO-CHAIRMAN WALLIS: Oh, okay.17MR. BOYD: That's right, and when I say18"more realistic,"19CO-CHAIRMAN WALLIS: You sent us two20reports.21MR. BOYD: we took into account things22like radiation that were ignored before.23CO-CHAIRMAN WALLIS: Well, maybe we'll get24to that in your presentation.25MR. BOYD: We'll get to that, and these		7
3 updating our predictions for the ZION plant during the 4 TMLB prime station blackout transient. 5 We've updated our boundary conditions. 6 We've got more realistic conditions and assumptions. 7 We've significantly updated the mixing parameters 8 based on a reanalysis of the one-seventh scale test, 9 as well as the CFD data or predictions which I will 10 present. 11 CO-CHAIRMAN WALLIS: Are these the more 12 realistic boundary conditions, more realistic than the 13 ones that we saw in the material that you sent us? 14 MR. BOYD: I don't believe we have a final 15 report that we sent you. 16 CO-CHAIRMAN WALLIS: Oh, okay. 17 MR. BOYD: That's right, and when I say 18 'more realistic," 19 CO-CHAIRMAN WALLIS: You sent us two 20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.	1	mechanical loads that are applied to the reactor
4 TMLB prime station blackout transient. 5 We've updated our boundary conditions. 6 We've got more realistic conditions and assumptions. 7 We've significantly updated the mixing parameters 8 based on a reanalysis of the one-seventh scale test, 9 as well as the CFD data or predictions which I will 10 present. 11 CO-CHAIRMAN WALLIS: Are these the more 12 realistic boundary conditions, more realistic than the 13 ones that we saw in the material that you sent us? 14 MR. BOYD: I don't believe we have a final 15 report that we sent you. 16 CO-CHAIRMAN WALLIS: Oh, okay. 17 MR. BOYD: That's right, and when I say 18 "more realistic," 19 CO-CHAIRMAN WALLIS: You sent us two 20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.	2	coolant system. We're going through a process of
5 We've updated our boundary conditions. 6 We've got more realistic conditions and assumptions. 7 We've significantly updated the mixing parameters 8 based on a reanalysis of the one-seventh scale test, 9 as well as the CFD data or predictions which I will 10 present. 11 CO-CHAIRMAN WALLIS: Are these the more 12 realistic boundary conditions, more realistic than the 13 ones that we saw in the material that you sent us? 14 MR. BOYD: I don't believe we have a final 15 report that we sent you. 16 CO-CHAIRMAN WALLIS: Oh, okay. 17 MR. BOYD: That's right, and when I say 18 "more realistic," 19 CO-CHAIRMAN WALLIS: You sent us two 20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.	3	updating our predictions for the ZION plant during the
6 We've got more realistic conditions and assumptions. 7 We've significantly updated the mixing parameters 8 based on a reanalysis of the one-seventh scale test, 9 as well as the CFD data or predictions which I will 10 present. 11 CO-CHAIRMAN WALLIS: Are these the more 12 realistic boundary conditions, more realistic than the 13 ones that we saw in the material that you sent us? 14 MR. BOYD: I don't believe we have a final 15 report that we sent you. 16 CO-CHAIRMAN WALLIS: Oh, okay. 17 MR. BOYD: That's right, and when I say 18 "more realistic," 19 CO-CHAIRMAN WALLIS: You sent us two 20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.	4	TMLB prime station blackout transient.
7 We've significantly updated the mixing parameters 8 based on a reanalysis of the one-seventh scale test, 9 as well as the CFD data or predictions which I will 10 present. 11 CO-CHAIRMAN WALLIS: Are these the more 12 realistic boundary conditions, more realistic than the 13 ones that we saw in the material that you sent us? 14 MR. BOYD: I don't believe we have a final 15 report that we sent you. 16 CO-CHAIRMAN WALLIS: Oh, okay. 17 MR. BOYD: That's right, and when I say 18 "more realistic," 19 CO-CHAIRMAN WALLIS: You sent us two 20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.	5	We've updated our boundary conditions.
 based on a reanalysis of the one-seventh scale test, as well as the CFD data or predictions which I will present. CO-CHAIRMAN WALLIS: Are these the more realistic boundary conditions, more realistic than the ones that we saw in the material that you sent us? MR. BOYD: I don't believe we have a final report that we sent you. CO-CHAIRMAN WALLIS: Oh, okay. MR. BOYD: That's right, and when I say "more realistic," CO-CHAIRMAN WALLIS: You sent us two reports. MR. BOYD: we took into account things like radiation that were ignored before. CO-CHAIRMAN WALLIS: Well, maybe we'll get to that in your presentation. 	6	We've got more realistic conditions and assumptions.
9 as well as the CFD data or predictions which I will present. 11 CO-CHAIRMAN WALLIS: Are these the more realistic boundary conditions, more realistic than the ones that we saw in the material that you sent us? MR. BOYD: I don't believe we have a final report that we sent you. 16 CO-CHAIRMAN WALLIS: Oh, okay. 17 MR. BOYD: That's right, and when I say "more realistic," 19 CO-CHAIRMAN WALLIS: You sent us two reports. 21 MR. BOYD: we took into account things like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get to that in your presentation.	7	We've significantly updated the mixing parameters
10 present. 11 CO-CHAIRMAN WALLIS: Are these the more 12 realistic boundary conditions, more realistic than the 13 ones that we saw in the material that you sent us? 14 MR. BOYD: I don't believe we have a final 15 report that we sent you. 16 CO-CHAIRMAN WALLIS: Oh, okay. 17 MR. BOYD: That's right, and when I say 18 "more realistic," 19 CO-CHAIRMAN WALLIS: You sent us two 20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.	8	based on a reanalysis of the one-seventh scale test,
11 CO-CHAIRMAN WALLIS: Are these the more 12 realistic boundary conditions, more realistic than the 13 ones that we saw in the material that you sent us? 14 MR. BOYD: I don't believe we have a final 15 report that we sent you. 16 CO-CHAIRMAN WALLIS: Oh, okay. 17 MR. BOYD: That's right, and when I say 18 "more realistic," 19 CO-CHAIRMAN WALLIS: You sent us two 20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.	9	as well as the CFD data or predictions which I will
12 realistic boundary conditions, more realistic than the 13 ones that we saw in the material that you sent us? 14 MR. BOYD: I don't believe we have a final 15 report that we sent you. 16 CO-CHAIRMAN WALLIS: Oh, okay. 17 MR. BOYD: That's right, and when I say 18 "more realistic," 19 CO-CHAIRMAN WALLIS: You sent us two 20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.	10	present.
13 ones that we saw in the material that you sent us? 14 MR. BOYD: I don't believe we have a final 15 report that we sent you. 16 CO-CHAIRMAN WALLIS: Oh, okay. 17 MR. BOYD: That's right, and when I say 18 "more realistic," 19 CO-CHAIRMAN WALLIS: You sent us two 20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.	11	CO-CHAIRMAN WALLIS: Are these the more
14MR. BOYD: I don't believe we have a final15report that we sent you.16CO-CHAIRMAN WALLIS: Oh, okay.17MR. BOYD: That's right, and when I say18"more realistic,"19CO-CHAIRMAN WALLIS: You sent us two20reports.21MR. BOYD: we took into account things22like radiation that were ignored before.23CO-CHAIRMAN WALLIS: Well, maybe we'll get24to that in your presentation.	12	realistic boundary conditions, more realistic than the
<pre>15 report that we sent you. 16 CO-CHAIRMAN WALLIS: Oh, okay. 17 MR. BOYD: That's right, and when I say 18 "more realistic," 19 CO-CHAIRMAN WALLIS: You sent us two 20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.</pre>	13	ones that we saw in the material that you sent us?
16CO-CHAIRMAN WALLIS: Oh, okay.17MR. BOYD: That's right, and when I say18"more realistic,"19CO-CHAIRMAN WALLIS: You sent us two20reports.21MR. BOYD: we took into account things22like radiation that were ignored before.23CO-CHAIRMAN WALLIS: Well, maybe we'll get24to that in your presentation.	14	MR. BOYD: I don't believe we have a final
MR. BOYD: That's right, and when I say "more realistic," CO-CHAIRMAN WALLIS: You sent us two reports. MR. BOYD: we took into account things like radiation that were ignored before. CO-CHAIRMAN WALLIS: Well, maybe we'll get to that in your presentation.	15	report that we sent you.
<pre>18 "more realistic," 19 CO-CHAIRMAN WALLIS: You sent us two 20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.</pre>	16	CO-CHAIRMAN WALLIS: Oh, okay.
19 CO-CHAIRMAN WALLIS: You sent us two 20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.	17	MR. BOYD: That's right, and when I say
<pre>20 reports. 21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.</pre>	18	"more realistic,"
21 MR. BOYD: we took into account things 22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.	19	CO-CHAIRMAN WALLIS: You sent us two
22 like radiation that were ignored before. 23 CO-CHAIRMAN WALLIS: Well, maybe we'll get 24 to that in your presentation.	20	reports.
 CO-CHAIRMAN WALLIS: Well, maybe we'll get to that in your presentation. 	21	MR. BOYD: we took into account things
24 to that in your presentation.	22	like radiation that were ignored before.
	23	CO-CHAIRMAN WALLIS: Well, maybe we'll get
25 MR. BOYD: We'll get to that, and these	24	to that in your presentation.
	25	MR. BOYD: We'll get to that, and these

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

more realistic boundary conditions that I'm mentioning 2 here are part of the SCDAP/RELAP 5 work, and in general we've just improved the SCDAP/RELAP 5 modeling 3 4 of design plant. Essentially we're sharpening our 5 pencils, I quess, in preparation for the support to the PRA analysis to follow. 6

7 And in all of the work that we've done, the failure predictions still indicate the surge lines 8 9 failing prior to the in flow of tubes, but you know, the timing between these two failures is still 10 11 relatively close in time. So in some ways we're in 12 the same position we were. After all of the changes and updates we've made, we're still in about the same 13 14 position.

15 The approach and the tools we're using, SCDAP/RELAP 5 is the work horse. 16 It provides the 17 temperatures and pressures and heat transfer 18 coefficients in general the to reactor system 19 We've got three dimensional aspects of components. flow that are with this one dimensional code. 20 So 21 we're using one-seventh scale experiments to provide 22 mixing parameters and other --

CO-CHAIRMAN WALLIS: Can I ask you about 23 24 that? I don't know if you're going to talk about it. 25 In the material that was sent to us, there

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	9
1	was a picture of these experiments, a cartoon, and it
2	looked very strange because the core, the vessel was
3	divided down the middle by a plate, and it looked as
4	if the flow went to the right through one steam
5	generator or to the left through the other.
6	But it wasn't a common upper plenum, and
7	in the real system the flow has to decide which way to
8	go, whether it goes to the one that's recirculating
9	completely or the one that's recirculating with the
10	counter current flow or if there are four generators,
11	you have to figure out which one is in counter current
12	flow and which one is in complete circulation, and you
13	don't have a core which has a cut down the middle by
14	a plate.
15	MR. BOYD: Okay.
16	CO-CHAIRMAN WALLIS: So half of the flow
17	has to go one way and half the other or
18	MR. BOYD: Are we talking about the one-
19	seventh scale experiments?
20	CO-CHAIRMAN WALLIS: Yes.
21	MR. BOYD: Well, we did use a half a
22	vessel. It was a four loop plant. They did cut the
23	vessel down through the middle with a plate, and they
24	had two steam generators on that.
25	CO-CHAIRMAN WALLIS: Well, that's very

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	different from the reality. There isn't a plate down
2	the middle. I mean, the flow has to go there's a
3	common header in the upper plenum, right? And the
4	flow has to decide which to go.
5	I can understand why they had two, but in
6	reality they're got four out of three that are in
7	recirculation mode and one in counter current flow or
8	are there three in counter current flow? How do you
9	know?
10	MR. BOYD: Well, during the experiments,
11	both were in this counter current flow situation.
12	CO-CHAIRMAN WALLIS: Yeah, but one had a
13	complete loop circulation and one had the counter
14	current flow in the
15	MR. BOYD: No. In the facility there was
16	no complete loop circulation because there was no cold
17	legs, and in the outlet plenum, there was no outlet
18	to
19	CO-CHAIRMAN WALLIS: So the cartoon that
20	introduced that seemed to be wrong then.
21	MR. BOYD: The cartoon could have been
22	wrong. I'm not sure exactly which one
23	CO-CHAIRMAN WALLIS: Well, we're going to
24	get into this because what I'm going to ask you is how
25	this one of the things I'm going to ask you is how

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	what you did relates to what's happening in the other
2	loops because you've got to solve the whole thing
3	together, and maybe that will come out of the
4	SCDAP/RELAP.
5	But there's an interfacing question there
6	that we'll get into. Okay?
7	MR. BOYD: Okay.
8	DR. RANSOM: Well, isn't part of that due
9	to I detect that you assume that the loop seals don't
10	clear.
11	MR. BOYD: That's correct.
12	DR. RANSOM: So thus the flow cannot go in
13	that direction. Are there any conditions where the
14	loop seals would clear?
15	MR. BOYD: We're not seeing any in the
16	SCDAP/RELAP 5 analysis that we're performing. So if
17	you believe that, then the loop seal is not clearing.
18	In the one-seventh scale experiments,
19	there was no chance for the loop seals to clear
20	because the outlet plenum was a steel hemisphere with
21	no outlet.
22	DR. RANSOM: Well, was that the reason for
23	it?
24	MR. BOYD: I would assume. I wasn't
25	planning that test, but I would assume they assumed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	the loop seals were plugged and we're not going to
2	bother with a
3	CO-CHAIRMAN WALLIS: Not all four of them.
4	MR. BOYD: All four?
5	CO-CHAIRMAN WALLIS: One of them is open.
6	All four loops are in this
7	MR. BOYD: Don, do you want to talk to
8	this?
9	MR. FLETCHER: Excuse me. Don Fletcher of
10	ISL.
11	In the SCDAP analysis we've modeled the
12	four loops independently so that we have four
13	identical cool loops with the exception of the
14	pressurizer being on one loop. The model itself
15	decides whether we have the split hot leg
16	configuration with the recirculation through the legs
17	and back to the vessel or whether we have a complete
18	flow through situation, a normal flow direction, if
19	you will.
20	The decision is based upon whether the
21	loop seals are plugged or not and whether the bottom
22	of the downcomer is plugged with
23	CO-CHAIRMAN WALLIS: So there are various
24	combinations of things that can happen.
25	MR. FLETCHER: That's correct. The model

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	is set up to look at it as the calculation proceeds
2	and decide which mode each of the legs independently
3	is in.
4	CO-CHAIRMAN WALLIS: Okay. So you cannot
5	just impose a boundary condition of a temperature in
6	the upper plenum. You have to calculate it knowing
7	the heat transfer and all of these loops, whatever
8	mode they're operating in.
9	MR. FLETCHER: That's correct.
10	CO-CHAIRMAN WALLIS: Okay.
11	MR. FLETCHER: Let me say in general the
12	loop seals remain plugged with water.
13	CO-CHAIRMAN WALLIS: All of them?
14	MR. FLETCHER: In all of them, yes.
15	CO-CHAIRMAN WALLIS: Well, that makes it
16	easier. Yeah, okay.
17	Thank you.
18	MR. BOYD: I'm not sure that makes it any
19	easier, but
20	CO-CHAIRMAN WALLIS: Well, it makes it
21	easier if you know the mode of operation. If you're
22	not sure whether they're plugged or not, then you've
23	got different combinations of things to worry about.
24	MR. BOYD: So back to our toolbox,
25	SCDAP/RELAP 5 is the workhorse code which predicts the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	transient behavior and is modeling all of these system
2	type issues that we're talking about.
3	Because it's a one dimensional code and
4	we've got three dimensional behavior, we're relying on
5	a set of one-seventh scale experiments to provide
6	mixing parameters. These one-seventh scale
7	experiments are being augmented with
8	CO-CHAIRMAN WALLIS: Well, excuse me.
9	That's not the only problem. You have a problem of
10	interfacing your one dimensional code with your three
11	dimensional code quite apart from the experiments.
12	MR. BOYD: We're not directly interfacing
13	those two codes.
14	CO-CHAIRMAN WALLIS: Well, I think you
15	have that issue though. You have to figure out how to
16	do it.
17	MR. BOYD: Okay. We can talk about that.
18	CO-CHAIRMAN WALLIS: Because SCDAP/RELAP
19	has to put in somehow the flow rate in your counter
20	current flow loop, right? Which itself is the
21	variable that's derived from CFD.
22	MR. BOYD: No, it
23	CO-CHAIRMAN WALLIS: Yes, it is, and we'll
24	get to that.
25	MR. BOYD: Okay. That sounds good.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1CO-CHAIRMAN WALLIS: You don't, but it2should be. We'll get to that.3MR. BOYD: Okay. So we've got these one-4seventh scale experiments which are determining a lot5of information about the three dimensional behavior.6They're being augmented and extended with7computational fluid dynamics.8Then in the area of fission product9transport, we're going to do analysis with MELCOR,10kind of a repeat of some of the SCDAP/RELAP 511analysis, and that will be augmented with data from12the ARTIST program when that becomes available.13So the issues raised in NUREG 1740 that14related to the thermal hydraulic work are there was a15comment made the 1D codes are tuned by comparison with16experimental results, and this is correct. The scale17of the experiments is criticized. There's a concern18that mixing may be overestimated. There was a note19that the test did not simulate tube leakage and its20I saw comments in some transcripts where21I saw comments in some transcripts where22there was a lot of questions about this inlet24plenum mixing.		15
3MR. BOYD: Okay. So we've got these one-4seventh scale experiments which are determining a lot5of information about the three dimensional behavior.6They're being augmented and extended with7computational fluid dynamics.8Then in the area of fission product9transport, we're going to do analysis with MELCOR,10kind of a repeat of some of the SCDAP/RELAP 511analysis, and that will be augmented with data from12the ARTIST program when that becomes available.13So the issues raised in NUREG 1740 that14related to the thermal hydraulic work are there was a15comment made the ID codes are tuned by comparison with16experimental results, and this is correct. The scale17of the experiments is criticized. There's a concern18that mixing may be overestimated. There was a note19that the test did not simulate tube leakage and its20effect on mixing.21I saw comments in some transcripts where22there was a lot of questions about this inlet24plenum mixing.	1	CO-CHAIRMAN WALLIS: You don't, but it
 seventh scale experiments which are determining a lot of information about the three dimensional behavior. They're being augmented and extended with computational fluid dynamics. Then in the area of fission product transport, we're going to do analysis with MELCOR, kind of a repeat of some of the SCDAP/RELAP 5 analysis, and that will be augmented with data from the ARTIST program when that becomes available. So the issues raised in NUREG 1740 that related to the thermal hydraulic work are there was a comment made the 1D codes are tuned by comparison with experimental results, and this is correct. The scale of the experiments is criticized. There's a concern that mixing may be overestimated. There was a note that the test did not simulate tube leakage and its effect on mixing. I saw comments in some transcripts where there was a doubt whether there was any mixing at all. So there was a lot of questions about this inlet plenum mixing. 	2	should be. We'll get to that.
5 of information about the three dimensional behavior. 6 They're being augmented and extended with 7 computational fluid dynamics. 8 Then in the area of fission product 9 transport, we're going to do analysis with MELCOR, 10 kind of a repeat of some of the SCDAP/RELAP 5 11 analysis, and that will be augmented with data from 12 the ARTIST program when that becomes available. 13 So the issues raised in NUREG 1740 that 14 related to the thermal hydraulic work are there was a 15 comment made the 1D codes are tuned by comparison with 16 experimental results, and this is correct. The scale 17 of the experiments is criticized. There's a concern 18 that mixing may be overestimated. There was a note 19 that the test did not simulate tube leakage and its 20 effect on mixing. 21 I saw comments in some transcripts where 22 there was a doubt whether there was any mixing at all. 23 So there was a lot of questions about this inlet 24 plenum mixing.	3	MR. BOYD: Okay. So we've got these one-
 6 They're being augmented and extended with computational fluid dynamics. 8 Then in the area of fission product transport, we're going to do analysis with MELCOR, kind of a repeat of some of the SCDAP/RELAP 5 11 analysis, and that will be augmented with data from the ARTIST program when that becomes available. 13 So the issues raised in NUREG 1740 that related to the thermal hydraulic work are there was a comment made the 1D codes are tuned by comparison with experimental results, and this is correct. The scale of the experiments is criticized. There's a concern that mixing may be overestimated. There was a note that the test did not simulate tube leakage and its effect on mixing. 21 I saw comments in some transcripts where there was a doubt whether there was any mixing at all. So there was a lot of questions about this inlet plenum mixing. 	4	seventh scale experiments which are determining a lot
7computational fluid dynamics.8Then in the area of fission product9transport, we're going to do analysis with MELCOR,10kind of a repeat of some of the SCDAP/RELAP 511analysis, and that will be augmented with data from12the ARTIST program when that becomes available.13So the issues raised in NUREG 1740 that14related to the thermal hydraulic work are there was a15comment made the 1D codes are tuned by comparison with16experimental results, and this is correct. The scale17of the experiments is criticized. There's a concern18that mixing may be overestimated. There was a note19that the test did not simulate tube leakage and its20effect on mixing.21I saw comments in some transcripts where22there was a doubt whether there was any mixing at all.23So there was a lot of questions about this inlet24plenum mixing.	5	of information about the three dimensional behavior.
8 Then in the area of fission product 9 transport, we're going to do analysis with MELCOR, 10 kind of a repeat of some of the SCDAP/RELAP 5 11 analysis, and that will be augmented with data from 12 the ARTIST program when that becomes available. 13 So the issues raised in NUREG 1740 that 14 related to the thermal hydraulic work are there was a 15 comment made the 1D codes are tuned by comparison with 16 experimental results, and this is correct. The scale 17 of the experiments is criticized. There's a concern 18 that mixing may be overestimated. There was a note 19 that the test did not simulate tube leakage and its 20 effect on mixing. 21 I saw comments in some transcripts where 22 there was a doubt whether there was any mixing at all. 23 So there was a lot of questions about this inlet 24 plenum mixing.	6	They're being augmented and extended with
 transport, we're going to do analysis with MELCOR, kind of a repeat of some of the SCDAP/RELAP 5 analysis, and that will be augmented with data from the ARTIST program when that becomes available. So the issues raised in NUREG 1740 that related to the thermal hydraulic work are there was a comment made the 1D codes are tuned by comparison with experimental results, and this is correct. The scale of the experiments is criticized. There's a concern that mixing may be overestimated. There was a note that the test did not simulate tube leakage and its effect on mixing. I saw comments in some transcripts where there was a doubt whether there was any mixing at all. So there was a lot of questions about this inlet plenum mixing. 	7	computational fluid dynamics.
 kind of a repeat of some of the SCDAP/RELAP 5 analysis, and that will be augmented with data from the ARTIST program when that becomes available. So the issues raised in NUREG 1740 that related to the thermal hydraulic work are there was a comment made the 1D codes are tuned by comparison with experimental results, and this is correct. The scale of the experiments is criticized. There's a concern that mixing may be overestimated. There was a note that the test did not simulate tube leakage and its effect on mixing. I saw comments in some transcripts where there was a doubt whether there was any mixing at all. So there was a lot of questions about this inlet plenum mixing. 	8	Then in the area of fission product
 analysis, and that will be augmented with data from the ARTIST program when that becomes available. So the issues raised in NUREG 1740 that related to the thermal hydraulic work are there was a comment made the 1D codes are tuned by comparison with experimental results, and this is correct. The scale of the experiments is criticized. There's a concern that mixing may be overestimated. There was a note that the test did not simulate tube leakage and its effect on mixing. I saw comments in some transcripts where there was a doubt whether there was any mixing at all. So there was a lot of questions about this inlet plenum mixing. 	9	transport, we're going to do analysis with MELCOR,
12the ARTIST program when that becomes available.13So the issues raised in NUREG 1740 that14related to the thermal hydraulic work are there was a15comment made the 1D codes are tuned by comparison with16experimental results, and this is correct. The scale17of the experiments is criticized. There's a concern18that mixing may be overestimated. There was a note19that the test did not simulate tube leakage and its20effect on mixing.21I saw comments in some transcripts where22there was a doubt whether there was any mixing at all.23So there was a lot of questions about this inlet24plenum mixing.	10	kind of a repeat of some of the SCDAP/RELAP 5
So the issues raised in NUREG 1740 that related to the thermal hydraulic work are there was a comment made the 1D codes are tuned by comparison with experimental results, and this is correct. The scale of the experiments is criticized. There's a concern that mixing may be overestimated. There was a note that the test did not simulate tube leakage and its effect on mixing. I saw comments in some transcripts where there was a doubt whether there was any mixing at all. So there was a lot of questions about this inlet plenum mixing.	11	analysis, and that will be augmented with data from
 related to the thermal hydraulic work are there was a comment made the 1D codes are tuned by comparison with experimental results, and this is correct. The scale of the experiments is criticized. There's a concern that mixing may be overestimated. There was a note that the test did not simulate tube leakage and its effect on mixing. I saw comments in some transcripts where there was a doubt whether there was any mixing at all. So there was a lot of questions about this inlet plenum mixing. 	12	the ARTIST program when that becomes available.
 comment made the 1D codes are tuned by comparison with experimental results, and this is correct. The scale of the experiments is criticized. There's a concern that mixing may be overestimated. There was a note that the test did not simulate tube leakage and its effect on mixing. I saw comments in some transcripts where there was a doubt whether there was any mixing at all. So there was a lot of questions about this inlet plenum mixing. 	13	So the issues raised in NUREG 1740 that
16 experimental results, and this is correct. The scale 17 of the experiments is criticized. There's a concern 18 that mixing may be overestimated. There was a note 19 that the test did not simulate tube leakage and its 20 effect on mixing. 21 I saw comments in some transcripts where 22 there was a doubt whether there was any mixing at all. 23 So there was a lot of questions about this inlet 24 plenum mixing.	14	related to the thermal hydraulic work are there was a
 of the experiments is criticized. There's a concern that mixing may be overestimated. There was a note that the test did not simulate tube leakage and its effect on mixing. I saw comments in some transcripts where there was a doubt whether there was any mixing at all. So there was a lot of questions about this inlet plenum mixing. 	15	comment made the 1D codes are tuned by comparison with
18 that mixing may be overestimated. There was a note 19 that the test did not simulate tube leakage and its 20 effect on mixing. 21 I saw comments in some transcripts where 22 there was a doubt whether there was any mixing at all. 23 So there was a lot of questions about this inlet 24 plenum mixing.	16	experimental results, and this is correct. The scale
19 that the test did not simulate tube leakage and its 20 effect on mixing. 21 I saw comments in some transcripts where 22 there was a doubt whether there was any mixing at all. 23 So there was a lot of questions about this inlet 24 plenum mixing.	17	of the experiments is criticized. There's a concern
20 effect on mixing. 21 I saw comments in some transcripts where 22 there was a doubt whether there was any mixing at all. 23 So there was a lot of questions about this inlet 24 plenum mixing.	18	that mixing may be overestimated. There was a note
I saw comments in some transcripts where there was a doubt whether there was any mixing at all. So there was a lot of questions about this inlet plenum mixing.	19	that the test did not simulate tube leakage and its
there was a doubt whether there was any mixing at all. So there was a lot of questions about this inlet plenum mixing.	20	effect on mixing.
23 So there was a lot of questions about this inlet 24 plenum mixing.	21	I saw comments in some transcripts where
24 plenum mixing.	22	there was a doubt whether there was any mixing at all.
	23	So there was a lot of questions about this inlet
	24	plenum mixing.
25 The sensitivity studies may not have	25	The sensitivity studies may not have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	16
1	covered the entire plausible range of variations was
2	a comment. They didn't cover simultaneous variations.
3	These are some of the issues that related to the
4	thermal hydraulic work.
5	In the steam generator action plan in
6	Section 3.3, these issues were more or less addressed
7	by a series of tasks or subtasks. I'm not going to go
8	through these in detail, but these are the specific
9	milestones that address some of those.
10	And that concludes my overview and now
11	we're going to go on to the next section with just a
12	single viewgraph on the ARTIST program. This is the
13	aerosol trapping in the steam generator. This is
14	being conducted at Paul Sherrer Institute.
15	There is a series of tests that have
16	started, but they're not the tests the NRC is
17	specifically involved with or the tests that we're
18	interested in. We plan on following these tests,
19	getting the data when it becomes available and trying
20	to incorporate that into our MELCOR analysis for the
21	fission product release rate. So this is a task in
22	the steam generator action plan that's kind of pending
23	at this point.
24	And at this point we'll start into the CFD
25	related work which will take up the rest of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

discussion by me, and then we'll jump to Don for the SCDAP/RELAP 5 work.

3	CO-CHAIRMAN FORD: Excuse me. Just on the
4	ARTIST program, you mentioned here that this will be
5	going on to 2007, and yet in the SGAP milestone, I
6	know there's a date of middle of this year, I think it
7	was, '04, when it would be completed. Are these
8	different issues or why the discrepancy between times?
9	MR. BOYD: I can only speak in
10	generalizations here because I'm not directly
11	involved. I do know that the ARTIST program is
12	suffering from significant schedule problems.
13	Apparently it's a lot more difficult to clean this
14	facility after a test and prepare it for the next
15	test. We may have somebody here who's more in tune
16	with it, but that schedule, I believe, will slip.
17	CO-CHAIRMAN FORD: And how will that
18	affect does that mean that it will be the end of
19	2007 before we have a definitive
20	MR. ROSENTHAUL: Could I try? Jack
21	Rosenthaul. I'm the Branch Chief of the Safety
22	Margins and Systems Analysis Branch.
23	Right now you assume very pessimistic BFs
24	for small aerosols on the secondary side steam
25	generator, numbers of one to ten, and everybody

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

17

anticipates that those numbers are going to be more likely ten to 100 maybe. Okay? So they would be at least an order of magnitude more entrainment and trapping of these small particles on all of that surface area on the secondary side of the steam generator.

7 But you need the experiments to show that 8 that's true. Lacking the experiments, we do the 9 analysis as best we know it. We can do the PRA. We 10 can reach conclusions, but we'll know that at least 11 that aspect is over conservative by an order of 12 magnitude or more.

So I think that we can get on with the integral activity and the artist data that, you know, we're participating in will catch up when it catches up, but it doesn't stop the program. It just introduces what is a known conservatism.

18 CO-CHAIRMAN FORD: Okay. Thank you.

MR. BOYD: My understanding is we would have results before that 2007 date. That's the end of the program.

22 So in the CFD related work, CFD is really, 23 in this problem in the overall steam generator tube 24 integrity issue that we're talking about, it's really 25 a subtask. It's extending experiments which support

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	the SCDAP/RELAP work which feed into the overall PRA
2	analysis.
3	So we're going to go kind of off the
4	beaten track here and talk in detail of one little
5	aspect of the problem, and our goal was to start with
6	the one-seventh scale experiments and take a look at
7	the method and see if it really is applicable and can
8	do this type of work.
9	And then, of course, we'd want to go to a
10	full scale steam generator and see how it applies
11	there. On the way, it was decided to, because of
12	geometrical differences, we were going to just take a
13	look at scaling in the same geometry before we went to
14	a full-scale steam generator.
15	We looked at the tube leakage effect on
16	mixing. We did a whole series of sensitivity studies
17	to see how our results vary with some of the main
18	parameters, and then we also looked at a Combustion
19	Engineering plant example, and we'll take a look at
20	that.
21	The Combustion Engineering designs
22	typically are significantly different than the
23	Westinghouse inlet plenums, and there was a concern
24	that the mixing could be different.
25	So if CFD plays this supportive role, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the predictions basically have indicated that the approach does appear to be valid at least to compute 3 these integral parameters that we're interested in. 4 We have found that the prototypical Westinghouse steam generator behaves a little differently than the oneseventh scale experiments would indicate. 6

7 Tube leakage does not eliminate inlet 8 plenum mixing. There was a concern possibly that the 9 hot plume was pulled to the leaking tube, and that's 10 not the case.

11 A sample Combustion Engineering steam 12 generator design resulted in significantly less mixing than what the Westinghouse experiments would indicate. 13 14 We also can demonstrate that the secondary site heat 15 transfer rate is a significant parameter.

Here's the flow pattern considered. 16 Ι 17 won't spend too much time. This is the counter current natural circulation flow. 18 How this is 19 interfaced to the SCDAP/RELAP model --

20 CO-CHAIRMAN WALLIS: I quess what I'm 21 going to say later is that your region of interest 22 should also include how the flow comes from the core into the hot leg. 23

24 MR. BOYD: And I would agree with you that 25 these are coupled together.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

20

1

2

5

	21
1	CO-CHAIRMAN WALLIS: Yeah, we'll talk
2	about that when you get to it.
3	MR. BOYD: And in the computational fluid
4	dynamics we did not have any influence from the core.
5	CO-CHAIRMAN WALLIS: That's one of the
6	points I wanted to make. You need to consider that,
7	too.
8	MR. BOYD: Yeah, and we did consider it,
9	but the problem is one of resources. The core is
10	extremely complex.
11	CO-CHAIRMAN WALLIS: You don't do the
12	core. I think you just need to do the upper plenum.
13	We can talk about it individually in the break or
14	something, but you can't just impose a flow coming
15	from the core. That's something that responds to all
16	of these natural circulation driving forces.
17	MR. BOYD: Right. We're relying on
18	SCDAP/RELAP to do that coupling, and I don't think
19	well, we argued amongst ourselves it's not just the
20	upper plenum. It's the entire vessel circulation.
21	CO-CHAIRMAN WALLIS: Well, that's right,
22	but we'll talk about how you can do that, but
23	essentially you have flow coming in, counter current
24	flow in the hot leg, which is really driven by having
25	a hot plenum at one end and a cold plenum at the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	other. It's like the lock exchange model or the
2	counter current flow, and that is what's happening,
3	and if you don't have that natural circulation driving
4	force, you wont get any flow. You cannot impose a
5	flow.
б	We'll get to that when you get to it.
7	MR. BOYD: Okay.
8	DR. RANSOM: Incidentally, on the one-
9	seventh scale model, I noticed that you pretty well
10	match the Reynolds number and Railey (phonetic)
11	number, Grashoff number. You never mention the Mendel
12	number, and I guess you are simulating heat transfer
13	between the primary and secondary.
14	MR. BOYD: That's right.
15	DR. RANSOM: In your what, sulfur
16	hexafluoride is a stimulant?
17	MR. BOYD: Yes. We looked at a steady
18	state test, and it was sulfur hexafluoride was the
19	stimulant with water on the secondary. It's a very
20	good heat transfer.
21	DR. RANSOM: How does the parental number
22	compare to water?
23	MR. BOYD: I don't have that. I'd have to
24	look that up. I know the heat transfer to the
25	secondary side on the one-seventh scale experiments

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	23
1	for the steady state tests was not really
2	prototypical, not representative of the full scale
3	plant. The heat was drawn out of the tubes much
4	quicker than it would be during what we see with
5	SCDAP/RELAP 5 predictions, with water on the second
6	DR. RANSOM: And that was an experimental
7	result.
8	MR. BOYD: The experimental result.
9	That's right, for the steady state tests.
10	The transient tests did have air on the
11	secondary side, and the heat transfer was less. These
12	had some other issues. So the parameters of interest,
13	what we're getting out of the one-seventh scale
14	experiments and inputting into SCDAP/RELAP 5, the
15	recirculation ratio.
16	Now, keep in mind these are all inputs to
17	SCDAP/RELAP 5. It's not calculating these. So we
18	have to determine these off line.
19	The recirculation ratio, the mass flow
20	going through the tubes over the mass flow in the hot
21	leg, that's an input parameter. The mixing fraction
22	as it's defined
23	CO-CHAIRMAN WALLIS: It's an input
24	parameter? Say that again.
25	MR. BOYD: That is not something that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	SCDAP/RELAP 5 calculates directly. We
2	CO-CHAIRMAN WALLIS: Does that say what
3	was an input parameter
4	MR. BOYD: Well, the input parameters
5	I lost it the input parameters are actually the
6	loss coefficients at these junctions, but those are
7	juggled until we get the recirculation ratio that we
8	want based on the experimental results.
9	CO-CHAIRMAN WALLIS: So you juggle it to
10	fit the data?
11	MR. BOYD: That's correct.
12	CO-CHAIRMAN WALLIS: You aren't really to
13	be predicting it for a reactor.
14	MR. BOYD: I'm making the point that we
15	are not predicting it in SCDAP/RELAP 5.
16	CO-CHAIRMAN WALLIS: I think, yeah, but
17	you're predicting it with CFD.
18	MR. BOYD: We're trying to predict that
19	with CFD.
20	CO-CHAIRMAN WALLIS: I think you need to
21	predict it.
22	MR. BOYD: Okay.
23	CO-CHAIRMAN WALLIS: Now, let's talk about
24	that a bit. If there were no heat sync on the steam
25	generator side, if the heat transfer coefficient were

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	zero, this thing would just heat up. There would be
2	no MT. There would be no MH.
3	MR. BOYD: That's right.
4	CO-CHAIRMAN WALLIS: Right? Nothing would
5	be happening, and the whole thing that's driving this
6	circulation is the fact that you're cooling some fluid
7	and it's flowing back. It's natural circulation
8	that's driving everything, and so you cannot impose
9	any kind of flow rate on this thing because in some
10	circumstances there would be no flow at all.
11	Okay. Let's come back to that.
12	MR. FLETCHER Can I add a comment?
13	The word that this is input to RELAP 5 is
14	the confusing part here. We are using flow
15	coefficients which essentially force the flow as a
16	function of the delta P across the various junctions.
17	So it's not truly a loss coefficient. It's a flow
18	coefficient.
19	CO-CHAIRMAN WALLIS: What drives the flow
20	is buoyancy.
21	MR. FLETCHER: Absolutely.
22	CO-CHAIRMAN WALLIS: And it's not anything
23	else that drives it.
24	MR. FLETCHER: That is correct.
25	CO-CHAIRMAN WALLIS: The delta P limits it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	by balancing the buoyancy with something else.
2	MR. FLETCHER: That is correct, and if you
3	have no secondary heat transfer, you would have no
4	flow of steam to the steam generators and the core
5	would melt in place in the vessel.
6	CO-CHAIRMAN WALLIS: So this thing, this
7	system here has certain characteristics of flow versus
8	temperature at the end, which have to be then
9	interfaced with whatever SCDAP/RELAP is doing.
10	MR. FLETCHER: That is correct.
11	CO-CHAIRMAN WALLIS: Right, and that has
12	to be done carefully.
13	MR. FLETCHER: The only forcing that is
14	done is done at the interface between the hot leg loop
15	and the steam generator loop in RELAP 5. There are
16	three separate loops, three main separate loops, one
17	in the vessel, one in the hot leg, and another in the
18	steam generator.
19	CO-CHAIRMAN WALLIS: That's good. That
20	sounds good to me.
21	MR. FLETCHER: The forcing that we're
22	doing as described here is at the interface between
23	the hot leg and the steam generator loop. Between the
	vessel and the hot leg we're allowing RELAP 5 to make
24	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	CO-CHAIRMAN WALLIS: I wanted to see how
2	that's done, too.
3	DR. RANSOM: Are you using a dual hot leg?
4	MR. FLETCHER: Yes, we are.
5	DR. RANSOM: An upper region of the pipe
6	and a lower region? So they're splitting the pipe and
7	allowing fluid to flow counter currently through
8	those.
9	CO-CHAIRMAN WALLIS: SCDAP/RELAP is
10	calculating counter current flow?
11	DR. RANSOM: No, only by two pipes.
12	CO-CHAIRMAN WALLIS: Oh, two pipes.
13	That's different.
14	MR. FLETCHER: This is actually the RELAP
15	noding diagram.
16	CO-CHAIRMAN WALLIS: That's different.
17	Okay. Well
18	DR. RANSOM: And what, you have the
19	boundary on the other end of the hot leg to the core
20	in this figure?
21	MR. BOYD: Hooked to the vessel, yeah.
22	MR. FLETCHER: In RELAP 5, this is a
23	typical vessel model, five channels and the core and
24	an upper plenum model that circulates flow within the
25	vessel.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	DR. RANSOM: I don't quite understand what
2	you were saying about forcing the flow at the junction
3	to the inlet plenum to the steam generator. You're
4	losing loss coefficients, adjusting them, right?
5	MR. FLETCHER: We're using flow
6	coefficients.
7	DR. RANSOM: What does that mean?
8	MR. FLETCHER: A flow coefficient says
9	that if I know the delta P across a junction and I
10	know the flow coefficient, then that defines the flow
11	rate.
12	DR. RANSOM: Are you doing that with a
13	controlled variable or something?
14	MR. FLETCHER: Input the flow
15	coefficients. It's essentially the same as inputting
16	a loss coefficient, except if you input a loss
17	coefficient for RELAP 5, RELAP 5 then determines what
18	the flow across that junction is.
19	DR. RANSOM: If you do that, then are you
20	specifying the pressure in the hot leg?
21	MR. BOYD: I think I'm confusing things.
22	When I say it's an input, buoyancy driven flows are
23	driving this whole process. By trial and error these
24	flow coefficients are adjusted until we get the mass
25	flow through the tube ratio to the mass flow and the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	hot leg ratio that we want.
2	DR. RANSOM: Well, that's supposed to be
3	something that has been added since my days. It's
4	like a pump, I guess, right?
5	MR. FLETCHER: More like a tank dependent
6	junction (phonetic), that if you know the delta P
7	across the junction
8	DR. RANSOM: Then you set the flow rate.
9	MR. FLETCHER: then you set the flow.
10	DR. RANSOM: From tabular or a table or a
11	function.
12	MR. FLETCHER: That's correct.
13	CO-CHAIRMAN WALLIS: Well, the purpose of
14	CFD is to model a more realistic steam generator and
15	to calculate MT, which is related to the way in which
16	the flows mix in the plenum and that gets your
17	recirculation ratio. I'm not sure if SCDAP/RELAP
18	model is mixing particularly well and plumes and that
19	sort of stuff. There's a counter current flow in that
20	plenum, too, which CFD does very nicely the way you've
21	done it, and I'm not sure how SCDAP/RELAP does or even
22	if it tries to.
23	The rational thing, it seems to me to do
24	is to say let SCDAP/RELAP model the rest of the world.
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	apart from the connection with the core, and then find
2	a way to couple them together at the place where they
3	meet, which is at the top of the vessel, top of the
4	core, you know. Don't try to get SCDAP/RELAP to model
5	this thing because CFD does such a good job of it.
6	MR. BOYD: The way it's done, the way it
7	has been done is from experiments or CFD we calculate
8	the mixing in the plenum and the temperatures entering
9	the tube, but there's no feedback to the vessel in
10	this, and it's an iterative process. You go back and
11	forth and back and forth.
12	So for a given hot leg mass flow and I
13	will say that the results for the hot leg mass flow
14	are not all that sensitive on some of these other
15	parameters. So the feedback is not killing us there.
16	The end result is the temperatures
17	entering the tubes after the mixing. In this
18	simplified mixing model you've got hot flow coming out
19	of the hot leg. Part of it goes basically directly to
20	the hot tube. Part of it goes to a mixing chamber
21	right here, and then part of that goes up into the hot
22	tube, and this mixing fraction that has been defined
23	determines their split ratios, and the net effect of
24	that is in a quasi steady sense. If you've got these
25	parameters correlated to the data, you'll get the same

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

entrance temperature into the tube.

1

2 CO-CHAIRMAN WALLIS: You can do that. So 3 what your philosophy is is you take your CFD, which 4 gives you a much more realistic picture of what's 5 happening, three dimensional mixing and so on, and then you say, "Okay. How can we represent that in a 6 7 more global way with boxes like this?" which reproduces the macroscopic feature of the CFD in a 8 realistic -- =and is compatible with what SCDAP/RELAP 9 I think that is also a reasonable approach. 10 can do. 11 But one has to be careful about how one 12 simplifying does that because you're three а dimensional model down to a box type model. 13 14 MR. BOYD: That's what we're doing. The 15 answer doesn't come out of the CFD. The CFD is really providing these coefficients that I'm showing on this 16

17 slide. So the final transient result comes out of18 SCDAP/RELAP 5.

19 CO-CHAIRMAN WALLIS: I think that's what 20 I'm saying, is what I would prefer would be if 21 SCDAP/RELAP did the rest of the system and then 22 interfaced with this whole thing at the upper plenum 23 of the reactor and then you used CFD for this piece 24 and you simply interface them, and your strategy is to 25 use CFD and incorporate it into the system model, not

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	to try to reduce it to SCDAP/RELAP in order to use the
2	system model.
3	That's what I'm aiming at, and I think
4	eventually this is going to happen with system models.
5	MR. BOYD: A couple of code set-ups will
6	eventually happen. We don't have that tool now.
7	CO-CHAIRMAN WALLIS: Working on it.
8	MR. ROSENTHAUL: Yeah, about two years
9	from now, and we've already put it in the budget.
10	CO-CHAIRMAN WALLIS: Right. Let's keep it
11	in the budget. Don't let it go. Put that in the
12	record.
13	MR. FLETCHER: We couple trace and most
14	likely in phase.
15	CO-CHAIRMAN WALLIS: That's the way it
16	should go. I agree tha this could be a way to do it
17	now.
18	MR. BOYD: So let's keep our sights lower
19	this morning, and what we've got now is this set-up,
20	and we've got the one-seventh scale experiments
21	providing these coefficients, and we're going to use
22	computational fluid dynamics to extend the experiments
23	into regions, such as tube leakage or a Combustion
24	Engineering plant that are not covered directly by the
25	experiments.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	So some of the other things, we talked
2	about the recirculation ratio, this mixing split
3	fraction, the percentage of tubes carrying the hot
4	flow in the bundle. That's also experimentally
5	determined up front and then fixed into the model.
6	These air flow areas are fixed.
7	Number four, the percentage of core power
8	going to the steam generators, that's experimentally
9	determined up front. And again, in my mind I say
10	that's an input parameter.
11	Now, the code calculates it, but we mess
12	with these flow coefficients until it calculates the
13	value we want it to.
14	CO-CHAIRMAN WALLIS: And I think you
15	should have a number five, which is MH.
16	MR. BOYD: Mass flow in the hot leg.
17	CO-CHAIRMAN WALLIS: Because that is not
18	something you can impose. It's something that comes
19	out of the
20	MR. BOYD: That really is tied into this
21	right here, the percentage of core power to the steam
22	generator. So this really is setting MH. If you're
23	going to say 30 percent of the power goes to the core.
24	CO-CHAIRMAN WALLIS: But it's driven by
25	the fact that you have this hot fluid in the upper

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	plenum of the reactor which then sees some cold and
2	then the counter current flow is drive by that. And
3	you really should tie in the MH to this temperature
4	difference between the core and the steam generator.
5	It's not something that you can impose.
6	MR. BOYD: I guess I"m arguing that number
7	four does dictate that MH in some way.
8	CO-CHAIRMAN WALLIS: It's related to it
9	because if you don't have enough MH, then the stuff
10	gets hotter and hotter. Fluid in the upper plenum
11	gives you bigger MH, but your imposing an MH doesn't
12	allow that to happen, and you shouldn't.
13	MR. BOYD: Now, again, SCDAP/RELAP 5
14	calculates MH.
15	CO-CHAIRMAN WALLIS: How?
16	MR. BOYD: It has these coupled natural
17	circulation flows in the vessel.
18	CO-CHAIRMAN WALLIS: From an energy
19	balance, doesn't it?
20	MR. BOYD: Say again, please.
21	CO-CHAIRMAN WALLIS: MH and the
22	temperature at the top in the upper plenum are related
23	by an energy balance from the core. If you have a
24	lower MH, you have a higher temperature. A lower MH,
25	you have a higher temperature in the top.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	MR. BOYD: Right.
2	CO-CHAIRMAN WALLIS: In the hot leg, if
3	you have a higher temperature in the top, you have a
4	bigger MH. So you've got two things balancing. One
5	is if the temperature is bigger, they have a lower MH
6	in the core, but you have a higher MH in the hot leg.
7	So they have to meet; they have to coincide.
8	But there are two phenomena there.
9	There's the limiting counter current flow, if that's
10	where it is, in the hot leg and the heat balance of
11	the core interact, and I think six RELAP does a
12	great job of the heat balance on the core. RELAP
13	doesn't say anything about the counter current flow
14	phenomenon in the hot leg.
15	MR. BOYD: This was recognized, and when
16	looking at the vessel as a modeling thing for
17	computational fluids we threw up our hands basically.
18	It's a very complex geometry.
19	CO-CHAIRMAN WALLIS: Don't throw up your
20	hands. You can do it. We'll talk about it later.
21	MR. BOYD: Okay. With enough money.
22	CO-CHAIRMAN WALLIS: No, no, no. It's not
23	all that complicated. Let's talk about it later in
24	private.
25	MR. BOYD: Okay. So this is the approach
Ĩ	·

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
we have taken and here's the CFD analysis steps that were carried out. Step one, take a look at the oneseventh scale data; get our feet on the ground. We did about 100 sensitivity studies at this point, really determined how the model worked and convinced ourselves that at least for these integral parameters we can calculate them.

Step two, we scaled the model up, using 8 9 the same geometry. We multiplied every exact 10 dimension by seven, but we put in the boundary 11 conditions from the ZION station blackout transient. 12 So now we're not using sulfur hexafluoride. We're using steam at 2,400 psi and the mass flow rates and 13 14 things like that, and we basically repeated the 15 analysis to isolate the effect of scale.

16 In step three we took those exact same 17 boundary conditions, but now we changed the geometry to a Westinghouse Model 44. 18 This was necessary 19 because the facility and the Westinghouse Model 44 were slightly different geometries, and we didn't want 20 21 to go from step one to three and then have a concern 22 whether it was scale effects or geometry effects that 23 caused our differences.

In step four we did a tube leakageanalysis.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

36

	37
1	CO-CHAIRMAN WALLIS: Excuse me. I was
2	trying to figure out from your work in the red what
3	seventh scale meant. Does it mean that you had
4	seventh scale in all the dimensions including the
5	height?
6	MR. BOYD: Yes, that's
7	CO-CHAIRMAN WALLIS: How did the height
8	get scaled?
9	MR. BOYD: The height was real close to
10	one-seventh scale.
11	CO-CHAIRMAN WALLIS: And in the real thing
12	you've got a much bigger height. So you've got sort
13	of a bigger driving force for natural circulation, but
14	you've also got seven times the friction length, too
15	because you've got seven times the LMD.
16	So I was sort of arguing to myself what
17	would be the scaling laws for natural circulation
18	between one and the other.
19	MR. BOYD: There was an attempt made to
20	balance the driving force and the viscous losses in
21	the tube, and there's a scaling
22	CO-CHAIRMAN WALLIS: It kind of works out
23	when you've got one side working as a chimney and the
24	other as a downcomer, when you've got a maximum
25	circulation, then you've got the driving force, which

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 is the head at the height of the thing, but you've also got the friction, which is 4 FL over D. 2 So L 3 also goes up and you can sort of convince yourself 4 maybe that it's about the same velocity that you get 5 because the two are balancing. But that's a quasi. Really you should model them both and see how they do. 6 7 DR. RANSOM: Well, in your CFD model, 8 reading about it, you used а Forest matrix 9 approximation for the tubes, I guess, right? So 10 they're little rectangular channels. Was wall 11 friction modeled in that case or did you have to just 12 put in loss coefficient? MR. BOYD: No, wall friction was turned 13 14 off because the velocities in those channels was 15 larger -- smaller because of the increased diameter. So the frictionless walls and there was coefficients 16 17 put in --To adjust the flows? 18 DR. RANSOM: 19 MR. BOYD: -- tuned over a wide range of 20 flows and temperatures to basically add in the frictional losses. 21 22 So you have to understand DR. RANSOM: 23 friction was not really modeled. 24 CO-CHAIRMAN WALLIS: There was no friction 25 in the tubes?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

38

	39
1	DR. RANSOM: No.
2	MR. BOYD: We'll go into the tube model
3	and I'll show you.
4	CO-CHAIRMAN WALLIS: That's very
5	important. They're long tubes.
6	MR. BOYD: There was losses in the tubes
7	to account for the frictional losses.
8	DR. RANSOM: But those were input
9	actually.
10	MR. BOYD: That's right.
11	DR. RANSOM: So they had to be determined,
12	I guess, from the experiment?
13	MR. BOYD: No, we determined those using
14	CFD in this case. We'll go into how that was done.
15	CO-CHAIRMAN WALLIS: Now, the tubes were
16	the same diameter as in the real thing in this?
17	MR. BOYD: No, not in this case. We'll go
18	into the tube model. Tube modeling posed a real
19	challenge in this.
20	CO-CHAIRMAN WALLIS: Were their tubes
21	smaller diameter than the real steam generated tubes?
22	MR. BOYD: In the one-seventh scale
23	experiment, I think the tubes were slightly smaller.
24	CO-CHAIRMAN WALLIS: They weren't a
25	seventh of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 MR. BOYD: They were not one-seventh. 2 CO-CHAIRMAN WALLIS: Because they had 3 fewer tubes. 4 MR. BOYD: They were roughly three-eighth	d
<pre>3 fewer tubes. 4 MR. BOYD: They were roughly three-eighth</pre>	d
4 MR. BOYD: They were roughly three-eighth	
	.S
5 of an inch and maybe half, three-tenths.	
6 CO-CHAIRMAN WALLIS: But then this FL ove	r
7 D is an important parameter for them if they're muc	h
8 longer. You've got to put that friction in there.	
9 MR. BOYD: We did put the friction i	n
10 there.	
11 CO-CHAIRMAN WALLIS: But not in the for	m
12 of an FL over D.	
13 MR. BOYD: Not in the form of	
14 CO-CHAIRMAN WALLIS: But just as a K.	
15 MR. BOYD: boundary layer with viscou	S
16 losses, and we'll see the reason for that when we ge	t
17 to the tube model.	
18 CO-CHAIRMAN WALLIS: Okay, okay.	
19 MR. BOYD: So step four, tube leakag	е
20 analysis. We repeated the work at step two, the onl	У
21 difference being a boundary condition that pulled mas	S
22 out of the system at various rates, and then step five	e
23 we looked at a Combustion Engineering plant example	•
24 This is the primary side of the steam generator from	m
25 Calvert Cliffs, a replacement generator, and w	e

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

41 1 applied SCDAP/RELAP 5 boundary conditions from an 2 analysis of Calvert Cliffs. So now we'll go through these steps, and 3 4 I'll spend a good bit of time on step one so that we 5 get an idea of what we're doing, and then the other steps we won't quite spend as much time on, but we'll 6 7 try and develop a method here. This is a picture here on the right of the 8 one-seventh scale at facility one of the steam 9 These were both connected to that half 10 generators. 11 vessel that you had mentioned, and basically we did a 12 pretty good job of predicting the mixing parameters from this. 13 14 The model set up. We are looking at a 15 steady state test. This is basically the extent of the geometry that we modeled, the hot leg, the tube 16 bundle, and the plenum walls. 17 When we first set out on this, our target 18 19 was right here, inlet plenum mixing. The tubes, the 20 say we looked at it to set this up were a boundary 21 condition to the inlet plenum, and the hot legs serves 22 the same purpose. 23 There was attempts made by others to just 24 inject flow into the inlet plenum and then pull it out I think our two bundle model is 25 through the top.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

42 1 superior to that, although the tubes aren't maybe 2 prototypic. We'll look at that, but the goal here is 3 inlet plenum mixing, and that's the only place where 4 we focus on the results. 5 CO-CHAIRMAN WALLIS: But that's not good I mean, you revealed, I think, every well 6 enough. 7 that the transfer in the tubes is very important. Ιf you have very good heat transfer, it's like having a 8 very cold chimney in your fireplace, and it wont work. 9 It quenches the hot stuff after it has gone a short 10 11 distance. 12 If you have no heat transfer, the other extreme from the tubes, they just get hotter and 13 14 hotter and hotter, and there's again no circulation. 15 So there's a maximum circulation rate somewhere in 16 between. 17 MR. BOYD: That's right. Now, you don't get 18 CO-CHAIRMAN WALLIS: 19 the maximum because you don't go to the limit of no 20 heat transfer, but if you went to the limit of no heat 21 transfer, this thing would just heat up forever. Ιt 22 wouldn't circulate at all, and you know, you haven't 23 got to that in your analysis. 24 But it's fascinating. You have to model the heat transfer right to get that circulation right. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	MR. BOYD: I would agree.
2	CO-CHAIRMAN WALLIS: And so it's not good
3	enough to focus on the plenum, and then when you start
4	working back, you say, well, you have to model the hot
5	leg right because you have got counter flow in there,
6	and then you've got, as I'm going to say it you
7	can't impose this V. You've imposed a V at the inlet.
8	Now, if you imposed 1,000 feet a second
9	coming in there, you would force more fluid in through
10	the hot leg, although some of it would come back.
11	You'd still force more through, and that V is itself
12	a result of the T.
13	So I'm going to say you're going to have
14	to do something better than imposing that because you
15	can impose it for the seventh scale because you know
16	what it is.
17	MR. BOYD: That's right.
18	CO-CHAIRMAN WALLIS: But in the reactor
19	you don't know what it is, and it happens because of
20	the driving force of the temperature.
21	MR. BOYD: And we're relying on another
22	code to provide what that is.
23	CO-CHAIRMAN WALLIS: But you can't.
24	MR. BOYD: And that's the weakness. I
25	would agree. We don't have experiments.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	CO-CHAIRMAN WALLIS: Well, we'll talk
2	about that in the break or something.
3	MR. BOYD: Okay. So the
4	MR. ROSENTHAUL: Keep in mind that in the
5	back of everybody's mind was that the most critical
6	sequence was this high dry sequence so that the
7	secondary side of the steam generator is steam. It's
8	not cold water.
9	CO-CHAIRMAN WALLIS: It's a low heat
10	transfer coefficient.
11	MR. ROSENTHAUL: Poor.
12	MR. BOYD: But even poor, it's still
13	important.
14	CO-CHAIRMAN WALLIS: Yes, it's important
15	to get it right. So that, again, I think that's not
16	an easy problem because you've got natural circulation
17	on the outside of the tubes in there presumably.
18	MR. BOYD: That's right.
19	CO-CHAIRMAN WALLIS: So there's another
20	component that's got to be done right.
21	DR. RANSOM: Well, it's a secondary site
22	condition. Is there still water in the secondary side
23	or is it just steam?
24	MR. BOYD: No, it's dried out and in this
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1CO-CHAIRMAN WALLIS: But there must be2some loop to take the heat away. So modeling the3secondary side loop is important. Where does heat go?4MR. BOYD: In the CFD model it goes5CO-CHAIRMAN WALLIS: Yeah, but where does6it go in the reality? Where is the heat sync?7MR. BOYD: In the reality, you know,8there's a lot of structures on that secondary side.9CO-CHAIRMAN WALLIS: But where does it go?10MR. BOYD: We would expect it to be11heating up the upper internals and all of the12CO-CHAIRMAN WALLIS: But is that the13limiting case? You put a lot of heat into there.14Eventually your ultimate heat sync is the air, isn't15it?16MR. BOYD: All of the metal mass of the17entire system just keeps rising in temperature. So18heat is19CO-CHAIRMAN WALLIS: That's what happens?20And as that rises in temperature, you get21a different driving force and MH changes.22MR. BOYD: I would agree with you that		45
secondary side loop is important. Where does heat go? MR. BOYD: In the CFD model it goes CO-CHAIRMAN WALLIS: Yeah, but where does it go in the reality? Where is the heat sync? MR. BOYD: In the reality, you know, there's a lot of structures on that secondary side. CO-CHAIRMAN WALLIS: But where does it go? MR. BOYD: We would expect it to be heating up the upper internals and all of the CO-CHAIRMAN WALLIS: But is that the limiting case? You put a lot of heat into there. Eventually your ultimate heat sync is the air, isn't it? MR. BOYD: All of the metal mass of the entire system just keeps rising in temperature. So heat is CO-CHAIRMAN WALLIS: That's what happens? And as that rises in temperature, you get a different driving force and MH changes. MR. BOYD: I would agree with you that	1	CO-CHAIRMAN WALLIS: But there must be
4MR. BOYD: In the CFD model it goes CO-CHAIRMAN WALLIS: Yeah, but where does6it go in the reality? Where is the heat sync?7MR. BOYD: In the reality, you know, there's a lot of structures on that secondary side.9CO-CHAIRMAN WALLIS: But where does it go?10MR. BOYD: We would expect it to be heating up the upper internals and all of the12CO-CHAIRMAN WALLIS: But is that the limiting case? You put a lot of heat into there.14Eventually your ultimate heat sync is the air, isn't it?16MR. BOYD: All of the metal mass of the entire system just keeps rising in temperature. So heat is19CO-CHAIRMAN WALLIS: That's what happens?20And as that rises in temperature, you get a different driving force and MH changes.22MR. BOYD: I would agree with you that	2	some loop to take the heat away. So modeling the
5 CO-CHAIRMAN WALLIS: Yeah, but where does 6 it go in the reality? Where is the heat sync? 7 MR. BOYD: In the reality, you know, 8 there's a lot of structures on that secondary side. 9 CO-CHAIRMAN WALLIS: But where does it go? 10 MR. BOYD: We would expect it to be 11 heating up the upper internals and all of the 12 CO-CHAIRMAN WALLIS: But is that the 13 limiting case? You put a lot of heat into there. 14 Eventually your ultimate heat sync is the air, isn't 15 it? 16 MR. BOYD: All of the metal mass of the 17 entire system just keeps rising in temperature. So 18 heat is 19 CO-CHAIRMAN WALLIS: That's what happens? 20 And as that rises in temperature, you get 21 a different driving force and MH changes. 22 MR. BOYD: I would agree with you that	3	secondary side loop is important. Where does heat go?
 it go in the reality? Where is the heat sync? MR. BOYD: In the reality, you know, there's a lot of structures on that secondary side. CO-CHAIRMAN WALLIS: But where does it go? MR. BOYD: We would expect it to be heating up the upper internals and all of the CO-CHAIRMAN WALLIS: But is that the limiting case? You put a lot of heat into there. Eventually your ultimate heat sync is the air, isn't it? MR. BOYD: All of the metal mass of the entire system just keeps rising in temperature. So heat is CO-CHAIRMAN WALLIS: That's what happens? And as that rises in temperature, you get a different driving force and MH changes. MR. BOYD: I would agree with you that 	4	MR. BOYD: In the CFD model it goes
7 MR. BOYD: In the reality, you know, 8 there's a lot of structures on that secondary side. 9 CO-CHAIRMAN WALLIS: But where does it go? 10 MR. BOYD: We would expect it to be 11 heating up the upper internals and all of the 12 CO-CHAIRMAN WALLIS: But is that the 13 limiting case? You put a lot of heat into there. 14 Eventually your ultimate heat sync is the air, isn't 15 it? 16 MR. BOYD: All of the metal mass of the 17 entire system just keeps rising in temperature. So 18 heat is 19 CO-CHAIRMAN WALLIS: That's what happens? 20 And as that rises in temperature, you get 21 a different driving force and MH changes. 22 MR. BOYD: I would agree with you that	5	CO-CHAIRMAN WALLIS: Yeah, but where does
8 there's a lot of structures on that secondary side. 9 CO-CHAIRMAN WALLIS: But where does it go? 10 MR. BOYD: We would expect it to be 11 heating up the upper internals and all of the 12 CO-CHAIRMAN WALLIS: But is that the 13 limiting case? You put a lot of heat into there. 14 Eventually your ultimate heat sync is the air, isn't 15 it? 16 MR. BOYD: All of the metal mass of the 17 entire system just keeps rising in temperature. So 18 heat is 19 CO-CHAIRMAN WALLIS: That's what happens? 20 And as that rises in temperature, you get 21 a different driving force and MH changes. 22 MR. BOYD: I would agree with you that	6	it go in the reality? Where is the heat sync?
 9 CO-CHAIRMAN WALLIS: But where does it go? 10 MR. BOYD: We would expect it to be 11 heating up the upper internals and all of the 12 CO-CHAIRMAN WALLIS: But is that the 13 limiting case? You put a lot of heat into there. 14 Eventually your ultimate heat sync is the air, isn't 15 it? 16 MR. BOYD: All of the metal mass of the 17 entire system just keeps rising in temperature. So 18 heat is 19 CO-CHAIRMAN WALLIS: That's what happens? 20 And as that rises in temperature, you get 21 a different driving force and MH changes. 22 MR. BOYD: I would agree with you that 	7	MR. BOYD: In the reality, you know,
10MR. BOYD: We would expect it to be11heating up the upper internals and all of the12CO-CHAIRMAN WALLIS: But is that the13limiting case? You put a lot of heat into there.14Eventually your ultimate heat sync is the air, isn't15it?16MR. BOYD: All of the metal mass of the17entire system just keeps rising in temperature. So18heat is19CO-CHAIRMAN WALLIS: That's what happens?20And as that rises in temperature, you get21a different driving force and MH changes.22MR. BOYD: I would agree with you that	8	there's a lot of structures on that secondary side.
11heating up the upper internals and all of the12CO-CHAIRMAN WALLIS: But is that the13limiting case? You put a lot of heat into there.14Eventually your ultimate heat sync is the air, isn't15it?16MR. BOYD: All of the metal mass of the17entire system just keeps rising in temperature. So18heat is19CO-CHAIRMAN WALLIS: That's what happens?20And as that rises in temperature, you get21a different driving force and MH changes.22MR. BOYD: I would agree with you that	9	CO-CHAIRMAN WALLIS: But where does it go?
12 CO-CHAIRMAN WALLIS: But is that the 13 limiting case? You put a lot of heat into there. 14 Eventually your ultimate heat sync is the air, isn't 15 it? 16 MR. BOYD: All of the metal mass of the 17 entire system just keeps rising in temperature. So 18 heat is 19 CO-CHAIRMAN WALLIS: That's what happens? 20 And as that rises in temperature, you get 21 a different driving force and MH changes. 22 MR. BOYD: I would agree with you that	10	MR. BOYD: We would expect it to be
13 limiting case? You put a lot of heat into there. Eventually your ultimate heat sync is the air, isn't it? 16 MR. BOYD: All of the metal mass of the entire system just keeps rising in temperature. So heat is 19 CO-CHAIRMAN WALLIS: That's what happens? 20 And as that rises in temperature, you get a different driving force and MH changes. 22 MR. BOYD: I would agree with you that	11	heating up the upper internals and all of the
14Eventually your ultimate heat sync is the air, isn't15it?16MR. BOYD: All of the metal mass of the17entire system just keeps rising in temperature. So18heat is19CO-CHAIRMAN WALLIS: That's what happens?20And as that rises in temperature, you get21a different driving force and MH changes.22MR. BOYD: I would agree with you that	12	CO-CHAIRMAN WALLIS: But is that the
<pre>15 it? 16 MR. BOYD: All of the metal mass of the 17 entire system just keeps rising in temperature. So 18 heat is 19 CO-CHAIRMAN WALLIS: That's what happens? 20 And as that rises in temperature, you get 21 a different driving force and MH changes. 22 MR. BOYD: I would agree with you that</pre>	13	limiting case? You put a lot of heat into there.
16MR. BOYD: All of the metal mass of the17entire system just keeps rising in temperature. So18heat is19CO-CHAIRMAN WALLIS: That's what happens?20And as that rises in temperature, you get21a different driving force and MH changes.22MR. BOYD: I would agree with you that	14	Eventually your ultimate heat sync is the air, isn't
<pre>17 entire system just keeps rising in temperature. So 18 heat is 19 CO-CHAIRMAN WALLIS: That's what happens? 20 And as that rises in temperature, you get 21 a different driving force and MH changes. 22 MR. BOYD: I would agree with you that</pre>	15	it?
18 heat is 19 CO-CHAIRMAN WALLIS: That's what happens? 20 And as that rises in temperature, you get 21 a different driving force and MH changes. 22 MR. BOYD: I would agree with you that	16	MR. BOYD: All of the metal mass of the
19CO-CHAIRMAN WALLIS: That's what happens?20And as that rises in temperature, you get21a different driving force and MH changes.22MR. BOYD: I would agree with you that	17	entire system just keeps rising in temperature. So
20 And as that rises in temperature, you get 21 a different driving force and MH changes. 22 MR. BOYD: I would agree with you that	18	heat is
 a different driving force and MH changes. MR. BOYD: I would agree with you that 	19	CO-CHAIRMAN WALLIS: That's what happens?
22 MR. BOYD: I would agree with you that	20	And as that rises in temperature, you get
	21	a different driving force and MH changes.
23 these are all import	22	MR. BOYD: I would agree with you that
	23	these are all import.
24 CO-CHAIRMAN WALLIS: Okay.	24	CO-CHAIRMAN WALLIS: Okay.
25 MR. BOYD: We are not able to model the	25	MR. BOYD: We are not able to model the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	whole plant with CFD.
2	CO-CHAIRMAN WALLIS: But it has to be done
3	to get the right answer that you're after.
4	MR. BOYD: Okay. We aimed a little bit
5	lower, and we were really just looking at what happens
6	to that plume going through the inlet plenum.
7	CO-CHAIRMAN WALLIS: So I think you did an
8	excellent job. I'm really impressed with it, but this
9	goes back to, I think, the questions that we raised at
10	the beginning of the first day, is that people are
11	doing excellent jobs on pieces of this problem. Is
12	the whole thing being addressed?
13	MR. BOYD: Right. But there were
14	questions that we could answer. There was suggestions
15	that the inlet plenum plume bypasses the or the plume
16	bypasses the inlet plenum with no mixing. There was
17	suggestions that a small tube leakage would pull the
18	plume over.
19	So these types of questions we can answer,
20	but I agree we're not getting the answer. We're still
21	relying on SCDAP/RELAP to do all of this coupled
22	integral analysis. It models a secondary side and the
23	heat transfer over there. It models the core
24	circulation. It does the entire problem. We're
25	really just feeding it stuff for the inlet plenum,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	what happens at that point.
2	So let's move on. That's the model setup,
3	the boundary conditions. These are basically set to
4	match the experiment where heat transfer was only
5	applied to the tubes. Everything else was adiabatic.
6	Here we'll just have a quick discussion,
7	how to model the tubes. There's three options. We
8	can directly model them, and with 216 tubes in the
9	facility, that's possible, and we did that. It ended
10	up in about ten million cells, and I never quite got
11	it converged. So we abandoned that, and I wanted to
12	have some information to pass forward.
13	So another approach is a smaller number of
14	tubes, and I've seen this done, but this runs into all
15	of the problems of this FL over D that you were
16	talking about and all these issues.
17	So the third approach would be to use the
18	porous media functions in FLUENT to give us the
19	characteristics of the tubes without having to model
20	the entrance effects and the boundary layers and
21	things like that.
22	So here's an example. Here's one tube the
23	size
24	CO-CHAIRMAN WALLIS: What would be nice to
25	do would be to use, again, the FLUENT in the places

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	where you need it and say we can model the tubes for
2	the SCDAP/RELAP thing.
3	MR. BOYD: I agree.
4	CO-CHAIRMAN WALLIS: But then we've got to
5	have an interface between the CFD and this one
6	dimensional type code which we know how to handle it
7	because we had learned how to do it, and that's the
8	way to do it.
9	MR. BOYD: I called FLUENT and told them
10	I needed 1D components quickly, but they don't
11	CO-CHAIRMAN WALLIS: Well, they don't know
12	how to do it.
13	MR. BOYD: But a 1D component in FLUENT or
14	the coupling that you're discussing with the code or
15	what's needed.
16	CO-CHAIRMAN WALLIS: They can't do that
17	either.
18	MR. BOYD: They can. We could do this
19	coupling, but we haven't done the coupling.
20	CO-CHAIRMAN WALLIS: I think they have a
21	problem. I've had a problem using fluent. If you
22	have an outlet node and it starts to have inlet flow
23	and so on, you get all kinds of problems. So we can't
24	really do
25	MR. BOYD: We want to avoid that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 CO-CHAIRMAN WALLIS: Yes. 2 DR. RANSOM: I'm curious. In FLUENT with 3 this porous media approach you do keep the flows 4 separate I guess through the channels, right? 5 MR. BOYD: That's right. 6 DR. RANSOM: And you go around the bend 7 also? 8 MR. BOYD: Go around the bend, the full 9 height, everything the same. 10 DR. RANSOM: So it's just a rectangular 11 channel that is closed. 12 MR. BOYD: Rectangular only because it's 13 easier to mesh. 14 DR. RANSOM: Right. Well, from a 15 calculational point of view it doesn't matter whether 16 it's rectangular or round. You don't know the 17 difference, but you know the area. 18 MR. BOYD: Rectangles are nice because if 19 you use four cells to represent it or ten, you get the 20 same area, but with a circle if you use four or ten, 21 you actually change the flow area because of the 22 CO-CHAIRMAN WALLIS: But fluent does not 23 CO-CHAIRMAN WALLIS: But fluent does not </th <th></th> <th>49</th>		49
 this porous media approach you do keep the flows separate I guess through the channels, right? MR. BOYD: That's right. DR. RANSOM: And you go around the bend also? MR. BOYD: Go around the bend, the full height, everything the same. DR. RANSOM: So it's just a rectangular channel that is closed. MR. BOYD: Rectangular only because it's easier to mesh. DR. RANSOM: Right. Well, from a calculational point of view it doesn't matter whether it's rectangular or round. You don't know the difference, but you know the area. MR. BOYD: Rectangles are nice because if you use four cells to represent it or ten, you get the same area, but with a circle if you use four or ten, you actually change the flow area because of the faceting. So that's why rectangles are ideal. CO-CHAIRMAN WALLIS: But fluent does not allow mixing across the cell edges, I guess. 	1	CO-CHAIRMAN WALLIS: Yes.
4 separate I guess through the channels, right? 5 MR. BOYD: That's right. 6 DR. RANSOM: And you go around the bend 7 also? 8 MR. BOYD: Go around the bend, the full 9 height, everything the same. 10 DR. RANSOM: So it's just a rectangular 11 channel that is closed. 12 MR. BOYD: Rectangular only because it's 13 easier to mesh. 14 DR. RANSOM: Right. Well, from a 15 calculational point of view it doesn't matter whether 16 it's rectangular or round. You don't know the 17 difference, but you know the area. 18 MR. BOYD: Rectangles are nice because if 19 you use four cells to represent it or ten, you get the 20 same area, but with a circle if you use four or ten, 21 you actually change the flow area because of the 22 CO-CHAIRMAN WALLIS: But fluent does not 23 CO-CHAIRMAN WALLIS: But fluent does not 24 allow mixing across the cell edges, I guess.	2	DR. RANSOM: I'm curious. In FLUENT with
5 MR. BOYD: That's right. 6 DR. RANSOM: And you go around the bend 7 also? 8 MR. BOYD: Go around the bend, the full 9 height, everything the same. 10 DR. RANSOM: So it's just a rectangular 11 channel that is closed. 12 MR. BOYD: Rectangular only because it's 13 easier to mesh. 14 DR. RANSOM: Right. Well, from a 15 calculational point of view it doesn't matter whether 16 it's rectangular or round. You don't know the 17 difference, but you know the area. 18 MR. BOYD: Rectangles are nice because if 19 you use four cells to represent it or ten, you get the 20 same area, but with a circle if you use four or ten, 21 you actually change the flow area because of the 22 CO-CHAIRMAN WALLIS: But fluent does not 23 CO-CHAIRMAN WALLIS: But fluent does not 24 allow mixing across the cell edges, I guess.	3	this porous media approach you do keep the flows
6 DR. RANSOM: And you go around the bend 7 also? 8 MR. BOYD: Go around the bend, the full 9 height, everything the same. 10 DR. RANSOM: So it's just a rectangular 11 channel that is closed. 12 MR. BOYD: Rectangular only because it's 13 easier to mesh. 14 DR. RANSOM: Right. Well, from a 15 calculational point of view it doesn't matter whether 16 it's rectangular or round. You don't know the 17 difference, but you know the area. 18 MR. BOYD: Rectangles are nice because if 19 you use four cells to represent it or ten, you get the 20 same area, but with a circle if you use four or ten, 21 you actually change the flow area because of the 22 faceting. So that's why rectangles are ideal. 23 CO-CHAIRMAN WALLIS: But fluent does not 24 allow mixing across the cell edges, I guess.	4	separate I guess through the channels, right?
7 also? 8 MR. BOYD: Go around the bend, the full 9 height, everything the same. 10 DR. RANSOM: So it's just a rectangular 11 channel that is closed. 12 MR. BOYD: Rectangular only because it's 13 easier to mesh. 14 DR. RANSOM: Right. Well, from a 15 calculational point of view it doesn't matter whether 16 it's rectangular or round. You don't know the 17 difference, but you know the area. 18 MR. BOYD: Rectangles are nice because if 19 you use four cells to represent it or ten, you get the 20 same area, but with a circle if you use four or ten, 21 you actually change the flow area because of the 22 CO-CHAIRMAN WALLIS: But fluent does not 23 CO-CHAIRMAN WALLIS: But fluent does not 24 allow mixing across the cell edges, I guess.	5	MR. BOYD: That's right.
8MR. BOYD: Go around the bend, the full9height, everything the same.10DR. RANSOM: So it's just a rectangular11channel that is closed.12MR. BOYD: Rectangular only because it's13easier to mesh.14DR. RANSOM: Right. Well, from a15calculational point of view it doesn't matter whether16it's rectangular or round. You don't know the17difference, but you know the area.18MR. BOYD: Rectangles are nice because if19you use four cells to represent it or ten, you get the20same area, but with a circle if you use four or ten,21you actually change the flow area because of the22CO-CHAIRMAN WALLIS: But fluent does not24allow mixing across the cell edges, I guess.	6	DR. RANSOM: And you go around the bend
 height, everything the same. DR. RANSOM: So it's just a rectangular channel that is closed. MR. BOYD: Rectangular only because it's easier to mesh. DR. RANSOM: Right. Well, from a calculational point of view it doesn't matter whether it's rectangular or round. You don't know the difference, but you know the area. MR. BOYD: Rectangles are nice because if you use four cells to represent it or ten, you get the same area, but with a circle if you use four or ten, you actually change the flow area because of the faceting. So that's why rectangles are ideal. CO-CHAIRMAN WALLIS: But fluent does not allow mixing across the cell edges, I guess. 	7	also?
10DR. RANSOM: So it's just a rectangular11channel that is closed.12MR. BOYD: Rectangular only because it's13easier to mesh.14DR. RANSOM: Right. Well, from a15calculational point of view it doesn't matter whether16it's rectangular or round. You don't know the17difference, but you know the area.18MR. BOYD: Rectangles are nice because if19you use four cells to represent it or ten, you get the20same area, but with a circle if you use four or ten,21you actually change the flow area because of the22faceting. So that's why rectangles are ideal.23CO-CHAIRMAN WALLIS: But fluent does not24allow mixing across the cell edges, I guess.	8	MR. BOYD: Go around the bend, the full
11channel that is closed.12MR. BOYD: Rectangular only because it's13easier to mesh.14DR. RANSOM: Right. Well, from a15calculational point of view it doesn't matter whether16it's rectangular or round. You don't know the17difference, but you know the area.18MR. BOYD: Rectangles are nice because if19you use four cells to represent it or ten, you get the20same area, but with a circle if you use four or ten,21you actually change the flow area because of the22faceting. So that's why rectangles are ideal.23CO-CHAIRMAN WALLIS: But fluent does not24allow mixing across the cell edges, I guess.	9	height, everything the same.
12MR. BOYD: Rectangular only because it's13easier to mesh.14DR. RANSOM: Right. Well, from a15calculational point of view it doesn't matter whether16it's rectangular or round. You don't know the17difference, but you know the area.18MR. BOYD: Rectangles are nice because if19you use four cells to represent it or ten, you get the20same area, but with a circle if you use four or ten,21you actually change the flow area because of the22faceting. So that's why rectangles are ideal.23CO-CHAIRMAN WALLIS: But fluent does not24allow mixing across the cell edges, I guess.	10	DR. RANSOM: So it's just a rectangular
 easier to mesh. DR. RANSOM: Right. Well, from a calculational point of view it doesn't matter whether it's rectangular or round. You don't know the difference, but you know the area. MR. BOYD: Rectangles are nice because if you use four cells to represent it or ten, you get the same area, but with a circle if you use four or ten, you actually change the flow area because of the faceting. So that's why rectangles are ideal. CO-CHAIRMAN WALLIS: But fluent does not allow mixing across the cell edges, I guess. 	11	channel that is closed.
14DR. RANSOM: Right. Well, from a15calculational point of view it doesn't matter whether16it's rectangular or round. You don't know the17difference, but you know the area.18MR. BOYD: Rectangles are nice because if19you use four cells to represent it or ten, you get the20same area, but with a circle if you use four or ten,21you actually change the flow area because of the22faceting. So that's why rectangles are ideal.23CO-CHAIRMAN WALLIS: But fluent does not24allow mixing across the cell edges, I guess.	12	MR. BOYD: Rectangular only because it's
15 calculational point of view it doesn't matter whether 16 it's rectangular or round. You don't know the 17 difference, but you know the area. 18 MR. BOYD: Rectangles are nice because if 19 you use four cells to represent it or ten, you get the 20 same area, but with a circle if you use four or ten, 21 you actually change the flow area because of the 22 faceting. So that's why rectangles are ideal. 23 CO-CHAIRMAN WALLIS: But fluent does not 24 allow mixing across the cell edges, I guess.	13	easier to mesh.
16 it's rectangular or round. You don't know the 17 difference, but you know the area. 18 MR. BOYD: Rectangles are nice because if 19 you use four cells to represent it or ten, you get the 20 same area, but with a circle if you use four or ten, 21 you actually change the flow area because of the 22 faceting. So that's why rectangles are ideal. 23 CO-CHAIRMAN WALLIS: But fluent does not 24 allow mixing across the cell edges, I guess.	14	DR. RANSOM: Right. Well, from a
17 difference, but you know the area. 18 MR. BOYD: Rectangles are nice because if 19 you use four cells to represent it or ten, you get the 20 same area, but with a circle if you use four or ten, 21 you actually change the flow area because of the 22 faceting. So that's why rectangles are ideal. 23 CO-CHAIRMAN WALLIS: But fluent does not 24 allow mixing across the cell edges, I guess.	15	calculational point of view it doesn't matter whether
18 MR. BOYD: Rectangles are nice because if 19 you use four cells to represent it or ten, you get the 20 same area, but with a circle if you use four or ten, 21 you actually change the flow area because of the 22 faceting. So that's why rectangles are ideal. 23 CO-CHAIRMAN WALLIS: But fluent does not 24 allow mixing across the cell edges, I guess.	16	it's rectangular or round. You don't know the
19 you use four cells to represent it or ten, you get the 20 same area, but with a circle if you use four or ten, 21 you actually change the flow area because of the 22 faceting. So that's why rectangles are ideal. 23 CO-CHAIRMAN WALLIS: But fluent does not 24 allow mixing across the cell edges, I guess.	17	difference, but you know the area.
20 same area, but with a circle if you use four or ten, 21 you actually change the flow area because of the 22 faceting. So that's why rectangles are ideal. 23 CO-CHAIRMAN WALLIS: But fluent does not 24 allow mixing across the cell edges, I guess.	18	MR. BOYD: Rectangles are nice because if
21 you actually change the flow area because of the 22 faceting. So that's why rectangles are ideal. 23 CO-CHAIRMAN WALLIS: But fluent does not 24 allow mixing across the cell edges, I guess.	19	you use four cells to represent it or ten, you get the
faceting. So that's why rectangles are ideal. CO-CHAIRMAN WALLIS: But fluent does not allow mixing across the cell edges, I guess.	20	same area, but with a circle if you use four or ten,
23 CO-CHAIRMAN WALLIS: But fluent does not 24 allow mixing across the cell edges, I guess.	21	you actually change the flow area because of the
24 allow mixing across the cell edges, I guess.	22	faceting. So that's why rectangles are ideal.
	23	CO-CHAIRMAN WALLIS: But fluent does not
	24	allow mixing across the cell edges, I guess.
25 MK. BUYD: No. They're solid walls for	25	MR. BOYD: No. They're solid walls for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	each tube. There's 216 individual flow paths. So
2	let's take a look at the idea here.
3	Here's a tube of the correct dimensions,
4	and here's the appropriate sized region if it was a
5	one dimensional flow that would feed it in the steam
б	generator. Here's a zoomed in area of that junction.
7	All of these cells are set up so that the Y plus
8	values are correct, and hopefully we can pick up the
9	entrance effects, the whole nine yards.
10	This was basically for about a meter or
11	two. This is a million cells. Over
12	CO-CHAIRMAN WALLIS: Do you model every
13	tube this way?
14	MR. BOYD: I did at one point.
15	CO-CHAIRMAN WALLIS: It's a lot of work.
16	MR. BOYD: Well, that was the point about
17	the direct
18	CO-CHAIRMAN WALLIS: That's got to be a
19	simple way to do it. Maybe you could lump them in
20	some way.
21	MR. BOYD: Well, when I modeled all of the
22	tubes and ended up with a ten million or so model,
23	they were a little coarser than this, but this was for
24	an example here. This process was done for each steam
25	generator, the Model 44, the facility, and the

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	51
1	Combustion Engineering. We always went through this
2	process of modeling a few tubes in great detail, and
3	then what we went over to a porous media approach; so
4	imagine this tube now just continuing on like this.
5	We don't do the neck down at all, and then
6	let's say we model it with four cells across. Here's
7	a representation over here where we have the inlet
8	area. We have an interface where we apply a loss
9	coefficient to account for the loss coefficient for
10	this neck down.
11	And then we have along this region, we
12	have coefficients that we use to account for the
13	viscous losses and the boundary layers that we
14	CO-CHAIRMAN WALLIS: Why not just model
15	the tube as a set of nodes the way that RELAP worked
16	and say that these were FLUENT type nodes? FLUENT
17	won't do that?
18	MR. BOYD: FLUENT is not good at just one
19	cell across. So these are about five cells across.
20	DR. RANSOM: That's what they're doing,
21	but actually the area is much larger than the actual
22	tube, and so the velocity is much lower.
23	MR. BOYD: That's right.
24	DR. RANSOM: And so you have to scale the
25	losses to get a dynamic loss coefficient that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	corresponds to reality.
2	MR. BOYD: Here are some results now for
3	these two models from a pressure point of view.
4	Here's the flow coming down the inlet for the million
5	cell model. Here is the result of the flow necking
6	down and going into the small tube, and then this slop
7	here, this PDX would represent the viscous losses, and
8	what we've got here is two plots, one with a million
9	cells, and then one with the porous approach in
10	FLUENT.
11	So from a pressure point of view we can
12	get about the same. Now, what we did is we went
13	through a whole range of velocities and temperatures,
14	and we curfitted (phonetic)
15	CO-CHAIRMAN WALLIS: Is it laminar flow?
16	MR. BOYD: This is laminar flow in these
17	tubes.
18	CO-CHAIRMAN WALLIS: Is it laminar flow in
19	the reactor, the real system?
20	MR. BOYD: My memory tells me it is, and
21	it has been a while since I remember looking at that.
22	CO-CHAIRMAN WALLIS: You got something
23	different.
24	MR. BOYD: Well, now, in the reactor, we
25	did the same thing though. This is for the facility.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	We did it here. Now, in the reactor, we did the
2	appropriate flow rates with the reactor size tubes,
3	and we repeated this whole process.
4	CO-CHAIRMAN WALLIS: And the number in the
5	tubes is?
6	MR. BOYD: I don't have that in my mind
7	right now.
8	CO-CHAIRMAN WALLIS: It would be nice to
9	know.
10	DR. RANSOM: One point though. This is
11	being modeled as a turbulent flow, as K one-half rho
12	B squared, where laminar would be just velocity to the
13	first power.
14	CO-CHAIRMAN WALLIS: No, it's turbulent
15	for the inertial drop, but the viscous drop, I
16	understand is for laminar.
17	DR. RANSOM: Well, he's modeling the
18	viscous drop with a K one-half rho B squared
19	CO-CHAIRMAN WALLIS: He is?
20	MR. BOYD: Actually I had to use a linear
21	and a squared term to get a good fit on that.
22	CO-CHAIRMAN WALLIS: But if it's laminar
23	flow, you shouldn't be using your V squared type
24	thing.
25	MR. BOYD: I'd have to go back. I don't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	have it in my this has been over a year since I set
2	these up.
3	But this was the point. This was just
4	talking about pressure drops, and then we could
5	DR. RANSOM: Incidentally, this is a
6	horizontal tube, I guess.
7	MR. BOYD: This was vertical in this case.
8	DR. RANSOM: This was a hydrostatic
9	pressure component there?
10	MR. BOYD: I guess in this when we set the
11	pressure up, we didn't worry about we had gravity off,
12	but then we
13	CO-CHAIRMAN WALLIS: You must have
14	gravity.
15	MR. BOYD: heat transfer, and your goal
16	there was to get the heat transfer rate from the tube
17	such that the heat the temperature along the tube
18	was the same. So the heat transfer had to be adjusted
19	also is the point. So the same sort of fitting had to
20	be done.
21	CO-CHAIRMAN WALLIS: You must have gravity
22	int here. Otherwise, you wouldn't get any
23	circulation. You've got to have hot fluid on one side
24	and cold fluid on the other.
25	MR. BOYD: Are we talking about the model

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	or this tube study that we're doing?
2	CO-CHAIRMAN WALLIS: Right.
3	MR. BOYD: The tube study is a one
4	dimensional flow down a path.
5	CO-CHAIRMAN WALLIS: Okay. That's just
6	comparing the ten to the sixth with the four. Okay.
7	That's all.
8	DR. RANSOM: And after you fiddled, I
9	guess, then you put it into the floor model.
10	MR. BOYD: That's right. We test
11	everything on these little one to four tube section
12	models, and then we use those same coefficients, the
13	same tubes, but now there's 216 of them and we put it
14	into the full model.
15	CO-CHAIRMAN WALLIS: This is a separate
16	effects test in CFD.
17	MR. BOYD: That's exactly right.
18	So here's a summary now of where we stand.
19	We're going to do a transient CFD solution. We'll use
20	the Reynolds stress second order turbulence model,
21	which is non-isotropic. We'll use the full buoyancy
22	effects on turbulence as available in FLUENT.
23	CO-CHAIRMAN WALLIS: That's more
24	appropriate than K epsilon because the buoyancy
25	effects change the turbulence. In fact, there's a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	56
1	tendency to damp out turbulence because it's very
2	obvious if you have an inversion at night and the
3	window doesn't come down to the ground.
4	MR. BOYD: I will say that academically
5	that's all correct, but I ran all of the turbulence
6	models, and they didn't really make a lot
7	CO-CHAIRMAN WALLIS: They didn't make much
8	difference. That's good. That's nice to know.
9	DR. RANSOM: When you say second order,
10	does that just mean second order difference
11	approximation for the divergence on the velocity?
12	MR. BOYD: Well, K epsilon is considered
13	like a first order. You've got K and epsilon. It's
14	isotropic. With the second order turbulence model,
15	you're trying to track the Reynolds stress, the UV,
16	prime terms, and it's non-isotropic, which in this
17	case is more appropriate. We wouldn't want to assume
18	isotropic turbulence in that hot leg, complex hot leg
19	flows or in the inlet plenum either I don't believe.
20	So we've got temperature dependence,
21	software hexafluoride, half a million cells used in
22	half the model. We put a symmetry plan in this model,
23	second order differencing, and then we've got this
24	porous media model for the tubes with 216 individual
25	tube flow paths, each with solid walls, each with heat

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	57
1	transfer from these solid walls, again, adjusted to
2	give us the appropriate rate of heat loss, and we've
3	got a symmetry plane.
4	So now we look at some qualitative
5	results, and I say qualitative first because the
6	experiments really didn't provide all of the
7	information to do a full CFD validation.
8	CO-CHAIRMAN WALLIS: Do you have your pen
9	there? Do you have your pen there?
10	MR. BOYD: I do.
11	CO-CHAIRMAN WALLIS: Would you show on
12	here for the committee what confounding condition you
13	have at the end vessel?
14	MR. BOYD: Right over here?
15	CO-CHAIRMAN WALLIS: Yeah, because I had
16	to dig in your report to see what you were doing
17	there.
18	MR. BOYD: I put in a uniform
19	CO-CHAIRMAN WALLIS: Your forced the
20	velocity like that.
21	MR. BOYD: Forced the velocity that way.
22	CO-CHAIRMAN WALLIS: And does that then
23	allow it what happens to the bottom part? There's
24	friction between that stuff coming in and the bottom
25	part. So I had to figure out why it was you got more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	flow in the tube than you put in, and the reason is
2	that jet coming in entrains fluid with it.
3	MR. BOYD: That's right.
4	CO-CHAIRMAN WALLIS: All right? You have
5	to think that's sort of strange. In reality what
6	happens is that this interface continues to go down.
7	The reality would be
8	MR. BOYD: This interface, you mean?
9	CO-CHAIRMAN WALLIS: The cold-hot
10	interface. You can see it going down, right, between
11	the right hand and middle? The profiles show the
12	interface is going down.
13	MR. BOYD: A slope like this.
14	CO-CHAIRMAN WALLIS: But pours out like
15	water out of a tube into the vessel. Cold fluid pours
16	out like water out of a tube.
17	MR. BOYD: That's right. Cold water
18	CO-CHAIRMAN WALLIS: Pours out like that.
19	MR. BOYD: falls into the
20	CO-CHAIRMAN WALLIS: And the only thing
21	driving that flow in there is the fact that the
22	pressure in the pipe is less than the pressure in the
23	upper plenum. The only thing that sucks that hot
24	fluid in there is a pressure drop which by Bernoulli
25	gives you a V.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	MR. BOYD: Okay.
2	CO-CHAIRMAN WALLIS: Is that right?
3	That's the physics. Thank you.
4	That's what I'm asking you to model.
5	MR. BOYD: Right, and again, we didn't.
6	And in the facility experiment this was handed to us,
7	that they made an attempt to estimate that match flow,
8	and we used their estimation.
9	DR. RANSOM: Why wouldn't you have just
10	started the calculation with the uniform pressure and
11	then let the heat transfer and buoyancy effects
12	establish the fall?
13	MR. BOYD: Well, we have to know well,
14	we'd be trial
15	DR. RANSOM: It would take too long.
16	MR. BOYD: We would be fooling around
17	trial and error with pressure until we got the mass
18	flow we wanted, and in one guess I can just put the
19	mass flow that I want in.
20	CO-CHAIRMAN WALLIS: But that's nothing
21	compared with the million cells you're dealing with.
22	I mean, the fooling around with it, the simultaneous
23	solution for the pressure is trivial compared with
24	solving all of those cells.
25	MR. BOYD: The experiment said there's one

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	kilogram per second going down the hot leg. That's
2	what I want. So I put in one kilogram per second so
3	that
4	CO-CHAIRMAN WALLIS: But you get more
5	going down the hot leg than you put in.
6	MR. BOYD: That's correct.
7	CO-CHAIRMAN WALLIS: And if you didn't
8	have this hot fluid in there, you wouldn't get any
9	flow at all. So okay.
10	MR. BOYD: I go back to my original goal
11	was over in this region right here. What happens as
12	the plume leaves the hot leg and goes into the inlet
13	plenum, and this
14	CO-CHAIRMAN WALLIS: So you're very
15	interested in that plume. You'[re not interested in
16	the other plume.
17	MR. BOYD: That's right. I'm interested
18	in all of the plumes, but we have to do what we can.
19	Over here there was a series of boundary
20	conditions applied, profiles fully developed, counter
21	current flow profiles, all that sort of thing, and I
22	found that by the time it reached this end of the hot
23	leg there wasn't a significant variation, and the
24	truth is
25	DR. RANSOM: Incidentally, what was the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	true boundary condition in the experiment?
2	MR. BOYD: There was a vessel.
3	DR. RANSOM: Just a vessel of hot fluid?
4	MR. BOYD: Electrically heated elements
5	and an upper plenum that was hot, and it was pretty
6	well mixed according to the data, and it was feeding
7	over. So there was that suction that Graham talked
8	about, fully
9	DR. RANSOM: And it was closed so that the
10	cold
11	MR. BOYD: facility was coming in and
12	dumping into the mixing
13	DR. RANSOM: Vessel land being
14	recirculated.
15	MR. BOYD: Going down into the hot,
16	electrically heated things, coming back up, back over
17	to the hot leg, right. So we cut that all off and we
18	just applied the hot leg mass flow.
19	CO-CHAIRMAN WALLIS: Now, I suppose I
20	could mention at this time I did some calculations of
21	what you call the CCFL or something; you might call a
22	lock exchange model. If you would simply have a hot
23	vessel here and a cold one there, what flow rate do
24	you get?
25	And you're pretty close to that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	MR. BOYD: What I found is tha the
2	experiments did seem to be pretty close to that. If
3	I tried to, let's say, take my inlet velocity and
4	multiply it by 50 percent, a lot of that flow ended up
5	being rejected.
6	CO-CHAIRMAN WALLIS: That's right.
7	MR. BOYD: And I could not effect very
8	strong
9	CO-CHAIRMAN WALLIS: So a crude way to
10	model this would be to say we've got CCFL in the hot
11	leg.
12	MR. BOYD: That may be even better because
13	the truth is the mass flow measurements in that
14	experiment were true. They were measured by
15	temperatures, very few temperatures, and assumptions
16	on an energy balance. So
17	CO-CHAIRMAN WALLIS: But that's really
18	what's happening. You've got a cold plenum on the
19	right and a hot plenum on the left in this picture,
20	and the flow adjusts.
21	MR. BOYD: That would probably be a more
22	accurate mass flow than the experiment gave you. I
23	think there's some good
24	CO-CHAIRMAN WALLIS: Thank you.
25	MR. BOYD: uncertainty on that as well.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	CO-CHAIRMAN WALLIS: Thank you.
2	MR. BOYD: That's a good point.
3	Okay. So let's go on. This is, again,
4	qualitative information.
5	What we can see here is a stratified flow.
6	We see a highly stratified flow. We see an
7	accelerating flow. You can see here with the velocity
8	profile it's necking down. It continues to accelerate
9	all the way through the nozzle, and at this point it's
10	extreme
11	CO-CHAIRMAN WALLIS: This is by
12	Bernoulli the pressure is actually going down.
13	MR. BOYD: This also has a slow interface,
14	which at least in some other experiments was
15	qualitatively observed when they did the glass pipe.
16	Symmetry plane temperatures, we can take
17	a look. The tube bundle now, here's where we
18	adjust the tube bundle heat transfer rate to be
19	consistent with the experiment, and essentially the
20	experiment was crude in its tube measurements, but we
21	got an idea of what the
22	CO-CHAIRMAN WALLIS: Filled with water on
23	the secondary side?
24	MR. BOYD: Filled with water on the second
25	side.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	CO-CHAIRMAN WALLIS: Which is a rather
2	high heat transfer coefficient.
3	MR. BOYD: A very high heat transfer.
4	We'll take a look at that.
5	CO-CHAIRMAN WALLIS: It's not realistic.
б	MR. BOYD: I would agree. It's not
7	indicative of what we would expect, but at this point
8	we're trying to validate the approach.
9	CO-CHAIRMAN WALLIS: So it quenched the
10	rising fluid quite effectively.
11	MR. BOYD: Quickly, I think.
12	CO-CHAIRMAN WALLIS: Right. Whereas if
13	you had poor heat transfer, you'd get that hot fluid
14	going up and around part of the other side before it
15	really cooled down. You'd have a different sort of
16	circulation.
17	MR. BOYD: That's what the SCDAP/RELAP 5
18	analysis will show, is if temperatures go all the way
19	around, they're losing heat all the way around the
20	bundle.
21	CO-CHAIRMAN WALLIS: Right, right, because
22	they have a poor heat transfer coefficient on the
23	secondary side.
24	MR. BOYD: That's right.
25	DR. RANSOM: When you say you adjust the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	heat transfer rate or a mechanistic model in which you
2	try to calculate a film coefficient, then, you know,
3	heat transfer across the boundary and to a secondary,
4	or do you just set the heat loss per volume?
5	MR. BOYD: We set a heat transfer
б	coefficient and a sync temperature. The sync
7	temperature was the water temperature in the
8	experiment.
9	DR. RANSOM: And that's the overall heat
10	transfer coefficient.
11	MR. BOYD: That is the H on all the tubes,
12	at all areas.
13	DR. RANSOM: Tube side conduction plus
14	MR. BOYD: That's right. That's
15	everything.
16	DR. RANSOM: Okay.
17	MR. BOYD: Now, our problem was that with
18	our big, porous, wider tubes, we couldn't get the heat
19	out fast enough to match the experimental
20	observations. So we also had to augment the
21	conductivity a little bit in the porous media to get
22	the heat closer to the walls quicker so that we could
23	lose the heat fast enough.
24	These big
25	DR. RANSOM: I don't quite understand

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	that.
2	MR. BOYD: These larger tubes carry the
3	heat better than a smaller tube.
4	DR. RANSOM: But you have no profile. You
5	just have one temperature for that fluid.
6	MR. BOYD: There is cells across. There
7	was a profile. I didn't just use one dimensional
8	stuff.
9	DR. RANSOM: Oh, you mean this is when you
10	did the single tube?
11	MR. BOYD: Each of the 216 single tubes
12	had several cells across them.
13	DR. RANSOM: Oh, it did?
14	MR. BOYD: So they were profiled across
15	there.
16	DR. RANSOM: Oh, so not just rectangular
17	single cells, but how many cells were in each tube?
18	MR. BOYD: I think it was three by five.
19	They were slightly rectangular.
20	DR. RANSOM: varied the thermal
21	conductivity in the fluid.
22	MR. BOYD: We had to augment that a little
23	bit to help us get the appropriate heat transfer rate
24	that we wanted.
25	DR. RANSOM: Well, does the model include

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

67 1 any convective mixing from cell to cell within that 2 tube? 3 MR. BOYD: Yes, there is mixing from cell 4 to cell within the tube. 5 DR. RANSOM: You mean there can be, I 6 quess. It depends on --7 MR. BOYD: There can be. In fact, in some of the larger models I did I actually saw some 8 9 recirculations in the lower parts of the tubes. So I saw flow going up one side of the tube and down. 10 11 DR. RANSOM: But I guess irrespective of 12 still the that had to increase thermal you conductivity to get the laminar part -- to get the 13 14 heat out. 15 That's right, to match the MR. BOYD: experimental indications of what the temperature 16 17 profile should be up into the tubes. CO-CHAIRMAN WALLIS: I have a list of 18 19 questions, and I've gone through most of them. 20 MR. BOYD: Okay. 21 CO-CHAIRMAN WALLIS: There was one I 22 noticed we hadn't answered yet. We know the mass flow 23 in the hot leg that you quote is bigger than the flow 24 you put in. In fact, the mass flow is changing along 25 the tube because some of the flow recirculates.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	Now, when you say MH, where is MH
2	measured?
3	MR. BOYD: I measure it in the center of
4	the tube.
5	CO-CHAIRMAN WALLIS: In the middle of the
6	tube. That's what you mean by MH. Okay.
7	MR. BOYD: That's right.
8	CO-CHAIRMAN WALLIS: It's not the same as
9	what goes into the plume in the steam generator. It's
10	not quite the same as what you put in.
11	MR. BOYD: But it's very close.
12	CO-CHAIRMAN WALLIS: Okay, but I just
13	wanted to know which one it was you were using.
14	MR. BOYD: I used the
15	CO-CHAIRMAN WALLIS: Thank you. Thank
16	you.
17	MR. BOYD: And this all, I guess, is less
18	uncertainty than what I considered
19	CO-CHAIRMAN WALLIS: The fact that they're
20	all about the same indicates to me that the friction
21	and the entrainment at the interface in that hot leg
22	is not really all that important. It's probably just
23	like two fluids flowing counter current flow and the
24	kind of potential flow almost. There isn't that much
25	in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	MR. BOYD: They don't seem to interact as
2	much as I had expected.
3	CO-CHAIRMAN WALLIS: Too much, right,
4	right.
5	MR. BOYD: There's a big temperature
6	gradient that
7	CO-CHAIRMAN WALLIS: Because if there were
8	a lot of friction at that interface, you wouldn't get
9	the flow to occur. If you reached a sort of a
10	stirring up, turbulence in there, but in fact, the
11	buoyancy helps to keep them stratified.
12	MR. BOYD: And it is a very strong
13	buoyancy.
14	CO-CHAIRMAN WALLIS: It is, yes.
15	MR. BOYD: This sulfur hexafluoride
16	CO-CHAIRMAN WALLIS: Puts a ratio of two
17	to one or something density. It's huge.
18	MR. BOYD: Yeah, the cold stuff has
19	densities
20	CO-CHAIRMAN WALLIS: That really
21	impressed. You have a huge density.
22	MR. BOYD: Right.
23	DR. RANSOM: Well, I think the flow in
24	that hot leg is dominated by just like a sewer pipe,
25	a hydrostatic head in the cold fluid, you know. It

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	has a sloping interface as you flow toward the
2	entrance and
3	CO-CHAIRMAN WALLIS: The friction on the
4	wall.
5	MR. BOYD: Pardon?
6	CO-CHAIRMAN WALLIS: It's friction on the
7	wall that does that rather than interfacial friction.
8	It's the friction of that cold fluid on the pipe wall
9	which is bridging that interface rather than friction
10	at the interface.
11	DR. RANSOM: Actually it turns out that's
12	pretty small in the sewer pipe. It's really the
13	sloping interface that provides the potential part of
14	the flow.
15	CO-CHAIRMAN WALLIS: It balances the
16	friction on the wall. Balance something.
17	MR. BOYD: We've got to get our minds out
18	of the gutter here.
19	(Laughter.)
20	CO-CHAIRMAN WALLIS: Do you want a
21	different analogy? It's like pouring out of a bottle
22	of wine. How about that?
23	MR. BOYD: Okay. So here's where the
24	adjustments were made. Now, what we do at full scale
25	conditions where we don't have a good indication of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	the secondary site heat transfer rate we'll see
2	this is we just do a whole series of them, and then
3	we take a look and compare them with the data.
4	But let's go on. This is all, again,
5	qualitative to give us an indication of what's going
6	on. Here's a representation of the inlet plenum with
7	three horizontal planes. We've got contours of
8	temperature.
9	This is the plume just leaving the hot
10	leg. You'll see that when it is almost impacting the
11	tube sheet, it's still pretty intact, hasn't really
12	grown. You can see the mixing. It's a little bit
13	lighter.
14	When it hits the tube sheet, what you've
15	essentially got is almost a stagnation point, but a
16	porous stagnation point. Some of the flow is going to
17	go in, but others act just like a stagnation point.
18	DR. RANSOM: It spreads out.
19	MR. BOYD: It spreads out in all
20	directions. That's right. So this gives us an idea
21	of what the flow pattern looks like.
22	Here is three vertical planes, normal to
23	the hot leg access, and what we see in the first plane
24	is we see the strong upward flow. This is essentially
25	the plume, and you can see this flow going out in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	72
1	side directions. That's your stagnation portion of
2	the flow.
3	Back further in the central region we see
4	a strong, you know, flow along the top, and at the
5	back wall we see the same thing, but what you're going
6	to see here is this strong set-up like this.
7	CO-CHAIRMAN WALLIS: You have the fire
8	underneath these tubes in the maple syrup boiler.
9	MR. BOYD: Okay. That sounds like a New
10	England point of view.
11	DR. RANSOM: Well, the tubes that attach
12	to that upper face, you're getting up flow, I guess,
13	through the central part of that and then down flow
14	through the
15	MR. BOYD: Right, and that's all
16	determined by the model. They just had these porous
17	tubes with the appropriate loss coefficients and the
18	appropriate viscous losses. The code decides which
19	tubes go in up-flow, which tubes come in down-flow.
20	The idea is we hope we're pulling out the right amount
21	of mass in the right location such that these inlet
22	plenum flows are appropriate.
23	DR. RANSOM: And the up is going all the
24	way over into the outlet plenum?
25	MR. BOYD: All the way over to the outlet

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	plenum.
2	DR. RANSOM: Up through those and back.
3	MR. BOYD: That's right, and all of that
4	just happens.
5	CO-CHAIRMAN FORD: Let me ask a non-
6	thermal hydraulicist question. This seems reasonable
7	to me, not being a thermal hydraulicist.
8	What data are there to show those numbers
9	that you have been quoting in terms of temperature and
10	those flow configurations are, in fact, correct? And
11	how much could you be in error?
12	MR. BOYD: We could be in error. We're
13	going to get to that data. We're still in the
14	qualitative, let's understand the flow.
15	CO-CHAIRMAN FORD: Okay, right.
16	MR. BOYD: We're only going to compare
17	with some rather crude numbers though. So we're not
18	really doing a pure validation of the CFD, and we have
19	some qualitative information on the flow patterns from
20	some crude amounts of thermocouples, and it looks
21	similar, very similar.
22	CO-CHAIRMAN FORD: Now, are they similar
23	enough to have a no consequence as far as material
24	degradation is concerned?
25	MR. BOYD: That would be my view of it.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 In the greater scheme of things, I think at least in 2 this case we're doing close enough. The problem with 3 these tests is they didn't have all of the 4 thermocouples on it all the time. They had some nice 5 rakes, but they didn't turn them on when they wanted to measure hot leg flows and things like that. 6 7 And when they measured the rakes, they didn't have the rest of the system instrumented. 8 So 9 we have -- and they never repeated an experiment, and luckily every time they did a different experiment 10 11 with new regs. they would change the conditions 12 drastically.

CO-CHAIRMAN 13 FORD: Let me turn the 14 question over to you, Joe. This comes back to our 15 questions we had yesterday about interrelationships between these various studies. Is that correct; have 16 17 you yet in the materials degradation area, have you yet taken these predictions plus uncertainties and 18 19 decided whether, in fact, you've got a big "oh, heck"?

20 MR. MUSCARA: Yeah, we've taken the 21 predictions and determined whether groups would fail 22 or not fail under the particular transient given the 23 temperatures and pressures that apply to us. We 24 haven't done the sensitivity or the uncertainty 25 analysis yet, but in addition, you know, this work is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

74

	75
1	still evolving.
2	CO-CHAIRMAN FORD: Yes, sir, right.
3	MR. MUSCARA: And doing cases. So we're
4	looking for new input which may modify the result of
5	it.
6	CO-CHAIRMAN FORD: No, I recognize this is
7	not finished by any means, but from what you've seen
8	so far, you haven't seen something, "Oh, heck, we've
9	got a major problem looming here from the materials
10	degradation aspect"? No?
11	MR. MUSCARA: Well, that's the thing we're
12	evaluating. We're evaluating whether given this input
13	for the tubes, when different tubes would fail given
14	different flaws and flaw distributions in the tubes.
15	And the next part, of course, is to also
16	get this same kind of data for the primary system
17	components and determine the time to failure of those
18	components, and you'll hear about some of that this
19	afternoon.
20	CO-CHAIRMAN FORD: Good.
21	CO-CHAIRMAN WALLIS: Let me help my
22	colleague here. It seems to me I have looked at the
23	data for the flow patterns and the crude picture.
24	Actually this comes pretty close to what's observed,
25	and they predict very nicely some overall parameters,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	like how many tubes have up flow and how many tubes
2	have down flow and that sort of thing, and what's the
3	match flow circulation rate in the steam generator
4	compared with what's happening in the hot leg?
5	All of these macroscopic things are
6	predicted very nicely. The questions that might
7	remain would be, okay, you've done a very good job of
8	modeling the macroscopics. How about the hottest flow
9	that goes into the particular tube? And if that tube
10	is in the middle of the steam generator bunch and
11	isn't cooled as well as the other ones, it's these
12	variations between tubes and between streamlines about
13	which I think there will be uncertainty. So if you're
14	predicting a maximum temperature of 1,800 degrees, it
15	might well be 2,000.
16	MR. MUSCARA: That's the kind of data
17	we're using, you know, in conjunction with what is the
18	probability that a flow exists in the hottest tube and
19	then calculate how that behaves.
20	MR. BOYD: We'll move on.
21	One thing that we saw in the experimental
22	results was significant mixing. We had some
23	thermocouples at this point and we had some
24	thermocouples at this point, and we had some
25	thermocouples at this point, and there was a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	significant drop in temperature.
2	CO-CHAIRMAN FORD: So could you just
3	wiggle your I didn't catch where you
4	MR. BOYD: Right here we had some
5	thermocouples, four, and right here we had some
6	thermocouples, and there was a significant drop in
7	temperature from here to there, and there was
8	questioning, I guess, of what in the world is going
9	on. How can the temperature drop that much.
10	We saw that flow pattern that was
11	described on the previous slide. On the symmetry
12	plane, what that results in is flow meeting up at the
13	symmetry plane and going vertical, part of that flow
14	trying to find its way back to the hot leg. You've
15	essentially got intersecting jets here. You've got
16	the hot plume coming out and you've got fairly good
17	flows hitting it right on the side.
18	And we look here at contours of turbulence
19	intensity
20	CO-CHAIRMAN WALLIS: Chris, this is very
21	nice. In fact, the cold flow going into the hot leg
22	comes around that jet from all dimensions, not just
23	from the bottom.
24	MR. BOYD: That's correct.
25	CO-CHAIRMAN WALLIS: The thing that is a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	bit funny is at the bottom of the vessel you seem to
2	have a source because the flow velocities are all
3	going up from there. It doesn't look quite realistic.
4	MR. BOYD: Yeah, what that source is is
5	right here. We're looking at this flow coming around
6	stagnating at this lower point
7	CO-CHAIRMAN WALLIS: And splitting up.
8	Oh, okay.
9	MR. BOYD: and going up. There's your
10	source.
11	CO-CHAIRMAN WALLIS: But to go back to my
12	point, you're looking at what happens at this end of
13	the pipe. Something very similar happens at the other
14	end of the pipe.
15	CO-CHAIRMAN FORD: Because it goes into
16	the reactor.
17	CO-CHAIRMAN WALLIS: Right. It pours out
18	in a jet and the flow goes around the jet and mixes
19	with it.
20	CO-CHAIRMAN FORD: So, again, the
21	materials guy
22	CO-CHAIRMAN WALLIS: What he has drawn
23	here is what's happening at the if you turn it
24	upside down, this is what's happening at the reactor
25	end.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 CO-CHAIRMAN FORD: Exactly, exactly. So could you have like in the BWR a nozzle cracking 2 3 phenomena because of several stratifications that you 4 see in feedwater lines? And you've seen the BWR 5 nozzles. Our evaluations are not 6 MR. MUSCARA: 7 necessarily of normal operating conditions. We're talking about severe accident conditions, and given 8 the shortness of the transient, I don't think we'll 9 get the BWR and also corner cracking, which is very 10 11 petit.

12 MR. SIEBER; That would be the least of 13 your problems.

(Laughter.)

CO-CHAIRMAN FORD: Yeah..

By the way, just to make 16 MR. MUSCARA: 17 sure some of us understand, the seven scale test that Chris is talking about is not the test that the NRC 18 19 planned and conducted with Westinghouse. So we're 20 trying to make use of that test and to validate some 21 and see if the work that he's doing. So we had no 22 control on how that -- I don't think, unless it was 23 a cooperative effort.

24 MR. BOYD: I don't know. We were involved 25 in some way because we got the data. We paid a little

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

14

15

	80
1	bit. I'm not sure how well we helped plan.
2	Now let's go into what we can do with
3	quantitative results real quickly and then get on to
4	the full scale results.
5	The tube flow split ratio, the red
6	CO-CHAIRMAN WALLIS: This is something for
7	the committee if they want to understand what's
8	happening you have to understand.
9	MR. BOYD: Okay.
10	CO-CHAIRMAN WALLIS: It's not obvious.
11	MR. BOYD: I just don't want to take up
12	the whole morning and cheat Don out of
13	CO-CHAIRMAN WALLIS: No, well, I'm just
14	asking them to pay attention if they want to
15	understand.
16	(Laughter.)
17	CO-CHAIRMAN FORD: They are paying
18	attention.
19	DR. RANSOM: Are you comparing these
20	extension tubes? You mentioned having a thermocouple
21	rate. Do you compare those to CFD calculations?
22	MR. BOYD: There was a rake in the
23	experiment, but it was not the conditions feeding
24	the rake were not the same test conditions feeding
25	this steam generator. They didn't repeat things.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	They had an issue with the data system. You know,
2	200, 300 transducers, whatever the number was, and 100
3	data channels, and when they switched all of their
4	data channels from one set to the other, they didn't
5	keep the conditions the same.
6	So it's very difficult to make I have
7	hot leg data, and I can compare the hot leg flows and
8	show that I'm getting the right profile, but they
9	don't correspond to this run, and when I have hot leg
10	data, I don't have a bunch of other data. So there's
11	this kind of mixed matches.
12	So, no, I don't have the rakes to show
13	with this particular run.
14	So we take a look here at the flow split
15	ratio. These are the tubes and up flow. The CFD
16	results are the black and they're, of course,
17	symmetric because we ran a symmetry model. On one
18	side we see the data matching fairly well and we see
19	five tubes out and five tubes in. So on one side
20	we've got exact agreement.
21	On the other side we're one tube over.
22	The data are one tube shifted in, but in general we're
23	pretty much picking up.
24	And now if we go in here
25	CO-CHAIRMAN WALLIS: I think if they ran

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	the experiment again, in my experience with this
2	multitude type thing, they'd get a different panel.
3	MR. BOYD: I would agree. If you look at
4	their tube split ratios over the wide range of tests,
5	they have significant asymmetries and significant
6	variations.
7	CO-CHAIRMAN WALLIS: It's just because
8	it's a question of which one gets started. The plume
9	comes off and wanders around a bit, and then some of
10	them get started going up and some of them get started
11	going down. You cannot predict exactly which one, on
12	the boundary whether it will be up or down. It's just
13	a probability there.
14	Now, do my colleagues understand that the
15	flow has to come up here, go down the other side into
16	what's called the outlet side and the come back up
17	some tubes and go down the inlet side again?
18	Okay.
19	MR. BOYD: All of these tubes are flowing
20	upward, and all of these tubes are flowing downward.
21	CO-CHAIRMAN WALLIS: And on the other
22	side, the same corresponding ones are going down and
23	up again.
24	MR. BOYD: You see the exact pattern on
25	the other side with the center going down and then the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	rest coming up.
2	CO-CHAIRMAN FORD: But what you're saying,
3	one of those contours is observed, and the other one
4	is calculated, and where they don't match is a
5	discrepancy between observation theory. My question
6	then is: how much is that discrepancy? Are we
7	talking 100 a piece K (phonetic) or
8	MR. BOYD: Five percent of the tube
9	sheets, something like that maybe, and when we run
10	that, there's a sensitivity in SCDAP/RELAP. We don't
11	see a big sensitivity to that discrepancy, to the
12	number.
13	CO-CHAIRMAN WALLIS: The total number that
14	matters is where they are. It's not the problem at
15	all because it's going to be random anyway, but the
16	total number of tubes is predicted very well, isn't
17	it?
18	MR. BOYD: And we don't see that as a big
19	sensitivity anyway in the
20	CO-CHAIRMAN FORD: No, but my question
21	really was how much is the prediction off. I mean you
22	partially answered the question, Graham, by saying,
23	"Hey, some tubes won't be exactly have the
24	temperatures exactly as predicted," and you're
25	assuring which of those tubes it might be.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	How much is the discrepancy between
2	observation and theory? Is there enough for 100 of
3	MR. BOYD: Are we talking about the number
4	of tubes? Well, in this 216 tube model, we were seven
5	tubes off, which is three percent of the tube sheet.
б	So you can multiply that now by 3,200 tubes for
7	Westinghouse or 8,000 tubes for a CE plant and get an
8	estimate maybe of how far off.
9	CO-CHAIRMAN FORD: Maybe I'm off line
10	here, but it doesn't really matter whether it's one
11	tube or 100 tubes, which are not in agreement with
12	observation. It's how much they are off because even
13	if you have one tube or three tubes, which is 200
14	degrees K away from prediction, those seven or eight
15	tubes failing by another mechanism might be even not
16	controllable.
17	MR. BOYD: Well, these tubes on the
18	boundary are not really our concern in my opinion
19	anyway. We'll get to that, but it's the core central
20	hottest tubes that are the problem. These tubes are
21	closer or much lower temperature, significantly more
22	mixing, and you know, the difference here is they are
23	either significantly mixed, significantly cooler than
24	the hottest tubes or they're in cold flow return, but
25	either way these are not the most challenged tubes to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	85
1	begin with out on the periphery of this.
2	CO-CHAIRMAN FORD: Okay. So it's never
3	mind.
4	CO-CHAIRMAN WALLIS: I think it's never
5	mind, but I think that another question which I think
6	is answered is that sometimes with these situations
7	you worry about a tube being sometimes out flow,
8	sometimes down flow. Sometimes it's a hot tube,
9	sometimes it's a cold tube.
10	If you did get oscillation like that,
11	you'd get a thermal fatigue problem, but I don't think
12	that happens. I think once a tube gets going, it's a
13	chimney. It stays as a chimney. There's no mechanism
14	for it to revert to going the other way.
15	MR. BOYD: That's what the model shows.
16	CO-CHAIRMAN WALLIS: I think it's true.
17	MR. BOYD: Not in this case, but at full
18	scale, we're looking at an example where that's the
19	case.
20	CO-CHAIRMAN WALLIS: Do they actually
21	revert, oscillate between up and down flow?
22	MR. BOYD: No. We look at a case where
23	you would think if they're going to they would and
24	they don't.
25	But now, we can change them though. If I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	take this run and run it as a transient and then
2	change the tube heat transfer rate, those tubes on the
3	edge do change, and it either grows or shrinks. So
4	the code is able to based on that tube heat transfer
5	rate to change a tube's flow.
б	CO-CHAIRMAN WALLIS: If you're in a house
7	with four chimneys and you have a hot house and a cold
8	outside and the dampers are open, two of those
9	chimneys will probably have hot air going up and two
10	of them will have cold air coming down, and that's
11	what happens.
12	And once it happens, it doesn't suddenly
13	change.
14	MR. BOYD: Unless you change the heat
15	transfer on the chimneys.
16	CO-CHAIRMAN WALLIS: Unless you light a
17	fire in the cold chimney. Then, of course, the smoke
18	comes into the room, you know.
19	MR. BOYD: If you light a fire, all bets
20	are off, but we'll take a look at that.
21	So now we're looking at some of the key
22	CO-CHAIRMAN WALLIS: Are you going to
23	analyze my house?
24	(Laughter.)
25	MR. BOYD: So here's the key parameters as

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Í	87
1	we see them that are input into SCDAP/RELAP, some of
2	the keys. The biggest discrepancy we have is in the
3	number of hot tubes. We're seven tubes over.
4	This is interesting. The mass averaged
5	hot flow temperature entering the tube, we're within
б	a degree of what's reported in the experimental
7	observations. Now
8	DR. RANSOM: Is that the hottest?
9	CO-CHAIRMAN WALLIS: That's average.
10	MR. BOYD: That's average. Now, they
11	averaged them differently than I did. I took a mass
12	average over the entire flow area. They took the
13	finite number, 25 percent of the tubes were
14	instrumented, scattered in a patter. They just took
15	them and averaged them numerically. So it is a
16	different process.
17	But we're close to the bulk average flow
18	going in.
19	DR. RANSOM: Aren't you more interested
20	here in the maximum temperature?
21	MR. BOYD: In the maximum temperature I
22	don't show it on the table. We match that very well
23	in this, in this run.
24	CO-CHAIRMAN WALLIS: How much is it?
25	MR. BOYD: In this case

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	CO-CHAIRMAN WALLIS: It's nowhere near the
2	159 you're putting in?
3	MR. BOYD: No, no. It's 106, 106 degrees,
4	something like that, in this test, and we matched that
5	pretty well.
6	CO-CHAIRMAN WALLIS: That's what you're
7	you're interested in for materials purposes, isn't it,
8	the maximum temperature?
9	MR. BOYD: That's right.
10	CO-CHAIRMAN WALLIS: So perhaps we need
11	some sensitivity studies on how much will wander
12	around if you get some of the heat transfer
13	coefficients to be different.
14	MR. BOYD: So, now, here is another
15	important parameter. This mass flow through the
16	tubes, now, this is not something we're inputting.
17	This is like the code is doing this based on the
18	natural circulation and based on the loss coefficients
19	and the heat transfer.
20	There was no tuning here. These things,
21	heat transfer and those loss coefficients were all
22	done in this one dimensional model off line and then
23	input once and not looked at again. And we picked up
24	the mass flow essentially exactly.
25	The mixing fraction down here, this is a
•	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	very sensitive parameter. In my mind this is
2	essentially an agreement between the mixing fraction,
3	and the recirculation ratio, which is in this case
4	only a measure again of the mass flow through the
5	tubes because we input the hot leg mass flow, but we
6	match that recirculation ratio.
7	And the rest of these
8	DR. RANSOM: What is that recirculation
9	ratio?
10	MR. BOYD: That's the ratio of the tube
11	flow to the hot leg flow loop. The lot leg flow,
12	let's say, has four kilograms per second circulating
13	through it in a plant and the tubes have eight. So
14	the recirculation ratio is two.
15	CO-CHAIRMAN WALLIS: Now, let me give you
16	what would happen if you coupled in the reactor.
17	FLUENT would now be saying the heat loss of the tubes
18	is 3.69, and there's really I'm putting in 3.56. So
19	I've got an energy balance that's not right. So,
20	therefore, I've got to go back and change the tube
21	that's coming in from the core, which then changes the
22	M hot leg, and you go through that loop.
23	MR. BOYD: That's right. Those types of
24	iterations were not really deemed necessary.
25	CO-CHAIRMAN WALLIS: You don't need to do

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	it. I'm just saying that if you did have the other
2	end with sort of an energy balance in there, then this
3	would automatically
4	MR. BOYD: Well, we tinkered with this and
5	got good agreement. There was really no need.
6	CO-CHAIRMAN WALLIS: No, I agree. I
7	agree. It's just that then you would have equality of
8	some things instead of them being slightly different.
9	DR. RANSOM: The recirculation ratio is
10	driven by entrainment; is that right?
11	MR. BOYD: No, it's driven by the tube
12	buoyancy flows. If the tubes have no heat transfer,
13	then the recirculation ratio would go down to
14	essentially zero, no tube flow.
15	DR. RANSOM: Right.
16	MR. BOYD: As you increase the heat
17	transfer, you pull; you're able to drive more fluid
18	around that loop and
19	DR. RANSOM: You're comparing, I thought,
20	the net mass flow to the mass flow in the hot leg.
21	MR. BOYD: The net mass flow through the
22	tubes to the mass flow in the leg. That's right.
23	CO-CHAIRMAN WALLIS: Right.
24	DR. RANSOM: Then why is that two?
25	CO-CHAIRMAN WALLIS: The flow up the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91	
1	chimney is bigger than the flow into the fire. It	
2	draws in from the room.	
3	DR. RANSOM: You do entrainment.	
4	CO-CHAIRMAN WALLIS: Yeah.	
5	DR. RANSOM: You've got flow that's coming	
6	down that's going to recirculate.	
7	MR. BOYD: And it is entrained to go back	
8	up. Oh, I see. I see what your point is. That's	
9	right.	
10	DR. RANSOM: That's what causes this. How	
11	is that measured in the Westinghouse data? How would	
12	you know that value?	
13	MR. BOYD: The mass flow in the tubes was	
14	measured by an energy balance. So the uncertainty on	
15	that would be fairly high. They had basically they	
16	measured the heat loss from the system, rejected in	
17	the water loop on the outside, and this was steady	
18	state. That gave them an energy, and then they	
19	measured the inlet temperatures with these few	
20	thermocouples which they averages, and then they	
21	measured the return flow temperatures. So they have	
22	a steady state, steady flow problem. They had the	
23	mass flows. They had the energy.	
24	I'm sorry. They had the temperature	
25	difference and the energy, and then they could get the	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	mass flow directly from that, and that's the way they
2	got the hot leg mass flow because the hot leg energy
3	balance was the same energy value. They had an upper
4	temperature and a lower temperature, and they got the
5	mass flow from that.
б	So these mass flows have some uncertainty
7	to them. The hot temperature in the lot leg that they
8	measured was from one thermocouple in a very steep
9	gradient. So we have to not all of the digits are
10	significant.
11	CO-CHAIRMAN WALLIS: What would be really
12	pretty would be if you had done this calculation
13	before they did the test.
14	I was in high school, I guess. So that
15	would have been tough.
16	CO-CHAIRMAN WALLIS: But then you wouldn't
17	have been able to guess the in-flow rate from the
18	core.
19	MR. BOYD: The only way to do that would
20	be to have the vessel, and we attempted this with the
21	vessel, Graham, just to let you know. Our first model
22	included the vessel, but the vessel was a complex
23	mass, and we got into the process of then having to
24	specify loss coefficients in
25	CO-CHAIRMAN WALLIS: Well, let's talk

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1about how you might do it easier.2MR. BOYD: Okay. Now, here's something3that would be of interest. These are tube-to-tube4variations now. So we've got this hot up flow. Now,5this is what is going to really feed in6CO-CHAIRMAN WALLIS: This is good.7MR. BOYD: to the tubes intake8analysis.9CO-CHAIRMAN WALLIS: We're saying this is10good. Put it in the record.11MR. BOYD: Okay. These tubes12MR. BOYD: These tubes on the periphery14that you were concerned about earlier as to whether15they're an up flow or down flow, that would be these16tubes over here on the left side of this plot,17normalized temperatures in the .2 range.18So these are the tubes on the periphery19with lower mass flow rates, which you know have kind20of some uncertainty. These tubes over here are the21core flow tubes in the hottest part of the bundle, and22here we've got normalized temperatures of .525.23We start normalizing things so that we can24start comparing with the full scale results. The way25we normalized is we assumed the hot leg, hot leg, hot		93
that would be of interest. These are tube-to-tube variations now. So we've got this hot up flow. Now, this is what is going to really feed in CO-CHAIRMAN WALLIS: This is good. MR. BOYD: to the tubes intake analysis. CO-CHAIRMAN WALLIS: We're saying this is good. Put it in the record. MR. BOYD: Okay. These tubes MR. MUSCARA: That would be of use. MR. BOYD: These tubes on the periphery that you were concerned about earlier as to whether they're an up flow or down flow, that would be these tubes over here on the left side of this plot, normalized temperatures in the .2 range. So these are the tubes on the periphery with lower mass flow rates, which you know have kind of some uncertainty. These tubes over here are the core flow tubes in the hottest part of the bundle, and here we've got normalized temperatures of .525. We start normalizing things so that we can start comparing with the full scale results. The way	1	about how you might do it easier.
 variations now. So we've got this hot up flow. Now, this is what is going to really feed in CO-CHAIRMAN WALLIS: This is good. MR. BOYD: to the tubes intake analysis. CO-CHAIRMAN WALLIS: We're saying this is good. Put it in the record. MR. BOYD: Okay. These tubes MR. MUSCARA: That would be of use. MR. BOYD: These tubes on the periphery that you were concerned about earlier as to whether they're an up flow or down flow, that would be these tubes over here on the left side of this plot, normalized temperatures in the .2 range. So these are the tubes on the periphery with lower mass flow rates, which you know have kind of some uncertainty. These tubes over here are the core flow tubes in the hottest part of the bundle, and here we've got normalized temperatures of .525. We start normalizing things so that we can 	2	MR. BOYD: Okay. Now, here's something
5this is what is going to really feed in6CO-CHAIRMAN WALLIS: This is good.7MR. BOYD: to the tubes intake8analysis.9CO-CHAIRMAN WALLIS: We're saying this is10good. Put it in the record.11MR. BOYD: Okay. These tubes12MR. BOYD: Okay. These tubes13MR. BOYD: These tubes on the periphery14that you were concerned about earlier as to whether15they're an up flow or down flow, that would be these16tubes over here on the left side of this plot,17normalized temperatures in the .2 range.18So these are the tubes on the periphery19with lower mass flow rates, which you know have kind20of some uncertainty. These tubes over here are the21core flow tubes in the hottest part of the bundle, and22Me start normalizing things so that we can23Start comparing with the full scale results. The way	3	that would be of interest. These are tube-to-tube
6CO-CHAIRMAN WALLIS: This is good.7MR. BOYD: to the tubes intake8analysis.9CO-CHAIRMAN WALLIS: We're saying this is10good. Put it in the record.11MR. BOYD: Okay. These tubes12MR. BOYD: Okay. These tubes13MR. BOYD: These tubes on the periphery14that you were concerned about earlier as to whether15they're an up flow or down flow, that would be these16tubes over here on the left side of this plot,17normalized temperatures in the .2 range.18So these are the tubes over here are the20of some uncertainty. These tubes over here are the21core flow tubes in the hottest part of the bundle, and22here we've got normalized temperatures of .525.23We start normalizing things so that we can24start comparing with the full scale results. The way	4	variations now. So we've got this hot up flow. Now,
7MR. BOYD: to the tubes intake8analysis.9CO-CHAIRMAN WALLIS: We're saying this is10good. Put it in the record.11MR. BOYD: Okay. These tubes12MR. MUSCARA: That would be of use.13MR. BOYD: These tubes on the periphery14that you were concerned about earlier as to whether15they're an up flow or down flow, that would be these16tubes over here on the left side of this plot,17normalized temperatures in the .2 range.18So these are the tubes on the periphery19with lower mass flow rates, which you know have kind20of some uncertainty. These tubes over here are the21core flow tubes in the hottest part of the bundle, and22Me start normalizing things so that we can23start comparing with the full scale results. The way	5	this is what is going to really feed in
 analysis. CO-CHAIRMAN WALLIS: We're saying this is good. Put it in the record. MR. BOYD: Okay. These tubes MR. MUSCARA: That would be of use. MR. BOYD: These tubes on the periphery that you were concerned about earlier as to whether they're an up flow or down flow, that would be these tubes over here on the left side of this plot, normalized temperatures in the .2 range. So these are the tubes on the periphery with lower mass flow rates, which you know have kind of some uncertainty. These tubes over here are the core flow tubes in the hottest part of the bundle, and here we've got normalized temperatures of .525. We start normalizing things so that we can start comparing with the full scale results. The way 	6	CO-CHAIRMAN WALLIS: This is good.
9CO-CHAIRMAN WALLIS: We're saying this is10good. Put it in the record.11MR. BOYD: Okay. These tubes12MR. MUSCARA: That would be of use.13MR. BOYD: These tubes on the periphery14that you were concerned about earlier as to whether15they're an up flow or down flow, that would be these16tubes over here on the left side of this plot,17normalized temperatures in the .2 range.18So these are the tubes on the periphery19with lower mass flow rates, which you know have kind20of some uncertainty. These tubes over here are the21core flow tubes in the hottest part of the bundle, and22Me start normalizing things so that we can24start comparing with the full scale results. The way	7	MR. BOYD: to the tubes intake
10good. Put it in the record.11MR. BOYD: Okay. These tubes12MR. MUSCARA: That would be of use.13MR. BOYD: These tubes on the periphery14that you were concerned about earlier as to whether15they're an up flow or down flow, that would be these16tubes over here on the left side of this plot,17normalized temperatures in the .2 range.18So these are the tubes on the periphery19with lower mass flow rates, which you know have kind20of some uncertainty. These tubes over here are the21core flow tubes in the hottest part of the bundle, and22here we've got normalized temperatures of .525.23We start normalizing things so that we can24start comparing with the full scale results. The way	8	analysis.
11MR. BOYD: Okay. These tubes12MR. MUSCARA: That would be of use.13MR. BOYD: These tubes on the periphery14that you were concerned about earlier as to whether15they're an up flow or down flow, that would be these16tubes over here on the left side of this plot,17normalized temperatures in the .2 range.18So these are the tubes on the periphery19with lower mass flow rates, which you know have kind20of some uncertainty. These tubes over here are the21core flow tubes in the hottest part of the bundle, and22here we've got normalized temperatures of .525.23We start normalizing things so that we can24start comparing with the full scale results. The way	9	CO-CHAIRMAN WALLIS: We're saying this is
12MR. MUSCARA: That would be of use.13MR. BOYD: These tubes on the periphery14that you were concerned about earlier as to whether15they're an up flow or down flow, that would be these16tubes over here on the left side of this plot,17normalized temperatures in the .2 range.18So these are the tubes on the periphery19with lower mass flow rates, which you know have kind20of some uncertainty. These tubes over here are the21core flow tubes in the hottest part of the bundle, and22here we've got normalized temperatures of .525.23We start normalizing things so that we can24start comparing with the full scale results. The way	10	good. Put it in the record.
13MR. BOYD: These tubes on the periphery14that you were concerned about earlier as to whether15they're an up flow or down flow, that would be these16tubes over here on the left side of this plot,17normalized temperatures in the .2 range.18So these are the tubes on the periphery19with lower mass flow rates, which you know have kind20of some uncertainty. These tubes over here are the21core flow tubes in the hottest part of the bundle, and22Here we've got normalized temperatures of .525.23We start normalizing things so that we can24start comparing with the full scale results. The way	11	MR. BOYD: Okay. These tubes
14that you were concerned about earlier as to whether15they're an up flow or down flow, that would be these16tubes over here on the left side of this plot,17normalized temperatures in the .2 range.18So these are the tubes on the periphery19with lower mass flow rates, which you know have kind20of some uncertainty. These tubes over here are the21core flow tubes in the hottest part of the bundle, and22Here we've got normalized temperatures of .525.23We start normalizing things so that we can24start comparing with the full scale results. The way	12	MR. MUSCARA: That would be of use.
15 they're an up flow or down flow, that would be these 16 tubes over here on the left side of this plot, 17 normalized temperatures in the .2 range. 18 So these are the tubes on the periphery 19 with lower mass flow rates, which you know have kind 20 of some uncertainty. These tubes over here are the 21 core flow tubes in the hottest part of the bundle, and 22 here we've got normalized temperatures of .525. 23 We start normalizing things so that we can 24 start comparing with the full scale results. The way	13	MR. BOYD: These tubes on the periphery
16 tubes over here on the left side of this plot, 17 normalized temperatures in the .2 range. 18 So these are the tubes on the periphery 19 with lower mass flow rates, which you know have kind 20 of some uncertainty. These tubes over here are the 21 core flow tubes in the hottest part of the bundle, and 22 here we've got normalized temperatures of .525. 23 We start normalizing things so that we can 24 start comparing with the full scale results. The way	14	that you were concerned about earlier as to whether
17 normalized temperatures in the .2 range. 18 So these are the tubes on the periphery 19 with lower mass flow rates, which you know have kind 20 of some uncertainty. These tubes over here are the 21 core flow tubes in the hottest part of the bundle, and 22 here we've got normalized temperatures of .525. 23 We start normalizing things so that we can 24 start comparing with the full scale results. The way	15	they're an up flow or down flow, that would be these
18 So these are the tubes on the periphery 19 with lower mass flow rates, which you know have kind 20 of some uncertainty. These tubes over here are the 21 core flow tubes in the hottest part of the bundle, and 22 here we've got normalized temperatures of .525. 23 We start normalizing things so that we can 24 start comparing with the full scale results. The way	16	tubes over here on the left side of this plot,
19 with lower mass flow rates, which you know have kind 20 of some uncertainty. These tubes over here are the 21 core flow tubes in the hottest part of the bundle, and 22 here we've got normalized temperatures of .525. 23 We start normalizing things so that we can 24 start comparing with the full scale results. The way	17	normalized temperatures in the .2 range.
20 of some uncertainty. These tubes over here are the 21 core flow tubes in the hottest part of the bundle, and 22 here we've got normalized temperatures of .525. 23 We start normalizing things so that we can 24 start comparing with the full scale results. The way	18	So these are the tubes on the periphery
 21 core flow tubes in the hottest part of the bundle, and 22 here we've got normalized temperatures of .525. 23 We start normalizing things so that we can 24 start comparing with the full scale results. The way 	19	with lower mass flow rates, which you know have kind
22 here we've got normalized temperatures of .525. 23 We start normalizing things so that we can 24 start comparing with the full scale results. The way	20	of some uncertainty. These tubes over here are the
23 We start normalizing things so that we can 24 start comparing with the full scale results. The way	21	core flow tubes in the hottest part of the bundle, and
24 start comparing with the full scale results. The way	22	here we've got normalized temperatures of .525.
	23	We start normalizing things so that we can
25 we normalized is we assumed the hot leg, hot leg, hot	24	start comparing with the full scale results. The way
	25	we normalized is we assumed the hot leg, hot leg, hot

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	temperatures, your hot sources. The cold flow return
2	temperatures, your low point temperature, that
3	provides the ultimate delta T, and then we just do a
4	T minus T cold or a T hot minus T cold.
5	So what you're seeing here is that the hot
6	temperature gets about halfway down to the secondary
7	side temperature by the time it enters the tubes, and
8	that's basically what this plot is showing us.
9	CO-CHAIRMAN WALLIS: So the statisticians
10	could play with that if they wanted to.
11	MR. BOYD: This slide I don't plan on
12	going over, but just to demonstrate, this is just a
13	sample of the sensitivity studies, and these are some
14	of the major inputs to the code, but we also varied
15	everything from wall functions to turbulence options
16	and to grid sizes.
17	We probably ran about 100 runs on this
18	thing to really make ourselves feel comfortable that
19	there was no point that we were being fooled by. So
20	the code was pretty stable over all of these. We
21	found no discrepancies.
22	So the summary here, Step 1, we've
23	compared with one-seventh scale data. We've got some
24	level of confidence and we feel more comfortable now
25	going over scaled conditions. The model was stable.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

95 1 Qualitatively matched the experimental we 2 characteristics that are noted from the two sets of 3 experiments. 4 The quantitative comparisons with mixing 5 parameters was very good. The results were most sensitive to the heat transfer rate, and we feel like 6 7 at this point we've got a much better understanding of 8 what's going on. 9 CO-CHAIRMAN WALLIS: To go back to that, 10 if you went to the heat transfer rate even lower than 11 you did here, you'd get the situation where you'd get 12 the flow going over the top and the hot flow actually comes all on the downcomer and you get no flow again. 13 14 You've got a piece of it, whereas you counter to what 15 you'd expect, your intuition, as you have a lower heat transfer coefficient. 16 You actually have more circulation. 17 MR. BOYD: We'll look at a plot that has 18 19 a --CO-CHAIRMAN WALLIS: -- you're going up, 20 21 but if you lowered it enough, you'd actually come down 22 again. 23 MR. BOYD: I would agree. You would have 24 several. CO-CHAIRMAN WALLIS: And so there might be 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1 some concern about whether there is en	ough whether
2 you are in that range of descending he	eat transfer in
3 the real situation of the steam generat	or and the real
4 life situation.	
5 MR. BOYD: Okay.	
6 CO-CHAIRMAN WALLIS: So you	u might want to
7 extend it in that region.	
8 MR. BOYD: We'll take a loc	ok at some plots
9 that will shed a little bit of light	on that.
10 Now we'll go to Step 2. W	e feel a little
11 comfortable, and now we want to do	o a full-scale
12 geometry. We realize up front that th	e geometry of a
13 real plant is a little bit different.	So we're going
14 to take this intermediate step of s	scaling up the
15 geometry and changing the conditions t	to the expected
16 plant conditions. We stay with 216 t	ubes. We stay
17 with basically the exact same model, a	nd we put steam
18 in it, 2,400 psi and the appropriate ma	ass flows in the
19 hot leg from SCDAP/RELAP 5.	
20 And now at this point what	we really have
21 is a plant with 3,200 tubes, not 216.	So what we did
22 is we grouped the tubes together an	nd created our
23 porous tube, and we ran a CFD evalu	ation in great
24 detail here to come up with the coeffic	cients here. We
25 ran that with steam at 2,400 psi with a	a seven-eighths

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	inch tube. So we changed our analysis coming up with
2	a totally different set of coefficients.
3	Now, where we're lost is on the heat
4	transfer rate, and we recognize that. So what we did
5	is we applied a whole series of heat transfer rates,
б	which I'm going to label here H-1 through H-7. We
7	CO-CHAIRMAN WALLIS: These are heat
8	transfer coefficients for just where?
9	MR. BOYD: On the outside of the tubes.
10	This is the heat driven
11	CO-CHAIRMAN WALLIS: That's what we're
12	talking about.
13	DR. RANSOM: This is the CFD model?
14	MR. BOYD: This is the CFD model. That's
15	right. So we've got this range of effective heat
16	transfer rates. So down here at H-7 what we've done
17	is we've hit it with such a high heat transfer rate
18	that all of the heat leaves the model by the time the
19	flow reaches .3.
20	CO-CHAIRMAN WALLIS: You're quenching the
21	chimney. You have to fill it back.
22	MR. BOYD: That's right, and with heat
23	transfer rate one, the lowest heat transfer rate, by
24	the time the flow reaches the top dead center of the
25	steam generator tube, the normalized mass average

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	temperature has dropped from .28 to .14. It has lost
2	half of its, let's say, temperature range, but there's
3	plenty of what it's going to do is still be hot and
4	losing heat all the way down, and it's going to come
5	back up.
6	CO-CHAIRMAN WALLIS: If each one went to
7	zero excuse me you'd have a flat line, or not a
8	flat line. It would go all around and wouldn't cool
9	down at all.
10	MR. BOYD: I'm sorry?
11	CO-CHAIRMAN WALLIS: If each one was zero.
12	MR. BOYD: Oh, if each one was zero.
13	CO-CHAIRMAN WALLIS: it would go all the
14	way around and wouldn't cool down at all.
15	MR. BOYD: If each one was zero, it may
16	not even go around.
17	CO-CHAIRMAN WALLIS: You'd have a flat
18	line. The temperature would just be flat in that
19	picture.
20	MR. BOYD: Yes. If each one was zero what
21	would happen is the flow would come in and it would
22	come right back out.
23	CO-CHAIRMAN WALLIS: It would go at .28
24	all the way across.
25	MR. BOYD: It's questionable whether it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	99
1	would even enter the tubes.
2	CO-CHAIRMAN WALLIS: But while it's in the
3	tubes, it would have a constant temperature.
4	MR. BOYD: It would have a constant
5	temperature. That's correct.
6	Okay. So what we did is with ignorance of
7	the true heat transfer coefficient or not comfortable
8	with the SCDAP/RELAP 5 predictions, we ran a whole
9	range of them. The SCDAP/RELAP 5 predictions for this
10	particular run with the four nodes and the steam
11	generator
12	DR. RANSOM: Incidentally, this is sulfur
13	hexafluoride.
14	MR. BOYD: No, now we're talking full
15	scale with steam.
16	DR. RANSOM: Oh, it's steam.
17	MR. BOYD: Yes.
18	DR. RANSOM: In your CFD model. Okay.
19	MR. BOYD: Okay. With a full scale steam
20	generator that has the geometry of the one-seventh
21	scale facility, a similar geometry, but at full scale.
22	So there's no geometrical distortion. We're just
23	scaling up.
24	DR. RANSOM: Because of this tube model
25	though you have to adjust the heat transfer, I guess.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	MR. BOYD: And the tube loss coefficients
2	and all of that stuff. That's right.
3	Here's the effect of heat transfer rate on
4	some of these key parameters. The tube fraction goes
5	from, let's say, 48 percent, 47 percent of the tubes.
6	As we change the heat transfer rate, this can go down
7	to 37 percent of the tubes. So in a full-scale plant,
8	we have just changed ten percent of the tubes in up
9	flow or down flow just by changing the heat transfer
10	coefficient.
11	This is demonstrating the importance of
12	that heat transfer coefficient and if I want to make
13	comparisons between one-seventh and full scale, I had
14	better be consistent with that, and that's why I show
15	the one-seventh scale data here as the blue dots, the
16	blue hexagons. We're going to compare that with H-5,
17	but when we go to full scale and want full-scale
18	conditions, we're going to want to compare with H-3
19	and H-4 up in here.
20	So we take a look at the two bundle mass
21	flow can change significantly. It goes from 12
22	kilograms per second down to eight. That's a
23	significant
24	CO-CHAIRMAN WALLIS: And if you went to a
25	lower H, it would go down on the left-hand side. It

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	would be a bell shaped curve.
2	MR. BOYD: That's right. We would expect
3	some of these
4	CO-CHAIRMAN WALLIS: Right.
5	MR. BOYD: But we feel like we've covered
6	the range of where we are.
7	CO-CHAIRMAN WALLIS: I understand.
8	MR. BOYD: But I would agree with you that
9	these are not trends that continue. They would
10	then
11	CO-CHAIRMAN WALLIS: It goes down again.
12	MR. BOYD: As you drive the chimneys,
13	that's right.
14	CO-CHAIRMAN WALLIS: It short of shows up.
15	You've hit the maximum really. It's just beginning to
16	go down. There is a maximum in that curve at a
17	certain H.
18	MR. BOYD: We look at things like the
19	recirculation ratio.
20	CO-CHAIRMAN WALLIS: There's a maximum
21	there at a certain H, too, right.
22	MR. BOYD: The recirculation ration is an
23	important parameter governing the tube temperatures in
24	the end, and we see it can change from three to two or
25	1.9. So we see some significant variations.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1 Now we're going to look at what I o	call the
2 scale effect. We take the full scale calcu	lation:
3 steam, 2,400 psi, four kilograms per second d	lown the
4 hot log comparing it to sulfur hexafluoride	with .2
5 kilograms per second down the hot leg, muc	h lower
6 temperatures.	
7 CO-CHAIRMAN WALLIS: Now, there i	is a key
8 question here. When you had a seventh sca	le, you
9 imposed a velocity from the vessel.	
10 MR. BOYD: That's right.	
11 CO-CHAIRMAN WALLIS: Now here you	have to
12 impose a velocity from the vessel in the full	l scale.
13 MR. BOYD: That's right.	
14 CO-CHAIRMAN WALLIS: In the sevent	th scale
15 you know what it is because you have an expe	eriment.
16 In the full scale, it comes out of some phenome	ena, and
17 you still impose something. How do you know	what to
18 impose?	
19 MR. BOYD: We don't. So we use th	ne value
20 from SCDAP/RELAP 5 and assume that that RELAN	P 5
21 CO-CHAIRMAN WALLIS: Which comes	from an
22 energy balance from the vessel. Really what	it does
23 is it ties together M, hot leg, and TH. That's	s what's
24 happening in the vessel. It's a coupling betwee	een them
25 because of the energy being produced, and	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	103
1	MR. BOYD: With lack of better
2	information, we're letting SCDAP/RELAP 5 do all of
3	those predictions for us of the coupled system.
4	CO-CHAIRMAN WALLIS: And it's modeling
5	your steam generator the way you described earlier.
б	MR. BOYD: That's right. It's doing the
7	exact same thing.
8	The point of all of this is to show that
9	the re-circ ratio is essentially the same. The number
10	of tubes and up flow is essentially the same.
11	Now, these tubes weren't locked in place.
12	These tubes changed as we changed the heat transfer
13	rate, but when we kept the heat transfer rates
14	consistent, we got the same number of tubes.
15	The mixing fraction, what we see is a
16	little bit more mixing at the full scale conditions.
17	CO-CHAIRMAN WALLIS: Do you know what H is
18	in the real life in the steam generator on the outside
19	of the tubes?
20	MR. BOYD: The H?
21	CO-CHAIRMAN WALLIS: The H, the H that you
22	varied.
23	MR. BOYD: We could make some assumptions
24	on that, but there's going to be some complex flows
25	over there, and it's probably not uniform across the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	tubes. We're using uniform on all
2	CO-CHAIRMAN WALLIS: Maybe that's an area
3	which requires some study.
4	PARTICIPANT: Did Jack go away?
5	CO-CHAIRMAN WALLIS: Well, he can read the
6	transcript.
7	MR. BOYD: So now we'll take a look at the
8	histogram. In general these results are pretty
9	similar, but we're comparing with like heat transfer
10	rates. You'll see that the full scale results are
11	skewed a little bit toward the cooler end of the
12	spectrum, but they have generally the same range of
13	temperatures. That skew would be representative of
14	the little bit higher mixing fraction that we saw.
15	But, again, this is not too significant in
16	light of what we're going to see later.
17	Here's the flow split ratio. The blue is
18	the Westinghouse one-seventh scale experiment
19	predictions. The black is case H-5, and you'll see
20	that there are the same number of tubes. They trade
21	off one these two tubes are switched between the
22	two, but nonetheless, they still have 38 percent of
23	the tubes.
24	CO-CHAIRMAN WALLIS: I would say the tubes
25	on the boundary that have a 50 percent probability of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	going up or down. So I wouldn't worry about that at
2	all.
3	MR. BOYD: With case H-1, we reduce the
4	heat transfer rate, and you'll see that we pick up
5	these extra tubes out here, and that's the difference
6	that we saw on the table.
7	So in summary
8	CO-CHAIRMAN FORD: Sorry. I'm going to
9	ask another non-thermal hydraulicist question. As I
10	understand it going through this scale-up argument,
11	you changed the heat transfer coefficient to have
12	certain parameters in alignment, these MT, ML ratios,
13	et cetera.
14	Graham brought up the question of what is
15	heat transfer coefficient in a real plan, and surely
16	there you're going to be worried about the surface
17	condition, crud build-up, and things of this nature.
18	How much would you expect that physical phenomena to
19	change that heat transfer coefficient? And would it
20	be enough that it would be within these parameter
21	changes you made to H?
22	MR. BOYD: The reason why we ran this
23	whole series is that now we could go back and look at
11	what we think the value is, look at the uncertainty on
24	what we chilling the value 15, 100k at the ancertainty of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	variations, and see what impact it has.
2	Now, I would say that I have a wide range
3	of variations where I'm hitting it so hard that I lose
4	all the heat within the first 30 percent of the bundle
5	all the way over to letting the heat go all the way
6	around the bundle. So these H-1, H-2, they're
7	significantly different heat transfer rates. This
8	isn't plus or minus ten percent or anything like that.
9	But I don't have a direct answer for you.
10	It would have to be looked at and look at the
11	uncertainty in the heat transfer rate and then compare
12	it to the difference that we see. But we would be
13	more in line with between H-3 and H-4 of my heat
14	transfer rates as opposed to going from one end to the
15	other. You're not going to add some crud and make
16	these kinds of drastic changes that I'm doing to the
17	heat transfer rate here.
18	CO-CHAIRMAN WALLIS: That's a fact, is it?
19	MR. BOYD: I can't see how you can make a
20	small change and have it change from drawing all of
21	the heat out of the bundle in three meters or letting
22	the heat go 24 meters without
23	CO-CHAIRMAN WALLIS: The crud won't do it,
24	but something on the secondary side might do it, and

25 how the steam generator is actually cooled might have

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	some effect.
2	MR. BOYD: Okay. The steam generator
3	secondary side is a very complex
4	CO-CHAIRMAN WALLIS: I think to summarize
5	what you're doing, what you're doing here is you're
6	convincing us that you have a valid tool for analyzing
7	this steam generator problem. You're not at this
8	stage saying this is actually what we think happened
9	in a particular situation in a real plant.
10	MR. BOYD: I would say we're trying to get
11	an idea that's right of what the effective scale
12	is, what the effect is of some things are. What's
13	important at this point we're trying to nail down, but
14	before we run off and spend, you know, a lot of money
15	doing details, I think we really need to look at the
16	overall PRA for this entire problem, and where does
17	our uncertainty fit into the big picture.
18	CO-CHAIRMAN WALLIS: So why are the PRA
19	guys way behind in telling you that?
20	MR. BOYD: We got a little bit of a head
21	start. We cheated, I guess. But the point is before
22	we if somebody doesn't know, this has to be
23	compared side to side with flaw distributions.
24	CO-CHAIRMAN WALLIS: Right.
25	MR. BOYD: Before we run off and spend a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	108
1	year of effort doing more tubes and more detail, we
2	got estimates of what it can mean.
3	CO-CHAIRMAN FORD: But in answer to my
4	specific question, when you go to the real steam
5	generator, you're saying, "Hey, uncertainties on heat
6	transfer coefficient because of crud build-up, et
7	cetera, is not going to be a major item that would
8	swing your conclusions so far or way off to one
9	MR. BOYD: Not swing them so far, but
10	uncertainties, there is uncertainty though in that
11	secondary side. We need to get a handle on that to
12	try and make an estimate of where we fit and how
13	varied it can be.
14	DR. RANSOM: Well, in the system transient
15	calculation that the secondary site is full of just
16	low pressure stagnant steam, the major energy must be
17	going into just structure, end of the tubes, whatever
18	else is modeled as a heat structure because there
19	can't be much heat transfer to the fluid.
20	MR. BOYD: It is a very small heat
21	transfer coefficient on the secondary side in the
22	SCDAP/RELAP 5 analysis. We would argue that it's
23	probably higher.
24	DR. RANSOM: So it's mostly just thermal
25	inertia of the structure that's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	MR. FLETCHER: Well, there is a
2	circulation of steam on the secondary side. The way
3	we've modeled it is a two pass model with a downcomer
4	and a boiler side. So there is a mechanism to
5	circulate steam. There is heat loss off the outside
6	of the steam generator shell, and so there is an
7	ultimate heat break out there for some of the steam,
8	some of the heat to get there.
9	DR. RANSOM: The secondary is basically a
10	closed volume?
11	MR. FLETCHER: In one steam generator it
12	is blown down. We have a stuck open valve on the top
13	of the steam generator, and so it is closed, except
14	for an opening on the top. The other steam generators
15	are closed, but dry by the time we get to this point.
16	CO-CHAIRMAN WALLIS: At their high point,
17	there's no way that this circulates around to the
18	condenser or anything.
19	MR. FLETCHER: No, none whatsoever.
20	CO-CHAIRMAN WALLIS: No. So you're really
21	stuck for a good heat sync.
22	MR. FLETCHER: Yes.
23	CO-CHAIRMAN WALLIS: Very bad heat sync.
24	So probably the whole plant is heating up.
25	MR. FLETCHER: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	MR. MUSCARA: Peter, maybe a comment on
2	your question. You're correct. The nature of the
3	crud build-up on the tubes does affect the heat
4	transfer.
5	CO-CHAIRMAN WALLIS: It does, put it puts
6	some water in somewhere.
7	MR. MUSCARA: In fact, it affects it
8	enough that it affects plant efficiency, and the
9	plants, in fact, go in and do chemical cleaning to
10	improve the efficiency. So at the time of the severe
11	accident, you'd expect that the heat may be degraded,
12	but not tremendous amounts because it affects the
13	efficiency in the solution taken care of.
14	MR. SIEBER: I would think all that would
15	really affect ultimately is the timing of things. You
16	know, if you aren't transferring the heat, you heat up
17	faster, and so there just can't be a whole lot of heat
18	transfer.
19	CO-CHAIRMAN WALLIS: So to go back to the
20	scenario, what you're concerned, you heat up the
21	thing. You heat it up, heat it up. Which fails
22	first?
23	MR. FLETCHER: Right.
24	CO-CHAIRMAN WALLIS: That's the question.
25	MR. MUSCARA: And I guess in conjunction

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	111
1	with this, it's not necessarily the hottest tube that
2	may fail first. It depends on the flow. So we do
3	need to know the distributions and temperatures of
4	these tubes in the distribution and
5	CO-CHAIRMAN WALLIS: So you should put a
6	little diaphragm on the surge line, which is designed
7	to pop before anything else does.
8	MR. MUSCARA: Yeah.
9	MR. SIEBER: A diaphragm?
10	CO-CHAIRMAN WALLIS: Or whatever. I mean
11	a release disk. What do they call those things?
12	Procter disk, something, something.
13	MR. BOYD: So I'll summarize step two.
14	The results are similar to the one-seventh scale
15	facility. We've got a slight increase in mixing.
16	Tube bundle heat transfer rate is a significant
17	governing parameter. We've demonstrated that here
18	with a whole series. That's something we learned at
19	one-seventh and demonstrated here.
20	And the purpose for these predictions is
21	an isolation of the effect of scale. So we feel like,
22	I guess. that the facility was pretty well scaled and
23	it did represent in some respects the full-scale
24	behavior.
25	Now, of course, there's geometrical

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5 So now we're going to go on to go on to a 6 prototypic geometry, and the design was a Model 44, 7 and we look at the Model 44 geometry next to the 8 facility scaled up. What we see for starters is that 9 the hot leg sits closer to the tube sheet. I think 10 generally this results from the way they built the 11 facility.

There was a hemisphere for the lower plenum, and it was welded into a large disk, but it was welded in several or let's say about two inches below the tube sheet face. Well, that two inches at full scale is 14 inches. So it adds a little bit more mixing length.

There's also a difference in the way the hot leg enters and the diameter of the nozzle flares out on the plant. So we see over here we see a symmetric design for the facility, and then we see an off angle --CO-CHAIRMAN WALLIS: It comes in off

24 center.

25

MR. BOYD: Off center.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	113
1	over here, which I guess is the reason why it's off
2	center.
3	CO-CHAIRMAN WALLIS: So that's why you
4	can't model half of it now.
5	MR. BOYD: That's right. No more
6	symmetry. So we go on, and we create a full scale
7	geometry based now on the primary side of a
8	Westinghouse Model 44. We take the same boundary
9	conditions we just used, and we just bring them over.
10	So what we're now doing is only changing the geometry.
11	Before we changed the conditions. Now we change the
12	geometry.
13	It worked out with even tube. The way we
14	split it up was 201 individual tube sections, no
15	symmetry plane. This turned out to be a million cells
16	instead of half a million. We made all of the cells'
17	dimensions as close as we could to the other study.
18	So if we had 42 cells across the hot leg, we used 40
19	cells across the hot leg.
20	CO-CHAIRMAN WALLIS: I'm going to ask you
21	the obvious question then. Is the number of cells you
22	can take limited by the computer facilities at the NRC
23	or by something else?
24	MR. BOYD: We have limits, of course, here
25	at the NRC. There's also some issues with the codes

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	converging with very large numbers of cells, and there
2	is an issue there also.
3	CO-CHAIRMAN WALLIS: Typically, say, if
4	you double the number of cells, the thing begins to
5	take five times longer to run or ten times, something
6	like that, and therefore, you don't do it because you
7	have to wait forever. There's a tradeoff.
8	MR. BOYD: That's right.
9	CO-CHAIRMAN WALLIS: But if you have
10	quicker computers or better clusters or something,
11	then you could easily do two million cells.
12	MR. BOYD: Yes.
13	CO-CHAIRMAN WALLIS: Are you limited? Do
14	you feel limited by the facilities here, Jack?
15	MR. BOYD: I feel limited.
16	(Laughter.)
17	MR. ROSENTHAUL: Well, we have a CFD
18	cluster, and each year we add I don't know half
19	dozen, dozen nodes. So the thing keeps growing, and
20	Chris by hand, I think, changed out the mother boards
21	and got each node running faster.
22	So at this point
23	MR. BOYD: We're increasing capacity every
24	year.
25	MR. ROSENTHAUL: Yeah, we're growing.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	MR. BOYD: And research has been keeping
2	for the past three years a steady budget for this, but
3	it has jumped
4	CO-CHAIRMAN WALLIS: It's important that
5	it be done.
6	MR. BOYD: to a full system, but within
7	the next couple of years, within the next few upgrade
8	cycles, we'll be at our steady state value, and we'll
9	have probably an order of magnitude more computing
10	power than we had when this was done.
11	MR. BOYD: Well, you may feel limited, but
12	looking at all of the things you have been able to do
13	here, it appears as if it wasn't a critical
14	limitation. You weren't sort of off for 24 hours and
15	everything.
16	MR. BOYD: I have to maintain the line
17	that I'm limited so that I can ask for money each
18	year.
19	CO-CHAIRMAN WALLIS: Certainly if you were
20	to do more complicated problems you might need more.
21	MR. BOYD: That's correct.
22	MR. ROSENTHAUL: I think actually what
23	drives the machines, and it has got nothing to do with
24	this, is fire CFD, which is what we're gearing up to
25	do, and of course, you're doing both chemistry and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	fluid flow.
2	MR. BOYD: This model that we're looking
3	at here took 60 days to converge. So having
4	CO-CHAIRMAN WALLIS: For one run?
5	MR. BOYD: For one run. So having more
6	power would have been nice.
7	CO-CHAIRMAN WALLIS: So I think you are
8	limited. You do have to wait a long time.
9	MR. BOYD: It is nice to have.
10	CO-CHAIRMAN WALLIS: That's not good.
11	MR. BOYD: Power is nice.
12	MR. ROSENTHAUL: If you were to rerun this
13	today
14	MR. BOYD: We're squeezing out bottlenecks
15	and trying to improve our networking.
16	CO-CHAIRMAN WALLIS: That's not good. Two
17	months, you're off worrying about some other project
18	and all of that. You really need a turnaround in a
19	day I would say to do really good CFD.
20	(Laughter.)
21	MR. BOYD: Okay.
22	CO-CHAIRMAN WALLIS: You can't wait
23	forever for these results.
24	MR. BOYD: Now, I will say that the
25	symmetry model I could run in a week, and the reason

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	why this took so long, and we're going to get into
2	that in a moment, this was an unsteady plume. The
3	symmetry plane unleashed it or else this asymmetric
4	hot leg unleashed it, and now we had to run for a long
5	time and pick up statistics as opposed to just
6	reaching a steady state value.
7	CO-CHAIRMAN WALLIS: Oh, that's to bad.
8	MR. BOYD: So in summary here, we're going
9	to repeat the scale-up analysis with a different
10	geometry. We're going to use all the other same
11	conditions.
12	CO-CHAIRMAN WALLIS: One of my suggestions
13	is that these vendors design systems are analyzable
14	because a lot of expense has to do with the fact they
15	made it so difficult to analyze them.
16	MR. BOYD: There is a lot of leg work that
17	goes into looking at the data. Getting that handle on
18	the results so that you can do things is still not as
19	good as it should be.
20	This is on the hot leg symmetry plane.
21	It's not symmetric up in the tubes. This is
22	CO-CHAIRMAN WALLIS: But you do get
23	unsteady flow.
24	MR. BOYD: This is the plume, the unsteady
25	plume.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	118
1	I visited some people at IRSN over in
2	France, and they're doing similar calculations with
3	the large eddy simulation. They see the same
4	behavior.
5	Now, they took the approach of a different
6	tube model. They used shorter tubes and a fewer
7	number of tubes, but nonetheless, they still got this
8	unsteady plume behavior. They called it flow dragging
9	as the plume is pushed back and it doesn't reach the
10	tube sheet directly.
11	Here is a path line
12	CO-CHAIRMAN WALLIS: Like combustion
13	instability.
14	MR. BOYD: Here's a path line animation.
15	We don't see that same behavior that we discussed
16	before with the symmetric stuff and the things coming
17	up. Now we see the plume coming up and partially
18	stagnating on the tube sheet. The flow comes over to
19	the right, immediately hits a wall, and is tracked
20	back around
21	CO-CHAIRMAN WALLIS: That makes waves in
22	the hot leg. That makes waves in the hot leg.
23	MR. BOYD: That's right.
24	CO-CHAIRMAN WALLIS: That's not good
25	for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	119
1	MR. BOYD: There is some waviness in the
2	end of the hot leg. So the flow behavior
3	significantly differs.
4	Now here's looking straight down at just
5	above the tube sheet. What we see here is we see the
6	hottest tube was over here. Now all of a sudden
7	that's a relatively cool tube. Now the hottest tube
8	is down here.
9	CO-CHAIRMAN WALLIS: So there is thermal
10	fatigue or the potential for thermal fatigue.
11	MR. BOYD: The temperature instead of
12	going like this is going like this, but it's still
13	going up.
14	CO-CHAIRMAN WALLIS: Well, yeah, but it's
15	oscillating.
16	MR. BOYD: It is oscillating.
17	DR. RANSOM: The tubes in up flow though
18	seem to remain relatively constant.
19	MR. BOYD: That's the point that you made
20	earlier, and the percentage of tubes in up flow does
21	not change in this calculation, and if they were going
22	to change, this is where I would predict they would
23	change.
24	CO-CHAIRMAN WALLIS: I would doubt if
25	they'd change. Once you've got that flow going, it's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	very different from
2	DR. RANSOM: At the hottest point it's
3	going to move around.
4	MR. BOYD: But I can change the heat
5	transfer coefficient, and they will turn around.
6	DR. RANSOM: They will.
7	MR. BOYD: So they can be turned around.
8	CO-CHAIRMAN WALLIS: So this is new from
9	what we've read i your reports.
10	MR. BOYD: This is in a draft NUREG right
11	now being reviewed. So I did not send you the draft.
12	CO-CHAIRMAN WALLIS: How long does it take
13	to do that?
14	MR. BOYD: To review it? Just starting.
15	CO-CHAIRMAN WALLIS: You could send us a
16	draft though, can't you, for ACRS use only or
17	something? Yeah, you can do that.
18	MR. SIEBER: It comes as a DVD, too.
19	MR. BOYD: But there's a lot of results at
20	full scale conditions. I'm just showing you the tip
21	of the iceberg. We have a good bit of information.
22	So what we see is a totally different
23	behavior. I throw up this plot again just to show
24	where we fit into the grand scheme of things with my
25	scale-up runs. The hexagons in this case are the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	Model 44 runs, and what you see as I come down through
2	here in a heat transfer temperature reduction that's
3	kind of parallel to this case H-4. So we want to make
4	a
5	CO-CHAIRMAN WALLIS: This is the average
6	of some sort?
7	MR. BOYD: This is the mass average
8	temperature going up through the tubes. So if we're
9	going to make a comparison with H-4, and I compare
10	with several of them, but the one thing you'll see is
11	you'll see a higher temperature level here. That's
12	the result of the hot leg being closer to the tube
13	sheet. That's your first indication.
14	We'll take a look here, and we have fairly
15	good agreement with the mass flow tube.
16	CO-CHAIRMAN WALLIS: Excuse me. You're
17	imposing this flow from the vessel still?
18	MR. BOYD: That's right, and I'm imposing
19	the exact same flow.
20	CO-CHAIRMAN WALLIS: Because there's
21	oscillating flow in the hot leg. This might affect
22	that end as well.
23	MR. BOYD: Not in this model though.
24	CO-CHAIRMAN WALLIS: Not in this model,
25	but again, it's a physical thing that could happen.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

 MR. BOYD: That's right. CO-CHAIRMAN WALLIS: The last thing you want to do is to develop the big interfacial waves is the hot leg and, you know, disturb that circulation 	
3 want to do is to develop the big interfacial waves i 4 the hot leg and, you know, disturb that circulatio	
4 the hot leg and, you know, disturb that circulation	n
L there	n
5 there.	
6 MR. BOYD: That wasn't seen here, and i	t
7 also wasn't seen in the large eddy simulation that the	.e
8 French did. They had five million cells in	
9 CO-CHAIRMAN WALLIS: Well, they have	e
10 better computer facilities than we do?	
11 MR. BOYD: They probably	
12 CO-CHAIRMAN WALLIS: We can't let there k	e
13 a computer gap with the French.	
14 (Laughter.)	
DR. RANSOM: Well, actually this movir	g
16 around of the stagnation point is probably beneficial	•
17 I mean, it's going to spread the energy out over mor	e
18 tubes than you would otherwise, but I doubt if it ha	S
19 any effect on the macroscopic behavior. Minor.	
20 MR. MUSCARA: Can I make a short commer	.t
21 again, Peter?	
22 When you look at these temperatures, yo	u
23 know, I'm not really concerned about fatigue. Thos	е
24 temperatures are high enough that the tube wil	1
25 rupture. I agree.	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	CO-CHAIRMAN FORD: Yeah.
2	MR. MUSCARA: A good tube will rupture by
3	a creep at about 800 Centigrade.
4	MR. BOYD: We ran this at two temperature
5	ranges, too. We're right now at the temperature
6	ranges where we are at near the failure points.
7	We also ran this again with the hot leg
8	temperature close to 1,000 Kelvin instead of 1,400.
9	So earlier in the transient, and we got very similar
10	results.
11	So my point here is that the mass flow
12	through the tubes, which is a calculated parameter was
13	very similar to H-4 with a similar heat transfer. The
14	recirculation ratio, very similar. The mixing
15	fraction was less. So less mixing. We got .8 instead
16	of .87, and all of these values for the Model 44 have
17	a plus or minus standard deviation on them because we
18	had to run it through what we would consider a cycle
19	or two and take some statistical values.
20	CO-CHAIRMAN WALLIS: It's good that you
21	have this non-steady flow. If you had tried to
22	converge on a steady flow, it would not have given you
23	very good residuals.
24	MR. BOYD: The code would just not. Yeah,
25	it would not converge. That's right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	Even the other run we couldn't really get
2	to converge well on the steady state solver. It was
3	run as a transient also. The transient solver is a
4	little more robust.
5	CO-CHAIRMAN WALLIS: Although what the
6	steady state solver does often is it kind of emulates
7	the transient as it tried to balance things out.
8	MR. BOYD: But sometimes you need to force
9	small time steps to refine.
10	CO-CHAIRMAN WALLIS: Yeah, yeah.
11	MR. BOYD: So now we'll look back at this
12	histogram, which we've looked at earlier, and before
13	we sat these temperatures ending at about .5 halfway
14	between the hot and cold sync temperatures, and now
15	for this Model 44 design we've got temperatures that
16	are approaching .7. So here's where, again, the
17	result of having the hot leg closer to the tube sheet.
18	It is picked up here as in other cases.
19	CO-CHAIRMAN WALLIS: It's interesting. It
20	looks as if you've picked up a tail of a distribution
21	that you didn't have before.
22	MR. SIEBER: Right.
23	MR. BOYD: Well, the black line, some of
24	those look more like a tail. They varied a little
25	bit.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	CO-CHAIRMAN WALLIS: Yeah, you'd think
2	you'd have more of a tail with the black lines on the
3	right just as if you didn't pick it up somehow.
4	Anyway, this still
5	MR. BOYD: The hottest tubes we saw in the
6	scale-up model were at this temperature in the very
7	core of the hot plume, and now in the core of the hot
8	plume we're seeing, you know, a little bit hotter
9	temperatures.
10	So the Model 44 behaves a little bit
11	differently than the facility is the point of all of
12	this.
13	Here is an indication now we're going to
14	look this is a figure out of the report. We take
15	a look at the hottest tube region over one cycle, and
16	we can get an indication of the movement of the hot
17	plume, but then I'm showing this to say the next plot,
18	what I take is those central eight regions where the
19	hot tube generally ranges, and we plot the temperature
20	versus time.
21	And for instance, in A, tube region A, we
22	see it's the hottest tube at what I'm calling time
23	zero. Twelve seconds later in that section, it's one
24	of the coldest tubes, with a normalized temperature of
25	about .2.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	CO-CHAIRMAN WALLIS: This must be
2	interesting for the materials people.
3	MR. BOYD: Yeah, they're going to have
4	more fun with this type of data.
5	CO-CHAIRMAN FORD: So you've got creep
6	fatigue interactions. But these frequencies are
7	pretty high. You wouldn't expect much creep fatigue
8	interaction.
9	MR. BOYD: I think in these temperatures,
10	I think creep will take care of it.
11	MR. BOYD: Just to avoid the question,
12	I'll note
13	CO-CHAIRMAN FORD: This is fascinating.
14	This is dead on.
15	CO-CHAIRMAN WALLIS: It's amazing. I mean
16	it keeps getting better.
17	MR. BOYD: We'll melt some tubes here
18	again.
19	CO-CHAIRMAN WALLIS: This is like one of
20	those
21	DR. RANSOM: This is a fluid temperature
22	though, right?
23	MR. BOYD: These are fluid.
24	DR. RANSOM: Not the metal temperature.
25	MR. BOYD: This is the fluid temperature

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	127
1	entering the tube sheet, which would then be put into
2	SCDAP/RELAP 5, which would then take out heat losses
3	in the big tube sheet and then, you know, calculate
4	the temperature drop through the tubes and all of that
5	good stuff.
6	DR. RANSOM: Well, if you're talking about
7	cycling variations of the thermal inertia will damp
8	out some of this.
9	MR. BOYD: So summary of Step 3 for Model
10	44. We've got a different flow pattern. The hot leg
11	is closer. That would be the obvious reason. There's
12	less of a mixing distance.
13	The hotter tubes are predictive, but their
14	location and level vary with time. So a more detailed
15	consideration of tube heating is needed than what
16	we've been doing.
17	And the mixing is still significant
18	though. We see less mixing, but in general, we're not
19	bypassing the inlet plenum. We're still seeing
20	mixing, and it's not too far from what we've been
21	assuming. So we're not off the scale yet.
22	So now we're going to look at tube leakage
23	analysis. We went back to the full scale geometry
24	based on the one-seventh scale facility because this
25	could run in a week, and I wanted to make a series of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	128
1	runs. The tube leakage rates of what we started
2	with was 150 gallons per day tech spec limit of some
3	sort. That's essentially a
4	CO-CHAIRMAN FORD: Excuse me. Chris.
5	Ladies and gentlemen, it's 10:30. Do you
6	want to take a quarter hour break at this point or do
7	you want to go on until we get
8	MR. BOYD: I think the rest of the talk
9	goes a little quicker because you guys don't ask as
10	many questions.
11	MR. MUSCARA: I think it needs to be
12	because there's not much time left for the remainder
13	of the presentation in this area.
14	CO-CHAIRMAN WALLIS: It probably would be
15	best if he finished.
16	CO-CHAIRMAN FORD: Okay.
17	MR. BOYD: Yeah, I think the rest of the
18	talk will drift along quicker.
19	CO-CHAIRMAN WALLIS: You can just say you
20	must finish by quarter of.
21	MR. BOYD: Okay. Good. So we started
22	with 150 gallons per day. This is essentially
23	equivalent, when you take a whole size and compute
24	mass flow rates, it's equivalent to the mass error in
25	the code. It was irrelevant.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	129
1	So we multiplied it by ten, 100, 1,000,
2	and 2,000, and that's approaching 200 gallons per
3	minute operational condition leak rates. So those are
4	the leak rates. We had several leak positions, three
5	leak locations on the symmetry plane and then the
6	distributed lean in a pattern all over the tube sheet.
7	The big conclusion here is that (a) the
8	hot plume is not drawn to the leak, at least at these
9	leak rates. In fact, in this example, I've got a plot
10	as a back-up slide, but I won't bother showing it. As
11	you increase the tube leakage rate, the plume actually
12	moves out further away from the leak as opposed to
13	being drawn to the leak, and that's because we're
14	reducing the flow that's coming in this way because
15	it's going out the leak.
16	So even when I put the leak right next to
17	the plume, I couldn't draw the hottest portion in. I
18	really don't see the movement of the plume that I had
19	thought I might see, and
20	CO-CHAIRMAN WALLIS: Because the plume is
21	sucked by the natural convection, and this leak fills
22	the natural convection.
23	MR. BOYD: Yeah.
24	CO-CHAIRMAN FORD: Did you do a
25	sensitivity analysis to find out if the leak was above

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	130
1	a certain amount then you could draw the plume over?
2	MR. BOYD: I did not go high enough to
3	draw it over. In fact, I pulled almost as much as the
4	hot leg flow, and it still seemed to want to travel
5	around and go up. The plume seemed to want to do what
б	it wanted to do, and when you draw really hard, you
7	start pulling from the outlet plenum, too.
8	Here's a histogram. Now, I plotted this
9	as lines as opposed to bars because the bars got a
10	little confusing all side by side, but what you see is
11	that up to 1.4 kilograms per second, which is your
12	100 gpm leak, there was no change in the hottest tube
13	predicted.
14	When we went to 200 gpm equivalent type
15	leak, I did get hotter tubes not because I pulled the
16	hot plume into the leak, but because I reduced the
17	mixing somewhat in the inlet plenum.
18	And then I also went to 300 gpm leak.
19	Now, this is the hot leg flow. It was four kilograms
20	per second basically, and I did see again
21	CO-CHAIRMAN WALLIS: Where does this leak
22	go?
23	MR. BOYD: This leak went into
24	CO-CHAIRMAN WALLIS: The steam generator.
25	So you've got a feedwater flow.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	MR. BOYD: I am feeding into the steam
2	generator with a stuck open relief valve. So it's
3	CO-CHAIRMAN WALLIS: heat transfer on
4	the secondary side? You're now flooding up the steam
5	generator?
6	PARTICIPANT: There's no water.
7	CO-CHAIRMAN WALLIS: Oh, it's all steam
8	leak? I'm sorry
9	MR. BOYD: Super heated steam and it's
10	going over there an venting.
11	CO-CHAIRMAN WALLIS: I see you're right.
12	MR. BOYD: Okay. So we've got a bunch of
13	data. We did a whole series of runs here, but we were
14	not seeing the concern, I guess, is different from
15	the concern is not as severe as what some might
16	have hypothesized here. So the smaller leaks in the
17	area of 1,500
18	CO-CHAIRMAN WALLIS: Why do you have
19	gallons per minute of steam?
20	MR. BOYD: I have gallons per minute; I
21	talk in gallons per minute because that's the way the
22	agency also talked about
23	CO-CHAIRMAN WALLIS: Do you mean gallons
24	per minute of steam of is this a
25	MR. BOYD: No, that is gallons per minute

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	of water.
2	CO-CHAIRMAN WALLIS: That is crazy.
3	MR. BOYD: At standard operating
4	conditions, but that's the way
5	CO-CHAIRMAN WALLIS: Standard room
6	conditions or it would have
7	MR. BOYD: No, at the plant operating
8	conditions.
9	CO-CHAIRMAN WALLIS: That's always so
10	uncertain what they mean by 100 gpm.
11	MR. BOYD: Well, in the report what I do
12	is I say we based on this to just get an estimate.
13	Then we're going to talk in terms of kilograms per
14	second and leave all that
15	CO-CHAIRMAN WALLIS: That's right. That's
16	the only way to do it.
17	MR. BOYD: and leave all that to the
18	break flow guys to argue out later. That's right.
19	So I'll switch over, but I'm relating it
20	to that to give some that gives some people a
21	grounding as to what size hole we're talking about and
22	how realistic it could be in a plant.
23	So the smaller leak rates basically
24	provided no difference in the solution. If I compared
25	them with zero leak, all of the parameters were

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	133
1	essentially unchanged. Direct inlet plenum bypass is
2	not predicted.
3	We get some hotter tubes at the highest
4	leak rates, but that is a result of the decrease in
5	mixing, and I will say that I did not increase the hot
6	leg mass flow. I kept it fixed. So the system would
7	probably feed more mass to that leaking generator in
8	reality.
9	Now we'll go on to the final step, the
10	Combustion Engineering steam generator. We'll try and
11	run through this quickly. We've got 8,000 tubes now,
12	a 42 inch hot leg. We're going to take the boundary
13	conditions from a SCDAP/RELAP 5 analysis and apply it
14	to this model.
15	This model was, again, symmetric. So we
16	used 1.3 million cells for the symmetry model. So we
17	did use a significantly increased number of cells for
18	this bigger generator. We tried to keep the cell
19	sizes similar.
20	Take a look at the geometry compared to a
21	Westinghouse. What you see is a 42 inch pipe sitting,
22	you know, a number of roughly ten inches from the
23	tube sheet. So you've got a plume this big, maybe on
24	the order of a foot if it's a quarter of the pipe
25	sitting that far from the tube sheet, and that's the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	concern with the CE plants.
2	What we see here is some predictions. We
3	see the vessel exist temperature range is red. We see
4	those hot leg temperatures exiting the hot leg nozzle
5	and doing very little. There's obviously some mixing,
6	but we see some entrance temperatures into the tube
7	sheet that are very similar to the hot leg
8	temperatures.
9	We look on kind of a normalized scale.
10	This is kind of
11	CO-CHAIRMAN WALLIS: Is this a horizontal
12	hot leg? You seem to show it going down at 90
13	MR. BOYD: That's a skewed angle.
14	CO-CHAIRMAN WALLIS: Is it horizontal?
15	MR. BOYD: It is horizontal.
16	CO-CHAIRMAN WALLIS: Oh, okay.
17	MR. BOYD: This is a three dimensional
18	view. That's the way it looked there.
19	So what we see here is the CE steam
20	generator is geometrically different and the mixing we
21	see is different. We take a look at the mixing
22	parameters. We've got mixing fractions on the order
23	of .6. We ran two cases, one hotter than the other.
24	Recirculation ratios, reduced from what
25	we've seen before. There's not a lot to say here

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	other than we've got less mixing and it's not really
2	all that surprising.
3	We take a look at the histogram for this
4	plant, and what we see is temperatures are
5	approaching .95 on a normalized scale. So we've got
6	very little temperature reduction.
7	In summary, we've got a significant
8	variation in inlet plenum geometry compared to what
9	we've been considering for inlet plenum mixing based
10	on the one-seventh scale experiments. We've got this
11	difference in inlet plenum mixing. A small portion of
12	the hot leg flow appears to reach the tube sheet with
13	little or no mixing.
14	The SCDAP/RELAP 5 analysis is starting up
15	right now for the Calvert Cliffs plant with using
16	these new mixing coefficients. So we'll get some kind
17	of general feedback from a systems point of view on
18	what this all means from a tube failure point of view.
19	So a summary. We've done one-seventh
20	scale analysis to provide some confidence. Then we
21	looked at full scale conditions for a Westinghouse
22	steam generator. We've got some indication of tube-
23	to-tube variations, what tubes are how hot in those
24	histograms.
25	We've also got tube temperatures versus

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

time. We've considered tube leakage in many aspects, and in the plenum bypass is not expected. We do see some overall decrease in mixing at high leakage rates. Interplenum mixing is significantly different for the Combustion Engineering Example that we looked at, and in the future we're on some sort of a standby. If

updated predictions are needed for some reason, we could carry this on.

We've also started a hot leg surge line analysis so that we can get a better idea of the mixing that goes on in the heat transfer in that area.

12 This final slide is another overview. So we've used this CFD to help augment the one-seventh 13 14 scale test. We've looked at them together, and we've 15 dome up with a whole new set of mixing coefficients and re-circ ratios and things like that to input into 16 That's been done. The ZION work that 17 SCDAP/RELAP. he'll present has these new coefficients. 18

We've got a much better understanding of the interplenum flow mixing behavior, tube-to-tube variations, as well as the effect of tube leakage, which was questioned in the past, and this analysis of the CE plant indicates some different mixing, and we're starting up a process of feeding that into SCDAP/RELAP, and we'll go from there.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

	137
1	DR. KRESS: The implications of that are
2	it's more likely to fail the tubes than the hot leg
3	surge?
4	MR. BOYD: Yeah, I don't want to jump the
5	gun, but if you've got temperatures in some tubes that
б	are on a normalized scale 95 percent effectively the
7	hot leg temperature, so that you've got a big, thick
8	hot leg wall seeing essentially the now, these are
9	entrance temperatures. There's some reduction in the
10	tube sheet, but the point is that it is significantly
11	hotter, and it's going to have to be worked through in
12	an integral fashion.
13	But my guess would be it may be an easier
14	thing to calculate.
15	CO-CHAIRMAN WALLIS: You know, I've run
16	out of superlatives to describe what you've done. I
17	mean, you have not only done some very good work, but
18	you presented it extraordinarily well.
19	MR. BOYD: Thank you.
20	CO-CHAIRMAN WALLIS: And the way in which
21	you respond to questions indicates that you know what
22	you've done, and you also know a lot more than you
23	present. And I just wish that all of the staff could
24	do the same thing.
25	MR. BOYD: Thank you.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

138 1 CO-CHAIRMAN WALLIS: It's a real pleasure. 2 It's one the best presentations I've ever heard in 3 front of the ACRS. It really is. 4 Thank you. 5 DR. KRESS: Agreed. MR. BOYD: Thank you. I'll take a tape of 6 7 that. 8 (Laughter.) 9 CO-CHAIRMAN FORD: For your next 10 performance review. 11 We'll recess for a quarter of an hour. 12 Be back here at 11 o'clock. (Whereupon, the foregoing matter went off 13 14 the record at 10:46 a.m. and went back on 15 the record at 11:03 a.m.) CO-CHAIRMAN FORD: I'd like to come back 16 into session. 17 Joe, would you like to introduce your next 18 19 presenter? 20 MR. MUSCARA: Well, it's essentially a 21 follow-up to the thermal hydraulic work. Don Fletcher 22 will be providing the next presentation. 23 MR. FLETCHER: Thank you, Joe. 24 CO-CHAIRMAN WALLIS: Is this the only 25 thing we have before lunch?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	139
1	MR. FLETCHER: I'm sorry?
2	CO-CHAIRMAN WALLIS: Is this the only
3	presentation before lunch? Or I just want to keep
4	track.
5	MR. MUSCARA: Yes.
6	MR. FLETCHER: Yes.
7	CO-CHAIRMAN WALLIS: So all of these other
8	characters are not going to show up? We don't have
9	Lynn Ward. We don't have it's just your
10	presentation?
11	(Laughter.)
12	CO-CHAIRMAN FORD: I've just been reminded
13	that we do have to stop sharply at 11:45 because there
14	is a PMP Committee meeting at that time.
15	MR. FLETCHER: So you would like to get
16	through
17	CO-CHAIRMAN FORD: Can you forego PMP for
18	a bit?
19	CO-CHAIRMAN WALLIS: It depends how
20	interesting it is here.
21	CO-CHAIRMAN FORD: Okay. Just keep going,
22	Don.
23	MR. FLETCHER: Okay. I will try to give
24	you the 45 minute version if at all possible.
25	We have covered some of the ground in here

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 already. The purpose of this analysis is to evaluate 2 progression of station blackout/severe the PWR accidents to determine whether the steam generator 3 4 tubes are expected to fail prior to the failure of 5 other reactor coolant system components, the idea being that if the steam generator tubes fail before 6 7 the hot legs or surge line, then you have a release to the steam generator, which can then go out of the 8 9 steam generator safety valve source through a break on the secondary side to the atmosphere directly. 10 So the risk is, therefore, affected by the 11 12 order at which things fail. The work we're doing with SCDAP/RELAP 5 is 13 14 centered on the ZION plant, which is a Westinghouse 15 four loop plant, and the Calvert Cliffs 1 plant, which 16 is a CE plant. We are looking at a base case accident 17 event scenario that is based on what was called the 18 19 TMLB prime station blackout event, which is a loss of 20 off-site power, following by the failure of all diesel 21 generators to start and the failure of the turbine 22 driven auxiliary feedwater to start, and an additional failure that was not included in TMLB prime, that is, 23 24 we have a failure of one steam generator PORV valve 25 such that one of the steam generators blows down

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

140

	141
1	shortly after the accident begins.
2	So the accident leads to a core dry-out
3	and a heat-up of the coolant system at a high reactor
4	coolant pressure, with one of the steam generators
5	secondary depressurized, and the other three steam
6	generators essentially remaining at pressure, roughly
7	1,000 psi.
8	You're all heard about RELAP 5 before.
9	It's a six equation code conservation of mass,
10	momentum, and energy with the steam water model, with
11	also capability to handle a noncondensable phase
12	that's tracked along with the steam.
13	The SCDAP part of this code models severe
14	accident behavior, such as fuel rod heat-up, oxidation
15	processes, fuel rod ballooning and rupture, fission
16	product release, melting of fuel, flow of fuel,
17	freezing of materials after it has been melted and
18	flown inside the reactor vessel, and also the creep
19	rupture failure of structures.
20	The code versions we're using are listed
21	on the bottom of the page there.
22	Actually there's quite a bit of background
23	on this. It has been going on for a number of years
24	at several different organizations. The Idaho
	National Engineering Laboratory developed SCDAP/RELAP

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	5 system models for several plants of which ZION and
2	Calvert Cliffs were two, and analyzed this same
3	accident, the TMLB stuck open steam generator PORV
4	event, with a variety of accident variations as well.
5	They've looked into sensitivities to such
6	things as steam generator tube leakage, PORV
7	CO-CHAIRMAN WALLIS: Does INEL have a
8	model for this counter current flow in the hot leg
9	MR. FLETCHER: Yes.
10	CO-CHAIRMAN WALLIS: and the plume and
11	the steam generator and all of that sort of thing?
12	MR. FLETCHER: Yes. The model that I am
13	using was developed at INEL. The basis of the model
14	was from there. It has been
15	CO-CHAIRMAN WALLIS: at least at some
16	crude level the phenomena that we heard about from
17	Chris?
18	MR. FLETCHER: Yes.
19	CO-CHAIRMAN WALLIS: Okay.
20	MR. FLETCHER: And I will attempt to
21	explain to you how what Chris has said fits into the
22	RELAP 5 scheme so that you will understand what we're
23	doing.
24	ISL has also evaluated a number of
25	sensitivities to such things as time step size. Each

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

143
structure meshes and so forth, and then ISL also
developed this idea of the plume being represented
using this nondimensional temperature ratio, which is
essentially a mixing of the steam temperature coming
up the hot leg and the steam temperature coming back
through the cold steam generator tube returns.
And then, of course, you have just heard
Chris' on the CFD work, which fits into this analysis.
The next few slides discuss the summary of
the current work scope that we were doing at ISL.
Task 1 is an updated base case calculation which has
been completed. This establishes a new reference case
for the project, and I will summarize today the
results of that case.
Task 2 is our sensitivity studies that
we're doing to evaluate the effect on the results of
variations in plant configuration, operating
parameters, natural circulation, mixing process
variables and other model parameters

16 we're d of 17 variati ing 18 paramet ess 19 variables, and other model parameters. 20 We are going to use the results of these

21 sensitivity studies to determine which are the appropriate independent variables to be looked at, an 22 uncertainty study that's going to follow very shortly. 23 This task is nearing completion. 24 I'11 25 give you preliminary results today for everything that

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(202) 234-4433
	144
1	has been completed to date.
2	Task three is an uncertainty study which
3	we've not yet started, except we've looked a little
4	bit into how we might do it. We will evaluate the
5	uncertainty in the updated base case results. We're
6	currently considering using a Monte Carlo response
7	surface method similar to what was used in the code
8	scaling applicability and uncertainty study.
9	For the response parameter, we're
10	considering the use of a Larson-Miller tube stress
11	multiplier as the parameter. This parameter is used
12	in SCDAP/RELAP 5 to determine whether the tubes fail
13	before or after the hot leg research line, and I'll
14	explain that in a little bit.
15	The creep rupture model in SCDAP/RELAP 5
16	is based on this Larson-Miller correlation, and it has
17	in it a best estimate response for nondegraded tube
18	creep rupture.
19	CO-CHAIRMAN WALLIS: Can it handle this
20	fluctuating temperature type of thing?
21	MR. FLETCHER: I believe it can. It works
22	by calculating on it during the calculation itself,
23	it comes up with the extent of the life, the creep
24	rupture life that has been extended, and when it gets
25	to 100 percent of life, then the tube is assumed to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	145
1	fail.
2	DR. KRESS: It's developed for transient
3	temperatures. So it can handle fluctuations.
4	CO-CHAIRMAN WALLIS: Now, can I ask you
5	about this tube? You've got this tube sheet, and the
6	tubes are attached and some of them are hot and some
7	of them are cold.
8	MR. FLETCHER: Yes.
9	CO-CHAIRMAN WALLIS: And then they go up
10	to these support plates which we understand now are
11	locked on the tube. So the tubes are cold and hot.
12	There's thermal expansion and all of that which is
13	trying to push against this locked support plate.
14	MR. FLETCHER: Yes.
15	CO-CHAIRMAN WALLIS: And are all of those
16	kind of stresses factored into the
17	MR. FLETCHER: No. Let me say the
18	calculation we're doing here is just to scope the
19	CO-CHAIRMAN WALLIS: Somebody is going to
20	look at that.
21	MR. FLETCHER: Absolutely.
22	CO-CHAIRMAN WALLIS: Maybe Argonne or
23	somebody.
24	MR. FLETCHER: That is correct. Argonne
25	is going to eventually use the RELAP 5 pressures and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	146
1	temperatures on the inside of the
2	CO-CHAIRMAN WALLIS: Because this locking
3	of the support plates to the tubes may be great for
4	the steam line break we heard yesterday, but if you're
5	doing it in this situation, it's imposing some
6	boundary conditions on the thermal expansion and
7	contraction of these tubes, which may not be
8	desirable.
9	MR. FLETCHER: That is correct. I am not
10	trying to represent what RELAP 5 is using here for the
11	creep rupture calculation as the one that will be used
12	in this analysis. I'm only using it as a scoping tool
13	at this point to determine where we are with respect
14	to the steam generator tube failure.
15	DR. KRESS: It doesn't recognize cracks or
16	defects.
17	MR. FLETCHER: No. Well
18	DR. KRESS: Just pressure internally and
19	the temperature gives
20	MR. FLETCHER: The correlation itself is
21	based on pristine, nondegraded material, and we will
22	in our calculations put a stress multiplier on that.
23	CO-CHAIRMAN WALLIS: But you need to know
24	the stresses in that, don't you? And if there's this
25	thermal count, thermal expansion pushing on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	147
1	that's going to effect
2	DR. KRESS: That's good for the pressure.
3	CO-CHAIRMAN WALLIS: It's not the
4	actual stress doesn't come into it at all?
5	DR. KRESS: No, it's hoop stress
6	(phonetic).
7	CO-CHAIRMAN WALLIS: It doesn't make a
8	difference?
9	DR. KRESS: I doubt it. I think
10	CO-CHAIRMAN WALLIS: It does in the
11	failure criteria.
12	MR. MUSCARA: I think yesterday we showed
13	that for the axial it doesn't matter a great deal. It
14	might matter for the circumferential cracks. Your
15	primary system component evaluation, we are doing a
16	comprehensive, 3D finite element analysis. We haven't
17	done that yet for steam generator tubes, but I'm not
18	sure it's necessary at this point.
19	MR. FLETCHER: The major output of the
20	RELAP 5 calculations that you'll see will be the tube
21	stress multiplier required to fail the tubes, whether
22	it be the average tube or the hottest tube in the
23	steam generator, and the higher the multiplier, the
24	lower the stress that the tube is assumed to fail at,
25	such that if a tube had a multiplier of two on it,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	148
1	that would imply that it actually only had 50 percent
2	of the strength that it would have when it was new
3	material.
4	So this is just a rough way to look at
5	that creep rupture failure.
6	For the response surface method, we're
7	going to develop a set of important parameters to use
8	for the uncertainty study based on the sensitivity
9	runs that you'll see today. We're considering the use
10	of a fractional factorial or Plackett Burman
11	experimental design to bring the number of variables
12	and the number of calculations needed to develop the
13	response service down to a reasonable number.
14	and then we'll use Monte Carlo sampling to
15	obtain probability distribution for the tube stress
16	multiplier that is the critical one.
17	We plan to use commercial statistical
18	software for this.
19	DR. RANSOM: How many runs is considered
20	reasonable?
21	MR. FLETCHER: Well, 50 is probably
22	doable; 100.
23	DR. RANSOM: Fifteen?
24	MR. FLETCHER: Fifty, five, oh, is
25	probably doable. When you get beyond that it starts

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	149
1	to become less reasonable. These runs are essentially
2	six hours each to date.
3	DR. RANSOM: Each one is like six hours?
4	MR. FLETCHER: Yes.
5	DR. RANSOM: Did you consider the
6	nonparametric statistical methods that show that, you
7	know, the 95-95 confidence level, like 59 runs would
8	be required?
9	MR. FLETCHER: Can you help me there,
10	Bill?
11	MR. ARCIERI: My name is Bill Arcieri. I
12	work for ISL, and I've been working with Don on
13	setting this up.
14	We're looking into what you're talking
15	about, but I think the fractional factorial method has
16	some advantages. One is it allows us for the
17	variables that we might be looking at for the
18	uncertainty study to look at interactions which, you
19	know, could be of interest in gaining insight into how
20	the problem responds.
21	As Don progresses in his talk, he's ending
22	up by the end of his presentation with five parameters
23	that will be evaluated, and if that holds up, then it
24	would be 32 runs, which I think would help us, you
25	know, keep our runs within some reasonable limit.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	Obviously if we had more parameters, the
2	number of runs goes up.
3	DR. RANSOM: All right. The one advantage
4	of the non-parametric is that you can have as many
5	parameters as you want or need. Anyway, I was just
6	curious to know if you had considered that.
7	CO-CHAIRMAN FORD: Could I go back? I was
8	out of the room when you discussed task two, which
9	relates to the question that Graham brought up. This
10	response parameter for materials degradation, will it
11	be due to creep or creep fatigue interactions or what
12	other material degradation?
13	I don't know whether it should be you or
14	Joe who should be answering this question, but to what
15	degree of qualification have these failure algorithms
16	been subjected? Presumably the algorithm looks
17	something like failure time or failure probability as
18	a function of material, stress conditions, et cetera,
19	temperature.
20	Has that algorithm been qualified against
21	data?
22	MR. MUSCARA: For the steam generator
23	tubes.
24	CO-CHAIRMAN FORD: Yes.
25	MR. MUSCARA: We conducted extensive work

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	on modeling the creep failure with the tubes and, you
2	know, it has been validated through testing.
3	CO-CHAIRMAN FORD: Okay, and so that is
4	pretty well if I read the last sentence on your
5	previous page, "task nearing completion. Preliminary
б	results are summarized in this presentation." Is that
7	correct? We'll be seeing
8	MR. MUSCARA: Those are two separate
9	activities. Evaluating the behavior of steam
10	generator tubes in severe accident conditions, we've
11	developed procedures and methods and validated with a
12	tremendous amount of data. What they're using, it's
13	somewhat different than what we're using, but for the
14	program the results that you intend on paying
15	attention to are the results based on our model.
16	CO-CHAIRMAN FORD: Okay.
17	MR. FLETCHER: The obvious answer is if we
18	make SCDAP/RELAP 5 calculations and we find out that
19	it makes a difference on the stress for the tubes.
20	The question is: how significant is that?
21	And all I'm doing at this point is to try
22	to scope the effect of that issue for the results of
23	my calculation.
24	MR. MUSCARA: The results will start
25	getting closer to what we're predicting based on this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	152
1	stress multiplication factor they use, which is very
2	similar to the MNSP formulation that we have in our
3	correlations.
4	CO-CHAIRMAN FORD: Okay.
5	MR. FLETCHER: Task four is a Cormell
6	(phonetic) progression sensitivity study. This is
7	starting at this time, and we're going to look at the
8	sensitivity results to the oxidation rate, to the
9	control rod guide tube interaction model that also
10	affects relocation, melt and relocation of the control
11	rod model.
12	CO-CHAIRMAN WALLIS: Well, let me ask you
13	this. We saw this detailed model of the steam
14	generator. In the core heat-up you have a cold stream
15	pouring out of this hot leg.
16	MR. FLETCHER: Yes.
17	CO-CHAIRMAN WALLIS: Like sort of water
18	out of a pipe.
19	MR. FLETCHER: Yes.
20	CO-CHAIRMAN WALLIS: Or wine out of a
21	bottle onto whatever is there, the coil, upper plate
22	or something.
23	MR. FLETCHER: Yes.
24	CO-CHAIRMAN WALLIS: And it goes down into
25	the core and recirculates and so on. It would seem

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	that how hot the hottest part gets is a bit like the
2	question in the steam generator because you've got
3	this natural circulation driven thing going on in the
4	core.
5	MR. FLETCHER: Absolutely.
б	CO-CHAIRMAN WALLIS: So how do you do that
7	without doing CFD there?
8	MR. FLETCHER: Well, of course, RELAP 5 is
9	set up to calculate circulations, including buoyancy
10	driven circulations, which is what we have here, and
11	I will show you the results here of what RELAP 5 is
12	doing in the core. We are getting what you would
13	expect, a down flow in the peripheral channels of the
14	core, an up flow in the center channels of the core.
15	CO-CHAIRMAN WALLIS: It seems to me Chris
16	showed us nicely that you get mixing in that. The jet
17	that comes out of the hot leg into the steam generator
18	has cold fluid impinging on it, and there's a lot of
19	mixing there so that that cools down.
20	The cold water coming out of the hot leg
21	mixes with the hot the cold steam coming out of the
22	hot leg mixes with the hot steam in the vessel in the
23	same way.
24	MR. FLETCHER: I understand what you're
25	saying. We're not applying a mixing process in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	RELAP 5 model at the hot leg, the vessel connection.
2	We are not doing that at this time.
3	Task five is for iterative support to the
4	PRA. We provided them with the base case results
5	here, and they are analyzing those at this time. As
6	their needs for thermal hydraulic data information on
7	how systems might behave in order for them to do their
8	bidding process, we will be talking with them, and
9	performing additional calculations if needed in task
10	six.
11	And in task seven is the Calvert Cliffs
12	analysis that is starting right now.
13	Slide 11 is probably the one that was
14	referred to as the cartoon earlier that didn't make
15	sense.
16	CO-CHAIRMAN WALLIS: It doesn't make
17	sense.
18	MR. FLETCHER: And what it is intending to
19	imply and this is an old diagram, by the way. This
20	is one that I just picked up and put in here because
21	I thought it would clarify things, but apparently it
22	did not.
23	CO-CHAIRMAN WALLIS: Actually it makes
24	them worse.
25	MR. FLETCHER: Yes. What we say is there

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	are really two modes of operation for natural
2	circulation of the loop. The one on the left is the
3	normal direction flow where steam would flow around
4	the loop, back through a vacated loop seal into the
5	coal leg and then down the downcomer of the vessel.
6	The situation on the right is this
7	recirculating mode, if you will, where we have a split
8	hot leg with hot steam flowing across the top of the
9	hot leg, some of it going up through the pressurized
10	roof if the valve is opened, over to the inlet plenum
11	of the steam generator, then the recirculation around
12	through the tubes.
13	And in order for this to happen you have
14	to have a loop seal that is filled with water.
15	CO-CHAIRMAN WALLIS: But to go back to
16	this figure here, in reality you have four loops in
17	some plants, and you were saying earlier that they may
18	all operate in the right-hand mode together.
19	MR. FLETCHER: No.
20	CO-CHAIRMAN WALLIS: I was getting the
21	impression that you could have three of them operating
22	in the right-hand mode and one operating in the left-
23	hand mode, in which case you'd have to worry about how
24	will these different things affect the circulation and
25	the core. There's no plate down the middle. It's all

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	interaction.
2	MR. FLETCHER: No, I've given you the
3	wrong impression. The way the model works is all four
4	loops are modeled independently.
5	CO-CHAIRMAN WALLIS: Right, and some of
6	them may be in one mode and some of them may be in the
7	other.
8	MR. FLETCHER: Yes, and that decision is
9	made independently during the calculation for each of
10	the four loops.
11	CO-CHAIRMAN WALLIS: So you have an
12	interesting circulation pattern in the core with sort
13	of three of them behaving one way with this cold fluid
14	pouring in and out of these pipes and the other one
15	the cold fluid is coming in from the bottom. So it's
16	going to be quite a different
17	MR. FLETCHER: No, I still haven't
18	clarified this.
19	CO-CHAIRMAN WALLIS: Oh, okay.
20	MR. FLETCHER: The code calculations that
21	we run show the recirculating mode in all four loops
22	all of the time.
23	CO-CHAIRMAN WALLIS: So we don't need to
24	worry about left-hand side.
25	MR. FLETCHER: You don't need to worry

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	about the left-hand side. The left-hand side,
2	however, is how the model looks before the point when
3	the core uncovers and we get hot steam in the top of
4	the system.
5	In other words, we use a representation
б	similar to what's on the left-hand side during the
7	early part of the transfer.
8	CO-CHAIRMAN WALLIS: So you've got water.
9	MR. FLETCHER: Yes.
10	CO-CHAIRMAN WALLIS: Ah.
11	MR. FLETCHER: Yes.
12	CO-CHAIRMAN WALLIS: You see, it shows
13	steam here.
14	MR. FLETCHER: It does, and should the
15	loop seal clear in any of the loops, then we would
16	refer to the nodalization that would give you the flow
17	through.
18	DR. RANSOM: Does the loop seal ever
19	clear?
20	MR. FLETCHER: Not in the calculations
21	we've done to date, although that's certainly a
22	possibility once we change accident scenarios, if we
23	have depressurization events that are significant
24	enough. We could have the loop seals void by flashing
25	late in the transient.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

picture like this, it looks awfully like CFT.

1

2

3

MR. FLETCHER: It does.

CO-CHAIRMAN WALLIS: Everything is sort of connected to everything else, and it's neighboring boxes.

7 MR. FLETCHER: Okay. In the vessel we're modeling it with five channels with a radio power 8 profile across those channels with the hottest channel 9 in the center. We also have a nodalization scheme in 10 11 the upper plenum that allows hot steam to rise out of 12 those channels and flow over towards the hot legs, and in fact, in the calculations, what we see is the cold 13 14 steam flow returns, flows down the peripheral 15 channels, and then flows upward through the central channels with a steam flow going up to the top of the 16 17 upper plenum in the center of the vessel and then flowing over to the hot leg. 18

19CO-CHAIRMAN WALLIS: Well, how about20variations around the periphery? Have you got a21cold --22MR. FLETCHER: No, we're not modeling any23azimuthal variation at all.

24 CO-CHAIRMAN WALLIS: But isn't that what 25 happens because you've got hot legs coming in at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	159
1	specific places with cold fluid and the hot fluids
2	coming up elsewhere? So you've got a three
3	dimensional flow going on.
4	MR. FLETCHER: Which we've modeled as two
5	dimensions.
6	CO-CHAIRMAN WALLIS: But it is three
7	dimensions, definitely is. You've got cold areas of
8	down flow in the core underneath the hot legs, and
9	then you get up flow elsewhere. So if you looked
10	around the circumference, you'd have areas of down
11	flow and up flow the same way as you do in the steam
12	generator.
13	MR. FLETCHER: I agree that's a
14	possibility we have not
15	CO-CHAIRMAN WALLIS: You have a cold pool.
16	You have a cold area. You have a certain number of
17	tubes in down flow and certain number up, just like
18	the steam generator.
19	MR. FLETCHER: What you're saying is true,
20	and the loops would be asymmetric, but not as
21	asymmetric as you said a while ago when you thought
22	that only one of the loops was in the recirculation
23	mode. They are all four in the recirculation mode.
24	CO-CHAIRMAN WALLIS: So a quarter of the
25	core being different, yeah.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	160
1	MR. FLETCHER: That's correct.
2	CO-CHAIRMAN WALLIS: Within that quarter
3	piece.
4	MR. FLETCHER: That's correct.
5	CO-CHAIRMAN WALLIS: So maybe we should
6	get Chris to do this with CFD.
7	MR. FLETCHER: I thought I would spend a
8	little time on two slides down on slide 14, which is
9	the layout of the loop model showing the split hot leg
10	nodalization.
11	Let me say we're allowing RELAP 5 to
12	calculate the behavior in this loop except at certain
13	locations, and those locations are related to the
14	steam generator inlet plenum, which is shown as
15	Volumes 105, 106, and 107.
16	CO-CHAIRMAN WALLIS: I'm trying to think
17	back to I'm sorry my previous this. This is
18	like the steam generator. So you have a certain
19	number of tubes in the core with down flow and a
20	certain number with up flow, just like in the steam
21	generator, or am I wrong?
22	In that case, I'm not quite sure how RELAP
23	handles it. You don't know how many tubes you've got
24	in down flow and how many in up flow. How does it do
25	that?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	161
1	MR. FLETCHER: Well, as the cold stream
2	enters the peripheral channel of the core
3	CO-CHAIRMAN WALLIS: It goes down.
4	MR. FLETCHER: it goes down. There's
5	nothing
6	CO-CHAIRMAN WALLIS: It forces it to go
7	down, but does it go down on the next one, too? You
8	still have sort of in a much reduced configuration.
9	You have five passengers. It can go down in two or
10	103.
11	MR. FLETCHER: What we see is the outer
12	two channels are in down flow.
13	CO-CHAIRMAN WALLIS: So you have that. At
14	least you have feature.
15	MR. FLETCHER: And the inner two channels
16	are in up flow, and the center channel goes down at
17	the top and then flows up through the bottom and
18	CO-CHAIRMAN WALLIS: Okay. So you've got
19	something a bit like Chris' picture, but you've only
20	got five tubes to represent the core
21	MR. FLETCHER: Yes.
22	CO-CHAIRMAN WALLIS: instead of the
23	however many there are.
24	MR. FLETCHER: Right. We also have an
25	eddy flow in the upper plenum. We have a flow that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	162
1	goes through the upper plenum towards the hot leg, and
2	then another one that returns backwards in the lower
3	part of the upper plenum.
4	Moving on to the loops, we've modeled the
5	split hot legs as completely separate hydraulically.
6	There's no communication between the two hydraulically
7	as you go down the length of the hot leg.
8	The only place we're really forcing the
9	solution is based upon the CFD results over at the
10	steam generator inlet plenum, and by forcing the
11	solution we're doing it using what's called C sub V
12	values, also know as flow coefficient methods, where
13	the flow through the junction is defined as a function
14	of the delta P across the junction.
15	So we're in essence saying that if I have
16	this delta P, I'm going to force the flow to be this,
17	other than allow the code to calculate what the flow
18	might be through there. So by doing this and
19	matching, tuning these numbers, tuning these C sub Vs
20	until we agree with the recirculation ratio mixing
21	fractions and steam generator powers that we have, we
22	can mimic, if you will, the CFD results for the
23	behavior that's actually going on there.
24	But other than that, RELAP 5 is doing its
25	job as far as calculating things. So RELAP 5 is being

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	163
1	used to calculate the buoyancy driving head associated
2	with the different temperature fluids in the upper and
3	lower hot legs, and the buoyancy driving heads
4	associated with the steam generator tubes, one flowing
5	in the forward direction and one flowing in the
6	reverse direction.
7	DR. RANSOM: The number of tubes that
8	you've said is from the CFD calculation, I gather.
9	MR. FLETCHER: That's correct.
10	DR. RANSOM: So you pick so many in up
11	flow and so many in down flow.
12	MR. FLETCHER: And the selection is 50-50.
13	Previously
14	DR. RANSOM: Fifty-50?
15	MR. FLETCHER: Fifty-50. Previously, it
16	was 53-47, I believe, up flow/down flow.
17	DR. RANSOM: I thought the results we saw
18	indicated a much smaller fraction in up flow.
19	MR. BOYD: That number changes with the
20	heat transfer rate. I showed you some with the high
21	heat transfer rate. It was 38 percent, and the heat
22	transfer rates that we feel are more appropriate, we
23	got 46, 47, and 48 percent. The data showed 50
24	percent, and we had to stay in that range. We chose
25	the 50. In the end we were close to it with the CFD,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	164
1	and then we're doing sensitivity studies to show that
2	it's not all that important in these kind of
3	differences anyway.
4	CO-CHAIRMAN WALLIS: Well, what's
5	important are the temperatures. Now, we saw for the
6	steam generator you had what is it? you had
7	maybe 1,000 degrees there and maybe 1,200 coming out
8	of the core or something?
9	MR. FLETCHER: Yes.
10	CO-CHAIRMAN WALLIS: And there was missing
11	in that plenum. Now, if you've got 1,200 coming out
12	into the hot leg, that means that you've got some
13	mixing in the upper plenum. So maybe you've got 1,400
14	there, and then somewhere in the core you've got other
15	temperatures.
16	You need to know that temperature in the
17	core presumably because you're beginning to get
18	degradation of the core.
19	MR. FLETCHER: Yes, absolutely.
20	CO-CHAIRMAN WALLIS: So you need to be
21	careful about this, that the flow distributions and
22	the mixing right in the core, as in the steam
23	generator so that you don't blindly say that, you
24	know, whatever is coming out of the core in
25	temperature is what's going into the hot leg because

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	it isn't, because it's mixing with some of the
2	MR. FLETCHER: It's mixing in the upper
3	plenum, and RELAP 5 will do that.
4	CO-CHAIRMAN WALLIS: But that will mean
5	that the steam generator is colder than it would have
6	been, and so it's less likely to pop.
7	MR. FLETCHER: That's true.
8	CO-CHAIRMAN WALLIS: And the core is more
9	likely to fail.
10	MR. FLETCHER: So if we had a mixing
11	process going on at the hot leg vessel connection, it
12	would make things better from a steam generator
13	CO-CHAIRMAN WALLIS: And I think this is
14	where there has to be a perspective of the whole
15	issue. You're worried about does the steam generator
16	pop before the surge line, but also the question is
17	does the core degrade before either of these.
18	MR. FLETCHER: Right.
19	CO-CHAIRMAN WALLIS: And by how much
20	because if it started to lose its geometry, then you
21	have to do something about the heat transfer.
22	DR. KRESS: I think the chances of it
23	losing its geometry are small compared to
24	CO-CHAIRMAN WALLIS: Is it going to
25	release hydrogen?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	DR. KRESS: It's going to fail the hot leg
2	in the early tubes first.
3	CO-CHAIRMAN WALLIS: Well, you're saying
4	that as a statement. Do you know the temperature?
5	DR. KRESS: I've seen a lot of
6	calculations.
7	CO-CHAIRMAN WALLIS: So you know the
8	temperatures in the core.
9	DR. KRESS: You have to get pretty high
10	temperatures.
11	CO-CHAIRMAN WALLIS: Okay. Thank you.
12	DR. KRESS: Before they start changing.
13	MR. FLETCHER: The base case calculation
14	will show you the core does not actually melt.
15	CO-CHAIRMAN WALLIS: Do you get oxidation
16	of the cladding?
17	DR. KRESS: You start oxidizing, but you
18	don't really run into the
19	CO-CHAIRMAN WALLIS: That's not a
20	significant heat source?
21	DR. KRESS: It can be, but
22	MR. FLETCHER: The oxidation source is
23	significant.
24	CO-CHAIRMAN WALLIS: Oh, so you do have to
25	get that right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1MR. FLETCHER: Yes, we do.2CO-CHAIRMAN WALLIS: Oh, okay.3MR. FLETCHER: The peak oxidation power is4335 megawatts, roughly ten percent of normal core5power and roughly ten times decay heat.6CO-CHAIRMAN WALLIS: So it's dominant.7MR. FLETCHER: It's dominant, yes.8CO-CHAIRMAN WALLIS: Better get it right.9MR. FLETCHER: Got to get it right.10The point I wanted to make on the steam11generator tubes is that RELAP 5 is being used to12calculate the buoyancy driving head there, the steam13temperatures inside the tubes, and you really have two14mechanisms going on there. The hot steam is rising15into the forward flowing tube and is being cooled as16it goes along, and it continually is being cooled all17the way over to the outlet plenum.18And then there is a similar cooling19process going on from the outlet plenum back to the20inlet plenum. So you really have a differential21buoyancy going on here where you have a differente in22temperatures between the tubes on the up flow side23that helps you, and you have a different temperature24on the down flow side that actually works against you,25and it's the difference of those two terms that really		167
3MR. FLETCHER: The peak oxidation power is3335 megawatts, roughly ten percent of normal core5power and roughly ten times decay heat.6CO-CHAIRMAN WALLIS: So it's dominant.7MR. FLETCHER: It's dominant, yes.8CO-CHAIRMAN WALLIS: Better get it right.9MR. FLETCHER: Got to get it right.10The point I wanted to make on the steam11generator tubes is that RELAP 5 is being used to12calculate the buoyancy driving head there, the steam13temperatures inside the tubes, and you really have two14mechanisms going on there. The hot steam is rising15into the forward flowing tube and is being cooled as16it goes along, and it continually is being cooled all17the way over to the outlet plenum.18And then there is a similar cooling19process going on from the outlet plenum back to the20inlet plenum. So you really have a differential21buoyancy going on here where you have a difference in22temperatures between the tubes on the up flow side23that helps you, and you have a different temperature24on the down flow side that actually works against you,	1	MR. FLETCHER: Yes, we do.
 335 megawatts, roughly ten percent of normal core power and roughly ten times decay heat. CO-CHAIRMAN WALLIS: So it's dominant. MR. FLETCHER: It's dominant, yes. CO-CHAIRMAN WALLIS: Better get it right. MR. FLETCHER: Got to get it right. MR. FLETCHER: Got to get it right. The point I wanted to make on the steam generator tubes is that RELAP 5 is being used to calculate the buoyancy driving head there, the steam temperatures inside the tubes, and you really have two mechanisms going on there. The hot steam is rising into the forward flowing tube and is being cooled as it goes along, and it continually is being cooled all the way over to the outlet plenum. And then there is a similar cooling process going on from the outlet plenum back to the inlet plenum. So you really have a differential buoyancy going on here where you have a difference in temperatures between the tubes on the up flow side that helps you, and you have a different temperature on the down flow side that actually works against you, 	2	CO-CHAIRMAN WALLIS: Oh, okay.
5power and roughly ten times decay heat.6CO-CHAIRMAN WALLIS: So it's dominant.7MR. FLETCHER: It's dominant, yes.8CO-CHAIRMAN WALLIS: Better get it right.9MR. FLETCHER: Got to get it right.10The point I wanted to make on the steam11generator tubes is that RELAP 5 is being used to12calculate the buoyancy driving head there, the steam13temperatures inside the tubes, and you really have two14mechanisms going on there. The hot steam is rising15into the forward flowing tube and is being cooled as16it goes along, and it continually is being cooled all17the way over to the outlet plenum.18And then there is a similar cooling19process going on here where you have a differential20buoyancy going on here where you have a differente in21temperatures between the tubes on the up flow side23that helps you, and you have a different temperature24on the down flow side that actually works against you,	3	MR. FLETCHER: The peak oxidation power is
 CO-CHAIRMAN WALLIS: So it's dominant. MR. FLETCHER: It's dominant, yes. CO-CHAIRMAN WALLIS: Better get it right. MR. FLETCHER: Got to get it right. The point I wanted to make on the steam generator tubes is that RELAP 5 is being used to calculate the buoyancy driving head there, the steam temperatures inside the tubes, and you really have two mechanisms going on there. The hot steam is rising into the forward flowing tube and is being cooled as it goes along, and it continually is being cooled all the way over to the outlet plenum. And then there is a similar cooling process going on from the outlet plenum back to the inlet plenum. So you really have a differential buoyancy going on here where you have a difference in temperatures between the tubes on the up flow side that helps you, and you have a different temperature 	4	335 megawatts, roughly ten percent of normal core
7MR. FLETCHER: It's dominant, yes.8CO-CHAIRMAN WALLIS: Better get it right.9MR. FLETCHER: Got to get it right.10The point I wanted to make on the steam11generator tubes is that RELAP 5 is being used to12calculate the buoyancy driving head there, the steam13temperatures inside the tubes, and you really have two14mechanisms going on there. The hot steam is rising15into the forward flowing tube and is being cooled as16it goes along, and it continually is being cooled all17the way over to the outlet plenum.18And then there is a similar cooling19process going on from the outlet plenum back to the20inlet plenum. So you really have a differential21buoyancy going on here where you have a difference in22temperatures between the tubes on the up flow side23that helps you, and you have a different temperature24on the down flow side that actually works against you,	5	power and roughly ten times decay heat.
8 CO-CHAIRMAN WALLIS: Better get it right. 9 MR. FLETCHER: Got to get it right. 10 The point I wanted to make on the steam 11 generator tubes is that RELAP 5 is being used to 12 calculate the buoyancy driving head there, the steam 13 temperatures inside the tubes, and you really have two 14 mechanisms going on there. The hot steam is rising 15 into the forward flowing tube and is being cooled as 16 it goes along, and it continually is being cooled all 17 the way over to the outlet plenum. 18 And then there is a similar cooling 19 process going on from the outlet plenum back to the 20 inlet plenum. So you really have a differential 21 buoyancy going on here where you have a difference in 22 temperatures between the tubes on the up flow side 23 that helps you, and you have a different temperature 24 on the down flow side that actually works against you,	б	CO-CHAIRMAN WALLIS: So it's dominant.
9 MR. FLETCHER: Got to get it right. 10 The point I wanted to make on the steam 11 generator tubes is that RELAP 5 is being used to 12 calculate the buoyancy driving head there, the steam 13 temperatures inside the tubes, and you really have two 14 mechanisms going on there. The hot steam is rising 15 into the forward flowing tube and is being cooled as 16 it goes along, and it continually is being cooled all 17 the way over to the outlet plenum. 18 And then there is a similar cooling 19 process going on from the outlet plenum back to the 20 inlet plenum. So you really have a differential 21 buoyancy going on here where you have a difference in 22 temperatures between the tubes on the up flow side 23 that helps you, and you have a different temperature 24 on the down flow side that actually works against you,	7	MR. FLETCHER: It's dominant, yes.
10 The point I wanted to make on the steam 11 generator tubes is that RELAP 5 is being used to 12 calculate the buoyancy driving head there, the steam 13 temperatures inside the tubes, and you really have two 14 mechanisms going on there. The hot steam is rising 15 into the forward flowing tube and is being cooled as 16 it goes along, and it continually is being cooled all 17 the way over to the outlet plenum. 18 And then there is a similar cooling 19 process going on from the outlet plenum back to the 20 inlet plenum. So you really have a differential 21 buoyancy going on here where you have a difference in 22 temperatures between the tubes on the up flow side 23 that helps you, and you have a different temperature 24 on the down flow side that actually works against you,	8	CO-CHAIRMAN WALLIS: Better get it right.
11generator tubes is that RELAP 5 is being used to12calculate the buoyancy driving head there, the steam13temperatures inside the tubes, and you really have two14mechanisms going on there. The hot steam is rising15into the forward flowing tube and is being cooled as16it goes along, and it continually is being cooled all17the way over to the outlet plenum.18And then there is a similar cooling19process going on from the outlet plenum back to the20inlet plenum. So you really have a differential21buoyancy going on here where you have a difference in22temperatures between the tubes on the up flow side23that helps you, and you have a different temperature24on the down flow side that actually works against you,	9	MR. FLETCHER: Got to get it right.
calculate the buoyancy driving head there, the steam temperatures inside the tubes, and you really have two mechanisms going on there. The hot steam is rising into the forward flowing tube and is being cooled as it goes along, and it continually is being cooled all the way over to the outlet plenum. And then there is a similar cooling process going on from the outlet plenum back to the inlet plenum. So you really have a differential buoyancy going on here where you have a difference in temperatures between the tubes on the up flow side that helps you, and you have a different temperature on the down flow side that actually works against you,	10	The point I wanted to make on the steam
temperatures inside the tubes, and you really have two mechanisms going on there. The hot steam is rising into the forward flowing tube and is being cooled as it goes along, and it continually is being cooled all the way over to the outlet plenum. And then there is a similar cooling process going on from the outlet plenum back to the inlet plenum. So you really have a differential buoyancy going on here where you have a difference in temperatures between the tubes on the up flow side that helps you, and you have a different temperature on the down flow side that actually works against you,	11	generator tubes is that RELAP 5 is being used to
14 mechanisms going on there. The hot steam is rising 15 into the forward flowing tube and is being cooled as 16 it goes along, and it continually is being cooled all 17 the way over to the outlet plenum. 18 And then there is a similar cooling 19 process going on from the outlet plenum back to the 20 inlet plenum. So you really have a differential 21 buoyancy going on here where you have a difference in 22 temperatures between the tubes on the up flow side 23 that helps you, and you have a different temperature 24 on the down flow side that actually works against you,	12	calculate the buoyancy driving head there, the steam
15 into the forward flowing tube and is being cooled as 16 it goes along, and it continually is being cooled all 17 the way over to the outlet plenum. 18 And then there is a similar cooling 19 process going on from the outlet plenum back to the 20 inlet plenum. So you really have a differential 21 buoyancy going on here where you have a difference in 22 temperatures between the tubes on the up flow side 23 that helps you, and you have a different temperature 24 on the down flow side that actually works against you,	13	temperatures inside the tubes, and you really have two
16 it goes along, and it continually is being cooled all 17 the way over to the outlet plenum. 18 And then there is a similar cooling 19 process going on from the outlet plenum back to the 20 inlet plenum. So you really have a differential 21 buoyancy going on here where you have a difference in 22 temperatures between the tubes on the up flow side 23 that helps you, and you have a different temperature 24 on the down flow side that actually works against you,	14	mechanisms going on there. The hot steam is rising
17 the way over to the outlet plenum. 18 And then there is a similar cooling 19 process going on from the outlet plenum back to the 20 inlet plenum. So you really have a differential 21 buoyancy going on here where you have a difference in 22 temperatures between the tubes on the up flow side 23 that helps you, and you have a different temperature 24 on the down flow side that actually works against you,	15	into the forward flowing tube and is being cooled as
And then there is a similar cooling process going on from the outlet plenum back to the inlet plenum. So you really have a differential buoyancy going on here where you have a difference in temperatures between the tubes on the up flow side that helps you, and you have a different temperature on the down flow side that actually works against you,	16	it goes along, and it continually is being cooled all
19 process going on from the outlet plenum back to the 20 inlet plenum. So you really have a differential 21 buoyancy going on here where you have a difference in 22 temperatures between the tubes on the up flow side 23 that helps you, and you have a different temperature 24 on the down flow side that actually works against you,	17	the way over to the outlet plenum.
 inlet plenum. So you really have a differential buoyancy going on here where you have a difference in temperatures between the tubes on the up flow side that helps you, and you have a different temperature on the down flow side that actually works against you, 	18	And then there is a similar cooling
21 buoyancy going on here where you have a difference in 22 temperatures between the tubes on the up flow side 23 that helps you, and you have a different temperature 24 on the down flow side that actually works against you,	19	process going on from the outlet plenum back to the
22 temperatures between the tubes on the up flow side 23 that helps you, and you have a different temperature 24 on the down flow side that actually works against you,	20	inlet plenum. So you really have a differential
23 that helps you, and you have a different temperature 24 on the down flow side that actually works against you,	21	buoyancy going on here where you have a difference in
24 on the down flow side that actually works against you,	22	temperatures between the tubes on the up flow side
	23	that helps you, and you have a different temperature
25 and it's the difference of those two terms that really	24	on the down flow side that actually works against you,
	25	and it's the difference of those two terms that really

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	168
1	defines how fast this flows.
2	DR. KRESS: How your heat sync is strictly
3	the metal in the
4	MR. FLETCHER: On the secondary side. As
5	you can see, we've modeled the downcomer as one pass
6	on the right-hand side there, one dimensional, and
7	then the boiler is one dimensional up there as well.
8	So there is a steam flow that RELAP 5 calculates
9	around that loop in the secondary side.
10	We do have heat loss off the outside of
11	the shell, as well, which is a fairly thick component.
12	So there is some ultimate heat sync out there.
13	DR. KRESS: The natural convection into
14	the
15	MR. FLETCHER: Yes, yes. But the essence
16	of what we're looking at here is really very fast
17	heat-up that is driven by the oxidation in the core,
18	and the questions is how does that heat spread out
19	into the components, out into the legs and out into
20	the steam generator, and the heat-up rate is very
21	rapid, and so things like time constants to get heat
22	out there, the mixing that can go on at the inlet
23	plenum can significantly moderate the heat that the
24	steam generator tubes see.
25	CO-CHAIRMAN WALLIS: The mixing in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	169
1	upper part of the reactor and moderate the heat of the
2	hot leg.
3	MR. FLETCHER: Absolutely, it could, and
4	we're not modeling it.
5	CO-CHAIRMAN WALLIS: So that's the take-
6	away, I think.
7	MR. FLETCHER: Yes, right. I hear you.
8	The next few slides describe the model
9	modifications that were made since the previous base
10	case. I'll hit only the major ones.
11	We've added reactor coolant system heat
12	loss to the containment from the external surfaces
13	from the primary and secondary coolant system. We've
14	added a 21 gpm pump seal leakage in each of the pumps.
15	We added a counter current limiting model at the
16	pressurizer to surge line tank connection which was
17	not in the previous
18	CO-CHAIRMAN WALLIS: What is gpm again?
19	This is that weird unit that means mass flow?
20	MR. FLETCHER: It means volumetric flow at
21	some
22	CO-CHAIRMAN WALLIS: Unspecified
23	condition?
24	MR. FLETCHER: Right. It is a dilemma,
24	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	put in a brake size that gave me 21 gpm volumetric
2	flow at the initial point and then left the area the
3	same throughout.
4	CO-CHAIRMAN WALLIS: This is gpm at room
5	conditions or reactor conditions or gpm or steam or
б	what?
7	MR. FLETCHER: This would be gpm of water
8	at the time the break opens up, which is early in the
9	event.
10	CO-CHAIRMAN WALLIS: So it's about half
11	the density of water in that bucket at room
12	temperature or something like that. It's not like gpm
13	that comes out of a faucet.
14	MR. FLETCHER: No, it's gpm of reactor
15	coolant system temperature water, 550.
16	CO-CHAIRMAN WALLIS: So it's a lot less
17	dense than cold water.
18	MR. FLETCHER: Yes.
19	CO-CHAIRMAN WALLIS: Please do away with
20	this unit. It's so confusing.
21	MR. FLETCHER: Okay. We've changed the
22	tube plugging assumption from 15 percent to ten
23	percent, which is the middle of the expected range.
24	We've added thermal radiation modeling in the hot
25	legs. The previous model did not have wall-to-wall

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

171 1 radiation between the upper hot leg wall and the lower 2 hot leg wall. 3 CO-CHAIRMAN WALLIS: Steam generator 4 radiation must be important. You've got pretty 5 stagnant steam on the outside. You've got hot tubes, and radiation. I mean, even when we're sitting here 6 7 the radiation from you is about equivalent to your 8 loss by natural convection in this room. So do you do 9 that in the steam generator? Do you model all radiation between tubes? 10 MR. FLETCHER: No. Let me specify the --11 CO-CHAIRMAN WALLIS: I would think that 12 would matter. 13 14 MR. FLETCHER: Well, first of all, we only 15 have a single tube. 16 CO-CHAIRMAN WALLIS: Oh, okay. MR. FLETCHER: Or two tubes. So we're not 17 trying to model the details of what's going on there. 18 19 What we've done is we've added wall-to-20 wall radiation for the upper and lower hot legs. 21 We've also added steam-to-wall --22 CO-CHAIRMAN WALLIS: Ιf Excuse me. radiation out from the tubes in the steam generator 23 24 were the dominant heat transfer mechanism, then the middle would be hotter than the outside. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	172
1	MR. FLETCHER: Absolutely.
2	CO-CHAIRMAN WALLIS: If they all have the
3	same natural convection heat transfer coefficient, you
4	predict them all to be about the same. So it matters
5	what the mechanism of heat transfer is in that steam
6	generator.
7	MR. FLETCHER: Well, and one of the
8	studies that we've looked at is what is the heat
9	transfer coefficient on the outside of the tubes.
10	What are the sensitivity of the results to that?
11	CO-CHAIRMAN WALLIS: If radiation
12	dominates, then you have a different problem. You
13	have radiation from a tube to the tubes around it to
14	the tubes around that in a matrix.
15	MR. FLETCHER: Right.
16	DR. RANSOM: Well, if you ignore the
17	radiation that's a more conservative assumption, I
18	believe.
19	MR. FLETCHER: That's true.
20	CO-CHAIRMAN WALLIS: Well, let's not get
21	too conservative. Yeah, the more realistic you can be
22	the better. Yeah, I agree that you might be
23	conservative.
24	MR. FLETCHER: The steam-to-wall radiation
25	we're modeling on the inside of the reactor coolant

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	173
1	system, on the inside of the steam generator tubes,
2	but not on the outside of the steam
3	CO-CHAIRMAN WALLIS: It doesn't help to be
4	conservative Vic because the question here is which
5	pops first, the steam generator or the hot leg, and
6	then if you arbitrarily don't let the heat get out of
7	the steam generator, you're going to get too hot, and
8	you're going to arbitrarily make it pop first, which
9	is not right. It's a
10	DR. RANSOM: Well, from my understanding,
11	the steam generator tubes rupturing first is worse.
12	CO-CHAIRMAN WALLIS: Yeah, okay.
13	DR. RANSOM: A bitter source term. So
14	really it's like an error in the direction of I would
15	say a more conservative result.
16	CO-CHAIRMAN WALLIS: But, again, Chris
17	showed that when you get more heat transfer, you get
18	less circulation. It's a kind of strange thing. So
19	I'm not sure which way it would go. So let's be
20	realistic if you can or as realistic as you can.
21	MR. FLETCHER: We've changed the forward
22	and reverse flow split from 53-47 to 50-50. We've
23	revised the inlet plenum mixing parameters to those
24	that Chris feels best represent the full scale
25	Westinghouse steam generator.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	CO-CHAIRMAN WALLIS: What's this forward-
2	reverse ST tube flow split?
3	MR. FLETCHER: The model we have has
4	two
5	CO-CHAIRMAN WALLIS: The fraction of the
6	tubes that are
7	MR. FLETCHER: Exactly, that are forward
8	flowing and reverse flowing.
9	CO-CHAIRMAN WALLIS: Up and down?
10	MR. FLETCHER: Yes. We've changed the
11	modeling of the mixing parameter assumptions to agree
12	with the CFD results. We've also added a hot tube to
13	steam generator one, which is the steam generator in
14	the loop containing the pressurizer and also
15	containing the stuck open PORV. So we're doing an on
16	line calculation of a single hottest tube in that
17	steam generator, representing the hottest temperature
18	from the CFT results, which is the .625 normalized
19	temperature.
20	So we're using the RELAP 5 calculated hot
21	leg temperature.
22	CO-CHAIRMAN WALLIS: So in the previous
23	slide you put in these numbers like .87, .0 that
24	came from the Westinghouse thing, but we know that in
25	something like the CE you get different numbers.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	175
1	MR. FLETCHER: That's correct, and for the
2	CE model the numbers will be changed.
3	CO-CHAIRMAN WALLIS: And you know that
4	they are, in fact, somehow influenced by what's going
5	on in the whole system. You've pulled them out of
6	Chris' work, but in fact, if you could incorporate his
7	calculation with your calculation as an interface, you
8	might find that you need to calculate these things
9	rather than just having a target value because I don't
10	know what can happen in a you know, he already
11	showed that in the real Westinghouse thing, you don't
12	have a symmetrical. So you get these strange things
13	happening.
14	MR. FLETCHER: That's correct.
15	CO-CHAIRMAN WALLIS: You know, it might
16	well be that you have to calculate. You're better
17	off, but we don't know how important this is yet for
18	the PRA and all of that. I think when we know that,
19	we might need to go back and sharpen your pencil on
20	these 87s and 81s.
21	MR. FLETCHER: Okay. There's a slide that
22	shows the agreement between the calculated values and
23	the target values, which is in good agreement, and
24	another slide that shows the comparison of the plant
25	steady state data and the RELAP 5 calculated data, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	176
1	that's in excellent agreement.
2	And there's a sequence of events that I'll
3	hit the high points on. At time zero we have the
4	station blackout event initiation. We lose AC power.
5	We have reactor and turbine trips, reactor coolant
6	pump trips.
7	CO-CHAIRMAN WALLIS: I'm puzzled by this
8	target value. Didn't you input some of the .81s and
9	things from
10	MR. FLETCHER: We're back to the word
11	"input" being confusing. We have a target value for
12	the mixing fractions and the re-circ ratio and the
13	steam generator power, but the code doesn't actually
14	have an input for those values.
15	What is done is you adjust the flow
16	coefficients.
17	CO-CHAIRMAN WALLIS: Oh, you fudge the
18	flow coefficients.
19	MR. FLETCHER: Right, and not only that.
20	It's an iterative process, that if you want to change
21	one of those values, you end up changing others at the
22	same time. So it's a manual operation to come up with
23	the adjustments needed to match the data, and that's
24	why we're off a little bit on some of these.
25	CO-CHAIRMAN WALLIS: Do you have 60 slides

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	177
1	or something? Am I right?
2	MR. FLETCHER: I do.
3	CO-CHAIRMAN WALLIS: Well, 60 slides takes
4	you two and a half hours to go through, rule of thumb,
5	two and a half.
6	MR. FLETCHER: How would you like to
7	proceed?
8	CO-CHAIRMAN WALLIS: Go ahead.
9	MR. FLETCHER: Okay. The sequence of
10	events is given here. The steam generators dry out at
11	1,600 seconds for the generator that has the stuck
12	open valve, at 5,500 seconds for the other three steam
13	generators.
14	We then have a period of continuing PORV
15	cycling where the valve open and closes and relieves
16	the primary pressure because there's no other heat
17	sync.
18	At 9,062 seconds, the steam at the core
19	exit begins to super heat. We've uncovered the top of
20	the core, and this is when we change the model to
21	include the split hot leg representation.
22	Shortly thereafter, at 10,400 seconds, we
23	have the onset of fuel rod oxidation. The pressurizer
24	empties at 10,600 seconds. We have control rod
25	rupture, and then at 12,240 seconds, I have the first

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1creep rupture failure of the steam generator one2hottest tube, and probably the best way to say this is3this is a tube that's degraded to roughly 15 percent4of its original strength, and we're applying the5hottest steam temperature expected to that tube.6So that is the worst possible case for a7steam generator tube rupture.8CO-CHAIRMAN WALLIS: You don't have any9rupture of surge line or anything in here at all?10MR. FLETCHER: The surge line comes a11little later.12CO-CHAIRMAN WALLIS: It comes later?13MR. FLETCHER: Comes a little later than14the absolute worst degraded tube with the hottest15temperature.16The oxidation peak, by the way, is right17at 13,000 seconds. It's not shown on the list there.18At 13,165 seconds we have the first creep19rupture of the first average tube. In other words,20this is a degraded tube to 15 percent of its strength,21with the average steam generator tube temperature on		178
 this is a tube that's degraded to roughly 15 percent of its original strength, and we're applying the hottest steam temperature expected to that tube. So that is the worst possible case for a steam generator tube rupture. CO-CHAIRMAN WALLIS: You don't have any rupture of surge line or anything in here at all? MR. FLETCHER: The surge line comes a little later. CO-CHAIRMAN WALLIS: It comes later? MR. FLETCHER: Comes a little later than the absolute worst degraded tube with the hottest temperature. The oxidation peak, by the way, is right at 13,000 seconds. It's not shown on the list there. At 13,165 seconds we have the first creep rupture of the first average tube. In other words, this is a degraded tube to 15 percent of its strength, with the average steam generator tube temperature on 	1	creep rupture failure of the steam generator one
4of its original strength, and we're applying the5hottest steam temperature expected to that tube.6So that is the worst possible case for a7steam generator tube rupture.8CO-CHAIRMAN WALLIS: You don't have any9rupture of surge line or anything in here at all?10MR. FLETCHER: The surge line comes a11little later.12CO-CHAIRMAN WALLIS: It comes later?13MR. FLETCHER: Comes a little later than14the absolute worst degraded tube with the hottest15temperature.16The oxidation peak, by the way, is right17at 13,000 seconds. It's not shown on the list there.18At 13,165 seconds we have the first creep19rupture of the first average tube. In other words,20this is a degraded tube to 15 percent of its strength,21with the average steam generator tube temperature on	2	hottest tube, and probably the best way to say this is
 hottest steam temperature expected to that tube. So that is the worst possible case for a steam generator tube rupture. CO-CHAIRMAN WALLIS: You don't have any rupture of surge line or anything in here at all? MR. FLETCHER: The surge line comes a little later. CO-CHAIRMAN WALLIS: It comes later? MR. FLETCHER: Comes a little later than the absolute worst degraded tube with the hottest temperature. The oxidation peak, by the way, is right at 13,000 seconds. It's not shown on the list there. At 13,165 seconds we have the first creep rupture of the first average tube. In other words, this is a degraded tube to 15 percent of its strength, with the average steam generator tube temperature on 	3	this is a tube that's degraded to roughly 15 percent
6 So that is the worst possible case for a 7 steam generator tube rupture. 8 CO-CHAIRMAN WALLIS: You don't have any 9 rupture of surge line or anything in here at all? 10 MR. FLETCHER: The surge line comes a 11 little later. 12 CO-CHAIRMAN WALLIS: It comes later? 13 MR. FLETCHER: Comes a little later than 14 the absolute worst degraded tube with the hottest 15 temperature. 16 The oxidation peak, by the way, is right 17 at 13,000 seconds. It's not shown on the list there. 18 At 13,165 seconds we have the first creep 19 rupture of the first average tube. In other words, 20 this is a degraded tube to 15 percent of its strength, 21 with the average steam generator tube temperature on	4	of its original strength, and we're applying the
7 steam generator tube rupture. 8 CO-CHAIRMAN WALLIS: You don't have any 9 rupture of surge line or anything in here at all? 10 MR. FLETCHER: The surge line comes a 11 little later. 12 CO-CHAIRMAN WALLIS: It comes later? 13 MR. FLETCHER: Comes a little later than 14 the absolute worst degraded tube with the hottest 15 temperature. 16 The oxidation peak, by the way, is right 17 at 13,000 seconds. It's not shown on the list there. 18 At 13,165 seconds we have the first creep 19 rupture of the first average tube. In other words, 20 this is a degraded tube to 15 percent of its strength, 21 with the average steam generator tube temperature on	5	hottest steam temperature expected to that tube.
8 CO-CHAIRMAN WALLIS: You don't have any 9 rupture of surge line or anything in here at all? 10 MR. FLETCHER: The surge line comes a 11 little later. 12 CO-CHAIRMAN WALLIS: It comes later? 13 MR. FLETCHER: Comes a little later than 14 the absolute worst degraded tube with the hottest 15 temperature. 16 The oxidation peak, by the way, is right 17 at 13,000 seconds. It's not shown on the list there. 18 At 13,165 seconds we have the first creep 19 rupture of the first average tube. In other words, 20 this is a degraded tube to 15 percent of its strength, 21 with the average steam generator tube temperature on	6	So that is the worst possible case for a
9rupture of surge line or anything in here at all?10MR. FLETCHER: The surge line comes a11little later.12CO-CHAIRMAN WALLIS: It comes later?13MR. FLETCHER: Comes a little later than14the absolute worst degraded tube with the hottest15temperature.16The oxidation peak, by the way, is right17at 13,000 seconds. It's not shown on the list there.18At 13,165 seconds we have the first creep19rupture of the first average tube. In other words,20this is a degraded tube to 15 percent of its strength,21with the average steam generator tube temperature on	7	steam generator tube rupture.
10MR. FLETCHER: The surge line comes a11little later.12CO-CHAIRMAN WALLIS: It comes later?13MR. FLETCHER: Comes a little later than14the absolute worst degraded tube with the hottest15temperature.16The oxidation peak, by the way, is right17at 13,000 seconds. It's not shown on the list there.18At 13,165 seconds we have the first creep19rupture of the first average tube. In other words,20this is a degraded tube to 15 percent of its strength,21with the average steam generator tube temperature on	8	CO-CHAIRMAN WALLIS: You don't have any
11 little later. 12 CO-CHAIRMAN WALLIS: It comes later? 13 MR. FLETCHER: Comes a little later than 14 the absolute worst degraded tube with the hottest 15 temperature. 16 The oxidation peak, by the way, is right 17 at 13,000 seconds. It's not shown on the list there. 18 At 13,165 seconds we have the first creep 19 rupture of the first average tube. In other words, 20 this is a degraded tube to 15 percent of its strength, 21 with the average steam generator tube temperature on	9	rupture of surge line or anything in here at all?
12 CO-CHAIRMAN WALLIS: It comes later? 13 MR. FLETCHER: Comes a little later than 14 the absolute worst degraded tube with the hottest 15 temperature. 16 The oxidation peak, by the way, is right 17 at 13,000 seconds. It's not shown on the list there. 18 At 13,165 seconds we have the first creep 19 rupture of the first average tube. In other words, 20 this is a degraded tube to 15 percent of its strength, 21 with the average steam generator tube temperature on	10	MR. FLETCHER: The surge line comes a
MR. FLETCHER: Comes a little later than the absolute worst degraded tube with the hottest temperature. The oxidation peak, by the way, is right at 13,000 seconds. It's not shown on the list there. At 13,165 seconds we have the first creep rupture of the first average tube. In other words, this is a degraded tube to 15 percent of its strength, with the average steam generator tube temperature on	11	little later.
14 the absolute worst degraded tube with the hottest 15 temperature. 16 The oxidation peak, by the way, is right 17 at 13,000 seconds. It's not shown on the list there. 18 At 13,165 seconds we have the first creep 19 rupture of the first average tube. In other words, 20 this is a degraded tube to 15 percent of its strength, 21 with the average steam generator tube temperature on	12	CO-CHAIRMAN WALLIS: It comes later?
15 temperature. 16 The oxidation peak, by the way, is right 17 at 13,000 seconds. It's not shown on the list there. 18 At 13,165 seconds we have the first creep 19 rupture of the first average tube. In other words, 20 this is a degraded tube to 15 percent of its strength, 21 with the average steam generator tube temperature on	13	MR. FLETCHER: Comes a little later than
16 The oxidation peak, by the way, is right 17 at 13,000 seconds. It's not shown on the list there. 18 At 13,165 seconds we have the first creep 19 rupture of the first average tube. In other words, 20 this is a degraded tube to 15 percent of its strength, 21 with the average steam generator tube temperature on	14	the absolute worst degraded tube with the hottest
 17 at 13,000 seconds. It's not shown on the list there. 18 At 13,165 seconds we have the first creep 19 rupture of the first average tube. In other words, 20 this is a degraded tube to 15 percent of its strength, 21 with the average steam generator tube temperature on 	15	temperature.
At 13,165 seconds we have the first creep rupture of the first average tube. In other words, this is a degraded tube to 15 percent of its strength, with the average steam generator tube temperature on	16	The oxidation peak, by the way, is right
19 rupture of the first average tube. In other words, 20 this is a degraded tube to 15 percent of its strength, 21 with the average steam generator tube temperature on	17	at 13,000 seconds. It's not shown on the list there.
20 this is a degraded tube to 15 percent of its strength, 21 with the average steam generator tube temperature on	18	At 13,165 seconds we have the first creep
21 with the average steam generator tube temperature on	19	rupture of the first average tube. In other words,
	20	this is a degraded tube to 15 percent of its strength,
22 the ingide It fails alightly before the guard line	21	with the average steam generator tube temperature on
22 the inside. It fails slightly before the surge line,	22	the inside. It fails slightly before the surge line,
which fails at 13,205.	23	which fails at 13,205.
24 CO-CHAIRMAN WALLIS: Pretty close.	24	CO-CHAIRMAN WALLIS: Pretty close.
25 MR. FLETCHER: Pretty close.	25	MR. FLETCHER: Pretty close.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1CO-CHAIRMAN FORD: Excuse me. When you2say "degraded to 50 percent" of its strength?3MR. FLETCHER: Fifteen percent, yes.4CO-CHAIRMAN FORD: Fifteen percent of its5strength. Do you mean6MR. MUSCARA: He's using a stress7concentration factor of seven.8MR. FLETCHER: Yes, stress concentration9of 7.5.10MR. MUSCARA: You have to put that in11context. An M sub P value of 2.3 is equivalent to a12tube with a flaw that would fail at three times normal13delta P.14CO-CHAIRMAN FORD: Okay.15MR. MUSCARA: So none of those tubes16should be in the generator because their legends17(phonetic) require that tubes should meet three delta18P any time you're in operation.19CO-CHAIRMAN FORD: Right.20MR. MUSCARA: But there's a probability21it's there because of inspection reliability, et22cetera. So all of that to be taken into account when23doing the PRA.24CO-CHAIRMAN FORD: Okay.25MR. MUSCARA: But, I mean, this is a tube		179
3 MR. FLETCHER: Fifteen percent, yes. 4 CO-CHAIRMAN FORD: Fifteen percent of its 5 strength. Do you mean 6 MR. MUSCARA: He's using a stress 7 concentration factor of seven. 8 MR. FLETCHER: Yes, stress concentration 9 of 7.5. 10 MR. MUSCARA: You have to put that in 11 context. An M sub P value of 2.3 is equivalent to a 12 tube with a flaw that would fail at three times normal 13 delta P. 14 CO-CHAIRMAN FORD: Okay. 15 MR. MUSCARA: So none of those tubes 16 should be in the generator because their legends 17 (phonetic) require that tubes should meet three delta 18 P any time you're in operation. 19 CO-CHAIRMAN FORD: Right. 20 MR. MUSCARA: But there's a probability 21 it's there because of inspection reliability, et 22 cetera. So all of that to be taken into account when 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay.	1	CO-CHAIRMAN FORD: Excuse me. When you
4 CO-CHAIRMAN FORD: Fifteen percent of its 5 strength. Do you mean 6 MR. MUSCARA: He's using a stress 7 concentration factor of seven. 8 MR. FLETCHER: Yes, stress concentration 9 of 7.5. 10 MR. MUSCARA: You have to put that in 11 context. An M sub P value of 2.3 is equivalent to a 12 tube with a flaw that would fail at three times normal 13 delta P. 14 CO-CHAIRMAN FORD: Okay. 15 MR. MUSCARA: So none of those tubes 16 should be in the generator because their legends 17 (phonetic) require that tubes should meet three delta 18 P any time you're in operation. 19 CO-CHAIRMAN FORD: Right. 20 MR. MUSCARA: But there's a probability 21 it's there because of inspection reliability, et 22 cetera. So all of that to be taken into account when 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay.	2	say "degraded to 50 percent" of its strength?
5 strength. Do you mean 6 MR. MUSCARA: He's using a stress 7 concentration factor of seven. 8 MR. FLETCHER: Yes, stress concentration 9 of 7.5. 10 MR. MUSCARA: You have to put that in 11 context. An M sub P value of 2.3 is equivalent to a 12 tube with a flaw that would fail at three times normal 13 delta P. 14 CO-CHAIRMAN FORD: Okay. 15 MR. MUSCARA: So none of those tubes 16 should be in the generator because their legends 17 (phonetic) require that tubes should meet three delta 18 P any time you're in operation. 19 CO-CHAIRMAN FORD: Right. 20 MR. MUSCARA: But there's a probability 21 it's there because of inspection reliability, et 22 cetera. So all of that to be taken into account when 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay.	3	MR. FLETCHER: Fifteen percent, yes.
6 MR. MUSCARA: He's using a stress 7 concentration factor of seven. 8 MR. FLETCHER: Yes, stress concentration 9 of 7.5. 10 MR. MUSCARA: You have to put that in 11 context. An M sub P value of 2.3 is equivalent to a 12 tube with a flaw that would fail at three times normal 13 delta P. 14 CO-CHAIRMAN FORD: Okay. 15 MR. MUSCARA: So none of those tubes 16 should be in the generator because their legends 17 (phonetic) require that tubes should meet three delta 18 P any time you're in operation. 19 CO-CHAIRMAN FORD: Right. 20 MR. MUSCARA: But there's a probability 21 it's there because of inspection reliability, et 22 cetera. So all of that to be taken into account when 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay.	4	CO-CHAIRMAN FORD: Fifteen percent of its
7concentration factor of seven.8MR. FLETCHER: Yes, stress concentration9of 7.5.10MR. MUSCARA: You have to put that in11context. An M sub P value of 2.3 is equivalent to a12tube with a flaw that would fail at three times normal13delta P.14CO-CHAIRMAN FORD: Okay.15MR. MUSCARA: So none of those tubes16should be in the generator because their legends17(phonetic) require that tubes should meet three delta18P any time you're in operation.19CO-CHAIRMAN FORD: Right.20MR. MUSCARA: But there's a probability21it's there because of inspection reliability, et22cetera. So all of that to be taken into account when23doing the FRA.24CO-CHAIRMAN FORD: Okay.	5	strength. Do you mean
8MR. FLETCHER: Yes, stress concentration9of 7.5.10MR. MUSCARA: You have to put that in11context. An M sub P value of 2.3 is equivalent to a12tube with a flaw that would fail at three times normal13delta P.14CO-CHAIRMAN FORD: Okay.15MR. MUSCARA: So none of those tubes16should be in the generator because their legends17(phonetic) require that tubes should meet three delta18P any time you're in operation.19CO-CHAIRMAN FORD: Right.20MR. MUSCARA: But there's a probability21it's there because of inspection reliability, et22cetera. So all of that to be taken into account when23CO-CHAIRMAN FORD: Okay.	6	MR. MUSCARA: He's using a stress
9of 7.5.10MR. MUSCARA: You have to put that in11context. An M sub P value of 2.3 is equivalent to a12tube with a flaw that would fail at three times normal13delta P.14CO-CHAIRMAN FORD: Okay.15MR. MUSCARA: So none of those tubes16should be in the generator because their legends17(phonetic) require that tubes should meet three delta18P any time you're in operation.19CO-CHAIRMAN FORD: Right.20MR. MUSCARA: But there's a probability21it's there because of inspection reliability, et22cetera. So all of that to be taken into account when23CO-CHAIRMAN FORD: Okay.	7	concentration factor of seven.
10MR. MUSCARA: You have to put that in11context. An M sub P value of 2.3 is equivalent to a12tube with a flaw that would fail at three times normal13delta P.14CO-CHAIRMAN FORD: Okay.15MR. MUSCARA: So none of those tubes16should be in the generator because their legends17(phonetic) require that tubes should meet three delta18P any time you're in operation.19CO-CHAIRMAN FORD: Right.20MR. MUSCARA: But there's a probability21it's there because of inspection reliability, et22cetera. So all of that to be taken into account when23doing the PRA.24CO-CHAIRMAN FORD: Okay.	8	MR. FLETCHER: Yes, stress concentration
11context. An M sub P value of 2.3 is equivalent to a12tube with a flaw that would fail at three times normal13delta P.14CO-CHAIRMAN FORD: Okay.15MR. MUSCARA: So none of those tubes16should be in the generator because their legends17(phonetic) require that tubes should meet three delta18P any time you're in operation.19CO-CHAIRMAN FORD: Right.20MR. MUSCARA: But there's a probability21it's there because of inspection reliability, et22cetera. So all of that to be taken into account when23doing the PRA.24CO-CHAIRMAN FORD: Okay.	9	of 7.5.
12tube with a flaw that would fail at three times normal13delta P.14CO-CHAIRMAN FORD: Okay.15MR. MUSCARA: So none of those tubes16should be in the generator because their legends17(phonetic) require that tubes should meet three delta18P any time you're in operation.19CO-CHAIRMAN FORD: Right.20MR. MUSCARA: But there's a probability21it's there because of inspection reliability, et22cetera. So all of that to be taken into account when23doing the PRA.24CO-CHAIRMAN FORD: Okay.	10	MR. MUSCARA: You have to put that in
 13 delta P. 14 CO-CHAIRMAN FORD: Okay. 15 MR. MUSCARA: So none of those tubes 16 should be in the generator because their legends 17 (phonetic) require that tubes should meet three delta 18 P any time you're in operation. 19 CO-CHAIRMAN FORD: Right. 20 MR. MUSCARA: But there's a probability 21 it's there because of inspection reliability, et 22 cetera. So all of that to be taken into account when 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay. 	11	context. An M sub P value of 2.3 is equivalent to a
 14 CO-CHAIRMAN FORD: Okay. 15 MR. MUSCARA: So none of those tubes 16 should be in the generator because their legends 17 (phonetic) require that tubes should meet three delta 18 P any time you're in operation. 19 CO-CHAIRMAN FORD: Right. 20 MR. MUSCARA: But there's a probability 21 it's there because of inspection reliability, et 22 cetera. So all of that to be taken into account when 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay. 	12	tube with a flaw that would fail at three times normal
 MR. MUSCARA: So none of those tubes should be in the generator because their legends (phonetic) require that tubes should meet three delta P any time you're in operation. CO-CHAIRMAN FORD: Right. MR. MUSCARA: But there's a probability it's there because of inspection reliability, et cetera. So all of that to be taken into account when doing the PRA. CO-CHAIRMAN FORD: Okay. 	13	delta P.
16 should be in the generator because their legends (phonetic) require that tubes should meet three delta P any time you're in operation. CO-CHAIRMAN FORD: Right. MR. MUSCARA: But there's a probability it's there because of inspection reliability, et cetera. So all of that to be taken into account when doing the PRA. 24 CO-CHAIRMAN FORD: Okay.	14	CO-CHAIRMAN FORD: Okay.
17 (phonetic) require that tubes should meet three delta 18 P any time you're in operation. 19 CO-CHAIRMAN FORD: Right. 20 MR. MUSCARA: But there's a probability 21 it's there because of inspection reliability, et 22 cetera. So all of that to be taken into account when 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay.	15	MR. MUSCARA: So none of those tubes
18 P any time you're in operation. 19 CO-CHAIRMAN FORD: Right. 20 MR. MUSCARA: But there's a probability 21 it's there because of inspection reliability, et 22 cetera. So all of that to be taken into account when 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay.	16	should be in the generator because their legends
19 CO-CHAIRMAN FORD: Right. 20 MR. MUSCARA: But there's a probability 21 it's there because of inspection reliability, et 22 cetera. So all of that to be taken into account when 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay.	17	(phonetic) require that tubes should meet three delta
20 MR. MUSCARA: But there's a probability 21 it's there because of inspection reliability, et 22 cetera. So all of that to be taken into account when 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay.	18	P any time you're in operation.
<pre>21 it's there because of inspection reliability, et 22 cetera. So all of that to be taken into account when 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay.</pre>	19	CO-CHAIRMAN FORD: Right.
22 cetera. So all of that to be taken into account when 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay.	20	MR. MUSCARA: But there's a probability
 23 doing the PRA. 24 CO-CHAIRMAN FORD: Okay. 	21	it's there because of inspection reliability, et
24 CO-CHAIRMAN FORD: Okay.	22	cetera. So all of that to be taken into account when
	23	doing the PRA.
25 MR. MUSCARA: But, I mean, this is a tube	24	CO-CHAIRMAN FORD: Okay.
	25	MR. MUSCARA: But, I mean, this is a tube

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	180
1	that really should not be in the generator if it's
2	that degraded, and if it is there, it shouldn't occur
3	very often.
4	CO-CHAIRMAN FORD: Okay. I understand.
5	Okay.
6	MR. FLETCHER: The intent of this is just
7	to scope where we are with respect to failure.
8	The hot legs fail shortly thereafter.
9	CO-CHAIRMAN WALLIS: I have a question.
10	These pump seals leak instantly?
11	MR. FLETCHER: Yes. There were some
12	experiments run at Westinghouse, and it was determined
13	that in a station blackout event, due to the loss of
14	the
15	CO-CHAIRMAN WALLIS: Loss of the cooling
16	water.
17	MR. FLETCHER: the cooling flow, yes,
18	that it was almost a certainty that the pumps would
19	leak immediately at 21 gpm was the expected value.
20	CO-CHAIRMAN WALLIS: You lost your service
21	water, too, in this?
22	MR. FLETCHER: Yes, you've lost everything
23	that's AC powered.
24	CO-CHAIRMAN WALLIS: So there's no
25	containment cooling or anything like that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	181
1	MR. FLETCHER: No, no. This is very
2	severe accident.
3	MR. ROSENTHAUL: The 21 gpm is just the
4	normal flow rate. There's no additional failure.
5	MR. FLETCHER: We will later look at other
6	failures of the pump seals to look at higher pump seal
7	leakage rates.
8	If you look at the process in time, slide
9	24 shows that the surge line fails at 13,205 seconds,
10	and if you look at the results by stress multiplier
11	for the average and hottest tubes, you can see for the
12	average tube it requires a stress multiplier of two to
13	fail it before the surge line fails and for the
14	hottest tube, it requires a I'm sorry. I said it
15	backwards.
16	For the average tube it takes a multiplier
17	of five, and for the hottest tube it takes a
18	multiplier of two to fail before the surge line.
19	DR. KRESS: Can we go back to slide 22 a
20	second?
21	MR. FLETCHER: Yes.
22	DR. KRESS: In between the first control
23	rod cladding failure and the first creep up to failure
24	of the hottest tube, is that when you're releasing all
25	of the cesium and iodine?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

182 1 MR. FLETCHER: No. This is the first 2 control rod failure. That's a control rod. That's 3 not a fuel rod. So you wouldn't be releasing at 4 that --5 DR. KRESS: No, but your own set of fuel rod oxidation is 10,406 seconds, and it takes what, 6 7 about 30 minutes from there to release all of the cesium and iodine? 8 9 MR. FLETCHER: I don't immediately have 10 the answer to your question. The peak oxidation was at 13,004, I believe. 11 12 Oh, oh, okay. So this is a DR. KRESS: low level. 13 14 MR. FLETCHER: This is the beginning of 15 the oxidation. Below that you don't have any oxidation at all. 16 17 DR. KRESS: You haven't gone into the runaway oxidation. 18 19 MR. FLETCHER: Right. IT's slowly 20 increasing starting at 10,039 and the peak is at 21 13,000. 22 DR. KRESS: I was interpreting that wrong. 23 Okay. 24 MR. FLETCHER: I have a number of slides 25 that show the transient results. I'll hit only the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 high points. On the reactor coolant system pressure, 2 slide 25, originally have on we а slight 3 depressurization of the RCS as we have steam generator 4 cooling when we still have water in the steam 5 generators, and then late in the event we also have a depressurization that's caused by the pump seal 6 7 leakage that we're assuming.

8 Steam generator secondary pressures, we 9 have one that's blow down. The other three remain at 10 pressure. Steam generator masses, you can see how 11 we've lost the water mass from the steam generators 12 fairly early in the event.

PORV flow cycling is continuous after we get out to about 9,000 seconds or so.

15 The pressurizer level stays elevated as we continue to blow water and steam out of the PORVs on 16 the top of the pressurizer, but then eventually we 17 expel sufficient liquid that the water slumps back 18 down into the hot legs, and we end up draining the 19 pressurizer shortly after 10,000 seconds, which is 20 21 before we end up with the main heat-up process here. 22 Looking at the circulations that we have 23 on slide 30, we're looking at the hot and cold average 24 tube flows in steam generator one, which is the

affected steam generator, and you can see we have a

NEAL R. GROSS

WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

25

	184
1	mass flow rate of maybe ten kilograms per second
2	through those tubes. I'm showing both the hot flow
3	and the cold down flow sides there.
4	On slide 31, we're looking at the hot leg
5	circulations. We have a mass flow rate of about five
6	kilograms a second through the upper and lower hot leg
7	sections on steam generator one.
8	And then slide 32 shows the vessel
9	circulation. The black line is the central channel
10	flow, which is upward at roughly it looks like ten
11	kilograms a second or so, and then the red line is the
12	downward flow in the peripheral channel at ten
13	kilograms per second.
14	Velocities associated with all of these
15	are on the order of a half a meter per second. So
16	it's not a very rapidly flowing system, but we are
17	exchanging mass at about this rate.
18	Slide 33 shows the oxidation process. The
19	number in the table is when it begins, and you can see
20	the peak is out at 13,000 seconds.
21	DR. KRESS: So that's about when you
22	releasing the iodine and cesium?
23	MR. FLETCHER: That is when the release
24	from the fuel rod to the coolant would happen, yes.
25	DR. KRESS: And at that time, you've only

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

185 1 failed -- well, you failed the -- where are the 2 fission products going at that time? That's 13,000. 3 Do you have one steam generator tube rupture that 4 you've --5 MR. FLETCHER: But only the most degraded tube and only with the hottest steam temperature. 6 7 DR. KRESS: The surge line is failing about that time also. 8 9 MR. FLETCHER: Yes, the surge line fails 10 slightly after that. DR. KRESS: So you've got dual pass in the 11 12 fission product, but the surge line is probably the easiest path to go in? 13 14 MR. FLETCHER: That's correct. 15 model, In our we're not actually stimulating the rupture of the surge line other than 16 17 to say when it would happen. We're not looking at the depressurization. 18 19 DR. KRESS: You're not looking for a take 20 on depressurization. 21 MR. FLETCHER: That's correct. We're 22 allowing depressurization to continue to see what the 23 effect on the other tube degradations might be. 24 MR. MUSCARA: Let me also mention guickly 25 that in the surge line evaluation, it really only

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

186 1 uses the pressure stress. In what we'll hear about 2 this afternoon, we're doing a finite element analysis 3 of the entire line. 4 DR. KRESS: I see. 5 MR. MUSCARA: So what are the stresses that are taken into account because of thermal 6 7 stresses. DR. KRESS: So it may have failed earlier 8 than this. 9 MR. MUSCARA: 10 Right. CO-CHAIRMAN WALLIS: So you've burnt off 11 12 all of the zirconium then after this blip? DR. KRESS: Basically. 13 14 CO-CHAIRMAN WALLIS: You've turned it into 15 oxygen. MR. FLETCHER: Yes, that's correct. 16 17 The essence of the thermal transience shown on Slide 34, these are structural temperatures 18 19 in loop one. The black line is the surge line. The 20 red line is the hot leg, and then the green and blue 21 lines are the average and hot tube responses. 22 Now, you can see the temperatures all 23 start up together back there. The hot leg temperature 24 starts up. The surge line is delayed for a short 25 period of time until we lose the last bit of water out

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	of the pressurizer as it's draining.
2	But then once that water is gone, the
3	surge line temperature rises very rapidly. Of course,
4	the surge line is thinner than the hot leg. So the
5	rate it rises is going to be faster.
6	CO-CHAIRMAN WALLIS: So it is it dropped
7	when it falls down again? What does it fall down?
8	MR. FLETCHER: Why does? Oh, at the top?
9	Well, first of all, we go past the oxidation peak and
10	power. That
11	CO-CHAIRMAN WALLIS: The other
12	temperatures are still going up.
13	MR. FLETCHER: No, the other thing is we
14	have heat loss off the outside of the hot legs and on
15	the outside of the surge line, and so the surge line
16	is relatively thin and the heat loss is more effective
17	at cooling it down. These are average structure
18	temperatures.
19	CO-CHAIRMAN WALLIS: So if it survives the
20	hottest temperature, it's going to survive later?
21	When does the surge line pop?
22	MR. FLETCHER: The surge line fails at
23	I can't give you the temperature it failed at.
24	CO-CHAIRMAN WALLIS: But it failed, but
25	hasn't it failed by the time its temperature is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 dropping or not? 2 MR. FLETCHER: Oh, yes. 3 CO-CHAIRMAN WALLIS: Yes. Okay. 4 MR. FLETCHER: Yes, the surge line has 5 failed on the way up here on the steep part of the 6 ramp there. 7 CO-CHAIRMAN WALLIS: That makes more sense 8 now. 9 MR. FLETCHER: And if we look at the creep 10 rupture damage indices on the next couple of slides, 11 it compares first of all, what this is is the 12 useful life that's been expended going from zero to 13 one. When the curves reach one, that means that the 14 code assumes that this structure has failed. The 15 dashed line is the surge line. The red line is hot 16 leg one, and the other three hot legs are shown 17 together on the trace that follows them. 18 And if we look at the average tubes, the 19 dashed line, again, is the surge line and the colored 20 curves represent the multipliers from three to five 21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a		188
3 CO-CHAIRMAN WALLIS: Yes. Okay. 4 MR. FLETCHER: Yes, the surge line has 5 failed on the way up here on the steep part of the 6 ramp there. 7 CO-CHAIRMAN WALLIS: That makes more sense 8 now. 9 MR. FLETCHER: And if we look at the creep 10 rupture damage indices on the next couple of slides, 11 it compares first of all, what this is is the 12 useful life that's been expended going from zero to 13 one. When the curves reach one, that means that the 14 code assumes that this structure has failed. The 15 dashed line is the surge line. The red line is hot 16 leg one, and the other three hot legs are shown 17 together on the trace that follows them. 18 And if we look at the average tubes, the 19 dashed line, again, is the surge line and the colored 20 curves represent the multipliers from three to five 21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength,	1	dropping or not?
4MR. FLETCHER: Yes, the surge line has5failed on the way up here on the steep part of the6ramp there.7CO-CHAIRMAN WALLIS: That makes more sense8now.9MR. FLETCHER: And if we look at the creep10rupture damage indices on the next couple of slides,11it compares first of all, what this is is the12useful life that's been expended going from zero to13one. When the curves reach one, that means that the14code assumes that this structure has failed. The15dashed line is the surge line. The red line is hot16leg one, and the other three hot legs are shown17together on the trace that follows them.18And if we look at the average tubes, the19dashed line, again, is the surge line and the colored20curves represent the multipliers from three to five21and intervals of one-half. So the red line is a22strength, if I'm saying that correctly.	2	MR. FLETCHER: Oh, yes.
5 failed on the way up here on the steep part of the 6 ramp there. 7 CO-CHAIRMAN WALLIS: That makes more sense 8 now. 9 MR. FLETCHER: And if we look at the creep 10 rupture damage indices on the next couple of slides, 11 it compares first of all, what this is is the 12 useful life that's been expended going from zero to 13 one. When the curves reach one, that means that the 14 code assumes that this structure has failed. The 15 dashed line is the surge line. The red line is hot 16 leg one, and the other three hot legs are shown 17 together on the trace that follows them. 18 And if we look at the average tubes, the 19 dashed line, again, is the surge line and the colored 20 curves represent the multipliers from three to five 21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	3	CO-CHAIRMAN WALLIS: Yes. Okay.
 ramp there. CO-CHAIRMAN WALLIS: That makes more sense now. MR. FLETCHER: And if we look at the creep rupture damage indices on the next couple of slides, it compares first of all, what this is is the useful life that's been expended going from zero to one. When the curves reach one, that means that the code assumes that this structure has failed. The dashed line is the surge line. The red line is hot leg one, and the other three hot legs are shown together on the trace that follows them. And if we look at the average tubes, the dashed line, again, is the surge line and the colored curves represent the multipliers from three to five and intervals of one-half. So the red line is a stress multiplier of three, in other words, a degradation to only one-third of its original strength, if I'm saying that correctly. 	4	MR. FLETCHER: Yes, the surge line has
CO-CHAIRMAN WALLIS: That makes more sense now. MR. FLETCHER: And if we look at the creep rupture damage indices on the next couple of slides, it compares first of all, what this is is the useful life that's been expended going from zero to one. When the curves reach one, that means that the code assumes that this structure has failed. The dashed line is the surge line. The red line is hot leg one, and the other three hot legs are shown together on the trace that follows them. And if we look at the average tubes, the dashed line, again, is the surge line and the colored curves represent the multipliers from three to five and intervals of one-half. So the red line is a stress multiplier of three, in other words, a degradation to only one-third of its original strength, if I'm saying that correctly.	5	failed on the way up here on the steep part of the
 now. MR. FLETCHER: And if we look at the creep rupture damage indices on the next couple of slides, it compares first of all, what this is is the useful life that's been expended going from zero to one. When the curves reach one, that means that the code assumes that this structure has failed. The dashed line is the surge line. The red line is hot leg one, and the other three hot legs are shown together on the trace that follows them. And if we look at the average tubes, the dashed line, again, is the surge line and the colored curves represent the multipliers from three to five and intervals of one-half. So the red line is a stress multiplier of three, in other words, a degradation to only one-third of its original strength, if I'm saying that correctly. 	6	ramp there.
9 MR. FLETCHER: And if we look at the creep 10 rupture damage indices on the next couple of slides, 11 it compares first of all, what this is is the 12 useful life that's been expended going from zero to 13 one. When the curves reach one, that means that the 14 code assumes that this structure has failed. The 15 dashed line is the surge line. The red line is hot 16 leg one, and the other three hot legs are shown 17 together on the trace that follows them. 18 And if we look at the average tubes, the 19 dashed line, again, is the surge line and the colored 20 curves represent the multipliers from three to five 21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	7	CO-CHAIRMAN WALLIS: That makes more sense
10rupture damage indices on the next couple of slides,11it compares first of all, what this is is the12useful life that's been expended going from zero to13one. When the curves reach one, that means that the14code assumes that this structure has failed. The15dashed line is the surge line. The red line is hot16leg one, and the other three hot legs are shown17together on the trace that follows them.18And if we look at the average tubes, the19dashed line, again, is the surge line and the colored20curves represent the multipliers from three to five21and intervals of one-half. So the red line is a22stress multiplier of three, in other words, a23degradation to only one-third of its original24strength, if I'm saying that correctly.	8	now.
11 it compares first of all, what this is is the 12 useful life that's been expended going from zero to 13 one. When the curves reach one, that means that the 14 code assumes that this structure has failed. The 15 dashed line is the surge line. The red line is hot 16 leg one, and the other three hot legs are shown 17 together on the trace that follows them. 18 And if we look at the average tubes, the 19 dashed line, again, is the surge line and the colored 20 curves represent the multipliers from three to five 21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	9	MR. FLETCHER: And if we look at the creep
12 useful life that's been expended going from zero to 13 one. When the curves reach one, that means that the 14 code assumes that this structure has failed. The 15 dashed line is the surge line. The red line is hot 16 leg one, and the other three hot legs are shown 17 together on the trace that follows them. 18 And if we look at the average tubes, the 19 dashed line, again, is the surge line and the colored 20 curves represent the multipliers from three to five 21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	10	rupture damage indices on the next couple of slides,
one. When the curves reach one, that means that the code assumes that this structure has failed. The dashed line is the surge line. The red line is hot leg one, and the other three hot legs are shown together on the trace that follows them. And if we look at the average tubes, the dashed line, again, is the surge line and the colored curves represent the multipliers from three to five and intervals of one-half. So the red line is a stress multiplier of three, in other words, a degradation to only one-third of its original strength, if I'm saying that correctly.	11	it compares first of all, what this is is the
14 code assumes that this structure has failed. The 15 dashed line is the surge line. The red line is hot 16 leg one, and the other three hot legs are shown 17 together on the trace that follows them. 18 And if we look at the average tubes, the 19 dashed line, again, is the surge line and the colored 20 curves represent the multipliers from three to five 21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	12	useful life that's been expended going from zero to
15 dashed line is the surge line. The red line is hot 16 leg one, and the other three hot legs are shown 17 together on the trace that follows them. 18 And if we look at the average tubes, the 19 dashed line, again, is the surge line and the colored 20 curves represent the multipliers from three to five 21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	13	one. When the curves reach one, that means that the
16 leg one, and the other three hot legs are shown 17 together on the trace that follows them. 18 And if we look at the average tubes, the 19 dashed line, again, is the surge line and the colored 20 curves represent the multipliers from three to five 21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	14	code assumes that this structure has failed. The
17 together on the trace that follows them. 18 And if we look at the average tubes, the 19 dashed line, again, is the surge line and the colored 20 curves represent the multipliers from three to five 21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	15	dashed line is the surge line. The red line is hot
And if we look at the average tubes, the dashed line, again, is the surge line and the colored curves represent the multipliers from three to five and intervals of one-half. So the red line is a stress multiplier of three, in other words, a degradation to only one-third of its original strength, if I'm saying that correctly.	16	leg one, and the other three hot legs are shown
19 dashed line, again, is the surge line and the colored 20 curves represent the multipliers from three to five 21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	17	together on the trace that follows them.
20 curves represent the multipliers from three to five 21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	18	And if we look at the average tubes, the
21 and intervals of one-half. So the red line is a 22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	19	dashed line, again, is the surge line and the colored
22 stress multiplier of three, in other words, a 23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	20	curves represent the multipliers from three to five
23 degradation to only one-third of its original 24 strength, if I'm saying that correctly.	21	and intervals of one-half. So the red line is a
24 strength, if I'm saying that correctly.	22	stress multiplier of three, in other words, a
	23	degradation to only one-third of its original
	24	strength, if I'm saying that correctly.
25 CO-CHAIRMAN WALLIS: Now, these things	25	CO-CHAIRMAN WALLIS: Now, these things

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	189
1	like a surge line and hot leg, they have insulation on
2	them?
3	MR. FLETCHER: They have insulation on the
4	outside. What we're modeling is a constant H, heat
5	transfer coefficient, on the outside of it,
6	representative of the heat loss at normal operation,
7	and we're just leaving them constant throughout the
8	event.
9	We also haven't adjusted those heat
10	transfer coefficients based upon insulation being
11	different at different locations. So it's an average
12	look at it.
13	CO-CHAIRMAN WALLIS: Insulation doesn't
14	deteriorate or fall off or anything before they fail?
15	MR. FLETCHER: I'm sure it could.
16	MR. SIEBER: It's metal insulation.
17	CO-CHAIRMAN WALLIS: It's foil metal.
18	MR. SIEBER: It's mirror type.
19	CO-CHAIRMAN WALLIS: Mirror type, but it's
20	a metal.
21	MR. SIEBER: Sheetmetal.
22	CO-CHAIRMAN WALLIS: Sheetmetal. So it
23	gets pretty hot, too.
24	MR. SIEBER: It snaps. Pretty sturdy
25	stuff.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 MR. FLETCHER: So slide 36 shows that the 2 surge line fails, the surge line which is the dashed curve, fails between the results for a multiplier of 3 4 4.5 and five, the finding being that if you had a tube 5 with a multiple of five or somewhere between four and a half and five, it would fail before the surge line, 6 7 but other tubes would not. And if we look at the hot leg we have 8 similar results for multipliers of one, one and a 9 half, and two, and here it shows that the surge line 10 11 fails before the multiplier tube fails. 12 How certain are you? MR. SIEBER: You know, you're talking 13,000 seconds to 13,200 seconds. 13 14 You know, it could go the other way, right? 15 MR. FLETCHER: Well, the real problem is the heat-up is very rapid, and the question is how are 16 17 these heat transfer processes going to affect the spread of that heat? 18

19 MR. ROSENTHAUL: Can I make a couple of 20 comments, if nothing else because it's a public 21 meeting with a transcript? So I want to get a little 22 perspective going here.

23 We're looking at a station blackout 24 scenario here. Of course, the PRA will look at a broader scope of events. The station blackout rule 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	191
1	had a goal of three times ten to the minus five for a
2	core damage frequency due to all station blackouts,
3	and here I'm talking about a perverse one with just
4	the right set of failure bouts.
5	So I'm talking about a subset of that
6	three minus five. So I'm talking about a reasonably
7	low probability event.
8	Then when I'm talking about stress
9	intensity factors that go above two, three, I'm really
10	talking about tubes that should have been removed from
11	service, you know, assuming that the inspection
12	program really does identify them. So, again, I'm
13	talking about a reasonably low probability event, and
14	we shouldn't lose sight of that.
15	When we see numbers, you know, obviously
16	nothing happens for the first two hours while you're
17	boiling off, and then things get exciting over a
18	relatively short period of time, and we all smile when
19	we see the differences in time because none of us
20	would believe the Larson-Miller model as being able
21	and the RELAP as being definitive on something is
22	going to go 200 seconds before something else.
23	And that's exactly what prompted us to do
24	the finite element analysis and hopefully the work
25	from engineering will show bigger differences in time

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	192
1	that you can start to believe.
2	But, no, we're smiling at these.
3	MR. SIEBER: Well, actually it takes three
4	days from the onset of the accident to get to the
5	point where you start failing these pressure
6	boundaries.
7	MR. ROSENTHAUL: Hours.
8	MR. SIEBER: Hours. Okay.
9	CO-CHAIRMAN FORD: Joe, could I ask a
10	question of you? We should really stop at the very
11	latest within ten minutes regardless of whether we
12	finish this presentation or not. Is it your wish that
13	we just compact the rest of this presentation into ten
14	minutes or it depends on what follows?
15	Are the next presentations going to be
16	full time?
17	MR. MUSCARA: My feeling is I don't mind
18	staying late, but if we do this in its entirety, we'll
19	wind up being late this evening.
20	CO-CHAIRMAN WALLIS: Well, will this PRA
21	really take so long?
22	MR. MUSCARA: They're all complex, and
23	everybody has more slides than they have time.
24	CO-CHAIRMAN WALLIS: Okay. They've all
25	got more slides than time.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	193
1	DR. KRESS: If Bill doesn't mind staying
2	late, I don't think we should mind either.
3	CO-CHAIRMAN FORD: I agree with you.
4	DR. KRESS: Why don't we just get it all?
5	CO-CHAIRMAN FORD: Now we have a noose to
б	the question. Graham has another meeting he has to go
7	to. Do you wish to stop cold now and resume or is
8	there something you want to finish?
9	MR. ROSENTHAUL: If we're going to stop,
10	this would be a good time to stop. If you would like
11	me to continue, we could do that, too.
12	CO-CHAIRMAN FORD: Okay. Let us recess
13	until 1:15, which is the time allocated for us to
14	start. So we've got a slightly longer lunch break.
15	One, fifteen, we are in recess until then.
16	(Whereupon, at 12:01 p.m., the meeting was
17	recessed for lunch, to reconvene at 1:15 p.m., the
18	same day.)
19	
20	
21	
22	
23	
24	
25	

	194
1	AFTERNOON SESSION
2	(1:17 p.m.)
3	CO-CHAIRMAN FORD: I'd like to come back
4	into session, and we'll continue.
5	Sorry for interrupting you to start with.
6	MR. FLETCHER: Thank you.
7	I'm at slide 38, a summary of the base
8	case results and what we've learned so far from them.
9	Steam generator tube failure margins have
10	improved from what we've seen in previous base case
11	calculations. I'd like to make a comment regarding
12	the RELAP calculation of the creep rupture failure.
13	We're doing this strictly to look at it in a crude
14	way, and we're also looking at multipliers as high as
15	seven, which are tubes degraded so much that they
16	could barely exist at normal operating conditions.
17	So I wanted to correct perhaps the
18	perception that has been given here, that the first
19	tube failures occur very early with respect to the
20	surge line failure.
21	The actual stress calculations and tube
22	failure calculations will be done elsewhere with
23	better tools using the RELAP 5 pressures and
24	temperatures as boundary conditions to do those
25	calculations in a much more detailed way than is being

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	195
1	done here.
2	On the other hand, we did want to put in
3	something that would give us some feel for where we
4	are with the thermal hydraulic results. If we just
5	showed you the events and their times, the question
б	would be, well, what does this mean for rupture, and
7	so that's what we're trying to do here, is gain at
8	least a rudimentary understanding of where we are.
9	CO-CHAIRMAN WALLIS: And we discussed with
10	Chris the business of the maximum temperature and the
11	hottest tube and the steam generator not being the
12	same as the average.
13	MR. FLETCHER: That's correct.
14	CO-CHAIRMAN WALLIS: And that it might be
15	some effort to predict that. SCDAP/RELAP doesn't
16	really do that, does it? It gives you an average
17	temperature in the steam generator.
18	MR. FLETCHER: Well, we actually have an
19	average tube and we have a hot tube that we're
20	modeling. The average tube is just that. It's the
21	average of all of the tubes. For the hot tube, we're
22	taking advantage of the CFD and the Westinghouse one-
23	seventh scale data to give us an idea of what the
24	inlet temperature might be.

CO-CHAIRMAN WALLIS: Okay.

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	196
1	MR. FLETCHER: That's correct, and we have
2	modeled that, but we are modeling only one hot tube.
3	We're not modeling a distribution of hot tubes and so
4	forth.
5	On the other hand, if we did have good
6	data about what the distribution inlet temperatures
7	might be, we could put in a number of hot tubes with
8	different inlet temperatures.
9	We have made
10	MR. SIEBER: The hot tube changes from
11	minute to minute as the flow distribution changes.
12	MR. FLETCHER: In the real steam generator
13	that is the case. My model is so crude I only have
14	one hot tube, and I don't know where it is on the tube
15	sheet. I'm just making a worst case calculation.
16	In fact, all of the creep rupture
17	calculations I'm doing are for the worst case
18	situations. For the tubes I'm looking at the inlet
19	temperature where the steam temperature is the
20	hottest. For the hot leg I'm looking closest to the
21	vessel where the temperature is the highest, and for
22	the surge line I'm looking closest to the hot leg
23	where the temperature is highest.
24	A major factor in the improvement that
25	we've seen in the tube failure margins has been that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	197
1	we've made changes in the target recirculation ratio
2	and mixing fractions, but that the target steam
3	generator power fraction has not changed.
4	So what we have is steam generators being
5	more effective than they were before in the original
6	base case because we've tried to make we have made
7	mixing fraction changes to make things hotter, and yet
8	because of that we've had to slow down the steam flow
9	to the steam generators to keep the power fraction
10	where it was.
11	And as a result of that, the hot legs and
12	the surge line tend to fail slightly sooner with
13	respect to the tubes, and therefore, we gain some
14	margin.
15	And I believe I've covered the information
16	on that.
17	The last part of the work here is task
18	two, which is the sensitivity studies that we've done
19	to date. We run a series of calculations as
20	variations on the base case to evaluate the
21	sensitivity of the tube failure margin results to
22	various problem variables, including plant
23	configuration and operating parameters, natural
24	circulation process parameters.
25	And we're going to use the output of this

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	198
1	study to decide which parameters are most important to
2	be looked at in the uncertainty study.
3	And slide 41 shows the full list of what
4	we've done, what we have done and where we are today.
5	The results I'll present are for all except for the
6	last two, which are still in process.
7	Regarding the sensitivity of results to
8	the steam generator power fraction, the base case is
9	done at a 30 percent value. That's 30 percent of the
10	power being removed to the four steam generators. We
11	will
12	CO-CHAIRMAN WALLIS: Doesn't this come out
13	of analysis rather than being used or isn't it
14	MR. FLETCHER: No, if you remember, this
15	is the target value that we try to achieve as a result
16	of changing the flow coefficient.
17	CO-CHAIRMAN WALLIS: So 30 percent of the
18	power goes to the steam generators. The rest of it
19	goes to heat up the core?
20	MR. FLETCHER: Heat up the core and the
21	hot legs and everywhere else.
22	CO-CHAIRMAN WALLIS: Doesn't this all
23	depend upon all of these flows and things? You can't
24	sort of impose something. You have to calculate it.
25	If you have better heat transfer in the steam

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	199
1	generators, you're going to get more heat out of
2	there. If you have no heat transfer, you get nothing,
3	and this rate should be zero.
4	So there has got to be something here
5	that's calculated.
6	MR. FLETCHER: The steam generator power
7	fraction is one of the variables that define the
8	mixing process, and the data indicate that we have a
9	spread from about 25 percent to 40 percent in that
10	value.
11	CO-CHAIRMAN WALLIS: Is this because
12	you're not modeling what I was talking to Chris about,
13	the way in which the flow in the hot leg really is
14	dependent on the buoyancy effect at the entrance?
15	I think it may be that you have to invent
16	something because there's a little piece of physics
17	missing about what determines the flow there.
18	MR. FLETCHER: Well, we talked about that
19	at lunch and what we might do, and in fact, I think
20	we'll add a sensitivity study looking at some mixing
21	that goes on at the hot leg to reactor vessel
22	connection just to see what the effect there might be.
23	CO-CHAIRMAN WALLIS: Well, I think it's
24	more than that though. Again, this is something where
25	maybe you need to work it out because it seems to me

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	200
1	you can't just take this ratio. It depends on the
2	whole thing. It ought to be calculated.
3	And if you're trying to think about how to
4	do it, maybe it's out of place to get the solution to
5	my question now. Just remember that I think it is an
6	important thing to resolve.
7	MR. FLETCHER: Okay. We adjusted the loss
8	coefficients or the flow coefficients to provide 25
9	and 40 percent steam generator power fractions and
10	sensitivities. We found the tube failure margin
11	results are moderately sensitive to this. The results
12	are shown on the bottom of the slide there.
13	For the base case, the tube stress
14	multiplier required to fail the tube prior to the time
15	the surge line failed was five for the average tube
16	and two for the hottest tube, and you can see the
17	results there for the 25 percent and the 40 percent
18	cases.
19	CO-CHAIRMAN WALLIS: Let me go back to
20	this thing now. If there were no heat transfer from
21	the steam generator, what would happen would be you
22	would be heating up those tubes more.
23	MR. FLETCHER: No heat transfer from the
24	steam you mean you have no heat across the tubes?
25	CO-CHAIRMAN WALLIS: There's no heat

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	201
1	coming out of the tubes into the outside part, the
2	secondary side.
3	MR. FLETCHER: Well, then the tubes are
4	not a problem then.
5	CO-CHAIRMAN WALLIS: They'd heat up. No,
6	on the outside there's no heat leaving them.
7	MR. FLETCHER: No heat leaving; adiabatic
8	on the outside.
9	CO-CHAIRMAN WALLIS: Right, because you've
10	just got stagnant steam in there and it's not doing
11	very much. Then that's going to be changing as a heat
12	transfer ratio. You're not going to be getting
13	anything out of that.
14	MR. FLETCHER: I think the answer is the
15	core melts in place and the tubes don't melt because
16	it takes
17	CO-CHAIRMAN WALLIS: What would happen
18	would be that the gases from the core go up into the
19	steam generator. The steam generator temperature is
20	more like the temperature in the hot plenum, which you
21	don't want.
22	MR. FLETCHER: And the steam is going to
23	get up there how?
24	CO-CHAIRMAN WALLIS: By counter current
25	from the hot leg.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	202
1	MR. FLETCHER: Well, the counter current
2	flow in the hot leg will take it to the inlet plenum
3	of the steam generator, but if you have no heat
4	transfer
5	CO-CHAIRMAN WALLIS: Then it goes up into
6	the steam generator.
7	MR. FLETCHER: But there's no heat
8	transfer off the outside of the tubes. You say
9	CO-CHAIRMAN WALLIS: But you have hotter
10	stuff in the bottom; you have cold stuff in the tubes.
11	The cold stuff drains out, and the hot stuff goes up
12	into the tube. The cold stuff then goes back to the
13	core.
14	MR. SIEBER: You have to remove heat in
15	order to get that to flow.
16	MR. FLETCHER: Yeah, that was my point.
17	CO-CHAIRMAN WALLIS: You don't have to
18	remove heat. If you have the core hotter than the
19	steam generator
20	MR. SIEBER: You do.
21	CO-CHAIRMAN WALLIS: the hot gas
22	MR. FLETCHER: You do, yes.
23	CO-CHAIRMAN WALLIS: You don't have to
24	remove heat to get the circulation. No, you don't.
25	Think about it.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

You're heating up the core. You get a 2 high temperature above the core. The steam generator 3 is still cold. That high temperature steam plus along 4 the hot leg goes up around the steam generator and heats it up. In heating it up, it cools down, comes back, goes back to the core. 6

7 The heat loss is essentially just in heating up the steam tubes, what you call the heat 8 It's still got natural circulation, which is 9 loss. 10 how the steam generator tubes get heated up, and I say 11 if you're not cooling them on the outside, they're 12 going to tend to want to approach the temperature at the top in the upper plenum, which is hotter than --13 14 they'll be about the same temperature as the hot leg.

15 MR. What you're saying is FLETCHER: you'll still have tube circulation, but it would only 16 17 be there because in a transient sense you're heating 18 up the tube wall.

19 CO-CHAIRMAN WALLIS: But you've got it for 20 that anyway. That's part of why you get it anyway. 21 MR. FLETCHER: Right. 22 Well, it would be an easy DR. RANSOM: 23 calculation for them to make. Just make the heat 24 structures of the tube adiabatic and --25

MR. FLETCHER: Right, we can do that.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

	204
1	CO-CHAIRMAN WALLIS: Right, but then I
2	think you can't impose this parameter here, can you?
3	You'd have to have a zero, wouldn't you, for the
4	ratio?
5	So I think you can't impose this. It
6	could be zero, and it could even be 50 percent
7	depending on how
8	MR. BOYD: But this parameter includes the
9	heat-up of the tube. So it wouldn't be zero. It
10	would be that
11	CO-CHAIRMAN WALLIS: But it would just be
12	going into the tubes. Okay. So this isn't the ratio
13	of the heat loss from the tubes. It's the heat to the
14	steam generator. Okay.
15	MR. FLETCHER: It's the ratio of the heat
16	being removed to the steam generator to the total
17	heat, oxidation and core decay heat.
18	CO-CHAIRMAN WALLIS: Okay, okay. The heat
19	is not being oh, okay, okay. It's just being
20	removed, and whatever fluid is going in there is
21	recirculating through the steam generator. That's
22	what you mean.
23	MR. FLETCHER: That's correct, and
24	included in the steam generator heat here is the
25	heating of all steam generator that enters the steam

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	205
1	generator, into the plenum, into the plenum walls,
2	into the tube walls, anything that's delivered
3	through
4	CO-CHAIRMAN WALLIS: And so anything that
5	is being heated up.
6	MR. FLETCHER: Yes. What we found is the
7	tube failure margin results were moderately sensitive
8	to this. As you would expect with a higher steam
9	generator power fraction, the tubes receive more heat,
10	and so they're more likely to fail.
11	We did a sensitivity calculation to a
12	number of reactor coolant pump shaft seal leakage
13	assumptions. In the base case, we've assumed the 21
14	gpm for pump leakage starting at the beginning of the
15	transient, which represents a leakage rate that's
16	expected because of the loss of the seal cooling flow.
17	We also made four calculations looking at
18	larger leakages that occur at two hours and 13
19	minutes, at a two hour period and at a 13 minute
20	period into the accident. These are the times when
21	larger pump seal leakage failures were seen in tests.
22	The rates we're using are the expected rates during
23	those tests with 61 gpm after two hours, 172 gpm after
24	two hours, 182 gpm after 13 minutes, and 300 gpm,
25	which is the maximum expected leakage per pump, after

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	206
1	two hours.
2	CO-CHAIRMAN WALLIS: Now, this failure is
3	a progressive failure of the seal or do you just blow
4	the whole seal out the first time around?
5	MR. FLETCHER: In our calculation we're
6	blowing it out. We're assuming the 21 gpm flow area
7	for the leakage for the first two hours.
8	CO-CHAIRMAN WALLIS: Why didn't you assume
9	300 gpm? You've blown the seal away completely.
10	MR. FLETCHER: Why did we assume 300 gpm?
11	CO-CHAIRMAN WALLIS: Why not? In the
12	beginning you had destroyed the seal and blown it
13	away; you've got 300 gpm.
14	MR. FLETCHER: No, there are a couple of
15	failure modes here. The one mode is the leakage mode
16	resulting in the 21 gpm that's expected. There are
17	also failure modes associated with the popping open of
18	the mechanical seals
19	CO-CHAIRMAN WALLIS: That's what I mean.
20	MR. FLETCHER: and some O ring failures
21	as well. And those are more or less instantaneous,
22	and the times when those were observed in the tests
23	were at two hours and also at 13 minutes, and so
24	that's why we selected these times.
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	207
1	to blow out the O rings or whatever?
2	MR. FLETCHER: That's correct.
3	CO-CHAIRMAN WALLIS: That's a long time.
4	MR. FLETCHER: That's correct.
5	This was a set of Westinghouse data that
6	had bene looked at and reviewed. The issue that they
7	were looking at was mainly how long does it take to
8	lose enough water to uncover the top of the core in a
9	station blackout, which is not the same issue we're
10	looking at here., but the data is still applicable.
11	The results were found to be sensitive to
12	the leakage parameter, and it's a function of the
13	leakage rate. The higher leakage rate leads to less
14	PORV flow, and therefore, lower surge line flows,
15	lower surge line temperatures, and delayed or no surge
16	line failure as a result of that, but the higher
17	leakage rate also leads to generally lower RCS
18	pressures which delays or eliminates the hot leg and
19	the steam generator failures as well.
20	So the results show that actually the
21	worse possible case was the 61 gpm leakage, reduced
22	our average tube multiple for failure before the surge
	line from five to three and a half and the hottest
23	
23 24	tube from two to one and a half, and for that case,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	208
1	reason that those margins were reduced.
2	For the higher leakage cases, the surge
3	lines did not fail at all. We have so much
4	depressurization there that the surge line is not
5	challenged. The hot legs did fail, and in both of
6	those cases at 172 and 182 gpm.
7	CO-CHAIRMAN WALLIS: So this pump seal
8	becomes a kind of relief valve for the system.
9	MR. FLETCHER: That's correct. That's
10	correct, yeah.
11	We did not calculate any average tube
12	failures for those cases because the pressure was low
13	enough. We did have some hot tube failures, but the
14	margins were increased over the base case.
15	And for the biggest break, the biggest
16	assumed leakage, 300 gpm, the depressurization is
17	significant enough so that we didn't have any
18	structural failures at all, surge line tubes,
19	regardless of multiplier or tubes regardless of the
20	steam inlet temperature.
21	CO-CHAIRMAN WALLIS: Do you mean the whole
22	system stays intact forever?
23	MR. FLETCHER: The whole system stays in
24	the vessel. It doesn't stay intact. It then melts
25	and ends up in the lower plenum.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	209
1	CO-CHAIRMAN WALLIS: Forced down. Okay.
2	MR. FLETCHER: Yes.
3	MR. SIEBER: Or beyond.
4	MR. FLETCHER: Or beyond, yes.
5	We evaluated the sensitivity of results to
6	tube plugging. The base case was at ten percent. The
7	sensitivity cases are at zero and 20 percent. We
8	didn't find a big sensitivity of the results to that
9	parameter.
10	Outer wall heat transfer coefficient on
11	the steam generator tube.
12	CO-CHAIRMAN WALLIS: You assume the
13	uniform plugging not just in the one place? If you
14	plugged the tubes right above the plume, it might make
15	a difference.
16	MR. FLETCHER: Our model is so crude that
17	it doesn't know where the plume is. This is just
18	strictly what's the flow area and what's the tube heat
19	structure area.
20	Outer wall heat transfer coefficient. The
21	base case is calculated using the standard SCDAP/RELAP
22	5 heat transfer models on the exterior of the tubes.
23	For this the code looks at forced convection using
24	Dittus-Boelter corrected for vertical bundle
25	configuration; laminar convection; and natural
-	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	210
1	convection, and the code selects the maximum heat
2	transfer coefficient based upon those three.
3	However, all three of those are providing
4	very low heat transfer coefficients, roughly seven
5	watts per meter Kelvin.
6	CO-CHAIRMAN WALLIS: Now, this Churchill-
7	Chu, you're just assuming that there's like one tube
8	in a big environment?
9	MR. FLETCHER: That is correct.
10	CO-CHAIRMAN WALLIS: Which is not the
11	case, is it? These tubes are pretty packed in there,
12	interacting with each other, and there are support
13	plates or things that are in the way?
14	MR. FLETCHER: Yes, and they're not
15	modeling any of that detail on the secondary side.
16	The point is that the heat transfer
17	coefficient we are using on the outside of the tube is
18	very small, and as a result of this we looked at
19	sensitivities to increasing it arbitrarily by factors
20	of five and factors of
21	CO-CHAIRMAN WALLIS: Make it zero and look
22	at the limiting case.
23	MR. FLETCHER: We could do that.
24	CO-CHAIRMAN WALLIS: That would be, I
25	think, quite I believe Dr. Ransom suggested that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

211 1 That would perhaps be a worst case, wouldn't it? 2 MR. FLETCHER: Okay. Here we find the 3 results are sensitive to it, and in fact, the base 4 case with a multiplier of one results in the lowest 5 margins of all of those cases, the reason being that the higher heat transfer coefficient more tightly 6 7 couples the tube to the cooler steam that's on the 8 secondary side. 9 CO-CHAIRMAN WALLIS: I think when you make the heat transfer coefficient zero on the outside of 10 11 the tubes and all you're doing is heating up the 12 tubes, what you will find is that your actual heat, if you calculated it, the heat ratio from the core to the 13 steam generator would be much less. There's much less 14 15 heat going to the steam generator. Because, you know, if you had no mass at 16 17 all, no heat could go there. 18 MR. FLETCHER: Yes, I agree. 19 CO-CHAIRMAN WALLIS: So your 30 percent 20 wouldn't make any sense. We'd be far overheating the 21 steam generator. 22 Right. MR. FLETCHER: 23 CO-CHAIRMAN WALLIS: So you need to fix 24 that 30 percent thicker somehow. If you heat 25 something with no thermal mass, it's going to go over

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	212
1	there.
2	MR. FLETCHER: Okay.
3	CO-CHAIRMAN WALLIS: It's going to be
4	high. It's going to be hotter than the upper plenum,
5	which makes no sense at all.
6	MR. FLETCHER: I'm still not sure what
7	we're going to do about the 30 percent value.
8	CO-CHAIRMAN WALLIS: Well, okay. It
9	solves the whole problem.
10	MR. FLETCHER: We are forcing the answer
11	here.
12	Thermal radiation modeling. I explained
13	earlier that we're using steamed wall radiation on the
14	inside of the primary and secondary coolant systems,
15	and we're also using hot leg upper to lower wall wall-
16	to-wall radiation. We made some sensitivity
17	calculations putting multipliers of .5 and two on what
18	the code was calculating for the radiation heat
19	fluxes, and we found no significant effect there,
20	which is a bit of a surprise.
21	This is something a lot of earlier talks
22	were looking at thermal radiation as being very
23	important to the process here.
24	The next sensitivity regards surge line
25	depressurizer connection, the CCFL modeling at that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	213
1	point. The base case calculation was modeled as an
2	open pipe configuration on the bottom of the tank
3	using a Kutateladze correlation and a flow area based
4	on a 11 and a half inch surge line diameter.
5	In a sensitivity calculation we instead
б	looked at a sparger design at that connection point,
7	and we based the sparger design on the AP 600
8	pressurize sparger which we had some data on. The
9	sparger has a hole diameter of .375 inches, and the
10	sparger flow area through the holes on there is
11	roughly 1.7 times the pipe open flow area, and we
12	changed the counter current flow limiting correlation
13	from the Kutateladze form to the Wallace form based on
14	that geometrical data.
15	Here we found the results were insensitive
16	to the change in the CCFL model. Changing to the
17	sparger formulation of CCFL we delayed the draining
18	slightly by about 150 seconds, but it still occurred
19	before the time when the heat-up really got
20	significantly going. So there was no major effect
21	there.
22	Reactor vessel internal circulation. In
23	past analyses of other subjects there's been a number
24	of instances where RELAP 5 calculations were showing

circulations that did not appear to be physical. So

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

wanted to look at this. We did some hand we calculations to see whether or not the flow rates in 3 the core were reasonable and they checked very well 4 based upon the buoyancy driving heads and the flow resistances through the loops.

We also want to just force this situation 6 7 where we went in and arbitrarily increased the loss coefficients. We did so to reduce the flows inside 8 9 the vessel by 50 percent, and what we found was that in the sensitivity calculation the flow losses in the 10 11 reactor vessel and the upper plenum regions we 12 increased them by a factor of eight, reduced the flows by 50 percent, and the slower vessel circulation 13 14 results in earlier and faster heat-up within the reactor vessel and an acceleration of the core melting 15 16 process.

In other words, if we slow the flow down 17 in the reactor vessel, the reactor vessel ends up 18 being a lot hotter than it would be if the flow were 19 20 going faster, and so the core melt process proceeds 21 earlier, and we end up melting core and relocating 22 core well before we end up with any surge liner or steam generator failures. 23

24 DR. RANSOM: Where is the circulation? Is 25 it down through one channel and up through another

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

1one?2MR. FLETCHER: Well, we3DR. RANSOM: Because the loop seals are4not clear.5MR. FLETCHER: No, this is inside the6vessel, and we have five channels in the core.7DR. RANSOM: Have what?8MR. FLETCHER: Five channels, five9vertical channels. The flow is generally downward in10the outer channels that is driven by the cool steam11flowing in from the bottom of the hot legs, and upward12in the center two channels, and in the middle of the13five channels, the flow starts downward at the upper14part of the channel and is upward in the lower part of15the channel and it then flows inward and upward to the16core.17DR. RANSOM: Are they cross-linked so18that19MR. FLETCHER: Yeah, the core channels are20cross-linked at every axial level. We also have an21axial and transverse grid in the upper plenum with		215
3DR. RANSOM: Because the loop seals are4not clear.5MR. FLETCHER: No, this is inside the6vessel, and we have five channels in the core.7DR. RANSOM: Have what?8MR. FLETCHER: Five channels, five9vertical channels. The flow is generally downward in10the outer channels that is driven by the cool steam11flowing in from the bottom of the hot legs, and upward12in the center two channels, and in the middle of the13five channels, the flow starts downward at the upper14part of the channel and is upward in the lower part of15the channel and it then flows inward and upward to the16core.17DR. RANSOM: Are they cross-linked so18that19MR. FLETCHER: Yeah, the core channels are20cross-linked at every axial level. We also have an	1	one?
 not clear. MR. FLETCHER: No, this is inside the vessel, and we have five channels in the core. DR. RANSOM: Have what? MR. FLETCHER: Five channels, five vertical channels. The flow is generally downward in the outer channels that is driven by the cool steam flowing in from the bottom of the hot legs, and upward in the center two channels, and in the middle of the five channels, the flow starts downward at the upper part of the channel and is upward in the lower part of the channel and it then flows inward and upward to the core. DR. RANSOM: Are they cross-linked so that MR. FLETCHER: Yeah, the core channels are cross-linked at every axial level. We also have an 	2	MR. FLETCHER: Well, we
5MR. FLETCHER: No, this is inside the vessel, and we have five channels in the core.7DR. RANSOM: Have what?8MR. FLETCHER: Five channels, five9vertical channels. The flow is generally downward in the outer channels that is driven by the cool steam10the outer channels that is driven by the cool steam11flowing in from the bottom of the hot legs, and upward12in the center two channels, and in the middle of the five channels, the flow starts downward at the upper14part of the channel and is upward in the lower part of the channel and it then flows inward and upward to the core.17DR. RANSOM: Are they cross-linked so18that19MR. FLETCHER: Yeah, the core channels are cross-linked at every axial level. We also have an	3	DR. RANSOM: Because the loop seals are
 vessel, and we have five channels in the core. DR. RANSOM: Have what? MR. FLETCHER: Five channels, five vertical channels. The flow is generally downward in the outer channels that is driven by the cool steam flowing in from the bottom of the hot legs, and upward in the center two channels, and in the middle of the five channels, the flow starts downward at the upper part of the channel and is upward in the lower part of the channel and it then flows inward and upward to the core. DR. RANSOM: Are they cross-linked so that MR. FLETCHER: Yeah, the core channels are cross-linked at every axial level. We also have an 	4	not clear.
7DR. RANSOM: Have what?8MR. FLETCHER: Five channels, five9vertical channels. The flow is generally downward in10the outer channels that is driven by the cool steam11flowing in from the bottom of the hot legs, and upward12in the center two channels, and in the middle of the13five channels, the flow starts downward at the upper14part of the channel and is upward in the lower part of15the channel and it then flows inward and upward to the16core.17DR. RANSOM: Are they cross-linked so18that19MR. FLETCHER: Yeah, the core channels are20cross-linked at every axial level. We also have an	5	MR. FLETCHER: No, this is inside the
8MR. FLETCHER: Five channels, five9vertical channels. The flow is generally downward in10the outer channels that is driven by the cool steam11flowing in from the bottom of the hot legs, and upward12in the center two channels, and in the middle of the13five channels, the flow starts downward at the upper14part of the channel and is upward in the lower part of15the channel and it then flows inward and upward to the16core.17DR. RANSOM: Are they cross-linked so18that19MR. FLETCHER: Yeah, the core channels are20cross-linked at every axial level. We also have an	6	vessel, and we have five channels in the core.
9 vertical channels. The flow is generally downward in 10 the outer channels that is driven by the cool steam 11 flowing in from the bottom of the hot legs, and upward 12 in the center two channels, and in the middle of the 13 five channels, the flow starts downward at the upper 14 part of the channel and is upward in the lower part of 15 the channel and it then flows inward and upward to the 16 core. 17 DR. RANSOM: Are they cross-linked so 18 that 19 MR. FLETCHER: Yeah, the core channels are 20 cross-linked at every axial level. We also have an	7	DR. RANSOM: Have what?
10 the outer channels that is driven by the cool steam 11 flowing in from the bottom of the hot legs, and upward 12 in the center two channels, and in the middle of the 13 five channels, the flow starts downward at the upper 14 part of the channel and is upward in the lower part of 15 the channel and it then flows inward and upward to the 16 core. 17 DR. RANSOM: Are they cross-linked so 18 that 19 MR. FLETCHER: Yeah, the core channels are 20 cross-linked at every axial level. We also have an	8	MR. FLETCHER: Five channels, five
11 flowing in from the bottom of the hot legs, and upward 12 in the center two channels, and in the middle of the 13 five channels, the flow starts downward at the upper 14 part of the channel and is upward in the lower part of 15 the channel and it then flows inward and upward to the 16 core. 17 DR. RANSOM: Are they cross-linked so 18 that 19 MR. FLETCHER: Yeah, the core channels are 20 cross-linked at every axial level. We also have an	9	vertical channels. The flow is generally downward in
12 in the center two channels, and in the middle of the 13 five channels, the flow starts downward at the upper 14 part of the channel and is upward in the lower part of 15 the channel and it then flows inward and upward to the 16 core. 17 DR. RANSOM: Are they cross-linked so 18 that 19 MR. FLETCHER: Yeah, the core channels are 20 cross-linked at every axial level. We also have an	10	the outer channels that is driven by the cool steam
five channels, the flow starts downward at the upper part of the channel and is upward in the lower part of the channel and it then flows inward and upward to the core. DR. RANSOM: Are they cross-linked so that MR. FLETCHER: Yeah, the core channels are cross-linked at every axial level. We also have an	11	flowing in from the bottom of the hot legs, and upward
<pre>14 part of the channel and is upward in the lower part of 15 the channel and it then flows inward and upward to the 16 core. 17 DR. RANSOM: Are they cross-linked so 18 that 19 MR. FLETCHER: Yeah, the core channels are 20 cross-linked at every axial level. We also have an</pre>	12	in the center two channels, and in the middle of the
<pre>15 the channel and it then flows inward and upward to the 16 core. 17 DR. RANSOM: Are they cross-linked so 18 that 19 MR. FLETCHER: Yeah, the core channels are 20 cross-linked at every axial level. We also have an</pre>	13	five channels, the flow starts downward at the upper
<pre>16 core. 17 DR. RANSOM: Are they cross-linked so 18 that 19 MR. FLETCHER: Yeah, the core channels are 20 cross-linked at every axial level. We also have an</pre>	14	part of the channel and is upward in the lower part of
17DR. RANSOM: Are they cross-linked so18that19MR. FLETCHER: Yeah, the core channels are20cross-linked at every axial level. We also have an	15	the channel and it then flows inward and upward to the
<pre>18 that 19 MR. FLETCHER: Yeah, the core channels are 20 cross-linked at every axial level. We also have an</pre>	16	core.
19MR. FLETCHER: Yeah, the core channels are20cross-linked at every axial level. We also have an	17	DR. RANSOM: Are they cross-linked so
20 cross-linked at every axial level. We also have an	18	that
	19	MR. FLETCHER: Yeah, the core channels are
21 axial and transverse grid in the upper plenum with	20	cross-linked at every axial level. We also have an
	21	axial and transverse grid in the upper plenum with
22 cross-flows modeled there as well, and in addition to	22	cross-flows modeled there as well, and in addition to
23 the core circulation, there is an eddy flow in the	23	the core circulation, there is an eddy flow in the
24 upper part of the vessel towards the center of the	24	upper part of the vessel towards the center of the
25 vessel and the lower part of the upper plenum and away	25	vessel and the lower part of the upper plenum and away

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	216
1	from the vessel in the upper part of the upper plenum.
2	And reducing the flow by 50 percent caused
3	this to increase the multiplier needed to fail the
4	average tube from five to greater than the seven and
5	a half, which is the maximum we're looking at, and the
б	hottest tube stayed essentially the same, the reason
7	being that the hottest tube temperature is influenced
8	by what's coming back from the cold steam generator
9	tube recirculation.
10	I apologize for the way the next slide
11	ended up being in the package. It's overwritten in a
12	couple of places.
13	On heat loss, containment heat loss
14	modeling, the base case was done at four megawatts.
15	We also did sensitivities at two megawatts and eight
16	megawatts. These numbers are a normal operation.
17	Results were found to be moderately
18	sensitive to this, which was somewhat of a surprise.
19	We didn't think this was going to be a major effect.
20	The main effect that we're looking at here is that we
21	have heat loss on the outside of the hot legs, heat
22	loss on the outside of the pressurizer surge line, and
23	that tends to keep those structures cooler.
24	So if you have more heat loss, you end up
25	with less tube failure margin.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	217
1	We looked at two things on PORV,
2	pressurizer PORV functioning, one where we assume that
3	the PORVs were blocked closed, which would require the
4	pressure to rise up to the pressurizer safety relief
5	valve setting instead, which is approximately 150 psi
6	higher than the PORV setting.
7	So essentially we have the same process
8	going on, just a slightly higher pressure, and as a
9	result of that we didn't see any change in tube
10	failure margin.
11	We also looked at an operator intervention
12	in which the operators observed the core exit steam
13	temperatures, realized the situation they're in, and
14	there is an operator instruction to open the PORVs
15	when the steam temperatures reach 1,200 degrees
16	Fahrenheit.
17	In our calculation we assume the operator
18	opens both PORVs at that time and leaves them open
19	thereafter. That time was 10,798 seconds into the
20	base case calculation.
21	When we do so, when we open the PORVs, we
22	depressurize the reactor coolant system. We end up
23	with a cumulator flow as a result, and so we interrupt
24	the core heat-up process as the accumulators dump
25	their fluid.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

But eventually the accumulator's liquid is expelled and the core heat-up resumes. We have roughly about 80 percent of the core melting and relocating to the reactor vessel lower head at 25,000 seconds.

6 So the heat stayed within the reactor 7 vessel, and we did not have any steam generator tube 8 failures indicated, and therefore, the calculation 9 indicates a success of this as an accident mitigation 10 strategy for preventing fission product release to the 11 steam generators.

12 We also looked at steam generator tube The base case was done with no leakage and 13 leakage. 14 the steam generator tube is assumed. We looked at 50 15 gpm, 100 gpm, and 200 gpm leakage in steam generator 16 The leakage is assumed to be induced by the one. failing open of the secondary side valve on steam 17 generator one that occurs at 190 seconds. 18

The results of the calculations, we looked at leakage on the hot side and on the cold side of the tubes, and by that I mean midway between the tube sheet and the U bend on the tubes, on the up-flow side and on the down-flow side; found slightly less margin when the break or when the leakage was assumed on the up flow side, and that's the assumption that we used

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	219
1	for the remainder of the calculations.
2	We found the results of the tube failure
3	margins to be sensitive to the steam generator tube
4	leakage. The results are shown in the table there.
5	We reduce the average tube multiplier required to fail
6	it before the surge line from five to three and the
7	hottest tube from two to one and a half over the range
8	of leakages that we looked at.
9	CO-CHAIRMAN WALLIS: Now, is this
10	consistent with what you'd expect from Chris'
11	observations of tube leakage? He got something which
12	was not altogether intuitive perhaps about how the
13	flows worked when there was a tube leakage.
14	Are you allowing some sort of mixing which
15	would not quite duplicate what he observed?
16	MR. FLETCHER: I don't think our
17	calculations compare directly at all. I'm using a
18	simple representation of the two paths and assuming
19	the leakage is halfway up, and in my calculation it
20	will influence the average tube inlet temperature as
21	a result. It will pull steam up in there because
22	that's the way the model is built, which is counter to
23	what he said.
24	CO-CHAIRMAN WALLIS: Your leakage is in
25	the cold tube or the hot tube?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	220
1	MR. FLETCHER: It's in the up flow tube,
2	in the hot tube.
3	CO-CHAIRMAN WALLIS: It's leakage in the
4	down tube?
5	MR. FLETCHER: I'm sorry?
6	CO-CHAIRMAN WALLIS: Was his leakage in
7	the no, his leakage was also in the up tube, but it
8	didn't draw more flow into itself. Right, okay.
9	MR. FLETCHER: but he has a detailed model
10	of the region. I have a very crude model of the
11	region.
12	CO-CHAIRMAN WALLIS: I was just wondering
13	whether observation that the hot plume was not drawn
14	to the leak perhaps your hot plume I was
15	thinking your hot plume might be drawn to the leak by
16	the way you modeled that. That's why.
17	MR. FLETCHER: That's correct. We will
18	see effects of the leak on the tube temperatures.
19	MR. LONG: This is Steve Long with NRR
20	staff.
21	There's two different effects here. One
22	is do you draw extra hot fluid from the reactor vessel
23	to the steam generator if you have a leak in the steam
24	generator. The RELAP model includes that, but it
25	doesn't change the mixing as you have more hot fluid

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	221
1	and less
2	CO-CHAIRMAN WALLIS: Well, I was talking
3	about drawing hot fluid to the leak in the steam
4	generator itself. I mean, one might think that the
5	hot fluid was seek the leak, but in fact, Chris seemed
6	to show that it didn't necessarily do that. They
7	could just go up the tubes anyway.
8	MR. LONG: Right. What Chris showed was
9	that it doesn't change the location of where the plume
10	comes out of the hot leg and goes through the plenum.
11	It's the tube sheet. Chris allowed it to change the
12	mixing. So there are two different effects, one in
13	each model. It's not clear how they go together yet.
14	CO-CHAIRMAN WALLIS: Yes.
15	MR. FLETCHER: We also looked at a
16	sensitivity to the hot leg nozzle core bypass flow,
17	reducing it by 50 percent, and we saw no significant
18	effect of that change.
19	In summary of the sensitivity calculation
20	results, the tube failure margins were found to be
21	insensitive to the tube plugging assumption, thermal
22	radiation modeling pressurizer to surge line CCFL
23	modeling, blocking closed to the pressurizer PORVs or
24	the core bypass flow, and we found the results are
25	sensitive to steam generator power fraction,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

2.2.2 1 recirculation. reactor coolant pump shaft seal 2 leakage, steam generator tube outer wall heat transfer 3 coefficient, the vessel circulation rate, the RCS heat 4 loss, the operator intervention strategy if used and 5 the steam generator tube leakage assumption. So in conclusion, I would like to leave 6 7 you with the thought that the updated base case is a good representation of the station blackout event to 8 be used as a basis to look at remaining work. We find 9 that we have moderately increased the steam generator 10 11 tube failure margins as a result of the changes that 12 have been implemented recently. The multipliers required to fill those 13 14 tubes on Larson-Miller prior to the time a surge line 15 fails are five for the average tube and two for the hottest tube, and only steam generator tubes with 16 17 structural strength degradations that are greater than this would be expected to fail prior to the surge 18 19 line. 20 flow patterns and rates of The the 21 SCDAP/RELAP 5 reactor vessel internal circulations 22 appear to be reasonable, and trying to slow that 23 circulations down resulted in increased steam 24 generator tube failure margins because the heat

25 remained more inside the reactor vessel.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	223
1	The operator intervention strategy shows
2	that it was effective and that for carrying on the
3	uncertainty studies for sure we want to include the
4	five parameters listed at the bottom of the page there
5	as variables in that study.
6	That includes my talk.
7	CO-CHAIRMAN WALLIS: Thank you very much
8	indeed. That was very nice. Thank you.
9	MR. FLETCHER: thank you.
10	CO-CHAIRMAN FORD: Any comments?
11	DR. RANSOM: Don, in this accident
12	scenario, what ultimately happens in the long term?
13	I mean what is assumed to happen?
14	MR. FLETCHER: Well, in the long term
15	without any intervention at all, the core is still
16	producing delay heat and the core will melt is what it
17	amounts to.
18	DR. RANSOM: Well, in the release
19	assumptions is it assumed that it just continues to
20	melt and then leak out the containment bypass? Is
21	that
22	MR. FLETCHER: Well, in the long term if
23	the core melts, it will fall into the lower head of
24	the reactor vessel and then perhaps melt through that
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	224
1	that if that happens, the fission product release
2	would be into containment.
3	So the key that we're looking at here is
4	might you have steam generator tube failures that
5	would allow that release to be made into the steam
6	generator rather than into the containment.
7	DR. RANSOM: Which would bypass the
8	containment, I guess, if you assume the main steam
9	line breaks.
10	MR. FLETCHER: Well, the concept of the
11	containment bypass is a word that I've heard just
12	fairly recently here, but what we've been talking
13	about before were steam generator tube rupture events
14	during severe accidents. The containment bypass
15	concept is that the fission products goes to the steam
16	generator rather than containment. That's the whole
17	intent of that.
18	If the fission products make it into the
19	secondary side in this particular accident, it's open
20	to atmosphere because the valve is stuck open on the
21	top of the steam generators. If you didn't have that
22	failure on the secondary side, it would still go into
23	the secondary, and then it would be relieved through
24	the safety valves at somewhere around 1,000 psi. In
25	both cases you have the potential for release to the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	225
1	environment.
2	CO-CHAIRMAN WALLIS: But your release is
3	in the hottest tube, which is probably somewhere in
4	the middle of the tube bank at the bottom. It has got
5	to make it through all of this tube bank and the
6	spacers and everything in order to get to the outside
7	world. I would think the removal of aerosols in that
8	steam generator is going to be tremendous.
9	MR. FLETCHER: I guess I can't address the
10	fission product aspects of this.
11	MR. ROSENTHAUL: I discussed some earlier
12	work with Raj Sadal (phonetic) because I would have
13	thought you would have had huge DFs with all of that
14	surface area and an aerosol, and he thought that there
15	was some old EPRI experimental work which would lead
16	DF to ten, which is disappointing. I was thinking
17	100, 1,000. I mean, you know, a pool scrubbing is
18	10,000 or 1,000, and that's just because of the slip
19	beams (phonetic), and just the flow and how the
20	aerosol is prepared.
21	And that's why we're participating in the
22	ARTIST program, so that we'll get some real data and
23	we'll know, but I think that
24	CO-CHAIRMAN WALLIS: What is unreal data,
25	by the way?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	226
1	MR. ROSENTHAUL: Excuse me?
2	CO-CHAIRMAN WALLIS: What is unreal data?
3	MR. ROSENTHAUL: Chris' data is, in my
4	mind, more suspect that from a physical experiment.
5	My bias is coming through here.
6	But in any case, you know, if you had to
7	guess on the outcome, I think you're thinking of that
8	DFs of ten to 100 as distinct from pooled DFs which
9	are like 1,000 or more. But that's still
10	considerable.
11	CO-CHAIRMAN FORD: Okay. Thank you very
12	much, indeed.
13	MR. FLETCHER: Thank you.
14	CO-CHAIRMAN FORD: Would you like to
15	introduce your next speaker, Joe?
16	MR. MUSCARA: Yes, t he next area is the
17	work on the primary system component failure in severe
18	accident conditions, and Saurin Majumdar from Argonne
19	will provide that presentation.
20	(Pause in proceedings.)
21	CO-CHAIRMAN FORD: Maybe you could tell
22	us. did we receive a report on these particular next
23	three items, 34(h)(1) through (3)? I don't have a
24	copy of it. Does Graham? In which case we can always
25	blame the manager at Argonne for noncompliance.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	227
1	MR. MUSCARA: The report is still under
2	review.
3	CO-CHAIRMAN WALLIS: That's okay. We can
4	get draft reports, too. I was looking through my
5	notes. I don't think I have any notes on this
б	subject.
7	MR. MUSCARA: You do not have, but this
8	item, the first part of it, can be closed out. So a
9	report should be sent out with a closure letter soon.
10	Joel, what's the status of the report?
11	MR. PAGE: We just received the official
12	peer review comments from NRR, and we're going to be
13	resolving them soon.
14	CO-CHAIRMAN FORD: Good. Items one and
15	two have been completed. Item three, large scale
16	tests, that's not due to be done until '05; is that
17	right?
18	MR. PAGE: If we have large-scale tests.
19	CO-CHAIRMAN FORD: Yeah, that's one of the
20	questions.
21	MR. PAGE: If needed. Large-scale tests,
22	as you know, are very expensive.
23	MR. MUSCARA: They're not planned at this
24	point.
25	MR. MAJUMDAR: My name is Saurin Majumdar

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1from Argonne National Laboratory.2As this is of use to you by now, this is3a collaborative study between RES staff and several4contractors. You already heard from RES and ISL. I'm5going to talk about the structure behavior of pressure6boundary and the high temperature and will be followed7by the PRA work.8We already know that we are looking at the9station blackout scenario with the secondary side10depressurized and the primary side still fully11pressurized, but that challenges the tubes to the12maximum degree.13Now in the NUREG 1570 study, the failure14of the pressurized surge line was predicted before the15steam generator tubes, as well as the previous speaker16mentioned, the RELAP studies from the new base case.17The structure models from the RCA18components were highly simplified. It was just like19a RELAP 5. They're only considering the internal20pressure loadings, and the other mechanical loading21and thermal loadings that are not considered in that22model, for example, the local geometry, structural23boundary condition, thermal stress, dead weight,24material variability, these sort of things we will be		228
 a collaborative study between RES staff and several contractors. You already heard from RES and ISL. I'm going to talk about the structure behavior of pressure boundary and the high temperature and will be followed by the PRA work. We already know that we are looking at the station blackout scenario with the secondary side depressurized and the primary side still fully pressurized, but that challenges the tubes to the maximum degree. Now in the NUREG 1570 study, the failure of the pressurized surge line was predicted before the steam generator tubes, as well as the previous speaker mentioned, the RELAP studies from the new base case. The structure models from the RCA components were highly simplified. It was just like a RELAP 5. They're only considering the internal pressure loadings that are not considered in that model, for example, the local geometry, structural boundary condition, thermal stress, dead weight, 	1	from Argonne National Laboratory.
 contractors. You already heard from RES and ISL. I'm going to talk about the structure behavior of pressure boundary and the high temperature and will be followed by the PRA work. 8 We already know that we are looking at the station blackout scenario with the secondary side depressurized and the primary side still fully pressurized, but that challenges the tubes to the maximum degree. 13 Now in the NUREG 1570 study, the failure of the pressurized surge line was predicted before the steam generator tubes, as well as the previous speaker mentioned, the RELAP studies from the new base case. 17 The structure models from the RCA components were highly simplified. It was just like a RELAP 5. They're only considering the internal pressure loadings, and the other mechanical loading and thermal loadings that are not considered in that model, for example, the local geometry, structural boundary condition, thermal stress, dead weight, 	2	As this is of use to you by now, this is
5going to talk about the structure behavior of pressure boundary and the high temperature and will be followed by the PRA work.8We already know that we are looking at the station blackout scenario with the secondary side depressurized and the primary side still fully pressurized, but that challenges the tubes to the maximum degree.13Now in the NUREG 1570 study, the failure of the pressurized surge line was predicted before the steam generator tubes, as well as the previous speaker mentioned, the RELAP studies from the new base case.17The structure models from the RCA components were highly simplified. It was just like a RELAP 5. They're only considering the internal pressure loadings, and the other mechanical loading and thermal loadings that are not considered in that model, for example, the local geometry, structural boundary condition, thermal stress, dead weight,	3	a collaborative study between RES staff and several
 boundary and the high temperature and will be followed by the PRA work. We already know that we are looking at the station blackout scenario with the secondary side depressurized and the primary side still fully pressurized, but that challenges the tubes to the maximum degree. Now in the NUREG 1570 study, the failure of the pressurized surge line was predicted before the steam generator tubes, as well as the previous speaker mentioned, the RELAP studies from the new base case. The structure models from the RCA components were highly simplified. It was just like a RELAP 5. They're only considering the internal pressure loadings, and the other mechanical loading and thermal loadings that are not considered in that model, for example, the local geometry, structural boundary condition, thermal stress, dead weight, 	4	contractors. You already heard from RES and ISL. I'm
7by the PRA work.8We already know that we are looking at the9station blackout scenario with the secondary side10depressurized and the primary side still fully11pressurized, but that challenges the tubes to the12maximum degree.13Now in the NUREG 1570 study, the failure14of the pressurized surge line was predicted before the15steam generator tubes, as well as the previous speaker16mentioned, the RELAP studies from the new base case.17The structure models from the RCA18components were highly simplified. It was just like19a RELAP 5. They're only considering the internal20pressure loadings, and the other mechanical loading21and thermal loadings that are not considered in that22boundary condition, thermal stress, dead weight,	5	going to talk about the structure behavior of pressure
8We already know that we are looking at the9station blackout scenario with the secondary side10depressurized and the primary side still fully11pressurized, but that challenges the tubes to the12maximum degree.13Now in the NUREG 1570 study, the failure14of the pressurized surge line was predicted before the15steam generator tubes, as well as the previous speaker16mentioned, the RELAP studies from the new base case.17The structure models from the RCA18components were highly simplified. It was just like19a RELAP 5. They're only considering the internal20pressure loadings, and the other mechanical loading21and thermal loadings that are not considered in that22model, for example, the local geometry, structural23boundary condition, thermal stress, dead weight,	6	boundary and the high temperature and will be followed
9 station blackout scenario with the secondary side depressurized and the primary side still fully pressurized, but that challenges the tubes to the maximum degree. 13 Now in the NUREG 1570 study, the failure of the pressurized surge line was predicted before the steam generator tubes, as well as the previous speaker mentioned, the RELAP studies from the new base case. 17 The structure models from the RCA components were highly simplified. It was just like a RELAP 5. They're only considering the internal pressure loadings, and the other mechanical loading and thermal loadings that are not considered in that model, for example, the local geometry, structural boundary condition, thermal stress, dead weight,	7	by the PRA work.
10depressurized and the primary side still fully11pressurized, but that challenges the tubes to the12maximum degree.13Now in the NUREG 1570 study, the failure14of the pressurized surge line was predicted before the15steam generator tubes, as well as the previous speaker16mentioned, the RELAP studies from the new base case.17The structure models from the RCA18components were highly simplified. It was just like19a RELAP 5. They're only considering the internal20pressure loadings, and the other mechanical loading21and thermal loadings that are not considered in that22model, for example, the local geometry, structural23boundary condition, thermal stress, dead weight,	8	We already know that we are looking at the
11pressurized, but that challenges the tubes to the12maximum degree.13Now in the NUREG 1570 study, the failure14of the pressurized surge line was predicted before the15steam generator tubes, as well as the previous speaker16mentioned, the RELAP studies from the new base case.17The structure models from the RCA18components were highly simplified. It was just like19a RELAP 5. They're only considering the internal20pressure loadings, and the other mechanical loading21and thermal loadings that are not considered in that22model, for example, the local geometry, structural23boundary condition, thermal stress, dead weight,	9	station blackout scenario with the secondary side
 12 maximum degree. 13 Now in the NUREG 1570 study, the failure 14 of the pressurized surge line was predicted before the 15 steam generator tubes, as well as the previous speaker 16 mentioned, the RELAP studies from the new base case. 17 The structure models from the RCA 18 components were highly simplified. It was just like 19 a RELAP 5. They're only considering the internal 20 pressure loadings, and the other mechanical loading 21 and thermal loadings that are not considered in that 22 model, for example, the local geometry, structural 23 boundary condition, thermal stress, dead weight, 	10	depressurized and the primary side still fully
 Now in the NUREG 1570 study, the failure of the pressurized surge line was predicted before the steam generator tubes, as well as the previous speaker mentioned, the RELAP studies from the new base case. The structure models from the RCA components were highly simplified. It was just like a RELAP 5. They're only considering the internal pressure loadings, and the other mechanical loading and thermal loadings that are not considered in that model, for example, the local geometry, structural boundary condition, thermal stress, dead weight, 	11	pressurized, but that challenges the tubes to the
of the pressurized surge line was predicted before the steam generator tubes, as well as the previous speaker mentioned, the RELAP studies from the new base case. The structure models from the RCA components were highly simplified. It was just like a RELAP 5. They're only considering the internal pressure loadings, and the other mechanical loading and thermal loadings that are not considered in that model, for example, the local geometry, structural boundary condition, thermal stress, dead weight,	12	maximum degree.
15 steam generator tubes, as well as the previous speaker 16 mentioned, the RELAP studies from the new base case. 17 The structure models from the RCA 18 components were highly simplified. It was just like 19 a RELAP 5. They're only considering the internal 20 pressure loadings, and the other mechanical loading 21 and thermal loadings that are not considered in that 22 model, for example, the local geometry, structural 23 boundary condition, thermal stress, dead weight,	13	Now in the NUREG 1570 study, the failure
16 mentioned, the RELAP studies from the new base case. 17 The structure models from the RCA 18 components were highly simplified. It was just like 19 a RELAP 5. They're only considering the internal 20 pressure loadings, and the other mechanical loading 21 and thermal loadings that are not considered in that 22 model, for example, the local geometry, structural 23 boundary condition, thermal stress, dead weight,	14	of the pressurized surge line was predicted before the
17The structure models from the RCA18components were highly simplified. It was just like19a RELAP 5. They're only considering the internal20pressure loadings, and the other mechanical loading21and thermal loadings that are not considered in that22model, for example, the local geometry, structural23boundary condition, thermal stress, dead weight,	15	steam generator tubes, as well as the previous speaker
18 components were highly simplified. It was just like 19 a RELAP 5. They're only considering the internal 20 pressure loadings, and the other mechanical loading 21 and thermal loadings that are not considered in that 22 model, for example, the local geometry, structural 23 boundary condition, thermal stress, dead weight,	16	mentioned, the RELAP studies from the new base case.
19 a RELAP 5. They're only considering the internal 20 pressure loadings, and the other mechanical loading 21 and thermal loadings that are not considered in that 22 model, for example, the local geometry, structural 23 boundary condition, thermal stress, dead weight,	17	The structure models from the RCA
20 pressure loadings, and the other mechanical loading 21 and thermal loadings that are not considered in that 22 model, for example, the local geometry, structural 23 boundary condition, thermal stress, dead weight,	18	components were highly simplified. It was just like
and thermal loadings that are not considered in that model, for example, the local geometry, structural boundary condition, thermal stress, dead weight,	19	a RELAP 5. They're only considering the internal
22 model, for example, the local geometry, structural 23 boundary condition, thermal stress, dead weight,	20	pressure loadings, and the other mechanical loading
23 boundary condition, thermal stress, dead weight,	21	and thermal loadings that are not considered in that
	22	model, for example, the local geometry, structural
24 material variability, these sort of things we will be	23	boundary condition, thermal stress, dead weight,
	24	material variability, these sort of things we will be
25 considering under this study.	25	considering under this study.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	229
1	DR. WALLIS: Now, material variability,
2	what do you mean by that?
3	MR. MAJUMDAR: That means we'll be doing
4	an uncertainty analysis of material variability of the
5	rupture strength on
6	DR. WALLIS: Do you mean by it that there
7	are different materials in different places, different
8	alloys or do you mean within a certain alloy there are
9	different heats and you don't quite know how it
10	behaves?
11	MR. MAJUMDAR: For example, we have the
12	average rupture property for a given alloy.
13	DR. WALLIS: But is that good enough?
14	MR. MAJUMDAR: We might as well do
15	uncertainty on that to see what kind of variability
16	you're going to get and whether it's important or not.
17	The objective of the 2:00:44 annual
18	program is to improve prediction of the failure model
19	location, failure modes, and the times to failure of
20	reactor RCS components. This equally serves hot leg
21	piping, manways, PORVs and PSVs under severe accident
22	condition.
23	CO-CHAIRMAN WALLIS: So what's your
24	pipeline for people like the previous speaker where
25	he's predicting things and you're taking his results

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	230
1	for temperatures and things.
2	MR. MAJUMDAR: Yeah, I'm not sure what I
3	wrote.
4	CO-CHAIRMAN WALLIS: Do you have to wait
5	until there's an approved report, or is there a
6	pipeline where you can send your stuff right away?
7	MR. MAJUMDAR: We've already gotten the
8	heat transfer coefficient from
9	CO-CHAIRMAN WALLIS: So you have a
10	pipeline of direct transfer, not sort of send it up to
11	management and management goes on vacation and then
12	you wait.
13	MR. MAJUMDAR: No, no, no.
14	CO-CHAIRMAN WALLIS: No? Okay. Good.
15	MR. MUSCARA: That's part of the reason
16	for having this integration team that I work with, to
17	make sure that the information gets released at the
18	right time.
19	MR. MAJUMDAR: So basically we have two
20	phases in the program. During phase one of this
21	program, we did an engineering review, and we saw the
22	most likely components to fail would be the
23	pressurizer safety valves, bar operator relief valves,
24	PORVs, the manways, and the steam generator and the
25	hot leg and the surge line piping, including the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	231
1	intersections and the nozzles.
2	These components are identified as the
3	most likely to fail during a typical severe accident.
4	Now, analysis of the passive component,
5	like the hot leg or the surge line, is relatively
6	straightforward compared to the active components
7	which have moving parts, and the active component
8	failure is rather challenging. So we reviewed the
9	literature of failure history of valves, bolted
10	joints, and gaskets during phase one.
11	To help determine whether detailed
12	analysis of the active components was a realistic
13	objective or not, we held a workshop at Argonne with
14	participants from two valve manufacturers, one gasket
15	manufacturer, and NRC and EPRI and INEL personnel.
16	Now, the participants
17	CO-CHAIRMAN WALLIS: Did you have foreign
18	representatives or other people are working on this
19	problem It's just
20	MR. MAJUMDAR: We tried to get hold of
21	foreign participants, but this was just after 9/11 and
22	everything was canceled.
23	MR. PAGE: We have to delay the meeting
24	twice.
25	MR. MAJUMDAR: So we concluded that the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 most likely scenario for the PORV, for example, to 2 fail would be galling, but to analyze galling we 3 needed tolerance in tightly fighting parts. 4 Participants felt that the valve manufacturers would 5 not very easily give out those detailed geometric information, and even if he did the analysis and 6 7 predicted failure, the feeling was it would be very difficult to predict that the PRA would fail in the 8 9 open position or shut position or half opened, half closed or whatever it is. So it wouldn't be very 10 11 useful. 12 Participants were more optimistic about analysis of bolted joints. So during our phase two, 13 14 our primary has been focus on analysis of passive 15 component failure. We obtained detailed mechanical and structural drawings of the hot leg and the surge 16 line piping of the ZION nuclear station. 17 We did finite element analysis of the hot 18

19 leg and the surge line piping, including the nozzles 20 of Loop 4 which had the pressurize, and the analysis 21 was based on thermal hydraulic results provided by 22 ISEL and NRC Research.

We conducted a study of other RCS passive components like the steam generator primary manway, and here we were really looking for the loss of both

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	233
1	
2	CO-CHAIRMAN WALLIS: On the hot leg, I
3	mean, in the hot leg you have counter current flow of
4	pretty hot steam and pretty cold steam. Is the heat
5	conduction in the metal from the cold top out to the
6	cold important?
7	MR. MAJUMDAR: Yeah, we took that into
8	account. Yeah, yeah, I'll show you some results.
9	CO-CHAIRMAN WALLIS: And what does that
10	do? Does that heat transfer that changed the
11	temperature of the streams. I don't know if Chris
12	Boyd has that temperature, that heat transfer in the
13	hot leg.
14	MR. MAJUMDAR: No, he didn't have that.
15	CO-CHAIRMAN WALLIS: The hot leg is like
16	a heat exchanger where the metal is sort of like a fin
17	or something. It eventually helps the
18	MR. MAJUMDAR: Actually the RELAP 5
19	analysis shows a stepped up pressure change but on the
20	hot side.
21	CO-CHAIRMAN WALLIS: Not quite so simple.
22	MR. MAJUMDAR: No, but I'll show some
23	results from the
24	CO-CHAIRMAN WALLIS: So is the metal
25	almost at the same temperature all around or is it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 much hotter on the top than on the bottom? 2 MR. MAJUMDAR: No, it's much hotter on the 3 hot side of the 4 CO-CHAIRMAN WALLIS: It is? 5 MR. MAJUMDAR: Yeah. 6 CO-CHAIRMAN WALLIS: Even though it's a 7 good conductor? 8 MR. MAJUMDAR: Stainless steel is not such 9 a good conductor, but it still 10 CO-CHAIRMAN WALLIS: Well, then steam is 11 not a very good heater either. So 12 MR. MAJUMDAR: Well, I'll show the 13 results. It does smooth out the distribution. 14 CO-CHAIRMAN WALLIS: Okay. Thank you. 15 MR. MAJUMDAR: Okay. So we looked at the 16 primary manway, and so we were primarily looking for 16 primary manway, and so we were primarily looking for 17 loss of bolt retention when the power cable lift up 18 and we were allowed to see 19 CO-CHAIRMAN WALLIS: You have pretentious 20 bolts? 21 MR. MAJUMDAR: Retention bolts.		234
hot side of the CO-CHAIRMAN WALLIS: It is? MR. MAJUMDAR: Yeah. Good conductor? MR. MAJUMDAR: Stainless steel is not such a good conductor, but it still CO-CHAIRMAN WALLIS: Well, then steam is not a very good heater either. So MR. MAJUMDAR: Well, I'll show the results. It does smooth out the distribution. MR. MAJUMDAR: Okay. Thank you. MR. MAJUMDAR: Okay. So we looked at the primary manway, and so we were primarily looking for loss of bolt retention when the power cable lift up and we were allowed to see CO-CHAIRMAN WALLIS: You have pretentious bolts?	1	much hotter on the top than on the bottom?
 4 CO-CHAIRMAN WALLIS: It is? 5 MR. MAJUMDAR: Yeah. 6 CO-CHAIRMAN WALLIS: Even though it's a 7 good conductor? 8 MR. MAJUMDAR: Stainless steel is not such 9 a good conductor, but it still 10 CO-CHAIRMAN WALLIS: Well, then steam is 11 not a very good heater either. So 12 MR. MAJUMDAR: Well, I'll show the 13 results. It does smooth out the distribution. 14 CO-CHAIRMAN WALLIS: Okay. Thank you. 15 MR. MAJUMDAR: Okay. So we looked at the 16 primary manway, and so we were primarily looking for 17 loss of bolt retention when the power cable lift up 18 and we were allowed to see 19 CO-CHAIRMAN WALLIS: You have pretentious 20 bolts? 	2	MR. MAJUMDAR: No, it's much hotter on the
5MR. MAJUMDAR: Yeah.6CO-CHAIRMAN WALLIS: Even though it's a7good conductor?8MR. MAJUMDAR: Stainless steel is not such9a good conductor, but it still10CO-CHAIRMAN WALLIS: Well, then steam is11not a very good heater either. So12MR. MAJUMDAR: Well, I'll show the13results. It does smooth out the distribution.14CO-CHAIRMAN WALLIS: Okay. Thank you.15MR. MAJUMDAR: Okay. So we looked at the16primary manway, and so we were primarily looking for17loss of bolt retention when the power cable lift up18and we were allowed to see19CO-CHAIRMAN WALLIS: You have pretentious20bolts?	3	hot side of the
 6 CO-CHAIRMAN WALLIS: Even though it's a good conductor? 8 MR. MAJUMDAR: Stainless steel is not such 9 a good conductor, but it still 10 CO-CHAIRMAN WALLIS: Well, then steam is 11 not a very good heater either. So 12 MR. MAJUMDAR: Well, I'll show the results. It does smooth out the distribution. 14 CO-CHAIRMAN WALLIS: Okay. Thank you. 15 MR. MAJUMDAR: Okay. So we looked at the primary manway, and so we were primarily looking for loss of bolt retention when the power cable lift up 18 and we were allowed to see 19 CO-CHAIRMAN WALLIS: You have pretentious 20 bolts? 	4	CO-CHAIRMAN WALLIS: It is?
7 good conductor? 8 MR. MAJUMDAR: Stainless steel is not such 9 a good conductor, but it still 10 CO-CHAIRMAN WALLIS: Well, then steam is 11 not a very good heater either. So 12 MR. MAJUMDAR: Well, I'll show the 13 results. It does smooth out the distribution. 14 CO-CHAIRMAN WALLIS: Okay. Thank you. 15 MR. MAJUMDAR: Okay. So we looked at the 16 primary manway, and so we were primarily looking for 17 loss of bolt retention when the power cable lift up 18 and we were allowed to see 19 CO-CHAIRMAN WALLIS: You have pretentious 20 bolts?	5	MR. MAJUMDAR: Yeah.
 MR. MAJUMDAR: Stainless steel is not such a good conductor, but it still CO-CHAIRMAN WALLIS: Well, then steam is not a very good heater either. So MR. MAJUMDAR: Well, I'll show the results. It does smooth out the distribution. CO-CHAIRMAN WALLIS: Okay. Thank you. MR. MAJUMDAR: Okay. So we looked at the primary manway, and so we were primarily looking for loss of bolt retention when the power cable lift up and we were allowed to see CO-CHAIRMAN WALLIS: You have pretentious bolts? 	6	CO-CHAIRMAN WALLIS: Even though it's a
9 a good conductor, but it still CO-CHAIRMAN WALLIS: Well, then steam is not a very good heater either. So MR. MAJUMDAR: Well, I'll show the results. It does smooth out the distribution. CO-CHAIRMAN WALLIS: Okay. Thank you. MR. MAJUMDAR: Okay. So we looked at the primary manway, and so we were primarily looking for loss of bolt retention when the power cable lift up and we were allowed to see CO-CHAIRMAN WALLIS: You have pretentious bolts?	7	good conductor?
10 CO-CHAIRMAN WALLIS: Well, then steam is 11 not a very good heater either. So 12 MR. MAJUMDAR: Well, I'll show the 13 results. It does smooth out the distribution. 14 CO-CHAIRMAN WALLIS: Okay. Thank you. 15 MR. MAJUMDAR: Okay. So we looked at the 16 primary manway, and so we were primarily looking for 17 loss of bolt retention when the power cable lift up 18 and we were allowed to see 19 CO-CHAIRMAN WALLIS: You have pretentious 20 bolts?	8	MR. MAJUMDAR: Stainless steel is not such
<pre>11 not a very good heater either. So 12 MR. MAJUMDAR: Well, I'll show the 13 results. It does smooth out the distribution. 14 CO-CHAIRMAN WALLIS: Okay. Thank you. 15 MR. MAJUMDAR: Okay. So we looked at the 16 primary manway, and so we were primarily looking for 17 loss of bolt retention when the power cable lift up 18 and we were allowed to see 19 CO-CHAIRMAN WALLIS: You have pretentious 20 bolts?</pre>	9	a good conductor, but it still
12 MR. MAJUMDAR: Well, I'll show the 13 results. It does smooth out the distribution. 14 CO-CHAIRMAN WALLIS: Okay. Thank you. 15 MR. MAJUMDAR: Okay. So we looked at the 16 primary manway, and so we were primarily looking for 17 loss of bolt retention when the power cable lift up 18 and we were allowed to see 19 CO-CHAIRMAN WALLIS: You have pretentious 20 bolts?	10	CO-CHAIRMAN WALLIS: Well, then steam is
13 results. It does smooth out the distribution. 14 CO-CHAIRMAN WALLIS: Okay. Thank you. 15 MR. MAJUMDAR: Okay. So we looked at the 16 primary manway, and so we were primarily looking for 17 loss of bolt retention when the power cable lift up 18 and we were allowed to see 19 CO-CHAIRMAN WALLIS: You have pretentious 20 bolts?	11	not a very good heater either. So
14CO-CHAIRMAN WALLIS: Okay. Thank you.15MR. MAJUMDAR: Okay. So we looked at the16primary manway, and so we were primarily looking for17loss of bolt retention when the power cable lift up18and we were allowed to see19CO-CHAIRMAN WALLIS: You have pretentious20bolts?	12	MR. MAJUMDAR: Well, I'll show the
MR. MAJUMDAR: Okay. So we looked at the primary manway, and so we were primarily looking for loss of bolt retention when the power cable lift up and we were allowed to see CO-CHAIRMAN WALLIS: You have pretentious bolts?	13	results. It does smooth out the distribution.
<pre>16 primary manway, and so we were primarily looking for 17 loss of bolt retention when the power cable lift up 18 and we were allowed to see 19 CO-CHAIRMAN WALLIS: You have pretentious 20 bolts?</pre>	14	CO-CHAIRMAN WALLIS: Okay. Thank you.
<pre>17 loss of bolt retention when the power cable lift up 18 and we were allowed to see 19 CO-CHAIRMAN WALLIS: You have pretentious 20 bolts?</pre>	15	MR. MAJUMDAR: Okay. So we looked at the
18 and we were allowed to see 19 CO-CHAIRMAN WALLIS: You have pretentious 20 bolts?	16	primary manway, and so we were primarily looking for
19CO-CHAIRMAN WALLIS: You have pretentious20bolts?	17	loss of bolt retention when the power cable lift up
20 bolts?	18	and we were allowed to see
	19	CO-CHAIRMAN WALLIS: You have pretentious
21 MR. MAJUMDAR: Retention bolts	20	bolts?
	21	MR. MAJUMDAR: Retention bolts.
22 (Laughter.)	22	(Laughter.)
23 MR. MAJUMDAR: And allow the steam leakage	23	MR. MAJUMDAR: And allow the steam leakage
24 to occur so it would depressurize the system, and we	24	to occur so it would depressurize the system, and we
25 also cut the resistance to partially detect the RTD	25	also cut the resistance to partially detect the RTD

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	235
1	rails[unintelligible due to strong foreign accent
2	[UDTSFA]), the socket rail connection of an instrument
3	like to the RTD flange.
4	We also did some positive impact, NRC's
5	for the PORV. All the work I'm going to discuss were
6	reported in the NUREG CR-6792 and the current NUREG CR
7	which is under PRA review now.
8	CO-CHAIRMAN FORD: I've never heard of a
9	resistance temperature detector weld. Is this just a
10	bimetallic weld which is using a thermocouple or what?
11	I've never heard of it.
12	MR. SIEBER: The RTDs are in a well.
13	CO-CHAIRMAN FORD: Oh, I see.
14	MR. SIEBER: And the weld is welded into
15	the pipe.
16	CO-CHAIRMAN FORD: I understand.
17	MR. MAJUMDAR: There's a two inch hole
18	actually. The idea is that RTD could be expelled from
19	the hot leg and create a two inch diameter hole
20	through which the steam can escape and depressurize.
21	MR. PAGE: I don't think the drawing you
22	have would show what you're talking about, but that's
23	okay. It will be okay.
24	MR. MAJUMDAR: This is basically the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	236
1	basically looking at this hot leg of this new
2	pressurizer. This element included the pressurizer
3	nozzle The model includes the pressurizer nozzle, the
4	surge line, the nozzle here, the hot leg, the reactor
5	vessel nozzle, the elbow, the steam generator nozzle.
6	Even though the steam generator was not
7	part of our study, we had to include that, the lower
8	head of the steam generator in order to apply the
9	structural bond reconditioning in a more convenient
10	way.
11	So we developed this final element model
12	for the whole system, and the hot leg and surge line
13	material, as I said, is 3/16 stainless steel. You've
14	got significant high temperature material properties
15	at the level for that material, even though there is
16	some lacking in the high temperature range.
17	The nozzle materials are either carbon or
18	low alloy steels, and these materials are generally
19	not used at high temperature. So we had trouble
20	getting mechanical properties at high temperature.
21	The high temperature weld, all the welds
22	in this piping are 308 stainless steel. Now, the
23	database is incomplete. By that I mean that the 308
24	generally has its mechanical properties superior to
25	the band material, but sometimes there are heat

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

237 1 affected zones that might have properties that are 2 inferior to the element itself. 3 We also completed sensitivity analysis and 4 certain analyses we are planning to do in the future. 5 To give you an idea, availability of the mechanical properties data, 3/16 stainless steel exerts the 6 7 properties, tensile properties, and heat properties, 8 and this temperature here means that in the 9 temperature regime we have the mechanical properties unavailable. 10 11 So while the stainless steel is pretty 12 well characterized, the hot leg material at the elbow material is a forging material. It's not much data at 13 14 high temperature. We assume it is the same as 15 stainless steel. The surge line to hot leg nozzle is a 16 17 forging material, again. Again, high temperature data are kind of limited so we had to assume they're the 18 19 same as stainless steel 20 MR. MUSCARA: CF8M? 21 MR. MAJUMDAR: CF8M. That's a casting steel. 22 MR. MUSCARA: 23 MR. MAJUMDAR: Oh, that's a casting. 24 Okay. 25 CO-CHAIRMAN WALLIS: Well, Ι don't

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

238 1 understand this. Oh, I guess yo mean that the tensile 2 strength is evaluated over that range of temperatures. 3 The temperature strength isn't in degrees Centigrade. 4 Okay. 5 And the rupture time is something which is also just a function of temperature? 6 7 MR. MAJUMDAR: Yeah, it's a function of temperature and stress, and that's the temperature 8 9 range in which the data are available. The weld middle, as you see, there's also 10 11 very limited data. The only exception was where data 12 was available was for the A508, Class 2, and this had a very high heat, developed a very high temperature, 13 14 the reason being that this particular material was 15 tested in an NRC program that was geared toward analyzing the lower head of the --16 17 CO-CHAIRMAN WALLIS: The hot leg elbow is different material from the hot leg? 18 19 MR. MAJUMDAR: Oh, yeah, it is. 20 PARTICIPANTS: Yeah. 21 CO-CHAIRMAN WALLIS: And there's a weld 22 there of some of sort of --23 MR. MAJUMDAR: Yeah, there are welds 24 there, plus the elbows have got some more massive --25 CO-CHAIRMAN WALLIS: You've got to look

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	239
1	for leaks in that area
2	MR. SIEBER: Is this a plant with
3	centrifugal cast stainless steel or forged?
4	MR. MAJUMDAR: Is that a casting or
5	forged, the CF8M?
6	PARTICIPANTS: Eight M is cast.
7	MR. SIEBER: Okay.
8	CO-CHAIRMAN FORD: Now, on the previous
9	graph, you said you did sensitivity studies. What
10	were the variables that you put into your sensitivity
11	studies?
12	MR. MAJUMDAR: I'll come to that later on.
13	I will talk about that.
14	CO-CHAIRMAN FORD: Okay.
15	MR. MAJUMDAR: Okay. The properties that
16	we really don't have are, for example, this nozzle,
17	the steam generator and the pressurizer nozzle. This
18	is a cast 216, absolutely no data developed from the
19	material.
20	CO-CHAIRMAN FORD: So in your analysis,
21	when there are no data available, what do you do?
22	MR. MAJUMDAR: Well, we assumed the same
23	as the A508, which was the last. This material for
24	this cast low alloy steel, there's a lot of property
25	available for that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	240
1	CO-CHAIRMAN FORD: But there's no high
2	temperature
3	MR. MAJUMDAR: No data available.
4	CO-CHAIRMAN FORD: stretch strength.
5	MR. MAJUMDAR: That's right.
6	MR. MUSCARA: So because there's no data,
7	we're assuming some data, and then conducting some
8	experimental work in the next phase.
9	CO-CHAIRMAN FORD: So this is just a
10	scoping study at the beginning.
11	MR. MUSCARA: We need to set up the
12	modeling and
13	CO-CHAIRMAN FORD: I understand. Okay.
14	MR. MAJUMDAR: The other property we don't
15	have really that's very critical is the manway bolts,
16	that A193D7 bolts. We didn't find any heat properties
17	corrupted. That's the critical property that we're
18	going to develop in the next phase of the program.
19	CO-CHAIRMAN FORD: Okay.
20	MR. MAJUMDAR: Okay. Now, what I want to
21	say is that the way we did the thermal analysis first,
22	now, RELAP 5 gave us the heat transfer coefficient for
23	these five control volumes and these five control
24	volumes. As you know, RELAP 5 has the hot leg is
25	modeled next to independent pipes, but we had a single

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

pipe. So from the top half we used the spare heat transfer coefficient supplied by the RELAP 5 run areas, and the lower for the colder half of the hot leg. These are the heat transfer coefficients for these five control volumes.

The only problem was that in the surge 6 7 line, the same thing in the surge line. You would have ideally liked to have used the heat transfer 8 9 coefficient from the RELAP 5 run, but about this program that we used for analyzing the stress and 10 11 temperature, can accept heat transfer coefficient only 12 as a function of temperature, not as a function of time, and as I will show later on, the heat transfer 13 14 coefficient on the surface in flux and the interior 15 surface of this hot leg shows pipes because of the fuel oil recycling, and those pipes could not be 16 ignored because if you ignore that, the temperature 17 analysis will give the wrong answer. 18

19 So basically you are talking about the old 20 baseline case. So we have to make sure that we don't 21 get confused here. The stuff that Don presented today 22 is the new baseline case. The stuff that I'm going to 23 is based on this old baseline case talk about 24 assumptions for the F5, and that is basically 25 encountered here.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	242
1	The main thing is that there's on
2	circumferential heat conduction or radiated heat
3	transfer in the hot leg, and the RCP seal leakage is
4	assumed to zero. So there's no significant increase
5	in same temperature.
6	MR. SIEBER: The number of tubes, that's
7	per steam generator, four times.
8	MR. MAJUMDAR: Yeah. Yeah, 3388 total
9	steam generator.
10	MR. SIEBER: For each one, yeah.
11	CO-CHAIRMAN WALLIS: So it's the old case.
12	MR. MAJUMDAR: The old case, yeah.
13	CO-CHAIRMAN WALLIS: You're going to put
14	in some better assumptions.
15	MR. MUSCARA: Yeah, that's planned.
16	MR. MAJUMDAR: Basically, as I said, he
17	wanted to put in the heat transfer coefficient in the
18	interior surface, but this will not accept heat
19	transfer coefficient as a function of time. So as a
20	function of time, we have plenty of heat flux and
21	interior surface in the hot leg as a function of time,
22	and there are these spikes that are caused by the
23	surge line we showed you.
24	The spikes are caused by the PORV cycling,
25	and they could not be ignored. If you ignore them,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	243
1	then the temperature distribution became not reliable.
2	Initially the first table is that we need
3	a structural thermal conduction analysis based upon
4	ABAQUS file model, and then use these temperature in
5	the distribution and stress analysis in the second
6	state.
7	Here I'm showing the inner surface
8	temperature in degrees Kelvin at this time, 1,440
9	seconds, and as you can see, the hot leg outside; this
10	is the upper half. The upper half is pretty hot, 1280
11	K. The lower half is showed by the blue here. The
12	blue here are pretty cold as you would expect because
13	the hot flow in the top and the cold flow in the
14	bottom.
15	And the surge line is hot uniformly all
16	around. So all of these temperatures are computed by
17	ABAQUS.
18	CO-CHAIRMAN FORD: On the table you have
19	there, can you just the red is what?
20	MR. MAJUMDAR: The red is 1,263 degrees
21	Kelvin.
22	CO-CHAIRMAN FORD: So it's in degrees
23	Kelvin.
24	MR. MAJUMDAR: Kelvin, yeah, degrees
25	Kelvin. Sometimes I use Kelvin, sometimes Centigrade,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	244
1	sometimes Fahrenheit in one case.
2	MR. SIEBER: Thanks.
3	(Laughter.)
4	CO-CHAIRMAN FORD: It was 1,000 degrees C.
5	MR. MAJUMDAR: At that time, 14,000.
6	CO-CHAIRMAN FORD: One thousand degrees C.
7	MR. MAJUMDAR: Yeah.
8	MR. SIEBER: Just one.
9	CO-CHAIRMAN WALLIS: That's why it's shown
10	red.
11	MR. MAJUMDAR: Okay. This is the
12	temperature variation in the hot leg. The top and
13	outer surface, the top inner surface and bottom outer
14	and bottom inner surface.
15	The thing I wanted to point out is that
16	this 4,000 seconds will actually have to add 10,000
17	because the plus 10,000 seconds, nothing happens in
18	it. So we really started analyzing for after 10,000
19	seconds.
20	At around 14,000 seconds or a little
21	before that, the temperature drives. There's a big
22	increase in the gradient from about six degrees per
23	minute to 24 degrees per minute.
24	CO-CHAIRMAN WALLIS: You don't have any
25	conduction between the two?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	245
1	MR. MAJUMDAR: I have.
2	CO-CHAIRMAN WALLIS: You do now?
3	MR. MAJUMDAR: Yeah.
4	CO-CHAIRMAN WALLIS: But you didn't
5	before, but the old case had no conduction the wall.
6	MR. MAJUMDAR: In RELAP 5 there's no
7	conduction in the wall, but this is about the heat.
8	Yet the heat in RELAP 5 could transfer and
9	analyzing/reanalyzing the thermal conduction
10	following.
11	CO-CHAIRMAN FORD: I must have missed
12	something in previous presentations. I never saw
13	steam temperatures on the order of 1,000 degrees C.,
14	did I?
15	CO-CHAIRMAN WALLIS: This is a reactor.
16	This is a reactor. It isn't cool.
17	MR. SIEBER: You don't take any heat away
18	and just keep putting it in when you get up to
19	CO-CHAIRMAN FORD: Fine, okay.
20	MR. MAJUMDAR: Most other figures [UDTSFA]
21	all around this point.
22	CO-CHAIRMAN WALLIS: Well, the burning of
23	zirconium is, after a while, really heating it up.
24	DR. KRESS: Yeah, zirconium is burning
25	when it takes off in a vertical.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	246
1	MR. MAJUMDAR: Yeah, this is where
2	zirconium starts oxidizing.
3	CO-CHAIRMAN FORD: Okay.
4	MR. MAJUMDAR: Anyway, three is about
5	inner surface temperatures over 50 to 150 degrees C.
6	hotter than the outer surface, and the upper half is
7	about 100 to 500 degrees hotter than the lower half.
8	At this point the RAB increases from over six degrees
9	per minute to 24 degrees per minute.
10	And this is the circumferential
11	temperature variation in the hot leg, the outer
12	surface and the inner surface. So the RELAP 5 numbers
13	were kind of a [UDTSFA] function that has been rounded
14	out by the ABAQUS circumferential conduction.
15	You see, because the large maximum
16	temperature of the reactor vessel nozzle lags that in
17	the hot leg about 450 degrees Centigrade. The nozzle
18	really doesn't get hot in the RV end.
19	The thermal conduction makes the
20	circumferential variation much smoother than
21	calculated by RELAP 5, but on the hot leg max
22	temperature is 1,200 degrees C. Inland temperature is
23	830 C. You see at this time again, 18,400 seconds.
24	The RELAP 5 calculated hot to on site
25	temperature drop is about 450 degrees C. It's about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	247
1	here, what, 375 degrees now instead of 450.
2	And now after the terminal analysis, we
3	come to the structural analysis part, and here we put
4	all of the boundary conditions on the surge line. The
5	surge line has a number of supports to carry the load,
6	just the weight of the surge line. The hot leg is not
7	supported. It's supported only by the reactor and by
8	the [UDTSFA] cell. There are no supporting besides
9	the hot leg itself.
10	Also the steam generator that sits on
11	these four supports that are in the bottom, they are
12	gim bolts so they can rotate around these points.
13	Basically the point I want to say, bring
14	out here is that we model all the structure boundary
15	conditions that are applied on the
16	CO-CHAIRMAN WALLIS: These supports are
17	assumed to be rigid? They don't pull out?
18	MR. MAJUMDAR: No, they're not rigid. It
19	has been constantly
20	CO-CHAIRMAN WALLIS: They can pull out?
21	They can break?
22	MR. MAJUMDAR: No.
23	MR. PAGE: No, they do not break.
24	MR. MAJUMDAR: But there is three
25	constants, as I said.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	248
1	MR. PAGE: And also the one on the
2	opposite side of the steam generator is very important
3	because that's a steam generator stop, and so
4	basically as it grows under normal conditions, it
5	basically goes up against the stop. So any further
6	growth due to thermal is going to just be pressing
7	these things together.
8	MR. MAJUMDAR: Yes, I'll come to that.
9	This is the typical deformation of the hot
10	leg surge line.
11	CO-CHAIRMAN WALLIS: Is that exaggerated
12	or is that
13	MR. MAJUMDAR: It is very highly. This is
14	highly exaggerated, but the green shade is the
15	deformed shape at room temperature, and the unshaded
16	area is the deformed after temperature.
17	I think you will notice that the surge
18	line deforms quite a bit, and the other thing is that
19	the independent supports, this support moves from
20	there to there. So basically the steam generator can
21	move as a rigid body, heat up from the room
22	temperature to this normal operation at a full power,
23	but as Joel was just saying, what they do is they then
24	put shims against the bumpers so that the steam
25	generator is not about to move any further away from

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	249
1	the reactor.
2	And as I said before, I modeled all of the
3	supports, but not directly.
4	CO-CHAIRMAN FORD: Now, educate me in
5	terms of the qualification of these deformation codes
6	as they apply to these sort of temperatures. I'm
7	showing my ignorance here because I just don't know
8	the answer.
9	Have these deformation codes been
10	qualified at these sort of temperatures?
11	MR. MAJUMDAR: You mean the ABAQUS code?
12	CO-CHAIRMAN FORD: Yeah. ABAQUS code is
13	an old code.
14	MR. MAJUMDAR: Yeah, they've done all
15	kinds of creep analysis and validation. They've done
16	validation on simple models. Plus a complex thing
17	like that, there's no way of validating the results.
18	You take it on trust.
19	CO-CHAIRMAN FORD: That's what worries me.
20	ABAQUS code I seem to remember as being gas turbines,
21	and has it been well qualified under those operating
22	conditions?
23	I've got a natural reserve about anybody
24	using a code way beyond the conditions under which it
25	has been qualified against observations.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	250
1	MR. MAJUMDAR: It's not in the code. What
2	is the uncertainties are material properties.
3	MR. SIEBER: This is first principles.
4	MR. MAJUMDAR: Yeah, this ABAQUS code,
5	they have validated the results with known analytical
6	results. They can validate it that way, but for a
7	complex thing like this, how do you validate on
8	CO-CHAIRMAN WALLIS: Your ABAQUS is an IRC
9	code. It's a universal code used all over the place
10	with all kinds of purposes.
11	MR. MAJUMDAR: Yeah, yeah, yeah. It's a
12	pretty well known code, especially for non-linear
13	analysis.
14	CO-CHAIRMAN FORD: I guess I'm being a
15	devil's advocate or being an old Jenny, but I hate to
16	be in a situation in some time in the future if we had
17	a severe accident and something unexpected occurred,
18	and here we are sitting down in front of a public
19	review and someone says, "You never asked the question
20	as to whether this was qualified for these
21	conditions."
22	I mean, I'd hate to be in that situation,
23	and that's why I'm asking the question, and I'm
24	hearing all of the experts in the room here say,
25	"Don't worry, Peter. This is being qualified." No

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	251
1	questions asked.
2	MR. SIEBER: No, first principles.
3	CO-CHAIRMAN FORD: I've heard first
4	principles, Jack, coming out of my ears and then
5	something unusual happens like an O ring was quite all
6	right to use on this particular shuttle and something
7	happened.
8	MR. MAJUMDAR: But the final limit was not
9	the problem. It was the people who
10	CO-CHAIRMAN WALLIS: Well, I think if
11	Jack, the guy with all of the experience in the room,
12	has to use this sort of academic argument that it's
13	all from first principle, you ought to believe him.
14	I mean, he's
15	(Laughter.)
16	MR. MUSCARA: I understand, but IMAGINE
17	has been used in situations like this, and whether
18	they have validated the results or not
19	CO-CHAIRMAN FORD: Now we're taking this
20	well
21	MR. MAJUMDAR: I'll say more. I've seen
22	some experimental work by the Japanese who actually
23	take pipes and heat it up under temperature and then
24	measure the deformation and predict using ABAQUS.
25	CO-CHAIRMAN FORD: Okay.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
1 MR. MAJUMDAR: Not failure, but the 2 deformation. 3 MR. MUSCARA: Bill, do you know about the 4 IPIRG? It may have been used there also when you had 5 some large structures that were heated up and tested 6 CO-CHAIRMAN WALLIS: Well, the sort of 7 question you might have would be what 8 MR. SHACK: As Saurin says, I mean, ABAQUE 9 is the standard finite element structural code for 10 nonlinear situations. It has been benchmarked against 11 all sorts of analytical solutions. So I think as 12 Saurin said, I mean, it solves the equations 13 correctly. 14 Now, whether the model we're using	
 MR. MUSCARA: Bill, do you know about the IPIRG? It may have been used there also when you had some large structures that were heated up and tested CO-CHAIRMAN WALLIS: Well, the sort or question you might have would be what MR. SHACK: As Saurin says, I mean, ABAQUS is the standard finite element structural code for nonlinear situations. It has been benchmarked against all sorts of analytical solutions. So I think as Saurin said, I mean, it solves the equations correctly. 	
 4 IPIRG? It may have been used there also when you had some large structures that were heated up and tested 6 CO-CHAIRMAN WALLIS: Well, the sort of question you might have would be what 8 MR. SHACK: As Saurin says, I mean, ABAQUS 9 is the standard finite element structural code for nonlinear situations. It has been benchmarked against all sorts of analytical solutions. So I think as 12 Saurin said, I mean, it solves the equations 13 correctly. 	
5 some large structures that were heated up and tested 6 CO-CHAIRMAN WALLIS: Well, the sort of 7 question you might have would be what 8 MR. SHACK: As Saurin says, I mean, ABAQUS 9 is the standard finite element structural code for 10 nonlinear situations. It has been benchmarked against 11 all sorts of analytical solutions. So I think as 12 Saurin said, I mean, it solves the equations 13 correctly.	
6 CO-CHAIRMAN WALLIS: Well, the sort of 7 question you might have would be what 8 MR. SHACK: As Saurin says, I mean, ABAQU 9 is the standard finite element structural code for 10 nonlinear situations. It has been benchmarked against 11 all sorts of analytical solutions. So I think as 12 Saurin said, I mean, it solves the equations 13 correctly.	
7 question you might have would be what 8 MR. SHACK: As Saurin says, I mean, ABAQUS 9 is the standard finite element structural code for 10 nonlinear situations. It has been benchmarked against 11 all sorts of analytical solutions. So I think as 12 Saurin said, I mean, it solves the equations 13 correctly.	
MR. SHACK: As Saurin says, I mean, ABAQU 9 is the standard finite element structural code for 10 nonlinear situations. It has been benchmarked against 11 all sorts of analytical solutions. So I think as 12 Saurin said, I mean, it solves the equations 13 correctly.	(- - - -
9 is the standard finite element structural code for 10 nonlinear situations. It has been benchmarked against 11 all sorts of analytical solutions. So I think as 12 Saurin said, I mean, it solves the equations 13 correctly.	(- - - -
10 nonlinear situations. It has been benchmarked against all sorts of analytical solutions. So I think as 12 Saurin said, I mean, it solves the equations 13 correctly.	
all sorts of analytical solutions. So I think as Saurin said, I mean, it solves the equations correctly.	3
12 Saurin said, I mean, it solves the equations 13 correctly.	
13 correctly.	3
14 Now, whether the model we're using	
	J
15 describes the physics correctly is a different	-
16 questions, but, you know, to the extent that you want	-
17 to solve a creep rupture problem, ABAQUS solves the	5
18 creep rupture problem correctly and has been through	1
19 many, many rounds of QA, and is highly qualified	1
20 against benchmarks.	
21 So to that extent I think you would fee:	L
22 very comfortable using ABAQUS.	
23 MR. SIEBER: There are some opportunities	3
24 for deviation between what you calculate.	
25 MR. MAJUMDAR: Oh, yeah.	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	253
1	MR. SIEBER: Because you don't really know
2	how rigid the supports are for
3	MR. MAJUMDAR: There is some uncertainty
4	in that, yeah, yeah.
5	MR. SIEBER: And material properties have
6	some variability as to what the handbook value is.
7	MR. MAJUMDAR: Sure, sure. There's all
8	kind of heat to heat variation, welds.
9	CO-CHAIRMAN FORD: So all of these
10	uncertainties, physical uncertainties can be addressed
11	by this fundamental code.
12	MR. MAJUMDAR: You have to model it
13	correctly.
14	MR. PAGE: We're trying to improve
15	dramatically what was previously done in previous
16	work, and we think this does do that.
17	Perfect? I don't know that we'll ever
18	achieve perfect.
19	MR. SIEBER: That's why you can't get
20	perfect.
21	MR. MAJUMDAR: If you put garbage in,
22	garbage out, but do it perfectly.
23	CO-CHAIRMAN FORD: Sure.
24	MR. PAGE: But I think these models, we
25	really sat through a couple of sessions of intensive

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

254 1 assumptions on where we put the supports, what's 2 allowed to move, what's not allowed to move, and so we 3 looked in great detail at the actual down to the 4 inch --MR. SIEBER: Well, the fact is there is no 5 such thing as a rigid support. 6 7 MR. MAJUMDAR: Yeah, but we are also 8 supposed not really though. 9 MR. PAGE: No, no, but you can be rigid with respect to something else if this is --10 11 MR. SIEBER: Well, that's why you put in 12 the model and then you get an answer that approximates what really happened. 13 14 MR. MAJUMDAR: And that's the best we can 15 do. What else are we, other than doing a test, full scale test, whatever, are we going to do? 16 17 MR. PAGE: Yeah, we assumed that the reactor vessel was not going to move. That nozzle was 18 19 going to stay in place. We assumed that the 20 pressurizer nozzle was not going to move. We went 21 through and we had a group. We had like six or seven 22 people sitting in a room at Oregon that were people 23 very familiar with designs, and we sat down and 24 decided what was this thing going to be like, what 25 were going to be the assumptions.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	255
1	And actually all of us agreed at the end
2	that those would be good assumptions for this model.
3	Now, we're relying that this is probably as good a
4	code as you're going to get at this point to do this
5	analysis.
6	MR. SIEBER: You know, they actually do
7	test these things. Part of the testing sequence for
8	starting up the plant is when you heat it up, you
9	measure where everything moves to.
10	MR. PAGE: Well, actually that's where
11	they do the adjustments on the
12	MR. MAJUMDAR: That's a simple
13	calculation. There's no stress. The things move
14	unconstrained. That is proved.
15	CO-CHAIRMAN FORD: Okay, but, Jack, what
16	you jut said is a very useful statement. Actually
17	when they start out, they measure deformation of those
18	pipes, et cetera.
19	MR. SIEBER: Yeah, through that limited
20	temperature range. Now you're talking about
21	MR. MAJUMDAR: Now the question is
22	MR. SIEBER: temperature changes here.
23	MR. PAGE: When they do the measurements
24	you're talking about they go like in the earlier
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

256 1 those seismic supports that aren't really in contact 2 with the pipe, but they go through, and the shims on 3 the end on the stop, they make sure all of those at 4 temperature are in the correct locations. The plant grows. 5 MR. SIEBER: It gets It gets hotter and it get wider. 6 biqger. 7 CO-CHAIRMAN WALLIS: That's what this means? NL means normal operation here? 8 9 MR. MAJUMDAR: Yeah, it means normal operation, yeah. 10 11 DR. KRESS: RT means rupture time? 12 MR. MAJUMDAR: Where? No, room temperature. 13 14 DR. KRESS: Room temperature. 15 MR. MAJUMDAR: There's no rupture here. DR. KRESS: So these things would be room 16 17 temperature? It does heating it up 18 MR. MAJUMDAR: 19 uniformly. 20 DR. KRESS: All right. At what point are 21 you heating this thing up to? 22 MR. MAJUMDAR: Up to normal operation 23 MR. PAGE: This is just a benchmark. This 24 is just a starting. DR. KRESS: Normal operation temperatures. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	257
1	There's no creep involved in this. This is just
2	thermal expansion.
3	MR. MAJUMDAR: This is thermal expansion
4	plus the mismatched threads.
5	DR. KRESS: Now I've got you.
6	CO-CHAIRMAN WALLIS: And there are
7	measurements in this.
8	MR. MAJUMDAR: not be constrained from
9	the supports, I believe. The supports are allowed to
10	move out.
11	MR. SHACK: He doesn't want to introduce
12	an artificial constraint by locking the steam
13	generator.
14	MR. MAJUMDAR: Too early.
15	MR. SHACK: It's too early. So he has to
16	have the realistic thermal expansion up to a certain
17	point, and then he's going to lock it, and it goes
18	into his creep analysis.
19	DR. KRESS: I understand.
20	MR. MAJUMDAR: The question is if this
21	type of deformation, once you go beyond normal
22	operation and severe accident remains, then you're
23	going to see more of these deformations, and consent
24	to that type of deformation will cause stress, and
25	these kinds of stress are not included in RELAP 5.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	258
1	So this, for example, reduce first in the
2	elastic stress. Suppose we said no plasticity or
3	creep, and we did a simple elastic stress at normal
4	operation again, and I'm plotting here the stresses,
5	and as you can see, those stresses here are very low.
6	Blue, blue is pretty low here.
7	CO-CHAIRMAN WALLIS: What are those units
8	on those stresses there?
9	MR. MAJUMDAR: These are megapascal.
10	CO-CHAIRMAN WALLIS: Three hundred?
11	MR. MAJUMDAR: Yeah, megapascal, yeah.
12	CO-CHAIRMAN WALLIS: Three hundred?
13	That's all?
14	MR. MAJUMDAR: Yeah, that's pretty high.
15	CO-CHAIRMAN WALLIS: It's above the yield
16	strength?
17	MR. MAJUMDAR: You yield 172 megapascals.
18	So look at the [UDTSFA] located on the junction here,
19	and that's primarily because we are modeling the
20	structure by sheer elements.
21	CO-CHAIRMAN WALLIS: Does this happen in
22	normal operation? You reach that and it actually
23	yields at that junction?
24	MR. MAJUMDAR: It's very local. It's not
25	general throughout the structure. Very locally, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	259
1	that's because secondary stress, but a little
2	deformation will take care of that.
3	CO-CHAIRMAN WALLIS: So as you heat up and
4	cool down, that thing wiggles and yields.
5	MR. MAJUMDAR: Yeah, but basically the
б	whole structure is at at pretty low stress.
7	CO-CHAIRMAN FORD: You've got a small pipe
8	or relatively small pipe going into a large hot leg
9	where there's a large stress concentration. Under
10	normal operations, do you get cracking there, fatigue
11	cracking?
12	MR. SIEBER: It's a thermal sleeve.
13	MR. MAJUMDAR: A thermal sleeve in there,
14	yeah. There's thermal sleeve in there.
15	CO-CHAIRMAN FORD: I wasn't thinking of
16	thermal stresses, Jack. I was thinking of just
17	MR. MAJUMDAR: This is a difficult stress
18	concentration area, but I don't think there has ever
19	been a case of cracking there.
20	MR. SIEBER: I don't remember any.
21	MR. SHACK: Again, that would be analyzed
22	as part of the stress analysis for the piping. You
23	would, you know, do the thermal stress calculation in
24	a fatigue life, you know. So I'm sure there's a CUF
25	for that joint

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	260
1	CO-CHAIRMAN FORD: My follow-up one
2	question, Bill, was that I asked for what parameters
3	went into the uncertainty analysis during severe
4	accident. So what would happen if you had even a CUF
5	of half and there's a considerable crack in that pipe
6	that wasn't protected?
7	MR. SHACK: No, no, no. CUF means there's
8	no crack at all. You haven't initiated a crack yet.
9	You design against initiation in the ASME code. It's
10	not a flaw tolerant design. It's a no crack
11	initiation design.
12	CO-CHAIRMAN FORD: Certain gaps are
13	defined as initiation.
14	MR. SHACK: No, no, no, no. In this case
15	you're avoiding all initiation as in smooth surface.
16	MR. MAJUMDAR: No cracks are
17	MR. SHACK: No cracks allowed.
18	MR. MAJUMDAR: Cracks are not observed.
19	CO-CHAIRMAN FORD: Okay. We'll discuss
20	that later. You've got to do it for the ASME code as
21	initiate, as we understand it, but if you had a crack
22	at that point where you might expect there to be a
23	crack during normal operation for start-up and
24	shutdown, that presence of that preexisting crack
25	input into your severe accident analysis.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	261
1	MR. MAJUMDAR: No, right now we did not
2	include that, any crack at all. We assume everything
3	is free of cracks.
4	MR. PAGE: I think when we looked into the
5	crack situation, the flaws, flaws are quite a big
6	thing obviously with tubes because tubes are extremely
7	these are very large, massive, robust structures.
8	DR. KRESS: Keep in mind, Peter, if that
9	thing fails, that's a good thing.
10	(Laughter.)
11	MR. PAGE: Yeah.
12	DR. KRESS: So if they want to be
13	conservative
14	MR. PAGE: You have to be backwards of
15	your normal approach. You have to say it's almost
16	pristine. It's almost pristine.
17	MR. MAJUMDAR: It's under normal thinking
18	you want stuff to fail as late as possible. Now
19	you're trying to make the thing fail as early as
20	possible.
21	MR. SHACK: So what you have to do is make
22	sure we analyze every assumption to make sure we don't
23	build a conservatism in because we're going to make
24	this thing fail prematurely. So your whole thinking
25	gets reversed. We're looking at every possible

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	262
1	conservatism we've introduced in trying to remove it
2	because we don't want to induce an early failure.
3	Early failure is good.
4	MR. MUSCARA: When we started out, the
5	presence of flaws was one consideration. Eventually
б	you may include flaws that you might expect from
7	fabrication. From service induced, I think we've
8	decided that these components would not experience
9	very much in the way of service induced flaws.
10	So if you're looking at fabrication flaws,
11	they probably don't have much of an effect.
12	MR. SIEBER: Well, the temperature
13	differential from one end of that line to the other is
14	about 100 degrees.
15	MR. PAGE: No, it's not very much.
16	MR. SIEBER: And there's flow through it
17	all the time. So there's a gradient.
18	MR. MAJUMDAR: Now, here you're employing
19	the effective elastic stress after the severe
20	accident has started at 14,400 seconds. So the pipes
21	have really moved, and the stresses are very high,
22	and now the highest stress on this, on this point is
23	more than 1,000 megapascal. So they're way beyond the
24	yield, and therefore
25	CO-CHAIRMAN WALLIS: Yeah, that's right,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	263
1	and how can you get there?
2	MR. MAJUMDAR: Well, the conclusion is
3	that plasticity will play a significant role. So you
4	cannot get away with elastic analysis.
5	So to do elastic-plastic analysis, we need
6	to yield the ultimate properties like that, and this
7	is a typical 316 stainless steel yield here and
8	ultimate strength there that are not available beyond
9	1089 K.; 1,500 would be the best.
10	Since there's none of that high
11	temperature in the ultimate approach, so the [UDTSFA]
12	information drops very rapidly, and for 304 stainless
13	steel, it drops to within one and five percent at
14	greater than 1,200 K. As you see, the [UDTSFA] in
15	form elongation really drops to almost two percent or
16	one percent, although the [UDTSFA] product elongation
17	stays very high.
18	This is the key [UDTSFA]. Now, we express
19	[UDTSFA] the function of the power loss to the stress,
20	stress mostly to the power n, and again, the data were
21	available up from 866 to 1089 degrees Kelvin here, and
22	beyond that we didn't have data. So we used this
23	explication to extrapolate the A beyond 1089, and M as
24	shown here.
25	Now, we are plotting the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	264
1	CO-CHAIRMAN WALLIS: That's great
2	precision with which you know log A, isn't it?
3	CO-CHAIRMAN FORD: And you've got no
4	concern this is a rhetorical question you've got
5	no concern about changes in the creep mechanism by
б	going that extra amount? There's not much in
7	extrapolation.
8	Do you have concerns about changes in the
9	creep?
10	MR. MAJUMDAR: Creep mechanism?
11	CO-CHAIRMAN FORD: Creep mechanism.
12	MR. MAJUMDAR: But we actually believe
13	that severe accident is such a short event that long-
14	term creep mechanism that are equated on cavitation
15	and stuff like that are not really applicable here.
16	They're over in a couple of hours. So these are more
17	or less, I guess, slow tensile rupture. What they
18	call creep rupture here is really a very slow strain
19	of creep rupture.
20	You're not talking about cavitation and
21	long-term creep rupture there.
22	CO-CHAIRMAN WALLIS: It's interesting to
23	see a factor of E to the minus 31 in anything other
24	than a PRA.
25	(Laughter.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	265
1	MR. SHACK: We can change that with units.
2	MR. MAJUMDAR: So the elastic stress
3	distribution, now that stress, maximum stress, is to
4	be 1,000 megapascals, now is down to 253 because we
5	have produced plasticity and creep. Here we see
6	elastic stresses, and if you look at the bottom half,
7	the bottom half is colder and higher stress than the
8	top half, which is hotter as you would expect where
9	the end stress goes down with the temperature.
10	CO-CHAIRMAN FORD: I'm sorry. Just going
11	back to your previous graph 21, boy, those stress
12	components are really high, aren't they? So you had
13	better know what your stresses are.
14	MR. MAJUMDAR: Creep is not used for that,
15	but stress has to be really accurate.
16	CO-CHAIRMAN FORD: And so that would be
17	fed into your uncertainty analysis, which would be fed
18	to the
19	MR. MAJUMDAR: Well, we varied the creep
20	rate by a factor of two, I think, and then seen the
21	effect.
22	CO-CHAIRMAN WALLIS: Is that normal?
23	MR. MAJUMDAR: Under the creep rupture
24	that we collected from the literature, this is what
25	316 stainless steel and we've treated it with the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	266
1	Larson-Miller parameter that Don was talking about
2	earlier. You've got a Larson-Miller parameter as
3	defined here, and the fit is pretty good actually, and
4	with the C, the constant is equal to 14 to get the
5	best fit together.
б	But the only caveat is that if the creep
7	damage was considered only if the in plan principal
8	stress is tensile. If the stresses are compressive,
9	you don't considered creep damage to be active.
10	CO-CHAIRMAN FORD: Now, I seem to remember
11	that the creep equations are also dependent on the
12	environment. I'm just talking now from gas turbine
13	technology, as well as the applied strain weight. Do
14	you take into account those changes?
15	MR. MAJUMDAR: With this stress, this test
16	has applied stress, applied load, hanging load so that
17	there's a constant load.
18	CO-CHAIRMAN FORD: Right.
19	MR. MAJUMDAR: So there's two stress
20	changes to the test, but
21	CO-CHAIRMAN FORD: Now, you're changing
22	the temperature?
23	MR. MAJUMDAR: No, this is not. This is
24	a constant isothermal temperature.
25	CO-CHAIRMAN FORD: but if you change the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	267
1	temperature.
2	MR. MAJUMDAR: Yeah.
3	CO-CHAIRMAN FORD: You also will obviously
4	change the creep. It is not necessarily by that
5	formulation, is it, by changing
6	MR. MAJUMDAR: Well, this is what
7	that's a good point. We actually ran it several years
8	back. We had a severe accident test done on steam
9	generator tubes with constant internal pressure and at
10	temperature ramp, and then we used this linear time
11	fraction damage to predict rupture of that similar
12	tube. Using this loss similar parameter for Alloy 600
13	tubes going up to 16, and we were able to predict the
14	failure rupture of those tubes quite successfully.
15	That was a condition of constant stress with the
16	ramping temperature.
17	CO-CHAIRMAN FORD: So you have done
18	separate studies of the effects of known isothermal
19	creep conditions.
20	MR. MAJUMDAR: That's right. Alloy 600
21	tubes.
22	MR. SHACK: An, again, that might not be
23	true if we had a true creep case, you know, of a real
24	design situation where you're talking about thousands
25	and thousands of hours, but again, we're talking about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	268
1	situations in which the time of interest is an hour at
2	most sort of thing, that, you know, you're really in
3	the creep regime.
4	Once this thing starts heating up and you
5	start creeping, the temperature is ramping up and
6	everything is going very rapidly.
7	CO-CHAIRMAN FORD: Well, I think that
8	stuff that Soji (phonetic) does and other people have
9	done, you take these exhaustion theories of creep, and
10	now you start to change things in terms of it's non-
11	isothermal or it is changing stress conditions, and
12	you just cannot add
13	MR. MAJUMDAR: Well, there's a big debate,
14	I mean, if time fraction is good or what, and that's
15	a different argument, but we have used the linear time
16	fraction rule for Alloy 600 tubes under a constant
17	hoop stress with a rising temperature and predicted
18	the rupture of both flawed and non-flawed tubes quite
19	successfully.
20	CO-CHAIRMAN FORD: Okay. So prototypical
21	conditions have been used.
22	MR. MAJUMDAR: Then we're talking about
23	pipes, big pipes here.
24	CO-CHAIRMAN FORD: Yeah.
25	MR. MAJUMDAR: Okay.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	269
1	CO-CHAIRMAN WALLIS: Something failed in
2	the quality control of pioneering science and
3	technology on your vertical axis there. You've got
4	two ones and two twos and two threes. There's no way
5	that can be.
6	MR. MAJUMDAR: That's really 2.5, 3.5.
7	Okay. Now we covered our life prediction,
8	creep rupture, failure prediction. Creep failure of
9	exhaustion of material creep ductility, all by the
10	accumulation of creep damage. Either way, we develop
11	these historically either the exhaustion of ductility
12	or damages [UDTSFA].
13	Failure by exhaustion of creed [UDTSFA] is
14	when the affected heat strain is in some critical
15	value which we call the creep ductility. While the
16	time to failure is insensitive to the actual value of
17	the creep ductility, I'm not sure why, because the
18	[UDTSFA] it doesn't matter whether creep [UDTSFA] is
19	20 percent of [UDTSFA]. Time to rupture is [UDTSFA].
20	The [UDTSFA] damage rule is linear time
21	fraction damage [UDTSFA]. This is what is used in the
22	A-74 in the Subsection [UDTSFA]. What we are finding
23	is time to failure predicted by either method, either
24	by the [UDTSFA] exhaustion or the damage rule is a
25	pretty similar feature. There's not much difference,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

270 1 20 to 25 percent [UDTSFA] and damage [UDTSFA] 2 prediction. So in our analysis we really attempt to 3 4 predict [UDTSFA] satisfied in the average member and 5 stress that must be tensile for a significant portion of the structure, and if there is compression, then we 6 7 don't consider it as a creep failure. Thus, it would be tensile, and the whole thickness of the -- so there 8 9 cannot be one point that is the damage which is one, and we don't consider that the failure unless the 10 11 whole section reaches a value of one. 12 Now, the question in the piping analysis, the driving force was stress, is expansion of the pipe 13 14 due to temperature rise that creates the stress, but 15 as your temperature rises, it tends to relax all of 16 the stress. So there are two competing mechanisms. 17 One is driving the stress up. The other is driving to try to relax the stress. 18 Now, if the creep deformation is not fast 19 20 enough to relax the stress, then failure can curb a 21 tensile rupture. That means there could be tensile 22 [UDTSFA]. 23 At hiqh temperature stainless steel 24 [UDTSFA]. As I said earlier, two percent beyond which 25 [UDTSFA] localization occur. So what we said that if

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	271
1	true thickness average temperature tensile plus the
2	strain issues a value of two percent or more before
3	creep damage is just a value of one, then the section
4	is considered to have failed by tensile rupture.
5	So the failure can have either tensile
6	rupture or [UDTSFA] rupture depending on which one is
7	involved.
8	Here plotting the tensile and creep damage
9	accumulation of the [UDTSFA] bid surface at this time
10	[UDTSFA] to 580. If you're wondering what's magical
11	about this number, this is the number at which the
12	ABAQUS prints out the output. So that's where it
13	started. There's nothing magical about this time
14	here.
15	CO-CHAIRMAN FORD: I'm sorry. I didn't
16	hear you. What was magical about 14?
17	MR. MAJUMDAR: There's nothing magical
18	about
19	CO-CHAIRMAN FORD: Nothing.
20	MR. MAJUMDAR: this time here. It's
21	just that point ABAQUS printed out the data.
22	Now, the effective plastic strain I'm
23	plotting on this side and on the mid-surface, as you
24	can see, the very high plastic strain right near the
25	reactor nozzle, not in the nozzle itself, but in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	272
1	hot leg next to the nozzle, the nozzle stays very
2	cold. So there's not really much deformation at this
3	stage.
4	And this maximum of four percent here, and
5	in the surge line, the maximum key damage occurs near
6	the bend, 17 percent damage [UDTSFA], but the inside
7	damage is highest in the hot leg near the reactor
8	vessel nozzle here. The key damage [UDTSFA] surge
9	line bend area.
10	[UDTSFA]in elastic strain accumulation,
11	that means by that I mean both plastic and creep
12	strain accumulation. In the stop [UDTSFA] circle
13	here, that's the [UDTSFA] creep in the hot leg. And
14	the hot leg is an expansion of time. This is, again,
15	[UDTSFA]. So that's 14,000. That's 14,200, and so
16	on.
17	This is the variation of the [UDTSFA]
18	plastic strain maximum [UDTSFA] plastic strain hot
19	leg, around 14,400 it starts going up, and two percent
20	is reached around 14,500. So the two percent tensile
21	membrane stress is accumulated in hot leg after 14,500
22	seconds.
23	At that point the creep strain is pretty
24	low. It's not yet
25	CO-CHAIRMAN WALLIS: How does this 14.5

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1appear on this graph?2MR. MAJUMDAR: It is [UDTSFA] five.3CO-CHAIRMAN WALLIS: You mean there's a4one in front of those fours?5MR. MAJUMDAR: Pardon?6CO-CHAIRMAN WALLIS: There's a one in7front of all of those fours?8MR. MAJUMDAR: Yeah, this 4,000 here.9CO-CHAIRMAN WALLIS: It should be 14,000?10MR. MAJUMDAR: Fourteen. They add 10,000.11CO-CHAIRMAN WALLIS: This is another one12of those quality control things.13MR. MUSCARA: No, no. He started the14analysis at 10,000 seconds.15MR. MAJUMDAR: At 10,000.16CO-CHAIRMAN WALLIS: Well, but you've got17to be consistent with your two.18MR. MAJUMDAR: Yeah. So the hot leg fails19at is predicted to fail at 14,500 degrees at 500
 CO-CHAIRMAN WALLIS: You mean there's a one in front of those fours? MR. MAJUMDAR: Pardon? CO-CHAIRMAN WALLIS: There's a one in front of all of those fours? MR. MAJUMDAR: Yeah, this 4,000 here. CO-CHAIRMAN WALLIS: It should be 14,000? MR. MAJUMDAR: Fourteen. They add 10,000. CO-CHAIRMAN WALLIS: This is another one of those quality control things. MR. MUSCARA: No, no. He started the analysis at 10,000 seconds. MR. MAJUMDAR: At 10,000. CO-CHAIRMAN WALLIS: Well, but you've got to be consistent with your two. MR. MAJUMDAR: Yeah. So the hot leg fails
 one in front of those fours? MR. MAJUMDAR: Pardon? CO-CHAIRMAN WALLIS: There's a one in front of all of those fours? MR. MAJUMDAR: Yeah, this 4,000 here. CO-CHAIRMAN WALLIS: It should be 14,000? MR. MAJUMDAR: Fourteen. They add 10,000. CO-CHAIRMAN WALLIS: This is another one of those quality control things. MR. MUSCARA: No, no. He started the analysis at 10,000 seconds. MR. MAJUMDAR: At 10,000. CO-CHAIRMAN WALLIS: Well, but you've got to be consistent with your two. MR. MAJUMDAR: Yeah. So the hot leg fails
 MR. MAJUMDAR: Pardon? CO-CHAIRMAN WALLIS: There's a one in front of all of those fours? MR. MAJUMDAR: Yeah, this 4,000 here. CO-CHAIRMAN WALLIS: It should be 14,000? MR. MAJUMDAR: Fourteen. They add 10,000. CO-CHAIRMAN WALLIS: This is another one of those quality control things. MR. MUSCARA: No, no. He started the analysis at 10,000 seconds. MR. MAJUMDAR: At 10,000. CO-CHAIRMAN WALLIS: Well, but you've got to be consistent with your two. MR. MAJUMDAR: Yeah. So the hot leg fails
 CO-CHAIRMAN WALLIS: There's a one in front of all of those fours? MR. MAJUMDAR: Yeah, this 4,000 here. CO-CHAIRMAN WALLIS: It should be 14,000? MR. MAJUMDAR: Fourteen. They add 10,000. CO-CHAIRMAN WALLIS: This is another one of those quality control things. MR. MUSCARA: No, no. He started the analysis at 10,000 seconds. MR. MAJUMDAR: At 10,000. CO-CHAIRMAN WALLIS: Well, but you've got to be consistent with your two. MR. MAJUMDAR: Yeah. So the hot leg fails
 front of all of those fours? MR. MAJUMDAR: Yeah, this 4,000 here. CO-CHAIRMAN WALLIS: It should be 14,000? MR. MAJUMDAR: Fourteen. They add 10,000. CO-CHAIRMAN WALLIS: This is another one of those quality control things. MR. MUSCARA: No, no. He started the analysis at 10,000 seconds. MR. MAJUMDAR: At 10,000. CO-CHAIRMAN WALLIS: Well, but you've got to be consistent with your two. MR. MAJUMDAR: Yeah. So the hot leg fails
 MR. MAJUMDAR: Yeah, this 4,000 here. CO-CHAIRMAN WALLIS: It should be 14,000? MR. MAJUMDAR: Fourteen. They add 10,000. CO-CHAIRMAN WALLIS: This is another one of those quality control things. MR. MUSCARA: No, no. He started the analysis at 10,000 seconds. MR. MAJUMDAR: At 10,000. CO-CHAIRMAN WALLIS: Well, but you've got to be consistent with your two. MR. MAJUMDAR: Yeah. So the hot leg fails
 9 CO-CHAIRMAN WALLIS: It should be 14,000? 10 MR. MAJUMDAR: Fourteen. They add 10,000. 11 CO-CHAIRMAN WALLIS: This is another one 12 of those quality control things. 13 MR. MUSCARA: No, no. He started the 14 analysis at 10,000 seconds. 15 MR. MAJUMDAR: At 10,000. 16 CO-CHAIRMAN WALLIS: Well, but you've got 17 to be consistent with your two. 18 MR. MAJUMDAR: Yeah. So the hot leg fails
 MR. MAJUMDAR: Fourteen. They add 10,000. CO-CHAIRMAN WALLIS: This is another one of those quality control things. MR. MUSCARA: No, no. He started the analysis at 10,000 seconds. MR. MAJUMDAR: At 10,000. CO-CHAIRMAN WALLIS: Well, but you've got to be consistent with your two. MR. MAJUMDAR: Yeah. So the hot leg fails
11 CO-CHAIRMAN WALLIS: This is another one 12 of those quality control things. 13 MR. MUSCARA: No, no. He started the 14 analysis at 10,000 seconds. 15 MR. MAJUMDAR: At 10,000. 16 CO-CHAIRMAN WALLIS: Well, but you've got 17 to be consistent with your two. 18 MR. MAJUMDAR: Yeah. So the hot leg fails
<pre>12 of those quality control things. 13 MR. MUSCARA: No, no. He started the 14 analysis at 10,000 seconds. 15 MR. MAJUMDAR: At 10,000. 16 CO-CHAIRMAN WALLIS: Well, but you've got 17 to be consistent with your two. 18 MR. MAJUMDAR: Yeah. So the hot leg fails</pre>
MR. MUSCARA: No, no. He started the analysis at 10,000 seconds. MR. MAJUMDAR: At 10,000. CO-CHAIRMAN WALLIS: Well, but you've got to be consistent with your two. MR. MAJUMDAR: Yeah. So the hot leg fails
<pre>14 analysis at 10,000 seconds. 15 MR. MAJUMDAR: At 10,000. 16 CO-CHAIRMAN WALLIS: Well, but you've got 17 to be consistent with your two. 18 MR. MAJUMDAR: Yeah. So the hot leg fails</pre>
 MR. MAJUMDAR: At 10,000. CO-CHAIRMAN WALLIS: Well, but you've got to be consistent with your two. MR. MAJUMDAR: Yeah. So the hot leg fails
 16 CO-CHAIRMAN WALLIS: Well, but you've got 17 to be consistent with your two. 18 MR. MAJUMDAR: Yeah. So the hot leg fails
 17 to be consistent with your two. 18 MR. MAJUMDAR: Yeah. So the hot leg fails
18 MR. MAJUMDAR: Yeah. So the hot leg fails
19 at is predicted to fail at 14,500 degrees at 500
20 seconds. At that same point, the hot leg creep
21 damage, if you notice, that it is pretty small, pretty
22 low.
23 CO-CHAIRMAN WALLIS: It goes so rapidly
24 that moving things around doesn't really change it
25 very much.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	274
1	MR. MAJUMDAR: That's right. It starts to
2	pick up really rapidly here.
3	If you look at the surge line, the surge
4	line, plastic strain, that's the blue line here. That
5	was just two percent here, around 14,550. It's only
6	50 seconds later the surge line is predicted to fail
7	at the end area.
8	CO-CHAIRMAN FORD: So just to make sure I
9	understand, at 14,000 seconds, the temperature has not
10	increased that much at least as far as the exponential
11	creep.
12	MR. MAJUMDAR: That's right. At 14,000
13	there is a break in the temperature ramp. Remember I
14	showed you the ramp, slow, eight degrees per minute to
15	24 degrees per minute.
16	CO-CHAIRMAN FORD: Okay.
17	MR. MAJUMDAR: Six degrees per minute to
18	24 degrees per minute. So this is where the
19	temperature really starts taking off.
20	CO-CHAIRMAN FORD: Okay.
21	MR. MAJUMDAR: And that's where the creep
22	starts [UDTSFA] actually moving and plastic starts
23	actually moving at that point.
24	CO-CHAIRMAN WALLIS: So this is where the
25	temperature starts taking off everywhere.
•	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	275
1	MR. MAJUMDAR: Yes.
2	CO-CHAIRMAN WALLIS: So this is sort of a
3	race between this is how long it takes to creep and
4	how long it takes to
5	MR. MAJUMDAR: That's right. It's a race.
6	CO-CHAIRMAN WALLIS: something else at
7	the steam generator.
8	MR. MAJUMDAR: How long this temperature
9	is going up is the driving force is going up because
10	the pipes are expanding pre-load. So there is stress
11	developed, and the creep and plastic is trying to
12	relax the stress out. So there's competition between
13	the stressing and the relaxing, and whoever wins out
14	gets to
15	CO-CHAIRMAN WALLIS: Now, when it breaks,
16	does it just open up a fish mouth thing or does it
17	snap?
18	MR. MAJUMDAR: It's going to be locally
19	CO-CHAIRMAN WALLIS: Does it separate and
20	bounce so far because of the
21	MR. MAJUMDAR: That's a hard thing to
22	predict. What we are predicting, does it locally
23	not a point division, but some volume area, the damage
24	is [UDTSFA], and we predict that locally there will be
25	some kind of rupture in the [UDTSFA] and they open up

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	276
1	a gaping hole to which the steam will escape.
2	CO-CHAIRMAN FORD: So essentially your
3	mitigation strategy in this whole thing, without being
4	flippant, is that you want everything to last okay out
5	to at least 14,500 seconds, and then you're going to
6	rely on this to be your safety relief valve.
7	I'm trying not to be flippant.
8	MR. PAGE: I think to say it more
9	precisely, we don't expect anything to happen before
10	you enter this window here. So this is just a
11	snapshot when all of the action takes place. There's
12	no reasonable thoughts of a loss, a rupture of
13	anything prior to that, at least of these components.
14	CO-CHAIRMAN FORD: Yes, okay.
15	MR. PAGE: Now, the reactor coolant pump
16	seals, maybe, but not something like this or even the
17	manway might open up a little bit. That's not
18	necessarily a creep type failure, but I'm saying the
19	actual
20	CO-CHAIRMAN FORD: I notice that second
21	sentence. Containment isn't bypassed, is it?
22	MR. PAGE: The containment isn't bypassed,
23	but I'm saying up until the beginning of this window
24	here where we started that there really is no activity
25	that to draw it out this long. This is really where

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	277
1	all of the action is for the piping, for the piping.
2	MR. SIEBER: Well, you end up with an
3	interesting thing on the manways. You know, those are
4	flexitalic gaskets which are
5	MR. MAJUMDAR: They cover the manway.
б	[UDTSFA] on the manway.
7	MR. SIEBER: And you get that hot enough
8	and they will melt, and then you get a leak. It's not
9	a rupture, but it's a pretty good size leak, which
10	reduces the stress throughout the system.
11	MR. PAGE: Well, not only that, but even
12	if it wasn't a huge leak, we'll get to it in a little
13	while, but we were also wondering about the possible
14	disturbance of the flow in the mixing in that chamber
15	area, which could be affected and could affect how
16	fast the tube heats.
17	MR. SIEBER: That's right. It would
18	change that flow because the manway is right there,
19	and that looks like a pretty delicate
20	CO-CHAIRMAN WALLIS: But if you are really
21	concerned with this problem and you weren't sure which
22	would break first, then you could conceivably put in
23	some device like this feasible thing made out of some
24	other material, which at 1,200 degrees K. would
25	separate.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	278
1	MR. MAJUMDAR: Sure.
2	MR. PAGE: You could build a rupture disk
3	out of the electrosleeve material that's two inches in
4	diameter and back it up with a block valve like PORV
5	has got a
6	CO-CHAIRMAN WALLIS: This might not be all
7	that complicated.
8	MR. MAJUMDAR: If we have electricity
9	MR. MUSCARA: A number of us have been
10	recommending that for years, but it's not something
11	CO-CHAIRMAN WALLIS: Okay.
12	MR. MUSCARA: The utility might decide to
13	use some indication. This could be one of them. It
14	has been suggested. I'm not sure how serious it has
15	been taken.
16	DR. KRESS: It probably won't pass the
17	[UDTSFA].
18	CO-CHAIRMAN WALLIS: Well, it's going to
19	be
20	MR. PAGE: No, you're probably right
21	because of the probability picture. The probability
22	picture is so low. However, in generic safety issues,
23	which you probably have seen several of those in the
24	past, when you did the regulatory analysis and you did
25	the cost benefit, at the end of the analysis you also

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	279
1	had this thing called "other considerations."
2	Usually that method this is almost
3	impossible, but if it does happen, you're really going
4	to when the wing really does fall off the plane,
5	you know, you do want a parachute.
6	CO-CHAIRMAN WALLIS: It might be cheaper
7	than continuing to do all of this analysis.
8	MR. PAGE: You mean to put in the rupture
9	disk?
10	CO-CHAIRMAN WALLIS: Your cost benefit
11	should include the cost of continuing to do a lot of
12	expensive research.
13	MR. PAGE: Yeah, but we're doing that, not
14	the utilities.
15	CO-CHAIRMAN WALLIS: Maybe that's not our
16	point of view.
17	MR. SIEBER: The same view.
18	MR. MAJUMDAR: Okay.
19	CO-CHAIRMAN FORD: I got you off the
20	track. Sorry.
21	MR. MAJUMDAR: Just to show the damage,
22	[UDTSFA] looks at that. It's still 17 percent. So
23	it's not anywhere near rupture, but it's starting to
24	take off in the hot leg and the surge line. They're
25	beginning to take off. So if the tensile rupture

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	280
1	didn't [UDTSFA], the [UDTSFA] rupture would fall off
2	pretty soon.
3	CO-CHAIRMAN WALLIS: We should put fins on
4	this thing to cool it. The heat plug has a big
5	defect. Take off the insulation.
6	MR. MAJUMDAR: In some sensitivity
7	analysis, first of all, we reduced the thermal
8	conductivity of stainless by 20 percent.
9	CO-CHAIRMAN WALLIS: Well, surely the
10	insulation has a factor of two on heat flux at least.
11	Is there insulation on the surge line?
12	MR. MAJUMDAR: No, it's [UDTSFA] fully
13	adiabatic. There's no heat transfer now on the
14	outside surface.
15	CO-CHAIRMAN WALLIS: But if you took off
16	the insulation. The surface heat flux on the surge
17	line? Is that what you mean by that?
18	MR. SHACK: You want this to heat up and
19	fail.
20	CO-CHAIRMAN WALLIS: The second bullet?
21	MR. MAJUMDAR: In the case of - this is
22	what I'm doing on the inside, interior. What we'd
23	really like to do is to increase the heat transfer
24	coefficient just to see all
25	CO-CHAIRMAN WALLIS: Oh, this is the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	281
1	inside heat transfer.
2	MR. MAJUMDAR: Yeah, yeah. We wanted to
3	see what the effect of changing the heat transfer
4	CO-CHAIRMAN WALLIS: Well, that's harder
5	to do, I think.
6	MR. MAJUMDAR: Yeah, very hard. But I
7	would say in ABAQUS we couldn't input the heat
8	transfer coefficient directly. So we are developing
9	increased surface heat flux that was given to us by a
10	factor of two, and that is a bigger face than that
11	because that changes the temperature history
12	significantly as you can see in the flux here.
13	CO-CHAIRMAN WALLIS: I wonder how well we
14	know heat flux in these situations where there's a lot
15	of temperature variation.
16	MR. MAJUMDAR: That's why I'm in a
17	discussion with Chris on them. We decided a factor
18	of two would be
19	CO-CHAIRMAN WALLIS: This is where you
20	could do some more fluent stuff because you can't just
21	blindly use some standard Dennis-Bolter or some kind
22	of semi-correlation. It doesn't work. You've got
23	MR. MAJUMDAR: Hopefully in the future
24	we'll get uncertainty in the heat flux from Don, from
25	the round that he does.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	282
1	CO-CHAIRMAN WALLIS: Okay.
2	MR. MAJUMDAR: Okay. The next item that
3	we looked at is the manway. The manway, this is a hot
4	leg manway, and we included the lower half of the
5	steam generator so that it made the application of the
б	heat as a special bonding condition simpler, but we
7	included the insert of the cover, the cover plate of
8	16 bolts and the gasket in the final analysis.
9	Actually we did not include the gasket
10	because the gasket is so soft it does not affect the
11	stress that much, but the gasket would affect the
12	leakage area once it has [UDTSFA] and depending on how
13	much spring-back there is.
14	Now, we modeled the pretensioning at room
15	temperature and the manway was uniformly heating. The
16	gasket, as I said, was negligible. Failure was
17	defined as the creation of floor [UDTSFA] two inch
18	diameter hole, lifting of the collar plate.
19	At some point the bolts would lose all of
20	their tensions, the tension in the bolt, and then the
21	cover plate would start lifting up and allow the steam
22	to escape, and when the leakage area would accumulate
23	the two inch diameters hole, call that a failure of
24	the gasket or of the manway.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	283
1	leak?
2	MR. MAJUMDAR: Pardon me?
3	CO-CHAIRMAN FORD: These gaskets never
4	leak?
5	MR. SIEBER: Yes, they do.
6	CO-CHAIRMAN FORD: They leak, boric acid
7	corrosion?
8	MR. SIEBER: Well, usually when they leak
9	it's right after refueling. Somebody is bolting it
10	on, and there's damage to it or they didn't get it in
11	there right, and as soon as you try to do the hydro or
12	design pressure test, it leaks and you know it.
13	MR. MUSCARA: It's the secondary water.
14	MR. SIEBER: No, it's on the primary side.
15	MR. MAJUMDAR: This is the primary side.
16	MR. PAGE: In that picture of the hot leg
17	it's coming in at the other 45 degree angle. It's
18	coming in hitting the separation plate.
19	MR. SIEBER: There, the secondary side.
20	CO-CHAIRMAN WALLIS: No, I think the
21	concern is
22	MR. SIEBER: One on top and then there's
23	the handles.
24	CO-CHAIRMAN WALLIS: Jack, do you get slow
25	leaks in these that would give you boron, boric acid,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	284
1	corrosion of the bolts?
2	MR. SIEBER: Theoretically, yes. I've
3	never seen it.
4	CO-CHAIRMAN WALLIS: You've never seen
5	rusty bolts on these things?
6	MR. SIEBER: Not on the manways. It's
7	something you go in every outage, and so because of
8	all the steam generator inspections, the people who
9	work on those manways really know what they're doing.
10	There's, you know, a reg. that places it in place and,
11	you know, new gaskets all the time.
12	I've seen rusty looking bolts, but I've
13	never seen the deterioration to the extent that it
14	would cause me to believe that it would be subject to
15	an early failure.
16	MR. MAJUMDAR: Our primary concern was the
17	bolt relaxation, bolt load relaxation. Here I'm
18	showing the bolt load relaxation without creep because
19	there's no creep in the bolt. You don't allow creep
20	to occur, and there is some relaxation due to the
21	change in the modulus elasticity of the bolt material.
22	I'm plotting temperature with the bolt
23	load here. On the other hand, if you allow creep in
24	the top right here, then the bolt load relaxes by
25	about 14,000 seconds again, which corresponds to about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	285
1	435 degrees Centigrade. At pretty low temperature the
2	bolt
3	CO-CHAIRMAN WALLIS: Now, when the bolt
4	relaxes and creeps, presumably the first thing that
5	happens is the gasket leaks.
6	MR. MAJUMDAR: Well, once this it
7	doesn't go down to zero, as you notice that, because
8	the steel has to support the pressure acting out of
9	power. Beyond this point the cover plate starts
10	lifting off, and you start getting
11	MR. SIEBER: And the gasket leaks.
12	MR. MAJUMDAR: The gasket would leak. You
13	might even get blow out of the
14	MR. SIEBER: Well, the gasket is a spiral
15	wound metal
16	PARTICIPANT: Flexitallic.
17	MR. SIEBER: It's a Flexitallic. There's
18	a big backing ring which gets us to about this big
19	that holds it all together so that it won't boil out.
20	MR. MAJUMDAR: Now, in this figure I show
21	that all of the 16 bolts are preloaded to exactly the
22	same preload. In other words, this lower figure, what
23	I've said is that after the bolts are preloaded to 85
24	percent of the design preload and the others are 100
25	percent, then the bolt relaxation follows these two

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	286
1	curves. Bolts one and five can lower the load. It
2	will start relaxing here, but both sets of bolts relax
3	to zero or to the final value at about the same time,
4	14,000 seconds.
5	So that means they adjust the variability
6	in the bolt preload will not change the relaxation
7	point significantly.
8	Now, here, plotting the left figure here,
9	I'm plotting the contact pressure on the junction of
10	the plate and the bolts around the circumference, and
11	this is at room temperature. Once the bolts are
12	tightened, it gets a contact pressure distribution,
13	something like that, and as you increase the
14	temperature, the contact pressure reduces, as you can
15	expect, and by about 450 degrees C. the contact
16	pressure is reduced to zero. That's been the junction
17	starts opening up.
18	On the right side I'm plotting contact
19	opening versus the opening displacement here.
20	CO-CHAIRMAN WALLIS: It opens up a lot.
21	MR. MAJUMDAR: And so by 450, it starts
22	opening and
23	CO-CHAIRMAN WALLIS: It's a huge amount.
24	MR. MAJUMDAR: because we start getting
25	a pretty large

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	287
1	CO-CHAIRMAN WALLIS: And a quarter of an
2	inch opening all around?
3	MR. MAJUMDAR: That's right, yeah. It's
4	predicted to be that much. That's 640 C., 650 C.
5	It's a pretty high temperature.
6	CO-CHAIRMAN WALLIS: What's the gasket
7	doing when it is opened up a quarter of an inch?
8	MR. MAJUMDAR: Anybody's guess. The
9	gasket probably gets blown out, but the main thing is
10	that there's a big leakage there.
11	CO-CHAIRMAN WALLIS: There's an enormous
12	leakage presumably. That's to be avoided, isn't it?
13	MR. MAJUMDAR: One thing is certain is the
14	bolt properties, as I said, the bolt creep properties
15	we really don't know that good. So we're going to do
16	some tests and nail it down.
17	MR. MUSCARA: But they're not high
18	temperature materials.
19	MR. MAJUMDAR: Yeah, they're not.
20	CO-CHAIRMAN WALLIS: So the temperature of
21	this plate is determined by Chris Boyd's recirculation
22	pattern in the bottom of that steam generator.
23	MR. MAJUMDAR: Actually it doesn't take
24	much of a plastic strain to relax the bolt load out.
25	All you have to do is relax the elastic strain, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	288
1	that takes very little plastic strain.
2	DR. KRESS: Where's your rupture disk?
3	CO-CHAIRMAN WALLIS: It may be, but it's
4	in the wrong place.
5	MR. PAGE: No, this will be a great place.
6	CO-CHAIRMAN WALLIS: There's a good place
7	here?
8	MR. MAJUMDAR: Oh, yeah.
9	MR. PAGE: Because if you can take a 19
10	inch hole and lift it up enough to equate to a two
11	inch hold in a reactor coolant system, you've blown
12	down the whole system.
13	CO-CHAIRMAN WALLIS: Oh, yeah, this is
14	still in the containment. Okay, good.
15	MR. PAGE: You're talking about something
16	this big around, you know.
17	CO-CHAIRMAN WALLIS: Oh, I guess you're
18	right.
19	MR. SIEBER: It would blow it down pretty
20	fast, but the chances of it failing and unzipping are
21	pretty low compared to leaking.
22	MR. PAGE: Yeah, we're just talking about
23	liftoff. We're not talking about
24	CO-CHAIRMAN WALLIS: Liftoff would be
25	something else.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	289
1	MR. PAGE: No, no. I mean, I'm just
2	talking about
3	DR. KRESS: We would have a whole new
4	containment.
5	MR. PAGE: These are not rupture bolts
6	like in a rocket ship, but I mean, if you can just
7	give a space in there and start blowing out, it
8	shouldn't take a lot.
9	MR. SIEBER: It's sort of a delicate
10	balance anyway because the pre-tension of the bolt is
11	designed to withstand the force of 2,500 pounds of RCS
12	pressure, which is the design pressure limit, and
13	still keep the gasket preloaded, but you know, as you
14	heat up the plant, you know, some of that balance of
15	force is thrown away.
16	CO-CHAIRMAN WALLIS: So when does this
17	happen? At what seconds?
18	MR. MAJUMDAR: This is at a time. It
19	develops the temperature. I don't have it right now,
20	but it's around 14,000, slightly
21	CO-CHAIRMAN WALLIS: Everything happens
22	around the same time.
23	(Laughter.)
24	CO-CHAIRMAN WALLIS: So this is like sort
25	of the final five seconds of the Super Bowl.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	290
1	DR. KRESS: More like half time.
2	MR. SIEBER: This is half time, yeah.
3	CO-CHAIRMAN WALLIS: Oh, I don't know.
4	This is more like the end. Which team wins is all
5	decided in a few seconds.
6	MR. MAJUMDAR: The next thing we looked at
7	is this registered [UDTSFA] detector, and the welds
8	I'm talking about, this is RTD. The scope sits here
9	on the hot leg, and the welds, full transition welds
10	on the water load, OD and the ID surface, and this is
11	the OD weld and that's the ID weld, final element
12	model. That's the RTD.
13	So we modeled both the RTD. We include
14	the whole inside, and the welds and the hot leg. Now,
15	remember the upper half is hotter than the lower half.
16	So we put in the heat transfer coefficient for the
17	upper half and the corresponding heat transfer
18	coefficient for the lower half and did a thermal
19	conduction analysis first, then used that temperature
20	and pressure failing the stress analysis.
21	CO-CHAIRMAN WALLIS: Have these RTDs
22	always been in these hot legs?
23	MR. MAJUMDAR: Well, yeah, there are three
24	of them actually.
25	CO-CHAIRMAN WALLIS: These are the ones

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1that excited the staff at TMI when they got too hot,2presumably? I didn't know they were there.3MR. MAJUMDAR: Yeah, it was there in the4elbow.5MR. SIEBER: Yeah, they were there in the6very earliest plants, before commercial.7CO-CHAIRMAN WALLIS: So when the staff got8all excited about super heated steam in the hot leg,9this is what was reading it?10MR. SIEBER: Well, the RTD, everything11else is thermocouples, and the RTD is the only12accurate instrument you have. If you want to know13what the outlet temperature is because it's the14hottest temperature other than in the pressure.15MR. MAJUMDAR: They say that the concern16here is that the pressure is acting on this hope and17trying to force this out of the18CO-CHAIRMAN WALLIS: Trying to blow out19the RTD?20MR. MAJUMDAR: The whole RTD. Once it21blows it out, then there's a two inch diameter hole22right there.23CO-CHAIRMAN WALLIS: Which is desirable.24MR. MAJUMDAR: Okay, and the next item I'm25going to discuss later on is there's a socket weld		291
3 MR. MAJUMDAR: Yeah, it was there in the 4 elbow. 5 MR. SIEBER: Yeah, they were there in the 6 very earliest plants, before commercial. 7 CO-CHAIRMAN WALLIS: So when the staff got 8 all excited about super heated steam in the hot leg, 9 this is what was reading it? 10 MR. SIEBER: Well, the RTD, everything 11 else is thermocouples, and the RTD is the only 12 accurate instrument you have. If you want to know 13 what the outlet temperature is because it's the 14 hottest temperature other than in the pressure. 15 MR. MAJUMDAR: They say that the concern 16 here is that the pressure is acting on this hope and 17 trying to force this out of the 18 CO-CHAIRMAN WALLIS: Trying to blow out 19 the RTD? 20 MR. MAJUMDAR: The whole RTD. Once it 21 blows it out, then there's a two inch diameter hole 22 CO-CHAIRMAN WALLIS: Which is desirable. 23 CO-CHAIRMAN WALLIS: Which is desirable. 24 MR. MAJUMDAR: Okay, and the next item I'm	1	that excited the staff at TMI when they got too hot,
 elbow. MR. SIEBER: Yeah, they were there in the very earliest plants, before commercial. CO-CHAIRMAN WALLIS: So when the staff got all excited about super heated steam in the hot leg, this is what was reading it? MR. SIEBER: Well, the RTD, everything else is thermocouples, and the RTD is the only accurate instrument you have. If you want to know what the outlet temperature is because it's the hottest temperature other than in the pressure. MR. MAJUMDAR: They say that the concern here is that the pressure is acting on this hope and trying to force this out of the CO-CHAIRMAN WALLIS: Trying to blow out the RTD? MR. MAJUMDAR: The whole RTD. Once it blows it out, then there's a two inch diameter hole right there. CO-CHAIRMAN WALLIS: Which is desirable. MR. MAJUMDAR: Okay, and the next item I'm 	2	presumably? I didn't know they were there.
5MR. SIEBER: Yeah, they were there in the very earliest plants, before commercial.7CO-CHAIRMAN WALLIS: So when the staff got all excited about super heated steam in the hot leg, this is what was reading it?10MR. SIEBER: Well, the RTD, everything else is thermocouples, and the RTD is the only accurate instrument you have. If you want to know what the outlet temperature is because it's the hottest temperature other than in the pressure.15MR. MAJUMDAR: They say that the concern here is that the pressure is acting on this hope and trying to force this out of the18CO-CHAIRMAN WALLIS: Trying to blow out19the RTD?20MR. MAJUMDAR: The whole RTD. Once it blows it out, then there's a two inch diameter hole right there.23CO-CHAIRMAN WALLIS: Which is desirable. MR. MAJUMDAR: Okay, and the next item I'm	3	MR. MAJUMDAR: Yeah, it was there in the
 very earliest plants, before commercial. CO-CHAIRMAN WALLIS: So when the staff got all excited about super heated steam in the hot leg, this is what was reading it? MR. SIEBER: Well, the RTD, everything else is thermocouples, and the RTD is the only accurate instrument you have. If you want to know what the outlet temperature is because it's the hottest temperature other than in the pressure. MR. MAJUMDAR: They say that the concern here is that the pressure is acting on this hope and trying to force this out of the CO-CHAIRMAN WALLIS: Trying to blow out the RTD? MR. MAJUMDAR: The whole RTD. Once it blows it out, then there's a two inch diameter hole right there. CO-CHAIRMAN WALLIS: Which is desirable. MR. MAJUMDAR: Okay, and the next item I'm 	4	elbow.
7CO-CHAIRMAN WALLIS: So when the staff got8all excited about super heated steam in the hot leg,9this is what was reading it?10MR. SIEBER: Well, the RTD, everything11else is thermocouples, and the RTD is the only12accurate instrument you have. If you want to know13what the outlet temperature is because it's the14hottest temperature other than in the pressure.15MR. MAJUMDAR: They say that the concern16here is that the pressure is acting on this hope and17trying to force this out of the18CO-CHAIRMAN WALLIS: Trying to blow out19the RTD?20MR. MAJUMDAR: The whole RTD. Once it21blows it out, then there's a two inch diameter hole22right there.23CO-CHAIRMAN WALLIS: Which is desirable.24MR. MAJUMDAR: Okay, and the next item I'm	5	MR. SIEBER: Yeah, they were there in the
8 all excited about super heated steam in the hot leg, 9 this is what was reading it? 10 MR. SIEBER: Well, the RTD, everything 11 else is thermocouples, and the RTD is the only 12 accurate instrument you have. If you want to know 13 what the outlet temperature is because it's the 14 hottest temperature other than in the pressure. 15 MR. MAJUMDAR: They say that the concern 16 here is that the pressure is acting on this hope and 17 trying to force this out of the 18 CO-CHAIRMAN WALLIS: Trying to blow out 19 the RTD? 20 MR. MAJUMDAR: The whole RTD. Once it 21 blows it out, then there's a two inch diameter hole 22 co-CHAIRMAN WALLIS: Which is desirable. 23 CO-CHAIRMAN WALLIS: Which is desirable. 24 MR. MAJUMDAR: Okay, and the next item I'm	6	very earliest plants, before commercial.
 9 this is what was reading it? 10 MR. SIEBER: Well, the RTD, everything 11 else is thermocouples, and the RTD is the only 12 accurate instrument you have. If you want to know 13 what the outlet temperature is because it's the 14 hottest temperature other than in the pressure. 15 MR. MAJUMDAR: They say that the concern 16 here is that the pressure is acting on this hope and 17 trying to force this out of the 18 CO-CHAIRMAN WALLIS: Trying to blow out 19 the RTD? 20 MR. MAJUMDAR: The whole RTD. Once it 21 blows it out, then there's a two inch diameter hole 22 right there. 23 CO-CHAIRMAN WALLIS: Which is desirable. 24 MR. MAJUMDAR: Okay, and the next item I'm 	7	CO-CHAIRMAN WALLIS: So when the staff got
 MR. SIEBER: Well, the RTD, everything else is thermocouples, and the RTD is the only accurate instrument you have. If you want to know what the outlet temperature is because it's the hottest temperature other than in the pressure. MR. MAJUMDAR: They say that the concern here is that the pressure is acting on this hope and trying to force this out of the CO-CHAIRMAN WALLIS: Trying to blow out the RTD? MR. MAJUMDAR: The whole RTD. Once it blows it out, then there's a two inch diameter hole right there. CO-CHAIRMAN WALLIS: Which is desirable. MR. MAJUMDAR: Okay, and the next item I'm 	8	all excited about super heated steam in the hot leg,
else is thermocouples, and the RTD is the only accurate instrument you have. If you want to know what the outlet temperature is because it's the hottest temperature other than in the pressure. MR. MAJUMDAR: They say that the concern here is that the pressure is acting on this hope and trying to force this out of the CO-CHAIRMAN WALLIS: Trying to blow out the RTD? MR. MAJUMDAR: The whole RTD. Once it blows it out, then there's a two inch diameter hole right there. CO-CHAIRMAN WALLIS: Which is desirable. MR. MAJUMDAR: Okay, and the next item I'm	9	this is what was reading it?
12accurate instrument you have. If you want to know13what the outlet temperature is because it's the14hottest temperature other than in the pressure.15MR. MAJUMDAR: They say that the concern16here is that the pressure is acting on this hope and17trying to force this out of the18CO-CHAIRMAN WALLIS: Trying to blow out19the RTD?20MR. MAJUMDAR: The whole RTD. Once it21blows it out, then there's a two inch diameter hole22right there.23CO-CHAIRMAN WALLIS: Which is desirable.24MR. MAJUMDAR: Okay, and the next item I'm	10	MR. SIEBER: Well, the RTD, everything
 what the outlet temperature is because it's the hottest temperature other than in the pressure. MR. MAJUMDAR: They say that the concern here is that the pressure is acting on this hope and trying to force this out of the CO-CHAIRMAN WALLIS: Trying to blow out the RTD? MR. MAJUMDAR: The whole RTD. Once it blows it out, then there's a two inch diameter hole right there. CO-CHAIRMAN WALLIS: Which is desirable. MR. MAJUMDAR: Okay, and the next item I'm 	11	else is thermocouples, and the RTD is the only
 hottest temperature other than in the pressure. MR. MAJUMDAR: They say that the concern here is that the pressure is acting on this hope and trying to force this out of the CO-CHAIRMAN WALLIS: Trying to blow out the RTD? MR. MAJUMDAR: The whole RTD. Once it blows it out, then there's a two inch diameter hole right there. CO-CHAIRMAN WALLIS: Which is desirable. MR. MAJUMDAR: Okay, and the next item I'm 	12	accurate instrument you have. If you want to know
 MR. MAJUMDAR: They say that the concern here is that the pressure is acting on this hope and trying to force this out of the CO-CHAIRMAN WALLIS: Trying to blow out the RTD? MR. MAJUMDAR: The whole RTD. Once it blows it out, then there's a two inch diameter hole right there. CO-CHAIRMAN WALLIS: Which is desirable. MR. MAJUMDAR: Okay, and the next item I'm 	13	what the outlet temperature is because it's the
16 here is that the pressure is acting on this hope and 17 trying to force this out of the 18 CO-CHAIRMAN WALLIS: Trying to blow out 19 the RTD? 20 MR. MAJUMDAR: The whole RTD. Once it 21 blows it out, then there's a two inch diameter hole 22 right there. 23 CO-CHAIRMAN WALLIS: Which is desirable. 24 MR. MAJUMDAR: Okay, and the next item I'm	14	hottest temperature other than in the pressure.
17 trying to force this out of the 18 CO-CHAIRMAN WALLIS: Trying to blow out 19 the RTD? 20 MR. MAJUMDAR: The whole RTD. Once it 21 blows it out, then there's a two inch diameter hole 22 right there. 23 CO-CHAIRMAN WALLIS: Which is desirable. 24 MR. MAJUMDAR: Okay, and the next item I'm	15	MR. MAJUMDAR: They say that the concern
18 CO-CHAIRMAN WALLIS: Trying to blow out 19 the RTD? 20 MR. MAJUMDAR: The whole RTD. Once it 21 blows it out, then there's a two inch diameter hole 22 right there. 23 CO-CHAIRMAN WALLIS: Which is desirable. 24 MR. MAJUMDAR: Okay, and the next item I'm	16	here is that the pressure is acting on this hope and
<pre>19 the RTD? 20 MR. MAJUMDAR: The whole RTD. Once it 21 blows it out, then there's a two inch diameter hole 22 right there. 23 CO-CHAIRMAN WALLIS: Which is desirable. 24 MR. MAJUMDAR: Okay, and the next item I'm</pre>	17	trying to force this out of the
20MR. MAJUMDAR: The whole RTD. Once it21blows it out, then there's a two inch diameter hole22right there.23CO-CHAIRMAN WALLIS: Which is desirable.24MR. MAJUMDAR: Okay, and the next item I'm	18	CO-CHAIRMAN WALLIS: Trying to blow out
21 blows it out, then there's a two inch diameter hole 22 right there. 23 CO-CHAIRMAN WALLIS: Which is desirable. 24 MR. MAJUMDAR: Okay, and the next item I'm	19	the RTD?
<pre>22 right there. 23 CO-CHAIRMAN WALLIS: Which is desirable. 24 MR. MAJUMDAR: Okay, and the next item I'm</pre>	20	MR. MAJUMDAR: The whole RTD. Once it
 CO-CHAIRMAN WALLIS: Which is desirable. MR. MAJUMDAR: Okay, and the next item I'm 	21	blows it out, then there's a two inch diameter hole
24 MR. MAJUMDAR: Okay, and the next item I'm	22	right there.
	23	CO-CHAIRMAN WALLIS: Which is desirable.
25 going to discuss later on is there's a socket weld	24	MR. MAJUMDAR: Okay, and the next item I'm
	25	going to discuss later on is there's a socket weld

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	292
1	around here that's also volatile to failure.
2	CO-CHAIRMAN WALLIS: And these never leak
3	with boron either?
4	MR. MAJUMDAR: Liquid?
5	MR. SIEBER: I have never seen it happen.
6	MR. MAJUMDAR: Again, I define failure.
7	Now, the failure we're talking about is the failure of
8	the interface within the weld and the RTD. That
9	failure would cause it to blow out, and the failure is
10	either
11	DR. KRESS: Sheer failure.
12	MR. MAJUMDAR: Sheer failure, but what we
13	do is the average effective plastic strength, two
14	percent or 40 percent average creep strain, [UDTSFA],
15	and then we say it's failed.
16	CO-CHAIRMAN FORD: But, again, this is a
17	small tube welded into a large body.
18	MR. MAJUMDAR: That's right.
19	CO-CHAIRMAN FORD: With high [UDTSFA]
20	residual stresses presumably. The analysis doesn't
21	take into account they may be defected.
22	MR. MAJUMDAR: No defects, no defects, no.
23	CO-CHAIRMAN FORD: No, no. You're saying
24	no defects, but what would the uncertainty analysis
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 MR. MUSCARA: That would make it fail even 2 sooner. So if this fails, that's the end of the 3 story. You don't need to know who the fail 4 MR. MAJUMDAR: That wouldn't be the 5 conservative assumption in this context. 6 MR. SIEBER: That would be a good deal. 7 CO-CHAIRMAN FORD: Well, this is the first 8 time I've heard a cracked body is a good thing. 9 CO-CHAIRMAN WALLIS: Oh, it is in this 10 case, very much. 11 MR. MAJUMDAR: In this context it is. 12 DR. KRESS: Well, you get a small break 13 LOCA. It's not as bad as this. 14 CO-CHAIRMAN FORD: Okay. I learn 15 something every day. 16 MR. MAJUMDAR: Okay. So that's the 17 temperature profile in RTD at 14,000 seconds, the	
 story. You don't need to know who the fail MR. MAJUMDAR: That wouldn't be the conservative assumption in this context. MR. SIEBER: That would be a good deal. CO-CHAIRMAN FORD: Well, this is the first time I've heard a cracked body is a good thing. CO-CHAIRMAN WALLIS: Oh, it is in this case, very much. MR. MAJUMDAR: In this context it is. DR. KRESS: Well, you get a small break LOCA. It's not as bad as this. CO-CHAIRMAN FORD: Okay. I learn something every day. MR. MAJUMDAR: Okay. So that's the 	
 MR. MAJUMDAR: That wouldn't be the conservative assumption in this context. MR. SIEBER: That would be a good deal. CO-CHAIRMAN FORD: Well, this is the first time I've heard a cracked body is a good thing. CO-CHAIRMAN WALLIS: Oh, it is in this case, very much. MR. MAJUMDAR: In this context it is. DR. KRESS: Well, you get a small break LOCA. It's not as bad as this. CO-CHAIRMAN FORD: Okay. I learn something every day. MR. MAJUMDAR: Okay. So that's the 	
 conservative assumption in this context. MR. SIEBER: That would be a good deal. CO-CHAIRMAN FORD: Well, this is the first time I've heard a cracked body is a good thing. CO-CHAIRMAN WALLIS: Oh, it is in this case, very much. MR. MAJUMDAR: In this context it is. DR. KRESS: Well, you get a small break LOCA. It's not as bad as this. CO-CHAIRMAN FORD: Okay. I learn something every day. MR. MAJUMDAR: Okay. So that's the 	
6 MR. SIEBER: That would be a good deal. 7 CO-CHAIRMAN FORD: Well, this is the first 8 time I've heard a cracked body is a good thing. 9 CO-CHAIRMAN WALLIS: Oh, it is in this 10 case, very much. 11 MR. MAJUMDAR: In this context it is. 12 DR. KRESS: Well, you get a small break 13 LOCA. It's not as bad as this. 14 CO-CHAIRMAN FORD: Okay. I learn 15 something every day. 16 MR. MAJUMDAR: Okay. So that's the	
 CO-CHAIRMAN FORD: Well, this is the first time I've heard a cracked body is a good thing. CO-CHAIRMAN WALLIS: Oh, it is in this case, very much. MR. MAJUMDAR: In this context it is. DR. KRESS: Well, you get a small break LOCA. It's not as bad as this. CO-CHAIRMAN FORD: Okay. I learn something every day. MR. MAJUMDAR: Okay. So that's the 	
8 time I've heard a cracked body is a good thing. 9 CO-CHAIRMAN WALLIS: Oh, it is in this 10 case, very much. 11 MR. MAJUMDAR: In this context it is. 12 DR. KRESS: Well, you get a small break 13 LOCA. It's not as bad as this. 14 CO-CHAIRMAN FORD: Okay. I learn 15 something every day. 16 MR. MAJUMDAR: Okay. So that's the	
9 CO-CHAIRMAN WALLIS: Oh, it is in this 10 case, very much. 11 MR. MAJUMDAR: In this context it is. 12 DR. KRESS: Well, you get a small break 13 LOCA. It's not as bad as this. 14 CO-CHAIRMAN FORD: Okay. I learn 15 something every day. 16 MR. MAJUMDAR: Okay. So that's the	
<pre>10 case, very much. 11 MR. MAJUMDAR: In this context it is. 12 DR. KRESS: Well, you get a small break 13 LOCA. It's not as bad as this. 14 CO-CHAIRMAN FORD: Okay. I learn 15 something every day. 16 MR. MAJUMDAR: Okay. So that's the</pre>	
11 MR. MAJUMDAR: In this context it is. 12 DR. KRESS: Well, you get a small break 13 LOCA. It's not as bad as this. 14 CO-CHAIRMAN FORD: Okay. I learn 15 something every day. 16 MR. MAJUMDAR: Okay. So that's the	
12 DR. KRESS: Well, you get a small break 13 LOCA. It's not as bad as this. 14 CO-CHAIRMAN FORD: Okay. I learn 15 something every day. 16 MR. MAJUMDAR: Okay. So that's the	
 13 LOCA. It's not as bad as this. 14 CO-CHAIRMAN FORD: Okay. I learn 15 something every day. 16 MR. MAJUMDAR: Okay. So that's the 	
14CO-CHAIRMAN FORD:Okay.Ilearn15something every day.16MR. MAJUMDAR:Okay.So that's the	
<pre>15 something every day. 16 MR. MAJUMDAR: Okay. So that's the</pre>	
16 MR. MAJUMDAR: Okay. So that's the	
17 temperature profile in RTD at 14,000 seconds, the	
18 magic number. Now, perhaps it's hotter than the lower	
19 half.	
20 The RTD tip actually heats up pretty	
21 rapidly because there's more mass and approaches that	
22 other tube as it approaches the hot leg.	
23 MR. SIEBER: Actually, the RTD is modeling	
24 the fluid streams.	
25 MR. MAJUMDAR: The tip is in the fluid	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	294
1	[UDTSFA].
2	MR. SIEBER: When you take the RTD out,
3	you don't get a leak.
4	CO-CHAIRMAN WALLIS: You've got to answer
5	my question.
6	MR. MAJUMDAR: You don't get a leak?
7	MR. SIEBER: No. It's in a weld. It's a
8	thimble, and the thimble otherwise you would never
9	be able to replace it.
10	MR. PAGE: Well, the RTD we got drawings
11	of, the thimble, which is a cone, came down into the
12	flow stream, but it had like five holes drilled into
13	it.
14	MR. SIEBER: Oh, I've never seen that.
15	MR. PAGE: Well, I'd be willing to show
16	you the drawing. That's the one we got.
17	MR. SIEBER: All right. [UDTSFA].
18	MR. PAGE: No, no. I mean, I wondered,
19	too, but it seemed
20	MR. SIEBER: I've never seen one made like
21	that.
22	MR. MAJUMDAR: I guess the scope sits
23	this is what we are calling RTD. It's really the
24	scope, right?
25	MR. PAGE: Yeah, this is called the scoop.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	295
1	MR. MAJUMDAR: Scoop.
2	MR. PAGE: It's like a fairly substantial
3	metal thing, but it had five holes drilled in it that
4	were what, quarter inch diameter? It was about
5	four
6	MR. SIEBER: inch?
7	MR. PAGE: It was about five inches down
8	in the flow stream.
9	MR. SIEBER: Oh, quarter inch.
10	MR. MAJUMDAR: It's sticking into the flow
11	stream about four or five inches, yeah.
12	We also got a drawing for the generic RTD
13	for Westinghouse plants which are quite different from
14	this design. This one was provided specifically for
15	ZION plant.
16	MR. SIEBER: There might be something
17	unique about that plant, but you could take the RTD
18	out of the plants I worked in and it would not leak.
19	MR. PAGE: I think we're talking about
20	three different things here. I think one is the
21	scoop, which is what we had in mind, and then the
22	thimble sticks down, and then the RTD, I think, sticks
23	down in the thimble.
24	The thimble is actually quite thin, the
25	one you're talking about. It's a fairly thin surface,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	296
1	and they have had failures of some of those, and so,
2	I mean, I
3	MR. SIEBER: Well, they may have.
4	MR. PAGE: I talked to the RTD guru, I
5	guess, and we still haven't literally figured out the
6	details of the innards of this thing, but this was a
7	first cut of looking at the welds themselves.
8	MR. MAJUMDAR: But the welds are clearly
9	defined on the drawing though. These two welds and
10	whatever it's called. I don't know the RTD scoop. If
11	those welds fail, then this thing is going to be
12	MR. SIEBER: Yeah, it is welded in place.
13	MR. PAGE: That would be a two inch hold.
14	MR. SIEBER: Yeah, right.
15	MR. LONG: Just to clarify the structure
16	there, that used to be a scoop. There are three of
17	them, and it was actually sampling and taking flow out
18	to a ring header that went to an RTD bypass manifold.
19	MR. SIEBER: Oh, yeah. They eliminated
20	that.
21	MR. LONG: They eliminated the manifolds,
22	but they then used these things as RTD welds, but the
23	point was they wanted fast, you know, heat transfers.
24	So they needed to put holes in there to get the fluid
25	to touch the RTD more directly than through that weld.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	297
1	MR. SIEBER: Strangely enough, those RTD
2	manifolds were slow responding to temperature change.
3	MR. LONG: That's why they went to this.
4	MR. SIEBER: Correct. That's why you
5	couldn't rely on them for protection.
6	MR. LONG: Well, it's too bad that they
7	don't have them now if you really want something to
8	fail because scooping the hot flow out into the thin
9	pipe and taking it down by force load to the reactor
10	coolant pump seal leak would have been treat at the
11	moment, but
12	MR. SIEBER: Yeah, right. You refreshed
13	my memory. That was a strange design.
14	MR. MAJUMDAR: The average temperature of
15	both the welds actually follow almost the same profile
16	with time. This is typical stress distribution in the
17	ID weld and RTD interface, and the stresses are not
18	really that large so large scale plastic ending is
19	not predicted.
20	CO-CHAIRMAN FORD: Sorry. Just to make
21	sure I understand, on that previous plant, these are
22	the stresses associated with a constant displacement
23	weld; is that correct?
24	So you're looking at the changes the
25	stresses at that particular time.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	298
1	MR. MAJUMDAR: This is at that time on the
2	ID weld.
3	CO-CHAIRMAN FORD: Is this the residual
4	stress?
5	MR. MAJUMDAR: Oh, no. This is the stress
6	due to the temperature, pressure, everything.
7	CO-CHAIRMAN FORD: And the residual
8	stress.
9	MR. MAJUMDAR: Well, no, not the residual
10	stress. Welding in the we did not assume any
11	welding in these residual stresses.
12	CO-CHAIRMAN WALLIS: So what's the bottom
13	line here?
14	MR. MAJUMDAR: Well, the next figure shows
15	the stresses in the ID weld starts out high, compared
16	to the OD rails, but we did creep, relaxes faster
17	because the ID is slightly hotter, and the OD welds
18	will follow this pattern.
19	There is a peak there in the stress, and
20	this point is that 14,000 again. There is a change in
21	the rate from six degrees per minute to 25 degrees per
22	minute, and right before that, the creep trend takes
23	off. You can have very effective creep strain versus
24	time. Pretty low up to that point, and then it really
25	explodes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	299
1	CO-CHAIRMAN FORD: And that's purely
2	because the very high activation enthalpy for creep?
3	MR. MAJUMDAR: Well, plus the temperature
4	is going up rapidly.
5	CO-CHAIRMAN FORD: Now, on your left-hand
6	side you show a high dependency of stress, but you've
7	also got a high exposure to stress on the creep rate.
8	MR. MAJUMDAR: Yeah, there's a high
9	CO-CHAIRMAN FORD: So if there's any
10	uncertainties in either the stress, calculated stress
11	or the calculated temperature, you could be way to the
12	left or right of that.
13	MR. MAJUMDAR: Well, that's a good point,
14	and we have to do the uncertainty analysis to see what
15	we've done.
16	CO-CHAIRMAN FORD: And can you bring down
17	the thing to 500 seconds?
18	MR. MAJUMDAR: I'm sure you could make the
19	heat large enough. I would show some of the heat
20	rate.
21	CO-CHAIRMAN FORD: Okay.
22	CO-CHAIRMAN WALLIS: What you're going to
23	find here because this is just the law that things
24	never work out too well is when you put all of the
25	uncertainties and all of these things; they all

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	300
1	overlap; and you can't really tell which is going to
2	happen first.
3	MR. PAGE: Unless you find the silver
4	bullet that is 500
5	CO-CHAIRMAN FORD: This could be the
6	silver bullet.
7	CO-CHAIRMAN WALLIS: Make it out of silver
8	and it will probably pop out.
9	DR. KRESS: I think the proper, good
10	uncertainty analysis that shows you that overlap would
11	be extremely useful because then you could factor that
12	into the probability of the failure and then check the
13	consequences and see if you per a significant
14	number of these plants, whether or not you exceed the
15	safety goals. I suppose that would be the approach on
16	how to deal with this issue.
17	You might not be able to confidently say
18	that it's going to fail RCS before it fails in the
19	steam generators, but you can get some sort of idea of
20	the probabilities.
21	MR. MAJUMDAR: That's what the PRA does,
22	and I think that's their responsibility, not ours.
23	MR. MUSCARA: We need to keep in mind that
24	this is the old base case, and the temperatures are
25	changing. They're getting hotter. So these numbers

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

I'm confident will drop. So we have the input. We just don't have a program in place yet to get the work started, but very soon we should be able to get the work started, use a new base case to rerun these things. Then I think we'll see more separation, and at that time with the new base case, we can do the sensitivity analysis.

8 This is the other instrument line I talked 9 about before. It sits on the total RTD flange, this 10 weld. Again, the effective -- if this weld fails, 11 then this line will expel and there will be a one inch 12 diameter hole, and the creep strain along those two 13 interfaces are, again, pretty low up to 14,000 and 14 then takes off.

So I made a summary of the failure times summary. The first row is a reference case. That is the reference old baseline case. This is the hot leg will fail by tensor rupture at 14,506 seconds. The surge line bend, again, tensile rupture, 14,550 seconds. The hot leg to surge line nozzle, slightly earlier, 14,250 seconds.

You don't predict any failure in the elbow because the elbow is under compression all the time. Now, this RTD to hot leg weld, that's predicted to fail at 13,890 seconds. That's the earliest failure

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	302
1	we predict, followed by the instrument line socket
2	weld here.
3	The manways is the last actually, 16,726
4	seconds. That's when it lifts up and [UDTSFA] weld
5	into a two inch diameter hole.
6	Now, the bottom two rows of the
7	variability check, uncertainty check, we first
8	increased the creep rate by a factor of ten. What
9	will it do? The failure of these two or these three
10	are the creep rate dominated, and in that case the
11	failure time would be reduced from 3,890 to 3,710, and
12	so the headline would fail 100 seconds earlier,
13	whereas the manway would be failing a lot earlier,
14	about 1,000 seconds earlier.
15	CO-CHAIRMAN WALLIS: Where does the steam
16	generator tube fail?
17	PARTICIPANT: Thirteen thousand
18	CO-CHAIRMAN WALLIS: Thirteen, five
19	hundred?
20	MR. MAJUMDAR: Well, we still don't know
21	the exact failure point of the steam generator.
22	CO-CHAIRMAN WALLIS: Yeah, but it's in the
23	same range as these numbers.
24	MR. MAJUMDAR: The same range, yeah. It
25	will be near the area, yea.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	303
1	PARTICIPANT: But there, again, we're
2	comparing the old case and new case.
3	MR. MAJUMDAR: Yeah, we have to look at
4	the tube failure in more detail.
5	CO-CHAIRMAN WALLIS: So the lowest thing
6	you mention here that's possible is the hot leg nozzle
7	failure.
8	MR. MAJUMDAR: No, the lowest is RTD.
9	CO-CHAIRMAN WALLIS: The earliest is
10	12,750 at the bottom with a sensitivity study.
11	MR. MAJUMDAR: Which one? Oh, this one,
12	yeah. This is a the heat flux plate, too.
13	CO-CHAIRMAN WALLIS: So you're making
14	occur the double ended guillotine break, which is
15	impossible? No, it isn't impossible yet.
16	MR. MAJUMDAR: The single ended
17	CO-CHAIRMAN WALLIS: Not under severe
18	accidents, yes. So that would be interesting if you
19	did that, as to what actually would happen. How would
20	it break?
21	MR. MAJUMDAR: That's different. This is
22	the initiation of the failure.
23	CO-CHAIRMAN WALLIS: Right. Does it just
24	make a little hole that moves over a little bit?
25	MR. MAJUMDAR: Well, the temperature, high

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	304
1	enough under there's enough load acting load so
2	they'll probably open up.
3	CO-CHAIRMAN WALLIS: We're almost at the
4	end, I think.
5	MR. MAJUMDAR: So that's where I said the
6	discussion that all of the failure stops at close to
7	14,000 seconds. That's the time where the steam
8	temperature ramp actually goes from .3 to 3Ds per
9	second, and the failure time of the component will
10	always be closed no matter how detailed the analysis
11	and in forming more than 15 minutes apart.
12	Failure to focus on failure temperature or
13	the relative failure time between the tube and the
14	component.
15	MR. SHACK: Fifteen minutes is forever.
16	MR. MAJUMDAR: Fifteen minutes would be
17	900. That's 2,700 degrees heat. I think this would
18	be less. I think maybe ten minutes would be best,
19	five to ten.
20	MR. SHACK: We're being optimistic.
21	MR. SIEBER: Of course, if one thing
22	fails, then [UDTSFA] that, right? It stops.
23	DR. KRESS: It changes everything.
24	CO-CHAIRMAN WALLIS: What's this hot inlet
25	plenum?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	305
1	MR. MAJUMDAR: This is still one of 500
2	degree wrap that was mixing. Whatever is done here is
3	done.
4	CO-CHAIRMAN WALLIS: Where is that?
5	MR. MAJUMDAR: That was
6	MR. SIEBER: It's in the steam generator.
7	CO-CHAIRMAN WALLIS: Well, it just seemed
8	to be a much lower time, everything else.
9	MR. MAJUMDAR: One, oh, five, this is 105
10	here.
11	MR. SIEBER: Where? Oh, okay.
12	CO-CHAIRMAN WALLIS: So it's the hot leg
13	going into the steam generator.
14	MR. MAJUMDAR: But without mixing. I
15	think before mixing.
16	CO-CHAIRMAN WALLIS: So that's the one
17	that could fail before anything else, significantly
18	before anything else.
19	MR. MAJUMDAR: Yeah, actually Don's
20	recommendation was to use the 106 because that's
21	the initial level is using that line. We have an
22	early failure.
23	CO-CHAIRMAN WALLIS: Why does that fail so
24	early? It's not the hottest part.
25	MR. MAJUMDAR: But this mixed mean inlet

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	306
1	plenum, that's the cell he wanted us to use for the
2	lower head. Actually the CFD calculations show a
3	little less than this.
4	This conclusion is, again, the RTD weld
5	that failed first, the difference case, and connecting
б	following instruments, socket welds, the surge line,
7	hot leg nozzle, the hot leg itself, the surge line
8	then, manway, elbows. There was no failure. It's
9	under compression.
10	Completed some sensitivity analysis that
11	was showed the major factors controlling the failure
12	of surface [UDTSFA].
13	[UDTSFA] on the tensile properties.
14	I have one slide of planned future work.
15	During the next phase of the program, we are proposing
16	to do some tests on the bolt material, some gaskets
17	and some nozzle material, and we'll do analysis, the
18	final analysis of the hot leg to the new baseline
19	case. We try to treat some here a little more
20	rigorously, and we try to estimate leak rate versus
21	time through the manway once it lifts up.
22	Also there's an RCP leakage analysis to
23	evaluate the three RCS piping.
24	CO-CHAIRMAN WALLIS: You don't plan to
25	analyze the CE system?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

307 1 MR. MAJUMDAR: Yeah, the last one is the 2 CE. 3 CO-CHAIRMAN WALLIS: Oh, you do. Okay. 4 MR. MAJUMDAR: Not in the same detail, 5 finite element, but some average. Yeah, I should clarify. 6 MR. MUSCARA: 7 There is work going on to address the CE issue. Of course, the CFD indicated that that's a much different 8 situation, but the general idea of the work is to 9 develop a methodology and an infrastructure on how one 10 11 would do a good PRA for this severe accident 12 situation. So we don't intend to do the CE in detail, 13 14 but we're going to do qualitative analysis both from 15 a thermal hydraulics point of view and the materials point of view and compare that to the one where we're 16 17 doing the detail. So with the Westinghouse Model 51 and what we get there with respect to the failures. 18 19 CO-CHAIRMAN WALLIS: Well, this looks like 20 a case where the model uncertainty is very, very 21 important in the PRA. 22 Is there anything unique MR. SIEBER: that would make this kind of 23 about B&W plants 24 analvsis, the thermal hydraulic analysis, more difficult? 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	308
1	MR. LONG: If you do get the right size
2	seal, we make a coolant pump seal leak. You tend to
3	start drawing up fluid down through the tube when you
4	start leaking the tube. The big leak (speaking from
5	an unmiked position). It doesn't make the tube very
6	hot. So you have just the right size leak as part of
7	the detail, and it has a lower probability.
8	CO-CHAIRMAN WALLIS: You need to be
9	talking into a microphone.
10	MR. LONG: Oh, I'm sorry.
11	CO-CHAIRMAN WALLIS: Did the recorder get
12	what he said?
13	CO-CHAIRMAN FORD: Okay. You have one
14	last slide?
15	MR. MAJUMDAR: No, that's it.
16	CO-CHAIRMAN FORD: Joel, I'd like to take
17	a break at this time for 15 minutes. So if we can
18	come back here it's just after 22 we'd
19	appreciate it, and then we'll have the last talk on
20	the PRA and then general comments.
21	CO-CHAIRMAN WALLIS: Is it okay to say
22	that was also a nice presentation? Thank you.
23	MR. MAJUMDAR: Yes, yes, yes. Thank you.
24	(Whereupon, the foregoing matter went off
25	the record at 3:24 p.m. and went back on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	309
1	the record at 3:44 p.m.)
2	CO-CHAIRMAN FORD: Okay. We're back in
3	session.
4	I pass it on to you.
5	MR. MUSCARA: Okay. I don't know if we
6	should say we saved the best for last, but at least
7	this is what everybody has been waiting for.
8	CO-CHAIRMAN FORD: That's exactly right.
9	We've been saying we need the PRA now.
10	MR. MUSCARA: Actually we considered
11	having this presentation at the beginning, and I
12	decided it would be best at the end because by this
13	time we will have heard about all of the inputs that
14	need to go into this. Now you will see how the inputs
15	get integrated.
16	So the last presentation for today's
17	session is on the PRA, and Dave Bradley from SAIC will
18	make the presentation.
19	MR. WOODS: Okay. I wanted to start as
20	say just a very few words. I'm Roy Woods of the PRA
21	Branch in Research, and I was going to just briefly
22	introduce the people I have with me. I did that
23	yesterday morning.
24	But on my immediate left here is Dave
25	Bradley from SAIC. He's a subcontractor to Dave

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Kunsman, who is the next person to my left, who is with Sandia National Laboratory.

And then finally down at the end is Paul 3 4 Amico, also of SAIC. The two SAIC guys are based up 5 in Aberdeen, which is convenient because one or both of them have been particularly -- Dave Bradley has 6 7 been down here a number of times -- particularly 8 helping us a great deal with that plan for bringing 9 everything together onto one Microsoft projects 10 schedule, which was an extremely useful exercise. 11 He's also been doing some of the preliminary modeling, 12 not just PRA, but materials failure type things that we're building into our own model. 13

Dave Kunsman is holding it all together from Sandia, and Paul Amico has been primarily concerned, I think, with getting together the PRA that we have obtained from the plant which we'll go into and getting it up and running so we can actually use it.

20Unless you have any questions for me, I'm21going to turn it over.

22 CO-CHAIRMAN FORD: I've got an overall 23 question. Informally amongst us, we've been making 24 a comparison between this particular project and the 25 PTS project, and it involves certainty measurements

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

and uncertainties and materials degradation, thermal hydraulics, et cetera. Is that a good analogy?

1

2

In fact, I was 3 MR. WOODS: Absolutely. 4 wondering whether to say this or not. The whole idea, 5 I think, of assigning me to do this particular PRA coordinating function is not because I'm a PRA expert, 6 which I'm not, but because I did the same or am doing 7 the same function for the PTS project, and that was a 8 tremendous learning experience for the contractors and 9 for the staff in how you do a multi-discipline effort 10 11 like this.

In this case, it's very similar, only maybe a little more so. We have got two different materials aspects on this one. We've got the steam generator tubes, and we've got everything else that Joel was talking about, you know, all of the other components that might fail before the tubes.

18 In the case of PTS, of course, you're just19 worrying about the vessel failing.

20 CO-CHAIRMAN FORD: So drawing on your 21 experience of the very successful PTS program, how do 22 you view this particular program in terms of the order 23 in which things are done? 24 You have a never ending back --

MR. WOODS: There isn't any order. We've

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	312
1	learned that you can't draw it as a linear thing. You
2	can start anywhere you want in the circle, but it's a
3	continual feedback, and we'll actually get into a
4	little bit of that.
5	CO-CHAIRMAN FORD: Good.
6	MR. WOODS: So if that's okay
7	CO-CHAIRMAN FORD: Yes.
8	MR. WOODS: I'll turn it over to David.
9	MR. BRADLEY: Good afternoon. I'm Dave
10	Bradley from SAIC.
11	Three objectives today for the
12	presentation refers to kind of describe to you how we
13	plan to approach the PRA; second, to provide a status
14	of where we are right now; and actually we're fairly
15	new at this effort. Clearly, if you look at the
16	viewgraphs, there aren't a lot of results that are
17	included. So we're just beginning the effort, and we
18	can tell you where we are and where we plan to go.
19	And then also and Roy allude to this
20	I want to describe a little bit how we plan to
21	interact with the other elements of the program, the
22	thermal hydraulic folks, the materials response folks,
23	et cetera.
24	So let me move on to the next slide.
25	The scope of the study is limited to
•	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

severe accident induced containment bypass scenarios that is, driven by steam generator only, tube 3 failures. The initial efforts in this area were to 4 develop a methodology that was part of our original scope.

We developed a draft methodology and 6 7 produced that methodology in draft form in June of Of course, without an application of the 8 2003. 9 methodology, it's kind of difficult to know that 10 you've actually described a methodology that's 11 workable.

12 So at this point we're undertaking an application of the methodology that we provided in 13 14 draft form to full power internal events. The sample 15 plant that we've selected for this analysis at least the first go-round is a Westinghouse --16

17 CO-CHAIRMAN WALLIS: Well, can I ask you about this? You developed a methodology or sort of a 18 19 way of going about the problem, and now you're going 20 to apply it to Westinghouse four loop. Maybe PRA is a little different from other areas, but thinking 21 22 about what, say, Chris Boyd told us, he could probably 23 sit down in an evening and sketch out his methodology 24 and how he's going to approach the problem, and then 25 it takes him a year to do all of the work.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

	314
1	Is PRA somehow different from that?
2	MR. BRADLEY: No. I mean, it's very
3	similar to that. In fact, what we're finding is that
4	the issues are more complicated than we had thought
5	initially when we drafted the methodology. So I know
6	right now the methodology is going to change
7	drastically, which is why as you'll see we plan on
8	updating that report when we produce the application.
9	This is actually the way we did it.
10	So I've indicated here in the last bullet
11	on this slide that we do plan to extend the
12	methodology to other plant types, external events,
13	lower power and shutdown states as well. That's
14	downstream, quite a ways downstream. The initial
15	efforts will be devoted towards that Westinghouse four
16	loop sample plant.
17	CO-CHAIRMAN FORD: I'm sorry. I'm going
18	to ask you a simple question on the first sub-bullet.
19	"No steam generator containment by part before core
20	damage begins. Coming into this on the DPO issue, I
21	assume that the sequence of events was a main steam
22	line break, depressurization, secondary side, rupture
23	the tube, and then subsequent events after that. That
24	is not the only thing we're talking about.
25	MR. BRADLEY: No, in fact, the main steam

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	315
1	line break
2	CO-CHAIRMAN WALLIS: You mix it up with
3	something.
4	CO-CHAIRMAN FORD: Yeah, that's what
5	I'm carry on.
6	MR. BRADLEY: So this is just severe
7	accident initiated.
8	CO-CHAIRMAN FORD: Okay.
9	CO-CHAIRMAN WALLIS: This is a station
10	blackout.
11	MR. BRADLEY: Well, station blackouts are
12	similar.
13	CO-CHAIRMAN WALLIS: It stops and then it
14	heats up. This isn't a LOCA or anything like that.
15	MR. WOODS: The intent is to hopefully
16	expand this to other aspects of steam generator tube
17	problems, but the initial effort that we were able to
18	fund and staff or whatever at the start here was the
19	severe accident induced steam generator tube rupture.
20	So that's just where we are at the moment.
21	MR. BRADLEY: Okay. This chart shows a
22	simple schematic of kind of the project flow, at least
23	the way we initially envisioned it. The first step
24	was to clearly define the issue. What we've
25	assumed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	316
1	CO-CHAIRMAN WALLIS: This looks like a
2	generic chart, apart from a few specifics.
3	MR. BRADLEY: Yeah, it's a fairly generic
4	flow.
5	What we've assumed is that the severe
6	accident is containment bypass would be a risk
7	informed application, and what that means is that that
8	implies that you need to look at something like the
9	ASME standard to determine what capability
10	requirements you have for a PRA and look at the PRA
11	that's available to determine whether it's capable to
12	do the job.
13	Clearly there are specific needs of the
14	steam generator tube failure type scenarios that will
15	require enhancements to existing PRAs, and so we want
16	to also identify what those enhancements would be as
17	well.
18	Now, to do that, we've drawn heavily on
19	the work that has come before, the NUREG 1570 analysis
20	that was done, the thermal hydraulic analyses some of
21	which were reported earlier, the materials response
22	analyses, the tube integrity analyses, et cetera, that
23	were done before to try to identify what we thought
24	when we drafted the methodology report, things that
25	would be important to include in the PRA.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	317
1	Again, I'm sure that those things will
2	change and probably grow in scope as we go through the
3	methodology itself.
4	Shown in the yellow box which fortunately
5	does appear on the overhead is where we are now.
6	We've got an existing PRA which we consider capable of
7	doing the job or at least a good starting point.
8	We're looking at improving that PRA as needed for this
9	application. We want to apply the PRA.
10	Also, the other aspect of this analysis
11	that we're looking at is developing the conditional
12	probability of tube failure before failure of other
13	RCS components for a given accident sequence. So
14	that's also part of the application, the methodology.
15	It's a big part of the methodology.
16	Well, then after we've applied the
17	methodology, as I've indicated, we'll revise the
18	methodology document. We'll produce a draft and a
19	final document with the application included so that
20	the reader can see exactly what we did.
21	I wanted to point out the interaction that
22	we see at the bottom of the chart. As Roy alluded to
23	and I mentioned earlier, there's a lot of interaction
24	with the other elements of the program. We need the
25	tube integrity analyses to tell us what pressure and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 temperature conditions can threaten the tubes. We 2 need the thermal hydraulic analysis to tell us what 3 sorts of systems and human failures or human errors 4 can get us to those conditions, and of course, we need 5 the analysis of the other RCS components to know when those failures might happen before the tubes would 6 7 fail. There is a continuous loop, a continuous 8 interaction that we envision throughout the life of 9 the PRA, and we've initiated that effort, but we've 10 got a long way to go. 11 12 As I indicated, that draft methodology issued in June of last year. 13 report was The 14 methodology was based on Sebraxton (phonetic) induced 15 steam generator --I thought SAI was 16 CO-CHAIRMAN WALLIS: 17 Science Applications International. Used to be. 18 PARTICIPANT: 19 MR. BRADLEY: Well, SAIC. We've assumed 20 that this would be a risk informed application and 21 that caused us to look towards the ASME standard for 22 the capability requirements for a PRA and when 23 enhancements would be needed for this particular 24 application. Some of the enhancements that I've listed 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

You may have state changes where you've got a relief valve that's stuck open and then it heats up and it starts to -- it recloses at some point. It's something outside of what a human -- what an operator might do to initiate a reclosure.

We've also got errors of commission, things that an operator might do that could make the accident worse, could make it better. Those aren't traditionally included in risk assessments. So we've referred to those as enhancements.

Of course, we also want to incorporate the results from studies of phenomena that are unique to severe accident induced steam generator tube failures and RCS failures. For example, we want to look at failures that could prevent containment bypass, failure of the manway, for example, or hot leg surge line failure.

So those are also aspects of the
methodology.
Now, there's nothing very too earthshaking

with the PRA approach the way we've outlined it here,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

and actually the way we envision it is going to draw 2 very heavily on what was successful PTS program. 3 We've got a first step, which is defining the 4 sequences of interest.

5 A very important second step is bending We've got a lot of quantification 6 those sequences. 7 that has to happen. We've got a lot of thermal hydraulic analyses that may have to be done. We want 8 9 to only analyze those sequences that really need to be analyzed. So we want to do a lot of sequence bending 10 11 if possible, and the bending would be done based on, 12 for example, accident scenarios that might get you to similar sorts of threats to the tubes or similar sort 13 14 of threats to the tube integrity.

15 identified and bend the Once we've sequences to the subset that we really need to track, 16 17 we want to do quantification to determine accident sequence frequencies, and then in addition to that, 18 the probabilities that the tubes would fail before 19 20 failure of other RCS components. That's another 21 aspect of the quantification.

22 The PRA itself will tell us the 23 probability of accident sequences. We then will 24 couple that to a secondary analysis which will look at 25 the conditional probability that the tubes will fail

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

before any of the other RCS components fail.

1

2

3

4

5

6

7

As far as the first step in the process, sequence definition, again, we've indicated that we're going to assume that the starting point is a capable Level 1 PRA. We feel like we found the capable Level 1 PRA that we're going to use as our starting point. I'll talk about that in just a second.

We then would like to use some what we 8 call high level or scoping tube integrity analysis to 9 10 define the pressure and temperature regimes of 11 interest; use high level or scoping thermal hydraulic 12 analysis to determine what conditions would get us to those pressure and temperature regimes, and then from 13 14 that we could define the combination of events that we 15 need to consider in the risk assessment, and I've indicated to the extent possible we'd love to screen 16 17 sequences that would give us prior RCS failures. This is a very difficult thing to do, but if we can, we'd 18 19 like to be able to screen out those sequences for which a tube failure would not occur. 20

The second step, sequence bidding, I have indicated -- I discussed this a little bit earlier -the objectives to bin sequences have produced similar challenges to steam generator tube integrity. The objective here is to reduce the size of the Pier A

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(phonetic) model, but we don't want to adversely 2 affect either the model accuracy or its completeness. 3 So we need to be very careful in how we bend the 4 sequences. We don't want to bend a sequence that 5 could give us a very high probability of containment bypass with the sequences that give us low probability 6 7 of containment bypass.

When I heard these 8 CO-CHAIRMAN WALLIS: 9 other presentations, I got the impression that there 10 was more or less one sequence that they were concerned They seemed to be a linear thing. 11 with.

Well, it was one sequence 12 MR. BRADLEY: that they were concerned with because that was, I 13 14 think the dominant sequence in NUREG 1570. Now, we're 15 going to look at what the Comanche Peak PRA which is the PRA that we're going to be using as our basis, 16 17 what sequences are dominant in that, and I would imagine that we'll have additional thermal hydraulic 18 19 calculations that will need to be done, and one of the 20 things we're going to do in the very near future is to 21 take a look at the Comanche Peak PRA and identify the 22 additional important accident sequence.

23 CO-CHAIRMAN WALLIS: This is the Comanche 24 Peak PRA that was prepared by Comanche Peak? 25 MR. BRADLEY: Prepared by Comanche Peak.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	323
1	So they've actually been very helpful in getting that
2	to us.
3	MR. KUNSMAN: This is Dave Kunsman,
4	Sandia.
5	I'd like to say it's not one sequence
6	they've been looking at. They've been looking at one
7	variation of one sequence.
8	CO-CHAIRMAN WALLIS: Well, it seemed to be
9	very much restricted to one story.
10	MR. KUNSMAN: But one of the things we
11	have been taking advantage of during the breaks and
12	that we have been talking a lot about are the things
13	that we may be requesting of them, which we will be
14	coming out with to them very quickly.
15	MR. LONG: This is Steve Long, too.
16	We've been through a few cycles of this.
17	So back in the 1990s when we were doing the 1570 PRA
18	work, the thermal hydraulic model at that time came up
19	with somewhat different results, and at that time we
20	had a lot of input from the sequences where the RCS
21	blew down because the reactor coolant pump seal leaks,
22	and the current model makes those look much less
23	important. So maybe we'll actually get some
24	simplification for the current model and have fewer
25	sequences.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
but we do have to look at a bunch of things that could be depressurizing the RCS at the same time that the core is melting. The pressure rises earlier were okay. If it depressurizes well, the core is melting. For whatever reason, the dynamics gets fairly hairy.

7 MR. BRADLEY: And before moving on, I did want to point out that the sequence binning is 8 9 something that the PTS folks told us would be a very key aspect of our analysis because they had similar 10 11 sorts of issues with analyzing more accident sequences 12 than needed because, aqain, they were have computationally difficult problems 13 that they're 14 analyzing.

Well, the next step after you've got your fault trees and event trees together, you need to assign probabilities to different events. We've got typical failures that are handled in traditional PRAs and for those who would use the standard databases that are available, and in fact, those databases were, of course, used in Comanche Peak PRA.

We've also, as I indicated, have a number of data enhancements for which we'll have to develop probability data. We've got, as I indicated, partial failures, such as a valve leakage. We'll have to try

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

325
to develop something for that. State changes, again
something for that will have to be developed.
Another very important area of the
analysis is analysis of human actions. This, again,
for the PTS program was very critical, and they
developed some very useful procedures in that program.
We hope to use those same procedures to
the extent possible. What they found was that it was
critical to have a good cooperation with the utility
staff, and they've been cooperative so far. We'll see
if they're cooperative when we get to this step.
What we'll do is we'll review the severe
accident management guidelines which are guidelines
and aren't very prescriptive. So we'll have to kind
of interpret what we think the operators might do
under certain severe accident conditions, try to
assign probabilities to those different actions.
And then the other major aspect of the

18 And then the other major aspect of the 19 quantification step is this probabilistic analysis of 20 tube failures before failures of other RCS components. 21 That particular aspect is something that I'm going to be responsible for, and I'm finding out as days go by 22 that it's a lot more complicated than I thought it was 23 24 to start with.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

Well, where do we stand as far as the PRA

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

25

(202) 234-4433

	326
1	is concerned. Well, we've got a PRA model I've
2	indicated that Texas Utilities was kind enough to
3	provide to us. I believe it's the 2002 update of the
4	Comanche Peak IPE model.
5	CO-CHAIRMAN WALLIS: IPE?
6	MR. BRADLEY: It's the updated version of
7	their earlier IPE model. It's much better in our
8	opinion than what they had before.
9	We felt like it was probably the most
10	capable of the available PRAs. Now, we've got two
11	terms here, capable and available. We don't have the
12	full spectrum of all PRAs that were produced or have
13	been produced that would be available to us. This is
14	one that was available to us and was always capable;
15	it was also capable.
16	I wanted to point out that our application
17	is only a test to the methodology. The results of the
18	application will not apply strictly to Comanche Peak.
19	One of the main reasons is that we're using TH results
20	in RCS component failure analyses that are based on
21	design plant.
22	Simply I think there are a number of
23	reasons for that. Those models existed. The work was
24	well underway. The data had been collected, and so we
25	decided that it would probably be more worthwhile to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	327
1	do this sort of a pseudo plant rather than to try to
2	focus specifically on Comanche Peak and try to gather
3	data and prepare new models for the Comanche Peak
4	components.
5	So clearly we've got a potential mismatch
6	here between components and we'll have to deal with
7	that when we come to those issues later.
8	MR. WOODS: We looked very seriously at
9	that. The alternative was to get the materials folks
10	to start over on Comanche Peak, but they had been
11	working on the ZION for years. We couldn't get a ZION
12	PRA because ZION hasn't been operating in quite a
13	number of years. There's no up to date PRA available.
14	There would be no staff to interact with, you know, to
15	incorporate the human factors or any of the
16	interactions that we would like to have, that we did
17	successfully have on pressurized thermal shock, and it
18	just look, and it just looked like it was the only
19	viable alternative that we had was to do sort of a
20	hybrid. We didn't like that, but we didn't see a
21	better alternative.
22	CO-CHAIRMAN FORD: Is there a possibility
23	because of the mismatch between the PRA and the data
24	source that would go into that PRA that at some future
25	date someone is going to turn around and say this is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	328
1	not viable?
2	MR. WOODS: Well, we're trying to
3	demonstrate a methodology, to fill up a method that
4	could be used for a particular plant, and in fact,
5	that's almost an advantage. Well, it is a
б	compensating advantage, and you know, it doesn't
7	really apply to any plant, and no plant is stuck with
8	the licensing issue when we get finished.
9	But, yes, you know, we're not going to try
10	to say this is the result for any plan. We're going
11	to try to try to say this is the kind of result you
12	would get. We hope it's typical, but you would have
13	to apply it to several plants to see if it's typical.
14	CO-CHAIRMAN FORD: Maybe I could turn the
15	question around. The PRA probably
16	DR. BONACA: How different are the plants?
17	How different is Comanche Peak from ZION?
18	MR. SIEBER: Twenty year.
19	DR. BONACA: No, just in
20	MR. AMICO: This is Paul Amico from SAIC.
21	Basically they're both for a loop
22	Westinghouse plants. The differences are valve sizes
23	that are a little bit different and, you know, pump
24	sizes that are a little bit different, but you know,
25	it's not that significant. They're approximately the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	329
1	same power level, and the same number of components
2	and that type.
3	So I don't see a significant issue with
4	that.
5	DR. BONACA: So you would expect, for
6	example, certain transient analysis to be similar to
7	what you would get for Comanche Peak?
8	MR. AMICO: Right.
9	MR. ROSEN: How about the reactor coolant
10	pump seals?
11	MR. KUNSMAN: Dave Kunsman, Sandia.
12	To the best of my knowledge, I'll put
13	about 95 percent on this. They are the same. I'm not
14	going to put, say, 100 percent.
15	MR. ROSEN: No, I'll just say that the
16	reactor coolant pump seal design has evolved
17	considerably since the days when ZION operated, and
18	the new seals are more robust.
19	MR. AMICO: Yeah. Actually, our plan
20	would be to use the probabilities of leakage and
21	amounts of leakage from Comanche Peak and simply tell
22	the thermal hydraulic people, "Assume these leakages
23	when you're running the thermal hydraulics."
24	MR. LONG: Okay. The kinds of things that
25	may be different are where the surge line attaches to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

330
the hot leg, you know, the stop locations and that
sort of thing. So some of the detailed analysis from
components would probably have to be redone for a
particular plant each time you used the methodology,
but in general, it should give you an idea of roughly
what's going to look important.
MR. BRADLEY: As I've indicated, we've got
the Comanche Peak PRA model in house. We've run it.
We've compared the results to what Texas Utilities
reported, and we can duplicate their result, which is
good.
We're currently reviewing the Comanche
Peak model against the ASME standard to see what
Peak model against the ASME standard to see what enhancements will be needed to apply to severe
enhancements will be needed to apply to severe
enhancements will be needed to apply to severe accident induced steam generator containing bypass
enhancements will be needed to apply to severe accident induced steam generator containing bypass scenarios.
enhancements will be needed to apply to severe accident induced steam generator containing bypass scenarios. We're also initiating work on HRA related
enhancements will be needed to apply to severe accident induced steam generator containing bypass scenarios. We're also initiating work on HRA related enhancements that will be needed and also something
enhancements will be needed to apply to severe accident induced steam generator containing bypass scenarios. We're also initiating work on HRA related enhancements that will be needed and also something else I wanted to add to this. We're currently
enhancements will be needed to apply to severe accident induced steam generator containing bypass scenarios. We're also initiating work on HRA related enhancements that will be needed and also something else I wanted to add to this. We're currently developing a list of accident scenarios that will need

Now, I wanted to describe briefly theprobabilistic approach that we envision for

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

determining the conditional probability of tube failure before or actually conditional probability of containment bypass for these accident sequences. I wanted to indicate its conceptual approach. As I learn more, the approach keeps evolving in my mind, and so it's conceptual right now, but likely to change as we learn more.

8 The problem keeps getting more and more 9 complicated. I'm hoping at some point we can make 10 some simplifications, but right now it just seems to 11 be growing in complexity.

12 For a given pressure and temperature set of results from the thermal hydraulic conditions which 13 14 we will determine for a particular accident sequence that comes out of the PRA, we will do the analysis 15 assuming a given pressure set of results. We're doing 16 it for a particular plant. So there will be assumed 17 steam generator flaw characteristics. 18 Here we're 19 looking at not only the size of the flaws, the 20 location of the flaws because we saw earlier that 21 whether they're located -- the position that they're 22 located in the tube sheet, to one side or another of 23 the hot tube, is important. What position axially 24 along the tube is also important because the 25 temperatures that those flaws would see would be

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

1drastically different.2MR. ROSEN: How are you going to pick the3flaws for the plant? Just from what they found in an4inspection?5MR. BRADLEY: What they found, that is at6this point something that we're assuming will be7provided to us to do the analysis. I think my8discussions with Steve along with that say yes.9Probably a little bit of a weakness.10MR. ROSEN: Well, Comanche Peak is two11plants actually. Both units are different. The units12are different. One has one kind of steam generator,13and one has another. So the question is: which unit14are you going to use?15MR. BRADLEY: Well, for this application,16we may, in fact, choose just a generic flaw17distribution. So, again, we get away from the18Comanche Peak specific.
flaws for the plant? Just from what they found in an inspection? MR. BRADLEY: What they found, that is at this point something that we're assuming will be provided to us to do the analysis. I think my discussions with Steve along with that say yes. Probably a little bit of a weakness. MR. ROSEN: Well, Comanche Peak is two plants actually. Both units are different. The units are different. One has one kind of steam generator, and one has another. So the question is: which unit are you going to use? MR. BRADLEY: Well, for this application, we may, in fact, choose just a generic flaw distribution. So, again, we get away from the
4 inspection? 5 MR. BRADLEY: What they found, that is at 6 this point something that we're assuming will be 7 provided to us to do the analysis. I think my 8 discussions with Steve along with that say yes. 9 Probably a little bit of a weakness. 10 MR. ROSEN: Well, Comanche Peak is two 11 plants actually. Both units are different. The units 12 are different. One has one kind of steam generator, 13 and one has another. So the question is: which unit 14 are you going to use? 15 MR. BRADLEY: Well, for this application, 16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the
5 MR. BRADLEY: What they found, that is at 6 this point something that we're assuming will be 7 provided to us to do the analysis. I think my 8 discussions with Steve along with that say yes. 9 Probably a little bit of a weakness. 10 MR. ROSEN: Well, Comanche Peak is two 11 plants actually. Both units are different. The units 12 are different. One has one kind of steam generator, 13 and one has another. So the question is: which unit 14 are you going to use? 15 MR. BRADLEY: Well, for this application, 16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the
6 this point something that we're assuming will be 7 provided to us to do the analysis. I think my 8 discussions with Steve along with that say yes. 9 Probably a little bit of a weakness. 10 MR. ROSEN: Well, Comanche Peak is two 11 plants actually. Both units are different. The units 12 are different. One has one kind of steam generator, 13 and one has another. So the question is: which unit 14 are you going to use? 15 MR. BRADLEY: Well, for this application, 16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the
7 provided to us to do the analysis. I think my discussions with Steve along with that say yes. 9 Probably a little bit of a weakness. 10 MR. ROSEN: Well, Comanche Peak is two 11 plants actually. Both units are different. The units 12 are different. One has one kind of steam generator, 13 and one has another. So the question is: which unit 14 are you going to use? 15 MR. BRADLEY: Well, for this application, 16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the
8 discussions with Steve along with that say yes. 9 Probably a little bit of a weakness. 10 MR. ROSEN: Well, Comanche Peak is two 11 plants actually. Both units are different. The units 12 are different. One has one kind of steam generator, 13 and one has another. So the question is: which unit 14 are you going to use? 15 MR. BRADLEY: Well, for this application, 16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the
9 Probably a little bit of a weakness. 10 MR. ROSEN: Well, Comanche Peak is two 11 plants actually. Both units are different. The units 12 are different. One has one kind of steam generator, 13 and one has another. So the question is: which unit 14 are you going to use? 15 MR. BRADLEY: Well, for this application, 16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the
10 MR. ROSEN: Well, Comanche Peak is two 11 plants actually. Both units are different. The units 12 are different. One has one kind of steam generator, 13 and one has another. So the question is: which unit 14 are you going to use? 15 MR. BRADLEY: Well, for this application, 16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the
11 plants actually. Both units are different. The units 12 are different. One has one kind of steam generator, 13 and one has another. So the question is: which unit 14 are you going to use? 15 MR. BRADLEY: Well, for this application, 16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the
<pre>12 are different. One has one kind of steam generator, 13 and one has another. So the question is: which unit 14 are you going to use? 15 MR. BRADLEY: Well, for this application, 16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the</pre>
13 and one has another. So the question is: which unit 14 are you going to use? 15 MR. BRADLEY: Well, for this application, 16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the
<pre>14 are you going to use? 15 MR. BRADLEY: Well, for this application, 16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the</pre>
15 MR. BRADLEY: Well, for this application, 16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the
16 we may, in fact, choose just a generic flaw 17 distribution. So, again, we get away from the
17 distribution. So, again, we get away from the
18 Comanche Peak specific.
19 But what we'd like to do is start with the
20 flaw distribution that looks like something that a
21 real plant would see. We don't want to create
22 something out of the blue.
23 MR. ROSEN: I don't think going back to
24 flaw distribution that the plant recorded in its last
25 inspection makes any particular sense. First off, the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	333
1	two units at Comanche Peak are different. So you're
2	immediately presented with a question of which unit to
3	use if you take that approach.
4	Instead of that, I would recommend that
5	you find some typical distribution for a plant that
б	has been in service for some time. Don't say this is
7	necessarily a Comanche Peak Unit 1 or 2 distribution.
8	MR. BRADLEY: Yes.
9	MR. MUSCARA: Let me address that a little
10	bit. You know, prior work, we developed three generic
11	flaw distributions based on field inspection data.
12	These generic distributions relate to a plant that has
13	a mild level of degradation, an intermediate level of
14	degradation, a heavy degraded plant, and we've used
15	that in past work. We intend to use this again.
16	In addition, we've developed methodology
17	for predicting the flaw distribution from in-service
18	inspection results and the POD kind of results that
19	you've seen over the last day.
20	So there's a statistical method that's
21	developed, combining in-service inspection results
22	with the probability of detection curves for those
23	results and generating the flaw distribution
24	essentially in the plant.
25	So these are two areas we will be looking

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1at, the generic flaw distributions and then how does2one determine a specific flaw distribution from3inspection results.4MR. ROSEN: Will the result depend5critically on whether or not you find that a plant has6lots of degradation or little degradation or will you7have to do this parametrically?8MR. MUSCARA: I think it will make a9difference because10MR. BRADLEY: Potentially.11MR. MUSCARA: a mildly degraded plant12may also mean that the flaws are not very deep versus13an intermediate where you have more flaws and larger14flaws.15MR. ROSEN: So you may come out with16results for a plant with severely degraded generators17that are not good, and the results for plants or18generators that are not very badly degraded that are19okay, and it could be different.20MR. MUSCARA: So I think we need to look
 inspection results. MR. ROSEN: Will the result depend critically on whether or not you find that a plant has lots of degradation or little degradation or will you have to do this parametrically? MR. MUSCARA: I think it will make a difference because MR. BRADLEY: Potentially. MR. MUSCARA: a mildly degraded plant may also mean that the flaws are not very deep versus an intermediate where you have more flaws and larger flaws. MR. ROSEN: So you may come out with results for a plant with severely degraded generators that are not good, and the results for plants or generators that are not very badly degraded that are okay, and it could be different. MR. MUSCARA: So I think we need to look
 MR. ROSEN: Will the result depend critically on whether or not you find that a plant has lots of degradation or little degradation or will you have to do this parametrically? MR. MUSCARA: I think it will make a difference because MR. BRADLEY: Potentially. MR. MUSCARA: a mildly degraded plant may also mean that the flaws are not very deep versus an intermediate where you have more flaws and larger flaws. MR. ROSEN: So you may come out with results for a plant with severely degraded generators that are not good, and the results for plants or generators that are not very badly degraded that are okay, and it could be different. MR. MUSCARA: So I think we need to look
 critically on whether or not you find that a plant has lots of degradation or little degradation or will you have to do this parametrically? MR. MUSCARA: I think it will make a difference because MR. BRADLEY: Potentially. MR. MUSCARA: a mildly degraded plant may also mean that the flaws are not very deep versus an intermediate where you have more flaws and larger flaws. MR. ROSEN: So you may come out with results for a plant with severely degraded generators that are not good, and the results for plants or generators that are not very badly degraded that are okay, and it could be different. MR. MUSCARA: So I think we need to look
 lots of degradation or little degradation or will you have to do this parametrically? MR. MUSCARA: I think it will make a difference because MR. BRADLEY: Potentially. MR. MUSCARA: a mildly degraded plant may also mean that the flaws are not very deep versus an intermediate where you have more flaws and larger flaws. MR. ROSEN: So you may come out with results for a plant with severely degraded generators that are not yend degraded that are okay, and it could be different. MR. MUSCARA: So I think we need to look
 have to do this parametrically? MR. MUSCARA: I think it will make a difference because MR. BRADLEY: Potentially. MR. MUSCARA: a mildly degraded plant may also mean that the flaws are not very deep versus an intermediate where you have more flaws and larger flaws. MR. ROSEN: So you may come out with results for a plant with severely degraded generators that are not good, and the results for plants or generators that are not very badly degraded that are okay, and it could be different. MR. MUSCARA: So I think we need to look
8 MR. MUSCARA: I think it will make a 9 difference because 10 MR. BRADLEY: Potentially. 11 MR. MUSCARA: a mildly degraded plant 12 may also mean that the flaws are not very deep versus 13 an intermediate where you have more flaws and larger 14 flaws. 15 MR. ROSEN: So you may come out with 16 results for a plant with severely degraded generators 17 that are not good, and the results for plants or 18 generators that are not very badly degraded that are 19 okay, and it could be different. 20 MR. MUSCARA: So I think we need to look
 9 difference because 10 MR. BRADLEY: Potentially. 11 MR. MUSCARA: a mildly degraded plant 12 may also mean that the flaws are not very deep versus 13 an intermediate where you have more flaws and larger 14 flaws. 15 MR. ROSEN: So you may come out with 16 results for a plant with severely degraded generators 17 that are not good, and the results for plants or 18 generators that are not very badly degraded that are 19 okay, and it could be different. 20 MR. MUSCARA: So I think we need to look
 MR. BRADLEY: Potentially. MR. MUSCARA: a mildly degraded plant may also mean that the flaws are not very deep versus an intermediate where you have more flaws and larger flaws. MR. ROSEN: So you may come out with results for a plant with severely degraded generators that are not good, and the results for plants or generators that are not very badly degraded that are okay, and it could be different. MR. MUSCARA: So I think we need to look
MR. MUSCARA: a mildly degraded plant may also mean that the flaws are not very deep versus an intermediate where you have more flaws and larger flaws. MR. ROSEN: So you may come out with results for a plant with severely degraded generators that are not good, and the results for plants or generators that are not very badly degraded that are okay, and it could be different. MR. MUSCARA: So I think we need to look
12 may also mean that the flaws are not very deep versus 13 an intermediate where you have more flaws and larger 14 flaws. 15 MR. ROSEN: So you may come out with 16 results for a plant with severely degraded generators 17 that are not good, and the results for plants or 18 generators that are not very badly degraded that are 19 okay, and it could be different. 20 MR. MUSCARA: So I think we need to look
an intermediate where you have more flaws and larger flaws. MR. ROSEN: So you may come out with results for a plant with severely degraded generators that are not good, and the results for plants or generators that are not very badly degraded that are okay, and it could be different. MR. MUSCARA: So I think we need to look
14 flaws. 15 MR. ROSEN: So you may come out with 16 results for a plant with severely degraded generators 17 that are not good, and the results for plants or 18 generators that are not very badly degraded that are 19 okay, and it could be different. 20 MR. MUSCARA: So I think we need to look
MR. ROSEN: So you may come out with results for a plant with severely degraded generators that are not good, and the results for plants or generators that are not very badly degraded that are okay, and it could be different. MR. MUSCARA: So I think we need to look
16 results for a plant with severely degraded generators 17 that are not good, and the results for plants or 18 generators that are not very badly degraded that are 19 okay, and it could be different. 20 MR. MUSCARA: So I think we need to look
17 that are not good, and the results for plants or 18 generators that are not very badly degraded that are 19 okay, and it could be different. 20 MR. MUSCARA: So I think we need to look
18 generators that are not very badly degraded that are 19 okay, and it could be different. 20 MR. MUSCARA: So I think we need to look
<pre>19 okay, and it could be different. 20 MR. MUSCARA: So I think we need to look</pre>
20 MR. MUSCARA: So I think we need to look
21 at those three
$a = \begin{bmatrix} a \\ b \end{bmatrix} $
22 MR. ROSEN: The plant is also here going
23 to be different because all of these plants with
24 severely degraded generators are being replaced with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

<pre>1 just don't know how you're going to handle it all. 2 MR. BRADLEY: I would envision that 3 would try to bracket the realistic range of plants, 4 Joe said, severely degraded, not much degradation. 5 DR. KRESS: I suspect that if you do t 6 one without any degradation first, that that m 7</pre>	as ne
3 would try to bracket the realistic range of plants, 4 Joe said, severely degraded, not much degradation. 5 DR. KRESS: I suspect that if you do t 6 one without any degradation first, that that m	as ne
4 Joe said, severely degraded, not much degradation. 5 DR. KRESS: I suspect that if you do t 6 one without any degradation first, that that m	ne
5 DR. KRESS: I suspect that if you do t 6 one without any degradation first, that that m	
6 one without any degradation first, that that m	
	ау
7 answer your question for you.	
8 PARTICIPANT: May?	
9 DR. KRESS: You already get too mu	ch
10 overlap for the curves probably, and so it's not goi	ıg
11 to help you to go to the at least that's t	ıe
12 approach I would take. That's the approach I wou	ld
13 take, you see.	
14 MR. BRADLEY: We would take a severe	ly
15 degraded plant and find out the probabilities are lo	ν,
16 not necessarily a likely outcome, but	
17 DR. KRESS: Well, that's the oth	er
18 approach, but my guess is you've got to go the oth	er
19 route first.	
20 MR. WOODS: Well, the frequency of the	3e
21 things may be sufficiently low to compensate for wh	at
22 you're talking about. You know, a really severe fl	зw
23 will pretty likely fail in some of these transient	3,
24 which are probably infrequent.	
25 DR. KRESS: Yeah, but my point was I thi	ık

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the pristine tubes are going to give you a probability overlap that's already too big.

1

2

25

MR. MUSCARA: Yes, but we pretty much know 3 4 how the pristine tubes are going to behave already. 5 So that I guess another comment, if you really want to tailor the flaw distribution to the Comanche Peak, we 6 7 need to look at service experience, and these flaw distributions were developed in the past. 8 A flaw distribution for different kinds of degradation 9 processes at different locations in the plants. So if 10 11 we really want to match it to Comanche Peak, we could 12 see what its history is and then choose the closest flaw distribution for that. 13

14 DR. KRESS: That would be another route, 15 yeah.

I caution everybody about 16 MR. KUNSMAN: 17 things like that the number might be too high. We are developing a methodology. 18 We are having great cooperation unofficially from a utility. 19 We are not 20 calculating a risk from this. If they think we are, 21 we lose that cooperation.

22 DR. KRESS: Okay. You may not be 23 calculating it, but I am. 24 (Laughter.)

> MR. KUNSMAN: Right.

(202) 234-4433

(202) 234-4433

336

	337
1	MR. AMICO: I guess fundamentally I guess
2	the point you were really making is we could do
3	different distributions. It could turn out that the
4	results are not significantly different for your
5	different flaw distributions.
6	DR. KRESS: That was my point.
7	MR. AMICO: That was your point, yeah, and
8	time will tell.
9	DR. KRESS: Yeah. I'm just speculating,
10	of course.
11	MR. BRADLEY: Well, the real crux of the
12	analysis is a Monte Carlo type of approach that
13	factors in or attempts to factor in all of the
14	different uncertainties that we've heard about
15	yesterday and today into an estimate of an uncertainty
16	distribution for the time at which the leakage rate
17	would reach a condition that would constitute a large
18	release.
19	Again, we're interested in a high rate of
20	leakage that would be viewed as a LERF.
21	CO-CHAIRMAN WALLIS: Now, this is more a
22	technical analysis than a PRA, isn't it?
23	MR. BRADLEY: Yes. This is something that
24	we've tackled because it's probabilistic, but it's
25	really kind of in addition to the analysis of accident
I	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	338
1	sequences.
2	MR. AMICO: Yeah. I mean, we need to get
3	a probability somehow. So what we do with the Monte
4	Carlo is, you know, we have distributions on various
5	parameters and that gives you a distribution, a
6	probability distribution on failure time, and you get
7	that for the tubes. You get that for the other RCS
8	components, and to the extent, as you mentioned, the
9	way they overlap gives you the conditional probability
10	that the tubes will precede the RCS.
11	CO-CHAIRMAN WALLIS: Many PRAs are rather
12	simplistic in the way that they muddle what happens.
13	They just put in probabilities and advanced PRA so
14	that it has a complicated model of certain key things
15	going on, which is somehow incorporated into it, and
16	that's what seems to be happening here.
17	MR. KUNSMAN: Along the lines of, if you
18	will the old axial progression of entries after you've
19	got a frequency of core damage, now you go through
20	what's happening inside the containment, balancing the
21	containment failure probability versus the containment
22	loading and that will overlap and whatnot, our
23	accident progression in this case is challenging the
24	tubes so that steam generators.
25	MR. BRADLEY: Okay. The approach would be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

to calculate initially the failure time for each flaw that is in the distribution. When I first looked at this problem, I thought, well, that would be where we would stop. We would have a flaw. It would proceed to failure. We would say that that was a tube rupture.

7 Well, then we decided that, you know, it could be a flaw that's small and produces a leak. 8 So 9 you've got a leak. It's not a rupture. It's not a 10 large release yet. So you need to keep calculating. 11 So what we plan to do is calculate the 12 failure type for each flaw as the additional flaws happen, accumulate the leakage and calculate the crack 13 14 opening and the leakage rate, accumulate the leakage 15 until we get to a time at which the leak rate would be substantial and would constitute a large release. 16

17 MR. MUSCARA: The reason we made this change, in the past we looked at the first tube that 18 19 burst and then the analysis was done and it was over. To address the DPO issue, for example, and they're 20 21 concerned about thousands of tubes leaking small 22 amounts, and so that we do need to track the failure 23 of each tube, how much it leaks and track it with time 24 and accumulate the leakage, and when we get to a 25 certain leakage, then one makes a decision whether

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	340
1	we've had enough leakage to cause a bypass or not.
2	MR. ROSEN: You have another conceptual
3	difficulty in the definition of a large early release
4	in that early release is defined as a release that
5	occurs before substantial evacuation measures have
6	been undertaken. So it's not a number. It's related
7	to emergency response.
8	So you have to have some sort of nominal
9	emergency response in mind.
10	MR. AMICO: And this is definitely an open
11	issue. It's something that we just recently
12	discussed, and we haven't settled on exactly how we're
13	going to approach it.
14	DR. KRESS: The station blackout sequence,
15	for example, proceeds rapidly enough that if you fail
16	enough of these tubes, you had a large early release.
17	MR. AMICO: Well, and the Comanche Peak
18	PRA has a definition of large early release, and
19	they've created essentially a number of LERF plant
20	damage states and that they've defined them, and you
21	k now, our initial going in position is going to be if
22	it was good enough for their IPE, it is good enough
23	for us.
24	MR. ROSEN: It may not be generic though
25	because other sites may have a more challenging

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

definition of large early release than a site in the rural area of north Texas. I mean, I'm thinking of a close insight to an urban area. It would be a more challenging definition.

5 MR. LONG: I think we're going to have to 6 be careful not to get hung up on a sort of legal 7 definition of large early release because what we're 8 really talking about is whether or not it's a 9 contained accident or it's an uncontained accident 10 with some level of release, and you know, nine-tenths 11 of a LERF is probably just about as bad as LERF.

12 Unless you're really saying kill somebody 13 with an acute dose or not, there may be a boundary 14 there.

15 MR. ROSEN: Just pointing out the 16 conceptual difficulties you've got, and you're going 17 to have to solve them with some sort of meaningful 18 generic approach.

MR. LONG: Well, we can use sort of a Level 3 approach as opposed to a LERF/non-LERF approach to make sure it's not a hard edge on the thought process.

23 MR. MUSCARA: That's an issue we struggled 24 with, and in fact, I wanted to stay away from LERF, to 25 begin with. I would like to have a definition of what

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	342
1	is leakages of interest so we can say we have
2	contained bypass or we have avoided a contained
3	bypass. And at this point we don't know exactly what
4	that is, but any input you can give us on that would
5	be useful.
6	DR. KRESS: Well, let me ask you a leading
7	question then. Suppose I took some sort of generic
8	set of plants to do an analysis and forget all of this
9	calculation and say that when I automatically get a
10	containment bypass for this sequence, for this set of
11	sequences; just forget whether it fails first or
12	something else fails first. Just say, okay, it's going
13	to fail first.
14	You can do the risk calculation and then
15	compare that risk with some acceptance criteria which
16	in my guess would be something like one-tenth of a
17	prompt fatality safety goal, would be a good start
18	because that's what's used in PTS, right?
19	And if you met that goal already, why do
20	this? Without going to all of this trouble, you could
21	already decide with some uncertainty analysis whether
22	or not you've met an acceptance criteria.
23	MR. WOODS: I don't think we can use PTS.
24	We were still in the process of determining what
25	acceptance criteria

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	343
1	DR. KRESS: Well, you know, a good
2	acceptance criteria would be one-tenth of the prompt
3	fatality safety goal. I think you could sell that to
4	most people.
5	MR. LONG: Well, we've sort of tried that,
6	and
7	DR. KRESS: Oh, you've tried that already?
8	MR. LONG: And sort of what we're going to
9	need then to do with a good PRA is figure out what the
10	frequency of the sequences are that look like they
11	could be a challenge.
12	MR. BRADLEY: that's what's done in the
13	PRA.
14	MR. LONG: That's right, but it hasn't
15	been done very well. I mean, Bob Paulo (phonetic) and
16	I tried to do it, and then we tried to get some better
17	PRAs than the 1150 work that we started with, and we
18	were getting widely different answers because the
19	licensees were doing it with their own PRAs, and we
20	checked and we could easily find additional things.
21	DR. KRESS: I think that would be the
22	first thing that I
23	MR. LONG: That's one main question.
24	DR. KRESS: Yeah, I think that would be
25	the first thing.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

344 1 MR. LONG: The second though is there are 2 a few things that aren't tracked in the usual PRAs 3 that are important here, like the probability that the 4 secondary side becomes depressurized by a valve 5 sticking open. They leak down by operator error of commission or intentional action under the SAMGs. 6 So 7 these are things that they need to put into the PRA now to start asking what's the frequency with which 8 9 the thermal hydraulic challenges need to be 10 considered. 11 Right now it looks like we are a couple of 12 orders of magnitude higher than we could say is clearly where we could stop. Now, if we can reduce 13 14 the frequencies with these other considerations from 15 what we know the station blackout frequencies are, 16 well, yeah, but the secondary side doesn't 17 depressurize. You know, if you can get it down low 18 19 enough with just the PRA work will stop. 20 DR. KRESS: Okay. You'll do that part. 21 MR. LONG: We've tried before and we 22 couldn't stop. So if we stop this time, we will. 23 DR. KRESS: I didn't realize you had done 24 that, yeah. MR. BRADLEY: Well, the other important 25

> COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

345
aspect of this is something we heard just a short time
ago, was about the probability of failure of other
RCS components. What Saurin presented were failure
times or specific failure times, and we talked about
the uncertainty in the models, the uncertainty in the
thermal physical properties of the materials.
What you're going to end up with is a
probability distribution, not a single time, and it's
possible that those distributions will be wide enough
so that there will be a significant probability that
the tubes will fail first, even though the mean of the
distribution may indicate that the failure would occur
after.
DR. KRESS: Even if it's .5, you've still
got a problem.
MR. BRADLEY: Oh, yeah, a lot of problems
if it's .5.
So if we roll the two sets of
distributions together, we end up with a conditional
probability that the tubes would fail first, and you'd
have containment bypass for a given accident sequence
because the accident sequence will, of course,
determine the pressure and temperature conditions with

the tubes and the other RCS components we'll face.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

One of the major uncertainties we view as

(202) 234-4433

б

(202) 234-4433

	346
1	the thermal hydraulic input into all of these
2	analyses, I think it's important that you cannot
3	consider the pressure temperature curve that you get
4	out of the thermal hydraulic analysis as the real deal
5	and that you actually look at the uncertainty in that.
6	And it may actually extend to looking at
7	other thermal hydraulic models. For example, the MAAP
8	code gives you different results. We're not sure why
9	the MAAP gives you different results, but it does, and
10	it's an accepted industry tool.
11	So we need to understand the sensitivity
12	of the predictions to the uncertainty in the thermal
13	hydraulic inputs. So that's something else that we
14	need to do as well.
15	CO-CHAIRMAN WALLIS: Well, there are
16	probably some physics that the MAAP code does not
17	model very well.
18	MR. BRADLEY: That would be something that
19	would be important to determine, but I think in some
20	early comparisons of MAAP and SCDAP/RELAP, we found
21	out that there was some physics in SCDAP/RELAP that
22	one thing handled well and so the
23	CO-CHAIRMAN WALLIS: There are some funny
24	things about mixing that maybe SCDAP/RELAP does as
25	well, but I think MAAP does some weird things about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	347
1	mixing phenomena in places where flows come in and
2	mix.
3	MR. MUSCARA: Chris has left, but I know
4	he has a program in place to do an evaluation of MAAP
5	versus RELAP. So we hope to learn from that and
6	update our code if it needs to be updated.
7	MR. BRADLEY: Or get them to update MAAP
8	if it needs to be updated. It would be nice to get
9	some convergence.
10	DR. RANSOM: Certainly I think the
11	uncertainty in this analysis is huge. You know, when
12	you look at it from the standpoint of going from the
13	one dimensional hydraulic transient codes through even
14	non-severe accidents and getting into the point of
15	core heat-up, core damage, multidimensional flow
16	through the system.
17	Then when I listen to the structural
18	calculation or presentations, as well, as far as how
19	it would behave, uncertainty in some of the structural
20	properties, it just seems like there's a huge
21	uncertainty as to which way you go. You know, do the
22	tubes fail or does some other part of the system fail?
23	And I don't know how you plan to
24	incorporate that, but I sort of support Dr. Kress'
25	feeling that that uncertainty may dominate the whole

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	348
1	thing and, you know, what really governs risk is just
2	whether or not you have an event that leads to this or
3	not.
4	MR. BRADLEY: I mean, if we end up with .5
5	for the conditional probability that you get
6	containment bypass almost regardless of the scenario,
7	then clearly you need to focus on the accident
8	sequences and try to do something there. At this
9	point we don't know, but that's certainly an outcome
10	that's possible.
11	CO-CHAIRMAN WALLIS: Point, five is sort
12	of the guesstimate when everything is overlapped so
13	much that you can't sort it out?
14	MR. BRADLEY: We don't know. Flip a coin.
15	As far as the modeling of tube failure and
16	leakage, I think Saurin discussed a little bit about
17	the creep rupture models that Argonne developed for
18	crack pop-through, that is, failure of the remaining
19	ligament for part through-wall cracks. There have
20	been previous studies that Argonne has done to look at
21	the various tube failure models, and they developed
22	their model, and it appears to be the best of the
23	available models. Their model compares very well to
24	test data, and so it's the model we've adopted for use
25	in our probabilistic analysis.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	349
1	It's also fairly simple and amenable to
2	the kinds of things that we need to do. It predicts
3	a failure time based on the creep damage index of one,
4	the same sort of thing that we heard earlier.
5	There are also tube leakage models that
6	Argonne has developed that we're going to use for the
7	second phase where we try to accumulate the leakage
8	from the failed tubes. These models have also been
9	benchmarked against test data.
10	Now, those models apply primarily to tubes
11	that have part-through wall failures. For through-
12	wall cracks you can do a limit load analysis to
13	predict burst of tubes, and that's the sort of
14	analysis that we'll use for tubes that have through-
15	wall cracks.
16	What we would like to do is consider the
17	full range of uncertainties. I've identified some of
18	the key ones on this slide. As far as flaw
19	characteristics, we want to know the distribution for
20	the length and depth of the flaws. We want to know
21	the distributions for the number and locations of the
22	flaws.
23	CO-CHAIRMAN WALLIS: Isn't this one of the
24	areas of greater uncertainty?
25	MR. BRADLEY: It is. It definitely is.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	350
1	The inspections provide some information, but they're
2	not 100 percent accurate. So we need to do some
3	extrapolations.
4	CO-CHAIRMAN WALLIS: At least you have
5	inspections. It's not like PTS where you have to make
6	more assumptions about where the flaws are an dhow big
7	they are.
8	MR. BRADLEY: That's true.
9	A parameter that has turned out to be very
10	important in my initial studies is the Larson-Miller
11	creep rupture parameter. There's a distribution that
12	Argonne provides
13	CO-CHAIRMAN WALLIS: That's the one that
14	has powers of ten and things like that and is very
15	sensitive?
16	MR. BRADLEY: Yes, very sensitive, and
17	Argonne provided a distribution that they used. I
18	think that seems appropriate.
19	CO-CHAIRMAN WALLIS: Is this something
20	which is a standard n the materials area? Everybody
21	knows where it is and
22	CO-CHAIRMAN FORD: Larson-Miller? Yeah.
23	CO-CHAIRMAN WALLIS: It's not something
24	that has just been invented for a new year.
25	CO-CHAIRMAN FORD: Oh, no. They've run a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	351
1	long time.
2	MR. BRADLEY: Another parameter that's
3	used in the Argonne model is the stress multiplier.
4	That's the M sub P. There's some uncertainty in that
5	value based on I guess it's the uncertainty in the
6	flaw characteristics or what produces that, Bill?
7	MR. SHACK: Assuming we know the flaw
8	characteristics, it's not a perfect correlation. So
9	it would be some
10	MR. SIEBER: Can't hear you.
11	DR. KRESS: Would you use the microphone,
12	please?
13	CO-CHAIRMAN WALLIS: Would you identify
14	yourself?
15	DR. KRESS: Identify yourself.
16	(Laughter.)
17	MR. SHACK: Bill Shack.
18	Even when you have well characterized
19	flaws, you know, it's not a perfect model. So there's
20	some uncertainty, but that is, in fact, characterized
21	in an Argonne report, a distribution for that inherent
22	error that has to be, again, added on top of the
23	uncertainty you have when you're dealing with real
24	flaws and you have uncertainties in the depths and
25	shapes of those.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MR. BRADLEY: There's also, of course, some variation in the temperature that the tubes see. We've got radial variations that Chris talked about this morning, and of course, there's also an axial variation as you move up the tube. The temperature tends to drop. So we need to factor those into the analysis.

8 CO-CHAIRMAN WALLIS: Well, the whole 9 temperature distribution in the steam generator is 10 rather incomplete because you don't know much about 11 what's happening on the secondary slide. We mentioned 12 that this morning.

I think that's an area where somebody has got to go away and figure out better what's happening on the secondary side.

16 MR. BRADLEY: Yes. There are also some uncertainties related to tube burst and tube leakage. 17 We haven't pinned those down yet, which is why it's 18 19 shown as to be determined, but again, we want to make 20 that consider all of sure we the important 21 uncertainties. So we'll address those as well.

I mentioned the pressure, the thermal hydraulic conditions are uncertain. The variations in thermal hydraulic parameters, such as those that Don talked about this morning; variations caused by use of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	353
1	different computer codes, something else I alluded to
2	earlier.
3	CO-CHAIRMAN WALLIS: Tricky. You're going
4	to run a whole lot of different computer codes?
5	MR. BRADLEY: Well, I think what we
6	envision is trying to get the TH experts to say,
7	"Okay. This is our median estimate of the pressure
8	temperature history. We think it could be this or
9	this, you know, based on their experience running
10	their models, and we'll attempt to reflect that
11	uncertainty in the model.
12	CO-CHAIRMAN WALLIS: I think you've got to
13	be careful here. If you run TRACE and RELAP and some
14	Westinghouse code and all of that, you may be
15	surprised at the difference you get.
16	MR. BRADLEY: I suspect that there will be
17	large differences, but again, it's model uncertainty
18	that is there, and we need to try to consider that.
19	It may make the distributions extremely wide, but so
20	be it.
21	And then, of course, the models for
22	failures of other RCS components were subject to a lot
23	of the same uncertainties that tube failure are
24	subject to and quite a bit of additional ones, I'm
25	sure. So we need to make sure that those are covered.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	354
1	And what we would envision there is trying
2	to get the experts, again, to tell us what they view
3	as the uncertainty in the time of failure.
4	Now, it's always difficult to do that with
5	experts. They tend to want to think that their models
б	are accurate, but we'll do our best to try to get them
7	to be realistic in representing the uncertainty in
8	those times to failure.
9	CO-CHAIRMAN WALLIS: The experts go
10	through a kind of life span when they start out and
11	they become first experts, and they think they know
12	everything, and then as they get more and more expert,
13	their uncertainties tend to increase, to widen.
14	MR. SIEBER: Until they're totally
15	humiliated.
16	(Laughter.)
17	CO-CHAIRMAN WALLIS: I'm really impressed
18	by the breadth of stuff you're undertaking here.
19	CO-CHAIRMAN FORD: And to be completed by
20	the end of 2005, as I understand it.
21	MR. BRADLEY: That's why I said I'm hoping
22	that we can make some simplifications because right
23	now it just looks fairly overwhelming.
24	CO-CHAIRMAN FORD: Challenging
25	.MR. BRADLEY: Challenging, very

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	355
1	challenging.
2	MR. MUSCARA: But also, a lot of the
3	inputs and building blocks are there.
4	CO-CHAIRMAN FORD: Yes.
5	MR. BRADLEY: Well, we have actually done
6	some work in modeling tube fairly. I've put the
7	Argonne creep rupture models into Excel. I've
8	benchmarked the Excel model against the Argonne test
9	results and against the model predictions that Argonne
10	has reported, matched to both of the test results and
11	their model predictions.
12	The reason why we've selected Excel for
13	this is that there's an Excel add-in called Crystal
14	Ball that can be used for Monte Carlo simulations.
15	You can input uncertainty distributions for any input
16	parameter of the model. There's a streamline way for
17	doing that within Crystal Ball.
18	Crystal Ball then does the leg work and
19	does the statistical analysis and reports nice plots
20	of probability distributions for the output parameters
21	that you select.
22	So I've used it in the past. It does a
23	very good job. You can either do light Hyper Cube and
24	Monte Carlo at your selection. I've done some of that
25	already, and I've gotten some distributions for time

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	356
1	to failure. Unfortunately I don't have any of that
2	information that I brought with me. I think I've got
3	it on a laptop if anybody would be interested.
4	The model calculates the time of pop-
5	through failure for each flaw, and you can input
6	uncertainty distributions for the flaw depth, the flaw
7	length, the temperature, the location, and it will
8	produce an uncertainty distribution for the time of
9	pop-through failure. But, again, that's just the
10	first step.
11	Next we need to try to incorporate verse
12	failure for those flaws that are through-wall
13	initially and to incorporate models for tube leakage
14	into the spreadsheet. Now, we need to build a
15	framework for aggregating the leakage as consecutive
16	tubes or tubes fail in sequence and for somehow
17	identifying the time at which you've reached that
18	critical leakage rate, which is yet to be determined.
19	We'll then use Crystal Ball to produce the
20	uncertainty distribution for the time at which that
21	critical leakage level has been reached, and then what
22	we'll do is then, as I've indicated, run a series of
23	calculations to determine the sensitivity of those
24	predictions to those uncertainty in the thermal
25	hydraulic input conditions

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	357
1	So this is my summary slide. We developed
2	a probabilistic approach for assessing severe accident
3	induced steam generator containment bypass scenarios.
4	The underlying assumption again is that the analyses
5	will be part of a risk informed application so that
6	the starting point of the PRA needs to be a capable
7	PRA with capabilities that we've attempted to define
8	based on the ASME standard, along with enhancements
9	that would be required for this particular one.
10	We've prepared a graph methodology and an
11	application of methodology is currently underway. We
12	fully expect the methodology to change as we proceed
13	through our application.
14	The methodology uses traditional PRA
15	methods. There's nothing too exotic. We draw heavily
16	on the experience of the PTS group and use a lot of
17	the techniques that they developed.
18	CO-CHAIRMAN WALLIS: How could it not be
19	a risk informed application? How else would you make
20	a decision on something like this?
21	MR. BRADLEY: I don't know.
22	MR. AMICO: I mean, it's just the
23	construct of where we decided to come from since the
24	ASME standard had been issued and there was a
25	framework for doing a risk informed application,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	358
1	meaning, you know, an application to the NRC that's
2	risk informed.
3	CO-CHAIRMAN WALLIS: It's really
4	questionable stuff. How else could you make a
5	decision on this issue except some risk informed
6	basis? You don't have a standard criteria for this
7	kind of an event.
8	MR. LONG: Well, you really can't do it
9	without being risk informed because the design basis
10	for the reactor coolant system didn't include a high
11	pressure core melt. You know, the ECCS is to prevent
12	that. When you go the containment where core melt is
13	part of the design basis, it was unfortunately a low
14	pressure core melt. So the only thing that challenges
15	the tubes in the design basis is, you know, the iodine
16	spike given the main steam line break, which isn't
17	really from a risk standpoint anywhere near as
18	important as a core damage sequence.
19	CO-CHAIRMAN WALLIS: If you didn't want to
20	be risk informed, you have to write a new regulation
21	with deterministic regulations in it somewhere.
22	MR. LONG: Exactly, and you need a backfit
23	analysis to do it and we need this analysis to justify
24	the back fit. So we have to do this to get anywhere.
25	MR. BRADLEY: We've got an updated

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

We will use the enhanced PRA to determine the frequency of conditions that could lead to severe accident induced steam generator containment bypass scenarios.

Work, as I've indicated, is also underway 9 on an approach to estimating the probability of steam 10 11 generator containment bypass for a given accident 12 It involves a Monte Carlo analysis that sequence. will reflect the full range of modeling uncertainties 13 14 and parameter uncertainties, and will give us an 15 estimate of the uncertainty or the probability of --CO-CHAIRMAN WALLIS: That's difficult. 16

17 Excuse me. That full spectrum modeling uncertainties, I mean, you touched upon it, but there are basic 18 19 uncertainties in predictions of a code like RELAP 20 having to do with the assumptions in the code and all 21 sorts of the ways it's structured and so on. And 22 they're not universal. I mean, they should depend on 23 the application.

24 For certain problems it does a good job. 25 For other problems, lots of uncertainties. And

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8
	360
1	answering the question about how uncertain is RELAP
2	for this particular problem is really a very difficult
3	question to answer.
4	MR. BRADLEY: And we're going to do our
5	best to try to capture it, but you're right. It's
6	very, very difficult.
7	MR. AMICO: I mean, to a large extent, we
8	have to do it's going to be an elicitation process
9	of the uncertainties as people view them, not unlike
10	the way it has been done in seismic analysis. I think
11	we're probably in a problem that has got about as much
12	or as complicated an uncertainty structure as a
13	seismic one, and I mean, our intent will be to use
14	expert elicitation to help determine the uncertainties
15	we need to address.
16	CO-CHAIRMAN WALLIS: Well, ask the experts
17	who have never actually run a code to solve this
18	particular problem and to guess what might be the
19	uncertainty. I think that's a very risky business.
20	MR. KUNSMAN: I'm sorry. Could you
21	CO-CHAIRMAN WALLIS: You can take well,
22	maybe my colleague Vic Ransom could answer but if
23	he were an expert asked to estimate the uncertainties
24	in this kind of a prediction, I think unless he had
25	actually run the code for the kind of conditions we're

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	361
1	talking about here and found out what kind of problems
2	he got into, he would have a great difficulty giving
3	you any kind of a figure for uncertainty.
4	DR. RANSOM: Well, my uncertainty would be
5	one, I think.
6	CO-CHAIRMAN WALLIS: It would be as big as
7	possible?
8	DR. RANSOM: I'd assume the worst
9	situation and take the best.
10	CO-CHAIRMAN WALLIS: Well, that's too
11	much.
12	DR. RANSOM: When I say that I'm including
13	the calculation beyond, you know, the dry-out and
14	severe damage and heat-up and this natural circulation
15	through the steam generators that we've been talking
16	about today.
17	When you couple all of that together, just
18	it would boggle my mind to put any kind of uncertainty
19	estimate on that.
20	DR. KRESS: Well, you know, there's a lot
21	of uncertainty in how the core heats up and melts down
22	and stuff, but I think all of that uncertainty gets
23	wrapped into both parts of the thing, and you can
24	almost ignore that and look at, well, now I've got
25	things uncovered and I've got steam going by and I'm

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	362
1	lighting off the zirconium fire.
2	It's from there on, the flow rates you get
3	and the temperature excursions, you know, the
4	certainties that are important because everything
5	before that is going to
6	MR. BRADLEY: It gets you to a point in
7	time.
8	DR. KRESS: It gives you a point in time,
9	is all it does, and you don't care about that really.
10	It's the difference in the time from there on.
11	So, you know, I have some hope that they
12	could get an uncertainty out of this, and it involves
13	this counter current flow crap that not crap, but
14	I think tha's where the uncertainties are going to
15	lie.
16	CO-CHAIRMAN WALLIS: It's much easier than
17	many of these calculations because it's single phase
18	steam flow. It's not as if you've got two phased
19	phenomena, which really screw up a lot of these
20	problems.
21	DR. KRESS: Yeah, and that cuts down on
22	your
23	CO-CHAIRMAN WALLIS: So that gives you a
24	good basis, but then these mixing patterns and
25	circulations and so

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	363
1	DR. KRESS: Yeah, well, that's where the
2	uncertainty is.
3	CO-CHAIRMAN WALLIS: That's why you need,
4	I think, really good CFD, which has, I think, probably
5	much less uncertainty than just a RELAP model with
б	some guess at mixing. That's where I think really CFD
7	has helped us a great deal.
8	DR. KRESS: But I have some hope that you
9	could come up with a fairly reasonable uncertainty.
10	CO-CHAIRMAN WALLIS: Yeah. Chris Boyd can
11	model the turbulence different ways and so on and get
12	some range of uncertainty. Don't ask the expert who
13	hasn't done that. I think one expert like Chris, who
14	is believable, is better than ten guys who have run
15	RELAP and are guessing.
16	MR. LONG: One thing we need to do with
17	this to help us use the result is to ask ourselves
18	what's the sensitivity to the level of uncertainty in
19	certain things because if we just take an uncertainty
20	distribution and fold it into the answer, you know, if
21	it was a guess at the uncertainty distribution, it
22	would have been just a lot cheaper to guess the answer
23	instead.
24	And so we need to get something out of
25	there that will work, and that would be to say that if

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	364
1	you can be this certain about it, then you can make
2	this decision, but if you have a much broader
3	uncertainty, then it would maybe change your decision.
4	CO-CHAIRMAN WALLIS: Does NRR operate that
5	way? I mean take ten experts to guess the answer.
6	MR. LONG: Well, there's a lot of
7	summaries of experts guessing the answers in NUREG
8	1150, which is what we work a lot from right now.
9	We're hoping to get something that goes beyond that
10	with this effort.
11	MR. BRADLEY: The only other thing I
12	wanted to say before closing was that the last bullet
13	on this slide is clearly the work that we're doing
14	will require very close interaction with the other
15	aspects of the program, which is why we've set up
16	these fairly regular meetings, to get together and
17	have technical information exchange.
18	So again, that's something that we draw on
19	the experience from the PTS folks where that sort of
20	interaction was necessary.
21	CO-CHAIRMAN WALLIS: So someone is in the
22	manager's seat. There's the chief engineer making all
23	of this happen and all of the interactions and making
24	sure that the progress is being made.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	365
1	the integrating all of the work in the Research
2	Office. I plan to have meetings every two months
3	with the team and contractors as needed.
4	CO-CHAIRMAN WALLIS: Every two months?
5	This must be happening every day on this.
6	MR. MUSCARA: But between the individual
7	people, but when the whole group gets together and
8	make sure things are going on the way they should be
9	going on.
10	CO-CHAIRMAN WALLIS: Well, it's very
11	important to get a kind of morale going where people
12	talk to each other very quickly as soon as they find
13	something.
14	MR. MUSCARA: Sure, and that's already
15	going on.
16	CO-CHAIRMAN FORD: And that was lessons
17	learned from the PTS program, another multi-technical
18	thing which worked very well.
19	Are there any more questions on this
20	particular talk?
21	(No response.)
22	CO-CHAIRMAN FORD: Joe, would you like to
23	make any ending statements?
24	MR. MUSCARA: Well, simply I've enjoyed
25	interaction over the last two days. I think in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	366
1	looking at the DPO and whether the issue is close, in
2	effect, formally the issue is closed because we have
3	this activity and because the ACRS and the staff has
4	concluded that it's not a safety concern.
5	I would recommend that we have this kind
6	of meeting annually so that we can keep you updated on
7	the progress of the work if that's what you would like
8	to have.
9	CO-CHAIRMAN FORD: Yes, i think that would
10	be a very good idea.
11	MR. ROSEN: Did you plan to go around and
12	ask us questions?
13	CO-CHAIRMAN FORD: I planned to do that,
14	Steve.
15	Normally at this time at these
16	subcommittee meetings we go around the table. I'd
17	just like to remind us that this was billed as an
18	informational meeting. No letter has been requested.
19	The information was to address more specifically the
20	progress being made on our recommendations in NUREG
21	1740 on the DPO issues, where it was going, what was
22	nearing completion, what was completed.
23	So I'd like to ask the members to address
24	two questions, please. First of all, do you see the
25	need for a letter? And if so, what topics should be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	367
1	covered?
2	And the second request is to give the
3	staff a guidance as to how to most efficiently run
4	their two-hour session tomorrow on what has been gone
5	through in the two-day item.
6	MR. SIEBER: Talk real fast.
7	CO-CHAIRMAN FORD: So, Jack, we'll start
8	with you and go around the table.
9	MR. SIEBER: I'm not sure I can answer
10	your first question first, which is do you need a
11	letter., but I thought all of the presentations and
12	the work done so far was very good with one exception,
13	and that's the iodine spiking issue, which basically
14	I don't know if we're at the stage of a disagreement
15	or not, but apparently we have an opinion about how
16	that should be treated that differs from the staff,
17	and to me it's unresolved at this point in time.
18	But otherwise, I think the work that has
19	been done so far is good work. There's a couple of
20	things I need to think about a little bit just to make
21	sure that I understand it properly, and I'm sure that
22	if I come to some adverse conclusion, I will make that
23	conclusion known, but right now I don't have that
24	feeling.
25	CO-CHAIRMAN FORD: Okay. In terms of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 advice to the staff for tomorrow's meeting, it's my 2 understanding, Joe, that you are going to essentially 3 confine yourself to the summary slides. You're going 4 to confine the number of presenters, and that you are 5 going to have back-up information on the iodine spiking and on the PRA. 6 7 Since the members -- you just arrived, Steve and Mario, but also George Apostolakis is not 8 9 here today. So he hasn't heard this presentation, but that was, I think, the going plan that you had at this 10 So if you could give them further advice on 11 time. 12 that basis, it would be appreciated, I'm sure. Mario. 13 14 DR. BONACA: Well, with regard to that 15 first question, should we have a letter or not, at

16 some point we will need to have a letter. I mean, 17 clearly, the ACRS raised a number of issues on the 18 DPO, and I think the work we have seen here, I mean, 19 I only participated yesterday and then somewhat this 20 afternoon, but the work I saw yesterday had incredibly 21 addressed some of the issues that were raised by the 22 ACRS.

I think that there were some convincing cases made for the kind of delta Ps across the plates. I mean, there were issues there of concern regarding

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	369
1	what the consequences of a steam line break would be
2	or the steam generator. I think those have been
3	addressed, and I think that I cannot comment on that
4	at this point because I missed that portion of the
5	presentation, but I think at some point we will have
б	to address how this work is satisfactorily addressed
7	in the issue before the ACRS.
8	I think we have already sufficient
9	information to address some of that.
10	Regarding the PRA, clearly, it's a work in
11	progress. I mean I think it's a challenging issue.
12	I think it's a very interesting endeavor. I think
13	that just the issue of address failure of passive
14	components is intriguing to me now and how you're
15	going to treat it.
16	But, again, there is no need for
17	commenting on that. We can just note that there's
18	work in progress.
19	On this issue of the competing facts of
20	either I mean, which will fail first, steam
21	generator tubes for the bypass (phonetic) or not?
22	That's again a work in progress. We don't need to
23	comment on the outcome except for whatever insights we
24	have.
25	So a letter could be developed at this

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

370 1 stage that may close some of these issues that we 2 raised. 3 Insofar as the presentation tomorrow, it 4 seems to me that for those members who are not here, 5 particularly Dana Powers, I would expect that this focus of attention is going to be those issues that we 6 7 raised in the report and how they've been addressed. So it would be more focusing on the results and how 8 9 they address those questions or issues that we raised 10 on the ACRS. 11 I mean, yesterday is a lot of information 12 on details of how the calculations were done and what results. I would focus on those results because two 13 14 hours is not much of a time for presentation. 15 CO-CHAIRMAN FORD: Is it possible in your 16 summary slides -- I mean, your summary slides, if it's based on today, is not just on the issues raised in 17 the NUREG 1740, but, for instance, the use of the POD 18 19 of .6, the database for seven-eighths tubes, the 20 spiking factor for iodine. These are all issues that 21 were quite clearly either concluded or recommended in 22 the final section of NUREG. 23 So maybe when you go through your summary 24 slides you could emphasize those particular items. 25 For instance, PRA does not appear in NUREG 1740.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	371
1	That's what essentially you're recommending, is it?
2	DR. BONACA: Well, POD is a good example.
3	I mean, except the statement was made, and I think an
4	answer has been provided regarding POD and the
5	dependency of POD on a number of parameters, and I
б	think you've made a convincing case.
7	I'm only saying what I expect to see. I
8	realize that the presentation covers more ground than
9	the observations we made. I'm only saying that for
10	the presentation to the ACRS you probably will see
11	some focus on those issues that were raised in our
12	report.
13	MR. MUSCARA: My thought had been that I
14	would simply mention that, you know, there was a
15	concern about the fixed value of POD, and that we've
16	done work to characterize the entire POD curves and a
17	number of parameters, but I wasn't planning on showing
18	any of the data.
19	DR. BONACA: No. In fact, I mean, you
20	won't have the time anyway because, you know, in two
21	hours that would include also discussion on the part
22	of the ACRS. You won't have the time to show how they
23	work.
24	MR. SIEBER: I think there is some
25	interesting outcomes from the round robin on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	372
1	probability of detection, you know. Not only do we
2	learn that it's not a fixed number, but a
3	distribution, but the distribution is a function of
4	flaw size which gives confidence that if you have
5	something significant out there, you're going to find
6	it.
7	I think that's important, and I thought
8	that was a pretty good effort, too.
9	DR. BONACA: You can always pull out
10	slides as needed if you get additional questions.
11	CO-CHAIRMAN FORD: Steve?
12	MR. ROSEN: Yes. I'm Steve Rosen, an ACRS
13	member.
14	As far as a letter tomorrow is concerned,
15	I really don't have any comment on that. I wasn't
16	here yesterday. So I heard 50 percent of what you did
17	today. I was in and out all day today. So I heard
18	nothing more than about 25 percent plus or minus ten
19	percent of what you've done. So I really have no view
20	on that.
21	And so I have no guidance for you on
22	tomorrow's session either, except to say that there
23	will be some of us who really haven't heard much of
24	this at all. So you need to put a framework about it.
25	It's not on the ACRS when the NUREG 1740, is it, was

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	373
1	written? So I have background there either.
2	I do have one technical question which
3	comes back to the matter I raised earlier, which was
4	on the assumption of instantaneous failure of the RCP
5	seals at time zero. I asked that question and was
6	told, oh, yeah, that's what it showed. That's what
7	the Westinghouse analysis shows.
8	But I wonder about that because what does
9	operating experience on the behavior of reactor
10	coolant pump seals given a reactor coolant pump trip
11	tell us. Every time we have tripped a reactor coolant
12	pump have we lost the seals?
13	MR. PAGE: No.
14	MR. ROSEN: I rather doubt that.
15	MR. PAGE: This is Joel Page.
16	The 21 gpm is not a seal failure. That's
17	just flowing in the other direction. In other words,
18	it came from GSI 23 basically where you lose seal
19	cooling and somebody finally realized that without
20	failing the seals, the delta P associated with that
21	will flow in the reverse direction.
22	So it's not really the failure of the
23	seal.
24	CO-CHAIRMAN WALLIS: Or flow through the
25	seal without failing it?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	374
1	MR. PAGE: Without failing the seal.
2	The other flow rates
3	DR. KRESS: These are elaborate seals?
4	MR. PAGE: They're actually the three-
5	level seals, and they actually have three different
6	levels that they go to. Some go up.
7	But I'm saying that the 21 gpm, the lowest
8	level, is not actually a seal failure. It's just
9	actually flowing in the other direction.
10	MR. ROSEN: Back through the seals into
11	the component cooling water system?
12	MR. PAGE: There's two or three different
13	directions they go in. They're actually a very, very
14	complicated seal package on those things, and so I
15	don't have the drawing right in front of me, but like
16	I said, the 21 gpm does not constitute a failure per
17	se. It's just because of the large delta P normally
18	you're pumping into the seals at about five or six
19	gpm, but now the delta P situation is much larger, and
20	so all you're doing is flowing back in
21	MR. ROSEN: So you're losing reactor
22	coolant out through the seal package.
23	MR. PAGE: That's correct.
24	MR. SIEBER: And you're getting the seal
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	375
1	MR. KUNSMAN: This is Dave Kunsman.
2	I thank you for bringing this back up
3	because I do want to correct something. Paul reminded
4	me when I responded to your question, I was only
5	thinking of the 21 gallons per minute one. I did not
6	think about the 163 or the 183 that's in their
7	presentations earlier, and I do not know if they
8	applied the Comanche Peak at all. The 21 gallon per
9	minute one I'm fairly certain does.
10	MR. ROSEN: Does it matter, all of this
11	discussion of 21 versus 163? Do we know whether it
12	sends the final result, which is the horse race,
13	between failure of the RCS versus failure of the steam
14	generator tube? Does this seal leakage behavior early
15	in the transient matter?
16	MR. KUNSMAN: Yes.
17	MR. AMICO: You missed the earlier
18	presentation that ISL did this morning, and they did
19	a sensitivity on that and they actually did show that
20	the margin to the tubes failing before the surge line
21	changed based on that.
22	CO-CHAIRMAN WALLIS: With a big enough
23	leak, the problem goes away.
24	MR. PAGE: That's correct.
25	CO-CHAIRMAN WALLIS: It becomes a LOCA.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	376
1	MR. ROSEN: So what you want to do is just
2	exactly the opposite of what the utilities have done,
3	which is build more robust seals.
4	MR. PAGE: Actually we could ask them to
5	take the Log 2000 seals out and put the old ones back
6	in.
7	CO-CHAIRMAN WALLIS: No, but there are
8	other more likely events for which you need a good
9	seal.
10	MR. ROSEN: Well, I think what all of this
11	says is that I'd like to see some really good
12	analysis, mechanistic analysis. Forget about
13	probability. Just tell me what you think is really
14	going on with leakage early in this transient because
15	at least there I don't have to think about a whole lot
16	of things that are indeterminant and uncertain.
17	I know what the delta Ps are. I know what
18	the seal designs are. I can pretty well tell where
19	the water is going to go.
20	MR. PAGE: Actually the seal investigation
21	we're doing, which we're launching now, soon,
22	unfortunately was delayed because originally the
23	original assumption we went with were zero leakage,
24	and when we were picking components to investigate, we
25	said, "What are the time temperatures at the seal

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	377
1	area?" and they weren't that high. They weren't that
2	high when we looked at the Log 2000, you know, report
3	in generic safety issue 23 resolution.
4	So we didn't pursue them then. Subsequent
5	to that time, it looked like they were going to be at
6	least 21 gpm. It started changing the picture. It
7	looked like a route now of hot gases into the seals
8	coming from the cold leg side actually which we had
9	not investigated. We had really concentrated on the
10	hot leg, but the cold leg side that looks like access
11	coming directly to the seals rather early in the
12	scenario.
13	So we do want to pursue that.
14	Unfortunately we're just now really getting into it
15	mechanistically.
16	CO-CHAIRMAN FORD: Graham.
17	CO-CHAIRMAN WALLIS: Well, I was pleased
18	with what I heard today. I've already say that in a
19	few instances.
20	And the question is: how do we best add
21	value to this operation, these tasks? Should we write
22	a letter?
23	Well, why would we write a letter? I can
24	think that in the letter we might give the Commission
25	and the NRC management some assurance that the work is

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	378
1	on track if they want to know that, if they need some
2	assurance of that type.
3	We might wish to evaluate the work,
4	various pieces of the work, make suggestions for
5	improving the analysis or changes in direction and so
6	on.
7	I think at the end that we would want to
8	emphasize that what's very important is what we just
9	heard here, and what we said at the beginning of this
10	whole show was it all has to come together somehow,
11	and that's a lot of work.
12	When you try to bring it together, then
13	you may find out the relative importance of all of
14	these things, and then what it was that you needed to
15	know better and what other things you spent a lot of
16	time on and you didn't need to know so well.
17	Now, my inclination is to say I think that
18	the presenters from the staff and contractors listened
19	to us very well and responded to us very well. I
20	don't want to belabor the things we didn't like about
21	the work in a letter. I think we have given the
22	message to the staff that we didn't like the rather
23	how shall I say? not very complete or whatever
24	arguments about iodine spiking or the seven-eighths
25	tube correlation and so on. That message we already

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	379
1	got across.
2	I had some points for Chris Boyd. I think
3	there are certain parts of his analysis that he needs
4	to look at and do differently. I think he has got the
5	message.
6	Now, do we need to put that in a letter
7	specifically? I'd like to feel we didn't have to.
8	It's all in the transcript anyway. If people are
9	serious about interaction with the ACRS, they've heard
10	what we've said. It's in the transcript, and writing
11	something which praises some and faults others or
12	appears to do so in a letter, I'm not sure I really
13	particularly want to do at this stage.
14	I'd rather say you have a difficult job to
15	bring it all together, and when you've brought it all
16	together, I'd really like to see it. Then we write a
17	letter.
18	My colleagues may feel differently. Often
19	we do write letters simply to say we put something in
20	the record so that we can come back to it and say,
21	"Yeah, we made this point and you didn't pay attention
22	to it."
23	I'd like to feel that in lots of these
24	cases the staff and the contractors listen to what we
25	say and take it into account and do a professional job

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	380
1	and we don't need to say, "We asked you to do
2	something," because then we get into what set this
3	whole thing going, is the ACRS sort of saying, "We
4	don't like this. We don't like that. We don't
5	likeyou ought to go do some work," and off you go
6	on this tremendous program because of just what we
7	said.
8	So I'm inclined to say I'd rather not
9	write a letter, but if we did, I think there are
10	certain things we could put into it.
11	DR. BONACA: That's why, by the way, I was
12	focusing purely on the comments we have made before
13	and not on the whole actual plan. We did critique
14	what we have done today and till then by the staff,
15	and they may be interested at the level of the
16	Commission to know what we think of the work that is
17	being done to address that. That would be the focus
18	of what I would write.
19	CO-CHAIRMAN FORD: Okay. Tom.
20	DR. KRESS: I'm inclined to are you
21	through? Did you want to say some more?
22	CO-CHAIRMAN WALLIS: No.
23	DR. KRESS: Okay. I'm inclined to agree
24	with Mario that a letter might be appropriate at this
25	time for the same reasons.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	381
1	I also agree with Jack on the iodine
2	spiking issue. I'm sure Dana will be anxious to hear
3	about that, and he'll be anxious to hear about how we
4	dealt with all of the issues.
5	So you know, at some point in your summary
б	you will want to say, "Here's an ACRS issue in the
7	1740. Here's how we dealt with it," and then only go
8	into detail later. So I think that has to be part of
9	the presentation.
10	With respect to the steam generator bypass
11	stuff, I may have a different view than most of the
12	committee. I view it as somewhat akin to the
13	allowance of containment over pressure in the net
14	positive suction head problems. We're allowing the
15	progression of a severe accident to get us out of
16	trouble or to be sure our systems work right.
17	To me that's a principle that bothers me
18	somewhat, and I suspect if we go that route, which it
19	looks like we're going that route, we'll get grief
20	from intervenors, from outsiders. They won't like
21	this at all.
22	What? You're going to allow the primary
23	system to melt through first, to depressurize?
24	You know, we're going to get some grief
25	from that, I think, and with respect to the very nice

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	382
1	outline of the work that I see on the PRA, I encourage
2	you to continue in that direction, but personally I
3	think I would start out by assuming I have a large
4	early release, that these sequences, a certain number
5	of these sequences are going to lead to failure of the
6	steam generator tube, and I would make my refinements
7	on the frequency of these and the consequences of
8	these, and see if they don't already meet some sort of
9	acceptance standards.
10	And my choice for acceptance standards
11	would be one-tenth of the prompt fatality safety goal,
12	which if that didn't work, then proceed on refining to
13	see if you can do better by getting the actual
14	probabilities that this is a large release.
15	But I would do the other first. But even
16	then I have a suspicion that you're going to get
17	overlapping probabilities that are too high already.
18	You might as well forget about the probability of
19	failing the primary system prior to failing the steam
20	generator tubes. That's just a personal you know,
21	it's a bias I have already because I have a bias
22	against using severe accident progression to get me
23	out of trouble.
24	So, you know, that's the only
25	MR. ROSEN: Perhaps even without that bias

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	383
1	one can draw the conclusion that the uncertainties are
2	so large on so many sides of this problem.
3	DR. KRESS: That you shouldn't rely on it.
4	Yeah, you could do that probably.
5	DR. BONACA: Although I agree with that,
6	I still am I mean, the project is very
7	interesting.
8	DR. KRESS: Oh, yeah. I don't want them
9	to stop on the project.
10	DR. BONACA: No.
11	DR. KRESS: Because I think it's very
12	useful stuff that's going to useful just to get the
13	overall risk contribution of these sequences, period.
14	I think it would be very useful for that.
15	So I think it has multiple uses.
16	CO-CHAIRMAN FORD: Vic.
17	DR. RANSOM: Well, this issue predates me.
18	So I really am a little bit at a loss to know what to
19	say about it, but I would have found it very
20	interesting to have known what the big picture looked
21	like, you know, what sort of thing potentially does
22	this sequence present, and I would hope, like Dr.
23	Kress has mentioned, that the probability of that
24	occurring would be small enough that the risk of the
25	overall situation, even if you do bypass the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

384 1 containment, wouldn't be a great threat to the public. 2 And so the PRA effort that was presented at the end really to me would have been better right 3 4 at the front, you know, and maybe some numbers put to 5 what the risks are. I thought the technical work was very 6 7 interesting, of course, and we saw some CFD work, which is a step forward in terms of looking at some of 8 the multi-dimensional effects that can occur in these 9 situations, but at the same time, I think it clearly 10 showed you that CFD is not the total answer yet sine 11 12 you can't represent the entire system. And so you still have to depend on these 13 14 approximate methods for boundary conditions, and all 15 of this kind of leads me to like looking at a mathematical problem that's ill posed. You know, a 16 17 little perturbation can push it this way or that, and huge uncertainty, which 18 have this is you the 19 perturbation, and I would just hope that it doesn't 20 matter if I go in the worst direction. 21 As far as the letter is concerned, I 22 really don't have any comment as far as whether it 23 would be needed or not, except it might provide an 24 "atta boy" for, you know, certainly a lot of good work 25 that's going on, progress report.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

And as far as tomorrow is concerned, if people were like myself, of course, I'd like to hear the big picture first and then work down into the details, whereas this one was pretty much -- and yesterday the other way around. We started out with the details and kind of worked up to the end.

7 CO-CHAIRMAN FORD: What I propose to do is -- I thank you for all of your comments -- what i 8 9 propose to do is I will write a draft letter which we may or may not use, essentially making the observation 10 11 that all of the issues that we raised in NUREG 1740 12 are being addressed or in some cases have been finished, but most of them are being addressed. 13 Some 14 of them have not been finished.

We are satisfied in the main with the progress and the approaches that are being taken, but all of those issues are being melded into the current steam generator action plan for severe accidents, the integrated methodology that we made the analogy to the PTS program.

But I think all of us have also been concerned that the response to our issue on the spiking factor is not adequate, and so with Tom's help I'll draft up something to follow up on that concern mainly because it is a non-conservative safety issue,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

386
the approach that they seem to be taking.
And it will be a short letter. It will be
addressing those issues. The detailed advice that has
been given through these last two days are in the
transcript, and I think they've been all well heard

2 And it will be a short е 3 addressing those issues. The deta s 4 been given through these last t е 5 transcript, and I think they've d and hopefully gratefully received, and I think maybe 6 7 rather than make a long letter with all of these suggestions, we can rely on the transcript to have 8 that as a communication tool. 9 10 That's my proposal at this stage. I will 11 draft that tonight and give it to you all so you can 12 mull it over before we get to the actual letter writing. 13 14 DR. KRESS: Sounds good. 15 CO-CHAIRMAN FORD: Nut those are the salient notes. 16 17 If I could make one more DR. BONACA: 18 comment. Sure, yes. 19 CO-CHAIRMAN FORD:

20 DR. BONACA: Just simply, you know, one 21 thing that we already wrote up, and I think Vic Ransom 22 discussed this issue of starting with details and now 23 getting more of the big picture, when I look at the 24 work you presented, it's a huge amount of work, and 25 it, it's impressive insofar as the some of

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	387
1	thoroughness, the treatment, results you're getting,
2	information you're gathering from it.
3	And I realize between today and tomorrow
4	it's impossible for you to develop that, but certainly
5	if one had some kind of presentation on what is called
б	the big picture, I would also that almost a decision
7	tree that leads you to each one of the pieces, it
8	would be a much stronger sales job.
9	I mean, it took us two days or a day and
10	a half or whatever to realize how much around you'd
11	cover, and I think if you had just at the beginning
12	ten minutes of review of the thought process behind
13	all of this, it would be really impressive.
14	It's just a suggestion.
15	MR. ROSEN: Perhaps a little history also
16	on how we got to needing this effort.
17	CO-CHAIRMAN WALLIS: That would be
18	something Joe would present presumably.
19	DR. BONACA: Yeah, and it would be
20	impressive, and most of all, it would be also useful
21	because at times, you know, in my mind it was always
22	the question of are they covering all of the ground.
23	Is there anything they're missing there? And so you
24	go back to what are they trying to do.
25	And maybe it is because we have a limited

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

view of the steam generator action plan, and that I think our involvement has been mostly with the DPO 3 that was more limited on a number of issue, not all of 4 them.

5 But, again, I mean, it seems to me that you're addressing the issue of the ability of that 6 7 barrier to withstand challenges during design basis events and non-design basis events, and you have a lot 8 9 of cascading work that you're leveraging there, and I 10 think that it would be useful to have that perspective. 11

12 said, by tomorrow I think it's As I impossible to do that, but --13

14 MR. SIEBER: One of the things that could 15 be done to make it a little more systematic is the conclusions and recommendations in 1740 are about two 16 17 or three pages at the end of the book. Now, Dana wrote a letter based on meetings that he had with the 18 19 staff that would come out about October 2003 that gave 20 a status report that's not a lot different than the 21 status that was presented here over the last two days, 22 and I think comparing that status or what we've seen 23 in the last two days versus what we concluded and 24 recommended would tell us really where we are, 25 because, you know, this is sort of a building block

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	389
1	kind of an exercise, and they aren't to the bottom
2	line yet.
3	And so there's more to go, and part of the
4	building blocks may change shape a little bit in the
5	process, the iterative process of coming to a final
6	conclusion.
7	So I honestly think with the exception of
8	the iodine spiking issue it would be premature to give
9	our final blessing for some of these building blocks.
10	CO-CHAIRMAN FORD: I'm sorry. One item I
11	didn't mention. All we're saying is that we think
12	that the progress that has been made is impressive,
13	but we can't judge the adequacy of what's been done
14	because we don't have the input from the PRA and the
15	uncertainty analysis as to how good has this got to
16	be.
17	So we don't have a way of metricizing our
18	adequacy.
19	MR. SIEBER: Well, you can't judge whether
20	you like the answer or not because you don't have the
21	answer.
22	On the other hand, I think that you can
23	make an informed judgment about whether the approach
24	and the methods are adequate, which I think they are.
25	The problem with the iodine spiking even

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	390
1	phenomenologically it seems backwards to me is
2	you're getting pretty close to Part 100 someplace
3	along the line, and to take a position that I don't
4	see anything in the data that would lead you to a
5	different multiplier when you run the risk of being
6	criticized because you're getting close to the Part
7	100 limit; I think it really requires more
8	justification than a one or two page memo.
9	CO-CHAIRMAN FORD: Okay. Any other
10	comments?
11	Joe, have we helped?
12	(Laughter.)
13	CO-CHAIRMAN FORD: Okay. We are
14	adjourned.
15	(Whereupon, at 5:25 p.m., the meeting was
16	concluded.)
17	
18	
19	
20	
21	
22	
23	
24	
25	
-	