Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor Safeguards
Reactor Fuels Subcommittee - Open Session

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Tuesday, September 30, 2003

Work Order No.: NRC-1079

Pages 1-152/229-281

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	_
UNITED STATES OF AMERICA	
NUCLEAR REGULATORY COMMISSION	
+ + + + +	
ADVISORY COMMITTEE ON REACTOR SAFEGUARDS	
(ACRS)	
REACTOR FUELS SUBCOMMITTEE	
+ + + + +	
TUESDAY, SEPTEMBER 30, 2003	
+ + + + +	
OPEN SESSION	
+ + + + +	
ROCKVILLE, MARYLAND	
+ + + +	
The subcommittee met at 8:30 a.m. at the	5
Nuclear Regulatory Commission, Two White Flint North	,
Room T2B3, 11545 Rockville Pike, Dr. Dana A. Powers	,
Chairman, presiding.	
SUBCOMMITTEE MEMBERS:	
DANA A. POWERS Chairman	
F. PETER FORD Member	
THOMAS S. KRESS Member	
GRAHAM M. LEITCH Member	
VICTOR H. RANSOM Member	
JOHN D. SIEBER Member	
	I UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION + + + + + ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS) REACTOR FUELS SUBCOMMITTEE + + + + + TUESDAY, SEPTEMBER 30, 2003 + + + + + OPEN SESSION + + + + + ROCKVILLE, MARYLAND + + + + + The subcommittee met at 8:30 a.m. at the Nuclear Regulatory Commission, Two White Flint North, Room T2B3, 11545 Rockville Pike, Dr. Dana A. Powers, Chairman, presiding. <u>SUBCOMMITTEE MEMBERS</u> : DANA A. POWERS F. PETER FORD Member THOMAS S. KRESS Member THOMAS S. KRESS Member JOHN D. SIEBER Member

			2
1	ACRS STAFF PRESEN	<u>IT</u> :	
2	RALPH CARUSO		
3			
4	ALSO PRESENT:		
5	BO CHENG	EPRI	
6	JEFF DESHON	EPRI	
7	KURT EDSINGER	EPRI	
8	ODELLI OZER	EPRI	
9	ROSA YANG	EPRI	
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

			3
1		I-N-D-E-X	
2	<u>Agen</u>	<u>ida Item</u>	Page
3	10)	Robust Fuel Program Overview	5
4	11)	PWR crud	100
5		Axial Offset Anomalies	
6	13)	Fuel Failures	229
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:30 a.m.)
3	CHAIRMAN POWERS: Back in session. This
4	is the second day of the meeting of the Subcommittee
5	on Reactor Fuels for the Advisory Committee on Reactor
6	Safeguards. We have a much more robust subcommittee
7	today to hear about the robust fuels program.
8	In attendance today are: Jack Sieber,
9	Peter Ford, Tom Kress, Vic Ransom, and Graham Leitch.
10	And I trust you gentlemen who are new today will stay
11	with us for the duration and not go off to some silly
12	license renewal or other sort of thing. It's clear
13	that fuel is essential to the nucear performance, and
14	we want to see what the reaction is today.
15	Do any of the members have an opening
16	comment that they would care to make?
17	(No response.)
18	CHAIRMAN POWERS: Well, for the new
19	attendees, I will comment yesteday we had an
20	examination of about two-thirds of the NRC's fuels
21	research program. And I invite you to take an
22	examination of the transcript and the viewgraphs. I
23	think you will find it will be quite interesting, if
24	somewhat reminiscent of what we heard last year in a
25	similar subcommittee meeting.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 Today we are going to examine what is 2 going on in the EPRI program in the form of the robust 3 fuels program and a few other topics. And so without 4 any more introduction, I will just turn it over to 5 Rosa Yang, who will guide us through all of this. 10) ROBUST FUEL PROGRAM OVERVIEW 6 7 MS. YANG: I don't know about that. 8 Good morning. I am Rosa Yang, EPRI. Ι 9 manage the robust fuel program. About a year ago, the industry, EPRI, 10 October 9th, and the fuel 11 suppliers and some utility folks were here at the 12 invitation of NRR to discuss the topical report, the RIA topical report that we submitted a few months ago. 13 14 And during that presentation, we were requested by 15 this committee to come back and talk about the robust 16 fuel program. 17 Specifically, I was asked to say, bring all your staff. So I did. And here they are. 18 I am not going to take the time to introduce them because 19 20 you will hear from every one of them. 21 The only comment I want to make, as you 22 will see, what I will try to do is to give you an 23 overview of the program, how it was formed, why it was 24 formed, and how is it functioning now in the industry. I won't get into too much technical detail because 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

5

	6
1	most of them will be covered by EPRI staff later on.
2	Feel free to interrupt any of us.
3	Because much of the work we do is
4	proprietary, I'm very sorry. I hate to do this, but
5	after my presentation and after the presentation which
6	will be made by Odelli Ozer about the letter that we
7	have sent to NRC he will make a brief presentation
8	just by the content of the letter because it was
9	discussed yesterday. After those two presentations,
10	the rest of the presentation will be closed to the
11	public. My apology for that.
12	If there is anything specific you would
13	like to talk about and you are not able to participate
14	in the rest of the presentation, we will be happy to
15	talk to you about it. The reason we do it in this
16	somewhat nonacademic fashion is because much of the
17	work we do, we have special contracts with the fuel
18	suppliers. And being fuel is a fairly competitive
19	commercial environment, we need to honor those
20	contracts.
21	One more thing I want to say is the
22	handout you have, I'm going to follow in most of it
23	until almost toward the end. Then I add a few slides
24	about the RIA topical report that we submitted more
25	than a year ago just to address some of the questions

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

raised yesterday. So I intend to make a brief 2 presentation of that subject. So you don't have that 3 in the handout, but I will be happy to make those 4 slides available later on because I just added them last night.

So let me start. The program was formed 6 7 actually a couple of years before 1998 and officially kicked into work in 1998. 8 There are two key reasons for the formation of this thing. One of them I will 9 give you a little bit more detail, which is we are 10 11 operating considerably differently today and maybe the 12 last few years as comparing to, say, 10-15 years ago.

I think you heard a little bit from APS 13 14 yesterday. The guy was talking about there is more 15 boiling in his plant. So I will give you a few 16 examples of how the environment has been more demanding. 17

The second reason is because the fuel is 18 19 a fixed market and is very competitive. The price of 20 the fuel has been going down steadily as a result of 21 this competitive environment. So that doesn't leave 22 enough money for the fuel suppliers to do R&D.

23 So you have a difficult situation. On one 24 hand, you operate in a more demanding environment. 25 And at the same time, we put on new products, which

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

(202) 234-4433

7

	8
1	may not have been tested as it deserves. So
2	sometimes, not all the time, sometimes, they don't
3	perform as advertised.
4	So utility decided that they need to do
5	something a bit proactive to form a program like this
6	to make sure that they don't have operational
7	surprises and they have regulatory stability and they
8	have the flexibility in operating their plant because,
9	like Dana said earlier, fuel is where the energy comes
10	from.
11	Maybe after we solve all of those
12	problems, we can look at burnup extension. So first
13	I want to clarify that this is not just about high
14	burnup. This program is about operational
15	flexibility, about no surprises, about regulatory
16	stability, and then the next step is burnup extension.
17	As I go through them, you will see most of
18	the program content that we aimed at. Many of them
19	are below 62,000, which is a current licensing limit.
20	MEMBER KRESS: That looks like the guy
21	could probably high jump over that and
22	MS. YANG: Oh, yes. I forgot to give due
23	credit to one of our members, EdF, Nicolas Waeckel of
24	EdF. He's looking at a PWR fuel assembly and this
25	typical utility guy, trying to make a high jump. And,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	9
1	of course, he is armed with all of these robust fuel
2	program reports, which you can't quite see the
3	reading, but if you magnify enough, you can see.
4	And the first step is operational margins,
5	which is what we keep talking about. We want no
6	surprise. If you don't want surprise, you've got the
7	margins. And after this first step, then the next
8	step is burnup extension.
9	Of course, we are doing all of this with
10	NRC's watchful eyes and all of the reg documents.
11	MEMBER KRESS: What's that thing up in the
12	right-hand corner?
13	MS. YANG: This one?
14	MEMBER KRESS: Yes.
15	MS. YANG: Twenty-First Century, when we
16	move into the future.
17	CHAIRMAN POWERS: Well, I'm surprised that
18	you don't get fuel bowing when you use it that way.
19	MS. YANG: He's a science guy, electricity
20	guy.
21	MEMBER KRESS: A good pole vaulting pole
22	is very flexible.
23	MS. YANG: This is robust PWR stuff.
24	MEMBER SIEBER: Leave it to a utility guy
25	to misuse the fuel.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	CHAIRMAN POWERS: Yes. He's probably an
2	accountant.
3	MS. YANG: Okay. So a bit about the
4	changes to make the environment more demanding. We
5	have increased discharge burnup. We have extended the
6	cycle length. I have slides of those to show you.
7	And the peaking certainly has been increased, mostly
8	because of the low leakage core. The enrichment has
9	steadily increased. And I have a slide to show you.
10	And the newest thing is plant uprate.
11	You know, they are the small one to 2
12	percent ones, and then there are the 20 percent ones.
13	And how that impacts fuel performance needs to be
14	assessed.
15	Just overlay all of those to protect the
16	plant. Many of the new water chemistry has been
17	implemented. I listed the ones for PWR is elevated pH
18	and lithium and zinc injection; for BWR, noble metal
19	chemical addition, sorry for the acronym, noble
20	metal chemical addition hydrogen water chemistry,
21	and zinc injections. And, of course, there are design
22	changes and new material introduced to satisfy the
23	more demanding environment.
24	Not all of these things are adverse in
25	terms of fuel performance. And, in fact, I would

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	argue many of these are intended to improve the
2	performance. It's just when you have new things and
3	you make many changes at the same time, you could
4	reduce a margin. And you certainly increase the
5	unknown.
6	So let me show you
7	CHAIRMAN POWERS: Rosa, how is the
8	beginning-of-life boron changing in the plants
9	nowadays?
10	MS. YANG: How many what?
11	CHAIRMAN POWERS: The beginning-of-life
12	boron concentrations changing in the plants?
13	MS. YANG: It's higher. You know, as you
14	go to higher, I think now the steady state boron is
15	what, 1,800 or so, 18, 16. Yes. Eighteen hundred,
16	yes. So it's increased considerably.
17	I think maybe ten years ago, you were
18	looking at
19	CHAIRMAN POWERS: Eight hundred.
20	MS. YANG: 900 or 1,000, yes.
21	CHAIRMAN POWERS: So we double the boron
22	concentration.
23	MS. YANG: Yes.
24	MR. OZER: Longer cycle is required for
25	boron.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	12
1	MS. YANG: Here's the list of cycle line,
2	in effective full-power days. As you can see, from 10
3	years ago or 12 years ago, we just steadily increased
4	the cycle lines for both BWRs and PWRs. I think most
5	of the BWRs are 24-month cycle now.
б	Look at the enrichment. Again, these are
7	the average enrichment for the reload. It's steadily
8	increased because of the mix of enrichment and all
9	that. So we haven't quite hit the five percent limit,
10	but it's pretty close there.
11	I told you about uprates. The different
12	color shows different percent of uprate. As you can
13	see, we have a considerable number of 20 percent
14	uprate. So these are
15	CHAIRMAN POWERS: No one is more familiar
16	with the number of 20 percent uprates than this
17	committee. You're killing us.
18	MS. YANG: Well, so far what we have
19	looked into, we haven't really found a smoking gun in
20	terms of uprate and how that impacts fuel performance.
21	But it's just intuitive something you need to look at.
22	Okay. This is how our program functions.
23	All the work or the majority, the engine is certainly
24	with the working group. And there are four working
25	groups. And you are going to hear from three of them

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	today.
2	We left working group 2 out, which is
3	dealing with RIA, LOCA, and burnup extension. The
4	reason we left it out is because we know you were
5	going to hear a lot about those issues yesterday from
6	NRC research side, and we have a topical report that
7	we submitted that we would discuss it separately with
8	NRR and we made a presentation a year ago. So the
9	original intent is not to spend too much time on that
10	because we really have a lot of material to cover in
11	other areas.
12	Given yesterday's presentation and
13	discussion, I just thought we would have a brief one
14	on RIA only to just refresh the committee members'
15	memory.
16	Working group 1, working on the mostly PWR
17	crud and water chemistry-related issues; and working
18	group 3, working on hot cells and other high burnout
19	properties; working group 4, working on the failure
20	mechanisms. You will see the list of the utility
21	chairmen and the EPRI project managers. As I said
22	earlier, you will hear from each of the EPRI project
23	managers.
24	So those are the work engine of the
25	program. And the integration is really just the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	chairman and vice chairman of each of the working
2	groups. And the executive committee and the senior
3	reps, they are the management of the program. They
4	are the ones deciding on program directions and
5	budget. So it's a very important function.
6	And these are the executive committee
7	members. You will see we also have nonvoting members
8	from NEI and INPO. The current chairman is Joseph
9	Sheppard of South Texas Project.
10	Here is our members. I just want to point
11	out I guess I don't have a pointer, but I can use
12	this. I just want to point out for the U.S., we have
13	I think it's 20 utilities and about 80 units
14	participating in the program.
15	I get criticized all the time when I talk
16	about members because we have this interesting funding
17	scheme. Part of our funding comes from membership.
18	Part of it, the utility has to pay additional money.
19	When I talk about members, I am talking about those
20	who pay additional money. So these are the
21	membership.
22	We have 103 units in this country. About
23	80 units fund the program supplementally. We have a
24	considerable number of international participation.
25	There are nine groups here listed, but if

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

15
you look at number of units, they are actually more
than the U.S. And, of course, we work very closely
with INPO, NEI. Ralph talked about NRC research
yesterday. We work with all of the fuel suppliers:
Global Nuclear, Westinghouse, and Framatome.
So, for the rest of it, what I would like
to do is to give you a very quick overview. First, I
would like to start with what are some of the issues
that face the industry. And then I want to go into
what are some of the areas that we work on.
The issues facing the industry are there
is a large number of BWR failures I think many of you
have alluded to yesterday. And the root cause so far
is unknown. You will hear a little bit more detail.
And I would just give you a really quick 30,000 feet
overview of the situation.
NMCA and zinc injunction, many of the BWRs
are using it. And the impact of that on fuel
currently is being assessed. We have channel bow
issues, which interfere with the control blade
insertion as some of the BWRs, which probably reminds
them of the PWR incomplete control rod insertion many
years ago.
On the PWR side, the major failure root
cause continues to be grid-rod fretting. I just want

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	to say we're not doing much here because this is
2	purely a design, fuel design, issue.
3	We have looked at the issue. We have held
4	workshops. So we have a good understanding of the
5	issue. And then we, the committee, have decided that
6	this is a vendor problem and a vendor-specific. And
7	we highlight the issue. And I think there are
8	measures in place to address them.
9	To most parts, they are somewhat
10	effective. The problem is still here, but they are
11	being addressed. So we, the robust fuel program, are
12	not addressing it.
13	Axial offset anomaly still exists, but
14	they are current. The frequency and the severity are
15	down significantly from a few years ago. We have a
16	very active program addressing this issue. And you
17	are going to hear from Jeff later on about it more.
18	The PWR RCCAs or the PWR control
19	assemblies have a cracking and deformation problem.
20	And we have a program initiated to address that. So
21	if you just look at the 30,000 feet view, what are
22	some of the key performance issues facing the
23	industry? And these are them.
24	Just a sort of a bit of background on the
25	things I already said, here is the number of defect

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	assemblies as a function of time. You know, some of
2	the earlier days, you'll see I have a breakdown of the
3	failure mechanism in a minute. For the past ten years
4	or so, things are beginning to improve, especially for
5	the boiling water reactor. And you see a big increase
6	of the boiling water reactor in the last couple of
7	years.
8	Here is a trend plot. Again
9	MEMBER LEITCH: On that previous one, I'm
10	trying to understand the scale here.
11	MS. YANG: I know.
12	MEMBER LEITCH: It's one and a half? What
13	is that? One and a half what?
14	MS. YANG: It's fuel assemblies, number of
15	defective assemblies per gigawatt, per thousand
16	megawatts. So it's roughly one and a half assemblies
17	per unit, per large unit.
18	MEMBER LEITCH: Yes. Okay. Got you.
19	Okay.
20	MS. YANG: Which means every reactor has
21	one.
22	MEMBER LEITCH: Yes.
23	MS. YANG: Of course, it's not like that.
24	MEMBER LEITCH: Yes. On average, yes.
25	MS. YANG: Okay. So here is a trend plot

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 of the type of failures for BWR. So, as you can see, 2 the last couple of years, we have the two dominating 3 failures are corrosion-related failures and PCI or 4 PCI-like types of failures. Bo will review for you in 5 great detail later on. For the PWRs, I think I already talked 6 7 about it. The major failures are grid-to-rod 8 fretting. 9 CHAIRMAN POWERS: Why is there a large 10 number of unknown, not inspected? 11 MS. YANG: Why? 12 CHAIRMAN POWERS: What does that mean? MS. YANG: Oh. It means that they don't 13 14 inspect it. In many cases, they have it either in the 15 discharge batch that they know they have a small They just didn't inspect it or sometimes 16 failure. 17 when you say, "unknown," they know they have a They probably even know where it is, but 18 failure. 19 they just don't know what the root cause is. 20 You see, the others, we actually classify 21 them in terms of the root cause. Sometimes a visual 22 inspection at the pool does not yield to identifying 23 the actual failure root cause. 24 I think it is fair to say those are maybe 25 ones, two and they are very small. I think whenever

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

18

	19
1	we have a large number of defects or there is
2	something like the BWR failures that we don't
3	understand, I think the industry has been pretty good
4	in going after the root cause.
5	CHAIRMAN POWERS: The scale on this
б	particular plot, of course, is different from the
7	other one. Is this the integral number of failed
8	assemblies in the fleet or is it on a per-reactor
9	basis?
10	MS. YANG: In the fleet.
11	CHAIRMAN POWERS: In the fleet?
12	MS. YANG: Yes.
13	MEMBER KRESS: What is this debris, the
14	yellow?
15	MS. YANG: Yes. That's the foreign
16	material intruded in the system, either from steam
17	generator repairs, or whatever foreign materials.
18	MEMBER LEITCH: You talked about PCI.
19	About a dozen or more years ago, there were interim
20	management recommendations for operating to avoid PCI.
21	The plants are not operating under those bases any
22	more, are they or are they? I don't know.
23	MS. YANG: No, no. In this particular
24	case, these plants are using a type of barrier, which
25	allow in principle should work to prevent the PCI

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	failures.
2	MEMBER LEITCH: Okay. But what we're
3	saying is, even with the barrier fuel, then,
4	apparently there still are several PCI failures.
5	MS. YANG: We think it's PCI, but these we
б	don't really know. I mean, I think we call it PCI
7	suspect. We think it's PCI, but we haven't really
8	confirmed it's PCI.
9	MEMBER LEITCH: Okay.
10	MS. YANG: Do you want to say anything,
11	Matt? No? Sorry.
12	MR. EYRE: Sure.
13	MS. YANG: I don't want to put you on the
14	spot. Sorry.
15	MR. EYRE: Matt Eyre, Exelon Nuclear.
16	A number of the I guess PCI suspect
17	failures have been thought of as being due to, let's
18	say, missing pellet surface, might have arisen out of
19	a manufacturing process. And some of our operational
20	guidelines don't account for that.
21	So when you operate the reactor, do a
22	control rod maneuver, you may overpower that
23	particular place and cause a PCI-like failure. And
24	there you have it.
25	MEMBER LEITCH: Okay. Thanks, Matt.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	MS. YANG: Okay. So that is kind of
2	laying the background. Now I really want to say, what
3	are we focusing on in our program? Basically the way
4	I see our program is I divide it into the four working
5	groups. They address different technical issues. But
6	I group them somewhat differently here in three areas.
7	The first area I call solving the current
8	problem, solving existing problems. So I list a few.
9	The second area is proactively trying to find out
10	where our margins are. So this is totally reactive.
11	So the second area is more proactive. The third area
12	is just as proactive, but it deals with regulatory
13	issues. So keep that in mind.
14	That's how I group the three different
15	areas. And the reason I kind of want to highlight it
16	is because I don't want to just read through these
17	words. I am going to inject some slides in between
18	them. So you might feel a little bit not so clear
19	later on.
20	So existing problems, there are three.
21	And I think in my earlier about what is the industry
22	problem, they are the same issues: failures, fuel
23	failures, impact of NMCA, and AOA.
24	The failure root cause, I think you have
25	seen some of the charts. We have planned two hot cell

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 examinations later this year. Both of them are to 2 occur before the end of the year. So we are all very 3 nervous to make sure that they do occur. You know, 4 they have to fit in between the utilities' window that 5 they give us and in between the orange alerts. So we are hoping that will occur. 6 7 We also are being very active in going to utility sites to assist them as specific failures 8 9 occur, particularly Bo Cheng there being our expert in 10 that area. 11 This is often challenging а very 12 situation, as many of you familiar with these types of issues know, because you could spend millions shipping 13 14 fuel to the hot cell and not being able to identify 15 the failures because not all of them are that easy to

What I have listed here is to show the four hot cells that we have conducted within this program. These are not the only hot cells, but these are the hot cells exams aimed at identifying failure root cause.

22 I think we have been pretty lucky. So far we have been very successful in identifying the 23 24 failure root cause. The chart has а lot of 25 information on it. There is a time line on it. There

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

identify.

16

(202) 234-4433

2.2

1 is the different type of failures being listed on when 2 the shipments occur, when the exams occur. I think Bo is going to address, in particular, these things that 3 4 we already have performed the hot cell that we have 5 identified the root cause. And these two new ones are The shipment will occur later this year. 6 to occur. 7 And hopefully we'll have the results early next year. 8 CHAIRMAN POWERS: I guess maybe I'm just 9 a little confused. Are you trying to tell me that fuel that you think has a PCI failure gets shipped to 10 11 KKL or that KKL thinks that all failures are PCI-like? 12 Oh, I'm sorry. MS. I see the YANG: confusion. These two are independent. 13 No. This we 14 have conducted, actually already conducted a hot cell 15 of PCI-like type of failure of GE barrier fuel. And that occurred in the past. And we have confirmed that 16 is a PCI failure. And in that particular case, it was 17 because of the missing pellets. 18 19 You know, if you think about it, you have 20 these cylindrical pellets with the cladding. And if 21 you miss a piece of the surface due to manufacturing 22 chipping or something, then you create a local high stress. This is kind of the opposite of the classic 23 24 chip situation, but it is the same effect. So that is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 what we have found here.

(202) 234-4433

(202) 234-4433

23

	24
1	Now, we have a new PCI-like failure of a
2	different barrier design. And it's Framatome fuel.
3	We don't know the failure root cause. It could be
4	PCI. It could be any number of other things. We just
5	suspect that it is PCI.
6	The Browns Ferry is corrosion failure and
7	has been
8	CHAIRMAN POWERS: And by "corrosion
9	failure," you mean eaten through the cladding?
10	MS. YANG: Yes, lots of clad and, you know
11	
12	CHAIRMAN POWERS: Well, you seemed to
13	distinguish between corrosion failure and crud-induced
14	failures.
15	MS. YANG: They are some different
16	nuances. And we're trying to understand what they
17	are. They may be one of the same phenomena, just
18	manifest somewhat differently, or may be different.
19	But we are trying to identify those.
20	This thing is particularly puzzling
21	because this particular case, as far as we know,
22	pretty much follows all of the BWR water chemistry
23	guidelines.
24	CHAIRMAN POWERS: We're very proud of that
25	water chemistry there. I'll have to tell them that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25 1 MEMBER FORD: Rosa, you've got four hot 2 examinations, presumably all in the United cell 3 States. 4 MS. YANG: No. This one is KKL in Europe. 5 MEMBER FORD: Oh. I rather assumed that since it was a GE fuel that was being examined at 6 7 Vallecitos. 8 MS. YANG: No. It's at Europe. 9 MEMBER FORD: Okay. MR. OZER: The LaSalle fuel is going to --10 11 To Studsvik, too, yes. MS. YANG: 12 Because my follow-on MEMBER FORD: question was, what other hot cells are you using? My 13 assumption was wrong. These are not just United 14 15 States hot cells. 16 MS. YANG: No, no, no. 17 MEMBER FORD: If there any work, for instance, in Japan? I noticed you have got a lot of 18 19 stations in Japan. Are there hot cell facilities 20 being used there? 21 MS. YANG: They are hot cells. There is 22 a number of very good hot cells. We haven't used the 23 hot cell in Japan, mainly because of the shipment and 24 because of the U.S.-origin materials. But hot cell is 25 an issue.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	If you look at the long-term
2	infrastructure for our industry, we don't have a lot
3	of hot cells. And we don't have experienced hot cell
4	staff.
5	MEMBER LEITCH: In all cases, this work is
6	done with failed pins, not with pins that are similar
7	to failed pins and have the
8	MS. YANG: We usually take both. We
9	usually take a sound rod as reference. And if it's
10	PCI, we try to take symmetrical location
11	MEMBER LEITCH: I see.
12	MS. YANG: All of them, we actually
13	usually have done a considerable number of pool-side
14	inspections, discussions trying to look at the
15	manufacturing record, the operation record. And so we
16	don't take things to the hot cell lightly because it
17	is a big expense, on the order of several million.
18	MEMBER LEITCH: Okay. Thank you.
19	MS. YANG: And the shipment itself is
20	becoming more and more expensive and takes time. I
21	think you will hear from Kurt later on that it's
22	because of this and in order to improve the fuel
23	performance, we are trying to develop a considerable
24	number of nondestructive inspection techniques to be
25	able to perform at the pool side. So we can reduce

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	our needs for the hot cell.
2	Noble metal, which is a technology
3	implemented, is a GE-patented technology. It was
4	first implemented in Duane Arnold in 1996. And you
5	can see how quickly the majority of the U.S. fleet has
6	implemented noble metal. The 27 BWRs are mostly in
7	the U.S. I think there are a couple overseas, but the
8	majority of them are in the U.S.
9	What I want to just highlight, one point,
10	is the utilities facing demands from different sides.
11	For example, the radiation field reduction is a big
12	driver for the utilities, especially from utilities'
13	operation perspective.
14	So zinc injection up her could be helpful
15	to control the dose rate. So utilities want to inject
16	zinc. And, of course, I think many of you probably
17	know the fuel is the heated surface within the primary
18	system and it has a lot of surface area.
19	So most of the stuff you inject, be it
20	zinc, be it noble metal, be it whatever you inject,
21	tends to end up on the fuel surfaces. So we need to
22	look at the fuel performance.
23	Another driving force, other than the
24	radiation field, is the material degradation. This is
25	especially important as we go to plant life extension.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 In order to preserve the integrity of the components 2 of the plant, noble metal is required. So quite often 3 our work was needed to address the material 4 degradation issue, to check how effective it is in 5 addressing the plant material issues, the radiation field, and the fuel performance. 6 7 So quite often our program worked very closely with the chemistry department and with the 8 9 material department. And we have this triangle trying to balance all of the issues and jointly develop 10 11 guidelines to the utilities on the plant chemistry. 12 Pushing in the opposite MEMBER LEITCH: direction, I quess, is hydrogen water chemistry, is it 13 14 not? In other words, it tends to elevate the 15 radiation field significantly. 16 MS. YANG: Yes. But that's why you use 17 noble metal. If you use noble metal, then the amount of hydrogen that's required would be considerably 18 19 reduced. So that would reduce the radiation field. 20 MEMBER LEITCH: T see. 21 MS. YANG: So noble metal tends to have 22 that benefit as well. 23 So those are the problem areas. Okay. 24 And you will hear a lot about them later on. Now I'm

moving into the next area, which as an area I said

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

2.8

	29
1	earlier is proactively trying to ensure margins and
2	under high-duty conditions. I highlighted margin. I
3	highlighted high-duty.
4	As you will remember earlier, we talk
5	about we operate fuel considerably differently today
6	as comparing to years ago. So we don't really have
7	any hot cell data available of these modern high-duty
8	fuels. And I will show you what they are in a minute.
9	In order to get a sense of the health, if
10	you may, of these kinds of high-duty fuels, we need to
11	conduct both pool-side and, more importantly, the hot
12	cell examinations. And because of the expense and
13	because of the time and resources required, I think we
14	cannot afford to do a large number of them. So we're
15	very, very careful in choosing what rods to take to
16	the hot cell.
17	I would call our program probably as
18	minimum in terms of number of hot cell examinations
19	and scope. We try to be as comprehensive as possible,
20	but they are certainly not overly broad. I think we
21	try to be conscious about what we need and just get
22	what we need. Those data are extremely essential.
23	I said earlier our main purpose is for
24	margins. And the same type of data can also be used
25	for burnup extension. I will show you why. This I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	think I already pretty much talked about that.
2	Another thing I may not have mentioned but
3	you probably guessed it already, we want not only to
4	choose the right type of fuel with the high-duty. We
5	try to go to plants that have the type of chemistry,
6	water chemistry conditions that we're interested in or
7	concerned about. And for the PWRs, we try to go to
8	the high-temperature plants. As you can see, what we
9	are trying to do since we are doing the minimum
10	number, we try to look at the bouncing case.
11	Another fairly busy chart, but we're
12	intending to summarize the number of hot cell exams
13	that we do, in this case, again, the time line in the
14	middle; the BWR, the boiling water reactor, hot cell
15	examinations listed on the bottom.
16	There are two major ones, both from
17	Limerick. The first one is actually the one at 52
18	assembly average. It's the same one that Mike Billone
19	talked about yesterday at 56 or 57. He's talking
20	about the rod burnup.
21	And we just made another shipment of the
22	next higher level burnup. And the highest burnup
23	there is 65. Again, it's the assembly average. We
24	look at different processing material. And also it's
25	the first time we really look at high-duty fuel with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	noble metal chemical addition. So those are the
2	boiling water reactor ones for the pressurized water
3	reactor.
4	Again, we already made the shipment of
5	Zircaloy-4 from HB Robinson. And it's the same
6	material that went to Argonne for the LOCA program
7	that Mike talked about yesterday. We made another
8	shipment last year of the ZIRLO cladding at 70,000.
9	Here is why I talk about the same data.
10	It's the first time we look at ZIRLO under
11	high-duty operating conditions, at least in this
12	country. I think it's probably the highest burnup of
13	ZIRLO ever looked at.
14	MEMBER LEITCH: So just so I understand,
15	these are not failures? These are high
16	MS. YANG: No, no. I want to
17	differentiate. These are the hot cells
18	MEMBER LEITCH: High burnup.
19	MS. YANG: to get to high burnup to get
20	a margin. None of them failed.
21	MEMBER LEITCH: And then what do you do,
22	examine the cladding or the fuel itself?
23	MS. YANG: We look at the fuel. We look
24	at the cladding. I think I deleted the scope slide.
25	Yes. I deleted it. Well, we mostly look at the

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

1 fission qas release. We look at the cladding 2 dimensional change as a result of irradiation. We look at the fuel morphology or microstructure change 3 4 as a result of irradiation. Mainly we look at the ductilities, 5 cladding mechanical properties, corrosions, hydrogen levels, mostly checking how the 6 7 fuel would behave. 8 MEMBER LEITCH: Okay. 9 And these data are quite MS. YANG: 10 useful, of course, to check the health of the 11 material. It could be useful burnup extension 12 It could be used for some of the RIA tests licensing. talked about yesterday, provided 13 that we the 14 mechanical property for the --15 MEMBER LEITCH: These exposures are for that particular pin, not the average or --16 17 MS. YANG: Seventy, I believe, is assembly burnup, is it not, Jeff? I mean, Kurt. I'm sorry. 18 19 MR. EDSINGER: Yes. MS. YANG: Yes, assembly. So the pin may 20 21 be ten percent higher. 22 Okay. MEMBER LEITCH: Yes. Thank you. 23 MS. YANG: So, as I said, it's the first 24 time we look at it. We could do it at 62 first, then 25 at 70, but we choose to look at 70. So there are some

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

32

33 1 misunderstandings about this is entirely for burnup 2 extension. It is not. It is the first time we look at ZIRLO. 3 4 Same thing here, same story here, a couple 5 of years behind, North Anna. The burnup is about the equivalent. It's the first time we look at M5. 6 For 7 those of you who know, these are the two types of advanced alloys used in this country, ZIRLO and M5. 8 And there are still some utilities using Zircaloy-4. 9 Here are the five hot cell exams, sound 10 11 rod for margins. They could be used for burnup 12 extension as well. Very quickly, just one of the techniques 13 14 that we developed within this program to sort of as an 15 interim measure solve the AOA and the PWR crud issue is by using ultrasonically to clean the fuel. 16 17 The first application is at Callaway, which is the plant most plaqued with AOA issues. 18 Ιt 19 was a big success. And they are cleaning real low 20 quantities of fuel right now. And it has since been 21 used at South Texas units 1 and 2 and again fairly 22 successfully. 23 It was intended to be used later on at 24 Vogtle unit. So this is a technique developed by the 25 program, and it probably will be fairly widely used.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	The interesting point here is not only the
2	technique is useful, but the technique actually can be
3	transferred to solve BWR issues. And Kurt will talk
4	to you about how we are right now as we speak
5	qualifying the same technique for the BWRs. And there
6	their interest is for those rate reductions.
7	MEMBER KRESS: You take these fuel
8	assemblies out of the reactors and sit them on the
9	MS. YANG: In the pool.
10	MEMBER KRESS: In the spent fuel pool?
11	MS. YANG: In the spent fuel pool.
12	MEMBER KRESS: And then you have an
13	ultrasonic system?
14	MS. YANG: To clean it.
15	MEMBER KRESS: Clean it in the pool
16	itself?
17	MS. YANG: Yes.
18	MEMBER KRESS: Where does the crud go?
19	MS. YANG: It is a closed system. It has
20	its own filtration. And it collects the crud. Do you
21	have charts of those laid out, either of you?
22	MEMBER KRESS: It's the tank that goes
23	down in the pool and the tank is a closed system?
24	MS. YANG: Right.
25	MEMBER KRESS: So you collect the crud in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	
2	MS. YANG: Yes.
3	MEMBER KRESS: Okay. That was my concern.
4	MR. EDSINGER: I do have some slides.
5	MS. YANG: Okay. The second area for
6	margin, the third area
7	MEMBER FORD: Excuse me. Rosa, before you
8	go on to a new topic, just to come back to your slide
9	on the hot cell projects to quantify margins, you made
10	there that this is the first examination of ZIRLO and
11	M5 in this country.
12	MS. YANG: Hot cell examinations for such
13	high duty and high burnup.
14	MEMBER FORD: And you also pointed out
15	that there won't be much of this data because of the
16	expense of getting the data. And you also made the
17	case that you want to move into a proactive phase. If
18	you're going to go into a proactive phase, then you'd
19	better have a good model of the various degradation
20	mechanisms. And you use this sparse data presumably
21	to benchmark that model.
22	Step back one further step. How solid do
23	you feel about the models of material degradation,
24	fuel degradation?
25	MS. YANG: Just during normal

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
36 1 MEMBER FORD: Because that is going to be 2 the skeleton upon which you are going to build your 3 proactive management philosophy. 4 MS. YANG: Peter, you always ask tough 5 questions. I think if I could answer your question a little bit differently, we have a fuel performance 6 7 code, which is FALCON, which is a steady state and a 8 transient code. So we use the same code for normal 9 operation to predict the fission gas release, the 10 11 deformation, and those kinds of things. And we also 12 use the same code for RIA and LOCA. That's a different subject. I think you are talking about the 13 14 steady state here. 15 MEMBER FORD: I'm talking about them all, 16 but, yes, take a steady state or transient. Ιt 17 doesn't really matter. You're going to have to have a model, a predictive model, on which you are going to 18 19 base your proactive management philosophy. 20 MS. YANG: Yes. 21 And you are going to use MEMBER FORD: 22 that data to benchmark the model. MS. YANG: 23 Yes. 24 MEMBER FORD: My essential question is, 25 how solid do you feel?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	37
1	MS. YANG: About our model?
2	MEMBER FORD: About your model because you
3	are not going to have too much data to benchmark it.
4	MS. YANG: No. In fact, you're quite
5	right. These data, we do look at them and feed back
6	into the model. But I guess I am not quite sure how
7	to address your question properly because the way I
8	see it is for steady state operation, for normal
9	operation, we are looking at margins.
10	We never look at failures. You never
11	design the fuel for failures. So the code would never
12	predict the rod would have failed. And, of course,
13	the rods do fail.
14	I am thinking back at some of the failures
15	that we encountered that usually is somewhat of a
16	local phenomenon that the typical fuel performance
17	model cannot last by itself. You always need to run
18	some detailed either neutronics model or thermal
19	hydraulics model or whatever model.
20	MEMBER FORD: Graham asked a question
21	about PCI,
22	MS. YANG: Right.
23	MEMBER FORD: which is an old problem.
24	I suspect that the current PCI problems you talk about
25	are not quite the same mechanism.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	MS. YANG: No, no.
2	MEMBER FORD: The actual splitting is not
3	necessarily what we used to call PCI-before-barrier
4	fuel.
5	MS. YANG: Right.
б	MEMBER FORD: So how good do you feel
7	about being able to predict this new PCI problem or
8	being able to predict the potentiality of zinc or NMCA
9	to give you excessive corrosion on BWR fuel or these
10	
11	MS. YANG: Our model does address some of
12	the chemistry additive. And I think they are in
13	general good, but the reason, what I am trying to get
14	to is that the reason, you have failure usually is
15	because there is a local perturbation.
16	So if you input that, you probably will
17	get the answer that you are looking for, but in most
18	cases, I think failure occurs because we haven't
19	tested the condition properly.
20	MEMBER FORD: Okay.
21	MS. YANG: So I would like to answer your
22	question slightly differently. We have a document
23	that Kurt will address later on. It's called
24	"technical requirement document,"
25	MEMBER FORD: Right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 MS. YANG: -- which is almost like a 2 specification that utilities say, "I need the fuel to 3 perform this way" so that it won't fail. So that 4 document was more focused on the type of performance 5 we need and the type of testing that we would require if there is any change in the material. 6 So you can 7 see that document itself would require knowledge and the feedback. 8 So what we are actually hoping is after we 9 finish these things, in each of the cases, we don't 10 11 just have a data report, we actually have a report 12 that assesses the margin that's there. MEMBER FORD: 13 Okay. 14 MS. YANG: And we are going to take that 15 and feed back into the technical requirement document to say, "Do we have the right criteria? Do we have 16 17 the right knowledge to say how can we do things differently in the future so we don't get into the 18 19 same problem that we have today?" 20 MEMBER FORD: Okay. 21 MS. YANG: So let me just finish. So my 22 thought is for transient condition, you look at 23 failures because you have to go there in order to see 24 that, but for the steady state, you usually don't 25 design to failure.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

39

	40
1	So you predict, for example, fission gas
2	release. So we do check if the code will predict
3	fission gas release. In some cases, we're right on;
4	others, we may be not predicting it well. So we have
5	work to do there. We look at corrosion, and we look
6	at the cladding dimensional change.
7	So maybe I am answering your question. We
8	do look at these. And we check our code to see if we
9	are predicting that. So this is kind of important to
10	benchmark it.
11	One thing I want to point out is that
12	these data are quite different from the Halden data.
13	They are almost like two different populations. And
14	any code in order to predict the light water reactor
15	has to look at both.
16	MEMBER FORD: Okay.
17	MS. YANG: Matt wanted to say something.
18	MR. EYRE: Matt Eyre, Exelon Nuclear,
19	again.
20	As Rosa pointed out, these are just
21	basically a noting of the hot cell projects. One of
22	the things that not only does Exelon Nuclear but a
23	number of the other utilities have done or plan to do
24	is also look at their fuel pool-side as well. So it
25	will be a number of benchmarks to the hot cell and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	also the pool side and a number of different operating
2	environments.
3	For example, we are going to be looking at
4	our Three Mile Island unit 1 fuel next spring, which
5	is M5. And it has gone to about 70 gigawatt days per
б	metric ton, different operating environment than the
7	North Anna fuel, similar burnup. And so we will be
8	able to compare that with the North Anna fuel. So I
9	will see somewhat sparse data up there.
10	There is a considerable body of pool-side,
11	nondestructive examination that we will be able to
12	compare with the North Anna work.
13	MS. YANG: Yes. Thanks, Matt. I think
14	that is a really good point. Maybe in our trying to
15	cover the hot cell, I didn't quite mention the
16	pool-side. In fact, that is the majority of our data.
17	These are just trying to confirm or get additional
18	data that we can't get at the hot cell. But pool side
19	is really important.
20	MEMBER RANSOM: Has any thought been given
21	to including probablistic effects into your model so
22	that you would predict failure rates? Is that
23	feasible, I guess, or
24	MS. YANG: It's feasible. And I remember
25	years ago there was a code, actually, like that. I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	forgot the name, Entropy, something. I forgot. Thus,
2	I think it's feasible. I'm not quite sure we want to
3	go there because fuel performance, fuel behavior is
4	fairly complex in the
5	MEMBER RANSOM: There is a move towards
б	probablistic methods in risk analysis and safety
7	MS. YANG: You could. You could. We
8	haven't done that.
9	MEMBER RANSOM: It would seem like a good
10	way to go.
11	MS. YANG: We haven't done that.
12	MEMBER KRESS: It's not particularly a
13	risk issue, I wouldn't think.
14	MS. YANG: Not particularly.
15	MEMBER KRESS: I don't know why you would
16	want a probablistic model to predict fuel failure.
17	MS. YANG: Yes. It's usually pretty low
18	in a 10^{-6} .
19	MEMBER KRESS: Low in risk base. It's an
20	operational issue, I think.
21	MS. YANG: Yes. Thank you. I want to
22	emphasize this is not a safety issue. This is a
23	simple economic issue.
24	MEMBER LEITCH: You talked about
25	ultrasonic cleaning in a couple of the future slides

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	that you already covered. I guess you went back to
2	it.
3	MS. YANG: Yes.
4	MEMBER LEITCH: I guess I am wondering.
5	Apparently at Paks in Hungary, they were chemically
6	cleaning, I guess. I don't know all of the details of
7	that, but I guess they had a chemical cleaning process
8	that went amiss.
9	MS. YANG: Yes.
10	MEMBER LEITCH: I am just wondering. Is
11	anyone in the United States thinking about chemically
12	cleaning?
13	MS. YANG: Not that I am aware of. Of
14	course, this technique is totally different.
15	MEMBER LEITCH: Yes.
16	MS. YANG: And we won't leave it alone.
17	DR. MEYER: This is Ralph Meyer at NRC.
18	I gave a short presentation on this
19	yesterday. I just wanted to make one point. The
20	chemical process was completed and successful. This
21	was just an overnight cooling of a clean fuel problem.
22	MEMBER KRESS: It was a loss of cooling.
23	And I presume you can have a loss of cooling with
24	these things, too.
25	MS. YANG: You could except that this is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	
2	DR. MEYER: I was unaware of that. Thank
3	you.
4	MS. YANG: This is not just this system.
5	You have to be there. And it takes about one minute
6	or so to clean each assembly. So it is a continuous
7	process. You don't just leave it there.
8	Okay. I want to talk about a part of our
9	program which deals with regulatory issues very
10	briefly. The uniqueness of our role in this is we are
11	the industry interface with NRC on fuel-related
12	regulatory issues. And they are kind of a two-pronged
13	interaction.
14	With NRR, we interact through NEI any
15	regulatory and licensing issues. And many of these,
16	it's really industry interaction. It's not just EPRI.
17	It's EPRI representing the utilities and the fuel
18	suppliers. So it's really industry through NEI,
19	interact with NRR.
20	I think this approach has worked
21	reasonably well on research issues. There is a
22	memorandum of understanding between EPRI and NRC
23	research. And there are many collaborations areas.
24	Fuel is just one of them and I want to say has worked
25	very well. Thank you.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	And we have these twice-a-year management
2	types of discussions between EPRI and research, NRC
3	research. And usually we get reasonably positive
4	feedback to and from our management.
5	And specifically we have this LOCA program
6	that you heard a lot about yesterday. And, of course,
7	there is the Cabri water loop project that we
8	collaborate together.
9	MEMBER KRESS: Is the iodine spiking
10	phenomena part of this program? Are you looking ahead
11	or has it gone away with the new fuels?
12	MS. YANG: Iodine spiking?
13	MEMBER KRESS: Yes, during transients or
14	shutdown.
15	MS. YANG: During shutdown.
16	MEMBER KRESS: Yes.
17	MS. YANG: Yes. It's still there. I
18	don't think we look at it. Maybe I'm not
19	MEMBER KRESS: It's not part of your
20	program?
21	MS. YANG: It's not part of our program,
22	although we do know that if you have failed fuel when
23	you shut down
24	MEMBER KRESS: Yes. It seems to be
25	related to failed fuel.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	46
1	MS. YANG: It is, yes. And we have a
2	handbook that kind of tells a utility what to do in
3	case of fuel failures. And they talk about the iodine
4	spike in there.
5	CHAIRMAN POWERS: Let me ask one question.
6	Presumably, the tests being done at Argonne are being
7	done to confirm regulatory decisions on the ability of
8	fuels of the current types of satisfy the requirements
9	of 10 CFR 50. And presumably once somebody concludes
10	that question has been answered, NRC's funding for
11	that work will come to an end.
12	MS. YANG: We hope so.
13	CHAIRMAN POWERS: What happens then? If
14	the industry is moving to M5 clads, fuels of different
15	types, and things like that, you still have the
16	problem of showing that you comply with the
17	requirements of Appendix K. So, I mean, what happens?
18	MS. YANG: I think I am going to answer
19	your question. The way we work, for example, through
20	the robust fuel program working group 2 to address
21	your question is we would lay the groundwork, the road
22	map, if you may, how to resolve any regulatory issues,
23	be it RIA or LOCA, by submitting a topical.
24	Now, if, for example, the topical for RIA
25	that has been submitted is for Zircaloy-4 but if NRC

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	approves that topical, it basically says, "Here is a
2	criteria. Here is what you need to do to show
3	compliance." And although the criteria is Zircaloy-4,
4	it is fairly straightforward for the vendors to take
5	that approach and add to their data for M5 and to
6	produce their criteria. That's one approach. And
7	that's probably a more suitable approach for LOCA than
8	RIA.
9	For RIA, because the advance alloys
10	perform so much better than the Zircaloy-4 that we
11	have used to develop the data, they could either
12	develop a new criteria or they could say, "Well, this
13	is a conservative criteria for M5. I'm happy with it
14	the way it is. So they can take either approach.
15	Does that answer your question? We don't
16	take it from the beginning to the end, but I think we
17	do the work that is more efficiently done by the
18	industry.
19	MEMBER KRESS: It sounds to me like you're
20	presuming the phenomenology remains the same from one
21	fuel type to the next.
22	MS. YANG: For RIA, I think it is. And I
23	am going to get into a little bit technical discussion
24	because RIA, the cladding force comes from the fuel.
25	And then you just look at the cladding response.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	48
1	And there are differences between one
2	alloy to the other, but you can address that
3	separately. Some may not be the same. But that's why
4	I said for LOCA, it might be more different. In that
5	case, the cladding may play a different role.
6	Do, Jerry or Ryan, you want to say
7	anything?
8	MEMBER FORD: My question was somewhat
9	along the same thought process. Just to clarify that
10	when you are talking about the memorandum of
11	understanding between EPRI and RES on the LOCA tests
12	in ANL, there are no other tests being sponsored
13	primarily by EPRI which address these issues. So
14	those tests we heard about yesterday are the only
15	tests going on in this country.
16	MS. YANG: I want to
17	MEMBER FORD: Let me follow on for a bit.
18	MS. YANG: Sorry.
19	MEMBER FORD: We heard yesterday and you
20	heard all the questions we brought up about those
21	tests and the concerns about how would the results
22	change if you had changes in composition of the
23	materials.
24	The answer I heard you give Dana just now
25	is those specific questions, which relate to different

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	allows, will be the responsibility of the vendor.
2	MS. YANG: Of the fuel suppliers, yes.
3	MEMBER FORD: And EPRI would not be
4	funding any outstanding questions associated with that
5	alloy-specific item.
6	MS. YANG: That's correct. That's
7	correct. Thank you for the clarification. I also
8	DR. MEYER: Excuse me. Could I
9	MS. YANG: You are probably talking about
10	what you are going to talk about anyway. Let me also
11	differentiate one thing. I guess when I was answering
12	Dana's question, I was more thinking about regulatory
13	approaches. Okay? That was specifically more for the
14	regulatory approaches.
15	But when, Peter, you are talking about
16	these memorandums of understanding between EPRI and
17	research, we are talking about research programs. We
18	collaborate to do the test, just because the test
19	itself is so hard to do. But we are totally
20	independent in terms of analysis of the test results.
21	Is that what you wanted to add?
22	DR. MEYER: This is Ralph Meyer from NRC
23	research.
24	No. What I wanted to comment on was
25	Dana's original question about the programs for the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	new alloys. In our recently issued program plan, we
2	have, in fact, planned and budgeted for continuation
3	of the program at Argonne on M5 and ZIRLO alloys.
4	And, in addition to the LOCA tests, the
5	mechanical property tests, which are applicable to the
6	RIA accident, we also have testing specifically for
7	dry cask storage and transportation of spent fuel.
8	Now, the big uncertainty is the form and
9	extent of the cooperation between the NRC and industry
10	in the future testing of irradiated M5 and ZIRLO
11	because we do not have that material on hand at the
12	present time.
13	CHAIRMAN POWERS: Let me ask another
14	question. You have indicated down below at the bottom
15	of that slide that you are a participant in the Cabri
16	program. What do you anticipate getting out of the
17	Cabri program?
18	MS. YANG: Well, I was one of the persons
19	on record saying we don't need the Cabri water loop
20	project. So personally I don't think we really need
21	more of the failure/no failure type of tests. I am
22	just about to get into the presentation that you will
23	see that come across probably even more clearly.
24	I think we have a good understanding of
25	the situation. We know how fuels behave under RIA

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	condition. We have a good model. And the model
2	predicts the results. So I don't think we need more
3	of the water loop type of project.
4	However, if fuel can fail in the water
5	loop, which is kind of a challenge right now, you
6	know, they can't fail the rod in the water loop, if it
7	does fail, then we can look at fuel-coolant
8	interaction. That's the only thing that we may get.
9	CHAIRMAN POWERS: Yesterday there seemed
10	to be some controversy over the width of the
11	appropriate pulse to use in testing. Were you
12	planning to elaborate on that?
13	MS. YANG: I'll try. Okay. We have three
14	major regulatory focus areas. RIA, we submitted a
15	topical; we talked about that a LOCA; and
16	industry guide is for burnup extension. So let me go
17	to RIA, which is most of these are not in your package
18	because I added them last night, be happy to make them
19	available to you, but I believe all of them really
20	came from or most of them I'm sorry, not all of
21	them most of them came from the presentation when
22	we were here a year ago.
23	This is what we proposed, two separate
24	curves: one for coolability, one for fuel failure.
25	I want to make a few comments related to yesterday.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

52 1 And I will try to use some slides to illustrate the 2 comment that I have here. 3 I think one of the key comments is the 4 fuel behavior under RIA transient; well, fuel behavior And fuel behavior under RIA 5 in general anyway. transient, in particular, is nonlinear, is very 6 7 nonlinear, and is nonlinear with temperature for the fuel and for the cladding. 8 important 9 We know temperature is an 10 parameter. And the response is nonlinear with 11 temperature and is nonlinear with another important 12 parameter, which is the hydrogen. The effect of hydrogen on the cladding 13 14 ductility, it would strongyl depend on hydrogen 15 concentration but not just concentration by itself. distribution of the hydrogen 16 The is extremelv important in cladding ductility. I think there are 17 ample data to support that. 18 19 What is very, very clear -- I don't think 20 there is too much ambiguity here -- is spallation. If 21 you do get into spall the situation, the spallation 22 severely degrades cladding ductility. And I will show 23 those in a minute. 24 The next point, given it is such a nonlinear behavior or phenomenon, you need to model 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	it. And you need a good transient fuel, thermal
2	mechanical model to model the phenomenon. And FALCON
3	is just one of the possible codes. That is our code.
4	And in our code, we have incorporated the
5	high burnup properties up to the burnup level that we
6	are looking at these phenomena in terms of thermal
7	conductivity as a result of high burnup, the rim
8	effect, and the power depression for high burnup. All
9	of these are extremely important in terms of
10	temperature distribution.
11	And also, as all of you know, the fuel
12	performance code, I think John showed a very complex
13	chart. It is complex. And you can write some
14	fundamental equations for most of the phenomena.
15	But at the end of the day, there are these
16	fudge factors that there is no way around it. You
17	have to tune them. And you have to tune them with
18	good, representative data from Halden because that is
19	the only place that you actually measure temperature,
20	you measure the gas release. So you need those. And
21	at the end of the day, we are dealing with light water
22	reactors. So you have to have the light water reactor
23	data.
24	So you need a good code that has the good
25	model in it, good property in it, and should be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	54
1	benchmarked properly. And another thing is you need
2	a good understanding of the mechanism. And that can
3	only be provided by these RIA simulation tests that
4	Cabri and NSRR and the SPIRT CDC tested earlier.
5	And there are more than 100 of such
6	elaborate and highly sophisticated tests. Some are
7	more sophisticated than others. There are more than
8	100 of those available.
9	I am going to get into you also need a
10	cladding mechanical property because that is the one
11	really responding to the drive. And there are some
12	separate effects tests if you want to answer when the
13	fission gas release occurred and things like that.
14	What we have done, the industry has
15	submitted last May in a topical report is separate
16	cladding failure and core coolability limit. I think
17	in those cases, we have incorporated the key
18	controlling parameters.
19	For the failure, we think high corrosion
20	and hydriding are the dominating factors. And I will
21	try to define that. For the coolability, we will look
22	at U02, the incipient melting of U02, as a function of
23	burnup. And we look at the burnup effect as well. We
24	believe those are the controlling parameters.
25	Both limits are supported by either

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

55 1 integral data or separate effects data, Ι mean 2 separate effects. And this separation of coolability 3 and failures is consistent with the current regulatory 4 criteria to separate the two. 5 We don't see any justification for combining the two limit because they are totally 6 7 different phenomena and by combining them is unnecessarily conservative, is way conservative. 8 The coolability limit proposed by the 9 industry is conservative by itself because I am going 10 11 to show you it's a belt-and-suspenders type of 12 approach. And it is supported by data. So those are just outlines of what I would like to show. 13 14 The first thing, just to illustrate the 15 nonlinear feature of this phenomena, as you all know, in an RIA transient, the energies are mostly deposited 16 17 at the rim. This is the temperature versus the radial 18

16 position. This is the center of the fuel. This is 20 the pellet rim right here. And the cladding is here. 21 So let's look at early in the pulse. 22 Let's look at the 87 milliseconds. You see the 23 temperature is very high at the pellet rim. And that 24 is where all the actions occur.

And for this solid line, the cladding

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	56
1	temperature is the solid line. I'm sorry. I should
2	have said in the beginning, this is the cladding
3	temperature, is black. And if the pulse goes into the
4	black, the cladding temperature goes like that. And
5	at the end
6	CHAIRMAN POWERS: That was too remarkable
7	for me. You put a pulse in. And so the temperature
8	and the clad go down?
9	MR. OZER: No, no. The temperature and
10	the cladding are way at the bottom, way down, way
11	down.
12	MS. YANG: Yes. Sorry. Here, this one.
13	This is the beginning-of-life temperature. This is
14	the end-of-life temperature. Sorry. This is
15	beginning. This is the end.
16	This is 87 milliseconds. As you go to the
17	end of the pulse, the temperature, the heat is
18	beginning to conduct through the center of the pellet.
19	So the pulse, the temperature shape kind
20	of smoothes out, becoming this curve. And the
21	cladding temperature increased from this solid line to
22	that line. And, of course, after a long time, the
23	temperature goes to two seconds later, goes through
24	your typical parabolic distribution.
25	So the nonlinearness is the temperature

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	57
1	keeps changing as you go through the pulse. And it
2	progressively moves to the center of the pellets. At
3	the same time, the cladding temperature increased.
4	CHAIRMAN POWERS: I guess you just totally
5	confused me.
6	MS. YANG: Okay.
7	CHAIRMAN POWERS: The slide says we have
8	a 9.5-millisecond pulse.
9	MS. YANG: Right.
10	CHAIRMAN POWERS: Okay. So now you are
11	looking at 87 milliseconds. That must surely be a
12	long time after the pulse. So we're not going through
13	the pulse. We're just enjoying the response of the
14	system to the pulse.
15	MS. YANG: Say that again.
16	CHAIRMAN POWERS: We're not going through
17	the pulse. We're sitting here looking at the
18	aftermath of the pulse.
19	MS. YANG: The temperature response in the
20	fuel has a delay from the pulse. We have a
21	temperature chart of the energy, of the pulse and the
22	energy. I will find it for you later at the break.
23	MR. OZER: Rosa, the origin of the pulse
24	is not at zero. The pulse starts later on. Early in
25	the pulse, 74.5 milliseconds is only the beginning of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	the pulse. At the peak of the pulse, you are at 87
2	milliseconds.
3	MS. YANG: This one?
4	MR. OZER: Yes. So the counter starts
5	before the pulse. And then the pulse is introduced
6	around 70 or so. And 87 is the peak of the pulse.
7	And then it starts to decrease after that.
8	CHAIRMAN POWERS: That is certainly not
9	MS. YANG: No, no. There is the energy
10	input. There is a delay in the pulse. You don't heat
11	up the fuel, by the way. I'll show you. I think, in
12	fact, we have a nice energy input versus when you
13	cross
14	CHAIRMAN POWERS: I can safely say I am
15	totally confused, but
16	MS. YANG: All right. The timing, we can
17	clarify that, but the key point in trying to make
18	assuming if you will just follow the zero time here,
19	this is at 87 milliseconds, then the pulse keeps going
20	inside.
21	MEMBER SIEBER: It would be interesting to
22	show a plot
23	MS. YANG: I will show you. It's on the
24	computer.
25	MEMBER SIEBER: of the energy creation

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	especially
2	MS. YANG: Yes, exactly.
3	MEMBER SIEBER: and then look at that
4	versus what the temperature results.
5	MS. YANG: Versus temperature, yes.
6	MEMBER SIEBER: Then I think it becomes
7	clear.
8	MS. YANG: I can see why you are confused,
9	but let's forget about the time zero. We will define
10	that later. In an RIA pulse, you deposit energy at
11	the rim.
12	MEMBER SIEBER: Right.
13	MS. YANG: So this is the temperature
14	distribution at some point. And as time goes along,
15	this temperature shape widens and eventually goes to
16	the parabolic.
17	CHAIRMAN POWERS: I assume that all you're
18	telling me is that there is conduction.
19	MEMBER SIEBER: Yes.
20	MS. YANG: There is conduction, right.
21	CHAIRMAN POWERS: Now, conduction is
22	something I believe in.
23	MS. YANG: And that conduction
24	CHAIRMAN POWERS: What that has to do with
25	9.5-millisecond pulses versus 30-millisecond pulses,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	I'm not entirely certain about.
2	MS. YANG: Okay.
3	CHAIRMAN POWERS: I have no idea what this
4	slide is trying to tell me other than that there
5	assuredly must be conduction.
6	MS. YANG: Okay. There are two points on
7	the slides I want to make, and maybe I'm not making it
8	clearly. The first one is the most of the energy is
9	at the edge. And the narrower the pulse, the narrower
10	
11	MEMBER SIEBER: The sharper the peaks.
12	MS. YANG: The sharper. This is the peak.
13	And that affects the temperature in the cladding,
14	which changes with time. So that's one of the first
15	nonlinear situations.
16	Now I want to go into the cladding failure
17	because that's one of the criteria we propose. Then
18	I will go to core coolability. Most of the
19	simulation, RIA simulation, tests deal with cladding
20	failure.
21	There are over 100 of them. And, just by
22	studying them, I think this is kind of the conclusion.
23	There are two different phenomena for high burnup and
24	for low burnup.
25	For the lower burnup ones, it's mostly a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

61 1 high-temperature failure. It's called post-DNB operation. And we won't discuss too much of that here 2 because most of what we are concerned about is high 3 4 burnup. And for beyond 30 or 40 thousand, the failure is by pellet-cladding mechanical interaction. 5 And that can be modeled very successfully. 6 7 So far the experiment has not produced any data that suggests otherwise. So pellet cladding 8 mechanical interaction is the failure mechanism. And 9 the driving force for that is from the fuel thermal 10 expansion and the fuel extension as a result of 11 12 fission gas swelling. For those of you who I think are less 13 14 familiar with pellet-cladding mechanical interaction, 15 the cladding ductility is the key parameter in determining if the test failed or not. 16 17 This is also the conclusion of the PWR RIA PIRT that Ralph chaired, which says cladding ductility 18 19 is a key parameter. Now, as you remember, now we're 20 looking at the current regulatory criteria at high 21 burnup. 22 So this point is trying to say burnup per 23 se is not an important parameter, but the result of 24 the burnup, the cladding corrosion and hydriding as a result of irradiation and burnup is really the key. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

62 1 You could have very low burnup, a very 2 high corrosion, and you could fail. The cladding 3 could become very brittle or, conversely, you can have 4 very, very high burnup but very good cladding, has 5 very low corrosion. The cladding would have survived. And many of the Cabri tests have demonstrated that. 6 7 But the fact is that it MEMBER SIEBER: does become less ductile as burnup increases absent 8 9 the corrosion effect, right? You mean the irradiation 10 MS. YANG: 11 damage? 12 MEMBER SIEBER: Yes. MS. YANG: Yes. And that doesn't seem to 13 14 be as important as the hydrogen in the cladding. In 15 the Cabri test, they have conducted two very high burnup rods with advance alloy and with very low 16 17 corrosion levels, like 20 microns or so. And they have survived the highest energy input at 70,000 18 19 burnup. 20 So that is a good demonstration, if you 21 may, that the hydrogen, when you have low hydrogen, 22 even with the irradiation damage, it could survive 23 this type of transient. 24 MEMBER SIEBER: And zinc makes the 25 hydrogen low?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	MS. YANG: Zinc?
2	MEMBER SIEBER: Yes. What chemical
3	addition can you reduce the hydrogen from? Any?
4	MS. YANG: I don't know.
5	MR. BILLONE: I'm sorry. What was the
6	question?
7	MS. YANG: What chemical in the coolant,
8	addition in the coolant, would make hydrogen low
9	MEMBER SIEBER: Lower.
10	MS. YANG: lower in the cladding?
11	MR. BILLONE: I don't think you can do it
12	that way because basically you have water. And water
13	is going to break up. And some of that hydrogen is
14	going to go through the oxide, which is not
15	protective, and will get to the cladding bare metal.
16	It happens locally.
17	MS. YANG: In this particular advanced
18	cladding, just corrosion is very low. And this
19	hydrogen was also very low. If the rod is spalled, as
20	I said, once a spalled, it severely degrades its
21	ductility.
22	In the Cabri database, there are no
23	failures up to 64 and now up to 70 thousand for both
24	Zircaloy-4 and advanced alloy. As long as it doesn't
25	spall, you can have fairly high corrosion, up to 80,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	90, 100 microns. But there are no failures if the rod
2	did not spall. So spallation does create a special
3	challenge to the ductility.
4	In my slides, you are going to see I sort
5	of favor the Cabri data in the sodium loop. We only
6	have two new data points in the water loop. And one
7	is not even quite confirmed.
8	So all the data I'm talking about here are
9	in the old program in the sodium loop. And the reason
10	I favor that I think is the same reason that Ralph
11	Meyer talked about yesterday. These are the most
12	representative simulation tests. They have the right
13	temperature and the right pulse.
14	CHAIRMAN POWERS: I thought one of Ralph's
15	major points was that the temperature was a bit high.
16	MS. YANG: For this?
17	CHAIRMAN POWERS: For the Cabri data. I
18	mean, he went through the whole exercise with us on
19	REP-Nal0. And he made an adjustment for the higher
20	temperature.
21	DR. MEYER: Yes. This is Ralph Meyer.
22	The temperature was high as a consequence of the pulse
23	width. The initial test temperature is the right
24	it's the same as the hot standby temperature.
25	MS. YANG: So you are adjusting the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	DR. MEYER: The high temperature that I
2	was talking about, Dana, was a consequence of the
3	artificially broadened pulses that they're using. And
4	these are the temperatures of the cladding at
5	approximately the time that the failure took place.
6	MS. YANG: So you are really adjusting the
7	pulse widths?
8	DR. MEYER: Yes. For Cabri, the
9	adjustment was just for pulse width.
10	MS. YANG: For the pulse width.
11	DR. MEYER: For the NSRR data, the
12	adjustment was for both pulse width and test
13	temperature, the initial temperature of the test in
14	MS. YANG: In that case, the temperature
15	is very low. The pulse width is very narrow. So you
16	adjust upwards both cases?
17	DR. MEYER: Yes.
18	MS. YANG: Mr. Chairman, you talked
19	yesterday about something new in the topical. I
20	assume you are referring to the failure model talked
21	about here. This strain energy density approach has
22	been used elsewhere. This is not something really
23	invented by Anatech. What it does is it really just
24	integrates under the stress and strain curve that you
25	get from the mechanical property measurement.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

66
What is unique, I would say, is the CSED,
which defines the failure. You know, you look at the
stress-strain curve. And you look at the total strain
here. And then you integrate between the
stress-strain curve. And that is the failure CSED.
The reason we take this approach is
because it takes into consideration the strain rate,
the temperature, and the stress biaxiality effect.
I'm not the expert on this.
So I can't really defend this too much.
But I think we need this because if you want to take
a mechanistic approach of the RIA, instead of just
looking at the data empirically, you need something as
a gauge to say what is the measure of the adverse
effect on the rod so that it fails or not fails. And
this is our gauge.
You can look a number of cases. You can
use strain. You can use stress. But we decided to
integrate under the stress-strain curve as our gauge
for failure.
So when I look at the response of any RIA
simulation tests, I can calculate the SED for that
particular test and then depending upon if it's M5, if
it's ZIRLO, if it's Zircaloy-4 and how much hydrogen
in the cladding, then I create a CSED curve, which is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	67
1	clearly mechanical property. There's nothing more
2	than mechanical property. And if the mechanical
3	property is good enough, then the rod will not fail.
4	And if the mechanical property is not good enough,
5	then the rod will fail.
6	So it is a concept of taking advantages of
7	the mechanical property data. And I think because of
8	this, you can actually I think Tom yesterday talked
9	about extrapolating into advanced alloys. Because of
10	this way of making use of the basic mechanical
11	property data, you can extrapolate it or extend it to
12	advanced alloys.
13	Now, one of the concerns or the criticisms
14	is how good are the data. And here is our database.
15	There are hundreds of data. They are not all created
16	equal. They are burst tests, axial tension tests,
17	ring tension tests. And there are different ways of
18	doing ring tension tests. I would argue that axial
19	tension test is probably not that relevant because we
20	are looking at the hoop direction here.
21	I would also argue some of these very
22	early or very old data are probably not as good as
23	some of those on the lower end curve. But you can see
24	the database is pretty extensive. They cover
25	different fuel type, different burnup level, fluence,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	oxide, temperature, strain rate. The fact it is very
2	comprehensive probably resulted in the scatter of the
3	data. And here is the data. There is considerable
4	scatter. I would agree.
5	I just want to use this curve to make a
6	few points. A) do we want better data? Yes. You can
7	always get better data. And we have many programs in
8	place. The one at Argonne is one and some of our own
9	programs.
10	We can always refine it, but the one thing
11	I want to point out here is different shapes. Well,
12	some of the scatter is due to temperature. As you
13	know, temperature is an important parameter. And what
14	I want to point out is these solid symbols. They are
15	from the material that has spalled. The open symbols
16	are, at least from the metallography, that they are
17	not spalled. And this blue line is the best estimate
18	fit of all the data. And this is the best estimate of
19	all the spalled.
20	So I think it is clear that they are two
21	different populations.
22	CHAIRMAN POWERS: I'm tempted to quibble
23	
24	MS. YANG: With that?
25	CHAIRMAN POWERS: With a lot of stuff

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 about this plot. For instance, let us take your 2 spalled solid data point out of the plot. And let's 3 look at the residual open spot. Why wouldn't I fit 4 that with a constant?

5 MS. YANG: Well, one of the reasons we don't want to fit it with the constant, Dana, is 6 7 because we do know there is a relationship here. What you are plotting is the strain energy density as a 8 9 function of oxide to cladding thickness ratio. It's a flange parameter, but we use it. You can just look 10 11 at it as oxide. The reason we divided by the cladding 12 thickness is because, if you remember, our data had 14 by 14, 15 by 15, 16 by 16, 17 by 17. So this is just 13 14 a way to normalize the data point.

Basically, you are saying that the critical strain energy density is reducing as you increase the hydrogen content. I think it does have a slope to it, especially if you look at individual data sets.

20 CHAIRMAN POWERS: You can have a religious 21 belief there is a slope there, but I fail to see it in 22 the data.

MS. YANG: One of the scatters, the reason is because we plot all the data that may not belong to the same curve. But if you look at individual sets,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	like this ring tension test, it does have a slope to
2	it.
3	And if you look at burst tests, which is
4	typically believed to be more demanding than an RIA or
5	PCMI type of test. It has a very sharp slope to it,
6	which is consistent with the mechanistic understanding
7	of the mechanical properties.
8	I do agree as we improve, I think for many
9	of the people here, they know that there are
10	challenges for these either burst tests or the ring
11	tension tests. You basically get different results if
12	you do ring tension tests or burst tests. And
13	depending on the gauge lines, depending upon how much
14	friction you have and all of that, you get scatter in
15	the data. And they can be improved, and they are
16	being improved.
17	What we have done here and I will show
18	you what we have done is we look at different ways
19	of using the best estimate. We think for RIA types of
20	transient, it is not a good idea to just take the
21	lower bound given the type. Being risk-informed
22	approach, you should look at the best estimate but
23	trying to quantify the uncertainties or the scatter in
24	the data. And we have done that in the report.
25	CHAIRMAN POWERS: It's a very peculiar

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	characterization of the uncertainty in that report.
2	If you were to put the confidence bounds around that
3	line, about where would they show up? You can take
4	any percentage confidence you want, 50 percent, 80
5	percent, 90 percent.
6	MS. YANG: Yes.
7	CHAIRMAN POWERS: Where would they show up
8	on that curve?
9	MS. YANG: On the curve?
10	CHAIRMAN POWERS: Yes.
11	MS. YANG: I'll show you. What we did,
12	this is the best estimate curve. Then we said we will
13	only look at the burst data. We will look at a
14	different set. We said we will only look at the burst
15	data, which is the green curve. Then we said we will
16	look at the lower bound of all the data, which is a
17	red curve. So you do get different curves.
18	The bottom line, these are the three
19	curves. I'm sorry. The red become black here. These
20	are the three curves. If we take the lower bound of
21	all the mechanical property data we have, we will have
22	predicted those tests failed and they didn't. And so
23	we decided consistent with the risk involved, we
24	should take a best estimate approach.
25	But if you really want to, if you take a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	72
1	list of the burst tests, which we know is more
2	conservative than the PCMI type of scores, if you take
3	this, you still would show this rod fail.
4	So we kind of lack data. We don't have a
5	good justification. The right curve to be totally
6	probably should be something like that, but we don't
7	really have a good basis to draw a line here.
8	And then in the report, we did estimates
9	of taking any of the curves. How does that affect the
10	criteria that we have proposed? And we quantify that
11	in the report. The bottom line is very, very small,
12	basically because these curves are so flat and we use
13	a very conservative corrosion correlation, just to
14	refresh your memory, because these curves are
15	basically flat here.
16	So if we take the lowest, lowest bound, we
17	probably end up with a curve like that. So it is
18	going to be lower than what we proposed but not by
19	very much.
20	So basically when everything is sort of
21	put together in terms of the failure curve, it is not
22	that different from what we proposed. And these are
23	discussed in great detail in the topical report.
24	So yes, I agree there is considerable
25	scatter in the data. And we have looked at ways to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	quantify the scatter and the uncertainty. And we have
2	quantified that. And the bottom line is that doesn't
3	really change the final criteria.
4	CHAIRMAN POWERS: If you model that
5	database as a constant, which it certainly looks like,
6	then it says there's no dependence on strain energy
7	density and it's a failed concept. That's the
8	problem.
9	You have said, "Look, this thing depends
10	on strain energy density." You draw a curve through
11	it to get yourself a slope. You show how it depends,
12	but you may be fooling yourself because the data is so
13	scattered there may be no dependence on strain energy
14	density. It may have nothing to do with it.
15	MS. YANG: If that's the case, then this
16	curve you could plot. I don't think strain energy
17	density is very unique here. You can plot the total
18	elongation here, for example.
19	CHAIRMAN POWERS: I can plot the tides of
20	the moon on this plot and do a calculation and get a
21	curve through it. It doesn't mean there is one. You
22	see, the data is so scattered that it is very, very
23	difficult to convince yourself that the slope you have
24	there is distinguishable from zero.
25	MR. CARUSO: Why is it a curve? Why isn't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	it a straight line?
2	MS. YANG: It's a best fit curve.
3	MR. CARUSO: But when you do a fit, you
4	have to fit to an equation and decide what the shape
5	of the data is. Is it linear or it a quadratic or is
6	it a cubic? How did you decide that it was that
7	shape?
8	MS. YANG: It's a statistical fit of the
9	data. I mean, that's the shape that comes out of the
10	fit.
11	MR. CARUSO: To what? I mean, you have to
12	decide that it varies as the square or as the log or
13	as the? Where does that come from? If you do a fit
14	to a particular type of curve
15	MS. YANG: The fitting routine gives you
16	what is the best fit form.
17	MEMBER SIEBER: If you do a multiple
18	regression, it will come out either a straight line or
19	some kind of a curve.
20	CHAIRMAN POWERS: If you do a multiple
21	regression in any real program, it will also tell you
22	whether the coefficients are distinguishable from zero
23	or not.
24	MEMBER SIEBER: Right.
25	CHAIRMAN POWERS: And here I just can't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	imagine it would come back with any of the terms
2	having a coefficient that was distinguishable from
3	zero.
4	MS. YANG: Oh, I think it does.
5	MEMBER SIEBER: You may be right.
6	MS. YANG: Dana, one other thing I want to
7	point out is probably our fault. We plot all of the
8	data we have just because they're in that not damaged
9	mechanical property data. But what I would argue is
10	some of these axial tension tests are not that
11	relevant for the PCMI type of driving force that we
12	are talking about here.
13	So if you take the blue square and the
14	green or the upside-down triangle, which is a lot of
15	the scatter right here, I think that the slope you are
16	looking for may be more clear.
17	MEMBER SIEBER: I think you are making
18	your argument based on what you are observing there,
19	but it would be interesting just to take the sets of
20	data and plot the curves and see what they actually do
21	look like, rather than have a single curve
22	MS. YANG: Yes.
23	MEMBER SIEBER: trying to represent all
24	of the data.
25	MS. YANG: And I believe they are in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	report, the different sets. Like I said
2	MEMBER SIEBER: Well, I don't know that.
3	MS. YANG: If you look at different sets,
4	I think the dependence is more clear. It's just when
5	you overlay the different sets of data, they appear to
6	be more scattered.
7	CHAIRMAN POWERS: Now, when I look at the
8	individual sets, what I see is a high degree of
9	sensitivity to individual data points, that, in fact,
10	if I take one data point out of each set away and say
11	there was something wrong with that data, I end up
12	with curves having zero slope.
13	MS. YANG: I'm not sure I understand. Say
14	it again.
15	CHAIRMAN POWERS: Well, what I understand
16	is we are going to run out of time on this session.
17	So let us wrap up as quickly as you can.
18	MS. YANG: Okay. This is what was
19	proposed. And these are the REP-Na tests, which have
20	the right temperature condition and with different
21	pulse widths. You can see the curve bounded the data
22	quite well, even maybe somewhat more conservative for
23	that one.
24	Coolability. We have shown here is all of
25	the data, the RIA simulation data, which had fuel

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	dispersal, some dispersal. And what we have plotted
2	here is the amount of energy deposition after the
3	failure as a function of the pulse width.
4	All of those on this side of the curve
5	have fuel dispersal. All of those on the other side
6	of the curve have failed. And some of them have
7	considerable energy deposition after they fail, but
8	they are no fuel dispersals.
9	So this is an empirical approach. And we
10	have drawn a line here, and the line actually should
11	be drawn between these two sets. Basically we observe
12	you only have fuel dispersal when the pulse width is
13	less than 10 milliseconds.
14	There is a chart which in the interest of
15	time I don't want to get into that explains why the
16	narrow pulse would have resulted in dispersal because
17	the temperature distributions are considerably
18	different for the narrow pulse and the wider pulse.
19	So because we think the typical PWRs or BWRs that the
20	pulse width is greater than 30 milliseconds.
21	So it is not possible to expect fuel
22	dispersal with the prototypical pulse width. However,
23	if you want to assume dispersal in case you have a
24	very high energy input, then we look at the data in
25	the industry that shows how that affects the rod

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	geometry and how the fuel and coolant would interact.
2	And there are these references.
3	But the bottom line is really only molten
4	fuel would result in high energy fuel-coolant
5	interaction, as illustrated in this experiment here.
6	Is the measured energy conversion ratio as a function
7	of the mean diameter of the particle?
8	The molten for the molten fuel dispersed
9	that the energy conversion is high. But for the same
10	diameter that if you don't have molten fuel, the
11	conversion ratio is significantly reduced because of
12	it.
13	So what we had proposed here is to limit
14	fuel melting. We want to limit any amount of fuel
15	melting, even if it's incipient melting, just local
16	melting.
17	If you recall, the temperature
18	distribution for the RIA pulse is peaked at the rim,
19	which happened to be the highest burnup area, which
20	they are fuel particles there due to the so-called rim
21	effect.
22	So what we have done is to propose the
23	criteria that limit any amount of fuel melting right
24	here. We have used very conservative thermal
25	conductivity data.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 We have used fuel melting as a function of 2 So we didn't just use the fuel melting burnup. 3 temperature for fresh fuel. We have used а 4 correlation from experimental data that reduced the 5 fuel melting temperature as a function of burnup. So we used that to develop the fuel coolability curve. 6 7 That's why you see this going down as you go to higher burnup. And they are these data, these Japanese data, 8 that we have found that sort of support the curve that 9 10 we propose. 11 So, to summarize, we have proposed a fuel 12 failure limit, which is based on PCMI and the mechanical property. And 13 we have proposed а 14 coolability limit, which is based on preventing fuel 15 melting. And both are supported, which we're using an analytical approach, mechanistic approach, trying to 16 17 represent the phenomena and take the lower bound of many of the values that we have used, especially 18 19 corrosion, which we use the bounding case of 20 corrosion. So this is a curve that was produced and 21 supported by the Cabri experimental data for the 22 coolability. 23 don't think there will be We fuel 24 dispersal if you have representative pulse width.

However, if you do want to calculate dispersal, we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

79

80 1 have limited the fuel temperature to melting because 2 of this more mechanistic type of approach that can be extended to advanced alloys. 3 So that I think, Dana, you asked the 4 5 question yesterday. When you extend the methodology to advanced alloys, do you still need it to run any 6 7 RIA tests? And I think the answer is yes, but you 8 don't need as many so that you can get a good statistical distribution. 9 10 What you need are one or two of these RIA 11 types of tests to confirm what you know, but what you 12 need once you develop a new criteria for advanced alloys, you need good mechanical property data for the 13 14 advanced alloy because we have found from the RIA 15 simulation tests up to 73,000 burnup, which is the licensing burnup extension limit that we are looking 16 for that PCMI is still the driving force. There are 17 some mechanisms being hypothesized earlier, but we 18 19 haven't observed that at this burnup level. 20 what So we think we proposed is 21 conservative and considering the risk of the rod 22 ejection accident, we think there is no basis to merge 23 the two curves because in one case, you have cladding

failure. And in many cases, they are the PCMI types of cracking. They certainly were not the same as

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

81 1 causing a core coolability concern. So that's the 2 added slides for the RIA. 3 For the LOCA program, coming back, closing 4 to the end of my presentation on the LOCA, I am not 5 going to talk about the Argonne program, which was being talked a lot yesterday. In addition to that 6 7 program, we have a collaborative program with EdF, which looked at the separate effects of the LOCA face, 8 9 which is quite different from some of the other 10 experiments. 11 Basically you look at the ballooning and 12 the burst phase. And then you look at the oxidation and the quenching phase. Just look at the cladding. 13 14 You use fresh cladding, and you use hydrided cladding 15 to simulate the hydrogen. The intent here is assuming that the 16 irradiation effect will be annealed out for the LOCA 17 type of condition. Of course, that needs to be 18 19 demonstrated to be the case. And I think the Argonne 20 program will provide us some insight to that. And 21 some of these French tests will provide that. 22 We are also monitoring the Japanese ALPS 23 program and the Halden program, which is using real 24 fuel rods to run LOCA tests in a test reactor. The

purpose of this slide is just to let you know that we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

are actually approaching LOCA very similar to what we are approaching RIA.

3 We are actually going to model all the 4 experimental results so that we have a better 5 understanding of how much margins we have. I think the stylized LOCA phrase was used. 6 And we need to 7 know how much margin we have between the real LOCA, real hypothetical LOCA, and the stylized LOCA. 8

9 Very quickly, we have an effort for industry quide for burnup extension. This is to sort 10 11 of lay out the framework or the road map for getting 12 to burnup extension. This is being mandated by NRC to, instead of different fuel suppliers coming in for 13 14 different topicals that the NRC mandate to save the 15 resources to be more efficient use of the resources, we should do it on an industry-wide basis. 16 And the target of this effort is 75,000 for PWRs and 70,000 17 for BWRs. 18

19What we have done is we have looked at the20current regulatory criteria described in SRP 4.2 and21trying to look at each criteria to see how the burnup22impacts that particular requirement and then decide on23if new criteria should be proposed.24We have a fairly rigorous approach in this

25 and have been discussing with NRR in the past. We're

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

continuing with this. We are pretty much done on this except the LOCA section. I think you can understand why, but we'll complete it and submit it to NRC for review sometime next year.

5 So, to summarize the program, as I said earlier, we have many international participants. And 6 7 they play a very active role. They don't just come to get data in many cases. They provide the data and the 8 9 operating experience to the program. And we have addressed many of the key issues, like AOA and noble 10 11 metal. And we have completed the RIA topical report. 12 We are in the midst of hot cell examinations, trying obtain data to ensure margins to avoid big 13 to 14 surprises.

15 So a little bit of the PR here. We are aimed at reliable and efficient fuel operations. And 16 17 we have industry-wide collaboration, trying to resolve safety and regulatory issues in an integrated and 18 19 effective manner. Although I said it's PR, that is 20 certainly what we are striving at and just to show some of the interactions and interfaces that I have 21 22 talked about before. 23 So that's the end.

24 CHAIRMAN POWERS: Any questions of the 25 speaker?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

	84
1	(No response.)
2	CHAIRMAN POWERS: Seeing none, thank you
3	very much.
4	MS. YANG: Okay.
5	CHAIRMAN POWERS: We will recess until 10
6	of the hour.
7	(Whereupon, the foregoing matter went off
8	the record at 10:38 a.m. and went back on
9	the record at 11:00 a.m.)
10	CHAIRMAN POWERS: Let's get back to work
11	here before people try to chase us out of the room.
12	They won't succeed. We're comfortable here. We're
13	enjoying this. This is a salubrious environment.
14	Let's get back to talking about what
15	were we talking about now? Oh, LOCA tests. Odelli,
16	it's yours.
17	MR. OZER: Thank you. Thank you, Mr.
18	Chairman.
19	As Rosa mentioned, our robust fuel program
20	is a collaborative program. We work very closely with
21	our sponsoring utilities and the fuel vendors. This
22	collaboration is probably the strongest in working
23	group 2. We work very closely with our vendors.
24	And at the last working group 2 meeting,
25	we had a considerable amount of discussion of the ANL

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

LOCA program. There was a considerable amount of concerns that were expressed. And the decision was 3 made to express those concerns, to transmit them to 4 NRC in the form of a letter. So it's the basis of this letter, the contents of this letter, that I was asked to talk about.

7 I think they concerned the tests that are being done to confirm the LOCA criteria. 8 I think 9 yesterday we got a very good presentation from Ralph, Ralph Meyer, on the basis of the LOCA criteria. 10 They 11 were established for the 1973 ECCS rulemaking 12 At that time, there was very little data hearings. that was available on the types of forces that fuel 13 14 would experience during a LOCA event.

15 So ductility was considered to be sort of 16 a proxy, if you wish, a surrogate, to ensure adequacy of the fuel. And two limits were established. 17 There was generally good agreement among the industrial 18 19 participants that 17 percent was a good oxidation 20 2,200 temperature limit limit. And the was 21 established to a certain extent to stay away from the 22 region where reactions become autocatalytic.

23 some evidence Also, there that was 24 oxidation at higher temperatures was more harmful than 25 oxidation at the lower temperatures. So those were

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

	86
1	really the bases of the criteria as far as we're
2	concerned.
3	Now, as I said, the 73 criteria were based
4	on very limited information. In the ten years that
5	followed, there was a considerable amount of
6	information, experiments that were conducted by the
7	commission's own assessment.
8	\$1.5 billion were expended on trying to
9	understand the behavior of reactors during a LOCA
10	event. Seven hundred million dollars this is 1980
11	dollars were NRC's own LOCA programs. The
12	remaining half was DOE and international participants
13	in the industry in general.
14	As far as the two licensing criteria that
15	we are most concerned about, the most relevant ones we
16	feel are the experiments conducted at Argonne by Chung
17	and Kassner consisting primarily of subjecting rods to
18	a LOCA-like scenario, quenching them. And rods that
19	survived the quench were subjected to impact tests
20	with 0.3 joule hammers. And then it was determined
21	whether they survived that or not.
22	Now, following these tests, in the mid
23	1980s, the NRC staff reviewed the large amount of data
24	that was generated. They concluded, first of all,
25	that now there was a sufficient amount of data to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

estimate the extent of conservatism in the criteria that were established in 1973. This is summarized in NUREG-1230.

4 Following the review, the 10 CFR 46 was 5 revised, 10 CFR 50.46 was revised, based on NUREG-1230. The criteria were left the same at 2,200 6 7 and 17 percent. However, the commission allowed the estimate 8 use of best models as long as the uncertainties involved in the overall modeling process 9 were accounted for appropriately. 10 This allowed the 11 use of corrosion correlations that are more relevant, 12 such as Cathcart-Pawel, as opposed to Baker-Just.

At the same time, the commission felt that there was sufficient conservatism in these criteria. And they de-emphasized at that point the use of ring compression tests or ductility in general in favor of the impact tests. The impact tests provide sufficient margin.

19 Here we are plotting all of the impact 20 that failed, but we are plotting tests on the 21 ordinance. The x-axis is the inverse of the 22 So this is low temperature. temperature. As the 23 temperature goes higher and higher, we progress in 24 this direction. And we come to the limit, 2,200 Fahrenheit or 1,200 degrees Centigrade. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

1 I am only plotting here the rods that 2 failed and the level at which they failed. The y-axis 3 represents the time that each rod spent in the 4 oxidizing environment, the amount of oxidation, if you 5 wish, different temperatures. So at this temperature, it would take this much time to oxidize the rods to a 6 7 certain level. Now, where does the 17 percent stand with 8 regards to these failure levels? 9 If you use the original Baker-Just correlation, you get this line. 10 11 This is the 17 percent line. And there was a considerable amount of discussion about Baker-Just 12 versus Cathcart-Pawel. 13

This is the Cathcart-Pawel oxidation limit. Yes, it decreases somewhat the margin, but still there is a considerable amount of margin.

Now, what I should stress is that some of these rods would have failed the ring compression tests. Depending on where you take your sample for ring compression, if you take it from the hydrided rim, they probably could have failed. Nevertheless, the NRC felt that this was sufficient evidence of conservatism and went on.

Now, we feel that the current regulationsare based on the 1988 assessment, which relied on

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

89 1 quench and impact tests. We feel that impact tests on 2 the irradiated fuel are necessary to provide this 3 linkage to the 1988 reference. 4 What we are trying to establish is, first 5 of all, this reference between irradiated versus unirradiated impact tests. Eventually what we would 6 7 like, of course -- I think this is consistent with what ANL and Ralph would like to do -- is to determine 8 whether we can establish a correlation between the 9 10 irradiated material response and the response of 11 unirradiated but pre-hydrided material so that we can 12 estimate the response of materials sooner without having to go through the post-irradiation process. 13 14 We feel that impact tests are more 15 representative of expected post-LOCA loads. We feel 16 that reliance ring compression tests is on 17 problematic. subject 18 Mainly the results are to 19 interpretation. They're qualitative. There is no 20 clear way to relate the ring compression tests to the 21 type of data that was used in 1988; in other words, 22 the impact tests. 23 We acknowledge that yes, they have some 24 limited use and they were used recently to

inter-compare different materials to the response, to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	90
1	compare the response of the advanced cladding, for
2	example, to that of Zircaloy-4 and to compare, for
3	example, E110, confirm that the E110 behavior is
4	there. But that's a rather limited use.
5	We are very concerned about the
6	uncertainties that will be introduced by defueling of
7	high-burnup fuel rings for doing these tests. The
8	response of fuel in a post-LOCA seismic event will be
9	to a great extent controlled by the rigidity of the
10	rods. And the rigidity will be affected by the fuel
11	that is inside those rods.
12	Yesterday Mike Billone showed dramatically
13	different responses when you leave rather rigid
14	pellets inside a four-point bend test. Now, if we are
15	doing these tests on defueled samples, the impact of
16	this effect will be lost. We will not know how to use
17	it, really.
18	And we think that it has questionable
19	relevance to post-LOCA load. For that reason, we are
20	proposing to hold a stakeholders' meeting to ensure
21	that appropriate input is considered. This would be
22	a meeting of experts in mechanical properties and
23	testing and so on, which I'm not.
24	So this is really a very brief summary of
25	why we submitted that letter and what we are concerned

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	with.
2	MR. BILLONE: Mike Billone from Argonne.
3	Just for clarification, in Hee Chung's work, they did
4	a lot of impact tests. They did a lot axial tensile
5	tests. And they did a lot of ring compression tests.
6	The research included all the three testing types. It
7	wasn't just impact tests.
8	MR. OZER: That's correct. Nevertheless,
9	I mean, some of those ring compression tests, as I
10	said, would have shown not enough ductility or would
11	have shown that material would be failing around 17
12	percent of the ring was taken from the hydrided rim
13	region.
14	MR. BILLONE: Right. Just for
15	clarification, because I have to translate this into
16	a testing program in a way, there are different ways
17	of running impact tests. And I'm wondering if you are
18	asking for a screening test, a .3 joules screening
19	test, or whether you do the traditional impact where
20	you impact the failure and you look at energy absorbed
21	in the failure.
22	MR. OZER: I think this would be best left
23	for the stakeholders' meeting. But as a minimum, I
24	think we would like to see the 0.3 joules test to
25	provide the reference to what was done in the 1980s.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	Again, that is a subject for debating.
2	MEMBER FORD: Would you mind putting up
3	your graph, please? Just for my information, the data
4	points which were done under thermal shock conditions
5	or high strain rate conditions, what was the burnup,
б	the highest burnup?
7	MR. OZER: They were zero burnup.
8	MEMBER FORD: Zero burnup?
9	MR. OZER: Zero or very low burnup.
10	MEMBER FORD: So you would expect those
11	lines to move down towards the current mix with
12	burnup?
13	MR. OZER: Yes.
14	MEMBER FORD: The question is how far the
15	
16	MR. OZER: The question is how much.
17	MEMBER FORD: How much?
18	MR. OZER: Yes, exactly.
19	MEMBER FORD: Okay.
20	DR. MEYER: Mr. Chairman, may I make a
21	comment?
22	CHAIRMAN POWERS: Sure.
23	DR. MEYER: This is Ralph Meyer from
24	research. We, in fact, have responded to the letter.
25	We are happy to arrange the stakeholders' meeting and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	to discuss this possibility.
2	I do want to comment on the impact test in
3	the light that I see them. Up until the time of the
4	impact tests, which were done around 1980, both at
5	Argonne and at the JAERI Laboratory at Tokai well,
6	they didn't do impact tests, but both of them were
7	exploring the mechanical behavior of a balloon
8	specimen.
9	At the time the rule was made, the data,
10	the mechanical data, ring compression testing, was all
11	done on under-formed specimens. And an algorithm was
12	cooked up so that you would apply that information to
13	the ballooned region.
14	So the impact testing that was done at
15	Argonne was some of the first testing that actually
16	showed that the recipe worked because the intention
17	was to have some ductility left after you survived
18	quench.
19	And so the impact testing then showed that
20	you had at least some strength left after you survived
21	the quench. So I don't see any conflict between the
22	impact testing and the ring testing.
23	In the current program, we have plans for
24	four-point bend tests, rather than impact tests. We
25	considered impact tests a couple of years ago, and we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	will reconsider impact tests in discussing this with
2	stakeholders. But the current plans were based on
3	doing four-point bend tests to explore the integral
4	effect with fuel inside on the ballooned region.
5	So I think the current test plan is that
6	it does cover the difficult areas, all of the
7	difficult areas that Odelli mentioned, using the
8	four-point bend tests. And we can explore the
9	possibility of adding impact tests in the
10	stakeholders' meeting.
11	CHAIRMAN POWERS: Maybe for my own
12	edification, suppose one comes back and says, "Gee,
13	this particular device survived one magnitude of tests
14	and didn't survive the next one." What do I do with
15	that data?
16	DR. MEYER: Could you repeat the question?
17	CHAIRMAN POWERS: Okay. Well, let's just
18	take one from the plot up here. It says here is one
19	that survived the .15 joules impact but failed under
20	a .3 joules impact. Now, what do I conclude from
21	that? As long as I have guys with real tiny hammers
22	inside the core, it's okay?
23	MR. BILLONE: To get out of that, you
24	would run the impact test of all of the failure, which
25	is traditional. And then you would get an absorbed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	energy associated with that failure. And then you
2	generated a database that is not arbitrary.
3	You have a screening test. You are always
4	going to be criticized by what you pick, .03, .15.
5	And the point is that with those, your material could
6	be really brittle. And it can survive a low-impact
7	test.
8	This is out of my league. A lot depends
9	on how much confidence you have in the loads you are
10	calculating in reactor by picking a screening test.
11	CHAIRMAN POWERS: And I guess I agreed
12	with Ralph when he said yesterday that they lacked
13	confidence in their ability to predict the loads under
14	LOCA conditions, but maybe I'm wrong about that.
15	MR. BILLONE: That one is out of my
16	league.
17	MR. OZER: The loads during the LOCA or
18	after the seismic loads that would occur?
19	CHAIRMAN POWERS: I guess the answer is
20	yes to that question.
21	MR. OZER: Both? Okay. The loads during
22	a LOCA, the ability to survive the loads during a
23	LOCA, is demonstrated by surviving the quench thermal
24	shock. If a rod survives a quench thermal shock, then
25	it survives it. That's proof.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	MR. BILLONE: No. But I think the point
2	was there might be additional loads beyond that. That
3	was the issue, are there additional loads beyond just
4	simple thermal stress in the cladding? I thought that
5	was the issue of the unknown or the gray area.
6	DR. MEYER: Well, in addition to that is
7	the uncertainty as to whether the test where you are
8	doing the thermal quench is adequately representing
9	the constraints that would exist in the fuel assembly
10	undergoing a LOCA.
11	This is where JAERI has come in with lots
12	of constrain tests of varying constraints and where
13	one ultimately has to come down to some assessment of
14	what the loads are. Either they think it usually
15	comes down to some tensile load, axial tensile load,
16	on the cladding, arriving either from an axial force
17	related to thermal contraction or a lateral loading
18	that causes damage in swinging of fuel assemblies.
19	MR. OZER: I think that yes, the
20	constraint due to quenching is a consideration. I
21	think the Japanese did probably the most extreme thing
22	imaginable.
23	In a PWR assembly, 17 by 17, you have some
24	260 some rods, fuel rods. The constraints will be
25	controlled by the fuel rods, not the 24 guide tubes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

⁰⁶

	97
1	There are 24 or 25, including the instrumentation
2	tube. I mean, any forces that will be coming from the
3	contraction of the fuel rods will overwhelm any forces
4	that may be coming from the guide tubes.
5	As far as swinging of the rods and
6	disbursing fuel pellets, there is no clearance between
7	adjacent fuel rods sufficient to allow pellets to fall
8	out. I mean, you would have to have a whole
9	guillotine-type break, and there just isn't room for
10	that. It's just not realistic.
11	But I really think that these kinds of
12	issues should be discussed at the stakeholders'
13	meeting. I don't think this is the place for it.
14	MEMBER KRESS: Why are we worried about
15	aftershocks? Are we presuming that the LOCA was
16	caused by an earthquake?
17	MR. BILLONE: At one time, we did.
18	MEMBER KRESS: This seems a little like
19	going a little too far in regulatory space.
20	DR. MEYER: I don't think this is the crux
21	of the discussion. The heart of the matter seems to
22	be that the ductility criterion was invoked so that
23	you didn't have to consider the loads. And if you now
24	have changed to a strength criterion, then you have to
25	ask what loads might be imposed.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	MEMBER KRESS: I think that's a reasonable
2	
3	DR. MEYER: I don't think it's an
4	essential part of the discussion.
5	MEMBER KRESS: Yes. That's a reasonable
6	question to ask, but I certainly wouldn't add
7	aftershock earthquake loads into that equation.
8	MR. CARUSO: I think that is part of the
9	stylized nature of this accident. It's just a
10	postulated sequence of events.
11	MEMBER KRESS: I think I would rule that
12	out on
13	CHAIRMAN POWERS: I don't think it matters
14	because I don't think that you can make a persuasive
15	case to me that you could calculate the loads in a
16	real LOCA. It would be exceptionally hard to do that.
17	Now, that doesn't obviate the question
18	here of what is the easy way to get things. I mean,
19	one solution clearly is to say there is some
20	ductility. The problem comes in as soon as you say
21	there has to be sufficient ductility. Then you get
22	into the same problem you've got here.
23	So maybe you have come to the right
24	answer, to have the group of experts get together and
25	kick it around, then come back and talk some more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	because I don't think we are going to solve it here.
2	MR. BILLONE: You're not going to solve it
3	here, but the group of experts had better define the
4	tests and tell you what you've learned from these
5	tests.
6	The fundamental thing which has to be
7	resolved is, are you going to move away from a
8	ductility criteria to a strength criteria? That group
9	of testing experts and material scientists probably
10	can't answer that question.
11	CHAIRMAN POWERS: Yes. The only comment
12	I think I can intelligently make now is that I am very
13	suspect of coming in and saying, "Let's run .15 or .3
14	joules hammer tests" and walk away from it at that
15	point because I just don't think that tells me
16	anything useful except make sure any of the little
17	guys that climb through the core during cooling have
18	real small hammers. That's the only thing it tells
19	me.
20	Any other questions?
21	(No response.)
22	CHAIRMAN POWERS: Thank you, sir.
23	Rosa, where are we now?
24	MS. YANG: We will present go ahead,
25	Jeff. We are going to talk about AOA and rods, PWR

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	rods.
2	MR. CARUSO: But this will be closed,
3	Rosa?
4	MS. YANG: I think it's okay.
5	MR. DESHON: Yes.
6	MR. CARUSO: So this will be open.
7	<u>11) PWR CRUD</u>
8	AXIAL OFFSET ANOMALIES
9	MR. DESHON: Well, good morning. My name
10	is Jeff Deshon. I am kind of a lone wolf at our fuel
11	group at EPRI. I am not a physicist or nuclear
12	engineer or material science guy.
13	I actually worked at one of these power
14	plants for 16 years as either a chemist or a chemistry
15	manager. And I came to EPRI in 2000 to work for Rosa.
16	So that's not necessarily a bad thing, but I'm not one
17	of those people because
18	CHAIRMAN POWERS: Working for Rosa isn't
19	a bad thing.
20	MR. DESHON: Because the issue that I came
21	to EPRI for was to work on this phenomenon that's
22	referred to as the axial offset anomaly. And in
23	attacking this problem for the industry, it's really
24	as much of a chemistry issue as it is a fuel issue.
25	So this presentation is broken down. I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 thought I would kind of get everyone on this equal 2 footing from the very beginning and go through, number 3 one, what our objectives are from our particular 4 working group in the robust fuel program, give you 5 some background information, what is AOA, the history and implications of the phenomenon to our operating 6 7 plants, and then here discuss with you some information that you probably haven't seen before in 8 the area of crud -- and this is work that we have been 9 conducting for the last several years -- and then 10 finally review with you some strategies that we are 11 12 pursuing in trying to resolve AOA. Okay. Our objective for working group 1 13 14 of the RFP is indeed to minimize the threat of PWR 15 axial offset anomaly. And the focus here is on doing that through managing core crud deposits. 16 17 Axial offset is normally defined as the integrated power in the top half of your core minus 18 the bottom half over the sum of the two. Axial offset 19 20 anomaly is a significant deviation from those, the 21 numerator and denominator. It's typically observed as 22 a negative offset. 23 Now, if you are of combustion engineering 24 vintage, they express it essentially in the reverse 25 order. And they refer to it as the axial shape index,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

101

	102
1	or ASI. And it's merely the negative axial offset if
2	you were to use the other definition.
3	Well, every core design has with it an
4	associated predicted axial offset or AFD it's commonly
5	referred to, axial flux difference, curve. And these
6	are done using the design codes, either ANC from
7	Westinghouse or SIMULATE. And they predict the axial
8	offset during the cycle at various burnups during that
9	period.
10	On a monthly and more frequent basis, our
11	power plants will go ahead and conduct flux maps. And
12	what they will do is compare the power data from those
13	flux maps to the predicted code.
14	A few utilities have fixed in-core
15	detectors. These are kind of nice features to have at
16	a power plant because it gives you real-time data.
17	It's constant data generation. The only problem with
18	them, their resolution isn't quite as great as the
19	movable in core detectors.
20	So getting back to the anomaly, as I
21	mentioned, it's a significant deviation between the
22	measured power data and the predicted. Now, the
23	deviation results from a phenomenon where boron
24	concentrates within crud and as crud is occurring in
25	the upper strands of your core, where you have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	103
1	significant subcooled nucleate boiling taking place.
2	Once there is a critical or a sufficient
3	boron that has accumulated within that crud deposit,
4	then you will start observing flux depressions in the
5	top of the core. For the core to maintain power, it
6	will physically shift the neutron flux downward,
7	actually, towards the bottom half of the core. And it
8	results in this more negative axial offset than the
9	prediction.
10	Now, historically a plant that has
11	encountered AOA has been defined as a deviation of
12	greater than, say, -3 percent. And that is to
13	incorporate all of the uncertainties that might be
14	present in the nuclear code design.
15	Here is a curve of what the power plants
16	are trending during the operating cycle. This y-axis
17	here is percent AO or it could be AFD, axial flux
18	difference.
19	The x-axis is in burnup. And the
20	characteristic features of this is typically axial
21	offsets anomaly will start rearing its ugly head at a
22	burnup of between maybe four and eight gigawatt-days
23	per metric ton. And you will typically start seeing
24	a dramatic shift in the slope of that line.
25	In this case here, this is a fairly

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	dramatic case of axial offset anomaly, where the
2	deviation is quite far from the predicted line, here
3	on the order of maybe -8 percent.
4	Now you will see it gets at its worst at
5	about maybe 10 to 14 gigawatt-days per metric ton but
6	starts taking a very positive, steep change towards
7	the end of the cycle.
8	What is happening there is basically you
9	are later in cycle, you have less boron in your active
10	coolant system, you're burning up the low portion of
11	your core, and the flux is starting to shift upward
12	towards the end of the cycle. And, hence, you get
13	this very steep slope coming out on the back end.
14	Here is a flux map of an individual
15	assembly. And it's actually taking over the course of
16	the operating cycle. What I wanted you to observe
17	from this, from an individual assembly, is what we
18	have here is this is a normalized power distribution
19	for this assembly. And on the x-axis is the axial
20	position in feet.
21	So this is your pretty typical 12-foot
22	length assembly. And this aqua color here was the
23	first flux map that was taken of this assembly. You
24	can see it's very symmetrical. It was taken at a
25	burnup of only 208 megawatt-days per metric ton. So

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	it was taken up very shortly after the plant achieved
2	full power during the cycle.
3	But if you take a look at the dark blue
4	line here, taking close to 10,000 burnup or 10
5	gigawatt-day burnup, you can see that you've got a
6	significant neutron flux taking place in the bottom
7	half of the core.
8	Anything from this side to from six feet
9	down below is the bottom portion of your core. And to
10	the right of that is your top portion. You can see
11	you've got more power being generated in the bottom
12	half than you do on this, the top half. And this has
13	persisted, even through a burnup of about what is
14	that? 16,500 with this green line, but towards the
15	end of the cycle, at a burnup of around 21,000, you
16	can see this red line. You've got a more symmetrical
17	shape distribution for this particular assembly.
18	So this is the kind of information that
19	the operators or reactor engineers are looking at at
20	the plant. The first documented case of AOA took
21	place actually back in the early '70s at the Obrigheim
22	unit in Germany. Their reactor coolant chemistry
23	control wasn't particularly strong. PH wasn't
24	controlled very well. And, most importantly, they had
25	very little hydrogen over-pressure on the reactor

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 coolant system. So they actually had oxygen and 2 oxidizing conditions in the reactor coolant system. What this led to was excessive corrosion 3 4 of their ex-core materials and the corrosion products 5 deposited in the crud. And what that did was it provided that foundation or that substrate for boron 6 7 to concentrate and deposit. The first domestic case occurred in the 8 9 late '70s. And what was speculated in that case was that they had during a specific period during the 10 11 cycle a significant amount of oxygen intrusion into 12 the coolant. That in itself created additional corrosion products to circulate and deposit in the 13 14 Again, it was enough corrosion product that core. 15 deposited such that the boron could concentrate in deposits there to cause the flux depressions. 16 17 So AOA wasn't fashionable until the '90s, if you will. And why did that happen? Well, we've 18 19 got good chemistry control. We've got good hydrogen 20 You know, we learned from those earlier control. 21 experiences in the '70s. 22 So what really transpired or initiated 23 this problem was that the utilities were going to 24 longer operating cycles. That was based pretty much 25 on an economics position.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

106

	107
1	So to improve their fuel cycle economy
2	with these longer operating cycles, they had to go to
3	higher assembly powers, higher enrichment in the rods,
4	higher thermal duty. And in some cases, to further
5	improve their economics position, they were loading
6	fewer assemblies. Therefore, they needed more energy
7	out of the assemblies that they were actually loading,
8	so higher thermal duty.
9	So if we connect the y to the root cause
10	of AOA, accompanying these transitions to a
11	higher-duty fuel, it created higher subcooled nucleate
12	boiling taking place in these new assemblies that were
13	being loaded.
14	And the subcooled boiling was taking place
15	in those upper spans, typically in a Westinghouse
16	assembly, spans 5 and 6; in a combustion engineering
17	assembly, maybe in spans 7 and 8.
18	Well, having higher subcooled nucleate
19	boiling does result in an enhanced deposition rate of
20	corrosion products. Now, corrosion products are going
21	to and always have deposited on fuel assemblies,
22	regardless of fuel duty. That's just the relative
23	thermal dynamics and chemistry behind frozen product
24	release and deposition. Where you have significant
25	subcooled nucleate boiling, it does act maybe as a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	108
1	magnet to these corrosion products.
2	Once a sufficient crud thickness has been
3	established, the local conditions within that crud, be
4	it the temperature, morphology, there are a number
5	of them they create the environment that boron will
б	concentrate and will either deposit through a
7	precipitation process or, what we have also learned
8	through our studies, through an absorption process as
9	well.
10	To place it all in Venn diagram form, we
11	believe you need three components, constituents for
12	AOA to manifest. The first thing, you need the
13	subcooled nucleate boiling component because before we
14	started really pushing these assemblies with their
15	fuel duty, the subcooled nucleate boiling taking place
16	was present but not at such a high rate.
17	You need corrosion products that are
18	circulating in your core because it's the crud that
19	deposits in these areas of subcooled nucleate boiling
20	that creates the environment for boron to deposit.
21	And, of course, the boron rate here is in the green,
22	designated in the green circle. So root cause is the
23	boron deposit in crud in these high steaming
24	assemblies.
25	So what? What if a PWR encounters AOA?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

4 me out. 5 Steady state power operation for the most part, you know, AOA is not going to have that much of 6 7 an impact on you. And that certainly might depend on the severity of AOA that you're encountering. 8 An example of where it could create a 9 problem for particularly one with severe AOA 10 is 11 towards end of cycle because with each one of these 12 axial offset or AOD prediction curves, there are also limits associated with those as well. 13 14 So towards the end of the cycle, I showed 15 you on slide number 8 there. Towards the end of the cycle, there was a very rapid escalating AO shift for 16 17 that particular plant. And that condition can approach your tech spec limit for AFB. 18 19 Now, additionally we've got a lot of 20 utilities out there that undergo coastdowns at end of 21 cycle. And, as you see here in this last sentence, 22 the coastdown end of cycle may make the AOA situation 23 worse because as the temperature is dropping, you are 24 adding more reactivity into the top of that core. So

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 the AO becomes more positive.

(202) 234-4433

1

2

3

1 So that during steady was state 2 conditions. During power transient conditions, again, it depends on the severity of the AOA. But during a 3 4 downpower maneuver, what you will find is just try to 5 visualize the boron and the crud are on those upper spans of those fuel assemblies because of 6 the 7 subcooled nucleate boiling.

8 When you downpower, your boiling actually 9 ceased to exist for the most part. So what happens is 10 that boron that has precipitated or absorbed there 11 actually goes back into solution.

So the result of that, you have a little bit more boron in your reactor coolant, maybe a ppm or two, but you also have a more reactive upper portion of the core.

So then you're talking about rod worth. You actually reduce the rod worth of those control rods that you're inserting because you have a more reactive upper portion of your core.

20 So in severe cases, the control rod 21 insertion limits may be insufficient to perform or to 22 permit operation within the AFD control vents.

Another thing that takes place is just the reverse. When the power escalates back up to 100 percent and you start getting into your subcooled

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

111 1 boiling taking place in those upper spans, then the 2 boron goes back into the crud. 3 What happens is you have got actually 4 pressure boron being deposited because prior to that 5 downpower, you had boron there, but it was actually being depleted over the course of the operating cycle. 6 7 So when you actually downpower and then ascend back up, that infusion of fresh boron or less depleted 8 boron actually makes your axial offset or your flux 9 10 depression more severe. 11 Here is an example of it here. Your 12 Your burnup here is y-axis is percent AO. in megawatt-days per metric ton. And if this is a 13 14 controlled shutdown here. And you can see there was 15 a slight change in axial offset resulting from that. 16 But if we concentrate on this power 17 transient here, where they went down to 30 percent reactor power, you can see a very dramatic change in 18 19 the AO of that particular core from about maybe -4 20 down to close to -8 right here. The cause of that is 21 largely because of this infusion of fresh, undepleted 22 boron going back into the crud. 23 This graphic here, these are actually 24 computer simulations. It's an example of a power

maneuver for a plant without AOA. And, just to give

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	112
1	you some reference here, this y-axis here is percent
2	power. And it's also the control rod insertion
3	percentage.
4	So you've got to kind of look at it in
5	reverse order. The power starting out is 100 percent.
6	And the control rod insertion is 100 percent full out.
7	This dream curve represents boron. And
8	this dotted line is your rod insertion limit here.
9	And down below, this is your axial flux difference or
10	AO y-axis. And your x-axis on both is time.
11	So in this case, they're middle-of-cycle
12	conditions. And the power plant is reduced to 28
13	percent at 8 percent per hour. They hold at ten
14	hours. And then they increase at eight percent on the
15	way back up.
16	The control rod insertion limits and AFD
17	operating bands are shown. And you can see that they
18	don't encroach on the RIL limits, and they certainly
19	don't encroach on the AFD limits here.
20	In the next example, we do have a plant
21	with AOA. You can see starting from the get-go, they
22	already have rods partially inserted into the core at
23	mid cycle to keep power normalized while at full
24	power.
25	The blue line again is the power rampdown,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	113
1	hold at 28 percent and go back up. But in this case,
2	you can see they're having to insert rods earlier,
3	from the very beginning but earlier, in the downpower.
4	And they come very close to the limits.
5	At the same time, you can see there they
6	really have to borate at a much steeper rate and at a
7	higher concentration as well in order to achieve the
8	power levels they're seeking.
9	Down here you can see the AFD curve
10	likewise is having some dramatic effect in that
11	they're starting off at a lower AFE, -10 , and as the
12	downpower starts taking place, you've got all of this
13	new reactivity taking place in the top of the core.
14	So it's causing your AFD curve to go vertical. So
15	they come close to the AFD limits as well.
16	So this is the sort of thing that
17	challenges operators that have a case of AOA.
18	Granted, this is more of a severe case of AOA, but
19	it's something the operators have to be very mindful.
20	Then you also hear about AOA having an
21	effect on your shutdown margins. I am really not an
22	expert here on this. So I provided as much
23	information as I can here, but the bottom line is
24	you're burning out a great deal of your reactivity
25	over the course of the cycle in the bottom half. And

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

114 1 when you shut down your reactor, you have got all of 2 this excess reactivity in the top half. It causes 3 your rod work to be minimized quite a bit. 4 So the net effect is some degree of 5 shutdown margin is lost following reactor trip as compared to operation without AOA. 6 7 MEMBER SIEBER: Does that affect the 8 temperature coefficient? 9 MR. DESHON: MTC? I can't answer that. 10 MTC is certainly a factor in your AO for sure. 11 MEMBER SIEBER: I would think so. So there must be 12 MR. DESHON: some interrelationship there. Jeff, would you happen to --13 14 does the AOA affect MTC? 15 MR. SCHMIDT: It could slightly because you're getting your power distribution. So you're 16 17 getting a slightly different weighting of your moderator temperature coefficient, but I don't think 18 19 it would be a big effect. 20 Well, a couple of other MR. DESHON: 21 implications that have been observed at our power 22 Yovan Lukic mentioned a couple of fuel plants. 23 failures that have occurred during the 1990s. There 24 have been three that crud has played a role in those 25 failures. And in the three cases, AOA was also

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	present.
2	I did want to make mention, though, that
3	AOA in itself does not necessarily lead to fuel
4	failures. And we have had about 40 operating cycles
5	in the United States that have encountered AOA, some
6	of them very severe.
7	Some of you might be aware of the Callaway
8	Cycle 9 case. It's the worst recorded AOA case that
9	we have had in the United States. And it actually
10	forced them to de-rate down to 70 percent power. And
11	they gradually recaptured some of that during the
12	cycle. But even in that severe case, they didn't
13	encounter any excessive corrosion on their fuel
14	assemblies.
15	Another issue that is very important to
16	the plant, the fact that with these mounting crud
17	levels that can occur in these plants, when they shut
18	down for their refueling outages, this crud can be
19	released, sometimes in an uncontrolled manner. And it
20	leads to very high dose rates in the reactor coolant
21	system.
22	So not only do we have this AOA
23	operational issue, but we have got a couple of other
24	issues that are quite important to the utilities.
25	MEMBER SIEBER: I thought all the PWR

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

operators had practice of borating the plant to a very high level while it was still hot to sort of cause a crud burst so that they would reduce the outage. Is that the case?

5 MR. DESHON: That is true. The whole purpose of shutdown chemistry is to induce a crud 6 7 burst in a controlled manner. And part of that is 8 indeed to borate early, to create an acid environment 9 very early that will help you as you cool down 10 dissolve that material so it can be removed 11 efficiently by your demineralizers.

However, we have encountered when during either the rampdown for refueling outage or after all the rods have been dropped in, we see this release of corrosion products. And they're particulates. And they go out there, and they stick on the system surfaces. They're just very difficult to remove under our standard control parameters.

MEMBER SIEBER: Okay.

20 MR. DESHON: So our business here or focus 21 has been on trying to address this component of the 22 Venn diagram. Let's see if we can control deposits. 23 We're not going to do anything in the near term about 24 taking boron out of our systems unless we go to a Navy 25 reactor design.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

116

19

117 1 The subcooled boiling, it's the subcooled 2 boiling portion of this Venn diagram that utilities 3 have had to back off on or have addressed AOA by. And 4 what they have done is instead of loading, say, 80 5 assemblies per reload, they have loaded, say, 86 or 90 or more assemblies to actually reduce the overall 6 7 boiling duty of these courses. So our focus here is, 8 what can we do about these corrosion products to 9 mitigate AOA? So I wanted to discuss this aspect of our 10 11 We have got a number of aspects, research program. 12 activities, that we have got going. But this might be of interest to you. 13 14 We devoted guite a bit of resources and 15 time into understanding corrosion products, what is circulating in the reactor coolant as well as what is 16 depositing on these fuel assemblies. 17 With this learned knowledge, we hope to be 18 19 able to improve our modeling capability of the 20 phenomenon as well as help us in our pursuit of 21 mitigation strategies. 22 То this installed end, we have 23 high-temperature samplers. That's two PWRs. Those 24 are at Catawba and Diablo Canyon. Why did we do that? 25 The sample systems for our PWRs are really quite poor

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

118 1 in terms of being able to use them to characterize 2 corrosion products. 3 You're taking reactor coolant that's 500, 4 600 degrees and cooling it down to ambient temperature 5 at the sample sink. And during that cooldown process and then after you actually sample it, it's exposed to 6 7 air, you bring it back to the laboratory, it's just not very conducive for corrosion products because they 8 undergo certain kinetics and thermodynamics that don't 9 afford you to collect the actual specimen that is in 10 11 the reactor coolant. 12 So we have installed high-temperature samplers at these two units. And the next slide will 13 14 describe those a little bit. Additionally, we have 15 performed a number of crud scrapes at these units and 16 cycles over the last several years. 17 I've actually put two of the Vogtle cycles in green here because they actually paid for those, 18 19 but they are providing that information to our 20 program. 21 Okay. have installed the We 22 high-temperature samplers. I told you pretty much the 23 purpose behind those samplers. One of the aspects 24 that we are trying to look at is, is there any 25 difference between circulating corrosion products at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	the beginning of cycle versus the way they are at mid
2	cycle or end of cycle?
3	MEMBER SIEBER: How many zinc injection
4	PWRs are there?
5	MR. DESHON: Let's see. We have got the
6	two Farley, two Diablo, Palisades, two Sequoyah units,
7	and Beaver Valley, and Callaway right now. Those are
8	the ones I am aware of.
9	MEMBER SIEBER: And why are they doing it?
10	MR. DESHON: Well, the first units that
11	did it, Farley and Diablo Canyon did it largely for
12	PWSCC mitigation. The other units that I mentioned
13	have done it for dose rate reduction, which it has
14	been very effective at doing that, reducing radiation
15	fuels.
16	MEMBER SIEBER: Well, the amount of
17	corrosion products, is the amount that is circulating
18	around in the coolant system less or is it just in
19	different places?
20	MR. DESHON: In the zinc plants?
21	MEMBER SIEBER: Yes.
22	MR. DESHON: I think I touch on that in a
23	later slide.
24	MEMBER SIEBER: All right. I'll wait.
25	MR. DESHON: If I don't, hit me up on it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	120
1	again.
2	MEMBER SIEBER: I will.
3	MR. DESHON: Okay. Here are the
4	attributes of the high-temperature samplers that we've
5	got. We have probably all had an opportunity to read
6	this. So I won't go into it any further.
7	I guess the key point here is we are
8	collecting these samples at between 430 and 445
9	degrees versus 25 degrees. The sample lines installed
10	at these stations are on continuous flow. So there is
11	never any interruption.
12	So in corrosion product sampling, you
13	can't just go out there, open a valve, and expect to
14	get a good sample five minutes later.
15	MEMBER SIEBER: Right.
16	MR. DESHON: You need to have continuous
17	flow through these things for days, if not weeks,
18	before you can feel fairly certain you're collecting
19	a representative sample. Well, that didn't come out
20	very well, did it?
21	Here is a particulate sample that we have
22	collected. It was actually the Catawba station. And
23	the sample is collected at the beginning of the cycle.
24	Basically, it looks like garbage, circulating garbage
25	in the reactor coolant system. You have few

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

121 1 well-formed crystals. And these crystal sizes vary 2 rather dramatically. 3 Here is an elemental mapping of the same 4 sample. This didn't come out very well either. What 5 you have here is you have got various elements down here. You've got manganese, chromium, nickel. 6 The 7 ones to concentrate on are iron, nickel, chrome, and 8 zirconium. found 9 So what have in these we 10 high-temperature samplers was that: number one, 11 you've got metallic nickel. Now, this is a single 12 nickel atom that is not in the +1 or +2 state. So it's actually a particulate. 13 14 You've got chromium, when present, as part 15 of the iron oxide phase. And something kind of interesting that we found was that we've got quite a 16 bit of zirconium, zirc oxide particles, circulating in 17 these cores, particularly at the beginning of cycle. 18 What you will see a little bit later in 19 the actual crud samples is you have got a fairly high 20 21 fraction of zirc oxide in those. 22 MEMBER SIEBER: Is that due to the manufacturing or is that some corrosion product? 23 24 MR. DESHON: Well, it's from the fuel. 25 We're not certain how or why it's coming from the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	fuel, but most
2	MEMBER SIEBER: It sounds like it's some
3	kind of residue left over from the manufacturing.
4	MR. DESHON: Perhaps that or maybe on a
5	reload or reinsert fuel that has had maybe some
6	spallation take place, corrosion taking place. It's
7	being released into the coolant just due to the
8	start-up effects. So thermal and hydraulic
9	MEMBER SIEBER: Got it.
10	CHAIRMAN POWERS: But don't claim there's
11	any spallation. Rosa says that's a terrible field,
12	right?
13	MR. DESHON: Okay.
14	CHAIRMAN POWERS: Let me ask you. You
15	showed some EDX maps. The problem with EDX is you
16	can't detect boron. When you try to assess the
17	chemical form of these species from EDX, do you know
18	they're not borates?
19	MR. DESHON: Well, we don't anticipate
20	boron to be part of any of the circulating corrosion
21	products because boron is very soluble. And it will
22	only be part of a corrosion product if it's on an
23	assembly where there is subcooled nucleate boiling
24	taking place and that mechanism has forced it to
25	deposit within that crud structure.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	CHAIRMAN POWERS: Boron in the form of
2	boric acid or an alkaline metal borate is soluble, but
3	some of these borates, like iron chromium and things
4	like that, they can precipitate at fairly low
5	concentrations.
6	MR. DESHON: With boron?
7	CHAIRMAN POWERS: Yes.
8	MR. DESHON: Well, we haven't seen it.
9	CHAIRMAN POWERS: You never will with EDX.
10	MR. DESHON: Okay. What you will see here
11	is that we don't rely on a single analysis for these
12	data. Here is an example of that. This is an XRD
13	graphic here. And this isn't as good as one down a
14	few more pages.
15	This blue here is a silver peak. The
16	silver is there purely because these samples are
17	collected on a silver-impregnated membrane. So that's
18	why there's silver. It's not that we have circulating
19	silver in our reactor coolant system.
20	MEMBER SIEBER: It's not clear to me that
21	you don't, though, because the control rods are
22	filtered. And so if you have a bunch of cracked
23	control rods, you are likely to have silver in some
24	small quantity in the coolant.
25	MR. DESHON: Yes. I'll grant you that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

possibility exists, yes. These silver peaks are very
high, though. The red line iron oxide are magnetites.
The aqua blue is trevorite or nickel ferrite. And the
black lines are zirc oxide.

5 This doesn't show up here very well, but the point here is that what has been extracted from 6 7 the data is that we have got a highly substituted nickel ferrite as a major phase. And by "highly 8 substituted nickel ferrite," I mean that NiFe204 9 10 component has more nickel present than a traditional 11 corrosion product you might see, say, on a fix to a 12 steam generator surface. And, again, zirc oxide is a major phase in circulating crud. 13

Now, again, this was from Catawba station, which is a non-zinc plant. Here is an end-of-cycle sample that you can see and is a pretty dramatic difference between the beginning of cycle.

You know, the beginning-of-cycle sample looked like, again, garbage. Here you've got very well-defined crystalline structures, octahedral in shape. It's still a nickel ferrite, but the nickel fraction of that ferrite is very low.

The XRD scan that you'll see I think next detected nickel ferrite almost exclusively. And the SEM suggested minor zirconia and metallic nickel in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	chromium-rich oxide.
2	Look at these very nicely shaped crystal
3	structures. Here is the elemental map showing the
4	same sample with you can see this pretty much
5	confirms that it's a near magnetite sort of corrosion
6	product. The nickel fraction is very low here. And
7	here is a sole zirconia particle right there.
8	This arrow is pointing to what was
9	believed to be nickel metal right here.
10	MEMBER SIEBER: Did you say that was one
11	atom?
12	MR. DESHON: No, not one atom. What I
13	mean, it's
14	MEMBER SIEBER: I was going to say that
15	was a pretty good picture.
16	MR. DESHON: Yes, high magnification.
17	It's essentially a nickel particle comprised solely of
18	nickel. So from the Catawba sampling, trying to just
19	generalize here, you have high nickel in ferrites and
20	more zirconia at beginning of cycle. You've got the
21	nickel ferrites again at end of cycle but low in
22	nickel concentration. And you don't have nearly as
23	much zirconia circulating in your coolant.
24	Here is a zinc sample from Diablo Canyon.
25	This one was taken at middle of cycle. You can see

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	here and this was something of a common theme, not
2	only with the corrosion product samplers but also the
3	crud that we have sampled from Diablo Canyon, as that
4	the crystalline structures aren't nearly as
5	well-defined and I hate using this term almost
6	amorphous in its visual appearance.
7	Here is an XRD map of that particular
8	sample. You can see we have got nickel ferrite or
9	trevorite circulating in there. We have got zirconia,
10	nickel metal. You see a very significant peak of
11	carbon, which kind of intrigued us, but the zinc
12	addition taking place at the applicant is in the form
13	of zinc acetate. So chances are it's from a reduced
14	form of the acetate.
15	Once again, looking at this scan, carbon
16	is a constituent of circulating material. You can see
17	these corrosion products really don't have defined
18	edges to them like they do in the other plant.
19	MEMBER FORD: Where did the zinc go?
20	MR. DESHON: That's an excellent question.
21	We don't expect to see a whole lot of zinc in these
22	particulate samples because zinc is very soluble in
23	the reactor coolant.
24	So, in fact, its solubility is somewhere
25	between 100 and 200 parts per billion. These plants
-	

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

127 1 are only adding. Diablo, in this case, I think we're 2 adding somewhere between 15 and 20 PBB. So chances 3 are you are not going to see a whole lot of zinc in 4 these particle samples. 5 MEMBER FORD: In the BWR, zinc is incorporated, I remember, into the magnetite. 6 7 MR. DESHON: I'm not a BWR guy, but we 8 have got plenty of BWR experts back there that 9 certainly could confirm that. 10 CHAIRMAN POWERS: You're a much higher class than BWR people. 11 12 MR. DESHON: The boilers couldn't give you information on these circulating corrosion particles 13 14 like we have. All right. Excuse me. I digress. 15 So here are some general observations of our high-temperature corrosion product sampling thus 16 And I don't want to read all of these to you, 17 far. but something of interest to us here is the fact that 18 we haven't seen any nickel oxide in these samples. 19 And you will see in a few later slides nickel oxide is 20 21 a component of crud from these high-duty plants that 22 have experienced AOA. 23 Another interesting part here is that 24 metallic nickel particles are an important part of 25 reactor coolant system circulating corrosion products.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

And we don't analyze a whole lot of nickel in crud samples. The reason for that is that nickel
in crud samples. The reason for that is that nickel
±
is very soluble under the shutdown chemistry process
that we employ at these PWRs.
So we have been able to confirm that it is
quite important during the operating cycle, and we
know, therefore, it's present in the actual crud that
we measure after the plants have shut down.
And the other aspect here is what we just
didn't appreciate is that zirc oxide is a common
circulating corrosion product.
CHAIRMAN POWERS: I'm surprised you don't
see more manganese.
MR. DESHON: Yes. It's not a large
component in the structural materials. And it perhaps
could be due to how well manganese will diffuse
through that corrosion film and reside in the soluble
form or particulate form in the coolant.
MEMBER SIEBER: This is probably a stupid
question, and maybe you didn't do it, but have you
compared the high-temperature samples that you would
draw as a liquid versus the fuel scrapings?
I would expect a lot of different
constituents because you could have something that is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	129
1	versa.
2	MR. DESHON: Yes.
3	MEMBER SIEBER: Could you say a word or
4	two about that if you did it?
5	MR. DESHON: We are in the process of
6	doing that right now. One of our major deliverables
7	for next year is we are going to publish a report that
8	collects all of this data that we have obtained
9	through crud scraping.
10	Westinghouse, we have been working on this
11	with Westinghouse a great deal. They are going to
12	introduce crud scrape data that they have done
13	previously.
14	And we are going to look at not only the
15	crud scrapes. We are going to look at the primary
16	water chemistry during those cycles, how much nickel
17	and iron was removed during the shutdown chemistry
18	process at end of cycle. And we are also going to be
19	looking at these high-temperature corrosion product
20	data.
21	The goal here is to try to piece
22	everything together. And so, to answer your question,
23	we don't have any definitive response to that right
24	now, but we are in the process of analyzing it.
25	MEMBER SIEBER: I think that would be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	interesting when you arrive at conclusions from that
2	work.
3	MR. DESHON: That's right. That's right.
4	Exactly.
5	MEMBER SIEBER: I'd love to read it.
6	MR. DESHON: Okay. We're going to move
7	into the crud samples.
8	What time are we going to stop for lunch,
9	12:30?
10	CHAIRMAN POWERS: We're going to stop when
11	you're done, but we have targeted 1:00 o'clock.
12	MR. DESHON: 1:00 o'clock, wow. I'll be
13	done before then, I think.
14	CHAIRMAN POWERS: I just have a time
15	listed down for your presentation.
16	MEMBER SIEBER: There will be another
17	meeting going on in here.
18	CHAIRMAN POWERS: Not a chance.
19	MR. DESHON: We're going to move into the
20	crud scrape data now. Just to kick this off, I showed
21	you on a previous slide we have collected crud scrapes
22	at a number of plants. What we have tried to target
23	are higher-duty units that have experienced AOA and
24	some that have not experienced AOA and tried to
25	compare the cruds from those two camps of PWRs.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Now, here is an example here. This y-axis 2 here, the unit is it's mass evaporation rate, pounds 3 mass generation per hour foot squared. It's a unit of 4 measure that we use to measure the duty of a particular assembly.

And this particular assembly here did 6 7 experience severe AOA during the operating cycle. You And what these different colors 8 can see that. 9 represent is the calculated mass evaporation rate at different burnups during the operating cycle. 10

11 So the way that these designed these 12 cores, these assemblies is that they will have higher duty at different points during the operating cycle. 13 14 So that's what these different colors reflect.

15 Here is an assembly, a high-duty unit as well, but this particular assembly did not experience 16 17 Now, you can see the duty of this particular AOA. assembly here was certainly less than this, but I 18 19 happen to also know that this assembly came from a 20 central core location. And it was surrounded by 21 already burned assembly.

22 So those also influence crud deposition as 23 well. Yovan Lukic mentioned that yesterday during his 24 speech with his ring-of-fire discussion or Saturn 25 pattern-type loading patterns versus checkerboard.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

So here is a kind of a topical look at crud from the assembly that did not experience AOA. And it looks kind of like a moon structure here. Each one of these holes represents a boiling chimney taking place.

6 You hear about crud. Crud is bad. Well, 7 not all crud is bad because having a little bit of 8 crud on your fuel surface actually enhances heat 9 transfer. It gets your subcooled boiling taking place 10 a little bit better. Subcooled nucleate boiling is a 11 much more effective heat transfer mechanism than 12 forced convection.

So having fairly thin crud with these 13 14 boiling chimneys isn't necessarily bad. This crud is 15 comprised of particles. It has boiling chimneys, the thickness generally less than 20 microns. There were 16 17 a few samples here that were upwards to 20 microns. the crud thickness 18 But average, from this on 19 particular sample was less than ten.

Now, something that we can point out here is that I want to point out that the nickel-to-iron ratio in this sample here was on the order of .57. Now, that's a fairly traditional nickel-to-iron ratio that we have found in the historic crud database, anywhere from, say, .4 to .6.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

1 Here is crud from the other assembly that 2 encountered severe AOA. Again, this did not show up 3 very well. However, this was crud that we were able 4 to measure flake thicknesses from on the order of 125 5 microns. And this is the clad interface right here. And this is the coolant interface up here. 6 And you 7 very large voids can see these in the crud, representing these boiling chimneys. 8 An additional feature to this crud -- and 9 it doesn't show up real well here. I do have another 10 11 slide that I should have brought along as well. 12 There is a region around here where this is almost exclusively zirconium in this particular 13 14 crud flake. Just going down here -- well, I mentioned 15 this here already. Zirconia layer approximately 25 microns from the clad interface. 16 17 And another observation is that it's a very high nickel-to-iron ratio, on the order of 1.5 to 18 19 2.5, certainly well beyond the stoichiometric nickel 20 ferrite that you see in traditional crud samples. 21 It looks a lot better on my laptop. Wow, 22 look at that. Have you ever seen crud look like that? 23 You contrast the previous sample of the non-AOA crud. 24 It was comprised of particles. Well, this stuff here, 25 this rod-like or needle structure, was something that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

133

	134
1	we had never seen before.
2	Now, this was, again, I wanted to point
3	out, from a very severe case of AOA. But what you are
4	looking at here from this vantage point down to here
5	is just a side view of that flake.
6	So what did we find in that crud flake?
7	Well, we found a new material called bonaccordite.
8	Now, getting back to Dana's comment earlier,
9	bonaccordite, just advance here one, does indeed have
10	a boron constituent to it. But the only other place
11	bonaccordite has ever been seen is at a meteor site in
12	South Africa. So that's kind of a strange occurrence
13	that it is taking place inside our reactors here.
14	So this particulate crud flake was made up
15	of four primary components: bonaccordite, trevorite.
16	That's this particle here that's attached by a number
17	of these needle-like structures. We had nickel oxide,
18	and that's this kind of matte-looking material here.
19	And this brain-looking structure here is monoclinic
20	zirconia here.
21	So what is unique about this is: number
22	one, we see this bonaccordite structure. We actually
23	believe we have seen this now in two reactors. Both
24	units were experiencing severe AOA on the assemblies
25	that were scraped. And the crud flake profile looked

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	very, very similar between the two.
2	The other unit, we had some actually,
3	it wasn't us. It was Westinghouse had done some less
4	sophisticated analyses on that particular crud scrape
5	campaign. So we weren't able to specifically identify
6	this bonaccordite structure, but it sure looks like it
7	because it, too, had needles in its composition.
8	So what's unique, again, is the
9	bonaccordite and the presence of this nickel oxide
10	because the nickel oxide isn't typically seen in
11	thinner or from rods from lower duty. So if we take
12	a look at that observation, bonaccordite comprised a
13	significant fraction of the weight, 50 weight percent.
14	And this material was found insoluble. You just can't
15	beat it up.
16	Now, the only thing that they applied that
17	would make any impact on it was hydrochloric acid.
18	It's just not going anywhere through your normal
19	shutdown chemistry program.
20	Zirconia found mostly at the let's see
21	here at a depth let's see. How did I word this?
22	At 20 to 50 percent of the clad depth from the clad
23	surface. And it comprised about 30 weight percent,
24	fairly large fraction.
25	Nickel oxide and nickel ferrite rounded

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	out the composition, both having about ten percent.
2	Now, the fact that the nickel ferrite was only ten
3	weight percent of the structure is unique in itself
4	because typically nickel ferrite is the predominant
5	crud oxide.
6	So if we take a look at some observations
7	
8	CHAIRMAN POWERS: If I take the nickel
9	ferrite amount in the heavy deposit and compare it to
10	the nickel ferrite in a unit that is not having an
11	AOA,
12	MR. DESHON: Yes.
13	CHAIRMAN POWERS: is it the same
14	amount?
15	MR. DESHON: It could be. It could be,
16	yes, because that particular flake of 125, the other
17	one was only maybe 10 micron. So after looking at
18	some assemblies with less severe AOA, say modest,
19	moderate AOA or very low, mild AOA. We come up with
20	some additional findings.
21	The amount of crud is proportional to
22	boiling. That I guess is rather intuitive. But the
23	inventory of crud is greater, five times greater, in
24	AOA plants than in non-AOA plants. And the crud is
25	still iron-based for the most part, but the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	137
1	nickel-to-iron ratio in these moderate AOA plants is
2	on the order of .7 to .8.
3	Again, the historical crud, the lower-duty
4	stuff, may be .4 to .6. We're transitioning here with
5	a modest AOA, .7 to .8 maybe, .9. And then when you
6	get into the severe AOA cruds, you're approaching up
7	as high as a ratio of two to one.
8	So from these campaigns, we can at least
9	come to these following points at this time, again,
10	crud mass proportional to subcooled nucleate boiling.
11	Since nucleate boiling doesn't start
12	occurring until typically spans 5 and 6, crud is
13	typically heavier in those spans. Now, if you will
14	look at these crud deposits from non-zinc injection
15	plants, you see very little or no crud in spans 1
16	through 3, start seeing a little bit in span 4, and
17	then more crud in spans 5, 6, and a little in 7.
18	Nickel-to-iron ratio increases with rod
19	power and boiling duties. And something else that we
20	have seen which is important to us from a crud
21	modeling standpoint is that the porosities are lower
22	in the crud flakes closer to the clad than they are to
23	the coolant.
24	Nickel metal is typically absent in the
25	thicker cruds. Nickel oxide is more prevalent in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

those deposits undergoing high SNB subcooled nucleate boiling. Thin crud has more chromium than thicker crud. Why is that? I'll get to that in the next slide.

5 Thick crud from rods undergoing significant SNB have fully substituted nickel ferrite. 6 7 That's probably more information than you are 8 interested in, but it still is important to our 9 studies.

10 CHAIRMAN POWERS: Everything seems to be 11 pointing toward differences in the oxygen potential 12 during boiling.

MR. DESHON: You're a wise man. 13 That's 14 right because it could be that and we think it is 15 probably a combination of these conditions taking 16 place. Number one, we could be seeing an elevated pH 17 taking place within those deposits because we know through our plant experience. And one of the boron 18 19 deposit theories is that we're precipitating a 20 boron-lithium compound.

Just to give you a sketch here, during a power reduction very commonly -- and a characteristic of AOA plants is that you're not only releasing boron, but you also see an increase in lithium taking place in your reactor coolant system.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

After that power transient has stopped and 2 upon ascension to power, you see lithium hideout take 3 place. So you actually see a reduction in your 4 coolant lithium concentration. So we know that there is an increased concentration of lithium above the bulk coolant in these crud deposits that could be 6 resulting in an elevated pH.

8 Now, to touch on what you were saying is 9 as you develop these thicker deposits through a boiling process, you have hydrogen present in these 10 11 crud deposits. But the hydrogen because of its 12 volatility is being stripped out from the deposit at a high rate. 13

14 And we also are aware very locally next to 15 that clad location that we are producing radiolytic species, such as free radicals, hydrogen peroxide. 16 And these are changing electrical chemical potential 17 within that deposit from a reducing environment to a 18 19 more oxidizing environment.

20 And, for that very reason, you're right. 21 You know, seeing observations such as you're seeing 22 less chromium in these thicker deposits, you're seeing 23 a change in iron state going from .2 to .3 all lend 24 itself to that sort of process taking place.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Nickel oxide, for example, we're not

(202) 234-4433

25

1

5

7

	140
1	seeing it in our coolant samples, but we're seeing it
2	in these thick deposits. So the generation of nickel
3	oxide very well could be this mutation from nickel
4	metal to nickel oxide.
5	MEMBER FORD: So you're almost going to a
6	BWR.
7	MR. DESHON: I wouldn't say that.
8	MEMBER FORD: All of those things that you
9	mentioned are
10	MR. DESHON: Right. And these things are
11	happening very locally, right at the clad surface,
12	within just a few microns.
13	All right. Well, I've discussed some of
14	our activities and intelligence on crud now and
15	corrosion products. The next several slides will just
16	demonstrate a few examples of what we are doing in
17	terms of minimizing crud and hoping to avoid AOA.
18	Rosa mentioned here we've got ultrasonic
19	fuel cleaning technology available now. And I've got
20	a few slides on that. We are pursuing an elevated and
21	constant pH program.
22	Our EPRI primary water chemistry
23	guidelines now encourage utilities to stop employing
24	the traditional modified pH program that has been very
25	common since the late 1980s and transition to a higher

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	and constant pH within the limits allowed through your
2	fuel vendor and your materials evaluation for, for
3	example, your steam generators.
4	So what the guidelines suggest is see if
5	you can approach a constant pH of 7.1 or 7.2 so that
6	you have a constant pH throughout the whole cycle.
7	What we have done is taken it a step
8	further in that we do have a demonstration taking
9	place at one of our utilities that has increased the
10	pH to 7.3 throughout the whole cycle and ultimately
11	will go to 7.4 if everything pans out well. The other
12	strategy that we are pursuing is zinc addition and,
13	finally, boric acid, enriched boric acid.
14	Ultrasonic fuel cleaning. And these just
15	don't show up that well here, but we have installed
16	the ultrasonic fuel cleaners, as Rosa mentioned, at
17	Callaway, South Texas project, and this coming week
18	Vogtle will be applying it at one of their units.
19	The original prototype was installed at
20	Callaway. And it was a single channel ultrasonic
21	cleaning unit. And we demonstrated it during, I think
22	it was, cycle 10 on 16 reload assemblies. And we had
23	very good success with those assemblies during the
24	operating cycle. So they went ahead and did a full
25	reinsert cleaning prior to cycle 12 and cycle 13.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

So what this diagram is showing is this is actually a more advanced unit, one that, let's say, for example, is employed at South Texas project, but you have got two chambers here that can accommodate a fuel assembly for fuel cleaning.

6 Up here you have a pump skid and 7 filtration unit. And the pump will actually draw 8 water from the bottom of the ultrasonic fuel cleaner 9 down here and will draw it up through the filters and 10 back into the pool.

What we have in these units in the South Texas project unit are 12 ultrasonic transducers that are vertically mounted inside the cleaning canister. And when the assembly is inserted into the canister, you apply the power to it. It takes probably three to four minutes in order for the material to be fully removed or removed to their satisfaction.

The way that they monitor when they are done cleaning a particular assembly is that they have radiation monitors on the hose and on the filter banks. So they will see initially a very rapid rise in dose rate or gamma activity on the hose. And once that subsides, they know at that time that they are pretty much done.

25

1

2

3

4

5

Now, I mentioned to you earlier that that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 1 bonaccordite was essentially impervious to any 2 shutdown chemistry technique. Ιf а PWR has 3 bonaccordite, really, the only way to get rid of it --4 and we have been able to demonstrate it -- is through 5 this ultrasonic fuel cleaning. And we were able to successfully do that at Callaway during a cleaning 6 7 efficacy project that we had demonstrated there.

This cleaning technology removes at least 85 percent of the fuel deposit on these assemblies and in most of the cases will remove above 90 percent. So I have kind of expanded on that, only because I thought you might be interested in that information.

Evidence suggests crud from reload fuel

14 redeposit in boiling regions of feed fuel can 15 We have evidence that that transpires. assembly. What happens when you reinsert fuel, depending on the 16 17 relative power of that fuel in a second cycle of operation, if it's low-duty, then if you've got 18 material on the rods, it's going to dissolve or it's 19 20 going to be released through thermal hydraulic forces 21 or hydraulic forces going, fluid shear going up the 22 assembly. And that's because there's nothing really 23 keeping it there.

The subcooled boiling isn't taking place on that assembly any longer. So the crud, we have

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

8

9

10

11

12

13
	144
1	been able to show through our crud scrape campaigns,
2	actually reduces in that second cycle of operation.
3	It releases the crud and makes it available to come
4	back around and deposit on the new feed fuel, where
5	you do have a lot of subcooled boiling taking place.
6	Early-cycle boron hideout promotes early
7	onset of AOA and greater chance to degrade. That is
8	just talking about if you don't have the crud
9	substrate there early in the cycle, then you are less
10	likely to encounter AOA on any reinsert fuel also.
11	We have had one case. This was following
12	Callaway's most severe AOA cycle, cycle 9, that the
13	reinsert fuel also exhibited AOA in that subsequent
14	cycle, kind of a unique thing, but because they had
15	such heavy crud loading that it still promoted the
16	boiling taking place.
17	Some other aspects that utilities might
18	want to use ultrasonic fuel cleaning, if you look at
19	the Callaway case, they have had a progressive
20	reduction in dose rates occurring at their plant on
21	ex-core surfaces since employing this ultrasonic fuel
22	cleaning technology.
23	Now, that data is somewhat muddled by the
24	fact that they have also reduced the duty of their

25 core there as well, but you are able to remove a whole

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	145
1	lot of crud on these assemblies when you're doing this
2	ultrasonic fuel cleaning.
3	Strategy, elevating constant pH. Crud
4	management is the focus of this. The expected
5	benefits from an AOA avoidance perspective is a
6	reduction in the source term, transport and deposition
7	of corrosion products at the fuel clad.
8	We do believe that if you are able to
9	raise the pH in your system, say up to 7.3 or 7.4,
10	that is a better regime to be in than, say, at 6.9 or
11	7.0. And that's based solely on a solubility and
12	thermodynamic standpoint. If proven successful, it
13	may pave the way for similar applications at other
14	PWRs.
15	Here is the plant that is participating in
16	this demonstration. These are the pH regimes that
17	were used in previous cycles here. You can see
18	let's see this is pH. So they started out here in
19	this red and blue line early on at 7.0, came up and
20	held constant at 7.2 through the balance of the cycle.
21	And in this current cycle, they started out at 7.3.
22	And they're maintaining that throughout the entire
23	cycle.
24	We will be performing visual and lift-off
25	measurements of their fuel coming up this fall in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	146
1	their outage.
2	CHAIRMAN POWERS: When you cite this pH,
3	is that pH that is actually measured in the plant or
4	is that what is measured by sampling and then
5	subsequently corrected to room temperature?
6	MR. DESHON: These are calculated pH's at
7	temperature.
8	CHAIRMAN POWERS: At temperature?
9	MR. DESHON: At temperature, right. These
10	aren't 25 degrees. These are at temperature.
11	Actually, we use TF.
12	CHAIRMAN POWERS: Okay.
13	MR. DESHON: Okay. We're looking at zinc
14	addition and how does zinc figure into our AOA
15	prevention strategy. Well, laboratory studies that
16	took place before zinc was added at the boilers or in
17	the PWRs were found to actually reduce the corrosion
18	rate of your ex-core materials, stainless steel and
19	inconel, and to make them more stable so you have less
20	corrosion taking place, less corrosion product
21	released from those materials.
22	So the end result here is a reduction in
23	corrosion rates; transport; and, therefore, material
24	that is available to deposit on your fuel assemblies.
25	Something else that we are intrigued by

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 based on the fuel observations during our crud scrape 2 campaigns, oxide measurements is that the crud 3 deposition pattern in these zinc plants is somewhat 4 different than they are in your traditional chemistry 5 programs, insofar as the corrosion products deposit along the entire length of the fuel assembly and not 6 7 restricted to just those spans where you have subcooled nucleate boiling taking place. 8

9 So what that means to us is perhaps 10 through zinc addition, you don't reach that critical 11 thickness that is necessary to deposit boron in those 12 upper spans.

So we are kind of intrigued from this 13 14 potential aspect from zinc addition. So why are we 15 demonstrating it at one of our high-duty units? Bottom line is there have been no high-duty units that 16 17 have added zinc, firstly. So adding significant subcooled nucleate boiling into the equation makes us 18 a little uneasy because we don't know how zinc is 19 going to be affected under that environment. 20

Additionally, when you add zinc, especially in that first cycle, it will be rapidly consumed by system surfaces. And as it does that, it displaces other transition metals, namely nickel and iron, from those surfaces. And it gets them into

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	148
1	reactor coolant. That makes them available then to
2	deposit on the fuel assemblies.
3	So we take a very cautious approach to
4	zinc injection for this demonstration plant. It's a
5	step increase. Number one, they didn't start
6	injecting zinc until six months into the cycle.
7	Secondly, they added at a very low rate. And once
8	they started detecting zinc in the coolant, they
9	stepped the rate up a little bit. But they're doing
10	it in incremental components so that they don't
11	encounter any problems.
12	I think I have covered everything with the
13	zinc addition. And my last two slides here, something
14	that we are looking at that is not a demonstration
15	yet, it is still in the research phase, is enriched
16	boric acid.
17	We have got a program taking place right
18	now at the Halden reactor project. And I have heard
19	that facility mentioned here several times yesterday
20	and today. The project right now is shut down due to
21	some cracking problems in one of their primary pipes.
22	So this activity is not taking place at this moment.
23	The objectives behind this particular
24	project and we have received some DOE co-funding.
25	Glenn is still here. I thought you left, Glenn. We

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

149 1 have received co-funding from DOE for this particular 2 project. 3 The initial objectives for us were: 4 first, we're not even injecting enriched boric acid at 5 the point. Halden needs to be able to demonstrate that they can actually exhibit the symptoms of AOA. 6 7 So to do that, they need to show us that they can deposit crud on their fuel rods under 8 9 prototypical PWR conditions that we have prescribed And, secondly, they need to be able to 10 for them. 11 exhibit those symptoms of AOA. 12 We are giving them two tries to be able to address those two issues for us in phase I. Test one 13 was not successful. So we have made some program 14 15 changes for the next test. We're basically throwing 16 everything but a Chevrolet into the reactor coolant 17 system to deposit crud. If we are successful in phase I, then the 18 19 phase II objective will be to indeed determine whether 20 or not EBA is a viable chemistry alternative to avoid 21 AOA. 22 So why are we looking at EBA? A couple of 23 number one, EBA allows us to optimize our reasons: 24 reactor coolant pH so that we don't have to increase 25 lithium above, say, the current three and a half ppm

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	limit that we apply to our utilities.
2	Now, a utility that has, say, inconel 600
3	ml anneal tubing might be interested in EBA for that
4	very reason, because they want to optimize their pH.
5	But they are a little concerned that raising the
6	lithium could enhance PWSCC susceptibility. So they
7	can optimize their pH.
8	The second component here is directed
9	towards the actual deposit mechanism. Because AOA,
10	the boron component to it, is through a concentration
11	process, you have to actually achieve very high
12	concentration factors in order for the boron to
13	actually deposit within the crud. So if you are able
14	to reduce the concentration of your coolant boron,
15	then you're reducing the concentration for the same
16	fuel duty at that clad surface. So you can perhaps
17	delay the deposition process taking place or avoid it
18	altogether. So these are the two reasons why we're
19	looking at EBA.
20	Because EBA is such an expensive
21	proposition for any utility to undertake because of
22	the capital costs associated, we wanted to verify it
23	through a research reactor before presenting it as a
24	potential strategy for our utilities. So I think

25 that's it.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	151
1	CHAIRMAN POWERS: One question I should
2	have asked before. Have we characterized the
3	double-layer potential on these fuel rods in the
4	crudded and uncrudded states at all?
5	MR. DESHON: No. We approached Halden
6	with that too late into getting into this EBA project
7	because they would be best suited to do that.
8	However, it was too late in the game to put in some
9	sort of probe or anything like that, electrode. It's
10	an interesting thought and something that we have
11	considered and may or may not be able to do down the
12	road.
13	There are some data. Studsvik has
14	generated some data that we're looking at potential as
15	well but not in a crudded environment, just looking
16	solely at what is the potential right there at the rod
17	under standard or prototypical PWR conditions.
18	CHAIRMAN POWERS: If you happen to have a
19	reference to that, I would like to see it. It would
20	be interesting.
21	MR. DESHON: Okay.
22	CHAIRMAN POWERS: The idea is to get rid
23	of this, not to study it, but
24	MR. DESHON: Yes. Yes, I know. Yes, I
25	know.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	152
1	CHAIRMAN POWERS: Any other questions for
2	the speaker?
3	(No response.)
4	CHAIRMAN POWERS: Could I propose that we
5	break for lunch and reassemble here at 1:30? So we're
6	recessed until 1:30.
7	(Whereupon, at 12:48 p.m., the foregoing
8	matter was recessed for lunch, to
9	reconvene at 1:37 p.m. the same day in
10	Closed Session.)
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	229
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	(3:21 p.m.)
3	CHAIRMAN POWERS: We're back into session.
4	And we're going to hear the sad tale of fuel failing.
5	We've got to improve our schools for fuel. You know,
б	it's because they don't study prior to the test.
7	That's why it is. It's lack of parental involvement.
8	We have sibling rods. There must be parents
9	someplace, right?
10	MEMBER KRESS: Must be.
11	CHAIRMAN POWERS: Go ahead, sir.
12	<u>13) FUEL FAILURES</u>
13	MR. CHENG: Okay. Thank you. My name is
14	Bo Cheng.
15	I would like to share with you the fuel
16	failure experiences in the U.S. light water reactors
17	and our root cause investigations into those issues.
18	I will share with you first the industry
19	fuel failure trend and talk about failure root causes.
20	And I would like to focus on the investigation of
21	crud-induced cladding corrosion failure because that
22	seems to be the current issue.
23	I will also discuss somewhat the
24	challenges we are facing today. And the last topic
25	will be the BWR water chemistry changes, NMCA, and the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	230
1	fuel performance issues associated with it.
2	As you know, most of the fuel failure in
3	the U.S. imposes economical penalties on the
4	utilities. They really have never become safety
5	issues, but the cost of fuel failure can range from
6	just a small amount up to the worst one I heard was
7	like a \$17 million loss.
8	CHAIRMAN POWERS: Well, you know, the one
9	area where failures may or may not come into the
10	regulatory process is if you believe that iodine
11	spiking in, say, a steam generator tube rupture or
12	something like that is the result of water intruding
13	into a perforated rod. Then it comes into the
14	regulatory process.
15	MR. CHENG: Okay. In the robust fuel
16	program, we have tried to first work with utilities.
17	When they have fuel failure, some of them do contact
18	us. And we provide all of the technical assistance or
19	is all of the industry database.
20	We evaluate the root cause with them, join
21	their root cause investigation team. And if there is
22	a need to send a rod to the hot cell, we'll call into
23	the effort with the utilities to perform the work.
24	I showed you the trend plot already. Just
25	basically the last two years, the BWR side has

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	231
1	experienced a substantial fuel failure experience. I
2	think about 50 percent of the 33 BWRs all have
3	experienced a certain degree of failure, some with a
4	lot of rod fail, some with only one failed rod. PWR
5	seems to be more steady.
6	About the root causes, I'll just show you
7	a typical PWR assembly, but the BWR assembly is
8	somewhat different. There are many different root
9	causes. The first one certainly is associated with
10	manufacturing. Okay?
11	There are many different manufacturing
12	defects that lead to fuel failure. The most
13	outstanding one is internal hydriding, which was a
14	measure of failure of root cause from the beginning of
15	fuel operation.
16	Last week I talked to one utility guy.
17	They think they also have just recently experience
18	with moisture failure. So although it's really mostly
19	under control but occasionally we do still experience
20	a little bit of this manufacturing defect, the end
21	plug welding was a big issue in the beginning, many
22	years ago, like three, four decades ago. But mostly
23	it's under control now.
24	Tube flaw, the low corrosion resistance

cladding. We talk about corrosion. There is a lot of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	232
1	corrosion there that would actually cause fuel failure
2	as a common measure of corrosion with others that
3	caused the fuel failure.
4	Now, we have like missing fuel pellets or
5	damaged fuel pellets. And there are other material
б	defects also. But most of the manufacturing defects
7	have been under control.
8	The second one is foreign material
9	intrusion. It's actually caused debris fretting. And
10	in the last ten years, both BWR and PWR have
11	implemented this debris filter by the nozzle, by the
12	type plates.
13	In PWR, it seems to be quite effective,
14	gradually removing this small metallic debris-inducive
15	failure. Often with debris, you've got caught by the
16	spacers. And the fret on the fuel rod caused a fuel
17	failure.
18	In PWR, it seems to be quite effective;
19	BWR, it's not so sure. The data doesn't conform. You
20	know, we continue to have failure with even debris
21	filter by the nozzle. So we still need to see some
22	more improvement that's need in the BWR side.
23	The grid-rod fretting I think Rosa had
24	mentioned this. This is a vendor-specific issue and
25	many different causes. Grid design is one of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	233
1	major components that cause grid-rod fretting failure.
2	Particularly, at the core periphery, because of this
3	jetting, you know, the jetting issues cause fuel
4	failure on most of the high burnup rods.
5	The chairman had a question why we did not
6	inspect, so many rods had never been inspected. That
7	was because utilities believe there's a recurrence of
8	grid-rod fretting in discharged fuel. So they thought
9	they didn't know that was the root cause. Somehow
10	they just don't have time to inspect the discharged
11	fuel.
12	Then, of course, the next one is local
13	power change due to control blade movement caused the
14	PCI failure, pellet-clad interaction failure. Again,
15	most of it is under control, but I will explain a bit
16	later. We do occasionally continue to have a problem
17	on this mechanism.
18	The last one is, as I said, the
19	interaction with impurities in the coolant, mostly due
20	to crud interaction with the fuel rod. Again, Rosa
21	showed you this.
22	MEMBER FORD: Excuse me, Bo. Before you
23	move on to that,
24	MR. CHENG: Yes?
25	MEMBER FORD: I noticed there was a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	234
1	surprise on Kurt's presentation but also on yours. He
2	mentioned they were doing some work on fatigue. And
3	you have shown there that fatigue is not, as I seem to
4	remember it, a major failure mechanism. Is that
5	purely because it's a new material, the high burnup
6	fuels?
7	MR. CHENG: Yes. It's a high burnup fuel
8	concern. I don't think people attribute any of the
9	failure to the fatigue.
10	MEMBER FORD: That's right.
11	MR. EDSINGER: It's a margin issue.
12	MEMBER FORD: Okay.
13	MR. CHENG: Okay. If you'll notice here,
14	we do have fuel. This is the one. It's the different
15	failures of root cause. The red one was cladding,
16	corrosion failure, some of it due, probably most of
17	it, to crud-induced corrosion failures. We have quite
18	a few incidents of that. Again, we do have a couple
19	of PCI. I will talk about that.
20	In the PWR side, you see the red ones,
21	those three crud-induced corrosion failure with the
22	three incidents, the risk of the major issue that has
23	been associated with grid-rod fretting.
24	The reason I bring this corrosion failure
25	up is that when you have fuel failure, typically most
•	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	235
1	other mechanisms in the last ten years, maybe one or
2	two or three rods fail.
3	Now, when you have corrosion damage,
4	crud-induced corrosion damage, you could reduce the
5	whole reload. Three units in the last, say, five
6	years essentially lost the whole reload due to the
7	crud-induced corrosion.
8	I already covered this thing. So I will
9	not go over. Our focus on the crud/cladding
10	corrosion, fuel failure. And if you have an interest
11	on other mechanisms, we can discuss that. I do have
12	backup slides of other issues.
13	I would like to talk about PWR
14	crud-induced corrosion failure. As I mentioned, we
15	had three cases of crud-induced corrosion failure. It
16	affected mostly the high-power, first-cycle rods in
17	all three cases. So this is not a high burnup issue.
18	This is a high-duty fuel issue.
19	Corrosion separation was thermally induced
20	in at least one case. I will talk about that. We
21	found it from the hot cell examination. And it
22	occurred in a couple of cases. In two cases, it
23	occurred in fresh-to-fresh fuel assembly faces.
24	Another case was because the fuel duty was
25	pretty high to get to 4.95 enrichment. And this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

specific utility did not use so-called intermediate mixing band. That's the IFM grid. Okay? In the new design, because the high-duty fuel added three additional grids in the upper part of the core to improve the MB margin and also to increase the mixing, this specific case, they got better high-duty fuel without IFM grid. So this got this localized corrosion failure.

9 Out of the three failures, we did hot cell 10 examination of the first case of failure that occurred 11 here in 1995. I will show you those hot cell 12 examination data to show to you how we reached this 13 failure root cause and how this problem can be 14 managed.

15 In the TMI cycle trend, they got ten 16 failures. The first failure occurred about 120 days 17 into the cycle with nine rods failed at span 6. That 18 is the hottest span, number 6.

In addition to the failed rod, they had many rods. And the damage is by crud. And you can see this is visual appearances of crud-induced damage, the hottest span, number 6.

All the failed rods were once burned. And they failed at the assembly periphery. This observation is very similar to the second failure

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

ĺ	237
1	case. I think APS discussed yesterday briefly
2	observation of those characteristics were very
3	similar.
4	If you look at a core map, all the failure
5	occurs and I'm sorry this is not very clear, but
б	the blank, this white blank, area is the fresh fuel.
7	And in this case, there are four fresh fuels that were
8	classed together in a so-called T-joint occasion. And
9	you can see the symmetrical location.
10	All the damages were on the fresh fuel,
11	mostly between fresh fuel assemblies. And also in
12	some cases, a fresh fuel assembly is a cold location.
13	For fail rods, it actually occurred between
14	fresh-to-fresh fuel assemblies.
15	We sent four rods to the hot cell. One of
16	the rods, you can see this is a corner rod of an
17	assembly with four fail rods. And you look at the
18	corner. This is the corner facing away from the
19	assembly. It faced the water gap between two fresh
20	assemblies.
21	This is a corner rod. You can see on the
22	corner side, you have significant crud-induced damage.
23	The side facing the bundle interior looks very smooth.
24	There was no indication of crud-induced damage.
25	Similarly, this peripheral rod also shows

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	238
1	the surface facing the interior side, showing very
2	smooth surface without any crud-induced damage. It
3	was the surface facing toward the water gap between
4	two fresh assemblies showing very significant
5	crud-induced damage.
6	In the hot cell, we send the rod to the
7	hot cell, of course. We did quite a few things,
8	looked at neutron radiography, profilometry, gamma
9	scan as a means of burnup distribution.
10	We took a fuel pellet. We took micro
11	samples from the fuel pellet on the side facing the
12	water gap and also on the side facing the interior.
13	And the reason we do that is because when people look
14	at this kind of corrosion damage, this is a dry-out
15	condition. You have a power distribution problem.
16	Of course, from a utility perspective,
17	that is a very serious problem. So we need to resolve
18	whether there is a power distribution problem or maybe
19	just crud deposit issues.
20	So we did quite a few things. The key
21	finding was that we look at azimuthal burnup
22	distribution. And we could not see any variation in
23	the burnup distribution azimuthally. So the
24	conclusion was that there was no unexpected burnup
25	distribution. Inside and outside, it looked

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

essentially the same.

1

2 One key observation we found, we cut a 3 sample across the damage location. And we looked at 4 the cladding microstructure here and compared the 5 location behind this damage on the interior side. You can see that there is a clear difference in the 6 7 cladding microstructure, the grain structure. We 8 crystallized the grain structure.

On the back side, on the interior side, 9 this is cold work structure. This is a cold work 10 11 stress relief structure. This is in a fabricated 12 condition. So in order transform this to microstructure into this structure, you do need a 13 14 temperature greater than 450 degrees Centigrade. And 15 so the maximum should be less than the 350 C, even though your structure in the PWR should be less than 16 So clearly the crud has induced a temperature 17 350. rise significant enough, maybe 100 degrees Centigrade 18 19 or even somewhat higher to induce the localized 20 corrosion penetration. So that is our conclusion. 21 MEMBER KRESS: You could check that by 22 some sort of thermal calculation knowing the thickness

assumption to me, but, of course, I can't argue withyour recrystallization picture.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

That seems like an unreasonable

(202) 234-4433

of

the crud?

23

(202) 234-4433

239

	240
1	MR. CHENG: Yes. That's right. That's
2	right.
3	MEMBER KRESS: But it looks like a thermal
4	calculation of that crud knowing its thermal
5	conductivity.
6	MR. CHENG: Right. It depends on the type
7	of crud. Actually, the thermal conductivity of the
8	crud all depends on the morphology more than from the
9	type, the chemical composition because the crud, say,
10	it comes as a solid, the solid iron oxide conductivity
11	is better than zirconium by maybe a factor of two to
12	five.
13	MEMBER KRESS: Yes.
14	MR. CHENG: Okay. But if so, it depends
15	on morphology. If the morphology is such that it
16	would cause a steam blanketing, then your steam has
17	extremely poor conductivity, maybe two orders of
18	magnitude lower than the
19	MEMBER KRESS: I see. It might be a very
20	poorest gap.
21	MR. CHENG: Right. The crud is so
22	difficult to characterize. And the conductivities all
23	so much depend on the morphology.
24	So what kind of crud would induce the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	241
1	X-ray diffraction study. Basically those are either
2	magnetite or nickel ferrite. And we also found nickel
3	oxide.
4	So this is consistent with what Jeff
5	discussed this morning. It's not unusual crud
6	deposits. We could not determine the surface loading.
7	And we really don't know the morphology of the crud.
8	We collected some crud samples. And the
9	vendor who handled this initial investigation was not
10	experienced enough, and we lost most of the crud
11	samples because of that.
12	However, we went back six months later and
13	tried to collect some crud samples. All the crud
14	disappeared in the storage before because storage pool
15	has a pH of about 4.5. So they all disappeared.
16	Also, a lot of crud will dissolve even
17	during the shutdown. You know, first your boil rate,
18	the water, and then you get into oxidizing conditions.
19	You know, a lot of crud will burst out during the
20	plant shutdown. Something like maybe three or four
21	kilograms will induce from the fuel rod surface.
22	So typically we really don't know how much
23	crud was on the fuel surface during operation. That's
24	probably the most difficult part for the PWR to
25	quantify how much crud was actually on the fuel

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	242
1	surface.
2	I think the vendor did reload
3	thermal-hydraulic calculation. They really couldn't
4	predict subcooled boiling, even the hot span, because
5	PMI is really the low-temperature PWR. The only
б	difference is that for this plant, they are making a
7	transition from I think 18 or 20-month cycles into
8	24-month cycles. They do increase enrichment to some
9	extent.
10	However, no matter how we did, the vendor
11	did a calculation. At EPRI, we also used a VIPRE to
12	do the calculation. We simply could not predict that
13	they could have subcooled boiling in the core.
14	However, we did some sort of case study.
15	And that says that if you have a subcooled boiling to
16	exist, you will need to have some special hydraulic
17	effect. And that hydraulic effect is to cause some
18	sort of flow loss between the fuel assembly gap,
19	either because of the strip, the side strips, or some
20	sort of raw tripper that causes actually the water
21	loss on the gap.
22	It's not fully resolved why you get the
23	subcooled boiling in such a low-temperature plant.
24	There is another theory that maybe the water gap, the
25	flow was slower because of the water gap is wider than

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 the interior, which would induce the crud to 2 deposition and led to subcooled boilings because of 3 the cladding process. But this generally is not 4 really credible.

5 Really, the issue is that we know from --6 we did bring in a lot of experts, like Saul Levy, Dr. 7 Levy, to look into the condition. Basically a 8 suggestion is you have to really take the plant data, 9 say you do have subcooled boiling. And so do 10 something there.

11 So it's becoming more empirical an 12 situation to how you mitigate this problem would be an empirical approach. And so you need to assume when 13 14 you put fresh-to-fresh assemblies together and cross 15 them together, the thermal hydraulic condition may be more complicated than the model predicts. We really 16 17 need to take a more conservative approach.

18 MEMBER KRESS: Does that mean you have to 19 get circumferential variations in your model?

20 Yes, yes. We don't know if MR. CHENG: 21 there is a power variation, but it put a hydraulic 22 condition there. And in the case I mentioned, when 23 they got to very high enrichment in high-temperature 24 PWR, Ι think that additional mixing maybe is 25 So IFM grids appear to be necessary to necessary.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	244
1	prevent local hot spots.
2	Of course, there is a chemistry issue here
3	that we need to avoid total inventory within the
4	pressurized loop. One of the first things is TMI did
5	operate the pH something less than 6.9, maybe 6.7, for
6	the first 100 days. They offer a slightly lower pH.
7	And the reason was that they were confined by the
8	lithium limit of 2.2 ppm. So with high 24-month cycle
9	core without enough persons inside the fuel rod at
10	Westinghouse design, they have this lithium.
11	In the other design, they rely on
12	gadolinium. That was not sufficient to control the
13	reactivity in the beginning of the cycle. So they
14	start up the cycle with about 1,830 ppm of boron. And
15	that's pretty high. So as a result, they got a
16	somewhat lower pH.
17	After this experience, of course, they
18	made their boron to about 1,750 or 1,800 as the
19	maximum limit now. Of course, Jeff mentioned this
20	EPRI's recommendation is to try to operate at a
21	constant pH of about 7.2.
22	So from the data, it seems the higher pH
23	total inventory of crud, iron-nickel crud, should be
24	somewhat less than the low pH condition and should

also reduce the crud transportation in the primary

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	245
1	system.
2	So the PWR failure, we had experienced
3	those three failures. We think that the problem, that
4	the root causes were understood. And we think the
5	problem can be contained.
6	I would like to switch, then, to BWR
7	corrosion failure. BWR is a little bit difficult to
8	contain because the feedwater is a single-loop system.
9	So impurity can easily get into the feedwater into the
10	core, unlike PWR, which is a closed system.
11	There is no way you can get any impurity
12	into the closed system in PWR except during a
13	shutdown. But BWR, there is a chance that impurity
14	can enter a system through feedwater into the reactor
15	water. And also there are a lot of changes in water
16	chemistry conditions.
17	In terms of the crud-induced corrosion
18	failure, I think the multiple plant/cycle failures
19	that occur by crud-induced localized corrosion failure
20	that occur starting in 1978 into mid 1980s affected
21	many plants at that time was kind of newer plants,
22	BWR/4 to 6 high-powered plants, those plants equipped
23	with brass condensers and Powdex cleanup systems.
24	The uniqueness of this Powdex system is
25	not very efficient in removing the soluble species in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	246
1	the feedwater. So the feedwater in those plants would
2	contain somewhat higher soluble species than other
3	types of cleanup systems. There are two types. The
4	other type is called deep bed cleanup system, which
5	can remove the soluble more efficiently.
6	Well, the problem, so-called CILC failures
7	were mitigated. One of the mitigations was to improve
8	the corrosion resistance of the cladding. And that
9	was introduced in the mid 1980s, about '85 or so. And
10	after that, we had a few fuel failures associated with
11	this type of cladding corrosion failure.
12	The first one was in 1988, we had one
13	plant with very significant cladding corrosion damage.
14	It affected fresh fuel. Then for ten years, we
15	essentially didn't have this type of corrosion because
16	I guess the mitigation was quite effective.
17	But in 1998, we had one plant that had a
18	very significant crud, very heavy crud, deposit that
19	caused a failure. This plant again experienced the
20	same type of failure just sometime this year, early
21	part of this year. So we had a repeat of this similar
22	failure this year by similar mechanisms.
23	Last year, we had two plants: Vermont
24	Yankee and Browns Ferry II. Both experienced fuel
25	failure of second-cycle fuel. And we will discuss

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	247
1	this CILC failure mechanism a little bit to give you
2	some sort of background.
3	We thought we were out of the
4	corrosion-induced failures. Somehow they keep coming
5	back. And I think these CILC failures were
6	investigated very, very thoroughly by General
7	Electric. So I think the understanding is pretty
8	good.
9	However, the information here we learned
10	I think is applicable probably to some extent to those
11	CILC failure mechanisms, too. So I will talk a little
12	bit on the CILC failure mechanism. Then I will talk
13	about a new type of crud failure. Then I will come
14	back to this more mysterious failure.
15	MR. CARUSO: The 1998 plant, that is River
16	Bend, right?
17	MR. CHENG: That's right.
18	MR. CARUSO: You're saying that was CILC?
19	MR. CHENG: No. That's different. I
20	mentioned that's a heavy crud-induced failure.
21	MR. CARUSO: Okay. But not CILC?
22	MR. CHENG: It's different. It's
23	detailed.
24	Okay. So I'll give you a brief update on
25	the CILC failures. As you know, CILC failure was due

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	248
1	to cladding at a very significant nodular corrosion.
2	And you can see this nodule corrosion, the spots, the
3	nodule corrosion, grew at a rate much higher than the
4	typical protective black oxide.
5	In this rod, you've got corrosion damage
6	fail. When you look at it in a hot cell, you can see
7	that a failure occurred due to corrosion pitting types
8	of defect. And this is just to show you this metal
9	loss at this location.
10	MEMBER RANSOM: Has anybody suggested that
11	that may be due to subcooled boiling, you know, sort
12	of the opposite of cavitation? You know, you get
13	collapsing of the micro bubbles and then fatiguing of
14	the metal surface.
15	MR. CHENG: I think because there is a PWR
16	course, there is a lot of boron. I can see here and
17	show you here, if you look at the location, some rods
18	show nucleus nodule corrosion at about 20 to 40. And
19	then the corrosion went down.
20	Other rods show the two peaks boiling
21	under the peak here. There you can see here right
22	from each location, this is the place you have
23	vigorous subcooled boiling. It occurred about 30 to
24	40 at each location. So the boiling occurred on the
25	fuel rod surface. That is to strip off a lot of crud.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

249 1 I don't know if fatique was involved, but if you look 2 at a cross-section, it's really metal loss. 3 So this is kind of puzzling, right? You 4 have a double peak here. I can come back a little bit 5 on that. But, anyway, if you look at the rod in the hot cell, there is a lot of cross-section. There is 6 7 some very heavy modular corrosion. If you cut a cross-section, you have a 8 A nodular oxide is locally 9 nodular oxide here. penetrating into the cladding. Between nodules, it's 10 11 forming this kind of crud deposit here. And there is 12 a heat perturbation. If you do the heat calculation, you will 13 14 see because the nodule is getting so close, you start 15 getting really high peaks. The boiling rate was much higher here than on the nodular oxide surface. 16 17 When you look at a cross-section exam with a scanning electron microscope, you can see here there 18 is crud imbedded inside zirconium oxide. 19 20 This is the EDX. Using this SEM, you can 21 see the zirconium oxide here. And this is Zircaloy 22 cladding. Inside, there is nothing in between. Then 23 you've got this porous deposit with a lot of copper 24 here and also some zinc, and actually also some 25 manganese, some cobalt, some nickel, found mostly all

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	250
1	the soluble species in the reactor wall. They got
2	stripped out by the boiling process.
3	If you look at this cross-section I'm
4	sorry the quality is not very good you can extend
5	a very large area with zirconium oxide on the outside
6	and on the inside. In between, you have a layer of
7	this type of porous crud embedded there.
8	So then we come to what then was this
9	structure. Then you will say, "Okay. If you have
10	water come" I'm sorry. Outside of this area, there
11	was some sort of fluffy site but removed or lost.
12	But, you know, under this boiling
13	condition, of course, with the porous crud, you can
14	contain steam, but water cannot come inside. So the
15	conductivity, thermal conductivity of this will be
16	mixed structure of some dry steam in here, taking dry
17	steam, mixing it with a copper-zinc oxide mixture
18	here. And some of it is difficult to measure how much
19	it is.
20	If you have enough steam pocket here,
21	locally heat will not go through very effectively. So
22	you are bound to have sort of local temperature rises.
23	And with this type of structure, Zircaloy becomes very
24	soluble oxide with growth very fast.
25	Somewhere about 500 degrees Centigrade,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	251
1	you can perforate cladding in just a few days at 500
2	C. with poor nodular corrosion-resistant cladding.
3	In laboratory tests, this oxide will grow
4	like 10 ml per day for 24 hours. So you can perforate
5	the cladding if you overheated cladding over 400
6	degrees Centigrade.
7	So this clad mechanism I believe is
8	well-established through quite extensive study. In
9	the old days, during this investigation, General
10	Electric actually retrieved 12 rods from Vermont
11	Yankee and did very extensive testing, even testing
12	sample for corrosion, for everything in controlled
13	radioactive environment because it was much cheaper to
14	do this type of work a long time ago.
15	So the solution, mitigation, was to
16	implement is the heat treatment and the belt-polished
17	cladding. So there are two things. You heat-treat
18	the cladding and you finish the surface with
19	belt-polish versus the old cladding, which was not
20	well heat-treated and the cladding was autoclaved.
21	In addition, many plants re-tubed the
22	brass condensers to remove the copper source. Some of
23	them did not repress the brass condenser. They put a
24	pre-filter for the condensate cleanup to reduce all
25	the impurity sources before the water gets into the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

252 1 feedwater stream. And so, thus, the solution becomes 2 quite effective. 3 After the implementation, some fuel 4 surveillance programs of those heat-treated cladding 5 show that, actually, you can really eliminate nodular corrosion in the reactor by using this heat-treated 6 7 cladding. Even before the brass condenser was changed out, many plants show very low or no nodule offset at 8 the change-out. 9 There are some unresolved issues. 10 The 11 issue is why nodular corrosion or the CILC occurred 12 predominantly to gadolinium fuel rods? A large percentage in the first CILC failures, all 13 the 14 failures occur to the gadolinium rods. But then the 15 subsequent failures start somewhere to also show failure in the damages. 16 17 Why does gadolinium play a significant role in the failure mechanism? A second one is why it 18 occurs also at 100-inch elevation. And this is kind 19 20 of an interesting mystery. 21 Okay. So that's the CILC failure. Then 22 I want to talk --23 Could I interrupt and ask a DR. MEYER: 24 question? 25 MR. CHENG: Sure.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	253
1	DR. MEYER: This is Ralph Meyer from NRC.
2	On the previous slide, you showed
3	heat-treated belt-polished cladding. Do I understand
4	from that that in the mid '80s, they started polishing
5	the surface of the cladding during fabrication?
6	MR. CHENG: Yes, yes. As a finished
7	product, all the vendors switched to belt polish.
8	Before the mid 1980s, all the vendors used autoclave.
9	DR. MEYER: Because this is entirely
10	consistent with what we saw with the E110 cladding,
11	which was developing nodular corrosion.
12	MR. CHENG: Yes, yes.
13	DR. MEYER: When it was polished, it
14	improved the situation dramatically. Thank you.
15	MR. CHENG: Right, yes. Cladding surface
16	can be a very major part of the whole corrosion
17	equation.
18	Okay. Now I will switch to this heavy
19	crud-induced corrosion failure. Again, this first
20	occurred in 1998. We helped the utility a bit. And
21	the data was published in this meeting in year 2000.
22	The crud was very heavy crud. You can see
23	here in the picture here some of the crud was so heavy
24	that this is about a 40, 50-inch elevation from the
25	bottom. The crud was so heavy, some of them, between

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	254
1	the two, they would almost touch each other. So it
2	almost crossed the gap in some of the rods.
3	It occurred to the first cycle high-power
4	rods. When you brush it off the rod, you see this is
5	opening damage. One thing interesting, you don't see
6	the nodule type of corrosion on those damaged rods.
7	So the detailed mechanism is somewhat different.
8	The main constituents are iron, copper,
9	and zinc. This is a brass condenser is not a typical
10	CILC plant in that it has a deep bed cleanup system
11	and supposedly is more efficient in removing copper.
12	But, yet, they still have about .2 to .3 ppb of copper
13	in the feedwater. So they still have copper less than
14	the subpipe of copper in the system, but it still has
15	some copper.
16	And they inject zinc. Okay? Of course,
17	the zinc injection was for dose rate reduction
18	consideration. They inject zinc into the feedwater
19	and enter into the reactor water.
20	They have a lot of crud deposit.
21	Actually, they have mass balance. And they say that
22	they think they may have some sort of iron intrusion.
23	So at that time, it was not so clear what
24	really triggered the failure except they believed that
25	maybe they have a significant iron intrusion during

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	255
1	the start-up period that caused this iron to go to the
2	fuel rod surface.
3	But, yet, if you look at the total iron,
4	however, it is really not the highest there. There
5	are other plants with higher iron deposits. Yet, they
6	didn't have fuel failure.
7	Look at the copper itself was not the
8	highest either. We had a similar copper deposit. We
9	had a similar zinc deposit. However, they're unique
10	in the combination of iron, copper, and zinc.
11	Combined together, they were very unique in the
12	industry.
13	So there was some sort of belief that they
14	had to do with the copper hideout in tenacious iron
15	oxide crud. This crud was very tenacious. It's very
16	difficult to brush off. So this is somewhat
17	different.
18	I'm sorry?
19	MEMBER KRESS: Do you gather that from the
20	clue that the copper and the zinc curves tend to be
21	mirror images of each other? Is that a clue that you
22	
23	MR. CHENG: Yes. I think what happened is
24	I will come back when I talk about NMCA. When you
25	inject zinc, the crud can become very tenacious.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
256 1 Without zinc, crud tends to be very fluffy. I think when you add zinc into the reactor, zinc will interact 2 3 with iron to form a very tenacious zinc ferrite. 4 Okay? 5 With the porous tenacious crud, copper found a place to hide out. And maybe that copper 6 7 plugs up this porous tenacious crud to cause a steam 8 blanketing, too. 9 So I will come back to the next Okay. 10 slide to --11 MEMBER KRESS: The copper and zinc are 12 definitely related to each other. You can see that. MR. CHENG: Yes, here, certainly. 13 14 MEMBER KRESS: Yes. 15 MR. CHENG: But the source of zinc in this case came mostly from zinc injection, although there 16 is some zinc in the system because brass contains it. 17 But the majority of the zinc came from the zinc 18 19 injection. 20 CHAIRMAN POWERS: Yes. I was just looking 21 at the shape of the curves. High copper means low 22 zinc and low copper means high zinc. So they're 23 related. And that gives you a clue as to how they're 24 interacting with each other. 25 MR. CHENG: Yes. Okay.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

257 1 MEMBER KRESS: I'm not sure what clue that 2 is. 3 CHAIRMAN POWERS: Well, I'm not either, 4 but there is a clue there that we need to look at. 5 MEMBER FORD: The zinc displaces in the That is the basis of the GeSiC process. 6 magnetite. 7 MEMBER KRESS: And then, therefore, the 8 copper can't get to it. 9 MEMBER FORD: Yes. 10 MEMBER KRESS: Yes. That's the clue. 11 MR. CHENG: Well, I think the problem, 12 they had a similar experience this year. And they're still working on the root cause, the final root cause. 13 14 So the utility is actually taking the lead. 15 You know, previously the vendor made it more strong inference in the final root cause and here 16 17 decided that this is their plant they have to have their voice, their stronger voice. So they took over 18 the root cause investigation and lead the effort. 19 20 We are providing them the root cause 21 analysis. And also we are helping them to analyze 22 this tenacious crud, particularly to try to understand 23 the morphology. 24 In addition to that, the plant already 25 installed this full-flow filter to remove copper and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	258
1	iron. So right now the plant has very low iron and
2	very low copper. So we think the problem should just
3	go away by that.
4	In addition, I will come back on this. We
5	have requests as to the chemistry guidelines to be
6	revised to limit the zinc, how much zinc you can put
7	into the reactor water.
8	MEMBER FORD: At less than .4 ppb, you can
9	still control the cobalt 60?
10	MR. CHENG: Well, that is something that
11	could be a problem for a high-iron plants. Some
12	plants may have to take exception to this limit. For
13	a plant with copper, we like to stick to .4 or even
14	lower.
15	So I would like to summarize the crud
16	corrosion failure here, historical case, including the
17	high crud-induced case I just mentioned. I think that
18	it's the localized corrosion acceleration will occur
19	when stagnant steam pockets are formed.
20	There are two ways to form closer from the
21	data details. In the delaminated nodular oxide layer,
22	like we found at the due to intrusion of soluble
23	species outside that caused this steam blanketing.
24	The second case is tenacious crud, where
25	the pores got partially blocked. And we still think

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

and I think this type of conclusion, this we're still working on the cross-sample characterization, but we think the case probably is very similar to what happened at SGHWR in the 1970s is a heavy water, steam-generating reactor. They had a very tenacious iron oxide crud.

And then they got this copper oxide plug up this crud area from the outside. So it created a steam pocket here that the dry steam escaped. So water cannot come in. So you are creating a heat barrier in between.

11 So think copper this we can cause 12 delamination in the plug of the tenacious crud. And the reason is the copper is the most abundant soluble 13 14 species. You qo in. You've got boiled and 15 precipitate iron oxide plus copper oxide.

However, iron is different. You know, all 16 17 the species behave differently. Iron when it goes to the BWR core, it precipitates out as a colloid of iron 18 19 oxide. It's not a soluble. So the position characteristic of iron oxide is very different. 20 21 Mostly it would occur at the bottom part of the core, 22 like a 20 to 40-inch location in the subcooled boiling 23 regime or most of the insoluble iron oxide will be We have a lot of crud data that 24 stripped out. 25 indicate that to be the case.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

1 So the equation is how about other 2 solubles? We are adding zinc. And zinc is also So that's the equation that we need to 3 soluble. 4 address.

5 How do we deal with this tenacious crud 6 issue? If we look at the history of all the BWR crud 7 data that we have collected, we can safely say that 8 before zinc injection that was started in 1986, we had 9 seen tenacious crud. Most crud, you brush it, it 10 comes off.

11 Occasionally in some of the brass 12 condenser plants, you had natural zinc. But a zinc 13 concentration is substantially low such that you don't 14 really form a tenacious crud there.

So only zinc injection in the last many years, we start seeing very tenacious crud formation. Other crud formation characteristics also have to do with the thermal hydraulic condition in the BWR core because it's a two-phase flow boiler.

You have a subcooled boiling at the bottom part of the core up to about maybe 40, 50 inches into about 40 inches. You've got bulk boiling. But that region, there the two-phase flow depends on this film boiling. There is a very thin film on the water, on the fuel while keeping it thermodynamically stable.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	261
1	If we produce the water film, we can get into the
2	dry-out condition.
3	But this also could potentially become
4	location for a hideout because water droplets deposit
5	on the fuel rod surface and they'll vaporize as pure
6	steam. So it will leave behind some of the
7	impurities.
8	So there is some sort of hideout condition
9	here. We talk about nodular oxide. We have got
10	tenacious crud. We also have been looking into this
11	thermal hydraulic-driven type of hideout as a
12	possibility here. So this is an issue, the raw
13	thermal hydraulics. It's not so clear and is a
14	subject that we need to look into further.
15	The nodular corrosion issue, as we see,
16	fabrication through heat treatment, through proper
17	reduction, we can control the nodular corrosion, clear
18	data to support that, but that's another story.
19	Sometimes I don't know. For whatever
20	reason, we start seeing evidence of nodular corrosion
21	more recently. And the possibility of some sort of
22	chemical impurity in the water may reduce the nodular
23	corrosion again. However, we really don't know about
24	other species. This is another area we need to work
25	further.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Then the last issue, again, I mentioned is gadolinium. White gadolinium would induce a lot of nodular oxide. So there is something on this issue. However, certainly we can certainly contain those problems. And the key is to make sure that we don't have excessive tenacious crud. We don't have very excessive nodular corrosion.

8 So that's the corrosion issue. You know, 9 I want to come back to talk about the current issues. 10 That's the corrosion failure I mentioned. Last year 11 we had two plants with cladding corrosion failure. 12 And Rosa also mentioned this earlier today.

We had three plants with PCI-like failures 13 14 and then in a water chemistry modification. We'll 15 touch on those three topics. The BWR corrosion The two failures occurred at two 16 failure, okay. 17 different plants, both at BWR/4. Both plants were CILC-susceptible, but one of the plants re-tubed the 18 19 brass condensers. So they don't have copper source 20 In about 1990, they re-tubed the brass anymore. 21 So they don't have copper. condenser.

The corrosion failure occurs at about 95 to 110-inch location. Remember, I showed you the double peak. This is the case. There was no damage at the bottom part. Twenty to 40-inch only occurred

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

263
in 95 to 110-inch elevation. So this is kind of a new
situation.
We see some sort of crud deposit, but
there was nothing excessive. You know, visually it
looks kind of typical, noting very unusual to speak
of. The fuel design is the same. Damages occur
predominantly to the part-length rods.
This is fuel rod nine by nine design with
a total of eight rods inside a core, which is 4.95
enrichments or is the high peaking rod.
An interesting part that Peter asked me
was because both plants had NMCA applications during
outage before fuel failures. And in both cases,
failure started about six, seven months into the
cycle. So the timing was consistent. You know, both
plants had failures that started seven months into the
cycle.
The chemistry, plant chemistry, is
different. As I say, one plant still had copper
because of the brass condenser. But they did not have
hydrogen water chemistry, no zinc injection.
Other plants had no copper, but they
injected zinc. There was a high level amount of zinc
injection. And they have hydrogen water chemistry.
So the chemistry condition is somewhat different.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

264
The cladding material, the vendor looked
into the material. They found some of the failed rods
tended to have somewhat lower iron concentration in
the alloys, but, actually, they were always in the
specification, not really highly distinctive there.
So that all the root cause investigation,
initial phase of our investigation, showed that maybe
there are quite a few contributors, like water
chemistry, like cladding material and the fuel duty,
but really cannot pinpoint which one, what are the
predominant triggers.
So robust fuel decided to fund this hot
cell program to send funds to the hot cell
examination. So that's the current situation. We
need to do hot cell examination hopefully to reveal
the root cause. I want to talk about
MEMBER LEITCH: How many pins were failed
in this situation?
MR. CHENG: Okay. The first plant, the
first outage, and they got five pins in the four
bundles fail. And they took out all the bundles in
the high-power location in addition to the four
bundles that failed. So I think it's total. The
reload was maybe 200 bundles. They took maybe almost
half of it.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	265
1	The second plant first had a four-bundle
2	failure, four bundles. They took out the four
3	bundles. They restarted right away. And they it kept
4	failing in the rod. So they had a second missed cycle
5	outage, unscheduled outage.
6	And they took out I think 25 bundles,
7	failed bundles. And they didn't have enough fuel to
8	redesign the core. So they restarted by fabricating
9	new fuel.
10	So at the end of the cycle, they took out
11	a whole reload. I think in the end, they may have, I
12	think, maybe 40 bundles fail.
13	So the first plant, if they didn't pick up
14	all the high-powered locations, the bundles, they
15	might fail a lot of bundles. So it depends on how
16	they manage this.
17	MEMBER LEITCH: Did either of these plants
18	have excursions in their chemistry, like a major
19	condenser tube leak or foreign material?
20	I had an experience once with lube oil
21	getting into the reactor coolant system. Any of that
22	kind of history?
23	MR. CHENG: Hydraulic fluid.
24	MEMBER LEITCH: Hydraulic fluid?
25	MR. CHENG: Yes. Well, in the first

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	266
1	plant, no, they did not have the hydraulic fluid in
2	leakage. They did not report a condenser failure. So
3	it was they said just burn no more operation. With
4	chemistry, look at chemistry, very typical, very
5	clean.
6	The second plant, they had the hydraulic
7	fluid intrusion, but it occurred I think the prior
8	cycle. And they were able to isolate. So they don't
9	believe it entered into the feedwater strain.
10	So it was not so clear, you know. People
11	would say, "Oh, that was the cause," but they were
12	able to isolate it.
13	MEMBER LEITCH: Yes.
14	MR. CHENG: Okay. The PCI-like failures,
15	this is in the three BWRs. They used a single
16	product. It's called iron-enriched zirconium liner.
17	As you know, in order to prevent the PCI failure
18	during control rod pole, people used zirconium liner
19	as a soft liner to prevent a PCI.
20	Because of the zirconium iron liner in the
21	late '80s into the '90s, there are a lot, a
22	substantial number, maybe one-third of the failed
23	zirconium liner rod that suffered a very long axial
24	split. And they lost few pellets since.
25	So at that time, a vendor introduced a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

different kind of liner. They thought the zirconium liner was iron. And with that additional iron, the corrosion resistance of the liner is improved substantially.

5 So after fuel failure, they believe that 6 the corrosion rate will be much lower. The hydrogen 7 generation inside the fuel rod will be much smaller, 8 lower. So that won't cause damage to the fuel rod.

9 And so they use that, but somehow they 10 suffer mostly I think at about 15 gigawatt-days. 11 After about 30 gigawatt-days, in that burnup range, 12 many rods fail during power change. However, utilities do stick to these limits. 13 They do have 14 limits. They can pull the control blade type of 15 thing.

One of the pictures show just a hair line. 16 White lines you have to brush the fuel rod to look at 17 Several rods showed this type of feature. But, 18 it. 19 in addition to that, because there is hydride damage 20 at other locations, but, anyway, possible root cause 21 from failure model evaluation, I think they look at 22 three plants as monitor pool-side inspections, most 23 likely failure of root causes, pellet defects due to 24 when the pellets were loading into the fuel cladding, maybe because of chipping, maybe make the rods more 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	268
1	susceptible to PCI. That's one possible scenario.
2	The second one, of course, the possibility
3	of maybe this liner only reaches iron after
4	irradiation because the iron dissolution or those
5	kinds of things may affect this PCI resistance of the
6	liner.
7	Another thing that the fuel vendor says
8	is, "Well, maybe it's hydride-assisted cracking
9	because you put noble metal into the reactor. And
10	maybe noble metal causes hydrogen absorption." And,
11	therefore, the outer layer of the cladding may
12	accumulate hydrogen and fuel in the PIE changes, that
13	may induce initial cracking of the cladding.
14	Now, this is the theory that the Japanese
15	seem to be very concerned about this type of
16	hydride-induced cracking from outside propagating into
17	the inside.
18	Those are three potential failure root
19	causes.
20	MEMBER FORD: Sorry. These are Japanese
21	reactors?
22	MR. CHENG: No. This is all domestic.
23	MEMBER FORD: I'm sorry?
24	MR. CHENG: These are
25	MEMBER FORD: United States?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	269
1	MR. CHENG: Yes, U.S. So we think most
2	likely it would probably be the first one, maybe petty
3	differences. But, again, I was just looking at the
4	pool-side. How do you tell? There is no way you can
5	tell. So we sent in the fuel rod to the hot cell for
б	the PIE.
7	MEMBER LEITCH: Was that last picture the
8	inside we're looking at?
9	MR. CHENG: This is outside. This is the
10	fuel rod you are looking at from outside.
11	MEMBER LEITCH: From the outside?
12	MR. CHENG: From the outside. And that is
13	the brushing. So typically you have a reddish outside
14	rod there. You won't see anything. So you brush it.
15	And they were able to see.
16	I think, in addition to this, there was
17	profilometry, eddy current measurement. And coupled
18	with visual, you are able to see this type of feature.
19	MEMBER LEITCH: But what's this down on
20	the right here? Is that where the
21	MR. CHENG: Oh, I'm sorry. This is just
22	the picture. I chopped off the picture and maybe just
23	the lighting condition.
24	MEMBER LEITCH: Oh, okay. This is not
25	MR. CHENG: Sorry.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	270
1	MEMBER LEITCH: Okay.
2	MR. CHENG: So the schedule I want to show
3	you, we are sending the fuel rods by the end of this
4	year in both cases. We are hoping to get the results
5	sometime next year, but we have this robust fuel
6	committee who would actively participate in all the
7	work and review the results.
8	As soon as we get a result, we disseminate
9	all the results to the utility members so they will be
10	able to get firsthand the results and hopefully help
11	them resolve their issues.
12	So that is the fuel failure. Now I want
13	to touch on the water chemistry issue. This is the
14	last topic. On the BWR side, unlike PWR, it's almost
15	a uniform chemistry across the whole industry with
16	minor changes in lithium and pH.
17	BWRs domestically, we have 33 different
18	chemistry conditions. Every plant is somewhat
19	different in all the impurity levels. And if you look
20	at it back in the 1970s, a lot of plants had recent
21	intrusion, condenser failures, a lot of gas, oxygen,
22	nitrogen in their system, carbon dioxide or carbonate
23	measure in the water.
24	So in the '70s and '80s, it was a major
25	effort to try to clean up the water to make sure that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	271
1	the industry operates with nice clean water. And one
2	indicator is the conductivity. The reason to clean up
3	water mainly was driven by system material cracking.
4	We keep cracking the piping. And the
5	conductivity, one of the indicators, you've got a lot
6	of soluble and that is a problem. And the soluble
7	sometimes comes from chloride or sulfate. Those are
8	major efforts. And the measure, as I say, is to plug
9	up the condenser tube to make sure the condenser tube
10	doesn't keep leaking.
11	The second one is the reason the cleanup.
12	The filtration system, the reason often break down and
13	release of the fines, reason fines, into the
14	feedwater, into the reactor and the reason and then a
15	lot of sulfate, a lot of silica.
16	MEMBER LEITCH: Are there some plants
17	today? It says "current levels." Are there some
18	plants actually operating at .3 ppb copper?
19	MR. CHENG: Right now we have probably, I
20	would say, maybe on the high end, the cycle average is
21	less than this. It may be .2, but, as I say,
22	sometimes it would go up a little bit higher, .3, .4.
23	We right now have probably two plants
24	still with brass condenser.
25	MEMBER LEITCH: Yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	272
1	MR. CHENG: Yes. They would have. Well,
2	actually, including the one that this
3	corrosion-induced failure would be three, but that
4	plant already put a filter in. And they are able to
5	knock the copper way down.
6	So we have two plants, probably .2, .3
7	type of range.
8	MEMBER LEITCH: Yes.
9	MR. CHENG: If you take a cycle average,
10	I would say .2, but the range. So the iron actually
11	comes down from like a 10 ppb in the feedwater and the
12	maximum maybe 3 to 4 ppb. Okay? And the iron
13	recommended is .25 to 1.5 ppb.
14	It's interesting, you know. When the
15	plant runs iron below this level, they are saying that
16	the dose rate will start increasing. So they have to
17	inject iron to bring the iron back to .25
18	So right now nobody is injecting now, but
19	in the last five years, I would say three plants
20	inject iron oxalate into the coolant, try to bring up
21	the iron level. We are trying to reduce the boiling
22	limit so that they don't have to inject iron again.
23	So this is a range we prefer.
24	But most plants can meet this range now.
25	A fuel plant may be on the high side. Copper, as I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	273
1	say, maybe of them, I would say that 31 plants have
2	less than .1 ppb now and about 2 of them maybe 2 and
3	another one may be .1 or slightly higher.
4	And zinc, without a zinc injection, the
5	zinc, even with brass condenser, they say zinc in the
6	water is about half of copper in the brass condenser
7	tube. So without zinc injection, maybe it will be
8	about .15. And copper plant may be in this category
9	but without zinc injection. So the water quality is
10	much better now. And I think it does help the fuel
11	performance also substantially.
12	In 1983, hydrogen water chemistry was
13	first introduced at the Dresden 2. And the purpose
14	was to mitigate stress corrosion cracking of the
15	piping system. Hydrogen addition, at that time the
16	first demonstration was started at about 1.4 ppm added
17	into the feedwater stream. And they're going to the
18	reactor water to suppress oxygen in the piping system.
19	So that was introduced.
20	We conducted a very significant fuel
21	surveillance program. And we found this was benign to
22	the fuel. We didn't see any problem with the fuel.
23	If there is anything, we think maybe it would be
24	somewhat beneficial to the fuel. It makes the crud
25	very fluffy. So it may be somewhat beneficial.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	274
1	Zinc injection was introduced in 1986. I
2	think the first plant was Hope Creek. And it was
3	introduced. The vendor suggested the control was in
4	the reactor water, rather than the feedwater.
5	Feedwater is not really controlled. It's
6	reactor water controlled to 5 to 10 ppb. This can be
7	a problem because if you are running 5 ppb, you are
8	probably at like a .2 ppb of zinc in your feedwater to
9	get this.
10	If you want to get a 10 ppb, you probably
11	have to increase the feedwater concentration by 10
12	times in order to get the double reactor water. And
13	most of the zinc will load on the fuel rod surface.
14	So this can be a problem. And right now we tried to
15	mitigate this problem.
16	Noble metal chemical addition, NMCA, was
17	introduced in 1996. Again, this is to increase the
18	efficiency of hydrogen in stress corrosion cracking
19	mitigation. The theory is once you treated a system
20	with NMCA, you only need a small amount of hydrogen
21	into the feedwater.
22	You don't have to go to 1.8. You can go
23	down as low as 0.2, 0.3 ppb. I'm sorry. This has got
24	to be ppm in the feedwater to control the stress
25	corrosion cracking by reducing its chemical potential.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

275 1 I think Rosa showed you this already. I 2 think there was a problem with this. We have to come 3 back. Let me come back. How this works is the 4 platinum and rhodium in chemical form, soluble 5 chemical form, added to the BWR reactor water, it's about 160 degrees Centigrade when the plant is coming 6 7 They injected chemicals into the line for 48 down. hours to circulate inside the reactor coil for 48 8 9 hours. During that time, platinum and rhodium 10 11 metal will fold into monolayers on the piping system. 12 However, the majority of the noble metal will deposit on the fuel surface during the treatment because the 13 14 fuel surface still has a gamma heating and temperature 15 is hotter. Because of the crud, the effective surface 16 17 area is much larger than the piping system. So most of it will go down to the fuel surface. 18 During the application, if you calculate 19 total amount of noble metal added to the core, divided 20 21 by total reactive fuel rod surface area, you can come down to like a microgram per centimeter². And there 22 23 is a variation. 24 Some trends had treated verv 25 conservatively, like the bowing is much lower, like

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	276
1	10, and others started with like 62. Okay. And right
2	now I will come back to say right now we try to limit
3	to 30, no more than 30, but they do have a large
4	variability here.
5	This is equivalent to maybe like one to
6	four kilograms of noble metal added to the core during
7	the treatments, about one to four kilograms.
8	We know that everybody worries about what
9	happened to the noble metal. You put in platinum and
10	rhodium, this is a catalyst that can cause a lot of
11	change in the water chemical reaction.
12	So the concern is about the accelerated
13	hydriding of Zircaloy, concerned about its crud
14	transport and deposition because as a catalyst, it
15	could cause a lot of deposition. And we also worry
16	about cladding corrosion.
17	So we did fuel surveillance at the three
18	BWRs by BWRVIP and robust fuel together to do fuel
19	surveillance at three plants. And, of course, also
20	some utilities did their own surveillance and provided
21	data to the industry for the overall assessment. In
22	this process, we also did hot cell examination twice.
23	We examined the condition of the fuel rods.
24	To just summarize the condition that we
25	observed after the NMCA, we actually saw increased

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	277
1	frequency of surface spallation at several plants.
2	And I will show you this picture.
3	This is one case with a high noble metal
4	injection. And this is before brass. We've got some
5	crud loss, some sort of tenacious crud. This is an
6	indication of the surface texture. This is a thick
7	tenacious crud here. It could be like 20 microns, 30,
8	40 microns, thick crud there. And in some cases,
9	there is a tenacious crud spall. And you can see all
10	of those spotty surfaces because of that.
11	We think the spallation, those with
12	tenacious crud may have to do with the zinc injection.
13	One problem was that after they put NMCA into the
14	core, some see the soluble iron start to increase.
15	And they think maybe the dose rate is also increasing
16	because of that. And they start adding more zinc than
17	they used to.
18	Rosa said at one of the plants they used
19	to have in the feedwater, they used to put like a 0.2
20	ppb and suddenly after the NMCA, they increased up to
21	about 0.8 to 1.5 ppb. So plants started adding more
22	zinc after they did the noble metal because they
23	probably got compounded by increasing the injection of
24	zinc. And in one case, we saw some increased oxide
25	spallation. Also corrosion is spallation when you get

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	278
1	a very high noble metal treatment.
2	However, from the hot cell work, we found
3	NMCA did not increase hydrogen absorption. After
4	three cycles, we looked at it as doing our own rod.
5	We did not see any increase in the hydrogen injection.
6	So that's a plus in information.
7	Out of those 28 plants, that's 24 in
8	the U.S., 4 in foreign BWRs 2 plants in the U.S.
9	experienced corrosion failure. Domestically, 22 had
10	no NMCA-related failures. However, we are not sure
11	that an NMCA was the root cause. As I say, the
12	chemistry will change. The zinc injection was
13	increased. I cannot say it was attributable to NMCA.
14	But, again, until we found the root cause,
15	it is just difficult to say what to do. So we do have
16	very close committee to oversee this whole NMCA
17	transition. Zinc injection changes.
18	When we prepare a white paper and we also
19	develop this guideline for the BWRVIP on the fuel
20	issues. And our recommendation was to limit the noble
21	metal loading to less than 30 micrograms per
22	centimeter ² .
23	I showed you before this some had 50 to 60
24	micrograms. So we try to limit it to no more than 30.
25	We also ask to limit zinc to less than 0.4 ppb in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

feedwater. As we say, up to today, there is no controlling the feedwater. It's all in the reactor water. And we are imposing a limit of zinc in the feedwater. I think some plants may have trouble, but I think they have to review their situations case by case.

We also asked the plant to reduce iron to minimize tenacious crud. And, of course, they need to talk to fuel vendors to assess the overall situation.
A very important issue is they should keep the hydrogen available all the time to prevent the crud transport.

Okay. So I touched on several issues. I'll give you a summary. We think the fuel failure induced by manufacturing defects have mostly been under control. Fuel duty and water chemistry failures continue to occur. And we think it will be more challenging, particularly in the BWR side.

The preventive measures, of course, we have robust tests and in-plant demonstration for any changes and technical and experience basis guidelines. We need to continue to fine-tune that. Any duty changes or the peaking for the particular when increased, there was some discussion about how about enrichment of over five percent.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	280
1	I think, of course, when you increase the
2	enrichment, the first thing, of course, is fuel
3	economics. You want to reduce the batch size. And
4	that would certainly increase the peaking in the whole
5	core. This is something we need to watch out.
6	Okay. Thank you.
7	CHAIRMAN POWERS: Thank you. That was a
8	survey of all problems that your noble metal chemistry
9	can cause.
10	MEMBER FORD: We don't know that. Sorry.
11	I can't say it.
12	CHAIRMAN POWERS: That was very generous.
13	The other way of putting it is that we don't know that
14	it doesn't cause problems.
15	Are there any other questions for the
16	speaker?
17	(No response.)
18	CHAIRMAN POWERS: Thank you very much.
19	Most interesting stuff we don't ordinarily get to hear
20	about, and it gives us ammunition for harassing Peter
21	for several months now.
22	And, Rosa, I want to thank you for
23	bringing everybody here and giving us a very
24	interesting talk. This is really fun stuff that
25	you've got here. And it's obvious that you have got

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	281
1	more than your hands full with all of these activities
2	going on.
3	At this point, I think we need to go off
4	the recorded record and discuss what the
5	subcommittee's strategy is for the future.
6	(Whereupon, at 4:47 p.m., the foregoing
7	matter was adjourned.)
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	