UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION

+ + + + +

MEETING ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS) SUBCOMMITTEE ON THERMAL-HYDRAULIC PHENOMENA

+ + + + +

TUESDAY, FEBRUARY 4, 2003

+ + + + +

ROCKVILLE, MARYLAND

+ + + + +

The Subcommittee met at the Nuclear Regulatory Commission, Two White Flint North, Room T2B3, 11545 Rockville Pike, at 1:00 p.m., Dr. Graham Wallis, Chairman, presiding.

COMMITTEE MEMBERS:

GRAHAM B. WALLIS, Chairman SANJOY BANERJEE, Consultant F. PETER FORD, Member THOMAS S. KRESS, Member GRAHAM M. LEITCH, Member VICTOR H. RANSOM, Member STEPHEN L. ROSEN, Member

ACRS STAFF PRESENT:

MEDHAT EL-ZEFTAWY MICHAEL SNODDERLY JOHN BUTLER RALPH ARCHITZEL DAN DORMAN GARY M. HOLAHAN B.P. JAIN JOHN LEHNING BRUCE LETELLIER SUNIL WEERAKKODY

	3
C-O-N-T-E-N-T-S	
Introduction Graham Wallis, Chairman	4
Opening Remarks Gary Holahan, NRR	6
Status and Proposed Resolution of GSI-191: "Assessment of Debris Accumulation on PWR Sump Performance"	14
Ralph Architzel John Lehning	14 36
Draft Regulatory Guide, DG-1107: "Water Sources for Long-Term Recirculation Cooling Following A Loss-of-Coolant Accident"	62
B. P. Jain, RES Bruce Letellier, LANL	62 109
NEI Comments on Resolution of GSI-191 John Butler	200 200

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	1:02 p.m.
3	CHAIRMAN WALLIS: The meeting will now
4	come to order.
5	This is a meeting of the Advisory
6	Committee on Reactor Safeguards' Subcommittee on
7	Thermal-Hydraulic Phenomena. I am Graham Wallis,
8	Chairman of the Subcommittee.
9	Subcommittee members in attendance are Tom
10	Kress, Victor Ransom, Graham Leitch, and Steve Rosen,
11	along with our consultant, Sanjoy Banerjee.
12	The purpose of this meeting is to review
13	two proposed NRC documents for resolution of Generic
14	Safety Issue 191 entitled, "Assessment of Debris
15	Accumulation on PWR Sump Performance."
16	The first document to be reviewed is a
17	proposed NRC Generic Letter entitled, "Potential
18	Impact of Debris Blockage on Emergency Recirculation
19	During Design-Basis Accidents at Pressurized Water
20	Reactors."
21	The second document is an associated Draft
22	Regulatory Guide No. DG-1107 entitled, "Water Sources
23	for Long-Term Recirculation Cooling Following a Loss-
24	of-Coolant Accident."
25	The Subcommittee will gather information,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	5
1	analyze relevant issues and facts, and formulate
2	proposed positions and actions as appropriate for
3	deliberation by the full Committee.
4	Med El-Zeftawy is the Designated Federal
5	Official, and Michael Snodderly is the Cognizant ACRS
6	Staff Engineer for this meeting.
7	The rules for participation in today's
8	meeting have been announced as part of the notice of
9	this meeting previously published in The Federal
10	Register on January 22nd, 2003.
11	A transcript of the meeting is being kept
12	and will be made available as stated in The Federal
13	Register notice. It is requested that speakers first
14	identify themselves and speak with sufficient clarity
15	and volume so that they can be readily heard.
16	Representatives from the Nuclear Energy
17	Institute will discuss their efforts associated with
18	the resolution of GSI-191. We have received no other
19	written comments nor requests for time to make oral
20	statements from members of the public regarding
21	today's meeting.
22	I'll just give you a very brief review of
23	how we got here today. The full Committee was briefed
24	on GSI-191 in September 2001 at its meeting. The
25	Office of Nuclear Regulatory Research presented their

(202) 234-4433

	6
1	recommendations for resolving the issue. Based on a
2	generic study, RES found that an increase of sump
3	screen surface area to reduce the vulnerability caused
4	by debris accumulation on the sumps was net beneficial
5	and recommended that plant-specific analyses be
6	conducted to determine the vulnerability of individual
7	plants to loss of net positive suction head margin.
8	In a September 14, 2001 letter to the
9	Executive Director for Operations, the Committee
10	stated that, if plant-specific analyses are required
11	as part of the resolution, guidance for performing
12	these analyses should be developed.
13	We'll now proceed with the meeting, and I
14	call upon Mr. Gary Holahan of the Office of Nuclear
15	Reactor Regulation to begin.
16	MR. HOLAHAN: Thank you, Dr. Wallis. I'm
17	only going to make a few introductory remarks, and
18	then the NRR and Research presentations will follow.
19	I think you've already covered a significant overview.
20	As you stated, we're basically pursuing
21	the issue of PWR sump screen blockage, based on
22	research work that's been done to date, and now we're
23	beginning to move into regulatory and implementation
24	stages.
25	I just wanted to remind you that the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

reason we're here with the ACRS is basically for two reasons. One is that the resolution of generic safety issues calls for ACRS involvement, and also because we have proposed that the resolution passed would require generic communication, in this case a Generic Letter requesting actions and information from the industry, but that would also call for an ACRS review. So we will be looking for the Committee's support in this activity.

10 Can I have the next viewgraph? We always, when we're in these sorts of studies, like to continue 12 to remind ourselves of the safety implications, and if 13 we are going to allow interim operation of a plant 14 while a generic safety issue is being studied and 15 resolved, we need to be clear in our own minds why 16 that is appropriate.

17 So we've structured what we call 18 justification for interim operation. Many of these 19 are the same issues that we identified earlier on in 20 The fact is the particular LOCAs of the process. 21 concern would be relatively low probability and that 22 there are some margins and conservatisms involved, but we continue to revisit these issues as we go on, 23 24 because we know it will take some time to study these 25 issues, especially as we go into a plant-specific

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

11

(202) 234-4433

7

	8
1	phase, and also it will take additional time to
2	implement any changes that might be necessary as a
3	result of those studies.
4	I think the one thing we could say at this
5	stage is we think these issues continue, the
6	justifications continue to be true. In addition to
7	the issues we identified earlier on, the industry has
8	taken some steps over the last year or so which also
9	provide us some additional comfort and margin with
10	respect to continued operation. So the industry has
11	some guidelines and has been identifying walkdowns and
12	other cleanliness-type activities that industries can
13	take as interim measures. I think we're comfortable
14	with those.
15	Can I go on to the
16	CHAIRMAN WALLIS: Gary, this probably
17	gives you a good enough feeling, but these are not
18	sort of quantified remarks. I mean these are
19	qualitative things. What I think impressed the
20	Committee last time we heard about this was that there
21	is a real potential for this blockage to occur. So
22	these are some sort of mitigating things, but they
23	don't really make the problem go away.
24	MR. HOLAHAN: They are not reasons not to
25	pursue the issue. They are reasons to put it within

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	9
1	a safety context that allows us to take some time to
2	continue to study it and to allow for a phased
3	implementation.
4	CHAIRMAN WALLIS: Okay.
5	MR. LEITCH: As I recall, Gary, there's a
6	very wide band of variables in the power plant: size
7	of screens, gross size opening in the screens
8	MR. HOLAHAN: Type of insulation.
9	MR. LEITCH: Right. And I was wondering
10	if in the worst line-up of those cases, we feel we can
11	still reach a justification for interim operation?
12	MR. HOLAHAN: Well, we haven't yet found
13	any specific plant that has sort of the worst
14	combination of all imaginable parameters. In my mind,
15	if we came to the point where we found some plant
16	which had a particular size/shape of screen and a
17	particular location and type of material that led you
18	to conclude that, if there were a pipe break, loss-of-
19	coolant accident, that you thought, you really
20	believed that the ECCS wouldn't work, then I think we
21	would be at a point of saying that needs to be fixed,
22	and not in the kind of timeframe we're talking about
23	here, but if not immediately, in very short order.
24	MR. LEITCH: Right.
25	MR. HOLAHAN: So I don't think we would

(202) 234-4433

(202) 234-4433

	10
1	want to hang our hats just on low pipe break
2	probability. I think other mitigating measures that
3	made you have, you know, if not the kind of confidence
4	you would like to have in the emergency core cooling
5	system, at least enough confidence that you think it
6	really would work.
7	CHAIRMAN WALLIS: Well, looking at your
8	last bullet, that isn't always reassuring. We've
9	heard stories fairly recently of at least one plant
10	which had a large amount of peeling paint.
11	MR. HOLAHAN: Yes.
12	CHAIRMAN WALLIS: And that's not
13	reassuring because, presumably, that's ready to fall
14	off and then get washed down to a screen.
15	MR. HOLAHAN: I think the part that's
16	reassuring is, if the paint were going to fall off, it
17	was going to fall off. The part that's reassuring is,
18	actually, looking for those problems and dealing with
19	them when they're found.
20	CHAIRMAN WALLIS: If it's hanging there
21	waiting to be knocked off by a LOCA, it's not falling
22	off.
23	MR. HOLAHAN: Right.
24	MR. ROSEN: We're also hearing
25	MR. HOLAHAN: Yes, I understand. Remember

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	that we issued, I want to say a bulletin, but perhaps
2	a Generic Letter a year or more ago on this specific
3	issue. So the industry has been dealing with it.
4	MR. ROSEN: We're also hearing of some
5	plants that are actually already modifying their
6	sumps.
7	MR. HOLAHAN: Yes.
8	MR. ROSEN: Is that something we're going
9	to hear more about today?
10	MR. HOLAHAN: Well, I can mention two. We
11	know that Davis-Besse has modified their sump, and
12	also I understand that Diablo Canyon did. I don't
13	know of other specific examples.
14	MR. ARCHITZEL: This is Ralph Architzel.
15	We weren't planning to discuss those today.
16	MR. HOLAHAN: Do we know of any other
17	plants? Those are the only two I'm aware of.
18	MR. ARCHITZEL: No.
19	MR. HOLAHAN: But we'll keep the Committee
20	informed if there are other examples.
21	Can we go to the fourth viewgraph? As Dr.
22	Wallis mentioned, we're here because we're at a stage
23	for a number of activities. One is the Regulatory
24	Guide, and the Draft Regulatory Guide is really
25	basically going to be an update of an existing

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	Regulatory Guide, 1.82. And we are pursuing a Generic
2	Letter, which will go out for public comment upon
3	review and approval by this Committee and by the CRGR.
4	In parallel with that, there is an
5	industry activity that I think you'll hear about later
6	today to develop specific guidance, because I think
7	we're all envisioning that this issue needs to be
8	resolved on a plant-specific basis. There are so many
9	plant variables involved that the Generic Letter isn't
10	going to provide the level of detail for reviewing and
11	resolving the issue on a plant-specific basis.
12	So we do expect, and we have been working
13	with the industry, on a guidance document that can
14	help. We expect to be sort of in the review and
15	approval process, so that a little further down the
16	line there will be a Generic Letter calling for
17	information, but there will also be a guidance
18	document to assist the industry in how to deal with
19	the information request that the NRC puts out.
20	CHAIRMAN WALLIS: What is the level of
21	what one might call model development competence of
22	this industry for this problem?
23	MR. HOLAHAN: I think we ought to save
24	that question for the
25	CHAIRMAN WALLIS: I mean they are going to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 develop guidance, but the only guidance I've seen is go around and inventory something which could be 2 debris. I mean that's just the very beginning of the 3 4 quidance. The question of how it comes off, how it 5 breaks up, where it goes, it's not a simple issue. Right, that is true, and 6 MR. LEHNING: 7 that is the first part of the guidance, I think, that 8 they issued that's got like a two-step guidance 9 process. That was just to determine what source of debris we had in there now, what to do with it, and 10 11 that's being developed I think currently. John Butler 12 from NEI may talk about that a little later. WALLIS: So he's 13 CHAIRMAN qoinq to

reassure us that they know how to do it?

15 MR. HOLAHAN: Many the best analogy we can 16 give you at the moment, having not come to the point 17 of them giving us a final document and us reviewing and approving it, is just to remember that, when we 18 19 had a similar exercise with boiling water reactor sump 20 screens, we found the industry guidance to be very 21 useful. It was scientifically-based. In fact, they 22 experimented on a few different went out and 23 alternatives, some of which didn't prove to be useful, 24 but I think were well studied. So I'm at least 25 optimistic that there's a track record here that this

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

14

	14
1	can work out.
2	Actually, the last thing I would like to
3	mention, before we go on to the technical
4	presentations, is the tailend of this process is, when
5	we get to the stage of formally issuing the Generic
6	Letter, we will receive responses for each plant.
7	We'll go through a plant-by-plant review.
8	I think, as we did with the boiling water
9	reactors, we may find a few unusual cases where we
10	actually want to go into the field and see any
11	construction. We might replicate some of the
12	calculations, and, ultimately, we will likely use our
13	Resident Inspectors to do some sort of checking to
14	make sure that, whatever the resolution turns out to
15	be on each individual plant, if it gets evaluated and
16	checked off to some degree, and then the more
17	difficult cases I think we'll do more review and
18	analysis.
19	If there aren't any further questions, I
20	would like to turn it over to Ralph Architzel to get
21	into some of the technical issues.
22	MR. ARCHITZEL: My name is Ralph
23	Architzel. I'm with the Office of Nuclear Reactor
24	Regulation, and John Lehning and I are the reviewers
25	for GSI-191 resolution.

(202) 234-4433

15

the topics I'm going to discuss. I'm going to go over a little bit of history and how the Generic Issue Program works, sort of the results of technical assessment to try to refresh you somewhat as to where stood when we received the assessment we from Research.

John is going to go over the Generic Letter specifics, and B.P. Jain from the Office of Research and Dr. Bruce Letellier are going over the Req. Guide. As we mentioned earlier, John Butler from is going to go over the industry evaluation NEI quidelines.

I've got some additional points to raise, like the support we're receiving in NRR from Los Alamos, what meetings we have had and initiatives we have been reviewing, and our current plans and That's an overview of my presentation. schedule.

19 The next slide. Generic Safety Issue 191 20 found, in our eyes, in basically long-term is 21 recirculation requirements in 10 CFR 50.46 and 22 Criterion 35 on ECCS performance in the regulations. 23 The debris blockages of the sump screens 24 has the potential to prevent the injection of water 25 into the reactor core or to contain the spray system,

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

	16
1	or to function and contain the spray system.
2	This is not a new issue in its entirety.
3	USI A-43 did examine emergency sump performance. The
4	NRC did close that issue with a Generic Letter
5	recommendation, which was for information. So we
6	weren't starting with a clean slate exactly. There
7	was a regulatory analysis, a cost/benefit.
8	The regulatory guidance was changed at
9	that time, but it was not backfit on the industry. It
10	was felt that going forward the industry should take
11	and mechanistically look, or the recommendation was
12	made but it was not required for industry to
13	mechanistically look at debris generation and
14	transport associated with the sumps, but not imposed
15	as a backfit at that time.
16	But when we revisited GSI-191 following
17	the BWR events, where there was actual blockage with
18	just SRV discharges, and there was in Limerick, where
19	it wasn't even insulation that Barsebeck had
20	insulation; Limerick had just miscellaneous fibrous
21	debris in this spent-fuel pool that ended up in
22	strainer deformation and blockage.
23	So then we did reopen GSI-191 to see if
24	it's a credible concern around 1996, when we were done
25	with the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	DR. BANERJEE: Where did Limerick fibrous
2	debris come from?
3	MR. ARCHITZEL: They never identified the
4	specific source at Limerick. It was not fiberglass
5	latent.
6	MR. LEHNING: And this is John Lehning.
7	Just to clarify, it was in the suppression pool, not
8	the spent-fuel pool.
9	MR. ARCHITZEL: Right, I forgot. I meant
10	suppression pool. Excuse me.
11	So it was not identified.
12	CHAIRMAN WALLIS: They knew what it was
13	surely?
14	MR. ARCHITZEL: I don't think they ever
15	clearly identified it.
16	CHAIRMAN WALLIS: Some mysterious
17	substance?
18	MR. LEHNING: It was just a fibrous
19	substance, I think. They didn't identify where the
20	fiber had come from, but they knew it was fibrous
21	debris.
22	DR. LETELLIER: At least anecdotally I
23	understood that it was cellulose air filter that had
24	fallen into the suppression pool.
25	MR. ARCHITZEL: Was that Perry? That

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	might have been Perry. That was Perry. There were
2	other incidents. At Perry they did have that incident
3	that was the source of the fibrous debris.
4	DR. LETELLIER: Was Graham Leitch at
5	Limerick at the time?
6	MR. LEITCH: No, it didn't happen on my
7	watch.
8	(Laughter.)
9	MR. ARCHITZEL: But there were more events
10	than just
11	MR. ROSEN: ACRS claims no responsibility.
12	(Laughter.)
13	MR. ARCHITZEL: May I have the next slide?
14	I guess the thought was that the graphic is up there
15	just to emphasis that we have a seven-stage program.
16	The first three stages of the Generic Issue Program
17	have been completed, which is the identification in
18	1996, the initial screening done by Research, and then
19	we have a formal assessment phase. That's the one you
20	heard about in 2001, when it was turned over to NRR.
21	So, currently, we're in the regulation and
22	guidance development phase and, as Gary mentioned, we
23	are developing the Generic Letter and the Draft Guide.
24	Then following that, we do have the phase
25	of issuing, implementation, and verification. So that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	just lays out our management directive process for how
2	have Generic Issues of treatment.
3	I would like to say, as far as the Generic
4	Letter or Generic Issue and the ACRS role, you are
5	asked to comment on Generic Issue resolution and
6	provide guidance. It's an option to provide or to
7	review a Draft Generic Letter. I think you've taken
8	that option. It would allow you not to do it or do
9	it; it's your choice really.
10	CHAIRMAN WALLIS: Well, just speaking for
11	myself, I think that your approach in the Reg. Guide
12	looks reasonable, and you asked for all the good
13	things. The question that's in my mind is whether
14	industry knows how to supply those kinds of things and
15	whether you know how to recognize the good thing when
16	you see it. So just issuing the Reg. Guide doesn't
17	assure that things will work out appropriately after
18	that.
19	MR. ARCHITZEL: I understand.
20	CHAIRMAN WALLIS: So those are the
21	questions I have, and you can ask people to do
22	analyses. If they don't know how to do it, then it
23	doesn't solve the problem.
24	MR. ARCHITZEL: We'll get into some of
25	that detail now.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	Next slide. Regarding the technical
2	assessment, this was mentioned earlier, and the
3	parametric evaluation which was performed by Los
4	Alamos to determine if sump clogging was a credible
5	concern. It was done on a plant-specific basis.
6	There were industry surveys, et cetera, that were done
7	to quantify the insulation locations, et cetera, but
8	it wasn't complete, so estimates had to be made. You
9	couldn't say definitely that was the plant that was
10	out there and the geometry and the location. So it
11	wasn't plant-specific necessarily, but it was based on
12	plant-specific data.
13	Then when it was completed parametrically,
14	it looked at the evaluation of the head loss versus
15	the insulation, favorable/unfavorable conditions, and
16	then categorized plants, and did come up with a result
17	of quite a few plants for large LOCA were deemed to be
18	very likely to have a problem, and that was the issue
19	you looked at last year.
20	John, next slide. As I mentioned, more
21	and finer debris can be generated by a high-energy
22	line break.
23	CHAIRMAN WALLIS: More and finer debris
24	than what, than had you thought before?
25	MR. ARCHITZEL: In other words, remember

(202) 234-4433

	21
1	it is going back to USI A-45, I think. I've got the
2	number right here, 46. At the time that issue was
3	stated to be not cost-beneficial to go forward and to
4	backfit on all the plants.
5	Looking at it now, that was big fiberglass
6	blankets coming up. The guidance at that time, if
7	there had been any, would have been to remove all the
8	fiberglass insulation. It would have been very
9	expensive.
10	Now with the more and finer debris, it is
11	actually additional information which says you have
12	thin bed effects and things like that. Fiberglass
13	removal, it's not necessarily the solution anyway.
14	There's latent fiber and things like that. You have
15	filtration effects of the fiber that weren't
16	considered at that time. So there is more information
17	now that states there's a reason for examining this
18	issue further. It's not just the issue that exists in
19	1985, and the solution is potentially different today
20	also.
21	MR. ROSEN: I thought that one of the most
22	significant pieces of information that came out of
23	that was about the combination of materials that could
24	form on the bed, fibrous and particulate
25	MR. ARCHITZEL: Exactly.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	MR. ROSEN: and the synergy of those
2	kinds of materials in forming debris beds that could
3	create significant pressure drops. I thought that was
4	very significant because, in thinking back to my
5	chemical engineering background, I'm aware that those
6	kinds of conditions are created purposely in certain
7	kinds of chemical engineering unit operations to, in
8	fact, create debris beds that are used to filter other
9	products out of process streams. So it rang very true
10	to me that that kind of formation of a debris bed
11	would, in fact, create a large delta p, if it was
12	appropriately designed.
13	MR. ARCHITZEL: Well, Dr. Letellier has
14	some slides later that show the effect. When he gets
15	to that point, he will show you the thin bed effect
16	and how it's not monatomic. We've also had some
17	correspondence from PCI and other places that, yes, it
18	is an effect and little amounts of
19	MR. ROSEN: A well-known that used in
20	chemical engineering and in operation processes.
21	MR. ARCHITZEL: Right. The difficulty is
22	they can't remove all the insulation, all the fibrous
23	insulation. You've done away with the problem; you
24	still have a little bit of it that still causes a
25	problem, and the latent fiber can cause a problem.

(202) 234-4433

	23
1	CHAIRMAN WALLIS: If Davis-Besse had
2	popped in the head, there was insulation up there,
3	wasn't there?
4	MR. ARCHITZEL: That was mostly RMI, yes.
5	CHAIRMAN WALLIS: There was insulation up
6	there, and there were also boron crystals and things
7	that, presumably, would have found their way
8	somewhere?
9	MR. ARCHITZEL: Boron. I think the boron
10	would have dissolved.
11	CHAIRMAN WALLIS: I wonder if there was
12	any assessment of this problem in association with
13	Davis-Besse?
14	MR. HOLAHAN: Yes.
15	CHAIRMAN WALLIS: Did they conclude that
16	there was a potential for blocking the screens there?
17	MR. HOLAHAN: The issue was looked at by
18	the staff in two contacts, and I presume that the
19	utility has also looked at it.
20	As part of the reactor oversight process,
21	there's a significance determination process where we
22	look at the risks of what could have happened.
23	Obviously, one of the issues was basically a potential
24	for a medium LOCA. It's a size and type of LOCA which
25	would have required ECCS recirculation. So the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	potential for some blockage was one of those issues.
2	Our conclusion at that stage was, because
3	of its location, the lack fibrous insulation, and the
4	fact that it's a pretty long path between that
5	location and getting things to the sump, that it
6	wasn't an important contributor for that one.
7	Now I must say that we are now, the Office
8	of Research is now going through a second stage where
9	they look at the accident sequence precursor program.
10	I think they will have to look at the latest available
11	information. Since I'm sure that the sequences that
12	they are looking at also involve recirculation, I
13	think they will also look at the subject.
14	DR. BANERJEE: This technical assessment,
15	was there an experimental base for it?
16	MR. ARCHITZEL: Many years of experimental
17	basis, a lot of research by Los Alamos.
18	DR. BANERJEE: So there was an assessment
19	of what breaks up, what doesn't?
20	MR. ARCHITZEL: Transport, generation, the
21	whole everything, the types of insulation. But I
22	wasn't really planning to go into that here. There
23	was a lot of
24	CHAIRMAN WALLIS: They actually
25	experimented? When Los Alamos was here talking to us,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	they seemed to make a lot of assumptions.
2	MR. ARCHITZEL: Well, even the Airjet. I
3	mean you could look at the whole history of tests. A
4	lot of it is knowledge-based in the past history, and
5	a lot of it is the BWR testing that was done by
6	industry and Los Alamos also did, especially the
7	transport tests in the pool. They did that on the
8	fiber, and they also did I guess I could let Bruce
9	you're going to talk to that contribution later, if
10	I can defer that question. There was experimental
11	testing.
12	I would like to move along because we've
13	got a lot of other topics here. Go back one just a
14	second (referring to viewgraph).
15	CHAIRMAN WALLIS: The problem is you have
16	to go through the ACRS filter, and it's pretty
17	tortuous.
18	(Laughter.)
19	MR. ARCHITZEL: I've got to remember where
20	I am. I didn't mention on this slide other things
21	that were in the technical assessment were an upstream
22	inventory loss is a concern, which had to be modeled.
23	Are there blockage points where pools could form?
24	And, additionally, downstream blockage concerns, and
25	one example we did provide is like HPSI throttle

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1valve.2Then the other thing that was mentioned in3the technical assessment was the potential structural4effects of having this debris loading and what it5could to do the screens from a delta p standpoint.6So, then, repeating myself in the next7slide, technical assessment should be conducted to8determine whether debris accumulation9CHAIRMAN WALLIS: Can I ask you now, this10fluid is neutral, is it? Does it chemically react11with any of this debris?12MR. ARCHITZEL: We have some chemical13studies going on currently, and I guess that's are14you planning to discuss that, too? Okay.15It's borated water. So it's not16CHAIRMAN WALLIS: Because, you know, so it17is acidic, is it?18DR. JAIN: Well, we have to ask plants to19study some of these issues. We don't have results20yet, but, yes, we would consider different pH values21CHAIRMAN WALLIS: The concern is, then, if22You had an acid acting with, say, a zinc coating or23something, producing gases, then the gases make the24coating buoyant, and something you thought would sink		26
the technical assessment was the potential structural effects of having this debris loading and what it could to do the screens from a delta p standpoint. So, then, repeating myself in the next slide, technical assessment should be conducted to determine whether debris accumulation CHAIRMAN WALLIS: Can I ask you now, this fluid is neutral, is it? Does it chemically react with any of this debris? MR. ARCHITZEL: We have some chemical studies going on currently, and I guess that's are you planning to discuss that, too? Okay. It's borated water. So it's not CHAIRMAN WALLIS: Because, you know, so it is acidic, is it? B DR. JAIN: Well, we have to ask plants to study some of these issues. We don't have results yet, but, yes, we would consider different pH values of the water. CHAIRMAN WALLIS: The concern is, then, if you had an acid acting with, say, a zinc coating or something, producing gases, then the gases make the	1	valve.
 effects of having this debris loading and what it could to do the screens from a delta p standpoint. So, then, repeating myself in the next slide, technical assessment should be conducted to determine whether debris accumulation CHAIRMAN WALLIS: Can I ask you now, this fluid is neutral, is it? Does it chemically react with any of this debris? MR. ARCHITZEL: We have some chemical studies going on currently, and I guess that's are you planning to discuss that, too? Okay. It's borated water. So it's not CHAIRMAN WALLIS: Because, you know, so it is acidic, is it? DR. JAIN: Well, we have to ask plants to study some of these issues. We don't have results yet, but, yes, we would consider different pH values of the water. CHAIRMAN WALLIS: The concern is, then, if you had an acid acting with, say, a zinc coating or something, producing gases, then the gases make the 	2	Then the other thing that was mentioned in
5could to do the screens from a delta p standpoint.6So, then, repeating myself in the next7slide, technical assessment should be conducted to8determine whether debris accumulation9CHAIRMAN WALLIS: Can I ask you now, this10fluid is neutral, is it? Does it chemically react11with any of this debris?12MR. ARCHITZEL: We have some chemical13studies going on currently, and I guess that's are14you planning to discuss that, too? Okay.15It's borated water. So it's not16CHAIRMAN WALLIS: Because, you know, so it17is acidic, is it?18DR. JAIN: Well, we have to ask plants to19study some of these issues. We don't have results20yet, but, yes, we would consider different pH values21CHAIRMAN WALLIS: The concern is, then, if23you had an acid acting with, say, a zinc coating or24something, producing gases, then the gases make the	3	the technical assessment was the potential structural
 So, then, repeating myself in the next slide, technical assessment should be conducted to determine whether debris accumulation CHAIRMAN WALLIS: Can I ask you now, this fluid is neutral, is it? Does it chemically react with any of this debris? MR. ARCHITZEL: We have some chemical studies going on currently, and I guess that's are you planning to discuss that, too? Okay. It's borated water. So it's not CHAIRMAN WALLIS: Because, you know, so it is acidic, is it? DR. JAIN: Well, we have to ask plants to study some of these issues. We don't have results yet, but, yes, we would consider different pH values of the water. CHAIRMAN WALLIS: The concern is, then, if you had an acid acting with, say, a zinc coating or something, producing gases, then the gases make the 	4	effects of having this debris loading and what it
7 slide, technical assessment should be conducted to 8 determine whether debris accumulation 9 CHAIRMAN WALLIS: Can I ask you now, this 10 fluid is neutral, is it? Does it chemically react 11 with any of this debris? 12 MR. ARCHITZEL: We have some chemical 13 studies going on currently, and I guess that's are 14 you planning to discuss that, too? Okay. 15 It's borated water. So it's not 16 CHAIRMAN WALLIS: Because, you know, so it 17 is acidic, is it? 18 DR. JAIN: Well, we have to ask plants to 19 study some of these issues. We don't have results 20 yet, but, yes, we would consider different pH values 21 of the water. 22 CHAIRMAN WALLIS: The concern is, then, if 23 you had an acid acting with, say, a zinc coating or 24 something, producing gases, then the gases make the	5	could to do the screens from a delta p standpoint.
8determine whether debris accumulation9CHAIRMAN WALLIS: Can I ask you now, this10fluid is neutral, is it? Does it chemically react11with any of this debris?12MR. ARCHITZEL: We have some chemical13studies going on currently, and I guess that's are14you planning to discuss that, too? Okay.15It's borated water. So it's not16CHAIRMAN WALLIS: Because, you know, so it17is acidic, is it?18DR. JAIN: Well, we have to ask plants to19study some of these issues. We don't have results20yet, but, yes, we would consider different pH values21of the water.22CHAIRMAN WALLIS: The concern is, then, if23you had an acid acting with, say, a zinc coating or24something, producing gases, then the gases make the	6	So, then, repeating myself in the next
 9 CHAIRMAN WALLIS: Can I ask you now, this fluid is neutral, is it? Does it chemically react with any of this debris? 12 MR. ARCHITZEL: We have some chemical studies going on currently, and I guess that's are you planning to discuss that, too? Okay. 15 It's borated water. So it's not CHAIRMAN WALLIS: Because, you know, so it is acidic, is it? 18 DR. JAIN: Well, we have to ask plants to study some of these issues. We don't have results yet, but, yes, we would consider different pH values of the water. 22 CHAIRMAN WALLIS: The concern is, then, if you had an acid acting with, say, a zinc coating or something, producing gases, then the gases make the 	7	slide, technical assessment should be conducted to
10 fluid is neutral, is it? Does it chemically react 11 with any of this debris? 12 MR. ARCHITZEL: We have some chemical 13 studies going on currently, and I guess that's are 14 you planning to discuss that, too? Okay. 15 It's borated water. So it's not 16 CHAIRMAN WALLIS: Because, you know, so it 17 is acidic, is it? 18 DR. JAIN: Well, we have to ask plants to 19 study some of these issues. We don't have results 20 yet, but, yes, we would consider different pH values 21 of the water. 22 CHAIRMAN WALLIS: The concern is, then, if 23 you had an acid acting with, say, a zinc coating or 24 something, producing gases, then the gases make the	8	determine whether debris accumulation
<pre>11 with any of this debris? 12 MR. ARCHITZEL: We have some chemical 13 studies going on currently, and I guess that's are 14 you planning to discuss that, too? Okay. 15 It's borated water. So it's not 16 CHAIRMAN WALLIS: Because, you know, so it 17 is acidic, is it? 18 DR. JAIN: Well, we have to ask plants to 19 study some of these issues. We don't have results 20 yet, but, yes, we would consider different pH values 21 of the water. 22 CHAIRMAN WALLIS: The concern is, then, if 23 you had an acid acting with, say, a zinc coating or 24 something, producing gases, then the gases make the</pre>	9	CHAIRMAN WALLIS: Can I ask you now, this
12MR. ARCHITZEL: We have some chemical13studies going on currently, and I guess that's are14you planning to discuss that, too? Okay.15It's borated water. So it's not16CHAIRMAN WALLIS: Because, you know, so it17is acidic, is it?18DR. JAIN: Well, we have to ask plants to19study some of these issues. We don't have results20yet, but, yes, we would consider different pH values21of the water.22CHAIRMAN WALLIS: The concern is, then, if23you had an acid acting with, say, a zinc coating or24something, producing gases, then the gases make the	10	fluid is neutral, is it? Does it chemically react
13 studies going on currently, and I guess that's are 14 you planning to discuss that, too? Okay. 15 It's borated water. So it's not 16 CHAIRMAN WALLIS: Because, you know, so it 17 is acidic, is it? 18 DR. JAIN: Well, we have to ask plants to 19 study some of these issues. We don't have results 20 yet, but, yes, we would consider different pH values 21 of the water. 22 CHAIRMAN WALLIS: The concern is, then, if 23 you had an acid acting with, say, a zinc coating or 24 something, producing gases, then the gases make the	11	with any of this debris?
 14 you planning to discuss that, too? Okay. 15 It's borated water. So it's not 16 CHAIRMAN WALLIS: Because, you know, so it 17 is acidic, is it? 18 DR. JAIN: Well, we have to ask plants to 19 study some of these issues. We don't have results 20 yet, but, yes, we would consider different pH values 21 of the water. 22 CHAIRMAN WALLIS: The concern is, then, if 23 you had an acid acting with, say, a zinc coating or 24 something, producing gases, then the gases make the 	12	MR. ARCHITZEL: We have some chemical
15It's borated water. So it's not16CHAIRMAN WALLIS: Because, you know, so it17is acidic, is it?18DR. JAIN: Well, we have to ask plants to19study some of these issues. We don't have results20yet, but, yes, we would consider different pH values21of the water.22CHAIRMAN WALLIS: The concern is, then, if23you had an acid acting with, say, a zinc coating or24something, producing gases, then the gases make the	13	studies going on currently, and I guess that's are
16 CHAIRMAN WALLIS: Because, you know, so it 17 is acidic, is it? 18 DR. JAIN: Well, we have to ask plants to 19 study some of these issues. We don't have results 20 yet, but, yes, we would consider different pH values 21 of the water. 22 CHAIRMAN WALLIS: The concern is, then, if 23 you had an acid acting with, say, a zinc coating or 24 something, producing gases, then the gases make the	14	you planning to discuss that, too? Okay.
17 is acidic, is it? 18 DR. JAIN: Well, we have to ask plants to 19 study some of these issues. We don't have results 20 yet, but, yes, we would consider different pH values 21 of the water. 22 CHAIRMAN WALLIS: The concern is, then, if 23 you had an acid acting with, say, a zinc coating or 24 something, producing gases, then the gases make the	15	It's borated water. So it's not
18DR. JAIN: Well, we have to ask plants to19study some of these issues. We don't have results20yet, but, yes, we would consider different pH values21of the water.22CHAIRMAN WALLIS: The concern is, then, if23you had an acid acting with, say, a zinc coating or24something, producing gases, then the gases make the	16	CHAIRMAN WALLIS: Because, you know, so it
19 study some of these issues. We don't have results 20 yet, but, yes, we would consider different pH values 21 of the water. 22 CHAIRMAN WALLIS: The concern is, then, if 23 you had an acid acting with, say, a zinc coating or 24 something, producing gases, then the gases make the	17	is acidic, is it?
 20 yet, but, yes, we would consider different pH values 21 of the water. 22 CHAIRMAN WALLIS: The concern is, then, if 23 you had an acid acting with, say, a zinc coating or 24 something, producing gases, then the gases make the 	18	DR. JAIN: Well, we have to ask plants to
21 of the water. 22 CHAIRMAN WALLIS: The concern is, then, if 23 you had an acid acting with, say, a zinc coating or 24 something, producing gases, then the gases make the	19	study some of these issues. We don't have results
CHAIRMAN WALLIS: The concern is, then, if you had an acid acting with, say, a zinc coating or something, producing gases, then the gases make the	20	yet, but, yes, we would consider different pH values
23 you had an acid acting with, say, a zinc coating or 24 something, producing gases, then the gases make the	21	of the water.
24 something, producing gases, then the gases make the	22	CHAIRMAN WALLIS: The concern is, then, if
	23	you had an acid acting with, say, a zinc coating or
25 coating buoyant, and something you thought would sink	24	something, producing gases, then the gases make the
	25	coating buoyant, and something you thought would sink

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	doesn't sink anymore because it's got gases associated
2	with it. So it moves around.
3	MR. ROSEN: Well, it's more complicated
4	than that. The plants have baskets in the sumps that
5	contain various chemicals to buffer the pH. So you
6	have to take that into account as well.
7	CHAIRMAN WALLIS: They are non-acidic?
8	MR. ROSEN: Right. Sodium bisulfate or
9	some other forms.
10	DR. LETELLIER: We are looking at that
11	from two perspectives. First, we're looking at the
12	chemicals effects of a pressure drop across an
13	established debris bed; for example, degradation of
14	binders in fiberglass constituents.
15	And the second aspect, which you have
16	mentioned, we're looking at corrosion products on
17	aluminum and mechanical structures, not from the point
18	of view of buoyancy, as you mentioned, but more from
19	the point of view of solubility and whether or not a
20	flocculent could form and migrate to the sump.
21	Those tests are ongoing at the present
22	time and will be forthcoming over the course of the
23	next few months.
24	MR. ARCHITZEL: And, as again mentioned
25	previously, you have agreed with the issue and you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	have asked to review the guidance as it is being
2	developed, and that's one of the reasons we're here
3	today.
4	Let's go on to the next slide. Since
5	we're now in this phase, Stage 4, of this management
6	directive process for generic issues, we did develop
7	an action plan to address resolution of this issue.
8	It is the same action plan that we previously looked
9	at the paint issue and the BWR strainer issue. It's
10	an integrated plan, but it's the last phase of that
11	plan.
12	We do plan, as I mentioned, a Revised Reg.
13	Guide 1.82. The PWR industry is going to provide
14	guidance for plant-specific evaluations, and we're
15	developing a Generic Letter.
16	Can I have the next slide, John? NRR is
17	contracting with Los Alamos, and they were the
18	contractor for research doing the parametric
19	evaluation. This does provide us continuity in
20	support of GSI and technical support.
21	CHAIRMAN WALLIS: Will you be relying on
22	them to review the NEI guidance?
23	MR. ARCHITZEL: Yes, in addition to our
24	review of the guidance; they've been reviewing along
25	with us.

(202) 234-4433

Right now they are completing a set of calculations for a volunteer plant, so that we have a metric to examine what the industry does. So we're getting an analysis done of this volunteer plant that we have good pipe data for and geometric data, and where the insulation is.

Los Alamos is, like Ι mentioned, quidelines. commenting on the There's some uncertainties remaining. Research did enough work to say it's a credible concern, but they didn't necessarily do enough work to ease the solution of this problem.

13 they're helping us in trying So to 14 identify where the gaps are in testing. For example, 15 with the BWRs it's fairly easy to see the density of the rust that's in the base of the suppression pool, 16 17 but what's the density of the particulates in the PWR 18 containment, the concrete dust? We need some 19 information on that. There's other cases. We don't 20 have all the answers.

Los Alamos has also recently, they're in the process of completing a follow-on to the parametric complement to basically assess its operator recovery actions. The parametric didn't have that in there. So now we've got that in there, and it's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

	30
1	approximately an order of magnitude increase
2	decrease, excuse me in the core damage frequency
3	ratio when you factor in these recovery actions that
4	are potentially available to the plants.
5	That's probably going to recommend that
6	the plants take a look at that and on a plant-specific
7	basis assess what operator recovery actions can be
8	taken. So that's another document that is coming out
9	shortly from Los Alamos for us.
10	The next slide, John.
11	CHAIRMAN WALLIS: I'm just trying to
12	think, when maintenance is done, do the people use
13	dust covers and things like that? I mean, is there
14	potential for sheets of material to be there?
15	MR. ARCHITZEL: Well, all the plants
16	associated with the NPSH evaluations that we did
17	several years ago, we did look at the four material
18	exclusion programs the plants have and the cleanliness
19	programs, and then we had the Paint Generic Letter
20	also, but those programs have all been reviewed.
21	I guess the comment is just concentration
22	on that, when you're looking at that now, but those
23	activities, like the closeouts, we went to Comanche
24	Peak as part of this assessment. We watched what they
25	do in terms of their closeout and their F&E programs.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	I don't know if that's what you're asking.
2	MR. ROSEN: But containment closeout after
3	the refueling on it?
4	MR. ARCHITZEL: Right, and that has part
5	of the F&E program, but they have other aspects of it
6	as well.
7	MR. ROSEN: Well, a lot of that has to do
8	with making sure they don't leave big sheets of
9	plastic in, and I wonder if that was done with the
10	idea of this problem in mind, the fine concrete dust
11	and other more subtle things than big sheets of
12	plastic or
13	MR. ARCHITZEL: Well, it's not strictly
14	big sheets of plastic. It's also
15	MR. ROSEN: Bags of stuff.
16	MR. ARCHITZEL: The labels and all that
17	type stuff is all included in there
18	MR. ROSEN: Sure.
19	MR. ARCHITZEL: how they are on and
20	whether they're going to become
21	MR. ROSEN: Yes, all the standard stuff.
22	You want to make sure that things that are loose in
23	the containment don't, in fact, restrain, they are
24	minimized and tied down, and that sort of thing. But
25	my point is that, and my question is, were they

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	thinking about this particular problem and the
2	research results we have to date?
3	MR. ARCHITZEL: Well, I think that's more
4	in the Condition Assessment Guidelines, the survey
5	that's being done. That's more going out there and
6	sweeping the tops of the pipes and seeing how much
7	dust, et cetera, you have and trying to quantify that.
8	That's ongoing today. It may not have been complete,
9	you're right.
10	John, next. This is, just to give a
11	little bit of a highlight. The NEI did have a Sump
12	Performance Task Force formed in 1997. They have been
13	holding regular meetings and conference calls.
14	But one thing that, since the technical
15	assessment was completely transferred over, that was
16	one of the first stages to see if the industry has an
17	initiative or what's the industry's perspective on
18	that. The very first meeting we did have with them,
19	after we invited them, was the initiative of the six-
20	step program that they've got, including the Condition
21	Assessment Guidelines first, and the second step is
22	really producing the industry evaluation guidelines.
23	Then you get into plant-specific resolutions.
24	So I just wanted to mention that, when
25	industry does propose a program, we do go and follow

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	the program and endorse it, if we can go along with
2	it.
3	John, next slide, May 30th. These are a
4	chronology of what we have been doing. I guess we've
5	had a lot of meetings here.
6	We've had a discussion of the Condition
7	Assessment Guidelines in May. We did discuss and
8	Gary's given you some of the particulars about the
9	potential interim actions and compensatory measures
10	that can be taken, and our regulatory assessment in
11	July.
12	The industry workshop was conducted by
13	NEI. We attended and made a presentation there. So
14	industry was sensitive to our concerns at that time
15	and it made sense, too.
16	In August we did provide comments and
17	feedback on their Guidelines for Condition Assessment
18	and then they addressed our comments and were
19	responsive to them in making a more complete document.
20	In addition, they made changes for what the plants had
21	learned when they did the configuration assessments.
22	We added the HPSI throttle valve blockage issue, as I
23	mentioned.
24	I want to mention at the October meeting
25	we did have the groundrules document, which just
ľ	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	kicked off, and then in December we got another
2	version. I think you all were distributed copies of
3	the groundrules document, at least how they exist
4	right now.
5	They're kind of high-level documents at
6	this stage. They're nothing like the BWR URG, which
7	is fairly thick, but those are detailed guidelines.
8	So we're into this preliminary stage of outlining what
9	the guidelines look like.
10	We also did have a discussion with PCI,
11	who's a contractor, an insulation contractor. They
12	sent us a letter, and we discussed the fact that there
13	was a concern about PWRs in general removing all the
14	fibrous insulation.
15	We had to look at that issue because
16	that's not necessarily the solution to this problem.
17	You can still have a blockage problem even with
18	minimal amounts of insulation in containment. So you
19	have to be careful about the solution.
20	I guess going on to December 12th, it's
21	just additional where I mentioned we did give
22	feedback on the design and testing of openings.
23	Then the next thing I've got is upcoming.
24	We haven't really evaluated the debris generation
25	guidelines we just got in December. We're still

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	internally looking at those. We're also going to have
2	a meeting at the University of New Mexico and look at
3	some of the hydraulic lab testing facilities.
4	Let me go on to the next slide, John.
5	Getting off what we've done in the meetings, the
6	schedule and where we're headed, public comment on the
7	Draft Reg. Guide is scheduled right now for February
8	2003 with the final in September 2003. That Reg.
9	Guide currently is set for guidance for the staff on
10	how to evaluate these issues, and for industry. It's
11	not currently being examined as a backfit, I guess is
12	what I'm saying there. It would be before-fit on any
13	plant that would come in down the line. But we will
14	be using that as guidance, an acceptable method to
15	address this issue, when we look at it.
16	The Draft Generic Letter we expect to get
17	out this quarter. This is a pre-decisional document.
18	So we haven't released it to industry yet. We've
19	given it to you, but realize that the CRGR hasn't
20	reviewed it yet and given us any comments.
21	The Generic Letter is currently scheduled
22	for the summer 2003, and NEI is still planning in fall
23	of 2003 for the industry evaluation guidelines.
24	My last slide, basically, is just to say,
25	once we've got all the Generic Guidelines out and in

(202) 234-4433

	36
1	place, this issue would transfer over from an action
2	plan issue I don't know if you really care. It's
3	going to be a multi-plan action that we follow with
4	individual PM closure. Then, as Gary mentioned, we'll
5	do audits, inspections, and review of the responses.
6	That's still to be developed.
7	At this point I would like to turn it over
8	to John Lehning in order to address the specifics of
9	the Generic Letter.
10	MR. LEHNING: Okay. Again, this is John
11	Lehning. I'm going to go over the Proposed Generic
12	Letter concerning potential impact of debris blockage
13	on emergency recirculation at PWRs. Again, like Ralph
14	said, it is pre-decisional and pending management
15	approval and CRGR review. Some of the information in
16	the presentation I'm going to give is tentative right
17	now.
18	Next slide. The purpose of this slide is
19	just to explain kind of the package that we gave ACRS
20	members. This is the package that we are going to
21	pass along to CRGR. The only attachment I'm going to
22	go over in detail is the Generic Letter in this
23	presentation, but I'll just explain what the other
24	attachments are.
25	Attachment 2, basically, explains the

	37
1	basis for the Generic Letter, to pursue a compliance
2	backfit, which is what this Generic Letter requests
3	action in that vein. You have to meet two criteria;
4	that is, a noncompliance has to exist and then it has
5	to be a significant issue. So Attachment 2 basically
6	justifies those two criteria and why those criteria
7	are met by this issue.
8	Attachments 3 and 4 just provide further
9	information about the cost/benefit and the
10	significance of the issue. Attachments 3 and 4 were
11	already presented to the ACRS in September 2001.
12	So going on to the purposes of the Generic
13	Letter, the first purpose is simply to inform PWR
14	licensees of research that the NRC has sponsored that
15	shows that some blockage with debris in a post-
16	accident condition is credible for PWRs. What I guess
17	that bullet is referring to mainly is the parametric
18	study which was the culmination of researchers'
19	efforts showing that issue was credible across the
20	industry.
21	The second purpose of the Generic Letter
22	was to also examine three additional debris blockage
23	or post-accident debris blockage effects that were
24	also recognized as significant by the GSI-191 effort,
25	and Ralph named those. But, again, what they are is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	38
1	the potential deformation of the sump screen by the
2	debris bed, causing a lot of force.
3	You may not have adequate structural
4	strength for the screen. You may also hold up water
5	in containment volumes, such as like a refueling
6	cavity, when the drains block with debris, and also
7	the downstream blockage issue, if you have debris
8	infiltrating with the sump screen, if the clearance is
9	not adequately sized for what it's trying to protect.
10	The third purpose is to request the
11	action. Basically, we want the licensees, PWR
12	licensees, to act on the concerns that we have and
13	then, if necessary, to also assess whether they need
14	to take, in turn, compensatory measures that Ralph
15	discussed, and then also corrective actions.
16	The final purpose is to get information
17	back from PWR licensees concerning the actions we
18	requested and whether they are doing them or not.
19	CHAIRMAN WALLIS: Looking at these
20	bullets, and having read your draft, it seems more
21	like the kind of thing that this is what the polite
22	British understatement would be like, sort of please
23	look at this and do whatever is appropriate. Usually,
24	the NRC has been more specific.
25	MR. LEHNING: I'm not sure, is that for

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	all the actions that we're requesting because
2	CHAIRMAN WALLIS: It seemed to be very
3	much the general level of look at this and, if it's a
4	problem, fix it and take appropriate action. It's
5	very, very general, and it's a trusting, you know:
6	You're good a guy and everything's going to be all
7	right.
8	MR. LEHNING: It's kind of I don't want
9	to put it too much in that sense. I mean the problem
10	was with the parametric study we knew it was an
11	industrywide problem, but we don't have information
12	about specific plants that we can say we know that you
13	have a problem with real certainty.
14	CHAIRMAN WALLIS: It seems to me there's
15	a great opportunity for different plants to have quite
16	specific problems which are different and for you to
17	have difficulties of finding them or accessing them.
18	MR. LEHNING: I kind of would agree with
19	you, and I think one of the reasons why we have kind
20	of a detailed information request is so that we can
21	evaluate what the responses of the plants are and to
22	determine that they need of further review, that we
23	would then take that further action which would be
24	triggered.
25	MR. ARCHITZEL: But I guess maybe the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	contrast would be the bulletin situation where the
2	boilers would have had the events and where we did
3	issue specific, "Go do it; no questions asked." It
4	was still compliance backfit at that time, but it was
5	a more immediate safety issue perceived. So we would
6	go at a little bit more immediate response and harder
7	response.
8	This is more, this issue was visited once.
9	It was said it's not cost/beneficial. We've got some
10	things that shifted, but we're not quite as harsh as
11	we were with a bulletin action, say.
12	MR. LEHNING: And just the other point I
13	wanted to make is that a generic communication can
14	only request action; it can't require an action, too.
15	So that's why it's kind of saying "request," "We
16	request you do this." I mean that's the strongest
17	kind of language that we could
18	CHAIRMAN WALLIS: What happens if they do
19	nothing?
20	MR. LEHNING: Well, then, we have to, I
21	guess, issue like a plant-specific order or something
22	like that, if we determined that a problem was there
23	and that the licensee was not willing to do anything
24	about it. So that would be an additional step of
25	escalation, and we don't anticipate that, but if it

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	41
1	happens, then we could take those steps.
2	CHAIRMAN WALLIS: But if they don't tell
3	you the plant-specific information, you may not know
4	whether there's a potential problem or not.
5	MR. LEHNING: Regulations require that
6	licensees inform us, to the best of their knowledge,
7	as to these things. So I think we have to trust
8	somewhat.
9	MR. ARCHITZEL: But that's part of that
10	verification stage. We do have audits. We do have
11	the inspections that we currently are envisioning. So
12	we would have at least an audit review of that, and
13	plus a hundred percent review of the responses by the
14	project managers as a minimum.
15	MR. LEITCH: If I were a PWR licensee
16	today facing a major outage for steam generator
17	replacement, reactor vessel head replacement a
18	number of them are facing lengthy outages would I
19	know today what needed to do? I'm a little confused.
20	You talked about some documents that are pre-
21	decisional. Would a licensee know likely what they
22	were going to expect or could make some decisions at
23	risk perhaps?
24	MR. LEHNING: I mean the total, I mean
25	everything is not specifically defined right now, but

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	if you look at like what Davis-Besse did, they already
2	put in a new sump screen, and we haven't evaluated it
3	and approved it at this point, but they have done
4	that, and so has Diablo Canyon. All the BWRs, they
5	have methodology that they use, too.
6	So there are parallels that, if a plant
7	wanted to do something now, I think that there's
8	enough information out there that they could probably
9	do something that would satisfy our expectation.
10	Certainly, they might not have it to a fine point.
11	They might have to go a little bit more conservative
12	than they wanted to, but they probably could do
13	something now, if they chose.
14	DR. BANERJEE: But what did they do, just
15	make a bigger screen, or what is the main difference
16	between this and the old screen?
17	MR. LEHNING: At Davis-Besse and Diablo
18	Canyon, I think that was the main thrust of what they
19	did, was increase by ten- or a hundred-fold the screen
20	area that they had before. That was one of the main
21	things. They might have done some other things, like
22	with the coatings, at Davis-Besse and other things.
23	MR. ROSEN: But this is a more complicated
24	answer than that. I think it's fair to say you have
25	to look at the strainer geometries and the way,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	especially with thin bed effect, you may have an
2	awfully thin bed and still get it blocked fairly
3	easily if it's flat. So you have to have crevices and
4	things like that.
5	CHAIRMAN WALLIS: What is this thin bed
6	effect?
7	MR. ARCHITZEL: What?
8	CHAIRMAN WALLIS: What is the thin bed
9	effect?
10	MR. ARCHITZEL: I'm sorry?
11	CHAIRMAN WALLIS: You said, a thin bed
12	effect. I saw it on the previous slide.
13	MR. ARCHITZEL: Yes, the thin bed effect
14	is, say you have a quite fibrous insulation, or
15	whatever fiber is in the containment, say it's the
16	anti-sea clothing, or whatever, it gets transported
17	CHAIRMAN WALLIS: It gets there first, and
18	then it filters out the particulates?
19	MR. ARCHITZEL: Right, exactly. So in
20	order to handle something like that, sometimes you
21	need the BWRs did a lot of testing on those
22	strainers, and they have a lot of carrying capacity.
23	So it's not just an increase of the surface area is
24	necessarily the solution, I guess is what I'm the
25	stacked disk strainer and all those type things

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	weren't simple strainer designs or filter designs.
2	MR. ROSEN: Or filter cycles, Graham,
3	where you actually precoat the filter with a filtering
4	medium like that. The original filtering medium may
5	be just a stainless steel screen, and flow in through
6	it fibrous material. Then you shut the fibrous
7	material flow off, retaining the delta p, and then you
8	turn on the process stream, which may have sand or
9	something else in it, which comes out quite nicely on
10	a thin bed.
11	CHAIRMAN WALLIS: Well, this is in a
12	chemical plant.
13	MR. ROSEN: Yes.
14	CHAIRMAN WALLIS: I understand that. I
15	just don't know
16	MR. ROSEN: Okay, well, this is mimicking
17	a chemical plant, is what they're saying.
18	CHAIRMAN WALLIS: No, it's just that I
19	didn't know what you meant by thin bed.
20	MR. ROSEN: Yes.
21	CHAIRMAN WALLIS: I understand the
22	phenomena.
23	MR. ROSEN: Sorry.
24	MR. ARCHITZEL: I guess we're ready to go
25	to the next slide.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

DR. RANSOM: Do you expect to get an assessment of what the configurations of the sumps, and can you generally categorize them as what types of sumps they have and whether they incorporate things like dams to trap, you know, the dense debris and lead to some separation?

7 MR. LEHNING: We're not expecting, I don't 8 think, a detailed response as to all the details that 9 the licensees get when they do the walkdown, but we do have a lot of information already in relation to what 10 11 size of sump screen that they have and whether it's a 12 vertical or a horizontal sump, and whether there are 13 curbs around the sump that would inhibit transported 14 debris there. So we have some information already.

DR. RANSOM: What kind of delta p they could withstand, I guess?

MR. LEHNING: I don't know if we have exactly what structural reinforcement strength that they have, but we know what NPSH margin that the pumps and we can kind of have some idea about what type of NPSH drop across the screen --

22 MR. ARCHITZEL: But the difficulty with 23 that question is the previous criteria, which we 24 haven't backfit. The 50 percent clean, you could say 25 50 percent blocked, 50 percent clean. If you've got

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

15

16

17

18

19

20

21

	46
1	a 50 percent clean opening, it's a lot different than
2	a uniform bed with a filter buildup on it
3	MR. LEHNING: Sure.
4	MR. ARCHITZEL: in terms of
5	differential pressure.
6	MR. LEHNING: Right, much lower.
7	DR. RANSOM: Do any of these incorporate
8	active trash racks or any attempt to clear debris from
9	the entrance?
10	MR. LEHNING: Currently, none of the
11	plants have that.
12	MR. ARCHITZEL: Well, there's some back-
13	flush capability. I think it's maybe 10 percent of
14	the plants.
15	DR. RANSOM: They do?
16	MR. ARCHITZEL: There are some that have
17	back-flush.
18	DR. RANSOM: You mean the back-flush that
19	actually actuates during the
20	MR. ARCHITZEL: Manual operator action
21	back-flush, but there are not many. There are some
22	plants with back-flush.
23	DR. RANSOM: Well, most plants actually
24	use some kind of trash removal at the condenser inlet
25	screens, and there's a fair amount of technology from

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	that, I would think, of how to remove large amounts of
2	trash, if you've got it in
3	MR. LEHNING: Yes, I don't think we mean
4	to exclude that as a solution. I mean, we've focused
5	on the passive kind of solution because that's what
6	the BWRs, they mainly did, because it was the simplest
7	system would be the most reliable system, and there
8	would be less to worry about and do surveillances on.
9	But if a licensee chose to use an active solution to
10	this problem, I mean we would review that.
11	CHAIRMAN WALLIS: I think you would have
12	things like fences to catch the big debris before it
13	gets to the screen.
14	MR. ARCHITZEL: Right.
15	CHAIRMAN WALLIS: Once it gets to the
16	screen, it's a problem because it makes this thin bed,
17	but if it lodges against the fence
18	MR. ARCHITZEL: That was one of the
19	features of Davis-Besse. They sort of had fences
20	quite remote from the new sump they put in to capture
21	some it out there. As far as active strainer goes,
22	some, like the Swedish plant, did put in some like
23	active wing strainer, where you just turn the pump off
24	and some drops, a combination of active/passive, those
25	kinds of things.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	CHAIRMAN WALLIS: No pressure drop across
2	it or anything. At least it's there and catches the
3	debris. Okay.
4	DR. RANSOM: In fact, you would think they
5	might even use a vortex separation device, just like
6	you have in household vacuum cleaners these days.
7	MR. LEITCH: I seem to recall the last
8	time we discussed this issue that we had a big pack of
9	paper that had like similar data from each and every
10	power plant with the size of the screens and the flow
11	velocities, and that was probably it. And I thought
12	it had broken down the plants as to susceptibility;
13	that is, some
14	MR. LEHNING: Exactly.
15	MR. LEITCH: looked okay as was, and
16	others looked like they had a serious issue. Is the
17	Generic Letter going to address that somehow and say
18	that Plants A, B, and C appear to be okay the way they
19	are; Plants D, E, and F need to do this and such?
20	MR. LEHNING: The Generic Letter doesn't
21	go into that kind of detail because the parametric
22	study wasn't really intended to show whether that
23	model, whatever model, whatever plant it corresponded
24	to, it wasn't intended to have that kind of detail and
25	a definitive association with a plant.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

49 1 So the way that the Generic Letter treated the parametric study 2 was just to show that industrywide we had a credible problem because some of 3 4 the things in the parametric study were not modeled in 5 enough detail, like the geometric location of the insulation and transportation paths, and like that, 6 weren't modeled to the extent that we felt confident 7 8 enough to break down classes and categories in that 9 respect. 10 DR. RANSOM: Was this report put together 11 by NRR? 12 MR. ARCHITZEL: No, this was the results 13 of the technical evaluation phase that we mentioned. 14 This was the Foundation for Research transferring this 15 issue to NRR. This was the culmination of technical, 16 if you want to -- but this was the --17 DR. RANSOM: Well, it sounds like you already have some data on how many plants may be 18 19 susceptible and ones that will not, I guess. 20 MR. DORMAN: This is Dan Dorman from 21 Research. 22 In that technical assessment study, there 23 was a substantial amount of plant-specific information 24 gathered from the surveys that had the sump screen 25 sizes, and there was an attempt to categorize the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

50 1 different types, the configurations of the sump 2 screens, and so on. 3 But for a number of issues in the cases 4 that were defined, they were careful to define them as 5 cases and not -- because for a number of issues, we were using generic information developed from a couple 6 7 of example plants that we had more detailed information on in terms of the piping locations and 8 9 debris generation, and so on. So, for that reason, the conclusion of the 10 11 technical assessment was not laid out in terms of 12 these plants are more likely to have a problem than 13 those plants. It was dealt with at a case level, and 14 the conclusion of that was that it was a credible 15 issue and, therefore, given all these plant-specific 16 variables, it's appropriate that plant-specific 17 analyses be performed to determine the susceptibility on a plant-specific basis. The work that's going 18 19 forward here is to provide the guidance to enable the 20 licensees to make those plant-specific assessments. 21 CHAIRMAN WALLIS: I'm trying to think 22 about the timing. Your letter is going to request an 23 answer in 90 days? 24 MR. LEHNING: An initial response, yes. This is before NEI 25 CHAIRMAN WALLIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	guidance really comes out, isn't it?
2	MR. LEHNING: Yes, that could be the case
3	or it might be after; the response may be after,
4	depending on the final
5	CHAIRMAN WALLIS: You may get an amazing
6	array of different approaches?
7	MR. LEHNING: We don't anticipate that.
8	I mean, I think the reason the NEI put that guidance
9	together was because the industry believed that most
10	of the plants were going to use it, but there may be
11	plants that decide that they're not going to use it.
12	We may have some different approaches.
13	CHAIRMAN WALLIS: But I don't think
14	they've put together the guidance yet. The guidance
15	I've seen is only to do with walking around looking
16	for where the debris might come from. That's quite
17	different from figuring out what happens to it in an
18	accident.
19	MR. LEHNING: Correct, and the Generic
20	Letter is planned to be issued, I think, the final
21	version of it in the summer of 2003. So NEI is
22	planning to publish their final industry guidance, I
23	think, in September. So I think 90 days after we
24	issue the final Generic Letter, we request a response
25	from licensees telling us what they plan to do, if

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1they plan to use NEI guidance at that time or if they2plan to use a different methodology.3So they'll have time, I mean, even to look4at it and determine if they want to use it or if they5want to do something else by that time.6CHAIRMAN WALLIS: Does all this depend on7NEI getting their guidance out on time?8MR. LEHNING: We could end up9restructuring the Generic Letter somehow. I mean, we10think that right now it looks like the guidance is11not, you know, way off schedule or anything. As far12as I've heard, it's coming out at that time.13DR. BANERJEE: So this stuff is generated14when you have a big break, or whatever, and get sort15of a shockwave which moves and breaks stuff off, and16then it erodes the stuff under it? Is that what17happens?18MR. LEHNING: That's part of it. I19think20DR. BANERJEE: What is the physical stuff21going on here?22MR. LEHNING: I was going to go over that23in a little bit of detail.24DR. BANERJEE: Okay. You are?25MR. LEHNING: But Dr. Letellier is going		52
3 So they'll have time, I mean, even to look 4 at it and determine if they want to use it or if they 5 want to do something else by that time. 6 CHAIRMAN WALLIS: Does all this depend on 7 NEI getting their guidance out on time? 8 MR. LEHNING: We could end up 9 restructuring the Generic Letter somehow. I mean, we 10 think that right now it looks like the guidance is 11 not, you know, way off schedule or anything. As far 12 as I've heard, it's coming out at that time. 13 DR. BANERJEE: So this stuff is generated 14 when you have a big break, or whatever, and get sort 15 of a shockwave which moves and breaks stuff off, and 16 then it erodes the stuff under it? Is that what 17 happens? 18 MR. LEHNING: That's part of it. I 19 think 20 DR. BANERJEE: What is the physical stuff 21 going on here? 22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?	1	they plan to use NEI guidance at that time or if they
4at it and determine if they want to use it or if they5want to do something else by that time.6CHAIRMAN WALLIS: Does all this depend on7NEI getting their guidance out on time?8MR. LEHNING: We could end up9restructuring the Generic Letter somehow. I mean, we10think that right now it looks like the guidance is11not, you know, way off schedule or anything. As far12as I've heard, it's coming out at that time.13DR. BANERJEE: So this stuff is generated14when you have a big break, or whatever, and get sort15of a shockwave which moves and breaks stuff off, and16then it erodes the stuff under it? Is that what17happens?18MR. LEHNING: That's part of it. I19think20DR. BANERJEE: What is the physical stuff21going on here?22MR. LEHNING: I was going to go over that23in a little bit of detail.24DR. BANERJEE: Okay. You are?	2	plan to use a different methodology.
 want to do something else by that time. CHAIRMAN WALLIS: Does all this depend on NEI getting their guidance out on time? MR. LEHNING: We could end up restructuring the Generic Letter somehow. I mean, we think that right now it looks like the guidance is not, you know, way off schedule or anything. As far as I've heard, it's coming out at that time. DR. BANERJEE: So this stuff is generated when you have a big break, or whatever, and get sort of a shockwave which moves and breaks stuff off, and then it erodes the stuff under it? Is that what happens? MR. LEHNING: That's part of it. I think DR. BANERJEE: What is the physical stuff going on here? MR. LEHNING: I was going to go over that in a little bit of detail. DR. BANERJEE: Okay. You are? 	3	So they'll have time, I mean, even to look
6 CHAIRMAN WALLIS: Does all this depend on 7 NEI getting their guidance out on time? 8 MR. LEHNING: We could end up 9 restructuring the Generic Letter somehow. I mean, we 10 think that right now it looks like the guidance is 11 not, you know, way off schedule or anything. As far 12 as I've heard, it's coming out at that time. 13 DR. BANERJEE: So this stuff is generated 14 when you have a big break, or whatever, and get sort 15 of a shockwave which moves and breaks stuff off, and 16 then it erodes the stuff under it? Is that what 17 happens? 18 MR. LEHNING: That's part of it. I 19 think 20 DR. BANERJEE: What is the physical stuff 21 going on here? 22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?	4	at it and determine if they want to use it or if they
 NEI getting their guidance out on time? MR. LEHNING: We could end up restructuring the Generic Letter somehow. I mean, we think that right now it looks like the guidance is not, you know, way off schedule or anything. As far as I've heard, it's coming out at that time. DR. BANERJEE: So this stuff is generated when you have a big break, or whatever, and get sort of a shockwave which moves and breaks stuff off, and then it erodes the stuff under it? Is that what happens? MR. LEHNING: That's part of it. I think DR. BANERJEE: What is the physical stuff going on here? MR. LEHNING: I was going to go over that in a little bit of detail. DR. BANERJEE: Okay. You are? 	5	want to do something else by that time.
8 MR. LEHNING: We could end up 9 restructuring the Generic Letter somehow. I mean, we 10 think that right now it looks like the guidance is 11 not, you know, way off schedule or anything. As far 12 as I've heard, it's coming out at that time. 13 DR. BANERJEE: So this stuff is generated 14 when you have a big break, or whatever, and get sort 15 of a shockwave which moves and breaks stuff off, and 16 then it erodes the stuff under it? Is that what 17 happens? 18 MR. LEHNING: That's part of it. I 19 think 20 DR. BANERJEE: What is the physical stuff 21 going on here? 22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?	6	CHAIRMAN WALLIS: Does all this depend on
9 restructuring the Generic Letter somehow. I mean, we 10 think that right now it looks like the guidance is 11 not, you know, way off schedule or anything. As far 12 as I've heard, it's coming out at that time. 13 DR. BANERJEE: So this stuff is generated 14 when you have a big break, or whatever, and get sort 15 of a shockwave which moves and breaks stuff off, and 16 then it erodes the stuff under it? Is that what 17 happens? 18 MR. LEHNING: That's part of it. I 19 think 20 DR. BANERJEE: What is the physical stuff 21 going on here? 22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?	7	NEI getting their guidance out on time?
10think that right now it looks like the guidance is11not, you know, way off schedule or anything. As far12as I've heard, it's coming out at that time.13DR. BANERJEE: So this stuff is generated14when you have a big break, or whatever, and get sort15of a shockwave which moves and breaks stuff off, and16then it erodes the stuff under it? Is that what17happens?18MR. LEHNING: That's part of it. I19think20DR. BANERJEE: What is the physical stuff21going on here?22MR. LEHNING: I was going to go over that23in a little bit of detail.24DR. BANERJEE: Okay. You are?	8	MR. LEHNING: We could end up
11 not, you know, way off schedule or anything. As far 12 as I've heard, it's coming out at that time. 13 DR. BANERJEE: So this stuff is generated 14 when you have a big break, or whatever, and get sort 15 of a shockwave which moves and breaks stuff off, and 16 then it erodes the stuff under it? Is that what 17 happens? 18 MR. LEHNING: That's part of it. I 19 think 20 DR. BANERJEE: What is the physical stuff 21 going on here? 22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?	9	restructuring the Generic Letter somehow. I mean, we
12as I've heard, it's coming out at that time.13DR. BANERJEE: So this stuff is generated14when you have a big break, or whatever, and get sort15of a shockwave which moves and breaks stuff off, and16then it erodes the stuff under it? Is that what17happens?18MR. LEHNING: That's part of it. I19think20DR. BANERJEE: What is the physical stuff21going on here?22MR. LEHNING: I was going to go over that23DR. BANERJEE: Okay. You are?	10	think that right now it looks like the guidance is
13DR. BANERJEE: So this stuff is generated14when you have a big break, or whatever, and get sort15of a shockwave which moves and breaks stuff off, and16then it erodes the stuff under it? Is that what17happens?18MR. LEHNING: That's part of it. I19think20DR. BANERJEE: What is the physical stuff21going on here?22MR. LEHNING: I was going to go over that23in a little bit of detail.24DR. BANERJEE: Okay. You are?	11	not, you know, way off schedule or anything. As far
14 when you have a big break, or whatever, and get sort 15 of a shockwave which moves and breaks stuff off, and 16 then it erodes the stuff under it? Is that what 17 happens? 18 MR. LEHNING: That's part of it. I 19 think 20 DR. BANERJEE: What is the physical stuff 21 going on here? 22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?	12	as I've heard, it's coming out at that time.
<pre>15 of a shockwave which moves and breaks stuff off, and 16 then it erodes the stuff under it? Is that what 17 happens? 18 MR. LEHNING: That's part of it. I 19 think 20 DR. BANERJEE: What is the physical stuff 21 going on here? 22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?</pre>	13	DR. BANERJEE: So this stuff is generated
<pre>16 then it erodes the stuff under it? Is that what 17 happens? 18 MR. LEHNING: That's part of it. I 19 think 20 DR. BANERJEE: What is the physical stuff 21 going on here? 22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?</pre>	14	when you have a big break, or whatever, and get sort
<pre>17 happens? 18 MR. LEHNING: That's part of it. I 19 think 20 DR. BANERJEE: What is the physical stuff 21 going on here? 22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?</pre>	15	of a shockwave which moves and breaks stuff off, and
18 MR. LEHNING: That's part of it. I 19 think 20 DR. BANERJEE: What is the physical stuff 21 going on here? 22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?	16	then it erodes the stuff under it? Is that what
<pre>19 think 20 DR. BANERJEE: What is the physical stuff 21 going on here? 22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?</pre>	17	happens?
20DR. BANERJEE: What is the physical stuff21going on here?22MR. LEHNING: I was going to go over that23in a little bit of detail.24DR. BANERJEE: Okay. You are?	18	MR. LEHNING: That's part of it. I
21 going on here? 22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?	19	think
22 MR. LEHNING: I was going to go over that 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are?	20	DR. BANERJEE: What is the physical stuff
 23 in a little bit of detail. 24 DR. BANERJEE: Okay. You are? 	21	going on here?
DR. BANERJEE: Okay. You are?	22	MR. LEHNING: I was going to go over that
	23	in a little bit of detail.
25 MR. LEHNING: But Dr. Letellier is going	24	DR. BANERJEE: Okay. You are?
	25	MR. LEHNING: But Dr. Letellier is going

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	to go over it in much more detail.
2	DR. BANERJEE: I think that's sort of
3	important because NEI has sort of proposed somewhere
4	that these things will be leak-before-break or
5	something, right? So they eliminate the shockwave, I
6	take it? Is that the intention?
7	MR. SNODDERLY: Excuse me, John. This is
8	Mike Snodderly from the ACRS staff.
9	To get to the issue that Sanjoy was
10	talking about, I think it's important that we try to
11	stay on schedule and get to the Reg. Guide around
12	2:15. As Graham pointed out, the focus of this
13	presentation or this meeting is on analyses that may
14	be required as part of the Generic Letter and how such
15	analyses may be conducted.
16	So what I would like to suggest is, could
17	we perhaps go to your slide on the required actions?
18	CHAIRMAN WALLIS: Actually, you don't have
19	many slides left, do you?
20	MR. SNODDERLY: Yes, I think it's
21	important, yes, to
22	CHAIRMAN WALLIS: You're going to rush or
23	run through the slides quickly?
24	MR. SNODDERLY: Yes, cover all your
25	material quickly, but try to make sure we get to the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	requested actions, what's being requested.
2	CHAIRMAN WALLIS: Yes, and I think also
3	the phenomenologies of interest because that's part of
4	this question.
5	MR. SNODDERLY: Okay, because I think
6	isn't the phenomenology addressed in the Reg. Guide?
7	MR. LEHNING: It will be covered. I think
8	Bruce will cover that in enough detail.
9	MR. SNODDERLY: Okay.
10	MR. LEHNING: Maybe I'll just flash the
11	slide up there for a moment.
12	The background, I think Ralph covered that
13	pretty much, so we can skip that and go straight to
14	the phenomenology.
15	MR. SNODDERLY: Thank you.
16	MR. LEHNING: Just really quickly, the
17	primary means, I think we are talking about the
18	shockwave, but also jet impingement of the pressurized
19	fluid as it is expanding out of the pipe break.
20	DR. BANERJEE: So that's an erosion-
21	type phenomenon?
22	MR. LEHNING: Yes, it will, yes, uh-huh.
23	DR. BANERJEE: It's sort of a droplet
24	erosion or a steam erosion or something?
25	MR. LEHNING: Yes, I'll let Bruce go into

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	a lot more of the detail. Then, also, you have the
2	containment global conditions could cause coating
3	disbarment and stuff like that.
4	Ralph already went into the kind of
5	resident dust floating that coats all these surfaces
6	and why that's a concern for plants, especially with
7	a small screen, that this could have enough fiber,
8	even there, and the debris transport and accumulation
9	I think Bruce will cover as well, so go straight to
10	it.
11	The concerns that are addressed in the
12	Generic Letter, sump screen debris blockage is one of
13	the main concerns, and what the specific parametric
14	study focused on was just the loss of the NPSH margin
15	for the emergency core cooling system and containment
16	spray system pumps. So it compared what the required
17	pump NPSH was and then looked at what was available,
18	based on the head of water and other conditions that
19	are factored in, and then compared that to what kind
20	of NPSH loss or pressure drop would occur across the
21	debris bed, and whether that would exceed the NPSH
22	margin that was available.
23	They found that that was a credible
24	concern. Kind of the reason it was is because all
25	these plants were designed with a 50 percent blockage,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	56
1	and it's a lot lower head loss if you see the screen
2	is half clean.
3	But then, in addition to that issue, you
4	also had the deformation issue of the screen, too.
5	When you have this high pressure drop across it, the
6	screen bears all that load, and if it's not adequately
7	reinforced, it could deform. At a BWR, Perry, we saw
8	a very thin bed of debris form and cause deformation
9	of that strainer. And, of course
10	CHAIRMAN WALLIS: It's strange that you
11	wouldn't design your screen to take the maximum
12	suction that the pump could put on it.
13	MR. ARCHITZEL: But they are assumed to be
14	half clean by design. Yes, that was the design
15	assumption, was 50 percent blockage.
16	CHAIRMAN WALLIS: Fifty percent sounds
17	like just somebody guessing between zero and a
18	hundred.
19	MR. ARCHITZEL: That was, but it was a
20	very it is in a sufficient area not to have a high
21	differential pressure.
22	MR. LEHNING: The 50 percent blockage I
23	think was based on the pieces of debris being a very
24	large size, and then you couldn't have all these
25	that's what the concern was with this fine debris,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	57
1	that you would block a lot more of the surface area
2	with the debris.
3	MR. ARCHITZEL: I would like to make it
4	very clear that that assumption was disowned in 1985,
5	and we no longer it was recognized as not being a
6	good assumption. It was stated to industry. It's
7	never been the NRC position since even before, you
8	know, around that timeframe, and the industry has been
9	informed of that. Whether they've taken any action or
10	not was sort of left a little bit somewhat up to
11	industry at that time.
12	MR. LEHNING: And, again, I mean the issue
13	with the deformation, the damage to the screen, is
14	that you could have a lot of debris ingesting if you
15	have a breakthrough of the screen.
16	Again, the upstream blockage issue of
17	trapping water in like a refueling cavity or
18	compartment drains, or something like that, if they
19	become blocked with debris, you could reduce the NPSH
20	that you have available to the pump that you're
21	relying on to ensure that you have these pumps
22	operable.
23	Then the downstream issue, if the screen
24	is not adequately sized, again, you could block areas
25	like containment spray nozzles or HPSI throttle valve

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	or fuel assembly in the debris screens. Some of these
2	sump screens are not adequately sized for these small
3	flow restrictions from downstream.
4	The next slide, the requested actions of
5	the Generic Letter: The first one is to perform an
6	evaluation that's based on the concerns that we
7	identified, all four of the concerns requesting that
8	licensees take a look at and determine whether they
9	have a problem with that on a mechanistic basis,
10	rather than just making a 50 percent blockage
11	assumption.
12	Then the second requested action has to do
13	with interim compensatory measures. Basically, before
14	the detailed evaluation is performed, we are asking
15	licensees, when they get the letter, to kind of take
16	a look at whether or not they need to do things ahead
17	of that, if they have a bad condition.
18	Part of the recommendation that we had to
19	that was that, if licensees are non-conservatively
20	relying upon the 50 percent blockage criteria, they
21	may need to do something ahead of time.
22	So then the third one is obviously to
23	implement any plant modifications that are necessary
24	to return to compliance, if your evaluation identifies
25	you're not in compliance.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	Next slide. Then just the basis for the
2	action request: Like I said before, we are requesting
3	action, and we're requesting action on a compliance
4	basis, so it's considered a compliance backfit.
5	Again, what you need to show is that a non-compliance
6	situation exists and that it's a significant issue, so
7	that the non-compliance that we're saying exists with
8	the 10 CFR 50.46, specifically the long-term core
9	cooling requirement that's there, and also plants rely
10	on their licensing basis on the containment spray
11	system for safety-related purposes and the GDCs as
12	well.
13	So then the value, again, goes back to the
14	attachments to the CRGR package, Attachment 2, 3, and
15	4, that show that this is a significant enough issue
16	that we should pursue it.
17	Next slide, please. Getting on into the
18	information that we are requesting, we are using 10
19	CFR 50.54(f) to require a written response from
20	licensees, so that we have assurance that they will
21	get at least a response to the letter. There's two
22	parts to the response.
23	The first part is basically asking
24	licensees about the plan for doing things, plans for
25	doing the walkdown of containment, to identify debris

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

sources, the plans for performing the evaluation we are requesting, and also the plans for implementing interim compensatory measures before doing the detailed evaluation. Again, that first information request would be, I think, 90 days after receipt of the letter.

7 The second part to the information request would come after the licensee had completed the 8 9 evaluation. At that point we would ask for more 10 detail about the methodology that was used, the result 11 of the evaluation, rules for performing modifications, 12 the necessity of continuing with interim compensatory 13 measures until the modification, all modifications are 14 complete that are necessary, and then also future 15 controls to ensure that, if you bring in a potential 16 debris source, that you're evaluating it and that it's 17 not qoinq to cause а problem for your ECCS 18 operability.

19 Next slide, please. This has to do with 20 the coordination with industry. As you have heard 21 already, the NEI I think is under that umbrella. The 22 industry is coming up with the guidance details that are needed for the licensees, PWR licensees, to 23 24 perform the evaluation that we are requesting in the 25 Generic Letter.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	61
1	The first part of that, the first step or
2	first part of that guidance was the containment
3	walkdown in the Condition Assessment Guidelines that
4	NEI created to allow licensees to take an inventory of
5	the debris, and we worked together pretty
6	cooperatively on that.
7	NEI addressed the staff's comments. They,
8	basically, presented to us in a public meeting the
9	guidance that they had, and we gave comments back in
10	that forum.
11	As far as the evaluation methodology, we
12	don't know too much about that right now. We have
13	seen the groundrules, and there may be some issues
14	that challenge us on that, but we still have a long
15	way to go. Hopefully, we can come to an agreement, an
16	accord, on what the proper course of action is on
17	that. So still it's too early to decide whether or
18	not we can fully endorse those guidelines.
19	MR. ARCHITZEL: But that caveat was also
20	expressed in the Generic Letter Draft, that if it was
21	recognized that the guidelines we drafted we may
22	need to revisit or supplement the Generic Letter if
23	that situation existed and we couldn't reach
24	agreement.
25	MR. LEHNING: Yes, that was my last

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	62
1	bullet, but Ralph jumped in and preempted me on that
2	one. But, yes.
3	So I guess that concluded the presentation
4	I was going to make. So I guess B.P. will be the next
5	speaker, some research. B. P. Jain will talk about
6	the Draft Regulatory Guide, DG-1107.
7	DR. JAIN: Good afternoon. My name is
8	B.P. Jain from RES, the Research Division of
9	Technology.
10	Ralph and John have gone over the GSI-191
11	issue and the resolution process. The Generic Letter
12	and Draft Guide are two complements of that process.
13	I'm going to talk about the Draft Guide 1107.
14	We plan to issue this Reg. Guide for
15	public comments, and the staff is seeking your
16	concurrence for releasing the Draft for public
17	comments.
18	This Draft Guide provides methods and
19	approaches that are acceptable to the staff. Bruce,
20	of Los Alamos, will be describing some of these
21	approaches in more detail.
22	Approaches described here are not
23	necessarily the only approach. The licensee can
24	submit alternate approaches for staff's review.
25	With this, I will go over my presentation

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	first and then Bruce will follow.
2	Next. In this presentation I will
3	describe the process we use in issuing the guidance
4	and provide a background on the evolution of the Reg.
5	Guide from Rev. 0 to Rev. 3. We'll also include the
6	Reg. positions that are acceptable, the contribution
7	of GSI-191 to such program, and what are our plans and
8	schedule to issue the Reg. Guide, and, finally, the
9	conclusions.
10	Next, please. The process begins, of
11	course, with preparing the draft guidance and then
12	brief the ACRS, as I'm doing today, and upon your
13	concurrence, we'll issue the Draft Guide for public
14	comments. Then we'll address all public comments and
15	brief CRGR and the ACRS again. Then, after resolving
16	all comments, we will issue the final Reg. Guide as
17	Revision 3.
18	CHAIRMAN WALLIS: So this Draft DG-1107 is
19	going to eventually become 1.82.
20	DR. JAIN: 1.82, Rev. 3.
21	CHAIRMAN WALLIS: It just has a temporary
22	name?
23	DR. JAIN: Well, DG-1107 is a temporary
24	name. It's a Draft Guide. So once it goes through
25	the process, it will come out as 1.82, Rev. 3.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	Next, please. Here I have provided some
2	background and evolution, and Ralph and John have
3	touched upon part of them.
4	Rev. 0 of the Reg. Guide 1.82 was issued
5	back in June 1974. That included the provision of
6	NPSH calculation based on 50 percent blockage. That's
7	the initial design.
8	Well, then in November 1985, when USI A-43
9	was recognized, as part of resolution of that,
10	Revision 1 was prepared and issued. However, Revision
11	1, in accordance with Generic Letter 85-22, the staff
12	at that time concluded that Rev. 1 of the Reg. Guide
13	would not apply to any plant then licensed to operate
14	or under construction, and then it would be limited to
15	conduct 10 CFR 50.59 reviews dealing with change or
16	modification to thermal insulation.
17	CHAIRMAN WALLIS: I don't quite understand
18	this. The NRC issued a Reg. Guide which didn't apply
19	to any plant?
20	MR. ARCHITZEL: The reg. analysis for that
21	was for forward-fit. So like the ABWR and the System
22	80-Plus, you know, the plants designed six months
23	after that stage had to design mechanistically for the
24	transport
25	CHAIRMAN WALLIS: Just legally you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	couldn't make it stick?
2	MR. ARCHITZEL: No, we could have made it
3	stick at that time. We have reg. analysis that was
4	quite extensive and it went into the cost/benefits.
5	Most of the issue at that time was related to vortex
6	suppression and things like that, the third issue.
7	Those were put to bed with saying maybe the issue is
8	not quite as bad as they initially thought it was.
9	The issue and it was considered a PWR
10	issue was considered worse than they initially
11	thought was this debris blockage issue and the sump
12	blockage issue. Recognizing the mistake of the
13	assumption in the initial Reg. Guide, providing
14	industry the information, and said, "We can't make it
15	on a cost/benefit."
16	You know, containments were robust. Even
17	if you had ECCS failure, you're not going to have the
18	cost/benefits with millions of dollars to replace all
19	this fiberglass insulation. The decision was made not
20	to backfit, but to let them do it forward-fit through
21	modifications and considering the 50.59 process.
22	DR. JAIN: Subsequent to Revision 1, the
23	events of the nineties, namely, the Barsebeck that
24	resulted in the blockage of strainer, prompted a re-
25	reviewofthe blockage issue for boiling water reactors.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	Based on the research program and BWRs,
2	guidance was developed for BWRs and Revision 2 of the
3	Reg. Guide was issued in 1996.
4	NRC Bulletin 96-03 requested the licensee
5	to implement measures to ensure ECCS functions
6	following LOCA is ensured.
7	Subsequently, for PWRs, the GSI-191
8	research program was initiated. That confirmed the
9	class of ECCS NPSH margin due to sump clogging issue
10	was a credible concern.
11	Staff presented the results to the ACRS,
12	and the staff was directed
13	CHAIRMAN WALLIS: Let me understand the
14	potential seriousness of this. If you lose NPSH, you
15	can't recycle the water from the sump; then you can't
16	cool the plant long term and, therefore, you lose the
17	core? Is that right?
18	DR. JAIN: I didn't get your question.
19	CHAIRMAN WALLIS: This is a potential loss
20	of core actually?
21	DR. JAIN: It's a potential, yes.
22	MR. ARCHITZEL: Yes. There's other things
23	you can refilter.
24	CHAIRMAN WALLIS: You might find other
25	ways to cool it, right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	67
1	MR. ARCHITZEL: To get water in, you can
2	spray, you know. Then you can maybe maintain
3	containment integrity even if you failed the core and
4	keep it inside the containment. That was all part of
5	that analysis.
6	CHAIRMAN WALLIS: But it wouldn't, the
7	long-term cooling as designed, wouldn't function
8	anymore?
9	MR. ARCHITZEL: Or you start and stop
10	pumps.
11	CHAIRMAN WALLIS: That's right.
12	MR. ARCHITZEL: It wouldn't be as
13	designed.
14	DR. JAIN: So as part of the research, we
15	are issuing the Draft Reg. Guide 1107, and that's
16	where we are.
17	DR. BANERJEE: Was it credible to have
18	both trains fail like that and blocked and everything?
19	MR. ARCHITZEL: Bruce?
20	DR. LETELLIER: That was included in the
21	risk assessment. I'm not personally familiar with
22	that study, but it was factored in.
23	DR. BANERJEE: They are geometrically
24	separated, aren't they, at the sumps?
25	DR. LETELLIER: No, not always. They are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	co-located. In most plants they are physically
2	separated by a baffle or a separation, but in many
3	instances they are in the same location of the plant
4	and subjected to the same transport fractions.
5	DR. BANERJEE: I see. Good.
6	DR. JAIN: Next, please. On this slide
7	I'll discuss what has changed from Revision 2 to
8	Revision 3 in the current version. In this revision
9	primarily the BWR sections have been revised to
10	enhance the Debris Blockage Evaluation Guidance. That
11	had not been the way since Rev. 1 that was issued in
12	1985.
13	The Guidance is consistent with the BWR
14	guidance in Revision 2 and the insights gained from
15	the GSI-191 research program. Some minor changes
16	which are editorial in nature have also been made to
17	existing BWR sections to reflect the staff's position
18	in safety evaluation on BWR owners' response to
19	Bulletin 96-03.
20	This revision also integrates previously-
21	provided guidance in Reg. Guide 1.1 titled, "Net
22	Positive Suction Head for ECC and Containment Heat
23	Removal Pumps" for completeness. This Reg. Guide 1.1
24	will be deleted after Revision 3 of the Reg. Guide
25	1.82 is issued.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	Next, please. Now I will provide some
2	highlights of insights from the GSI-191 research
3	program. Bruce will go over more details of those
4	analytical techniques. First, I'll provide insights
5	for debris source and generation
6	Based on the industry survey of 1999, it
7	was determined that the majority of the plants have
8	three types of insulation: fibrous, RMI, and Calcium-
9	Silicate. Research also indicated that the amount of
10	debris that is generated largely depends upon the type
11	of insulation material, primarily because you have
12	different destruction pressure thresholds and,
13	therefore, the zones of destructions.
14	It also depends approximately on
15	orientation of the insulation relative to the break
16	location and how the insulation is installed. The
17	damage pressure could vary from 10 psi to 150 psi,
18	depending on how insulation is installed.
19	An acceptable approach for estimating
20	debris is provided in NUREG/CR-6224 and in BWR Owners'
21	Resolution Guidance and the staff safety evaluation of
22	BWR Owners' Response to Bulletin 96-03.
23	Now Bruce is going to discuss in more
24	detail about the zone of influence, the destruction
25	pressure, and other considerations which go into

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	MR. ROSEN: I want to ask you a question
2	about this destruction pressure threshold.
3	DR. JAIN: Right.
4	MR. ROSEN: My mental model of this is
5	more of an erosion kind of phenomena, where a jet
6	impingement from a break basically destroys the
7	insulation that's in with the zone of influence. That
8	model doesn't relate very well to a general pressure
9	increase and a destruction pressure threshold.
10	So can you help me understand what
11	destruction pressure threshold means?
12	DR. LETELLIER: We'll show some
13	illustrations of the damage zone a little bit later,
14	but I think you can imagine that, beyond a certain
15	distance from the jet, the pressure would not be great
16	enough to cause erosion. So that represents the
17	threshold for destruction.
18	Within that radius, there are various size
19	distribution of debris that's generated, from the very
20	fine particulates to the fragments and the partial
21	jacketing material.
22	MR. ROSEN: But throughout the
23	containment, the pressure is going to go up "X" number
24	of psi, and outside, a long way from the zone of
25	influence.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	DR. LETELLIER: That's true. We've
2	focused on the pressure contours within a free-fueled
3	jet to basically identify those erosion mechanisms
4	that are important, and we're ignoring the quasi-
5	static pressure increase across the containment.
6	CHAIRMAN WALLIS: I would think you would
7	be interested in momentum flux. Isn't that it, rather
8	than pressure? I mean, if I control a crowd with a
9	firehose you know, it's not the pressure of the
10	jet; it's the momentum of the jet. It may be
11	converted to pressure when it hits something, but
12	DR. LETELLIER: That's an important
13	observation. There's a lot of speculation about the
14	exact physical mechanisms of debris generation and
15	insulation degradation, but the fact is that most of
16	our information is based on test data, where pressures
17	were the easiest thing to be measured.
18	For example, a typical test series would
19	place a debris blanket of a given composition and size
20	at different distances from the orifice.
21	DR. RANSOM: What pressure do you mean
22	now, the static driving pressure of the jet, which is
23	the same virtually as the dynamic pressure?
24	DR. LETELLIER: We're talking about the
25	stagnation pressure on the face of the blanket.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	72
1	DR. RANSOM: Yes, okay. So they would
2	have some momentum effects.
3	CHAIRMAN WALLIS: It takes some time. I
4	just yesterday washed off a pile of accumulation under
5	my car, and it was amazing how long it took this jet
6	to wash off the stuff. There was an erosion
7	phenomenon. You would wash it off and then some more
8	comes off. So just time must come into it, too,
9	doesn't it?
10	MR. ROSEN: I think this question of what
11	actually is disturbing the insulation material, what
12	physical phenomena are we talking about, is very
13	important because it gets into how much debris is
14	going to be generated. It's a crucial parameter. I
15	would like to hear as much as you can say about that.
16	CHAIRMAN WALLIS: We're going to hear
17	about that, aren't we?
18	DR. LETELLIER: I hope so. Is it my turn?
19	CHAIRMAN WALLIS: Well, later on you
20	can
21	DR. JAIN: Later on, we'll cover that, I
22	suspect, in more detail.
23	CHAIRMAN WALLIS: Keep us in suspense.
24	DR. BANERJEE: Just to recap, there's no
25	time lapse momentum flux. That's probably what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	happens that's involved here. It's just sort of a
2	threshold without a time involved?
3	DR. LETELLIER: Of course, experimental
4	data do involve an exposure time, a blowdown time, and
5	that has been taken into consideration when we
6	examined the differences between the test conditions
7	and the actual plant blowdown conditions. So those
8	effects that you are mentioning have been incorporated
9	in our estimates of damage threshold, which is
10	reported in terms of destruction pressure, and also in
11	our estimates of the debris volume, in other words,
12	the extent of that zone of influence.
13	DR. BANERJEE: So will you clarify for us
14	why leak-before-break criteria may reduce the damage
15	of the debris?
16	DR. JAIN: I guess we will cover that
17	later. Somebody knows, right?
18	MR. ARCHITZEL: I'm not sure we're ready
19	to talk leak-before-break now, but if you take the
20	size of the pipe and then the sphere of influence
21	related to that with the initial blowdown, the
22	momentum, as you say, obviously, if you don't have the
23	large pipes there for the break, the smaller pipe you
24	have, the smaller zone of influence there. Is that
25	the question or what?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	DR. BANERJEE: Well, I don't know. I
2	mean, if you have a leak-before-break but the pipe
3	still breaks, does it make any difference?
4	MR. ARCHITZEL: Well, I'm not sure.
5	There's a question leak-before-break you might take
6	it all the way out down to no effect at all or you
7	could say there's a residual effect of a crackage
8	leak. I'm not sure. We currently haven't accepted
9	leak-before-break, so that's not really on the table
10	for us.
11	DR. KRESS: Generally, a leak-before-break
12	takes that pipe out of consideration of this
13	initiating event. Because you see the leak, you are
14	going to stop and fix it.
15	CHAIRMAN WALLIS: I think this is a
16	different issue which we have to face sometime today,
17	but I'm not sure that it's the right time now.
18	DR. BANERJEE: Okay. I got the wrong end
19	of the stick. I think it was really, if you had a
20	break that developed gradually, is there a difference
21	from a break that occurred suddenly?
22	CHAIRMAN WALLIS: No, a leak-before-break
23	is a kind of
24	DR. BANERJEE: Just a measure to take it
25	out?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	CHAIRMAN WALLIS: A way of disregarding
2	certain things on the basis of not being very likely.
3	DR. BANERJEE: So it's not the shockwave,
4	but
5	CHAIRMAN WALLIS: The reason for it is
6	quite different from the rationale associated with
7	this debris.
8	MR. ARCHITZEL: But our guidance, a leak-
9	before-break does have a couple of pressurization
10	schemes. If you're going to talk about pressurization
11	of a room and a leak-before-break pipe, you still have
12	to take the diameter of the pipe and open it over
13	three seconds instead of instantaneously, but that's
14	for room pressurization. I'm not sure that would
15	apply, even if we went there.
16	Then you're also dealing with leakage
17	cracks, which leakage cracks are like the diameter of
18	the pipe and the thickness of the pipe, which is a
19	significant break, more than a leak-before-break, the
20	ten gpm, but the groundrules might be, or I guess what
21	industry has asked for is, to consider leak-before-
22	break. Then you have no effects and you take it to
23	zero.
24	But we consider it doubling the
25	guillotine. That's the leak we're dealing with for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	ECCS performance.
2	DR. JAIN: Go to the next one?
3	CHAIRMAN WALLIS: Yes, please.
4	DR. JAIN: Here are some more of these
5	insights from the debris transport tests performed as
6	part of the GSI-191 program. The details of these are
7	provided in NUREG-6773.
8	Some of the highlights are that
9	substantially more debris is transported to sump
10	relatively soon after the switchover to recirculation.
11	CHAIRMAN WALLIS: Do you mean more debris
12	than was previously thought? Is that what you mean by
13	more debris?
14	DR. JAIN: In other words, compare the
15	total debris; you've got 60-70 percent of the debris
16	gets into the pool in the first right after
17	switchover, if you're talking about like two or three
18	hours' timeframe.
19	The second bullet says that
20	MR. ROSEN: Did you answer Dr. Wallis'
21	question? I didn't understand it. He said, "More
22	debris than what?" He has used the word
23	CHAIRMAN WALLIS: More than previously
24	thought or what?
25	DR. JAIN: Well, "more" meaning

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	substantial percentage of the total debris, like
2	CHAIRMAN WALLIS: Okay, that means so
3	"more" doesn't really belong there. You mean
4	substantial percentage of the debris is
5	DR. JAIN: Percentage is the
6	MR. ROSEN: Whereas, before that was not
7	what you thought?
8	DR. JAIN: Right.
9	MR. ARCHITZEL: Right. It's more debris
10	soon after switchover as compared to the amount of
11	debris that is moved over a long period after the
12	switchover. Perhaps a better way to say that would be
13	the majority of the debris that gets to the screen is
14	being transported early after switchover. Is that
15	right?
16	CHAIRMAN WALLIS: The majority of the
17	debris.
18	MR. ARCHITZEL: Majority, I'm not sure
19	majority is right.
20	CHAIRMAN WALLIS: It's probably
21	substantial.
22	MR. ARCHITZEL: I'm looking to Bruce or
23	B.P. to clarify that, but more is relative to the
24	soon-after-switchover as opposed to the one that's
25	previously

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	DR. JAIN: More is more accurate to like
2	timing-wise. That's correct.
3	The second one is fine fibers remain
4	suspended for a long time but eventually get
5	transported to the sump.
6	One of the highlights or insights of the
7	test was that more debris was transported in shallower
8	pools compared to the deeper ones, primarily because
9	the flow velocities are slower in deeper pools.
10	DR. BANERJEE: I'm sorry, I don't get this
11	point. This thing is surrounded by some sort of a
12	filter which takes this mess out? Are you talking now
13	about what happens inside the sump or
14	DR. JAIN: No, from the containment floor,
15	how this debris is transported along the floor. So if
16	it is a deeper pool
17	DR. BANERJEE: Oh, I see, a deeper pool?
18	DR. JAIN: Right.
19	DR. BANERJEE: I guess what's confusing is
20	for a shallower sump
21	DR. JAIN: A shallower pool.
22	DR. BANERJEE: Just the pool which is
23	outside the sump, you're talking about?
24	DR. JAIN: That's correct.
25	DR. BANERJEE: Okay.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	79
1	CHAIRMAN WALLIS: Is this because there is
2	greater velocity in the shallower pool?
3	DR. JAIN: By just observation, like how
4	does debris transport take place. It's not really
5	tied down to the sump or head loss at this point.
6	MR. ROSEN: I envisioned this pool as
7	being in a real loss-of-coolant accident as a
8	violently-stirred situation. It's not going to be
9	quiescent, allowing for fine material to deposit.
10	DR. LETELLIER: I will be showing some
11	calculations of velocity fields where that is not true
12	in general. These are very large containment volumes,
13	very close to the break, what you say is an adequate
14	description, but there are quiet areas where there's
15	an opportunity for settling.
16	MR. ROSEN: Okay.
17	DR. LETELLIER: I think the important key
18	feature that B.P. has already mentioned is that the
19	fine debris is suspended indefinitely and will
20	eventually transport.
21	DR. JAIN: And then there's narrow
22	pathways that accelerate flow and enhance debris
23	transport, and the debris curb impedes forward motion
24	of the debris, which is a good thing if we want to
25	control the amount of debris getting to the pool.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	CHAIRMAN WALLIS: "Narrow flowpaths
2	accelerate flow"? What you mean is narrow flowpaths
3	lead to higher flow velocities?
4	DR. JAIN: That's correct.
5	DR. LETELLIER: Keep in mind that the
6	recirculation requirements for most plants is largely
7	the same, but their containment volumes and their
8	geometries are very different. So that's what's
9	driving the change in velocity.
10	MR. ROSEN: So in this case a large
11	containment with a deeper pool is better than a small
12	containment with a shallow pool, for this phenomena?
13	DR. LETELLIER: Yes.
14	DR. JAIN: That's right.
15	DR. BANERJEE: But the depth of the pool
16	is sort of determined by what, barriers and things in
17	the way of the water getting to the sump or
18	DR. LETELLIER: By two features. Both
19	their geometry, which defines the free volume, and
20	also by their inventory of coolant water, both in the
21	reactor coolant system and in the reactor water
22	refueling storage tanks. Each plant has a finite
23	volume of water that has to be managed to provide for
24	long-term cooling.
25	DR. BANERJEE: So it's not like you have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	internal weirs and resistances which keep the levels
2	up?
3	DR. LETELLIER: Those effects are present,
4	but that's not dominating the bulk pool velocity.
5	CHAIRMAN WALLIS: As long as it's going
6	over surfaces, I would think it would be washed by the
7	water and sprays and everything, washed down. So
8	until it gets to a pool or a place where it can become
9	stagnant, it's going to be in the water, and it's
10	going to be washed down by the water.
11	So is there really just one pool you worry
12	about? This is one big pool? I don't have a good
13	picture of what happens in this containment.
14	Different rooms and
15	DR. JAIN: What I have described, he will
16	have more description later on.
17	CHAIRMAN WALLIS: He will? Okay. An
18	animated movie or something?
19	(Laughter.)
20	DR. KRESS: Cartoons.
21	CHAIRMAN WALLIS: Cartoons?
22	DR. JAIN: We could arrange that.
23	Here are some insights about debris
24	accumulation and head loss. Fine debris accumulates
25	uniformly. Debris on the vertical screen accumulates

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	near the bottom of the screen initially and then,
2	depending on the approach velocity, it piles up on the
3	screen.
4	PWR head loss test data is consistent with
5	the head loss correlation in NUREG-6224.
6	CHAIRMAN WALLIS: Isn't it sort of self-
7	controlling? I mean, if it accumulates in one place,
8	then it blocks that place, and so the flow goes
9	somewhere else and, therefore, it accumulates
10	somewhere else. So the screens tend to fill up.
11	DR. JAIN: Eventually, yes.
12	CHAIRMAN WALLIS: All right.
13	DR. JAIN: The PWR head loss data we have
14	is consistent with NUREG-6224 correlations, and that
15	correlation can be used with some adjustment to
16	material property parameters to soothe the PWR
17	materials.
18	CHAIRMAN WALLIS: Presumably, you have the
19	screen there because you don't want this material to
20	be put through the reactor?
21	MR. LEHNING: Through the reactor and any
22	flow restrictions that may be downstream, like a
23	throttle valve or a containment spray nozzle or pump
24	seals.
25	MR. ROSEN: Maybe not through the pump

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	MR. LEHNING: Yes, pump seals.
2	CHAIRMAN WALLIS: Yes. Well, the pump
3	would probably be perfectly happy with some of this
4	fine material.
5	MR. LEHNING: The seals of the pump. So
6	the coolant
7	DR. BANERJEE: Seams could be problems.
8	MR. ROSEN: Seals would not be
9	MR. LEHNING: Yes, large quantities of
10	debris could cause the pump to lose primes.
11	DR. BANERJEE: Are these labret seals?
12	What type of seals on these pumps?
13	MR. LEHNING: They have different models,
14	and I can't speak to every type of pump.
15	CHAIRMAN WALLIS: Yes, but the fraction,
16	the volume fraction of debris in the water is very,
17	very small, as long as it's all mixed up. Compared
18	with the amount of water there, the volume of debris
19	is very small. It's just that it's in the wrong
20	place.
21	DR. JAIN: And the wrong size.
22	CHAIRMAN WALLIS: Yes, correct. It gives
23	you trouble.
24	MR. LEHNING: Yes, I mean the problem
25	could be like big pieces. If you didn't have that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	screen there, you may get a big chunk right there and
2	you have a locally high concentration enough to cause
3	a problem.
4	DR. JAIN: And then we also found that
5	fibrous bed, in combination with the particulate
6	debris, results in higher head losses. Bruce is going
7	to have some slides on that, more details.
8	Next one. Acceptable analytical
9	approaches: The Draft Guide provides analytical
10	approaches that are acceptable to the staff. Bruce
11	will provide more presentation of these approaches.
12	I want to re-emphasize that these are not
13	the only approach the licensee can use. They can
14	submit alternate approaches for our review.
15	We are also making available a NUREG that
16	provides a summary of the current knowledge base of
17	the research on BWR strainers and the PWR sump screen
18	clogging issue. So whatever the knowledge base is
19	there, it's available to the general public, and it
20	will be issued concurrently with the Reg. Guide.
21	CHAIRMAN WALLIS: I guess when Los Alamos
22	presented to us, whenever it was, a year ago or
23	something, they had some analytical approaches. My
24	feeling was, yes, this is fine, but then there is a
25	lot of creativity in the way one analyzes the problem.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	It seemed quite likely that a licensee or
2	NEI would come back with an approach which predicts
3	almost an order of magnitude different from LANL.
4	Then someone has to resolve this.
5	DR. LETELLIER: As long as they're higher,
6	then there's no conflict.
7	(Laughter.)
8	And I say that only partly in jest. Part
9	of the reason for LANL developing these methodologies
10	is to look at an appropriate level of effort and to
11	help judge what is a conservative assumption and
12	what's not.
13	DR. JAIN: And I think we should also keep
14	in mind that the industry is fully aware of what was
15	done on BWR and other places. So it's not something
16	that they are reinventing the wheel. So we don't
17	expect surprises to that extent.
18	DR. BANERJEE: Are these approaches, then,
19	quite similar to the BWR methodology?
20	DR. JAIN: Well, they are, but they have
21	been modified
22	DR. BANERJEE: Sure.
23	DR. JAIN: where appropriate for PWRs.
24	DR. BANERJEE: But the basic thinking
25	going into them is similar?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	86
1	DR. JAIN: Correct.
2	DR. BANERJEE: And industry is using these
3	approaches?
4	DR. JAIN: I would leave that for NEI
5	later after Bruce. But, to answer your question, I
6	assume so. But, again, we are open to look at
7	alternate approaches.
8	Next one, please. Here I will list some
9	of these contributions of the GSI-191 research
10	program. It has provided it has been a program
11	going on for the last four years, and has generated a
12	lot of material and tools which industry can use.
13	Well, first of all, we confirmed the
14	credibility of the Generic Issue, and also supported
15	the agency's performance goal of maintaining safety by
16	gaining knowledge regarding the effect of debris
17	accumulation on PWR sump performance.
18	We have periodic meetings with the public,
19	industry, ACRS
20	CHAIRMAN WALLIS: Knowledge by itself
21	doesn't maintain any safety. It's doing something
22	with the knowledge.
23	DR. JAIN: Well, we are in the process of
24	resolving that by Generic Letter. Eventually, we'll
25	get there. That's a goal.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	Then part of this research program, we
2	have developed tools, some computer programs; for
3	example, CASINOVA and BLOCKAGE.
4	CHAIRMAN WALLIS: This is about the least
5	romantic subject. I don't know what "Casanova" has to
6	do with it.
7	(Laughter.)
8	DR. BANERJEE: It's spelled differently,
9	like "casino."
10	DR. JAIN: Yes, it's not spelled
11	CASINOVA generates it talks about debris
12	generation, volume, and composition of debris for all
13	possible break sizes. Bruce will go into a little bit
14	more detail.
15	BLOCKAGE code estimates the head loss.
16	As part of this program, we have developed
17	numerous NUREG/CRs and, of course, this Reg. Guide
18	1.82 that has provided valuable insight to the
19	industry for resolving this issue.
20	We have also developed the knowledge base,
21	as I said earlier. The report summarizes U.S. and
22	international research on the BWR and PWR clogging
23	issue.
24	CHAIRMAN WALLIS: Well, let's go back to
25	the Reg. Guide here. Aren't we going to talk about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	it, I suppose?
2	My impression of the Reg. Guide is it lays
3	out what needs to be done. You have to evaluate this,
4	you must consider this, and so on and so on. It
5	doesn't really provide any insights because it doesn't
6	tell you how to do it.
7	DR. JAIN: No. This is just a research
8	program and we're talking about overall
9	CHAIRMAN WALLIS: Yes, but the Reg. Guide
10	itself is different. It's really asking for a lot of
11	things, and my question all along was, do we know how
12	to do it?
13	DR. JAIN: In the Reg. Guide we do provide
14	reference to the NUREGs and acceptable methods.
15	CHAIRMAN WALLIS: There is reference,
16	right?
17	DR. JAIN: Yes.
18	And the last bullet on this page, we plan
19	to interact and share knowledge on the sump clogging
20	issue with the international community, and we have
21	planned an international conference later this year.
22	CHAIRMAN WALLIS: What is the status of
23	things internationally? Are there other countries
24	that are concerned with this problem? Are there other
25	countries that have solved it in a different way?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	DR. JAIN: Well, France is more active in
2	this area, but they are sort of reluctant to share too
3	much knowledge. So, to answer your question, we don't
4	know much what they do. They have told us they will
5	share their knowledge sometime later this year.
6	CHAIRMAN WALLIS: Don't they publish their
7	regulations?
8	DR. JAIN: I haven't had a chance to look
9	at their regulations.
10	MR. ARCHITZEL: The Belgian plants are
11	looking at this issue right now, following what we're
12	doing and interacting with their utilities, the
13	regulator is. So they're struggling with it as well.
14	I think the Swedish plants solved it because they had
15	the problem at the BWR up there, so they solved it for
16	the PWRs with large screen changes.
17	DR. FORD: Would you mind going back to
18	the previous graph? Could you just go back one, to
19	45?
20	CHAIRMAN WALLIS: Maybe we should note for
21	the record that our esteemed colleague, Dr. Peter
22	Ford, has now joined us.
23	DR. FORD: Needless to say, I know very
24	little about this subject. Could you tell me
25	something about the last bullet? You developed tools,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	these computer programs, the qualification of them
2	against observation?
3	I notice on slides 42 and 43 you have a
4	whole lot of empirical statements like "more debris
5	transported to the sump" and such things as these.
6	Are these models empirical models in this CASINOVA?
7	They're purely empirical, based on the information you
8	have at any one time?
9	DR. LETELLIER: The BLOCKAGE model, which
10	is intended to calculate head loss across the debris
11	bed, is a semi-empirical model, which actually the
12	correlations are based on chemical engineering fields
13	that are intended for porous media filtration and also
14	fibrous media. The empirical data have been used to
15	finetune the parameters of that correlation. So it's
16	a combination.
17	DR. FORD: So for the pump pressure, for
18	instance, there's a correlation, there's an algorithm
19	that gives the value of that as a function of a whole
20	lot of empirical variables, like volume of fibrous
21	things of this nature?
22	DR. LETELLIER: That's correct.
23	DR. FORD: And there's a correlation
24	between observation and theory?
25	DR. LETELLIER: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	DR. FORD: And it's a good correlation
2	factor?
3	DR. LETELLIER: We'll be looking at some
4	of those results, but in general the scatter between
5	head loss measurements is like plus or minus 20
6	percent compared to the correlation predictions over
7	a wide range of water temperature, volume of fiber,
8	and mass of particulate in different compositions,
9	different mixed debris beds.
10	DR. FORD: And someone has taken that plus
11	or minus 20 percent and correlated it into risk?
12	DR. LETELLIER: We have implemented the
13	BLOCKAGE code in both the parametric study, which
14	formed the basis of the Generic Issue, a declaration
15	of GSI-191, and we have also used it to look at pump
16	vulnerability or pump performance at the end state of
17	a risk analysis.
18	DR. FORD: Oh, okay. Thank you.
19	DR. LETELLIER: The CASINOVA model, I'll
20	talk more about later. It is less based on empirical
21	measurement because I think, as you'll see, it's very
22	much a stochastic parameter study of break location
23	and potential debris volume. While the zones of
24	influence are based on empirical data, the results of
25	CASINOVA have no baseline for comparison.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

4 anyone gone through the question as to what happens is 5 there is another item that we've missed? I'm thinkin 6 of the question of epistemic uncertainties in this 7 model you've got. 8 DR. LETELLIER: The issue of completenes 9 is always a difficult one to address, but we're alway 10 looking for additional concerns, some of which hav 11 been raised by the ACRS. For example, the chemical 12 effects of precipitation and effects of compaction of 13 a debris bed. 14 CHAIRMAN WALLIS: I was going to ask you 15 that. Does it compact? 16 DR. LETELLIER: Those concerns are bein 17 addressed in a forthcoming chemical effects study, and	92
information you have when you developed it. Ha anyone gone through the question as to what happens : there is another item that we've missed? I'm thinkin of the question of epistemic uncertainties in the model you've got. DR. LETELLIER: The issue of completenes is always a difficult one to address, but we're alway looking for additional concerns, some of which hav been raised by the ACRS. For example, the chemica effects of precipitation and effects of compaction of a debris bed. CHAIRMAN WALLIS: I was going to ask you that. Does it compact? DR. LETELLIER: Those concerns are bein addressed in a forthcoming chemical effects study, and	you
4 anyone gone through the question as to what happens is 5 there is another item that we've missed? I'm thinkin 6 of the question of epistemic uncertainties in this 7 model you've got. 8 DR. LETELLIER: The issue of completenes 9 is always a difficult one to address, but we're alway 10 looking for additional concerns, some of which hav 11 been raised by the ACRS. For example, the chemical 12 effects of precipitation and effects of compaction of 13 a debris bed. 14 CHAIRMAN WALLIS: I was going to ask you 15 that. Does it compact? 16 DR. LETELLIER: Those concerns are bein 17 addressed in a forthcoming chemical effects study, and	the
5 there is another item that we've missed? I'm thinking 6 of the question of epistemic uncertainties in the 7 model you've got. 8 DR. LETELLIER: The issue of completeness 9 is always a difficult one to address, but we're alway 10 looking for additional concerns, some of which have 11 been raised by the ACRS. For example, the chemical 12 effects of precipitation and effects of compaction of 13 a debris bed. 14 CHAIRMAN WALLIS: I was going to ask you 15 that. Does it compact? 16 DR. LETELLIER: Those concerns are bein 17 addressed in a forthcoming chemical effects study, and	Has
 of the question of epistemic uncertainties in the model you've got. DR. LETELLIER: The issue of completeness is always a difficult one to address, but we're always looking for additional concerns, some of which have been raised by the ACRS. For example, the chemical effects of precipitation and effects of compaction of a debris bed. CHAIRMAN WALLIS: I was going to ask you that. Does it compact? DR. LETELLIER: Those concerns are being addressed in a forthcoming chemical effects study, and 	₃if
7 model you've got. 8 DR. LETELLIER: The issue of completeness 9 is always a difficult one to address, but we're always 10 looking for additional concerns, some of which have 11 been raised by the ACRS. For example, the chemical 12 effects of precipitation and effects of compaction of 13 a debris bed. 14 CHAIRMAN WALLIS: I was going to ask you 15 that. Does it compact? 16 DR. LETELLIER: Those concerns are bein 17 addressed in a forthcoming chemical effects study, and	ing
8 DR. LETELLIER: The issue of completenes 9 is always a difficult one to address, but we're alway 10 looking for additional concerns, some of which have 11 been raised by the ACRS. For example, the chemical 12 effects of precipitation and effects of compaction of 13 a debris bed. 14 CHAIRMAN WALLIS: I was going to ask you 15 that. Does it compact? 16 DR. LETELLIER: Those concerns are bein 17 addressed in a forthcoming chemical effects study, and	his
 9 is always a difficult one to address, but we're always 10 looking for additional concerns, some of which have 11 been raised by the ACRS. For example, the chemical 12 effects of precipitation and effects of compaction of 13 a debris bed. 14 CHAIRMAN WALLIS: I was going to ask you 15 that. Does it compact? 16 DR. LETELLIER: Those concerns are bein 17 addressed in a forthcoming chemical effects study, and 	
10 looking for additional concerns, some of which has 11 been raised by the ACRS. For example, the chemical 12 effects of precipitation and effects of compaction of 13 a debris bed. 14 CHAIRMAN WALLIS: I was going to ask you 15 that. Does it compact? 16 DR. LETELLIER: Those concerns are bein 17 addressed in a forthcoming chemical effects study, and	ess
11 been raised by the ACRS. For example, the chemical effects of precipitation and effects of compaction of a debris bed. 13 a debris bed. 14 CHAIRMAN WALLIS: I was going to ask your 15 that. Does it compact? 16 DR. LETELLIER: Those concerns are being 17 addressed in a forthcoming chemical effects study, and	ays
<pre>12 effects of precipitation and effects of compaction of 13 a debris bed. 14 CHAIRMAN WALLIS: I was going to ask you 15 that. Does it compact? 16 DR. LETELLIER: Those concerns are bein 17 addressed in a forthcoming chemical effects study, and</pre>	.ave
13 a debris bed. 14 CHAIRMAN WALLIS: I was going to ask your 15 that. Does it compact? 16 DR. LETELLIER: Those concerns are being 17 addressed in a forthcoming chemical effects study, and	cal
14 CHAIRMAN WALLIS: I was going to ask you 15 that. Does it compact? 16 DR. LETELLIER: Those concerns are bein 17 addressed in a forthcoming chemical effects study, and	ı on
<pre>15 that. Does it compact? 16 DR. LETELLIER: Those concerns are bein 17 addressed in a forthcoming chemical effects study, and</pre>	
16 DR. LETELLIER: Those concerns are bein 17 addressed in a forthcoming chemical effects study, an	you
17 addressed in a forthcoming chemical effects study, an	
	ing
18 those observations will be folded into the	and
	the
19 correlations used by BLOCKAGE.	
20 CHAIRMAN WALLIS: Compact depends on what	hat
21 it is. If it's fibers, then it's fairly resistant t	; to
22 compaction. But if it's sheets of paint or somethin	ing
23 like leaves and you don't get leaves in there, but	but
24 if you had leaves, they would layer, and once yo	you
25 begin to squash them, they just act like check valve	ves

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	and shut the thing down completely. It doesn't take
2	much to do that.
3	DR. LETELLIER: That's very true, and we
4	always try to test or examine a variety of mixed
5	debris beds for that reason.
6	DR. BANERJEE: Has there been much
7	evidence of what type of debris beds sort of develop
8	in PWRs or is it mainly BWRs that you've seen these
9	in?
10	DR. LETELLIER: We have looked at the
11	differences because, obviously, the transport
12	mechanisms are much different in a suppression pool
13	than they are in the containment pool. We've looked
14	at this primarily from the point of view of
15	transportability of the debris and whether there is a
16	sufficient bulk pool velocity to move paint chips, for
17	example, versus individual fibers.
18	So the bed morphology, the way that it
19	looks is, can be, substantially different between the
20	two, and we've try to address those differences.
21	We've addressed it from the point of view of
22	prioritizing our research investment to look at the
23	predominant insulation types and the most
24	transportable debris types when we carry this work
25	forward to head loss testing.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	So I would say upfront that we've never
2	intended, and never achieved, a comprehensive test of
3	all insulation types and all debris types. We've had
4	the luxury in the past of being given the task of
5	establishing a minimum level of concern. In order to
6	do that, it wasn't necessary to be comprehensive. We
7	could focus on the predominant mechanisms.
8	The much harder problem now perhaps on the
9	side of the industry is to solve plant-specific
10	problems where they do have debris types and flow
11	conditions that have not been tested.
12	DR. BANERJEE: Now as part of this Reg.
13	Guide you're suggesting references to various NUREGs,
14	and so on, which could be used as acceptable methods
15	of analysis, right?
16	DR. JAIN: Right.
17	DR. BANERJEE: Now are these acceptable
18	methods of analysis going to be reviewed or have they
19	been peer-reviewed? That seems one of the sort of
20	crucial issues here.
21	DR. JAIN: Well, these are the NUREG
22	developed by Los Alamos, and they have gone through
23	their standard review process.
24	DR. BANERJEE: Right, but how do we know
25	that Los Alamos may have reviewed it, but have they

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	been peer-reviewed or is it not standard for these
2	methods to be peer-reviewed?
3	DR. JAIN: To answer your question, no,
4	they have not been peer-reviewed.
5	DR. BANERJEE: So other than Los Alamos,
6	is there anybody else who says it's acceptable?
7	DR. LETELLIER: Each NUREG does go through
8	the process of public comment, and that is an
9	opportunity at least for other agencies, and
10	particularly the industry, to make comments that we do
11	address and incorporate.
12	DR. BANERJEE: Right, but it's not the
13	same as having an article peer-reviewed for a journal
14	or something?
15	DR. LETELLIER: That's correct.
16	DR. BANERJEE: Where you get scrutiny of
17	a different nature.
18	DR. JAIN: That's right.
19	DR. BANERJEE: So the Reg. Guide stands
20	independent of these matters, right, or do they depend
21	on the methods?
22	DR. JAIN: Well, the Reg. Guide is
23	DR. BANERJEE: It doesn't really matter?
24	You can use anything that
25	DR. JAIN: Right. As long as you tell us

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	what you have done, we review your methods. But it's
2	not a requirement, what we say, "that thou shall use
3	this"
4	DR. BANERJEE: But, nonetheless, you offer
5	a path. You could ask for the impossible otherwise,
6	right?
7	DR. JAIN: That's right. We tell them one
8	acceptable method, what is acceptable to us.
9	DR. BANERJEE: But now that method is not
10	reviewed independently?
11	DR. JAIN: That is correct.
12	DR. BANERJEE: Is that true of all Reg.
13	Guides or just this Reg. Guide?
14	DR. KRESS: It's generally true.
15	DR. JAIN: It's probably true for all Reg.
16	Guides, but I'll let Dan or
17	MR. DORMAN: I think probably the bulk of
18	the Reg. Guides are endorsing consensus standards.
19	So, in that sense, that process has been through a
20	consensus development process. I think in this case
21	the information developed in the research program has
22	not reached the consensus standard point.
23	I guess one other thing I would point out
24	in this context is that that I think Ralph pointed out
25	the number of interactions with industry since the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	technical assessment was completed in September 2001.
2	That was not when we started interaction with the
3	industry.
4	There was substantial interaction and
5	opportunities throughout the research program, outside
6	of our research project, for people to come in and see
7	what we were doing and comment on the way the work was
8	being done and the findings and the development of
9	these methods. So while there's not been a formal
10	peer-review, it has not happened in a vacuum either.
11	CHAIRMAN WALLIS: Well, Sanjoy, we're also
12	reviewing thermal-hydraulic codes. There's a Reg.
13	Guide on thermal-hydraulic codes. It says things
14	like, you know, you must state your fundamental
15	equations; you must state the assumptions you're
16	using; you must sort of explain how it relates to
17	experiment, and all that.
18	This is all at that sort of general level.
19	These are criteria for evaluation, but it doesn't
20	really go into the detail of which forms of these
21	equations are acceptable. Then that's, I think, the
22	weakness because then something comes to the ACRS and
23	we look through this thing and say, "Gee whiz, you

know, we don't like this equation."

DR. BANERJEE: Or it's wrong, more likely.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

	98
1	CHAIRMAN WALLIS: Yes.
2	DR. BANERJEE: And then what do you do?
3	CHAIRMAN WALLIS: We say it. But then we
4	say, why does it have to come to us? Why wasn't it
5	found before? So I guess this is an interesting point
6	here. What's an acceptable method? It may depend on
7	who the peer reviewers are.
8	DR. BANERJEE: But it's subject to at
9	least staff review, right? NRC staff review it and
10	sign off on it. They have the ability to ask for a
11	peer review at that point, if they wish. Do they?
12	MR. DORMAN: Yes, and also in the context
13	of the staff review, it's reviewed by the research
14	staff which sponsored the work. We also provide the
15	Draft NUREGs to the program office for independent
16	review and comment at a draft stage in the NUREG
17	process. So before the NUREG is published by the
18	Office of Research, it does get review from, in this
19	case, NRR, but that is not something that we
20	categorize as a formal peer review.
21	CHAIRMAN WALLIS: It really does help
22	public confidence if you can get some outsider to do
23	reviews.
24	DR. JAIN: May we go to current plans and
25	schedules? We are planning to issue this Draft Reg.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	Guide for public comment in February, later this
2	month, and issue this Reg. Guide as 1.82, Rev. 3, in
3	September. The NEI will issue their guidance in the
4	fall of 2003.
5	In conclusion, we are at the regulation
6	and guidance stage. The Draft Reg. Guide is scheduled
7	for public comment, and implementation, regulation,
8	and verification will follow, as Ralph has gone over,
9	Ralph and John. Eventually, this will lead to
10	effective closure of GSI-191.
11	CHAIRMAN WALLIS: So what do you need from
12	the ACRS?
13	DR. JAIN: We need your concurrence that
14	we can issue this for public comment.
15	CHAIRMAN WALLIS: Do you want a letter or
16	to
17	DR. JAIN: I think formally that's what
18	CHAIRMAN WALLIS: A letter that says that?
19	You would like to see a letter to EDO, or whoever is
20	appropriate?
21	DR. JAIN: Well, we sent a letter to the
22	ACRS office requesting that be done. So I guess you
23	need to respond to that letter.
24	MR. ROSEN: I would ask if a Larkinsgram
25	would be good enough.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	100
1	CHAIRMAN WALLIS: Yes, a very short letter
2	which simply says we have no objection to this being
3	issued
4	DR. JAIN: That's right.
5	CHAIRMAN WALLIS: would be okay with
6	you?
7	DR. JAIN: That will be fine.
8	MR. DORMAN: Yes, that would be fine.
9	CHAIRMAN WALLIS: Unless you have
10	something you find is a sticking point?
11	MR. DORMAN: Yes, frequently, with Draft
12	Guides, we send them down and request that you defer
13	your review until the final Reg. Guide stage, and the
14	response at that point is a note from John indicating
15	that you have no objection to issuing the Guide for
16	comment, and I think that would be suitable in this
17	case as well.
18	CHAIRMAN WALLIS: Personally, I think that
19	this may be appropriate, but I do worry about the
20	quality control of the analyses which then gets
21	submitted by the industry.
22	MR. ROSEN: I don't think we know anything
23	about the way the analyses will be done, and we
24	reserve judgment.
25	CHAIRMAN WALLIS: Well, we may never see

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	it.
2	MR. ROSEN: That would be a problem to me,
3	and that's the crux of the issue.
4	MR. ARCHITZEL: For this issue here, I
5	think it's incumbent on us to show you the guidance
6	that's used. We weren't initially planning to come
7	necessarily with the Generic Letter, but we were
8	planning to come once the guidance was in place. We
9	still have to come back with you with the guidance
10	menus to resolve this issue, which is industry, or
11	however we agree or disagree
12	CHAIRMAN WALLIS: You have to come back to
13	us with that?
14	MR. ARCHITZEL: As part of the resolution
15	of the Generic Safety Issue
16	CHAIRMAN WALLIS: You have to?
17	MR. ARCHITZEL: it's required.
18	CHAIRMAN WALLIS: Okay.
19	MR. ARCHITZEL: But not necessarily for
20	issuing like the Generic Letter.
21	CHAIRMAN WALLIS: Okay.
22	MR. DORMAN: Ultimately, I think the
23	management directive process for GSIs will bring us
24	back to you.
25	CHAIRMAN WALLIS: These GSIs take a long

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	102
1	time, don't they?
2	(Laughter.)
3	DR. RANSOM: One thing I didn't quite
4	understand is the relationship between the Generic
5	Letter and the Draft Regulatory Guide. I see your
6	references, Reg. Guide 182. Is the intention that the
7	Generic Letter would direct people to use the methods
8	that are outlined in this revision?
9	MR. LEHNING: No. The Generic Letter
10	states that in this guidance we assume that it will be
11	acceptable to use and we will come back, if it's not
12	acceptable, and supplement somehow and tell licensees
13	of exceptions or additions we have.
14	The Reg. Guide, we referenced the Reg.
15	Guide in there as an acceptable way of complying with
16	the requested evaluation, but we're not telling
17	licensees that they have to use that Reg. Guide.
18	DR. RANSOM: Well, why I'm not sure I
19	understand then why you later come out with this Reg.
20	Guide Revision or DG-1107, which seems to have
21	specifics in terms of what they should do.
22	MR. LEHNING: Well, the Reg. Guide, I mean
23	the reason why it's coming out now, I mean it's for
24	future plants. It does have more specifics than the
25	Generic Letter, but the industry guidance that we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	103
1	anticipate will come out would be even more specific
2	than that.
3	So the detailed guidance will come, and
4	licensees can choose what they want to do. We're not
5	telling them to choose one method or the other with
6	the Generic Letter.
7	DR. JAIN: For example, you can see the
8	guidance for BWR is this thick reg. here. So we
9	expect that kind of detail for PWRs.
10	CHAIRMAN WALLIS: So there are two things
11	we have to do. We have to recommend that you issue
12	the Generic Letter, or is that not our business?
13	MR. ARCHITZEL: I think procedurally it
14	wasn't an option. We didn't I think it's up to
15	CHAIRMAN WALLIS: You're going to do it
16	anyway. We don't need to be involved.
17	MR. ARCHITZEL: No, but once you've had
18	the meeting, I think we need sort of an endorsement
19	CHAIRMAN WALLIS: So you need it is okay
20	to send out a Generic Letter?
21	MR. ARCHITZEL: The General Letter process
22	has you involved at your option, and you've chosen to
23	be involved. So we would expect that you would say
24	okay.
25	CHAIRMAN WALLIS: Okay, that actually asks

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	industry to do something, and then the Reg. Guide goes
2	out for public comment. Nothing happens until the
3	public comment comes back and it's all resolved, and
4	so on.
5	DR. JAIN: That's right, and you give them
6	a chance to look at it.
7	MR. DORMAN: Both documents at this stage
8	are draft going for public comment.
9	MR. ARCHITZEL: Yes, that is correct.
10	CHAIRMAN WALLIS: The public actually
11	comments on the Generic Letter, too?
12	MR. DORMAN: That's correct.
13	MR. ARCHITZEL: But if there weren't
14	substantive comments in the public comment process, we
15	may waive a second meeting with you at that stage. It
16	depends what the comments are like whether or not we
17	want to have another meeting on this.
18	CHAIRMAN WALLIS: I would think a Generic
19	Letter would go out without public comment at all.
20	MR. ARCHITZEL: That's bulletins. No, no
21	Generic Letter can go without public comments because
22	our procedures have been changed.
23	CHAIRMAN WALLIS: It seems to me, then,
24	that the industry can slow it down forever by always
25	commenting on it.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	MR. LEHNING: Well, we've got a time
2	period on the comments.
3	MR. DORMAN: There's, I think, a 60-day
4	comment period.
5	MR. LEHNING: We don't promise to consider
6	anything after the comment period closes.
7	CHAIRMAN WALLIS: And we might include in
8	this letter some sort of a comment that says all this
9	depends upon the analytical methods proving to be
10	valid?
11	MR. LEHNING: In the Generic Letter,
12	you're asking?
13	CHAIRMAN WALLIS: No, when we write our
14	letters to you.
15	MR. LEHNING: Oh, oh.
16	CHAIRMAN WALLIS: We might say, yes, this
17	is fine; send it off for public comment, but the
18	resolution, the final resolution, depends upon
19	whatever methods come up from this process of being
20	suitably valid and appropriate.
21	MR. ROSEN: I think the key to this,
22	Graham, is the NEI document on how to do evaluation,
23	not this one how to
24	CHAIRMAN WALLIS: Which we haven't seen at
25	all.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	MR. ROSEN: That's right, we haven't seen
2	that one at all. When the staff chooses to endorse
3	that NEI guidance or not to endorse it, that's the
4	point in time when we
5	CHAIRMAN WALLIS: So we don't need to say
6	anything because we're going to get a chance to do
7	that anyway? Is that right?
8	MR. ROSEN: Yes, that's the point in time
9	when we should weigh in.
10	CHAIRMAN WALLIS: Okay. So it's just a
11	brief thing now. We'll really get to the meat in half
12	a year, or whatever?
13	MR. ROSEN: This is the situation I find
14	myself in now for the second time. Last time when we
15	saw the results, I said, gee, this is important; I
16	think we ought to get on with it. The word the ACRS
17	chose was "expeditiously."
18	Then there was a long period of time and
19	we're back. Now we get to have that same feeling
20	again: Gee, this is an important problem; get on with
21	it expeditiously.
22	CHAIRMAN WALLIS: Just like the boron slug
23	problem where everything is going to happen and then
24	it turns out the analysis isn't quite convincing, so
25	we have to go around again?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	MR. ROSEN: I would suspect that we're
2	getting to the harder part of it. The hardest part of
3	it will be how to analyze this.
4	CHAIRMAN WALLIS: That's right.
5	MR. ROSEN: Not how to find out how much
6	debris you have, although that's a necessary and
7	useful step, and the NEI guidance addresses that.
8	CHAIRMAN WALLIS: Well, I like the
9	statement in the Reg. Guide which says that, if you
10	can't figure out where the debris, you had better
11	assume it all goes onto the screen.
12	(Laughter.)
13	DR. JAIN: Well, that's one of the
14	options.
15	DR. BANERJEE: And, presumably, if the
16	methods are followed that you refer to in your Reg.
17	Guide, then they're home free. NEI doesn't have to do
18	anything. They can say, "We like CASINOVA," or we
19	like whatever, and you just do it this way.
20	DR. JAIN: That's right.
21	DR. BANERJEE: It's a done deal, right?
22	DR. JAIN: It's a done deal.
23	DR. LETELLIER: I would caveat that by
24	saying that, again, there may be plant-specific
25	conditions that have not been analyzed that are not

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	108
1	represented in the database. So it's not a simple
2	matter of just adopting a tool off the shelf. The
3	methodology is sound from our point of view, but there
4	may be additional work required.
5	DR. BANERJEE: Then you would come back to
6	us, hopefully, and say: Look at CASINOVA and look at
7	whatever else.
8	DR. JAIN: Yes, these are the approaches.
9	These are not really a method like one, two, three,
10	four, and as we progress you meet the spirit of that
11	approach. That's what we're looking for.
12	With that, I'll ask Bruce to go over his
13	presentation.
14	CHAIRMAN WALLIS: Thank you very much. I
15	think it's about time we had a break. We've been
16	going for two hours, and we have, hopefully, somewhat
17	less than two hours to go. If it's okay with you
18	you'll probably be glad to take a break.
19	DR. JAIN: That's fine. We can come back
20	after break.
21	CHAIRMAN WALLIS: Okay. So we'll take a
22	break until quarter past 3:00.
23	(Whereupon, the foregoing matter went off
24	the record at 3:02 p.m. and went back on the record at
25	3:18 p.m.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	CHAIRMAN WALLIS: We'll come back into
2	session. So we are ready.
3	DR. LETELLIER: Good afternoon. I
4	apologize for not introducing myself sooner. I'm
5	Bruce Letellier. I'm here to represent the work that
6	Los Alamos National Lab has been doing in support of
7	the NRC over the past three years.
8	Initially, we were working for the NRR to
9	conduct the BWR closeout, resolution of their sump
10	blockage concerns. In the interim we've helped the
11	Office of Research conduct the program that we're
12	going to talk about today, researching debris
13	characterization, transport properties, and head loss.
14	Most recently, we are now supporting the NRR, looking
15	at the revised Reg. Guide and regulatory
16	implementation of findings.
17	In the position of speaking last, I find
18	I have the pleasure or the blame of responsibility for
19	answering all the questions that have been deferred.
20	(Laughter.)
21	So please remind me of the issues that
22	we've had to skip over. I will be touching on all
23	aspects of the accident scenario. So I think you'll
24	find a place to ask your questions at the right time.
25	I also hope that, as we look over these

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	slides, you'll get an impression for the technical
2	basis that supports the draft guidance as it is and
3	which forms the basis for the methods that we are
4	proposing or making available to industry.
5	On slide No. 2, a brief overview of the
6	talk includes the three major components of the
7	accident scenario: debris generation, debris
8	transport, and, finally, accumulation. Finally, in
9	summary, I'll talk about how these are integrated into
10	an overall vulnerability assessment.
11	DR. KRESS: Implicit in that debris
12	generation is the size distribution?
13	DR. LETELLIER: Yes.
14	DR. KRESS: Okay.
15	DR. LETELLIER: As a brief introduction,
16	and perhaps we could have started the afternoon with
17	this discussion excuse me one moment.
18	Slide No. 4, we should have reviewed the
19	accident progression to give a visual context of what
20	actually happens. In the lefthand frame there's a
21	schematic of a containment structure with a damage
22	zone or zone of influence, highlighted as a circle,
23	shaded circle.
24	If a pipe were to rupture, by whatever
25	mechanism, there would be two components to debris

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

generation: first, a shockwave, which might loosen bands and jackets, soften pliable materials like Calcium-Silicate. Quickly following the shock effects would be the erosion jets, which actually generates the bulk of the insulation debris, not just insulation but also coatings and concrete erosion.

7 MR. ROSEN: Does the shock effect apply to 8 insulation quite remote from the zone of influence? 9 DR. LETELLIER: I would have to answer no. 10 The tests for debris generation that have been done 11 are intended to measure the distance or the extent of this damage zone. So the damage mechanisms have been 12 investigated out to an appropriate threshold for each 13 14 insulation type, and they do not extend beyond --15 well, they can extend to distances as far as 30 pipe So that is a significant fraction of 16 diameters. 17 containment in some cases, but the damage mechanisms have not been investigated for shock reflections 18 19 across the entire containment.

20 MR. ROSEN: What I was trying to do was to 21 narrow what we have to worry about. What I think your 22 answer says is that you can't do that because the 23 effects of the jet will be local, relatively, but the 24 effects of the shockwave could be remote from the zone 25 where the jet occurs. In other words, you could have

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

112 1 compaction of silicacious insulation on the other side 2 of the containment and up above the steam generators, 3 for instance, just in the diagram. Am I reading you 4 right? 5 DR. LETELLIER: Yes, that may be true, but let me define the zone of influence. 6 This outer 7 contour that's represented by the shaded circle, that is the maximum extent to which insulation blankets can 8 9 be removed in large pieces or partially complete 10 portions of the blanket. Internal to that zone are 11 the smaller fragments, and closest the are 12 particulates and the fines. 13 MR. ROSEN: I want to zero in on what you 14 just said. That's the zone where large pieces could 15 be removed? DR. LETELLIER: Inside this damage radius. 16 17 MR. ROSEN: Now outside there small pieces could be removed? 18 19 DR. LETELLIER: No. No, the jet pressures 20 are highest on the interior. So the damage mechanisms 21 tend to shred material from the finest on the interior 22 to the large fragments on the exterior zone. 23 CHAIRMAN WALLIS: It's funny that it's a 24 circle. 25 MR. ROSEN: You're answering me that I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	113
1	only need to worry what's inside this orange circle
2	that you've drawn?
3	DR. LETELLIER: That's correct. The point
4	you raise about the shock effects have not been
5	thoroughly investigated. Beyond this damage contour,
6	there would not be immediate displacement of the
7	insulation. If it were degraded by some means due to
8	the shock, it would only be introduced as a debris
9	through erosion for containment sprays, but there
10	would not be any evidence of damage to the jacketing
11	material.
12	MR. ROSEN: Well, you're talking exactly
13	what would happen. I mean these things would be
14	damaged to some extent you're saying? And the next
15	thing that would happen sometime later is the
16	containment sprays would come on and spray them.
17	DR. LETELLIER: Yes.
18	MR. ROSEN: So isn't it possible, then,
19	you could get more debris from those mechanisms
20	outside the orange circle?
21	DR. LETELLIER: We have looked at the
22	potential for erosion of Calcium-Silicate, but the
23	standard position at the moment is that, if the
24	jacketing material is still in place, that the erosion
25	is not significant. So we are confining our damage

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	zone to the minimum pressure needed to show evidence
2	of damaging the insulation.
3	CHAIRMAN WALLIS: Where is the break?
4	DR. LETELLIER: In the center of the
5	orange circle.
6	CHAIRMAN WALLIS: In the center? I would
7	think it would be directional; it would come out of a
8	cold leg, let's say, and they would squirt in some
9	direction.
10	DR. LETELLIER: Of course it would, and
11	that's a difficulty, a limitation, if you will, of
12	this representation, is that we don't have a
13	predictive model for jet deflections near concrete.
14	We don't have a predictive model for pipe separation.
15	For example, the two ends of a guillotine break may be
16	opposed, generating opposing cones.
17	The standard practice is to look at the
18	free-field jet expansion and investigate the damage
19	threshold of different insulation types. The interior
20	volume of that pressure contour is mapped into an
21	equivalent sphere for the purpose of plant assessment.
22	DR. RANSOM: Well, in fact, you're
23	probably assuming a spherical source, I would guess,
24	and a spherical shock that drops off with r-squared as
25	you expand, and at some point you get down to the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	place where forces are small.
2	MR. ARCHITZEL: Well, I just did want to
3	say one point: that this was based something on the
4	BWR solution, and these issues were addressed, these
5	complexities were resolved on that basis for the BWR.
6	Some of this isn't new for PWRs, although maybe you do
7	want to revisit the base. So I'm just saying that was
8	the solution on the BWRs. It's too complex. So they
9	took the sphere approach instead of double cones and
10	things like that.
11	MR. ROSEN: I'm concerned, of course, with
12	uncertainty. How likely is it to be your model
13	doesn't envelope a significant fraction of the
14	phenomenology?
15	DR. LETELLIER: We are investigating the
16	geometry of the break region, both opposing cones from
17	a double-ended guillotine break, a single-directed jet
18	from a fishmouth opening in random direction, and
19	trying to look for major differences in the range of
20	potential debris volumes, for example.
21	MR. ROSEN: I'm encouraging you that it's
22	fine to start with a simple model to begin with, but,
23	ultimately, to deal with the uncertainties, one needs
24	to look at more elaborate model considerations.
25	DR. KRESS: This zone of influence is a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	sphere, and it defines ultimately the total volume of
2	debris that might get late airborne.
3	DR. LETELLIER: That's correct.
4	DR. KRESS: And you just look in that
5	sphere. Now my question is, is there an empirical
6	relationship of some sort that determines that volume
7	of debris, I mean that volume of the zone?
8	DR. LETELLIER: Yes.
9	DR. KRESS: And it has to do with pressure
10	of the system and
11	DR. LETELLIER: It has to do with the
12	pressure, the stagnation pressure, needed to show
13	significant evidence of damage. That is arrived at
14	empirically by looking at free-field jets
15	DR. KRESS: Free-field jets?
16	DR. LETELLIER: where insulation is
17	placed at different distances on the jet center line
18	until there is no until it's far enough away that
19	there is no evidence of damage.
20	DR. KRESS: Now you aim that jet in
21	different directions?
22	DR. LETELLIER: Once the pressure for
23	damage has been established
24	DR. KRESS: Okay, and that would be a
25	function of the type of insulation or whatever debris

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	117
1	sources
2	DR. LETELLIER: Yes, sir, it is. Once
3	that pressure has been established, then the volume of
4	the free-field jet at that pressure contour is mapped
5	into an equivalent sphere.
6	DR. KRESS: Now that's a cone?
7	DR. LETELLIER: It would be.
8	DR. KRESS: Now how do you decide on what
9	the spread angle of the cone is? Is that input to
10	this?
11	DR. LETELLIER: It actually depends on the
12	size of the opening, the pipe size, and so
13	DR. KRESS: You fix it as a function of
14	pipe size?
15	DR. LETELLIER: That's correct.
16	DR. KRESS: Okay.
17	DR. LETELLIER: So these zones are both a
18	function of pipe size and also of debris type.
19	DR. KRESS: Okay.
20	DR. RANSOM: Have these been done with
21	water that will flash into steam?
22	DR. LETELLIER: Most of the data is based
23	on surrogate jets for the BWR study, which used both
24	air and steam surrogates, and we are acknowledging the
25	differences in the PWR blowdown condition. You will

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	118
1	see where we have attempted to scale the debris
2	generation data to account for those effects.
3	MR. ROSEN: We're talking about pressures
4	twice the BWR pressure?
5	DR. LETELLIER: That's true.
6	MR. ROSEN: So is that important in
7	making
8	DR. KRESS: That fixes the distance to
9	DR. LETELLIER: It is. If we could defer
10	that question to a later slide, we'll see and we can
11	talk about it in more detail.
12	MR. ROSEN: Okay.
13	DR. LETELLIER: Once the debris has been
14	generated in this orange circular representation, the
15	thermal expansion will carry this material to every
16	corner of the containment. We have used the MELCOR
17	model, which is intended for severe reactor accident
18	modeling, to demonstrate that the entrainment
19	velocities are sufficient, both vertically and
20	laterally, to carry large pieces of debris.
21	DR. KRESS: That depends on the size and
22	density and the shape of these things.
23	DR. LETELLIER: It does.
24	DR. KRESS: Is that an input to this
25	system or how is that determined?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	DR. LETELLIER: We do not have a
2	predictive model of the blowdown transport. I think
3	you'll see later we're attempting to use an
4	engineering logic diagram to itemize, if you will,
5	what the potential transport pads for this material
6	would be.
7	The same is true of the washdown.
8	Obviously, at a sufficiently high pressure,
9	containment spray will begin to bring this material
10	back down to the floor.
11	It's important to remember that this
12	damage radius is the maximum extent observed to cause
13	damage into large pieces. At distances closer than
14	that, you will have a range of different size
15	distributions, and that is also provided by data,
16	empirical observation.
17	So we do have some estimate of the size
18	fractions
19	DR. KRESS: That determines what remains
20	airborne long time
21	DR. LETELLIER: Yes.
22	DR. KRESS: versus what doesn't?
23	DR. LETELLIER: That's correct.
24	Containment spray can be very effective at
25	washing material back to the floor. We're using,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 again, logic diagrams to look at the fraction of 2 vertical surfaces impinged by sprays. We're looking 3 at steam condensation and rivulet formation. 4 CHAIRMAN WALLIS: The spray is that blue 5 thing along the top there, is it? 6 DR. LETELLIER: Yes, intended to 7 represent 8 CHAIRMAN WALLIS: Which covers the whole 9 containment. What are these fireworks or pinballs of 10 something? I don't understand the yellow thing. 11 DR. LETELLIER: Debris pieces. 12 CHAIRMAN WALLIS: Those are bits of 13 debris? 14 DR. LETELLIER: Yes.	
3 at steam condensation and rivulet formation. 4 CHAIRMAN WALLIS: The spray is that blu 5 thing along the top there, is it? 6 DR. LETELLIER: Yes, intended t 7 represent 8 CHAIRMAN WALLIS: Which covers the whol 9 containment. What are these fireworks or pinballs o 10 something? I don't understand the yellow thing. 11 DR. LETELLIER: Debris pieces. 12 CHAIRMAN WALLIS: Those are bits o 13 debris?	Ē
 CHAIRMAN WALLIS: The spray is that blue thing along the top there, is it? DR. LETELLIER: Yes, intended the represent CHAIRMAN WALLIS: Which covers the whole containment. What are these fireworks or pinballs of something? I don't understand the yellow thing. DR. LETELLIER: Debris pieces. CHAIRMAN WALLIS: Those are bits of debris? 	3
<pre>5 thing along the top there, is it? 6 DR. LETELLIER: Yes, intended t 7 represent 8 CHAIRMAN WALLIS: Which covers the whol 9 containment. What are these fireworks or pinballs o 10 something? I don't understand the yellow thing. 11 DR. LETELLIER: Debris pieces. 12 CHAIRMAN WALLIS: Those are bits o 13 debris?</pre>	
6 DR. LETELLIER: Yes, intended t 7 represent 8 CHAIRMAN WALLIS: Which covers the whol 9 containment. What are these fireworks or pinballs o 10 something? I don't understand the yellow thing. 11 DR. LETELLIER: Debris pieces. 12 CHAIRMAN WALLIS: Those are bits o 13 debris?	Ð
<pre>7 represent 8 CHAIRMAN WALLIS: Which covers the whol 9 containment. What are these fireworks or pinballs o 10 something? I don't understand the yellow thing. 11 DR. LETELLIER: Debris pieces. 12 CHAIRMAN WALLIS: Those are bits o 13 debris?</pre>	
8 CHAIRMAN WALLIS: Which covers the whol 9 containment. What are these fireworks or pinballs o 10 something? I don't understand the yellow thing. 11 DR. LETELLIER: Debris pieces. 12 CHAIRMAN WALLIS: Those are bits o 13 debris?	C
9 containment. What are these fireworks or pinballs o 10 something? I don't understand the yellow thing. 11 DR. LETELLIER: Debris pieces. 12 CHAIRMAN WALLIS: Those are bits o 13 debris?	
<pre>10 something? I don't understand the yellow thing. 11 DR. LETELLIER: Debris pieces. 12 CHAIRMAN WALLIS: Those are bits o 13 debris?</pre>	Ŋ
11 DR. LETELLIER: Debris pieces. 12 CHAIRMAN WALLIS: Those are bits o 13 debris?	r
12 CHAIRMAN WALLIS: Those are bits o 13 debris?	
13 debris?	
	E
14 DR. LETELLIER: Yes.	
DR. KRESS: That's a cartoon.	
16 DR. BANERJEE: He said it goes everywhere	,
17 so it's everywhere.	
18 DR. LETELLIER: There is a potential fo	r
19 this debris to be carried into the upper regions o	E
20 containment. In a steam-rich environment, som	5
21 fraction of this material will be stuck on surface	5
22 and retained.	
23 DR. BANERJEE: But a bounding calculatio	נ
24 would be to say everything within that sphere, base	f
25 on some size distribution, goes to the floor, right	?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	I mean the rest of it is sort of pencil sharpening?
2	DR. LETELLIER: That's correct.
3	Furthermore, to be more conservative, you could say
4	that 100 percent of that material arrives on the
5	screen, on the sump screen. So we're trying to use
6	some engineering judgment to try to find an
7	appropriate level of conservatism. Our initial
8	estimates show that it's very hard to rationalize a
9	reduction factor of more than 50 percent due to
10	retention on surfaces and the impingement of sprays.
11	So there's not a great opportunity for
12	savings there. We're talking a factor of two perhaps.
13	CHAIRMAN WALLIS: So this is the
14	insulation material which is blasted out over the
15	containment, but, presumably, the concrete dust and
16	the flaking paint and all that gets washed down by the
17	sprays?
18	DR. LETELLIER: Well, that material will
19	also be dislodged and carried during blowdown to other
20	regions of containment. Eventually, it's all
21	subjected to sprays.
22	CHAIRMAN WALLIS: Well, if you just turn
23	on the sprays with no LOCA at all, you would still
24	wash stuff down to the sump?
25	MR. ROSEN: Yes, and we've done that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

<pre>1 several times, purposely. 2 CHAIRMAN WALLIS: But you actually N 3 data for that because these guys have done it. 4 DR. KRESS: Yes, but they didn't mean 5 anything 6 CHAIRMAN WALLIS: But you had to clean 7 DR UPPOSE in the universe.</pre>	have
3 data for that because these guys have done it. 4 DR. KRESS: Yes, but they didn't meas 5 anything 6 CHAIRMAN WALLIS: But you had to clean	have
4 DR. KRESS: Yes, but they didn't mean 5 anything 6 CHAIRMAN WALLIS: But you had to clean	
5 anything 6 CHAIRMAN WALLIS: But you had to clean	
6 CHAIRMAN WALLIS: But you had to clean	sure
	up.
7 DR. KRESS: with an instrument.	
8 CHAIRMAN WALLIS: You had to clean up	the
9 mess.	
10 MR. ROSEN: Of course.	
11 DR. LETELLIER: The issue of resid	dent
12 debris, both particulates and fibers from human ha	air,
13 radiation containment clothing	
14 CHAIRMAN WALLIS: There can't be	much
15 human hair in containment.	
16 (Laughter.)	
17 DR. LETELLIER: I think the NEI may 1	have
18 some comments. That's a current area	of
19 investigation, where they're trying to characte:	rize
20 plant cleanliness.	
21 But you're exactly right, there will	l be
22 material washed to the sump, regardless of what	: is
23 formed in the jet.	
24 MR. LEITCH: What have we assumed al	bout
25 the type of insulation here? Are we assuming it's	all

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	metal-jacketed, some type of insulation?
2	DR. LETELLIER: You'll see a table later
3	on which looks at the damage pressure for different
4	applications of insulation and different types, both
5	jacketed in fiberglass blankets and unjacketed.
6	DR. KRESS: Does that mean there's three
7	or four of these spheres that are different size
8	depending on the insulation?
9	DR. LETELLIER: That's correct, for each
10	break location.
11	DR. KRESS: Each break location?
12	DR. LETELLIER: Yes. The center lower
13	panel describes pool transport. The recirculation
14	pool depth varies greatly between plants. It could be
15	anywhere from one-and-a-half to six feet in depth,
16	depending, again, on the geometry of the plant and
17	their finite inventory of water.
18	In the figure
19	CHAIRMAN WALLIS: The pool essentially
20	covers the whole floor?
21	DR. LETELLIER: It does.
22	In the figure, the shaded circle in the
23	center is intended to represent the splash zone from
24	a break. The pipe could be elevated, but the break is
25	extruding water onto the floor, and it's driving the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	debris away from it. That's what the arrows and the
2	dots
3	MR. ROSEN: Could you show us, using a
4	pointer or get up and show us, the shaded circle in
5	the center?
6	DR. LETELLIER: This is the splash zone,
7	the break, and it's driving material away from it in
8	every direction. These debris pieces will eventually
9	migrate to a sump zone, the location of which is very
10	plant-specific.
11	There are plants where the sumps are
12	located in exposed locations, very close to the cold
13	leg, hot leg of the steam generators. There are
14	plants, as shown here, where the sump is in a remote
15	location, and the migration path is significant, and
16	there's a combination of geometries in between.
17	Again, there is an opportunity for debris
18	to settle in regions of the sump in regions of the
19	containment pool, and not be transported to the
20	screen. That was the focus of the research effort
21	over the past three years, is to characterize the
22	transport phenomena of various sizes and types of
23	debris fragments.
24	The material that does arrive on the
25	screen is shown on the upper right panel, and the sump

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	screen configuration comes in a variety of different
2	types. This shows a fully submerged sump with
3	vertical screens.
4	DR. KRESS: Could you explain to me once
5	again you have a surface area for this pool, which
6	is basically the diameter of the containment.
7	DR. LETELLIER: That's right.
8	DR. KRESS: Is it the assumption that all
9	of the debris is uniformly distributed in the
10	containment volume, so that when it falls out, it
11	distributes itself uniformly over that whole surface
12	or is there some other assumption made?
13	DR. LETELLIER: We're looking at the
14	return pathways for water to cascade down the various
15	floors from the containment. So it will be
16	preferentially returned at stairwells and drainage
17	holes that have been designed for that purpose.
18	DR. KRESS: Okay.
19	MR. ROSEN: Now the sump that you've shown
20	doesn't have any vortex breakers in it, and some
21	plants have installed those kinds of things.
22	DR. LETELLIER: The solid top could
23	represent, in a schematic fashion, that could
24	represent a vortex suppression, depending on the
25	elevation above the sump outlet.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	MR. ROSEN: I was just thinking or the
2	question was, what effect do these have you looked
3	at the effect of various vortex breaker designs on
4	this problem?
5	DR. LETELLIER: The answer is, no, that we
6	have not. We're actually more interested in the bulk
7	flow velocity at some distance away from the sump
8	screen. It's sort of assumed that, if you get close
9	enough, the velocities will be high enough to attract
10	the debris. We're more concerned about retention, or
11	the opportunity for retention, in quiet areas of the
12	containment.
13	Just briefly, in contrast, there are also
14	containment screens that are not fully submerged that
15	actually have the water level at some height on the
16	screen. There are sumps that have horizontal screens
17	at or below the floor level. So there's quite a
18	variety throughout the industry.
19	Just a quick illustration to demonstrate
20	that we've examined all aspects of this accident
21	sequence, and, in fact, at the initiation of the
22	research program a PIRT panel was convened to make
23	recommendations about the phenomenology that were
24	important to be investigated.
25	We've looked at thermal-hydraulics of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 accident condition. We've looked at debris generation, both through experiment, historic and 2 3 current, and also CAD simulations. We've looked at 4 debris transport, using computational fluid dynamics 5 and also extensive flume testing. We've looked at debris accumulation and head loss testing. Finally, 6 7 we've looked at sump performance from a systems 8 perspective, looking at the risk analysis. 9 This entire study has been generously supported by the industry, and we are relying on them 10 11 for plant-specific data through our volunteer plant 12 analysis, and also drawing on their experience from 13 the BWR work that was done previously. 14 DR. BANERJEE: Now there are lots of 15 presumptions you've had to make, right? Have you sort of systematically listed this in your documents and 16 17 what these assumptions are and how you developed them? On the next slide is a 18 DR. LETELLIER: 19 list of documentation that has been generated over the 20 course of the three years. I think if you read this 21 carefully, you would see at least one NUREG that has 22 been published on each aspect of the accident 23 sequence. 24 There are itemized limitations of the analysis in each report. I would not say that there 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

127

	128
1	is a single cover that packages all of the
2	shortcomings.
3	DR. BANERJEE: So to get a view of this,
4	one would have to read about something like 10 volumes
5	of stuff?
6	DR. LETELLIER: The second-to-the-last
7	bullet, the Knowledge Base Report, is intended to be
8	a compilation of citations, of bibliography, if you
9	will, with a brief discussion of the phenomenology at
10	each stage. I think that has been found to be a very
11	helpful resource document.
12	DR. BANERJEE: So what is the key
13	assumption or assumptions here? What affects the
14	results the most?
15	DR. LETELLIER: I think from a plant-
16	specific perspective the flow conditions of their sump
17	screen will be the most important consideration, and
18	also the insulation types that they have chosen to
19	implement. The combination of those two issues are
20	the most important factors that seem to vary from
21	plant to plant.
22	There are other aspects, such as the
23	containment spray capacity and the recirculation
24	volumes, that are more or less in common.
25	CHAIRMAN WALLIS: Those aren't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	129
1	assumptions, though? I mean the volumes and
2	insulation types are facts. I think he's asking you
3	what kind of physical assumptions do you have to make
4	to do the analysis.
5	DR. BANERJEE: And what is the analysis
6	most sensitive to? If you go back to the previous
7	slide no, no, not that one. The one with, yes, all
8	those little things.
9	CHAIRMAN WALLIS: Of the T/H models, for
10	instance.
11	DR. BANERJEE: Yes, you've got all sorts
12	of things there. There must be a size distribution
13	for the debris that could be, I don't know, the CFD
14	analysis, the kapsilon model you've stuck in, the
15	deposition models, head losses you've assumed. What's
16	the most important?
17	DR. LETELLIER: Of course, there are
18	assumptions at each stage in this analysis
19	DR. BANERJEE: Right.
20	DR. LETELLIER: as you have pointed
21	out. If you don't have confidence in your predicted
22	capability, you always tend toward a conservative
23	assumption; for example, 100 percent debris
24	generation, the entire containment inventory, 100
25	percent transport. If you choose that path, you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	eventually come down to the question of head loss and
2	what the debris type, what the composition of the
3	debris
4	DR. BANERJEE: So the size distribution?
5	DR. LETELLIER: Not necessarily the size
6	distribution, but more the physical aspects of the
7	insulation and how they relate to head loss. You'll
8	see comparisons later between fiber beds and mixed
9	beds of fiber and Cal-Sil, for example.
10	DR. BANERJEE: So the key is the head loss
11	assumptions
12	DR. LETELLIER: It is.
13	DR. BANERJEE: and the composition that
14	deposits on the screens
15	DR. LETELLIER: That's correct.
16	DR. BANERJEE: when all is said and
17	done?
18	DR. LETELLIER: In fact, that was the
19	basis for the parametric study. We actually looked at
20	the vulnerability of each of these plants in a generic
21	way using homogenized insulation types, for example,
22	but we worked the problem backwards, asking ourselves,
23	what's the minimum amount of debris transport
24	necessary to induce a problem? That is the key
25	aspect, ultimately.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	DR. BANERJEE: So if you've got fiber and
2	particles, you've got a thin layer of debris which
3	would be enough to jam everything or not?
4	DR. LETELLIER: It depends a great deal on
5	the flow velocity and the screen area of the sump.
6	MR. ROSEN: Now what I want to do is try
7	to get a feel for how big a problem this is. If
8	you'll go to your next slide with the references, the
9	documentation, the third bullet, "The Impact of
10	Debris-Induced Loss of ECCS Recirculation on PWR Core
11	Damage Frequency," what is the answer? Is it, if you
12	were to assume recirculation fails in a typical PWR
13	PRA, what percentage of the core damage frequency are
14	we talking about?
15	MR. ARCHITZEL: You might want to use that
16	slide on the operator recovery actions they had.
17	DR. LETELLIER: I don't actually have the
18	slide at the moment. I think your question is, what
19	is the effect on core damage frequency?
20	MR. ARCHITZEL: It's on the other
21	presentation, if you want it.
22	DR. LETELLIER: I think I can quote the
23	results.
24	MR. ARCHITZEL: Fine.
25	MR. ROSEN: I mean, is this a 1 percent

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	effect, a 20 percent effect, 100 percent or
2	DR. LETELLIER: No, if you look at
3	traditional estimates of initiating event frequency
4	for a LOCA using a traditional basis, and then you
5	incorporate the effects of debris on sump performance,
6	you get a factor of 170 increase in the average core
7	damage frequency.
8	MR. ROSEN: One hundred and seventy?
9	DR. LETELLIER: That's correct. If you
10	later go back and incorporate the opportunity for
11	recovery action, you still get an increase of about 17
12	over the average core damage frequency.
13	MR. ROSEN: So this is a very significant
14	problem. It could be two orders of magnitude?
15	DR. LETELLIER: That was, indeed, the
16	motivation for recommending plant-specific analyses.
17	CHAIRMAN WALLIS: You may be doing it
18	fairly rapidly.
19	DR. BANERJEE: What mitigatory actions are
20	you talking about to drop the frequency by a factor of
21	10?
22	DR. LETELLIER: We're looking at
23	opportunities for the plant operators to actually
24	inject additional cooling water, to invoke backflush
25	or active systems to realign pumps, to try to mitigate

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	133
1	the effects of head loss.
2	Now there's a variety of different
3	strategies and they're not all available at each
4	plant. The effectiveness of recovery action is driven
5	largely by human error factors and the uncertainty of
6	the effectiveness of each of these strategies.
7	DR. BANERJEE: So the 170 or 117 I've
8	forgotten comes from basically ECC not being
9	effective?
10	DR. LETELLIER: Due to the presence of
11	debris, that's correct.
12	DR. BANERJEE: The long-term cooling
13	DR. LETELLIER: Yes. Traditional
14	estimates of ECCS effectiveness did not consider the
15	presence of debris in their performance
16	characterization.
17	CHAIRMAN WALLIS: I think in the rules the
18	ECCS is mainly supposed to work. If your ECCS doesn't
19	work, it doesn't really matter what the core damage
20	frequency is; you're not in compliance with the rules.
21	MR. ARCHITZEL: I would like to just make
22	a comment because, when this number has come up before
23	Gary is not here to defend his position, but
24	DR. WEERAKKODY: Well, I can try to answer
25	it. I'm Sunil Weerakkody. I'm from NRR.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	If we assume that ECCS will not work with
2	certainty, obviously, you're going to get a
3	significant increase in core damage frequency.
4	MR. ROSEN: Well, wait a minute. We're
5	not assuming ECCS will work. We're only assuming the
6	long-term recirculation won't work, right? Injection
7	will work?
8	DR. WEERAKKODY: Injection will work, but
9	almost every, at least the way the PRAs are modeled,
10	most PRAs assumes that every sequence that requires
11	injection also will require this recirculation. So
12	that's why, when you do a quick calculation using a
13	PRA model and assume ECCS, the long-term recirculation
14	fails, you're going to get a very high you said a
15	factor of 170. It depends on the pond, but it could
16	be a factor of 40.
17	But, then, when you bring the additional
18	information to bear you know, let's say, for
19	example, small LOCAs. We have had actual eight more
20	LOCAs in the industry over the last 20-30 years, and
21	we never had to go to recirc. So when you bring the
22	realism, we know the problem is much less significant
23	than that.
24	So I think we are dealing with the
25	magnitude of or the nature of the uncertainty in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	conclusion that this is a terrible concern, so the
2	ECCS may not work. I don't know whether that helps,
3	but the numbers come out very high. However, when you
4	look at the small LOCAs, medium LOCAs, and then the
5	plant estimates, there are a number of considerations
6	in that estimate.
7	MR. ROSEN: Well, I think the small LOCAs
8	and medium LOCAs are included in the 170.
9	DR. WEERAKKODY: Yes. Yes, sir.
10	MR. ROSEN: They're all at 170, even
11	though many small breaks don't go to recirculation
12	ever. Is that right?
13	DR. WEERAKKODY: That is true, but when
14	you do the calculation, if you take the small LOCA
15	sequences for a number of PRAs, you would find that
16	they would require some recirculation. That's a
17	conservative PRA model.
18	MR. ROSEN: Let's try to simplify this.
19	Any break that requires, that is large enough to
20	require, recirculation goes to core damage.
21	DR. WEERAKKODY: That's correct, yes.
22	MR. ROSEN: That's what I think you're
23	saying, and that's why you get 170. Any breaks that
24	are too small to require recirculation, well, they
25	don't go to core damage because this doesn't affect

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	that number. Your other sumps may be plugged up but
2	may never turn on.
3	DR. LETELLIER: It is not true that we're
4	assuming 100 percent sump failure. We are looking at
5	the potential for degrade sump performance.
6	MR. ROSEN: Okay.
7	DR. LETELLIER: That's included in the
8	estimate.
9	I would like to remind you that this PRA
10	study was done with a very representative plant model.
11	It is not specific to any single licensee, and we
12	tried to do it broadly enough to incorporate the
13	various mitigation mechanisms.
14	MR. ROSEN: That's a weakness. I mean
15	it's both a strength and a weakness. It's a strength
16	because it tells you something right away.
17	DR. LETELLIER: Right.
18	MR. ROSEN: The weaknesses, we know from
19	long and painful experience that PRA answers are
20	plant-specific.
21	DR. LETELLIER: That's correct.
22	Well, now that we've finished with the
23	introduction (laughter), we'll proceed, and probably
24	very quickly, with the other aspects of phenomenology.
25	Debris generation, as far as the break

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	137
1	location: You have already asked many of the relevant
2	questions regarding the break location, but I wanted
3	to remind you of what the verbiage is in the guidance
4	specifically. On slide No. 8 you can read those.
5	I wanted to point out that it's not
6	focused exclusively on the maximum volume of debris,
7	but it also requests that you look at medium and large
8	breaks with the largest particulate-to-fiber mass
9	ratio. This is in deference to the potential thin bed
10	effect that's been discussed previously.
11	On slide No. 9, I would like to show
12	briefly what sort of methods that LANL has developed
13	to approach these issues and what the bases are for
14	our recommendations in the Reg. Guide.
15	Obviously, to assess the location of a
16	break and what insulations will be impacted, a spatial
17	plant model of some type is very helpful. You have to
18	know what your piping diagrams are and what insulation
19	applications have been chosen. If you intend to look
20	at a distribution of break sizes well, in fact, to
21	assess the breaks requested in the Reg. Guide, you
22	need to have this sort of information present.
23	If this model is flexible enough, you can
24	gain a great deal of additional information about the
25	range of accident conditions. That's what we have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	embodied in the CASINOVA model.
2	CHAIRMAN WALLIS: It seems to me that this
3	business of structure and equipment offering
4	confinement and sheltering goes against your rather
5	simple idea of the zone of influence, which is
6	vertical?
7	DR. LETELLIER: It does, in fact, but the
8	Reg. Guide does not preclude the licensee from
9	developing more specific models for specific breaks.
10	For example, if a break occurs inside of a concrete
11	confinement, there may be very good reasons for them
12	to go to that extra effort.
13	The CASINOVA source term analysis is
14	somewhat whimsically named. Its intent is to look at
15	the distribution of possible break locations and what
16	volumes and types of insulations would be impacted by
17	those breaks.
18	Again, it's subjected to the limitations
19	we've already discussed, spherical zones of influence
20	which are specific to the insulation types, and they
21	are now specific to the location within the plant.
22	It's a stochastic model that runs through
23	thousands of postulated breaks and generates
24	statistical information, as shown in the next slides.
25	Page 11, probably not visible on your

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	handout, is a zone of influence. If you'll direct
2	your attention to the screen, there is a magenta
3	circle, a sphere, that represents the zone of
4	influence for fiberglass insulation from a very large
5	pipe break.
6	MR. ROSEN: Can you stop your red dot and
7	show us where the pipe break is?
8	DR. LETELLIER: At the center of the
9	sphere. If you can imagine the containment volume
10	superimposed, you can see that the volume of this
11	sphere is at least 30 percent of the total containment
12	volume. Obviously, this region extends well beyond
13	any concrete structures that might redirect the jets,
14	but, unfortunately, we don't have predictive models
15	for that sort of behavior that let us assess this in
16	a parametric way.
17	DR. FORD: Bruce, coming back to the
18	question I asked earlier, you've got there quite a
19	specific deterministic line. Is it based on data?
20	Somebody has set off a water jet at a simulated stop
21	there and has come up with data to show that that line
22	has reality?
23	DR. LETELLIER: Not in a plant-specific
24	way with the full geometry. The data that has been
25	obtained has been conducted in the context of free jet
-	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	expansion, where a pressurized jet impinges on an
2	insulation blanket at some distance down the center
3	line, the jet center line.
4	DR. FORD: Okay. And whether that
5	insulation breaks away has got to do somehow as to how
6	it is put on and how it is fixed on, and all those are
7	variables that go into the model?
8	DR. LETELLIER: Yes, that is correct. The
9	orientation of the jacketing, the types of bands that
10	have been used, all of these have been investigated
11	over the years.
12	CHAIRMAN WALLIS: If you washed on this
13	side of your car with a garden hose when it's covered
14	with salt and sand, you would be very unwise to assume
15	a spherical sphere of influence. If you don't hit
16	that stuff directly, it doesn't come off.
17	DR. LETELLIER: Again, the limiting
18	assumption here is that the pressure contour, the
19	pressure needed to induce damage has been remapped
20	from a free jet into a sphere.
21	CHAIRMAN WALLIS: I could see some
22	licensee coming back with a much more saying,
23	"You're far too conservative" a much better model
24	which says that only 1 percent of insulation comes
25	off.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	DR. KRESS: Yes, but then you're going to
2	ask them about rebound effects and deflections.
3	DR. FORD: But coming to Sanjoy's question
4	earlier on, does it matter? Are we picking at a spot
5	here that doesn't need to be?
6	CHAIRMAN WALLIS: Well, it does matter.
7	With that much insulation, you don't clog the screen.
8	DR. FORD: Well, Sanjoy's question was,
9	what's the rate-limiting step to all this, and maybe
10	this is not the rate-limiting step. Is that true or
11	not?
12	DR. LETELLIER: Again, we had the luxury
13	of demonstrating a minimum level of concern. Now,
14	whether for better or worse, the burden of proof is on
15	the industry to develop high-fidelity models for
16	specific breaks.
17	For example, if, through a parametric
18	evaluation, a particular region of containment was
19	identified to contain the highest concentration of
20	insulation or the most problematic types of
21	insulation, perhaps it would be to their benefit to
22	develop high-fidelity physics models for that region.
23	But the NRC has a long history of
24	requiring empirical evidence to support models of that
25	type. So in almost every case the cheaper solution

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	will be to assume a conservative damage volume.
2	For example, in the extreme, to say 100
3	percent of insulation in containment, that, in fact,
4	was assumed by the BWR industry, where rather than
5	arguing about what fraction would be damaged, they
6	designed their mitigating systems to accommodate all
7	of the insulation in containment.
8	DR. BANERJEE: I suppose it depends on
9	whether it's all fiber and particles, because that
10	probably isn't possible if it results in particles.
11	It would be tough, I would think.
12	DR. LETELLIER: That's true. There will
13	be limitations to the engineering solutions for this
14	problem.
15	DR. BANERJEE: Now what type of insulation
16	provides these fibers? Is it fiberglass?
17	DR. LETELLIER: Essentially, very similar
18	to the fiberglass you have in your homes, although
19	qualified for the environment of a nuclear reactor
20	over a long service life.
21	CHAIRMAN WALLIS: So it costs a hundred
22	times as much as if you bought it in a hardware store?
23	MR. ROSEN: At least.
24	DR. LETELLIER: In deference to our
25	industry representatives, I didn't want to say that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	But, essentially, it's very familiar material. In
2	fact, the debris generation or, I'm sorry, the
3	debris transport tests that we've conducted, we've
4	taken blankets of this material, run it through a
5	common leaf shredder to generate flocks of a
6	characteristic size, and it's very familiar.
7	DR. BANERJEE: The only thing worse than
8	a chemical plant is leaves. Large accidents occur
9	when there were constrainers. It was very common.
10	DR. LETELLIER: You're referring to debris
11	types that transport as platelets?
12	DR. BANERJEE: Yes.
13	DR. LETELLIER: Small fragments like a
14	paint chip?
15	DR. BANERJEE: Yes.
16	DR. LETELLIER: The debris transport tests
17	that we conducted in the linear flume showed that
18	paint chips do not transport. I don't remember the
19	exact velocity, but it takes an incipient flow
20	velocity in excess of one foot per second, which is
21	not a common condition for the containment pool. So
22	those chips are most likely to settle out and remain
23	in place.
24	DR. KRESS: They orient themselves in such
25	a way that the flat side is below the stream flow.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	144
1	DR. LETELLIER: That's correct. They're
2	very difficult to lift, once they've reached the
3	floor. The one exception to that is for plants that
4	have a sump, a horizontal sump configuration very
5	close to postulated break zones, where the material
6	could be deposited directly onto the screen. There
7	are some configurations of that nature.
8	Very quickly, back to the stochastic
9	model, you can look at thousands of postulated breaks,
10	look at the range of debris volumes, their locations,
11	and relate them back to the exact insulation types
12	that were involved. These are just illustrative
13	figures, not to be digested.
14	Again, here's the range of projected
15	debris volumes for fiberglass. You will note that the
16	potential volumes are quite high.
17	CHAIRMAN WALLIS: This is volume of
18	equivalent solid or is this volume of
19	DR. LETELLIER: This is volume of
20	fiberglass insulation, assuming the "as fabricated"
21	density.
22	CHAIRMAN WALLIS: Not divided by the
23	density of glass or it's the
24	DR. LETELLIER: The "as fabricated"
25	density, right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 MR. ROSEN: Thousands of cubic feet? 2 DR. LETELLIER: From a large break 3 potential. 4 DR. BANERJEE: But I don't quite 5 understand what this 6 DR. LETELLIER: This is simply, the 7 results of the simulation looked at postulated breaks 8 in every linear foot of piping in the plant. Based on 9 the size of the pipe and the insulation in that zone, 10 a debris volume was generated for each postulated 11 break. 12 Now over the range there's a distribution 13 from high to low. You can see that the 95th 14 percentile is pointed out on the figure to be 15 somewhere in the range of 1700 cubic feet. 16 DR. BANERJEE: But what do you mean by 17 "cumulative fraction" of possible breaks? 18 DR. LETELLIER: Well, there were 45, on 19 the order of 4500 breaks postulated. So each break 20 has an associated volume. The proportion of events 21 that's related to the debris volume is shown here in		145
3 potential. A DR. BANERJEE: But I don't quite 5 understand what this 6 DR. LETELLIER: This is simply, the 7 results of the simulation looked at postulated breaks 8 in every linear foot of piping in the plant. Based on 9 the size of the pipe and the insulation in that zone, a debris volume was generated for each postulated 10 a debris volume was generated for each postulated 11 break. 12 Now over the range there's a distribution 13 from high to low. You can see that the 95th 14 percentile is pointed out on the figure to be 15 somewhere in the range of 1700 cubic feet. 16 DR. BANERJEE: But what do you mean by 17 "cumulative fraction" of possible breaks? 18 DR. LETELLIER: Well, there were 45, on 19 the order of 4500 breaks postulated. So each break 20 has an associated volume. The proportion of events 21 that's related to the debris volume is shown here in	1	MR. ROSEN: Thousands of cubic feet?
4DR. BANERJEE:But I don't quite5understand what this6DR. LETELLIER: This is simply, the7results of the simulation looked at postulated breaks8in every linear foot of piping in the plant. Based on9the size of the pipe and the insulation in that zone,10a debris volume was generated for each postulated11break.12Now over the range there's a distribution13from high to low. You can see that the 95th14percentile is pointed out on the figure to be15somewhere in the range of 1700 cubic feet.16DR. BANERJEE: But what do you mean by17"cumulative fraction" of possible breaks?18DR. LETELLIER: Well, there were 45, on19the order of 4500 breaks postulated. So each break20has an associated volume. The proportion of events21that's related to the debris volume is shown here in	2	DR. LETELLIER: From a large break
5 understand what this 6 DR. LETELLIER: This is simply, the 7 results of the simulation looked at postulated breaks 8 in every linear foot of piping in the plant. Based on 9 the size of the pipe and the insulation in that zone, 10 a debris volume was generated for each postulated 11 break. 12 Now over the range there's a distribution 13 from high to low. You can see that the 95th 14 percentile is pointed out on the figure to be 15 somewhere in the range of 1700 cubic feet. 16 DR. BANERJEE: But what do you mean by 17 "cumulative fraction" of possible breaks? 18 DR. LETELLIER: Well, there were 45, on 19 the order of 4500 breaks postulated. So each break 20 has an associated volume. The proportion of events 21 that's related to the debris volume is shown here in	3	potential.
6DR. LETELLIER: This is simply, the7results of the simulation looked at postulated breaks8in every linear foot of piping in the plant. Based on9the size of the pipe and the insulation in that zone,10a debris volume was generated for each postulated11break.12Now over the range there's a distribution13from high to low. You can see that the 95th14percentile is pointed out on the figure to be15somewhere in the range of 1700 cubic feet.16DR. BANERJEE: But what do you mean by17"cumulative fraction" of possible breaks?18DR. LETELLIER: Well, there were 45, on19the order of 4500 breaks postulated. So each break20has an associated volume. The proportion of events21that's related to the debris volume is shown here in	4	DR. BANERJEE: But I don't quite
7 results of the simulation looked at postulated breaks 8 in every linear foot of piping in the plant. Based on 9 the size of the pipe and the insulation in that zone, a debris volume was generated for each postulated 11 break. 12 Now over the range there's a distribution 13 from high to low. You can see that the 95th 14 percentile is pointed out on the figure to be 15 somewhere in the range of 1700 cubic feet. 16 DR. BANERJEE: But what do you mean by 17 "cumulative fraction" of possible breaks? 18 DR. LETELLIER: Well, there were 45, on 19 the order of 4500 breaks postulated. So each break 20 has an associated volume. The proportion of events 21 that's related to the debris volume is shown here in	5	understand what this
 in every linear foot of piping in the plant. Based on the size of the pipe and the insulation in that zone, a debris volume was generated for each postulated break. Now over the range there's a distribution from high to low. You can see that the 95th percentile is pointed out on the figure to be somewhere in the range of 1700 cubic feet. DR. BANERJEE: But what do you mean by "cumulative fraction" of possible breaks? DR. LETELLIER: Well, there were 45, on the order of 4500 breaks postulated. So each break that's related to the debris volume is shown here in 	6	DR. LETELLIER: This is simply, the
9 the size of the pipe and the insulation in that zone, a debris volume was generated for each postulated break. 12 Now over the range there's a distribution from high to low. You can see that the 95th percentile is pointed out on the figure to be somewhere in the range of 1700 cubic feet. 16 DR. BANERJEE: But what do you mean by "cumulative fraction" of possible breaks? 18 DR. LETELLIER: Well, there were 45, on 19 the order of 4500 breaks postulated. So each break has an associated volume. The proportion of events 21 that's related to the debris volume is shown here in	7	results of the simulation looked at postulated breaks
10a debris volume was generated for each postulated11break.12Now over the range there's a distribution13from high to low. You can see that the 95th14percentile is pointed out on the figure to be15somewhere in the range of 1700 cubic feet.16DR. BANERJEE: But what do you mean by17"cumulative fraction" of possible breaks?18DR. LETELLIER: Well, there were 45, on19the order of 4500 breaks postulated. So each break20has an associated volume. The proportion of events21that's related to the debris volume is shown here in	8	in every linear foot of piping in the plant. Based on
11 break. 12 Now over the range there's a distribution 13 from high to low. You can see that the 95th 14 percentile is pointed out on the figure to be 15 somewhere in the range of 1700 cubic feet. 16 DR. BANERJEE: But what do you mean by 17 "cumulative fraction" of possible breaks? 18 DR. LETELLIER: Well, there were 45, on 19 the order of 4500 breaks postulated. So each break 20 has an associated volume. The proportion of events 21 that's related to the debris volume is shown here in	9	the size of the pipe and the insulation in that zone,
12Now over the range there's a distribution13from high to low. You can see that the 95th14percentile is pointed out on the figure to be15somewhere in the range of 1700 cubic feet.16DR. BANERJEE: But what do you mean by17"cumulative fraction" of possible breaks?18DR. LETELLIER: Well, there were 45, on19the order of 4500 breaks postulated. So each break20has an associated volume. The proportion of events21that's related to the debris volume is shown here in	10	a debris volume was generated for each postulated
13 from high to low. You can see that the 95th 14 percentile is pointed out on the figure to be 15 somewhere in the range of 1700 cubic feet. 16 DR. BANERJEE: But what do you mean by 17 "cumulative fraction" of possible breaks? 18 DR. LETELLIER: Well, there were 45, on 19 the order of 4500 breaks postulated. So each break 20 has an associated volume. The proportion of events 21 that's related to the debris volume is shown here in	11	break.
14 percentile is pointed out on the figure to be 15 somewhere in the range of 1700 cubic feet. 16 DR. BANERJEE: But what do you mean by 17 "cumulative fraction" of possible breaks? 18 DR. LETELLIER: Well, there were 45, on 19 the order of 4500 breaks postulated. So each break 20 has an associated volume. The proportion of events 21 that's related to the debris volume is shown here in	12	Now over the range there's a distribution
<pre>15 somewhere in the range of 1700 cubic feet. 16 DR. BANERJEE: But what do you mean by 17 "cumulative fraction" of possible breaks? 18 DR. LETELLIER: Well, there were 45, on 19 the order of 4500 breaks postulated. So each break 20 has an associated volume. The proportion of events 21 that's related to the debris volume is shown here in</pre>	13	from high to low. You can see that the 95th
DR. BANERJEE: But what do you mean by "cumulative fraction" of possible breaks? DR. LETELLIER: Well, there were 45, on the order of 4500 breaks postulated. So each break has an associated volume. The proportion of events that's related to the debris volume is shown here in	14	percentile is pointed out on the figure to be
<pre>17 "cumulative fraction" of possible breaks? 18 DR. LETELLIER: Well, there were 45, on 19 the order of 4500 breaks postulated. So each break 20 has an associated volume. The proportion of events 21 that's related to the debris volume is shown here in</pre>	15	somewhere in the range of 1700 cubic feet.
DR. LETELLIER: Well, there were 45, on the order of 4500 breaks postulated. So each break has an associated volume. The proportion of events that's related to the debris volume is shown here in	16	DR. BANERJEE: But what do you mean by
19 the order of 4500 breaks postulated. So each break 20 has an associated volume. The proportion of events 21 that's related to the debris volume is shown here in	17	"cumulative fraction" of possible breaks?
20 has an associated volume. The proportion of events 21 that's related to the debris volume is shown here in	18	DR. LETELLIER: Well, there were 45, on
21 that's related to the debris volume is shown here in	19	the order of 4500 breaks postulated. So each break
	20	has an associated volume. The proportion of events
22 a gumulative way	21	that's related to the debris volume is shown here in
a cumuracive way.	22	a cumulative way.
23 DR. FORD: This could never happen? You	23	DR. FORD: This could never happen? You
24 wouldn't	24	wouldn't
25 DR. KRESS: Ninety-five percent of the	25	DR. KRESS: Ninety-five percent of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	146
1	breaks have less volume than that.
2	DR. LETELLIER: That's correct.
3	DR. BANERJEE: So which are the ones which
4	have the very high?
5	DR. LETELLIER: Very high?
6	DR. BANERJEE: Up at the 2,000 level.
7	DR. LETELLIER: The largest breaks in the
8	largest pipes generate the largest volumes.
9	DR. BANERJEE: And where is that little
10	plateau? What type of breaks are those?
11	DR. LETELLIER: Well, this actually
12	represents a jump in the range of piping sizes.
13	There's a large amount of small piping which leads to
14	small volumes, and there's a substantial amount of
15	large pipes which lead to large volumes. But there's
16	a gap in the piping size; for example, from 8 inches
17	to 24 inches. That's what the plateau represents.
18	DR. KRESS: Yes, and if you want to do a
19	PRA with initiating events for pipe breaks, you have
20	to de-convolute this in terms of pipe size?
21	DR. LETELLIER: That's correct. If we
22	were to propagate this information through a PRA, we
23	would assign an initiating event frequency to each of
24	these postulated breaks.
25	DR. KRESS: To each of these. To each of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	147
1	these.
2	DR. LETELLIER: That's correct.
3	One of the items specified in the guidance
4	is to look for breaks that generate the highest ratio
5	of particulate-to-fiber insulation. That's not an
6	immediately obvious question, how you would answer
7	that question. But from an analysis of this type, it
8	pops out very clearly, and it can be related to a
9	specific location within the plant.
10	These are simply the number of postulated
11	breaks that lead to a given ratio. It's a frequency
12	histogram, nothing more.
13	But there are breaks that lead to a very
14	high ratio of particulate-to-fiber, and we would have
15	to go and look at this specific plant to find those
16	locations.
17	MR. ROSEN: Is that a bad thing, a very
18	high ratio of particulate to fiber?
19	DR. LETELLIER: Those are the conditions
20	needed to create a thin bed effect on a screen, and
21	we'll look at some head loss tests in a moment.
22	DR. BANERJEE: What is that big peak in
23	there?
24	DR. LETELLIER: In this particular
25	simulation, with an assumed insulation application,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	148
1	some fraction of fiber, some fraction of particulate,
2	there are a large number of breaks that lead to a very
3	high ratio. For the most part, if I recall, these are
4	small pipe breaks.
5	DR. BANERJEE: Now it's not just the ratio
6	that matters, but then there must be an absolute
7	number that's important, like either the particulate
8	or the fiber. If that ratio is high but you have no
9	fiber, it doesn't really matter.
10	DR. LETELLIER: That's true, there is a
11	minimum fiber that's needed, but the current thinking
12	is that there may be enough fiber resident in the PWR
13	containment, regardless of how much is generated in
14	the break.
15	DR. BANERJEE: I see. Like hairs or
16	something?
17	DR. LETELLIER: Hairs, clothing, fiber.
18	Remember, these containment buildings are open for
19	long periods of time during refueling. So you have
20	ambient dust loadings, material tracked in and out.
21	For the most part, they are very clean by
22	industrial standards, but if you look, you will find
23	resident particulates and fibers.
24	The next section talks about debris
25	generation in the zone of destruction. I think we'll

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	149
1	move very quickly through this. The verbiage in the
2	guidance is listed on page 16.
3	Some additional detail about the zone of
4	influence is provided on page 17.
5	CHAIRMAN WALLIS: Now this is, again, as
6	we talked about, this is so many L/Ds? The scale
7	there is in units of one L/D? So at three L/Ds, you
8	go out for a certain zone, and then six for the next,
9	and then
10	DR. LETELLIER: Yes, those zones are
11	intended to represent the damage
12	CHAIRMAN WALLIS: Those are actually units
13	of L/D? Do you specify those somehow? There's no
14	unit on the axis there.
15	DR. LETELLIER: But if you count the
16	number of tick marks, you can see that on this axis
17	there are seven units.
18	CHAIRMAN WALLIS: Each tick is an L/D?
19	DR. BANERJEE: That's more representative
20	than the actual debris
21	CHAIRMAN WALLIS: Then the other axis
22	which is coming out is misdrawn? It should be the
23	same as the others?
24	DR. LETELLIER: That's correct, it's lost
25	in the perspective.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	CHAIRMAN WALLIS: Then, just to point out,
2	in this Draft Reg. Guide there's a reference to Figure
3	2-A about this same sort of thing, which isn't here.
4	It's missing somewhere.
5	DR. LETELLIER: I do not have that figure
6	that's referenced.
7	CHAIRMAN WALLIS: There's a wrong Figure
8	A-2. Figure A-2 is a sump screen schematic, and yet
9	the text refers to an A-2 which must look something
10	like that?
11	DR. LETELLIER: It looks very much like
12	this, but the intent of that figure is to show the
13	size distribution of the debris that's generated from
14	a specific insulation type.
15	MR. ROSEN: I'm sure this picture had a
16	color code that doesn't come through. It says, "zone
17	of influence for fiberglass," like a legend up at the
18	top, and then I don't know which one it refers to.
19	CHAIRMAN WALLIS: The inner one,
20	presumably.
21	MR. ROSEN: Bruce says the outer one.
22	DR. LETELLIER: If I could explain
23	CHAIRMAN WALLIS: The insulation is
24	probably the middle one.
25	DR. JAIN: The outer one is fiberglass.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	The middle one is Calcium-Silicate, and the other one
2	is RMI.
3	CHAIRMAN WALLIS: So at three L/D, you've
4	attenuated so much that you don't need any more
5	DR. JAIN: We do not read this figure to
6	represent what those numbers are.
7	CHAIRMAN WALLIS: Well, it's an effective
8	volume, first of all. So you may actually be
9	affecting stuff the other way.
10	DR. JAIN: It could be L/D equal to 10 or
11	11 or 12. It's more a schematic to show there are
12	different zones for different materials.
13	CHAIRMAN WALLIS: So what happens if this
14	sphere intersects the boundary of containment?
15	DR. LETELLIER: At the moment we're not
16	assuming any sort of reflection or deflection.
17	CHAIRMAN WALLIS: You just bounce it off
18	and still have the same volume?
19	DR. LETELLIER: In fact, we have not gone
20	that far either. We're assuming it's truncated.
21	There has been a lot of discussion about whether that
22	assumption is conservative or non-conservative, and it
23	depends greatly on the exact break location.
24	DR. BANERJEE: I'm still having problems
25	with this sphere. Maybe there's something I'm missing

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

here.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

DR. LETELLIER: The zones, the concentric zones, are intended to show the damage pressures, the vulnerabilities of each insulation type from the most vulnerable to the most robust. The outer zone for fiberglass relates to a damage pressure of about 10 psi, which has this radial extent. The inner zone is for Calcium-Silicate, and for this figure I'm not sure exactly what damage pressure it is, but it is more robust. Finally, reflective metallic insulation is the most robust and has the smallest damage level.

DR. BANERJEE: Does this mean that if I -let's say there's a pipe which breaks and the bed of origin is there. If I have a pipe, say, within a distance which is between that for the fiberglass and the Calcium-Silicate, then whatever fiberglass insulation is on it will become debris? But for that we need to actually put L by D, like saying this is the distance or something, right?

20 DR. LETELLIER: That was the purpose of 21 the CASINOVA model, was actually to look at the 22 geometry, the arrangement of insulation relative to 23 the break.

24 DR. BANERJEE: Right, but you don't take 25 the jet, details of the jet into account. You just

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	say it's within this sphere of influence.
2	DR. LETELLIER: That's correct.
3	DR. BANERJEE: And then you just
4	disintegrate all of that?
5	DR. LETELLIER: Into a range of sizes, to
6	a range of debris sizes. That range is described by
7	the three zones in this missing figure.
8	DR. BANERJEE: Right. So you take the
9	probability of that jet being in different directions
10	into account in doing that?
11	DR. LETELLIER: Essentially, we're
12	assuming that it's equally probable in any direction.
13	DR. BANERJEE: Okay, let's say there's a
14	probability of a break of this size at this location.
15	Then once you've established that probability, you're
16	saying it could be the probability is equal in all
17	directions, but then do you take that, divide by the
18	circumference or something, or what? What do you do?
19	DR. LETELLIER: Keep in mind that your
20	reference to probabilities is hypothetical. We have
21	not propagated this sort of information through the
22	risk assessment. It is implicit in the use of a
23	spherical model that the jet can be directed in any
24	direction, but we are not incorporating that into any
25	sort of risk analysis.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	DR. BANERJEE: So you don't assign a
2	probability to this?
3	DR. LETELLIER: That's correct.
4	DR. KRESS: This is all strictly
5	deterministic.
6	DR. LETELLIER: That's correct.
7	DR. BANERJEE: Yes, okay.
8	DR. RANSOM: That introduces some
9	conservatism then, I guess. You assume everything
10	within this zone is destroyed or broken up into the
11	particles, right?
12	DR. LETELLIER: That's correct.
13	DR. RANSOM: Whereas, in reality, the jet
14	may only break up something in a smaller zone of
15	influence?
16	DR. LETELLIER: But what we have preserved
17	is the volume of potential damage.
18	CHAIRMAN WALLIS: Is there any evidence
19	that this is reasonable?
20	DR. KRESS: It's empirically-based.
21	DR. LETELLIER: I don't know that it's
22	substantiated by empirical evidence, but it is, and
23	has been, the common accepted practice for the BWR
24	vulnerability assessment, for example.
25	DR. FORD: And they didn't have data to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	back those assumptions, just about how conservative
2	they are or
3	DR. LETELLIER: They did not have geometry
4	specific for information about jet deflections, for
5	example. They did extensive tests on destruction
6	pressures of different debris types. There is a
7	correlation in NUREG-6224 that allows for some
8	adjustment for pipe separation, what the separation
9	distance is and also the displacement.
10	Whether they are fully separated and fully
11	displaced, that could lead to opposing cones. If
12	they're not displaced but they are separated, that
13	could lead to impinging jets. That makes the
14	spherical proximation not an unreasonable thing to
15	assume.
16	DR. FORD: Again, how dependent are you
17	it's a huge assumption which is not based or backed up
18	with any data, apparently? So what's the down side of
19	that.
20	DR. LETELLIER: Well, the alternatives, of
21	course, are to use a model like CASINOVA to introduce
22	some of the directional effects like a fishmouth break
23	that generates a single cone in a random direction,
24	and we can do that. But, again, you'll be faced with
25	the same limitation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	It's not substantiated by data. It is a
2	plausible mechanism, and we could look for important
3	differences, but, again, it won't be a highly faithful
4	representation of actual events.
5	DR. RANSOM: Well, the L/D limits that
6	you're using in this representation I assume are
7	derived from data that you've taken where you've shot,
8	broke a pipe and had it shoot at directly some
9	insulated component, I guess, right?
10	DR. LETELLIER: That is correct. And on
11	the next figure is a more quantitative representation
12	of this information.
13	DR. KRESS: Before you go to the next
14	figure, I'm intrigued by your description of the
15	guillotine break separating, which would form two
16	cones. It seems to me like the conservative
17	assumption would be, if that happens, you take twice
18	this volume, because each cone is going to take out
19	its fraction of the debris.
20	DR. BANERJEE: At half the pressure
21	though. There's only half the flow. I mean he's
22	looking at impact pressure.
23	DR. KRESS: I don't think so, because it's
24	just a cone expanding out and you calculate that
25	pressure.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	DR. LETELLIER: The correlations do
2	account for that effect because they are a function of
3	both separation and displacement, and I'm not
4	personally familiar
5	DR. KRESS: Is there some sort of
6	correlation in there that accounts for that?
7	DR. LETELLIER: Yes, there is.
8	DR. KRESS: Okay. So you'll get a
9	different zone factor
10	CHAIRMAN WALLIS: When you say, "L/D," is
11	that the pipe size or the break size, the "D"?
12	DR. LETELLIER: The length is the radius
13	away from the break
14	CHAIRMAN WALLIS: What's the "D"?
15	DR. LETELLIER: compared to the pipe
16	diameter.
17	CHAIRMAN WALLIS: So it's really the break
18	size?
19	DR. LETELLIER: Yes, assuming a guillotine
20	break.
21	CHAIRMAN WALLIS: So for a double-ended
22	guillotine break, is it square root of two times the
23	diameter?
24	DR. LETELLIER: No, it's correlated to the
25	diameter, actually the physical diameter of the pipe.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	158
1	The next slide, page 18, shows some more
2	quantitative information, so that you have an
3	impression of what the various vulnerabilities are.
4	Higher damage pressures imply a more robust insulation
5	application.
6	DR. FORD: And this is based on just
7	firing a jet at some things in the laboratory?
8	DR. LETELLIER: That's correct.
9	Unprotected fiberglass is perhaps some of the most
10	vulnerable material, having damage pressures in the
11	range of 6 to 10 psi.
12	DR. KRESS: Is old insulation worse than
13	new insulation?
14	DR. LETELLIER: I can't comment on that.
15	There are aging effects that affect the friability of
16	this material. We have to look at other documents to
17	answer that.
18	DR. BANERJEE: So Min-K is fiberglass?
19	What is Min-K?
20	DR. LETELLIER: Maybe I could call on some
21	industry help. Min-K is
22	MR. HART: It's a microporous insulation.
23	DR. LETELLIER: It's a microporous
24	insulation.
25	CHAIRMAN WALLIS: What does that mean?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	159
1	Does that mean it's fiberglass?
2	MR. HART: No, it's microporous. It's a
3	very low turbo conductivity material made of tiny
4	take a look at the exhibit formed into a thin mat,
5	and they're hollow on the inside.
6	DR. LETELLIER: In the same category as
7	Calcium-Silicate, which is a low-density, a low-
8	thermal-conductivity material.
9	MR. HART: Yes, Calcium-Silicate is made
10	from diatomaceous earth. Under the microscope it
11	looks like a lot of little planktonic
12	DR. LETELLIER: It represents a class of
13	insulation.
14	DR. BANERJEE: So the Min-K is microporous
15	silica or what? What is the material? What is the
16	chemical composition of that?
17	MR. HART: I'm not certain.
18	CHAIRMAN WALLIS: It's not really Calcium-
19	Silicate which is key here. I mean it depends on how
20	it's bonded. You have these little whatever you
21	called them
22	MR. HART: Planktonic.
23	CHAIRMAN WALLIS: planktonic things,
24	but if they're not bonded together, it's not going to
25	have this 160 psi resistance.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	160
1	DR. LETELLIER: No. In fact, the robust
2	nature of the Calcium-Silicate with the aluminum
3	jacket was actually viewed to be a limitation of the
4	existing BWR data. That's one of the reasons that we
5	requested a test program, in cooperation with Ontario
6	Power Generation, on the next figure.
7	MR. ROSEN: On that previous figure, is
8	there any thermal lag in these containments?
9	DR. LETELLIER: I'm not sure the nature of
10	your question. Obviously, there's thermal inertia.
11	For what reason
12	MR. ROSEN: Thermal lag, no. There is,
13	and I didn't see it on this list. Is it a bad actor
14	or a good actor?
15	DR. LETELLIER: I can't comment on that.
16	MR. ARCHITZEL: Fire-barrier materials,
17	this is insulation material, I guess, is what we're
18	dealing with here, but the fire-barrier material was
19	also assumed to be looked at, but this chart here is
20	just dealing with insulation material.
21	DR. LETELLIER: And, again, I would repeat
22	that the test programs have never been intended to be
23	comprehensive for every material type.
24	MR. ROSEN: But there's fire-barrier
25	materials in containments, and they would be blasted

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	161
1	apart, too.
2	DR. LETELLIER: Yes, they would.
3	DR. RANSOM: What are the units of these
4	pressures?
5	DR. LETELLIER: Psi, stagnation
6	pressure
7	DR. BANERJEE: They're really impact
8	pressures you're talking about.
9	DR. RANSOM: Is that taking all the
10	velocity head out at that point, putting the thing
11	there, and boom. Is that how you how do you
12	measure that pressure?
13	DR. LETELLIER: I'm not personally
14	familiar with the diagnostics of the jet pressures.
15	They are intended to represent the stagnation pressure
16	on an object, on an unyielding physical object.
17	CHAIRMAN WALLIS: My intuition says, if I
18	take some household fiberglass and wrap a piece of
19	pipe with it and direct a garden hose at it, it won't
20	come off, and the pressure there is probably 40 psi.
21	DR. RANSOM: These must be one-half
22	r-squared, I assume. Otherwise, they would be at
23	least the containment pressure plus.
24	DR. BANERJEE: But if you put fire hose
25	water on it, it probably will

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	162
1	MR. SNODDERLY: Excuse me, Bruce. This is
2	Mike Snodderly.
3	I notice we're on slide 18 and you have 48
4	slides that you would like to present.
5	CHAIRMAN WALLIS: There can't be 48. Are
б	there really 48?
7	MR. SNODDERLY: Forty-four, sorry. What
8	I would like to suggest is maybe we could take a few
9	minutes just to maybe try to prioritize what we want
10	to try to look at between now and, say, 4:30, quarter
11	of 5:00, because I want to make sure that we give John
12	Butler and NEI an opportunity to let the Committee
13	know what they're doing.
14	For example, I notice that, when I read
15	through the Reg. Guide, one of the big analytical
16	models that jumped out at me was under "debris
17	transport," 1.334, an acceptable analytical approach
18	to predict debris transport was NUREG/CR-6772 and
19	6773. I noticed that your slide 31 goes over those
20	assumptions. So I think the Committee would be very
21	interested in going over that.
22	Obviously, I think they would like to have
23	some understanding of the debris transport chart, the
24	work that you show in slides 27, 28, and 29.
25	So I would like to put it to suggest to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	163
1	you, what do you think, to get to the point where in
2	your conclusion, where you say, "These are the
3	acceptable analytical models that we believe exist
4	today," and the basis for them, and maybe summarize.
5	Does that sound fair, Dr. Wallis, or what
6	do you think?
7	CHAIRMAN WALLIS: Well, I'm just thinking
8	that this is all fascinating stuff, and we could go on
9	all day, but I'm not sure it makes any difference to
10	the conclusion. I mean this Reg. Guide can go out for
11	public comment whether or not any of this makes any
12	sense, because someone's got to do the analysis. This
13	really requires it.
14	If we're going to have to review whether
15	or not we believe your analysis, that's a whole
16	different kettle of fish.
17	DR. LETELLIER: I think the purpose of
18	this talk is to demonstrate that methods have been
19	offered and that there is a technical basis to support
20	the Reg. Guide.
21	CHAIRMAN WALLIS: There's no way that in
22	this meeting we're going to bless these methods. We
23	need to study the NUREGs and all that.
24	MR. SNODDERLY: Right, you're right, Dr.
25	Wallis. The purpose is just to determine whether

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

164 1 they're sufficient to be released now for public 2 comment. I think what I would like to accomplish is 3 4 for the Committee to have as good an understanding as 5 possible in the time remaining of what the methodology is that the staff has developed. So that when we hear 6 7 from NEI, we can get an understanding of their 8 analytical approaches or where they plan to go. 9 Then, again, as the Reg. Guide goes out 10 and public comment occurs, when it comes back to us, 11 we'll have some idea of what the state-of-the-art of 12 the analytical methods are and where they'll go, and 13 perhaps we can have some input into that. 14 CHAIRMAN WALLIS: Well, Mr. Butler is 15 here, is he? 16 MR. BUTLER: Yes. 17 CHAIRMAN WALLIS: Would you be willing to stay later? If we go on for another half-hour with 18 19 this, would that be all right with you? 20 MR. BUTLER: That's fine. 21 DR. The questions of the LETELLIER: 22 Committee have been very relevant, and you have 23 anticipated much of the presentation material. So if 24 there are areas you would prefer to focus on, please 25 let me know.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	Continuing a little bit more quickly with
2	slide 19, we did attempt to remedy the deficiency in
3	Cal-Sil data by starting a research program with
4	Ontario Power Generation. They had a test facility of
5	a limited volume
6	MR. ROSEN: You might want to click the
7	slide. You're on 18.
8	CHAIRMAN WALLIS: Yes, let's move along
9	now.
10	DR. LETELLIER: Thank you.
11	The test conditions are listed in the
12	upper righthand corner. It was a small-volume tank
13	with a fixed nozzle opening and an initial pressure
14	somewhat lower than a PWR blowdown condition at a
15	temperature somewhat lower.
16	The blowdown history from the test
17	apparatus is shown in the lower curve, the red curve,
18	and predictions
19	CHAIRMAN WALLIS: Of course, RELAP is
20	perfect.
21	DR. LETELLIER: Thermal-hydraulic
22	predictions of the PWR are shown in black.
23	CHAIRMAN WALLIS: Oh, I thought it was the
24	red one.
25	MR. ROSEN: The testing must be wrong.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

166 1 CHAIRMAN WALLIS: I thought it was the red 2 one. 3 DR. KRESS: What is the vertical axis? I 4 can't read it. 5 DR. LETELLIER: These are pascals. DR. KRESS: Pascals? 6 7 DR. LETELLIER: The pressure versus time. 8 CHAIRMAN WALLIS: I thought the RELAP 9 prediction for the test set was perfect. 10 DR. KRESS: It is. 11 CHAIRMAN WALLIS: Yes, so let's move 12 ahead. 13 DR. LETELLIER: I'm illustrating the 14 difference between the test configuration and the 15 actual PWR blowdown, and the motivation for actually scaling the debris generation data for the effects 16 17 of --CHAIRMAN WALLIS: They direct this yet at 18 19 a typical pipe? 20 DR. LETELLIER: That's correct. 21 And a couple of figures are shown, 22 photographs, in pages 22, 23, and 24. 23 CHAIRMAN WALLIS: It's a before and after 24 picture? The 25 DR. LETELLIER: Yes. basic

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	167
1	conclusions are shown on page 21, which emphasizes
2	that the OPG data had to be rederived or modified to
3	account for the actual PWR accident condition.
4	The conclusions show a slightly increased
5	zone of influence compared to damage zones derived in
6	the BWR study. Again, for this accident scenario, we
7	have a two-phase jet blowdown with important momentum
8	effects in the droplets.
9	Zone of influence increased slightly for
10	both Nukon and Cal-Sil, and we observed a higher
11	fraction of small material or fines compared to
12	earlier tests.
13	CHAIRMAN WALLIS: Are you going to show us
14	the before and after very quickly?
15	DR. LETELLIER: Page 22 is the test item
16	as applied in a jacketed fashion.
17	CHAIRMAN WALLIS: It's blasted head-on by
18	a jet?
19	DR. LETELLIER: That's right, on the
20	center line. It's positioned on the center line.
21	DR. RANSOM: Is that the jet over on the
22	left side?
23	MR. ROSEN: The jet comes in perpendicular
24	to that.
25	DR. RANSOM: Well, that orange thing over

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	168
1	there, is that a nozzle?
2	DR. LETELLIER: One of these two pipes
3	represents the nozzle. I'm not sure which one.
4	MR. ROSEN: The one below will miss it.
5	DR. LETELLIER: The perspective is
6	difficult to see in the photograph. I believe this
7	test article is positioned on the jet center line.
8	MR. ROSEN: There's an arrow there on the
9	line, isn't there?
10	DR. RANSOM: That's the target.
11	MR. ROSEN: That's the target, I should
12	say.
13	DR. RANSOM: I see, "X" marks the spot,
14	right?
15	MR. ROSEN: It sure looks like it hit the
16	spot.
17	DR. LETELLIER: You will also notice the
18	orientation of the jacketing, so that the overlap on
19	the stainless steel jacket is exposed to the jet.
20	That represents a condition of vulnerability as
21	opposed to rotated or oriented away from the jet.
22	This is a Calcium-Silicate blanket.
23	Again, the nature of this insulation is basically low-
24	density concrete. It has a very low thermal
25	conductivity. It's very easy to mold and apply in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 different configurations. 2 After the test, you can see the extent of 3 damage. 4 CHAIRMAN WALLIS: And then you collected 5 all the pieces. 6 DR. LETELLIER: And then they collected 7 the pieces, and that's shown on page 24, at least the 8 range of debris that could be recovered. The 9 remainder that was not recovered is assumed to be in 10 the fine, very transportable fraction, and a crude 11 mass balance was attempted to proportion 12 MR. ROSEN: It's in Lake Ontario. 13 DR. BANERJEE: How much of it went into 14 fines compared to the total mass? 15 DR. LETELLIER: If we look back on slide	
3 damage. 4 CHAIRMAN WALLIS: And then you collected 5 all the pieces. 6 DR. LETELLIER: And then they collected 7 the pieces, and that's shown on page 24, at least the 8 range of debris that could be recovered. The 9 remainder that was not recovered is assumed to be in 10 the fine, very transportable fraction, and a crude 11 mass balance was attempted to proportion 12 MR. ROSEN: It's in Lake Ontario. 13 DR. BANERJEE: How much of it went into 14 fines compared to the total mass? 15 DR. LETELLIER: If we look back on slide	
 4 CHAIRMAN WALLIS: And then you collected 5 all the pieces. 6 DR. LETELLIER: And then they collected 7 the pieces, and that's shown on page 24, at least the 8 range of debris that could be recovered. The 9 remainder that was not recovered is assumed to be in 10 the fine, very transportable fraction, and a crude 11 mass balance was attempted to proportion 12 MR. ROSEN: It's in Lake Ontario. 13 DR. BANERJEE: How much of it went into 14 fines compared to the total mass? 15 DR. LETELLIER: If we look back on slide 	
5 all the pieces. 6 DR. LETELLIER: And then they collected 7 the pieces, and that's shown on page 24, at least the 8 range of debris that could be recovered. The 9 remainder that was not recovered is assumed to be in 10 the fine, very transportable fraction, and a crude 11 mass balance was attempted to proportion 12 MR. ROSEN: It's in Lake Ontario. 13 DR. BANERJEE: How much of it went into 14 fines compared to the total mass? 15 DR. LETELLIER: If we look back on slide	
6 DR. LETELLIER: And then they collected 7 the pieces, and that's shown on page 24, at least the 8 range of debris that could be recovered. The 9 remainder that was not recovered is assumed to be in 10 the fine, very transportable fraction, and a crude 11 mass balance was attempted to proportion 12 MR. ROSEN: It's in Lake Ontario. 13 DR. BANERJEE: How much of it went into 14 fines compared to the total mass? 15 DR. LETELLIER: If we look back on slide	
7 the pieces, and that's shown on page 24, at least the 8 range of debris that could be recovered. The 9 remainder that was not recovered is assumed to be in 10 the fine, very transportable fraction, and a crude 11 mass balance was attempted to proportion 12 MR. ROSEN: It's in Lake Ontario. 13 DR. BANERJEE: How much of it went into 14 fines compared to the total mass? 15 DR. LETELLIER: If we look back on slide	
 range of debris that could be recovered. The remainder that was not recovered is assumed to be in the fine, very transportable fraction, and a crude mass balance was attempted to proportion MR. ROSEN: It's in Lake Ontario. DR. BANERJEE: How much of it went into fines compared to the total mass? DR. LETELLIER: If we look back on slide 	
 9 remainder that was not recovered is assumed to be in 10 the fine, very transportable fraction, and a crude 11 mass balance was attempted to proportion 12 MR. ROSEN: It's in Lake Ontario. 13 DR. BANERJEE: How much of it went into 14 fines compared to the total mass? 15 DR. LETELLIER: If we look back on slide 	
10 the fine, very transportable fraction, and a crude 11 mass balance was attempted to proportion 12 MR. ROSEN: It's in Lake Ontario. 13 DR. BANERJEE: How much of it went into 14 fines compared to the total mass? 15 DR. LETELLIER: If we look back on slide	
11 mass balance was attempted to proportion 12 MR. ROSEN: It's in Lake Ontario. 13 DR. BANERJEE: How much of it went into 14 fines compared to the total mass? 15 DR. LETELLIER: If we look back on slide	
12MR. ROSEN: It's in Lake Ontario.13DR. BANERJEE: How much of it went into14fines compared to the total mass?15DR. LETELLIER: If we look back on slide	
13DR. BANERJEE: How much of it went into14fines compared to the total mass?15DR. LETELLIER: If we look back on slide	
14fines compared to the total mass?15DR. LETELLIER: If we look back on slide	
DR. LETELLIER: If we look back on slide	
16 21	
16 21	
17 DR. BANERJEE: Oh, it's there? That's	
18 fine.	
19 DR. LETELLIER: Slide 21.	
20 DR. BANERJEE: You don't have to go back.	
21 DR. LETELLIER: Approximately 30 percent	
22 of the material was generated in fine debris. Prior	
23 to this study, there had been no observed damage for	
24 Cal-Sil in jacketed configurations. We felt that	
25 those tests had been flawed, and so that's the reason	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	we attempted to gain more empirical evidence.
2	DR. BANERJEE: Now this facility of
3	Ontario Hydro or Power Generation is available for
4	other tests as well or just
5	DR. LETELLIER: We actually had a quite
6	extensive test program planned with them, but we
7	weren't able to conduct it to fruition because of some
8	safety concerns with their thermal-hydraulics lab. So
9	it was not made available to us as freely as we hoped.
10	DR. RANSOM: I notice some of the data,
11	the fields of damage were like 12-D and you were using
12	7 as the limit before. How do those two compare?
13	DR. LETELLIER: I'm not sure what
14	you're
15	DR. RANSOM: Well, on slide 21 you have
16	slightly increased zone of influence, 12-D versus
17	10-D, and before you were quoting 7-D, I thought, as
18	the maximum L/D.
19	CHAIRMAN WALLIS: It's the affected
20	sphere, though, isn't it?
21	DR. LETELLIER: Again, that sphere was
22	meant as a representation to explain the
23	vulnerabilities of different insulation types. I
24	wouldn't try to relate it quantitatively.
25	DR. RANSOM: What values are used, then,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	171
1	I mean in your calculations? Are they the ones that
2	you obtained from these experiments?
3	DR. LETELLIER: Yes.
4	DR. RANSOM: Okay.
5	DR. LETELLIER: Yes, the destruction
6	pressures are based on observation. That's the only
7	basis that we have.
8	To clarify, there is no predictive model
9	of microphysics for debris generation for an impinging
10	jet.
11	DR. RANSOM: Sure. Well, I was wondering
12	where the value 7 came from that you talked about
13	before.
14	DR. LETELLIER: I was simply counting the
15	tick marks on the graphic.
16	DR. RANSOM: Okay.
17	DR. LETELLIER: Yes, it was meant as a
18	representation.
19	CHAIRMAN WALLIS: Yes, but somebody has to
20	put numbers on it if they're going to calculate
21	anything.
22	DR. LETELLIER: And that has, indeed, been
23	done in a tabular way.
24	Moving on to blowdown/washdown on page 25,
25	again, we have no truly predictive model to determine

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	172
1	where this debris will go.
2	CHAIRMAN WALLIS: Well, the containment
3	spray does a pretty good job of washing it down,
4	doesn't it?
5	DR. LETELLIER: Yes, it does, but it is
6	also true that it does not impinge on every vertical
7	surface. There are significant fractions that are
8	sheltered from direct spray, and in that case you have
9	steam condensation in rivulet formation that can wash
10	debris to the floor.
11	Because we have no predictive capability,
12	we are looking at the conditions necessary for
13	transport, the updraft velocities, for example, and
14	the impingement of containment spray. We're looking
15	at the water balance calculations provided by our
16	volunteer plant, looking at the hold-up in pools on
17	each floor of containment, and where the most likely
18	return paths are; for example, stairwells and designed
19	drainage features.
20	This information is being incorporated
21	into a logic chart, very much like an event tree for
22	an accident analysis, where we try to make defensible,
23	conservative decisions about the fraction of each size
24	of debris type that's either retained
25	CHAIRMAN WALLIS: It seems to me you have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	173
1	no basis for it whatsoever. I mean, if you look at a
2	stairwell and you try to predict how many of these
3	rocks stop on the treads of the stairs, you can't do
4	it just by talking about it like this.
5	DR. LETELLIER: There is actually
6	empirical evidence of retention by gradings, actual
7	debris
8	CHAIRMAN WALLIS: So you put in actual
9	numbers here?
10	DR. LETELLIER: Where we have information,
11	of course, we do, and where the information is
12	lacking, we make conservative assumptions. As I
13	pointed out earlier, the retention factors are less
14	than 50 percent.
15	CHAIRMAN WALLIS: At least it gives you a
16	framework for filling in.
17	DR. LETELLIER: It does, and as I tried to
18	make a list here, it lets you assess the degree of
19	conservatism that can be compared to the plausibility
20	of these physical mechanisms.
21	This is on Figure 27, which is a schematic
22	of the logic chart, but in the next two pages, 28 and
23	29, you can see that you can get carried away with
24	this level of detail.
25	CHAIRMAN WALLIS: It's the debris that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	gets carried away.
2	(Laughter.)
3	DR. LETELLIER: Touche!
4	CHAIRMAN WALLIS: Wow, it's an eye test
5	(referring to the chart).
6	DR. LETELLIER: This type of analysis is
7	very easy. The PRA tools have been adapted to look at
8	the various transport mechanisms.
9	CHAIRMAN WALLIS: Okay.
10	DR. LETELLIER: Please don't spend any
11	time studying this. It's simply an illustration.
12	CHAIRMAN WALLIS: Yes.
13	DR. BANERJEE: But do you actually use
14	something like this?
15	DR. LETELLIER: We are actually using this
16	to assess its value for our volunteer plant analysis.
17	We're trying to
18	DR. BANERJEE: Do you think this level of
19	detail is appropriate? I mean, it's like having too
20	many significant figures in a number.
21	DR. LETELLIER: Well, as I said, we've
22	already learned the key element.
23	DR. BANERJEE: Right.
24	DR. LETELLIER: We've discovered that we
25	cannot rationalize a reduction factor of more than 50

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	175
1	percent. It's not a factor of a hundred or a
2	thousand, as some people would like to claim,
3	actually, that the fine particulates will be carried
4	to every surface in containment, and they will never
5	come down. We cannot rationalize that from a
6	conservative engineering perspective.
7	DR. BANERJEE: But do you need this level
8	of detail to do that?
9	DR. LETELLIER: The answer is no.
10	DR. BANERJEE: I mean, is this
11	illustrative or it is something which is in some NUREG
12	that somebody can attack and say, "This doesn't make
13	any sense."?
14	DR. LETELLIER: This is illustrative and
15	it's also educational, if you will. It lets the
16	plants prioritize where to put their analysis effort.
17	MR. ROSEN: You know, it's not that
18	educational to me because I can't read the event
19	states at the top. Would you just sort of read a few
20	of them to me, so I know what they say?
21	DR. LETELLIER: Let's go back to the
22	schematic.
23	CHAIRMAN WALLIS: He can't read it,
24	either.
25	(Laughter.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	176
1	MR. ROSEN: Which one are you looking at?
2	Right now you're
3	DR. LETELLIER: This is on page 27.
4	MR. ROSEN: Well, you've got page 26 up
5	there.
6	DR. RANSOM: It's slide No. 27.
7	CHAIRMAN WALLIS: So there's bullets would
8	appear as stages in this tree diagram?
9	DR. LETELLIER: It basically walks you
10	through the disposition of a debris fragment depending
11	on its size, whether it's initially deposited on the
12	floor, on a vertical surface, on a horizontal surface;
13	whether it's impacted by sprays, direct impingement,
14	or condensation; whether it is subject to secondary
15	motion through pools on elevations, different
16	elevations of the plant, and, eventually, whether it's
17	deposited into the pool.
18	MR. ROSEN: And that's what this ghastly
19	one does?
20	DR. LETELLIER: That's the end state.
21	MR. ROSEN: It takes it from one step to
22	another to another, to a third perhaps
23	DR. LETELLIER: That's correct.
24	MR. ROSEN: and, ultimately, down into
25	the sump?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	177
1	DR. LETELLIER: That's correct.
2	DR. BANERJEE: So you've done more details
3	of each of these?
4	DR. LETELLIER: Yes. And what we've
5	learned by this exercise is that there's not a great
6	return to be gained by the plants investigating this
7	in detail.
8	For example, you mentioned earlier, if you
9	did a full computational fluids model of a break jet
10	in a specific location, you might argue that there was
11	very little debris generation for a particular break.
12	I don't think you could get the same savings in this
13	aspect of the accident sequence, largely because of
14	the uncertainty in the initial conditions. You
15	physically just don't know where every piece of debris
16	will go.
17	You can talk about it generically, and you
18	can argue it conservatively, but, ultimately, as we
19	sum up all the end states in this event diagram, we
20	see that between 70 and 90 percent of the debris
21	eventually comes back to the pool.
22	MR. ROSEN: Well, it's a great
23	simplification.
24	CHAIRMAN WALLIS: Then let's design for a
25	hundred percent and forget about it.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	178
1	MR. ROSEN: Yes, it makes sense. It's
2	very valuable. It's a great simplification. You
3	don't have to trace each particle's path. You know
4	where it started and you know where it's going to end.
5	You're not that interested in what it does in between.
6	DR. LETELLIER: But the key point is we
7	needed to perform this exercise to reach that
8	conclusion. Now it's available for the industry's
9	evaluation.
10	Moving on to pool transport on page 30 and
11	31
12	DR. BANERJEE: So are you going to say in
13	the Reg. Guide or is one of the accepted things going
14	to be, if you say 80 percent is going to get down,
15	fine; if not, do you prove that below whatever this
16	CHAIRMAN WALLIS: If they can't prove it,
17	they're supposed to assume 100 percent, aren't they?
18	DR. JAIN: That's what we have in the Reg.
19	Guide right now.
20	DR. LETELLIER: That default position is
21	stated in every aspect of the accident scenario in the
22	Reg. Guide.
23	CHAIRMAN WALLIS: Okay, can you move along
24	quickly through this one?
25	DR. LETELLIER: Certainly. For pool

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	179
1	transport, we were very concerned about debris
2	mobility in the pool.
3	CHAIRMAN WALLIS: Yes, because it hides in
4	corners. It hides in stagnant areas.
5	DR. LETELLIER: It does. There is a
6	potential that it may.
7	Initially, we needed to characterize the
8	mobility of debris types, whether it's a paint chip or
9	a crumble of foil or a flock of fiber that's one inch
10	or five inches. So we conducted a separate effects
11	test in a flume to look at incipient flow velocity,
12	settling rates, et cetera.
13	The second phase of analysis was to
14	introduce this debris into an integrated tank. It was
15	a scale model, a one-tenth scale, of a PWR
16	configuration. We looked at the disposition of debris
17	both during fillup and also at the recirculation
18	phases.
19	It was difficult to preserve momentum
20	scaling in this study, so we looked at it as an
21	integrated test that introduced rotational flows and
22	opportunities for settling.
23	In fact, we did collect debris on both a
24	vertical and a horizontal screen, and the most
25	important conclusion was that, perhaps not surprising,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	180
1	is that individual fibers are indefinitely suspended,
2	and they eventually migrate to the screen.
3	We also observed that in regions of
4	splashing, where water would return to the pool, there
5	is a degradation mechanism that will continue to shred
6	flocks of insulation that actually reach that zone.
7	That's a very important thing to learn.
8	MR. ROSEN: Because it floats?
9	DR. LETELLIER: No, because of the
10	recirculation patterns around a splash, material is
11	actually collected; it's drawn towards that area. An
12	initially large flock of one inch perhaps, which might
13	remain stationary, if it's entrained in the splash, it
14	will be shredded into individual fibers.
15	CHAIRMAN WALLIS: Something that white
16	water canoers have experienced, too.
17	MR. ROSEN: Getting shredded?
18	(Laughter.)
19	DR. LETELLIER: That's correct. So the
20	primary conclusion of the integrated tank test is that
21	velocity maps and regions of localized turbulence are
22	important to assessing the final transport fraction of
23	debris in the pool.
24	On page 32 are some computational fluid
25	dynamics results of a splash introduced in one of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	181
1	steam generator compartments. That gray circle
2	represents splashing water on the floor. We're
3	looking at the velocity maps that are generated to
4	determine whether or not it exceeds the incipient flow
5	velocity for different debris types.
6	DR. BANERJEE: Is this a plan view?
7	DR. LETELLIER: It is. It is a plan view
8	at the floor level of a representative of
9	CHAIRMAN WALLIS: So you're saying the red
10	area gets scoured? Is that what you are saying?
11	DR. LETELLIER: That's correct.
12	DR. KRESS: That depends on the amount of
13	flow going into that splash area?
14	DR. LETELLIER: Yes, it does, and it's
15	very geometry-specific. That's the other conclusion
16	to take.
17	DR. BANERJEE: But you just integrated
18	over the height, right? You didn't actually do a 3-D
19	CFD simulation?
20	DR. LETELLIER: Yes, this is a 3-
21	dimensional pool calculation, and this is the slice at
22	the floor level.
23	DR. BANERJEE: I see.
24	DR. LETELLIER: There are representative
25	horizontal velocity components at the floor.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	182
1	DR. BANERJEE: It seems overkill. But,
2	anyway, go ahead.
3	MR. ROSEN: So tell me, what does it tell
4	me, all of the orange?
5	DR. LETELLIER: The figure on the right
6	has been scaled to a maximum velocity of .2 feet per
7	second. From the individual effects test, that's sort
8	of a rule-of-thumb threshold for debris movement. If
9	it exceeds .2, it's very likely to be mobile. If it's
10	less than .2, there's an opportunity for settling.
11	So you can see that in the cavities
12	opposite the break there is an opportunity for
13	settling, but much of the remainder of containment is
14	turbulent and it will be moving debris.
15	CHAIRMAN WALLIS: Yes, more than often.
16	DR. LETELLIER: And that's exactly the
17	perspective that we hope to use. We're not hoping for
18	a predictive capability of debris transport. We're
19	looking at the fractions of containment area that are
20	subjected to potential transport and applying that in
21	a crude way, a 50 percent, a 30 percent
22	CHAIRMAN WALLIS: Well, you're also
23	getting expertise with which to review whatever
24	industry gives you.
25	DR. BANERJEE: Of course, if you had two

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	183
1	sumps now, you would have one in a low-flow and one in
2	a high-flow area, right?
3	DR. LETELLIER: If they had the luxury of
4	redesigning with forethought, perhaps they would.
5	Every containment design has a single-sump location
6	that's more or less co-located. There are examples of
7	multiple-sump outlets, but they are on one side of
8	containment. They are in one location.
9	DR. BANERJEE: But both trends start
10	basically from the same area?
11	DR. LETELLIER: That's correct.
12	DR. RANSOM: Where is the sump in this
13	case?
14	DR. LETELLIER: The sump is
15	DR. RANSOM: And how deep is the layer of
16	fluid?
17	DR. LETELLIER: In this simulation I
18	believe it is 24 inches, which is in the range of a
19	plausible pool depth. Again, it is not a perfect
20	scaling, but it's an example of an analysis technique
21	that could be used.
22	CHAIRMAN WALLIS: Can we move on now?
23	DR. LETELLIER: The next slide just simply
24	shows the dependence on geometry. The patterns are
25	completely different if the break is in a different

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	184
1	quadrant.
2	CHAIRMAN WALLIS: So you're going to run
3	10,000 Monte Carlo simulations?
4	(Laughter.)
5	DR. LETELLIER: We hope to run four, one
6	for a break in each steam generator cavity, and look
7	at the fractions to decide whether they're
8	substantially different or not.
9	Slide No. 34 is a simple schematic of how
10	the information from velocity maps and separate
11	effects testing can be combined to estimate an
12	ultimate transport fraction in the pool. Again, these
13	conclusions will be cast in the form of 30 percent, 50
14	percent, based on the intuition that we've established
15	from calculation.
16	You can read some of these observations
17	regarding CFD. I would just remind you that we are
18	not attempting to do a predictive model of debris
19	transport. We're not looking at the microphysics of
20	drag, settling, entrainment. We are trying to use
21	this as a tool for velocity maps.
22	DR. LETELLIER: You're using it like PRA,
23	to gain insights and
24	DR. BANERJEE: But you have some
25	experiments, right? I mean, you're not depending on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1this CFD code?2DR. LETELLIER: That's correct. We've actually run calculations and bench-marked them against our tank tests under the test conditions.5DR. BANERJEE: But, you know, you can make a CFD code fit anything. So you need some experiments.8DR. LETELLIER: That's correct, and we did observe good, qualitative agreement between the models and the tank experiments.10The reason that we're not pushing for, again, the reason that we're not pushing for again, the reason we're not trying to develop a predictive capability is captured in the last bullet:14The uncertainties in the location and the timing of debris introduction, they just limit the need for high-fidelity modeling. We simply don't know when and where this material will return to the pool.18CHAIRMAN WALLIS: Now this next bit, head loss, ought to be the easiest part.20DR. LETELLIER: From the point of view of testing, I believe that is accurate. There is a substantial amount of information in the literature regarding head loss of various debris compositions, bed thicknesses, et cetera.25In the BWR study in NUREG-6224 that		185
3actually run calculations and bench-marked them against our tank tests under the test conditions.5DR. BANERJEE: But, you know, you can make a CFD code fit anything. So you need some experiments.8DR. LETELLIER: That's correct, and we did observe good, qualitative agreement between the models and the tank experiments.10and the tank experiments.11The reason that we're not pushing for, again, the reason we're not trying to develop a predictive capability is captured in the last bullet:14The uncertainties in the location and the timing of debris introduction, they just limit the need for high-fidelity modeling. We simply don't know when and where this material will return to the pool.18CHAIRMAN WALLIS: Now this next bit, head loss, ought to be the easiest part.20DR. LETELLIER: From the point of view of testing, I believe that is accurate. There is a substantial amount of information in the literature regarding head loss of various debris compositions, bed thicknesses, et cetera.	1	this CFD code?
4against our tank tests under the test conditions.5DR. BANERJEE: But, you know, you can make6a CFD code fit anything. So you need some7experiments.8DR. LETELLIER: That's correct, and we did9observe good, qualitative agreement between the models10and the tank experiments.11The reason that we're not pushing for,12again, the reason we're not trying to develop a13predictive capability is captured in the last bullet:14The uncertainties in the location and the timing of15debris introduction, they just limit the need for16high-fidelity modeling. We simply don't know when and17where this material will return to the pool.18DR. LETELLIER: From the point of view of20DR. LETELLIER: From the point of view of21testing, I believe that is accurate. There is a22substantial amount of information in the literature23regarding head loss of various debris compositions,24bed thicknesses, et cetera.	2	DR. LETELLIER: That's correct. We've
5DR. BANERJEE: But, you know, you can make6a CFD code fit anything. So you need some7experiments.8DR. LETELLIER: That's correct, and we did9observe good, qualitative agreement between the models10and the tank experiments.11The reason that we're not pushing for,12again, the reason we're not trying to develop a13predictive capability is captured in the last bullet:14The uncertainties in the location and the timing of15debris introduction, they just limit the need for16high-fidelity modeling. We simply don't know when and17where this material will return to the pool.18CHAIRMAN WALLIS: Now this next bit, head19loss, ought to be the easiest part.20DR. LETELLIER: From the point of view of21testing, I believe that is accurate. There is a22substantial amount of information in the literature23regarding head loss of various debris compositions,24bed thicknesses, et cetera.	3	actually run calculations and bench-marked them
 a CFD code fit anything. So you need some experiments. BR. LETELLIER: That's correct, and we did observe good, qualitative agreement between the models and the tank experiments. The reason that we're not pushing for, again, the reason we're not trying to develop a predictive capability is captured in the last bullet: The uncertainties in the location and the timing of debris introduction, they just limit the need for high-fidelity modeling. We simply don't know when and where this material will return to the pool. CHAIRMAN WALLIS: Now this next bit, head loss, ought to be the easiest part. DR. LETELLIER: From the point of view of testing, I believe that is accurate. There is a substantial amount of information in the literature regarding head loss of various debris compositions, bed thicknesses, et cetera. 	4	against our tank tests under the test conditions.
7experiments.8DR. LETELLIER: That's correct, and we did9observe good, qualitative agreement between the models10and the tank experiments.11The reason that we're not pushing for,12again, the reason we're not trying to develop a13predictive capability is captured in the last bullet:14The uncertainties in the location and the timing of15debris introduction, they just limit the need for16high-fidelity modeling. We simply don't know when and17where this material will return to the pool.18CHAIRMAN WALLIS: Now this next bit, head19loss, ought to be the easiest part.20DR. LETELLIER: From the point of view of21testing, I believe that is accurate. There is a22substantial amount of information in the literature23regarding head loss of various debris compositions,24bed thicknesses, et cetera.	5	DR. BANERJEE: But, you know, you can make
8 DR. LETELLIER: That's correct, and we did 9 observe good, qualitative agreement between the models 10 and the tank experiments. 11 The reason that we're not pushing for, 12 again, the reason we're not trying to develop a 13 predictive capability is captured in the last bullet: 14 The uncertainties in the location and the timing of 15 debris introduction, they just limit the need for 16 high-fidelity modeling. We simply don't know when and 17 where this material will return to the pool. 18 CHAIRMAN WALLIS: Now this next bit, head 19 loss, ought to be the easiest part. 20 DR. LETELLIER: From the point of view of 21 testing, I believe that is accurate. There is a 22 substantial amount of information in the literature 23 regarding head loss of various debris compositions, 24 bed thicknesses, et cetera.	6	a CFD code fit anything. So you need some
 observe good, qualitative agreement between the models and the tank experiments. The reason that we're not pushing for, again, the reason we're not trying to develop a predictive capability is captured in the last bullet: The uncertainties in the location and the timing of debris introduction, they just limit the need for high-fidelity modeling. We simply don't know when and where this material will return to the pool. CHAIRMAN WALLIS: Now this next bit, head loss, ought to be the easiest part. DR. LETELLIER: From the point of view of testing, I believe that is accurate. There is a substantial amount of information in the literature regarding head loss of various debris compositions, bed thicknesses, et cetera. 	7	experiments.
10and the tank experiments.11The reason that we're not pushing for,12again, the reason we're not trying to develop a13predictive capability is captured in the last bullet:14The uncertainties in the location and the timing of15debris introduction, they just limit the need for16high-fidelity modeling. We simply don't know when and17where this material will return to the pool.18CHAIRMAN WALLIS: Now this next bit, head19loss, ought to be the easiest part.20DR. LETELLIER: From the point of view of21testing, I believe that is accurate. There is a22substantial amount of information in the literature23regarding head loss of various debris compositions,24bed thicknesses, et cetera.	8	DR. LETELLIER: That's correct, and we did
11The reason that we're not pushing for,12again, the reason we're not trying to develop a13predictive capability is captured in the last bullet:14The uncertainties in the location and the timing of15debris introduction, they just limit the need for16high-fidelity modeling. We simply don't know when and17where this material will return to the pool.18CHAIRMAN WALLIS: Now this next bit, head19loss, ought to be the easiest part.20DR. LETELLIER: From the point of view of21testing, I believe that is accurate. There is a22substantial amount of information in the literature23regarding head loss of various debris compositions,24bed thicknesses, et cetera.	9	observe good, qualitative agreement between the models
12again, the reason we're not trying to develop a13predictive capability is captured in the last bullet:14The uncertainties in the location and the timing of15debris introduction, they just limit the need for16high-fidelity modeling. We simply don't know when and17where this material will return to the pool.18CHAIRMAN WALLIS: Now this next bit, head19loss, ought to be the easiest part.20DR. LETELLIER: From the point of view of21testing, I believe that is accurate. There is a22substantial amount of information in the literature23regarding head loss of various debris compositions,24bed thicknesses, et cetera.	10	and the tank experiments.
13 predictive capability is captured in the last bullet: 14 The uncertainties in the location and the timing of 15 debris introduction, they just limit the need for 16 high-fidelity modeling. We simply don't know when and 17 where this material will return to the pool. 18 CHAIRMAN WALLIS: Now this next bit, head 19 loss, ought to be the easiest part. 20 DR. LETELLIER: From the point of view of 21 testing, I believe that is accurate. There is a 22 substantial amount of information in the literature 23 regarding head loss of various debris compositions, 24 bed thicknesses, et cetera.	11	The reason that we're not pushing for,
14The uncertainties in the location and the timing of15debris introduction, they just limit the need for16high-fidelity modeling. We simply don't know when and17where this material will return to the pool.18CHAIRMAN WALLIS: Now this next bit, head19loss, ought to be the easiest part.20DR. LETELLIER: From the point of view of21testing, I believe that is accurate. There is a22substantial amount of information in the literature23regarding head loss of various debris compositions,24bed thicknesses, et cetera.	12	again, the reason we're not trying to develop a
15 debris introduction, they just limit the need for 16 high-fidelity modeling. We simply don't know when and 17 where this material will return to the pool. 18 CHAIRMAN WALLIS: Now this next bit, head 19 loss, ought to be the easiest part. 20 DR. LETELLIER: From the point of view of 21 testing, I believe that is accurate. There is a 22 substantial amount of information in the literature 23 regarding head loss of various debris compositions, 24 bed thicknesses, et cetera.	13	predictive capability is captured in the last bullet:
16 high-fidelity modeling. We simply don't know when and 17 where this material will return to the pool. 18 CHAIRMAN WALLIS: Now this next bit, head 19 loss, ought to be the easiest part. 20 DR. LETELLIER: From the point of view of 21 testing, I believe that is accurate. There is a 22 substantial amount of information in the literature 23 regarding head loss of various debris compositions, 24 bed thicknesses, et cetera.	14	The uncertainties in the location and the timing of
17 where this material will return to the pool. 18 CHAIRMAN WALLIS: Now this next bit, head 19 loss, ought to be the easiest part. 20 DR. LETELLIER: From the point of view of 21 testing, I believe that is accurate. There is a 22 substantial amount of information in the literature 23 regarding head loss of various debris compositions, 24 bed thicknesses, et cetera.	15	debris introduction, they just limit the need for
18 CHAIRMAN WALLIS: Now this next bit, head 19 loss, ought to be the easiest part. 20 DR. LETELLIER: From the point of view of 21 testing, I believe that is accurate. There is a 22 substantial amount of information in the literature 23 regarding head loss of various debris compositions, 24 bed thicknesses, et cetera.	16	high-fidelity modeling. We simply don't know when and
19 loss, ought to be the easiest part. 20 DR. LETELLIER: From the point of view of 21 testing, I believe that is accurate. There is a 22 substantial amount of information in the literature 23 regarding head loss of various debris compositions, 24 bed thicknesses, et cetera.	17	where this material will return to the pool.
DR. LETELLIER: From the point of view of testing, I believe that is accurate. There is a substantial amount of information in the literature regarding head loss of various debris compositions, bed thicknesses, et cetera.	18	CHAIRMAN WALLIS: Now this next bit, head
21 testing, I believe that is accurate. There is a 22 substantial amount of information in the literature 23 regarding head loss of various debris compositions, 24 bed thicknesses, et cetera.	19	loss, ought to be the easiest part.
22 substantial amount of information in the literature 23 regarding head loss of various debris compositions, 24 bed thicknesses, et cetera.	20	DR. LETELLIER: From the point of view of
23 regarding head loss of various debris compositions,24 bed thicknesses, et cetera.	21	testing, I believe that is accurate. There is a
24 bed thicknesses, et cetera.	22	substantial amount of information in the literature
	23	regarding head loss of various debris compositions,
25 In the BWR study in NUREG-6224 that	24	bed thicknesses, et cetera.
	25	In the BWR study in NUREG-6224 that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	186
1	information was captured in a correlation based on
2	theory for porous media and validated against
3	experiment for the correlation coefficients, for very
4	specific test conditions.
5	Some of the features of importance are the
6	water temperature for dynamic viscosity, the media,
7	the composition of the bed, its thickness, and the
8	flow velocity through the bed. Those are all
9	important parameters of the correlation.
10	CHAIRMAN WALLIS: The mysterious one looks
11	like page 40 other than what you might expect.
12	DR. RANSOM: What is "UNM"?
13	DR. LETELLIER: University of New Mexico.
14	DR. RANSOM: Okay.
15	DR. LETELLIER: The Civil Engineering
16	Department has been helping us conduct these tests.
17	CHAIRMAN WALLIS: What is this page 40?
18	Can you go to that?
19	DR. LETELLIER: Slide No. 40 is an
20	illustration of the head loss correlation applied over
21	a range of debris volumes, fiber volumes. You can see
22	that there is a sharp transition at low fiber volumes
23	where the bed begins to deteriorate. Essentially, you
24	punch holes in the fiber mat, and the flow starts to
25	escape through the screen. And that's the reason that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	the head loss does not
2	CHAIRMAN WALLIS: It depends very much on
3	the structure of the fibers. Some of them are
4	reinforcing. They squash down and they may get
5	tighter. Other ones open up.
6	DR. LETELLIER: Bed compaction is
7	CHAIRMAN WALLIS: The fibers bend around
8	the screen, is what happens, isn't it, here?
9	DR. LETELLIER: Yes, that's the effect
10	that you're seeing.
11	MR. ROSEN: You're going online.
12	MR. ARCHITZEL: Focus on that slide with
13	the perspective of removing all the fiberglass can
14	still be a problem or can create a problem.
15	CHAIRMAN WALLIS: This indicates it isn't
16	as simple as you might think. You need more fibers to
17	reduce the pressure?
18	DR. LETELLIER: There is a
19	counterintuitive behavior where thick beds are
20	actually more porous. Thick beds of fiber can provide
21	more flow area than a thin bed, simply because of the
22	interstitial gaps between the fibers. If they are not
23	compressed, as he mentioned, they will allow more
24	water to pass through.
25	A very thin mat that's arranged in a very

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	188
1	regular fashion, and the interstitial gaps are blocked
2	by particulate, is very effective at ending flow.
3	CHAIRMAN WALLIS: I think there's a
4	hysteresis with this. I mean, if you have laid down
5	a very uniform bed without holes in it, you get a
6	different curve, and if you begin to build it up and
7	then it breaks down, then you build it up some more.
8	There's a time effect with this whole thing.
9	DR. LETELLIER: That effect is very
10	evident. I actually deleted a slide that showed that.
11	The test that we're interested in is
12	taking, for example, a one-inch mat of fiber and
13	gradually increasing the flow velocity so the bed
14	compresses. As we relax the velocity, the bed does
15	not re-expand. There is a hysteresis effect.
16	DR. BANERJEE: Does this contain any
17	particulate matter as well or just fiber?
18	DR. LETELLIER: The various curves
19	represent the amount of particulate that is present:
20	300 pounds, 200 pounds, et cetera.
21	The qualitative behavior is the same.
22	DR. BANERJEE: I can't get a feel for what
23	those pounds mean, but is that sort of how many
24	feet squared are we on?
25	DR. LETELLIER: I'm not sure exactly what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	189
1	the conditions were for this calculation. It's
2	offered as a representation of proper use of the
3	correlation. Between 100 and 300 pounds is a
4	reasonable value for particulate in PWR containment,
5	and there's work currently ongoing to quantify that.
6	DR. BANERJEE: But that would depend on
7	the surface area of the filters, right?
8	DR. LETELLIER: Very much so.
9	DR. BANERJEE: Okay.
10	DR. LETELLIER: The head loss effect
11	depends greatly on the surface area.
12	CHAIRMAN WALLIS: Okay, can we move on?
13	DR. LETELLIER: I think that you've gotten
14	a good impression of the detail to which we have
15	examined the various aspects of the accident sequence.
16	Ultimately, each component has to be integrated into
17	a vulnerability assessment from beginning to end, that
18	is, from debris generation to ultimate head loss.
19	The final slides on page 42 illustrate
20	some of the tools that LANL has used to gain insights
21	into these effects and the methods that are being
22	offered to the industry as a starting point for their
23	own analysis.
24	In particular, I would point you to bullet
25	two, the Knowledge Base Report, which is forthcoming,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	190
1	is a compilation of all existing test data and
2	analysis methods.
3	Bullet 3 is a comprehensive plant analysis
4	which is currently ongoing to help us gauge
5	appropriate level of detail and help us assess the
6	validity of plant responses to the Generic Letter.
7	CHAIRMAN WALLIS: If every plant had to do
8	as much work as you've done, it would be much cheaper
9	just to make a bigger screen.
10	DR. LETELLIER: Certainly, but, actually,
11	I don't think the NRC would have been comfortable
12	making that judgment unless we had gone to this level
13	of detail.
14	DR. BANERJEE: But would a bigger screen
15	work if there was a lot of fiber? I mean, that's
16	really the bottom line here.
17	DR. LETELLIER: Of course, there are
18	limits to engineering solutions.
19	DR. BANERJEE: Right.
20	DR. LETELLIER: And if they simply don't
21	have space, they will have to take advantage of other
22	concepts. For example, in the BWR screens, they
23	arranged stacked disks or crenelated surfaces to allow
24	for perpendicular flow components. The bulk flow
25	moves in one direction; the filter draws flow in a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1transverse direction, and that establishes a very low2penetration velocity, which in turn gives you very low3head loss.4So there are important design5considerations that should be incorporated into6CHAIRMAN WALLIS: Is it a fluted type of7screen?8DR. LETELLIER: I'm sorry?9CHAIRMAN WALLIS: A fluted sort of screen?10DR. LETELLIER: You can imagine different11geometries.12CHAIRMAN WALLIS: Folded screen?13DR. LETELLIER: Yes, folded arrangement,14stacked disks. Your imagination is the only limit.15I would point out one important difference16between the BWR screens are primarily perforated17plates. They have circular openings stamped into18stainless steel. PWR screens are primarily wire mesh,19rectangular wire mesh arrangements.20The head loss testing that we performed21demonstrates that the correlation is applicable to22both configurations, and we are refining the23coefficients of this correlation to apply, best apply,24to Calcium-Silicate, which wasn't available before and25also mixed debris beds of Calcium-Silicate and fiber		191
3 head loss. 4 So there are important design 5 considerations that should be incorporated into 6 CHAIRMAN WALLIS: Is it a fluted type of 7 screen? 8 DR. LETELLIER: I'm sorry? 9 CHAIRMAN WALLIS: A fluted sort of screen? 10 DR. LETELLIER: You can imagine different 11 geometries. 12 CHAIRMAN WALLIS: Folded screen? 13 DR. LETELLIER: Yes, folded arrangement, 14 stacked disks. Your imagination is the only limit. 15 I would point out one important difference 16 between the EWR screens are primarily perforated 17 plates. They have circular openings stamped into 18 stainless steel. PWR screens are primarily wire mesh, 19 rectangular wire mesh arrangements. 20 The head loss testing that we performed 21 demonstrates that the correlation is applicable to 22 both configurations, and we are refining the 23 coefficients of this correlation to apply, best apply, 24 to Calcium-Silicate, which wasn't available before and	1	transverse direction, and that establishes a very low
4So there are important design5considerations that should be incorporated into6CHAIRMAN WALLIS: Is it a fluted type of7screen?8DR. LETELLIER: I'm sorry?9CHAIRMAN WALLIS: A fluted sort of screen?10DR. LETELLIER: You can imagine different11geometries.12CHAIRMAN WALLIS: Folded screen?13DR. LETELLIER: Yes, folded arrangement,14stacked disks. Your imagination is the only limit.15I would point out one important difference16between the BWR screens are primarily perforated17plates. They have circular openings stamped into18stainless steel. PWR screens are primarily wire mesh,19rectangular wire mesh arrangements.20The head loss testing that we performed21demonstrates that the correlation is applicable to22both configurations, and we are refining the23coefficients of this correlation to apply, best apply,24to Calcium-Silicate, which wasn't available before and	2	penetration velocity, which in turn gives you very low
5 considerations that should be incorporated into 6 CHAIRMAN WALLIS: Is it a fluted type of 7 screen? 8 DR. LETELLIER: I'm sorry? 9 CHAIRMAN WALLIS: A fluted sort of screen? 10 DR. LETELLIER: You can imagine different 11 geometries. 12 CHAIRMAN WALLIS: Folded screen? 13 DR. LETELLIER: Yes, folded arrangement, 14 stacked disks. Your imagination is the only limit. 15 I would point out one important difference 16 between the EWR screens are primarily perforated 17 plates. They have circular openings stamped into 18 stainless steel. PWR screens are primarily wire mesh, 19 rectangular wire mesh arrangements. 20 The head loss testing that we performed 21 demonstrates that the correlation is applicable to 22 both configurations, and we are refining the 23 coefficients of this correlation to apply, best apply, 24 to Calcium-Silicate, which wasn't available before and	3	head loss.
 6 CHAIRMAN WALLIS: Is it a fluted type of screen? 8 DR. LETELLIER: I'm sorry? 9 CHAIRMAN WALLIS: A fluted sort of screen? 10 DR. LETELLIER: You can imagine different 11 geometries. 12 CHAIRMAN WALLIS: Folded screen? 13 DR. LETELLIER: Yes, folded arrangement, 14 stacked disks. Your imagination is the only limit. 15 I would point out one important difference 16 between the BWR screens are primarily perforated 17 plates. They have circular openings stamped into 18 stainless steel. PWR screens are primarily wire mesh, 19 rectangular wire mesh arrangements. 20 The head loss testing that we performed 21 demonstrates that the correlation is applicable to 22 both configurations, and we are refining the 23 coefficients of this correlation to apply, best apply, 24 to Calcium-Silicate, which wasn't available before and 	4	So there are important design
7 screen? 8 DR. LETELLIER: I'm sorry? 9 CHAIRMAN WALLIS: A fluted sort of screen? 10 DR. LETELLIER: You can imagine different 11 geometries. 12 CHAIRMAN WALLIS: Folded screen? 13 DR. LETELLIER: Yes, folded arrangement, 14 stacked disks. Your imagination is the only limit. 15 I would point out one important difference 16 between the BWR screens are primarily perforated 17 plates. They have circular openings stamped into 18 stainless steel. PWR screens are primarily wire mesh, 19 rectangular wire mesh arrangements. 20 The head loss testing that we performed 21 demonstrates that the correlation is applicable to 22 both configurations, and we are refining the 23 coefficients of this correlation to apply, best apply, 24 to Calcium-Silicate, which wasn't available before and	5	considerations that should be incorporated into
8 DR. LETELLIER: I'm sorry? 9 CHAIRMAN WALLIS: A fluted sort of screen? 10 DR. LETELLIER: You can imagine different 11 geometries. 12 CHAIRMAN WALLIS: Folded screen? 13 DR. LETELLIER: Yes, folded arrangement, 14 stacked disks. Your imagination is the only limit. 15 I would point out one important difference 16 between the BWR screens are primarily perforated 17 plates. They have circular openings stamped into 18 stainless steel. PWR screens are primarily wire mesh, 19 rectangular wire mesh arrangements. 20 The head loss testing that we performed 21 demonstrates that the correlation is applicable to 22 both configurations, and we are refining the 23 coefficients of this correlation to apply, best apply, 24 to Calcium-Silicate, which wasn't available before and	6	CHAIRMAN WALLIS: Is it a fluted type of
9 CHAIRMAN WALLIS: A fluted sort of screen? 10 DR. LETELLIER: You can imagine different 11 geometries. 12 CHAIRMAN WALLIS: Folded screen? 13 DR. LETELLIER: Yes, folded arrangement, 14 stacked disks. Your imagination is the only limit. 15 I would point out one important difference 16 between the BWR screens are primarily perforated 17 plates. They have circular openings stamped into 18 stainless steel. PWR screens are primarily wire mesh, 19 rectangular wire mesh arrangements. 20 The head loss testing that we performed 21 demonstrates that the correlation is applicable to 22 both configurations, and we are refining the 23 coefficients of this correlation to apply, best apply, 24 to Calcium-Silicate, which wasn't available before and	7	screen?
10DR. LETELLIER: You can imagine different11geometries.12CHAIRMAN WALLIS: Folded screen?13DR. LETELLIER: Yes, folded arrangement,14stacked disks. Your imagination is the only limit.15I would point out one important difference16between the BWR screens are primarily perforated17plates. They have circular openings stamped into18stainless steel. PWR screens are primarily wire mesh,19rectangular wire mesh arrangements.20The head loss testing that we performed21demonstrates that the correlation is applicable to22both configurations, and we are refining the23coefficients of this correlation to apply, best apply,24to Calcium-Silicate, which wasn't available before and	8	DR. LETELLIER: I'm sorry?
11geometries.12CHAIRMAN WALLIS: Folded screen?13DR. LETELLIER: Yes, folded arrangement,14stacked disks. Your imagination is the only limit.15I would point out one important difference16between the BWR screens are primarily perforated17plates. They have circular openings stamped into18stainless steel. PWR screens are primarily wire mesh,19rectangular wire mesh arrangements.20The head loss testing that we performed21demonstrates that the correlation is applicable to22both configurations, and we are refining the23coefficients of this correlation to apply, best apply,24to Calcium-Silicate, which wasn't available before and	9	CHAIRMAN WALLIS: A fluted sort of screen?
12CHAIRMAN WALLIS: Folded screen?13DR. LETELLIER: Yes, folded arrangement,14stacked disks. Your imagination is the only limit.15I would point out one important difference16between the BWR screens are primarily perforated17plates. They have circular openings stamped into18stainless steel. PWR screens are primarily wire mesh,19rectangular wire mesh arrangements.20The head loss testing that we performed21demonstrates that the correlation is applicable to22both configurations, and we are refining the23coefficients of this correlation to apply, best apply,24to Calcium-Silicate, which wasn't available before and	10	DR. LETELLIER: You can imagine different
13DR. LETELLIER: Yes, folded arrangement,14stacked disks. Your imagination is the only limit.15I would point out one important difference16between the BWR screens are primarily perforated17plates. They have circular openings stamped into18stainless steel. PWR screens are primarily wire mesh,19rectangular wire mesh arrangements.20The head loss testing that we performed21demonstrates that the correlation is applicable to22both configurations, and we are refining the23coefficients of this correlation to apply, best apply,24to Calcium-Silicate, which wasn't available before and	11	geometries.
14stacked disks. Your imagination is the only limit.15I would point out one important difference16between the BWR screens are primarily perforated17plates. They have circular openings stamped into18stainless steel. PWR screens are primarily wire mesh,19rectangular wire mesh arrangements.20The head loss testing that we performed21demonstrates that the correlation is applicable to22both configurations, and we are refining the23coefficients of this correlation to apply, best apply,24to Calcium-Silicate, which wasn't available before and	12	CHAIRMAN WALLIS: Folded screen?
15I would point out one important difference16between the BWR screens are primarily perforated17plates. They have circular openings stamped into18stainless steel. PWR screens are primarily wire mesh,19rectangular wire mesh arrangements.20The head loss testing that we performed21demonstrates that the correlation is applicable to22both configurations, and we are refining the23coefficients of this correlation to apply, best apply,24to Calcium-Silicate, which wasn't available before and	13	DR. LETELLIER: Yes, folded arrangement,
16 between the BWR screens are primarily perforated 17 plates. They have circular openings stamped into 18 stainless steel. PWR screens are primarily wire mesh, 19 rectangular wire mesh arrangements. 20 The head loss testing that we performed 21 demonstrates that the correlation is applicable to 22 both configurations, and we are refining the 23 coefficients of this correlation to apply, best apply, 24 to Calcium-Silicate, which wasn't available before and	14	stacked disks. Your imagination is the only limit.
17 plates. They have circular openings stamped into 18 stainless steel. PWR screens are primarily wire mesh, 19 rectangular wire mesh arrangements. 20 The head loss testing that we performed 21 demonstrates that the correlation is applicable to 22 both configurations, and we are refining the 23 coefficients of this correlation to apply, best apply, 24 to Calcium-Silicate, which wasn't available before and	15	I would point out one important difference
18 stainless steel. PWR screens are primarily wire mesh, 19 rectangular wire mesh arrangements. 20 The head loss testing that we performed 21 demonstrates that the correlation is applicable to 22 both configurations, and we are refining the 23 coefficients of this correlation to apply, best apply, 24 to Calcium-Silicate, which wasn't available before and	16	between the BWR screens are primarily perforated
19 rectangular wire mesh arrangements. 20 The head loss testing that we performed 21 demonstrates that the correlation is applicable to 22 both configurations, and we are refining the 23 coefficients of this correlation to apply, best apply, 24 to Calcium-Silicate, which wasn't available before and	17	plates. They have circular openings stamped into
The head loss testing that we performed demonstrates that the correlation is applicable to both configurations, and we are refining the coefficients of this correlation to apply, best apply, to Calcium-Silicate, which wasn't available before and	18	stainless steel. PWR screens are primarily wire mesh,
21 demonstrates that the correlation is applicable to 22 both configurations, and we are refining the 23 coefficients of this correlation to apply, best apply, 24 to Calcium-Silicate, which wasn't available before and	19	rectangular wire mesh arrangements.
both configurations, and we are refining the coefficients of this correlation to apply, best apply, to Calcium-Silicate, which wasn't available before and	20	The head loss testing that we performed
 23 coefficients of this correlation to apply, best apply, 24 to Calcium-Silicate, which wasn't available before and 	21	demonstrates that the correlation is applicable to
to Calcium-Silicate, which wasn't available before and	22	both configurations, and we are refining the
	23	coefficients of this correlation to apply, best apply,
25 also mixed debris beds of Calcium-Silicate and fiber	24	to Calcium-Silicate, which wasn't available before and
	25	also mixed debris beds of Calcium-Silicate and fiber

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	192
1	and Calcium-Silicate and RMI.
2	DR. FORD: Bruce, you mentioned the
3	correlation between BWRs and PWRs, and you've been
4	three years doing this work for PWR steam generator
5	breaks. How much more work would it be to do a head
6	penetration on a PWR, if a head penetration, if a CRDM
7	housing was ejected, and you had damage to the
8	insulation on the top head?
9	DR. LETELLIER: I think it was already
10	mentioned that that scenario would be treated as a
11	medium-break LOCA, and it would be
12	DR. FORD: Maybe I was not here at the
13	time. Sorry.
14	DR. LETELLIER: Yes. Depending on the
15	break opening, it would be very much the same,
16	perfectly analogous as far as debris generation and
17	transport.
18	DR. FORD: And the data to support that?
19	DR. LETELLIER: Would be the blowdown
20	calculations from a code like RELAP, thermal-
21	hydraulics, in comparison to debris-generation data
22	that were produced.
23	DR. FORD: Okay.
24	CHAIRMAN WALLIS: From the point of view
25	of cost-effective regulation, we've seen that one

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	193
1	could have made a decision some years ago not to do
2	all this work, but simply to make a decision. This
3	would have improved safety. Now nothing is being done
4	while the work is being done. So there has been no
5	effect on safety while all this has been going on.
6	DR. LETELLIER: I will say one thing.
7	This is a typical level of detail that was pursued in
8	the BWR resolution. As to the regulatory decisions,
9	I'll defer that comment.
10	MR. LEHNING: Just before we go through
11	this is John Lehning from NRR before we can pursue
12	in a regulatory way any issue, we have to prove that
13	it's credible and that we have a basis to go forward.
14	That's kind of what
15	CHAIRMAN WALLIS: This is integrated
16	effects of five years of CFD, which is 170 times what
17	you thought it was. It's a pretty big safety impact.
18	I'm sure that's exaggerating, but if you look at the
19	cost of not doing anything all that time, it's
20	probably significant.
21	MR. LEHNING: Some of the work that we did
22	was used to get that risk analysis and to do that
23	parametric studying and to get those numbers. So we
24	didn't have that at the beginning, you know, way back
25	five years ago.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	194
1	MR. DORMAN: In fact, if I remember
2	correctly, we treated the BWRs first based on the
3	operating experience that had been observed, and there
4	was some judgment at that time, absent the information
5	that's been developed here, that there was not an
6	expectation that this was going to be a big problem
7	for the PWRs. So that some of the information that's
8	been developed in the GSI-191 program regarding debris
9	generation and transport, that has brought us to where
10	we are.
11	MR. ARCHITZEL: But I would come back to
12	that reg. analysis on the USI A-43. Those costs were
13	not unsubstantial at that time. There were benefits
14	at that time, and they were fairly significant. The
15	decision was made the cost/benefit didn't warrant
16	backfit, and that's the flipper. I mean we had a
17	cost/benefit done already. It was a good benefit and
18	it was a very expensive fix.
19	CHAIRMAN WALLIS: Does the Subcommittee
20	have other questions for this group of presenters?
21	MR. ROSEN: What's this last slide that's
22	43? What does it tell me?
23	DR. LETELLIER: As I said, ultimately,
24	each component of the analysis has to be integrated
25	together. If you look at debris generation, this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	195
1	figure on 43 looks at the vulnerability of a specific
2	sump to a challenge of various combinations of fiber
3	and particulate. This is the threshold for failure
4	where they exceed their NPSH margin.
5	If you combine this failure threshold with
6	all of the debris sources, you can generate the last
7	figure, which shows you the range of pool well, of
8	total transport that would be required to induce
9	failure of the screen.
10	CHAIRMAN WALLIS: If you have no fibers at
11	all, though, to get back to Sanjoy's point, then the
12	product will just go through?
13	DR. LETELLIER: Yes, they will.
14	CHAIRMAN WALLIS: So then you have no
15	fiber. Then you have infinite number of particles,
16	and it doesn't make a difference. Some of these are
17	low fiber volume.
18	DR. LETELLIER: Again, these dots on this
19	Figure 44 do not represent particulates. They
20	represent scenarios.
21	CHAIRMAN WALLIS: No, I was looking at the
22	one before, 43.
23	DR. BANERJEE: It would be interesting to
24	see what the back-up slides were.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	196
1	DR. LETELLIER: You're right, of course.
2	At the far lefthand corner
3	DR. BANERJEE: It's a log scale, Graham.
4	CHAIRMAN WALLIS: I know we never got
5	there, but, I mean, you get a very small amount of
6	fiber when you get
7	DR. LETELLIER: At the far lefthand corner
8	of this figure
9	CHAIRMAN WALLIS: That's ten to the zero
10	feet cubed there? One cubic foot?
11	DR. LETELLIER: That's correct.
12	CHAIRMAN WALLIS: What's the scale here?
13	There's a blip. Units of ten? A tenth of a cubic
14	foot? I don't believe it.
15	DR. LETELLIER: This is a representation
16	of a screen. Depending on the area and the approach
17	velocity, there are plant configurations that could be
18	blocked with one cubic foot of fiber and some amount
19	of particulate. That's not a generic statement.
20	That's very plant-specific.
21	CHAIRMAN WALLIS: It's true, okay.
22	DR. LETELLIER: Now your comment about the
23	threshold, at the far left there is a missing line
24	that essentially extends vertically upward.
25	CHAIRMAN WALLIS: It falls straight down.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	197
1	DR. LETELLIER: And that represents the
2	minimum fiber necessary to induce the thin bed effect.
3	MR. ROSEN: I'm having trouble seeing the
4	exponents. On the bottom what is that, 10 squared
5	or
6	DR. LETELLIER: Ten to the zero. That's
7	one cubic foot.
8	MR. ROSEN: At one cubic foot. Now go up
9	and intersect the line. It says that what is that,
10	a tenth of at one cubic foot of fiber you get a
11	tenth of a cubic foot of particulate.
12	CHAIRMAN WALLIS: That doesn't make any
13	sense. It doesn't make any sense. It's a pocketful.
14	I mean it's crazy.
15	MR. ROSEN: Compared to the thousands or
16	hundreds at least of cubic feet that are in the
17	containment and are affected by these events we're
18	discussing.
19	DR. LETELLIER: Again, it's not worthwhile
20	to dissect this particular example, but
21	CHAIRMAN WALLIS: Well, I think we should
22	because we're establishing credibility.
23	DR. LETELLIER: It is illustrative of
24	plant conditions with very high approach velocities
25	and very small screen areas.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MR. DORMAN: Yes. I think when you translate an actual relatively small screen area to something on the order of an eighth of an inch of fiber bed over that area, the point here is that it takes a relatively small volume of fiber to create sufficient bed to then trap the particulate and have substantial head loss.

MR. ROSEN: The only thing I'm taking away from this chart is, if you have a very, very adverse screen configuration, sump configuration, you can plug it with a little of fiber and a little of particulate.

DR. LETELLIER: That is correct, but the point of this slide is to demonstrate that the licensees need to assess their own vulnerabilities in much the same way. They need to have an understanding of transport and head loss in order to respond to the Generic Letter.

18 CHAIRMAN WALLIS: This is for an existing 19 screen and a real reactor, a real containment, this 20 figure?

DR. LETELLIER: No.

CHAIRMAN WALLIS: No, it's not, no.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

23 DR. LETELLIER: This is a representation 24 of a screen that was taken from the parametric case 25 evaluation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

21

22

	199
1	CHAIRMAN WALLIS: Okay.
2	MR. DORMAN: But it is typical of a screen
3	that may be found out in an operating reactor today.
4	CHAIRMAN WALLIS: It is?
5	DR. LETELLIER: This is a particular case
б	study from the parametric report.
7	DR. BANERJEE: How many square feet
8	because the volumes don't tell me anything unless I
9	know how big the screen was here. How big was it?
10	DR. LETELLIER: I don't recall.
11	DR. BANERJEE: I mean, if you have a
12	screen this big, of course, one-foot square is a lot.
13	DR. LETELLIER: There are some cases of
14	very small screen areas like 10 to 12 square feet.
15	DR. BANERJEE: I see. Okay.
16	CHAIRMAN WALLIS: Okay, anything else?
17	DR. LETELLIER: Thank you for your
18	interest and your time.
19	CHAIRMAN WALLIS: We would like to thank
20	you all for very interesting presentations.
21	Would the Committee be willing to continue
22	now, just keep going? I'm sorry to keep you waiting.
23	MR. BUTLER: No problem.
24	MR. ROSEN: I think that was a good
25	presentation. It was very useful. Thank you.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	200
1	MR. BUTLER: May I use this overhead
2	projector?
3	Shall we proceed?
4	CHAIRMAN WALLIS: Yes, please.
5	MR. BUTLER: First off, my name is John
6	Butler. I'm a Project Manager at the Nuclear Energy
7	Institute in Washington.
8	What I would like to do is give you a
9	little bit of an overview of what the industry
10	activities are in this for GSI-191.
11	One of the points I want to make from the
12	start is that we have been active observers in the NRC
13	activities in this area, enough to become convinced
14	ourselves that this is really an issue that we need to
15	take on. So we are actively pursuing addressing the
16	issue at PWR plants, independent of the NRC activities
17	to issue a Reg. Guide or a Generic Letter.
18	Our activities, our schedules have been
19	developed independent of that. The schedules that the
20	staff has pursued in developing and issuing that
21	guidance has the potential to impact our already-
22	stated schedule, but that is something we'll just have
23	to evaluate as things progress. But I did want to
24	make the point that we are taking this issue
25	seriously.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	201
1	CHAIRMAN WALLIS: So you're taking the
2	lead? It must mean that Los Alamos is behind?
3	MR. BUTLER: Consider it a baton pass-off.
4	Research had the lead, ran with it, and has passed the
5	baton to us. The end result is we have to finish the
6	race, and I think at some point NRC is going to stop
7	and turn it over to us.
8	What I'm going to try to cover in a
9	very
10	MR. ROSEN: I don't think so. I think the
11	utilities have to finish the race.
12	MR. BUTLER: I'm speaking for them.
13	MR. ROSEN: But they have to do something
14	in the plants.
15	MR. BUTLER: Yes.
16	What I would like to do is address, in a
17	general fashion and fairly quickly, who is involved in
18	this activity, what activities we currently have
19	underway and what we're trying to accomplish, and when
20	we expect to have that completed.
21	First off, who is involved?
22	CHAIRMAN WALLIS: The usual suspects.
23	(Laughter.)
24	MR. BUTLER: Well, the important thing to
25	point out here is that it's not just NEI, a typical

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	202
1	NEI task force where we go off and grab some people
2	and we sit around and talk. We've actively involved
3	all three of the PWR owners' groups. They have their
4	own resources. In fact, it's the owners' groups that
5	are actively funding the development activity for
6	this.
7	We also, as almost in an advisory
8	capacity, have a Task Force that has involvement of,
9	again, PWR utility representatives, EPRI. We also
10	have, at their request, allowed EDF to join our
11	activities.
12	You touched on it briefly in the prior
13	discussions, what the international activities are.
14	The French are actively involved, and they are very
15	actively trying to see what the U.S. is going to do.
16	It's not clear to me right now who is going to take
17	the lead in this resolution, but, again, our
18	activities have to run independent of what the
19	international community is doing. We have to proceed
20	to close this issue out.
21	But we are very interested in following
22	what the French and other European nations or other
23	international representatives are doing to address
24	this issue. So we're trying to stay connected with
25	that. Having somebody from EDF on the Task Force

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	203
1	helps us there.
2	We have a number of consultants who have
3	expertise in various areas actively participating on
4	the Task Force, and we're thankful for that because
5	their participation is done gratis. We're lucky to
6	have them participate.
7	What I have tried to do here is kind of
8	outline that there's three general areas of activity
9	that are currently underway. The first area there is
10	really trying to get our hands around all the data
11	that has been collected, all the research we've
12	conducted, some of it contradictory to prior research.
13	So it's a lot of information, a lot of research, a lot
14	of data.
15	CHAIRMAN WALLIS: So you call NUREGs data,
16	too? I mean, they're information.
17	MR. BUTLER: Information, yes. I mean a
18	lot of the NRC-funded activity and test data is
19	documented as part of NUREGs.
20	A lot of research that has been done is
21	not directly applicable to the conditions of PWR, so
22	there's clearly an effort in evaluating that data to
23	make sure that it's directly applicable or the range
24	of applicability to PWRs, and where it's not, what of
25	that information can be used. So there is a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	204
1	significant effort just taking the data that's
2	available and assessing how we can best use that data.
3	Beyond the test data, there's also a need
4	to better understand PWR plants. You're already
5	familiar somewhat with the guidance we issued this
6	past spring for plants to go out, as part of our
7	analysis, to assess what the debris sources are, to
8	just get a better understanding of their containments.
9	A lot of the information, a lot of our
10	understanding was based simply on their design
11	drawings, and this provided an opportunity or the
12	impetus to go into their containments and either
13	confirm that their understanding of their plant was
14	correct or, where it wasn't, to correct it.
15	So knowing what the plants have in their
16	containments is needed in order to, once we have the
17	evaluation methodology, to then jump-start the final
18	step, which is to implement the resolution on a plant-
19	specific basis.
20	The main task, as you might expect, is
21	developing the methodology itself. I guess I'm
22	getting ahead of myself.
23	CHAIRMAN WALLIS: What do you see for a
24	methodology? Do you see sort of a general computer
25	program where you fill in bits that are characteristic

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	205
1	of your particular plant and then the machine runs and
2	out comes some number at the end which says you're
3	okay or you're not?
4	MR. BUTLER: No, that would be a
5	possibility if there were more similarity among all
6	the PWRs, but the condition that we have is there is
7	a very wide variability of the PWRs.
8	CHAIRMAN WALLIS: That's what concerned me
9	from the start, when we looked at this the last time,
10	is that every utility is going to have a different
11	situation. You can see all the amount of work that
12	Los Alamos has been doing, and you can't do all that
13	for every plant.
14	MR. BUTLER: No, and what I anticipate,
15	with the guidance of the methodology, would be
16	primarily is a framework. I'll use a number of words
17	here. A framework, you'll have to address the problem
18	in pieces: a regeneration piece, a transport piece,
19	an accumulation piece, the same pieces that are
20	addressed in the Reg. Guide.
21	You'll have a number of tools that you can
22	use to assess each of those pieces. How you use
23	those tools depend upon your particular situation.
24	There will be options to take a
25	conservative approach with its incumbent impact on the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

final analysis or to put more resources into a higherfidelity approach. So the guidance will provide guidance or options on how you can resolve those individual pieces with some information on what the potential impacts of each approach would be, so that plants could make an informed decision on which was the best approach.

We all know that there's always a quick 8 9 approach, and I wouldn't call it a "dirty approach," 10 but a very expensive approach just to assume that all 11 the debris is generated; it's all transported to the 12 sump, and install the largest sump you can get away 13 I'm not even sure that all plants could get with. 14 away with that, even if they had unlimited resources, 15 because of just the configuration of their lower containment may not allow as large a sump as they 16 17 would need under that assumption.

18 Free area may be large, but contiguous 19 free area in that lower containment is not necessarily 20 a large value.

21 DR. KRESS: What do you think of this 22 sphere of influence to get the amount of debris in the 23 first place?

MR. BUTLER: Pardon me?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

DR. KRESS: This sphere of influence based

(202) 234-4433

24

25

1

2

3

4

5

6

7

	207
1	on the pressure, stagnation pressure, do you think
2	that's sort of the direction you'll take in the NEI?
3	MR. BUTLER: I imagine so, yes. I mean,
4	as you discussed, there are pros and cons to that
5	approach. The hope is that it can be demonstrated to
6	be conservative.
7	We already know that in a lot of cases it
8	will not impact the final result because it takes very
9	little debris and very little fiber material and very
10	little particulates to make a difference. So whether
11	or not you assume a large value or half that large
12	value, you still
13	DR. KRESS: You've still got to deal with
14	it.
15	MR. ROSEN: Yes, precisely. So I've
16	already made that recognition, which I believe you
17	just said you have. Is the industry thinking about
18	replacing some of these fiber and particulate
19	insulations with RMI?
20	MR. BUTLER: We have not advocated that.
21	We have not put that forward as a position that a
22	plant should take, but I think you're correct in that
23	some plants have been making corrective changes in
24	their insulation.
25	MR. ROSEN: Because there's two ways to go

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

with this problem. One is to build a big sump to take more junk. But if you have already determined you can't build a big enough sump, given all of the stuff you have up in the containment, the next way to do it is to remove some of that and use some other kinds of insulation.

7 CHAIRMAN WALLIS: It's about the only 8 thing you can do. And if you can't make a bigger sump 9 and you know that the present stuff is going to get 10 there, 50 percent or 70 -- it doesn't make any 11 difference; you've got much more than enough to clog 12 the sump no matter how big you make it, then go do 13 something else.

DR. BANERJEE: How did the BWRs do it? Because they made pretty conservative assumptions, and they seemed to have solved, at least from what we heard --

MR. BUTLER: The BWRs, No. 1, they benefitted from the fact that there is a high degree of similarity of all the BWRs, or at least they are broken down into two generally highly similar types. So they could work on a single solution that could be applied generally by everyone.

In the end, I think it is fair tocharacterize their solution to be install the largest,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

14

15

16

17

	209
1	most effective strainer that you can get away with,
2	and that allows you some freedom to accept some
3	highly-conservative assumptions and to not be forced
4	to investigate some areas of high uncertainty.
5	DR. BANERJEE: But what we heard now I
6	don't know the details was they didn't just install
7	large strainers; they installed clever strainers.
8	MR. BUTLER: Highly effective.
9	DR. BANERJEE: Right.
10	MR. BUTLER: That's what I mean by
11	effective, yes.
12	DR. BANERJEE: Yes. So that, in fact, you
13	didn't have to put very large strainers, but you did
14	it in a clever way because it had this power of the
15	slow paths and you had the velocity normal instead of
16	tangential, or whatever, going through; I don't know.
17	But, anyway, the upshot of all this was
18	that they solved the problem in a very effective way,
19	from what I heard. Now is it that you cannot
20	accommodate that amount of strainer in a PWR?
21	MR. BUTLER: I imagine some plants can.
22	I mean, again, I made the point that the BWRs
23	benefitted from the fact there's a high degree of
24	similarity
25	DR. BANERJEE: Right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	210
1	MR. BUTLER: among all their designs.
2	What we have to recognize in developing
3	our methodology is some plants will be able to
4	accommodate that as a solution; other plants will find
5	that much more difficult. So we want our guidance to
6	provide enough flexibility or enough options to
7	utilities in how they address the problem.
8	Some may address it in a design fashion by
9	installing an effective, large sump. Others may
10	address it by trying to reduce their debris generation
11	source, you know, changing their insulation type.
12	Others may try to do it through analysis and showing
13	that they don't transport material to the sump.
14	CHAIRMAN WALLIS: I think there would be
15	a lot of pressure to do that, and a licensee finds a
16	real box and doesn't have a big sump confidence,
17	strainers at work, if he makes the extreme
18	assumptions, you know, he's going to say, "Let's find
19	some consultant who is going to cut back on all these
20	conservative assumptions and prove that it isn't
21	really so bad."
22	DR. BANERJEE: Was NEI involved with the
23	BWR solution?
24	MR. BUTLER: No. That was done under the
25	guidance of the BWR owners' group.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	211
1	DR. BANERJEE: Because they have many
2	different generations of containment. Each one is
3	completely different from the other.
4	MR. BUTLER: The degree of differences
5	among the various generations is not as significant
6	DR. BANERJEE: I see.
7	MR. BUTLER: as the differences that
8	you would see in PWR containments in terms of the
9	insulation types that are used, the configurations,
10	the volumes, the sump types that are used. There's a
11	very high degree of variability among PWRs.
12	Well, I think I've addressed a number of
13	these slides.
14	CHAIRMAN WALLIS: Well, it seems to me
15	it's not just getting all this data. Someone's got to
16	do some really creative engineering analysis to figure
17	out how they make the right predictions. Los Alamos
18	has been working at that for some time. Are you guys
19	going to mount a similar effort?
20	MR. ROSEN: Not before September 2003.
21	CHAIRMAN WALLIS: I doubt it, yes, no way.
22	So I was just wondering, has this begun to be a rather
23	superficial thing by September 2003 in terms of
24	technical analysis? I mean, it may point the way to
25	what's out there, but in terms of your own analysis,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	212
1	I don't think you have time to do it.
2	MR. BUTLER: Well, the guidance
3	methodology is not going to include the CFD analysis
4	that someone would need to calculate transport
5	fractions. That would be part of the implementation
6	because you need plant-specific data. It's a plant-
7	specific resolution item to perform those
8	calculations.
9	Our methodology would only go to the point
10	of identifying what you would need to look at to
11	address as part of that CFD analysis, guidance on what
12	transport fractions for different materials makes
13	sense, the inputs to that analysis, like the actual
14	plant model needed to calculate results for a
15	particular plant are a plant-specific resolution item
16	and would follow issuance of our methodology.
17	MR. ROSEN: Let me ask a question of the
18	staff. How long is it, in your and maybe it's in
19	the Generic Letter and I haven't understood it how
20	long is it before you expect the plants to make either
21	appropriate fixes or be able to show that they're okay
22	with what they have?
23	DR. WEERAKKODY: As I recall, we don't
24	specify an exact date, but we have specified certain
25	timelines for initial assessments and then

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	213
1	evaluations, and then getting enough information.
2	The reason we don't necessarily like to do
3	that is, as some of you had sometimes thought, the
4	particular plant does the initial assessment and then
5	concludes that they want to jump in and do a fix.
6	They can do that, like Davis-Besse did.
7	But there may be another plant that
8	determines that they have enough that their plant
9	is not susceptible based on the initial assessment,
10	and then it will take them, I think, to collect the
11	data, some of the data they need from the containment,
12	they might do that during an outage. So it might be
13	a couple of years. So the time that it would take to
14	take this issue to a total completion could be very
15	plant-specific.
16	MR. ROSEN: You have a large tolerance for
17	delay. My fuse is somewhat shorter than yours.
18	DR. KRESS: Especially with 170 CFD
19	increase.
20	MR. ROSEN: Yes.
21	DR. WEERAKKODY: Is that 170 percent or
22	170 times?
23	MR. ROSEN: A hundred and seventy times.
24	DR. WEERAKKODY: Yes, the 170 times core
25	damage frequency, that is a conservative number. If

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	214
1	you really thought the core damage frequency of the
2	plant's 170 times higher, this would be an issue that
3	would require something like an audit.
4	We take that PRA number as an upper bound
5	and take the issue very seriously. Now in terms of
6	the timeframe, we don't have a large tolerance. What
7	I'm trying to get across is each plant, when they get
8	the Generic Letter, they will be required to do an
9	initial assessment. As a result of that initial
10	assessment, it will be their responsibility to
11	conclude whether they are susceptible or not.
12	If they conclude that they are susceptible
13	with relative certainty, then we would expect them to
14	take relatively quick action because
15	MR. ROSEN: So what's relatively quick?
16	I mean, it seems to me if it's not it sounds like
17	I didn't miss it in the Generic Issue; it's not in
18	there.
19	Is there a date that the staff has in mind
20	for when they want to have all the PWRs with this
21	problem behind them?
22	DR. WEERAKKODY: The furthest date we can
23	anticipate I can't recall off my mind. Even if a
24	plant decides that they are not vulnerable, I think it
25	can then go up to like 2007, but that sort of plan,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	215
1	you know, they have done the evaluation and have
2	concluded that they are not susceptible.
3	MR. ROSEN: Well, if they're not
4	susceptible, they don't have a problem today. So, I
5	mean, I'm just saying there's two ways to get a way
6	through this problem. One is to prove that you're not
7	susceptible, and I think there will be some plants
8	that can do that. Plants, for example, with very
9	large containments with lots of reflective metal
10	insulation and very little of the other kind, and very
11	big sumps, will probably be able to show that they're
12	okay.
13	Then there will be plants that couldn't
14	show it no matter what, and they'll have to make a
15	fix, either take out some of the other insulation they
16	have and put in some reflective metal insulation or
17	put in bigger sumps, or both. Those plants will have
18	it will take some time, clearly, to do that.
19	I don't think they'll be able to do that
20	in one outage unless they shut down and stay down for
21	a long time. They'll have to get to work on it.
22	Every bit of that kind of insulation that's not good
23	that they take out during an outage is a good thing,
24	and replace with the reflective metal insulation.
25	So it seems to me you need to get on with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	216
1	it for the plants that do have a problem. The idea of
2	not having a drop-dead date to me is puzzling.
3	CHAIRMAN WALLIS: It gets back to this
4	whole Generic Letter being too polite in sort of
5	saying, "Take a look at it and let us know, and then
6	maybe we'll figure out what to do."
7	MR. ROSEN: If you say you have a problem,
8	it seems like the regulator ought to say, "Okay, we
9	understand it's a probablistic, stochastic process,
10	and it's probable you won't this have problem during
11	`X' amount of number of years," but we need to say
12	that we're going to limit our liability and our
13	vulnerability by saying everyone won't have this
14	problem by "X" date and having picked that on some
15	basis.
16	DR. WEERAKKODY: I think if you go to the
17	pages where we discuss specific requests for
18	information or action, we do specify specific due date
19	for each of those. I can't remember the exact date
20	for each of them, but we say, when you receive this
21	letter, you know, by a certain date do this.
22	MR. ROSEN: Well, I'll study it some more.
23	CHAIRMAN WALLIS: Well, there's a 90-day
24	response time.
25	MR. LEITCH: We're at the stage where

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

(202) 234-4433

	217
1	we're sort of a plan for a plan rather than actual
2	physical changes.
3	DR. WEERAKKODY: The Generic Letter does
4	take you through several steps. In fact, what we have
5	done is, if you go to the Generic Letter, page 9, in
6	Item 1 we say, within 90 days of the date of the
7	Generic Letter the licensees are expected to provide
8	certain information.
9	Then if you go to Item 2, we say, within
10	90 days of the date of completion of the requested
11	evaluation of the susceptibility that the ECCS
12	basically can function, the plants are required to
13	provide us information.
14	CHAIRMAN WALLIS: I think they're going to
15	be in a real bind to do it in these two 90-day
16	periods.
17	MR. ROSEN: But even so, if they could do
18	it, then that's 180 days, and then you get to 2(b), as
19	in "bravo." It says, "if any plant modifications are
20	identified as being necessary to assure compliance
21	with regulations, that other regulatory requirements
22	will not be implemented until a future scheduled
23	outage described in the interim compensatory
24	measures."
25	DR. WEERAKKODY: Okay.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	218
1	MR. ROSEN: It sounds to me like you might
2	put them all in during the next outage. Is that the
3	implication?
4	DR. WEERAKKODY: No, I think what we are
5	doing here is, you know, there may be plants out
6	there, when they look at this information, they might
7	be looking at information and the analysis they need
8	to do within the first 90 days, and conclude that
9	their ECCS is degraded but operable, and within the
10	regulation that takes them to the instructions that we
11	give them under Generic Letter 91-18. So they would
12	be required to take interim compensatory measures
13	while they are taking care of the issue.
14	MR. ROSEN: They absolutely should do that
15	now. But it seems that 2 "bravo" or the next one,
16	2(c), ought to say something like, "All required
17	modifications should be complete by" and you pick
18	a date and say, "or provide justification for not
19	meeting that date."
20	MR. LEHNING: Kind of the problem with
21	that is, like when you request an action, you have to
22	have a regulatory basis for doing that, a
23	cost/benefit, but at the time we're asking someone to
24	do that, but say if a licensee is just barely out of
25	compliance, they have just this one piece of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	219
1	insulation, and if they have just one break, it's a
2	real low probability. So we can't tell them, you
3	know, we don't have a basis to say, "You need to do it
4	right away." If a plant has a really bad
5	configuration
6	MR. ROSEN: I didn't say right away. I
7	said pick a date.
8	MR. LEHNING: Or even to pick a date, we
9	can't say you have
10	MR. ROSEN: I didn't say right away.
11	Don't overreact. What I said is, pick a date, a date
12	certain, which we then could say, okay, now we can
13	calculate the vulnerability of the fleet, assuming
14	everybody waited that long. Otherwise, it's not
15	bounded.
16	CHAIRMAN WALLIS: Let's see, this draft
17	has not been given to NEI, this Draft Generic Letter?
18	So they don't know what we're talking about?
19	DR. WEERAKKODY: Dr. Rosen, what we can do
20	is we will think about your comment and some of the
21	reasons
22	CHAIRMAN WALLIS: I think what is going to
23	happen is, if you extend this out even without the
24	tightness that my colleague wants you to add to it,
25	that it may well be that the industry is going to come

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	220
1	back and say, "We can't do it." They'll scream, you
2	know, this is an unreasonable thing.
3	They'll have comments on the letter, and
4	then you'll have to fight them, if you believe what
5	Los Alamos has been telling us about this being a real
6	problem with all this debris, and it only takes a
7	bucketful of fibers to plug a screen, and so on.
8	MR. ROSEN: Well, I'm not arguing for
9	precipitous action. What I'm arguing for is
10	definitive a definitive timeframe, a definitive
11	framework that everyone knows about.
12	CHAIRMAN WALLIS: Well, I don't think that
13	your NEI guidance is going to be available in time,
14	it's going to be deep enough technically to satisfy
15	the NRC the way that they're going. So this Generic
16	Letter is going to go out, and then the licensees are
17	going to be asked to do something, and they won't know
18	how to do it. The only thing they can do is adopt the
19	Los Alamos approach.
20	MR. ROSEN: But, Mr. Chairman, we have got
21	to decide what we're going to say to the full
22	Committee.
23	CHAIRMAN WALLIS: And it's going to be
24	interesting.
25	MR. ROSEN: And maybe we should allow Mr.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	221
1	Butler
2	CHAIRMAN WALLIS: Yes, I think we should
3	let Mr. Butler we're sort of talking among
4	ourselves. Maybe we should let you finish your
5	presentation, and then we will decide.
6	I thought you would come up here more sort
7	of saying how the industry will respond to the kind of
8	thing that they're going to be asked to do, and
9	whether or not they can manage to do it.
10	MR. BUTLER: We'd be glad to do that after
11	we have seen it.
12	CHAIRMAN WALLIS: See, you can't do that
13	until you've seen it, right?
14	MR. ROSEN: And I'm complaining about what
15	I see as not being definitive enough.
16	MR. ARCHITZEL: I think I would like to
17	make a comment that, you know, this is really still
18	considered an industry initiative, and we're
19	responding to that initiative.
20	CHAIRMAN WALLIS: Well, it's an
21	industry
22	MR. ARCHITZEL: That's the premise behind
23	that Generic Letter. There is an industry initiative
24	that we presume is going to be acceptable. If that
25	premise isn't good, it's still industry's action and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	222
1	it's their responsibility to
2	CHAIRMAN WALLIS: Yes, but your Reg. Guide
3	is very specific about what it wants done.
4	MR. ROSEN: Well, it may be an industry
5	initiative, but it is a regulatory matter, and it
6	isn't up to the industry what the staff of the
7	Commission does. Industry's participation and
8	cooperation has been good. That's wonderful. But at
9	some point I'm arguing that and I'm speaking to the
10	staff and to my colleagues that this has gone on
11	long enough without a date certain.
12	CHAIRMAN WALLIS: Well, there are two 90-
13	day stages here, which even then they're going to put
14	a lot of pressure on industry.
15	MR. ROSEN: For analysis, yes. Collecting
16	data and analysis, but
17	CHAIRMAN WALLIS: And having a plan of
18	what they're going to do.
19	MR. ROSEN: And then all I'm asking for is
20	them doing it. You know, if you put a date certain on
21	the end of it, all the other things have to start
22	backing up, and pretty soon you're able to decide
23	whether you can use those other dates in any
24	reasonable way. It may be just what you say, but if
25	you put a date certain on it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	223
1	CHAIRMAN WALLIS: Well, NEI must be pretty
2	close to the pulse of industry. I mean, they've got
3	a letter saying they've got to come up with 90
4	days/90 days, that's not very long. It's half a year.
5	By that time, they're going to know what they're going
6	to do to fix the problem? Do you think that's a
7	realistic thing to ask industry to do?
8	MR. BUTLER: If you're asking me what
9	would be the best time to issue the Generic Letter and
10	start that 90-day clock, it would be when we have the
11	methodology and have agreement with the staff on that
12	methodology.
13	CHAIRMAN WALLIS: Well, I don't see
14	you've shown us no methodology. So I don't have any
15	faith in you having it in half a year either.
16	MR. LEHNING: Mr. Chairman, may I make a
17	comment? I think there's just some misunderstanding
18	about the two 90-day periods. The first 90 days is
19	the 90 days after the receipt of the letter, and then
20	the second 90 days would be
21	CHAIRMAN WALLIS: Yes, but you're not
22	going to send the letter out, you see. You're going
23	to wait and wait and wait and wait.

24 MR. LEHNING: It would be 90 days after 25 the licensee completed the evaluation, not 90 days

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	224
1	after the first submittal
2	CHAIRMAN WALLIS: So when is this letter
3	going to go out realistically?
4	MR. LEHNING: The schedule? I think it's
5	planned for the summer.
6	CHAIRMAN WALLIS: So it's pretty soon?
7	MR. LEHNING: For the final, for the final
8	version of the Generic Letter. The draft is planned
9	I think in March or April, yes, for the draft, for
10	public comment.
11	MR. DORMAN: The clarification that needs
12	to be made here is that the first 90-day period is
13	measured from the issuance of the Generic Letter. At
14	that time the licensee provides a plan, and that plan
15	includes when they propose to complete their analysis.
16	Then the staff has an opportunity to determine whether
17	that timeframe is appropriate and acceptable.
18	CHAIRMAN WALLIS: But if they don't have
19	the NEI guidance or analysis, how are they going to
20	plan to complete their analysis?
21	MR. DORMAN: That would, obviously, impact
22	them. But the second 90 days, then, doesn't start
23	from their first response. The second 90 days start
24	from completion of the analysis in accordance with
25	whatever plan they presented after 90 days. So the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	225
1	second 90-day report is not 180 days after the Generic
2	Letter. It's probably something longer than that.
3	CHAIRMAN WALLIS: I just thought, my
4	intuition is it will take NEI years. You're asking
5	for days. It isn't compatible. Maybe I'm wrong.
б	Maybe you guys are really ready to issue a guidance
7	and everything's worked out.
8	MR. BUTLER: My concern really comes at it
9	from a different point of view. I mean, I agree that
10	there is uncertainty with the September date. I mean
11	you just have to accept that with any kind of effort
12	that addresses this many issues, as many issues as
13	this one does.
14	But my concern would come from a
15	postulated schedule where a Generic Letter comes out
16	in final form, starts a 90-day clock. Every PWR
17	utility then looks at it and says, "I've got to have
18	this methodology right now to begin my evaluation."
19	That then puts a high degree of pressure to complete
20	that very quickly and get it out to industry, and
21	during a time when discussions are probably at a
22	critical stage with NRC staff, you're trying to
23	complete everything.
24	We would basically be forced to try to
25	complete the methodology with too many cooks in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	226
1	kitchen, and that will cause some problems in itself.
2	That's one of my main concerns.
3	CHAIRMAN WALLIS: Well, I'm concerned
4	about your having any cook. I think you're going to
5	have a Task Force which is thinking about it and
б	talking about it, and you don't have any cooks cooking
7	in the kitchen at all.
8	A cook is going to actually produce this
9	guidance. You know, here's some analytical method;
10	it's based on fundamentals and data and engineering,
11	and so on and so on, and here's the justification for
12	it.
13	MR. BUTLER: Oh, we do have
14	CHAIRMAN WALLIS: Do you have all that
15	stuff?
16	MR. BUTLER: The primary contractor on the
17	methodology is Westinghouse.
18	CHAIRMAN WALLIS: And they have this
19	methodology there? They just have to unveil it?
20	MR. BUTLER: We are working on it. I
21	mean, we are working on it. We've got a fair, a high
22	degree of completion on the regeneration portion of
23	it, looked at drafts of other portions, of debris
24	transport and the different phases.
25	CHAIRMAN WALLIS: So if we advise the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	227
1	staff to go ahead, send this out, and as fast as they
2	can implement it, you guys can respond?
3	MR. BUTLER: As far as issuing it for
4	draft, a draft for comment, once it's issued for a
5	draft to comment, one of the comments we'll provide is
6	on the schedule and some of the concerns of how that
7	schedule can impact or interplay with the guidance
8	development, some of the same concerns you've
9	expressed.
10	CHAIRMAN WALLIS: Well, without seeing
11	anything from Westinghouse, there's no way I can
12	assess this guidance that you have as a hope.
13	DR. WEERAKKODY: I do want to make one
14	comment. Hopefully, at least partly, this is Dr.
15	Rosen's question or concern.
16	One of the things we have, or we are
17	trying to accomplish with the Generic Letter, is
18	within the 90 days, before the licensees do a full-
19	blown evaluation, ask them to either put interim,
20	compensatory measures in place that could reduce this
21	aspect of it significantly.
22	In fact, the Generic Letter, we do
23	identify some of the known interim, compensatory
24	measures for this activity in the Generic Letter
25	itself.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	228
1	MR. ROSEN: I understand you're going to
2	ask them for interim, compensatory measures. My
3	problem with them is that, while I am sure the
4	utilities can do that and define them and write
5	procedures, operating procedures, and train operating
6	crews to, in fact, implement those interim,
7	compensatory measures, given the phenomenology we've
8	heard about today, I'm not sure that they'll work.
9	I'm not sure they'll be effective, interim,
10	compensatory measures.
11	CHAIRMAN WALLIS: Well, I think this is
12	very interesting. I think we're setting a stage for
13	quite a drama.
14	(Laughter.)
15	MR. ROSEN: We're talking about a low-
16	probability event.
17	CHAIRMAN WALLIS: Yes, maybe it will go
18	away.
19	MR. ROSEN: But, still, we have to assess,
20	under this very stressful phenomenology, that
21	operators take these extraordinary interim,
22	compensatory measures, including shutting off
23	recirculation, or whatever those measures are, things
24	that are counterintuitive to them.
25	But even if they did them, would that let

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	229
1	I presume that's to let all the particulates and
2	filterable materials settle out, and then they can
3	start it up again. But would that really de-suspend
4	them or not? I'm not sure that I've been shown data
5	that shows that that would be effective.
б	DR. KRESS: I thought the pool CFD
7	velocity possibly showed that they would settle out in
8	the sump, but they would make it to the filter anyway,
9	even if you cut them off and them wipe them and
10	suspend, and turn it back on. So I don't think that's
11	a compensatory measure that would be acceptable.
12	DR. BANERJEE: How many plants are at sort
13	of risk compared to and cannot apply a filter
14	solution like the BWR solution? Because that, we know
15	the area of the filters. So how many plants have low
16	areas or how many plants are at risk? If we can do
17	this assessment fairly rapidly the Los Alamos
18	people probably already did it. How many are we
19	talking about?
20	DR. WEERAKKODY: I know some of the
21	information that was published in the Los Alamos
22	report. I think we may be mixing up the risk aspect
23	of this analysis, the concept of the risk analysis,
24	with the establishment of the credible concern here.
25	What the Los Alamos study showed was that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	230
1	this is a credible concern, and in the process they
2	did the risk assessment with some considered
3	assumptions and showed that the core damage frequency
4	could go up by a very significant factor.
5	I think the part where Los Alamos
6	concluded that this is a credible concern is mainly
7	based on deterministic. In other words, we did not
8	factor in the probability of the breaks. We did not
9	factor in the probability of different events
10	happening or not. We just concluded that, based on
11	all the information, this can happen.
12	DR. BANERJEE: Yes, but it's not a very
13	huge thing. We are talking of plants which have
14	insulation with particulate matter in it because we
15	were told fiber is always there, and then it's filter
16	area per megawatt after that, more or less.
17	If that can give you then which plants,
18	you can change the filter to a BWR-type filter and
19	which ones have to do something different. Right? I
20	mean it's not a huge problem. I mean it may be a huge
21	problem for the plants that cannot do it, but there
22	must be just a handful of these.
23	CHAIRMAN WALLIS: I think we'll get this
24	perspective. If these things go out, this perspective
25	will have to be developed, won't it?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	231
1	DR. BANERJEE: Right. So you're saying
2	let it happen?
3	CHAIRMAN WALLIS: Well, we have Mr. Butler
4	here still, and we've got ourselves talking among
5	ourselves. But do you have any wisdom for us on these
6	matters?
7	MR. BUTLER: Just key points to not
8	forget: There is no single answer to this. Because
9	of the high degree of variability of all the PWRs,
10	there are, in effect, 63 different answers to the
11	problem. There is a whole range of sizes and PWR
12	sumps, and you could probably identify 10 plants that
13	have the smaller sumps, but those also may be the 10
14	plants that have a low probability of debris transport
15	or a high degree of RMI.
16	You know, there aren't plants that stand
17	out because of the worst circumstances in all relevant
18	aspects; there is just a high degree of variability.
19	Because of that, we need to provide the plants with
20	the tools and the options and the time for them to
21	address it in the most appropriate fashion for their
22	plants.
23	CHAIRMAN WALLIS: Well, I was sitting here
24	listening to Los Alamos. I don't see, from what they
25	presented, which was very interesting and had an awful

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	232
1	lot of things, I don't see a clear path which says,
2	knowing what they have told me, I can see the way to
3	developing guidance for a plant. Maybe you guys are
4	much smarter.
5	Knowing all the stuff they presented
6	today, if you're going to consider all that stuff, I
7	can't see my way through the thicket to say, "This is
8	the way I would develop a guidance for a plant." I
9	would probably have to fall back on something
10	conservative.
11	MR. BUTLER: And in some areas we will
12	likely have to do that.
13	CHAIRMAN WALLIS: And it might be very
14	conservative.
15	MR. BUTLER: Well, we're trying to address
16	some of the major conservatisms as part of our
17	guidance upfront in discussions with staff. You are
18	already aware of some of those discussions in the LBB
19	area. We think the current GDC-4 regulation allows us
20	to exclude the regeneration for LBB-qualified
21	CHAIRMAN WALLIS: Do you want an opinion
22	of this Committee on the LBB issue? It hasn't been
23	brought up today.
24	MR. BUTLER: I wasn't going to bring it up
25	in my discussion. I'm not sure I want to ask the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	233
1	question if I'm not willing to live with the answer,
2	but I'll leave it to you to express your opinion or
3	not.
4	MR. ROSEN: Well, I would like to come
5	back to this date thing. I think I've read this more
6	carefully, and I think it actually is in there, but I
7	want to verify that with you and the staff, not you,
8	John, because you haven't got it in front of you.
9	But the staff says there are two 90-day
10	periods, and the second 90-day period, it says,
11	"Within 90 days of the date of completion of the
12	requested evaluation of the susceptibility, provide
13	the following: a description of the actions taken,"
14	et cetera, et cetera.
15	Then it goes on to "a general description
16	of an expected implementation schedule for any plant
17	modifications that are necessary to ensure the
18	availability of the ECCS and CSS recirculation
19	functions under the postulated debris loadings. If
20	required modifications will not have been completed by
21	the end of the subsequent refueling outage, provide
22	justification."
23	So that, very simply to me, adds two 90-
24	day periods that's a half a year, 180 days, half a
25	year plus a typical refueling outage schedule or

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	234
1	refueling cycle, like another 18 months.
2	MR. LEITCH: The two 90-day periods are
3	not back to back necessarily.
4	MR. ROSEN: They're not back to back.
5	Even if they were
б	MR. LEITCH: The second 90-day clock can
7	start a year after the end of the first one.
8	MR. ROSEN: But even if they were let's
9	just say that's the minimum
10	MR. LEITCH: Yes, right.
11	MR. ROSEN: The minimum would be a half a
12	year plus a year and a half. So that's two years.
13	That's the minimum but not the maximum. So I think my
14	question stands.
15	MR. LEITCH: Yes.
16	CHAIRMAN WALLIS: Why are they not back to
17	back?
18	MR. DORMAN: Because the first one
19	requests a schedule
20	CHAIRMAN WALLIS: Yes.
21	MR. DORMAN: for their evaluation, and
22	then they do the evaluation. When they complete the
23	evaluation, the second 90-day clock starts.
24	MR. LEITCH: They haven't prescribed the
25	time to do the evaluation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	235
1	MR. DORMAN: So it allows for the licensee
2	to propose a time period for the evaluation.
3	Obviously, if they came in with five years maybe
4	that's a hard part over that.
5	CHAIRMAN WALLIS: Okay. So you've got
6	April 1st, 2004. It can also be within 90 days of the
7	completion of the containment surveillance, or am I
8	MR. ROSEN: Whichever is later.
9	CHAIRMAN WALLIS: Yes, whichever is later.
10	Well, okay.
11	So what happens? These things go out for
12	public comment? Is that the way it goes?
13	DR. WEERAKKODY: Yes.
14	CHAIRMAN WALLIS: Now how long does that
15	take? Sixty days? Then by then you get the comments,
16	and then you make a decision in how long?
17	MR. LEHNING: The final issuance?
18	CHAIRMAN WALLIS: Yes.
19	MR. LEHNING: Is that what you're asking,
20	what the final issuance? It is planned for, I think,
21	the fall.
22	MR. ARCHITZEL: I've got a schedule here.
23	Particular dates, we've got it laid out.
24	So the question is, when does the final
25	Generic Letter go out?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	236
1	CHAIRMAN WALLIS: Yes.
2	MR. ARCHITZEL: Okay, the final, it's
3	currently scheduled for August.
4	MR. DORMAN: Yes, and for the regulatory
5	guidance, it's scheduled for September.
6	CHAIRMAN WALLIS: Yes, okay.
7	MR. ARCHITZEL: But, remember, this hasn't
8	been through the CRGR yet, and so the process could
9	slip.
10	MR. ROSEN: You may be asking too hard a
11	question for the ACRS. The ACRS is trying to figure
12	out how you're managing this, and we don't
13	CHAIRMAN WALLIS: That's right. I think
14	there's so many imponderables about whether CRGR is
15	going to approve it or how much slack you get from
16	industry, and all that, that I think the only thing
17	that we can really do at this stage is to go into a
18	sort of caucus now and say, "Go ahead, issue these
19	things for public comment."
20	MR. ROSEN: Well, we can do that for sure.
21	CHAIRMAN WALLIS: It's too early for us to
22	get involved in the melee here.
23	MR. ROSEN: Right, but we can certainly
24	express our angst about not having a schedule with an
25	end date, if that's the will of the Subcommittee and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	237
1	the full Committee.
2	CHAIRMAN WALLIS: I guess we could write
3	a Larkinsgram, and then we could put in a sentence or
4	two about needing an end date or something.
5	See, if we want the Committee to write a
6	letter, then we're going to have to ask these folks to
7	come before the Committee in two days, and we're going
8	to have to schedule it and squeeze it into a schedule
9	which is already full.
10	MR. ROSEN: Well, aren't they supposed to?
11	It's already scheduled?
12	CHAIRMAN WALLIS: But it's a short thing.
13	It's only 15 minutes or something.
14	MR. SNODDERLY: No, no, no. Right now
15	there's an hour and a half scheduled.
16	CHAIRMAN WALLIS: Oh, it's an hour and a
17	half scheduled?
18	MR. SNODDERLY: Excuse me. This is Mike
19	Snodderly.
20	Right now there is an hour and a half
21	scheduled from 10:30 to 12:00 on Thursday.
22	CHAIRMAN WALLIS: But if it were a
23	Larkinsgram, it would simply be a discussion with this
24	Committee, maybe half an hour with the full Committee,
25	saying that there are things that we have learned

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	238
1	today and we just will share it with our colleagues,
2	but it wouldn't be that this would go into a letter
3	where they would they have to make their own
4	decisions.
5	MR. ROSEN: But, typically, Larkinsgrams
6	were used to go out and to say, you know, it's okay to
7	release it for public comment. But I have a more
8	substantive concern, which is that this is, I think,
9	an important problem potentially in some plants, and
10	that there seems to be no clear resolution date at
11	least proposed in the Generic Letter.
12	DR. KRESS: I share that concern, and that
13	would take a Committee letter?
14	MR. ROSEN: Right.
15	CHAIRMAN WALLIS: It would take a
16	Committee letter? You can't put that in a Larkinsgram
17	because the whole Committee has to
18	DR. KRESS: We normally don't put that
19	substantial of comment
20	CHAIRMAN WALLIS: All right, so the whole
21	Committee would have to confront the issues, and they
22	would have to have a presentation?
23	DR. KRESS: I think so.
24	CHAIRMAN WALLIS: And they would have to
25	come up-to-speed. So they would have to have a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	239
1	shorter version of what we heard today.
2	DR. KRESS: Now be aware that any members
3	that aren't here, at least two of them that sit over
4	here are well up on this issue and went through the
5	BWR part of it, and are quite aware of the problems
6	and the ramifications. So it's not like they need
7	extensive educating.
8	CHAIRMAN WALLIS: Well, I think the staff
9	already knows this Subcommittee is concerned about
10	this business of dates, and so on. Do we need to have
11	the authority of the whole Committee invoked?
12	MR. SNODDERLY: Graham, if I can make a
13	suggestion, I would like to say that this could be
14	discussed at the P&P tomorrow, and in the meantime we
15	ask the staff to prepare a presentation for the full
16	Committee and we would get back to them before
17	Thursday.
18	But, as of right now, we would prepare,
19	have them condense their presentation for an hour and
20	a half on Thursday from 10:30 to 12:00, with emphasis
21	on the schedule of the Generic Letter, what is
22	requested, and when they think that would be
23	anticipated.
24	MR. ROSEN: When they think that would
25	lead to fixes in the plants that need it?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	240
1	MR. SNODDERLY: Right, and whether there
2	would be a final date or not, and also to reflect, I
3	guess, on page 7, because it seems to be very
4	contingent upon NEI developing this subsequent
5	guidance by September 2003. Because when you send in
6	your 90-day letter to say what kind of an evaluation,
7	you might say, well, I'm going to do it in accordance
8	with the methodology being developed by NEI. So if
9	that goes beyond
10	MR. ROSEN: Almost certainly every plant
11	will do that.
12	MR. SNODDERLY: Right, right. So that
13	seems to be a key.
14	CHAIRMAN WALLIS: Well, I have very little
15	in there being a methodology.
16	MR. SNODDERLY: Right. So that would go
17	with your concern and Dr. Kress' that this does
18	appear, and Dr. Rosen, that there isn't this end-all
19	date or a closeout date.
20	And then you could decide at the P&P
21	whether you want to discuss that
22	CHAIRMAN WALLIS: That's why I think that
23	before we go to the P&P, I think this Subcommittee has
24	to decide what they want and tell the P&P that's what
25	they advise them to do.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	241
1	MR. ROSEN: But two members of the P&P are
2	here.
3	CHAIRMAN WALLIS: But, you see, my
4	inclination was to say there's enough here; it's going
5	to stir up enough stuff that you could send out a
6	rough direct letter and the Reg. Guide, and there may
7	be a few details like discussed here to be fixed up,
8	but that can be fixed up when the public comments come
9	back. Send this out, and that's going to start the
10	ball rolling.
11	It's going to put NEI on the spot. It's
12	going to put some of the licensees on the spot, and
13	it's going to put LANL on the spot to be more specific
14	about what they're recommending to the staff. Then
15	things will happen.
16	MR. ROSEN: Well, I think what we're
17	talking about is a procedural question, which I think
18	maybe we could get some help from the staff.
19	CHAIRMAN WALLIS: What I was hoping
20	MR. ROSEN: Can we put that put that much
21	into the Larkinsgram?
22	CHAIRMAN WALLIS: Well, what I was
23	thinking, that we simply have a Larkinsgram saying we
24	have no objection to these going out for public
25	comment. They will then go out for public comment.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	242
1	That's all we need to say. Everything else will take
2	its course. It has to. It just follows on from
3	MR. ROSEN: Not if we don't say something
4	about the schedule.
5	CHAIRMAN WALLIS: We'll see it again. It
6	comes back from
7	MR. ROSEN: No, no, I'm saying, not unless
8	we put a burr under the saddle. I mean, it will
9	continue to do what it's been doing, which is moving
10	ahead like an iceberg.
11	CHAIRMAN WALLIS: I thought these 90 days
12	were not moving ahead at a snail's pace, but maybe I'm
13	under some illusion.
14	MR. LEITCH: I have no problem with
15	recommending that we send it out for public comment in
16	its present form. I think that it addresses one
17	refueling outage or no later than whatever it says,
18	one fuel cycle. I think that's a reasonable approach
19	to send it out for public comment that way.
20	You know, there may be some changes in
21	that as a result of the comments, but I think that's
22	a reasonable approach. I am frustrated that it's
23	taken this long to get to this point, but that's
24	behind us now. I mean we can't recoup that time.
25	I mean, I think this whole issue is an

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	243
1	issue where striving what's the saying? Perfection
2	is the enemy of good enough. I think we've killed
3	this thing trying to analyze it. I think we've got
4	some plants out there that we know are much more
5	susceptible to this than other plants, and we just
6	ought to get on with it and get those plants fixed.
7	But we've taken an awful lot of time with
8	this, and we can't do anything to recoup that time at
9	this point. There may be some lessons learned from
10	how long this has taken, but what I'm saying is I
11	think now the thing to do is, without further delay,
12	get the Generic Letter out for public comments or,
13	yes, get the thing out for public comments.
14	CHAIRMAN WALLIS: And the Reg. Guide.
15	MR. LEITCH: The Reg. Guide, yes.
16	DR. KRESS: Well, yes, and I agree pretty
17	much with what you said, but I see it as somewhat
18	analogous to the control rod drive cracking issue.
19	Some plants are a lot more vulnerable than others. So
20	that when the NRC went out with the Generic Letter on
21	this issue, they gave those that were less vulnerable
22	more time, and those that were very vulnerable, they
23	said, hey, you had better get on with it here, and
24	especially these, these, these.
25	Now I think the Generic Letter I see gives

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	244
1	all plants equal time to assess their vulnerability
2	and make a plan and go on. But I think that there's
3	a missing ingredient, and that is how vulnerable are
4	they; how urgent does it have to be when they're
5	vulnerable, and can we give the ones that aren't
6	vulnerable more time?
7	CHAIRMAN WALLIS: I don't think it helps.
8	If they're not vulnerable, they just come back with a
9	short answer: We're not vulnerable.
10	DR. KRESS: Yes, well
11	CHAIRMAN WALLIS: There's no reason to get
12	into all the topics.
13	DR. KRESS: I think there are gradations
14	of not vulnerable.
15	CHAIRMAN WALLIS: But that's information,
16	though. I think the NRC needs to know how vulnerable
17	they are.
18	DR. KRESS: Yes.
19	CHAIRMAN WALLIS: They don't know it until
20	they've got these answers.
21	DR. KRESS: Yes, once you find some that's
22	very vulnerable, I think you need the answers faster
23	and you can do something better with those. But I
24	guess I'm coming down on the side of just going ahead
25	and saying: Issue these Generic Letters, the drafts,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	245
1	and the Reg. Guide, and then let's worry about this
2	other part when the answer is due in on vulnerable.
3	CHAIRMAN WALLIS: Do we need their
4	presentation before the full Committee by the staff?
5	DR. KRESS: No, not if we just write that
6	Larkinsgram.
7	MR. ROSEN: Well, here's what I would like
8	to have them talk about at the full Committee: Focus
9	on very basic phenomenology without getting into too
10	much of it, and then get into the schedule and assure
11	the full Committee, and me, that this will move
12	forward, given whatever it is you say in the Draft
13	Generic Letter.
14	Is that all right with the staff?
15	CHAIRMAN WALLIS: What do the other
16	members of the Subcommittee have to offer for advice?
17	DR. FORD: Well, I agree with the issuance
18	of the Generic Letter for public comment now, and
19	that's the essence of the Larkinsgram. Where we're
20	sticking is, do we put in this question of the timing?
21	As you know, I get very impatient when
22	things drag on. So, inherently, I'm behind Steve on
23	this one. Whether that needs to have a full meeting,
24	I'm not at all sure.
25	MR. ROSEN: Well, it's on the schedule

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	246
1	already.
2	CHAIRMAN WALLIS: When does this come back
3	to the ACRS? Doesn't it come back? When does it come
4	back? Are you going to bring it back to us after the
5	public comments and before you issue these things?
6	MR. ARCHITZEL: Well, the Generic Letter
7	would not necessarily come back if there weren't
8	significant public certainly, if you want it, it
9	will come back. We were planning to come back when
10	the guidance was evaluated by us and we were accepting
11	it or had the significant differences in it. So
12	that's really the next time when I thought we would
13	come back, is when the guidance is in place.
14	CHAIRMAN WALLIS: You haven't really had
15	comments on the Guide.
16	MR. ARCHITZEL: We don't have the guidance
17	yet.
18	MR. DORMAN: We're expecting to
19	CHAIRMAN WALLIS: The Guide, the Reg.
20	Guide.
21	MR. DORMAN: We're expecting to come back
22	in July to talk about the public comments on the Reg.
23	Guide and how we expect to resolve those. That's to
24	support the September issuance.
25	CHAIRMAN WALLIS: I think that that would

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	247
1	be appropriate for us to ask at that time what
2	happened with the Generic Letter. They sort of go
3	together, don't they? I think you would probably want
4	to come back with both. So we get another crack at
5	you, and you know our concern with timeliness.
6	MR. DORMAN: Uh-hum.
7	CHAIRMAN WALLIS: We've got the majority
8	of the Committee.
9	(Laughter.)
10	DR. KRESS: Three members missing, I
11	think.
12	CHAIRMAN WALLIS: Yes.
13	MR. ROSEN: Five members missing, two of
14	which know of this issue in detail.
15	CHAIRMAN WALLIS: I'm bothered about the
16	ACRS writing a letter on what's after all a draft
17	before we see the evidence. I wanted to stir up these
18	replies from industry, so we can see what's going on,
19	and then we can come to them with advice. At the
20	moment it is more: Send it out, find out more about
21	the problem, and get on with it. That's what we're
22	asking for.
23	MR. ROSEN: I could live with that.
24	CHAIRMAN WALLIS: So we'll make a
25	Subcommittee report? We won't ask the staff to come
•	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	248
1	back to the full Committee? Or do you want the staff
2	to come back to the full Committee?
3	MR. ROSEN: I think the staff should come
4	back and talk about the Generic Draft, Generic Letter,
5	and the schedule that it requires.
6	CHAIRMAN WALLIS: So then we could put it
7	to our colleagues, would you like a Larkinsgram or
8	MR. ROSEN: Or at that point we could say
9	we suggest a Larkinsgram, but we're concerned about
10	the schedule. We want to get on with it.
11	CHAIRMAN WALLIS: That's okay, too.
12	DR. FORD: Do I understand that the
13	sticking point is, if it is a Larkinsgram, we cannot
14	put in the question of scheduling, our concern about
15	scheduling?
16	CHAIRMAN WALLIS: We can't add that in as
17	a sentence?
18	DR. FORD: That's what I'm understanding.
19	DR. KRESS: I think that level of comment
20	could probably go into a Larkinsgram.
21	CHAIRMAN WALLIS: Yes, why not? But then
22	it does have to come to full Committee. If there's
23	going to be a comment, it probably has to come before
24	the full Committee. But I don't think we need an hour
25	and a half. You guys can do, put the essence of it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	249
1	out in half an hour, and we won't go into the LANL
2	stuff.
3	DR. KRESS: John's agreeing that we could
4	do it, because it has to be voted on by the full
5	Committee, but
6	CHAIRMAN WALLIS: So we could put it in a
7	Larkinsgram saying it will go out for public
8	comment
9	DR. KRESS: Yes.
10	CHAIRMAN WALLIS: and then say that
11	there should be consideration about the schedule.
12	DR. KRESS: Yes, it's only appropriate for
13	the full Committee to vote on it if they've heard the
14	details of what our concern is.
15	CHAIRMAN WALLIS: Yes.
16	DR. KRESS: So we'll have to have enough
17	for that.
18	MR. ROSEN: That's why I asked the staff
19	to talk about the schedule. It's in the draft
20	DR. FORD: I think Tom brought up a good
21	analogy to the VHP situation. The degree of urgency
22	is dependent on some sort of assessment of risk.
23	MR. ROSEN: Sure, and we don't know what
24	that is.
25	DR. FORD: And we don't know what that is,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	250
1	but that, presumably, from what I'm hearing from
2	LANL's staff coming out with, is saying that they're
3	moving towards that assessment of risk.
4	CHAIRMAN WALLIS: Well, maybe it's going
5	to be conditional, that when they get this information
6	from the first 90 days, then they can decide if there
7	isn't a need to move faster on the plants that have
8	problems.
9	DR. FORD: Yes.
10	MR. ROSEN: And I think we should take the
11	conservative position that it is likely, that it is
12	possible that we will get some reports that say it's
13	a problem, and that, therefore, it will then be seen
14	to have been appropriate to have pushed to get on with
15	it.
16	CHAIRMAN WALLIS: We talked about the
17	letter. So we're asking the staff to come before the
18	full Committee and discuss the letter, just the
19	letter.
20	Do we want them to come and discuss this
21	Reg. Draft Guide?
22	MR. ROSEN: I don't want them to.
23	CHAIRMAN WALLIS: Well, I think that it
24	might be at least a couple of minutes because it is
25	fairly I don't think you should go into details,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	251
1	but I think you need to point out that there is a
2	Draft Reg. Guide, that it does ask for all the
3	specific things. You might just have one slide that
4	says what are those specific things. It's got to be
5	the sources of debris and debris transport, the effect
б	on they could analyze those things, and so on.
7	MR. DORMAN: It gives context to the
8	CHAIRMAN WALLIS: You could summarize the
9	Reg. Guide in one slide?
10	MR. DORMAN: Yes, it gives context for
11	what we're asking for in the Generic Letter.
12	CHAIRMAN WALLIS: Because the two go out
13	together. Without the Reg. Guide, how can you send
14	this out?
15	DR. WEERAKKODY: I have a question. When
16	we come in front of the full Committee to talk about
17	the Generic Letter, we probably would need at least a
18	few more slides to do the context unless each member
19	who is not here is already familiar with the issue.
20	I would assume that's the case.
21	CHAIRMAN WALLIS: We don't need too much
22	history.
23	DR. WEERAKKODY: Not too much, just we'll
24	focus on the letter, but have a few
25	CHAIRMAN WALLIS: Well, they're all

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	252
1	familiar with this to some degree.
2	DR. KRESS: At least four out of the five
3	are very familiar with this issue.
4	CHAIRMAN WALLIS: Well, there are six of
5	us here. So there are five more
6	DR. KRESS: Five missing, yes.
7	CHAIRMAN WALLIS: Now NEI wants to come
8	again?
9	MR. BUTLER: To the full Committee
10	meeting?
11	CHAIRMAN WALLIS: Yes.
12	MR. BUTLER: It won't be me. I'll be in
13	San Diego. If you need somebody
14	CHAIRMAN WALLIS: I think if NEI comes,
15	what I will be interested in is really, how is
16	industry going to take this and what's going to be the
17	effect? Are they going to be able to do it? They
18	don't know what is in it yet. So, okay, so you can't
19	really comment on something you haven't seen, no. So
20	you don't need to come back.
21	MR. SNODDERLY: I think we would also need
22	some clarification about future ACRS interactions
23	because I thought I heard Gary Holahan had said this
24	morning that the opportunities for future ACRS review
25	would be when the Generic Letter was final and also

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	253
1	when the Reg. Guide, the associated Reg. Guide, was
2	final.
3	So I think we would want to know, and then
4	I thought I heard Ralph say that we would not
5	necessarily see the Generic Letter again.
6	MR. ARCHITZEL: Mike, I would clarify
7	that. You always get to see the you make a choice.
8	The ACRS makes a choice on it. We distill the
9	comments and provide them because we met on the
10	Generic Letter. When the comments come in, we can
11	meet again.
12	The point is, this issue, you have to meet
13	on again no matter what. You have to agree on the
14	issue, the generic safety issue, and it could be at
15	the Generic Letter stage.
16	CHAIRMAN WALLIS: We have to sign off on
17	something, do we?
18	MR. ARCHITZEL: On the generic safety
19	issue, you have to meet on that, yes.
20	CHAIRMAN WALLIS: But if there's no change
21	from this draft, no significant change from these
22	documents, I think it could be a very short meeting.
23	MR. ARCHITZEL: Exactly.
24	MR. SNODDERLY: Or waive the meeting. We
25	have to come back to you, no matter what, to get a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	254
1	waiver in that meeting.
2	CHAIRMAN WALLIS: Are you expecting a
3	storm of comments back from industry or are they just
4	going to say, "This is fine," we go out and do it?
5	Have you tested the waters?
6	MR. ARCHITZEL: No, I think we'll get the
7	comments on the leak-before-break and things like
8	that, but not a storm of comments, no, just the
9	schedule comments.
10	CHAIRMAN WALLIS: You haven't asked any
11	guidance on the leak-before-breaks.
12	MR. ARCHITZEL: Well, we've already got a
13	letter that the staff considers regarding a
14	decision
15	CHAIRMAN WALLIS: You've already made a
16	decision.
17	MR. ARCHITZEL: That's our current
18	position.
19	CHAIRMAN WALLIS: It's the end of this
20	meeting. So I can adjourn? Is that the appropriate
21	word?
22	MR. SNODDERLY: I think, Graham, yes, and
23	at the beginning of the meeting we had to make two
24	decisions. The first was decide on the need for
25	presentations by the staff at the February 6th date.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	255
1	CHAIRMAN WALLIS: And we decided, yes,
2	they would do it.
3	MR. SNODDERLY: And we've decided that
4	they will present from 10:30 until 12:00.
5	CHAIRMAN WALLIS: About the letter with
6	this or the summary slide on the Reg. Guide.
7	MR. SNODDERLY: Okay, and then our
8	recommendation to the full Committee would be whether
9	the Draft Generic Letter and associated Draft Reg.
10	Guide can be issued for public comment. Then we would
11	have a Larkinsgram.
12	CHAIRMAN WALLIS: There may be a further
13	sentence about schedules. That's probably the way it
14	is headed.
15	MR. SNODDERLY: Okay.
16	CHAIRMAN WALLIS: There may be members of
17	the Committee who want to write a long letter.
18	MR. SNODDERLY: Then I think we can
19	adjourn.
20	CHAIRMAN WALLIS: All right, so we're
21	ready to adjourn. Any objection?
22	(No response.)
23	We're adjourned.
24	(Whereupon, the foregoing matter adjourned
25	at 6:12 p.m.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433