Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards Reliability and PRA and Plant Operations Subcommittees

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Tuesday, July 8, 2003

Work Order No.: NRC-990

Pages 1-150

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	RELIABILITY AND PRA AND PLANT OPERATIONS
6	SUBCOMMITTEES
7	MITIGATING SYSTEMS PERFORMANCE INDEX
8	+ + + +
9	TUESDAY,
10	JULY 8, 2003
11	+ + + +
12	ROCKVILLE, MARYLAND
13	+ + + +
14	The Reliability and PRA and Plant Operations
15	Subcommittees met at the Nuclear Regulatory
16	Commission, Two White Flint North, Room T-2B1, 11545
17	Rockville Pike, at 1:00 p.m., Mario V. Bonaca,
18	Acting Chairman, presiding.
19	SUBCOMMITTEE MEMBERS:
20	GEORGE APOSTOLAKIS, Subcommittee Co-Chairman
21	JOHN D. SIEBER, Subcommittee Co-Chairman
22	MARIO V. BONACA, Acting Chairman
23	GRAHAM M. LEITCH, Member
24	STEPHEN L. ROSEN, Member
25	WILLIAM J. SHACK, Member

		2
1	ACRS STAFF PRESENT:	
2	MAGGALEAN W. WESTON, Staff Engineer	
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

	3
1	A-G-E-N-D-A
2	Welcome and Introductions, Mario Bonaca, Acting
3	Chair
4	Presentations:
5	Patrick Baranowsky 4
6	Donald Dube
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	1:00 p.m.
3	ACTING CHAIRMAN BONACA: This meeting
4	will now come to order. This is the meeting of the
5	Reliability and PRA Subcommittee. I'm Mario Bonaca
6	acting as Chair of the Reliability and PRA
7	Subcommittee for George Apostolakis who has been
8	delayed.
9	Jack Sieber, Chair of the Plant
10	Operations Subcommittee is the Co-Chair. He is not
11	here but will be back I'm sure on time. ACRS
12	members also in attendance are Graham Leitch,
13	Stephen Rosen, who will come up, too, I guess. I
14	didn't see his name listed there. And William
15	Shack. Hopefully George Apostolakis will be here
16	within the hour.
17	The purpose of this meeting is to
18	discuss the progress of the mitigating systems
19	performance index and to respond to questions raised
20	in the main ACRS subcommittee briefing.
21	The subcommittee will gather
22	information, analyze relevant issues and facts, and
23	formulate proposed positions and actions as
24	appropriate for deliberation by the full committee.
25	Maggalean Weston is the staff engineer for this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	5
1	meeting.
2	The rules of prospective participation
3	in today's meeting have been announced in the
4	Federal Register on June 25, 2003. A transcript of
5	the meeting is being kept and will be made available
6	as stated in the Federal Register notice.
7	It is requested the speakers use one of
8	the microphones available, identify themselves, and
9	speak with sufficient clarity and volume so that you
10	may be readily heard.
11	We have received no written comments
12	from members of the public regarding today's
13	meeting. We will now proceed with the meeting. Pat
14	Baranowsky of the Office of Nuclear Research will
15	begin.
16	MR. BARANOWSKY: Thank you. I'm the
17	Chief of the Operating Experience Risk Analysis
18	Branch and with me is Senior Risk and Reliability
19	Analyst in the branch, Don Dube, and we're going to
20	make a presentation today.
21	I would like to thank the subcommittee
22	for giving us this opportunity to present the
23	progress on this project. We found that airing the
24	technical issues and getting input from the
25	subcommittee has been quite valuable in the past and

```
(202) 234-4433
```

	б
1	we would like to continue to do so.
2	Let me go to the first viewgraph here
3	which pretty much states the purpose and objective
4	that we had for coming to this meeting. First of
5	all, as you had mentioned, we want to update you on
6	the progress we've made on the mitigating systems
7	performance index which is a performance indicator
8	set that we've been working on for the past year or
9	so.
10	We think we've addressed and will
11	discuss how we have addressed the ACRS comments.
12	Then ultimately, not after this meeting but perhaps
13	a future meeting, we would be looking toward getting
14	an ACRS letter on this particular developmental
15	activity. Today
16	MEMBER LEITCH: As I looked at the White
17	Paper I guess I had not particularly focused on the
18	difference between the word indicator and index. It
19	seems to me there's a pretty significant difference
20	there.
21	MR. BARANOWSKY: I'll explain why we
22	chose that terminology when I get to my overview.
23	MEMBER LEITCH: Okay.
24	MR. BARANOWSKY: That's coming right up.
25	The first thing I'm going to cover is some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	7
1	background on the MSPI. Then we'll identify what we
2	pulled out from the transcript as ACR's comments
3	from our briefing about a year ago.
4	I'll cover the White Paper that we sent
5	to you previously and then give a briefing on the
6	status of the pilot program that we have been
7	conducting and is coming to a close now.
8	Then really some of the meat of this
9	presentation is to go over key technical issues that
10	evolved as a result of comments received and the
11	pilot program. Then summarize and get to an
12	implementation time line that we are working toward.
13	Just for some background, the mitigating
14	systems performance index, that approach evolved
15	from a feasibility study that we did a couple of
16	years ago on risk based performance indicators.
17	Basically it's a highly risk informed
18	simplification to the risk based performance
19	indicators. It was designed to address some
20	recognized issues with the current performance
21	indicators which are somewhat risk informed,
22	simplified, generic, and so forth.
23	In particular, the MSPI addresses
24	treatment of demand failures and fault exposure time
25	which is causing problems in the implementation of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	8
1	the current set of performance indicators.
2	We addressed issues associated with the
3	definition of availability and, in particular, spent
4	a fair amount of time early on discussing
5	inconsistencies with maintenance rule applications
6	of unavailability and availability.
7	For the most part I think we have made
8	as much progress as we can. We are pretty
9	consistent now in terms of the way we define
10	unavailability for at-power conditions, safety
11	systems at-power conditions.
12	The other issue that was raised that was
13	causing some problems was the lack of plant specific
14	risk informed performance thresholds. In fact, the
15	ACRS had brought that up quite some time ago in
16	reviewing the current set of performance indicators.
17	There had been some problems with
18	respect to the cascade failure treatment of cooling
19	water systems where one cooling water system failure
20	could cascade its impact as a dependent type system
21	on to other front line systems and produce multiple
22	hits on performance indicators in a way that they
23	weren't designed to have multiple hits.
24	Now, the MSPI monitors risk impact of
25	changes in performance for selected systems. That's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	9
1	why we call it the MSPI. That identifies a segment
2	of risk impact and it is not a risk indicator per se
3	so it's like a conditional risk indicator with
4	certain limitations.
5	It doesn't address shutdown, it doesn't
6	address external events, and it doesn't address
7	certain relatively rare events that don't have an
8	occurrence interval recurrence interval that
9	allows us to get a statistically valid analysis of
10	performance implications.
11	We coined the phrase "index" even though
12	we relate the indicator to CDF in trying to make it
13	risk informed and plant specific. It's called an
14	index to reflect the fact that it has a limited
15	scope that it's trying to look at performance issues
16	on.
17	MEMBER LEITCH: And that scope is
18	basically at power?
19	MR. BARANOWSKY: That's basically the at
20	power, on demand reliability and availability of the
21	specified set of safety systems.
22	MEMBER LEITCH: It is by definition then
23	plant specific?
24	MR. BARANOWSKY: It's plant specific,
25	yes. It incorporates the plant specific well,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	that's sort of my next bullet there. It calls for
2	plant specific design, configuration, and plant
3	specific data to assess the performance with respect
4	to those six systems per plant.
5	The scope of the PIs I think this is
6	an important point, too is consistent with the
7	current PIs. It's meant to be a replacement for the
8	current PIs. It's not meant to come up with new
9	optimal ways of treating the whole oversight process
10	scheme of PIs. It's meant to specifically address
11	the mitigating system performance indicators for
12	which there had been some problems identified by
13	both the ACRS industry and NRR folks.
14	It does cover unavailability and
15	unreliability and is consistent with PRA modeling
16	which is why it's highly risk informed. The process
17	uses a detailed definition of the scope and
18	calculation specifics for the PIs in order to get
19	consistency, reproducibility if you will, of the PI
20	calculations.
21	The threshold bases are consistent with
22	the current PI thresholds. Even more so, in fact,
23	then when we first came here as you'll hear as we go
24	through this. We've moved toward some performance
25	thresholds which are consistent with PIs at the so-

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	called green/white interface and more risk informed
2	thresholds at other threshold interfaces in the
3	reactor oversight process threshold scheme.
4	MEMBER LEITCH: So what are the units of
5	MSPIs, delta CDF?
6	MR. BARANOWSKY: Fundamentally delta
7	CDF, yeah. Just to summarize some of the points
8	MEMBER SIEBER: Maybe I could. In the
9	list on the preceding slide, you don't talk about
10	the treatment of common cause failure. Hopefully
11	that will be discussed as we go.
12	MR. BARANOWSKY: Okay.
13	MEMBER SIEBER: That's already been
14	dealt with.
15	MR. BARANOWSKY: I think I'll mention
16	exactly how we handle that here and then there will
17	be some additional information that Don will
18	present.
19	Common cause failure is pretty much
20	handled in two parts. One is an actual common cause
21	failure incident which is quite rare and has
22	significant risk impact on the plant is not
23	something that we believe this indicator is capable
24	of trending, if you will. Therefore, our proposal
25	is that one would use a risk significance process

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	like the significance determination process to look
2	at any real common cause failures.
3	At the same time the importance of
4	common cause failure in the risk significance of the
5	systems that we're monitoring is captured through
6	the performance indicator. I don't know if that's
7	clear enough.
8	MEMBER SIEBER: Well, let me ask a
9	question. If you've got a non-green mitigating
10	system performance index, you would get into the SDP
11	as part of the ROP process. You wouldn't just go
12	with the indicator.
13	MR. BARANOWSKY: What we would do is we
14	have a scope split where we think the indicator can
15	provide valid indication.
16	MEMBER SIEBER: Regardless of SDP?
17	MR. BARANOWSKY: Yes, because this
18	indicator is designed to measure accumulated
19	performance, if you will. Changes in performance
20	over some period of time.
21	MR. DUBE: Three years.
22	MEMBER SIEBER: Three years.
23	MR. BARANOWSKY: Three years and then
24	accumulation of data basically. Whereas the SDP is
25	a one time, one episode incident.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	MR. DUBE: Exactly. We have a slide,
2	too.
3	MR. BARANOWSKY: We'll cover that. So
4	what we've tried to do is identify where we think
5	this PI works best and where we think a risk
6	determination type of activity works best. Either
7	one of those can feed into the matrix.
8	MEMBER SIEBER: The question is let's
9	say you've got a non-green index and say you went to
10	the licensee and you said, "You are the ROP. You
11	get some special attention."
12	MR. DUBE: It would be no different than
13	we have now.
14	MEMBER SIEBER: Yeah. On the other
15	hand, he would say, "Well, I don't think this is
16	risk significant." They would then pick out the
17	instruments that drove them over the edge. Perhaps
18	it would be a green and now you have a conflict. I
19	think if you use this, you have to clarify what
20	takes precedence and why there's a difference
21	because there will be instances where there will be
22	differences.
23	MR. DUBE: That's a good point.
24	MR. BARANOWSKY: That's an important
25	point and we also will cover that in a little more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	detail. Then if we don't satisfy you, I'm sure
2	you'll ask us more questions.
3	MEMBER SIEBER: Well, yeah. I think
4	it's more understanding and writing down what these
5	things mean as opposed to an argument as to whether
6	it's valid or invalid.
7	MR. BARANOWSKY: Yeah, and we're trying
8	to detail in the guidance documentation where one
9	uses the mitigating system performance index and
10	where one uses the significance determination
11	process. We try to address, at least to some extent
12	in the White Paper, some points as to why one might
13	be preferable to the other in general.
14	MR. DUBE: Your point is well taken.
15	Addressing of technical issues is kind of leading in
16	those kinds of implementation issues but they are
17	very important.
18	MEMBER SIEBER: You've run a couple of
19	workshops with the industry. In fact, you rely on
20	an NEI document for part of the development of this.
21	I would presume that during those workshops I
22	didn't go to the workshops and I haven't read about
23	them but other than the fact that they occurred you
24	accomplished something.
25	I would presume that part of those

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	workshops the industry understands what it is doing
2	here and probably will need in the process of
3	implementation something in writing that says here's
4	the policy and how we're going to employ it.
5	MR. BARANOWSKY: I think we actually
6	have that.
7	MEMBER SIEBER: Okay.
8	MR. DUBE: You want to say anything,
9	Mark or John?
10	MR. SATORIUS: What was the question?
11	MR. BARANOWSKY: Well, whether or not we
12	have documented for the purpose of what we're doing
13	with the MSPI pilot, for instance, the use of SDP
14	versus the PI so it's clear for everybody. I think
15	we've done that.
16	MR. HOUGHTON: Tom Houghton, NEI. Yes,
17	we have. In the draft guidance document, I think
18	right up in the very front of it, we list about five
19	instances when you would use the SDP as opposed to
20	the MSPI itself. We will be looking as we go
21	through them with your advice if there are any
22	others that we need to. Basically it's things that
23	the indicator can't really measure very well or
24	aren't included in the indicator's capability.
25	MEMBER SIEBER: This is in the NEI

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	document?
2	MR. HOUGHTON: It is. And the
3	inspection guidance, I think, would follow that.
4	MR. THOMPSON: This is John Thompson,
5	Inspection Program Branch. Tom is exactly right,
6	but the point that you were making earlier is an
7	important point that where the indicator is valid
8	and gets ahead and crosses a threshold, we have said
9	in the working group meetings that will suffice as
10	the input into the action matrix and we will not
11	also do an SDP on it even if there is a performance
12	issue.
13	MEMBER SIEBER: Well, I can see where
14	you would get two different answers. You need to
15	avoid that conflict by saying this is the one we
16	will use.
17	MR. THOMPSON: So the challenge for us
18	as NOR is to assure ourselves that this is at least
19	as good an indicator of risk as it is what we have
20	now where we currently do an SDP along with a PI and
21	then take the higher color input into the occupation
22	maker.
23	MEMBER SIEBER: Thank you.
24	MR. BARANOWSKY: Slide 5 identifies the
25	points, comments, and questions that were identified

(202) 234-4433

	17
1	from the May 2002 ACRS subcommittee briefing. Just
2	to mention these bullets, the subcommittee did
3	indicate that we were moving in the right direction
4	to solve many of the problems with the current
5	mitigation system performance indicators.
6	They did want to know what we had
7	learned from any pilot activities. At that time we
8	were only formulating them but we said we would get
9	back to you on that.
10	There was a question raised about should
11	the PI that we are developing deal with risk in
12	terms of thresholds. An issue was raised regarding
13	some of the large numbers of SCRAMS that are needed
14	to cross certain thresholds in the reactor oversight
15	program.
16	We have looked at this and made some
17	adjustments based on dealing with issues of validity
18	of indicators where we have either two few hits that
19	causes an indicator to cross a threshold, or so many
20	hits that it's not really indicating anything. Don
21	Dube will describe that a little later.
22	MEMBER ROSEN: You would be requiring so
23	many hits that you would never get there?
24	MR. DUBE: Correct.
25	MR. BARANOWSKY: Basically. So-called

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

18
ever-green indicator.
A question was raised and we think we
answered it but we put it here anyhow about whether
we should be using a plant's own historical
performance in a baseline or some industry
performance. I think we discussed it at the last
meeting but we have also concluded since then that
we would like to use historical industry performance
since.
If we were to use a plant specific
performance for the baseline for plants that had
then they would be rewarded by allowing to have a
delta that goes even more in the core direction.
The plants that have had a very good performance
would be highly penalized. It seems to be more
reasonable in light of what we are trying to
achieve. Sort of a pragmatic as opposed to
MEMBER ROSEN: This is the difference
from the typical PRA approach where you would update
the performance. It seems perfectly appropriate
because you would tend to use this for a different
reason. I think that is why I'm comfortable with
that.
When you get done with talking about all
these points, are you going to tell us is the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

19 1 industry, for instance, going to tell us what they have learned from the pilot and how they feel about 2 3 it? MR. BARANOWSKY: We're going to talk 4 5 about the pilot. Tom Houghton is here from NEI and we would be more than happy to have him step up and 6 7 say what he thinks. The last point was there is sufficient 8 data in EPIX. Even though the data currently isn't 9 sufficient, there have been a number of interactions 10 11 with INPO to get EPIX design and capable of handling 12 this information. It seems to be on track with respect to 13 14 the time frame that we are talking about potentially 15 implementing this indicator so that we would be able through INPO and their own so-called consolidated 16 17 data entry system which is meant to be an efficient way of collecting various types of data to get the 18 19 data that one needs in order to perform the 20 calculations. 21 The next chart identifies some Okay. 22 points regarding the White Paper that we sent, I 23 believe, over a month ago. That's the one, dated 24 April 28th. Let's make sure we understand what the 25 White Paper is.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	It's meant to provide the fundamental
2	concepts and some related issues that give us a
3	belief that we should pursue the development of the
4	mitigating system performance indicator. It's not
5	an analysis of all the possible technical and
6	implementation issues. It's pretty much a
7	understanding that this looks like it has some
8	merit.
9	It also gives the fundamental concept of
10	how we would make some simplications in doing these
11	risk informed calculations to keep the analytical
12	part as simple as possible but no simpler than need
13	be in order to get a reasonable indication.
14	We provide the mathematical formulation
15	with the importance measure relationships, which I
16	don't plan on going through anymore. We show how we
17	treat unreliability, unavailability in such a way
18	that we can combine them together and looking at
19	both at the same time get an indication of the
20	impact on the risk index.
21	This is about the simplest calculation,
22	pretty straightforward algebra. It requires some
23	bookkeeping but the equations are not really too
24	complex. There's a parameter here, parameter there.
25	A lot of them are given by like the

(202) 234-4433

1 Bayesian update parameters, for instance, As, Bs, 2 and things from analyses that we have done of 3 industry data to come up with prior distributions 4 and that we have explored to understand how those 5 parameters impact the calculations in the mitigating system performance index. 6 7 MEMBER ROSEN: The paper says that although the calculations in the paper can get 8 complicated, the simplifications that you have 9 proposed, that are being proposed, don't affect the 10 11 results greatly. They are simplifications that 12 have a limited impact except in some unusual cases. MR. BARANOWSKY: We think we have 13 14 identified just about all the little places where 15 things can be unusual. The basis for some of the things that we're doing required some complicated 16 17 analyses and Don is going to cover that. But then we believe we are able to boil it down into 18 relatively simple and straightforward sets of 19 20 parameters with these algebraic equations. 21 MEMBER ROSEN: That can be handled 22 without a CRAY computer. 23 MR. BARANOWSKY: Yeah. This is just 24 spreadsheet work. 25 MR. DUBE: This is not on a spreadsheet

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	now.
2	MR. BARANOWSKY: If you can't track
3	things that keep you honest with your tech specs,
4	then you wouldn't be able to do this. I would say
5	vice versa is also true.
6	The benefits, of course, are identified
7	in terms of some of the issues that we mentioned
8	earlier; properly accounting for demand reliability
9	and including plant specific designing data.
10	The limitations are called out to some
11	extent in the paper. I think the interface is with
12	where the significance determination process is
13	proposed to be the appropriate methodology for
14	evaluating the significance of performance issues is
15	more detailed out in the NEI guidance document.
16	One thing that specifically needs to be
17	recognized, that there are a lot of conditions that
18	get discovered either by design reviews or by
19	special tests that are not done routinely.
20	Those kinds of issues are also outside
21	of the scope of this PI because they, in essence,
22	are the discovery of conditions in which the plant
23	would have been in a potentially significant risk
24	state for a long period of time while all the
25	indications can't possibly detect this because the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	data that forms the basis of the indicators is not
2	being collective in those areas. That also goes
3	into significance determination.
4	MEMBER SIEBER: But that does not
5	include what you refer to as type two test results
6	which is the 18 months as opposed to a correct test.
7	So even though you may not discover something until
8	you run the at-refueling 18-month test, that period
9	where the deficiency is assumed to occur could be
10	nine months under the old SDP process.
11	MR. BARANOWSKY: Actually, I think the
12	main thing that would be discovered on those 18-
13	month tests are running reliability issues. We have
14	a way of dealing with those. The answer is yes and
15	no.
16	If there was an issue that was
17	identified that was, say, starting reliability on a
18	diesel generator, for instance, that could not be
19	detected for some reason during the normal monthly
20	or quarterly test. We would have to take that into
21	account. We couldn't just assume that the monthly
22	or quarterly test provided valid numbers of demands.
23	We haven't seen anything like that, by the way.
24	MEMBER LEITCH: For example, the recent
25	at least a year ago or so red finding at Point

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	Beach where they have daily mops. Under some
2	conditions recirculation were correctly availed and
3	the pumps would be run again and shut off. No
4	amount of testing would have revealed that after
5	three months or 18 months or anything. I mean, it
6	was just a recognition of the problem.
7	MR. BARANOWSKY: That's hopefully a rare
8	event but it's a longstanding one that is not
9	amenable to this type of indicator. There might be
10	other types but not this one.
11	We mentioned issues that are related to
12	differences between the mitigating system of
13	performance index and a significant determination
14	process which we have looked at and are continuing
15	to look at.
16	There was a lot of discussion related to
17	false negatives and false positives which we believe
18	we have pretty good solutions for and validation
19	issues which we are also addressing and have a
20	pretty good handle on. Those are just highlighting
21	the paper. I don't think we have solutions
22	identified today. We can talk to you about some of
23	the solutions that are in progress.
24	Of course, also since the last time we
25	talked to you we did have an actual pilot program in

(202) 234-4433

(202) 234-4433

1 which some 10 sites with 20 nuclear plants participated in testing out the guidance for 2 3 identifying the scope of equipment within the 4 mitigating system including boundary and component identification. A data collection was done and 5 computation using the original formulation that was 6 7 put together about a year ago. Another element of doing that pilot was 8 to go through various validation and verification 9 Some of these involve 10 issues as we went along. 11 special so-called table top studies with actually a 12 significant amount of the pilot activity, for us at least, and that is the bulk of many of the things 13 14 that we are going to talk about here today. 15 They included issues related to our own SPAR comparisons, SPAR being the standardized plant 16 17 analysis risk models which the NRC used for our own risk analysis. We'll talk more about that. 18 We 19 wanted to look at a number of issues regarding 20 differences between what the mitigating system 21 performance index got and the significance 22 determination process. 23 The other thing I want to point out is 24 that the regions performed their temporary 25

inspections per guidance and we got guite a bit of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

25

	26
1	feedback on issues regarding burden and problems in
2	following the guidance and that kind of stuff needs
3	to be feed back into the updated guidance in order
4	to be more efficient if there is to be an
5	implementation.
6	MEMBER LEITCH: One of the things that I
7	don't quite understand is what the industry gives
8	you versus what the industry does themself. In
9	other words, in these pilots do they just provide
10	let's say we're talking about the diesel generators.
11	Do they just provide reliability or, I should say,
12	unreliability and unavailability data? Then the
13	expectation is that the NRC does the number
14	scrunching to come up with the index?
15	MR. BARANOWSKY: Actually, that's a
16	really good point. The original idea was that we
17	would do a 100 percent parallel analysis of the data
18	even though the licensees are responsible for it.
19	They would use their PRAs and we would use ours.
20	But that we would make sure that we did some PRA
21	benchmarking so that we didn't have things like our
22	models including designer operational features that
23	were faulty based on understanding of incomplete
24	information.
25	So the idea was to benchmark the SPAR

(202) 234-4433

	27
1	models and then go off and do our own calculations
2	because, as you will see when Don shows you, a
3	number of technical issues came up for which we
4	needed to have a consistent set of models to look at
5	these things across numerous plants. If we couldn't
6	do that, I don't see anyway we could have done this
7	project.
8	We would be working on this for years.
9	Now we've got basically a set of, I guess,
10	simulation models set up so we can look at a number
11	of issues separately or together and look at the
12	impact after we have benchmarked them against the
13	licensee's models.
14	MR. DUBE: But, in answer to your
15	question, the licensees submit historical
16	performance, the number of demands for a particular
17	quarter, all the importance measures, totaling the
18	spreadsheet and automatically calculated what the
19	equivalent delta CDF, core damage frequency, and
20	what color designation is projected. It's been done
21	for about six months. It was done monthly but if it
22	were implemented the data would be submitted only
23	every three months, every quarter.
24	MEMBER LEITCH: For example, in the
25	diesels there's many, many different configurations

(202) 234-4433

	28
1	so the impact of diesel unreliability and
2	unavailability is factored into the model for that
3	particular plant.
4	MR. DUBE: Exactly.
5	MEMBER LEITCH: Be it the smaller models
6	or
7	MR. DUBE: The importance measure. If
8	you would find, for example, that a particular plant
9	was, let's say, just two diesel generators where
10	loss of off-site power or station blackout was a
11	dominant sequence, the importance measures for those
12	would be reflected in the high importance measures
13	for that particular component for that plant.
14	Whereas another plant that had more
15	diesel generators and station blackout or loss of
16	off-site power was not an important contributor to
17	core damage frequency might have importance measures
18	that were lower for that particular plant.
19	MEMBER ROSEN: this was ACRS' specific
20	point, that the new system had to account for these
21	site specific differences in order to be fully
22	robust.
23	MR. DUBE: Exactly, and that's what it
24	does.
25	MEMBER ROSEN: And that's what it does.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	MR. BARANOWSKY: So it's expected even
2	if we implement this the licensees will make the
3	calculations but they will make the data available
4	for us once we have enough confidence in the
5	calculations and whatever because this is very
6	different from the current set of indicators and
7	does use plant specific PRAs so it's a step up in
8	terms of what we've been doing in the past.
9	MEMBER SHACK: And he'll be calculating
10	the importance measure with his PRA rather than you
11	supplying him an importance measure.
12	MR. BARANOWSKY: That's right.
13	MR. DUBE: I'll talk a little bit about
14	that when we get there.
15	MR. BARANOWSKY: Let me talk a little
16	bit about the status of the pilot program and then
17	if others have some points they want to mention,
18	that might be a good time to.
19	We did hold a workshop in July of 2002
20	in which we went over the draft proposed guidance
21	and we made some changes as a result of that
22	workshop. Then finally we issued guidelines for the
23	pilot as modification NEI 9902 in September.
24	Then from September through February the
25	licensees collected and submitted the data. We

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	performed the temporary instruction at the pilot
2	plants basically from I don't know exactly. I
3	think it was September because didn't we start in
4	September?
5	MR. DUBE: Yeah.
6	MR. BARANOWSKY: It went at least all
7	the way through March. We had another workshop in
8	January for sort of mid-course assessment. Then we
9	identified a number of technical issues regarding
10	temporary instructions and details of calculations
11	and anomalies and results and things like that. We
12	redirected our efforts to look at the issues that
13	Don is going to talk about shortly.
14	One of the things that we found that we
15	had to spend a fair amount of time on in order to do
16	all this was to bring the SPAR models up to a state
17	where they could be used to give a pretty good
18	reproduction of the licensee's risk down to a fairly
19	low level.
20	Normally when we use the SPAR models we
21	use them for the absence sequence precursor program
22	and it pictured generic issues. We try to get our
23	total risk of core damage pretty close, say a factor
24	two or three on the total core damage frequency.
25	We think if we get that close and most

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	of the top 10 or 20 dominant contributors are in
2	there, we're happy because we're going to work with
3	this on a case-by-case basis if it's a special issue
4	or an accident sequence precursor.
5	MEMBER ROSEN: You mean close to the
6	plant CDF?
7	MR. BARANOWSKY: Right. Or, as a
8	minimum if we don't get it that close, we're going
9	to say it's not there because we don't believe the
10	plant CDF. That's a possibility, too. I might as
11	well be fair about it.
12	In this case we had to understand
13	differences that took us into the second and third
14	decimal place because we are measuring delta CDF
15	impacts on the order of 10 to the -6 or less and the
16	total CDF at the plant is about five times 10 to the
17	minus five. That's a pretty important thing to keep
18	in mind.
19	We've got uncertainty on these core
20	damage frequency estimates that might be a factor of
21	three to 10 on the first significant figure. We're
22	going now into the second and maybe third
23	significant figure. That's a pretty significant
24	calculational activity.
25	Here are the set of key technical issues

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	that I was mentioning and Don's going to go over
2	them. I think I'll just leave this with you and
3	turn it over at this point to Don unless there are
4	other questions, or would someone like to talk about
5	implementation before we move into the issues?
6	Other implementation factors.
7	MR. SATORIUS: Mark Satorius from the
8	Inspection Program Branch, NRR. Now or maybe after
9	you touch on the key technical issues. One thing I
10	just wanted to say is we have a process that we go
11	through when we pilot these new performance
12	indicators or any part of the ROP.
13	We went through that same process, you
14	may recall, when we looked at SCRAMS. We would
15	count manual SCRAMS or not count manual SCRAMS back
16	in the beginning of the ROP. That process is in
17	inspection manual chapter 608.
18	Notwithstanding the technical issues
19	which Don is going to go over right now, there are
20	what I call nontechnical or program type issues or
21	success criteria. These are the things like having
22	the ability to have license report to requested data
23	without problems, whether the new PI will continue
24	to maintain safety and meet some of the other
25	criteria that the ROP has in front of us.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	We are still analyzing those
2	nontechnical aspects of the success criteria and
3	notwithstanding all the good work that research has
4	been doing on the technical issues we are still
5	looking at those nontechnical issues.
6	MEMBER ROSEN: Before you get to the
7	next slide, the last bullet on your prior slide on
8	the status of the pilot programs implies that having
9	made a major effort to reconcile differences with
10	the pilots, that you will have a similar major
11	effort with all the other plants left. Is that not
12	true?
13	MR. BARANOWSKY: We don't necessarily
14	plan on having every single model capable to this
15	degree unless there is some issue that causes us to
16	believe we have to. We are looking at a scheme in
17	which we use the SPAR models as a audit tool.
18	Based on our understanding of the normal
19	SPAR model, QA process, and differences that are
20	identified during that versus this much more
21	enhanced activity, we can determine where we think
22	we would like to spend the effort to bring SPAR
23	models up to this level and then do an audit of
24	licensee calculations.
25	Ultimately we might get there for all

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

34
the plants, and actually I believe we have that
budgeted but it doesn't necessarily need to be done
immediately.
MR. DUBE: This is a different level
than in the i, 3.0(i)?
MR. BARANOWSKY: Yeah.
MR. DUBE: This is a notch up from that?
MR. BARANOWSKY: Yeah.
MEMBER ROSEN: Definitely.
MR. BARANOWSKY: It's enhanced models.
It includes additional detail on support systems,
recovery actions, and other things that were found
to be important.
MEMBER ROSEN: But all plants will use
the new indicator if we go to a new indicator. All
plants will be using their PRAs to give you the data
to be manipulated to find the importance measures.
You'll be taking if you don't do this
level of effort on all the other plants, those that
were not in the pilot, then to a degree you will be
relying on those licensee models more than you did
rely entirely on the pilot plant's models. Right?
MR. BARANOWSKY: That's true but, at the
same time, we are identifying insights that we have
obtained from both the normal SPAR QA work and this

(202) 234-4433

35
enhanced activity which we will take a look at and
determine if that needs to be fed into this process
such that the models have some level of consistency
in that regard.
A couple of issues that Don is going to
cover like support system initiators and things like
that. Those came out of our reviews and we have
different ways of dealing with that if they are not,
for instance, included in the PRA that a licensee
has.
MEMBER SHACK: Can you identify in the
licensee PRA elements that must be of a certain NEI
quality standard that you would feel comfortable
with, the results from them?
MR. BARANOWSKY: I think we've got sort
of a list of things, a tentative list that we put
together already. We need to look at it and we need
to ask ourselves what do we gain by spending effort
making anybody do these things? Is it the third
significant figure? Does that change what the
outcome would be in using this PI because there are
several aspects about the way we have looked at the
so-called invalid and oh, what was the other
indicator?
MR. DUBE: Insensitive.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	36
1	MR. BARANOWSKY: Insensitive indicators
2	which make some of this a little bit moot, actually,
3	which is good. It doesn't have to be so twitchy, so
4	to speak.
5	MEMBER SIEBER: This is also in terms of
6	delta CDF so you could have some fundamental error
7	and still have the delta come out of it.
8	MR. BARANOWSKY: Well, I'm not sure
9	about that. I'll be honest with you, I think we
10	learned that when you're working with delta CDFs of
11	10 to the -6 or smaller, it doesn't take much to get
12	factors of two differences. If you've got eight
13	times 10 to the minus seven here and 1.6 times 10 to
14	the -6 there, there is not a lot of difference that
15	gets you that.
16	That's a small delta CDF. Yet, that's
17	the level at which 174 is being applied. It's a
18	level above where risk informed tech specs are being
19	applied. They are even going down into the 10 to
20	the minus seven range. So whatever we've learned
21	here certainly has some implications for other
22	applications.
23	Nonetheless, I think we can identify how
24	we can address concerns about how accurate one needs
25	to be rather than calling it quality. Quality

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

37
sometimes means documentation and does it look right
and everything. For our purposes we just want to
calculate things consistently, sort of robustly if
you will.
MEMBER LEITCH: When the twenty plants
in the pilot were selected, was the intention to
cover the gamut of designs from very robust to
MR. BARANOWSKY: That wasn't the
intention. I don't know that we exactly did.
MEMBER LEITCH: Volunteers.
MR. BARANOWSKY: Will volunteers that
cover the gamut step forward. They did all right.
MR. DUBE: And we have a mixture of
Westinghouse low combustion engineering and
preboiling water reactors. No BMWs but it's a
reasonably representative of old and new plants.
MEMBER LEITCH: I was not thinking so
much about the reactor manufacturers as diesel
configurations.
MR. DUBE: Oh, we have from two diesels
to four diesels, for example. From two aux feed
pumps to four aux feed pumps.
MEMBER LEITCH: I guess another
questions that comes into my mind is that it's plant
specific indicator but is the green and white

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	thresholds plant specific or is that one number?
2	MR. BARANOWSKY: That's actually a
3	program threshold. How you calculate your plant's
4	performance is plant specific. Everybody has to do
5	55 miles an hour or less but how you accelerate and
6	break and whatever to do that, that's going to be a
7	little different.
8	MEMBER LEITCH: So a plant with, let's
9	say, more robust safety systems could be less
10	conservative in the way he manages those safety
11	systems and cannot cross the threshold.
12	MR. DUBE: It could tolerate more
13	failures and more unavailability all other things
14	being equal.
15	MR. BARANOWSKY: But we moved away from
16	using a purely risk benchmark to a performance
17	benchmark which doesn't allow such a wide spread.
18	It allows some spread. It gives some credit. I
19	think from what I'm hearing feedback wise it's about
20	the right amount. That's a judgment call.
21	MEMBER LEITCH: One thing I was curious
22	about and I kind of got lost a little bit in the
23	White Paper was the merger of unavailability and
24	unreliability because they say things are very much
25	inter-related.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	In other words, if one tries to drive
2	the unavailability to zero, you could, and likely
3	would, raise the unreliability. If you don't take
4	the outages to do your preventive maintenance, your
5	unreliabilities kind of go up.
6	There's an inter-relationship between
7	these two numbers. I'm just wondering how this
8	indicator deals with that. I tried to figure my way
9	through the math so I understand the inter-
10	relationship but I couldn't quite see how that
11	factored in here.
12	MR. DUBE: I can handle that. I think
13	one of the reasons why this is an improvement is
14	because the current indicator deals only with
15	unavailability. You can find situations and
16	industry representatives who will admit that they
17	will manage to the indicator.
18	If there is a threshold here and their
19	unavailability is going up, they will manage the
20	indicator and perhaps in the long run to the
21	detriment of reliability. Why I think this is an
22	improvement it properly balances unavailability and
23	unreliability so that in theory once you find that
24	optimum, hopefully it's a broad optimum where the
25	right preventive maintenance will give you an

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	optimum.
2	I won't say zero but optimum
3	unreliability and that's what the theory always
4	tells you. And it weights unavailability and
5	unreliability by the importance measures. Vessel
6	over UR which is kind of like a risk achievement
7	minus one but it's an importance measure. It
8	appropriately weights unavailability and
9	unreliability in the appropriate amount and that's
10	why I don't believe it is an improvement in that
11	sense.
12	You are exactly right. In theory, if
13	you're doing the right maintenance the sum of
14	unavailability contribution to CDF and unreliability
15	contribution to CDF should be a minimum if you're
16	doing it just right.
17	MR. BARANOWSKY: I think the maintenance
18	rule also pushes one in the direction of balancing
19	unavailability and unreliability so that was another
20	area where we were trying to be consistent. We
21	could have taken these separately which is, by the
22	way, what we did with the risk based performance
23	indicators when we had a lot more indicators.
24	That becomes problematic with lots of
25	indicators and not doing this tradeoff in one

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	program in NRC whereas another one allows the
2	tradeoff and you get inconsistencies and all of a
3	sudden you've got two different requirements and
4	it's not working.
5	MEMBER APOSTOLAKIS: Is unavailability
6	still defined in terms of maintenance?
7	Unavailability is the ratio or what?
8	MR. DUBE: Yes. Planned maintenance and
9	unplanned maintenance. There should also be some
10	contribution picked up. If there is a failure and
11	is corrected that should find its way in, too.
12	MEMBER APOSTOLAKIS: But isn't that
13	failure part of the evaluation? That's how you find
14	it?
15	MR. BARANOWSKY: No. That failure goes
16	into the unreliability, but what he means is if you
17	take a component down to perform corrective
18	maintenance, then that goes into unavailability.
19	The so-called fault exposure time is captured by the
20	unreliability term. There's no fault exposure time.
21	MEMBER APOSTOLAKIS: There is a fault.
22	They say you have to start. That goes to the
23	unreliability. So what is it that goes to the
24	unreliability?
25	MR. DUBE: If it was down three days for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	repair so that's an unplanned maintenance, that
2	would find its way in the unavailability.
3	MEMBER APOSTOLAKIS: Oh, okay. I see
4	now. So the unreliability contribution then is just
5	modified and there's no time.
6	MR. BARANOWSKY: Right. Failures per
7	demand.
8	MEMBER ROSEN: And there's no assumption
9	about how long it was unreliable prior to being
10	discovered.
11	MR. BARANOWSKY: No, but it has to be
12	failure that is detectable by the routine testing.
13	You can't have something that was so unique that
14	they went and did special test time and we've seen
15	this. That's like an accident sequence. That gets
16	special treatment.
17	MEMBER ROSEN: And that's what Graham
18	referred to earlier was the point situation. That
19	would be handled by the SDP, right?
20	MR. BARANOWSKY: Exactly.
21	MR. DUBE: The design deficiency of that
22	nature.
23	MEMBER APOSTOLAKIS: So if you find a
24	phase to start on the 1st of February, you're not
25	going to speculate how long it will be?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	MR. DUBE: Exactly. That's correct.
2	MR. BARANOWSKY: We're just going to
3	count up the number of demands over the period which
4	we are measuring and the number of failures and we
5	are going to do a calculation. Just the usual type
6	of PRA type calculation.
7	MEMBER SIEBER: That's unreliable.
8	MR. BARANOWSKY: It's demand
9	reliability.
10	MEMBER SIEBER: Yes, it's demand.
11	MEMBER APOSTOLAKIS: And then, of
12	course, you have a separate reservation and you
13	start to phrase for 45 minutes.
14	MR. BARANOWSKY: That's the usual run
15	for reliability.
16	MEMBER APOSTOLAKIS: So why did you
17	decide not to speculate on how long it had been
18	down? Isn't the average time usually one half?
19	MR. BARANOWSKY: That works if you have
20	a long period for which you are going to collect
21	data for that so-called speculative unavailability.
22	For very short periods of time it gives you spikes
23	and nothing. Spikes and nothing. What we are
24	trying to do is over a period of three years taking
25	demands and failures.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	You also can't update that one, or at
2	least we don't know how very well, using Bayesian
3	statistics. It's consistent with the way we do
4	PRAs. It's consistent with the way people do
5	maintenance rule. That's the reason it shows it.
6	MEMBER APOSTOLAKIS: In a PRA if you
7	have the other test, you are averaging over time.
8	MR. DUBE: Right.
9	MEMBER APOSTOLAKIS: For a single
10	component if there is a failure it's not very large
11	which is usually the amount. The average
12	unavailability over that period is one half. That
13	means this is the average probability. The average
14	fraction of time or the interval is down.
15	MR. BARANOWSKY: Yeah.
16	MEMBER APOSTOLAKIS: Now you're finding
17	your failure on the test and you decide not to go
18	that way but you're saying this is not a demand
19	unavailability or failure.
20	MR. BARANOWSKY: I think maybe I can
21	explain it. That's the constant failure rate
22	assumption. As you ingrate over time T goes to
23	infinity the probability of failure on demand equals
24	exactly one half lambda for the constant failure
25	assumption. So they are the same exact values.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	When you get into trouble is when you do it over
2	short periods of time. Then your statistics get out
3	of whack.
4	MR. DUBE: That's why we use a free year
5	interval, too, to average things out.
6	MEMBER APOSTOLAKIS: That's another
7	thing. Why do you use the years? Can you use the
8	years? Is this going to be used by the ROP?
9	MR. BARANOWSKY: Yes.
10	MEMBER APOSTOLAKIS: And the ROP doesn't
11	go by date.
12	MR. BARANOWSKY: It's a rolling three-
13	year indicator. Rolling three years.
14	MEMBER APOSTOLAKIS: I thought it was
15	three-quarters.
16	MR. BARANOWSKY: No. That would be
17	the statistics would be so poor for three-quarters
18	you couldn't really use these kinds of performance
19	indicators. It's not clear that you would be
20	chasing noise or real performance changes if you
21	look at things over quarters.
22	MR. DUBE: There was a study of the risk
23	based, NUREG 17 I believe it is, where we looked at
24	varying intervals. That's a whole separate report
25	but it was found that three years was about as

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	optimum as what it could get. Too little and it's
2	too sensitive. Any more and you're not really
3	seeing the trend. Three years seemed all right.
4	MR. BARANOWSKY: That just happens to be
5	the interval that is currently used with the
б	performance indicators.
7	MR. DUBE: Well, on to the key technical
8	issues. I' Donald Dube. I came to the Commission
9	in October and pretty much took over for Hussain
10	Hamzehee so you've got a new face here.
11	When I took it over I thought this is
12	going to be pretty easy, but it didn't take too
13	long, two months into the project, to realize there
14	were a number of key technical issues.
15	Certainly during the pilot program or
16	workshop in January a large number of technical
17	issues, as well as some implementation issues, came
18	to the surface. I'm going to touch upon a lot of
19	the major issues that came about over the next few
20	hours or so.
21	I do want to say that there is no way I
22	could have come on board in such a short time and
23	tackled these issues without the assistance of the
24	primary contractors, ISL and Idaho, and also Corey
25	Atwood. I want to give them acknowledgement.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

47 1 MEMBER APOSTOLAKIS: You just left me 2 out. 3 MR. BARANOWSKY: So is that an 4 endorsement? 5 MEMBER APOSTOLAKIS: Maybe in the future when you send those reports you can identify those 6 7 because I had no idea. 8 MS. WESTON: Right. I've listed them here on the 9 MR. DUBE: Independent verification. One of the 10 overview. 11 first things we found were the significant 12 differences between the SPAR model and the plant PRA. Pat Baranowsky mentioned this earlier. 13 14 We thought when we were going into this 15 that the importance measures, let's say for a particular component, might vary from the SPAR model 16 17 to the plant PRA, let's say, for a diesel generator by maybe tens of percent or 50 percent or maybe a 18 factor of two kinds of numbers. 19 Lo and behold we found significant 20 21 differences. In many cases one order of magnitude 22 difference and in other cases two orders of 23 magnitude difference. It really begged a lot of 24 questions. As we were doing this and they started 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	rolling in we asked ourselves what is going on here
2	and what are the differences. We undertook a major
3	effort to reconcile the differences and I'll be
4	talking about that. A lot of it had to do with the
5	fact that the SPAR's original intent, the S stands
6	for standardized. One started by having more or
7	less a template for different series or classes of
8	plants.
9	As years have gone by they have become
10	somewhat more customized. But there were still
11	significant differences specifically in many of the
12	balance of plant systems and the cooling water
13	support systems such as service water and cooling
14	water we later found out.
15	So in parallel I will be addressing a
16	lot of these other technical issues. A major effort
17	was undertaken at Idaho to understand these
18	differences and explain them. I'll show some
19	examples.
20	We also early on had come to an issue
21	that we called an invalid indicator. What that
22	basically means is that if one component failure
23	resulted in the system indication turning to white,
24	one failure does not make a trend.
25	While one failure may result in

(202) 234-4433

	49
1	exceeding delta CDF of 10 to the -6 on paper, does
2	that necessarily mean that performance is degraded
3	to the point that an indication should be actually
4	white? It has come to be called invalid indicator.
5	It has certain connotations so it's really a bad
6	name for it by definition but it's come to be kind
7	of associated with that.
8	MEMBER APOSTOLAKIS: So the first would
9	be green, white, and green is still CDF based?
10	MR. BARANOWSKY: It's changing to
11	performance based.
12	MEMBER APOSTOLAKIS: It was always
13	performance based.
14	MR. BARANOWSKY: We were delta CDF based
15	the last time we talked. Now we are changing back
16	to performance based.
17	MEMBER APOSTOLAKIS: Just green?
18	MR. DUBE: It's a mixture.
19	MR. BARANOWSKY: Green and white.
20	MR. DUBE: No, it's for other, too.
21	MR. BARANOWSKY: It's for cases where we
22	have to deal with these invalid and then insensitive
23	indicators. I would just like to add one more thing
24	about the invalid indicator.
25	The reason why we called it invalid, I

(202) 234-4433

	50
1	think, was because we are collecting data over such
2	a short period of time that the number of demands
3	that one can get are too small to get a good
4	statistical indication of what the demand failure
5	rate is. One could get false/positive indications
6	very easily and you need more information if you are
7	dealing with that period of time.
8	MR. DUBE: So what we're saying then is
9	the process is implemented then and runs along for
10	years those invalid indicators would be washed out.
11	They would not
12	MR. BARANOWSKY: We have a different way
13	of treating them.
14	MEMBER LEITCH: If you're looking at
15	three-month quarterly interval when you do a test
16	once and it fails, is that an example of the kind of
17	thing that would be an invalid indicator?
18	MR. DUBE: No. An invalid indicator
19	would be an example where if there were no failures
20	and the indicator was less than 10 to the -6 or
21	green, one should not have a situation where just
22	one failure of a particular component would turn it
23	white above 10 to the -6. In that circumstance we
24	are going to have an alternate formulation that will
25	not call that white.

(202) 234-4433

	51
1	MEMBER APOSTOLAKIS: I don't know about
2	that. If it's 10 to the -6 and you've got one
3	component, that is pretty significant. If you
4	expect it is 10 to the -6 and you get one, yeah, you
5	should worry.
6	MR. BARANOWSKY: Suppose you do this?
7	You look at data over a 10-year period of time and
8	you have one failure. Take a look at five. You
9	still have one failure. Then you look at three,
10	then you look at two, then you look at one. Well, I
11	take that same exact data and when I look at 10
12	years it's not risk significant. When I decided to
13	make the one-year look, it was down in risk
14	contributor. What does that mean?
15	MEMBER APOSTOLAKIS: But you have
16	already decided to go back to years. What was the
17	rationale?
18	MR. BARANOWSKY: Going to three years
19	was we got enough data so we didn't have that kind
20	of situation occurring. In the meantime between
21	failures was such that we could collect several.
22	MEMBER APOSTOLAKIS: I'm curious.
23	You're still keeping the white, yellow, yellow, red
24	based on delta CDF?
25	MR. DUBE: Right. Ten to the -6, 10 to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	-5, and 10 to -4.
2	MEMBER APOSTOLAKIS: You know this
3	Committee has criticized that.
4	MR. DUBE: Doesn't like it.
5	MR. BARANOWSKY: We're also looking at -
6	_
7	MEMBER APOSTOLAKIS: Performance guys,
8	why didn't you ask the experts in the field to tell
9	you what the yellow should be? There are so many
10	people who have long experience. Two of them are
11	here. When would you worry?
12	MR. BARANOWSKY: The fact of the matter
13	is once you get into the white zone you address the
14	issue.
15	MEMBER APOSTOLAKIS: Exactly. That's
16	actually true.
17	MR. DUBE: Well, that's a good point
18	but, in essence
19	MEMBER APOSTOLAKIS: There are four, not
20	two.
21	MR. DUBE: The best way to address the
22	plant specific variations is why using some constant
23	measure like a 10 to the -6 threshold and let the
24	plant PRA manifest itself through the importance
25	measures and the performance data into how many

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	failures does that equate to to turn white or yellow
2	or red as opposed to just picking some numbers out
3	of the air that may be a one size fits all. Well,
4	we can talk about it.
5	The third issue is the large number of
6	failures to turn the system to white which is called

something has a relatively high risk achievement or 8 importance measure, it may take one failure to 9 exceed the delta CDF of 10 to the -6. 10

In the sense that if

an insensitive indicator.

11 At the other end there may be certain components that have such low contribution to CDF, 12 13 have low importance measures that it may take 14 theoretically a large number of failures before it 15 When I say large, I'm talking many, turns to white. many dozens, for example. That's not indicative of 16 17 a good measure.

18 MEMBER APOSTOLAKIS: But you said white is performance based so it shouldn't take that many. 19 Only when you have delta CDF phase thresholds you 20 21 get that problem. Because if the expert tells you yeah, it's not very significant but if it should go 22 23 about two failures over a certain period of time, I 24 would worry.

If it should go from white to yellow,

WASHINGTON, D.C. 20005-3701

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

25

11

7

	54
1	then your argument is valid because now it's rigid
2	calculation. That's the advantage of using expert
3	opinion. Anyway, isn't this the issue, though?
4	Both of these colors are statistically minded.
5	If it has its own process and I want to
6	establish a quality control program, isn't it the
7	issue of what is the number of failures that I
8	should worry about and if I see more, I have a
9	problem? That's really the issue we're facing here.
10	The peculiarities of the rate is so low.
11	Corey, you want to say something?
12	MR. ATWOOD: Corey Atwood, Scott Wood
13	Consulting. White was based on delta CDF.
14	MEMBER APOSTOLAKIS: I understand that.
15	MR. ATWOOD: But if you're concerned in
16	performance, then you would say how many do we
17	expect, how many do we really not expect.
18	MEMBER APOSTOLAKIS: Forget about the
19	practice of the NRC. You want to establish a
20	quality control program for its own process. I
21	mean, the first quantity you're looking at is
22	lambda, the average number you expect to see over a
23	period of observation. What makes this complicated
24	is that lambda is very low so you are trying to make
25	it reasonable by going to three years.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 In other cases it's going to be 2 unreasonable. So I think fundamentally that's widdle 3 we're facing. It was a side remarks. There was 4 question. There was no praise either. There shows 5 be, though. 6 MR. DUBE: Okay. Well, I appreciate 7 that. I stepped into the program here and we were 8 developing a risk-based performance indicator and	nat no buld re ł
 2 unreasonable. So I think fundamentally that's will 3 we're facing. It was a side remarks. There was 4 question. There was no praise either. There sho 5 be, though. 6 MR. DUBE: Okay. Well, I appreciate 7 that. I stepped into the program here and we weither 8 developing a risk-based performance indicator and 9 that I begingelly what it is There are no here 	nat no ould re ł
3 we're facing. It was a side remarks. There was 4 question. There was no praise either. There sho 5 be, though. 6 MR. DUBE: Okay. Well, I appreciate 7 that. I stepped into the program here and we we 8 developing a risk-based performance indicator and 9 that is basigelly what it is	no buld re ł
 question. There was no praise either. There sho be, though. MR. DUBE: Okay. Well, I appreciate that. I stepped into the program here and we weed developing a risk-based performance indicator and 	re d ze
5 be, though. 6 MR. DUBE: Okay. Well, I appreciate 7 that. I stepped into the program here and we were 8 developing a risk-based performance indicator and 9 that is basically what it is There are not here	re 1 7e
6 MR. DUBE: Okay. Well, I appreciate 7 that. I stepped into the program here and we we 8 developing a risk-based performance indicator and 9	re 1 7e
7 that. I stepped into the program here and we we 8 developing a risk-based performance indicator and 9 that is basically what it is There are not here	re 1 ve
8 developing a risk-based performance indicator and	d ve
0 that is beginned by what it is There are here	ve
y chat's pasically what it is. There are we have	
10 as a result of bullets No. 2 and 3 realized that	
11 relying on a strict algorithm that estimates the	
12 delta CDF and translates into number of failures	•
13 Ruling on that can result in kind of	
14 ridiculously low numbers. On the one hand we cal	11
15 that invalid and ridiculously high. On the other	r
16 end we call that insensitive. We will be propose	ing
17 are proposing limits on both ends to avoid the	at
18 situation. It will be fundamentally risk-based 1	out
19 with performance based limits at the upper end as	nd
20 the lower end to an event.	
21 MEMBER APOSTOLAKIS: Ultimately all o	of
22 the thresholds will be performance based, right?	
23 It's about four or five years.	
24 MR. DUBE: Yeah, four or five years.	
25 MEMBER LEITCH: Do both of these	

(202) 234-4433

NEAL R. GROSS

	56
1	programs greatly impact at the present? In other
2	words, once the program runs for the full three
3	years, will be issues disappear?
4	MR. DUBE: No. I mean we will resolve
5	these issues but the fundamental reason of why one
б	failure might result in delta CDF more than 10 to
7	the -6 is because it's a finite time frame of three
8	years.
9	Certain components like a steam driven
10	or steam pump have such a high importance measure,
11	risk achievement where all it takes is one failure
12	to give you a delta CDF in that three-year time
13	frame or the 10 to the -6. Averaged over many years
14	it's probably a wash because it's a fundamental
15	issue that 10 to the -6 is kind of a low threshold.
16	It's a very sensitive threshold.
17	ACTING CHAIRMAN BONACA: You said you
18	will propose leads so you have to have some criteria
19	on what is reasonable.
20	MR. DUBE: And I'll talk a little bit
21	about that. The fourth one is identification of
22	system boundaries. This is more of a mechanistic
23	thing having to do with bookkeeping and realizing,
24	for example, that if there's a service water system
25	providing cooling for a diesel generator and there's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

57
a valve and that valve's function is only to isolate
or open flow to the diesel generator, then the way
we are considering it is that valve is part of the
diesel generator boundary as we define it because it
only serves the function to that diesel generator
and not as part of the service water.
I bring that up because there were a
number of issues along these lines as the pilot
program and a lot more issues than we thought. I'll
show you how we addressed those.
Data collection burden. Many licensees
did say that at the time it has been a burden to
collect this data. Certainly the first time and
there is a lot of data collection that has to be
done up front because we are going back three years
of historical performance data, demands and failures
so there is quite a bit of effort there.
Then to some extent maintaining it but I
will address how we are planning to integrate this
with INPO, WANO, consolidated data entry system so
that it would minimize that burden we think.
MEMBER APOSTOLAKIS: There will be
additional burden in the issue of SPAR versus plant
specific model, right? Even though the plant works
with you and makes sure that these discrepancies are

(202) 234-4433

58 1 resolved. At some point an indicator like this will 2 require every licensee. That's a good point. 3 MR. DUBE: We have 4 said going into the program for the purpose of this 5 pilot that we don't expect any of the pilot plans to make any changes to their PRA. It's a voluntary 6 7 process. We just want to exercise the method, collect the data, and see how it turns out. 8 9 But as part of the SPAR enhancement process and reconciliation, if there are significant 10 11 differences between the plant PRA and the SPAR 12 model, and we truly believe that the SPAR model is correct and the plant PRA model has an absolute 13 14 error, it is expected that error has to be corrected 15 or certainly addressed in one way, shape, or form or 16 another. 17 ACTING CHAIRMAN BONACA: But you found many instances where, in fact, the plant specific 18 19 model had an error? 20 MR. DUBE: A number. Not a lot. Т 21 would say not a lot. A few, and these were the 22 region inspectors that found these in the process. 23 ACTING CHAIRMAN BONACA: I'm surprised. 24 That's an interesting thing because the assumption 25 is always the problem is going to be with SPAR and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	you're telling me that instead you found PRAs out
2	there with the errors.
3	MR. DUBE: In some cases there were
4	omissions. A particular valve that is needed for
5	recirculation flow of a pump was not modeled.
6	Things along those lines.
7	MR. BARANOWSKY: How about that Point
8	Beach PRA? That didn't have anything about the
9	requirement of instrument error to make the
10	auxiliary feed water pumps work. That's the kind of
11	thing we're talking about.
12	MR. DUBE: I think when I get to the
13	next couple slides you'll have some eye openers.
14	MEMBER APOSTOLAKIS: Judging from the
15	examples that Don and Pat gave us, that was the
16	motivation for asking in the last letter that people
17	look at the operating experience much more carefully
18	because I'm not sure that the word error would apply
19	if somebody didn't analyze a particular failure
20	mode. Unless everybody else in the world is doing
21	it and it's a well-known fact, why would you call
22	that an error? The way you learn is by looking at
23	operating experience. I mean, I would, and that was
24	the motivation.
25	MR. BARANOWSKY: Well, the second way,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	and maybe Tom can comment on this, was I think we
2	all learned a lot when we tried to compare the two
3	PRAs, the SPAR model versus the licensee's model.
4	The bulk of the times we had to change the SPAR
5	models. We have to fair about the situation.
6	MEMBER ROSEN: Well, that's what I would
7	expect. You would expect to have to change the SPAR
8	model because of the PRA. Site specific PRA is more
9	detailed and, in fact, says that SPAR model gives
10	you an answer that is not conservative. The case
11	that Mario raises is the one that is more
12	troublesome and more surprising.
13	MR. DUBE: I can count on one hand those
14	number of examples, but there were a number. As I
15	said, it went both ways. If SPAR was out of sync
16	with the plant PRA, they most likely would have been
17	issued of not modeling cross connections between
18	unit one and unit two or from train one to train two
19	or some kind of things like that. It's pretty much
20	not part of the standard.
21	MEMBER ROSEN: But they, in fact, affect
22	a plant specific PRA in a very substantive way.
23	MR. DUBE: Oh, yes. Definitely.
24	MR. BARANOWSKY: Usually though only a
25	factor of two or three on the total core damage

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	frequency.
2	MEMBER ROSEN: Only.
3	MR. BARANOWSKY: Well, I say only
4	because let's be honest about what the uncertainty
5	is in these calculations.
6	MEMBER ROSEN: Ah, yes. When you
7	reflect it against uncertainty, I agree.
8	MR. BARANOWSKY: That's the big, big
9	errors. Most of the changes we saw weren't even
10	touching the first significant figure but they do
11	impact the Fussell-Vesely importance measures. If
12	you want to get the pecking order right, let's say
13	right is the correct term. What is the most
14	important thing and work your way down. Then you
15	have to go beyond the first significant figure.
16	MR. DUBE: Okay. The next two issues
17	I'll get into more detail but it basically relates
18	to how does one treat the common cause failure
19	contribution to Fussell-Vesely. That has to do with
20	the fact that many models, plant PRAs, take into
21	account the fact that if the independent failure
22	rate or single failure rate changes, then there is
23	some connection and some coupling to the common
24	cause failure rate. We need to address that and I
25	will talk a little bit about that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	Another item is support system
2	contribution to Fussell-Vesely in that we are
3	dealing with mitigating systems such as service
4	water and component cooling water which are often
5	sometimes called support systems. But those support
б	systems can also be initiated as loss of service
7	water, loss of component cooling water.
8	A particular component that is an
9	initiator will have a Fussell-Vesely associated with
10	that initiator. Many PRAs use a single point, a
11	point estimate for the initiating event frequency so
12	it will get properly captured for a particular
13	support system. We propose a
14	MEMBER APOSTOLAKIS: It's described in
15	terms of frequency, right? It's a support system,
16	it's unavailability and unreliability.
17	MR. DUBE: Yeah, but it would have also
18	Fussell-Vesely associated with it, particularly like
19	a service water pump is part of the loss of service
20	water initiator there would be a contribution on the
21	pump to the loss of service water frequency.
22	MEMBER APOSTOLAKIS: A different
23	quantity.
24	MR. DUBE: Correct.
25	MEMBER APOSTOLAKIS: Are you going to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	come to that?
2	MR. DUBE: Yes.
3	MEMBER APOSTOLAKIS: I noticed you are
4	avoiding RAW. Will you explain to the subcommittee
5	why? I couldn't find it anywhere.
6	MR. DUBE: Well, because the formulation
7	is delta CDF as opposed to RAW is given a base what
8	is the factor by which a CDF increases so we use
9	Fussell-Vesely over UR and that's approximately the
10	risk achievement -1.
11	MEMBER APOSTOLAKIS: Why do you bring
12	into this the burn bomb? Are you going to talk
13	about these things? The burn bomb measure is
14	described but why I couldn't figure out.
15	MR. DUBE: Sometimes it's more
16	convenient to use burn bomb.
17	MEMBER APOSTOLAKIS: But what are these
18	times? Are you ever using it? More convenient on
19	Fussell-Vesely?
20	MR. BARANOWSKY: I think it's the way
21	that things were originally thought out was in terms
22	of burn bomb importance measure being the
23	proportionality constant, if you will.
24	MEMBER APOSTOLAKIS: Yeah, but it wasn't
25	clear why it was discussed in the report.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

64
MR. BARANOWSKY: The reason we went to
Fussell-Vesely, this happened before Don was on
board, was because everyone calculates Fussell-
Vesely importance measures and not everyone
calculates burn bomb importance measures. We just
said, well, let's take this burn bomb and burn it
into a Fussell-Vesely divided by a parameter. It's
the same thing. It's all proportionality.
MEMBER APOSTOLAKIS: I think the fact
that everybody calculate Fussell-Vesely and RAW
becomes the driving force behind the analysis and I
don't like that. The convenience of getting these
things is making us do mental acrobatics to justify
what we get and treat everything to Fussell-Vesely
and RAW.
MR. DUBE: Yeah. One could very well
use burn bomb and maybe we should have started with
burn bomb.
MEMBER APOSTOLAKIS: Yeah, but I mean
more for analytical convenience but, for heavens
sake, it shouldn't really drive what you do.
MR. BARANOWSKY: It really isn't driving
anything. I mean
MEMBER APOSTOLAKIS: You dare tell the
world that you don't like Fussell-Vesely, you see,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	because everybody gets it from the quotes.
2	MR. BARANOWSKY: We chose it because
3	it's not going to make any difference whether we use
4	burn bomb or Fussell-Vesely divided by
5	unreliability. We're going to get the same exact
6	values. Since everybody has it, it's a burden
7	issue. If it was going to affect the way we did the
8	calculation, then we would have said something about
9	it but it's really not going to change the
10	calculation and the burden.
11	MR. DUBE: Okay. I mentioned support
12	system contribution and then touched upon a
13	relationship of SDP and PI and we'll talk about that
14	again a little bit later.
15	MEMBER ROSEN: Are you going to go
16	through each one of those things? Why don't we just
17	summarize it. We ought to speed it up is what I'm
18	trying to say.
19	ACTING CHAIRMAN BONACA: I think we're
20	getting some good results.
21	MR. DUBE: Okay. Let me talk about the
22	independent verification. The original intent was
23	to replicate the MSPI submittals from the licensee
24	using the SPAR model. I mentioned before we
25	expected them to be in pretty good agreement but in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	many cases we found significant differences in the
2	importance measures, Fussell-Vesely over UR.
3	Just because there is high-level
4	agreement doesn't mean that 10 to the -6 and lower
5	level there is agreement. In many cases the
б	importance measures weren't just off by factors of
7	two and three but by one to two orders of magnitude,
8	especially cooling water support systems.
9	We had to reconcile the differences at
10	the lower level. We had to go one level deeper in
11	this SPAR model, we're calling it the SPAR
12	enhancement, and either change the SPAR or recommend
13	to the plant the PRA change was justified or both in
14	some instances. We undertook this effort to do it
15	for 11 distinct SPAR models for 20 nuclear units.
16	Let me give you an example for
17	Bravewood. The PRA internal events CDF is 3 E to -5
18	per year. The SPAR before looking at it was 7 5 E
19	to -5 per year. I'll skip the third yellow bullet
20	for now. On average the Fussell-Vesely over UR was
21	too low in the old SPAR model by about a factor of
22	10.
23	I mean, there was some factors of 30,
24	40, some factors of 2. Sometimes it would be close.
25	Far to great of a difference for this particular

(202) 234-4433

NEAL R. GROSS

67
application. I show you in this bottom table some
typical components, RHR pump, aux feed pump, diesel
generator, service water pump, volume control
isolation valve.
What this is is the Fussell-Vesely over
UR ratio. That is the fundamental importance
measure in the MSPI. It's the Fussell-Vesely
divided by the unreliability. The middle column is
the ratio of the ratio. It's the old SPAR model
Fussell-Vesely over UR ratio to the plant PRA ratio.
If the plant PRA and the old SPAR model
were in perfect agreement, these factors would all
be one, would be normalized to one. You can see
that they are pretty much all over the universe.
On average, geometric average if you
will, the old SPAR model was too low for a factor of
10 so if the purpose of trying to replicate the MSPI
results were to use the SPAR model and importance
measures, we are already far off to begin with so we
have to understand the differences.
At least understand the differences,
reconcile the differences, and then back off. An
effort was made to enhance I use the word
enhance. It modified the SPAR models for Bravewood
as well as all the other pilot plans to understand

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	the differences and change the model.
2	With the enhancements to the SPAR model
3	on average the agreement is within a factor of 2
4	high or low. That's the last column so the new SPAR
5	models for the plant PRA model. There's numbers
6	high and there's numbers lower than 1 but take a
7	geometric average it's within a factor of 2.
8	MEMBER APOSTOLAKIS: I'm confused. The
9	White Paper says on page 4 the MSPI is formulated as
10	the sum of changes related to unavailability and
11	unreliability so it's the sum of the change.
12	MR. DUBE: Right.
13	MEMBER APOSTOLAKIS: Why are you
14	focusing on Fussell-Vesely divided by unreliability?
15	MR. DUBE: Because in the formulation
16	the change in CDF is a factor of FV/UR. If that
17	factor doesn't agree between the plant PRA and SPAR
18	model, then everything else thereafter might as well
19	not even continue.
20	We're saying that importance measures,
21	which is a reflection of how much does this
22	particular component contribute to the overall core
23	damage frequency differed by factors of 10 and we're
24	biased low in the SPAR and that says how can we even
25	continue with the independent verification if we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	can't even understand where those differences are.
2	MEMBER APOSTOLAKIS: So what were you
3	verifying?
4	MR. BARANOWSKY: Verifying that we can
5	calculate basically the same MSPI value by paying a
6	little bit of attention to enhancing details of the
7	SPAR models so that we understand the accuracy of
8	the licensee's calculation.
9	MEMBER APOSTOLAKIS: So you are working
10	with the infrastructure.
11	MR. BARANOWSKY: Yes. Otherwise people
12	just calculate things.
13	MEMBER ROSEN: And they have to buy it.
14	MR. BARANOWSKY: That's it.
15	MEMBER ROSEN: This way the SPAR model
16	is tuned up, you could say, and you could go in and
17	independently judge what you get.
18	MR. DUBE: That's exactly right.
19	MR. BARANOWSKY: If you want a risk-
20	weight thing, you've got to be able to do this.
21	MEMBER ROSEN: You don't have to do this
22	every time and you wouldn't.
23	MR. DUBE: I mean, to me this is the
24	ultimate, quote, quality check, in that you are
25	taking one PRA with all its models and assumptions,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	and success criteria, and data, and bringing it to a
2	whole different PRA developed for a separate purpose
3	and separate applications, and trying to understand
4	the differences.
5	And changing the one, or in some cases,
6	the both, to get at least reasonable agreement
7	typically within a factor of two on importance
8	measures.
9	I don't think that we could ever do
10	better than a factor of two. In some cases we do
11	much better than a factor of two, and in some of the
12	other plants, we just can't come to two.
13	MEMBER ROSEN: Well, what do we get?
14	It's four. This is not about the search for
15	ultimate
16	MR. DUBE: No.
17	MEMBER ROSEN: This is about trying to
18	decide what to do in the action matrix based upon
19	inspection result in PRAs. So it has a very
20	pragmatic reason. So if it didn't have that
21	pragmatic reason, you might want to keep on working
22	it until you get near perfect agreement.
23	But that is not the objective and we are
24	only using a pragmatic reason to get into the action
25	matrix and get it right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	MEMBER APOSTOLAKIS: And the action
2	matrix already has intervals, and so the same
3	accuracy is not really
4	MR. DUBE: That's correct.
5	MEMBER LEITCH: I would like to think
6	there is a backfit issue here, and suppose you run
7	into a licensee who says that is my PRA and I am
8	sticking to it.
9	MR. DUBE: Well, for the purposes of the
10	pilot, I said that we were not going to make it, but
11	in my opinion if there is an outright error has
12	to be corrected, and if there is a difference of
13	opinion, then there needs to be some reconciliation.
14	For example, and I will bring this up.
15	I have a parentheses here, assume same success
16	criteria for PORV. This is important, and given
17	this assumption, that last column is what you
18	know, the comparison, and then the third yellow
19	bullet, used by Model 31E to the minus 5, is almost
20	in perfect agreement with the plant PRA.
21	But that is an important assumption, and
22	having supervised on one of my previous jobs about a
23	dozen feed and bleed calculations on a plant
24	specific basis, and realizing how sensitive the
25	results are in terms of timing of operator action,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	72
1	and the number of pressurizer pores, and the high
2	pressure injection pumps and so forth, the success
3	criteria is so sensitive to a number of assumptions
4	that it is important that we have those analyses
5	done with a high degree of accuracy.
6	The spy model right now has a success
7	criteria of 2 out of 2 porches. The Braywood plant
8	PRA is 1 out of 2 porches. Now, I an not saying
9	that it is not impossible to have (inaudible) one
10	out of two porch, but my own experience has been
11	that Westinghouse plants of this vintage and the
12	amounts that I am familiar with indicates that it
13	may be closer to two porch than one porch.
14	But to show you how sensitive these core
15	damage frequency results are to this one success
16	criteria, because it is a two ox feed water plant,
17	and a motor driven pump and a diesel driven pump, if
18	the success criteria was changed from 1 out of 2 to
19	2 out of 2, the core damage frequency goes up by a
20	factor of three.
21	And it is a most sensitive I won't
22	use the word assumption success criteria that I
23	have probably ever seen in my career. So it is
24	important to understand where these differences are
25	and reconcile them before moving on.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	And that is why there were examples not
2	as dramatic as this, but there have been a number of
3	them
4	MEMBER APOSTOLAKIS: Are you familiar
5	with any PRA or aware of any PRAs where this
6	uncertainty was explicitly stated?
7	MR. DUBE: Not in uncertainties.
8	MEMBER APOSTOLAKIS: Well, you are not
9	sure it is 2 out of 2 either.
10	MR. DUBE: Right.
11	MEMBER APOSTOLAKIS: Are you aware of
12	any PRAs that acknowledge this explicitly and do
13	something about it?
14	MR. DUBE: No.
15	MEMBER APOSTOLAKIS: It is a factor of
16	three, right?
17	MR. DUBE: Yes.
18	MEMBER APOSTOLAKIS: Okay. But you know
19	about PRAs, right?
20	MR. DUBE: My point is that it is an
21	open you know
22	MEMBER APOSTOLAKIS: I am just trying to
23	make a point.
24	MR. BARANOWSKY: I think the other thing
25	is that there were some issues raised, well, what if

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

74 1 these plants meet the ASME standard for quality or 2 whatever. 3 I don't know whether they meet it or 4 not, but we can come up with a list of things that 5 if you want to talk about payoff in terms of implications on the quantitative results, and the 6 7 pecking order of what is important, we pretty much 8 know what they are. You can go and talk about whether their 9 documentation is good, and if they have got all this 10 11 other stuff. If you want to get the so-called right 12 answer, these are the things that you are going to have to look at. 13 14 I think this is the heart if you will, 15 the kernel of PRA quality issues, and you pass down the quantification values, and the pecking order of 16 17 what is important. 18 MEMBER APOSTOLAKIS: When you say this, 19 what are you referring to? 20 MR. BARANOWSKY: The items that we are 21 able to find by doing this work. 22 MEMBER APOSTOLAKIS: Do you have a list 23 of those? 24 MR. BARANOWSKY: We have a tentative 25 list of those insights that we have gained by not

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	only looking at these 20 plants, but by doing a
2	little more simplified look at the other eight.
3	MEMBER APOSTOLAKIS: And you can give
4	that to the committee?
5	MR. BARANOWSKY: We are going to make
6	that available.
7	MEMBER APOSTOLAKIS: We appreciate it.
8	ACTING CHAIRMAN BONACA: For this kind
9	of work it is a fundamental level of the cooling,
10	and in almost every scenario and therefore you have
11	a measure mode of cooling with this kind of
12	sensitivity, and it is not recognized as a
13	sensitivity position, but yet in these other items,
14	it is not stated or documented.
15	But yet it is not surprising that you
16	would have a sensitivity to it, and whether or not
17	you need 1 or 2, you know, it is a key element.
18	MR. BARANOWSKY: And we don't propose
19	that this vehicle is the vehicle for going out and
20	ensuring some, quote, level of quality with licensee
21	PRAs. We are saying that we can provide insights.
22	Right now you are using PRAs to do all
23	kinds of other things. This is a voluntary program,
24	and we are just saying that these are the areas that
25	we have learned can have significant quantitative

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	differences.
2	ACTING CHAIRMAN BONACA: You see, it
3	opens up all kinds of questions and so let me ask it
4	this way. For example, are these (inaudible), and I
5	would say probably not.
6	So you have to assume that now how do
7	you decide that if you need 2 out of 2 that you
8	would be able to open both? How do you decide that
9	you will have all this success with 1 out of 2; and
10	you attempt to open both and you only open one?
11	I mean, you have so many issues that
12	drive the issue of sensitivity. And again I don't
13	want to raise too many questions on the source of
14	the PRA.
15	MR. DUBE: Well, my whole point of
16	bringing this was that there was a lot of lessons
17	learned, and a lot of information that has gone
18	actually both ways, in terms of making enhancements
19	to this part, but identifying where SPAR models in
20	the plant PRA had significant differences that still
21	need to be reconciled.
22	The next example is Palo Verde, which is
23	where I believe is the best example where the
24	enhancements made to the plant PRA were extremely
25	good, and we didn't find those kinds of gotchas if

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	you will in the particular PRA model.
2	You can see that there is a bunch of
3	columns here, and I am showing them a little bit
4	differently. I say at the top of the page that the
5	Fussell-Vesely over the UR, and that is the
6	importance measure, and on average within plus or
7	minus 25 percent.
8	I mean, for the major components to be
9	concerned in the MSVR. Previously I said that we
10	can get it within a factor of two, and this is
11	within 25 percent, which is even a closer agreement.
12	There is three columns; the plant PRA,
13	and the SPAR enhanced, which is what we have done
14	after we have made these efforts to reconcile the
15	differences in the SPAR 3-i, which was before if you
16	will. So that kind of flip-flopped there.
17	But it is important not only to get the
18	overall core damage frequency, but to have agreement
19	in terms of the contributors to the core damage
20	frequency.
21	And while the first column, plant PRA in
22	the SPAR 3-i, the core damage frequencies were like
23	within 25 to 30 percent. The constituents that made
24	it up in terms of contributions of transients and
25	tube ruptures, and LOCAs, were not so close.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	But as a result of the enhancement
2	effort, not only did the overall core damage
3	frequency come up reasonably close, but the
4	contributions of the next level, which is
5	contribution by percent to each particular
6	initiator, has pretty darn good agreement.
7	And then even at the third level, which
8	is the Fussell-Vesely over URs, we were able to get
9	it to pretty good agreement. And in this particular
10	example, we made a lot more changes in the proposal
11	to the SPAR, and I believe there may have been a
12	handful of recommendations that the plant PRA would
13	take.
14	But again one of the important lessons
15	learned if you will, and benefits of the overall
16	record. Any questions on this?
17	(No response.)
18	MR. DUBE: Okay. I am going to talk
19	about invalid indicators, and it has to do with the
20	fact that components with high points measure one
21	component failure and can result in a delta CDF of
22	10 to the minus 6.
23	I won't go through the math, but if
24	there is a high Fussell-Vesely UR, which is like a
25	high risk achievement work, if the change in
-	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

79 1 reliability or unreliability times a high number, 2 can exceed 10 to the minus 6 for this one particular 3 failure, in this program we have been calling it an 4 invalid indicator. 5 MEMBER APOSTOLAKIS: Again, this is a non-issue, because you are not going without a 6 7 threshold. You are not establishing a threshold between why it is based on the CDM. 8 MR. DUBE: We are using 10 to the minus 9 10 6 CDF as the primary means --11 MEMBER APOSTOLAKIS: I thought you were 12 switching to performance. MR. DUBE: Well, we were using 13 14 performance based at the lower end and the upper 15 In this particular case, we would use a front end. 16 stop here, which says that we are not going to allow 17 one failure to become --MR. BARANOWSKY: It is the false-18 It is the fix for false-positive 19 positive fix. MEMBER APOSTOLAKIS: And based on 20 21 performance do you find that you can tolerate one 22 phase, where does this come into play? 23 MR. BARANOWSKY: This is not based on 24 performance. 25 MEMBER APOSTOLAKIS: Yes, but I thought

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	you said earlier that you are not using this
2	anymore, and that you are switching back to
3	performance. I understand what this is based on,
4	but I am just questioning whether it is relevant
5	anymore.
6	MR. BARANOWSKY: It is relevant for
7	those indicators where if a single failure pushes
8	you over the green-white interface from normal
9	baesline to the one failure, and it takes you over
10	the green-white interface, that is where this comes
11	into play. And only for those cases.
12	MEMBER APOSTOLAKIS: Well, if you have a
13	delta CDF criteria threshold.
14	MR. BARANOWSKY: Right. And if it turns
15	out that one failure does take you over the delta
16	CDF, then you go to this so-called frontstop
17	approach, which allows more than one failure based
18	on our analysis of concerns concerning false-
19	positive indications.
20	MR. DUBE: And the frontstop would be
21	the minimum number of failures within a system
22	before the performance indicator turns white.
23	MEMBER APOSTOLAKIS: I still don't
24	understand it.
25	MEMBER SIEBER: You may have missed one

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	of the flip-flops.
2	MR. THOMPSON: Let me see if I can
3	clarify this. This is John Thompson from the
4	Inspection Program Branch. We are implementing
5	generic risk informed thresholds for every plant.
6	If that plant determines that they have either the
7	invalid or the insensitive issue, they will use the
8	alternate means of determining what is the
9	threshold.
10	But for purposes of the public, and they
11	go on the webpage, they will see that 10 to the
12	minus 6, and minus 5, and minus 4, and we have yet
13	to work out the details.
14	But for those plants that have a system
15	that might meet one of these two alternate
16	approaches, there will be an asterisk, and then you
17	will see what the new threshold is.
18	So thresholds are risk-informed, but it
19	is just that for some systems at some plants the
20	research is proposing to use the alternate. It is
21	adding a degree of complexity that we in the program
22	office have to deal with, and we are working with
23	that.
24	MEMBER APOSTOLAKIS: Green to white was
25	never risk based. Green to white was always

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	performance.
2	MR. BARANOWSKY: For the current
3	performance indicators.
4	MEMBER APOSTOLAKIS: yes.
5	MR. BARANOWSKY: But the concept right
6	from the beginning was risk-based, or risk-informed.
7	MEMBER APOSTOLAKIS: Okay. Now we are
8	on record as opposing risk-based thresholds for all
9	the (inaudible), and so in that sense what you are
10	saying is interesting from the mathematical point of
11	view.
12	But the committee does not accept your
13	premise. Is that clear enough to everyone, or what
14	is it that you are not understanding?
15	MR. BARANOWSKY: Well, let me also
16	MEMBER SHACK: It's clear.
17	MR. BARANOWSKY: Let me also point out
18	that presumably
19	MEMBER APOSTOLAKIS: That does not mean
20	what you are doing is wrong.
21	MR. BARANOWSKY: you may change your
22	mind some day. What we are trying to say here is
23	that you have some concerns about using risk
24	thresholds because they give some results that just
25	look ridiculous.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	What we did is we said, well, why don't
2	we try to get the best of both worlds. We will try
3	to use risk as much as we can, because that is what
4	the Commission told us to do.
5	But when it starts to look ridiculous,
6	either on a false positive indication or false
7	negative, we won't let things get way out of hand.
8	We don't want it to be twitchy, and we don't want it
9	to be so forgiving that it looks like anything goes.
10	So there is a vast number of systems and
11	cases where we can use this thinking and get what
12	looks like pretty reasonable results, and there are
13	some that don't, and we take care of them with this.
14	MEMBER APOSTOLAKIS: On the other hand,
15	you can say that this is a self-created problem? if
16	it is one of 10 to the minus 6 for CDF, then that
17	creates a problem.
18	MR. BARANOWSKY: But one would have to
19	change the premise of the reactor oversight
20	program's threshold evaluations from what was put in
21	99-007 to something else.
22	MEMBER APOSTOLAKIS: Well, 99-007 did it
23	right for green and white.
24	MR. BARANOWSKY: Well, that was an
25	expedient thing, and they said it was.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	MEMBER APOSTOLAKIS: Which turned out to
2	be right.
3	MR. BARANOWSKY: Since I wrote that
4	section of 99-007, I will accept that compliment.
5	MEMBER ROSEN: It's better to be lucky
6	than smart.
7	MEMBER APOSTOLAKIS: You see, that is my
8	point though. It was mentioned earlier that the
9	committed doesn't like. It's not what the committee
10	doesn't like. The committee wrote an argument in
11	the report on why one should not do that. So it is
12	not a matter of liking.
13	Now all the problems that you are having
14	here could go or would go away if you went
15	performance based, because the experts then would
16	have told you, look, this is unacceptable. If I see
17	one failure, you know.
18	So most people tolerate two failures.
19	So the whole thing goes away.
20	MEMBER SHACK: From a pragmatic point of
21	view, you have solved the problem, George.
22	MR. BARANOWSKY: George, I think you
23	have a logical inconsistency if you will excuse me.
24	If you want this thing to be risk informed
25	MR. DUBE: And plant specific.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	MR. BARANOWSKY: and plant specific -
2	_
3	MR. DUBE: There is no other way.
4	MR. BARANOWSKY: it can't be purely
5	performance based. You have got to bring risk into
6	the picture somehow, and I don't see how you do it
7	by just saying everybody can take two failures on
8	this end, or six failures on that end.
9	ACTING CHAIRMAN BONACA: But we want to
10	certify that
11	MEMBER APOSTOLAKIS: But it is risk
12	informed.
13	MR. BARANOWSKY: But it is not plant
14	specific. This is an ACRS comment. You are going
15	to have to go back and change that one, too. You
16	set it to reflect configuration of plant specific
17	data, and now you are telling me not really. So
18	just change everything.
19	MEMBER APOSTOLAKIS: Listen, listen, the
20	way
21	MEMBER ROSEN: One member in ACRS
22	doesn't make. You can have George's opinion on
23	that, and maybe the whole committee would
24	MEMBER APOSTOLAKIS: I have not
25	expressed an opinion that is inconsistent with the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	letter so far.
2	MEMBER SIEBER: So far.
3	MEMBER APOSTOLAKIS: Now, the risk-
4	informed, I think what this is going ultimately is
5	that what would really matter would be the results
6	of the SDP, and not the performance indicators.
7	Performance indicators are just an indication of how
8	you are rating with respect to your colleagues, the
9	peers.
10	What really matters is what you find in
11	the inspection and the risk (inaudible), which I
12	think should be calculated, because how many PRAs
13	have you seen where you go to core melt because one
14	thing is of high frequency? No. It is a
15	combination of events. And usual combinations are
16	there.
17	It is not that something happened too
18	many times, but it is interesting to know whether it
19	happened too many times. If it happens 10 times to
20	my plant, and everybody else is below three, well,
21	then we have to know about it and do something about
22	it. and this went below the level.
23	ACTING CHAIRMAN BONACA: Yes, but this
24	committee took exception on that because certain
25	issues were where it didn't make sense, okay? So to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	some degree, I think we are converging.
2	MR. BARANOWSKY: I think we tried to
3	look at your whole argument and see what it was
4	about, rather than just the one sentence, and we
5	tried to address the whole argument.
6	MR. DUBE: For example, the second
7	bullet on the resolution, the concept of front stop,
8	and later we will talk about back stop, we adapted
9	from the ERISA front tech spec initiative. There
10	the effort is to identify and allow outage time that
11	may result in a delta CDF of 5 to the minus 7.
12	Of am algorithm and calculation results
13	in a number less than the existing tech spec, and
14	let's say 72 hours, the front stop is that you use
15	72 hours.
16	If the algorithm comes out with an allowed outage
17	time or completion time of more than 30 days, and
18	let's say 80 days, the back stop is 30 days.
19	So the limit, the lower limit if you
20	will, which is the existing allowed outage time, and
21	upper limit, which is 30 days, and the plant
22	specific variation, and the Fussell-Vesely's, and
23	the importance measures, and the plant performance,
24	allows some variation in between.
25	And in many ways this is how this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

88
project when I took it on had no front stop and no
back stop. It was whatever the computer or spread
sheet spit out is how many failures one would allow.
What we have done over the last few
months is propose an adaption, which says that we
are going to have a front stop with a lower limit,
and a back stop, which is an upper limit number of
failures, and the plant specific variation, the
four-diesel configuration versus two diesel-
configuration, will allow some variation in between.
MEMBER ROSEN: So you don't penalize
people who have better, more robust, designs, by
giving them the same text specs, or the same
indicators that you give class or less robust
designs.
MR. DUBE: Exactly.
MEMBER ROSEN: You get some credit for
doing better.
MR. DUBE: Exactly, that is the
fundamental purpose that we are proposing.
MR. BARANOWSKY: And we think that is a
point that the ACRS made a few years ago, and we
followed that
MEMBER ROSEN: Over and over.
MR. BARANOWSKY: And so help me out.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	That's why I say logically inconsistent. That's why
2	we went back to the words and discussion on this
3	issue, and not just the one sentence that said don't
4	use risk.
5	MEMBER APOSTOLAKIS: You are right, Pat.
6	The ACRS 3 or 4 years ago was not of the opinion
7	that the performance indicators should be strictly
8	performance based. You are absolutely right. We
9	changed our mind on the way. Actually, we
10	formulated an opinion on the way. So your confusion
11	is justified.
12	MR. BARANOWSKY: We appreciate that.
13	MEMBER APOSTOLAKIS: And I just say that
14	I, for example, at least am very pleased that you
15	are actually paying attention to what we like.
16	MR. BARANOWSKY: Very astute.
17	MR. DUBE: So on that note
18	MEMBER APOSTOLAKIS: We have to move on.
19	I am the chairman, and
20	MR. DUBE: The next slide shows you
21	and I will go over quickly the preliminary results.
22	This is without any changes to the methodology.
23	These were the first results.
24	Where were the invalid indicators coming
25	and is there a pattern, and lo and behold, one did

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	find HRS, which is heat removal system, which
2	includes ox feed water for pressurized water
3	reactors or RCIC, or steam driven HPCI.
4	For boiling water reactors, we found a
5	pattern where one of a kind steam driven ox feed
6	pumps, for example, tended to have or to be more,
7	quote, invalid, than other particular systems,
8	because they had high importance measures.
9	If there was a failure, you couldn't
10	spread that failure over many like components for
11	the failure rate, because failures are over the
12	number of demands. If you have got two pumps or
13	four diesels, a given failure or one failure over a
14	number of demands, you could spread it out and the
15	failure probability that resulted would be low.
16	But when there is one of a kind that has
17	high importance measures, they tend to show itself
18	out as an invalid indicator. So this is what we had
19	coming in pretty much in January, and this was the
20	challenge before us.
21	The insensitive indicator is the
22	opposite. If something has a low importance
23	measure, it is going to take a lot of failures
24	calculationally to exceed 10 to the minus 6.
25	And it can be 10, and it can be 20, it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	could be 80, it could be hundreds even. And it is a
2	result of the fact that we originally came into the
3	MSPI using a deterministic criteria. We wanted to
4	have enough components within a particular system.
5	We did not want to exclude stuff,
6	because in some cases if you exclude everything with
7	a low importance measure, there would be nothing
8	left in the system.
9	MEMBER ROSEN: Now you are getting the
10	idea.
11	MR. DUBE: And it is a result of the
12	fact that we have some low important systems in
13	here, but that was
14	MEMBER ROSEN: Well, one design
15	philosophy might be that to build a plant that is so
16	robust that no one component matters much, and tell
17	me what is exactly wrong with that?
18	MR. DUBE: There is nothing wrong with
19	that. That is a good idea. But going into the
20	program, the program is that you will include
21	emergency A/C power, ox feed, RHR, service water
22	component cooling water.
23	But some particular plants have such
24	robust cooling water systems, and service water
25	systems, and so plants have like four pumps in unit

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	one, and four pumps on unit two, and you can cross-
2	tie on train A an train B.
3	And you can cross-tie across units, and
4	so the particular components aren't going to have
5	low importance measures.
6	MEMBER ROSEN: Now, this is a good
7	thing, except for the argument that therefore you
8	can take all kinds of failures and the plant can
9	summarily with a completely degraded maintenance
10	program, because it is designed so robust, and that
11	is the back stop.
12	MR. DUBE: That is exactly right,
13	because otherwise we would have 80 or a hundred I
14	mean, there was one calculation, and it was in many
15	significant digits, number of failures to cross, and
16	obviously that is not reasonable. So that's why the
17	back stop comes in.
18	MEMBER LEITCH: Trying another input
19	into that process is taking a corrective action
20	program, and if you are having that many repetitive
21	failures.
22	ACTING CHAIRMAN BONACA: But still I
23	think the backstop puts some sense into the -0-
24	MR. DUBE: Exactly. So I mentioned the
25	30 days, which is the time of the back stop, and it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	is called completion time in the proposed risk-
2	informed tech specs.
3	The next slide shows you on a first cut,
4	and this is plant specific for San Onofre what
5	exactly I mean. And here is the system on the left,
6	the particular component, the failure modes, the
7	number of failures to reach white, and in the
8	Fussell-Vesely there will be UR, which again is
9	roughly risk achievement worth minus one.
10	It shows an inverse relationship. The
11	lower Fussell-Vesely over the UR, the more failures
12	to get white. I mean, it is just basic algebra,
13	basic math. The higher Fussell-Vesely over the UR,
14	the lower number of failures.
15	MEMBER APOSTOLAKIS: Are you saying that
16	Fussell-Vesely and risk are deterministically
17	related? You keep saying that FV over U minus one
18	is wrong.
19	MR. DUBE: Fussell-Vesely over UR for a
20	low UR is approximately risk achievement minus one
21	algebraically.
22	MEMBER APOSTOLAKIS: So why aren't we
23	looking at both Fussell-Vesely and UR?
24	MR. BARANOWSKY: We're not.
25	MEMBER APOSTOLAKIS: Not here, but the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	special treatment requirements staff does, and the
2	argument is that they are independent. I mean, the
3	risk reduction work is related to Fussell-Vesely,
4	but that is a separate thing and now you are saying
5	no.
6	MR. DUBE: Algebraically you can
7	approximate Fussell-Vesely over UR, is approximately
8	risk achievement worth minus one or a low UR.
9	MR. YOUNBLOOD: This is Bob Youngblood.
10	Dividing by UR is the critical element.
11	MEMBER APOSTOLAKIS: I agree.
12	MEMBER SHACK: For a passive component
13	where the unreliability is zip, the numbers sort of
14	become meaningless.
15	MEMBER ROSEN: And the risk achievement
16	for those very high reliability components gets to
17	be enormous.
18	MR. DUBE: So there is an inverse
19	relationship here, and lo and behold, the next
20	transparency, which on your sheets are black and
21	white, and my is colored, and the overhead
22	transparency is colored, shows you the red, which
23	are those which well, this is a phenomena that we
24	didn't know how to deal with when it first came out.
25	I will be honest, okay?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	We artificially said greater than 20
2	failures is insensitive. Well, one can even argue
3	something lower, but we have to pick some number,
4	because when we were trying to adjust this model to
5	address invalid indicators and insensitive
6	indicators, and do sensitivity studies, we had to
7	start with something to fine tune it, and so that's
8	what we called it.
9	But our backstop would not be minus 20,
10	but this gives you an idea of where we were, and it
11	was something like 11 percent of the systems are
12	insensitive.
13	So we have a number of the systems that
14	are invalid, and a number of systems that are
15	insensitive.
16	ACTING CHAIRMAN BONACA: It is three
17	o'clock, and why don't we take a break.
18	(Whereupon, at 3:00 p.m., the meeting
19	was recessed and resumed at 3:21 p.m.)
20	ACTING CHAIRMAN BONACA: Let's get back
21	to the meeting, and you were I believe at the
22	identification system, page 18.
23	MEMBER SIEBER: Page 18.
24	MR. DUBE: Page 18. The next several
25	issues are not maybe as profound as the issue in

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	value indicators and sensitive indicators, but they
2	were major issues that came out of the workshop.
3	Something is you know, such as
4	identifying the system boundaries, there is a
5	definition in the guidance, but you find what is a
6	train, and it is based on parallel heat exchanges,
7	pumps, and flow path. But there is some different
8	configurations out there that may not fit neatly
9	into those definitions.
10	So the way that we are resolving this is
11	that we have got a website where we pose and
12	frequently ask questions, and we discuss them in the
13	public meeting. We will revise or NEI will
14	revise 99-02 with improved guidance.
15	And then before final implementation,
16	assuming that this goes forward, there will be at
17	least one, and probably several, lessons learned
18	workshops where these experiences are shared and
19	hopefully in an effort so that the plant
20	implementing this won't have the same issues.
21	Data collection. For a number of
22	plants, I have had an issue where they had a large
23	number of components that needed to be monitored.
24	On average, the number of components we found is
25	about 50 per plant, which is not an unreasonable

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

something right there.

1

2

3

4

5

6

I mean, when you really think of it, the internal events, core damage frequency at the plant, at least for these six systems, can be represented by in large part by 50 components, which tells you

That much of the risk from active 7 components falls on a small population relatively 8 speaking. But because we had deterministic criteria 9 way back when in the program for identifying whether 10 11 a component needs to be in scope or not if you will, 12 or monitored, there were some plants that had a large number of valves to monitor, like 35 or 40, or 13 14 45, and so there were some concerns with that.

15 It had been a burden, but the resolution as we are coordinating this with INPO consolidated 16 17 data entry program, so that licensees will be able to report the data through this mechanism and not 18 19 have to make a separate report for the MSPI. It 20 will be uploaded and downloaded relatively easily. 21 MEMBER SIEBER: That is the EPIX. 22 MR. DUBE: Correct. 23 MR. BARANOWSKY: The EPIX is a 24 subelement of that whole thing. 25 MEMBER SIEBER: Right.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	MR. BARANOWSKY: It used to be MPRDS,
2	but with this consolidated data entry is going to
3	include several things, like the old monthly
4	operating reports. It will include the actual PI
5	values that are not are they coming through NEI?
6	How does that work now? They come through NEI?
7	MR. SATORIUS: Yes, the come through
8	NEI.
9	MR. BARANOWSKY: So this CDE would be
10	the place that they would stream into.
11	MR. SATORIUS: Yes.
12	MR. DUBE: A second way to handle the
13	number of values and to reduce the number that need
14	to be monitored is kind of a risk-based approach,
15	which I am proposing to use 10 to the minus 6 per
16	year.
17	And I know that George is going to say,
18	well, you are mixing up the Fussell-Vesely and
19	Bromberg all over again, but it turns out that we
20	looked at Fussell-Vesely over UR as a cut-off means,
21	as well as Bernbaum, and I think Bernbaum is the
22	best, because it has the core damage frequency
23	already impacted into it, and I will show you some
24	slides in a second.
25	And the third item that I think we need

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	before we move forward, and this is my
2	recommendation to the industry, I will proffer some
3	software and some interface for data entry, because
4	we did find a number of data entry problems, or I
5	should say the inspectors when they did the
6	inspection found this.
7	This is a number of valves that need to
8	be monitored, and on the X-axis is the Bernbaum
9	cutoff. In other words, if we set anything with an
10	importance measure below this or not, we are going
11	to exclude, and so the number of valves per plant on
12	the Y-axis, and I have showed you for the 20 pilot
13	plants, red is the plant with the highest number of
14	valves to be monitored.
15	Blue is average, and I guess black is
16	lowest, and it gives you an idea of how many valves
17	have to be and you can see that there is a quick
18	drop for very low Bernbaum, and then it kind of
19	levels off. So this is the benefit if you will of
20	having a cutoff value on Bernbaum for the number of
21	valves to be monitored.
22	And keep that in the back of your mind,
23	and then look at the next graph, which is what I
24	call the unaccounted for URI, the unaccounted for
25	delta CDF due to unreliability if we were to exclude

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	particular valves as the Bernbaum goes up.
2	And you can see that this is kind of the
3	cost if you will, and it starts to take off around
4	10 to the minus 6. So one could use a 10 to the
5	minus 6 cutoff on Bernbaum, and reduce the number of
6	valves that have to be monitored, particularly for
7	the plants with the most number of valves.
8	And yet not lose the contribution to the
9	index if you will to any great extent. One could
10	have done this from the start if you will, and
11	perhaps used an importance measure to begin with,
12	but if you carry it to an extreme, you might have
13	some systems with no components in it if you will.
14	So I think that this is a happy medium
15	that for those few plants that had lots of valves to
16	monitor, you will be able to reduce the number of
17	valves to be monitored by a measurable amount, and
18	not miss important contribution to delta core damage
19	frequency or the index if you will.
20	MEMBER ROSEN: Do you mean monitor for
21	the purposes of the index program?
22	MR. DUBE: Exactly.
23	MEMBER ROSEN: And that these plants
24	will continue to maintain those valves?
25	MR. DUBE: Right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	MEMBER ROSEN: And to continue to
2	monitor them for maintenance rules and
3	MR. DUBE: But valves are particularly
4	difficult to monitor, because you know that when a
5	valve fails, you know it fails. There will be a
б	condition report of some sort.
7	And pumps, you know, there are graphs,
8	and even computer generated counts on pump starts,
9	and run hours. But valves, most plants don't have
10	little counters that count valve strokes.
11	And as part of this effort, you need to
12	count demands, as well as failures. So having a lot
13	of valves is kind of a data collection, but this is
14	a reasonable approach that I believe is appropriate.
15	MEMBER ROSEN: Are you saying that
16	plants are going to install hardware on their
17	valves?
18	MR. DUBE: No, but they have to estimate
19	the count, and they estimate the count based on how
20	often do they do this surveillance, and how many
21	times on average would they stroke this valve based
22	on normal operations. So a number of these are
23	based on estimates, less the demands.
24	MEMBER ROSEN: So not hardware?
25	MR. DUBE: Right. So I think that the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 issue of data collection burden in my mind is 2 resolvable relatively easily. The next couple of 3 issues are tough ones, at least maybe conceptual, 4 but let me start with a quote from NUREG CR-6819 and 5 I am sure that there will be lots of opinions because there are some people around this table who 6 7 have done a lot in common cause. But in this report, it says approximate 8 causes of CCF events are no different from the 9 approximate causes of single components failures. 10 11 It is reasonable to postulate that if fewer 12 component failures occur that fewer CCF events would 13 occur. 14 My opinion of that from my experiences 15 is that the kinds of behavior, either maintenance, procedural, human error, what have you, that may 16 17 change the independent failure rate and would also lend itself to perhaps change the common cause 18 failure rate. 19 Now, there is a coupling, and that if 20 21 there is a change in the independent failure rate, 22 there is in all likelihood a change in the common 23 cause failure. 24 MEMBER APOSTOLAKIS: Are you saying that your standard model for multiple Greek letter or 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

102

 whatever, the common cause failure contribut the independent failure rate times, say, dat two components. Are you saying that a common failure term would be affected because of I 	ntion is nta for non cause
2 the independent failure rate times, say, da 3 two components. Are you saying that a comm 4 failure term would be affected because of I	ata for non cause
3 two components. Are you saying that a comm4 failure term would be affected because of I	ion cause
4 failure term would be affected because of I	
	AN that
5 has been reduced or it will affect data as	well?
6 MR. DUBE: Data may be changing	r, but it
7 certainly will change the LAN.	
8 MEMBER APOSTOLAKIS: So in which	h case
9 the term would be reduced.	
10 MR. DUBE: Right.	
11 MEMBER APOSTOLAKIS: So it is t	hrough
12 that that there would be a primary reduction	n?
13 MR. DUBE: Right.	
14 MEMBER APOSTOLAKIS: But data m	ight
15 considerably change.	
16 MR. DUBE: It does change.	
17 MR. BARANOWSKY: We had data to	show
18 that it does change.	
19 MR. DUBE: Exactly, and backing	this up
20 with data, we actually looked at a number of	of
21 components, and the common cause error rate	e has
22 decreased tremendously over the last decade	e or 15
23 years, and the single failure rate has gone	e down.
24 And in fact almost parallel, wh	ich kind
25 of indicates as you said the coupling facto	or, which

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	is the data or over time may be changing, but it
2	has been changing less.
3	MEMBER APOSTOLAKIS: It is not being
4	inconsistent with the prevailing view that because
5	of this major effort that was sponsored by the NRC
6	and EPRI, or the NRC anyway, that people became more
7	aware of the issue of common cause failures, and so
8	they have paid more attention to the coupling
9	factor, and they have reduced it. The coupling
10	really itself has been reduced.
11	MR. DUBE: The coupling has gone down,
12	but not as much as the overall failure rate.
13	MEMBER ROSEN: What's driving the fact
14	is that these two things go together and what is
15	driving that is improved management, safety culture
16	if you will.
17	MEMBER APOSTOLAKIS: Yes.
18	MEMBER ROSEN: And they go together.
19	MR. DUBE: Right.
20	MEMBER APOSTOLAKIS: Yes, but the point
21	is that Don is making is that the primary driver is
22	the independent
23	MR. DUBE: Well, they go together.
24	MEMBER ROSEN: NO, George that is the
25	mathematical model. The primary driver is the guys

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	who work to keep it from going down. Better
2	training, better procedures, better
3	MEMBER APOSTOLAKIS: But I would agree
4	that it is really the better training and better
5	procedures that influences the coupling. The
б	coupling itself.
7	MEMBER ROSEN: I don't think anybody
8	knows that the coupling is there. I mean, the
9	valves don't know the coupling is there, and whether
10	somebody comes out and maintains it.
11	MR. DUBE: The coupling is something
12	that I sometimes say to myself that statisticians
13	calculate from the data, because there seems to be a
14	correlation, but I am not sure people in the field
15	are thinking, oh, .3 factor or so, and I would not
16	get a independent failure because I might increase
17	the common cause.
18	But I think that the change for the same
19	reasons, the same improvements in maintenance
20	practices, and procedures, and so forth. I only
21	bring this up, because it is an important issue.
22	It is an issue of controversy and an
23	issue of differences of opinion, and my second
24	bullet says should not changes in CDF relating to
25	changes in plant specific unreliability from single

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	component failures also include the effect from
2	changes in the common cause factor rate given this
3	coupling factor.
4	And if the answer to that is yes, it is
5	a loaded question, then we need to add in the
6	Fussell-Vesely importance from common cause for a
7	particular common component type into the overall
8	expression.
9	MEMBER APOSTOLAKIS: I have to problems.
10	If I didn't do what you are suggesting, what would I
11	do? Would I consider only the independent failure,
12	the product of the failures?
13	MR. DUBE: The importance measure that
14	is used in the algorithm as it is currently
15	formulated would be just the Fussell-Vesely from
16	independent failure of that pump.
17	Whereas, included in the common cause
18	contribution would say if you change the independent
19	failure rate and the common cause failure rate
20	changes, and I need to capture that contribution in
21	the Fussell-Vesely that I use in the algorithm, and
22	the best way to show it may be to jump ahead, and
23	clearly it has an impact on the algorithm and the
24	index.
25	The screen shows this better since it is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	in color, but this is the failure rate on the X-
2	axis, failure to start. These are kind of high
3	numbers, but just look at the concept here.
4	The bottom is if I just varied the
5	independent failure rate, and how does the delta CDF
6	calculated by the algorithm change? That is the
7	thing that is either blue or green, or the black
8	line on the bottom.
9	If I include the contribution of common
10	cause to the Fussell-Vesely, and that as the single
11	failure rate changes through a coupling, the common
12	cause failure rate changes. The red shows how that
13	affects the overall quantification.
14	What it means is that in practice it
15	means that it takes somewhat fewer failures to cross
16	the yellow white threshold in this particular case.
17	MEMBER APOSTOLAKIS: So right now the
18	computer programs don't do this?
19	MR. DUBE: The current MSPI method is
20	silent, is mute, on how to treat common cause, the
21	contribution of common cause.
22	MEMBER APOSTOLAKIS: And what is the
23	Fussell-Vesely importance of a component? In the
24	calculations, it will not include the common cause
25	failure term?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	108
1	MR. DUBE: The common cause will have
2	its own Fussell-Vesely.
3	MEMBER APOSTOLAKIS: As a separate
4	MR. DUBE: Separately.
5	MR. BARANOWSKY: It may. Some will do
6	it the other way.
7	MR. EIDE: Steve Eide, INEEL. The SPAR
8	model, if you get a Fussell-Vesely for the
9	independent failure, and you get a common cause
10	event, that would be another Fussell-Vesely and they
11	are not tied together in the Fussell-Vesely
12	calculation.
13	MR. DUBE: Right, but you can get a
14	group Fussell-Vesely in that, right?
15	MR. EIDE: Yes, you can get around that
16	by selecting both (inaudible) common cause event,
17	and doing a group Fussell-Vesely for that, and
18	getting a single or combined Fussell-Vesely for that
19	component group.
20	MEMBER SHACK: Well, as a performance
21	measure, you could probably do without it based on
22	your arguments, and if you insist on applying it to
23	risk, you need to include it, right?
24	MR. BARANOWSKY: And this will reflect
25	like if you have four pumps, three pumps, two pumps,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	this will be significant.
2	MR. DUBE: Yes, it is an adjustment on
3	how we or what we use for the Fussell-Vesely.
4	Absolutely.
5	MEMBER APOSTOLAKIS: But this is
6	important also for other interaction, special trip.
7	MEMBER SHACK: Well, yes, that has been
8	discussed.
9	MR. DUBE: We derived the same issue
10	separately.
11	MEMBER ROSEN: The Fussell-Vesely
12	treatment as I recall was handled by sensitivity
13	analyses, and it was shown that the impact of common
14	cause was looked at through a set of sensitivity
15	analyses.
16	MR. DUBE: Yes. This is one sensitivity
17	here. We have just in the last days literally
18	looked at some of our pilot plants the impact, and
19	in some cases it may be a few percent, and in other
20	cases it may be tens of percent or even more,
21	depending on the configuration.
22	A 2 out of 2 situation, or in other
23	words, two diesel generator plants, and adding in
24	this Fussell-Vesely from common cause may not be a
25	big adjustment. But a highly redundant plant, where

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	the Fussell-Vesely is very low because of the
2	multiple density, adding in the common cause may
3	increase that by factors of 2, 4, 5, even 10.
4	The thing is that 10 times is a small
5	number, and still is not an unreasonable number.
6	But unless
7	MEMBER ROSEN: But it s a real
8	reflection of the consideration, and if you have
9	two, that's good, and if you have four is better,
10	then why not 10? Well, obviously that is crossed in
11	complexity, and you don't get the benefit is the
12	common cause. It cuts it off.
13	So this has the effect of reflecting
14	that in the analysis and in the indicator.
15	MR. DUBE: That is my opinion, and I
16	think the opinion of the technical team on this.
17	MEMBER APOSTOLAKIS: But it would be a
18	simple matter to find the importance for components
19	if you have an expression from the common cause
20	failure term that
21	MR. DUBE: Yes, in practice.
22	MR. BARANOWSKY: Not everybody has it
23	like that.
24	MR. DUBE: But in practice we think
25	there is a way of doing it, and for the licensees to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	111
1	do it is a simple mathematical approach. That is
2	not the issue. The issue is the principal of
3	whether we should include it or not. That is where
4	there is no agreement.
5	MEMBER APOSTOLAKIS: That is why I made
6	the comment earlier that sometimes what the code
7	does is a boundary condition. This is the way that
8	it should be done.
9	MR. BARANOWSKY: Well, this is the
10	position that we are proposing, and we are telling
11	you why.
12	MR. DUBE: And probably by the next
13	MEMBER APOSTOLAKIS: Excuse me, but I am
14	just curious, but if you have two redundant valves,
15	and each one has a failure probability of Q, the
16	independent failure term would be Q squared would it
17	not?
18	MR. DUBE: Unavailability?
19	MEMBER APOSTOLAKIS: Yes.
20	MR. BARANOWSKY: Unreliability.
21	MEMBER ROSEN: You are talking about
22	independent failure probability.
23	MR. DUBE: Unavailability or
24	unreliability?
25	MEMBER APOSTOLAKIS: Unavailability.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	112
1	MR. DUBE: Unavailability, you would
2	probably
3	MEMBER APOSTOLAKIS: Unreliability, 2
4	squared.
5	MR. DUBE: Yes.
6	MEMBER APOSTOLAKIS: So what is the
7	Fussell-Vesely event? What is the Fussell-Vesely of
8	the component since you have a square term?
9	MR. DUBE: There is no easy way. When
10	something is ended, there is no easy way to
11	calculate Fussell-Vesely right off the top of your
12	head. If they were orange you could. The computer
13	would tell you what it is.
14	MEMBER APOSTOLAKIS: Yes, it would tell
15	you what the importance of Q squared is, but when it
16	calculates the importance of the component, a single
17	component, how would you do that?
18	MR. DUBE: A single component?
19	MEMBER APOSTOLAKIS: Yes, from a single
20	valve.
21	MR. DUBE: It adds up all the sequence,
22	and all the cut sets with that component, and shows
23	the ID that you use for it, the basic event name.
24	It divides that by core damage frequency.
25	MEMBER APOSTOLAKIS: Even though some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	113
1	terms are squares and some are
2	MR. BARANOWSKY: But they don't show up
3	
4	MR. DUBE: They don't show up squared
5	though. X-1 times X-2. It won't show up as X-1
6	squared, right. It will show up as X-1 times X-2,
7	even though X-1 and X-2 may be the same number.
8	Anyway, I think this is resolvable, and
9	I think it is important, but it has been a difficult
10	issue. The next one has to do with the support
11	system initiated to Fussell-Vesely.
12	Again, 80 percent of this discussion
13	hinges on this Fussell-Vesely and I am sure that
14	Bill Vesely, when this term was named after him,
15	didn't realize that it would be used in so many
16	different ways.
17	But the algorithm depends on this
18	particular measure, and that's why I put so much
19	emphasis throughout this project that we have got to
20	calculate this number pretty accurately because the
21	approach depends on it, at least to a first order.
22	So the issue here is that the failures
23	of components leading to support system initiator
24	and, for example, loss of service water
25	contribute to core damage frequency.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

And when we looked at the pilot plants, about two-thirds of those 20 plants used fault trees to quantify the initiating event frequency. So if you had a loss of service water at the top of the default tree, it would have, you know, if Pump A fails, and Pump B fails, and Pump C fails, and so on and so forth.

And to the extent that they had a fault tree when the computer calculated Fussell-Vesely, it captured that contribution to the initiator, as well as a support system. But one-third, the remainder of the plants, used a point estimate.

Instead of using a fault tree, they just used a number of 10 to the minus 3 per year initiating event frequency. So that 10 to the minus did not have the constituents that made it up, such as this pump failing and this pump failing.

So in the pilot program, it identified an inconsistent approach and it hinted that there might be come contribution to Fussell-Vesely left out. And so we have come up with a logical approach to address it.

For those models using point estimates, that the contribution of the initiator to core damage frequency is significant, either A, add the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	115
1	support system initiator fault tree.
2	So we are going to have to take this
3	point estimate and create a little fault tree, or we
4	have come up with an adjustment factor and it is a
5	little bit beyond you know, we could spend an
6	hour on it, but an adjustment factor that will be a
7	little bit conservative, but both myself and
8	representatives from industry agree that it is a
9	reasonable approach to make sure that the support
10	system captures all of the Fussell-Vesely, and that
11	is a long story being short on that.
12	The final issue, SDP and MSPI, and we
13	kind of talked about it at the beginning and I am
14	going to hand the baton over to Pat, because he has
15	been following a lot of these issues.
16	And this is one of the final technical
17	issues, which has to do with have we thought about
18	this MSPI versus SDP, and when is one going to be
19	used instead of the other. You know, what were
20	their original purposes for, and what are the
21	aspects of implementing it.
22	MR. BARANOWSKY: Actually, I will just
23	finish off the rest of the discussion. Let's go
24	back a little bit in history so I can tell you a few
25	things. When SECY 99-007 was put out, it had in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	there the concept that performance indicators would
2	be used as the principal measure of performance when
3	they were available, and when they were not
4	available, a risk informed inspection program and
5	significance of inspection findings would be used.
6	Somewhere along the way both got
7	implemented on the same things, and it was if I
8	don't get you here, I have got you there kind of
9	system, which is currently in practice.
10	And that has been going on now for
11	several years. That is whatever is in the SECY is
12	not the way the program is being implemented for
13	whatever reasons. Well, because of these concerns
14	that we have about some of the false positives in
15	particular, wherein one failure of the diesel
16	generator, when you look at a short time frame, like
17	one year, one year you might have 12 tests.
18	And due to the unavailability associated
19	with that in a one year time frame, it is pretty
20	high and you could end up with a short term risk
21	that is on the order of 10 to the minus 6.
22	But if the diesel generator was
23	surveiled for 3, 4, or 5 years, you have a track
24	record that when failure has a different
25	implication. So for cases where the MSPI and the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	SDP differ, what we are trying to do and we are
2	not done with this, but we have done some looking at
3	this, is to see if they differ because of that kind
4	of a premise, or some other reason.
5	And if they differ, it doesn't make any
б	sense. Now, as it turns out there is actually only
7	a few cases in the historical record where the
8	original formulation that didn't have all of these
9	issues addressed that Don talked about today with
10	the original formulation, showed that a different
11	outcome of SDP versus MSPI.
12	The second thing that we want to look at
13	also is whether or not the SDP and the ASP analyses
14	were giving similar results, because in many cases
15	the SDP is done with the simplest technique
16	possible, and when there is a performance issue, and
17	folks agree that there is a performance issue, and
18	want to move on and fix it, and not worry too much
19	about spending a lot of time doing risk
20	calculations.
21	On the other hand, we know that the MSPI
22	and the ASP analyses are trying to spend more time
23	on the details of the risk analysis, as opposed to a
24	fairly short handbook kind of thing.
25	So what we are proposing is that we go

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

118 1 back and look at these things, and make sure that 2 the validity and the appropriateness of using the 3 MSPI in those two cases, whether our differences are 4 such. 5 Our best cut right now is that they are a small, small percentage of any of the -- what I 6 7 call non-green findings, whether they be by PIs or by inspection activities. 8 So there is just a small interface where 9 10 you might get a slightly different result. Now a 11 concern also would be that, well, gee, what does 12 that mean. Well, that means that you think about things a little differently, just like when we 13 14 didn't have the reactor oversight process, and we 15 had SALP. We made some findings which if you went 16 back and overlayed the reactor oversight process 17 approach on it, you wouldn't necessarily come up 18 19 with the same findings. 20 Sometimes we error on this side or that 21 side, and it is not a very super precise thing, but 22 we think we get the really significantly poor 23 performers in each case. 24 And so that is our plan, is to basically 25 document that and present the arguments as to why at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	least on the face of the outcomes that it makes
2	sense to use a performance indicator of this type,
3	versus the significance determination process.
4	There was an ACRS letter written not too
5	long ago that basically said the significance
6	determination process was not a good way to measure
7	performance, but it was a good way to assess the
8	risk significance of performance findings.
9	And by the way, I completely agree with
10	that. I think it is also the only thing that we
11	have for rare events where you can't get a string of
12	things that you can put into a performance measure
13	that accumulates a performance if you will to look
14	at trends.
15	In that case, when there are rare events
16	that are outside what would be expected, and you
17	would not call them false positives and an
18	example would be that you have had a LOCA.
19	You don't expect a LOCA in a frequency
20	in the plant, and so that when that occurs, it is
21	kind of outside the norms. And I think it is fair
22	to use risk at that point, or some common cause
23	failures which occur very rarely by the way.
24	You know, there are not very many common
25	cause failures where multiple components actually

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	fail at plants. So you can't really trend within a
2	plant common cause failures very well.
3	You can look at the whole industry over
4	a picture period of 20 years, which we have done,
5	but that is with a hundred plants going all the
6	time. There is no other country that can do that
7	besides the U.S. They just don't have the data.
8	So it is for those cases where we think
9	the SDP is a good measure of some sort that it
10	should be used, and that is for inspection findings,
11	these long duration outages that are not captured by
12	routine tests and so forth.
13	And that the PIs, where there is an
14	accumulation of performance information, such that
15	one would compute reliability and unavailability
16	accumulated over time to look at trends, that is a
17	place where the MSPI is best used.
18	So this is sort of a philosophy that we
19	are overlaying on top of a practical look at what
20	the outcomes are, and there is a little bit of
21	heartburn to be honest with you with some of the
22	region folks who want to use an SDP evaluation,
23	period, for everything, and we just need to work
24	through this issue.
25	And we will present the results of our

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	detailed look at the individual instances when we do
2	our final report.
3	MEMBER APOSTOLAKIS: What do you mean by
4	
5	MR. BARANOWSKY: By what?
6	MEMBER APOSTOLAKIS: You said they want
7	to use an SDP evaluation for everything. What
8	exactly does that mean?
9	MR. BARANOWSKY: For every item that
10	could go into a performance indicator where a
11	performance issue was identified. So if a valve
12	failed and there was a performance issue identified
13	with the failure of the valve, then there are some
14	people who want to run an SDP on that every time,
15	even if we are tracking valve performance using
16	reliability and availability indicators.
17	MEMBER SIEBER: On the other hand that
18	is mostly instigated by licensees, who say I am
19	agreeing to a white threshold, but my calculation
20	shows that it is not risk significant. So they ask
21	for the SDP.
22	MR. BARANOWSKY: I think it goes both
23	ways, but in most instances it is not valves as much
24	as it is maybe a diesel generator, because the SDP
25	looks at a one year period of time remember, and the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	performance indicators cover a 3 year period of
2	time.
3	Now, maybe that is an issue that ought
4	to be looked at to see if they should have the same
5	period of time.
6	In that case, you would be surprised at
7	how much closer they could eventually come to the
8	same outcomes.
9	MEMBER SIEBER: Actually, the SDP looks
10	at the event, and then says if you come up with a
11	failure it is probably unavailable half of the time
12	since the last test. So it is less than a year and
13	it sort of elevates the importance of that single
14	event, compared to what it would have been averaged
15	in over 3 years worth of data. That's what I think.
16	MR. BARANOWSKY: I think it gives a risk
17	significance and importance of that finding or that
18	incident. I mean, I wouldn't say negative things
19	about the process because it is modeled after the
20	accident sequence precursor program, which does the
21	same thing.
22	But what we don't do with the accident
23	sequence precursor program is take a single accident
24	sequence precursor and go, oops, we had a major
25	failure in poor regulation last year because we had

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	a precursor.
2	And then when we don't have one the next
3	year, we go but we did very good the following hear.
4	No, we have to take a string of these things,
5	because we know that looking at one of them can't
6	give you a performance trend.
7	And it is the same problem that goes
8	with trying to use the significance determination
9	process for things where you can have a string of
10	issues, and look at them because the interval is
11	such that you could have more than one hit if you
12	will in that time frame.
13	MEMBER SIEBER: Let's say you were it
14	seems to me that if you end up with an inspection
15	finding that you should go to the SDP, as opposed
16	to, say, that this modifies the performance index or
17	this component.
18	On the other hand, if it is revealed
19	through the performance index, you ought to use the
20	thresholds that are appropriate to the performance
21	index.
22	MR. BARANOWSKY: I think we are saying
23	that.
24	MEMBER SIEBER: Well, it is not clear,
25	because I think that you could run them one way or

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	124
1	another, depending on you know, if you are
2	writing them, and you say this is the way it is
3	going to be, then it will be that way.
4	On the other hand, if you have a choice,
5	people will make the choice that causes the least
6	amount of grief.
7	MR. DUBE: We agreed ahead of time on
8	this.
9	MR. BARANOWSKY: And we do agree on this
10	issue, and so what I am doing is giving you our
11	tentative conclusion just based on some logical
12	thinking and looking at the differences in these
13	things. Now also to help me talk about this is Mark
14	Satorius.
15	MR. SATORIUS: I am Mark Satorius with
16	the staff. I was just going to point out that most
17	of the examples that Pat is talking about are event
18	driven, where we have an event response, and we do
19	an inspection, and the result of that is that you
20	can't know what you know.
21	So you identify certain performance
22	issues during these event responses inspection, and
23	those are relatively limited. But those are the
24	ones I think that and wouldn't you agree, Pat,
25	that is where you are going to get this overlap more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	than anything else?
2	MR. BARANOWSKY: Yes. But there has
3	been some concern because if you talk about a diesel
4	generator failure and you look at the unavailability
5	of that failure over a one year period of time, that
6	is going to give you a different perspective than if
7	you look at it over 3 years.
8	And what we were talking about earlier
9	were this one-half lambda tau term in terms of
10	unreliability is not going to be equal to the
11	probability of a failure on demand. You have to
12	have a time period sufficiently wrong and T has to
13	go to infinity for observations in order for those
14	two to be equal.
15	I guess anyone who has done any
16	reliability 101 or whatever has derived that
17	equation.
18	MEMBER APOSTOLAKIS: But I like your
19	third bullet, which says PIs measures changes in
20	performance. Now, what you mean from what you said
21	is that the performance of this valve. You are not
22	comparing with peers, right?
23	MR. BARANOWSKY: You are comparing with
24	what?
25	MEMBER APOSTOLAKIS: With PI

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	performance. I mean, the same valve somewhere else?
2	MR. BARANOWSKY: No.
3	MEMBER APOSTOLAKIS: But still though if
4	the PIs measure changes in performance, then it
5	seems to me naturally that the thresholds should be
6	performance based and not risk.
7	The risk calculations that you are doing
8	can be a valuable input to the process of developing
9	the performance based thresholds, but I agree with
10	you that PIs measure changes in performance.
11	So the PIs and the SDPs are doing two
12	different things.
13	MR. BARANOWSKY: Well, I would ask that
14	you have an open mind in that we think that we have
15	come up with a blend on here, and just take a step
16	back.
17	MEMBER APOSTOLAKIS: They both
18	contribute to the decision, that's true.
19	MR. BARANOWSKY: And I think that you
20	will see that it is one way as Don said, you have
21	got these front and back stops, and you have to
22	figure out where you put these things. And you
23	adjust them or some things based on how risk comes
24	into the picture.
25	MEMBER APOSTOLAKIS: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	127
1	MR. BARANOWSKY: But we just don't go
2	with risk which allows a way, way wider span, okay?
3	MEMBER SIEBER: Well, you have the front
4	stop and you have the back stop, and the adjustment
5	factor in the middle.
6	MR. DUBE: Exactly.
7	MEMBER SIEBER: I think you scratch your
8	head and is this really real, you know.
9	MR. BARANOWSKY: One of the things that
10	I didn't mention at the beginning of the talk was
11	that the white paper by the way, and which I did say
12	was sort of a kick-off concept, we are going to
13	document every one of these things in a written
14	report.
15	And that will be coming in the fall
16	before we ask to have the next meeting. So you will
17	have a fair amount of time to see this stuff laid
18	out a little bit more than just a few viewgraphs.
19	MR. DUBE: In following up on what
20	George said on the issue, the alternative to having
21	an algorithm if you will, and which basically
22	calculates the number of failures and the
23	unavailability to the threshold would be a multi-
24	dimensional, big super matrix that says BWR-2 plant,
25	and BWR-3 plant, combustion engineering plant with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	128
1	pores, and combustion engineering plant with no
2	pores. How many failures and it takes into account
3	all the differences in design, and the differences
4	in performance.
5	I mean, if one were to address plant
6	specific aspects to the threshold, and even then I
7	am not sure that expert judgment would come up with
8	the right answer, because you have to take into
9	account the variability of the design, the vintage
10	of the plant, and so forth.
11	What this does is reduce this multi-
12	dimensional matrix of thresholds to an algorithm
13	that in essence calculates what that threshold is,
14	but within certain limits. I mean, that is the way
15	that I kind of view it, and that's it.
16	MEMBER SIEBER: Well, the first hurdle
17	is to understand what it is that yo have done, and
18	the second hurdle is to decide whether it meets the
19	need or not.
20	MR. BARANOWSKY: The whole activity that
21	we have gone through is fairly complex, and I am not
22	saying that it isn't, because we have invested
23	things that people had not thought of 2 years ago
24	when we thought we knew quite a bit about risk-based
25	performance indicators.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	129
1	But what we have come up with is a
2	number of simplifying approaches to address all the
3	complexities which are not as simple as adding one
4	and one, but they are not as complex as doing an
5	ECCS calculation either.
6	So you don't have to redo your PRA, and
7	you don't have to redo your HRA, and you don't have
8	to do any of that stuff, as long as the concepts
9	front stops and back stops using the importance
10	measures in a simple equation, those things are all
11	brought into it, and it is a pretty straightforward
12	and grind it out.
13	So let me just summarize here, because
14	then I want to just about some future activities.
15	So the MSPI, as you have seen, it is highly risk
16	informed, and it has plant specific design and plant
17	specific data. We think that these maximum-minimum
18	limits are a pretty big deal on making it kind of
19	rational.
20	MEMBER APOSTOLAKIS: But are they any
21	different from the performance based thresholds that
22	we have requested? They are the same thing aren't
23	they?
24	MR. BARANOWSKY: I am saying that I
25	think that this is consistent with the detailed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	discussions that I read that are behind the specific
2	like one sentence position that you took to be
3	honest with you.
4	MEMBER APOSTOLAKIS: Yes, and so that is
5	what I am saying. That we are consistent.
6	MR. BARANOWSKY: I think so.
7	MEMBER ROSEN: For example, when we had
8	a hard time with 23 SCRAMS, this deals with that.
9	MR. BARANOWSKY: This deals with it.
10	MEMBER APOSTOLAKIS: And then you would
11	say there is a maximum.
12	MR. BARANOWSKY: Not for 23 SCRAMS it
13	doesn't deal with it, but it could deal with it.
14	And we have lots of technical
15	MEMBER ROSEN: Well, if we ever went to
16	this, that action matrix thing would not show this,
17	right, with 23 SCRAMS?
18	MEMBER APOSTOLAKIS: It would not show
19	the 23, no, because those guys would intervene and
20	put a back stop.
21	MEMBER SIEBER: That would be a back
22	stop.
23	MEMBER ROSEN: Back stop, okay.
24	MEMBER SIEBER: And then you would put
25	in adjustment factors.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	131
1	MEMBER APOSTOLAKIS: Are you suggesting,
2	Mr. Sieber that we should do everything on a risk
3	basis?
4	MEMBER SIEBER: No, I'm not.
5	MEMBER APOSTOLAKIS: Better me than you.
6	MR. BARANOWSKY: We expect to complete
7	our analysis and then simulation analyses, and
8	complete our analysis of these issues, and then do
9	some simulations by the end of the summer to look at
10	how all of these things fit together, because we
11	have not really looked at them all together. So we
12	need to do that.
13	And then if some new issues arise, we
14	will address them, but we are fairly confident on a
15	technical basis that if you will accept some of the
16	philosophical thinking that went in here, we can
17	probably address any residual things that might pop
18	up in that regard.
19	So that is sort of the technical bottom
20	line here. Now, that does not address all things
21	regarding implementation, although this says
22	tentative implementation schedule, let's look at a
23	few things that are not really covered here that are
24	also implementation related.
25	First of all, we are going to do the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	technical work as a I stated, and at the end of
2	August we will have the technical issues done, and
3	we have done all the SPAR enhancements for the 20
4	plants that are in the pilot program, and it will
5	run all the things.
6	The pilot actually ends in September.
7	It gives us a certain amount of time afterward the
8	data collection to complete analysis and evaluation
9	of the data. Then comes the big effort to see,
10	well, what does this all mean in terms of the
11	success criteria which Mark Satorius mentioned in a
12	few items earlier?
13	Will it complete our table top analysis
14	of the MSPI and the SDP issues and other
15	implementation issues such as we will ask ourselves
16	are we able to change the guidance for boundaries
17	and data collection to eliminate some of the
18	inefficiencies that occurred during the pilot.
19	Are we able to change the inspection
20	guidance to eliminate some of the inefficiencies
21	that occurred during the pilot. And I don't know if
22	there are other issues, but we are going to have to
23	work on guidance and what the costs in terms of
24	burden of this thing is.
25	And I am sure that technically that this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	133
1	is far superior to the current PI, but one has to
2	make a decision as to whether or not implementation
3	wise we are ready for it. We have issues regarding
4	the PRAs and so forth, which we are not going to use
5	this program as a wedge to go in and make the ASME
6	standard work.
7	MEMBER SIEBER: Why not?
8	MR. BARANOWSKY: Because we have already
9	got a cadre of people doing that, and I don't want
10	to get them unemployed. But there are some insights
11	that we have here that I think affect the bottom
12	line of PRA and the qualitative outcomes of PRA that
13	might help focus some of these things.
14	MEMBER SIEBER: I think that you are
15	addressing things in your comparisons that the
16	standard doesn't really deal with.
17	MR. BARANOWSKY: Well, they are in there
18	inherently, but they should be explicitly in my
19	opinion.
20	MEMBER SIEBER: I think if you follow
21	the standards that you may end up with a high
22	quality PRA, and then whatever discrepancies would
23	in fact be (inaudible), but that is not consistently
24	the case.
25	I could imagine now that you could go

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	through these standards, the PRA reviews, or peer
2	reviews, and come out maybe okay, and still have
3	some strictly inherent problems in your PRA. So
4	this is just another way to look at that and I think
5	it is good information.
6	MR. BARANOWSKY: Well, we are counting
7	on the industry and the NRC working to implement the
8	standard. That is an assumption that we have. It
9	doesn't necessarily have to be all perfectly done in
10	the beginning, because we have ways of identifying
11	which plants we have the biggest questions about as
12	I told you earlier.
13	MEMBER SIEBER: Well, you are going to
14	reconcile the SPARs models to the plant PRAs anyway.
15	MR. BARANOWSKY: Yes.
16	MEMBER SIEBER: And that appears in a
17	number of programs that once you do that, and you
18	can rely on yours, or you can rely on theirs,
19	provided that you know what the limitations are for
20	each calculation model for the intended purpose.
21	MR. BARANOWSKY: I think ours are good
22	for doing audit checks and for doing simulations to
23	look at issues. They are really excellent for that.
24	MEMBER SIEBER: Let me ask a question.
25	You have a schedule of things that you are going to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	do, and so one of the things that the white paper
2	talks about is a revision to NEI 99-02, which
3	probably isn't out yet, but needs to come out in
4	order for this to be a complete packet, and when
5	will that happen? Maybe Tom, if he is still here,
6	could tell us.
7	MR. BARANOWSKY: And Tom, when you get
8	up to talk about that, as long as you are getting
9	up, I had expressed an earlier interest in the
10	industry's reaction to this. And maybe you could
11	cover that as well.
12	MR. HOUGHTON: Sure. I am Tom Houghton
13	from NEI. The NEI guidance document will be out in
14	a draft a couple of weeks after we have decided
15	these issues. According to that schedule that
16	earlier fall effort before the go-no go is going to
17	include industry also going through and putting all
18	of these changes into the models and see what the
19	results are that come out.
20	Because as Pat said, we don't know what
21	the cumulative effect of all of these different
22	activities that we are doing will have. But we
23	think that in a couple of weeks after that these
24	things will be wrapped up.
25	MEMBER SIEBER: You mean that fast?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	Well, that's good.
2	MR. HOUGHTON: And then need to be out
3	so that people can really focus on
4	MR. SATORIUS: But the draft is already
5	out because we used it to run the pilot. So I was
6	not sure if that was clear.
7	MEMBER SIEBER: That's right. That is
8	REV-2 isn't it?
9	MR. SATORIUS: Well, no, this was
10	what we did was that we pulled the format directly
11	from REV-2 and then modeled it specifically for the
12	pilot. So we already have a document that we are
13	working on.
14	MR. HOUGHTON: That's right. The
15	section of 99-2 REV-2, which relates to mitigation
16	systems, is what is going to be replaced with this
17	MSPI, and that that draft that Mark was talking
18	about is that placement.
19	We didn't change it during the pilot
20	because we didn't want to confuse everybody who was
21	trying to report data for the 6 months of the pilot.
22	So it stayed fix until we make these decisions, and
23	then we will implement them into the document.
24	As far as the program is concerned,
25	industry supports this program. We think it has the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

137
advantages of resolving some of the complexity
between maintenance rule definitions and WANO
definitions.
We think that it is going to resolve
some of the complications for system managers in
trying to determine cascading, which we won't be
doing anymore. That will make it more consistent
with the way that people do maintenance rules.
We won't have this question of fault
exposure and you get into lots of theoretically
fault exposure, which is not an issue, but when you
get into questions of would that failure mechanism
reveal itself in a monthly test or an annual test,
it gets quite confusing sometimes.
And that makes it very difficult. It is
not the theory that is the problem. It is the issue
of would this failure mechanism be exhibited in a
test that is only an hour long, versus a full 24
hour run. Things like that.
MEMBER APOSTOLAKIS: In this business of
one-half lambda tau, I thought that was used as a
means also of seeing what the impact on the
unreliability would be if I changed the inspection
interval.
MR. BARANOWSKY: That's with the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	assumption that you have a long time period to make
2	the calculation of lambda. If you calculate lambda
3	every year using one year's worth of data, one year
4	you get a low lambda, because you had no failures.
5	The next year you get a huge lambda
6	because you had a failure. Then the next year you
7	had no failures and you get a low lambda.
8	MEMBER APOSTOLAKIS: Well, 3 years, and
9	I use 4 years, 5 years. I have a lot.
10	MR. BARANOWSKY: Then it becomes
11	equivalent to basically the probability of failure
12	on demand. They start to equate to each other.
13	MEMBER SIEBER: The longer
14	MR. DUBE: That's right.
15	MR. BARANOWSKY: Well, one-half lambda
16	tau becomes equal to the probability of failure on
17	demand.
18	MEMBER SIEBER: The longer the period,
19	the less significant is a single failure.
20	MR. DUBE: That's right.
21	MEMBER SIEBER: So there has to be a
22	limit.
23	MR. BARANOWSKY: That's an approximation
24	for small lambda, constant lambda, integrated, zero
25	to infinity.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	MEMBER APOSTOLAKIS: Let's say I am
2	doing this on a monthly interval, and then someone
3	who wants to successfully argue or wants to argue
4	successfully that they can go to two months, are you
5	saying then that your data then are invalid?
6	MR. BARANOWSKY: No.
7	MEMBER APOSTOLAKIS: Because they were
8	connected under conditions of only one month?
9	MR. BARANOWSKY: No, what we do is just
10	keep counting the demands.
11	MEMBER APOSTOLAKIS: But your basic
12	calculation now is that you have an entirely new
13	situation. I mean, you collect the data and you
14	formulated a distribution that was based on the
15	fundamental assumption of monthly tests, and I am
16	telling you that I am going to do them every
17	quarter. Can you really use that distribution again
18	and start updating it with the new data?
19	MR. BARANOWSKY: I don't think that the
20	days distribution are that sensitive. Remember, the
21	ones that we are using are based on industry
22	information and updated with plant specific. So
23	what that means is that we have got weekly, monthly,
24	quarterly stuff all mixed in there.
25	MEMBER APOSTOLAKIS: I am not saying

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	that what you are doing is wrong. I am just trying
2	to figure out all the implications with the one-half
3	lambda tau.
4	MR. HOUGHTON: Well, we would have a
5	mixture until such time that the sliding 3 year
6	average moves over and it would be a little
7	inconsistent.
8	MEMBER APOSTOLAKIS: Well, you are
9	producing a probability of failure per demand, and
10	that is independent of time, correct?
11	MR. HOUGHTON: Yes.
12	MEMBER APOSTOLAKIS: It was developed
13	under the assumption well, not assumption. It
14	was reality that the tests are monthly. And if I
15	change the interval and make it quarterly, do I
16	start from scratch, or do I start from somewhere
17	else?
18	At least with the one-half lambda tau, I
19	had a way of going out and changing them to 3
20	months, and coming back and saying, yes and which
21	is also stupid to say that their unavailability is
22	multiplied by three.
23	MR. BARANOWSKY: No, but you are making
24	the assumption that
25	MEMBER APOSTOLAKIS: That it is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	different, which it may not be.
2	MR. BARANOWSKY: The assumption there is
3	that there is not a demand dependent element to the
4	failure rate.
5	MR. DUBE: And it is really that it has
6	both, has both components in reality.
7	MR. BARANOWSKY: In reality, we know
8	from actually taking data in several studies that
9	have shown there are both elements that are in
10	there.
11	MEMBER APOSTOLAKIS: But you have not
12	taken data because it probably does not exist, but
13	from one licensee who does it every three months,
14	and another one who does it every month, and compare
15	them and say there is no difference, because
16	everybody does it monthly.
17	MR. BARANOWSKY: But what we had to do
18	was take a licensee who does a monthly test, and
19	another one who does it quarterly, and another one
20	who does it weekly,
21	MEMBER APOSTOLAKIS: The same test?
22	MR. BARANOWSKY: For the same equipment.
23	MEMBER APOSTOLAKIS: But the same test.
24	MEMBER APOSTOLAKIS: The same test.
25	MR. BARANOWSKY: But as close as we can

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	come up with, and looked at that.
2	MEMBER APOSTOLAKIS: But then if you see
3	no difference, then I agree.
4	MR. BARANOWSKY: I am not saying that
5	there has been no difference. What we are saying is
6	that the true novel is one that has got a demand
7	dependent element to it, as well as a time dependent
8	element to it.
9	And when you plot a curve, you get a
10	linear curve on these things usually, and you can
11	come up with a proportionality factor that relates
12	demands versus the run, versus the time dependent
13	failure mechanisms. It is pretty complicated.
14	By the way, it is the second order
15	effect in risk for most of these intervals that we
16	are talking about, which I am not worried about in
17	light of other inaccuracies. And we are talking a
18	second or third decimal place of the risk equation.
19	MR. HOUGHTON: In terms of complexity,
20	we think that we are making sausage right now in
21	trying to develop this indicator. And there is
22	complexity in it, but we think that it is going to
23	be simpler when the program is in place and will be
24	simpler for the utilities, because they are going to
25	be just reporting demands, failures, and hours at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	power when that equipment is unavailable.
2	And so once the computer algorithm is
3	set up, that data can flow in without a lot of
4	complication and a lot less what if's by the system
5	engineer.
6	MEMBER SIEBER: And they don't even have
7	to understand it.
8	MR. HOUGHTON: Another part of the
9	complexity has been as Don and Pat have said, is
10	what are the system boundaries and what are the
11	components that are active and so on and so forth.
12	And we see that being able to be
13	resolved through the other 80 units in a good change
14	management plan, where there are a series of
15	workshops, and where people can get together with
16	what we learned from the process and develop those
17	such that when the whistle blows to start the
18	program that we don't have a lot of discussions
19	about why is this valve in and why is that valve not
20	in, and why didn't you model this, and why this or
21	that.
22	That can be fixed so that this turning
23	in complexity doesn't have to happen when it is
24	implemented. So those are reasons why we think this
25	is a better way to go and I think the only real

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	144
1	disadvantage from our point of view is the initial
2	gathering of data.
3	Other than that, we think it is a better
4	indicator, and it has less opportunities for arguing
5	about when did it really fail, and what was going
6	on. So we are in favor of it and in favor of the
7	approaches that Don and Pat are talking about, about
8	a front stop and a back stop, which will solve those
9	problems.
10	And we were able to agree on what a
11	reasonable number of SCRAMs was in the first one.
12	MEMBER SIEBER: 27.
13	MR. HOUGHTON: Three.
14	MEMBER APOSTOLAKIS: The green and
15	white.
16	MR. HOUGHTON: The green and white.
17	MEMBER APOSTOLAKIS: I still think that
18	expert judgment should play a role there and we have
19	pioneered all these methods and don't just
20	negotiate.
21	MEMBER ROSEN: That's what it was,
22	expert judgment.
23	MEMBER SIEBER: It should be between
24	smart people.
25	MEMBER ROSEN: Informed people.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	145
1	MR. HOUGHTON: And we did have a rule
2	where we tried to use the 95th percentile of
3	performance.
4	MR. BARANOWSKY: Good. Thank you.
5	MEMBER SIEBER: Thank you.
6	MEMBER APOSTOLAKIS: So when is the
7	letter going to be?
8	MR. BARANOWSKY: We are going to get
9	that and get revised NEI guidance, and a report on
10	all of this technical work, and the assessment of
11	the success criteria. That will all be done in the
12	fall. I think that is the package that comes here.
13	And then after that we have an ACRS
14	meeting to go over and explain what we decided to do
15	and see if you endorse that. Then we want a letter.
16	MEMBER APOSTOLAKIS: Is there going to
17	be another subcommittee meeting or just straight to
18	the full committee?
19	MR. BARANOWSKY: What do you think?
20	MEMBER SIEBER: If the documents are
21	clear enough, I don't think we would need to have
22	another subcommittee meeting unless you have changed
23	the principles that you are going to use.
24	MR. DUBE: I don't think the principles
25	have changed. Some of the details will.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	146
1	ACTING CHAIRMAN BONACA: Yes, that's
2	right. One of the committees, the fact is one of
3	the discrepancies is being resolved on this
4	particular performance
5	MEMBER SIEBER: Well, I am sure that you
6	are going to make a presentation to the full
7	committee of an hour or two.
8	MR. BARANOWSKY: Yes, but it won't be
9	going into detail like we did here.
10	MEMBER SIEBER: Right.
11	MR. BARANOWSKY: I mean, you will have
12	to accept the report as giving you that information.
13	MEMBER ROSEN: But our own staff can do
14	it once they get the package, and they can look at
15	that and see what was said in prior letters, and
16	help us understand whether this has been responsive
17	to our points of view.
18	MR. BARANOWSKY: And if someone will
19	feed back to us issues that you would like for us to
20	cover as a result of that, we can make sure that
21	those are in our presentation.
22	MEMBER APOSTOLAKIS: So how long will we
23	have the package before the full committee?
24	MR. BARANOWSKY: Oh, quite a while.
25	MEMBER APOSTOLAKIS: Okay. Good.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	147
1	That's good.
2	MS. WESTON: It has to be at least 30
3	days.
4	MR. BARANOWSKY: It will be more than
5	30, I'm sure.
6	MEMBER APOSTOLAKIS: Well, we don't meet
7	in January anyway.
8	MR. BARANOWSKY: I think we were really
9	thinking in February.
10	ACTING CHAIRMAN BONACA: That's it?
11	MR. BARANOWSKY: That's it.
12	ACTING CHAIRMAN BONACA: Any other
13	comments or questions? One question I had was
14	regarding this firewall. You did by the (inaudible)
15	and you did get a lot of lessons learned, and many
16	of them I am sure are just the plant specific, and
17	adjustments that you had to make and too much plant
18	specific PRAs, or vice versa in some cases.
19	In some cases, you must have learned
20	some lessons that can be reflected on the other SPAR
21	models. Are you going to have a lessons learned
22	about it?
23	MR. BARANOWSKY: We have lessons
24	learned, and maybe Pat O'Reilly, who actually runs
25	the SPAR model development program can tell us how

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	148
1	he would use this information to go through the rest
2	of the SPAR models.
3	MR. O'REILLY: I am Pat O'Reilly from
4	the Office of Research. As Pat pointed out we are
5	doing the 11 plants, the 20 units that are in the
6	pilot program, and based on that and what we have
7	already learned from our on-site QA reviews at every
8	plant site, we have a number of issues which we know
9	apply across the board as SPARs that are
10	standardized, and that this the important thing.
11	And so we know from this pilot program
12	that Harrison exercised that there are a number of
13	issues that will be implemented across all the PWR
14	models, for instance, and BWR models, and in some
15	cases across all 72 models. So we have learned
16	enough from that so that we don't have to go through
17	and do a detailed comparison exercise for the other
18	61 models that aren't included here.
19	MEMBER SIEBER: Does every plant have a
20	PRA that is suitable for this comparison?
21	MR. O'REILLY: You find a wide spectrum
22	of PRAs out there, some which are very well done,
23	very robust, very complete, and others which are
24	about mediocre. They have some information, and
25	there are some that just had the minimum that were

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	149
1	Generic Letter 88-20. They stuck to the letter of
2	the law there.
3	MEMBER SIEBER: And in which percentage
4	would that minimum set be?
5	MR. O'REILLY: That is a tough question,
6	because some of our visits are complicated. The PRA
7	is not necessarily of poor quality, but the staff
8	that is there now is not the staff that worked on
9	the development of the PRA, and there has been no
10	technology transfers between the people that did the
11	PRA and those that are there now. So that is an
12	additional handicap.
13	MEMBER SIEBER: So they are basically
14	clueless.
15	MR. O'REILLY: In some cases that is not
16	a bad description.
17	MEMBER SIEBER: Okay.
18	MR. BARANOWSKY: We are going to be
19	putting that together as something for us to use and
20	possibly pass on to the quality activities.
21	MEMBER APOSTOLAKIS: And you said you
22	would give us this other document, which was the key
23	you said you were fully aware of where the
24	sensitive parts of the PRAs were, model
25	uncertainties.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	MR. BARANOWSKY: We will probably have
2	in our final report some listing of these things,
3	because that is an issue of what does this all mean
4	in terms of this program. So we need to cover that.
5	MS. WESTON: We are not going to get it
б	before then?
7	MR. BARANOWSKY: I don't have a specific
8	program activity to produce a report on this before
9	this report, and whether it can or can't be done, I
10	just can't say in this meeting. We are resource
11	limited.
12	MEMBER SIEBER: That's a nice way to put
13	it.
14	MR. BARANOWSKY: That's a fact. I
15	request budget and I am told what I can get and we
16	are working at 116 percent.
17	ACTING CHAIRMAN BONACA: With that, I
18	adjourn this meeting.
19	(Whereupon, at 4:28 p.m., the meeting
20	was concluded.)
21	
22	
23	
24	
25	