Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards Thermal-Hydraulic Phenomena Subcommittee OPEN SESSION

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Tuesday, July 8, 2003

Work Order No.: NRC-989

Pages 1-101/314-410

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	MEETING OF THE SUBCOMMITTEE ON
6	THERMAL-HYDRAULIC PHENOMENA
7	+ + + +
8	TUESDAY,
9	JULY 8, 2003
10	+ + + +
11	The meeting was convened in Room T-2B3 of
12	Two White Flint North, 11545 Rockville Pike,
13	Rockville, Maryland, at 8:30 a.m., Dr. Graham B.
14	Wallis, Chairman, presiding.
15	
16	COMMITTEE MEMBERS:
17	GRAHAM B. WALLIS, Chairman
18	F. PETER FORD, Member
19	THOMAS S. KRESS, Member
20	DANA A. POWERS, Member
21	VICTOR H. RANSOM, Member
22	JOHN D. SIEBER, Member
23	
24	
25	

	2
1	ACRS STAFF PRESENT:
2	RALPH CARUSO, ACRS Staff, Designated Government
3	Official
4	SANJOY BANERJEE, ACRS Consultant
5	VIRGIL E. SCHROCK, ACRS Consultant
6	ALSO PRESENT:
7	YEE K. CHEUNG, General Electric
8	ROBERT GAMBLE, General Electric
9	ATAMBIR RAO, General Electric
10	BHARAT SHIRALKAR, General Electric
11	PATRICK BARANOSWSKY, RES
12	AMY CUBBAGE, NRR/DRIP/NRL
13	JAMES HAN, RES/DSARE/SMSAB
14	DON HELTON, RES/DSARE/SMSAB
15	JOHN V. KAUFFMAN, RES/DSARE/REAHFB
16	WILLIAM KROTIUK, RES/DSARE/SMSAB
17	RALPH LANDRY, NRR/DSSA/SRXB
18	SHANLAI LU, NRR/DSSA/SRXB
19	MUHHAMAD M. RAZZAQUE, NRR/SRXB
20	JACK ROSENTHAL, RES
21	JOSEPH STAUDEMEIER, RES/DSARE/SMSAB
22	GEORGE THOMAS, NRR/DSSA/SRXB
23	EDWARD D. THROM, NRR/DSSA/SPSB
24	JERRY WILSON, NRR/DRIP
25	MARCOS ORTIZ, ISL

	3
1	C-O-N-T-E-N-T-S
2	PAGE
3	ESBWR Design Overview, Atambir Rao 6
4	TRACG Review, Ralph Landry
5	TAPD, Testing & Scaling, Muhhamad Razzaque 338
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:31 a.m.)
3	CHAIRMAN WALLIS: This is a meeting of the
4	Advisory Committee on Reactor Safeguards, Subcommittee
5	on Thermal Hydraulic Phenomena.
6	I'm Graham Wallis, the Chairman of the
7	Subcommittee. Subcommittee members in attendance are
8	Tom Kress, Victor Ransom, Peter Ford and Dana Powers,
9	and I think Jack Sieber may come, too.
10	Consultants in attendance are Sanjoy
11	Banerjee and Virgil Schrock.
12	The purpose of this meeting is to discuss
13	the application of the TRACG code to the economic and
14	simplified boiling water reactor, ESBWR at last we
15	know what its name is and the ESBWR scaling
16	analysis.
17	The Subcommittee will hold discussions
18	with representatives of the NRC staff, General
19	Electric Nuclear Energy, and other interested persons
20	regarding this measure. The Subcommittee will gather
21	information, analyze relevant issues and facts, and
22	formulate proposed positions and actions as
23	appropriate for deliberation by the full Committee.
24	Ralph Caruso is the Designated Federal
25	Official for this meeting.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	5
1	The rules for participation in today's
2	meeting have been announced as part of the notice of
3	this meeting previously published in the <u>Federal</u>
4	<u>Register</u> on June 25th, 2003.
5	Portions of this meeting will be closed
6	for the discussion of proprietary information.
7	A transcript is being kept and will be
8	made available as stated in the <u>Federal Register</u>
9	notice. It is requested that speakers first identify
10	themselves and speak with sufficient clarity and
11	volume so that they can be readily heard.
12	We have not received any requests from
13	members of the public to make oral statements or
14	written comments.
15	We will now proceed with the meeting, and
16	I call upon Ms. Amy Cubbage of the Office of Nuclear
17	Regulation to begin, please.
18	MR. CARUSO: One more comment. Dr. Peter
19	Ford.
20	MEMBER FORD: I have a conflict of
21	interest since I'm a G.E. retiree.
22	CHAIRMAN WALLIS: Okay. Thank you.
23	MR. CARUSO: Amy.
24	MS. CUBBAGE: Thank you.
25	On behalf of the staff, late this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	6
1	afternoon we'll be making presentations to the
2	Committee. This morning we're going to begin with
3	General Electric. Mr. Atam Rao is the project manager
4	for the ESBWR project. He'll be providing an overview
5	of the project.
6	CHAIRMAN WALLIS: Atam, it's always a
7	pleasure to hear from you, and I'm glad we finally got
8	you here to talk about this impressive machine of
9	yours.
10	MR. RAO: Thank you for giving us the
11	time.
12	We wanted to give you an update on where
13	the design is and where the technology closure is
14	going on this project.
15	One of our objectives of this pre-
16	application review is shown in Chart No. 3, and I'll
17	get to that, and that is to obtain closure on the
18	technology program that's been ongoing for the last 15
19	years. I'll give you an overview of the design and
20	the program. I'll give you an overview of the
21	submittals we've made since I made a brief
22	presentation to the ACRS last year and summarize where
23	we are going in the overall project.
24	I know you had mentioned that you're glad
25	that we finally announced what the ESB stands for. We

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	7
1	were waiting for a utility, Entergy or Excelon, so
2	that we'd name the E after them, but I guess that
3	hasn't happened yet. The E stands for economic. We
4	finally decided that in the early part of this year
5	the
6	CHAIRMAN WALLIS: Are you going to
7	demonstrate that this is economic for us?
8	MR. RAO: Not for you.
9	(Laughter.)
10	MR. RAO: We save that for the utilities.
11	We focused on the safety part. That's what the S
12	stands for. The middle initial was S, safety.
13	Okay. No, simplified, and that
14	MR. SCHROCK: Was it formerly something
15	else, Atam?
16	MR. RAO: Pardon?
17	MR. SCHROCK: Was it some other name
18	previously?
19	MR. RAO: There has been a lot of
20	confusion on what the E stood for. It might have been
21	European in the earlier days when we started off about
22	ten or 11 years ago.
23	CHAIRMAN WALLIS: It's not "excellent," is
24	it?
25	MR. RAO: Even simpler than the SBWR, ES.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

(Laughter.)

2	
3	MR. RAO: The goals for the technology
4	closure are listed out here. Basically two basic
5	goals that we have for the technology closure program.
6	One is approval of the TRACG code for analysis, and
7	the second is confirmation of the adequacy of TRACG.
8	Let me just describe what those two goals
9	mean specifically. Basically we're looking for the
10	approval of TRACG for the vessel response to pipe
11	breaks, which is the loss of coolant accident,
12	sometimes called the DBA and sometimes called
13	ECCS/LOCA.
14	I wanted to put down the definition of
15	terms here because we'll be using that in the
16	presentations all the way through. So ECCS/LOCA
17	refers to the vessel response to the pipe break.
18	That's what you will be hearing in all of the
19	different presentations.
20	And the containment response to the pipe
21	break will be referred to as containment/LOCA, and
22	then we'll be talking about the vessel response to
23	anticipated operational occurrences, sometimes called
24	transience. People will be using that terminology
25	interchangeable, and sometimes it's called AOO.

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

8

	9
1	The fourth one, which is the plant
2	response to ATWS and normal operation stability is not
3	currently part of the technology program and we will
4	be coming back shortly on that. It was more a
5	question of time rather than that this is not what
6	it had nothing to do with the adequacy of the TRAC
7	code or whatever. It was just
8	CHAIRMAN WALLIS: There are still some
9	very interesting issues for us, I think, those two.
10	MR. RAO: Yes, but we just ran short of
11	time. What the overall goal here is to show that.
12	I'll come back in the take-away at the end.
13	The second major goal, which is actually
14	a subpart of the approval of the TRACG code is a
15	confirmation of the adequacy of TRACG, which means
16	that the qualification base that we're taking is
17	adequate. We've done enough testing. There's enough
18	qualification of the uncertainties and all of those
19	issues that go into the qualification of TRACG.
20	So as I started off earlier, what we've
21	done here is a 15-year plus year comprehensive
22	technology program, and it's using essentially the
23	same thermal hydraulic technology that is used in most
24	BWRs, and is that enough?
25	And it is an important question because

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

10 1 ultimately I wasn't going to talk about economics or 2 all the rest of it; ultimately industry has to know 3 whether or not we have done enough and whether we need 4 to spend more money, and the sponsors will view that 5 as incomplete if we don't get closure on some of these 6 issues, and that there's no way to get closure. 7 that's why we've coined the term So "technology closure." 8 The official terminology is 9 pre-application review. This goes into a little bit more detail on 10 11 what the steps are for the technology closure plan. 12 Basically we're looking for safety evaluation report for the TRACG application for ECCS/LOCA, the same for 13 14 containment/LOCA, and for application for AOOs. 15 That's in the first phase of the technology closure 16 program. 17 That would be based on the different submittals that have been made. The TAPD is the 18 19 technology and analysis program description. That 20 gives the road map for what has been done, what are 21 the important parameters, what qualification is needed 22 for those important parameters, and the different 23 phases of the transience. 24 You will hear a detailed presentation by 25 Dr. Shiralkar on that. So one --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	CHAIRMAN WALLIS: Let me interject here.
2	I mean, you've got four approvals of application of
3	TRACG for something.
4	MR. RAO: Right.
5	CHAIRMAN WALLIS: So we're back to where
6	we usually are with these codes. We know the codes
7	have assumptions and shortcuts and so on in them, and
8	yet they get approved for a particular application
9	rather than sort of approving the code as being
10	perfect in itself, which it never is.
11	MR. RAO: Right.
12	CHAIRMAN WALLIS: The approach always is
13	to look at how it compares with data for a particular
14	application; say for that application it's okay.
15	MR. RAO: Right.
16	CHAIRMAN WALLIS: That's where we usually
17	are. I'm just sort of reiterating where we are. We
18	always find ourselves with codes when we sort of
19	approve them for applications rather than some generic
20	way.
21	MR. RAO: That's what we're asking for,
22	for a specific application.
23	CHAIRMAN WALLIS: In a way, this is a way
24	of getting around what we might say were not
25	necessarily shortcomings, but shortcuts in the code by

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	just looking at the specific applications. So we
2	never face up to going back to the code and saying,
3	"Let's fix the whole thing so we don't have to keep
4	looking at application."
5	MR. RAO: And the TRACG application for
6	ATWS, we have not yet submitted an application
7	methodology. That's why it's too early to ask for the
8	approval of that.
9	And for stability, we were going to use
10	ODYSY as the basis for the evaluations there and some
11	TRACG calculations. Again, we haven't submitted the
12	application methodology for that. So we will come
13	back and be working with the staff to define a
14	schedule for doing that.
15	So this gives the overall picture for what
16	are the oops. I keep pressing the wrong buttons.
17	MR. SCHROCK: Your statement about LOCA is
18	kind of general, and don't you distinguish between the
19	large break LOCA and the small break LOCAs?
20	MR. RAO: No, we don't.
21	MR. SCHROCK: In what you're doing to
22	improve the technology?
23	As I read some of the reports I had the
24	impression that the large break LOCA was being claimed
25	to be covered by previous technology, nothing new to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	deal with as a result of the design of ESBWR. Is that
2	wrong?
3	MR. RAO: No, that's not true.
4	MR. SCHROCK: Okay.
5	MR. RAO: What we're saying, the first
6	one, ECCS/LOCA or containment/LOCA covers the full
7	spectrum of break sizes. Okay? So we are covering
8	small to large break. There may be some
9	MR. SCHROCK: But there is such a
10	statement in the reports that the large break LOCA is
11	basically the same as before.
12	MR. RAO: I'm not aware of that. There
13	are
14	MR. SCHROCK: Well, I'll find it.
15	MR. RAO: Okay. The ESBWR is basically an
16	evolution within a small range which basically
17	minimizes operational risks. What you'll see is
18	there's been just you know, when you go back to the
19	earlier plant designs, they were almost in the 3,300
20	megawatt range, and the ESBWR is up to 4,000 megawatts
21	thermal.
22	There's not a huge increase in the range
23	of power that we have a lot of years of experience.
24	We don't want to lose the 40, 50 years of experience
25	with BWRs that we've had over the last 40 or 50 years.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	Even the component sizes aren't that much
2	larger. What you see is it's the same vessel diameter
3	as the ABWR, 7.1 meters. In fact, that's how we sort
4	of set the power level. We said we'd keep the same
5	vessel diameter and see what's the maximum power we
6	can get from it.
7	CHAIRMAN WALLIS: Now, do these take
8	account of the recent power uprates, these numbers?
9	MR. RAO: These do not take account of the
10	recent uprates. These were the original power.
11	CHAIRMAN WALLIS: Okay. With the power
12	uprate we're already in the range of ESBWR.
13	MR. RAO: Right. When we look at the
14	power densities and all, the numbers that are shown
15	here are with the original designs. The power
16	uprates, there are some that have gone to 62 kilowatts
17	per liter. Okay?
18	So this is with the original design.
19	That's where we got the years of experience.
20	The number of fuel bundles also
21	CHAIRMAN WALLIS: Is this the same fuel as
22	
23	MR. RAO: Yes.
24	CHAIRMAN WALLIS: It's the same fuel as
25	you're going to use?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	15
1	MR. RAO: It's the same standard fuel,
2	except that it's a little bit shorter, three meters
3	compared to 3.7 meters. Otherwise it's the same fuel
4	design.
5	Again, the concept being that more from an
6	economic and commercialization point of view, you
7	don't want to design a new fuel where you've got to
8	build new factories. People would order a plant one
9	at a time so that we we've got to make sure that
10	the first one is economic and you've got the factories
11	in place.
12	We are not relying on a six pack order to
13	make this commercially viable.
14	So the power density as you notice out
15	here is in the range of where we've got lots of
16	experience with the power uprates. I think the life
17	service of the BWR-6 is up at what, 62 kilowatts per
18	liter?
19	No recirculation pumps.
20	The type of control rod drives, we've gone
21	to the control rod drives that are in the ABWR, the
22	fine motion drive as opposed to the locking piston
23	drives.
24	This is where the simplification has come
25	about. So what you can see is in the normal operation

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	it's just like a BWR, except that it doesn't have
2	recirculation pumps. Where the simplification has
3	come is in the safety system area. This shows some of
4	the large pumps. We've gotten rid of them. Mostly a
5	few diesel generators. This
б	CHAIRMAN WALLIS: Now, in a way you're
7	replaced a pump, which is a mechanical device, by a
8	natural circulation pump driven by a condenser or
9	something. So in a sense it's a pump. It's not with
10	the conventional mechanical moving parts.
11	MR. RAO: Yes.
12	CHAIRMAN WALLIS: And it is a functioning
13	pump in a sense.
14	MR. RAO: In some senses, yes, when I get
15	into those, but this is more from a body count point
16	of view, from the economics. This is all I was going
17	to say about the economics basically. It's shown out
18	here.
19	One of the interesting things when you see
20	the evolution of designs over a period of time, the
21	core damage frequencies have come down as we went from
22	BWR-4s, 5s.
23	CHAIRMAN WALLIS: Now, why did they come
24	down?
25	MR. RAO: They came down because we added

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	more divisions. We went from two divisions to three
2	divisions. This was two divisions. This was two and
3	a half divisions.
4	CHAIRMAN WALLIS: Divisions?
5	MR. RAO: Divisions of safety systems.
6	CHAIRMAN WALLIS: And the redundancies?
7	MR. RAO: The redundancies. We've added
8	more redundancy. Okay? Now, this is a full three
9	division system, the ABWR. So there's two, two and a
10	half, three I'm just giving you sort of a
11	CHAIRMAN WALLIS: No, I think it's useful
12	because in a factor of 100, the question is how did
13	you get a factor of 100. You can adjust from these
14	divisions?
15	MR. RAO: Just from the divisions, and
16	there were other factors that apply into that. One is
17	that we've reduced the number of pipes. The number of
18	large pipes below the core has gone down. Okay? In
19	the ABWR there are no
20	CHAIRMAN WALLIS: The fewer things to go
21	wrong. Is that it?
22	MR. RAO: Redundancy does give you more
23	things that can go wrong. Okay? But what's happened
24	here is we had learned from the PRAs basically. PRAs
25	went into the design of the ABWR. Okay? I think the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	BWR-6 was more before the days of the PRA.
2	MEMBER KRESS: But the dominant sequences
3	in BWR-6 are ATWS and station blackout?
4	MR. RAO: Station blackout is the dominant
5	sequence in all of them.
6	MEMBER KRESS: Station blackout is
7	dominant in all of them?
8	MR. RAO: In all of them, and that's
9	MEMBER KRESS: And how does that relate to
10	zero safety diesels?
11	MR. RAO: Okay. Now what we've done out
12	here, so that's exactly what I was going to explain to
13	you, is when we went to the ESBWR, we've pretty much
14	four times ten to the minus seven is about as low as
15	you're going to get. To just put it in perspective,
16	the vessel rupture is ten times minus eight, okay? So
17	you've reached about as good as you're going to get,
18	and what we've done out here is basically gone in with
19	passive systems which have allowed us to reduce the
20	complexity of the design, and that shows up out here
21	in the safety building volume, which is expressed in
22	units of cubic meters per megawatt electric.
23	So you've got about half the size. This
24	is the containment and the reactor building and all of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	ABWR and you get about the same core damage frequency.
2	Okay. So the reason for going with
3	passive systems besides the soft feeling, you know,
4	it's not quantifiable that passive system are better
5	than active systems. I'm not here to tell you that.
б	CHAIRMAN WALLIS: No, because we thought
7	that for a while. Then we realized that maybe having
8	a pump is forcing water in is better than letting
9	nature do it because letting nature do it depends on
10	your predictions being right about what nature is
11	going to do.
12	So it's not always clear that passive is
13	better.
14	MR. RAO: Yeah, we are not advocating one
15	is better than the other. In fact, when you see the
16	design, what you'll see is in the boiling water
17	reactor, direct cycle plant actually, any direct
18	cycle plant, you have lots of pumps. You heard the
19	multiple pump story for the boiling water reactor.
20	We still retained all of those pumps. All
21	of those systems are still there. So for those who
22	like pumps, the pumps are still there. They are just
23	not safety grade anymore.
24	So we've got the balance in the design
25	between the passive systems and the active system. I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	don't know whether I answered your question.
2	Basically what we've done, I'll show you
3	what we've done in the safety systems is basically
4	simplified them, and that gives about the same core
5	damage frequency. I think the actual number is a
6	little lower, but it's not significant.
7	CHAIRMAN WALLIS: Probably when we see a
8	number for a reactor that doesn't exist we should
9	always add a factor of something or other to that
10	number of ten to the minus seven.
11	MR. RAO: Well, yes and no, but you've got
12	to look at, you know, we're using components that we
13	have good experience with, you know. The main issue
14	really is initiating frequencies, you know, and we
15	have a lot of experience with BWRs, and so we are
16	using the same basic design.
17	I like to call the ESBWR BWR Lite, same
18	megawatts, just less calories.
19	We've gone with natural circulation, and
20	basically because it gives us simplification without
21	performance loss. One of the interesting issues in
22	the design of the plant has been people always ask us
23	why did you give up poor circulation.
24	There are several reasons for doing that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	circulations, for both of those you need a large
2	vessel, and if you get into one or the other, you
3	still retain the larger vessel. So if you put one or
4	the other and you add the second one, you get it for
5	free. Okay?
6	So we don't have the penalty associated
7	with the large vessel that would come with natural
8	circulation as long as we stay with passive safety
9	systems.
10	MEMBER SIEBER: So the six meters
11	additional height is just do to provide the driving
12	head?
13	MR. RAO: That is primarily for the
14	driving head, but as you'll see in the presentation,
15	the basic design of this plant is you put a lot of
16	water in the vessel. The vessel is bigger, and that's
17	your first line of defense. You've got more water in
18	there, and you've actually got more steam in there.
19	So what that does is it makes the loss of coolant
20	accident response a lot better and makes the transient
21	response a lot better because when you get a
22	reactorized solution, since you've got a lot more
23	steam, the pressure goes up at a much slower rate.
24	And you do need the taller vessel to get
25	the improved natural circulation flow. We get a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	significant reduction in the components, both pumps,
2	motors, controls, heat exchangers. This is an actual
3	drawing out of the ABWR reactor internal pump system.
4	It's not just pumps. There's a lot of controlled
5	piping and heat exchangers and all of the rest of it.
6	So we got rid of all of that stuff, and we
7	MEMBER KRESS: Do your control rods still
8	come in through the bottom?
9	MR. RAO: The control rods still come in
10	through the bottom. We had looked at other options,
11	and again, we wanted to stay with what was proven and
12	works, and that does work.
13	And the things that we simplified were
14	basically driven by let's reduce the component count.
15	We'll reduce the material quantities, and
16	CHAIRMAN WALLIS: Now, you're reducing the
17	flow resistance in the downcomer.
18	MR. RAO: Right.
19	CHAIRMAN WALLIS: In fact, you probably
20	want to reduce a lot of flow resistance. So this
21	looks like something which could have a tendency to
22	oscillate. Natural circulation oscillations occur in
23	many boiler systems and have to be dealt with.
24	MR. RAO: Right. You've got to take a few
25	things, I remind, just because boilers with pumps and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	natural circulation oscillate. This is a boiler
2	without pumps.
3	CHAIRMAN WALLIS: They oscillate more when
4	they're without pumps.
5	MR. RAO: Which we weren't going to cover
6	that in this presentation, but there's just a little
7	bit out here on the right-hand corner for you to feel
8	comfortable about that. We didn't have a detailed
9	presentation on that. We weren't going to cover it.
10	CHAIRMAN WALLIS: But you have analyzed
11	the stability. You have analyzed the natural
12	circulation.
13	MR. RAO: Yes, yes.
14	MR. SCHROCK: So we don't get to talk
15	about that one today?
16	MR. RAO: No, stability wasn't on the
17	agenda. We're just going to focus on ECCS/LOCA.
18	MEMBER KRESS: We'll cover it at some
19	time.
20	MR. RAO: You'll get a chance, but I don't
21	want to duck the question. Let me just give a one
22	minute answer on that.
23	What we've done is we've reduce the flow
24	restriction and increased the driving head. We have
25	reduced the restrictions in the separators. We've got

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	a shorter core, reducing the two phase pressure drop,
2	and the biggest improvement is getting rid of the
3	pumps.
4	You got into an operating BWR and you weld
5	out the pumps, if you want to do that. You would
6	increase the natural circulation flow by a factor of
7	two basically.
8	This shows the power flow map out here.
9	It's really hard to read out here. We've presented it
10	in the average flow per bundle, average power per
11	bundle rather than the standard power flow mat, and
12	this is what you're concerned about out here. This a
13	jet pump plant. I mean, this is for a BWR-5, the red
14	line. This is for the ABWR, and as you can see out
15	here, in fact, when we went from the jet pump plant to
16	the ABWR, the natural circulation flow actually went
17	down, and that's because the internal pumps provide a
18	major flow restriction in the downcomer out here.
19	So what we've done in this plant is
20	basically removed that flow restriction. Another way
21	to look at it is what the pump does is it puts in a
22	restriction, and then it has to work and do a lot of
23	extra work to just overcome that initial restriction,
24	and you get only about a 50 percent benefit of that,
25	you know a little additional extra flow

25 you know, a little additional extra flow.

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 So what you see out here is the flow for 2 the ESBWR, and when we look at the power to flow ratio at the 100 percent operation point, it's hard to see 3 4 all of the detail in that small chart. They are about 5 in the same range as that for a forced circulation 6 plant. 7 So you've got less power per bundle, and you've got a little less flow per bundle, but the 8 9 power to flow ratio is about the same range, and you can see we've got about four or five times as much 10 11 flow compared to the forced circulation plants. 12 CHAIRMAN WALLIS: Which comes up to the MELLA line on one of those things at the top? 13 14 MR. RAO: Right. This is the MELLA line. 15 CHAIRMAN WALLIS: -- instability in this? You're showing it for the ESBWR. 16 17 MR. RAO: Yeah, we've analyzed the stability for the ESBWR. 18 We aren't presenting 19 anything on that today, but the decay ratios are in 20 the range of .2. Okay. So it's much lower than 21 anything, you know. 22 You've got instability out there, and in 23 this case we are very far away from that point. 24 MR. CARUSO: Because you're using natural 25 circulation, you're going to have to change your fuel

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	management strategies quite a bit for this reactor,
2	won't you?
3	MR. RAO: Yeah.
4	MR. CARUSO: Do you feel confident that
5	the methods will still be valid since you haven't done
6	natural circulation fuel management in 40 years?
7	MR. RAO: I don't think the fuel
8	management depends on whether you use natural
9	circulation or forced circulation. They just rely on,
10	you know, what are the flow inlets to the bundle.
11	Okay? So, yes, the answer is yes.
12	DR. BANERJEE: How high is the chimney?
13	MR. RAO: The chimney is five meters.
14	PARTICIPANT: Eight, point, five meters.
15	MR. RAO: Eight, point, five meters.
16	DR. BANERJEE: So the six meter increase
17	is due to
18	MR. RAO: The chimney.
19	DR. BANERJEE: mainly the chimney.
20	MR. RAO: Mainly the chimney. The core is
21	a meter charter and 8.5 ball park.
22	DR. BANERJEE: And the chimney you
23	subdivide inside?
24	MR. RAO: Yeah, it's a meter by meter
25	subchannels.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	27
1	DR. BANERJEE: So 8.5 meters, meters by
2	meters, and do you have evidence of what goes on in
3	these large
4	MR. RAO: Yeah, yeah. In some of the
5	presentations you'll hear where we've qualified the
6	TRACG computer code. In fact, it was done in Ontario
7	Hydro (phonetic). Was it in Montreal or was it
8	Ontario I mean Toronto? Somewhere in there. It
9	was actually
10	CHAIRMAN WALLIS: Did you look at the flow
11	distribution across the chimney in a 3D sense?
12	MR. RAO: It's a channel, you know.
13	That's an open
14	CHAIRMAN WALLIS: But is that channel so
15	tied to the core so that you can't get a
16	redistribution of flow between channels and the
17	chimney?
18	MR. RAO: Why don't you save those
19	questions until Bharat?
20	CHAIRMAN WALLIS: Bharat will explain
21	everything?
22	MR. RAO: He will give you all, and then
23	when he gets up he'll say that Chester will explain
24	everything and then we'll
25	(Laughter.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701

	28
1	CHAIRMAN WALLIS: And we will remember.
2	DR. BANERJEE: And the velocities are
3	about the same roughly as in a forced circulation
4	plant?
5	MR. RAO: Yeah. Chester can give you the
6	exact numbers when he comes up. He will give you
7	the exact numbers. I don't remember all of the
8	numbers.
9	Okay. One of the areas, even though it's
10	a simplified plant, it ends up taking a lot more to
11	explain it, and I am notorious for exceeding my time.
12	So I will try to get through all of the charts here.
13	One of the ways we got simplification is
14	eliminate systems like you saw in the previous case.
15	We basically got rid of the recirculation system.
16	Another way this is just an example of where we
17	got simplification was eliminating a total system. We
18	got rid of the shutdown cooling system or the residual
19	heat removal system. There is no RHR system or a
20	separate shutdown cooling system.
21	What we did in this plant was for normal
22	shutdown for accident conditions, there's a
23	separate one and I'll get into that for the safety
24	grade decay heat removal but for normal shutdown,
25	there is no RHR system, and we basically combine the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	reactor water clean-up system. It now has a double
2	function, that it can also operate as a shutdown
3	cooling system.
4	A really neat innovation out here. This
5	is actually a standard BWR shutdown reactor water
б	clean-up system. Okay? It looks just like that if
7	you go to any of the plants. The only difference, the
8	only two differences are here.
9	One is in the region rate of heat
10	exchangers. This is how the shutdown cooling system
11	works. It takes suction from the vessel and goes to
12	the regen. heat exchangers, and then it goes to the
13	nonregenerative heat exchangers. Here's a pump. Here
14	is the demineralizers, and it puts the water back into
15	the vessel.
16	Okay. So what we did on this was it has
17	pumps and heat exchangers. For those of you who like
18	pumps and heat exchangers, they are there, plenty of
19	them.
20	In a shutdown cooling mode, we basically
21	bypass the regenerative heat exchangers, and we remove
22	the decay heat from using the nonregenerative heat
23	exchangers.
24	These in a traditional reactor water
25	clean-up system are a little smaller than what will be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	needed for shutdown cooling. So by increasing the
2	size of these heat exchangers, why, basically increase
3	the area by a factor of four, we have eliminated an
4	entire system, the shutdown cooling system.
5	So these heat exchangers are a surface
б	area of a factor of four, and actually they don't take
7	up much more space, and we had to make a few changes
8	on the pumps on this side out here.
9	MEMBER KRESS: And you have to make the
10	pipes bigger also?
11	MR. RAO: No, the pipes are the same size.
12	MEMBER KRESS: The pipes are the same
13	size?
14	MR. RAO: The pipes are the same size.
15	The only other thing that we changed was we put in a
16	second pump because the flow rates are a little
17	different. Okay?
18	So for the high flow and the low flow
19	conditions. So that's the only additional thing.
20	this pump here, and of course you bypass the filter
21	demineralizers dealing shutdown cooling, and you
22	reduce the number of pipes, the amount of maintenance
23	and all of the rest of it.
24	And you get an advantage. You get a
25	performance advantage. Now you have a full pressure

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

31 1 shutdown cooling system. A traditional boiling water 2 reactor --3 MEMBER KRESS: Do you have to manually 4 operate that bypass valves? 5 MR. RAO: Yeah, yeah. There are two 6 chains of these, by the way. 7 In a traditional boiling water reactor to 8 get to shutdown cooling, the shutdown cooling system, 9 the RHR system can only operate at about 400 psi or 10 thereabouts. My numbers are going to be approximate. 11 Okay? 12 This one can kick in at full pressure. So in that sense you've improved the operability and the 13 14 safety of the design. 15 DR. BANERJEE: Is this because natural circulation is just easier? What is the qualitative 16 difference --17 Between this plant --18 MR. RAO: 19 DR. BANERJEE: -- that allows you to do 20 this and --21 MR. RAO: Okay. Because --22 DR. BANERJEE: -- you can't do it in 23 another plant? 24 MR. RAO: No. In the active plant, you have to have an active decay heat removal system. 25 So

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	32
1	you use that for normal shutdown also. Okay? You use
2	the same system. This is for just normal shutdown.
3	This is when you're going into refueling. Okay?
4	So you use the same system cool down
5	during a refueling outage. So since you don't have
6	passive systems you've got to remember do not get you
7	to ambient conditions. They always keep you at above
8	ambient conditions. Okay? So with a passive system
9	for normal shutdown during refueling, you'd need pumps
10	and heat exchangers to get down to below ambient
11	conditions. So that's the reason you can do this
12	here.
13	MEMBER FORD: You mentioned earlier on
14	that your pumps were not safety grade. That doesn't
15	apply to these?
16	MR. RAO: This doesn't apply. This is
17	just for normal shutdown, not for accident conditions.
18	MR. CARUSO: How long after shutdown are
19	the heat exchangers sized for? I mean decay heat
20	drops versus time. At what point were you planning on
21	this system being able to remove decay heat?
22	MR. RAO: I don't remember the number
23	offhand.
24	MR. CARUSO: One hour or 12 hours?
25	MR. RAO: No, I'm sure it's in the I

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	don't know. We can get back to you on that one. It's
2	fairly because, you know, we're trying to meet some
3	fairly aggressive refueling outage times.
4	My guess, I would have said one hour, but
5	you know, I don't remember the number offhand.
6	Did I answer your question, Sanjoy? Yeah?
7	DR. BANERJEE: Yeah.
8	MR. RAO: Okay. This is the plant
9	basically.
10	Let me go back to the previous chart.
11	Just remember the most complicated systems and plants
12	are all of these water systems, you know. Everyone
13	talks about the safety systems, but the water systems
14	have heat exchangers, pumps, controls. They need
15	electrical supplies, and they go all over the plant.
16	So by eliminating a full water system, you
17	end up with a major simplification. The passive
18	safety system in this plant are basically all shown
19	out here, and this looks like a traditional boiling
20	water reactor vessel. This is the reactor vessel.
21	The control rod drives still come in at the bottom,
22	shown out here.
23	You've got four steam lines. These are
24	then two steam lines here and two steam lines here.
25	These are the feedwater lines out here.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1When we went from the SBWR to the ESBWR,2one of the really neat things about a direct cycle3plant is we didn't have to to add another set of steam4generators to make them bigger. We added two more5steam lines. Okay? That's pretty much all that we6are doing to add more fuel also.7So the vessel diameter went up about a8meter compared to the old SBWR design, and the vessel9height is, I think, a meter, a couple of meters10higher.11CHAIRMAN WALLIS: It's a very interesting12vessel because there's no way to open it.13MR. RAO: Runs forever. No. This is just14a cartoon to show you the15MEMEER POWERS: Maybe the people working16in safeguards and security can come up with a way of17opening it.18MR. RAO: We wanted to improve the19security of the design, right.20Okay. The other couple of things to21notice is like a standard boiling water reactor, there22is a suppression system. This is what's called the23drywell. This is the wetwell. This is the pool of24water. It's the same size as the ABWR. It's similar25to the ABWR in the sense that you've got the this		34
plant is we didn't have to to add another set of steam generators to make them bigger. We added two more steam lines. Okay? That's pretty much all that we are doing to add more fuel also. So the vessel diameter went up about a meter compared to the old SBWR design, and the vessel height is, I think, a meter, a couple of meters higher. CHAIRMAN WALLIS: It's a very interesting vessel because there's no way to open it. MR. RAO: Runs forever. No. This is just a cartoon to show you the MEMBER POWERS: Maybe the people working in safeguards and security can come up with a way of opening it. MR. RAO: We wanted to improve the security of the design, right. Okay. The other couple of things to notice is like a standard boiling water reactor, there is a suppression system. This is what's called the drywell. This is the wetwell. This is the pool of water. It's the same size as the ABWR. It's similar	1	When we went from the SBWR to the ESBWR,
 generators to make them bigger. We added two more steam lines. Okay? That's pretty much all that we are doing to add more fuel also. So the vessel diameter went up about a meter compared to the old SBWR design, and the vessel height is, I think, a meter, a couple of meters higher. CHAIRMAN WALLIS: It's a very interesting vessel because there's no way to open it. MR. RAO: Runs forever. No. This is just a cartoon to show you the MEMBER POWERS: Maybe the people working in safeguards and security can come up with a way of opening it. MR. RAO: We wanted to improve the security of the design, right. Okay. The other couple of things to notice is like a standard boiling water reactor, there is a suppression system. This is the pool of water. It's the same size as the ABWR. It's similar 	2	one of the really neat things about a direct cycle
5 steam lines. Okay? That's pretty much all that we 6 are doing to add more fuel also. 7 So the vessel diameter went up about a 8 meter compared to the old SBWR design, and the vessel 9 height is, I think, a meter, a couple of meters 10 higher. 11 CHAIRMAN WALLIS: It's a very interesting 12 vessel because there's no way to open it. 13 MR. RAO: Runs forever. No. This is just 14 a cartoon to show you the 15 MEMBER POWERS: Maybe the people working 16 in safeguards and security can come up with a way of 17 opening it. 18 MR. RAO: We wanted to improve the 19 security of the design, right. 20 Okay. The other couple of things to 21 notice is like a standard boiling water reactor, there 22 is a suppression system. This is what's called the 23 drywell. This is the wetwell. This is the pool of 24 water. It's the same size as the AEWR. It's similar	3	plant is we didn't have to to add another set of steam
 are doing to add more fuel also. So the vessel diameter went up about a meter compared to the old SBWR design, and the vessel height is, I think, a meter, a couple of meters higher. CHAIRMAN WALLIS: It's a very interesting vessel because there's no way to open it. MR. RAO: Runs forever. No. This is just a cartoon to show you the MEMBER POWERS: Maybe the people working in safeguards and security can come up with a way of opening it. MR. RAO: We wanted to improve the security of the design, right. Okay. The other couple of things to notice is like a standard boiling water reactor, there is a suppression system. This is what's called the drywell. This is the wetwell. This is the pool of water. It's the same size as the ABWR. It's similar 	4	generators to make them bigger. We added two more
 So the vessel diameter went up about a meter compared to the old SBWR design, and the vessel height is, I think, a meter, a couple of meters higher. CHAIRMAN WALLIS: It's a very interesting vessel because there's no way to open it. MR. RAO: Runs forever. No. This is just a cartoon to show you the MEMBER POWERS: Maybe the people working in safeguards and security can come up with a way of opening it. MR. RAO: We wanted to improve the security of the design, right. Okay. The other couple of things to notice is like a standard boiling water reactor, there is a suppression system. This is what's called the drywell. This is the wetwell. This is the pool of water. It's the same size as the ABWR. It's similar 	5	steam lines. Okay? That's pretty much all that we
 meter compared to the old SBWR design, and the vessel height is, I think, a meter, a couple of meters higher. CHAIRMAN WALLIS: It's a very interesting vessel because there's no way to open it. MR. RAO: Runs forever. No. This is just a cartoon to show you the MEMBER POWERS: Maybe the people working in safeguards and security can come up with a way of opening it. MR. RAO: We wanted to improve the security of the design, right. Okay. The other couple of things to notice is like a standard boiling water reactor, there is a suppression system. This is what's called the drywell. This is the wetwell. This is the pool of water. It's the same size as the ABWR. It's similar 	6	are doing to add more fuel also.
 height is, I think, a meter, a couple of meters higher. CHAIRMAN WALLIS: It's a very interesting vessel because there's no way to open it. MR. RAO: Runs forever. No. This is just a cartoon to show you the MEMBER POWERS: Maybe the people working in safeguards and security can come up with a way of opening it. MR. RAO: We wanted to improve the security of the design, right. Okay. The other couple of things to notice is like a standard boiling water reactor, there is a suppression system. This is what's called the drywell. This is the wetwell. This is the pool of water. It's the same size as the ABWR. It's similar 	7	So the vessel diameter went up about a
 higher. CHAIRMAN WALLIS: It's a very interesting vessel because there's no way to open it. MR. RAO: Runs forever. No. This is just a cartoon to show you the MEMBER POWERS: Maybe the people working in safeguards and security can come up with a way of opening it. MR. RAO: We wanted to improve the security of the design, right. Okay. The other couple of things to notice is like a standard boiling water reactor, there is a suppression system. This is what's called the drywell. This is the wetwell. This is the pool of water. It's the same size as the ABWR. It's similar 	8	meter compared to the old SBWR design, and the vessel
11CHAIRMAN WALLIS: It's a very interesting12vessel because there's no way to open it.13MR. RAO: Runs forever. No. This is just14a cartoon to show you the15MEMBER POWERS: Maybe the people working16in safeguards and security can come up with a way of17opening it.18MR. RAO: We wanted to improve the19security of the design, right.20Okay. The other couple of things to21notice is like a standard boiling water reactor, there22is a suppression system. This is what's called the23drywell. This is the wetwell. This is the pool of24water. It's the same size as the ABWR. It's similar	9	height is, I think, a meter, a couple of meters
 vessel because there's no way to open it. MR. RAO: Runs forever. No. This is just a cartoon to show you the MEMBER POWERS: Maybe the people working in safeguards and security can come up with a way of opening it. MR. RAO: We wanted to improve the security of the design, right. Okay. The other couple of things to notice is like a standard boiling water reactor, there is a suppression system. This is what's called the drywell. This is the wetwell. This is the pool of water. It's the same size as the ABWR. It's similar 	10	higher.
MR. RAO: Runs forever. No. This is just a cartoon to show you the MEMBER POWERS: Maybe the people working in safeguards and security can come up with a way of opening it. MR. RAO: We wanted to improve the security of the design, right. Okay. The other couple of things to notice is like a standard boiling water reactor, there is a suppression system. This is what's called the drywell. This is the wetwell. This is the pool of water. It's the same size as the ABWR. It's similar	11	CHAIRMAN WALLIS: It's a very interesting
14 a cartoon to show you the 15 MEMBER POWERS: Maybe the people working 16 in safeguards and security can come up with a way of 17 opening it. 18 MR. RAO: We wanted to improve the 19 security of the design, right. 20 Okay. The other couple of things to 21 notice is like a standard boiling water reactor, there 22 is a suppression system. This is what's called the 23 drywell. This is the wetwell. This is the pool of 24 water. It's the same size as the ABWR. It's similar	12	vessel because there's no way to open it.
MEMBER POWERS: Maybe the people working in safeguards and security can come up with a way of opening it. MR. RAO: We wanted to improve the security of the design, right. Okay. The other couple of things to notice is like a standard boiling water reactor, there is a suppression system. This is what's called the drywell. This is the wetwell. This is the pool of water. It's the same size as the ABWR. It's similar	13	MR. RAO: Runs forever. No. This is just
16 in safeguards and security can come up with a way of opening it. 18 MR. RAO: We wanted to improve the security of the design, right. 20 Okay. The other couple of things to 21 notice is like a standard boiling water reactor, there 22 is a suppression system. This is what's called the 23 drywell. This is the wetwell. This is the pool of 24 water. It's the same size as the ABWR. It's similar	14	a cartoon to show you the
<pre>17 opening it. 18 MR. RAO: We wanted to improve the 19 security of the design, right. 20 Okay. The other couple of things to 21 notice is like a standard boiling water reactor, there 22 is a suppression system. This is what's called the 23 drywell. This is the wetwell. This is the pool of 24 water. It's the same size as the ABWR. It's similar</pre>	15	MEMBER POWERS: Maybe the people working
18 MR. RAO: We wanted to improve the 19 security of the design, right. 20 Okay. The other couple of things to 21 notice is like a standard boiling water reactor, there 22 is a suppression system. This is what's called the 23 drywell. This is the wetwell. This is the pool of 24 water. It's the same size as the ABWR. It's similar	16	in safeguards and security can come up with a way of
19 security of the design, right. 20 Okay. The other couple of things to 21 notice is like a standard boiling water reactor, there 22 is a suppression system. This is what's called the 23 drywell. This is the wetwell. This is the pool of 24 water. It's the same size as the ABWR. It's similar	17	opening it.
Okay. The other couple of things to notice is like a standard boiling water reactor, there is a suppression system. This is what's called the drywell. This is the wetwell. This is the pool of water. It's the same size as the ABWR. It's similar	18	MR. RAO: We wanted to improve the
21 notice is like a standard boiling water reactor, there 22 is a suppression system. This is what's called the 23 drywell. This is the wetwell. This is the pool of 24 water. It's the same size as the ABWR. It's similar	19	security of the design, right.
is a suppression system. This is what's called the drywell. This is the wetwell. This is the pool of water. It's the same size as the ABWR. It's similar	20	Okay. The other couple of things to
23 drywell. This is the wetwell. This is the pool of 24 water. It's the same size as the ABWR. It's similar	21	notice is like a standard boiling water reactor, there
24 water. It's the same size as the ABWR. It's similar	22	is a suppression system. This is what's called the
	23	drywell. This is the wetwell. This is the pool of
25 to the ABWR in the sense that you've got the this	24	water. It's the same size as the ABWR. It's similar
	25	to the ABWR in the sense that you've got the this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	35
1	is the connection from the drywell to the wetwell.
2	These are the horizontal discharges, three sets of
3	what we call main vents (phonetic). You'll hear that
4	in the presentations as we go through.
5	So this is the wetwell airspace out here,
б	okay, and this part out here is where you find the
7	steamline piping, the safety relief valves, and some
8	of them have quenchers going into the suppression pool
9	just like standard boiling water reactors.
10	There are depressurization valves which
11	come off the steam lines, and some of them have
12	separate nozzles of their own. They do not have
13	quenchers. They open straight into the wetwell.
14	There isn't much other equipment shown out
15	here. Of the three pools of water, this is what has
16	replaced all of the safety systems, the water make-up
17	systems. It's a combination of the water in the
18	reactor vessel itself and about 1,000 cubic meters of
19	water make-up to provide slow injection into the
20	vessel following a loss of coolant accident.
21	As you'll see the responses, they'll show
22	you that you don't really need high make-up systems
23	for this.
24	CHAIRMAN WALLIS: What's that great
25	lattice work of red piping there?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1MR. RAO: That's all supports.2CHAIRMAN WALLIS: Oh, supports. That's3structure. That's not pipes.4MR. RAO: No, that's structures.5CHAIRMAN WALLIS: It's a jungle gym sort6of thing.7MR. RAO: It is jungle gym, but we've also8looked at it from maintenance point of view, and we've9moved each one of those valves. There isn't much10equipment in this building, except there are valves.11There are pipes and valves. That is all that is left12out there.13MEMBER KRESS: When you evaluate LOCAs for14this plant, do you have a drain line in the bottom?15MR. RAO: Yes.16MEMBER KRESS: And you have the control17rods. Are those part of the LOCA?18MR. RAO: Yes. We analyze the LOCA except19for one drain line also, yes.20MEMEER KRESS: Okay.21MR. RAO: Yes.22CHAIRMAN WALLIS: You can also break the23shutdown cooling system in the bottom.24MR. RAO: Pardon?25CHAIRMAN WALLIS: You can break the		36
3structure. That's not pipes.4MR. RAO: No, that's structures.5CHAIRMAN WALLIS: It's a jungle gym sort6of thing.7MR. RAO: It is jungle gym, but we've also8looked at it from maintenance point of view, and we've9moved each one of those valves. There isn't much10equipment in this building, except there are valves.11There are pipes and valves. That is all that is left12out there.13MEMBER KRESS: When you evaluate LOCAs for14this plant, do you have a drain line in the bottom?15MR. RAO: Yes.16MEMBER KRESS: And you have the control17rods. Are those part of the LOCA?18MEMBER KRESS: Okay.20MEMBER KRESS: Okay.21MR. RAO: Yes.22CHAIRMAN WALLIS: You can also break the23shutdown cooling system in the bottom.24MR. RAO: Pardon?	1	MR. RAO: That's all supports.
4 MR. RAO: No, that's structures. 5 CHAIRMAN WALLIS: It's a jungle gym sort 6 of thing. 7 MR. RAO: It is jungle gym, but we've also 8 looked at it from maintenance point of view, and we've 9 moved each one of those valves. There isn't much 10 equipment in this building, except there are valves. 11 There are pipes and valves. That is all that is left 12 out there. 13 MEMBER KRESS: When you evaluate LOCAs for 14 this plant, do you have a drain line in the bottom? 15 MR. RAO: Yes. 16 MEMBER KRESS: And you have the control 17 rods. Are those part of the LOCA? 18 MR. RAO: Yes. We analyze the LOCA except 19 for one drain line also, yes. 20 MEMBER KRESS: Okay. 21 MR. RAO: Yes. 22 CHAIRMAN WALLIS: You can also break the 23 shutdown cooling system in the bottom. 24 MR. RAO: Pardon?	2	CHAIRMAN WALLIS: Oh, supports. That's
5CHAIRMAN WALLIS: It's a jungle gym sort6of thing.7MR. RAO: It is jungle gym, but we've also8looked at it from maintenance point of view, and we've9moved each one of those valves. There isn't much10equipment in this building, except there are valves.11There are pipes and valves. That is all that is left12out there.13MEMBER KRESS: When you evaluate LOCAs for14this plant, do you have a drain line in the bottom?15MR. RAO: Yes.16MEMBER KRESS: And you have the control17rods. Are those part of the LOCA?18MR. RAO: Yes. We analyze the LOCA except19for one drain line also, yes.20MEMBER KRESS: Okay.21MR. RAO: Yes.22CHAIRMAN WALLIS: You can also break the23shutdown cooling system in the bottom.24MR. RAO: Pardon?	3	structure. That's not pipes.
6of thing.7MR. RAO: It is jungle gym, but we've also8looked at it from maintenance point of view, and we've9moved each one of those valves. There isn't much10equipment in this building, except there are valves.11There are pipes and valves. That is all that is left12out there.13MEMBER KRESS: When you evaluate LOCAs for14this plant, do you have a drain line in the bottom?15MR. RAO: Yes.16MEMBER KRESS: And you have the control17rods. Are those part of the LOCA?18MR. RAO: Yes. We analyze the LOCA except19for one drain line also, yes.20MEMBER KRESS: Okay.21MR. RAO: Yes.22CHAIRMAN WALLIS: You can also break the23shutdown cooling system in the bottom.24MR. RAO: Pardon?	4	MR. RAO: No, that's structures.
7MR. RAO: It is jungle gym, but we've also8looked at it from maintenance point of view, and we've9moved each one of those valves. There isn't much10equipment in this building, except there are valves.11There are pipes and valves. That is all that is left12out there.13MEMBER KRESS: When you evaluate LOCAs for14this plant, do you have a drain line in the bottom?15MR. RAO: Yes.16MEMBER KRESS: And you have the control17rods. Are those part of the LOCA?18MR. RAO: Yes. We analyze the LOCA except19for one drain line also, yes.20MEMBER KRESS: Okay.21MR. RAO: Yes.22CHAIRMAN WALLIS: You can also break the23shutdown cooling system in the bottom.24MR. RAO: Pardon?	5	CHAIRMAN WALLIS: It's a jungle gym sort
 8 looked at it from maintenance point of view, and we've 9 moved each one of those valves. There isn't much 10 equipment in this building, except there are valves. 11 There are pipes and valves. That is all that is left 12 out there. 13 MEMBER KRESS: When you evaluate LOCAs for 14 this plant, do you have a drain line in the bottom? 15 MR. RAO: Yes. 16 MEMBER KRESS: And you have the control 17 rods. Are those part of the LOCA? 18 MR. RAO: Yes. We analyze the LOCA except 19 for one drain line also, yes. 20 MEMBER KRESS: Okay. 21 MR. RAO: Yes. 22 CHAIRMAN WALLIS: You can also break the 23 shutdown cooling system in the bottom. 24 MR. RAO: Pardon? 	6	of thing.
 moved each one of those valves. There isn't much equipment in this building, except there are valves. There are pipes and valves. That is all that is left out there. MEMBER KRESS: When you evaluate LOCAs for this plant, do you have a drain line in the bottom? MR. RAO: Yes. MEMBER KRESS: And you have the control rods. Are those part of the LOCA? MR. RAO: Yes. We analyze the LOCA except for one drain line also, yes. MEMBER KRESS: Okay. MR. RAO: Yes. CHAIRMAN WALLIS: You can also break the shutdown cooling system in the bottom. MR. RAO: Pardon? 	7	MR. RAO: It is jungle gym, but we've also
 equipment in this building, except there are valves. There are pipes and valves. That is all that is left out there. MEMBER KRESS: When you evaluate LOCAs for this plant, do you have a drain line in the bottom? MR. RAO: Yes. MEMBER KRESS: And you have the control rods. Are those part of the LOCA? MR. RAO: Yes. We analyze the LOCA except for one drain line also, yes. MEMBER KRESS: Okay. MR. RAO: Yes. CHAIRMAN WALLIS: You can also break the shutdown cooling system in the bottom. MR. RAO: Pardon? 	8	looked at it from maintenance point of view, and we've
11There are pipes and valves. That is all that is left12out there.13MEMBER KRESS: When you evaluate LOCAs for14this plant, do you have a drain line in the bottom?15MR. RAO: Yes.16MEMBER KRESS: And you have the control17rods. Are those part of the LOCA?18MR. RAO: Yes. We analyze the LOCA except19for one drain line also, yes.20MEMBER KRESS: Okay.21MR. RAO: Yes.22CHAIRMAN WALLIS: You can also break the23shutdown cooling system in the bottom.24MR. RAO: Pardon?	9	moved each one of those valves. There isn't much
 out there. MEMBER KRESS: When you evaluate LOCAs for this plant, do you have a drain line in the bottom? MR. RAO: Yes. MEMBER KRESS: And you have the control rods. Are those part of the LOCA? MR. RAO: Yes. We analyze the LOCA except for one drain line also, yes. MR. RAO: Yes. MR. RAO: Yes. MR. RAO: Yes. CHAIRMAN WALLIS: You can also break the shutdown cooling system in the bottom. MR. RAO: Pardon? 	10	equipment in this building, except there are valves.
 MEMBER KRESS: When you evaluate LOCAs for this plant, do you have a drain line in the bottom? MR. RAO: Yes. MEMBER KRESS: And you have the control rods. Are those part of the LOCA? MR. RAO: Yes. We analyze the LOCA except for one drain line also, yes. MEMBER KRESS: Okay. MR. RAO: Yes. MR. RAO: Yes. CHAIRMAN WALLIS: You can also break the shutdown cooling system in the bottom. MR. RAO: Pardon? 	11	There are pipes and valves. That is all that is left
 14 this plant, do you have a drain line in the bottom? 15 MR. RAO: Yes. 16 MEMBER KRESS: And you have the control 17 rods. Are those part of the LOCA? 18 MR. RAO: Yes. We analyze the LOCA except 19 for one drain line also, yes. 20 MEMBER KRESS: Okay. 21 MR. RAO: Yes. 22 CHAIRMAN WALLIS: You can also break the 23 shutdown cooling system in the bottom. 24 MR. RAO: Pardon? 	12	out there.
 MR. RAO: Yes. MEMBER KRESS: And you have the control rods. Are those part of the LOCA? MR. RAO: Yes. We analyze the LOCA except for one drain line also, yes. MEMBER KRESS: Okay. MR. RAO: Yes. CHAIRMAN WALLIS: You can also break the shutdown cooling system in the bottom. MR. RAO: Pardon? 	13	MEMBER KRESS: When you evaluate LOCAs for
 MEMBER KRESS: And you have the control rods. Are those part of the LOCA? MR. RAO: Yes. We analyze the LOCA except for one drain line also, yes. MEMBER KRESS: Okay. MR. RAO: Yes. CHAIRMAN WALLIS: You can also break the shutdown cooling system in the bottom. MR. RAO: Pardon? 	14	this plant, do you have a drain line in the bottom?
 17 rods. Are those part of the LOCA? 18 MR. RAO: Yes. We analyze the LOCA except 19 for one drain line also, yes. 20 MEMBER KRESS: Okay. 21 MR. RAO: Yes. 22 CHAIRMAN WALLIS: You can also break the 23 shutdown cooling system in the bottom. 24 MR. RAO: Pardon? 	15	MR. RAO: Yes.
 MR. RAO: Yes. We analyze the LOCA except for one drain line also, yes. MEMBER KRESS: Okay. MR. RAO: Yes. CHAIRMAN WALLIS: You can also break the shutdown cooling system in the bottom. MR. RAO: Pardon? 	16	MEMBER KRESS: And you have the control
<pre>19 for one drain line also, yes. 20 MEMBER KRESS: Okay. 21 MR. RAO: Yes. 22 CHAIRMAN WALLIS: You can also break the 23 shutdown cooling system in the bottom. 24 MR. RAO: Pardon?</pre>	17	rods. Are those part of the LOCA?
20 MEMBER KRESS: Okay. 21 MR. RAO: Yes. 22 CHAIRMAN WALLIS: You can also break the 23 shutdown cooling system in the bottom. 24 MR. RAO: Pardon?	18	MR. RAO: Yes. We analyze the LOCA except
21 MR. RAO: Yes. 22 CHAIRMAN WALLIS: You can also break the 23 shutdown cooling system in the bottom. 24 MR. RAO: Pardon?	19	for one drain line also, yes.
 22 CHAIRMAN WALLIS: You can also break the 23 shutdown cooling system in the bottom. 24 MR. RAO: Pardon? 	20	MEMBER KRESS: Okay.
23 shutdown cooling system in the bottom. 24 MR. RAO: Pardon?	21	MR. RAO: Yes.
24 MR. RAO: Pardon?	22	CHAIRMAN WALLIS: You can also break the
	23	shutdown cooling system in the bottom.
25 CHAIRMAN WALLIS: You can break the	24	MR. RAO: Pardon?
	25	CHAIRMAN WALLIS: You can break the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	37
1	shutdown cooling system.
2	MR. RAO: Yeah. There are actually not
3	one drain lines. There are four drain lines in the
4	bottom, but they are two inch nozzles, only two inch
5	nozzles. They're very small, and we do analyze that.
6	Yes?
7	MEMBER POWERS: What has to happen to keep
8	from depressurizing this vessel?
9	MR. RAO: As you'll see the transient
10	response, you'll see that we don't open the relief
11	valves for falling reactor isolation. So it's a very
12	forgiving machine. Because it has got a bigger
13	vessel, okay, the initial transient response for the
14	first 30 seconds without any system operating,
15	basically you don't open any relief valves and then
16	the isolation condensers come in and take care of the
17	decay heat.
18	MEMBER POWERS: That's not the question I
19	asked.
20	MR. RAO: Okay.
21	MEMBER POWERS: The question I asked is
22	what has to happen to make it impossible to
23	depressurize this vessel.
24	MR. RAO: What has to happen to make it
25	impossible to depressurize?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	MEMBER POWERS: Un-huh. Hypothesize a
2	station blackout as a going in thing. Now, what can
3	keep me from being able to depressurize?
4	MR. RAO: If you have just a station
5	blackout and no pipe break
6	MEMBER POWERS: Naw. Don't assume that.
7	MR. RAO: I'm just trying to understand
8	what your assumptions are. If you have a pipe break,
9	you are going to depressurize. But if you just have
10	a station blackout, okay, and that has been the
11	dominant sequence for the operating plants, is a
12	station blackout.
13	In that case, when you just have a station
14	blackout, you don't depressurize the plant, and I'll
15	show you what the response is.
16	If you have a station blackout combined
17	with a break, then you will depressurize the plant.
18	MEMBER POWERS: I'm still not getting an
19	answer to my question.
20	MR. RAO: I must be missing something.
21	MEMBER POWERS: I'm asking you what keeps
22	your from depressurizing this plant. What has to
23	happen so that you cannot depressurize?
24	CHAIRMAN WALLIS: Under what conditions?
25	MR. RAO: Under what conditions? As long

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	as there's no pipe break I'm still are you
2	saying what do we have to do to the design to prevent
3	it from depressurizing during a pipe break?
4	Someone can help me in the back.
5	CHAIRMAN WALLIS: How can you get into a
6	situation where you're unable to depressurize.
7	MR. RAO: Where you are not able to
8	depressurize?
9	MEMBER POWERS: Even with a pipe break.
10	MR. RAO: Even with a pipe break. Well,
11	if you get failure of both the areas, there are two
12	area systems. We've added the wilsadee (phonetic) and
13	the depressurization system. We've got the standard
14	safety relief valves, and we've added another system
15	called the DPVs, the depressurization valves.
16	So if both of those fail, then you fail to
17	depressurize.
18	MEMBER POWERS: Okay. What causes both of
19	those to fail?
20	MR. RAO: What would cause both of those
21	to fail? Anyone in the back ready to answer that?
22	CHESTER: All of the valves, they use
23	different
24	PARTICIPANT: Could you give us
25	CHESTER: I'm Chester (unintelligible).

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	The ADS valve and the DPV valve, they have
2	diversified single systems that are very hard to have
3	fail all the signals. You're talking about multiple
4	failure of all the signals.
5	MEMBER POWERS: I'm not really interested
б	I mean, I am very interested in what makes it
7	difficult to depressurize or what makes it easy to
8	depressurize. What I very much want to understand is
9	what combination of things make it so that you cannot
10	activate these ADS systems.
11	Now, obviously if I get no signal to do
12	so, that will do it.
13	MR. RAO: Yeah, yeah.
14	MEMBER POWERS: So the question is: what
15	makes it so you can't get a signal to them?
16	MR. RAO: Well, you've got to, I guess,
17	have a common cause failure. We've got four
18	divisionals in the control and instrumentation. So
19	you have to have a common cause failure in control and
20	instrumentation.
21	CHAIRMAN WALLIS: But if you had a fire,
22	say, which incapacitated all of the system?
23	MR. RAO: Well, that's where you have the
24	four division system. So you do the separation to
25	handle you handle that. Okay? It is an anergic

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	containment. So there's not going to be a fire inside
2	the containment. The external, you handle that by
3	division and standard separation.
4	So if there is a common cause failure, you
5	know, an undefined common cause failure of the
6	instrumentation, that will give you a failure to
7	depressurize.
8	MEMBER POWERS: Is there anything else
9	that will give you a failure to depressurize?
10	If you have no electrical power
11	whatsoever?
12	MR. RAO: We rely on batteries for that,
13	but even if you lose the batteries in addition to the
14	station blackout, then you'd lose instrumentation.
15	MEMBER POWERS: And that will cause a
16	failure of the ADS?
17	MR. RAO: Yes.
18	MEMBER POWERS: So a total station
19	blackout is still
20	MR. RAO: Total loss of batteries, failure
21	of all the signals.
22	MEMBER POWERS: That will do it.
23	MR. RAO: Yeah.
24	MEMBER POWERS: So there's still a TC
25	sequence here someplace.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	42
1	MR. RAO: Yeah.
2	MEMBER POWERS: Okay.
3	CHAIRMAN WALLIS: I'm a bit worried about
4	failure to complete this presentation on time.
5	(Laughter.)
6	CHAIRMAN WALLIS: Okay. The
7	DR. BANERJEE: Before you go on, what is
8	different between this and the SBWR? Is there
9	anything in the wetwell/drywell connection design?
10	MR. RAO: Well, we just got two more steam
11	lines. We got a slightly bigger vessel. This, the
12	top part, the GDCS, these are the pools of water.
13	Those are all the same. This is all the same. The
14	only difference, okay, that's different, and it's hard
15	to show that kind of detail in this cartoon, is in the
16	SBWR. These pools were open at the top out here. The
17	roof of the drywell is out here. Okay? The top part
18	was open to the drywell.
19	In the ESBWR this wall goes up to the roof
20	of the drywell, and this pool of water is now part of
21	the wetwell.
22	So all that we did was we extended this
23	wall up to the roof. It was about a foot opening, I
24	think, in the SBWR. So we've extended it up to the
25	top and put a connection between this airspace and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	this, the wetwell airspace.
2	MR. SCHROCK: Is that permanently open or
3	
4	MR. RAO: Yeah, all those are permanently
5	open. No valves.
6	So otherwise it looks just like the ESBWR.
7	MR. SCHROCK: Why did you do that?
8	MR. RAO: You'll see that basically what
9	it does is remember the containment pressure is
10	dependent on the wetwell volume, airspace volume.
11	Okay? So this was, again, taking advantage of the
12	passive system.
13	When this water drains out, okay, then it
14	opens up more airspace. So it loads the containment
15	pressure. Okay? So there's an advantage.
16	CHAIRMAN WALLIS: Well, there's a
17	conservation of airspace. If you lose it in one place
18	you gain it in another.
19	MR. RAO: Right. No, but you want more
20	airspace in the wetwell. That keeps your containment
21	pressure lower. So we actually did lower the
22	containment design pressure compared to the SBWR.
23	That doesn't show on a chart like this. We came down
24	ten psi. That's, again, an economic benefit, but we
25	kept essentially the same margins by making that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	change.
2	MEMBER POWERS: Can you give me some idea
3	of the what the magnitude of the economic benefit is
4	to get ten psi reduction in your design pressure?
5	MR. RAO: No, I don't have a number for
6	that, and we never did calculate one. As a matter of
7	fact, again, one of the reasons for doing that was it
8	brought us down to the same level as the ABWR. Okay?
9	So there was a lot of experience with that, you know,
10	a lot of the testing on serial accident failures.
11	So there was that soft benefit of making
12	the same as ABWR.
13	CHAIRMAN WALLIS: I'm not sure you gained
14	because you actually put water in the drywell. Your
15	total airspace stays the same inside containment if
16	you include the whole works.
17	MR. RAO: There are two issues here. One
18	is the volume of the building, and the other is the
19	design pressure of the building. Okay? So Dana's
20	question is related to the design pressure. It does
21	end up in giving you less rebar requirements. We've
22	actually
23	MEMBER POWERS: That's the cheapest deal
24	in America is rebar.
25	MR. RAO: No, rebar itself is cheap, but

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 putting it together, constructing it. We have 2 actually gone down to even lower than the ABWR and our 3 structural designers told us it wasn't any additional 4 benefit. So we came back to --MEMBER POWERS: I'll bet you run out of 5 benefit really quickly on rebar and concrete. 6 7 MEMBER RANSOM: Are vacuum vapor valves still included in this design? 8 9 Yes, there are three vacuum MR. RAO: 10 breakers between the -- they're on the floor out here between the drywell and the diaphragm floor. 11 12 MEMBER POWERS: Remind me again what your containment volume is. 13 14 MR. RAO: Sorry, I don't. Does anyone 15 have the number off the top of their head? PARTICIPANT: The drywell is about 6,000 16 17 kilometers. The wetwell is about 4,500. That's the airspace. 18 MR. RAO: 19 PARTICIPANT: The airspace. 20 CHAIRMAN WALLIS: You should really count 21 the whole thing. What's the whole containment? 22 MR. RAO: The whole containment volume, 23 you don't have the answer? 24 PARTICIPANT: I don't have it. I don't 25 know.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

45

	46
1	CHAIRMAN WALLIS: Well, you have about
2	five minutes more now in presentation time.
3	MR. RAO: Okay.
4	CHAIRMAN WALLIS: So you're about a
5	quarter of the way through. Maybe we should plan on
6	you taking up all the time until the break. Is that
7	more realistic?
8	MR. RAO: No. When we sort of planned it,
9	we sort of anticipated that I'd run over a little, but
10	not
11	CHAIRMAN WALLIS: A little bit.
12	MR. RAO: not all the way to lunchtime.
13	You want to hear the other things.
14	CHAIRMAN WALLIS: Lunchtime? No, no, no,
15	no, no.
16	MR. RAO: You want to hear from some of my
17	colleagues. You get all of your answers from
18	Shiralkar and Gamble and Cheung there.
19	Okay. This shows all of the safety
20	systems put together, including all of the valves, and
21	the thing that's let me go through all of this.
22	This is the reactor vessel. You can see the core. The
23	core is lower down in the vessel in this plant than in
24	the standard BWR. There's a shorter core. So you
25	need less space at the bottom, lower plenum for the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	control rod
2	CHAIRMAN WALLIS: That's really to scale?
3	MR. RAO: Pardon?
4	CHAIRMAN WALLIS: Is that really to scale,
5	that tiny core?
6	MR. RAO: No. This is just to show how
7	the
8	CHAIRMAN WALLIS: You should draw these
9	things to scale so it doesn't give some illusion.
10	MR. RAO: This was more to show you how
11	the lines connect up. Okay. We will try to fix that
12	in the next one. This is the isolation condenser out
13	here. This operates like some of the isolation
14	condensers on operating plants.
15	When you get to reactor isolation, these
16	valves are normally open. The valve is out here. The
17	condensate drain valves open, a signal to open. Steam
18	condensers in there and condensate is returned to the
19	vessel. So you've got a closed loop following reactor
20	isolation. You don't open any relief valves. You
21	don't lose any water to the containment. You don't
22	heat the containment. You don't need any of the
23	reactor coolant isolation condenser type of systems to
24	operate or you don't need any cooling system to
25	operate.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	The energy is removed to the spool of
2	water which is sitting outside the containment, and
3	the energy is release to the atmosphere.
4	DR. BANERJEE: It's still downflow
5	condensation.
6	MR. RAO: Yes.
7	DR. BANERJEE: And somebody will tell us
8	about the non-condensables.
9	MR. RAO: This is reactor isolation.
10	There should be no non-condensables.
11	CHAIRMAN WALLIS: There's a vent line for
12	that.
13	DR. BANERJEE: Oh, okay.
14	MR. RAO: Okay. But if you operate it for
15	72 hours, okay, this is designed to operate for 72
16	hours. Okay? It can. Then you'll get some
17	radialysis (phonetic) which will produce hydrogen, and
18	then you'll get non-condensables.
19	In that case, there is a vent line out
20	here. It will open and release the non-condensables.
21	CHAIRMAN WALLIS: And all of this has been
22	tested at full scale?
23	MR. RAO: Yes, yes.
24	CHAIRMAN WALLIS: In Japan or somewhere?
25	MR. RAO: In Italy.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

49 1 CHAIRMAN WALLIS: Italy. That's the Italy 2 one. MR. RAO: Okay. So this is the isolation 3 4 condenser. This is considering they let the plant sit 5 there for 72 hours, which it probably likely wouldn't. The gravity driven cooling system pools are shown out 6 7 here. This is that pipe that I mentioned. This is 8 the change from the SBWR where we went all the way to 9 -- came to this wall up to the top, and we added this 10 connection between that air space and the wetwell 11 airspace. 12 What it does is it makes this airspace available long term when that pool drains. 13 So it 14 lowers the long-term containment pressure. 15 MEMBER KRESS: How big is that pipe? How big is that pipe? 16 MR. RAO: 17 CHESTER: Half a meter. 18 MEMBER KRESS: It's a big pipe. 19 MR. RAO: Yes. 20 You have to use the MEMBER SIEBER: 21 microphone. 22 MR. RAO: You have to stand near the mic. 23 CHESTER: It's a big pipe. 24 MEMBER KRESS: Yeah, okay. There are three pipes for each 25 CHESTER:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	50
1	of the pools.
2	MEMBER KRESS: Okay. Because the
3	effectiveness of that as an airspace depends on the
4	size.
5	MR. RAO: Yeah.
6	CHAIRMAN WALLIS: You mean the pressure in
7	that wetwell is somehow different from the overall
8	pressure in the building?
9	Because if you look at the entire
10	containment, the total amount of air in there is
11	constant. You can tree it off between the drywell and
12	the wetwell. You haven't really gained airspace.
13	MR. RAO: You have. What controls the
14	containment pressure, okay, is you take all the non-
15	condensables from the drywell and shove them into the
16	wetwell.
17	CHAIRMAN WALLIS: And you pressurize the
18	wetwell referentially to the
19	MR. RAO: No, that's how the suppression
20	system works, is this is where your source of energy
21	is. This is where the brakes and the steams will come
22	out. So it will push all of the non-condensables into
23	this airspace.
1	
24	So the bigger this airspace and the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 pressure. Okay? So you want to minimize that 2 airspace and maximize this airspace. 3 And so by shifting it between the two you 4 will maximize the wetwell 5 CHAIRMAN WALLIS: You mean your wetwell 6 gets higher pressure than the drywell? 7 MR. RAO: Yeah. 8 CHAIRMAN WALLIS: Then you should vent it 9 back into the drywell. 10 MR. RAO: No, because you've got to 11 remember the reason it gets higher is because 12 everything is being pushed through two flow paths. 13 CHAIRMAN WALLIS: How does it get pushed 14 if the pressure is higher in the wetwell than in the 15 drywell? 16 MR. RAO: You guys want to go through 17 that? Okay. 18 CHAIRMAN WALLIS: Well, I don't know. 19 Maybe we'll wait and hear about that. 20 CHAIRMAN WALLIS: Okay. 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is		51
3 And so by shifting it between the two you 4 will maximize the wetwell 5 CHAIRMAN WALLIS: You mean your wetwell 6 gets higher pressure than the drywell? 7 MR. RAO: Yeah. 8 CHAIRMAN WALLIS: Then you should vent it 9 back into the drywell. 10 MR. RAO: No, because you've got to 11 remember the reason it gets higher is because 12 everything is being pushed through two flow paths. 13 CHAIRMAN WALLIS: How does it get pushed 14 if the pressure is higher in the wetwell than in the 15 drywell? 16 MR. RAO: You guys want to go through 17 that? Okay. 18 CHAIRMAN WALLIS: Well, I don't know. 19 Maybe we'll wait and hear about that. 20 MR. RAO: We'll wait while we get the 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is	1	pressure. Okay? So you want to minimize that
 will maximize the wetwell CHAIRMAN WALLIS: You mean your wetwell gets higher pressure than the drywell? MR. RAO: Yeah. CHAIRMAN WALLIS: Then you should vent it back into the drywell. MR. RAO: No, because you've got to remember the reason it gets higher is because everything is being pushed through two flow paths. CHAIRMAN WALLIS: How does it get pushed if the pressure is higher in the wetwell than in the drywell? MR. RAO: You guys want to go through that? Okay. MAR. RAO: We'll wait and hear about that. MR. RAO: We'll wait while we get the presentations. Okay? CHAIRMAN WALLIS: Okay. MR. RAO: The containment pressure is 	2	airspace and maximize this airspace.
5CHAIRMAN WALLIS: You mean your wetwell6gets higher pressure than the drywell?7MR. RAO: Yeah.8CHAIRMAN WALLIS: Then you should vent it9back into the drywell.10MR. RAO: No, because you've got to11remember the reason it gets higher is because12everything is being pushed through two flow paths.13CHAIRMAN WALLIS: How does it get pushed14if the pressure is higher in the wetwell than in the15drywell?16MR. RAO: You guys want to go through17that? Okay.18CHAIRMAN WALLIS: Well, I don't know.19Mgybe we'll wait and hear about that.20MR. RAO: We'll wait while we get the21presentations. Okay?22CHAIRMAN WALLIS: Okay.23MR. RAO: The containment pressure is	3	And so by shifting it between the two you
6 gets higher pressure than the drywell? 7 MR. RAO: Yeah. 8 CHAIRMAN WALLIS: Then you should vent it 9 back into the drywell. 10 MR. RAO: No, because you've got to 11 remember the reason it gets higher is because 12 everything is being pushed through two flow paths. 13 CHAIRMAN WALLIS: How does it get pushed 14 if the pressure is higher in the wetwell than in the 15 drywell? 16 MR. RAO: You guys want to go through 17 that? Okay. 18 CHAIRMAN WALLIS: Well, I don't know. 19 Maybe we'll wait and hear about that. 20 MR. RAO: We'll wait while we get the 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is	4	will maximize the wetwell
7 MR. RAO: Yeah. 8 CHAIRMAN WALLIS: Then you should vent it 9 back into the drywell. 10 MR. RAO: No, because you've got to 11 remember the reason it gets higher is because 12 everything is being pushed through two flow paths. 13 CHAIRMAN WALLIS: How does it get pushed 14 if the pressure is higher in the wetwell than in the 15 drywell? 16 MR. RAO: You guys want to go through 17 that? Okay. 18 CHAIRMAN WALLIS: Well, I don't know. 19 MR. RAO: We'll wait while we get the 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is	5	CHAIRMAN WALLIS: You mean your wetwell
 6 CHAIRMAN WALLIS: Then you should vent it 9 back into the drywell. 10 MR. RAO: No, because you've got to 11 remember the reason it gets higher is because 12 everything is being pushed through two flow paths. 13 CHAIRMAN WALLIS: How does it get pushed 14 if the pressure is higher in the wetwell than in the 15 drywell? 16 MR. RAO: You guys want to go through 17 that? Okay. 18 CHAIRMAN WALLIS: Well, I don't know. 19 MR. RAO: We'll wait and hear about that. 20 MR. RAO: We'll wait while we get the 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is 	6	gets higher pressure than the drywell?
 9 back into the drywell. 10 MR. RAO: No, because you've got to 11 remember the reason it gets higher is because 12 everything is being pushed through two flow paths. 13 CHAIRMAN WALLIS: How does it get pushed 14 if the pressure is higher in the wetwell than in the 15 drywell? 16 MR. RAO: You guys want to go through 17 that? Okay. 18 CHAIRMAN WALLIS: Well, I don't know. 19 Maybe we'll wait and hear about that. 20 MR. RAO: We'll wait while we get the 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is 	7	MR. RAO: Yeah.
10MR. RAO: No, because you've got to11remember the reason it gets higher is because12everything is being pushed through two flow paths.13CHAIRMAN WALLIS: How does it get pushed14if the pressure is higher in the wetwell than in the15drywell?16MR. RAO: You guys want to go through17that? Okay.18CHAIRMAN WALLIS: Well, I don't know.19Maybe we'll wait and hear about that.20MR. RAO: We'll wait while we get the21presentations. Okay?22CHAIRMAN WALLIS: Okay.23MR. RAO: The containment pressure is	8	CHAIRMAN WALLIS: Then you should vent it
11remember the reason it gets higher is because12everything is being pushed through two flow paths.13CHAIRMAN WALLIS: How does it get pushed14if the pressure is higher in the wetwell than in the15drywell?16MR. RAO: You guys want to go through17that? Okay.18CHAIRMAN WALLIS: Well, I don't know.19Maybe we'll wait and hear about that.20MR. RAO: We'll wait while we get the21presentations. Okay?22CHAIRMAN WALLIS: Okay.23MR. RAO: The containment pressure is	9	back into the drywell.
 everything is being pushed through two flow paths. CHAIRMAN WALLIS: How does it get pushed if the pressure is higher in the wetwell than in the drywell? MR. RAO: You guys want to go through that? Okay. CHAIRMAN WALLIS: Well, I don't know. Maybe we'll wait and hear about that. MR. RAO: We'll wait while we get the presentations. Okay? CHAIRMAN WALLIS: Okay. MR. RAO: The containment pressure is 	10	MR. RAO: No, because you've got to
 13 CHAIRMAN WALLIS: How does it get pushed 14 if the pressure is higher in the wetwell than in the 15 drywell? 16 MR. RAO: You guys want to go through 17 that? Okay. 18 CHAIRMAN WALLIS: Well, I don't know. 19 Maybe we'll wait and hear about that. 20 MR. RAO: We'll wait while we get the 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is 	11	remember the reason it gets higher is because
<pre>14 if the pressure is higher in the wetwell than in the 15 drywell? 16 MR. RAO: You guys want to go through 17 that? Okay. 18 CHAIRMAN WALLIS: Well, I don't know. 19 Maybe we'll wait and hear about that. 20 MR. RAO: We'll wait while we get the 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is</pre>	12	everything is being pushed through two flow paths.
<pre>15 drywell? 16 MR. RAO: You guys want to go through 17 that? Okay. 18 CHAIRMAN WALLIS: Well, I don't know. 19 Maybe we'll wait and hear about that. 20 MR. RAO: We'll wait while we get the 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is</pre>	13	CHAIRMAN WALLIS: How does it get pushed
 MR. RAO: You guys want to go through that? Okay. CHAIRMAN WALLIS: Well, I don't know. Maybe we'll wait and hear about that. MR. RAO: We'll wait while we get the presentations. Okay? CHAIRMAN WALLIS: Okay. MR. RAO: The containment pressure is 	14	if the pressure is higher in the wetwell than in the
<pre>17 that? Okay. 18 CHAIRMAN WALLIS: Well, I don't know. 19 Maybe we'll wait and hear about that. 20 MR. RAO: We'll wait while we get the 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is</pre>	15	drywell?
 18 CHAIRMAN WALLIS: Well, I don't know. 19 Maybe we'll wait and hear about that. 20 MR. RAO: We'll wait while we get the 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is 	16	MR. RAO: You guys want to go through
19 Maybe we'll wait and hear about that. 20 MR. RAO: We'll wait while we get the 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is	17	that? Okay.
20 MR. RAO: We'll wait while we get the 21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is	18	CHAIRMAN WALLIS: Well, I don't know.
<pre>21 presentations. Okay? 22 CHAIRMAN WALLIS: Okay. 23 MR. RAO: The containment pressure is</pre>	19	Maybe we'll wait and hear about that.
 CHAIRMAN WALLIS: Okay. MR. RAO: The containment pressure is 	20	MR. RAO: We'll wait while we get the
23 MR. RAO: The containment pressure is	21	presentations. Okay?
	22	CHAIRMAN WALLIS: Okay.
24 determined by the wetwell pressure Okay	23	MR. RAO: The containment pressure is
21 decermined by the wetwerr pressure. Oray.	24	determined by the wetwell pressure. Okay.
25 CHAIRMAN WALLIS: Well, it can't be.	25	CHAIRMAN WALLIS: Well, it can't be.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	We'll get back to that because the whole thing is one
2	unit, isn't it? And the containment has to contain
3	both the drywell and the wetwell.
4	MR. RAO: Yes.
5	CHAIRMAN WALLIS: So let's get back to
6	that when the time comes.
7	MR. RAO: You'll hear detailed
8	presentations on that, okay, shortly.
9	This is the GDCS pool. This is the
10	suppression pool. These are the safety relief valves
11	that have quenchers blowing down into the suppression
12	pool.
13	This is the depressurization valve, the
14	alternate depressurization system which opens out into
15	the drywell.
16	CHAIRMAN WALLIS: That's called the Dana
17	Power's valve. That's DPV because that's the one he's
18	concerned about.
19	MR. RAO: We added the diversity because
20	we knew Dana was going to ask that question to make it
21	more reliable.
22	The ADS system in the BWR generally is
23	deemed to be fairly reliable, but we've gone to a
24	diverse system also. It's a screw actuated (phonetic)
25	valve. So it has different motor flows to open it.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	What's shown out here is the passive decay
2	heat removal system, which is called the passive
3	containment cooling system. No valves for it to
4	operate. Okay?
5	CHAIRMAN WALLIS: I presume an explosive
6	valve requires very little electrical energy to set it
7	off, whereas actually operating a large motor operated
8	valve would require a lot more power.
9	MR. RAO: A lot more energy, yes.
10	So we do have batteries to as
11	CHAIRMAN WALLIS: So you could take your
12	flashlight and set off the explosive valve.
13	MR. RAO: Yes. That's why we believe it's
14	a very reliable system.
15	The passive containment cooling system
16	MEMBER POWERS: What is the reliability of
17	screw actuated valves?
18	MR. RAO: Pardon?
19	MEMBER POWERS: What is the historical
20	reliability of screw actuative valves?
21	MR. RAO: Don't have the number on that,
22	but we can get back.
23	MEMBER POWERS: I think we found it
24	surprisingly unreliable.
25	MR. RAO: We'll give you a number.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	54
1	Do you have the number, Bob? No. Okay.
2	The passive containment cooling condenser,
3	basically steam goes up through here, and just like
4	the isolation condenser, steam gets condensed there,
5	and condensate is returned back to the vessel.
6	This is one other change relative to the
7	SBWR. We've added this system. In the SBWR this
8	condensate would return to the gravity driven cooling
9	system pool, but now since the GDCS pool is part of
10	the wetwell, we had to bring the drain back into the
11	drywell.
12	So initially in some of our earlier
13	designs we actually didn't even have this drain tank
14	and it would just flow back into the bottom of the
15	drywell.
16	We added this drain tank because we felt
17	that it would be better to have it drain back into the
18	vessel. If this valve does not open, the
19	functionality of the ECCS is not impacted.
20	Functionality of the system is not impacted. Water
21	does drain back into the vessel I mean into the
22	lower drywell, and you still have a closed loop.
23	So the steam is condensed out there. The
24	energy is removed to the PCCS pool, and steam if
25	vented out of the containment. That is the ultimate

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	heat sink out there.
2	DR. BANERJEE: So if that valve doesn't
3	open, then you get water going in. Where does it go?
4	MR. RAO: It goes into the lower drywell.
5	Okay? Then you have a closed loop. The closed loop
6	is through here. These are what are called spillover
7	holes here. It flows into the suppression pool.
8	There's a line connecting the suppression pool back to
9	the vessel, the screw valve. So you have a closed
10	loop.
11	So we have looked at all of the different
12	possibilities, not enough time to go into each one of
13	the combinations out here, but you have a closed loop
14	and the water can go back through the vessel.
15	CHAIRMAN WALLIS: So most of the water in
16	this containment building is available to cool the
17	core.
18	MR. RAO: Yes, to cool the core. You
19	know, we've got an expression pool also connected to
20	the vessel. We've got GDCS pools connected to the
21	vessel.
22	One thing that's different than standard
23	BWRs is the suppression pool is raised to the core.
24	Most suppression pools are on the base mat out here.
25	This one is higher than the core. So you can get the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	56
1	flow from the suppression pool into the vessel.
2	CHAIRMAN WALLIS: Even when the core is
3	drawn properly, it's still higher?
4	MR. RAO: Yes, still lands it on top.
5	DR. BANERJEE: And the PCC vent line is at
6	the bottom there, right?
7	MR. RAO: Yes, yes.
8	DR. BANERJEE: Is that assuming that non-
9	condensables get driven into that?
10	MR. RAO: No. Now, non-condensables are
11	important in the operation of the PCC because you've
12	got non-condensables in the drywell. Okay? So the
13	condensation, the steam flow is similar to the
14	isolation condenser, but it's a condensation driven
15	system.
16	Okay, and that brings in non-condensables
17	with it. The major innovation in this design is
18	removing the non-condensables, and the non-
19	condensables are driven out from there by the pressure
20	difference between the drywell and the wetwell. The
21	drywell is at a higher pressure than the wetwell. I
22	think I said it the other way around.
23	Okay. The drywell is at a higher pressure
24	than the wetwell, and that drives the non-condensables
25	out through that non-condensable vent line.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	57
1	There will be several more presentations
2	that will cover all of that. That's been tested.
3	That's how it works. I'm just giving you an overview.
4	And what determines the ultimate
5	containment pressure is the modern non-condensables.
6	You put them in the wetwell airspace. That is the
7	major component of the containment design pressure
8	following the LOCA. All of that air gets pushed over,
9	and there is some vapor pressure because there's a
10	slight heating up of the suppression pool. The
11	suppression pool in this plant only heats up because
12	of blow-down energy. Okay?
13	In a traditional boiling water reactor,
14	what you do is the first part of the transient is the
15	same. All the air following a pipe break gets pushed
16	over into the wetwell airspace. That gives you a
17	certain pressure.
18	And then what happens is the energy from
19	the drywell gets transferred to the suppression pool.
20	The suppression pool heats up. It gives you an
21	increase in the vapor pressure which causes the
22	condensed pressure to heat up.
23	The active RHR system removes the energy
24	from the suppression pool. It is only effective at a
25	certain delta T. So you've got to heat up the pool to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1remove this energy. In this plant the difference is2we remove the energy before it gets to the suppression3pool through these heat exchangers.4Just to give you some ball park numbers,5in a operating plant the suppression pool has to get6up to 212, 220 before the RHR system is effective in7removing the decay from the containment.8Following an initial blow-down, assuming9that the suppression pool starts at 110 degrees, the10initial blow-down gives you about a 30 or 40 degree11increase in the suppression pool temperature. You get12a similar increase, slightly less increase in this13line, because some of the energy actually goes out14through the heat exchanger.15CHAIRMAN WALLIS: Does the pressure pool16get to, say, 220 Fahrenheit?17MR. RAO: No, not in this plant, not in18this plant. In operating plants, it will get up19for the RHR system to be effective in operating20plants, you'll have to get the suppression pool up in21temperature. That's how the system works. For the22Okay. In this plant it's primarily the23blow-down energy that heats up the suppression pool.		58
 pool through these heat exchangers. Just to give you some ball park numbers, in a operating plant the suppression pool has to get up to 212, 220 before the RHR system is effective in removing the decay from the containment. Following an initial blow-down, assuming that the suppression pool starts at 110 degrees, the initial blow-down gives you about a 30 or 40 degree increase in the suppression pool temperature. You get a similar increase, slightly less increase in this line, because some of the energy actually goes out through the heat exchanger. CHAIRMAN WALLIS: Does the pressure pool get to, say, 220 Fahrenheit? MR. RAO: No, not in this plant, not in this plant. In operating plants, it will get up for the RHR system to be effective in operating plants, you'll have to get the suppression pool up in temperature. That's how the system works. For the delta T, you need a higher delta T to remove that energy. 	1	remove this energy. In this plant the difference is
4Just to give you some ball park numbers,5in a operating plant the suppression pool has to get6up to 212, 220 before the RHR system is effective in7removing the decay from the containment.8Following an initial blow-down, assuming9that the suppression pool starts at 110 degrees, the10initial blow-down gives you about a 30 or 40 degree11increase in the suppression pool temperature. You get12a similar increase, slightly less increase in this13line, because some of the energy actually goes out14through the heat exchanger.15CHAIRMAN WALLIS: Does the pressure pool16get to, say, 220 Fahrenheit?17MR. RAO: No, not in this plant, not in18this plant. In operating plants, it will get up19for the RHR system to be effective in operating20plants, you'll have to get the suppression pool up in21temperature. That's how the system works. For the22delta T, you need a higher delta T to remove that23okay. In this plant it's primarily the	2	we remove the energy before it gets to the suppression
 in a operating plant the suppression pool has to get up to 212, 220 before the RHR system is effective in removing the decay from the containment. Following an initial blow-down, assuming that the suppression pool starts at 110 degrees, the initial blow-down gives you about a 30 or 40 degree increase in the suppression pool temperature. You get a similar increase, slightly less increase in this line, because some of the energy actually goes out through the heat exchanger. CHAIRMAN WALLIS: Does the pressure pool get to, say, 220 Fahrenheit? MR. RAO: No, not in this plant, not in this plant. In operating plants, it will get up for the RHR system to be effective in operating plants, you'll have to get the suppression pool up in temperature. That's how the system works. For the delta T, you need a higher delta T to remove that energy. Okay. In this plant it's primarily the 	3	pool through these heat exchangers.
 6 up to 212, 220 before the RHR system is effective in removing the decay from the containment. 8 Following an initial blow-down, assuming 9 that the suppression pool starts at 110 degrees, the 10 initial blow-down gives you about a 30 or 40 degree 11 increase in the suppression pool temperature. You get 12 a similar increase, slightly less increase in this 13 line, because some of the energy actually goes out 14 through the heat exchanger. 15 CHAIRMAN WALLIS: Does the pressure pool 16 get to, say, 220 Fahrenheit? 17 MR. RAO: No, not in this plant, not in 18 this plant. In operating plants, it will get up 19 for the RHR system to be effective in operating 20 plants, you'll have to get the suppression pool up in 21 temperature. That's how the system works. For the 22 delta T, you need a higher delta T to remove that 23 energy. 	4	Just to give you some ball park numbers,
removing the decay from the containment. Following an initial blow-down, assuming that the suppression pool starts at 110 degrees, the initial blow-down gives you about a 30 or 40 degree increase in the suppression pool temperature. You get a similar increase, slightly less increase in this line, because some of the energy actually goes out through the heat exchanger. CHAIRMAN WALLIS: Does the pressure pool get to, say, 220 Fahrenheit? MR. RAO: No, not in this plant, not in this plant. In operating plants, it will get up for the RHR system to be effective in operating plants, you'll have to get the suppression pool up in temperature. That's how the system works. For the delta T, you need a higher delta T to remove that energy. 24 Okay. In this plant it's primarily the	5	in a operating plant the suppression pool has to get
8Following an initial blow-down, assuming9that the suppression pool starts at 110 degrees, the10initial blow-down gives you about a 30 or 40 degree11increase in the suppression pool temperature. You get12a similar increase, slightly less increase in this13line, because some of the energy actually goes out14through the heat exchanger.15CHAIRMAN WALLIS: Does the pressure pool16get to, say, 220 Fahrenheit?17MR. RAO: No, not in this plant, not in18this plant. In operating plants, it will get up19for the RHR system to be effective in operating20plants, you'll have to get the suppression pool up in21temperature. That's how the system works. For the22delta T, you need a higher delta T to remove that23energy.24Okay. In this plant it's primarily the	6	up to 212, 220 before the RHR system is effective in
 9 that the suppression pool starts at 110 degrees, the 10 initial blow-down gives you about a 30 or 40 degree 11 increase in the suppression pool temperature. You get 12 a similar increase, slightly less increase in this 13 line, because some of the energy actually goes out 14 through the heat exchanger. 15 CHAIRMAN WALLIS: Does the pressure pool 16 get to, say, 220 Fahrenheit? 17 MR. RAO: No, not in this plant, not in 18 this plant. In operating plants, it will get up 19 for the RHR system to be effective in operating 20 plants, you'll have to get the suppression pool up in 21 temperature. That's how the system works. For the 22 delta T, you need a higher delta T to remove that 23 energy. 24 Okay. In this plant it's primarily the 	7	removing the decay from the containment.
 initial blow-down gives you about a 30 or 40 degree increase in the suppression pool temperature. You get a similar increase, slightly less increase in this line, because some of the energy actually goes out through the heat exchanger. CHAIRMAN WALLIS: Does the pressure pool get to, say, 220 Fahrenheit? MR. RAO: No, not in this plant, not in this plant. In operating plants, it will get up for the RHR system to be effective in operating plants, you'll have to get the suppression pool up in temperature. That's how the system works. For the delta T, you need a higher delta T to remove that energy. 	8	Following an initial blow-down, assuming
11 increase in the suppression pool temperature. You get a similar increase, slightly less increase in this line, because some of the energy actually goes out through the heat exchanger. 15 CHAIRMAN WALLIS: Does the pressure pool get to, say, 220 Fahrenheit? 17 MR. RAO: No, not in this plant, not in this plant. In operating plants, it will get up for the RHR system to be effective in operating plants, you'll have to get the suppression pool up in temperature. That's how the system works. For the delta T, you need a higher delta T to remove that energy. 24 Okay. In this plant it's primarily the	9	that the suppression pool starts at 110 degrees, the
 12 a similar increase, slightly less increase in this 13 line, because some of the energy actually goes out 14 through the heat exchanger. 15 CHAIRMAN WALLIS: Does the pressure pool 16 get to, say, 220 Fahrenheit? 17 MR. RAO: No, not in this plant, not in 18 this plant. In operating plants, it will get up 19 for the RHR system to be effective in operating 20 plants, you'll have to get the suppression pool up in 21 temperature. That's how the system works. For the 22 delta T, you need a higher delta T to remove that 23 energy. 24 Okay. In this plant it's primarily the 	10	initial blow-down gives you about a 30 or 40 degree
13 line, because some of the energy actually goes out 14 through the heat exchanger. 15 CHAIRMAN WALLIS: Does the pressure pool 16 get to, say, 220 Fahrenheit? 17 MR. RAO: No, not in this plant, not in 18 this plant. In operating plants, it will get up 19 for the RHR system to be effective in operating 20 plants, you'll have to get the suppression pool up in 21 temperature. That's how the system works. For the 22 delta T, you need a higher delta T to remove that 23 energy. 24 Okay. In this plant it's primarily the	11	increase in the suppression pool temperature. You get
14through the heat exchanger.15CHAIRMAN WALLIS: Does the pressure pool16get to, say, 220 Fahrenheit?17MR. RAO: No, not in this plant, not in18this plant. In operating plants, it will get up19for the RHR system to be effective in operating20plants, you'll have to get the suppression pool up in21temperature. That's how the system works. For the22delta T, you need a higher delta T to remove that23energy.24Okay. In this plant it's primarily the	12	a similar increase, slightly less increase in this
 15 CHAIRMAN WALLIS: Does the pressure pool 16 get to, say, 220 Fahrenheit? 17 MR. RAO: No, not in this plant, not in 18 this plant. In operating plants, it will get up 19 for the RHR system to be effective in operating 20 plants, you'll have to get the suppression pool up in 21 temperature. That's how the system works. For the 22 delta T, you need a higher delta T to remove that 23 energy. 24 Okay. In this plant it's primarily the 	13	line, because some of the energy actually goes out
<pre>16 get to, say, 220 Fahrenheit? 17 MR. RAO: No, not in this plant, not in 18 this plant. In operating plants, it will get up 19 for the RHR system to be effective in operating 20 plants, you'll have to get the suppression pool up in 21 temperature. That's how the system works. For the 22 delta T, you need a higher delta T to remove that 23 energy. 24 Okay. In this plant it's primarily the</pre>	14	through the heat exchanger.
 MR. RAO: No, not in this plant, not in this plant. In operating plants, it will get up for the RHR system to be effective in operating plants, you'll have to get the suppression pool up in temperature. That's how the system works. For the delta T, you need a higher delta T to remove that energy. Okay. In this plant it's primarily the 	15	CHAIRMAN WALLIS: Does the pressure pool
18 this plant. In operating plants, it will get up 19 for the RHR system to be effective in operating 20 plants, you'll have to get the suppression pool up in 21 temperature. That's how the system works. For the 22 delta T, you need a higher delta T to remove that 23 energy. 24 Okay. In this plant it's primarily the	16	get to, say, 220 Fahrenheit?
19for the RHR system to be effective in operating20plants, you'll have to get the suppression pool up in21temperature. That's how the system works. For the22delta T, you need a higher delta T to remove that23energy.24Okay. In this plant it's primarily the	17	MR. RAO: No, not in this plant, not in
20 plants, you'll have to get the suppression pool up in 21 temperature. That's how the system works. For the 22 delta T, you need a higher delta T to remove that 23 energy. 24 Okay. In this plant it's primarily the	18	this plant. In operating plants, it will get up
21 temperature. That's how the system works. For the 22 delta T, you need a higher delta T to remove that 23 energy. 24 Okay. In this plant it's primarily the	19	for the RHR system to be effective in operating
 delta T, you need a higher delta T to remove that energy. Okay. In this plant it's primarily the 	20	plants, you'll have to get the suppression pool up in
 23 energy. 24 Okay. In this plant it's primarily the 	21	temperature. That's how the system works. For the
24 Okay. In this plant it's primarily the	22	delta T, you need a higher delta T to remove that
	23	energy.
25 blow-down energy that heats up the suppression pool.	24	Okay. In this plant it's primarily the
	25	blow-down energy that heats up the suppression pool.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	So that's a 30 to 40 degree increase in temperature
2	from the initial starting temperature. If you go with
3	the tech spec, I believe it's 120. One, twenty?
4	CHESTER: One, twenty.
5	MR. RAO: One, twenty. So you get a 30 to
6	40 degree increase in temperature by the initial blow-
7	down, and then for a short time period these heat
8	exchangers cannot remove all of the energy, and you
9	get a slight increase in temperature beyond the
10	initial blow-down. Okay? And that gives you a vapor
11	pressure that gets up to 180, 190 at this plant.
12	In the operating plant, you get up to 220
13	degrees, beyond that.
14	Okay. So what determines the containment
15	pressure in this plant is primarily the drywell
16	volume. Take all of that air and shove it into that
17	space. Do that on the back of an envelope, and about
18	a five to eight psi vapor pressure from the heating up
19	of the suppression pool.
20	So it's a fairly simple calculation as
21	long as these heat exchangers are properly sized, and
22	as you will see in the presentations, these are
23	properly sized.
24	This is the 13 pump story. For those of
25	you who don't like passive systems, you can see that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	what we have for core cooling is we've done several
2	things in the design to improve the plant response.
3	We've increased the inventory in the vessel. You'll
4	see a chart that shows that we've got two and a half
5	times as much water.
6	We've increased the amount of subcooled
7	water. Chester will go into a lot of details on how
8	the plant behaves and where the water is.
9	We've eliminated large pipes from below
10	the core. We've minimized the other pipe sizes. Like
11	I mentioned, the only pipes that are connected at the
12	core, near the core elevation are two inch nozzles.
13	So we've kept them down to very small sizes.
14	Well, we provide inventory makeup. We
15	don't need a fast makeup system. Okay? The makeup
16	rate is very low, as you'll see the plots out here.
17	You don't reach the minimum water level until at least
18	600 seconds into the transience. That's when you
19	depressurize the vessel, and all that you have to do
20	is make up the water that's lost by boil-off.
21	So you don't need any accumulator driven
22	system. You don't need any high pressure injection
23	systems because the plant actually reacts fairly
24	slowly.
25	Now, because you don't have any high

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 pressure systems, any accumulators or other core 2 makeup tanks or any of the other issues that you might 3 see on other plants or high pressure coolant injection 4 systems, like on BWRs, you see fewer system 5 interactions. The only high pressure system that exists on this plant is the isolation condenser, and 6 7 we don't take credit for that in the loss of coolant 8 accident analysis. 9 CHAIRMAN WALLIS: If this is such a 10 wonderful system, how come it has taken 15 years 11 before anyone is seriously looking at it? 12 Well, when you look at the MR. RAO: market, there hasn't been a plant --13 CHAIRMAN WALLIS: 14 The market has been 15 lousy. And the other thing that's 16 MR. RAO: 17 different out here is we are now using an integrated You know, when I first joined General 18 analysis. 19 Electric, I worked out here, and I defended using all We had to use 20 the different codes, you know. 21 LAMB/SCAT, SAFE, SAFER, CHASTE, and all of those 22 things for doing all of the calculations. 23 Now we have got an integrated core. What 24 you asked us to do -- all of you weren't on the 25 committee then -- was to develop an integrated core.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

61

	62
1	We've got one now. It's there. It doesn't do
2	everything. It doesn't do windows, but it does do an
3	excellent job of doing the calculation.
4	In the interest of time I will skip
5	through a few of the charts.
6	On the decay heat removal system,
7	basically what we do is remove decay heat from the
8	vessel. What's new in this plant is we've now got a
9	full pressure, novel shutdown cooling system. We rely
10	on isolation condensers. In some of these cases
11	they're old. We've gone back to features that were in
12	the older BWRs.
13	We can remove SLV through relief valve
14	opening. I mean you can open the relief valve. You
15	do have a non-safety grade suppression pool cooling
16	system. So you can do that also. So for those who
17	like some of the old features, they're still there.
18	And of course, if needed, if you get a
19	pipe break, we basically remove heat from the
20	containment through the ECCS heat exchangers, which
21	are new. I'll discuss those in some time.
22	Of course, we do have a suppression pool
23	cooling system in this plant also, but it's a non-
24	safety system. So the pumps and heat exchangers that
25	we had in the old plants are still there.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Decay heat removal, how it works. I discussed this briefly in some of the earlier charts. You get the blow down energy, which flows to the suppression pool, traditional pressure suppression system.

Longer term, the decay heat flows through 6 7 the heat exchanger similar to an isolation condenser, and heat is transferred outside the containment. 8 9 You've got tube heat exchangers. The non-condensables are removed by the pressure difference between the 10 11 drywell and the wetwell. Like I mentioned earlier and 12 corrected myself, the drywell is at a higher pressure than the wetwell, but the drywell pressure --13

14 CHAIRMAN WALLIS: It's always at a higher
15 pressure than the wetwell?

MR. RAO: Except for a short time period, 16 17 and I'll show you the transience when that happens. When you condense the steam in the drywell, you know, 18 after the initial blow-down and you condense the 19 20 steam, when the water from the gravity driven cooling 21 system flows in, it condenses the steam. So the 22 pressure in the drywell will come down for a little 23 while, and then you pull the non-condensables back. 24 CHAIRMAN WALLIS: That's right. You suck 25 it, suck up out of the suppression pool.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	64
1	MR. RAO: I was wrong when I made my
2	earlier statements. I guess maybe I'm getting old and
3	forgetting some of these things as we go along.
4	No, but that's how it works. You'll see
5	details on that.
6	MEMBER POWERS: Will we discuss the
7	capabilities of the plant during shutdown refueling?
8	MR. RAO: We were not planning to discuss
9	that, but I can address that right now. Basically,
10	the same system is still available for that, except
11	for the water makeup system. The gravity driven
12	cooling system is still available. Okay?
13	You've got the vessel that's full of
14	water. The one thing that's
15	MEMBER POWERS: I mean that's the question
16	that came to my mind. You've got a core very low and
17	a very tall vessel, and I was wondering how low do you
18	have to drop that water for your refueling process and
19	service all of these systems that come in above the
20	core.
21	MR. RAO: The vessel is actually full of
22	water at that time, during the refueling. So just to
23	give you a feel for some of the numbers, let me go
24	back to
25	MEMBER POWERS: I mean, what comes to mind

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	is this is a good one.
2	MR. RAO: Okay. Let me give you a feel
3	for some of the numbers. The vessel volume is about
4	500 cubic meters. Okay? This lower drywell is 700
5	cubic meters. Okay?
6	One of the neat things about this design
7	is this pool of water is 1,000 cubic meters. Okay?
8	And the vessel is full of water. Okay. During the
9	MEMBER POWERS: But is it full of water if
10	I am servicing my squib valves?
11	MR. RAO: Yeah, there are check valves,
12	and there are block valves all along the line.
13	MEMBER POWERS: The system. So you don't
14	have to take the water level down before
15	MR. RAO: No, you don't have to take the
16	water level down during an outage.
17	MEMBER POWERS: And you don't have
18	anything like an operational mode five here then where
19	you have low inventories and safety systems taken out.
20	MR. RAO: No.
21	MEMBER POWERS: Okay.
22	MR. RAO: Okay, but the thing that's
23	different is that this lower drywell volume is about
24	700 cubic meters. It's a lot smaller than that for
25	the operating plants, okay, and so it doesn't take

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	that much water to fill that up. That solves the
2	simplistic way of looking at it.
3	CHAIRMAN WALLIS: When you refuel, do you
4	take out all of the baffle that are in the chimney as
5	well?
6	MR. RAO: Pardon?
7	CHAIRMAN WALLIS: When you refuel, you
8	have to take out all of the baffle you've got in the
9	chimney?
10	MR. RAO: Not in the chimney.
11	CHAIRMAN WALLIS: You leave them in?
12	MR. RAO: We leave them in.
13	MEMBER FORD: Atam, could you go back to
14	that previous graph? Since we're going to have a free
15	flow question period, has there been a materials
16	design review undertaken?
17	MR. RAO: No. We are using the same
18	conditions as that for an operating plant. So we're
19	assuming the best
20	MEMBER FORD: I ask this question
21	MEMBER POWERS: If they've been so
22	successful, Peter, why would they possibly want to
23	change?
24	MEMBER FORD: Well, I asked the question
25	a while ago to you, and the answer was that materials

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	67
1	of construction would be essentially those for an
2	ABWR.
3	MR. RAO: Right, exactly.
4	MEMBER FORD: As I look at this design,
5	the difference, of course, is a huge chimney.
6	Everything above the core, and I'm assuming you'd be
7	using hydrogen motor chemistry; everything above the
8	core will be not a very efficient water chemistry.
9	Therefore, everything above the core, regardless of
10	whether it's L grade or not, stainless steels, could
11	crack.
12	Has that been taken into account?
13	Obviously not.
14	And if it did crack, what would the impact
15	be?
16	MR. RAO: Okay. It's been taken into
17	account in the sense of, one, we made sure that all
18	the components inside the vessel are removable easily.
19	They aren't welded anymore. Okay? So we made them
20	replaceable.
21	And so in that sense we have taken that
22	into account. And we've made sure there's enough
23	hatches up in the top. We have a plan to remove the
24	largest components through the refueling floor and out
25	of the containment.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	MEMBER FORD: I'm assuming a materials
2	design review will be undertaken.
3	MR. RAO: Yes, definitely.
4	MEMBER FORD: In time so as not to be a
5	rate limiting step if you have to come up with a new
6	material.
7	MR. RAO: Yes, it will be. That will be
8	all done as part of the SAR submittal. Right now
9	remember we are focusing on thermal hydraulic
10	calculations rather than on the actual design.
11	MEMBER FORD: The other question along
12	those lines, I'm assuming it will be nobel metal
13	chemical addition you will be also using in addition
14	to hydrogen water chemistry. Will calculations be
15	done as to how efficient that application will be and
16	whether you can protect all of the wet components?
17	MR. RAO: We expect to do all of that, you
18	know, in time for the SAR submittal.
19	What we have done in this program let
20	me step back a little bit is by experience with the
21	SBWR was we did technology review, testing, safety
22	analysis report, all in one big package, and
23	everything was going on in parallel.
24	What we've tried to do in this program is
25	let's do it step-wise. Let's get a few things off the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	table and see if we can get them off the table.
2	Okay. So the pre-application review is
3	not focusing on the design materials and any of those
4	issues.
5	MEMBER FORD: Even though they may impact
6	on safety?
7	MR. RAO: Yes. There are a lot of design
8	issues that impact the safety and will affect the PRA
9	and all of the rest. What we are trying to do is get
10	closure on the thermal hydraulic spot of the analysis
11	on the completed codes because that in the past has
12	been the biggest uncertainty or whatever for getting
13	these moving forward.
14	If we can't even get this closed out, then
15	you know. You've got to remember that we have not
16	been using any government money for the last ten years
17	to develop. This has been a totally industry effort,
18	and if we can't see the light of day in this tunnel
19	even on this one, then the other ones will be even
20	harder to get to.
21	CHAIRMAN WALLIS: Well, I think it's good
22	to let you take the time until the break.
23	MR. RAO: Okay.
24	CHAIRMAN WALLIS: But I think that's
25	really definitely the ultimate time that you have.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	You don't have any longer than that.
2	I think it's good because there are so
3	many questions that it's useful to the Subcommittee,
4	but that is the deadline.
5	MR. RAO: Okay.
6	CHAIRMAN WALLIS: So let's move along.
7	MR. RAO: We will get into how the PCSS
8	works in some of the later presentation, but it's
9	important to understand how they work. Some of the
10	charts have not come out too good on the screen, and
11	I don't know why.
12	It's a standard plant schematic. What you
13	can't see out here the pictures are better in your
14	handouts?
15	PARTICIPANTS: Yes.
16	MR. RAO: The thing to notice out here is
17	the major water systems which have the simplification
18	you wanted to hear about the economics is the reactor
19	water clean-up system at the bottom. I think this is
20	the fuel pool cooling system out here shown on the
21	left, and the control rod drive hydraulic system.
22	Those are the only systems left in this
23	design, and that's where the simplification comes
24	from. That's where the economics comes from, is
25	basically in reducing the amount of materials and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
quantities that exist out there. All of the safety systems are basically inside the containment or sitting on top of the containment as shown out here for the IC and PCC pools.

This shows the evolution of the BWR 5 It's important to understand this as 6 containments. 7 background as we go forward. All except for, I believe, one or two plants was at Big Rock Point and 8 9 Humbolt Bay, were I think not suppression systems, but 10 we've had suppression systems in Mark Is, Mark IIs, 11 Mark IIIs.

Basically the major suppression pool is out here. You've got the drywells and the wetwell airspace. The Mark II, where the drywell was sitting on top of the wetwell, and the Mark IIIs where the drywell was surrounded by the wetwell airspace out here.

In all cases the suppression pool was low in the building. That was, again, reasons for because of MPSH considerations for the safety system's pumps, because you needed to take the water from there and put it back in the vessel.

The ABWR basically is similar. You've got the precious suppression sitting out on the base mat out here -- the suppression pool, I mean, sitting on

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	72
1	the base mat out here. You've got a T shaped driver
2	because you don't have the recirculation pumps that
3	you have the extent of loops that you have on some of
4	the earlier designs, and the drywell airspace is
5	primarily controlled by the space required on the top
6	by the maintenance of the safety relief valves.
7	So you've got right circular cylinders,
8	concrete containment, covered suppression pool that's
9	noted, and you've got horizontal vents that we
10	developed on the Mark III.
11	The ESBWR took features from both the ABWR
12	and the Mark III. We've got a separate fuel building.
13	You can see in the earlier designs and the ABWR this
14	hash mark out here is not a bar code. That is spent
15	fuel storage. Okay?
16	And like the Mark III, we've put it in a
17	separate fuel building. We've got an inclined fuel
18	transfer system, but, again, we wanted to make
19	improvements.
20	What we have done is, of course, I've
21	mentioned the raised suppression pool off the base mat
22	which provides a means to provide water makeup from
23	multiple source.
24	The inclined fuel transfer, that's what
25	IFTS stands for, the top part of it is not part of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	containment like it was in the Mark IIIs. So you can
2	actually move fuel during novel operation. You don't
3	have to open the containment to make sure that that
4	system is functioning and all the rest of it. So that
5	is an improvement over the Mark III.
6	CHAIRMAN WALLIS: Now, this shows an ASBWR
7	vessel has actually a shorter L over D than the Mark
8	II. Is that it has a longer L over D, doesn't it?
9	MR. RAO: I know you this is more to
10	show some of the features. Okay? this is not
11	necessarily drawn to scale out here, please, and we
12	will try to fix it in the next round.
13	MR. SCHROCK: I would wonder why you
14	didn't include SBWR in this comparison.
15	MR. RAO: It got too complex, and it
16	wasn't adding anything. The key features that I'm
17	trying to show out here, okay, the differences between
18	SBWR and ESBWR are not, as far as containment is
19	concerned, are not that significant. It was just a
20	matter of I always run over time. I'm trying to
21	shorten this out here. That was it. No other reason,
22	nothing more complex than that.
23	CHAIRMAN WALLIS: Okay. We're going to
24	move on? Are we going to move on to the next one now?
25	MEMBER SIEBER: Well, the ESBWR is not

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

 innurded (phonetic), right? MR. RAO: It is innurded just like 	
2 MR. RAO: It is innurded just like	
	ABWR.
3 All of these things, okay, were adopted by the	ESBWR.
4 MEMBER SIEBER: Okay.	
5 MR. RAO: Innurded containment, hori	zontal
6 vents, same as ABWR, covered suppression pool.	
7 MEMBER SIEBER: So you actually cou	ld not
8 move fuel during operation.	
9 MR. RAO: No, no. You can't get in	to the
10 containment in the operation. You can move f	uel up
11 here. You can. This is not innurded. This	is not
12 part of containment.	
13 MEMBER SIEBER: Okay.	
14 MR. RAO: So you can move the fuel	up and
down, and you see we have a buffer storage up o	n top.
16 You can actually move it and keep it there re-	ady to
17	
18 MEMBER SIEBER: So the upper port.	ion in
19 the fuel building is not subject to conta	inment
20 pressure driven actions.	
21 MR. RAO: Right. Both this part -	
22 MEMBER SIEBER: Yes.	
23 MR. RAO: and this part are not s	ubject
24 to containment pressure.	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	75
1	designed for containment pressure, right?
2	MR. RAO: They are not designed for
3	containment pressure.
4	MEMBER SIEBER: Thank you.
5	MR. SCHROCK: Do you use the concept of a
6	secondary containment? Is that what that is there?
7	MR. RAO: And that is also what's an
8	undefined external event shield. As the requirements
9	are evolving, we don't want to be the first on that,
10	but we have the space for it. This can take care of
11	anything that might come falling from the skies. It's
12	undefined. We have not designed it structurally yet.
13	We can make it as thin or as thick as we need it.
14	This shows an actual drawing cut-away of
15	the section. You can see that there actually is not
16	much equipment in this building. There's just some
17	equipment down here. The reactor vessel and the
18	piping, and that's what gives it the simplicity.
19	This is the inclined fuel transfer. You
20	can see the spent fuel pool. This is grade elevation
21	here. Okay. It is essentially below grade there.
22	This is the fuel pool cooling system. So
23	all of the water systems are done out here.
24	MEMBER SIEBER: Now, if I look at the core
25	relative to the suppression pool, only about half of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	the water in the suppression pool is available for
2	core flooding; is that correct?
3	MR. RAO: Actually, you know, a two
4	dimensional picture is very misleading.
5	MEMBER SIEBER: Yeah. That's the best you
6	can do.
7	MR. RAO: In a two dimensional picture you
8	don't really get the true feel of it. This water
9	level only drops by half a meter or something when you
10	flooded everything in the bottom. Okay?
11	That's about 3,000 cubic meters, and the
12	total volume in the bottom was 700 or some
13	MEMBER SIEBER: But that reactor vessel to
14	some is very large. From the tip of the control rod
15	drives to the top is over 100 feet.
16	MR. RAO: Yeah, but you don't have to
17	flood that to get the
18	MEMBER SIEBER: That's right.
19	MR. RAO: You only have to flood the lower
20	part out here. In fact, that is one of the
21	advantages. You've got the core lower than the
22	vessel. You don't have to flood it too much.
23	MEMBER SIEBER: Yeah.
24	MR. RAO: This is the refueling floor.
25	This is what I was mentioning. This is the pool up on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	the top. Inclined fuel transfer comes up there. You
2	can store 70 percent of a core up there. Okay? So
3	you can move stuff in and out during novel operations.
4	Again, we were trying to make it easier
5	for the utilities.
6	This one is an important chart. I want
7	you to know because for a couple of reasons. We have
8	greater water inventory, which gives us improved LOCA
9	performance, and we have a larger steam volume in the
10	vessel, the bigger vessel. That's where you start
11	from. You make your vessel bigger. You'll get
12	improved performance of the plan from a safety
13	perspective.
14	So since the focus here is on safety, what
15	you can see is we've got rid of the large pipes below
16	the core, ESBWRs on the left side. We got a shorter
17	core. So the core is actually sitting lower in the
18	vessel. This is the ABWR out here. It's sitting
19	higher because you've got to have the cold space for
20	the control rod drive. So the core is sitting a
21	little higher.
22	The top of reactor fuel above the RPV
23	bottom, you can see is much lower. Okay? So you
24	don't have to fill up the whole vessel, and this is
25	the bottom line. The water volume outside the shroud.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Okay?

1

2

3

4

5

6

7

8

78

has color pictures in his Chester presentations. That is what determines the LOCA performance. 0kay? You end up with a lot more water that's available for flooding the core, and you don't have to provide it from outside. It's there inside the vessel, and you'll see how the plant behaves.

9 And the other thing is because of the 10 chimney, you've got much larger steam volume. You'll 11 see the pressure rate is about half that of an 12 operating plant off an ABWR, and that's because you've 13 got about twice the steam volume. I mean, you don't 14 need a computer code for that. It's just the simple 15 numbers and the size of the vessel.

This shows the plant response, and this is what I was trying to say earlier. If you look at most of the operating plants in the U.S., all of the operating plants in the U.S., jet pump plants, for a couple of them, the water level drops very rapidly below the core, and you have fast pump ejection. That's what makes up the water level.

This is the water level following a typical pipe break. ABWR, the water doesn't drop below the top of the fuel because we've eliminated the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1large pipes.2CHAIRMAN WALLIS: This "typical" means3worst?4MR. RAO: The actual TRACG plots, this is5a simplified plot.6CHAIRMAN WALLIS: They're all like this7for all pipe breaks?8MR. RAO: For the ESBWR, yes. For these9plants, they are not. For ESBWR,10CHAIRMAN WALLIS: So for all pipe breaks,11the core level is way above the top of the core with12ESBWR.13MR. RAO: On the ESBWR, you can see the14numbers. It's three meters15CHAIRMAN WALLIS: That's the message you16want.17MR. RAO: It's nine feet above the top of18there. No, there's a couple of other messages I want19to give to you out here.20One is that the minimum water level isn't21reached. You don't even start injection22"injection" is the wrong word water doesn't start23flowing by gravity until about five or 600 seconds24into the transience. Things do not have to act very25fast. This response here, this first part is just		79
 worst? MR. RAO: The actual TRACG plots, this is a simplified plot. CHAIRMAN WALLIS: They're all like this for all pipe breaks? MR. RAO: For the ESBWR, yes. For these plants, they are not. For ESBWR, CHAIRMAN WALLIS: So for all pipe breaks, the core level is way above the top of the core with ESBWR. MR. RAO: On the ESBWR, you can see the numbers. It's three meters CHAIRMAN WALLIS: That's the message you want. MR. RAO: It's nine feet above the top of there. No, there's a couple of other messages I want to give to you out here. One is that the minimum water level isn't reached. You don't even start injection "injection" is the wrong word water doesn't start flowing by gravity until about five or 600 seconds into the transience. Things do not have to act very 	1	large pipes.
4MR. RAO: The actual TRACG plots, this is5a simplified plot.6CHAIRMAN WALLIS: They're all like this7for all pipe breaks?8MR. RAO: For the ESEWR, yes. For these9plants, they are not. For ESEWR,10CHAIRMAN WALLIS: So for all pipe breaks,11the core level is way above the top of the core with12ESEWR.13MR. RAO: On the ESEWR, you can see the14numbers. It's three meters15CHAIRMAN WALLIS: That's the message you16want.17MR. RAO: It's nine feet above the top of18there. No, there's a couple of other messages I want19to give to you out here.20One is that the minimum water level isn't21reached. You don't even start injection23flowing by gravity until about five or 600 seconds24into the transience. Things do not have to act very	2	CHAIRMAN WALLIS: This "typical" means
 a simplified plot. CHAIRMAN WALLIS: They're all like this for all pipe breaks? MR. RAO: For the ESBWR, yes. For these plants, they are not. For ESBWR, CHAIRMAN WALLIS: So for all pipe breaks, the core level is way above the top of the core with ESBWR. MR. RAO: On the ESBWR, you can see the numbers. It's three meters CHAIRMAN WALLIS: That's the message you want. MR. RAO: It's nine feet above the top of there. No, there's a couple of other messages I want to give to you out here. One is that the minimum water level isn't reached. You don't even start injection "injection" is the wrong word water doesn't start flowing by gravity until about five or 600 seconds into the transience. Things do not have to act very 	3	worst?
 6 CHAIRMAN WALLIS: They're all like this 7 for all pipe breaks? 8 MR. RAO: For the ESBWR, yes. For these 9 plants, they are not. For ESBWR, 10 CHAIRMAN WALLIS: So for all pipe breaks, 11 the core level is way above the top of the core with 12 ESBWR. 13 MR. RAO: On the ESBWR, you can see the 14 numbers. It's three meters 15 CHAIRMAN WALLIS: That's the message you 16 want. 17 MR. RAO: It's nine feet above the top of 18 there. No, there's a couple of other messages I want 19 to give to you out here. 20 One is that the minimum water level isn't 21 reached. You don't even start injection 22 "injection" is the wrong word water doesn't start 23 flowing by gravity until about five or 600 seconds 24 into the transience. Things do not have to act very 	4	MR. RAO: The actual TRACG plots, this is
7 for all pipe breaks? 8 MR. RAO: For the ESBWR, yes. For these 9 plants, they are not. For ESBWR, 10 CHAIRMAN WALLIS: So for all pipe breaks, 11 the core level is way above the top of the core with 12 ESBWR. 13 MR. RAO: On the ESBWR, you can see the 14 numbers. It's three meters 15 CHAIRMAN WALLIS: That's the message you 16 want. 17 MR. RAO: It's nine feet above the top of 18 there. No, there's a couple of other messages I want 19 to give to you out here. 20 One is that the minimum water level isn't 21 reached. You don't even start injection 22 'injection" is the wrong word water doesn't start 23 flowing by gravity until about five or 600 seconds 24 into the transience. Things do not have to act very	5	a simplified plot.
8 MR. RAO: For the ESEWR, yes. For these 9 plants, they are not. For ESBWR, 10 CHAIRMAN WALLIS: So for all pipe breaks, 11 the core level is way above the top of the core with 12 ESBWR. 13 MR. RAO: On the ESBWR, you can see the 14 numbers. It's three meters 15 CHAIRMAN WALLIS: That's the message you 16 want. 17 MR. RAO: It's nine feet above the top of 18 there. No, there's a couple of other messages I want 19 to give to you out here. 20 One is that the minimum water level isn't 21 reached. You don't even start injection 22 "injection" is the wrong word water doesn't start 23 flowing by gravity until about five or 600 seconds 24 into the transience. Things do not have to act very	6	CHAIRMAN WALLIS: They're all like this
9 plants, they are not. For ESBWR, 10 CHAIRMAN WALLIS: So for all pipe breaks, 11 the core level is way above the top of the core with 12 ESBWR. 13 MR. RAO: On the ESBWR, you can see the 14 numbers. It's three meters 15 CHAIRMAN WALLIS: That's the message you 16 want. 17 MR. RAO: It's nine feet above the top of 18 there. No, there's a couple of other messages I want 19 to give to you out here. 20 One is that the minimum water level isn't 21 reached. You don't even start injection 22 "injection" is the wrong word water doesn't start 23 flowing by gravity until about five or 600 seconds 24 into the transience. Things do not have to act very	7	for all pipe breaks?
10CHAIRMAN WALLIS: So for all pipe breaks,11the core level is way above the top of the core with12ESBWR.13MR. RAO: On the ESBWR, you can see the14numbers. It's three meters15CHAIRMAN WALLIS: That's the message you16want.17MR. RAO: It's nine feet above the top of18there. No, there's a couple of other messages I want19to give to you out here.20One is that the minimum water level isn't21reached. You don't even start injection22"injection" is the wrong word water doesn't start23flowing by gravity until about five or 600 seconds24into the transience. Things do not have to act very	8	MR. RAO: For the ESBWR, yes. For these
11the core level is way above the top of the core with12ESBWR.13MR. RAO: On the ESBWR, you can see the14numbers. It's three meters15CHAIRMAN WALLIS: That's the message you16want.17MR. RAO: It's nine feet above the top of18there. No, there's a couple of other messages I want19to give to you out here.20One is that the minimum water level isn't21reached. You don't even start injection22"injection" is the wrong word water doesn't start23flowing by gravity until about five or 600 seconds24into the transience. Things do not have to act very	9	plants, they are not. For ESBWR,
12 ESBWR. 13 MR. RAO: On the ESBWR, you can see the 14 numbers. It's three meters 15 CHAIRMAN WALLIS: That's the message you 16 want. 17 MR. RAO: It's nine feet above the top of 18 there. No, there's a couple of other messages I want 19 to give to you out here. 20 One is that the minimum water level isn't 21 reached. You don't even start injection 22 "injection" is the wrong word water doesn't start 23 flowing by gravity until about five or 600 seconds 24 into the transience. Things do not have to act very	10	CHAIRMAN WALLIS: So for all pipe breaks,
13MR. RAO: On the ESBWR, you can see the14numbers. It's three meters15CHAIRMAN WALLIS: That's the message you16want.17MR. RAO: It's nine feet above the top of18there. No, there's a couple of other messages I want19to give to you out here.20One is that the minimum water level isn't21reached. You don't even start injection22"injection" is the wrong word water doesn't start23flowing by gravity until about five or 600 seconds24into the transience. Things do not have to act very	11	the core level is way above the top of the core with
14numbers. It's three meters15CHAIRMAN WALLIS: That's the message you16want.17MR. RAO: It's nine feet above the top of18there. No, there's a couple of other messages I want19to give to you out here.20One is that the minimum water level isn't21reached. You don't even start injection22"injection" is the wrong word water doesn't start23flowing by gravity until about five or 600 seconds24into the transience. Things do not have to act very	12	ESBWR.
15 CHAIRMAN WALLIS: That's the message you 16 want. 17 MR. RAO: It's nine feet above the top of 18 there. No, there's a couple of other messages I want 19 to give to you out here. 20 One is that the minimum water level isn't 21 reached. You don't even start injection 22 "injection" is the wrong word water doesn't start 23 flowing by gravity until about five or 600 seconds 24 into the transience. Things do not have to act very	13	MR. RAO: On the ESBWR, you can see the
16 want. 17 MR. RAO: It's nine feet above the top of 18 there. No, there's a couple of other messages I want 19 to give to you out here. 20 One is that the minimum water level isn't 21 reached. You don't even start injection 22 "injection" is the wrong word water doesn't start 23 flowing by gravity until about five or 600 seconds 24 into the transience. Things do not have to act very	14	numbers. It's three meters
17MR. RAO: It's nine feet above the top of18there. No, there's a couple of other messages I want19to give to you out here.20One is that the minimum water level isn't21reached. You don't even start injection22"injection" is the wrong word water doesn't start23flowing by gravity until about five or 600 seconds24into the transience. Things do not have to act very	15	CHAIRMAN WALLIS: That's the message you
18 there. No, there's a couple of other messages I want 19 to give to you out here. 20 One is that the minimum water level isn't 21 reached. You don't even start injection 22 "injection" is the wrong word water doesn't start 23 flowing by gravity until about five or 600 seconds 24 into the transience. Things do not have to act very	16	want.
19 to give to you out here. 20 One is that the minimum water level isn't 21 reached. You don't even start injection 22 "injection" is the wrong word water doesn't start 23 flowing by gravity until about five or 600 seconds 24 into the transience. Things do not have to act very	17	MR. RAO: It's nine feet above the top of
One is that the minimum water level isn't reached. You don't even start injection "injection" is the wrong word water doesn't start flowing by gravity until about five or 600 seconds into the transience. Things do not have to act very	18	there. No, there's a couple of other messages I want
21 reached. You don't even start injection 22 "injection" is the wrong word water doesn't start 23 flowing by gravity until about five or 600 seconds 24 into the transience. Things do not have to act very	19	to give to you out here.
22 "injection" is the wrong word water doesn't start 23 flowing by gravity until about five or 600 seconds 24 into the transience. Things do not have to act very	20	One is that the minimum water level isn't
flowing by gravity until about five or 600 seconds into the transience. Things do not have to act very	21	reached. You don't even start injection
24 into the transience. Things do not have to act very	22	"injection" is the wrong word water doesn't start
	23	flowing by gravity until about five or 600 seconds
25 fast. This response here, this first part is just	24	into the transience. Things do not have to act very
	25	fast. This response here, this first part is just

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	what's in the vessel. Nothing is going to come
2	outside. This is what's flowing out, okay, and what's
3	available inside the vessel.
4	CHAIRMAN WALLIS: So this is also good
5	from the point of view of operator action?
6	MR. RAO: Yeah.
7	CHAIRMAN WALLIS: Operators don't have to
8	do anything?
9	MR. RAO: No. No operator action is
10	required. It's all in the vessel. Everything is
11	there. Okay? So nothing happens from outside until
12	that time period, 600 seconds. You don't need fast
13	makeup. You don't need any.
14	And then when you see the actual plot, you
15	can delay the injection several hundred seconds or
16	they'll give you some numbers they've drawn.
17	CHAIRMAN WALLIS: I'm tempted to say that
18	the reason this wasn't built 30 years ago was that
19	someone had the crazy idea of putting these things in
20	a submarine so that they couldn't be too tall.
21	MR. RAO: Submarines are 50 years ago, 60
22	years ago.
23	CHAIRMAN WALLIS: Well, an awful long time
24	ago, probably before you were born.
25	MEMBER KRESS: What causes the recovery in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	level at 100 seconds?
2	MR. RAO: Oh, okay. This is what happens
3	is you start opening the break transition valves,
4	flashing going on inside the vessel.
5	MEMBER KRESS: Oh, that's the
6	MR. RAO: That's the depressurization
7	start.
8	MEMBER KRESS: Oh, okay. That's just
9	the
10	MR. RAO: Just the two phase level.
11	MEMBER KRESS: Two phase level.
12	MR. RAO: You'll see a lot more different
13	plots. This is just to give you somewhat of an
14	overview here.
15	MEMBER RANSOM: What do you mean by the
16	shroud, change in terminology there? Is that the
17	annulus?
18	MR. RAO: Inside this thing this is the
19	shroud. Okay? This
20	MEMBER RANSOM: So is that a collapsed
21	water level?
22	MR. RAO: This one?
23	MEMBER RANSOM: Well, yes.
24	MR. RAO: This is a two-phased level
25	(phonetic).

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1 CHAIRMAN WALLIS: So it's steam above. 2 MEMBER RANSOM: Three phase or collapsed 3 4 MR. RAO: Two phase. You'll see a lot 5 more details on collapsed and two phase and all in the 6 later presentation. This is the two phase level. 7 You'll see a lot more detail as we go along, and you 8 can look at it from collapsed levels. You can look at 9 it from two phased levels. You can look at downcomer 10 levels, shroud levels. 11 The key thing is the water level and the 12 shroud. That's what keeps the floor covered. 13 Okay. This shows the containment 14 pressure, the function of time for the	
 3 MR. RAO: Two phase. You'll see a lot more details on collapsed and two phase and all in the later presentation. This is the two phase level. You'll see a lot more detail as we go along, and you can look at it from collapsed levels. You can look at g it from two phased levels. You can look at downcomer levels, shroud levels. The key thing is the water level and the shroud. That's what keeps the floor covered. Okay. This shows the containment pressure, the function of time for the 	
 MR. RAO: Two phase. You'll see a lot more details on collapsed and two phase and all in the later presentation. This is the two phase level. You'll see a lot more detail as we go along, and you can look at it from collapsed levels. You can look at it from two phased levels. You can look at downcomer levels, shroud levels. The key thing is the water level and the shroud. That's what keeps the floor covered. Okay. This shows the containment pressure, the function of time for the 	
5 more details on collapsed and two phase and all in the 6 later presentation. This is the two phase level. 7 You'll see a lot more detail as we go along, and you 8 can look at it from collapsed levels. You can look at 9 it from two phased levels. You can look at downcomer 10 levels, shroud levels. 11 The key thing is the water level and the 12 shroud. That's what keeps the floor covered. 13 Okay. This shows the containment 14 pressure, the function of time for the	
 6 later presentation. This is the two phase level. 7 You'll see a lot more detail as we go along, and you can look at it from collapsed levels. You can look at downcomer 8 it from two phased levels. You can look at downcomer 10 levels, shroud levels. 11 The key thing is the water level and the 12 shroud. That's what keeps the floor covered. 13 Okay. This shows the containment 14 pressure, the function of time for the 	
You'll see a lot more detail as we go along, and you can look at it from collapsed levels. You can look at it from two phased levels. You can look at downcomer levels, shroud levels. The key thing is the water level and the shroud. That's what keeps the floor covered. Okay. This shows the containment pressure, the function of time for the	
8 can look at it from collapsed levels. You can look at 9 it from two phased levels. You can look at downcomer 10 levels, shroud levels. 11 The key thing is the water level and the 12 shroud. That's what keeps the floor covered. 13 Okay. This shows the containment 14 pressure, the function of time for the	
 9 it from two phased levels. You can look at downcomer 10 levels, shroud levels. 11 The key thing is the water level and the 12 shroud. That's what keeps the floor covered. 13 Okay. This shows the containment 14 pressure, the function of time for the 	
10 levels, shroud levels. 11 The key thing is the water level and the 12 shroud. That's what keeps the floor covered. 13 Okay. This shows the containment 14 pressure, the function of time for the	
11The key thing is the water level and the12shroud. That's what keeps the floor covered.13Okay. This shows the containment14pressure, the function of time for the	
12 shroud. That's what keeps the floor covered. 13 Okay. This shows the containment 14 pressure, the function of time for the	
13 Okay. This shows the containment 14 pressure, the function of time for the	
14 pressure, the function of time for the	
15 CHAIRMAN WALLIS: Does it ever come down?	
16 MR. RAO: Pardon?	
17 CHAIRMAN WALLIS: Does it ever come down?	
18 It seems to be creeping up.	
19 MR. RAO: A passive system will not get	
20 down to ambient conditions.	
21 CHAIRMAN WALLIS: So it stays up at .8?	
22 MR. RAO: Yeah, it stays up there. That's	
23 true. Because remember what keeps the pressure up is	
24 the air goes from the drywell to the wetwell. It's	
25 not a heating issue. It's not a safety issue. It's	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

83 1 a question of just the air being in the -- from the 2 drywell being pushed into the wetwell. That is really 3 what --4 CHAIRMAN WALLIS: Then what's in the 5 drywell? Just steam? 6 MR. RAO: Steam. 7 CHAIRMAN WALLIS: Well, eventually that's 8 going to disappear. 9 MR. RAO: Pardon? 10 CHAIRMAN WALLIS: Eventually that will 11 presumably go. 12 MR. RAO: No. CHAIRMAN WALLIS: 13 No? 14 MR. RAO: Decay heat will keep it there. 15 CHAIRMAN WALLIS: Oh, okay. 16 MEMBER POWERS: Ιt depends the on 17 definition of "eventually." Eventually decay heat goes away and then you're all dead. 18 19 MR. RAO: Eventually you'll have to turn 20 on your pumps. Okay? There's no -- okay. The 21 passive system will never get you to ambient 22 conditions. 23 Okay. There's an extensive test program. 24 I've just given you an overview. We've done component 25 We've done integral tests, different scales, costs.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1different countries, a system interaction test. We've2even done tests with hydrogen releases. Basically the3testing is used to qualify the computer code.4And there's been extensive review and5participation by the NRC staff in the tests matrix6both from the SBWR program, all on the SBWR program,7and the running of the actual test.8A key point in our presentation is that9all of the testing that was done for SBWR we believe10is sufficient for the qualification of the TRACG11computer code. However, we did additional12confirmatory testing for the ESBWR in one of the test13facilities, and we'll present results from that also.14MEMBER KRESS: I presume you base that on15a PIRT and a scaling and pi groups that are16MR. RAO: Right.17MEMBER KRESS: basically the same?18MR. RAO: Right, exactly.19CHAIRMAN WALLIS: Actually I think you try20to do everything at full scale in the sense that it's21full height.22CHAIRMAN WALLIS: The only thing that is24compromised is the diameter of things.25MR. RAO: Well, the component tests were		84
3testing is used to qualify the computer code.4And there's been extensive review and5participation by the NRC staff in the tests matrix6both from the SBWR program, all on the SBWR program,7and the running of the actual test.8A key point in our presentation is that9all of the testing that was done for SBWR we believe10is sufficient for the qualification of the TRACG11computer code. However, we did additional12confirmatory testing for the ESBWR in one of the test13facilities, and we'll present results from that also.14MEMBER KRESS: I presume you base that on15a PIRT and a scaling and pi groups that are16MR. RAO: Right.17MEMBER KRESS: basically the same?18MR. RAO: Right, exactly.19CHAIRMAN WALLIS: Actually I think you try20to do everything at full scale in the sense that it's21full height.22CHAIRMAN WALLIS: The only thing that is24compromised is the diameter of things.	1	different countries, a system interaction test. We've
4And there's been extensive review and5participation by the NRC staff in the tests matrix6both from the SBWR program, all on the SBWR program,7and the running of the actual test.8A key point in our presentation is that9all of the testing that was done for SBWR we believe10is sufficient for the qualification of the TRACG11computer code. However, we did additional12computer code. However, we did additional13facilities, and we'll present results from that also.14MEMBER KRESS: I presume you base that on15a PIRT and a scaling and pi groups that are16MR. RAO: Right.17MEMBER KRESS: basically the same?18MR. RAO: Right, exactly.19CHAIRMAN WALLIS: Actually I think you try20to do everything at full scale in the sense that it's21full height.22CHAIRMAN WALLIS: The only thing that is24compromised is the diameter of things.	2	even done tests with hydrogen releases. Basically the
5participation by the NRC staff in the tests matrix6both from the SBWR program, all on the SBWR program,7and the running of the actual test.8A key point in our presentation is that9all of the testing that was done for SBWR we believe10is sufficient for the qualification of the TRACG11computer code. However, we did additional12confirmatory testing for the ESBWR in one of the test13facilities, and we'll present results from that also.14MEMBER KRESS: I presume you base that on15a PIRT and a scaling and pi groups that are16MR. RAO: Right.17MEMBER KRESS: basically the same?18MR. RAO: Right, exactly.19CHAIRMAN WALLIS: Actually I think you try20to do everything at full scale in the sense that it's21full height.22CHAIRMAN WALLIS: The only thing that is24compromised is the diameter of things.	3	testing is used to qualify the computer code.
 both from the SBWR program, all on the SBWR program, and the running of the actual test. A key point in our presentation is that all of the testing that was done for SBWR we believe is sufficient for the qualification of the TRACG computer code. However, we did additional confirmatory testing for the ESBWR in one of the test facilities, and we'll present results from that also. MEMBER KRESS: I presume you base that on a PIRT and a scaling and pi groups that are MR. RAO: Right. MEMBER KRESS: basically the same? MR. RAO: Right, exactly. CHAIRMAN WALLIS: Actually I think you try to do everything at full scale in the sense that it's full height. MR. RAO: Well, we CHAIRMAN WALLIS: The only thing that is compromised is the diameter of things. 	4	And there's been extensive review and
7and the running of the actual test.8A key point in our presentation is that9all of the testing that was done for SBWR we believe10is sufficient for the qualification of the TRACG11computer code. However, we did additional12confirmatory testing for the ESBWR in one of the test13facilities, and we'll present results from that also.14MEMBER KRESS: I presume you base that on15a PIRT and a scaling and pi groups that are16MR. RAO: Right.17MEMBER KRESS: basically the same?18MR. RAO: Right, exactly.19CHAIRMAN WALLIS: Actually I think you try20to do everything at full scale in the sense that it's21MR. RAO: Well, we23CHAIRMAN WALLIS: The only thing that is24compromised is the diameter of things.	5	participation by the NRC staff in the tests matrix
 A key point in our presentation is that all of the testing that was done for SBWR we believe is sufficient for the qualification of the TRACG computer code. However, we did additional confirmatory testing for the ESBWR in one of the test facilities, and we'll present results from that also. MEMBER KRESS: I presume you base that on a PIRT and a scaling and pi groups that are MR. RAO: Right. MEMBER KRESS: basically the same? MR. RAO: Right, exactly. CHAIRMAN WALLIS: Actually I think you try to do everything at full scale in the sense that it's full height. MR. RAO: Well, we CHAIRMAN WALLIS: The only thing that is compromised is the diameter of things. 	6	both from the SBWR program, all on the SBWR program,
 all of the testing that was done for SBWR we believe is sufficient for the qualification of the TRACG computer code. However, we did additional confirmatory testing for the ESBWR in one of the test facilities, and we'll present results from that also. MEMBER KRESS: I presume you base that on a PIRT and a scaling and pi groups that are MR. RAO: Right. MEMBER KRESS: basically the same? MR. RAO: Right, exactly. CHAIRMAN WALLIS: Actually I think you try to do everything at full scale in the sense that it's full height. CHAIRMAN WALLIS: The only thing that is compromised is the diameter of things. 	7	and the running of the actual test.
 10 is sufficient for the qualification of the TRACG 11 computer code. However, we did additional 12 confirmatory testing for the ESBWR in one of the test 13 facilities, and we'll present results from that also. 14 MEMBER KRESS: I presume you base that on 15 a PIRT and a scaling and pi groups that are 16 MR. RAO: Right. 17 MEMBER KRESS: basically the same? 18 MR. RAO: Right, exactly. 19 CHAIRMAN WALLIS: Actually I think you try 20 to do everything at full scale in the sense that it's 21 full height. 22 MR. RAO: Well, we 23 CHAIRMAN WALLIS: The only thing that is 24 compromised is the diameter of things. 	8	A key point in our presentation is that
<pre>11 computer code. However, we did additional 12 confirmatory testing for the ESBWR in one of the test 13 facilities, and we'll present results from that also. 14 MEMBER KRESS: I presume you base that on 15 a PIRT and a scaling and pi groups that are 16 MR. RAO: Right. 17 MEMBER KRESS: basically the same? 18 MR. RAO: Right, exactly. 19 CHAIRMAN WALLIS: Actually I think you try 20 to do everything at full scale in the sense that it's 21 full height. 22 MR. RAO: Well, we 23 CHAIRMAN WALLIS: The only thing that is 24 compromised is the diameter of things.</pre>	9	all of the testing that was done for SBWR we believe
12 confirmatory testing for the ESBWR in one of the test 13 facilities, and we'll present results from that also. 14 MEMBER KRESS: I presume you base that on 15 a PIRT and a scaling and pi groups that are 16 MR. RAO: Right. 17 MEMBER KRESS: basically the same? 18 MR. RAO: Right, exactly. 19 CHAIRMAN WALLIS: Actually I think you try 20 to do everything at full scale in the sense that it's 21 full height. 22 MR. RAO: Well, we 23 CHAIRMAN WALLIS: The only thing that is 24 compromised is the diameter of things.	10	is sufficient for the qualification of the TRACG
13facilities, and we'll present results from that also.14MEMBER KRESS: I presume you base that on15a PIRT and a scaling and pi groups that are16MR. RAO: Right.17MEMBER KRESS: basically the same?18MR. RAO: Right, exactly.19CHAIRMAN WALLIS: Actually I think you try20to do everything at full scale in the sense that it's21full height.22MR. RAO: Well, we23CHAIRMAN WALLIS: The only thing that is24compromised is the diameter of things.	11	computer code. However, we did additional
14MEMBER KRESS: I presume you base that on15a PIRT and a scaling and pi groups that are16MR. RAO: Right.17MEMBER KRESS: basically the same?18MR. RAO: Right, exactly.19CHAIRMAN WALLIS: Actually I think you try20to do everything at full scale in the sense that it's21full height.22MR. RAO: Well, we23CHAIRMAN WALLIS: The only thing that is24compromised is the diameter of things.	12	confirmatory testing for the ESBWR in one of the test
<pre>15 a PIRT and a scaling and pi groups that are 16 MR. RAO: Right. 17 MEMBER KRESS: basically the same? 18 MR. RAO: Right, exactly. 19 CHAIRMAN WALLIS: Actually I think you try 20 to do everything at full scale in the sense that it's 21 full height. 22 MR. RAO: Well, we 23 CHAIRMAN WALLIS: The only thing that is 24 compromised is the diameter of things.</pre>	13	facilities, and we'll present results from that also.
16 MR. RAO: Right. 17 MEMBER KRESS: basically the same? 18 MR. RAO: Right, exactly. 19 CHAIRMAN WALLIS: Actually I think you try 20 to do everything at full scale in the sense that it's 21 full height. 22 MR. RAO: Well, we 23 CHAIRMAN WALLIS: The only thing that is 24 compromised is the diameter of things.	14	MEMBER KRESS: I presume you base that on
MEMBER KRESS: basically the same? MR. RAO: Right, exactly. CHAIRMAN WALLIS: Actually I think you try to do everything at full scale in the sense that it's full height. MR. RAO: Well, we CHAIRMAN WALLIS: The only thing that is compromised is the diameter of things.	15	a PIRT and a scaling and pi groups that are
18 MR. RAO: Right, exactly. 19 CHAIRMAN WALLIS: Actually I think you try 20 to do everything at full scale in the sense that it's 21 full height. 22 MR. RAO: Well, we 23 CHAIRMAN WALLIS: The only thing that is 24 compromised is the diameter of things.	16	MR. RAO: Right.
19 CHAIRMAN WALLIS: Actually I think you try 20 to do everything at full scale in the sense that it's 21 full height. 22 MR. RAO: Well, we 23 CHAIRMAN WALLIS: The only thing that is 24 compromised is the diameter of things.	17	MEMBER KRESS: basically the same?
<pre>20 to do everything at full scale in the sense that it's 21 full height. 22 MR. RAO: Well, we 23 CHAIRMAN WALLIS: The only thing that is 24 compromised is the diameter of things.</pre>	18	MR. RAO: Right, exactly.
<pre>21 full height. 22 MR. RAO: Well, we 23 CHAIRMAN WALLIS: The only thing that is 24 compromised is the diameter of things.</pre>	19	CHAIRMAN WALLIS: Actually I think you try
22 MR. RAO: Well, we 23 CHAIRMAN WALLIS: The only thing that is 24 compromised is the diameter of things.	20	to do everything at full scale in the sense that it's
CHAIRMAN WALLIS: The only thing that iscompromised is the diameter of things.	21	full height.
24 compromised is the diameter of things.	22	MR. RAO: Well, we
	23	CHAIRMAN WALLIS: The only thing that is
25 MR. RAO: Well, the component tests were	24	compromised is the diameter of things.
	25	MR. RAO: Well, the component tests were

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	full scale for the SBWR size.
2	CHAIRMAN WALLIS: As much as possible,
3	right.
4	MR. RAO: We did as far as DPVs and
5	vacuum breakers and all, those are full scale
6	components. The only thing that's not full scale for
7	the SBWR and ESBWR is the PCCS heat exchangers.
8	CHAIRMAN WALLIS: Just the system, yeah.
9	MR. RAO: PCCS heat exchangers. Okay?
10	We've made them 35 percent bigger. We just increased
11	the number of tubes. Okay? So that is another
12	difference compared to the
13	DR. BANERJEE: And the chimney is
14	different, right?
15	MR. RAO: The chimney is the same as the
16	SBWR ones.
17	DR. BANERJEE: They're the same size?
18	MR. RAO: Yeah, the one meter by one meter
19	diameter.
20	DR. BANERJEE: Right, and the length was?
21	MR. RAO: Length may have gone up by about
22	a meter or so.
23	CHESTER: It's just a little bit longer.
24	MR. RAO: Or half a meter. I don't know
25	what the exact number is, but it's up a little bit.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	Okay. So we made extensive new
2	submittals. You can see out here we've like 7,000
3	additional pages of submittals compared to the SBWR.
4	We are relying a lot on the SBWR. So that was a
5	complete and extensive program.
6	This shows the overall technology program
7	elements. You'll hear on this the testing and
8	analysis program next. It's called TAPD. You'll hear
9	that acronym many times. This gives you what we did
10	on the PIRTs, what was required for qualification.
11	That defines the overall plan. Okay?
12	With regard to the TRAC model description,
13	we got what we called the TRAC base qualification.
14	That was a report that was submitted and approved by
15	the NRC earlier for operating plants' AOOs, as shown
16	out here. So these three on the right had been
17	submitted earlier to the staff.
18	Some of the ones out here with the dashed
19	colors in the blue are some that were submitted for
20	the SBWR. The ones that don't have any color in them
21	are new or unique submittals in support of this ESBWR
22	technology closure.
23	We've got a scaling report. You'll hear
24	about that. You'll hear about the SBWR testing
25	summary. You'll hear about the ESBWR specific tests

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	that were run. You'll hear more on the TRACG
2	qualification, how we do the model bias and
3	uncertainty, and that gives us the validated core, and
4	that's what we're looking for in this part of the
5	program, an SER on that.
6	Basically the SER sorry is on the
7	application methodology. I'm sorry. it's not on the
8	validated core. It's on the application methodology.
9	Okay.
10	And once we get that, we'll submit the
11	safety analysis report.
12	MEMBER FORD: So material degradation
13	issues, the only place it would come would be plant
14	parameter uncertainties?
15	MR. RAO: Yes, but we have not done that
16	specifically up yet. So I don't want to even imply.
17	That will come in this, okay, in the safety analysis
18	report. That's part of the next submittals.
19	So you'll be hearing about each one of
20	these, and you'll see that chart come up a few times.
21	Okay. I'm down to almost one more chart
22	after this, and basically we have simplified the
23	design with passive systems. The plant evaluations
24	are simpler. Calculations can be done at the back of
25	an envelope of the containment pressure. You can look

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	at what we've done in the design in terms of LOCA.
2	We've added a lot more water to the vessel. That's
3	why you don't uncover the core.
4	And we can take a lot of uncertainty, you
5	know, injection rates, start times, VDCS flows, all of
6	those things, and it's not a plant that's sensitive to
7	any of those uncertainties.
8	The analysis is a lot less complex than in
9	the past. What you'll hear, again, later on I'm
10	just giving you an overview is that we're using the
11	best test for AOOs. Okay? For the three applications
12	here, we are trying to follow the procedure that's
13	approved by the NRC or suggested by the NRC. We're
14	using a best estimate cord with uncertainties defined
15	as for our operating plants, the same as for AOOs for
16	operating plants, no different procedure, no different
17	application.
18	For ECCS/LOCA, since we had lots of margin
19	what we did was we're using best estimate code with a
20	simplified accounting of the uncertainties. It's a
21	simplified accounting just to save us work because,
22	you know, you can build the same procedures around 59
23	cases and do all of the uncertainties. All that you
24	will get is, you know, ultimately there will be no
25	change in the peak cladding temperature.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 So what we've done is a simpli 2 accounting of the uncertainties. It's 3 simplified. It's more, you know it doesn't see 4 be evaluable, of any use to do all of those 59 ca	
3 simplified. It's more, you know it doesn't see	
	just
4 he evaluable of any use to do all of those 50 d	em to
$\begin{bmatrix} 1 \\ 0 \end{bmatrix} be evaluable, of any use to do all of those 59 ca$	ases.
5 MEMBER SIEBER: Are you going to exp	plain
6 exactly what you mean by simplified later on?	
7 MR. RAO: Later on.	
8 MEMBER SIEBER: Thanks.	
9 MR. RAO: Okay, but I do want to tel	l you
10 that, you know, there's a slight difference in	n the
11 application of the TRACG out here and just give y	you a
12 heads up. That's what you're going to hear.	
13 MEMBER SIEBER: Okay.	
14 MR. RAO: That's what issue we're loc	oking
15 for as we go through the presentations.	
16 For the containment and LOCA, we're u	using
17 a bounding calculation for the containment and	LOCA
18 analysis, and we've also accounted for	the
19 uncertainties, and we'll tell you how we've accou	unted
20 for the uncertainties.	
21 Primarily the key issue out here is h	ow do
22 you account for stratification and mixing. ()kay?
23 Like I mentioned earlier, there are two compor	nents
24 that determine the containment pressure: how much	h air
	's no

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	answer. You take all of it from the drywell and push
2	it into the wetwell. There's no uncertainty there.
3	The only question is calculating how much
4	stratification and mixing you get in the suppression
5	pool, and that will give you the vapor pressure.
6	That's a smaller part of the total containment
7	pressure, but it is the only one that will give you
8	any variation. Okay?
9	You can always do a bounding calculation
10	of the air being shoved over. Okay. So we will tell
11	you how we've done the bounding calculation for that
12	stratification. So that's where that bounding
13	calculation refers to.
14	There's low parameter uncertainty,
15	especially in the ECCS/LOCA. You know, the declining
16	temperature you see.
17	CHAIRMAN WALLIS: That looks like orders
18	of magnitude better than usual. I don't believe half
19	of the PCT.
20	MR. RAO: The core doesn't uncover. It's
21	the PCT that it doesn't matter out here.
22	CHAIRMAN WALLIS: It's so low it doesn't
23	matter.
24	MR. RAO: It doesn't matter.
25	CHAIRMAN WALLIS: So this observation is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	irrelevant.
2	MR. RAO: Yes, it doesn't uncover.
3	Okay. The substantial margins that exist
4	in the design, they're using integrated code. This is
5	what the ACRS has wanted for years. We've got that.
6	It's here. We're using it.
7	And it's not a code that we just
8	developed. It's been around for
9	CHAIRMAN WALLIS: I'm surprised your
10	management allows you to pay for these enormous
11	margins, and usually it's economically beneficial to
12	get close to some limit rather than having an enormous
13	margin.
14	MR. RAO: Well, I'll explain.
15	CHAIRMAN WALLIS: You're now going to say
16	that, "Ah-ha, but now we're going to operate the power
17	by 50 percent or something"?
18	MR. RAO: No, no, no.
19	(Laughter.)
20	MEMBER SIEBER: That's tomorrow.
21	CHAIRMAN WALLIS: There must be something
22	that you're going to gain by
23	MR. RAO: This will get me in trouble. We
24	developed the ESBWR in spite of management. Okay?
25	(Laughter.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	MR. RAO: Okay. The
2	MEMBER SIEBER: And so your work is not
3	done.
4	MR. RAO: No, no, no, no. There was a
5	reason
6	PARTICIPANT: They're going to see the
7	transcript.
8	MR. RAO: That's fine.
9	(Laughter.)
10	MR. RAO: The issue really here is what is
11	the right power level. Okay? And we chose this power
12	level for two reasons.
13	We could have gone up in fact, when we
14	chose this power level, it was the EPR had gone up
15	with 1,700, the ABWR II had gone up to 1,700. Our
16	feedback from the utilities was 1,400 is about the
17	right power level. That was what the market was
18	telling us.
19	The second thing was that 7.1 meter
20	diameter. We felt comfortable with these margins, and
21	again, remember when you're trying to bring a new
22	product to market, you do have to have something that
23	stands out, and having the additional margin, and
24	hopefully it will help us get through the NRC review,
25	the ACRS review a lot easier. Okay?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	This is an important factor in the whole
2	design, getting passed through this right here.
3	MEMBER POWERS: He's issued a challenge
4	for you, Dr. Wallis.
5	MR. RAO: The challenge really is, you
6	know, right here on this chart. Okay? This is really
7	the challenge for all of us, is it's been a 15-plus
8	year technology and design program.
9	CHAIRMAN WALLIS: That doesn't sound to me
10	good. I mean, if it has taken so long, it suggests
11	that it's a very difficult thing to do. I don't think
12	it's a
13	MR. RAO: No, it's not.
14	CHAIRMAN WALLIS: good thing to claim
15	that it has taken a long time and therefore it's good.
16	MR. RAO: No, it's not. Part of the
17	reason has been there has been no interest in the
18	market. So, you know, we're from California and no
19	wine before its time. No product before its time out
20	here, and if we had got the SBWR certified, no one
21	would say a word. Okay? It looks like there's an
22	interest out here.
23	So it's not the right time. Okay? I'm
24	not trying to imply that anyone do the same. It's an
25	extensive technology program. Simplification is by

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	design. It's not just my words. You can see the
2	numbers. It's the design that's the issue.
3	The large vessel, you know, we by the
4	way, the large vessel actually doesn't end up costing
5	us much money. Just from a practical point of view,
6	it's just an extra ring. The most expensive part of
7	the vessel is the lower head. It's not the extra
8	rings up at the top, and the
9	CHAIRMAN WALLIS: All of those
10	penetrations that you have down there is the problem?
11	MR. RAO: Yeah, that's what. You know
12	with the pumps and all of that, that's the most
13	expensive part, and just to cite the issue out here
14	not for review is that the vessel height does not set
15	the building height. It's different than the
16	traditional boiling water reactors.
17	So the challenges for the coming months
18	really are we need closure and confirmation, and one
19	of the issues that the utilities put up in their
20	presentations is regulatory risk, and this is one of
21	the issues they say about the ESBWR, is you guys don't
22	have a piece of paper to show to us that you can get
23	closure on any of these issues.
24	That's why we have renamed this the
25	technology closure program, not just the pre-

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	application review. This is not, you know, just to
2	get a feeling for it. We wanted to show that, yes, we
3	don't need any testing. We can use the TRACG code and
4	we've done a good job.
5	And thank you.
6	MEMBER KRESS: Could you go back to your
7	slide number six? I don't know if you can back up or
8	not.
9	CHAIRMAN WALLIS: Just don't click to
10	exit.
11	MEMBER KRESS: Now, on your power flow
12	map, yeah, could you show me at full power where
13	you're operating? Right there. You don't have a
14	MELLA line because that's a pump characteristic.
15	MEMBER SIEBER: Right.
16	MR. RAO: Right.
17	MEMBER KRESS: So you're operating right
18	on that steep part of that natural convection line
19	right there.
20	MR. RAO: Right there. This, you know,
21	I'm trying to show a natural circulator and a forced
22	circulator.
23	MEMBER KRESS: Yeah, I understand.
24	MR. RAO: That chart is kind of
25	misleading. You've got to remember that the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	MEMBER KRESS: Yeah, I understand.
2	MR. RAO: This should be the X axis for
3	the natural circulator.
4	MEMBER KRESS: Yeah.
5	MR. RAO: Because what it control
6	MEMBER KRESS: It should be the other way
7	around.
8	MR. RAO: It should be the other way
9	around.
10	MEMBER KRESS: Yeah.
11	MR. RAO: But, you know, because people
12	are used to this chart, we're showing it this way.
13	This is you know.
14	MEMBER KRESS: Does that open up the
15	possibility of small perturbations in flow giving you
16	large perturbations in power?
17	MR. RAO: No.
18	Rob, do you want to answer that?
19	PARTICIPANT: No, because each point on
20	that curve corresponds to a particular control rod
21	position. As you pull rods, you get different points
22	of operation. You cannot go from one flow to another.
23	You cannot jump from one flow to another.
24	MEMBER KRESS: So this is not a natural
25	thing. It's a control rod.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	PARTICIPANT: Yeah.
2	MEMBER KRESS: I understand that. Okay.
3	Well, the question there then, another
4	question on defense in depth, do you have more than
5	one redundant system to shut down, scram (phonetic)
6	the reactor?
7	MR. RAO: Yes. We have, in addition to
8	the control rod drives, which are both electrically
9	and hydraulically driven
10	MEMBER KRESS: That's sort of a diversity,
11	yes.
12	MR. RAO: That's the diversity there, and
13	we also have a boron injection system.
14	MEMBER KRESS: You have boron injections.
15	Okay. Thank you.
16	MEMBER SIEBER: That system would have to
17	be quite large compared to the current BWR
18	MR. RAO: The boron injection system is
19	actually
20	MEMBER SIEBER: High volume.
21	MR. RAO: an accumulator driven system.
22	MEMBER SIEBER: Right.
23	MR. RAO: It's a large tank, two large
24	tanks actually.
25	MEMBER RANSOM: Where is the boron

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

98 1 injection system located? Is it outside the 2 containment or --3 MR. RAO: It's outside the containment. 4 It's -- it's outside containment. It's up high. 5 MEMBER SIEBER: Yes. MR. RAO: I can show you on the drawing in 6 7 the break. MEMBER RANSOM: By natural circulation, 8 9 you mean, or do you have --10 MR. RAO: No, no. It's a high pressure accumulator driven system. 11 12 MEMBER RANSOM: Okay. It's on natural circulation. 13 MR. RAO: It's accumulator driven. So it's high pressure 14 15 injection. Just it's not part of the review, but ATWS 16 17 in this plant is handled at high pressure. 18 CHAIRMAN WALLIS: Any more questions at this time? 19 20 MEMBER SIEBER: Well, just one. Are you 21 talking operating pressure and above when you say high 22 pressure? 23 MR. RAO: Yeah. 24 MEMBER SIEBER: Okay. 25 MR. RAO: You don't need to depressurize

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	99
1	basically. You inject the boron. You remove the
2	ATWS is a containment decay heat removal issue.
3	MEMBER SIEBER: Right.
4	MR. RAO: This one, we don't dump much
5	into the containment. We remove it directly from the
6	vessel to the isolation condensers.
7	MEMBER SIEBER: But the accumulators are
8	probably 1,500 pounds or better.
9	MR. RAO: In other pressure or
10	MEMBER SIEBER: To start.
11	MR. RAO: I don't know the pressure. I
12	was going to say 2,000, but
13	MEMBER SIEBER: Well, I was, too.
14	MR. RAO: Yeah. I think it is 2,000, but
15	we can give you the exact number.
16	MEMBER SIEBER: Well, it's not that
17	important. I was just trying to understand what it
18	MR. RAO: Yeah. Well, it injects and it
19	basically shuts down. The key question is where do
20	you remove the steam. The way it works is initially
21	the relief valve opens. It dumps some energy into the
22	suppression pool, but very soon the isolation
23	condensers take over and it can remove the energy, and
24	so you stay at high pressure. You don't lose anymore
25	boron out of the water.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1MEMBER RANSOM: Atam, one other question2on your containment pressure slide.3MR. RAO: Yes, sir.4MEMBER RANSOM: I don't know what it's5page 11.6MR. RAO: Okay.7MEMBER RANSOM: Where does that eventually8go and what eventually turns it around?9MR. RAO: You have a turn-around in an10active system.11MEMBER RANSOM: Pardon?12MR. RAO: You turn on an active system13long term to bring the pressure down. That's a large14plot, you know. It's kind of misleading. It makes it15lock like it keeps going on.16MEMBER RANSOM: Do you have a table you17can give to us of the volumes and the design, the18amount of water and GDCS in the wetwell and so forth?19MR. RAO: We can try to pull that20CHAIRMAN WALLIS: I think it's time we put21An end to this. It has been a very useful overview.22Thank you very much. I think it has23helped us a great deal, and now we're going to dig		100
3 MR. RAO: Yes, sir. 4 MEMBER RANSOM: I don't know what it's 5 page 11. 6 MR. RAO: Okay. 7 MEMBER RANSOM: Where does that eventually 8 go and what eventually turns it around? 9 MR. RAO: You have a turn-around in an 10 active system. 11 MEMBER RANSOM: Pardon? 12 MR. RAO: You turn on an active system 13 long term to bring the pressure down. That's a large 14 plot, you know. It's kind of misleading. It makes it 15 look like it keeps going on. 16 MEMBER RANSOM: Do you have a table you 17 can give to us of the volumes and the design, the 18 amount of water and GDCS in the wetwell and so forth? 19 MR. RAO: We can try to pull that 20 cHAIRMAN WALLIS: I think it's time we put 21 MEMBER RANSOM: Yeah, I have the table. 22 CHAIRMAN WALLIS: I think it has 23 an end to this. It has been a very useful overview. 24 Thank you very much. I think it has	1	MEMBER RANSOM: Atam, one other question
4 MEMBER RANSOM: I don't know what it's 5 page 11. 6 MR. RAO: Okay. 7 MEMBER RANSOM: Where does that eventually 8 go and what eventually turns it around? 9 MR. RAO: You have a turn-around in an 10 active system. 11 MEMBER RANSOM: Pardon? 12 MR. RAO: You turn on an active system 13 long term to bring the pressure down. That's a large 14 plot, you know. It's kind of misleading. It makes it 15 look like it keeps going on. 16 MEMBER RANSOM: Do you have a table you 17 can give to us of the volumes and the design, the 18 amount of water and GDCS in the wetwell and so forth? 19 MR. RAO: We can try to pull that 20 CHAIRMAN WALLIS: I think it's time we put 21 MEMBER RANSOM: Yeah, I have the table. 22 CHAIRMAN WALLIS: I think it's time we put 23 an end to this. It has been a very useful overview. 24 Thank you very much. I think it has	2	on your containment pressure slide.
5 page 11. 6 MR. RAO: Okay. 7 MEMBER RANSOM: Where does that eventually 8 go and what eventually turns it around? 9 MR. RAO: You have a turn-around in an 10 active system. 11 MEMBER RANSOM: Pardon? 12 MR. RAO: You turn on an active system 13 long term to bring the pressure down. That's a large 14 plot, you know. It's kind of misleading. It makes it 15 look like it keeps going on. 16 MEMBER RANSOM: Do you have a table you 17 can give to us of the volumes and the design, the 18 amount of water and GDCS in the wetwell and so forth? 19 MR. RAO: We can try to pull that 20 CHAIRMAN WALLIS: I think it's time we put 21 MEMBER RANSOM: Yeah, I have the table. 22 CHAIRMAN WALLIS: I think it's time we put 23 an end to this. It has been a very useful overview. 24 Thank you very much. I think it has	3	MR. RAO: Yes, sir.
6 MR. RAO: Okay. 7 MEMBER RANSOM: Where does that eventually 8 go and what eventually turns it around? 9 MR. RAO: You have a turn-around in an 10 active system. 11 MEMBER RANSOM: Pardon? 12 MR. RAO: You turn on an active system 13 long term to bring the pressure down. That's a large 14 plot, you know. It's kind of misleading. It makes it 15 look like it keeps going on. 16 MEMBER RANSOM: Do you have a table you 17 can give to us of the volumes and the design, the 18 amount of water and GDCS in the wetwell and so forth? 19 MR. RAO: We can try to pull that 20 together. 21 MEMBER RANSOM: Yeah, I have the table. 22 CHAIRMAN WALLIS: I think it's time we put 23 an end to this. It has been a very useful overview. 24 Thank you very much. I think it has	4	MEMBER RANSOM: I don't know what it's
 MEMBER RANSOM: Where does that eventually go and what eventually turns it around? MR. RAO: You have a turn-around in an active system. MEMBER RANSOM: Pardon? MR. RAO: You turn on an active system long term to bring the pressure down. That's a large plot, you know. It's kind of misleading. It makes it look like it keeps going on. MEMBER RANSOM: Do you have a table you can give to us of the volumes and the design, the amount of water and GDCS in the wetwell and so forth? MR. RAO: We can try to pull that together. MEMBER RANSOM: Yeah, I have the table. CHAIRMAN WALLIS: I think it's time we put an end to this. It has been a very useful overview. Thank you very much. I think it has 	5	page 11.
8 go and what eventually turns it around? 9 MR. RAO: You have a turn-around in an 10 active system. 11 MEMBER RANSOM: Pardon? 12 MR. RAO: You turn on an active system 13 long term to bring the pressure down. That's a large 14 plot, you know. It's kind of misleading. It makes it 15 look like it keeps going on. 16 MEMBER RANSOM: Do you have a table you 17 can give to us of the volumes and the design, the 18 amount of water and GDCS in the wetwell and so forth? 19 MR. RAO: We can try to pull that 20 together. 21 MEMBER RANSOM: Yeah, I have the table. 22 CHAIRMAN WALLIS: I think it's time we put 23 an end to this. It has been a very useful overview. 24 Thank you very much. I think it has	6	MR. RAO: Okay.
9 MR. RAO: You have a turn-around in an 10 active system. 11 MEMBER RANSOM: Pardon? 12 MR. RAO: You turn on an active system 13 long term to bring the pressure down. That's a large 14 plot, you know. It's kind of misleading. It makes it 15 look like it keeps going on. 16 MEMBER RANSOM: Do you have a table you 17 can give to us of the volumes and the design, the 18 amount of water and GDCS in the wetwell and so forth? 19 MR. RAO: We can try to pull that 20 CHAIRMAN WALLIS: I think it's time we put 21 CHAIRMAN WALLIS: I think it has 22 Thank you very much. I think it has	7	MEMBER RANSOM: Where does that eventually
10 active system. 11 MEMBER RANSOM: Pardon? 12 MR. RAO: You turn on an active system 13 long term to bring the pressure down. That's a large 14 plot, you know. It's kind of misleading. It makes it 15 look like it keeps going on. 16 MEMBER RANSOM: Do you have a table you 17 can give to us of the volumes and the design, the amount of water and GDCS in the wetwell and so forth? 19 MR. RAO: We can try to pull that 20 together. 21 MEMBER RANSOM: Yeah, I have the table. 22 CHAIRMAN WALLIS: I think it's time we put 23 an end to this. It has been a very useful overview. 24 Thank you very much. I think it has	8	go and what eventually turns it around?
11MEMBER RANSOM: Pardon?12MR. RAO: You turn on an active system13long term to bring the pressure down. That's a large14plot, you know. It's kind of misleading. It makes it15look like it keeps going on.16MEMBER RANSOM: Do you have a table you17can give to us of the volumes and the design, the18amount of water and GDCS in the wetwell and so forth?19MR. RAO: We can try to pull that20together.21MEMBER RANSOM: Yeah, I have the table.22CHAIRMAN WALLIS: I think it's time we put23an end to this. It has been a very useful overview.24Thank you very much. I think it has	9	MR. RAO: You have a turn-around in an
12MR. RAO: You turn on an active system13long term to bring the pressure down. That's a large14plot, you know. It's kind of misleading. It makes it15look like it keeps going on.16MEMBER RANSOM: Do you have a table you17can give to us of the volumes and the design, the18amount of water and GDCS in the wetwell and so forth?19MR. RAO: We can try to pull that20together.21MEMBER RANSOM: Yeah, I have the table.22CHAIRMAN WALLIS: I think it's time we put23an end to this. It has been a very useful overview.24Thank you very much. I think it has	10	active system.
 long term to bring the pressure down. That's a large plot, you know. It's kind of misleading. It makes it look like it keeps going on. MEMBER RANSOM: Do you have a table you can give to us of the volumes and the design, the amount of water and GDCS in the wetwell and so forth? MR. RAO: We can try to pull that together. MEMBER RANSOM: Yeah, I have the table. CHAIRMAN WALLIS: I think it's time we put an end to this. It has been a very useful overview. Thank you very much. I think it has 	11	MEMBER RANSOM: Pardon?
14plot, you know. It's kind of misleading. It makes it15look like it keeps going on.16MEMBER RANSOM: Do you have a table you17can give to us of the volumes and the design, the18amount of water and GDCS in the wetwell and so forth?19MR. RAO: We can try to pull that20together.21MEMBER RANSOM: Yeah, I have the table.22CHAIRMAN WALLIS: I think it's time we put23an end to this. It has been a very useful overview.24Thank you very much. I think it has	12	MR. RAO: You turn on an active system
 look like it keeps going on. MEMBER RANSOM: Do you have a table you can give to us of the volumes and the design, the amount of water and GDCS in the wetwell and so forth? MR. RAO: We can try to pull that together. MEMBER RANSOM: Yeah, I have the table. CHAIRMAN WALLIS: I think it's time we put an end to this. It has been a very useful overview. Thank you very much. I think it has 	13	long term to bring the pressure down. That's a large
16MEMBER RANSOM: Do you have a table you17can give to us of the volumes and the design, the18amount of water and GDCS in the wetwell and so forth?19MR. RAO: We can try to pull that20together.21MEMBER RANSOM: Yeah, I have the table.22CHAIRMAN WALLIS: I think it's time we put23an end to this. It has been a very useful overview.24Thank you very much. I think it has	14	plot, you know. It's kind of misleading. It makes it
17 can give to us of the volumes and the design, the 18 amount of water and GDCS in the wetwell and so forth? 19 MR. RAO: We can try to pull that 20 together. 21 MEMBER RANSOM: Yeah, I have the table. 22 CHAIRMAN WALLIS: I think it's time we put 23 an end to this. It has been a very useful overview. 24 Thank you very much. I think it has	15	look like it keeps going on.
18 amount of water and GDCS in the wetwell and so forth? 19 MR. RAO: We can try to pull that 20 together. 21 MEMBER RANSOM: Yeah, I have the table. 22 CHAIRMAN WALLIS: I think it's time we put 23 an end to this. It has been a very useful overview. 24 Thank you very much. I think it has	16	MEMBER RANSOM: Do you have a table you
19MR. RAO: We can try to pull that20together.21MEMBER RANSOM: Yeah, I have the table.22CHAIRMAN WALLIS: I think it's time we put23an end to this. It has been a very useful overview.24Thank you very much. I think it has	17	can give to us of the volumes and the design, the
20 together. 21 MEMBER RANSOM: Yeah, I have the table. 22 CHAIRMAN WALLIS: I think it's time we put 23 an end to this. It has been a very useful overview. 24 Thank you very much. I think it has	18	amount of water and GDCS in the wetwell and so forth?
21 MEMBER RANSOM: Yeah, I have the table. 22 CHAIRMAN WALLIS: I think it's time we put 23 an end to this. It has been a very useful overview. 24 Thank you very much. I think it has	19	MR. RAO: We can try to pull that
 22 CHAIRMAN WALLIS: I think it's time we put 23 an end to this. It has been a very useful overview. 24 Thank you very much. I think it has 	20	together.
 an end to this. It has been a very useful overview. Thank you very much. I think it has 	21	MEMBER RANSOM: Yeah, I have the table.
24 Thank you very much. I think it has	22	CHAIRMAN WALLIS: I think it's time we put
	23	an end to this. It has been a very useful overview.
25 helped us a great deal, and now we're going to dig	24	Thank you very much. I think it has
	25	helped us a great deal, and now we're going to dig

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	into the details, but first we will take a break.
2	Since we have taken so long, I think
3	everything is going to be moved up today by 45 minutes
4	or an hours. We should just plan accordingly, and we
5	should expect to be here until five or six o'clock and
6	not to finish by 4:15.
7	We will take a break now until 20 minutes
8	before 11, and I'd ask everyone to be back on time so
9	that we can start at that time.
10	(Whereupon, at 10:25 a.m., a short recess
11	was taken, reconvening in open session at 4:26 p.m.)

	314
1	(Whereupon, the proceedings in the
2	above-entitled matter went back on the record at 4:26
3	p.m.)
4	CHAIRMAN WALLIS: Back on the record.
5	We'll now hear from staff.
6	MS. CUBBAGE: Thank you. I'm Amy Cubbage,
7	Project manager, ESBWR pre-application review in NRR,
8	and I'm going to give a brief discussion on the scope
9	and schedule for the pre- application review. You've
10	seen this earlier today, but I just wanted to make a
11	couple of points here; one being that PRA is not
12	included in the pre-application review scope. That
13	will be addressed during the design certification
14	review. And ATWS and stability are not in the
15	current pre-application scope, but will likely be
16	added in early `04 as an addition to the pre-
17	application review.
18	And on the schedule slide, I'd just like
19	to point out that the staff has provided 317 RAIs to
20	GE at this point, and we're planning to issue
21	additional RAIs by the end of the month.
22	MR. POWERS: Do you get paid by the RAI,
23	or
24	(Laughter.)
25	MS. CUBBAGE: Around 300. Is that better?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	315
1	MR. POWERS: Maybe these guys can work a
2	deal and pay you more for non-RAIs.
3	MS. CUBBAGE: I'm afraid it doesn't work
4	that way.
5	MR. POWERS: Oh, all right.
6	MS. CUBBAGE: Research and NRR have
7	developed a pre-application review plan, and assembled
8	an inter-office review team. Ralph Landry has the
9	lead for the TRACG review. Muhhamad Razzaque will be
10	presenting the Tab D Scaling and Testing Review, and
11	Joe Staudemeier from Office of Research will discuss
12	the research activities associated with the SBWR. And
13	if there are no questions, I'd like to turn it over to
14	Ralph to get started.
15	CHAIRMAN WALLIS: Well, we're going to
16	have research activities later?
17	MS. CUBBAGE: Correct.
18	CHAIRMAN WALLIS: It seems as if we've
19	gone into a situation we've been in before, where
20	research comes after it's needed.
21	MS. CUBBAGE: Oh, later meaning in this
22	presentation.
23	CHAIRMAN WALLIS: No. I mean research is
24	going to be done after NRR has made some of its
25	decisions.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	316
1	MS. CUBBAGE: There are some activities
2	that are in direct support of the pre-application
3	review, and we'll discuss those. And then there are
4	other activities that will be in support of the design
5	certification.
6	CHAIRMAN WALLIS: But even those you're
7	going to have to hustle.
8	MS. CUBBAGE: That's right.
9	CHAIRMAN WALLIS: Okay. Sorry to stop
10	you. Go ahead, Ralph.
11	MR. LANDRY: I'm Ralph Landry from NRR,
12	Reactor Systems Branch. And this afternoon, I'm going
13	to try to get through this fairly quickly. Most of
14	the material has been touched on already, but I would
15	like to give a view of the staff over some of these
16	points. And I'm going to go through very quickly the
17	TRACG Code Review approach, who the team members are
18	involved in the review, a few of the technical issues
19	which have been raised. And on these issues, we don't
20	have answers yet. These are some of the points that
21	we've raised as concerns, and points that we've asked
22	in RAIs and are seeking to have addressed, a little
23	bit about the status of the RAIs, which Amy has just
24	mentioned, talk about some of the confirmatory
25	calculations that we have planned and that are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	317
1	underway, and a few of our conclusions.
2	The approach that we've taken to the
3	review of TRACG is two-pronged. One is reviewing the
4	documentation, and the second part is going to be
5	reviewing use of the code, analysis and performing of
6	confirmatory calculations.
7	Looking at the documents today, we've been
8	looking at the TRACG model description, VIA's BWR
9	application qualification, the SBWR application and
10	qualification and the input manual to the code. The
11	code documentation is fairly good. Looking at all
12	these different codes over the years, we've seen some
13	documentation that's been abysmal and that's kind.
14	We've seen some documentation that's far better.
15	The frustration we've had with this
16	documentation is the breadth of it. We began looking
17	at the model description document, which is noted as
18	Revision 2. It's the same volume that was submitted
19	for AOO reviews of TRACG. We were told that's the
20	document we're supposed to review for the model
21	description for TRACG part of this application. Well,
22	in performing that review, we found out that where's
23	all the containment stuff? This code is being used
24	for the reactor coolant system and for the
25	containment, but there was nothing in there applicable

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1to the containment. OG said you have to back to Rev21 of the document, the SBWR version, to find the3containment material, so we went back to the Rev. 1 of4find that the containment relevant material, but it5all relevant to the SBWR containment.6Then we said well, if we're going to lood7at that, we have to go back and compare it to Rev.8to see what corrections were made, to see if the9updated as had been planned in the SBWR review. State10the frustration is, while we say we're looking at the11model description document, we're actually looking at12three volumes, three revisions of the same document13and that material still isn't complete, and had14resulted in RAIS.15Looking at the description material, to16found a number of places where there are typographical	he to
3 containment material, so we went back to the Rev. 1 a 4 find that the containment relevant material, but it 5 all relevant to the SBWR containment. 6 Then we said well, if we're going to loc 7 at that, we have to go back and compare it to Rev. 8 to see what corrections were made, to see if the 9 updated as had been planned in the SBWR review. See the frustration is, while we say we're looking at the 10 the frustration document, we're actually looking at 11 model description document, we're actually looking at 12 three volumes, three revisions of the same document 13 and that material still isn't complete, and had resulted in RAIs. 15 Looking at the description material, we found a number of places where there are typographical	to
 find that the containment relevant material, but it all relevant to the SBWR containment. Then we said well, if we're going to loog at that, we have to go back and compare it to Rev. to see what corrections were made, to see if the updated as had been planned in the SBWR review. the frustration is, while we say we're looking at the model description document, we're actually looking at three volumes, three revisions of the same document and that material still isn't complete, and hat resulted in RAIs. Looking at the description material, we found a number of places where there are typographical 	
5all relevant to the SBWR containment.6Then we said well, if we're going to lood7at that, we have to go back and compare it to Rev.8to see what corrections were made, to see if the9updated as had been planned in the SBWR review.10the frustration is, while we say we're looking at the11model description document, we're actually looking at12three volumes, three revisions of the same document13and that material still isn't complete, and had14resulted in RAIs.15Looking at the description material, we're16found a number of places where there are typographical	' S
6 Then we said well, if we're going to loo 7 at that, we have to go back and compare it to Rev. 8 to see what corrections were made, to see if the 9 updated as had been planned in the SBWR review. 10 the frustration is, while we say we're looking at the 11 model description document, we're actually looking at 12 three volumes, three revisions of the same document 13 and that material still isn't complete, and hat 14 resulted in RAIS. 15 Looking at the description material, of 16 found a number of places where there are typographica	
7at that, we have to go back and compare it to Rev.8to see what corrections were made, to see if the9updated as had been planned in the SBWR review.10the frustration is, while we say we're looking at th11model description document, we're actually looking at12three volumes, three revisions of the same document13and that material still isn't complete, and hat14resulted in RAIs.15Looking at the description material, we're are typographication	
8 to see what corrections were made, to see if the 9 updated as had been planned in the SBWR review. S 10 the frustration is, while we say we're looking at th 11 model description document, we're actually looking a 12 three volumes, three revisions of the same document 13 and that material still isn't complete, and ha 14 resulted in RAIS. 15 Looking at the description material, we 16 found a number of places where there are typographica	эk
 9 updated as had been planned in the SBWR review. 10 the frustration is, while we say we're looking at the 11 model description document, we're actually looking at 12 three volumes, three revisions of the same document 13 and that material still isn't complete, and hat 14 resulted in RAIs. 15 Looking at the description material, we 16 found a number of places where there are typographical 	0
10 the frustration is, while we say we're looking at the 11 model description document, we're actually looking at 12 three volumes, three revisions of the same document 13 and that material still isn't complete, and hat 14 resulted in RAIs. 15 Looking at the description material, we found a number of places where there are typographical	эу
11 model description document, we're actually looking a 12 three volumes, three revisions of the same document 13 and that material still isn't complete, and ha 14 resulted in RAIs. 15 Looking at the description material, we're 16 found a number of places where there are typographica	So
12 three volumes, three revisions of the same document 13 and that material still isn't complete, and hat 14 resulted in RAIs. 15 Looking at the description material, where there are typographical 16 found a number of places where there are typographical	he
13 and that material still isn't complete, and hat 14 resulted in RAIs. 15 Looking at the description material, w 16 found a number of places where there are typographical	at
14 resulted in RAIs. 15 Looking at the description material, with the found a number of places where there are typographical	t,
15 Looking at the description material, w 16 found a number of places where there are typographica	as
16 found a number of places where there are typographica	
	we
	al
17 errors. There are equations where something as simpl	le
18 as gravity has been left out of the equation.	We
19 found in one of the figures in Section 6.6, unit	ts
20 which we have been trying to figure out what the	he
21 meaning of the units are. We found a figure that ha	as
22 the units of walls per meter square per degree kelvin	n,
23 and we kept I don't know if it meant Wallises.	
24 CHAIRMAN WALLIS: Watts.	
25 MR. LANDRY: It meant Wallises per meter	

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433
	319
1	squared. We have yet to figure out what a wall is, so
2	these are the kind of errors that we're finding that
3	you would expect in Rev. 2 to not see things like
4	this.
5	The analytical review has been to run the
6	TRACG code as we received it from General Electric
7	with the SBWR input model. We have their input
8	CHAIRMAN WALLIS: Are you running their
9	code?
10	MR. LANDRY: Their code with their input
11	deck. I'll give you some results from that run later.
12	
13	CHAIRMAN WALLIS: Does it run better than
14	TRACM?
15	MR. LANDRY: I'm not addressing that.
16	We've been running TRACG, looking at some analyses and
17	some test cases, and we intend to do confirmatory
18	analyses using the contained code, look at the
19	containment part of the plant design. We want to use
20	TRACM TRACE. Sometimes I use TRACM, sometimes I call
21	it TRACE. I haven't gotten used to the name change
22	yet.
23	Then we want to look at a couple code,
24	coupling TRACM with CONTAIN. We're doing this because
25	we looked at the code and said okay, they're using one

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	320
1	code to look at the reactor coolant system and the
2	containment.
3	CHAIRMAN WALLIS: It's actually TRACE.
4	It's the predecessor of TRACG.
5	MR. LANDRY: I think this is degenerating.
6	We looked at the code and said you're using one code
7	to do both the reactor coolant system and the
8	containment as one coupled continuous calculation.
9	We're not so sure about that.
10	What we would like to do is convert the
11	TRACG deck as it stands to run in TRACM. Well, for
12	comparison, here's a code of a similar lineage, some
13	differences. What would happen running the same model
14	on both codes? Well, the TRACM has some problems with
15	some of the aspects of the containment, so we said
16	okay, we can't do that. So what we're going to do is
17	we're going to take the TRACG input deck, disassemble
18	the deck. In other words, the reactor coolant system,
19	the containment. We're going to take the containment
20	and input it to CONTAIN. We're going to run a stand-
21	alone containment model.
22	Then we're going to run the converted
23	reactor coolant system model from TRACG with TRACE,
24	and then we're going to bring those two codes
25	together, which the coupling has been done now. And

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	321
1	so far we've gotten a run out to, I think it's 120,
2	150 seconds. But a combined calculation of TRACE and
3	CONTAIN so that we can see, does the reactor coolant
4	system with a realistic containment code give a result
5	similar to the result you get with TRACG running both
6	the reactor coolant system and the containment in one
7	code. This is an approach that we're taking to these
8	confirmatory calculations.
9	MR. POWERS: When you say similar, is that
10	something that is in the eyes of the beholder? Will
11	I know it if I see it, or is there
12	MR. LANDRY: Yes.
13	MR. POWERS: criterion for what
14	"similarity" means?
15	MR. LANDRY: Right now we don't have
16	criterion other than we want to see what the results
17	are first, and are there differences, and then why are
18	there differences, if we see them? And what is the
19	magnitude of the differences, and what is the
20	significance of them?
21	MR. POWERS: Take something that's easier
22	to think about like suppression pool temperatures.
23	They have very mild suppression pool temperatures in
24	their calculations they showed today. What magnitude
25	of difference would cause you pause?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	322
1	MR. LANDRY: At this point we haven't
2	tried to figure out exactly the magnitude of what
3	because we're just at the very infancy stage of this
4	process.
5	MR. POWERS: I understand. But I mean
6	your experience now.
7	MR. LANDRY: Right now we're so focused on
8	trying to get this to run, that we haven't gone back
9	and said magnitudes can we tolerate.
10	MR. POWERS: Well a lot of my motivation
11	for asking this question is because it's such an
12	onerous undertaking that you what I would like to
13	understand, is it a matter of seeing differences of
14	say 20 degrees, or is it a matter of seeing the
15	suppression pool get up to the point that it's closing
16	in on saturation?
17	MR. LANDRY: That would give us pause.
18	MR. POWERS: That would give you pause, I
19	know.
20	MR. LANDRY: Definitely.
21	MR. POWERS: Would the other one, 10 or 20
22	degrees, give you pause?
23	MR. LANDRY: Ten to twenty probably isn't
24	going to give us a great deal of concern.
25	MR. POWERS: Okay. I understand.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	323
1	CHAIRMAN WALLIS: Now TRACG has been run
2	a lot of times, and TRACE has hardly been run at all,
3	so really you be perhaps testing TRACE rather than
4	TRACG.
5	MR. LANDRY: Well, TRACE has been run a
6	fair amount, and we're running it with a converted
7	input model.
8	CHAIRMAN WALLIS: So it has
9	MR. LANDRY: Plus, it's being assessed by
10	research. Research is doing a lot of work. Very vast
11	for us.
12	CHAIRMAN WALLIS: Okay. It has a history
13	of actually being able to model BWRs and so on?
14	MR. LANDRY: Yes. They're working on
15	that, and working on comparisons. You'll hear more
16	about that from Joe Staudemeier later, but they're
17	working on a lot of assessment of TRACE versus not
18	only the test that General Electric has referred to,
19	but also the
20	CHAIRMAN WALLIS: Okay. So we will hear
21	about that.
22	MR. LANDRY: Yeah. You'll hear more about
23	that from Joe.
24	The range of the review, Amy has already
25	covered. We're looking at LOCA, ECCS and containment

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The people involved in the review are myself, Shanlai Lu, Ed Throm and Andre Drozd, all from NRR. It's a combination of reactor coolant system analysts and containment analysts. We have contracts with Brookhaven National Laboratories, ISL and Oakridge to support us in the work.

11 Research has a team together, including 12 Joe Kelly is involved in it, Steve Bajorek, Jim Joe. Let's see, Kodak is involved in it. 13 Al Han. 14 Notofrancesco is involved in it. I think Dave 15 Bessette is involved in the work, plus they have So it's a fairly large group of us 16 contractors. 17 involved in it, but very limited focus pre-application 18 And you have to emphasize this. This is a review. 19 very limited focus review at this pre- application 20 It's only on the code. stage.

21 Some of the technical issues which we've 22 raised so far, and these are all in the RAIs, we're 23 concerned with the way reactor power is handled in an 24 accident and the analysis. We see no delay in reactor 25 SCRAM. Break initiates, reactor is SCRAMed

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5

6

7

8

9

10

(202) 234-4433

324

	325
1	instantaneously. No four to eight second delay that
2	you normally see in a SCRAM.
3	What is that going to mean for some of
4	these breaks and the amount of power? We're concerned
5	about some of the mass and energy release through the
6	break and through the ADS. We've asked questions
7	about critical flow through valves, and the way it's
8	model. Virgil has already asked that question. We're
9	not going to the point that Virgil was asking, but we
10	have asked questions in that area already.
11	We're concerned about the PCCS
12	performance, and we're studying that performance since
13	it is such a critical system. Gravity draining and
14	the interfacial heat transfer and flashing we've asked
15	questions about.
16	Some of the modeling issues that we've
17	raised, include the use of a single vessel model for
18	both the reactor coolant system and the containment.
19	This is one of the problems that TRACE has, that you
20	can't use a single vessel for this entire system.
21	We're concerned as an extension of that, with the
22	thick heat structure that's around the vessel for the
23	main steam line break LOCA.
24	They have the reactor coolant system, they
25	have a containment, and they have our heat structure

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	326
1	this wide between the two, but that number is
2	proprietary. Well, we're trying to figure out where
3	in the world it exists in reality. We don't know. We
4	can't find it.
5	CHAIRMAN WALLIS: What do you mean by heat
6	structure?
7	MR. LANDRY: A heat sink, a heat slab,
8	something that energy is absorbed by.
9	CHAIRMAN WALLIS: You mean a slab of
10	concrete?
11	MR. LANDRY: We can't find what it is.
12	We're concerned about radio distortions in their
13	model. Gravity is distorted, and we're concerned
14	about non-condensible distribution, questions which
15	you've already raised today.
16	MR. RANSOM: How is gravity distorted?
17	MR. LANDRY: The way the friction is
18	modeling, but Shanlai. (4:42:20)
19	MR. LU: Okay. I am Shanlai Lu from the
20	DSSA. We are currently looking at gravity and
21	parameters produced and the heat remaining from a UCCS
22	LOCA. The pancake will be contained, and part of the
23	vessel in terms of delivering it all together, and use
24	it as one single TRACG vessel model, the model into
25	our system. And we are trying to look at that to see

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	327
1	whether numerically, because if you do have let's say
2	layer 21 to lay 31, is way above the reactor vessel
3	itself. Then numerically the pool is really high.
4	You have the elevation difference between the pool and
5	the reactor vessel itself. However, we tried to use
6	the TRACG, the one component compensated this part to
7	take into account the current that the gravity failure
8	had. So what we're trying to do is trying to verify
9	this, so this is correctly done. That's what we're
10	trying to do.
11	MR. RANSOM: I guess that's quite
12	dangerous if you have any loops.
13	MR. LU: Yes. That's a reason we want to
14	look into that, because if we go back to return PFM,
15	the stage, we have disconnected the elevation of the
16	loop, and the loop closure is not closely closed then.
17	You will have a problem with gravity.
18	MR. SCHROCK: Ralph, I don't know what
19	TRACE is.
20	MR. LANDRY: TRACE is TRACM.
21	MR. SCHROCK: TRACE is TRACM.
22	MR. LANDRY: TRACM has been renamed to
23	TRACE. That's why I said, I keep going back and
24	forth, referring to TRACE or to TRACM.
25	Some of the technical issues that we've

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

identified with the transients, even though we're not reviewing the transients at this point. The incorrect core design, you've heard this morning that GE talked about using a nine foot core when it's actually going to be a ten foot core. Well, that's true of the LOCA analyses also, and we've raised the question, what are

the fuel design parameters for this core?

They were supposed to have that information to us last November. We're almost to the middle of July, and we have yet to see it. We have a contractor waiting to generate the core parameters for us when we get that data from GE.

We're concerned about stability, and in particular, stability of a pancake core. This core is shorter and larger in diameter than typical. Those of us that have been involved in past reactor work in the past know that when you pancake a core, you create a core that is less stable than a tall thin core.

19CHAIRMAN WALLIS:Is this from a20neutronics point of view?

21 MR. LANDRY: Neutronically it's less 22 stable, so we're concerned about the stability of this 23 core, since it's being pancaked.

24 We're concerned about adequate heat 25 transfer data for the fuel design. The question was

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

raised this morning about are we getting in the same situation we were in with the GE 14 data, and the Drexell-14 correlation? And we've identified this concern to General Electric 14 because of inadequate data. They're supposed to be obtaining those data this summer, but this is an extension of that problem.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

25

We have over 300 RAIs outstanding at this We've asked 317, some of them have multiple point. points, parts to them. It's many, many pages. They range from modeling issues to typos. We've had a number of telecons with General Electric. We've had meetings, and we're going to have an all-day meeting tomorrow with them reviewing the status of some of these RAIs, and their responses to them.

15 The formal RAIs are due out the 18th of this month, so we're pressing to conclude our RAI set 16 17 so that Amy can get those RAIs issued. Those 18 responses are due in August. If we're going to meet 19 the schedule that we're on today, which is an 20 extremely aggressive schedule for this SER, there 21 cannot be any slip in getting those responses. Now 22 we've indicated that a couple of times. Any slippage 23 at all, and it's just going to be impossible to meet 24 the schedule that we're on.

The confirmatory calculations that we are

NEAL R. GROSS

1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS (202) 234-4433

1 performing, as I've said already, meaning running the 2 TRACG SBWR input deck on TRACG. We're running 3 contained input model. Some of those runs have already been done. Those are using mass and energy 4 5 data generated by TRACG, and we're generating data now with TRACM, TRACE, TRACM, whichever name you want to 6 7 use. Input model has been developed in conjunction with research, and with ISL. And I'd like to note 8 that research has done an incredible job of helping us 9 10 They've put a lot of effort into with that problem. 11 it, debugged the code, debugged the input model, and 12 put a great deal of effort and a great deal of support 13 into helping us with that model generation. 14 TRACE-CONTAIN linkage is underway. It has 15 been linked, and the initial runs have started, we're hopeful to have some good confirmatory calculations in 16 17 the not too distant future. 18 This table lays out a number of the 19 calculations that we're performing. These are the major blocks, of course, all the sub- calculations 20 21 performed. But you see the initial GDCS and main 22 steam line break calculations with TRACG we've 23 completed. We're still studying the results. We've 24 started doing some PCCS calculations with TRACG.

We're looking at calculations to study energy

NEAL R. GROSS

1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS (202) 234-4433

25

(202) 234-4433

330

	331
1	conservation in TRACG, some calculations for gravity
2	flow. The main steam line break LOCA has begun with
3	CONTAIN. Some of those calculations have been
4	performed. The TRACE-CONTAIN link has been initiated.
5	We're going to look at GDCS LOCA. The GE-12 fuel,
6	that's what I alluded to that we need the fuel
7	information. We're waiting to get the information on
8	the fuel so that we can have Oakridge National
9	Laboratory generate the fuel parameters for us.
10	AOOs are planned after we get the correct
11	fuel model, and when we start into the transient
12	review phase, and we will probably do some of those
13	calculations with a linked TRACE part, so we can get
14	the 3-D core neutronics effects into TRACE also.
15	MS. CUBBAGE: Virgil, she's trying to get
16	you to use your mic.
17	MR. SCHROCK: Excuse me. How much do you
18	know about this new reactor core? I mean, when we
19	were looking at the uprates, we learned a lot about
20	the were exposed to a lot of information about the
21	non-uniform
22	MR. LANDRY: Six parameters for us, so
23	that we can do a 3-D neutronics calculation that is
24	more representative of this core. If you remember
25	when we did the AOO review on TRACG, we did a lot of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

calculations looking at the neutronics of the TRACG model versus the neutronic feedback, or neutronic response running TRACB with NESTLE and with PARCS. And we feel very strongly that the response to a number of the AOOs is highly dependent upon the core design. And we cannot do that with a core that is not the right core.

The present core is not the core going in this plant, and we will not do calculations and spend our money and waste our time when we don't have the right fuel design.

12 This is the result -- you saw results from 13 General Electric of GDCS LOCA earlier. This is what 14 they -- this is something that they did not show you. 15 These are results from our calculations, their code 16 their input deck, running under the same operating 17 system, same class of computer, so the results should 18 be -- they should be getting these results.

19 If you look at the GDCS pool, if you look 20 at the wet well, if you look at the difference in 21 pressures between the air spaces, this is a question 22 that Graham asked earlier. You have an airspace above 23 the GDCS pool, you have an airspace above the 24 suppression pool. They're connected by three pipes 25 that are half a meter in diameter. Why are those

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

1 pressures different? We look at that and start 2 scratching our head. These are fairly new results. We're scratching our head looking at it and thinking 3 4 first, well, maybe it's a numeric problem. And then 5 we started looking at it more and saying no, we don't think it's a numeric problem. We think it's a lousy 6 7 modeling problem. We think it's a verv poor 8 normalization problem. Ιf we look at the 9 normalization, what we see is in the GDCS, if you look 10 at Chester's figures on his page 5, the GDCS airspace 11 pressure is not the airspace pressure. It's the 12 center of the cell pressure. It's the pressure of the 13 air plus half of the waterhead. Waterhead gives you 14 pressure of half a PSI per foot. 15 You start measuring three, four, five feet, you start changing your pressure by quite a bit. 16 17 This problem is what happens if you don't nodalize 18 correctly, and don't pay attention to the nodalization 19 of your plant. Those two volumes should not be at 20 different pressures with three pipes that are half a 21 meter in diameter connecting them. 22 CHAIRMAN WALLIS: The code is putting 23 water in there where there is no water? 24 MR. LANDRY: No. The code is measuring 25 what is supposed to be the air -- what is being output

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

333

	334
1	as the airspace pressure, is not the airspace
2	pressure. It's the airspace pressure, plus the
3	pressure head from half of the water that's in that
4	volume.
5	CHAIRMAN WALLIS: Well, why would you add
6	that water pressure?
7	MR. LANDRY: Because that's where the
8	pressure is being taken at the center of the cell.
9	The center of the other cell has no water in it.
10	CHAIRMAN WALLIS: It's just not physical.
11	MR. LANDRY: Right. That's what I'm
12	saying, it's not nodalized correctly, so this is
13	MR. FORD: Have these differences been
14	discussed with GE, and they're just a question of
15	different analysis of this, or difference in
16	communications?
17	MR. LANDRY: They didn't say anything
18	about this to us, and this we were looking at this
19	and trying to figure out what's going on. This is
20	just in the last couple of days that we've been
21	looking at it, and putting together what we see going
22	on.
23	MR. FORD: Well, it's really not fair to
24	castigate them when they haven't given a reply to you.
25	MR. LU: Initially we have been

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	335
1	corresponding to GE regarding this, and the real issue
2	here is, we were trying to see whether it
3	conservatively predicted the mass, the non-condensible
4	mass above the GDCS pool, see whether it would give
5	the conservative water level at the end of the GDCS
6	LOCA.
7	CHAIRMAN WALLIS: Anyway, what this shows
8	is that when you run their code, you can find things
9	which you have to question.
10	MR. LANDRY: That's correct.
11	CHAIRMAN WALLIS: All right. And this was
12	an example of that.
13	MR. LANDRY: That's correct.
14	CHAIRMAN WALLIS: It doesn't show that
15	this issue has been resolved in any way.
16	MR. LANDRY: Right.
17	CHAIRMAN WALLIS: It's an example of what
18	can happen.
19	MR. LANDRY: This just adds further
20	support to the staff's view that we have to have the
21	code and the input models of applicants so that we can
22	do our own confirmatory calculations, we can do our
23	own investigations. If by doing our own
24	investigations we're able to plot some parameters that
25	we weren't seeing in the submittal, when we plotted

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	336
1	some of these parameters, we said what's going on
2	here? We don't understand this. So it's just further
3	support for the position of staff that we need the
4	codes, and we need the models so that we can do our
5	own studies.
6	MR. BANERJEE: Is that little blip a
7	vacuum breaker?
8	MR. LANDRY: I don't know what that is at
9	this point. This little spot, I'm not sure at this
10	point. We haven't gone that far. It would not be
11	changes made in the design that would challenge the
12	capability of the code.
13	MR. POWERS: A change in the core height
14	by a foot represent a pretty dramatic change?
15	MR. LANDRY: Only if there are features in
16	the fuel design that were not modeled in the fuel
17	design capability of the code. If you had a core
18	model that could not handle water rise for some
19	reason, and you designed fuel and you put fuel in
20	that had water rise, could you model that? Or could
21	you fix the model so that it would? The height alone,
22	I would not see how height alone would call it into
23	question, unless there was something extremely
24	restrictive in the neutronic capability of the code
25	that it could not handle that change in neutronics.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	337
1	Does that answer your question, Dana? Thank you.
2	CHAIRMAN WALLIS: This is a very
3	restrictive thing. We heard this big presentation
4	this morning about how wonderful this reactor was, and
5	that's irrelevant. Everything that we're looking at,
6	you're looking at here is whether on TRACG is adequate
7	for analyzing this sort of a system. This has nothing
8	to do with how good a design it may be, and all those
9	things we heard about this morning. Simply the
10	adequacy of the code which is being assessed here.
11	MR. LANDRY: That's correct, Graham. And
12	that's why I tried to say that this is such a very
13	focused review, because it is very focused. It's
14	focused very strictly on the code applicability.
15	CHAIRMAN WALLIS: Do you look at things
16	like this Ontario Hydro Test, and make your own
17	assessment of it?
18	MR. LANDRY: We're looking at the
19	CHAIRMAN WALLIS: All these other tests?
20	MR. LANDRY: We're looking at the
21	assessment. We don't have the Ontario data, but we're
22	going to try to get that data too, to look at it
23	ourselves.
24	MS. CUBBAGE: Okay. Muhhamad.
25	CHAIRMAN WALLIS: Well, from my own

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	338
1	perspective, I haven't had time to look at this
2	extensive documentation you referred to, Ralph. I'm
3	just a little nervous about what I may find when I do.
4	MR. POWERS: Don't look at it then.
5	CHAIRMAN WALLIS: See, that's the
6	traditional advice from the more experience ACRS
7	Member than I am.
8	MR. POWERS: No, I make that no claim as
9	good advice to you. I only say that that will ease
10	your fears.
11	CHAIRMAN WALLIS: You're being facetious,
12	I think.
13	MR. RAZZAQUE: The team that is involving
14	the review of the Tab D testing and scaling are
15	myself, Andre Drozd of NRR, and from research side we
16	have Jim Han, David Bessette, and supporting is ISL.
17	This slide I basically identified some of
18	the we identified some of the significant RAIs that
19	we have issued so far. Again, the number of RAIs are
20	large, and it ranges from simple typo to some
21	significant issues regarding scaling and testing. We
22	may sent some of the RAIs in detail, but this is
23	basically in the brief title sort of thing. So I'll
24	just quickly go over them, unless you have some more
25	question, and elaborate any of those.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	339
1	The first one is obviously one question
2	raised during the meeting, was about scaling. The
3	higher tier, two-tier scaling methodology which was
4	used for the scaling analysis requires that you use
5	both the top down and the bottom up approach. GE's
6	report heavily relied on the top down approach, but
7	very little on the bottom up, so that's the purpose of
8	that question. The particular quantitative bottom up
9	analysis
10	MR. SCHROCK: Well, they offered some
11	preliminary, at least, reaction to that. Were you
12	here? Did you hear what they said?
13	MR. RAZZAQUE: Yes. Yes, I did.
14	MR. SCHROCK: And that isn't sufficient?
15	MR. RAZZAQUE: We'll have to actually,
16	I haven't seen the information that's given on SBWR
17	report. In the SBWR report, it was almost
18	non-existent, but I will have to go and review the
19	ESBWR portion and make sure that we are satisfied with
20	it. But primarily, the question was that they're
21	heavily relying on the quantitative top down approach,
22	very little on the bottom up approach. That's
23	basically a different side. It may be adequate, maybe
24	the case can remain, but that was one question.
25	CHAIRMAN WALLIS: Did you have an RAI on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	340
1	this assumption that any doubts of LG is the same in
2	the model and the prototype?
3	MR. RAZZAQUE: Which
4	CHAIRMAN WALLIS: It seemed to be an
5	assertion with no basis in the scaling?
6	MR. RAZZAQUE: Which?
7	CHAIRMAN WALLIS: In the condensation,
8	phase change. They had some assertion that NLG, the
9	phase change per unit area was the same in the model
10	and the prototype, and therefore, to get the same
11	mass, you had to have to scale the areas in some sort
12	of way to get the flow rates right. There doesn't
13	seem to be any basis for this assertion that the
14	condensation rate was the same in the model and the
15	prototype.
16	MR. RAZZAQUE: You're talking about the
17	PCCS?
18	CHAIRMAN WALLIS: I was talking just
19	the top down scaling.
20	MR. RAZZAQUE: Oh,
21	CHAIRMAN WALLIS: That seemed to be
22	otherwise, it seemed very simple. I mean, it seems
23	that the lengths have to be the same and various
24	things. And this assertion out of the blue, that the
25	rate of phase change, the phase change flux was the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	341
1	same in both systems. What justification is that?
2	I'm just wondering if you have an RAI on that issue,
3	that's all.
4	MR. RAZZAQUE: I'll have to go and check.
5	I didn't I just picked a few for presentation.
6	I'll have to double check that. And maybe we have an
7	RAI on that. That's almost a bottom up.
8	CHAIRMAN WALLIS: It is, yeah.
9	MR. RAZZAQUE: Rather than a top down
10	issue.
11	CHAIRMAN WALLIS: What's the
12	justification?
13	MR. RAZZAQUE: Also, I think as part of
14	the part of the RAI indicates that linking some of
15	the phenomena that has been identified from the bottom
16	up and top down to the part, that link should also be
17	made more thoroughly.
18	The next one was the PI-Groups which is
19	the groups for the three test facilities. GE has
20	relied on these test facilities to qualify TRACG code.
21	They have indicated that. The boron mixing is for the
22	ATWS, and the criterion for the stability test. They
23	have indicated that they used those facility data to
24	qualify TRACG.
25	Now in the scaling report, or any other

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

reports that we're reviewing, I haven't seen any comparison of ESBWR versus these facilities scaling groups, to make sure that these facilities truly can represent the ESBWR design. In other words, can be scaled out, so that's another RAI. So they will have to provide that information.

Impact of potential distortion bias due to heat loss. That's another question I think raised sometime during the discussion, the heat loss. And that RAI is out, and particularly in GIRAFFE facility I think it should be more significant compared to other facilities, because some of the GIRAFFE test was done at operating temperature and pressure, whereas the vessel wall is thinner, so more heat loss. But as Bob Gamble has indicated, they have done something about that in putting micro heaters to offset that. So those kind of descriptions have to be provided to justify that measure taken to offset the distortion.

The last one on this bullet here on this slide also is another test distortion-related RAI, which is relatively minor as my understanding is, but still it's a distortion. And the PANDA and PANTHER's condensers that they have used are full scale, but the number of condensers they used are fewer; therefore, the head area is smaller in the test.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

	343
1	Now when you scale that up, the surface to
2	volume ratio would be less in the ESBWR; therefore,
3	less heat loss through the headers. So it will have
4	some impact on the containment pressure. And the
5	report mentioned that, but didn't quantify it, so we
6	wanted them to quantify that just to make sure.
7	MR. BANERJEE: That's for PANDA. Right?
8	MR. RAZZAQUE: That's for PANDA and
9	PANTHER.
10	MR. BANERJEE: PANTHER is a stand-alone
11	system, full scale, isn't it?
12	MR. RAZZAQUE: Yes. Both PANDA and
13	PANTHER's condensers are full scale. But since it is
14	
15	MR. BANERJEE: PANDA is a slice, so it has
16	end walls on the headers which are potentially sources
17	of heat loss.
18	MR. RAZZAQUE: Right. Right.
19	MR. BANERJEE: PANTHER is a stand-alone
20	facility just to look at the heat transfer. So how
21	does that affect
22	MR. RAZZAQUE: What I'm basically talking
23	about is that when they were testing the condensers,
24	the heat removal capability of the PCCS condensers,
25	they have a header, common header. In the test

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	344
1	facility, the header volume is smaller compared to the
2	ESBWR header, because the power is less.
3	MR. BANERJEE: Certainly, for PANDA. But
4	for PANTHER, I thought it was just a full scale
5	maybe for the SBWR it was full scale.
6	MR. RAZZAQUE: For ESBWR, yeah, it is.
7	MR. BANERJEE: SBWR.
8	MR. RAZZAQUE: SBWR maybe it is full
9	scale, but for ESBWR
10	MR. BANERJEE: It's only a 25 percent
11	difference.
12	MR. RAZZAQUE: Yeah. The power is
13	definitely much less than the SBWR power, so they used
14	three wall condenser.
15	MR. BANERJEE: Sure. Yeah, but poor
16	condenser I don't get the point about the PANTHER.
17	I get the point about the PANDA.
18	MR. RAZZAQUE: Okay.
19	MR. BANERJEE: I don't know what the
20	question is there, actually, regarding PANTHER.
21	MR. RAZZAQUE: Okay. They basically
22	should be the same question. Maybe it applies more to
23	the PANDA, but the whole idea was the header being
24	small in the test compared to the ESBWR. We have a
25	scaling of the header, not the condenser.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	345
1	MR. SCHROCK: PANTHER was a full scale
2	MR. RAZZAQUE: Full scale system.
3	MR. SCHROCK: condenser typical of
4	SBWR.
5	MR. RAZZAQUE: Right. But I think the
6	number of condensers used was fewer in the test
7	facility than the ESBWR to remove the same amount of
8	the higher amount of power that ESBWR has.
9	MR. SCHROCK: Is that right?
10	MR. RAZZAQUE: Isn't it? That's my
11	understanding.
12	MR. BANERJEE: It's slightly bigger.
13	MR. GAMBLE: It's a components test.
14	MR. RAZZAQUE: Yes, you have
15	MR. GAMBLE: The header is 35 percent
16	shorter than the ESBWR.
17	MR. RAZZAQUE: Yes, that's more likely.
18	MR. GAMBLE: It's primarily a PANDA issue.
19	MR. RAZZAQUE: Okay. This more applies to
20	PANDA issue. Okay. So that's basically the question.
21	When you scale the header up, you have but
22	discussion with GE on that, the impact should be 5 to
23	10 percent on the peak cladding, and that was their
24	rough estimate off-hand, so it shouldn't be a big
25	effect.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The heat in the containment, that's the other distortion question that we have, is none of the testing that was done, the sole heat in the containment was considered, and what impact it has on the containment parameters.

Intuitively, of course, it will have some non-conservative effect on the short term in the containment pressure. And in the long term, it's not very clear which direction it's going to affect, conservative or non-conservative, so we wanted them to have some discussion and assessment on that, effect of stored heat in containment structure on the containment parameters, particularly the containment pressure.

15 The next RAI is reactor pressure vessel containment and dynamic interaction. We know that's 16 17 the case in real situation in any transient accidents. 18 Whereas the scaling groups, the scaling numbers, the 19 PI numbers, those were derived based on a single 20 differential equation, first order differential 21 equation in time. And the question we're asking is 22 did you look at the system of equation, a couple of 23 system of equations in deriving the scaling groups 24 from that, and see how that affects. The case may be 25 made that a simplifying assumption is valid, but it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

wasn't made. The case wasn't made, so that's the other question.

In vessel nature of circulation effect on 3 4 flashing. Flashing was found out to be a significant phenomenon in the reactor pressure vessel, 5 not particularly an effect on the water level. 6 What 7 impact natural circulation within the vessel heads on 8 that particular phenomenon? That's the question, and Ridge Scaling Group represented that in-vessel natural 9 10 That was missing again, so we wanted to circulation. 11 have some understanding which scaling group represent 12 that natural circulation within vessel, and its impact 13 flashing, because flashing is an on important 14 phenomenon. Maybe it can be ignored, but it wasn't --15 the case wasn't made.

Now in dimensional groups criteria range, 16 17 this had to do with the PI-Group numbers. The 18 PI-Group that has been derived for the test in the 19 ESBWR has been compared in the table. And as long as 20 those PI-Groups are within one part to three, it was 21 considered acceptable. But the range -- the criteria 22 they used, GE used to be acceptable is as long as the 23 PI-Group numbers are within one part to three, but no 24 basis provided where that criteria came from, where 25 that range came from, one third to three. How do you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

347

	348
1	know this is acceptable?
2	MR. KRESS: Traditionally, we've been
3	using .5 to 2.
4	MR. RAZZAQUE: Five to two?
5	MR. KRESS: Point five to two.
6	MR. RAZZAQUE: Point five to two.
7	MR. KRESS: We didn't bless that. We
8	question that.
9	PARTICIPANT: I don't think they had a
10	basis
11	MR. KRESS: No, there was no basis for it.
12	It's just intuition was the basis.
13	MR. POWERS: AP1000 establishes a
14	tradition.
15	MR. BANERJEE: Well, most of the scaling
16	studies end up showing there's only one or two
17	PI-Groups which are of any importance anyway.
18	MR. RAZZAQUE: In which case?
19	MR. BANERJEE: In any case, so if those
20	are such that the response of the system is similar,
21	and you can probably do that on the back of an
22	envelope, then that's probably good enough. The rest
23	of it doesn't really matter.
24	MR. RAZZAQUE: Yeah. Particularly, the
25	PI-Groups which impact the figure merit. I mean,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 there should be some link that how the change of the PI-Group impact the figure of merit, which supposedly 2 3 the --4 MR. KRESS: That's the right idea. 5 MR. RAZZAQUE: Right. And there should be some --6 7 MR. BANERJEE: There are very few which 8 do, in fact. 9 MR. RAZZAQUE: Maybe very few, but at 10 least very few those should be done. That way it 11 gives some comfort level that you didn't just take 12 from air, and there's some link with the scaling 13 group, with the code qualability. That's the argument 14 objective. 15 MR. KRESS: We thought you could actually do them analytically, just vary the parameter and see 16 17 what it does. 18 MR. BANERJEE: In fact, that was what was done for AP600. 19 20 MR. RAZZAQUE: I wasn't involved with 21 AP600. I don't know what the response was. 22 BANERJEE: MR. Solution to the lump 23 parameter equations. 24 MR. RAZZAOUE: Okay. But it may be possible to do some linkage with key scaling group to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

349

	350
1	the maybe here it's the water level we're talking
2	about.
3	CHAIRMAN WALLIS: Well, you can always run
4	TRACG with the model.
5	MR. RAZZAQUE: So we'll have to see how
6	what GE responds to that.
7	CHAIRMAN WALLIS: And then you can do
8	tests with parameters. You can say okay, let's run
9	TRACG with the real scaling, and then let's run it
10	with the actual model scaling and see if it's
11	sensitive to
12	MR. RAZZAQUE: That's right. I mean, it's
13	possible it's not that you have to just intuitive,
14	or without any basis. I think there can be some
15	calculation done if one wants to, about how important
16	it is, and maybe it should be important at least for
17	doing one or two.
18	MR. BANERJEE: But if they reduced the
19	master equation to one, they seem to be going in the
20	right direction. They just have to justify that and
21	show whichever is the appropriate scaling group, and
22	that's it.
23	MR. RAZZAQUE: That's basically what we're
24	saying. Maybe, as I say, the simplifying assumption
25	may be valid, but the case wasn't made.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	351
1	CHAIRMAN WALLIS: Right. So they have to
2	show that.
3	MR. RAZZAQUE: They have to show that.
4	CHAIRMAN WALLIS: Yeah.
5	MR. RAZZAQUE: Exactly. The last bullet
6	there is really regarding the quality assurance of the
7	tests, whether the tests meet Appendix B Quality
8	Assurance that NRC has. Primarily, the test which
9	they have saved, they are using for confirmatory
10	purposes. There are a few tests - I have the name
11	here. One is PANDA P, another is SIRIUS, at the
12	facility in Japan. Those test data are being used for
13	confirmatory in nature. That's what the term appears
14	in the report, "confirmatory in nature". What exactly
15	that means? What the confirmatory in nature
16	encompasses? And if you're relying on that data to
17	qualify the code, TRACG code, or certify the design,
18	it should meet all the Appendix B requirements. What
19	you call it, confirmatory in nature or not. So that's
20	that question. That's basically, as far as the
21	scaling and the last bullet was not quite scaling. It
22	was more of an Appendix B question.
23	These pages here regarding the Tab D and
24	PARC questions. The first one is TRACG analysis for
25	the bottom drain line break. They have provided main

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	352
1	steam line break. They have also provided the gravity
2	driven line break. As far as the bottom drain line
3	break, what we're interested is in more detail, long-
4	term containment parameters. That's what was, I
5	think, missing.
6	The next bullet is TRACG comparison with
7	PANDA PCS data. That comparison was given, but mostly
8	for the containment parameters, not for the reactor
9	pressure vessel parameters, like pressure and the
10	water level. So we want to see that comparison, TRACG
11	comparison with PANDA P reactor vessel parameter
12	information, pressure and water level.
13	MR. BANERJEE: But they didn't have much
14	of a reactor vessel. Right? In PANDA, they had a
15	little thing just generating some steam. It wasn't a
16	typical reactor.
17	MR. RAZZAQUE: Yeah. Maybe they can
18	provide the pressure. I don't know.
19	MR. BANERJEE: It was if you look, they
20	chopped it at the bottom. Right?
21	MR. RAZZAQUE: The author of the RAI, Dr.
22	Han Jim, could you help me out on that, what
23	exactly you want.
24	MR. HAN: Okay. Basically, as you know,
25	the PANDA P series tests are the only tests that half

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	353
1	the ESBWR configuration, so those tests are important
2	to us. When GE compare the certain parameters in
3	their report, the comparison is only limited to
4	containment parameters, such as drywell or wetwell
5	pressure. We would like to see in addition to those
6	parameters, like reactor pressure vessel pressure and
7	water level. PANDA does have a reactor pressure
8	vessel.
9	MR. BANERJEE: But it's short, right?
10	MR. HAN: Short, doesn't matter. We'd
11	like to know the pressure. We'd like to know the
12	water level. And in addition to that, we also would
13	like to see the comparison on suppression pool water
14	level.
15	MR. BANERJEE: Right. The reactor
16	pressure vessel is totally atypical. It has very
17	little I mean, it's just a generator.
18	MR. HAN: Well
19	MR. BANERJEE: I may be wrong, but perhaps
20	General Electric could answer whether I thought it
21	was chopped off at the bottom.
22	MR. HAN: It's chopped off only at the
23	bottom.
24	MR. BANERJEE: Right. George Adagaramneu
25	did these tests of PANDA, and he showed me this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	354
1	facility, and it was just a little thing.
2	MR. RAO: The reactor part the vessel
3	part is not representative. He didn't think there was
4	any meaningful data to be obtained from the reactor
5	vessel. It's basically a containment test.
6	MR. HAN: Well, how about the pressure,
7	for example, because you have to know the reactor
8	system pressure, what is the driving force? Which
9	right as you said, right on the wetwell pressure,
10	we would like to see the difference.
11	MR. RAO: It's starting at very low
12	pressure.
13	MR. HAN: I know, but we would like to see
14	the difference between the reactor pressure vessel
15	pressure
16	MR. RAO: Okay. All right. I mean, we
17	can provide the data. It's not clear to us why, but
18	if that's what you want, we can provide it.
19	MR. RAZZAQUE: Okay. The next RAI is on
20	the TRACG agreement comparison with GIST data. The
21	question is basically, the result has been provided,
22	and the result shows that the more recent version of
23	TRACG agrees much better with GIST data than the older
24	version of the TRACG. And the question is, what are
25	the difference what change is there, model change,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	355
1	or modem change or what? We just want to understand
2	that. That is the other question.
3	The last one there is a comparison of
4	important RPV and containment parameters for
5	counterpart integral test. There are several
6	counterpart tests that was done, PANDA M-3, PANDA P-2,
7	and GIRAFFE H-1, and we want to have a comparison of
8	these tests, because these are integral tests and how
9	to compare each other would be of help because of the
10	different scale size. So that's the other information
11	that we requested from GE.
12	CHAIRMAN WALLIS: Now you have some
13	conclusions here.
14	MR. RAZZAQUE: That's the last section,
15	and
16	CHAIRMAN WALLIS: I think we can probably
17	read those. What I want to know is, you've sent out
18	a huge number of RAIs. And have you gotten responses
19	to these RAIs?
20	MR. RAZZAQUE: No.
21	CHAIRMAN WALLIS: So all this is out there
22	waiting for response.
23	MS. CUBBAGE: In a number of cases, we
24	have discussed the questions with GE and we haven't
25	received answers in letter form.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	356
1	CHAIRMAN WALLIS: And you're still
2	reviewing test reports. You're going to run your own
3	runs on TRACG and so on, so at the moment, we have no
4	idea what are going to turn out to be major issues, if
5	any. We have no idea. It's far too preliminary to
6	sort of say you have identified certain key issues.
7	MS. CUBBAGE: That's right.
8	MR. RAZZAQUE: I would think the issues
9	can be in the testing area, scaling-testing area or
10	the TRACG.
11	CHAIRMAN WALLIS: But it seems to be too
12	early for the ACRS to focus on anything.
13	MR. RAZZAQUE: Anything, including the
14	testing.
15	CHAIRMAN WALLIS: All we get is a general
16	impression of activity.
17	MR. RAZZAQUE: That's true. And one of
18	my understanding is, one of the end product that GE is
19	interested from NRC, end- product after the
20	pre-application is not just the code approval of
21	the TRACG code, they also want that we tell that no
22	more testing is needed. Correct?
23	MS. CUBBAGE: Basically, it would be a
24	determination on the acceptability of the test program
25	for certification.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	357
1	MR. RAZZAQUE: So that would be the
2	outcome of the testing review, scaling testing, that
3	those were done adequately and no more tests are
4	needed. So it's too early to say come to that
5	conclusion, that's for sure. Absolutely. That's
6	basically it.
7	MS. CUBBAGE: If there are no more
8	questions, we can move on to the Office of Research.
9	CHAIRMAN WALLIS: What I learned from GE
10	was that they seem to have a lot of stuff. And
11	probably they have enough stuff for you to review it.
12	There's enough stuff there, enough substance that it's
13	worthy of review.
14	MR. RAZZAQUE: Right. When the responses
15	come
16	CHAIRMAN WALLIS: I have no impression yet
17	from your work whether or not it's good stuff, and
18	adequate stuff.
19	MR. RAZZAQUE: At this stage, it is the
20	questions we have raised.
21	CHAIRMAN WALLIS: All right.
22	MR. RAZZAQUE: Until we hear responses
23	from them, I don't think we made any conclusion at
24	this point.
25	CHAIRMAN WALLIS: Okay.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	358
1	MR. BANERJEE: Have you identified any
2	major hole in the testing or tests at the moment, just
3	looking at this huge amount of stuff which is around,
4	is there anything that you think
5	MR. RAZZAQUE: My gut feeling is no.
6	Basically, probably you're asking for gut feeling.
7	MR. BANERJEE: Gut feeling, yeah. That's
8	it.
9	MR. RAZZAQUE: No.
10	CHAIRMAN WALLIS: So you go through the
11	motions of hundreds of RAIs, and there's nothing
12	substantial in it?
13	MR. RAZZAQUE: Yeah, we haven't gone
14	through it. Yeah, we haven't gone through those
15	information. First of all, the information is not
16	back yet. The question is just going out. Tomorrow
17	we're going to spend going through these RAIs, whether
18	they understand what we are asking for.
19	CHAIRMAN WALLIS: I just wonder if the
20	RAIs aren't becoming too trivialized. Really, you
21	ought to be able to focus on some things that really
22	matter. You've got hundreds of them. How do we know
23	which of them matter? How do they know which of them
24	matter? Maybe there needs to be a prioritization or
25	something of these RAIs.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	359
1	MR. RAZZAQUE: We write significant RAIs.
2	We do some prioritization.
3	MS. CUBBAGE: Well, I think today Muhhamad
4	has tried to highlight some of the more significant in
5	his mind questions.
6	MR. RAZZAQUE: Yeah.
7	MS. CUBBAGE: And, you know, I don't think
8	he's trying to say that GE won't be able to respond to
9	these questions. We just haven't been able to review
10	the responses at this time.
11	MR. RAZZAQUE: Right. But sake of
12	completeness, at least, they have to respond to these
13	kind of questions. As I said, from the up front, it
14	looks like there is no major holes or gaps, unless the
15	response we get is completely out of the way and that
16	we didn't expect.
17	CHAIRMAN WALLIS: Okay.
18	MS. CUBBAGE: Okay?
19	CHAIRMAN WALLIS: Move on.
20	MS. CUBBAGE: Joe.
21	CHAIRMAN WALLIS: Thank you very much.
22	MR. STAUDEMEIER: I'm Joe Staudemeier from
23	the Office of Research. I'm going to give you an
24	overview of the things we're working on in Research
25	related to ESBWR.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

360 1 The focus of our Confirmatory Research 2 Program is to provide assessed independent analysis 3 tools to NRR to support the ESBWR design 4 certification, and primarily, its codes that we're 5 going to be providing to NRR that'll be qualified to We're also providing 6 work and analyze ESBWR. 7 assistance to NRR for the ESBWR pre- application review in support of the code, and testing and scaling 8 9 review. 10 Right now in the pre-application stage, 11 we're providing support and reviewing the scaling 12 testing and TAPD PARC documents. Many of the RAIs 13 have come from the Office of Research reviewers, and 14 we're also demonstrating a proof of principle on 15 developing a coupling between TRACE and CONTAIN, so that they can analyze some ESBWR accident scenarios. 16 17 MR. KRESS: Does GE have to pay for that, 18 or is that something that --19 MR. STAUDEMEIER: No, that infrastructure, 20 considered infrastructure work. They have to pay for 21 the review of the documents. We're acting essentially 22 like a contractor, and that's directly fee billable, 23 but code development is considered infrastructure 24 work. The work that will apply to the design 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	361
1	certification stage is some TRACE code development
2	that I'll go over on later slides. Code assessment to
3	show that it's applicable to the accidents that they
4	want to use it for.
5	We're going to do a right now,
6	actually, we're doing a PUMA ESBWR Scaling Study,
7	which will look at how well PUMA can seemingly or
8	how well PUMA is as a scale facility for ESBWR
9	testing. We're going to be doing some PUMA testing
10	and some
11	CHAIRMAN WALLIS: All this is in the
12	future, and we have not you have not yet done the
13	PUMA Scaling study?
14	MR. STAUDEMEIER: That's going on right
15	now.
16	CHAIRMAN WALLIS: Have not yet shown that
17	PUMA is a suitable facility for doing this testing,
18	have not done any testing. So all this is sort of way
19	in the future.
20	MR. STAUDEMEIER: Not too far off in the
21	future.
22	CHAIRMAN WALLIS: But it may turn out to
23	be not a very good idea to do testing at PUMA.
24	MR. STAUDEMEIER: And if we if the
25	scaling study says that, that its either not a good

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	362
1	idea, or that area extensive modifications are made,
2	what we'll have to do is look at the results of the
3	scaling study.
4	CHAIRMAN WALLIS: Are you doing these
5	tests because you think the GE tests are inadequate?
б	If the PUMA test is a poor version of a GE test,
7	there's no sense in doing it, is there? If it's a
8	better test in some way
9	MR. STAUDEMEIER: I mean, we believe it's
10	a better test in several ways, but
11	CHAIRMAN WALLIS: So you're going to show
12	that, or you expect to be able to show that.
13	MR. STAUDEMEIER: We expect to be able to
14	show that, and it also gives us some independent data
15	of the code assessment.
16	MR. BANERJEE: Were you involved in the
17	PANDA data? I mean, was NRC a participant in those
18	tests?
19	MR. STAUDEMEIER: No.
20	CHAIRMAN WALLIS: I thought they said that
21	you were.
22	MS. CUBBAGE: In a reviewer standpoint,
23	not as a participant.
24	MR. STAUDEMEIER: Yeah. Previous PANDA
25	tests, I think there were NRC observers at some of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1tests, and I think they reviewed the QA Program, and2probably provided RAIs on the test, but I wasn't3involved in reviewing the PANDA tests back then, so4I'm not sure what the total involvement was.5MR. RAO: Yes. The NRC also participated6in applying test matrix, and reviewing the test, and7providing oversight.8MR. BANERJEE: That was in the M-series.9Right? Also, in the P-Series?10MR. STAUDEMEIER: Only M-Series.11MR. BANERJEE: Only M-Series.12MR. STAUDEMEIER: Yeah. P-Series came13after the SBWR review.14CHAIRMAN WALLIS: PUMA doesn't satisfy the15scaling criteria set out by GE, does it?16MR. STAUDEMEIER: I don't know what17CHAIRMAN WALLIS: I don't think it does.18When they say you've got to duplicate links and19things, and I don't think it duplicates links very20well.21MR. STAUDEMEIER: Well, it's not a full22high scale facility. Yeah, that's23CHAIRMAN WALLIS: So you're not going to24be well scaled according to their PI-Groups.25MR. STAUDEMEIER: Well, I don't think		363
3 involved in reviewing the PANDA tests back then, so 4 I'm not sure what the total involvement was. 5 MR. RAO: Yes. The NRC also participated 6 in applying test matrix, and reviewing the test, and 7 providing oversight. 8 MR. BANERJEE: That was in the M-series. 9 Right? Also, in the P-Series? 10 MR. STAUDEMEIER: Only M-Series. 11 MR. STAUDEMEIER: Only M-Series. 12 MR. STAUDEMEIER: Yeah. P-Series came 13 after the SBWR review. 14 CHAIRMAN WALLIS: FUMA doesn't satisfy the 15 scaling criteria set out by GE, does it? 16 MR. STAUDEMEIER: I don't know what 17 CHAIRMAN WALLIS: I don't think it does. 18 When they say you've got to duplicate links and 19 things, and I don't think it duplicates links very 20 well. 21 MR. STAUDEMEIER: Well, it's not a full 22 MR. STAUDEMEIER: So you're not going to 23 CHAIRMAN WALLIS: So you're not going to 24 be well scaled according to their PI-Groups.	1	tests, and I think they reviewed the QA Program, and
 I'm not sure what the total involvement was. MR. RAO: Yes. The NRC also participated in applying test matrix, and reviewing the test, and providing oversight. MR. BANERJEE: That was in the M-series. Right? Also, in the P-Series? MR. STAUDEMEIER: Only M-Series. MR. BANERJEE: Only M-Series. MR. STAUDEMEIER: Yeah. P-Series came after the SBWR review. CHAIRMAN WALLIS: PUMA doesn't satisfy the scaling criteria set out by GE, does it? MR. STAUDEMEIER: I don't know what CHAIRMAN WALLIS: I don't think it does. When they say you've got to duplicate links and things, and I don't think it duplicates links very well. MR. STAUDEMEIER: Well, it's not a full high scale facility. Yeah, that's CHAIRMAN WALLIS: So you're not going to be well scaled according to their PI-Groups. 	2	probably provided RAIs on the test, but I wasn't
5MR. RAO: Yes. The NRC also participated6in applying test matrix, and reviewing the test, and7providing oversight.8MR. BANERJEE: That was in the M-series.9Right? Also, in the P-Series?10MR. STAUDEMEIER: Only M-Series.11MR. BANERJEE: Only M-Series.12MR. STAUDEMEIER: Yeah. P-Series came13after the SBWR review.14CHAIRMAN WALLIS: PUMA doesn't satisfy the15scaling criteria set out by GE, does it?16MR. STAUDEMEIER: I don't know what17CHAIRMAN WALLIS: I don't think it does.18When they say you've got to duplicate links and19things, and I don't think it duplicates links very20well.21MR. STAUDEMEIER: Well, it's not a full22high scale facility. Yeah, that's23CHAIRMAN WALLIS: So you're not going to24be well scaled according to their PI-Groups.	3	involved in reviewing the PANDA tests back then, so
 in applying test matrix, and reviewing the test, and providing oversight. MR. BANERJEE: That was in the M-series. Right? Also, in the P-Series? MR. STAUDEMEIER: Only M-Series. MR. BANERJEE: Only M-Series. MR. STAUDEMEIER: Yeah. P-Series came after the SBWR review. CHAIRMAN WALLIS: PUMA doesn't satisfy the scaling criteria set out by GE, does it? MR. STAUDEMEIER: I don't know what CHAIRMAN WALLIS: I don't think it does. When they say you've got to duplicate links and things, and I don't think it duplicates links very well. MR. STAUDEMEIER: Well, it's not a full high scale facility. Yeah, that's CHAIRMAN WALLIS: So you're not going to be well scaled according to their PI-Groups. 	4	I'm not sure what the total involvement was.
7 providing oversight. 8 MR. BANERJEE: That was in the M-series. 9 Right? Also, in the P-Series? 10 MR. STAUDEMEIER: Only M-Series. 11 MR. BANERJEE: Only M-Series. 12 MR. STAUDEMEIER: Yeah. P-Series came 13 after the SBWR review. 14 CHAIRMAN WALLIS: PUMA doesn't satisfy the 15 scaling criteria set out by GE, does it? 16 MR. STAUDEMEIER: I don't know what 17 CHAIRMAN WALLIS: I don't think it does. 18 When they say you've got to duplicate links and 19 things, and I don't think it duplicates links very 20 well. 21 MR. STAUDEMEIER: Well, it's not a full 22 high scale facility. Yeah, that's 23 CHAIRMAN WALLIS: So you're not going to 24 be well scaled according to their PI-Groups.	5	MR. RAO: Yes. The NRC also participated
8 MR. BANERJEE: That was in the M-series. 9 Right? Also, in the P-Series? 10 MR. STAUDEMEIER: Only M-Series. 11 MR. BANERJEE: Only M-Series. 12 MR. STAUDEMEIER: Yeah. P-Series came 13 after the SBWR review. 14 CHAIRMAN WALLIS: PUMA doesn't satisfy the 15 scaling criteria set out by GE, does it? 16 MR. STAUDEMEIER: I don't know what 17 CHAIRMAN WALLIS: I don't think it does. 18 When they say you've got to duplicate links and 19 things, and I don't think it duplicates links very 20 well. 21 MR. STAUDEMEIER: Well, it's not a full 22 high scale facility. Yeah, that's 23 CHAIRMAN WALLIS: So you're not going to 24 be well scaled according to their PI-Groups.	6	in applying test matrix, and reviewing the test, and
9 Right? Also, in the P-Series? 10 MR. STAUDEMEIER: Only M-Series. 11 MR. BANERJEE: Only M-Series. 12 MR. STAUDEMEIER: Yeah. P-Series came 13 after the SBWR review. 14 CHAIRMAN WALLIS: PUMA doesn't satisfy the 15 scaling criteria set out by GE, does it? 16 MR. STAUDEMEIER: I don't know what 17 CHAIRMAN WALLIS: I don't think it does. 18 When they say you've got to duplicate links and 19 things, and I don't think it duplicates links very 20 well. 21 MR. STAUDEMEIER: Well, it's not a full 22 high scale facility. Yeah, that's 23 CHAIRMAN WALLIS: So you're not going to 24 be well scaled according to their PI-Groups.	7	providing oversight.
10MR. STAUDEMEIER: Only M-Series.11MR. BANERJEE: Only M-Series.12MR. STAUDEMEIER: Yeah. P-Series came13after the SBWR review.14CHAIRMAN WALLIS: PUMA doesn't satisfy the15scaling criteria set out by GE, does it?16MR. STAUDEMEIER: I don't know what17CHAIRMAN WALLIS: I don't think it does.18When they say you've got to duplicate links and19things, and I don't think it duplicates links very20well.21MR. STAUDEMEIER: Well, it's not a full22high scale facility. Yeah, that's23CHAIRMAN WALLIS: So you're not going to24be well scaled according to their PI-Groups.	8	MR. BANERJEE: That was in the M-series.
11MR. BANERJEE: Only M-Series.12MR. STAUDEMEIER: Yeah. P-Series came13after the SBWR review.14CHAIRMAN WALLIS: PUMA doesn't satisfy the15scaling criteria set out by GE, does it?16MR. STAUDEMEIER: I don't know what17CHAIRMAN WALLIS: I don't think it does.18When they say you've got to duplicate links and19things, and I don't think it duplicates links very20well.21MR. STAUDEMEIER: Well, it's not a full22high scale facility. Yeah, that's23CHAIRMAN WALLIS: So you're not going to24be well scaled according to their PI-Groups.	9	Right? Also, in the P-Series?
12MR. STAUDEMEIER: Yeah. P-Series came13after the SBWR review.14CHAIRMAN WALLIS: PUMA doesn't satisfy the15scaling criteria set out by GE, does it?16MR. STAUDEMEIER: I don't know what17CHAIRMAN WALLIS: I don't think it does.18When they say you've got to duplicate links and19things, and I don't think it duplicates links very20well.21MR. STAUDEMEIER: Well, it's not a full22high scale facility. Yeah, that's23CHAIRMAN WALLIS: So you're not going to24be well scaled according to their PI-Groups.	10	MR. STAUDEMEIER: Only M-Series.
 13 after the SBWR review. 14 CHAIRMAN WALLIS: PUMA doesn't satisfy the 15 scaling criteria set out by GE, does it? 16 MR. STAUDEMEIER: I don't know what 17 CHAIRMAN WALLIS: I don't think it does. 18 When they say you've got to duplicate links and 19 things, and I don't think it duplicates links very 20 well. 21 MR. STAUDEMEIER: Well, it's not a full 22 high scale facility. Yeah, that's 23 CHAIRMAN WALLIS: So you're not going to 24 be well scaled according to their PI-Groups. 	11	MR. BANERJEE: Only M-Series.
 14 CHAIRMAN WALLIS: PUMA doesn't satisfy the 15 scaling criteria set out by GE, does it? 16 MR. STAUDEMEIER: I don't know what 17 CHAIRMAN WALLIS: I don't think it does. 18 When they say you've got to duplicate links and 19 things, and I don't think it duplicates links very 20 well. 21 MR. STAUDEMEIER: Well, it's not a full 22 high scale facility. Yeah, that's 23 CHAIRMAN WALLIS: So you're not going to 24 be well scaled according to their PI-Groups. 	12	MR. STAUDEMEIER: Yeah. P-Series came
 15 scaling criteria set out by GE, does it? 16 MR. STAUDEMEIER: I don't know what 17 CHAIRMAN WALLIS: I don't think it does. 18 When they say you've got to duplicate links and 19 things, and I don't think it duplicates links very 20 well. 21 MR. STAUDEMEIER: Well, it's not a full high scale facility. Yeah, that's 23 CHAIRMAN WALLIS: So you're not going to 24 be well scaled according to their PI-Groups. 	13	after the SBWR review.
16MR. STAUDEMEIER: I don't know what17CHAIRMAN WALLIS: I don't think it does.18When they say you've got to duplicate links and19things, and I don't think it duplicates links very20well.21MR. STAUDEMEIER: Well, it's not a full22high scale facility. Yeah, that's23CHAIRMAN WALLIS: So you're not going to24be well scaled according to their PI-Groups.	14	CHAIRMAN WALLIS: PUMA doesn't satisfy the
17CHAIRMAN WALLIS: I don't think it does.18When they say you've got to duplicate links and19things, and I don't think it duplicates links very20well.21MR. STAUDEMEIER: Well, it's not a full22high scale facility. Yeah, that's23CHAIRMAN WALLIS: So you're not going to24be well scaled according to their PI-Groups.	15	scaling criteria set out by GE, does it?
18 When they say you've got to duplicate links and 19 things, and I don't think it duplicates links very 20 well. 21 MR. STAUDEMEIER: Well, it's not a full 22 high scale facility. Yeah, that's 23 CHAIRMAN WALLIS: So you're not going to 24 be well scaled according to their PI-Groups.	16	MR. STAUDEMEIER: I don't know what
<pre>19 things, and I don't think it duplicates links very 20 well. 21 MR. STAUDEMEIER: Well, it's not a full 22 high scale facility. Yeah, that's 23 CHAIRMAN WALLIS: So you're not going to 24 be well scaled according to their PI-Groups.</pre>	17	CHAIRMAN WALLIS: I don't think it does.
20 well. 21 MR. STAUDEMEIER: Well, it's not a full 22 high scale facility. Yeah, that's 23 CHAIRMAN WALLIS: So you're not going to 24 be well scaled according to their PI-Groups.	18	When they say you've got to duplicate links and
21 MR. STAUDEMEIER: Well, it's not a full 22 high scale facility. Yeah, that's 23 CHAIRMAN WALLIS: So you're not going to 24 be well scaled according to their PI-Groups.	19	things, and I don't think it duplicates links very
22 high scale facility. Yeah, that's 23 CHAIRMAN WALLIS: So you're not going to 24 be well scaled according to their PI-Groups.	20	well.
 CHAIRMAN WALLIS: So you're not going to be well scaled according to their PI-Groups. 	21	MR. STAUDEMEIER: Well, it's not a full
24 be well scaled according to their PI-Groups.	22	high scale facility. Yeah, that's
	23	CHAIRMAN WALLIS: So you're not going to
25 MR. STAUDEMEIER: Well, I don't think	24	be well scaled according to their PI-Groups.
	25	MR. STAUDEMEIER: Well, I don't think

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	364
1	scaling I don't think only full height facilities
2	can be well scaled facilities. It depends on what
3	phenomena you're looking at. And, for instance, PUMA,
4	since it's quarter height and twice the power, time
5	runs twice as fast in PUMA.
6	CHAIRMAN WALLIS: Particularly for
7	gravitational driven things. You need to usually
8	you need to have the right height.
9	MR. KRESS: It's height versus
10	CHAIRMAN WALLIS: Height versus resistance
11	and everything, and scaling sort of drives you to full
12	height.
13	MR. STAUDEMEIER: Well, if you want time
14	preserved it's full height.
15	MR. BANERJEE: Well, it's a major problem,
16	and you'd have to justify a reduced height facility
17	very, very carefully.
18	MR. STAUDEMEIER: Things become more
19	sensitive because DPs become scaled by DP over 4,
20	essentially.
21	MR. BANERJEE: It's hell, actually. So
22	we'll see this
23	MR. STAUDEMEIER: It's been done before.
24	OSU was a problem that was sensitive like that.
25	MR. BANERJEE: It's very sensitive, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	365
1	for a large number of the tests, they're not very
2	useful. I mean, for long term cooling, it's a
3	different matter. This was shown in the AP600 study,
4	as well. It's documented.
5	MR. STAUDEMEIER: But you'll have access
6	to the scaling study, and access to a presentation on
7	it in the future, if you want to.
8	MR. SCHROCK: What is the status of your
9	documentation on TRACE?
10	MR. STAUDEMEIER: TRACE documentation is
11	still in draft. I think everything is still pretty
12	much in draft form. It's fairly complete because it's
13	based mainly on TRAC documentation. Some of the
14	things aren't documented at all, like features that
15	have been added to be able to run RELAP decks, and the
16	code architecture isn't fully documented. The
17	programmer's manual isn't current. But in terms of
18	theory manual, like models and correlations, that's
19	fairly accurate. Input manual is accurate, even
20	though it's in draft form.
21	MR. SCHROCK: I can remember four or five
22	years ago, discussions developing on TRACM, and the
23	advice given would be useful if ACRS could see some
24	documentation on what's happening here, so it can
25	advise while it's happening, rather than when it's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	366
1	accomplished. Then we got a batch of documentation
2	that look like recycled dose elements reports. That's
3	all I've ever seen. Is there more than that?
4	MR. STAUDEMEIER: There is some fresh
5	documentation. I'd say a lot of it is still based on
6	Los Alamos reports, but I think you're probably going
7	to be getting to review that sometime in the near
8	future, the documentation. I'm not sure what the
9	latest schedule is to finalize documentation, but it's
10	certainly not before the end of this year.
11	CHAIRMAN WALLIS: So this is not a fee
12	billable thing. This whole PUMA thing is public
13	money.
14	MR. STAUDEMEIER: Yes. And I think the
15	distinction that makes it fee billable or not is if
16	NRR said they needed this test facility to certify the
17	ESBWR design, it would be fee billable, but that's not
18	the case.
19	CHAIRMAN WALLIS: I'm just wondering if
20	this is a well thought out thing to do, to run PUMA.
21	I don't know, because we haven't had a chance to
22	review it. I just wonder if at this stage it's the
23	right thing to do. There's all this other data out
24	there that GE has taken. I would think you'd want to
25	get the most out of that first, and see if there are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	367
1	any gaps in it. Is PUMA filling some identified gaps
2	in the database?
3	MR. STAUDEMEIER: I don't think there's
4	been enough review of all the data yet to determine
5	that. There are some preliminary tests
6	CHAIRMAN WALLIS: Maybe it's an attempt to
7	keep PUMA alive somehow.
8	MR. STAUDEMEIER: I'm not the person to
9	ask that.
10	CHAIRMAN WALLIS: Maybe in our research
11	report we can look at this carefully.
12	MR. STAUDEMEIER: That's, I guess it
13	may be something you want to review, is the PUMA
14	program and what it is.
15	CHAIRMAN WALLIS: I just don't want us to
16	have to come down in a negative way about it. I just
17	want to be sure that you know what you're doing. I
18	don't want to be negative about it, after we've had
19	enough to know, because at the moment, I just feel
20	uncertain.
21	MR. STAUDEMEIER: Okay. Well, I'll go
22	over a little bit about preliminary testing program,
23	and the scaling that's going on.
24	CHAIRMAN WALLIS: I don't know if you need
25	to do it now, but maybe go ahead. I'm sorry.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	368
1	MR. STAUDEMEIER: And we're starting up
2	some work on severe accident analysis. Right now
3	we're just looking at developing MELCOR input and the
4	actual analysis won't come for quite a while.
5	Okay. Right now we're providing technical
б	assistance and review of the scaling testing in PIRT
7	reports, and eventually we'll be providing a technical
8	evaluation report on the documents that NRR will use
9	in their safety evaluation.
10	CHAIRMAN WALLIS: This is all just
11	beginning too?
12	MR. STAUDEMEIER: Actually, it began a few
13	months ago. The RAIs are the first product of the
14	review.
15	CHAIRMAN WALLIS: So ISL has identified
16	some things that are worth following up?
17	MR. STAUDEMEIER: The ISL which is
18	Marcos Ortiz is the person from ISL reviewing the
19	information. Marino DiMarzo from Research, Jim Han
20	from Research, and Dave Bessette from Research has all
21	contributed RAIs on those documents. So the status of
22	that is RAIs will be completed for testing reports in
23	the near future. They are already complete for
24	scaling and TAPD PIRT reports, and TERs are scheduled
25	to be completed in the fall, presuming that GE answers

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	369
1	all the RAIs by then, and we come to closure on
2	issues.
3	The TRACE/CONTAIN coupling for ESBWR
4	calculations, TRACE is capable of modeling the ESBWR
5	reactor vessel and phenomena that go on in there.
6	It's not adequate for modeling the ESBWR containment
7	because of some reasons I'll get into it a little bit.
8	CHAIRMAN WALLIS: TRACE has not yet
9	modeled the ESBWR vessel.
10	MR. STAUDEMEIER: There is a TRACE model
11	of the ESBWR.
12	CHAIRMAN WALLIS: It has run?
13	MR. STAUDEMEIER: Yes. It'll run to
14	steady-state. I don't know if it's been run to
15	blow-down yet, but I'm not sure of the current status
16	of that.
17	CHAIRMAN WALLIS: But you're asserting
18	it's capable. That's a statement of faith, isn't it?
19	MR. STAUDEMEIER: Yeah. I mean, an ESBWR
20	vessel will blow-down like a regular BWR vessel, and
21	I know it can do a regular BWR vessel blow-down.
22	CHAIRMAN WALLIS: So it should be capable
23	based on its past performance.
24	MR. STAUDEMEIER: Yes. Okay. We have
25	CONTAIN which is capable of modeling ESBWR

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	370
1	containment, because there was some work put into that
2	factor in the SBWR review to give it modeling
3	capabilities for SBWR. One of the things that's been
4	done to TRAC to make it into TRACE is to build-in this
5	coupling capability to other codes that we call the
6	exterior communications interface. And it's a
7	communications protocol between TRACE, and you can
8	build it into other codes so that the other codes can
9	request information from TRACE, and send information
10	back to TRACE, so that they can run in a parallel
11	mode.
12	And we've recently modified CONTAIN to
13	support the ECI so that it can run coupled
14	calculations of TRACE. We'll be modeling the ESBWR
15	vessel in TRACE, and model the containment in CONTAIN.
16	There is a CONTAIN model built, and the codes will run
17	in parallel, and communicate through the ECI. And
18	some preliminary calculations that are showing proof
19	of principle have been run.
20	CHAIRMAN WALLIS: This is reasonably
21	efficient and doesn't need an enormous amount of time
22	while they're communicating to each other?
23	MR. STAUDEMEIER: The communication time
24	is probably significant for the time it takes for a
25	CONTAIN time slip. I mean, essentially you're running

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	371
1	CONTAIN for free, I think, compared to TRACE, the
2	amount of computational time for time steps, because
3	CONTAIN is just a small number of coupled ODEs.
4	Whereas, the TRACE model has many volumes.
5	MR. POWERS: CONTAIN was going like a bat
6	out of hell compared to TRACE.
7	MR. STAUDEMEIER: Yeah. Coupling points
8	and modeling, but hopefully we'll get those things all
9	worked out in the future, and we'll get something that
10	runs reliably and stable. The time step control in
11	CONTAIN is fairly primitive compared to TRACE, and we
12	think that TRACE would be the limiting time step in
13	the calculation, but it turns out CONTAIN is what's
14	limiting the time step.
15	MR. BANERJEE: Is the coupling point
16	mainly the break, or are there other
17	MR. STAUDEMEIER: There's several coupling
18	points. The break is one of them. SRVs going into
19	the suppression pool. There's pressure coupling
20	points at the top of the GDCS, so there's quite a
21	number of them.
22	Okay. The TRACE code development going
23	on, recently some work was completed to add the
24	capability to model advanced BWR fuel designs to both
25	TRACE and PARCS. PARCS is the 3-d kinetics code that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	372
1	also runs in a coupled mode with TRACE for doing
2	coupled thermohydraulic reactor kinetics calculations.
3	CHAIRMAN WALLIS: These are lousy
4	projectory things. I mean, the corners are almost
5	invisible, unless there's something wrong with my
6	eyes. I have to read the paper.
7	MS. CUBBAGE: I don't know if it's the
8	font or if it's the projector.
9	CHAIRMAN WALLIS: Well, you've got to fix
10	that somehow. It's gets dark and fuzzy in the
11	corners, and brights and shiny in the middle. I don't
12	know what it is, but it's lousy.
13	MR. POWERS: Getting cranky in your old
14	age here?
15	CHAIRMAN WALLIS: I'm trying to compete
16	with my colleague on my left.
17	(Laughter.)
18	MR. POWERS: Don't do that. He's a past
19	master.
20	MR. STAUDEMEIER: Additionally, some
21	things are going to be added to TRACE in the future
22	that will allow it to better model coupled reactor
23	containment problems, such as ESBWR. And the two main
24	tasks that should help that out is to improve the
25	steam air condensation modeling for the PCCS, ICS, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	373
1	the
2	CHAIRMAN WALLIS: So when is the NRR going
3	to say that TRACG is okay for use with ESBWR? Isn't
4	it before all this has happened?
5	MR. STAUDEMEIER: This isn't going to
6	support the
7	CHAIRMAN WALLIS: What is it supporting?
8	MR. STAUDEMEIER: The design certification
9	reviews.
10	CHAIRMAN WALLIS: So you're looking way
11	ahead.
12	MR. STAUDEMEIER: Right.
13	MR. LANDRY: Graham, Ralph Landry from
14	NRR. The TRACG review is going to be completed before
15	this is done, you're correct. At least that's our
16	anticipation. The work that is being done with TRACE
17	is in support of the design certification of the
18	plant. We are doing some calculations using CONTAIN
19	with TRACE currently, as part of our confirmatory
20	calculations, but those are not what we are basing
21	approval of TRACG on.
22	CHAIRMAN WALLIS: It would be rather
23	embarrassing if you approve TRACG, and then these guys
24	come up with different calculations a year from now
25	which show that the whole approval was in question.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	374
1	MR. LANDRY: That's always a possibility,
2	but you have to be able to, at that point, show which
3	code is actually correct then. And the way you do
4	that is by assessment against test data. If the code
5	is assessed against test data and shown to adequately
6	represent the test data, then it's hard to discount
7	it.
8	MR. SCHROCK: You're starting with the
9	assumption that one of them is correct.
10	(Laughter.)
11	MR. LANDRY: Thank you, Virgil.
12	CHAIRMAN WALLIS: Also, that the test data
13	is correct.
14	MR. SCHROCK: Or relevant.
15	CHAIRMAN WALLIS: Or well scaled.
16	MR. STAUDEMEIER: The tube condensation
17	model is going to be based on some work Joe Kelly did
18	back for actually SBWR, that was originally going to
19	be implemented into RELAP-5, and never got implemented
20	when the SBWR review was cut off, so the tube
21	condensation work is in a fairly advanced state, even
22	though it's just started. It's not like he's starting
23	from scratch. There's been many of the correlations
24	that have been developed already, and just need to be
25	implemented into the code.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	375
1	We also need to change the energy equation
2	to an enthalpy-based formulation to improve energy
3	conservation and flows across junctions with large
4	pressure differences. The difference in scheme in
5	TRAC right now with the energy equation, the work
6	term, PV work term is not treated very well. And
7	changing to the enthalpy formulation will give a
8	correct treatment of that, and give the right energy
9	deposition into the containment. We're keeping the
10	solution variables in the code the same. It's just
11	changing the equation that's being sought.
12	The containment-related code modifications
13	have just started. The condensation work is scheduled
14	to be completed by the end of September, and the
15	energy equation work should be completed by the end of
16	January next year.
17	MR. BANERJEE: Let me ask you a question.
18	A lot of this chimney stuff that the way TRACG is
19	handling it is backing it out of the drift flux-type
20	formulation, which is what anybody would do. How is
21	this handled in TRACE, the same way?
22	MR. STAUDEMEIER: Well, TRACE has a
23	different correlations package. It's actually
24	TRACB has a correlations package that's very similar
25	to GE's.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	376
1	MR. BANERJEE: Right.
2	MR. STAUDEMEIER: The TRACE correlations
3	package currently is based on the TRAC correlations
4	package, so the DRAG correlations have a different
5	basis. I'm not sure they not based on drift flux
6	correlations though.
7	MR. BANERJEE: That's what I thought, so
8	how do you expect to handle level swell, because it's
9	not easy to do with the sort of fluid model unless you
10	back it out of the drift flux correlation.
11	MR. STAUDEMEIER: Well, we'll do a code
12	assessment against some level swell experiments and
13	see how well it predicts it.
14	MR. BANERJEE: Okay. That hasn't been
15	done yet.
16	MR. STAUDEMEIER: I think there's been
17	some preliminary assessment done. I'm not sure what
18	the results of that were, but that will be looked at
19	and see if it's adequate or not.
20	MR. BANERJEE: Right.
21	MR. STAUDEMEIER: I guess one option is to
22	put an option in to use the TRAC BWR correlations
23	package in TRACE.
24	MR. BANERJEE: Right. It's notoriously
25	difficult to get it right if you don't back it out of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	377
1	drift flux. That's the reason they went that way.
2	MR. STAUDEMEIER: Well, I guess the only
3	data really available is steady state data, and for
4	that, the drift flux is just as good as
5	MR. BANERJEE: Yeah, better.
6	MR. STAUDEMEIER: Okay. The TRACE code
7	assessment, right here I just have documented some of
8	the ESBWR-specific tests that we're going to be
9	looking at. But in addition to that, there will be
10	basic void fraction assessment and things like level
11	swell assessment that are also important calculations.
12	For the integral tests, we're going to
13	look at PUMA and PANDA data. The PANDA series is the
14	latest PANDA series, ESBWR PANDA series. We're
15	developing an input deck from information that came
16	out of an international standard problem that was
17	performed with some of the PANDA P-Series data.
18	MR. POWERS: Which problem was that?
19	MR. STAUDEMEIER: I'm not sure what the
20	number is.
21	MR. POWERS: In the 40s or the 30s?
22	MR. STAUDEMEIER: Forties again, but we
23	can get you a copy of the documentation, if you're
24	interested.
25	MR. POWERS: It would be useful.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

378 1 MR. STAUDEMEIER: And the PUMA data, we're 2 going to be looking at the data that was already taken back in the SBWR days, so that's existing. Purdue has 3 4 developed a TRACE stand-alone model that everything is 5 modeled in TRACE and is run through a main steam line break calculation. There are some code deficiencies 6 that were identified, but it made it through to 7,000 7 seconds under a main steam line break calculation, 8 9 which is equivalent to 14,000 seconds of reactor time 10 essentially, so it made it pretty far into the 11 transient. 12 In terms of PUMA, there's some small 13 modifications to PUMA that are being made right now. 14 The GDCS is going to be connect -- is in the process 15 of being connected to the wetwell, and it actually may 16 already be connected as we speak. And some integral 17 tests are going to be run to see what the differences 18 just from that change between GDCS connected to the 19 drywell, and GDCS connected to the wetwell, to see 20 that the code can predict the differences between 21 those two different configurations. 22 There are some separate effects tests that 23 will also be run in PUMA, which are some condensation 24 tests that have been identified for tube condensation, 25 and also condensation in the wetwell, and that will be

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	379
1	used to assess the condensation models that Joe Kelly
2	is going to be developing for TRACE. In addition to
3	the PUMA data, we'll also look at some other
4	condensation tests.
5	The status of that is the PUMA stand-alone
6	TRACE model has been run, code deficiencies have been
7	identified, and we'll look at resolving them in the
8	near future.
9	CHAIRMAN WALLIS: Was it run successfully?
10	MR. STAUDEMEIER: Well, it ran
11	successfully without crashing, I guess if that's what
12	you term "success". Some of the parameters that have
13	been predicted were not predicted so well. They
14	predicted GDCS injection to start too early. The GDCS
15	flow rate, they compared fairly well. Some things
16	compared fairly well, some things didn't compare that
17	well, which the new condensation models I think will
18	greatly improve code results.
19	MR. BANERJEE: Did it get the pressures
20	right?
21	MR. STAUDEMEIER: No. It over-predicted
22	the drywell pressure, and under-predicted the wetwell
23	pressure.
24	CHAIRMAN WALLIS: So you're now going to
25	tune TRACE to the PUMA test?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	380
1	MR. STAUDEMEIER: No, it's not going to be
2	tuned. I mean, the condensation models are going to
3	go independently of the PUMA tests. They'll be run
4	after the condensation models are implemented, but we
5	don't tune or adjust code results based on integral
6	test data.
7	Okay. There's a PANDA TRACE model that's
8	being developed right now in-house based on the
9	information from the International Standard Problem.
10	And there will also be coupled TRACE/CONTAIN decks for
11	both PUMA and PANDA that are going to be developed to
12	show that the coupling works, and that the coupled
13	calculations are giving good results.
14	Okay. Right now there's a PUMA ESBWR
15	scaling study going on out at Purdue for
16	CHAIRMAN WALLIS: How long does TRACE take
17	to run compared with TRACG to solve the same problem?
18	MR. STAUDEMEIER: I don't know how long
19	TRACG takes to run on a given platform. I'd need to
20	know how long it takes to run Shanlai probably has
21	more experience.
22	MR. LU: The TRACG to run 72 hours, main
23	steam line break case. It takes about four days on
24	RVMS machine. But you tell transit in 72 hours. It's
25	very good in terms of running the TRACG. Right before

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	381
1	the GDCS line break, look like it's very short. It's
2	a couple of hours, so that's TRACG code. TRACE code
3	right now in steady state, we reach very good steady
4	state code, 120 seconds right now we ran.
5	CHAIRMAN WALLIS: Steady state is really
6	of no interest.
7	MR. LU: Right. Well, that I'm talking
8	about the 120 seconds into the main steam line LOCA
9	case. It takes about 2 hours. Okay. But right now,
10	the
11	CHAIRMAN WALLIS: It's comparable with
12	TRACG.
13	MR. LU: It's hard to compare because we
14	are running on a different platform.
15	CHAIRMAN WALLIS: You're running on Octave
16	platform?
17	MR. LU: The TRACE and the CONTAIN is
18	running on PCs, Pentium 4 and a bigger CPU. Whether
19	the NRR VMS is
20	MR. STAUDEMEIER: Yeah, the machines that
21	TRACE runs on are quite a bit faster than the machine
22	that they have TRACG running on because that's quite
23	an old machine.
24	I believe the PUMA calculation to run out
25	to 7,000 seconds took on the order of one and a half

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	382
1	days to two days, and that was on some kind of Pentium
2	4 that's about two gigahertz. But a lot of that time,
3	the code was bogged down with condensation
4	oscillations because of the bad condensation model in
5	the code. And I think the run time should improve
6	greatly when the condensation model gets fixed.
7	CHAIRMAN WALLIS: So 59 runs would take
8	half a year?
9	MR. STAUDEMEIER: No, not I mean, we
10	have quite a few machines that we could run them on at
11	the same time.
12	(Laughter.)
13	CHAIRMAN WALLIS: Take 59 machines, right?
14	MR. ROSENTHAL: Excuse me. This is Jack
15	Rosenthal, Branch Chief in SMSMP. You know, it's
16	we will be releasing production, a release version of
17	TRACE in the fall. And right now what you're doing is
18	you're comparing times on a beta version of the code.
19	And as we fix the physics in the code, we expect to
20	gain some run time speed, so it's just not a good
21	comparison. Measure us in the fall.
22	MR. STAUDEMEIER: Okay.
23	CHAIRMAN WALLIS: So this is a simplified
24	BWR. There's nothing simplified about modeling it
25	with the code. It's still just as complicated, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	383
1	takes as long.
2	MR. STAUDEMEIER: Probably longer right
3	now because the code was never really made to do all
4	the condensation at low pressure with non-condensibles
5	that it needs to do for the ESBWR model.
6	Okay. The scaling study, PUMA was
7	designed to a scaled SBWR integral test facility, and
8	it's scaled pretty well for that using inching
9	scaling. The ESBWR containment differs from the SBWR
10	containment topologically. The GDCS is now in the
11	wetwell, previously it was in the drywell. And in the
12	non-dimensional scaling ratios, like power to volume
13	and things like that are different things.
14	CHAIRMAN WALLIS: So the scaling basis is
15	very much like the APEX scaling basis, isn't it? APEX
16	is to AP600 about what PUMA is to SBWR.
17	MR. STAUDEMEIER: Yeah. Both core height,
18	both facilities were designed to look at long-term
19	cooling phase of the accident. APEX wasn't full
20	pressure. It was a reduced pressure. PUMA is full
21	pressure, and it's designed to pick up the transient
22	partway into it. It picks up from the late blow-down
23	phase, but from then on, it's a full pressure
24	facility. And time runs twice as fast, I think, in
25	both facilities. So the scaling study should be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

completed by the end of August. We'll evaluate the scaling distortions that exist in the present facility. If the scaling distortions aren't great, then maybe the tests we're running now with just a limited modification connecting the GDCS to the wetwell instead of the drywell will be data that's good enough.

1

2

3

4

5

6

7

16

17

18

19

20

25

If there's great scaling distortions, we'd 8 have to look at the modifications necessary to make 9 10 PUMA a well scaled ESBWR test facility, and decide 11 whether it's worth it to make those modifications and 12 do additional testing at that time. That decision 13 be coming sometime in the fall, on what will 14 modifications would be made, what impact they would 15 have on the tests, and whether to make --

CHAIRMAN WALLIS: So this facility and this plan was not designed to answer specific questions. It seems to be just sort of a catch-all, where you want it and then you use it in ways yet to be determined.

21 MR. STAUDEMEIER: Well, it's to look at 22 integral system response and provide data for the 23 codes that's representative of things that go on the 24 SBWR.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

CHAIRMAN WALLIS: It's a very general kind

(202) 234-4433

	385
1	of purpose.
2	MR. STAUDEMEIER: Right. It's more
3	CHAIRMAN WALLIS: In other words, if
4	you're focusing on certain key questions which have
5	been identified
6	MR. STAUDEMEIER: Well, passive heat
7	removal and system interactions between the various
8	places due to passive heat removal, I guess is the
9	main thing that the facility is looking at to make
10	sure there is no, I guess, surprises that pop up which
11	and also, to look at the whole transient from near
12	the beginning all the way through long-term cooling,
13	which it's I guess that's the one thing that makes
14	it unique compared to the other facilities, is it
15	covers a longer range of time in the accident.
16	Okay. PUMA confirmatory testing.
17	Currently right now, the old PUMA test data is being
18	used for TRACE/CONTAIN code assessment. Modifications
19	are underway to connect the GDCS change to the
20	wetwell, and the same tests will be run in that
21	configuration to examine the differences in the
22	facility response between the two different
23	configurations, and see that the code can predict the
24	difference in the two different configurations. Other
25	than the connections, the tests will be run in as

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	386
1	identical a manner as possible.
2	As I said, additional modifications may be
3	needed or identified based on the outcome of the
4	scaling study, which should be available at the end of
5	August. And also, the separate effects tests will be
6	used to study tube and suppression pool condensation.
7	It will be used as additional data for code assessment
8	of the condensation models that Joe Kelly is going to
9	be putting in the code.
10	The integral testing with this limited
11	modification is planned to start in August. Separate
12	effects testing is planned to start in September, and
13	a decision on additional facility modifications and
14	testing will be made in the fall after we get the
15	results of the scaling study, and do some sort of cost
16	benefit study on the outcome of that.
17	MR. ROSENTHAL: Do you expect
18	MR. BANERJEE: Before we get on to
19	MR. ROSENTHAL: Oh, I'm sorry.
20	MR. BANERJEE: I was just going to ask
21	you, the SBWR and PUMA were scaled, if you agree with
22	the scaling methodology they were scaled. And then
23	the ESBWR is just double the power or something
24	roughly, and volume. So why do you expect such a big
25	difference in the scaling between the two?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	387
1	MR. STAUDEMEIER: Well, the volumes aren't
2	scale. Like you double the power, but the drywell
3	volume isn't doubled, or the wetwell volume isn't
4	doubled. So actually, I think the first look at it
5	looks like you would have to remove volume in the
6	wetwell from PUMA, which would mean putting maybe
7	I think one idea was putting hollow steel balls in
8	there or something to take up some of the volume.
9	MR. BANERJEE: Yeah, I remember now,
10	because the PANDA P-Series was different from the
11	M-Series. The volumes were all adjusted, so that's
12	what that's the main difference.
13	MR. STAUDEMEIER: Right.
14	MR. BANERJEE: Okay.
15	MR. ROSENTHAL: Before we get into just
16	the one slide on severe accident, if we try to look
17	into the future some months or a year or so, one could
18	anticipate that the real issues, or that there will be
19	issues on the SBWR concerning stability, neutron
20	thermohydraulic stability, and ATWS and stability
21	behavior during the course of an ATWS. And in
22	anticipation of that, what you want is a code that
23	couples neutronics and thermohydraulics in the
24	containment, and so that's the PARCS, TRACE/CONTAIN
25	coupling, will give us the tool to independently

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

assess. I anticipate there'll be questions a year from now.

3 Similarly, we did do some work with PUMA 4 and we're about to publish results of some stability tests where, you know, they're electrically heated 5 and we changed the heat flux just using 6 rods, 7 controllers, but did get some stability tests which allow us to benchmark the code. 8 And so it is 9 reasonable to anticipate that PUMA may play a role a 10 year from now in answering questions concerning 11 stability, so stability during the course of an ATWS 12 is of particular interest to me. But, of course, 13 that's what I've just said, trying to anticipate the 14 future is somewhat speculative, and I think that Joe 15 is absolutely right, you know, in saying we'll do the scaling analysis. We'll do the analysis, and if it 16 17 makes sense, we'll run the facility. And if it 18 doesn't make sense, we won't do it.

MR. STAUDEMEIER: Stability experiments in PUMA are the type of experiments that we looked at in pre-EPRI, which is the flashing instability, with the flashing in the chimney region. It's not density wave instabilities.

24 CHAIRMAN WALLIS: That's dependent on the 25 balance between gravity and pressure, so how do you do

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	389
1	this in a system which isn't full height? Do you run
2	it at
3	MR. STAUDEMEIER: Well, you have to look
4	at your scaling groups and what they tell you about
5	excuse me?
6	CHAIRMAN WALLIS: Run it at pressure below
7	the pressure that's actually anticipated in the SBWR?
8	MR. STAUDEMEIER: Well, it'll flash at
9	I mean, the elevation where it flashes will be lower.
10	So as I said, the Dps are scaled by a quarter, so that
11	this pressure is full scale, but Dps are scaled by
12	quarter height, so the
13	CHAIRMAN WALLIS: Well, I don't know if
14	that works out.
15	MR. STAUDEMEIER: You have to look at the
16	scaling
17	MR. BANERJEE: Yeah. If you want to do
18	that, the modification needed is make it full height.
19	MR. STAUDEMEIER: Right. But I mean, you
20	get non-dimensional equations in scaling groups, and
21	you can compare that to the
22	MR. BANERJEE: No. I think Graham's
23	question is the one that we all have, is as they were
24	saying, you've got this column of water right at the
25	top that starts to boil. And the reason it starts to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	390
1	boil is, of course, that the suppressed boiling due to
2	this gravity head.
3	MR. STAUDEMEIER: Right.
4	MR. BANERJEE: And then it goes out of
5	boiling, and it comes back into boiling. And, you
6	know, how do you do it without that gravity head? I
7	don't understand that.
8	CHAIRMAN WALLIS: You have to run it at
9	lower than design pressure.
10	MR. BANERJEE: You'd have to do some major
11	change, like Graham is saying.
12	CHAIRMAN WALLIS: Then you've changed all
13	the properties.
14	MR. RANSOM: I've never quite understood
15	the desire to, you know, try and maintain exact
16	similarity, which is never done, you know, in any of
17	these test facilities. But in terms of gravity, this
18	sticking to full height it seems to me is may not
19	be, you know, a necessary criterion. And in fact,
20	I've never understood why you can't use the codes
21	which embody all the physics of the hydrostatic head,
22	and the flashing effects, and compare full scale with
23	limited scale. And basically, we did do that in PUMA.
24	And, you know, within limited scaling. I mean, if you
25	go to extremes, of course, you would some of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
1 phenomena might disappear. But examine the similarity 2 using the codes. It doesn't necessarily mean they're 3 exactly right, but you can go back and examine how 4 well does that kind of facility simulate the behavior 5 by comparing it with say a full-scale model of the And I think that's been quite successful in 6 plant. 7 that case. And you really need to look at it on that basis. You have to look at a code model for the test 8 9 facility, and a code model for the full-scale plant, 10 and then compare those two to see are the same 11 phenomena present. 12 I mean, you can get MR. BANERJEE: Sure. 13 the same phenomena. Just heat up the core more and 14 you'll get boiling at the top. I mean, it's always 15 possible. 16 MR. STAUDEMEIER: I quess one thing -- I 17 mean, you come up with a stability boundary based on 18 non-dimensional equations, and maybe you run your code 19 to see if it predicts the same stability boundary that 20 experiment does, and that gives you the some 21 additional information of whether it can predict the 22 stability boundary in the full height. 23 The problem with Vic's MR. BANERJEE: 24 argument is really that the code should be a scaling 25 tool. And everything you do with the code, every

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

391

	392
1	experiment you do is, therefore, relevant. It doesn't
2	really matter. That's true if the code converges in
3	a mathematical sense. Most of these codes, however,
4	depend on fancy nodalization to make them come close
5	to reality. And the nodalization becomes a part of
6	the problem, and that's part of the CSAU methodology.
7	We understood that these codes would not converge when
8	we set that up.
9	MR. SCHROCK: I don't believe in that.
10	MR. BANERJEE: Well, but that's exactly
11	what happened.
12	MR. SCHROCK: I mean, you're making
13	approximations that are far greater in all the models.
14	MR. BANERJEE: You always change answers.
15	I mean, you saw that with the way the lower plenum is
16	nodalized in AP
17	MR. SCHROCK: But those are for different
18	reasons. Those don't have anything to do with
19	MR. BANERJEE: No, no, no. I'm saying
20	they don't
21	MR. SCHROCK: Or converging in that sense.
22	MR. BANERJEE: You change the
23	nodalization, you change the answers. Unfortunately,
24	that's the state of the art right now. And, therefore
25	I mean, you want the experiments to be as nearly

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	393
1	representative of reality as you can be, because you
2	want to nodalize them roughly the way you're going to
3	do it with the full plant.
4	MR. SCHROCK: Well, you can simply test
5	them by the model of the experiment. And, you know,
6	these things have to have some similarity between the
7	actual plant and the experiment in terms of lower
8	plenum, core locations, where the containment is
9	located. But generally, the experimentalist tries to
10	do that.
11	CHAIRMAN WALLIS: There's a sequence of
12	events though. It may be that if you have this column
13	of water suppressing the flashing that you won't get
14	flashing. But then if you have a much shorter column
15	of water in another test, you will get flashing.
16	You're getting something in one test that wasn't there
17	in the other test.
18	MR. STAUDEMEIER: Well, the flashing
19	happens at a higher elevation. The fluids don't keep
20	going up. At some point, it's going to flash.
21	CHAIRMAN WALLIS: The same pressure the
22	way it progresses depend on this hydrostatic head, so
23	something is going to be different about that.
24	MR. RANSOM: Well, the distribution will
25	be different within the core. That's true, but in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	394
1	general though, you will if it's a boiling
2	situation you will not see no flashing in one case,
3	and some in the other. I mean, and yes, appear in one
4	and not in the other.
5	CHAIRMAN WALLIS: But if you try to scale
6	flashing you'll find that the elevation things matter.
7	MR. RANSOM: I think it would be
8	worthwhile to look at some of these results that have
9	been obtained for, you know, the different scales, and
10	then comparing the two.
11	CHAIRMAN WALLIS: Well, presumably
12	flashing is one of the scaling parameters, and this
13	PUMA scaling study is
14	MR. STAUDEMEIER: Yes. The report is in
15	draft form. It should be finalized pretty soon, and
16	you can get a copy of it.
17	CHAIRMAN WALLIS: Did they convince you
18	that everything is all right?
19	MR. STAUDEMEIER: I haven't read it yet,
20	so I don't know.
21	MR. BANERJEE: Well, Joe, as you know,
22	scaling for different accidents is very different,
23	whether you do it for a large break LOCA, small break
24	LOCA, stability or whatever. So if stability is going
25	to be one of the most important things you're looking

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	395
1	at, then a scaling study has to be, you know, directed
2	in that direction specifically.
3	MR. STAUDEMEIER: And it is
4	MR. BANERJEE: Because it will be very
5	different for a large break LOCA or a small break
6	LOCA, or something.
7	MR. STAUDEMEIER: Yeah. There was scaling
8	analysis performed specifically for the stability
9	experiments.
10	MR. BANERJEE: Right.
11	MR. STAUDEMEIER: And that will be in the
12	final report document.
13	MR. POWERS: Let me just interject that
14	the way I understand, and I'm also extremely
15	sympathetic with Vic's point of view on this. When
16	you put together a facility, any experimental
17	facility, you're not perfectly simulating anything.
18	And if it so extraordinarily sensitive to one
19	parameter, that is the height, that you cannot in any
20	way model it in some approximate sense, it seems to
21	me, that it hopeless to build the plant. Because when
22	it gets fabricated, it is not going to be exactly the
23	same height as planned.
24	MR. BANERJEE: It doesn't have to be
25	exactly, but it shouldn't be one-quarter either.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	396
1	There's a big difference.
2	MR. POWERS: Well, it's a little bit of a
3	joke about the woman in the bar and the million dollar
4	offer here. We know what you are, we're just arguing
5	over price here.
6	(Laughter.)
7	MR. BANERJEE: A question of degree, I
8	think.
9	MR. KRESS: I don't think we should
10	prejudge this issue until we see the scaling analysis.
11	I think it's entirely possible to have a facility like
12	PUMA look at the flashing instability. You may have
13	to change some other parameters, such as the inlet
14	subcooling or the inlet heating or something like
15	that. I think you can look at it. I'd be anxious to
16	see the scaling first.
17	MR. POWERS: The larger issue, it seems to
18	me, Tom, is that we invent these incredible complex
19	and detailed computer codes, but when it comes to
20	designing our tests, we go back to very approximate
21	back of the envelope calculations. It's surprising
22	that we don't make greater use of the codes
23	themselves.
24	MR. KRESS: To do the scaling analysis.
25	Yeah, you could very well use it, adjust these

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	397
1	parameters to see whether or not you get
2	CHAIRMAN WALLIS: I think that's a very
3	good point. Before I would put a lot of money into a
4	quarter-scale experiment, I would want to run TRAC,
5	TRACE or something to show that I'm going to find the
6	kind of phenomena that I'm looking for, and there
7	isn't something which is affected by having it a
8	quarter.
9	MR. STAUDEMEIER: Yeah. I mean, I think
10	that will be done.
11	CHAIRMAN WALLIS: I missed something or
12	introduced something which wasn't there in the full
13	height.
14	MR. STAUDEMEIER: Yeah. In the PUMA
15	design, I think RELAP-5 was used to
16	MR. RANSOM: Right. In fact, even in the
17	proposal we did that, you know, and showed that the
18	same phenomena were present or predicted to be present
19	in the sub-scale situation, and satisfied ourselves
20	that that was a reasonable approach. And I think in
21	the end, it really turned out that way.
22	MR. STAUDEMEIER: I'd also like to add
23	that it's interesting what a difference the head of
24	the subcommittee can make, because we're now going to

hit Canton with some of the subcommittee. He is

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 (202) 234-4433

	398
1	absolutely against running something like RELAP-5 end
2	helping to do your scaling and work things out, so
3	it's a matter of opinion, I think, in some cases.
4	MR. BANERJEE: Well, it's sort of a
5	chicken and egg problem. It's an iterative process
6	because if the code can't handle say oscillations or
7	something, as you remember at that time, there was a
8	problem because in the core uncovering phase, the
9	codes would go into these enormous oscillations
10	because it would slip at low pressure. So how could
11	you use the code to do any scaling analysis?
12	MR. STAUDEMEIER: Yeah.
13	MR. BANERJEE: And Ivan was absolutely
14	right.
15	MR. STAUDEMEIER: Yeah, you have to use
16	good judgment in how you
17	CHAIRMAN WALLIS: Well, remember AP600.
18	We had this business of the fangs, the CMTS filled up
19	with water.
20	MR. STAUDEMEIER: Right.
21	CHAIRMAN WALLIS: And then when you went
22	to the full-scale, there was enough gravitational head
23	so this never happened.
24	MR. STAUDEMEIER: That's not true exactly.
25	CHAIRMAN WALLIS: So it was a phenomenon

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	399
1	which changed completely when you went from small
2	scale to
3	MR. STAUDEMEIER: What happened in full
4	height RELAP-5 calculations
5	CHAIRMAN WALLIS: You couldn't possibly
6	suck the waters up that far because there was so much
7	gravitational head.
8	MR. STAUDEMEIER: It depended on the
9	break, actually. For that one break, it couldn't
10	happen, but there were other breaks where it actually
11	could happen, and did happen in RELAP-5 calculations.
12	It was a limited viewpoint, I think given at the time,
13	that it could only happen in
14	CHAIRMAN WALLIS: I see. Okay. Well, we
15	should probably move on.
16	MR. STAUDEMEIER: Okay. For severe
17	accident analysis, there's a MELCOR model that's under
18	development. Look at in-vessel melt retention and
19	other severe accident management strategies
20	MR. KRESS: Has that been put forth as an
21	accident management strategy by GE?
22	MR. STAUDEMEIER: I think unofficially
23	it's been put forward. I don't think there's any
24	official documents yet that say that.
25	MR. KRESS: Well, the only database I know

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	400
1	is for PWR, so we don't have this forest of control
2	rods coming up there. I don't know how you deal with
3	that in terms of cooling on the outside of the vessel.
4	MR. STAUDEMEIER: Yeah. So as I said,
5	that the calculations will be starting later on, once
6	we get more of, I guess, some official information
7	from GE on what needs to be analyzed. And also, the
8	severe accident calculations will be supporting any
9	PRA studies that go on for this plant.
10	MR. POWERS: It matters not on your heat
11	transfer. I mean, there's some cooling chemistry that
12	will take it
13	MR. KRESS: The chemistry will take care
14	of it for us.
15	MR. POWERS: We won't have to worry about
16	it.
17	MR. ROSENTHAL: I think that the
18	actually, we had a Lesson Learned from AP1000, where
19	we did a lot of early thermohydraulic work, and then
20	had to play catch-up in the severe accident arena. So
21	we got a little bit smarter now with ESBWR, and said
22	okay, the thermohydraulic work is obviously starting
23	far in advance of lots of other disciplines that exist
24	in NRR, for example. You're hearing as you
25	observed, you're only hearing a small piece of all the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	401
1	kinds of review that would be done, but we recognize
2	that we should start building a MELCOR deck now so
3	that we'd be able to answer the questions to support
4	the PRA review, rather than waiting a year from now.
5	And that's all we're really trying to do, is get a
6	start on what we know will be important.
7	MR. KRESS: Did the GE PRA use MAP?
8	MR. POWERS: Shows sound good thinking
9	there.
10	MR. STAUDEMEIER: I also think they may
11	have a MELCOR model for GE. And I'm not sure what the
12	status of that is, and that we may be getting a copy
13	of it.
14	MR. POWERS: More interesting than
15	in-vessel retention is going to be accident management
16	strategies to control gaseous iodine.
17	MR. STAUDEMEIER: Okay. The summary of
18	what we're doing is
19	MR. POWERS: I mean, the problem is you
20	put them into the iodine into the suppression pool
21	and yo continue to blow gas through it, you're going
22	to pull it right back out again. I mean, it's a clear
23	result out of NUREG 1150, as you continue to blow
24	through the pools, you just pull the iodine right back
25	out again.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

402 MR. STAUDEMEIER: Okay. Most of the pre-application work is on schedule. We're a little bit behind on the testing review compared to where we wanted to be initially, and also the CONTAIN/TRACE coupling. I think we had hoped to have some full calculations done by this time, and have run into a few problems with that. But I think we're on schedule to resolve them fairly soon. MR. SCHROCK: And that contained coupling to TRACE is related to the pre-application review? MR. STAUDEMEIER: Well, I know NRR wants of these calculations some in their to use pre-application review as comparing -- doing some independent calculations to compare to the TRACG calculations. MR. SCHROCK: Because when I read that, I thought they were referring to research commitments to assist NRR in the --

19 MR. STAUDEMEIER: Well, it's both of 20 Yeah, both of those activities are for those. 21 pre-application review, the assistance both in 22 the topical reviewing reports, and also this 23 TRACE/CONTAIN coupling.

And the additional activities in support of the design certification, they're not on quite as

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

	403
1	tight a schedule, and I think they should be done to
2	support the design certification review. We should
3	have code modifications and assessment done by that
4	time, and have a fairly well-assessed code that NRR
5	can use to do independent accident calculations.
6	And we may identify some additional
7	activities in the future as GE submits additional
8	information, such as ATWS and stability, that will
9	require at least some additional code assessment to
10	look and see that the code is okay for predicting that
11	type of stuff. Any more questions?
12	CHAIRMAN WALLIS: Thank you very much.
13	I'm trying to figure out what we need to do now.
14	We've learned from GE and from RES and from NRR what
15	the status of things is, and it seems premature for us
16	to reach any conclusion whatsoever.
17	MS. CUBBAGE: Right. I think at this
18	stage, we're not requesting a letter, but we'll be
19	coming back in the fall with a draft safety evaluation
20	report.
21	MR. KRESS: It's on the Full Committee
22	agenda?
23	CHAIRMAN WALLIS: That's why I was asking.
24	I think there's something on the Full Committee
25	agenda.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	404
1	MS. CUBBAGE: Oh, Full Committee, we're on
2	the agenda this Thursday at 12:45.
3	MR. CARUSO: Do you expect anything out of
4	that, or is that just a get to know you meeting?
5	MS. CUBBAGE: I believe it's just an
6	informational brief.
7	MR. CARUSO: You don't expect a letter or
8	a report, or anything like that.
9	MS. CUBBAGE: No, we don't.
10	MR. CARUSO: But the meeting on Thursday,
11	that's not just going to be thermohydraulics. That's
12	going to be ESBWR. Right?
13	MS. CUBBAGE: Well, it's a very short time
14	window, and I believe GE is going to make a short
15	presentation, and the staff is going to be available
16	if the committee has any questions.
17	CHAIRMAN WALLIS: But it's not related to
18	this Subcommittee Meeting, is it?
19	MS. CUBBAGE: Yes.
20	CHAIRMAN WALLIS: Is it something else?
21	MS. CUBBAGE: It is related to this.
22	CHAIRMAN WALLIS: It is?
23	MR. CARUSO: Is it? It's supposed to be
24	thermohydraulics, or is just to be an overview of
25	ESBWR. That was my understanding.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	405
1	MS. CUBBAGE: Well, Atam, what do you have
2	planned for Thursday?
3	MR. CARUSO: Well, do you guys want the
4	meeting on Thursday? I know what you want. Excuse
5	me. You're not going to get that.
6	MR. POWERS: They wish it was
7	MR. CARUSO: What you expect.
8	MR. POWERS: Well, put a proposal in front
9	of Tom. He might go for it.
10	MR. RAO: No. What we wanted was answers
11	on these questions, do these look like there are any
12	significant issues on the thing. But I think Graham
13	has said that you don't have the information to pass
14	any judgment on any of those issues, and so actually,
15	maybe at this stage, it's premature to have a meeting
16	actually.
17	CHAIRMAN WALLIS: Well, you're on the
18	schedule and it's in the Federal Register.
19	MR. RAO: Yeah.
20	MR. CARUSO: You have to come and talk.
21	CHAIRMAN WALLIS: You have to do it.
22	MR. RAO: Yeah. We can talk. You know,
23	we can talk.
24	(Laughter.)
25	MR. CARUSO: Well, you've been summoned to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	406
1	Washington.
2	MR. RAO: It's after lunch, and so we
3	don't want to make it such that it puts everyone to
4	sleep.
5	CHAIRMAN WALLIS: How long do you have to
6	talk? It's a long time, isn't it? It's a major
7	thing.
8	MR. RAO: It's a two hour window there.
9	CHAIRMAN WALLIS: Yeah, that's my
10	impression, it's a major thing.
11	MS. CUBBAGE: As you could tell from this
12	morning, Atam will be able to fill that easily.
13	CHAIRMAN WALLIS: What are you going to
14	do, try to compress what we heard today into these two
15	hours? What's the intent?
16	MS. CUBBAGE: No, the staff won't be
17	presenting. And I think you're basically just going
18	to hear
19	CHAIRMAN WALLIS: The staff won't be
20	presenting at all.
21	MS. CUBBAGE: No.
22	MR. CARUSO: That's why I said, I thought
23	this was just a get to know you type presentation.
24	CHAIRMAN WALLIS: Get to know you? We
25	know you all. I think the Full Committee has seen you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	407
1	before too. And my advice would be to give more
2	substance than the sort of sales pitch to the ESBWR,
3	which we've heard before, which is very nice. But I
4	would and I think what's impressive is that this is
5	the results that you can always go something like 2
6	meters of collapsed water above the core no matter
7	happens, and you've got you know, not sort of
8	pushing some regulatory limit. You seem to be steering
9	way clear of all the regulatory limits, and that's the
10	sort of message I think you want to convey, a message
11	of what you've learned from your testing, and why the
12	testing is adequate to give confidence in your
13	assertions.
14	MR. SCHROCK: Operators have a lot of time
15	to sit around and think about that.
16	CHAIRMAN WALLIS: Right. That's what I
17	would think you want to concentrate on, because the
18	committee has seen this sort of thing, the overview of
19	what this thing is, and why it's a good machine, and
20	beautiful and everything. WE've heard all that
21	before.
22	MR. KRESS: I think you may need to do a
23	little of that.
24	CHAIRMAN WALLIS: You may do a little bit
25	of that to orient them, but the main thing is what's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	408
1	the bottom line? This thing seems to be much more
2	conservatively safe than all of the other things that
3	are out there. Isn't that the message you want to put
4	across?
5	MR. RAO: Yes.
6	CHAIRMAN WALLIS: And also, I think the
7	adequacy of the test program is something you maybe
8	need to put across.
9	MR. KRESS: Or at least bring up the point
10	that that's the issue we're looking at.
11	MR. RAO: From our perspective it's, you
12	know, the idea of trying to get closure on some of
13	these issues is a very important consideration from
14	our perspective.
15	MR. KRESS: I think you had a couple of
16	slides that showed the extent of the test program that
17	exists, which I think is very brilliant. I don't
18	think we saw that before, and that's worth bringing
19	out.
20	MR. POWERS: I think you can rest assured
21	you will get a question on your material selection
22	program.
23	MR. RAO: I think I've made that clear.
24	CHAIRMAN WALLIS: Is there enough for you
25	to go on, to know what you want to present? It's your
24	CHAIRMAN WALLIS: Is there enough for you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	409
1	opportunity to get this ball rolling, it seems to me,
2	before the Full Committee in a serious way.
3	MR. RAO: Okay. WE'll investigate that.
4	CHAIRMAN WALLIS: Now from what we've
5	learned today, and I'd invite the Committee Members to
6	give comments, do we want to have it on the record?
7	I'm not sure we need to have the record, do we?
8	MR. CARUSO: I would suggest I mean,
9	Graham, if you want to, you could talk about the fact
10	that we had this meeting, and that they presented a
11	lot of information about the test programs.
12	CHAIRMAN WALLIS: That's for Thursday.
13	MR. CARUSO: For Thursday.
14	CHAIRMAN WALLIS: Right. But I thought
15	just to round-out today, I think we ought to have some
16	frank opinions from the Committee Members. I'm not
17	sure this needs to be on the record. Are we obligated
18	to have it on the record?
19	MR. CARUSO: You mean the discussion right
20	now?
21	CHAIRMAN WALLIS: Yes. If we have a sort
22	of a caucus or discussion.
23	MR. CARUSO: It doesn't have to be.
24	CHAIRMAN WALLIS: Can we say goodbye to
25	the record?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	410
1	MR. CARUSO: I think so.
2	CHAIRMAN WALLIS: Okay. So please close
3	the record now. Now we'll be off the record.
4	(Whereupon, the proceedings in the
5	above-entitled matter went off the record at 6:34
6	p.m.)
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	