Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards
	Reliability and Probabilistic Risk Assessment
	Subcommittee

- Docket Number: (not applicable)
- Location: Rockville, Maryland
- Date: Friday, October 10, 2003

Work Order No.: NRC-1120

Pages 1-219

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	SUBCOMMITTEE ON RELIABILITY AND PROBABILISTIC RISK
6	ASSESSMENT
7	+ + + +
8	FRIDAY,
9	OCTOBER 10, 2003
10	+ + + +
11	ROCKVILLE, MARYLAND
12	
13	The ACRS met at the Nuclear Regulatory
14	Commission, Two White Flint North, room 2B3, 11545
15	Rockville Pike, at 8:30 a.m., Chairman George
16	Apostolakis, presiding.
17	COMMITTEE MEMBERS:
18	GEORGE E. APOSTOLAKIS, Chairman
19	MARIO V. BONACA, Member
20	STEPHEN L. ROSEN, Member
21	WILLIAM J. SHACK, Member
22	ACRS STAFF PRESENT:
23	MICHAEL R. SNODDERLY, Designated Federal
24	Official
25	MEDHAT EL-ZEFTAWY

1	ALSO PRESENT:
2	JOHN FLACK
3	KENT WELTER
4	DON DUBE
5	STU MAGRUNDER
6	PAT O'REILLY
7	DALE M. RASMUSON
8	DON MARKSBERRY
9	PATRICK BARANOWSKY
10	BENNETT BRADY
11	GARY DE MOSS
12	W. ARCIEN
13	B. COLAN
14	SPYROS TRAIFOROS
15	N. PRASAD KADAMBI
16	MARK CUNNINGHAM
17	MIKE CHEOK
18	ALI MOSLEH
19	MOHAMMAD MODARRES
20	DANIEL O'NEAL
21	J. S. HYSLOP
22	ALAN RUBIN
23	CURTIS SMITH
24	ROY WOODS
25	

2

1A-G-E-N-D-A2I. Opening Remarks, G. Apostolakis, ACRS	
2 I. Opening Remarks, G. Apostolakis, ACRS	
	. 4
3 II. Plan for Application of Formal Decision ma	king
4 Methods in Integrated Regulatory Decisions	, J.
5 Flack and N. Prasad Kadambi, RES	. 5
6 III. Overview of the PRA Safety Research Program	, M.
7 Cunningham, RES	36
8 IV. Program for Risk-Based Analysis of Reactor	
9 Operating Experience, P. Baranowsky, RES	51
10 A. ASP Program	
11B.Industry Trends Support	
12 C. SPAR Model Development Program	
D. Reply to ACRS Letter on Risk-Based	
14 Analysis of Reactor Operating Experi	ence
15 V. Planned Activities in Development of PRA Meth	nods
16 and Standards, M. Cunningham	120
17A.Integrated Uncertainty Research	
18 A. Mosleh	122
19 M. Modarres	167
20 B. SAPHIRE Peer Review, Dan O'Neal	183
21 C. Fire Risk Research Program,	
22 J. S. Hyslop	196
23 D. Low Power and Shutdown Risk,	
24 D. O'Neal	205
25	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:31 a.m.
3	CHAIRMAN APOSTOLAKIS: The meeting will
4	now come to order. This is a meeting of the Advisory
5	Committee on Reactor Safeguards, Subcommittee on
6	Reliability and Probabilistic Risk Assessment. I am
7	George Apostolakis, Chairman of the Subcommittee.
8	Subcommittee members in attendance are
9	Mario Bonaca, Steve Rosen and William Shack. The
10	purpose of this meeting is to discuss the status of
11	the Probabilistic Risk Assessment Research Program
12	with representatives of the Office of Nuclear
13	Regulatory Research.
14	The Subcommittee will gather information,
15	analyze relevant issues and facts, and formulate
16	proposed positions and actions as appropriate for
17	deliberation by the full committee. Michael Snodderly
18	is the designated federal official for this meeting.
19	The rules for participation in today's
20	meeting have been announced as part of the notice of
21	this meeting previously published in the Federal
22	Register on October 1, 2003. A transcript of the
23	meeting is being kept and will be made available as
24	stated in the Federal Register notice.
25	It is requested the speakers first

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

identify themselves and speak with sufficient clarity and volume so that they can be readily heard. We have received no written comments or requests for time to make oral statements from members of the public regarding today's meeting. We will now proceed with the meeting and I call upon Mr. Prasad Kadambi of the Office of Research to begin.

MR. KADAMBI: Thank you very much, Mr. Chairman. I would like to ask the Branch Chief of the Regulatory Effectiveness and Human Factors Branch, John Flack, to perhaps come up.

12 CHAIRMAN APOSTOLAKIS: I'm sorry, John. MR. FLACK: 13 That's fine. Good morning. 14 My name is John Flack, Branch Chief of Regulatory 15 Effectiveness and Human Factors Branch. I just wanted to mention that this work actually evolved from 16 17 recommendations from the ACRS about a year ago to use 18 formal decision making in order to provide more 19 transparency, reducibility, consistency, and 20 traceability in light of the uncertainties basically. What you will hear today is we will give 21 22 you an overview of where we are on that effort and how 23 we are moving forward in its application to other 24 areas which we are constantly entertaining.

The key eventually would be to get to the

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 5

1

2

3

4

5

6

7

8

9

10

11

25

Commission with something and have them support this effort. One of the things I think is advantageous in the effort came up recently when we were just discussing on how to document knowledge and understanding in some formal way to be passed on to the next generation. By applying methods like this you do leave People can understand better how that behind. decisions were made and what the basis of those decisions were. We are seeing this coming up again in

another arena as another important area.

Having said that, let me turn it over to Prasad who will walk you through.

CHAIRMAN APOSTOLAKIS: Very good.

MR. KADAMBI: Thank you very much, John. The outline of my presentation is basically just to introduce a document that we have prepared and introduce the Subcommittee to some ideas about how we can use the information in this document.

20 What this represents is the completion of 21 the first phase of an activity that we undertook as 22 the recommendation of ACRS. The second phase we see 23 as the application to demonstrate the utility of these 24 ideas. Then we have to get eventually Commission buy-25 in on this approach. That's what we are aiming

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

	7
1	towards.
2	MR. ROSEN: I should acknowledge that was
3	the wrong number, 6833.
4	MR. KADAMBI: Yes, I'm sorry. I was going
5	to point that out. In some places I have interchanged
6	the numbers and it should be 6833 of the NUREG/CR.
7	CHAIRMAN APOSTOLAKIS: You are the only
8	one so far dealing with this issue? Obviously John
9	knows what you're doing but you are the only one
10	exploring this?
11	MR. KADAMBI: Our branch, I think, is
12	really the one that is focusing on this.
13	MR. FLACK: Yes, we have the lead on it.
14	Basically Prasad's work is doing the format. Now, we
15	recognize that methods like this are being applied
16	without recognizing
17	CHAIRMAN APOSTOLAKIS: Sure. Sure.
18	You've been making decisions since 1974.
19	MR. KADAMBI: Yeah. And I think we want
20	definitely to acknowledge the role of the ACRS in
21	bringing to our attention the merits of this approach.
22	We did tell you back more than a year ago that we
23	would be exploring the feasibility of applying these
24	methods.
25	In order to provide the context for this,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	8
1	I would like to find out, again, as John also pointed
2	out, that the agency is really more than a lot of
3	activities that have elements of formal methods.
4	What is seems these activities would
5	benefit from is an overall structure and a predictable
6	process that would at a higher level bring these
7	concepts together so that we will have greater
8	assurance of consistency, transparency, and a way to
9	assess effectiveness and deficiency, I believe.
10	We got started on this really as part of
11	the advanced reactor research plan when we were
12	looking for different ways that we might prioritize
13	the research that would become necessary if we started
14	getting applications for advanced reactor concepts.
15	In addition to the phenomena
16	identification and ranking table approach which has
17	been sort of the standard way that we have pursued
18	this, we wanted to see are there other ways of
19	achieving some kind of prioritization so that's how we
20	got started on it.
21	What we found is that really the
22	methodologies have widespread applicability. Also
23	what we found is that there are many ongoing
24	activities such as the planning, budgeting, and
25	performance management effort, the PBPM which is

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	9
1	central to a lot of things that the agency is doing.
2	It is an effort that tries to consider the four
3	performance goals of the agency.
4	In many ways it represents an application
5	of multi-attribute utility. We would like to see if
6	that and the PIRT process, and also I would like to
7	find out the effort in performance based regulation
8	which the Commission has identified as a strategic
9	goal to improve risk informed and performance based
10	regulatory approaches.
11	All these would benefit from a formal
12	structuring of objectives. What I see is significant
13	support for this whole effort is the success of the
14	ROP which we would attribute substantially to this
15	formal structuring of objectives.
16	CHAIRMAN APOSTOLAKIS: Which the ACRS also
17	requested at the time and the staff performed
18	beautifully.
19	MR. ROSEN: And quickly.
20	CHAIRMAN APOSTOLAKIS: So we all deserve
21	credit for this. A lot of times people think of, you
22	know, all the analysis and I have to have this and I
23	have to have that. Sure there is a lot of effort
24	going into that but simple things like structuring
25	your objectives, thinking about them as are they

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	independent; am I double, triple counting; am I
2	leaving anything out.
3	This is a great value. All formal
4	mathematical theory is that they take you by the hand
5	and they say, "Now my friend you have to think about
6	this. The next step is to think about that." I think
7	you really pointed out some of the great benefits even
8	before you put any numbers in by just structuring your
9	approach and saying, "This is what I really care
10	about. I care about reactors. I care about this and
11	I care about that."
12	Initiating events like the ROP does and in
13	another context you have something else. That's
14	already a major step because it forces you to think
15	about what are the objectives of your analysis and
16	some structure. I think the ROP has benefitted
17	tremendously from it.
18	That simple diagram that shows the four
19	top tiers is great. People look at it now and think
20	this is what the NRC staff really cares about. They
21	care about initiating events. They care about the
22	primary human boundary. You know, this is wonderful.
23	MR. FLACK: And just to follow-up to that,
24	we actually when we responded to the need to do
25	advanced reactor research we followed that same logic

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	and it just carried us through.
2	CHAIRMAN APOSTOLAKIS: It structures
3	everything. It has many, many applications so I'm
4	really glad you guys are doing this.
5	MR. KADAMBI: Well, this particular
6	NUREG/CR, in fact, does have a whole section devoted
7	to the structuring of objectives. We use the reactor
8	oversight process as an example that demonstrates some
9	of these concepts and how they can be more widely
10	applied.
11	The NUREG/CR itself, again, I point out at
12	6833, is not a cookbook. What we try to do is after
13	looking at this whole vast area of decision analysis
14	try to identify certain important concepts and the
15	literature in it. I have to point out our Chairman is
16	responsible for a substantial part of the literature
17	and we have benefitted considerably from it.
18	CHAIRMAN APOSTOLAKIS: Commissioner
19	Modarres is doing all these things?
20	MR. KADAMBI: No, the Chairman of the
21	Subcommittee right here. We have compiled this sort
22	of catalog of tools and methods which we hope will
23	make it easier for staff to get into it and to pursue
24	it to the depth that they find necessary to apply it
25	in any particular application because, of course, the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	context determines a lot of exactly what actually
2	happens in any application.
3	We did have a peer review of this NUREG/CR
4	and it was very valuable to get the kind of feedback
5	that we did from the other program offices. Everybody
6	recognized the merits of a structured decision process
7	and they also recognized how in their own work they
8	see elements of these things.
9	But what did seem to throw everybody off
10	was the unfamiliar terminology and the conceptual
11	complexity of a lot of things in here. What we felt
12	was this is something that needs to be addressed
13	recognizing this as an important part of the feedback.
14	Again, it can be addressed by actually
15	showing how it would work in specific cases using
16	familiar examples. The bottom line is that the
17	evidence from this work provides strong support to
18	pursue these methods.
19	Again, it's 6833. What a staff member
20	using this document would be introduced to a certain
21	concept such as utility theory, value-of-information
22	techniques, performance measures, something that I
23	believe is quite key to this whole approach as to
24	understand how qualitative objectives can be
25	represented by appropriate performance measures and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	the concept of hypothesis testing which is, you know,
2	a very familiar thing in science but quite often we
3	don't really use it as much as we can in our work.
4	There is something called Receive
5	Operation Characteristic that we devote quite a bit of
6	time to in this document. I have to tell you that
7	this is terminology that goes way back to the end of
8	the second World War when they were developing radar
9	techniques to differentiate between false and true
10	signals. The way I use it in this work is basically
11	a formal way of considering the probability of being
12	right versus the probability of being wrong.
13	CHAIRMAN APOSTOLAKIS: False positive,
14	false negative.
15	MR. KADAMBI: Right. Exactly. Also there
16	is a section on objectives hierarchies which I think
17	will help a great deal.
18	We have also tried to cover in this
19	techniques that the staff is somewhat familiar with
20	such as the analytic hierarchy process and CSAU, Code
21	Scaling, Applicability and Uncertainty Evaluation.
22	CHAIRMAN APOSTOLAKIS: One comment here
23	trying to help you avoid some of the pitfalls. If you
24	mention the analytic hierarchy process to decision
25	theorist, they will attack you because the AHP

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	unfortunately was presented as an alternative to
2	decision theory.
3	But if you use it to support decision
4	theory, in other words, you know, getting the
5	utilities or eliciting information from experts but
6	not making the decision using the AHP. Then it's a
7	different story. It has its own problems.
8	I think it's similar to what happened with
9	expert systems. They were oversold in the beginning
10	that expert systems would solve everybody's problems
11	and it turns out that they have not solved everybody's
12	problems but they are very useful. Having interactive
13	problems in the English language is great.
14	So this one is a tool that supports the
15	decision theory and you probably know that already
16	because it's like hold a red flag. If you mention
17	this to people like Keene Neale or those guys it's
18	something to be careful about.
19	MR. KADAMBI: I fully agree, Mr. Chairman,
20	and I would say that something in my mind we want to
21	be careful in the whole decision analysis area is we
22	should not oversell it because it may really create
23	unnecessary problems in the future.
24	CHAIRMAN APOSTOLAKIS: So the AHP is not
25	an alternative. It's just another tool.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	MR. KADAMBI: No. This is just to point
2	out that
3	CHAIRMAN APOSTOLAKIS: I understand.
4	MR. ROSEN: Come back to why you want to
5	do this and you would like to have the agency use
6	these techniques or recognize the aspects of the
7	techniques and what they're now doing. Maybe expand
8	the way they do business now to take on some more of
9	the attributes of these techniques to make the
10	decision processes even more formal and more
11	transparent and that sort of thing.
12	So if you think of what your final
13	objective will be which is to convince people to do
14	something different, then the idea that you not make
15	them mad in the process is very useful.
16	MR. KADAMBI: Exactly. That's the whole
17	point of it.
18	CHAIRMAN APOSTOLAKIS: I really found it
19	interesting that the reviewers complained that there
20	was conception complexity. I thought conceptually the
21	method is really simple. Implementing and applying it
22	is a problem and I keep getting surprised myself.
23	For example, one of the latest problems
24	we've had is how do you accommodate through teaming
25	and maybe losses, economic losses from routine

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	failures, and the same problem with core damage which
2	is huge. You have this tremendous difference. You go
3	from a few thousand dollars to billions of dollars.
4	That creates a big problem in accessing
5	utilities and all that. The implementation, if seems
6	to me, is more complex and subtle than the conceptual
7	frame work. But, you know, if people found it
8	daunting, then what can you do? We have to educate,
9	right?
10	MR. KADAMBI: We have to address the
11	issue.
12	CHAIRMAN APOSTOLAKIS: Sure.
13	MR. KADAMBI: And hoping that is the sort
14	of thing that we pursue.
15	MR. ROSEN: I may very well be that the
16	way to introduce this is to talk about way decisions
17	are made now. What aspects of what you do now are, in
18	fact, parts of this which is talk about the way
19	business is done now and say now the formal decision
20	making theory would add this piece to that.
21	CHAIRMAN APOSTOLAKIS: Exactly. That
22	would be a great way of doing it.
23	MR. ROSEN: Rather than top down and say
24	these are all the things you have to do.
25	CHAIRMAN APOSTOLAKIS: Right. Use

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	something that people are already familiar with.
2	MR. ROSEN: And are doing.
3	
4	CHAIRMAN APOSTOLAKIS: And putting in this
5	form now you will have gotten extra help here.
6	MR. ROSEN: Yes.
7	MR. KADAMBI: In effect, that's exactly
8	what I was trying to do by pointing out how the
9	planning, budgeting, and performance management
10	activity of the agency is really doing just that. I
11	mean, if you look at what planning involves, it is
12	really a careful identification of objectives and
13	trying to structure it in such a way that you can, in
14	fact, budget appropriately to the priorities.
15	MR. ROSEN: But, you see, even that is
16	just a piece of a bigger structure which includes the
17	agencies overall goals first and then down to the
18	planning and budgeting. When you see an aspect of a
19	budget come up, there's always the question how does
20	this relate to the agency's goals so it's in this
21	formal structure.
22	MR. KADAMBI: Exactly. That's the point
23	I'm trying to make. And also I think it sort of
24	encourages one to be more creative in identifying
25	performance measures as you go through this effort and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

identify the measures at the right level in this structure so that you don't get too deep into details and into the noise level of things and you focus on those things that are important as Dr. Apostolakis pointed out. It's a way to identify what is important.

7 Again, I go back to the success of the ROP and the Commission's emphasis on performance based 8 regulation as offering opportunities to use formal 9 10 The PBPM process can be seen as a decision methods. 11 way to express multi-attribute utility theory. We are 12 evaluating options to consider private projects and we 13 certainly would like suggestions from the ACRS on 14 this. What is key is that we do involve the other 15 offices. I think we need to get more people involved from all the difference areas of agency activity. 16

We have to, I think, point out that the basic benefits that we see from this is a focus on structure, transparency, and treatment of uncertainty. Quite often that is where we, I think, can show improvement in our work. What we are suggesting is that there are some things that we can take from decision analysis to help us do that.

24 We have tried to identify a five-step 25 process to do this. The first step would be to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

construct utility function. Again, that sounds to some people, you know, like something complex but it's basically just identifying what is important for the decision maker to make sure that we incorporate in the things that we observe and that we try to measure those things that the decision maker and that depends, of course, on who it is.

Sometimes it's the Commission and sometimes it is the branch chief. It could be anyone in between, too. So, you know, we just formally go through this process and try to identify what the constraints are. Then the second step would be to have a way to think about alternatives.

Quite often what we end up doing is we identify an alternative and all the activity goes in either sort of proving success or failure of an alternative rather than spend more time and effort thinking about what are the different alternatives that will help us optimize the decision maker's preferences.

21 MR. ROSEN: Well, you hear about the 22 President's decision making process. You always hear 23 that he is presented with a slate of alternatives from 24 do nothing to whatever. That is clearly evidence that 25 down the street they are using it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

	20
1	MR. KADAMBI: Right.
2	CHAIRMAN APOSTOLAKIS: One of the senior
3	members of the Clinton administration, Secretary of
4	the Treasury Robert Ruben, he said in an interview in
5	the <u>New York Times</u> that every major decision to be
6	made used this. They asked him, you know, if you have
7	this big thing about the financial crisis in Korea and
8	Japan and all that, the question was whether the
9	United States should intervene and help them.
10	Congress was against it. He said he used
11	the utility theory. They asked him, "How can you put
12	probability to some of these things?" He said, well,
13	he puts some numbers in and you do some sensitivity
14	studies, the Secretary of the Treasury.
15	MR. ROSEN: You didn't call him up and
16	lecture him on uncertainty, the fact that sensitivity
17	studies are not substitutes for uncertainty analysis?
18	CHAIRMAN APOSTOLAKIS: I'm sure he knew
19	that. He's a Harvard graduate. I was so impress. I
20	should have kept that interview.
21	MR. ROSEN: He got it right and also the
22	Vice Chairman of Citigroup.
23	CHAIRMAN APOSTOLAKIS: He said that
24	throughout his career
25	MR. ROSEN: He did have a job after

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	government.
2	CHAIRMAN APOSTOLAKIS: And even before.
3	MR. ROSEN: Before that he was with
4	Goldman-Sachs.
5	CHAIRMAN APOSTOLAKIS: Yeah, and he said
6	using this
7	MR. ROSEN: He's done all right.
8	CHAIRMAN APOSTOLAKIS: He decided to help
9	Mexico with their economic crisis. He said he had
10	young people around him who understood these methods
11	so they prepare alternatives using these and then he
12	would make a decision. It was a very impressive
13	interview.
14	MR. ROSEN: He's an impressive guy.
15	CHAIRMAN APOSTOLAKIS: You see, you don't
16	have to be too occulant. I mean, if you follow the
17	thought processes, it helps you.
18	MR. KADAMBI: Again, by way of how we
19	would go about using this, we could generate expected
20	utilities so that we could subject it to some kind of
21	a testing process if we do implement it. We would use
22	qualitative and quantitative factors. Quite often we
23	get trapped into thinking that if you can't quantify
24	it, then we should reject it.
25	What this approach would tell us at least

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

think about constructive measures that would be applicable to the qualitative aspects. We could look for figures of merit sometimes in very complex situations that may not be easy to do. In fact, it may turn out to be not just one figure of merit but a combination of them.

Again, depending on the context it may or may not be very complex. Also the key is to identify the decision rules to think about this. For example, when the option 2 effort, the risk categories are, in fact, decision rules that have been set up. If we look at it more formally, that way I think it may make it easier to implement some of these.

14 MR. ROSEN: If I were to think about the 15 ROP in the context of these last few thoughts you 16 offered, I would say that performance index are the 17 performance indicators and the decision rules are the 18 action makers. Am I correct?

19MR. KADAMBI: Yes. That's how I would20translate it, too.

21 MR. ROSEN: Because what we are trying to 22 do with the ROP is decide where to apply agency 23 resources.

24 CHAIRMAN APOSTOLAKIS: And the thought 25 that the various colors should be consistent in the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	23
1	parity of the colors comes from this theory that says
2	when you say yellow here and yellow there, you have to
3	mean the same thing in terms of preference.
4	MR. ROSEN: Otherwise
5	CHAIRMAN APOSTOLAKIS: Otherwise you are
6	arbitrary. That is an interesting input or insight
7	from the theory that would have helped the developers
8	of the matrix.
9	MR. ROSEN: But my point here is made to
10	reinforce an earlier point I made which was that one
11	needs to personify this for the agency. If you want
12	to get your ultimate objective which is to get people
13	to think more in terms and use it which is a valuable
14	objective I support, then as you go along in these
15	presentations, say, for example, in the ROP, here's
16	how we did it.
17	We figured up performance index and these
18	are our decision rules. We didn't call them those
19	things at the time. We just used our good judgment
20	and set it up that way. But, in fact, here are the
21	pieces of formal decision method being embodied in the
22	way we do business.
23	We just didn't know it so don't be too
24	surprised if you find out that two-thirds of what we
25	do follow these informal ways in thinking. It's just

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	a way of heuristically approaching the subject for
2	your audience that I'm suggesting.
3	MR. KADAMBI: Yes, absolutely. I fully
4	agree with what you said.
5	MR. BONACA: Among these steps you
6	mentioned a number of times the treatment of
7	uncertainty so it would be also part of this steps
8	that you are describing here?
9	MR. KADAMBI: Yes. I think you would
10	incorporate it at each step really because
11	uncertainty, in fact, determines a lot of how you go
12	from step to step and what you would consider as
13	important and what you would pay more attention to and
14	what you would pay less attention to.
15	I think it's sort of one of those
16	background kinds of things that you have to keep in
17	mind. My feeling is that as you start applying it you
18	will be forced to think about it if you do it in a
19	formal way.
20	MR. BONACA: So really probably the
21	development of mortality is tied to it.
22	MR. KADAMBI: Yes, it is.
23	MR. ROSEN: And one alternative that is
24	more preferable than another is one that is less
25	uncertain.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	CHAIRMAN APOSTOLAKIS: That's right.
2	Other things being equal.
3	MR. KADAMBI: Again, I don't know how it
4	will work out in specific cases. There may be certain
5	times when it doesn't quite work out that way but if
6	it doesn't work out that way, I would submit you would
7	at least know why it isn't and so you would know how
8	to either confirm or deny your basic assumption.
9	MR. ROSEN: Well, I'm a control freak so
10	I like alternatives that have less uncertainty rather
11	than more. Maybe others would not follow that.
12	That's one of my high priority items. I would like to
13	get where I'm going, know where I'm going to start and
14	get there with some reasonable assurance.
15	MR. KADAMBI: Sure. I understand.
16	Anyway, these are the basic steps that we might think
17	about using and how could we implement these. Again,
18	I offer these as possibilities that we might pursue.
19	What we will try to do along the lines of what Mr.
20	Rosen pointed out is try to close the gap in
21	terminology by pointing out similarities between a lot
22	of what is already being done and what formal decision
23	theory approach it really calls for.
24	One way of doing this might be to set up
25	an interoffice working group which would provide a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

focal point for these formal decision methods and develop a nucleolus of knowledgeable staff in this. We could identify case studies and apply them with internal stakeholder input, you know, involved in many of the steps where really having stakeholder input is quite critical.

Of course, at some point we would have to address the resource issues because all these things take resources and resources are always at a premium. We would have to work through these issues one by one. CHAIRMAN APOSTOLAKIS: Have you found positive response from people when you talk about an interoffice working group?

MR. KADAMBI: Well, not yet. Maybe if the ACRS helps me, I will be able to get more positive --

MR. ROSEN: We could open up each meeting with a discussion what it appears and who is presenting it to us and what they know about formal decision methods and whether they are supporting the other agency.

21 MR. KADAMBI: I would go along with that. 22 That would make you popular.

23 MR. ROSEN: We could start with our
24 colleague Dana Powers.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. KADAMBI: What we would be looking for

1

2

3

4

5

6

14

15

16

17

18

19

20

25

	27
1	is sort of a ripple effect of wider and wider
2	participation in it and gradually have enough people
3	that we can rely on to implement this. What I would
4	foresee is that we prepare some kind of a NUREG report
5	but it has to be something that we can go back to the
6	Commission and say one way or another the staff has
7	explored this approach, has demonstrated one thing or
8	another, and then make sure that the Commission does
9	support this activity.
10	MR. ROSEN: Do you have a training branch
11	in this agency?
12	MR. KADAMBI: There is a whole you
13	know, it's part of human resources. Training is a
14	very important function.
15	CHAIRMAN APOSTOLAKIS: Short courses you
16	mean?
17	MR. ROSEN: Well, we're talking about
18	training. We're talking about training people to
19	understand the value of formal decision methods.
20	CHAIRMAN APOSTOLAKIS: That's a good
21	point. Maybe you can I don't know, maybe it's too
22	soon now but after you've heard some of these case
23	studies of where you demonstrate. You have it right
24	there?
25	MR. KADAMBI: Well, no.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	CHAIRMAN APOSTOLAKIS: I mean, it would be
2	worthwhile having a two to three-day training short
3	course as part of the agency's arsenal.
4	MR. ROSEN: I would start with a hour just
5	to get the idea to people. Really, my point was that
6	what you are really doing is research has looked
7	into these methods and determined that they have value
8	and suggest to the agency that they be used. It seems
9	to me the rest of the job other than some advocacy
10	from you is to support the training organization.
11	These are the kinds of things that are
12	embedded in a culture, the agency's culture through
13	management training, not through the research group
14	trying to set up an interagency working group pushing
15	on a rope. What you need to be doing is putting in
16	your formal training program for managers so that the
17	managers come to their jobs equipped understanding
18	what FDM is and understanding how to where it's
19	applied in the agency already.
20	When they set up a new project to take out
21	their FDM methods and say, "Okay, let's make sure
22	we're following through this." Otherwise, I feel
23	research is the wrong person to do it and, secondly,
24	pushing on a rope anyway.
25	MR. KADAMBI: Well, I think that is a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	valuable suggestion and we ought to do something about
2	it.
3	CHAIRMAN APOSTOLAKIS: You have to have
4	case studies. You have to have case studies
5	meaningful to the agency.
6	MR. ROSEN: You have to support training.
7	You can't just tell training to do it but you would be
8	the support for training. You would help them develop
9	the methods. You would train their trainers. You
10	would sit in on the sessions initially. It's a
11	function of human resources to train managers,
12	supervisors, and employees in general on techniques
13	the agency wants to use.
14	MR. KADAMBI: It appears to me that could
15	be the central message of a Commission paper as we go
16	up to the Commission with the results of this case
17	study and all the information.
18	CHAIRMAN APOSTOLAKIS: Are you doing any
19	at all? I mean, what is the plan for this next year
20	now?
21	MR. KADAMBI: Actually we haven't
22	formulated a plan as such.
23	MR. FLACK: That's part of what we are
24	here to discuss when Prasad was mentioning
25	implementation and how to go about doing that and I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	think the focus would be to try to get something to
2	the Commission and draw out a pathway to get us there
3	to demonstrate and to show that it works.
4	Then as part of that integrating it, I
5	would think it's more a tool that you could integrate
6	it into modules that may be already on the books where
7	you would have a certain part of that in the context
8	of that application and show how it works so there are
9	different ways. Again, we are still trying to figure
10	out in some way the next step in trying to get this
11	laid out and that's what you're hearing today.
12	CHAIRMAN APOSTOLAKIS: So you are in the
13	process then of thinking about what case studies to
14	do?
15	MR. KADAMBI: Right. And how to go about
16	doing that.
17	CHAIRMAN APOSTOLAKIS: Well, you can start
18	by helping Mr. Thadani. I mean, he has to prioritize
19	research efforts every year and I understand that's a
20	contentious issue usually.
21	MR. FLACK: Well, that's not an easy one.
22	CHAIRMAN APOSTOLAKIS: It's not an easy
23	one. Maybe you can pick a subset and ask yourself how
24	would one go about it. You have a lot of these
25	qualitative attributes there, of course, but if you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	can convince him that this would make his life easier,
2	then you made a major step forward I think and that
3	doesn't have to be the only case.
4	MR. ROSEN: I think, George, you have a
5	good idea. I think using the case studies is valuable
6	and useful. The trouble is with them is they tend to
7	feel like they are isolated. It's just a story for
8	research. It's just a way for research to prioritize
9	efforts. When, in fact, it should be viewed, I think,
10	the other way.
11	The agency has core values or missions.
12	It has a PBPM process, planning and budgeting process,
13	which is structured around those missions. One of its
14	missions is research which has to support the
15	structure above it. And there is a case study here on
16	how you can prioritize research using this. Don't see
17	this as in isolation is my point.
18	See this as simply an embodiment of a
19	structured formal decision making approach that the
20	whole agency is really I mean, this is the most
21	formal of agencies of enterprises compared to a mom
22	and pop shop which may or may not have to do these
23	things but, in fact, would be better off if they did.
24	The agency has a congressional act that
25	establishes it, a set of regulations. This huge vast

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

structure which all you are really doing is saying, "Well, in this formal structure we are going to use formal decision tools." Case studies are important as anecdotal almost successes, but it should be seen as an overall embodiment of the formal structure you are operating in.

MR. KADAMBI: In fact, I would submit that 7 if you look at our strategic plan you could actually 8 build an objective hierarchy just from the way that is 9 10 If you go into the plan itself it defines set up. 11 very formally what is a regulatory framework and it 12 defines it exactly the way you did which is it begins with the enabling legislation and comes all the way 13 14 down to inspection procedures. That is the regulatory 15 I think it's all there. framework.

CHAIRMAN APOSTOLAKIS: You have to be careful. It seems to me we have multiple objectives here. One objective is to do what you and Mr. Rosen have been discussing the last few minutes. But another objective is to build support. You need some influential people to support you.

That's why I said if you prove to Mr. Thadani that this can help you, then you have a powerful man behind you. If you only go up and say this is a good way of doing things, people will say,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

16

17

18

19

20

21

	33
1	"Gee, that's probably good," but you will not get the
2	same kind of support.
3	The other thing regarding what you said
4	about a strategic plan. It's not enough to say that
5	what is in the strategic plan really conforms with
6	this. Then you have to go an extra step and show how
7	developing the plan would have been easier had they
8	used this. Then people will come back and say, "Okay.
9	We are already doing it." You have to demonstrate
10	that there is some value to this.
11	That what you are doing already is not
12	orthogonal to this but had you used this, you would
13	have gotten something that is valuable that would have
14	made your life easier, you know, some value. I think
15	if you start doing these things you will see what will
16	come.
17	MR. KADAMBI: I fully agree with you. The
18	point I was also going to make was that we in the
19	staff don't have really much by way of guidance on
20	implementing this strategic plan, you know. This
21	approach and if we sort of decide to use it could
22	offer an easier way for staff which my experience is
23	they sometimes have difficulty in thinking about the
24	relationship between the strategic plan and their own
25	work. This would be a way to help them, in fact,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	align their activity.
2	MR. ROSEN: Let me give you an anecdote
3	that supports, I think, very nicely your point, the
4	one you're just making about the need to support the
5	strategic plan and to understand it. In utilities
6	that I have been associated with they have core values
7	which is the kind of thing that the Commission has for
8	its strategic goals.
9	When it's used appropriately and the staff
10	of the utility understands it, those core values
11	become important day-to-day things and I have
12	experience with decision making groups within a
13	utility asking each other whether or not certain
14	actions of one group or one party is aligned with the
15	core values or not.
16	In discussions about whether this was a
17	good thing or a bad thing, the discussions brought up
18	refer back to the core values and say these actions
19	between these two groups are not consistent with this
20	core value. You should see it in that light and
21	whether I'm having a good discussion or I'm not, and
22	correcting behavior and adjusting approaches.
23	This is the anecdote I wish to add and
24	that is exactly the kind of thing I think you're
25	suggesting is whether the staff here is working on

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

35 1 something and trying to make a decision between A and 2 You can think about the formal structure he's в. 3 operating in including the Commission's objectives and 4 say better or worse this will align us better or worse with the core value, the structure. 5 CHAIRMAN APOSTOLAKIS: So the purpose of 6 7 today's meeting was really not to call into the details of what you're doing. As you know, it's more 8 like to familiarize ourselves with the various 9 activities for the Office of Research. I take it this 10 11 is a fairly low-level in the sense of funding 12 activity. It's not into the hundreds of thousands of 13 dollars. 14 Although I'm sure your salary would take 15 care of it. But you will pursue it this year? You will try to identify some case? We will be happy to 16 17 hear from you when you have some case studies and 18 discuss them with you. Obviously the Subcommittee is interested. I think from the full committee you will 19 20 have some skepticism but they will be willing to be 21 convinced, I think. 22 ROSEN: That's because the full MR. 23 committee is populated by structuralists rather than 24 rationalists, or some structuralists who we are 25 working on.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433
	36
1	CHAIRMAN APOSTOLAKIS: No, you have to
2	demonstrate value. You have to demonstrate value and
3	case studies and perhaps the global approach that was
4	discussed earlier.
5	Anything else from the members? Prasad,
6	you want to say anything else?
7	MR. KADAMBI: No. I want to thank you for
8	the opportunity to make this presentation.
9	CHAIRMAN APOSTOLAKIS: Thank you for
10	coming. And John.
11	MR. FLACK: I appreciate it.
12	CHAIRMAN APOSTOLAKIS: Okay. Great.
13	Thank you very much.
14	The next item is overview of the PRA
15	Safety Research Program but the presenters are not
16	here. We're take a few minutes. Oh, there's a break
17	scheduled.
18	MR. ROSEN: You're right on schedule, Mr.
19	Chairman, even though you're don't know it.
20	CHAIRMAN APOSTOLAKIS: Okay. We'll recess
21	until 9:30.
22	(Whereupon, at 9:19 a.m. off the record
23	until 9:33 a.m.)
24	CHAIRMAN APOSTOLAKIS: We're back in
25	session. The next presentation is beginning the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	overview of the PRA Safety Research Program, Mr.
2	Cunningham.
3	MR. CUNNINGHAM: Yes, sir. I'm here. Mr.
4	Newberry couldn't be here today because he had a
5	wedding in the family that he decided was more
6	important than this. What can I say?
7	CHAIRMAN APOSTOLAKIS: We'll remember
8	that.
9	MR. CUNNINGHAM: I'm going to give you a
10	real quick overview of what's going on in the division
11	and then pat will come in and spend a good bit of the
12	morning talking about the details of what's happening
13	in one branch and then after lunch, I guess, we'll
14	talk about the other branch, PRAB.
15	We're allocated in FY '04 to have 55 FTE
16	in the division, 55 people, and a budget of about \$15
17	million. You've heard many of the things that we do
18	but it's basically we look at operating experience
19	from a risk perspective. We look at some aspects of
20	security.
21	MR. ROSEN: I hope you're not doing all
22	the security work.
23	MR. CUNNINGHAM: No, sir. No, we're not.
24	This doesn't include the security money. This is the
25	non-homeland security.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	MR. SHACK: Mark, the 55 FTE are staff
2	here. The \$14 million is your contracted budget?
3	MR. CUNNINGHAM: Correct. Correct.
4	That's right. It doesn't include the security. The
5	security in FY '04 for the Office of Security Research
6	budget in '04 is about \$8.5 million. That includes a
7	wide variety of things, not just in PRAB, not just in
8	DRAA.
9	CHAIRMAN APOSTOLAKIS: So what exactly is
10	14.8?
11	MR. CUNNINGHAM: 14 is the budget for the
12	PRA it's for these things except security.
13	CHAIRMAN APOSTOLAKIS: Okay.
14	MR. ROSEN: Contractor support.
15	MR. CUNNINGHAM: Contractor support. It's
16	separate from the 55 FTE.
17	CHAIRMAN APOSTOLAKIS: Okay.
18	MR. CUNNINGHAM: Okay. Develop risk
19	methods, perform risk analyses, develop standards,
20	apply PRA to advanced reactor issues.
21	Within the Operating Experience Program we
22	have the SPAR Model Development Program Analysis and
23	the Accident Sequence Precursor Program, a new data
24	system to look at basic events coming from the
25	industry, Mitigating Systems Performance Indicator or

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	Index. Indicator? Index. Okay. I never get that
2	right. Recommendations coming from the Davis Bessy
3	Task Force and a series of things related to
4	international cooperative efforts.
5	CHAIRMAN APOSTOLAKIS: Which task force is
6	this?
7	MR. CUNNINGHAM: Davis Bessy Lessons
8	Learned Task Force.
9	In the security area we've got basically
10	the application of risk methods to certain security
11	issues. We've got the development of guidance for
12	using risk information and security decision making.
13	We've got the lead for the office for integrating the
14	research program supporting answer. Then we do a
15	variety of briefings domestically and internationally
16	to other government agencies, international
17	organizations for foreign governments basically. That
18	sort of thing.
19	MR. SHACK: Okay. And you have a separate
20	contractor budget for this but the 55 FTEs covers the
21	whole kit and caboodle.
22	MR. CUNNINGHAM: Correct. Correct. In
23	terms of risk methods development I think I mentioned
24	yesterday the big areas we tend to focus on, or have
25	focused on for the last few years, are HRA and Fire

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	Risk Analysis. We heard about HRA yesterday. We'll
2	talk a little about fire risk this afternoon after
3	lunch, I guess. I guess we're not going to discuss
4	materials and waste later but we are working with NMSS
5	to develop risk analysis methods and decision
6	criteria, safety goals, that sort of thing.
7	CHAIRMAN APOSTOLAKIS: So who is reviewing
8	this, ACNW?
9	MR. CUNNINGHAM: ACNW, correct. The last
10	part. We have talked to them several times I think.
11	CHAIRMAN APOSTOLAKIS: You have already
12	done that?
13	MR. CUNNINGHAM: Yes.
14	CHAIRMAN APOSTOLAKIS: Or is it the joint
15	subcommittee?
16	MR. CUNNINGHAM: It was just ACNW.
17	CHAIRMAN APOSTOLAKIS: So what is the
18	purpose of the joint subcommittee? The whole idea was
19	I thought to bring some perspective from the reactor
20	where we have had experience with these things.
21	MR. CUNNINGHAM: That's a good idea for
22	next year when we review the research programs maybe
23	to have a joint meeting.
24	CHAIRMAN APOSTOLAKIS: Not just the
25	research program but actually the research that they

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	are doing in establishing the safety goals for NMSS.
2	Some perspective from the NMSS would have been useful.
3	It just occurred to me I'm a member of that
4	subcommittee so it's okay. You go to ACNW.
5	MR. CUNNINGHAM: ACNW, of course, is not
6	bereft of risk analysis experience with Dr. Garrick on
7	it as chairman.
8	CHAIRMAN APOSTOLAKIS: I never implied
9	that. There is a certain perspective that the ACRS
10	always brings having dealt with it for a long time.
11	MR. CUNNINGHAM: Okay. In terms of risk
12	studies we have the lead in the office for
13	investigating potentially risk-informed changes. 5044
14	is basically done now. 50.46 is in the works.
15	CHAIRMAN APOSTOLAKIS: Were we briefed on
16	50.46 recently, Bill, or has it been a while?
17	MR. SNODDERLY: It's been a while. We
18	have one coming up. November 21st it has been
19	tentatively scheduled.
20	CHAIRMAN APOSTOLAKIS: Already?
21	MR. SNODDERLY: Yeah, to be briefed on the
22	expert elicitation and success.
23	CHAIRMAN APOSTOLAKIS: November? Am I
24	invited to that?
25	MR. ROSEN: No. 50.69 is really an NRR

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	problem at the moment.
2	MR. CUNNINGHAM: 50.69. The technical
3	work has been turned over to NRR. We are in the
4	process of getting a peer review of our work, the
5	research work. The first formal meeting of the peer
6	review is sometime before Thanksgiving.
7	MR. ROSEN: When they pay attention, could
8	you explain that to me?
9	CHAIRMAN APOSTOLAKIS: November 21st is
10	valid. Is that set in concrete?
11	MR. SHACK: I thought we contacted George
12	for an expert elicitation.
13	CHAIRMAN APOSTOLAKIS: Yeah, an expert
14	elicitation. Nobody asked me if I can make it.
15	MR. SHACK: We'll talk.
16	CHAIRMAN APOSTOLAKIS: Can we change it?
17	It's eight weeks from now. Six or eight weeks.
18	MR. SHACK: November 21st is when it's
19	scheduled for?
20	CHAIRMAN APOSTOLAKIS: Yeah. Are you
21	available?
22	MR. SHACK: Yeah. I'm okay with the 21st.
23	CHAIRMAN APOSTOLAKIS: Then the next week
24	we have the ACRS 508 meeting, right? On the 2nd we
25	have we're going to have to move here again.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	MR. SHACK: Okay. What does your peer
2	review involve now in the 50.69?
3	MR. CUNNINGHAM: I haven't been greatly
4	involved in it but it's basically looking at, I
5	believe, both the basic method that's been applied and
6	getting into some of the nastier technical issues
7	related to more the materials aspects of it, I
8	believe. If I could, maybe when I'm back here after
9	lunch I'll come back and give you a better answer.
10	MR. SHACK: Is there a document or a
11	report? It's not Appendix T because that's been
12	MR. CUNNINGHAM: That's correct. It's the
13	technical basis report that research provided to NRR
14	is the subject of the peer review.
15	CHAIRMAN APOSTOLAKIS: You're talking
16	about which peer review?
17	MR. CUNNINGHAM: 50.69 PTS.
18	CHAIRMAN APOSTOLAKIS: That is a peer
19	review group?
20	MR. CUNNINGHAM: Yes.
21	CHAIRMAN APOSTOLAKIS: Who are these
22	people?
23	MR. CUNNINGHAM: I'll have to get you the
24	names after lunch.
25	CHAIRMAN APOSTOLAKIS: Have we reviewed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	44
1	the latest 50.69?
2	MR. CUNNINGHAM: No. We haven't seen the
3	NEI Implementation Guide. That's the most important
4	piece that we haven't seen.
5	MR. SNODDERLY: The next step is to have
6	a briefing on resolution of the public comments.
7	MR. CUNNINGHAM: I'm saying 50.69. I
8	don't mean 50.69. I mean PTS just to be clear.
9	MR. SNODDERLY: That sounds better.
10	CHAIRMAN APOSTOLAKIS: So there is a peer
11	review on PTRS. Oh, yeah, sure. That was a huge
12	effort.
13	MR. CUNNINGHAM: Yes. Okay.
14	MR. SNODDERLY: But 50.69 you have washed
15	your hands of the whole affair?
16	MR. CUNNINGHAM: Research doesn't have
17	much of a role in the implementation of 50.69.
18	CHAIRMAN APOSTOLAKIS: Is expert
19	elicitation the only thing that's going on?
20	MR. CUNNINGHAM: No, no, but that's the
21	biggest aspect of things right now.
22	CHAIRMAN APOSTOLAKIS: Is there a document
23	I can read at least if I'm not here?
24	MR. CUNNINGHAM: There is a draft
25	Commission paper in concurrence now that talks about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	next steps of 50.46.
2	MR. SNODDERLY: On the 21st we plan to
3	spend about four to six hours on the expert
4	elicitation and then an hour and a half on the second
5	that Mark just mentioned where they are going to it
6	will be a negative consent paper that says, "Here is
7	what we think we heard from your March 31st SRM and
8	here's what we're doing. Unless we hear differently,
9	we're going to provide you the following."
10	CHAIRMAN APOSTOLAKIS: So which
11	subcommittee is meeting on the 21st?
12	MR. SNODDERLY: We call it a subcommittee
13	but when you include Thermal Hydraulics, PRA, and Bill
14	that's everyone.
15	MR. ROSEN: We're sort of fixated on the
16	21st. Maybe the 20th you're thinking?
17	MR. SNODDERLY: The 20th was not an
18	option. There were two dates that we considered.
19	
20	MR. ROSEN: What was the other one? Do
21	you remember?
22	MR. SNODDERLY: The other one was very
23	early in November but then there really wasn't the
24	staff couldn't provide us with the results.
25	CHAIRMAN APOSTOLAKIS: How about Tuesday

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	of that week which is the 18th?
2	MR. SNODDERLY: Rob Tregoning is going to
3	be away those first two days. He could do it Thursday
4	or Friday. There's another meeting scheduled on
5	Thursday so Friday was it.
6	MR. CUNNINGHAM: Okay. So we've looked at
7	the risk associated with dry cask storage of fuel and
8	that's being discussed with ACNW. We did the risk
9	evaluation of GSI 191 on sump performance that I
10	believe you saw fairly recently. We're doing a risk
11	evaluation of accident induced steam generator tube
12	ruptures.
13	You've seen DG 1122 and heard a lot about
14	it. The ANS external events standards, to my
15	understanding, is just going to publication here
16	within the next week or two so that is basically done
17	for now. We supported the development of that. We
18	are supporting the development of the ANS low power
19	and shutdown standard.
20	In January there's a multi-
21	organizationally sponsored workshop in Vienna on PRA
22	equality. IAEA and a number of others, NEA and
23	ourselves are sponsoring this workshop and we are
24	CHAIRMAN APOSTOLAKIS: What is the purpose
25	of it?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	MR. CUNNINGHAM: To look for
2	commonalities, I believe, across countries and
3	organizations about what we can do to get to the
4	where do we want to be and what is needed to get there
5	is my understanding.
б	CHAIRMAN APOSTOLAKIS: What happened to
7	sensitivity?
8	MR. CUNNINGHAM: We are going to be
9	developing another guide that covers those specific
10	issues.
11	CHAIRMAN APOSTOLAKIS: This is what Mary
12	mentioned when she was here.
13	MR. CUNNINGHAM: Correct. For advanced
14	reactors we're helping NOR and the reviews of some of
15	the reactor types, developing some basic tools to
16	support those reviews. We are also trying to work
17	with what we call the technology neutral framework.
18	I'm not sure if the Committee has seen that or not.
19	CHAIRMAN APOSTOLAKIS: Is there still
20	activity going on there? That's based on Option 3, is
21	it not?
22	MR. CUNNINGHAM: Yes. Take Option 3 and
23	overlay it onto advanced reactor design.
24	CHAIRMAN APOSTOLAKIS: There is some
25	activity or is it very low level?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	MR. CUNNINGHAM: It's moderate level I
2	would say.
3	MR. SNODDERLY: Next month, George, Mary
4	is going to be down with Tom King to present the
5	framework to us.
6	CHAIRMAN APOSTOLAKIS: We have selected
7	the date again, Michael?
8	MR. SNODDERLY: No, it's to the full
9	committee.
10	CHAIRMAN APOSTOLAKIS: To the full
11	committee?
12	MR. SNODDERLY: To the full committee.
13	CHAIRMAN APOSTOLAKIS: Those dates have
14	been selected. So my question was meaningful.
15	MR. ROSEN: And we hope you will attend,
16	George.
17	CHAIRMAN APOSTOLAKIS: What a low blow.
18	MR. ROSEN: It's no fun without you.
19	Could you go back to that one?
20	MR. CUNNINGHAM: Yes, sir.
21	MR. ROSEN: Could you tell me where ACR-
22	700 is? I'm lost on it entirely.
23	CHAIRMAN APOSTOLAKIS: It's Canadian.
24	MR. ROSEN: Is this still active? My
25	notice in the research plan is there's a kazillion

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	efforts on it. I'm surprised by that.
2	CHAIRMAN APOSTOLAKIS: What does ACR stand
3	for?
4	MR. SHACK: Advanced Canadian Reactor.
5	MR. ROSEN: Something like that.
6	MR. CUNNINGHAM: My understanding is, yes,
7	it's still one of the active ones.
8	MR. ROSEN: That means the Canadians are
9	going to come down here and make presentations and
10	ultimately apply for certification.
11	MR. CUNNINGHAM: Correct.
12	CHAIRMAN APOSTOLAKIS: So it will be
13	handled the same way as AP-1000.
14	MR. CUNNINGHAM: Yes, that's correct.
15	Because it's a different design it introduces
16	different issues.
17	MR. ROSEN: And they have done the same
18	thing in Britain, I think. The British may decide to
19	do something different than this agency might and
20	that's difficult. It causes difficulty
21	MR. CUNNINGHAM: It makes life more
22	complicated. Yes, it does.
23	MR. ROSEN: Okay. I'm asking that in the
24	context of research decisions we have to say we like
25	or don't. One of the puzzling things about the plan

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	that I saw now is the amount of effort that's going
2	into ACR-700.
3	CHAIRMAN APOSTOLAKIS: What about passive
4	equipment? What's going on there?
5	MR. CUNNINGHAM: I'm sorry?
6	CHAIRMAN APOSTOLAKIS: You have a program
7	on PRA passive equipment or processes? Phenomenon?
8	MR. CUNNINGHAM: Phenomenon. It's more
9	phenomenon.
10	CHAIRMAN APOSTOLAKIS: It's not passive.
11	MR. CUNNINGHAM: That's right. It's how
12	do you model the reliability of functions.
13	CHAIRMAN APOSTOLAKIS: Does anyone have
14	any idea how to do that or you are searching for
15	ideas?
16	MR. CUNNINGHAM: We are searching for
17	ideas at this point.
18	MR. ROSEN: This is like reactor vessel
19	heads?
20	MR. CUNNINGHAM: This is like passive ECCS
21	systems. Passive ECCS systems.
22	MR. ROSEN: Oh, okay.
23	MR. CUNNINGHAM: That sort of thing.
24	CHAIRMAN APOSTOLAKIS: Yeah. So, you
25	know, the AP-1000 is inside the containment at high

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1 elevation so gravity works right. 2 MR. ROSEN: We hope. 3 CHAIRMAN APOSTOLAKIS: But nobody has come 4 up with any potential failure modes as far as I know. 5 People are skeptical but it says this might happen. 6 MR. CUNNINGHAM: That's my understanding, 7 too. 8 CHAIRMAN APOSTOLAKIS: How can we build 9 something that cannot fail? It goes against our 10 nature. 11 MR. CUNNINGHAM: I don't know. 12 CHAIRMAN APOSTOLAKIS: Okay. 13 MR. CUNNINGHAM: The division provides 14 support to a number of different things. We are 15 responsible for updating the implementation plan for 16 managing the PRA steering committee, the internal 17 committee. 18 CHAIRMAN APOSTOLAKIS: How do you 19 pronounce the second acronym? 20 MR. CUNNINGHAM: RIRIP. Or IP for short. 21 CHAIRMAN APOSTOLAKIS: Now you're 22 shortening acronyms. And the other one is RILP? The 23 MR. CUNNINGHAM: I'm sorry? The other one		51
 CHAIRMAN APOSTOLAKIS: But nobody has come up with any potential failure modes as far as I know. People are skeptical but it says this might happen. MR. CUNNINGHAM: That's my understanding, too. CHAIRMAN APOSTOLAKIS: How can we build something that cannot fail? It goes against our nature. MR. CUNNINGHAM: I don't know. CHAIRMAN APOSTOLAKIS: Okay. MR. CUNNINGHAM: The division provides support to a number of different things. We are responsible for updating the implementation plan for managing the PRA steering committee, the internal committee. CHAIRMAN APOSTOLAKIS: How do you pronounce the second acronym? MR. CUNNINGHAM: RIRIP. Or IP for short. CHAIRMAN APOSTOLAKIS: Now you're shortening acronyms. And the other one is RILP? The third one? 	1	elevation so gravity works right.
 4 up with any potential failure modes as far as I know. 5 People are skeptical but it says this might happen. 6 MR. CUNNINGHAM: That's my understanding, 7 too. 8 CHAIRMAN APOSTOLAKIS: How can we build 9 something that cannot fail? It goes against our 10 nature. 11 MR. CUNNINGHAM: I don't know. 12 CHAIRMAN APOSTOLAKIS: Okay. 13 MR. CUNNINGHAM: The division provides 14 support to a number of different things. We are 15 responsible for updating the implementation plan for 16 managing the PRA steering committee, the internal 17 committee. 18 CHAIRMAN APOSTOLAKIS: How do you 19 pronounce the second acronym? 20 MR. CUNNINGHAM: RIRIP. Or IP for short. 21 CHAIRMAN APOSTOLAKIS: Now you're 22 shortening acronyms. And the other one is RILP? The 23 third one? 	2	MR. ROSEN: We hope.
5 People are skeptical but it says this might happen. 6 MR. CUNNINGHAM: That's my understanding, 7 too. 8 CHAIRMAN APOSTOLAKIS: How can we build 9 something that cannot fail? It goes against our 10 nature. 11 MR. CUNNINGHAM: I don't know. 12 CHAIRMAN APOSTOLAKIS: Okay. 13 MR. CUNNINGHAM: The division provides 14 support to a number of different things. We are 15 responsible for updating the implementation plan for 16 managing the PRA steering committee, the internal 17 committee. 18 CHAIRMAN APOSTOLAKIS: How do you 19 pronounce the second acronym? 20 MR. CUNNINGHAM: RIRIP. Or IP for short. 21 CHAIRMAN APOSTOLAKIS: Now you're 22 shortening acronyms. And the other one is RILP? The 23 third one?	3	CHAIRMAN APOSTOLAKIS: But nobody has come
6 MR. CUNNINGHAM: That's my understanding, 7 too. 8 CHAIRMAN APOSTOLAKIS: How can we build 9 something that cannot fail? It goes against our 10 nature. 11 MR. CUNNINGHAM: I don't know. 12 CHAIRMAN APOSTOLAKIS: Okay. 13 MR. CUNNINGHAM: The division provides 14 support to a number of different things. We are 15 responsible for updating the implementation plan for 16 managing the PRA steering committee, the internal 17 committee. 18 CHAIRMAN APOSTOLAKIS: How do you 19 pronounce the second acronym? 20 MR. CUNNINGHAM: RIRIP. Or IP for short. 21 CHAIRMAN APOSTOLAKIS: Now you're 22 shortening acronyms. And the other one is RILP? The 23 third one?	4	up with any potential failure modes as far as I know.
7 too. 8 CHAIRMAN APOSTOLAKIS: How can we build 9 something that cannot fail? It goes against our 10 nature. 11 MR. CUNNINGHAM: I don't know. 12 CHAIRMAN APOSTOLAKIS: Okay. 13 MR. CUNNINGHAM: The division provides 14 support to a number of different things. We are 15 responsible for updating the implementation plan for 16 managing the PRA steering committee, the internal 17 committee. 18 CHAIRMAN APOSTOLAKIS: How do you 19 pronounce the second acronym? 20 MR. CUNNINGHAM: RIRIP. Or IP for short. 21 CHAIRMAN APOSTOLAKIS: Now you're 22 shortening acronyms. And the other one is RILP? The 23 third one?	5	People are skeptical but it says this might happen.
8 CHAIRMAN APOSTOLAKIS: How can we build 9 something that cannot fail? It goes against our 10 nature. 11 MR. CUNNINGHAM: I don't know. 12 CHAIRMAN APOSTOLAKIS: Okay. 13 MR. CUNNINGHAM: The division provides 14 support to a number of different things. We are 15 responsible for updating the implementation plan for 16 managing the PRA steering committee, the internal 17 committee. 18 CHAIRMAN APOSTOLAKIS: How do you 19 pronounce the second acronym? 20 MR. CUNNINGHAM: RIRIP. Or IP for short. 21 CHAIRMAN APOSTOLAKIS: Now you're 22 shortening acronyms. And the other one is RILP? The 23 third one?	6	MR. CUNNINGHAM: That's my understanding,
9 something that cannot fail? It goes against our nature. 11 MR. CUNNINGHAM: I don't know. 12 CHAIRMAN APOSTOLAKIS: Okay. 13 MR. CUNNINGHAM: The division provides 14 support to a number of different things. We are 15 responsible for updating the implementation plan for 16 managing the PRA steering committee, the internal 17 committee. 18 CHAIRMAN APOSTOLAKIS: How do you 19 pronounce the second acronym? 20 MR. CUNNINGHAM: RIRIP. Or IP for short. 21 CHAIRMAN APOSTOLAKIS: Now you're 22 shortening acronyms. And the other one is RILP? The 23 third one?	7	too.
10nature.11MR. CUNNINGHAM: I don't know.12CHAIRMAN APOSTOLAKIS: Okay.13MR. CUNNINGHAM: The division provides14support to a number of different things. We are15responsible for updating the implementation plan for16managing the PRA steering committee, the internal17committee.18CHAIRMAN APOSTOLAKIS: How do you19pronounce the second acronym?20MR. CUNNINGHAM: RIRIP. Or IP for short.21CHAIRMAN APOSTOLAKIS: Now you're22shortening acronyms. And the other one is RILP? The23third one?	8	CHAIRMAN APOSTOLAKIS: How can we build
 MR. CUNNINGHAM: I don't know. CHAIRMAN APOSTOLAKIS: Okay. MR. CUNNINGHAM: The division provides support to a number of different things. We are responsible for updating the implementation plan for managing the PRA steering committee, the internal committee. CHAIRMAN APOSTOLAKIS: How do you pronounce the second acronym? MR. CUNNINGHAM: RIRIP. Or IP for short. CHAIRMAN APOSTOLAKIS: Now you're shortening acronyms. And the other one is RILP? The third one? 	9	something that cannot fail? It goes against our
12CHAIRMAN APOSTOLAKIS: Okay.13MR. CUNNINGHAM: The division provides14support to a number of different things. We are15responsible for updating the implementation plan for16managing the PRA steering committee, the internal17committee.18CHAIRMAN APOSTOLAKIS: How do you19pronounce the second acronym?20MR. CUNNINGHAM: RIRIP. Or IP for short.21CHAIRMAN APOSTOLAKIS: Now you're22shortening acronyms. And the other one is RILP? The23third one?	10	nature.
 MR. CUNNINGHAM: The division provides support to a number of different things. We are responsible for updating the implementation plan for managing the PRA steering committee, the internal committee. CHAIRMAN APOSTOLAKIS: How do you pronounce the second acronym? MR. CUNNINGHAM: RIRIP. Or IP for short. CHAIRMAN APOSTOLAKIS: Now you're shortening acronyms. And the other one is RILP? The third one? 	11	MR. CUNNINGHAM: I don't know.
14support to a number of different things. We are15responsible for updating the implementation plan for16managing the PRA steering committee, the internal17committee.18CHAIRMAN APOSTOLAKIS: How do you19pronounce the second acronym?20MR. CUNNINGHAM: RIRIP. Or IP for short.21CHAIRMAN APOSTOLAKIS: Now you're22shortening acronyms. And the other one is RILP? The23third one?	12	CHAIRMAN APOSTOLAKIS: Okay.
 responsible for updating the implementation plan for managing the PRA steering committee, the internal committee. CHAIRMAN APOSTOLAKIS: How do you pronounce the second acronym? MR. CUNNINGHAM: RIRIP. Or IP for short. CHAIRMAN APOSTOLAKIS: Now you're shortening acronyms. And the other one is RILP? The third one? 	13	MR. CUNNINGHAM: The division provides
16managing the PRA steering committee, the internal17committee.18CHAIRMAN APOSTOLAKIS: How do you19pronounce the second acronym?20MR. CUNNINGHAM: RIRIP. Or IP for short.21CHAIRMAN APOSTOLAKIS: Now you're22shortening acronyms. And the other one is RILP? The23third one?	14	support to a number of different things. We are
<pre>17 committee. 18 CHAIRMAN APOSTOLAKIS: How do you 19 pronounce the second acronym? 20 MR. CUNNINGHAM: RIRIP. Or IP for short. 21 CHAIRMAN APOSTOLAKIS: Now you're 22 shortening acronyms. And the other one is RILP? The 23 third one?</pre>	15	responsible for updating the implementation plan for
18CHAIRMAN APOSTOLAKIS:How do you19pronounce the second acronym?20MR. CUNNINGHAM: RIRIP. Or IP for short.21CHAIRMAN APOSTOLAKIS:Now you're22shortening acronyms. And the other one is RILP? The23third one?	16	managing the PRA steering committee, the internal
<pre>19 pronounce the second acronym? 20 MR. CUNNINGHAM: RIRIP. Or IP for short. 21 CHAIRMAN APOSTOLAKIS: Now you're 22 shortening acronyms. And the other one is RILP? The 23 third one?</pre>	17	committee.
20 MR. CUNNINGHAM: RIRIP. Or IP for short. 21 CHAIRMAN APOSTOLAKIS: Now you're 22 shortening acronyms. And the other one is RILP? The 23 third one?	18	CHAIRMAN APOSTOLAKIS: How do you
21CHAIRMANAPOSTOLAKIS:Nowyou're22shortening acronyms.And the other one is RILP? The23third one?	19	pronounce the second acronym?
22 shortening acronyms. And the other one is RILP? The 23 third one?	20	MR. CUNNINGHAM: RIRIP. Or IP for short.
23 third one?	21	CHAIRMAN APOSTOLAKIS: Now you're
	22	shortening acronyms. And the other one is RILP? The
24 MR. CUNNINGHAM: I'm sorry? The other one	23	third one?
	24	MR. CUNNINGHAM: I'm sorry? The other one
25 is already taken by international programs I'm afraid.	25	is already taken by international programs I'm afraid.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	CHAIRMAN APOSTOLAKIS: Okay.
2	MR. CUNNINGHAM: Okay. So that's kind of
3	the overview.
4	CHAIRMAN APOSTOLAKIS: So all of these are
5	active programs?
6	MR. CUNNINGHAM: Correct.
7	CHAIRMAN APOSTOLAKIS: Okay.
8	MR. CUNNINGHAM: Active in '04, if you
9	will. Some of these things may not be very far along
10	but they are active. With that, Pat Baranowsky and
11	Company will present the program in the Operating
12	Events Risk Analysis Branch.
13	CHAIRMAN APOSTOLAKIS: We're moving now to
14	our advanced technology.
15	MR. BARANOWSKY: We're now moving to the
16	real world. Not things that could possibly occur but
17	things that have occurred.
18	CHAIRMAN APOSTOLAKIS: You're going
19	backwards. You're using transparencies.
20	MR. BARANOWSKY: Every time I bring a
21	PowerPoint presentation that doesn't work.
22	MR. ROSEN: This is why operating
23	experience is your job because you know from operating
24	experience that this works.
25	MR. BARANOWSKY: Briefing experience, yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	MR. ROSEN: And you have a backup bulb in
2	there in case it blows.
3	MR. BARANOWSKY: If need be, we'll go up
4	and get a little cartridge and stick in and add the
5	PowerPoint.
6	MR. ROSEN: You could also, if need be,
7	come over here and hold it up in front of us.
8	MR. BARANOWSKY: We do have hard copies,
9	I'm sure. I have some people here that should be
10	coming up and sitting down around the table. I
11	thought this would be more of a sort of roundtable
12	discussion.
13	I guess I'd better introduce myself for
14	the record. Patrick Baranowsky, Chief of the
15	Operating Experience Risk Analysis Branch. I brought
16	a few people from my branch here that are responsible
17	and involved in the key areas. I'll just start from
18	this side.
19	Don Marksberry who has been doing program
20	management work for the Accident Sequence Precursor
21	Program for the last couple of years at least. Dr.
22	Pat O'Reilly who is heading up the SPAR development
23	work, Dale Rasmuson who is working on both Data
24	Systems and Industry Trends Program, and Dr. Don Dube
25	who is working on support for performance indicator

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	development for the Reactor Oversight Process.
2	We have other folks, Mike Cheok who is the
3	Assistant Branch Chief, Gary DeMoss who is pretty much
4	our Senior Risk Analyst for ASP events, and Dr.
5	Bennett Brady who is a key person working on data
6	systems and interfaces with INPO also available here.
7	So, what we are going to cover are pretty
8	much programs I've just identified. I'll give a
9	little introduction to how the branch is organized and
10	what we're about. Then we'll cover data collection
11	analysis, the Accident Sequence Precursor Program,
12	industry trending, SPAR work, and then Mitigating
13	System Performance Index.
14	Introduction. Just a quick overview of
15	these things. The Accident Sequence Precursor Program
16	is used not only to have a resource that gives us
17	information on significant events over a period of
18	time but now also becoming part of what the agency
19	uses in their report to Congress to identify how well
20	we're doing.
21	It's sort of an NRC and industry report,
22	if you will. We look at both significant events. If
23	there are certain numbers of them, they would be
24	getting reported to Congress. And whether or not the
25	trends in Accident Sequence Precursors are degrading

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	in some way.
2	The other thing I would mention about the
3	Accident Sequence Precursor Program, which has been
4	going on for quite awhile, is that it does provide an
5	independent assessment by the Office of Research apart
6	from licensing types of analyses. We try and be
7	realistic without any consideration of whether we are
8	trying to license a plant and have some conservatism
9	or not in there. Sometimes it gives a little bit
10	different spin but usually not too much from what
11	we're seeing in the regulatory area.
12	In the oversight process we have a couple
13	of activities ongoing. The first is to support the
14	Industry Trends Program which I'll discuss. And also
15	to develop performance indicators, the most recent of
16	which is the Mitigating System Performance Index. In
17	both of those things we have briefed the ACRS on
18	before. I'll say a little bit about it but if there
19	are any updated types of questions that you would like
20	to ask, we are prepared for that.
21	We have done quite a bit of work on our
22	data collection and analysis to streamline that. It
23	was sort of all over the place in terms of how we were
24	collecting and staring and coding and we really
25	compressed it into a fairly efficient operation.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Now we have a lot of work going on in the
SPAR model development area. It's kind of stretched
us to the limit on resources. I'll go over the
various things there but it's full power, low-power
shutdown, LERF, and even some consideration of
external events. That's the full scope of what we do
in this branch.

The next chart is meant to show how some of this is organized. It's organized so that there is a good interaction between the activities or else we wouldn't be able to do this with a relatively small staff.

Just looking from the bottom up the way our work is organized we have identified a number of databases or sources, if you will, of operating experience information that we process into the databases or that we share with others like INPO, for instance and their EPIX data.

Then you'll see also in this lower tier 19 20 here reliability and availability data system. That's 21 sort of our common way of treating the information so 22 that we don't have one project with a slightly 23 approach to calculating parameters or different 24 whatever. It's all done in a fairly consistent way. This information gets fed into a number of 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

	57
1	analytic activities that used to be done independently
2	when we were first studying initiating events and
3	components to see how we might look at industry trends
4	and get some what I would call industry average or
5	generic insights on these things.
6	We actually published a number of reports
7	which we presented before the ACRS several years ago.
8	Now what we have done instead of updating the reports
9	as we had one time planned, because that's just way
10	too costly, we have taken what I will call algorithms,
11	if you will, that we developed to do the analyses and
12	the standard approach for collecting the data and the
13	standard approach for displaying the important
14	contributors and insights.
15	That's all going into a web-based system
16	so that for 10 or 20 percent of the cost we can do all
17	this not only for all the different aspects but we can
18	update it much more rapidly because publishing NUREGs
19	is just a time-consuming process.
20	The only thing that we would want to be
21	careful about is if we modify our methods and

approaches we would want to have an interaction with

peers before we incorporate that into our methodology

because every one of these reports had pretty

widespread review inside of NRC with ACRS and with

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

22

23

24

25

	58
1	external entities like INPO, EPRI, and owner's groups.
2	MR. SHACK: Now, how do you handle that
3	with the web base? Do you put up a private site
4	somewhere and people discuss it?
5	MR. BARANOWSKY: No. The way it works is
6	if we've already had the methodology and the process
7	peer reviewed, then we just carry it out as a routine
8	production activity. All we're worried about then is
9	QA and that's where we are on this.
10	But if there is a new element to this
11	that's added, then it has to go through a much more
12	rigorous process, most likely with NUREG production
13	and the usual peer review activity. If we were to
14	expand the items that you see on this list here but
15	suppose we said external event issues, we would do a
16	study that would go through the usual process of
17	development, peer review, resolution of comments,
18	finalizing the methodology and then it would get
19	incorporated into what I would call a production sort
20	of mode.
21	MR. SHACK: Just on the SPAR, too, when
22	people are using SPAR for SDP that's done by NRR, do
23	you support that or you support it only to the extent
24	that you just hand them a SPAR bottle?
25	MR. BARANOWSKY: No, we are available for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

consultation and we are actually working on a more
 integrated approach for us to deal with SPAR analysis,
 SDP and ASP analyses so that we can all use a common
 set of tools and procedures.

I think just the tools alone are not enough. My experience has been that if we don't have a process and procedures to use the tools in a consistent way, we can use them anyway we want and get anything we want and it's not trustworthy as a production activity.

Once we get to the point where we think we know how to do certain types of analyses, we should have ingrained in the process an approach that in most cases gets us to a result we can believe in without having to go back and reinvent the wheel on whether we know how to do an analysis of the reactor coolant pump seal type of accident.

That does lead us up to the next level which is the plant specific analyses and there we have both the SPAR models get developed to support that and the Accident Sequence Precursor Program which takes information from the lower tiers.

You will notice I have also added another
little item under the Accident Sequence Precursor
Program, inspection reports, because at one time we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5

6

7

8

9

10

11

12

13

14

15

16

17

	60
1	were just analyzing what came in from LERs I'm going
2	to say about five or six years ago, maybe it was more.
3	More? Okay.
4	Well, we decided that a precursor is a
5	precursor no matter where it comes from. Even if the
6	LER format isn't set up to capture it, perhaps there
7	are other things such as two or three inspections
8	might uncover problems that don't get reported in a
9	single LER so we wouldn't want to miss that if it was
10	significant.
11	Now, I don't know that we've run into any
12	like that but I think a few years ago there were some
13	concerns so that gives us some comfort to know that
14	we're not being blinded by just the format and
15	restrictions associated with LER reporting. Then
16	we've taken this information from
17	MR. ROSEN: Have you been impacted by the
18	rather sparse nature of recent inspection reports?
19	The ROP seems to have caused inspection reports to be
20	less descriptive perhaps than earlier inspection
21	reports of performance.
22	MR. BARANOWSKY: The ones that we worked
23	with on the more significant events I think are pretty
24	detailed. Maybe you can help me out here, Don
25	Marksberry.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

61

MR. MARKSBERRY: Yeah. Most conditions which are identified in inspection finding usually results in LER so that's our first go is we read the inspection report and the associated LER. If we need additional information we call the inspector up. We call the SRA in the region to get additional information.

So the kind of things that 8 MR. ROSEN: 9 reach your program are important enough to ultimately 10 generate an LER and you maybe get a clue of it in 11 inspection report. And the kind of thing I'm talking 12 about is there used to be a lot of flowery descriptive 13 in inspection reports before the ROP. lanquaqe 14 Inspectors were wax poetic about performance at the 15 plants and you could get all kinds of insights from 16 that. Now with the ROP they're а lot more 17 constrained.

Even though they do many of the same things they don't write them all in the reports so there is less peripheral, as we call it, information in these reports than there used to be. But since you're working on the mainline, I can see how that probably hasn't impacted you much. MR. BARANOWSKY: And plus we follow up

24 MR. BARANOWSKY: And plus we follow up 25 informally on many of these things. That's what takes

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	62
1	a lot of time sometimes is interacting with the
2	regional inspectors and/or the licensee to get some of
3	that additional information that's not in either the
4	inspection report or the LER.
5	MR. ROSEN: But you're really talking
6	about something that rises to some level of
7	importance.
8	MR. ROSEN: But you would have an SDP to
9	work from, wouldn't you?
10	MR. BARANOWSKY: Not necessarily. I'm not
11	sure of the numbers but I think about 60 percent of
12	the Accident Sequence Precursors have an overlap with
13	the SDP and about 40 percent don't. Remember, the SDP
14	will look at performance deficiencies per their
15	definition. What we're looking at is what is the risk
16	out there. I don't care whether it's because you
17	intended it or didn't intend it. It is what it is.
18	Our scope is broader in that respect.
19	We also look for overlapping conditions
20	even if they might be related to different aspects of
21	performance, whereas the SDP says we look at this
22	performance issue once and then we go and look at
23	another performance issue. What we're looking for is
24	how is the risk building up as a result of
25	combinations of things or individual items so it's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	really a different perspective.
2	The top of the chart here everything sort
3	of feeds up to our ability to develop risk-based
4	performance indicators. We did a study a couple of
5	years ago on risk-based performance indicators which
6	was reviewed by the ACRS. Then since then we did a
7	spin off activity working at NRR and the industry on
8	adapting some of that for the mitigating systems
9	cornerstone. We'll talk about that a little bit
10	toward the end of the discussion.
11	CHAIRMAN APOSTOLAKIS: Question. One of
12	the problems, Mark, as you know associated with this
13	work is dissemination of the information we generate
14	and even, you know, Carl Fleming's report points out
15	that some from the staff meaning that 20 percent of
16	the events that you identify don't find their way into
17	the PRAs, which is something that is debatable.
18	This is really I mean, there is a lot
19	of useful work that comes out of these precursor
20	studies and other studies that your branch is doing.
21	By in large that is not informing the work that the
22	industry is doing on PRAs. Are we making any progress
23	at all? MR. BARANOWSKY: You make a good
24	point. I can't say we have made progress but I think
25	it's being addressed finally. The Davis Bessy Lessons

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	Learned Task Force resulted in a follow-on activity
2	called the Operating Experience Task Force, I think.
3	I think one of the issues that comes out
4	of that is the dissemination of operating experience,
5	information, and insights. It just so happens one of
6	my key staffers, Don Marksberry, was on that task
7	force. The report is in draft and I'm sure it will
8	come to the ACRS.
9	MR. MARKSBERRY: I think we're scheduled
10	to brief you in a couple of weeks or so. A couple
11	three weeks.
12	CHAIRMAN APOSTOLAKIS: A day I cannot
13	come?
14	MR. BARANOWSKY: That's the way we
15	schedule it.
16	CHAIRMAN APOSTOLAKIS: Full committee.
17	Does my colleague here want to make a comment?
18	MR. ROSEN: I don't like it when he misses
19	full committee meetings. Neither does the chairman of
20	the Commission. I would like to point out that some
21	of your colleagues were here yesterday, John Flack and
22	J. Persensky, talking about the Human Factors Research
23	Program.
24	They gave us three slides on potential
25	performance indicators for the Corrective Action

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	Program, safety conscious work environment, and human
2	performance. Those were thrilling to me because, you
3	know, we've complained that the ROP needs to have
4	indicators of cross-cutting the issues. Are you the
5	guy that was supposed to do that?
6	MR. BARANOWSKY: I don't know. If I am,
7	I need to have the resources.
8	MR. ROSEN: Here they are.
9	MR. BARANOWSKY: I need to have the
10	resources to do the work.
11	CHAIRMAN APOSTOLAKIS: As a dean of my
12	school once said, if there is such a set available,
13	anybody can do it.
14	MR. ROSEN: Exactly. And he was right.
15	You don't need to be smart or determined. I recommend
16	to you if you haven't seen this to get hold of
17	Persensky and Flack's presentation to the ACRS
18	yesterday, to the Subcommittee on the 9th, and to look
19	at the last three charts in their presentation which
20	are potential performance indicators in the areas of
21	the cross-cutting issues.
22	MR. BARANOWSKY: Okay. I appreciate that.
23	So that's sort of an overview of how we are organized.
24	I guess the one point is that things sort of fit
25	together and if we didn't have some of these things

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	going on, we would actually not be able to operate
2	with the small group and the kind of budget size that
3	we have. We take advantage quite a bit of forming
4	small interactive teams to work up and down this chart
5	and it seems to be working out.
6	CHAIRMAN APOSTOLAKIS: This is really what
7	happens. This is data. This is real data. We have
8	a course at MIT every June for mid-level managers for
9	utilities on risk formulation. We run it twice now.
10	This is one of the most popular talks. People really
11	appreciate. When you start talking about data people
12	really get excited. It has always been a very
13	successful popular talk.
14	MR. BARANOWSKY: Okay. Thanks. So let me
15	now just cover the data collection and analysis. This
16	last fiscal year we made significant progress on our
17	integrated data collection and coding system. What we
18	do is we have identified the types of factors and
19	information that we want to extract for all the kinds
20	of studies or risk parameters that we want to
21	generate.
22	Then in a coding book we have that laid
23	out so that we can take an individual coder and train
24	them and have one person or, I should say, do it
25	one time because there may be a couple of people

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

67 1 involved -- go through, say, an LER and extract 2 information that feeds into a lot of analytics, if you 3 will. Many of the charts and parameter type 4 estimations that were in all of our system studies are now just together in one activity and we have the 5 algorithms to do the calculations. 6 7 We've also worked pretty closely with INPO so that we can extract information out of the EPIX 8 9 system which is becoming a more and more quality 10 Now, it doesn't have the kind of rigor and system. 11 perfection to it that some folks in licensing 12 applications like to see. What that means is there is an occasional 13 14 failure event that is either not include or that is 15 included when called a failure that we might not call 16 a failure which one has to be aware of on a plant 17 specific basis because the numbers of failures to key

But across the industry if you want to look at, say, certain types of valves or pumps or whatever, there's a pretty good data base there. Let's say there's 100 failures per year of certain types of valves and we're probably getting 98 of those. That's pretty good.

components on a specific plant are relatively small.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. ROSEN: Is it true that EPIX also

(202) 234-4433

18

25

	68
1	collects runtime data for operating equipment and
2	successful tests?
3	MR. BARANOWSKY: They collect some of
4	that. Dale, can you? Dale Rasmuson.
5	MR. RASMUSON: They collect information on
6	a quarterly basis for some of the systems such as
7	runtimes and demands and that. In others they
8	estimate it. They should have collected information
9	over like the past year or two years and then they put
10	in an estimate of what the runtime would be for that
11	time.
12	MR. ROSEN: Well, this is the famous
13	denominator problem that we've talked about. Right?
14	MR. RASMUSON: Right.
15	MR. ROSEN: Which EPIX really takes a shot
16	at.
17	MR. RASMUSON: Which it really does.
18	MR. ROSEN: Which is a whole lot better
19	than nothing.
20	MR. BONACA: Now, we asked questions about
21	EPIX three years ago. We actually recommended that
22	everybody would report so I talked to INPO about that.
23	Is everybody reporting?
24	MR. BARANOWSKY: Everybody is reporting
25	and, in general, they are doing pretty good. If you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	want a better characterization, I would have to ask
2	Dale.
3	MR. RASMUSON: Most utilities are doing a
4	good job of reporting on the components that we're
5	interested in. We haven't taken a look at all the
6	things. What we want is just a small subset of all
7	the components there. There are some utilities that
8	report but not real well. I would say like 90 or 95
9	percent of them are really doing a good job.
10	MR. ROSEN: Isn't it true, Dale, that INPO
11	checks that?
12	MR. RASMUSON: They have.
13	MR. ROSEN: Somebody actually goes to the
14	plant as part of the evaluation and has a look at what
15	they're doing and make sure they are at least getting
16	the main report.
17	MR. RASMUSON: I don't think that happens
18	but they do have what they call right now Bennett,
19	correct me on this if I make a mistake here but right
20	now they have moved to a new data system where they
21	are submitting their data on the Internet. That comes
22	in. They have developed programs to check the data to
23	make sure that the data is coded and that errors are
24	not in there. Like, for instance, negative values for
25	demands or things.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

70 1 As we have been getting a submittal from 2 INPO and we load it, we have our checks in there and 3 we are finding that -- well, this time we just got one 4 yesterday and I sent it out to Idaho and they loaded 5 the data into RADs and there were no negative values in the thing. We've had them before. 6 Just a few. 7 The quality of the data is increasing and we have good 8 data now. We can do some good analyses and come up 9 with some good estimates. 10 MR. BONACA: I see the LERs looking for 11 comatose failures so you are looking under EPIX. You 12 find consistency in those assessments that you get 13 from them. I'm asking more about the quality of the 14 information you are getting and if it is, in fact, 15 consistent or if it gives you signs that there are 16 some problems to the reporting. 17 MR. RASMUSON: Basically I think EPIX is a great improvement over NPRDS. 18 19 MR. BARANOWSKY: NPRD. 20 MR. RASMUSON: Over NPRDS. Sorry. Over 21 We get a lot more narrative in EPIX where in NPRDS. 22 NPRDS you were limited to like three fields of 240 23 Now we have lots and lots of text that character. 24 goes in there. MR. ROSEN: You have to remember it was 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	done in an era when you had to name a file with no
2	more than eight characters.
3	MR. RASMUSON: Right. I know.
4	MR. BONACA: My question is more
5	directional. In the past we relied heavily on LERs
6	for identification of common cause failures but they
7	are a limited set of information coming in. Now you
8	get EPIX. Does the information coming from EPIX
9	confirm what you had?
10	MR. RASMUSON: Yes. In our database
11	before our common cause database before about 60
12	percent of our common cause failures were coming from
13	NPRDS where we actually were building up the failures.
14	MR. BARANOWSKY: So we have more
15	confidence in EPIX to provide the raw information than
16	we did from NPRDS, plus we've got the LERs. We can
17	cross compare and we have done that to make sure.
18	MR. BONACA: Common cause is a bad example
19	because, of course, I mean they look at those and they
20	would be in LERs anyway. What about component
21	reliability? Do you get really different information
22	or do you look at the two sources?
23	MR. RASMUSON: We are just getting to
24	where we can really do some comparisons in that. The
25	system studies had not been updated for quite a while

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
1 and we have that now. We have just posted on our 2 webpage new system results and now we're working on 3 getting down at the segment train level where we can 4 actually do some comparisons. Some of the comparisons 5 that we did for auxiliary feed water pump, just a real quick spot check, EPIX in our system studies gave very 6 7 good results. MR. ROSEN: I would be remiss if I didn't 8 9 ask a question about fire events. The question I have 10 is fire events that last more than 15 minutes are 11 reportable, I think, under LER, but those fires are --12 all fires are important from a risk analysis point of view because little fires become big fires. 13 14 Even short duration fires ultimately 15 become big fires if you don't do something about them. My question is are the fire events in EPIX only the 16 17 reportable fire event or is there some lower 18 categorization of fire? 19 MR. RASMUSON: There's lower some 20 categorization of fires also and our fire events are also supplemented with information from Neal, the fire 21 22 insurer. 23 MR. ROSEN: So you are getting some robust 24 fire database or analysis? MR. BARANOWSKY: Yes, I think we have a 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

72

	73
1	pretty extensive fire database down to smoke events
2	and don't have fires.
3	CHAIRMAN APOSTOLAKIS: Interesting.
4	MR. ROSEN: This is very important, of
5	course, because the importance of fire in the overall
6	risk perspective.
7	MR. BARANOWSKY: That really covers the
8	consolidated data. I would just mention what the
9	status is on this because we did have to do a fire
10	amount of software work so we've gone through the
11	development and trial testing in August and we have a
12	webpage now that we put together that allows some
13	access for NRC staff. I presume that means ACRS
14	members, too.
15	We're testing this out and modifying it to
16	see if the information that's conveyed when someone
17	queries the system is useful or could change.
18	Eventually we are going to have this set up so it can
19	be available externally but we have some additional
20	work to do to make that happen.
21	MR. SHACK: Does that mean somebody can
22	download the Excel database?
23	MR. BARANOWSKY: I think we want to let
24	them have access to raw information but I don't
25	believe they will be able to download a database.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	MR. SHACK: On the internal webpage?
2	MR. BARANOWSKY: I don't think so.
3	MR. RASMUSON: No, not really. Not at
4	this time. Right now we're working our way we've
5	got some phases outlined here.
6	MR. BARANOWSKY: Let me just show this
7	picture. This will show you the kind of things that
8	you can find on the website. In other words, all the
9	analysis work that I talked about, we're trying to
10	figure out how to get that out to folks because now we
11	have it available here. We need to not only make it
12	available on the website but then the next step is to
13	make sure that those who use this information would be
14	aware of it.
15	Activities along that line are going on
16	now. In fact, I think we have a communication plan
17	that we put together. I noticed recently that NRR is
18	giving a briefing on how to get access to operating
19	experience events, information which includes this
20	website. We have the ability on the left-hand side
21	here to do some word searches from reports. Right now
22	it's LER but that can be expanded to whatever anybody
23	wants to put in there.
24	Then we have the kind of raw data and what
25	I'll call processed data that we've collected which

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	feeds into the charts, tables, etc., that are related
2	to initiating events, components, and so forth.
3	That's the bulk of it, by the way. Then on the far
4	right we do also support the
5	MR. ROSEN: Which right? Your right or
6	our right?
7	MR. BARANOWSKY: Your right.
8	MR. ROSEN: Okay.
9	MR. BARANOWSKY: On the far right we have
10	some work that we're doing to make available, for
11	instance, ASP program results and insights as opposed
12	to having someone go and use a special database which
13	is also available but maybe not quite as readily known
14	and accessible.
15	MR. ROSEN: What I'm taking away from this
16	is that I could go in and look at the fire event
17	database today if I wanted to if I was at my computer.
18	MR. BARANOWSKY: You can go in and look at
19	the output of the fire event database. I don't know
20	if you could go in and yank the whole database out.
21	Eventually we are going to let you be able to query
22	the database.
23	The first step was we've collected
24	information on all kinds of fire events, put them into
25	bins, and we have numbers and so forth and some

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	parameters that we calculated and that kind of thing
2	is being put into is either in or being put into
3	the website now.
4	MR. RASMUSON: Right. That's on the
5	website now.
6	MR. ROSEN: What kind of things? Do you
7	mean like fire event databases in bins like fires that
8	lasted longer than five minutes, 10 minutes in
9	duration?
10	MR. BARANOWSKY: It could be duration. It
11	could be location. It could be damage. I don't
12	remember what all is stored in there. The idea is to
13	get someone like you or another interested person to
14	go in and say, "I couldn't find this that I was
15	looking for," and then as we collect that, what folks
16	are actually trying to extract out of the database we
17	can adjust it to be able to do that.
18	It's not set up so that anybody can do
19	anything. That's way, way too costly for us to do.
20	Ultimately you'll get to the point where you can query
21	the database to some extent but we've got to put the
22	tags and flags in there and we can't tag and flag
23	every single possibility. We are trying to flag and
24	tag them based on how they are used in risk analysis
25	but we are open to other ideas, too. I would ask

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

anybody who's interested to go in and take a look.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

25

The next item is the action sequence, precursor analyses. This project has been going on for 20 something years. I don't think the objectives have changed very much in terms of systematically analyzing operating experience events to understand their risk implications.

The methodology and sophistication has actually changed and it's sophisticated enough, I think, that we can use it to understand where there might be some areas in PRAs that we would want to improve the capability not necessarily so much because the total risk might be significantly underestimated but if you want to get down into details where you want to make changes in regulations or plant specific things, you need to know more than the overall risk.

I think we've got a pretty good handle on the overall core damage frequency but when we get down to the lower levels that we make decisions on tech specs or licensing amendments or even changing regulations, that's another story.

22 MR. ROSEN: This webpage that you talk 23 about in the prior slide, that's accessed through 24 NRC.gov?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. BARANOWSKY: Yeah. We should have

(202) 234-4433

	78
1	given you the it's not on here. We should have
2	given you does anyone here know the website?
3	MR. RASMUSON: I will see that you get the
4	URL for it. It's on our internal webpage right now
5	and you can get to it through the RES webpage but I'll
6	get you the address.
7	CHAIRMAN APOSTOLAKIS: If a graduate
8	student wants to get some curves for the failure rate
9	of a particular component, they can do it?
10	MR. RASMUSON: Yes.
11	MR. ROSEN: Well, he has to get to the
12	internal webpage.
13	MR. BARANOWSKY: Oh, yeah. He has to have
14	access to internal. Because of security we haven't
15	been able to get the external one working.
16	CHAIRMAN APOSTOLAKIS: But how could so
17	that means it's not accessible.
18	MR. BARANOWSKY: Well, it's not accessible
19	if you're not considered an internal cleared person.
20	MR. ROSEN: So it's not off NRC.gov.
21	MR. SHACK: It's internal .NRC.gov.
22	MR. BARANOWSKY: And we just rolled this
23	out a couple of months ago, by the way, so it's like
24	a beta test version.
25	CHAIRMAN APOSTOLAKIS: And then what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	79
1	happens? We can do that?
2	MR. BARANOWSKY: If Citrix happens to be
3	working that day.
4	MR. ROSEN: It doesn't work on Government
5	holidays.
б	MR. BARANOWSKY: Within a year I think we
7	would like to have this thing well accessible and
8	improved to provide information so it's something to
9	think about.
10	So the accident sequence precursors, let's
11	give you a little picture here of what we've been
12	seeing. Normally we trend the accident sequence
13	precursors over about an eight to 10-year period and
14	we have been trending now for the 1993 events. If you
15	trend that batch of events there, you can't come up
16	with an increasing or decreasing trend with any
17	statistical competence.
18	But if you look at '97 on, you'll see that
19	we've seen more events. You know some of the big ones
20	as well as us. We've been actually swamped with
21	trying to analyze some of these pretty significant
22	events. They are important to us and they are
23	important to licensees because many of them go into
24	the SDP so there's really a lot of attention to how
25	the analysis is done.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	Simple assumptions that used to make it
2	quick and dirty get within a factor of 2 or 3 that I'm
3	happy with are not acceptable anymore. People are
4	concerned about whether the best estimate is 8 x 10^{-7}
5	or 1×10^{-6} .
6	MR. ROSEN: Well, it might only be a
7	liberal distinction to that whether or not it goes
8	from white to yellow. That's the thing. Most of
9	these are on the edge when you start arguing about
10	what should be in the model and how the model should
11	be adjusted.
12	One thing that we have been doing is
13	spending a lot of time looking at model uncertainties
14	and parametric uncertainties. I don't think anybody
15	is systematically incorporating insights from model
16	and parameter uncertainties into their thinking about
17	what does this all mean. They are all taking the
18	point estimates and running with them.
19	For instance, I've seen 9.7 x 10^{-6} called
20	something that's in the 10^{-6} range. If I draw a
21	distribution about that and I show you the modeling
22	uncertainties that go along with the parametric
23	uncertainties, over half of what we're worried about
24	is up over the
25	CHAIRMAN APOSTOLAKIS: We try not to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

81 1 sensitize people to the importance of modeling 2 uncertainties. In a couple of years you're going to see some results. 3 4 MR. BARANOWSKY: Decisions in light of 5 uncertainty is not something that we're taking on. 6 What we are trying to do, though, is bring the 7 uncertainty out. Don, you had some examples here that 8 maybe I can show. These are backups. Let me show 9 these. 10 Let me start with this one. This was a 11 low service water flow incident to the diesel 12 generator coolers at the Cook plant. This chart shows 13 the end result of our analysis which included both 14 model and parameter uncertainties. If I can read 15 this, you can see -- I don't know what the point estimate is but -- what are these two marks here, Don? 16 17 The licensee. MR. MARKSBERRY: Oh, licensee doing an 18 MR. BARANOWSKY: 19 estimate. This one? Sorry. This one is the 20 licensee's estimate. This one is --21 MR. MARKSBERRY: The STP. 22 MR. BARANOWSKY: The STP estimate. This 23 range represents our best estimate including both 24 model and parameter uncertainties. Then we had sort 25 of a low and a high model result. This is the high

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	end of model uncertainties and the low end. We don't
2	know how to put these
3	CHAIRMAN APOSTOLAKIS: I wonder how you
4	did that. Do you have a report?
5	MR. BARANOWSKY: We have a report. Here
6	was the key modeling uncertainty that had to do with
7	debris in the forebay and how that impacted the diesel
8	generator cooling system.
9	CHAIRMAN APOSTOLAKIS: Boy, this is
10	MR. BARANOWSKY: This is a routine ASP
11	event.
12	CHAIRMAN APOSTOLAKIS: This is an aria to
13	my ears. We are making a note here that we will get
14	the written document from you guys?
15	MR. BARANOWSKY: Yes. You can get it. I
16	need to let you know that it's classified sensitive
17	because of the PRA information in general meets a
18	condition and guideline that was set out almost two
19	years ago. We're trying to get that changed so it can
20	be released to the public because I don't personally
21	think there's any security information in the ASP
22	analyses that we have to worry about.
23	But, in theory, one could use precursor
24	analysis with location and vulnerability information
25	to identify security issues. We pretty much scrubbed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	this so you don't have that in there and we're trying
2	to get the criteria changed. But certainly internally
3	ACRS you can see this so just be aware that will
4	have
5	CHAIRMAN APOSTOLAKIS: The model
6	uncertainty, I mean, I don't know if you've seen the
7	last letter from the ACRS on this.
8	MR. CHEOK: This is Mike Cheok. I have a
9	comment on the Cook analysis. That's draft right now.
10	We will put the file out in about a month so we might
11	want to wait until a month from now before we sent out
12	the final analysis.
13	CHAIRMAN APOSTOLAKIS: Do you have any
14	other examples?
15	MR. CHEOK: We have several other
16	examples.
17	MR. BARANOWSKY: We can send you probably
18	three or four.
19	CHAIRMAN APOSTOLAKIS: If you can. I'm
20	not interested in just Cook.
21	MR. SHACK: Now, that SDP, that was a SPAR
22	analysis point estimate or that's a notebook analysis?
23	MR. BARANOWSKY: No, no. Oh, who knows?
24	DR. O'REILLY: It was this is Pat
25	O'Reilly. I believe it was a Phase 3 analysis and it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	84
1	was not necessarily using a SPAR model. It was kind
2	of a hybrid type of analysis.
3	MR. SHACK: We're supposed to get
4	conservative results. Right?
5	MR. BARANOWSKY: Well, normally you are
6	supposed to but when you read the report on Cook you
7	will the level of sophistication that went into our
8	analysis. I doubt that the SDP at this point can
9	afford to move up to that standard. The question is
10	whether or not what they did is adequate for
11	identifying performance issues that should be followed
12	up on as opposed to whether they got the risk number
13	right to within a factor of 10.
14	MR. SHACK: What does right mean?
15	MR. BARANOWSKY: The thing about the
16	accident sequence precursors is we apply this standard
17	basically to all of our work so you can compare and
18	add A and B together and not have apples and oranges
19	if you want to get some notion of whether we're
20	looking at the really significant ones or not.
21	I think from the SDP point of view they
22	are identifying things that we ought to follow up on
23	in inspections and that is what they are supposed to
24	do. Hard to explain to the public sometimes why they
25	are different but that's the thing.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	George, you had mentioned that we had some
2	insights. These are what I would call pretty high-
3	level insights. What we haven't done is gone and
4	really scrubbed the ASP work to see if there are more
5	profound things than just saying 20 percent of the
6	incidents have some unique characteristics to them
7	that are not usually captured in PRAs.
8	If you are making decisions at that level
9	in the PRA, you might have some problems drawing the
10	right conclusion if these things weren't incorporated
11	in there. There are reports on each of these. There
12	was one that was an RCS blowdown into the refueling
13	water storage tank at hot shutdown which was a fairly
14	high risk contributor. A couple of strange things
15	happened when the reactor tripped and loss of surface
16	water.
17	CHAIRMAN APOSTOLAKIS: So the question is
18	if I go now to the PRA, which is done for hot
19	shutdown, am I going to see a failure mode like this?
20	MR. SHACK: I don't think so.
21	CHAIRMAN APOSTOLAKIS: That's the thing
22	that we need to spread the word and make them more
23	realistic.
24	MR. SHACK: Yeah. This is something like
25	an event B sequence but not exactly. It's an

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	interesting way that it got there. There weren't
2	dials that failed or anything. This was an operator
3	made a mistake or got confused.
4	DR. O'REILLY: They had conflicting
5	operations going on at the same time, George, and
6	neither of the two were in communication with the
7	other.
8	CHAIRMAN APOSTOLAKIS: Okay. So the
9	industry doesn't know this but do our own guys know
10	these things? When they receive a PRA or a piece of
11	a PRA in support of a risk informed decision do our
12	own guys know about these things?
13	MR. BARANOWSKY: Well, the information is
14	available and, as I said, it's not always so easy to
15	go to so they may not go to it. One of the insights
16	from the operating experience task force is we need to
17	make this easy to get to.
18	CHAIRMAN APOSTOLAKIS: If a reviewer from
19	NRR is dealing with shutdown modes, is there anyway he
20	or she can press a couple of buttons and get all these
21	insights regarding these modes? Do we have that yet?
22	MR. BARANOWSKY: No.
23	CHAIRMAN APOSTOLAKIS: Think about it.
24	Maybe that's what we need.
25	MR. BARANOWSKY: You are right. As I

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	said, if we had the resources we would go through and
2	put together a little better package that would allow
3	you to dig down. Start off with high-level
4	considerations and then lead you down to the details
5	so you could use it appropriately.
6	Right now the way it is is you would have
7	to just go in and scroll through all the ASP events
8	and be able to figure out which ones you want to look
9	at. We don't have them categorized and classified.
10	CHAIRMAN APOSTOLAKIS: They're never going
11	to do that.
12	MR. BARANOWSKY: They aren't going to do
13	that. You're right.
14	CHAIRMAN APOSTOLAKIS: Unless it's easy
15	access, they're not going to do it. They have so many
16	other pressures. I mean, it's not because they are
17	bad guys. They have lots of things to do.
18	MR. BARANOWSKY: I'm trying to get Don
19	Marksberry to work Sundays he's already got
20	Saturday booked to do this but he just says he's
21	got to have a day off.
22	CHAIRMAN APOSTOLAKIS: I don't know about
23	that.
24	MR. BARANOWSKY: This is an identified
25	issue.
I	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	I'm not going to say too much about the
2	Industry Trends Program because we had a briefing
3	how long ago was that, Dale?
4	MR. RASMUSON: Just a month ago.
5	MR. BARANOWSKY: Two months maybe. Let's
6	talk a little bit about it for the benefit of anyone
7	who either wasn't there or some update things. I'll
8	let Dale do some updating, too.
9	The Industry Trends Program is a
10	complement to the reactor oversight process. It's not
11	actually a part of it.
12	CHAIRMAN APOSTOLAKIS: You guys want to
13	take a five-minute break?
14	MR. BARANOWSKY: That's fine.
15	CHAIRMAN APOSTOLAKIS: Okay. Back in five
16	minutes.
17	(Whereupon, at 10:42 a.m. off the record
18	until 10:50 a.m.)
19	MR. BARANOWSKY: Okay. Just briefly on
20	the Industry Trends Program, it focuses primarily on
21	industry-wide implications of things and trends so it
22	complements some of the more generic activities that
23	the NRC does. What we are doing is supporting NRR on
24	this project and they are using a lot of the
25	information that we have in our initiating event and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	systems studies that trend the performance of
2	equipment or initiators over time.
3	If there is a significant deviation in
4	time for this integrated look, then that should spur
5	us on to look more closely at whether or not there is
6	a generic issue here. Then we could take either the
7	lack of such conditions or their existence and report
8	them to Congress as part of the NRC's performance and
9	accountability requirements. That is one of the major
10	things that pushes this project.
11	There is a process, and this is really an
12	NRR process but I just wanted to show it, in which
13	data is fed into the process and we analyze it and
14	looks for trends on specific things. The items that
15	are going to be trended are not just any old thing.
16	We go through a process of picking what's going to be
17	trended, what the scope is and so forth.
18	For instance, I think we picked six
19	specific initiating event categories with specific
20	definitions and the counts for those things are sort
21	of rigorously defined so that we don't have
22	differences every year that's based on the way people
23	count things or do their work and we wouldn't be able
24	to get a reasonable trend.
25	That goes into the process, as I said, in

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

which we, meaning the agency, looks to see if there is something evolving here. If there is a significant degradation, then the senior managers have their meeting once a year and talk to the Commission and it could be identified there and discussed in terms of agency response activities which normally would be underway by that time.

And if it meets certain criteria, it can actually get report up to Congress where it's a deviation in performance that's degrading to the point we think we have to go and tell Congress that there is a problem evolving here. That's the process.

What we've been working on lately is an integrated indicator in which we can take most of the risk significant, if not all the risk significant, events which have different risk importances and weight them accordingly and come up with a single indicator more for the reporting to Congress than anything else.

20 still have the information We 21 disaggregated down into the 10 or 15 types of 22 indicators and we use that as safety engineers at the 23 But how do we report trends on 15 or NRC. 20 24 initiating events with different risk significance. if this ever gets expanded into the other 25 And

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

	91
1	cornerstones, we could have literally 100 indicators
2	and that wouldn't make any sense. The idea was to
3	come up with a way of rolling this up.
4	Currently what happens is they're just
5	counted. A large break LOCA would be counted the same
6	as an innocuous reactor trip, turbin trip, in which
7	the plant started up a few hours later. That's not
8	the way this is set up. It goes into the risk
9	importance measure and it weights it and its potential
10	impact on core damage frequency for the specific plant
11	that had the incident and we used the SPAR models for
12	this.
13	Then we collect the information for a year
14	and then year by year we can put it together and show
15	the trend. That's what we presented at the last ACRS
16	meeting. The point that we got to now is we finished
17	the initial development at work and we're sending it
18	over to NRR shortly and a decision needs to be made as
19	to whether or not they want to do some trial and
20	specific implementation kinds of activities while we
21	fine tune things. You know, make sure it has QA.
22	Make sure it's a production thing instead of a
23	research activity. That's pretty much where we are on
24	that.
25	The next item is the SPAR model

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	development program. I'll go through this in the
2	order that we identified types of SPAR models that we
3	are developing. First thing is the so-called level 1
4	Revision 3 models which are the full power SPAR models
5	and we now have 72 of these models developed which
6	represent all the operating reactor configurations.
7	A couple of them are close enough that we
8	can use virtually the same model but we can make as-
9	necessary adjustments on, say, performance data or
10	even some recovery factors. Are there any other
11	things we would change?
12	We're done the on-site QA reviews for all
13	of these which actually was an ACRS recommendation two
14	years ago. We went out to every site. We gave our
15	model to the licensees, we got theirs, and we compared
16	them and we saw where there were differences. Where
17	we had the designation "i" means we haven't addressed
18	those differences yet so there's quite a few of them
19	that we haven't been able to address the differences
20	yet. When we do address them, then we just call them
21	3.
22	DR. O'REILLY: We have about 25 models
23	left to complete the follow-up on those on-site QA
24	reviews.
25	MR. ROSEN: I'm delighted to hear that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	I think I was one of the people who sort of suggested
2	that. In fact, I went further. I suggested why don't
3	you just throw these away and get an agreement with
4	the licensee to use their model.
5	I think I understand the reasons you don't
6	do that now, but clearly you didn't want to be in the
7	situation you're in where your model was just plain
8	wrong and the licensee would tell you that the first
9	time you tried to use it. You wanted to find out your
10	model was wrong and not up to date before you tried to
11	use it in some contentious proceeding.
12	DR. O'REILLY: Well, you should be aware
13	that there are some cases in which we have agreed to
14	disagree with the licensee's PRA.
15	MR. ROSEN: As long as you know that the
16	plant has three of these and not two.
17	DR. O'REILLY: Correct. That was the main
18	purpose of these on-site QA reviews which, by the way,
19	we did in conjunction with NRR's benchmarking of the
20	SDP notebook for the plant.
21	MR. ROSEN: And more than just three of
22	these, not two, that there's a connection between here
23	and here which is modeled that they can take credit
24	for in their analysis. You ought to understand that,
25	too.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	DR. O'REILLY: Yes.
2	MR. BARANOWSKY: We have a good
3	understanding now of the physical plant as operated
4	which we're trying to incorporate into the models at
5	the level of detail that we work with. We also went
6	one step further and that's this third bullet here as
7	part of our Mitigating System Performance Index.
8	There were 20 plants that were part of the
9	pilot program and we did what I call an enhanced SPAR
10	model which now goes down to the level necessary to
11	model the plant for the key systems in the Mitigating
12	System Performance Index, support systems and all
13	their interconnections some of which were put in as
14	undeveloped events in our simpler models.
15	This work has been getting pretty high
16	marks from folks that we worked with because we are
17	really understand where there are any differences and
18	what those differences are between what an NRC model
19	and standard set of assumptions might give versus
20	licenses. I believe we have a very good agreement in
21	many cases.
22	We have identified a few issues which
23	while we have our standard of approach might be to,
24	say, use a RELAP generated success criteria and a
25	licensee might be using MAP. We're just saying those

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701

	95
1	are differences which should be resolved and we're
2	looking at how that might happen over the next year or
3	so.
4	At least we're aware of it. We are aware
5	if their risk number is a little bit different than
6	ours, we understand it's because of slightly different
7	success criteria. We can now focus in on the things
8	that are driving those success criteria and hopefully
9	get to a much closer result.
10	Don Dube gave a presentation to I don't
11	remember which subcommittee it was but we had some
12	extremely close calculations and core damage frequency
13	and importance measures. These are our own models.
14	We did them ourselves and all we wanted to know is how
15	is the plant designed and operated. We didn't use
16	their model.
17	MR. ROSEN: What do you mean by close?
18	MR. BARANOWSKY: Close to the core damage
19	frequency.
20	MR. ROSEN: Close to the licensee's
21	estimate.
22	MR. BARANOWSKY: The licensee's estimate
23	and then if it was different we could say exactly why
24	it was different. What we are trying to come up with
25	is a list of items that we can work in some form.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	We're not sure how. Possibly through the ASME
2	standard activity to resolve these things so that we
3	don't argue about those kind of modeling things on
4	regulatory applications. We argue about other things
5	like thresholds and risk philosophy and whatever.
6	MR. BONACA: This is level 1, no external
7	events at power?
8	MR. BARANOWSKY: Yes. We've done a lot of
9	work at the at power. I think we either have very
10	good models or where there are limitations, we
11	understand what we're missing in the models.
12	In fact, we're planning on putting I'll
13	call it a warning of some sort or an advisal up front
14	in our SPAR models indicating the specific limitations
15	for their use so that when those folks who didn't
16	develop them go out and use them, they will know that
17	they have to be concerned about the level of detail,
18	say, in the service water across connect model and
19	you've got to use accordingly. Supposedly these
20	things are to be used by skilled practitioner stuff,
21	just push button.
22	I'm going to skip the next one. Let's go
23	to low-power shutdown. With low-power shutdown I
24	think we had a briefing on this.
25	DR. O'REILLY: A year ago.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

97 1 MR. BARANOWSKY: Okay. We have completed 2 the BWR and PWR templates. We have some SPAR models. 3 This low-power shutdown is a little bit different 4 because plants don't go through the same exact 5 evolutionary characteristics or process every time they shutdown so it's not a push-button model by any 6 7 stretch of the imagination. It's more of a model with procedure for making it fit what you have actually 8 9 observed. 10 And the difference MR. ROSEN: is 11 enormous. 12 MR. BARANOWSKY: Yes. MR. ROSEN: For instance, if a PWR does a 13 14 hot early mid LOOP or doesn't, the risk number for 15 that shutdown will be enormously different. Wildly heterogeneous in time and enormously different from 16 17 outage to outage. 18 MR. BARANOWSKY: I mean, more so than for 19 sure the normal operating condition plants you have to 20 have an analyst who can work with these models. 21 Because of that, we are DR. O'REILLY: 22 approach concentrating on an that does plant 23 categories versus trying to have a low-power shutdown 24 for each individual plant. MR. BARANOWSKY: So it would be sort of a 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	general model, if you will, that you have to make
2	adjustments for some guidelines.
3	DR. O'REILLY: Correct.
4	MR. ROSEN: So when you advertise this to
5	the agency and say here is the standard outage for
6	PWR, let's say, and put a risk number on it, you will
7	be making a mistake. You're going to have to say here
8	is a range of outages.
9	Someone is going to ask you ultimately and
10	you're going to have to say something like, "Well, it
11	depends what you do. Here's a range of outages.
12	Here's one that is pretty low risk and here's one
13	that's pretty high risk and you'll notice the
14	differences."
15	DR. O'REILLY: Right. We've tried to
16	capture the several most risk important configurations
17	for low-power shutdown but you're right. A particular
18	plant one of those might not be quite as risky.
19	MR. ROSEN: Or you can do it at a
20	different time during the outage when decay heat is
21	down and it will change the structure again. Not only
22	whether you do it but when you do it will be
23	important.
24	DR. O'REILLY: That's right.
25	MR. BONACA: You could blow the whole

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	core.
2	MR. ROSEN: Right.
3	MR. BONACA: I mean, so you have no mid
4	LOCA concern.
5	MR. ROSEN: Right. Sometimes it's zero
6	MR. BARANOWSKY: You'd have to go back and
7	look at their past history of what they did and I can
8	only tell you what their risk exposure was. Or if
9	they will tell us what they are going to do in the
10	future, then we can do that, too.
11	MR. ROSEN: They won't do that because
12	they don't know.
13	MR. BARANOWSKY: So that's the limitation.
14	You're going to have to be an analyst that can work
15	this thing as you go through it.
16	So we'll be conducting QA reviews and we
17	have a couple of more, what do you call these, these
18	standard models or whatever.
19	DR. O'REILLY: Lead plant models.
20	MR. SHACK: Now, is this built on top of
21	the enhanced SPAR or is this a 3 or 3i?
22	MR. BARANOWSKY: It's different.
23	DR. O'REILLY: I'll tell you what will
24	happen is enhancing the Revision 3 SPAR models can
25	result in enhancements to the low-power shutdown

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	models because we pull in the fault trees from the
2	Rev. 3 models into the low-power shutdown
3	configuration.
4	MR. SHACK: Okay. But in the event
5	diagram this all overlaps. There are low-power
6	shutdowns on enhanced models and on non-enhanced
7	models.
8	DR. O'REILLY: It could happen that way,
9	yes.
10	MR. ROSEN: So this fiction that's being
11	perpetrated that there's no risk analysis for shutdown
12	is clearly demonstrated to be wrong here.
13	DR. O'REILLY: We hope so.
14	MR. ROSEN: You need to contest the people
15	who some up with this fiction now and then that plants
16	only know yellow, red, and orange. There are lots of
17	plants that do better than that.
18	DR. O'REILLY: There are a few. We are
19	finding out there aren't a majority but there are some
20	out there, yes.
21	MR. SHACK: Have you computed some
22	comparisons with yellow, red, and orange?
23	DR. O'REILLY: We've only gotten one on-
24	site QA review of low-power shutdown model completed
25	because most of the ones that we have models for are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

We reported to the subcommittee last October about the results of the one on-site QA we did at the Surrey plant. As I said before, we got mixed results out of that. Part of the problem was the lack of knowledge on the part of the licensee's PRA staff about their low-power shutdown model. They had it done by a contractor and were no longer working with that contractor at the time.

13 Okay. The next thing MR. BARANOWSKY: 14 that we're doing is we are developing the large early 15 release frequency models. We've done some development work here that we completed including the bridge trees 16 17 and containment of entries. The bridge trees bridge 18 from the level 1 models basically to the core damage 19 states and containment failure states. We have 20 incorporated peer reviews. Who was involved in that 21 peer review? Can you remember? 22 It was an internal peer DR. O'REILLY:

22 review but I do believe that the reports came to the 24 ACRS.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. BARANOWSKY: I don't know that we have

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

25

	102
1	briefed the ACRS on this. Have we?
2	DR. O'REILLY: No. We talked to you about
3	this last year but you couldn't fit it on your
4	schedule.
5	MR. BARANOWSKY: So let us know. We would
6	like to hear more about it. There's not a lot of
7	ability to do LERF analysis without going through
8	extremely detailed and time consuming and costly
9	process like the NUREG 1150 type of things. Or just
10	pulling things out of the air saying, "I think that's
11	going to be a big release and an early one," and just
12	calling it that.
13	This gives us some capability in between
14	there. It's not perfect but based on what we
15	understand to be important in talking to folks who are
16	doing the more sophisticated developmental activity,
17	we are incorporating those features that seem to have
18	the biggest drive in here. Again, it's another one of
19	these things that is going to have to have procedures
20	for its application.
21	DR. O'REILLY: Yes.
22	MR. BARANOWSKY: More than just the level
23	1 core damage frequency models.
24	MR. CHEOK: Let me say something about
25	that, Pat. Remember when we were talking when you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	103
1	were developing the 174 reg guide and we had this
2	NUREG on LERF, a lot of the small LERF models starts
3	up with that NUREG where we can convert from CDF to
4	LERF.
5	MR. BARANOWSKY: So we'll continue to
6	develop these models for lead plants and if it seems
7	appropriate, we would be glad to brief the committee.
8	I'll also mention that we haven't started
9	yet but have future plans to do external event models.
10	Again, we don't know exactly whether they would be
11	more of a procedure and process approach or a hard
12	model that is mostly push button. We would have to
13	come up with a scheme.
14	MR. ROSEN: I think you know you're going
15	to treat fires as an external event. Right?
16	MR. BARANOWSKY: Fire, flood, seismic, and
17	external winds.
18	MR. ROSEN: High winds.
19	MR. BARANOWSKY: High winds. And they are
20	all different enough in the way you are going to
21	analyze them that it's not just a simple matter. We
22	put that off to the end, but there is a crying need
23	for us to have that, in particular, in the
24	significance determination process.
25	When we did it for the power states, we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1had fairly detailed PRAs and lots of them that we2could work back from including our own. I mean,3licensees and PRAs. You go to the external events and4there's just a few studies and a few PRAs.5MR. ROSEN: If I asked you what happened6during Hurricane Isabel to certain plants that7tripped, you know, what was the risk, do an ASP8analysis?9MR. BARANOWSKY: We could do the analysis10but it would cost.11DR. O'REILLY: We would have to create our12own custom model.13MR. BARANOWSKY: We've done that.14MR. ROSEN: Those plants tripped because15of salting on the insulators because there was a lot16of high winds and they are seacoast sites and there17was no rain to wash the insulators. How do you model18that, the high winds?19MR. BARANOWSKY: Actually it becomes20easier to model something that has already failed and21just what the consequential situation is and we22predicted just that.23MR. ROSEN: But I'm not interested in just24that. I'm interested in how likely was the event.25MR. BARANOWSKY: That's different. That's		104
3 licensees and PRAS. You go to the external events and 4 there's just a few studies and a few PRAS. 5 MR. ROSEN: If I asked you what happened 6 during Hurricane Isabel to certain plants that 7 tripped, you know, what was the risk, do an ASP 8 analysis? 9 MR. BARANOWSKY: We could do the analysis 10 but it would cost. 11 DR. O'REILLY: We would have to create our 12 own custom model. 13 MR. BARANOWSKY: We've done that. 14 MR. ROSEN: Those plants tripped because 15 of salting on the insulators because there was a lot 16 of high winds and they are seacoast sites and there 17 was no rain to wash the insulators. How do you model 18 that, the high winds? 19 MR. BARANOWSKY: Actually it becomes 20 easier to model something that has already failed and 21 just what the consequential situation is and we 22 predicted just that. 23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event.	1	had fairly detailed PRAs and lots of them that we
 there's just a few studies and a few PRAs. MR. ROSEN: If I asked you what happened during Hurricane Isabel to certain plants that tripped, you know, what was the risk, do an ASP analysis? MR. BARANOWSKY: We could do the analysis but it would cost. DR. O'REILLY: We would have to create our own custom model. MR. BARANOWSKY: We've done that. MR. ROSEN: Those plants tripped because of salting on the insulators because there was a lot of high winds and they are seacoast sites and there was no rain to wash the insulators. How do you model that, the high winds? MR. BARANOWSKY: Actually it becomes easier to model something that has already failed and just what the consequential situation is and we predicted just that. MR. ROSEN: But I'm not interested in just that. I'm interested in how likely was the event. 	2	could work back from including our own. I mean,
5 MR. ROSEN: If I asked you what happened 6 during Hurricane Isabel to certain plants that 7 tripped, you know, what was the risk, do an ASP 8 analysis? 9 MR. BARANOWSKY: We could do the analysis 10 but it would cost. 11 DR. O'REILLY: We would have to create our 12 own custom model. 13 MR. BARANOWSKY: We've done that. 14 MR. ROSEN: Those plants tripped because 15 of salting on the insulators because there was a lot 16 of high winds and they are seacoast sites and there 17 was no rain to wash the insulators. How do you model 18 that, the high winds? 19 MR. BARANOWSKY: Actually it becomes 20 easier to model something that has already failed and 21 just what the consequential situation is and we 22 predicted just that. 23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event.	3	licensees and PRAs. You go to the external events and
6 during Hurricane Isabel to certain plants that 7 tripped, you know, what was the risk, do an ASP 8 analysis? 9 MR. BARANOWSKY: We could do the analysis 10 but it would cost. 11 DR. O'REILLY: We would have to create our 12 own custom model. 13 MR. BARANOWSKY: We've done that. 14 MR. ROSEN: Those plants tripped because 15 of salting on the insulators because there was a lot 16 of high winds and they are seacoast sites and there 17 was no rain to wash the insulators. How do you model 18 that, the high winds? 19 MR. BARANOWSKY: Actually it becomes 20 easier to model something that has already failed and 21 just what the consequential situation is and we 22 predicted just that. 23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event.	4	there's just a few studies and a few PRAs.
 tripped, you know, what was the risk, do an ASP analysis? MR. BARANOWSKY: We could do the analysis but it would cost. DR. O'REILLY: We would have to create our own custom model. MR. BARANOWSKY: We've done that. MR. ROSEN: Those plants tripped because of salting on the insulators because there was a lot of high winds and they are seacoast sites and there was no rain to wash the insulators. How do you model that, the high winds? MR. BARANOWSKY: Actually it becomes easier to model something that has already failed and just what the consequential situation is and we predicted just that. MR. ROSEN: But I'm not interested in just that. I'm interested in how likely was the event. 	5	MR. ROSEN: If I asked you what happened
8 analysis? 9 MR. BARANOWSKY: We could do the analysis 10 but it would cost. 11 DR. O'REILLY: We would have to create our 12 own custom model. 13 MR. BARANOWSKY: We've done that. 14 MR. ROSEN: Those plants tripped because 15 of salting on the insulators because there was a lot 16 of high winds and they are seacoast sites and there 17 was no rain to wash the insulators. How do you model 18 that, the high winds? 19 MR. BARANOWSKY: Actually it becomes 20 easier to model something that has already failed and 21 just what the consequential situation is and we 22 predicted just that. 23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event.	6	during Hurricane Isabel to certain plants that
9 MR. BARANOWSKY: We could do the analysis 10 but it would cost. 11 DR. O'REILLY: We would have to create our 12 own custom model. 13 MR. BARANOWSKY: We've done that. 14 MR. ROSEN: Those plants tripped because 15 of salting on the insulators because there was a lot 16 of high winds and they are seacoast sites and there 17 was no rain to wash the insulators. How do you model 18 that, the high winds? 19 MR. BARANOWSKY: Actually it becomes 20 easier to model something that has already failed and 21 just what the consequential situation is and we 22 predicted just that. 23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event.	7	tripped, you know, what was the risk, do an ASP
10but it would cost.11DR. O'REILLY: We would have to create our12own custom model.13MR. BARANOWSKY: We've done that.14MR. ROSEN: Those plants tripped because15of salting on the insulators because there was a lot16of high winds and they are seacoast sites and there17was no rain to wash the insulators. How do you model18that, the high winds?19MR. BARANOWSKY: Actually it becomes20easier to model something that has already failed and21just what the consequential situation is and we22predicted just that.23MR. ROSEN: But I'm not interested in just24that. I'm interested in how likely was the event.	8	analysis?
11DR. O'REILLY: We would have to create our12own custom model.13MR. BARANOWSKY: We've done that.14MR. ROSEN: Those plants tripped because15of salting on the insulators because there was a lot16of high winds and they are seacoast sites and there17was no rain to wash the insulators. How do you model18that, the high winds?19MR. BARANOWSKY: Actually it becomes20easier to model something that has already failed and21just what the consequential situation is and we22predicted just that.23MR. ROSEN: But I'm not interested in just24that. I'm interested in how likely was the event.	9	MR. BARANOWSKY: We could do the analysis
12 own custom model. 13 MR. BARANOWSKY: We've done that. 14 MR. ROSEN: Those plants tripped because 15 of salting on the insulators because there was a lot 16 of high winds and they are seacoast sites and there 17 was no rain to wash the insulators. How do you model 18 that, the high winds? 19 MR. BARANOWSKY: Actually it becomes 20 easier to model something that has already failed and 21 just what the consequential situation is and we 22 predicted just that. 23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event.	10	but it would cost.
13MR. BARANOWSKY: We've done that.14MR. ROSEN: Those plants tripped because15of salting on the insulators because there was a lot16of high winds and they are seacoast sites and there17was no rain to wash the insulators. How do you model18that, the high winds?19MR. BARANOWSKY: Actually it becomes20easier to model something that has already failed and21just what the consequential situation is and we22predicted just that.23MR. ROSEN: But I'm not interested in just24that. I'm interested in how likely was the event.	11	DR. O'REILLY: We would have to create our
14MR. ROSEN: Those plants tripped because15of salting on the insulators because there was a lot16of high winds and they are seacoast sites and there17was no rain to wash the insulators. How do you model18that, the high winds?19MR. BARANOWSKY: Actually it becomes20easier to model something that has already failed and21just what the consequential situation is and we22predicted just that.23MR. ROSEN: But I'm not interested in just24that. I'm interested in how likely was the event.	12	own custom model.
15 of salting on the insulators because there was a lot 16 of high winds and they are seacoast sites and there 17 was no rain to wash the insulators. How do you model 18 that, the high winds? 19 MR. BARANOWSKY: Actually it becomes 20 easier to model something that has already failed and 21 just what the consequential situation is and we 22 predicted just that. 23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event.	13	MR. BARANOWSKY: We've done that.
16 of high winds and they are seacoast sites and there 17 was no rain to wash the insulators. How do you model 18 that, the high winds? 19 MR. BARANOWSKY: Actually it becomes 20 easier to model something that has already failed and 21 just what the consequential situation is and we 22 predicted just that. 23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event.	14	MR. ROSEN: Those plants tripped because
 17 was no rain to wash the insulators. How do you model 18 that, the high winds? 19 MR. BARANOWSKY: Actually it becomes 20 easier to model something that has already failed and 21 just what the consequential situation is and we 22 predicted just that. 23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event. 	15	of salting on the insulators because there was a lot
18 that, the high winds? 19 MR. BARANOWSKY: Actually it becomes 20 easier to model something that has already failed and 21 just what the consequential situation is and we 22 predicted just that. 23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event.	16	of high winds and they are seacoast sites and there
MR. BARANOWSKY: Actually it becomes easier to model something that has already failed and just what the consequential situation is and we predicted just that. MR. ROSEN: But I'm not interested in just that. I'm interested in how likely was the event.	17	was no rain to wash the insulators. How do you model
 easier to model something that has already failed and just what the consequential situation is and we predicted just that. MR. ROSEN: But I'm not interested in just that. I'm interested in how likely was the event. 	18	that, the high winds?
21 just what the consequential situation is and we 22 predicted just that. 23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event.	19	MR. BARANOWSKY: Actually it becomes
22 predicted just that. 23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event.	20	easier to model something that has already failed and
23 MR. ROSEN: But I'm not interested in just 24 that. I'm interested in how likely was the event.	21	just what the consequential situation is and we
24 that. I'm interested in how likely was the event.	22	predicted just that.
	23	MR. ROSEN: But I'm not interested in just
25 MR. BARANOWSKY: That's different. That's	24	that. I'm interested in how likely was the event.
	25	MR. BARANOWSKY: That's different. That's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	what we would have to spend some time on.
2	The last item is the Mitigating System
3	Performance Index which we briefed the committee on a
4	few months I guess. I think I mentioned that this did
5	evolve from some work that we did on risk-based
6	performance indicators.
7	It was put together in response to a
8	request to promptly address some problems associated
9	with the current performance indicators. It's what we
10	call highly risk informed but there are a number of
11	things that are done that make it not risk based per
12	se but it's highly risk informed.
13	It accounts for unavailability and
14	unreliability consistent with PRAs which gives us a
15	nice connection there. It's more plant specific by
16	far than the current set of indicators, it eliminates
17	the fault exposure time problem, eliminates the
18	cascade of cooling system support system failures onto
19	front line system issue.
20	MR. ROSEN: In other words, it treats it
21	properly.
22	MR. BARANOWSKY: Well, treats it properly.
23	And the thresholds are consistent with the current
24	performance indicators.
25	MR. ROSEN: And it's DOA, I understand.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	MR. BARANOWSKY: And it's DOA. No, it's
2	not DOA.
3	MR. ROSEN: Good. Why isn't it dead on
4	arrival?
5	MR. BARANOWSKY: I'm going to explain
6	that, I hope.
7	MR. ROSEN: I hope it's not dead on
8	arrival.
9	MR. BARANOWSKY: Let me just finish this
10	and I'll address that and then we'll see if it's DOA.
11	We did do a pilot program on this. Did we report the
12	pilot program the last time we came here?
13	SUBCOMMITTEE MEMBER: No.
14	MR. BARANOWSKY: Okay. And we are
15	planning, by the way, a future ACRS briefing to follow
16	up the last one plus the new stuff that happened.
17	Don, when did we have that approximately scheduled?
18	MR. DUBE: I think probably early January
19	or sometime.
20	MR. BARANOWSKY: And in December we are
21	shooting to release the draft report that analyzes all
22	the issues that evolved from the pilot program and how
23	we came to a conclusion as to how they could be
24	addressed technically. So the pilot program went
25	through an exercise, the original version of what the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	Mitigating System Performance Index was.
2	Until you try something out you never know
3	what kind of bugs are in there and whatever. And then
4	we found things that needed to be fixed up and we did.
5	I'm not going to go through the details but this was
6	part of our validation and verification effort because
7	the licensees were the ones who were actually trying
8	out the performance index and we were just doing some
9	double checking validation verification work.
10	That included the need for us to upgrade
11	the SPAR models which I described earlier in order for
12	us to do that. We couldn't even do it with the
13	original SPAR models. They weren't detailed enough or
14	accurate enough.
15	They were good enough to get the overall
16	core damage frequency and some key sequences but you
17	have to go down into a level where the importance of
18	key components is really fairly close if you are going
19	to be making decisions that may change and performance
20	pushes you over a threshold with a delta CDF 10^{-6}
21	which is basically in the second or third decimal
22	place of your overall knowledge on the core damage
23	frequency.
24	MR. ROSEN: It turns out when you go out
25	to plant, systems they are made of components.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	108
1	MR. BARANOWSKY: You do what?
2	MR. ROSEN: It turns out when you go out
3	to plants and put your hands on the equipment, systems
4	are made of components together.
5	MR. BARANOWSKY: Right.
6	MR. ROSEN: It's a nasty fact of life.
7	MR. BARANOWSKY: It is. We came up with
8	a neat little approach to incorporate components into
9	the system in whatever levels allow us to work with a
10	performance threshold that is based on what was
11	promulgated in SECY 99007 when we did the reactor
12	oversight process which is these 10^{-6} levels that get
13	you from the green to white to yellow to red and so
14	forth.
15	Okay. So what's the status now? We've
16	had several meetings to go over technical issues. Of
17	concern are whether or not we will be getting false
18	positive or false negative indications of degradation
19	and performance and equipment that is highly risk
20	significant.
21	It only takes a few failures if you are
22	looking at a short period of time to call a failure
23	rate high, let's say, when normally you would collect
24	data over a longer period of time. That's an issue
25	and we have come up with schemes for dealing with that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 which we did not present to the ACRS. 2 Why don't you give a summary of a couple 3 of the key items that we resolved and then we're just 4 going to come and talk to you again. 5 MR. ROSEN: Put your last slide back on 6 just so I don't have to look at that white background. 7 MR. DUBE: This is Don Dube. There were 8 a number of issues identified but there were really 9 six major issues. Of those we presented proposed 10 solutions in the July 23rd meeting and had some go 11 arounds. Industry has concurred with five out of the 12 six resolutions that we have proposed. 13 These have to do with invalid indicators	
3of the key items that we resolved and then we're just4going to come and talk to you again.5MR. ROSEN: Put your last slide back on6just so I don't have to look at that white background.7MR. DUBE: This is Don Dube. There were8a number of issues identified but there were really9six major issues. Of those we presented proposed10solutions in the July 23rd meeting and had some go11arounds. Industry has concurred with five out of the12six resolutions that we have proposed.13These have to do with invalid indicators	
 going to come and talk to you again. MR. ROSEN: Put your last slide back on just so I don't have to look at that white background. MR. DUBE: This is Don Dube. There were a number of issues identified but there were really six major issues. Of those we presented proposed solutions in the July 23rd meeting and had some go arounds. Industry has concurred with five out of the six resolutions that we have proposed. These have to do with invalid indicators 	
5 MR. ROSEN: Put your last slide back on 6 just so I don't have to look at that white background. 7 MR. DUBE: This is Don Dube. There were 8 a number of issues identified but there were really 9 six major issues. Of those we presented proposed 10 solutions in the July 23rd meeting and had some go 11 arounds. Industry has concurred with five out of the 12 six resolutions that we have proposed. 13 These have to do with invalid indicators	
 just so I don't have to look at that white background. MR. DUBE: This is Don Dube. There were a number of issues identified but there were really six major issues. Of those we presented proposed solutions in the July 23rd meeting and had some go arounds. Industry has concurred with five out of the six resolutions that we have proposed. These have to do with invalid indicators 	
 MR. DUBE: This is Don Dube. There were a number of issues identified but there were really six major issues. Of those we presented proposed solutions in the July 23rd meeting and had some go arounds. Industry has concurred with five out of the six resolutions that we have proposed. These have to do with invalid indicators 	
 a number of issues identified but there were really six major issues. Of those we presented proposed solutions in the July 23rd meeting and had some go arounds. Industry has concurred with five out of the six resolutions that we have proposed. These have to do with invalid indicators 	
 9 six major issues. Of those we presented proposed 10 solutions in the July 23rd meeting and had some go 11 arounds. Industry has concurred with five out of the 12 six resolutions that we have proposed. 13 These have to do with invalid indicators 	
10 solutions in the July 23rd meeting and had some go 11 arounds. Industry has concurred with five out of the 12 six resolutions that we have proposed. 13 These have to do with invalid indicators	
11 arounds. Industry has concurred with five out of the 12 six resolutions that we have proposed. 13 These have to do with invalid indicators	
<pre>12 six resolutions that we have proposed. 13 These have to do with invalid indicators</pre>	
13 These have to do with invalid indicators	
14 shawa there is a large failure and fail and the	
14 where there is only one failure one failure results	
15 in a white indication. Or, at the other extreme,	
16 insensitive indicators where it takes dozens and	
17 dozens of failures to reach a white indication. What	
18 we have proposed is putting a front stop and a back	
19 stop to address both sides of the issue.	
20 They have agreed on those approaches	
21 pretty whole heartedly. The only outstanding issue is	
22 the extent to which we include the contribution of	
23 common cause failures to the importance measures and	
24 whether that should be part of the MSPI methodology.	
25 Really there's only one outstanding issue and I think	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	we can come up with a resolution on that.
2	MR. ROSEN: So it's not that other arm.
3	The minds have been greatly exaggerated.
4	MR. DUBE: No.
5	MR. BARANOWSKY: Let's talk about some of
6	the things that have come out. You might have even
7	read about these in <u>Inside NRC</u> . There are issues
8	related to whether or not we can use licensees, PRAs
9	as they exist to do the Mitigating System Performance
10	Index calculation mainly because of the concern about
11	PRA quality and what that means.
12	What we have done is try to identify the
13	specific aspects of the PRAs that if you make a
14	different assumption such as using the success
15	criteria from RELAP versus the MAP code, what impact
16	that has on calculating the MSPI values.
17	Because we are putting in these
18	performance based approaches with front stops and back
19	stops, it becomes less sensitive to the precision of
20	the PRA. We need to run some simulations to verify
21	how sensitive any of those issues are. We haven't
22	done that yet.
23	MR. DUBE: Well, we've started. In fact,
24	one interesting result is that at the July meeting I
25	presented to you and I said that one particular plant

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

has a difference in success criteria than what we assume in the SPAR model. They said their success criteria is one out of two PORC for feed and bleed and many plants of that design have two of two PORC as a success criteria. We know the change in core damage frequency.

7 Now what we're doing is our MSPI sensitivity studies and looking at how differences in 8 the PRA models and outputs affect the MSPI results. 9 In this particular case depending on which assumption 10 11 you use you may either get a white indication because 12 of some failures of feed water pumps or a yellow indication. It's extremely sensitive. 13 But other 14 cases what we found is there are differences in let's 15 say failure rates between the SPAR model and industry Some people are saying those are unacceptable. 16 PRA. 17 What we've done is rolled all the differences and 18 doing sensitivities on those and we find, hey, it doesn't even affect the results to more than a factor 19 of 1.5 or 2. 20

We are doing these sensitivity studies and getting a feeling for how sensitive is the output, which is the MSPI result, to the input. As you do enough of these you start to see an interesting trend. CHAIRMAN APOSTOLAKIS: Mr. Cunningham

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

mentioned it today but Mary also a month or two ago. The stuff is developing a regulatory guide on how to do sensitivity and uncertainty analysis. It's all within the bigger context of PRA quality and PRA standards and so on. I think it will benefit a lot from the insights that you gentleman have collected over the years.

In particular how sensitive certain things 8 9 to assumptions because this is one of the are 10 requirements in the PRA standard, the ASME standard, 11 that you have to identify the key assumptions that 12 affect your results. The regulatory guide will deal 13 with how to do that. I think you have to talk to 14 them. Are you in contact with them at all or shall we 15 intervene?

MR. BARANOWSKY: No, the PRA quality issue needs to be resolved in a manner that is consistent with what they're doing. We're testing some things out. In theory, they are going to learn from what we're doing.

21 CHAIRMAN APOSTOLAKIS: No, but this issue 22 of two PORCs versus one and so on, these are examples 23 they have to be aware of. These are key assumptions. 24 MR. BARANOWSKY: We are feeding this into 25 them. The feed is from us to them. We have the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

16

17

18

19

20

	113
1	actual experience of doing the analyses.
2	CHAIRMAN APOSTOLAKIS: That's what I'm
3	asking. There is a connection?
4	MR. BARANOWSKY: Yeah, and we are trying
5	to feed that in.
6	CHAIRMAN APOSTOLAKIS: But they never tell
7	you what they do, right? It's only one way?
8	MR. BARANOWSKY: Well, the concern that I
9	have is we are working with specifics and then when
10	you start getting into generalities of what PRA
11	quality is, it becomes a discussion of philosophy as
12	opposed to what I'm interested in is can I get a
13	reasonably close analytic result so that when I apply
14	it in a quantitative situation I don't get two
15	potentially different decisions. That's all I care
16	about.
17	CHAIRMAN APOSTOLAKIS: But this regulatory
18	guide is not really dealing with the big issue of
19	quality. It's dealing with the specific issue of what
20	does it mean to do sensitivity analysis and what does
21	it mean to do uncertainty analysis and how should I do
22	these two things.
23	Obviously they have to be fully aware of
24	some of the key assumptions that you guys are
25	identifying. Anybody can talk about success criteria

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	that are important but here is an example where it
2	does make a difference what kind of success criteria
3	you assume. That's all I'm saying. And this is
4	happening.
5	MR. BARANOWSKY: I think I can give
6	accident sequence precursor cases where we did the
7	same thing. We would run through point analysis. We
8	had like 20 issues raised. We went through 19 of them
9	that had no impact but it took a lot of effort to go
10	through them. We said only one causes the bottom line
11	to change. The others are peripheral.
12	CHAIRMAN APOSTOLAKIS: I would like to get
13	some of this information for my own benefit.
14	MR. BARANOWSKY: We're going to get you
15	some of these accident sequence precursor things.
16	MR. ROSEN: So tell us the bottom line on
17	MSPI.
18	MR. BARANOWSKY: Okay. The bottom line is
19	we think we can resolve all the technical issues and
20	there are still issues related to its acceptability as
21	a replacement for the current process which involves
22	a performance indicator and/or a significance
23	determination evaluation on single component failures.
24	I think that's about the bottom line.
25	Some people want to do SDPs on single

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

component failures and our position is that is best done through reliability analysis because of the context of false positives and false negatives if you don't look at it in that regard. We factored that into the front and back stop issues that Don has talked about.

7 MR. ROSEN: Why doesn't that resolve the 8 issue? Now you have an MSPI that recognizes that you ought to not make broad generalizations based on one 9 10 event. You use the back stops and front stops to make 11 sure that you don't and now you move the MSPI into the 12 ROP replacing those other outdated -- let's say those 13 other partial indicators which I began developing in 14 the '80s with something that is much more robust. I 15 think you're doing great. Don't give up early.

MR. BARANOWSKY: We're going through the process and we're trying to address issues that people are raising about why they like to do it one way or another. I think we're slowly just making progress. It's a little bit more difficult than we thought it would be. I don't think we can just say it's our opinion you --

23 MR. ROSEN: Not necessarily disabling. 24 Things that are difficult sometimes turn out to be 25 good things. I think working with the industry is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

16

17

18

19

20

21

22

	116
1	great but at some point you can declare victory and go
2	ahead and make a recommendation to the agency that you
3	move the ROP along. We didn't ever expect ROP to be
4	the way it was on day zero forever.
5	MR. BARANOWSKY: I think we need to
6	recognize that what we're proposing is not the perfect
7	fix to performance indicators but a pretty good
8	improvement that gives us a good handle on where we
9	should spend our inspection resources.
10	MR. ROSEN: Look at the chart behind you,
11	the one I had you put up. It just so happens to be
12	that those bullets that you list, unavailability and
13	unreliability are consistent with the PRA. It
14	accounts for plant specific design and performance
15	data which was one of ACRS' big complaints about it.
16	It eliminates fault exposure time which
17	the industry complained about. It cascades properly
18	the support systems, especially the cooling support
19	system, and so on. Those are very significant
20	advantages and I don't want to lose them. I think
21	they are valuable. The longer we wait to accrue those
22	advantages, that's lost opportunity.
23	MR. BARANOWSKY: One last point on that
24	also is that this is new and different from the way
25	anybody has done detailed performance indicator

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

calculations and so there is a concern about what effort will be involved in implementing this.

We think we figured out how to handle the industry side and I think the industry folks are comfortable with it but there is a concern about how much inspection activity is appropriate and would be required. Do they have to inspect the PRAs? Do they have to inspect all the interpretations of data?

MR. ROSEN: Got it across the line into the agency, the concerns, which is wonderful because we could help you with that. This is the right direction for the ROP and I support it. You've presented me with a target rich environment so I'll confine my comments besides MSPI to just two others.

These PIs for the cross-cutting issues that we have been looking for and worried about, you gave me a troubling answer to what I said before when I said, "Look, you need to look at Persensky's and Flack's presentation from the other day and look in the potential performance indicators that he proposed on Safety Conscious Work Environment Corrective Action Program and Human Performance."

You said, "I don't know if I'm the right guy." Well, I'll hold you responsible. I don't know if you are either but I see you. It's troubling to me

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

	118
1	to have an agency person of your caliber and elevation
2	in the agency to say, "I don't know who's in charge of
3	this," because, you know, somebody has to be and
4	you're as good a target as anybody.
5	This is important. Very important, Pat.
6	We need to get this resolved. We brought it up in
7	letters from ACRS to the Commission that here is an
8	avenue. Please, between you and Flack and Persensky
9	and whoever else, would you take the lead to say,
10	"Okay, here's a way to go forward. Let's at least
11	look at it." I'm not saying do it. I'm just saying
12	here is a suggestion.
13	CHAIRMAN APOSTOLAKIS: Maybe we can say
14	something in our research board about this because he
15	needs help with that. He cannot take the lead.
16	MR. ROSEN: I know. I'm just troubled by
17	somebody like him saying, "I don't know who's in
18	charge."
19	CHAIRMAN APOSTOLAKIS: We'll make sure we
20	raise that when we write the appropriate report
21	because then I think some people may pay attention.
22	MR. ROSEN: I'll try. I'll try. Okay.
23	CHAIRMAN APOSTOLAKIS: We'll turn you into
24	a psychologist.
25	MR. BARANOWSKY: Well, I'm sure you'll get

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	me in trouble, but okay.
2	MR. ROSEN: I'm trying to get you in
3	trouble.
4	CHAIRMAN APOSTOLAKIS: Because you don't
5	get into trouble on your own.
6	MR. ROSEN: I want to get you into trouble
7	and then out of it as a hero.
8	MR. BARANOWSKY: All right.
9	MR. ROSEN: All right. One more. On your
10	slide 18, this was on integrated initiating event
11	indicated development, you talked about rolling up the
12	indicators and collect communications to Congress and
13	other stakeholders. It seems to me that you've gone
14	a long way to make some very important integrations of
15	this information. This is just for initiating events,
16	right?
17	MR. BARANOWSKY: Um-hum.
18	MR. ROSEN: But, at least, it says from a
19	perspective of the industry and over time now as you
20	trend this stuff you're going to be able to say
21	whether this really is meaningfully going up or down.
22	I think that's a very big value of it. In other
23	words, it doesn't say how well the events were handled
24	but it says whether they are occurring or not.
25	I think you can say over time that it has

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 a lot to do with how well the industry is maintaining 2 the plants and other things like grid reliability. It's a very important statistic to be watching over 3 4 time now. It becomes valuable because of the things 5 you've done with thinking about risk. For example, as you've quantified, don't just add numbers and send 6 7 them to Congress. My God, what could be worse than handing 8 9 those guys loaded guns. They could shot them any 10 place. They could shoot themselves with it. I think 11 it's a very valuable thing and over time I think it 12 could become even more valuable as long as we trend it 13 properly and draw appropriate risk-based conclusions, 14 risk-informed conclusions. Thank you. 15 CHAIRMAN APOSTOLAKIS: Any other comments 16 by any members? You want to make any comments? 17 MR. BARANOWSKY: No, but we appreciate the 18 briefing. 19 CHAIRMAN APOSTOLAKIS: Thank you very much 20 for coming. This has been excellent as usual. 21 Appreciate it. Thank you. 22 Okay. We will recess until 12:30. 23 (Whereupon, at 11:32 a.m. off the record 24 for lunch to reconvene at 12:30 p.m.) 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

120

	121
1	
2	
3	
4	
5	
б	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
7	12:34 p.m.
8	CHAIRMAN APOSTOLAKIS: The next item is
9	Planned Activities in Development of PRA Methods and
10	Standards. Mark Cunningham will open it up.
11	MR. CUNNINGHAM: Yes, sir. Thank you. We
12	have four speakers this afternoon in addition to
13	myself.
14	CHAIRMAN APOSTOLAKIS: We have to finish
15	by 2:30.
16	MR. CUNNINGHAM: No problem.
17	CHAIRMAN APOSTOLAKIS: If you don't
18	finish, we're gone.
19	MR. CUNNINGHAM: We'll be done by 2:30.
20	We're talking in the broad category of things about
21	SAPHIRE peer review. We've talked in the past about
22	two aspects of it. One is how do you review and try
23	to improve the basic models that are in PRAs that show
24	up in codes like SAPHIRE.
25	Then there is also how do we test the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

122 1 code, if you will, itself to ensure that it's 2 representing the models correctly and that sort of You'll hear a little bit about both this 3 thing. 4 afternoon. Our friends from the University of 5 Maryland are here, Dr. Modarres and Dr. Mosleh, and they will be talking about improvements and how we 6 7 model things in PRAs. them we'll 8 Following have а brief discussion on the work we're doing in fire risk 9 10 analysis from J. S. Hyslop of the staff. That's one 11 slide, I believe. Then we'll talk some more about the 12 technical review, the DMB review of SAPHIRE. And we'll talk a bit about what we're doing in low-power 13 14 and shut-down risk analysis. Both of those could be 15 very short if we are pressed for time. CHAIRMAN APOSTOLAKIS: Geez, are you going 16 17 to go through all of these? 18 MR. CUNNINGHAM: No. 19 MR. ROSEN: But look at the subject, 20 This is what you've been bugging us about. George. 21 CHAIRMAN APOSTOLAKIS: Not on a Friday 22 Not on Friday afternoon. afternoon. 23 MR. ROSEN: Now they deliver it and you're 24 in a hurry. MR. CUNNINGHAM: Is every other slide a 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	good move?
2	CHAIRMAN APOSTOLAKIS: Yeah, every other
3	slide would be good.
4	DR. MOSLEH: I should probably start with
5	some introduction.
6	CHAIRMAN APOSTOLAKIS: Sure. Tell us who
7	you are first of all for the record.
8	DR. MOSLEH: I am Ali Mosleh. I'm the
9	Professor of the University of Maryland in Reliability
10	Engineering. We have had a number of research
11	projects with the Office of Research in the general
12	area of uncertainty and various applications. We were
13	informed of the desire to have a presentation on some
14	of our work and progress.
15	It was short notice, Wednesday morning, so
16	we tried to put together something that is
17	representative of what we have done and what we are
18	currently working on. About four separate topics
19	under the broad topic of uncertainty treatment and we
20	will try to cover as much of those and as many of the
21	details as possible.
22	In fact, if it is preferred, we can take
23	one of the several topics and spend more time on it.
24	These are the topics that we have plans for
25	presentation. These are a subset of several topics

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	under the topic of uncertainty. The first one was a
2	project that we had like about four years ago or five
3	years ago. It was kind of a two-year project under
4	the collaborative agreement that we have between NRC
5	and CTRS, Center for Technology Risk Studies.
6	The second one is topics that we have
7	addressed and those that are kind of subject of
8	ongoing research. I'm here with my colleague
9	Professor Mohammad Modarres. We are kind of the co-
10	project principal investigators in this activity. And
11	one of our graduate students Mr. Paul Copahanna.
12	I plan to start with the first topic, the
13	integrated model and parameter uncertainty with the
14	stated objectives of developing a conceptual unified
15	framework and methodology for treating model
16	uncertainty, model and parameter uncertainty.
17	To provide guidance for practical
18	applications. That was kind of a key requirement.
19	And apply the method and techniques to representative
20	cases from fire risk models. Later we extend that and
21	expand that to other applications including thermal-
22	hydraulic model uncertainty.
23	The results can be summarized in this
24	viewgraph where we develop the Bayesian framework for
25	treating model uncertainty in which the Baysesian

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Demonstrated that many popular methods such as model averaging can be demonstrated to be a special case of the general Baysesian framework so as a general framework that's a good property to look for.

Formulated solutions for several important 8 classes of model uncertainty problems encountered in 9 10 PRA, namely the types of evidence that we have the 11 types of models which we try to address a good subset 12 of those in terms of developing methods and algorithms 13 the general Baysesian framework. within And 14 demonstrated that the method, you know, could be 15 applied in two cases involving fire models.

One case was COMBRN model uncertainty, kind of a remake and reassessment of the work that was done several years back using a variation of the same general principles. Another one is the line fire temperature model uncertainty in two applications within the fire risk discipline.

22 What we mean by model uncertainty, 23 essentially we're talking about capturing the 24 difference between reality and model that we develop 25 for various applications. That delta, which is the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

difference between reality and M meaning the model representation of that reality, whatever the source of that delta or that difference might be we try to capture that in our model uncertainty framework. We view models as at least having these

key components. They rely on certain input from reflecting characteristics of the environment and other parts of the boiler system. They provide an output function or product. In the middle you have a model that is based on some concept, the conceptual design and implementation.

12 Both of these could result in uncertainty. 13 Certainly uncertainty in the input. Certainly 14 uncertainty in conceptually capturing aspects of 15 reality and how you formulate that model implemented in whatever language, numerical methods or analytical 16 17 equations and the like, that all these could be 18 subject or sources of uncertainty.

We tried to clarify a kind of subject or terms that people have used in this context, form versus parameter. We realize that parameter and form distinction is kind of arbitrary and it's a context and level of tecal dependent. For instance, something that at one level is a parameter is a structured element of a model.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

In this case you're looking at a gradual degradation or elaboration of a conceptual model for heat release rate recognized as a function of time. Then when you go down to kind of the next level you have two structural kind of models. One is linear and the other one is exponential. In each of these two models you have a set of parameters.

8 Now, the moment you specify these 9 parameters they become structure properties of them 10 In the left-hand side if alpha is one it's a all. 11 linear model. If alpha is two, it becomes a nonlinear 12 There is no solid line between parameter and model. 13 model and that is something that one needs to be 14 careful when we talk about model uncertainty 15 propagation and parameter uncertainty propagation.

MR. ROSEN: Let me complain at the outset and maybe Mike and you can fix it. When you put six of these on one slide -- on one page, as you have, I can't read them.

20 DR. MOSLEH: It's useless. I agree. 21 MR. ROSEN: Would you see if you can't get 22 them two on a page so I can read the terminology? 23 MR. WOODS: This is Roy Woods. I'm sorry. 24 I did that. I got those about a half hour ago and I 25 thought you would probably complain if I killed a tree

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

16

17

18

19

	128
1	with all these slides so I did it that way.
2	MR. ROSEN: If you could get them two on
3	a page, I could at least study them later.
4	MR. SHACK: Or send us a pdf file.
5	MR. WOODS: I can do that, too.
6	DR. MOSLEH: These are available in
7	electronic format. One of the points is that
8	effectively a case of successful treatment of model
9	uncertainty is a case where you can state with
10	certainty if you have confidence that you think the
11	true value falls in the range that you expressed.
12	Obviously we know from history of science
13	and engineering that a lot of cases non-negligible
14	probability that the true value would fall outside the
15	models that you use to make a prediction.
16	This is kind of represented in this
17	picture where we have the question here is which
18	question here are we trying to answer? The first
19	question, the ideal case, is the case where you have
20	the true value captured within the uncertainty range,
21	the best representation.
22	The other case is something that is a
23	little more practically achievable, although falls
24	short of addressing the fundamental question in the
25	broadest possible sense, and that is what can I say

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

about the unknown of interest if I have input and information from various models so unknown interest being X and there's no guarantee that obviously the true value would fall within range and there needs to be some modification and correction in this second representation on the lower right to bring it back to the types of representation that we have on the upper left.

We took in the first round at this and at the point we closed this project under the NRC collaborative agreement we addressed the lower right. We said what can we say about the unknown interest given IM and IM being information from models and information about models.

If you state the problem this way, remember one of the issues we wanted to wrestle is there a framework, a rational, logical framework for addressing the question of model uncertainty. The moment you phrase the question this way, in other words, what can you say about the unknown X given IM information from and about model.

Then based here is really the natural choice as a framework because exactly mathematically based theorem tries to answer that question. Given a piece of information what can you say about the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

	130
1	unknown of interest.
2	This is a familiar equation form to the
3	Committee. Again, symbolically we have a posterior
4	distribution given the information from the
5	singular model.
6	CHAIRMAN APOSTOLAKIS: There are a lot of
7	slides. Can you skip the mathematical details?
8	DR. MOSLEH: Sure. Okay. I think maybe
9	
10	CHAIRMAN APOSTOLAKIS: Maybe an example or
11	something.
12	DR. MOSLEH: Yes. The key step we took
13	is, of course, in the base theorem the key question we
14	need to address is the construction of the likelihood
15	function fundamentally. One of the first steps we
16	took was the information on models would go into the
17	structure of the likelihood function. Information
18	about models from models will go as a condition just
19	as given a piece inside the likelihood function. This
20	is how we capture both types of information.
21	In constructing the likelihood function in
22	terms of capturing information about models, we use a
23	parametric representation. In other words, you
24	structure the likelihood function in such a way that
25	the parameters of the likelihood would represent

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

information about the models of interest.

1

2

3

4

5

6

7

8

9

10

11

12

13

CHAIRMAN APOSTOLAKIS: The fundamental issue here is really -- I don't know how familiar the members are with the likelihood function but the likelihood function is essentially the probability that if you knew the true answer, the model would be closed in qualitative terms which is really a judgment about how good the model is.

In other words, if you had infinite confidence in the model, it would be a dental function. If you know the true value, then it gives you the true value. When you start having doubts about the model, then you have a distribution.

You know, if the true value is here, there's a probability that the model will give me something over there. This is where you have to evaluate the credibility of the model predictions. How are you doing that? I mean, in qualitative terms. What inputs do you use?

20 DR. MOSLEH: I have a couple of examples. 21 For instance, here on the second bullet, information 22 about models, performance data is a piece of evidence 23 you have experimental like measures and then 24 prediction of the model. Assessment, this is now a 25 qualitative or quantitative judgment, subjective

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	judgment about quality and applicability of the model.
2	Not only the quality or credibility of the
3	model within its domain application as it was intended
4	and designed for, but also sometimes you use models in
5	other domains of applications so applicability is
6	another question.
7	Taking this information from model and
8	this combination of performance data or other
9	subjective assessment about the quality of the model
10	would be the two pieces of information that would go
11	into the likelihood function, the second going into
12	parameters you define to capture this type of
13	information.
14	So, for instance, in the case of when you
15	have performance data, a set of numbers from
16	experiment, that's El through En measurements, then
17	you can use a simple error, model which we have used
18	in other applications such as expert opinion modeling,
19	to basically relate the prediction of the model and
20	the actual data.
21	CHAIRMAN APOSTOLAKIS: But this is where
22	your judgment comes into the picture, right?
23	DR. MOSLEH: Right. Including the choice
24	of the error model.
25	CHAIRMAN APOSTOLAKIS: Have you developed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

any guidance as to how I'm going to do that? I mean, the formulation is fine, and it's the right formulation, of course, but when it comes to saying something, let's say, I have one model and somehow I have to decide how credible the results are. You have an example, I think. Maybe you can speak in terms of an example because we don't have much time.

DR. MOSLEH: Here is a case where you have data so I think the question of using data to see how good the model has performed with respect to the data is a simpler problem. You have the actual data to tell you the magnitude of error. For that you use the error model.

CHAIRMAN APOSTOLAKIS: Let's look at this.

DR. MOSLEH: I think another one is better because this one talks about use of data, performance data. Here is a case where we have a prediction of point source model, fire models. Then we are dealing with the line fire like the cable along the length as a fire. If you are using a code designed for one application, how do you now take it for a different application.

Here we are assessing applicability which is now reduced into one parameter, one number between zero and one. That number would be used to adjust the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

	134
1	likelihood function. You can raise the likelihood
2	function to a number between zero and one and you
3	would change that number.
4	The strength of the likelihood function,
5	therefore, data representation of your confidence in
6	your model would change going from a flat distribution
7	to fully, as Dr. Apostolakis mentioned, delta function
8	that represents the full confidence in a model.
9	Now, who do you estimate such quantities
10	in a number, a credibility factor, or applicability
11	factor? We use a simple method of decomposition of
12	attributes of a model. You have a context alpha. The
13	model is designed for context alpha and you are using
14	it for context beta.
15	You list the attributes within context
16	alpha that are important in context alpha and you list
17	the attributes, the physical models, the aspects of
18	the physical process, for instance, that you need to
19	address, and a number of other things that go deeply
20	inside the specifics of the model.
21	So you list those and you go through this
22	comparison of what I have in context A and the way
23	that the model is treating those. To what extent in
24	that particular case, say in the case of attribute E
25	how well is it addressing the question. Do I need,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	for instance, to introduce a bias term. Do I need to
2	introduce like take it totally as being applicable.
3	Do I need broaden my uncertainty range
4	because this thing would give the answer but with kind
5	of a bigger error. That kind of a one-to-one
6	assessment is the method we use to take a comparison
7	between the two context and the model attributes
8	within the two context, and reduce them to a single
9	number. We use something like AHP in that area.
10	That's analytic hierarchy type process.
11	At the end you get a number that is an
12	overall qualitative assessment of applicability of a
13	model alpha to context beta.
14	CHAIRMAN APOSTOLAKIS: So essentially you
15	are structuring the judgment process.
16	DR. MOSLEH: Exactly. Right. In the area
17	of confidence in the model in its context, also
18	context alpha, we use the same type of approach. Here
19	is the specific case that you work with an expert in
20	the fire phenomenology looking at the point source
21	fire model and a line fire model and looked at
22	different attributed in the terms of geometry,
23	ventilation, fire characteristics, plume
24	characteristics, and the attributes of each of these
25	categories.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

They will judge one by one once. Then at the end the expert, in this case there were two experts, collectively look at the number that was just a single number as a result of this process, and essentially to converge to kind of one number to be used.

CHAIRMAN APOSTOLAKIS: In this particular case, though, wouldn't you make also a point -- I mean, it is a model uncertainty issue but you are really trying to take a model that was developed for one physical situation applied to another from a point source to a line source. The question is why don't you go straight and develop a line source model.

Do you have any examples where for the same physical situation there were more than one models? In other words, people have made different assumptions. Like in the human reliability you are familiar with the benchmark exercise. Have you dealt with any problems like that?

20 DR. MOSLEH: Not in a real application in 21 the example I can give you. There is another project 22 that we have and and that's the software reliability 23 where you use the exact same thing but on multiple 24 models.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

The process of judging -- according to the

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

25

	137
1	procedure that we've been following in every case
2	there are judgments in terms of comparing models in
3	terms of their relative strength and weaknesses. We
4	look at the structure and the details of the model.
5	But we have not made an attempt in terms of covering
6	the unknown or nonexisting model. In other words, the
7	issue of completeness.
8	CHAIRMAN APOSTOLAKIS: But you have dealt
9	with a situation where I can say six models attempting
10	to do the same thing but they are using different
11	assumptions and different methods. Again, it's a
12	matter of structuring the judgment process that will
13	tell you eventually I believe the model is biased or
14	I believe this and that.
15	DR. MOSLEH: Precisely.
16	CHAIRMAN APOSTOLAKIS: I mean, there is
17	no ultimately you have to rely on experts.
18	Anything else you want to tell us?
19	DR. MOSLEH: That's basically I wanted
20	to say
21	CHAIRMAN APOSTOLAKIS: The thermal
22	hydraulic uncertainties, you want to do that?
23	DR. MOSLEH: If I may add one point in
24	terms of limitations of this thing, this methodology
25	has focused on model output and if it's a model output

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	138
1	methodology. When you deal with more complex systems
2	such as thermal hydraulic models and you need to
3	really go inside and then construct model uncertainty
4	from looking at model uncertainty with these submodels
5	you need to do a lot more obviously.
6	That's the type of thing that we're
7	dealing with in the model uncertainty application to
8	thermal hydraulics. Dealing with complex situations
9	where you have
10	CHAIRMAN APOSTOLAKIS: I remember in the
11	PTS a couple of years ago it was either you or
12	Mohammad who told us that the various boxes there in
13	the big diagram there is model uncertainty and had to
14	do with materials.
15	DR. MOSLEH: Yes.
16	CHAIRMAN APOSTOLAKIS: Have you done that?
17	DR. MOSLEH: Yes.
18	CHAIRMAN APOSTOLAKIS: Okay. So you're
19	going to talk about it?
20	DR. MOSLEH: After I'm done, Mohammad
21	will. I do need to leave about 10 minutes before 2:00
22	for a conference and then I think you have until 2:30
23	to cover that material.
24	I need to go back to the other
25	presentation. This is I have two presentations on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	thermal hydraulic uncertainty. One is the work we did
2	under the PTS risk assessment. The other one is a
3	more general uncertainty for thermal hydraulic codes.
4	I make a few comments on this one and then try to
5	focus on the other one in the interest of time.
6	In this case we were in the middle of many
7	activities and disciplines. As you can see, there was
8	a PRA event sequence analysis, thermal hydraulic
9	analysis, and PFM analysis. Initially we started just
10	focusing on thermal hydraulic and uncertainty analysis
11	and immediately realized that it's just almost
12	impossible. In the middle of an integrated assessment
13	you have to be involved pretty much in all
14	MR. ROSEN: Not impossible. It's not
15	irrelevant.
16	DR. MOSLEH: Yes.
17	MR. ROSEN: What would be the good of
18	doing a good thermal hydraulic analysis and
19	uncertainty analysis in the midst of a see of other
20	uncertainties that are unquantified?
21	DR. MOSLEH: You have to really look at
22	the context you're doing the uncertainty.
23	MR. ROSEN: You've got to do the whole
24	thing if you're going to do it at all.
25	DR. MOSLEH: Yes. We should have known

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	that maybe by taking two minutes but we jumped in
2	thinking it was going to be a small task but we ended
3	up being involved pretty much in all the activities of
4	PTS just to address the uncertainty.
5	So there were kind of genetic lessons that
6	we drew from this experience and became kind of the
7	motive for another task or activity to see if you are
8	addressing a complex technical assessment how do you
9	address the uncertainties, what would be the
10	procedures, techniques, and tools. That's kind of a
11	more recent activity.
12	In this project some of the things that we
13	had to address obviously other than you know, we
14	have an overall process to follow. Namely, you have
15	uncertainties from the PRA side event sequences in
16	terms of frequencies. You go through a process of
17	reduction in terms of the number of sequences that you
18	want to carry, grouping and classifying.
19	You have to wrestle with the limits and
20	the number of RELAP runs you could run. Then
21	ultimately you have interface constraints. In other
22	words, the PFM analysis code would take an input in a
23	particular format of representation. These establish
24	certain constraints over what we could do.
25	MR. ROSEN: Would you go click on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	model so we can expand this?
2	DR. MOSLEH: Yes. So there is this
3	discipline, this discipline, the connection, and then
4	we have to do through the binning and representation
5	of the uncertainty of the three key parameters, many
6	of those, and the PFM analysis. But the point that I
7	wanted to make is that in context when you do
8	uncertainty analysis you have now additional concerns
9	that are imposed on you and that changes the nature of
10	the methodology or tools that apply.
11	In this case we have to almost kind of
12	completely rely on a diskatized version of the
13	universe by treating uncertainties in bins, in groups,
14	in categories and go through the systematic and force
15	reduction of number. A 100 or 200 thermal hydraulic
16	runs reduce to 50 or so runs that would go ultimately
17	to PFM analysis. The runs were supposed to represent
18	the range of uncertainty that you have for each of the
19	groups or categories, namely the ones in the middle
20	right here. Three curves per set of
21	CHAIRMAN APOSTOLAKIS: The age of
22	uncertainty, the aleatory uncertain so now you have
23	DR. MOSLEH: This is a one scenario class
24	and then you're talking about epistemic uncertainty.
25	CHAIRMAN APOSTOLAKIS: You had 50 runs for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	one scenario and these 50 are presented different from
2	the measures of the parameters that appear in the
3	scenario.
4	DR. MOSLEH: Yes.
5	CHAIRMAN APOSTOLAKIS: Another scenario
6	you had another 50.
7	DR. MOSLEH: That's right, 50
8	combinations. The lines that you see represent the
9	epistemic uncertainty of the parameters in an
10	interesting way. Then when I go to the other one, I
11	will comment on this because this is something that is
12	a common mistake on many people who are doing thermal
13	hydraulic uncertainty and maybe physical phenomenon.
14	CHAIRMAN APOSTOLAKIS: Okay. So this is
15	making mistakes?
16	DR. MOSLEH: It's not the thermal
17	hydraulic expert who makes the mistake but those who
18	try to do uncertainty.
19	CHAIRMAN APOSTOLAKIS: That was a very
20	good way of getting out of it, Ali. Have you seen any
21	numbers from the PFM analysis that are higher than
22	10 ⁻⁸ ?
23	DR. MOSLEH: Oh, yes.
24	CHAIRMAN APOSTOLAKIS: They are capable of
25	doing this?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	DR. MOSLEH: Absolutely, after a lot of
2	complaints.
3	CHAIRMAN APOSTOLAKIS: I have yet to see
4	a PFM calculation that is more than 10^{-6} .
5	MR. SHACK: I have.
6	CHAIRMAN APOSTOLAKIS: You have?
7	MR. SHACK: Oh, yeah. I can pop nozzles
8	off the SRDM housings.
9	CHAIRMAN APOSTOLAKIS: I have never seen
10	that. I would like to see that just as a new
11	experience in life.
12	Okay. Go ahead.
13	DR. MOSLEH: So in this process given the
14	constraints obviously one thing that really these
15	constraints or context really helped us is that
16	sometime the boundary condition uncertainties were
17	dominant so you change the boundaries that were kind
18	of well defined physical
19	CHAIRMAN APOSTOLAKIS: What do you mean
20	boundary conditions?
21	DR. MOSLEH: Such as the temperature and
22	the season. Seasonal change in the temperature as a
23	boundary condition. Then it was the judgment of the
24	RELAP and the thermal hydraulic experts that some of
25	the uncertainties and the actual code calculations

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
144 were much smaller in those cases compared to the 1 2 variation in input parameters. That helped us kind of 3 escape and skip some of the more difficult TH4 uncertainty issues we were not kind of equipped or 5 prepared or had the time to address in that project. You're not addressing the 6 MR. SHACK: 7 uncertainties in RELAP itself. DR. MOSLEH: That's right, yeah. It's the 8 9 uncertainty in the boundary conditions or the way of 10 developing the boundary conditions that the aleatory 11 part now takes over. 12 CHAIRMAN APOSTOLAKIS: of Some the 13 boundary conditions are aleatory, right? 14 DR. MOSLEH: They are, mostly. 15 CHAIRMAN APOSTOLAKIS: Oh, mostly. 16 DR. MOSLEH: The ones that don't vary. 17 Not all. 18 MR. SHACK: Aren't they really epistemic? 19 I mean, if you knew when the event was going to take 20 place at the time of year --21 CHAIRMAN APOSTOLAKIS: Then you would 22 know. 23 MR. SHACK: -- then you would know. 24 MR. ROSEN: If we knew when the event was 25 going to take place, we would know a lot more about it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	145
1	and we would make sure the event didn't occur.
2	DR. MOSLEH: On philosophical grounds
3	there's only one type of uncertainty. They are all
4	epistemic, right? But, you know, in terms of how much
5	control we have on those, we have a line that puts
6	some of them in the aleatory domain and other in the
7	epistemic but it's an arbitrary line depending on
8	analysis resources and knowledge.
9	CHAIRMAN APOSTOLAKIS: It's not arbitrary.
10	It's convenient.
11	
12	DR. MOSLEH: It's convenient.
13	CHAIRMAN APOSTOLAKIS: It's not arbitrary.
14	People are not doing it capriciously.
15	DR. MOSLEH: No.
16	CHAIRMAN APOSTOLAKIS: That's a nice word.
17	DR. MOSLEH: I think in a sense the
18	philosophers would say, "Look, this is a minor point.
19	If you want to draw the line here and there, you need
20	certain criteria but fundamentally it's the same
21	uncertainty. Uncertainty is uncertainty.
22	CHAIRMAN APOSTOLAKIS: So when you say
23	RELAP model uncertainty there, what do you mean?
24	DR. MOSLEH: Meaning you have two
25	submodels that you kind of invoke one versus another

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	146
1	or two numerical conversation criteria. When you
2	invoke one versus another you get a difference in the
3	results.
4	CHAIRMAN APOSTOLAKIS: Didn't you just
5	answer that the uncertainty RELAP itself is not
6	DR. MOSLEH: In those cases we didn't need
7	to address the RELAP uncertainty that we uncovered.
8	MR. SHACK: If I only know the temperature
9	within plus or minus 70 degrees but I don't know what
10	time of year it is, it doesn't matter that when I
11	specify the temperature exactly RELAP has an
12	uncertainty in the calculation because I get such a
13	wide variation because I don't know the
14	CHAIRMAN APOSTOLAKIS: But that presumes
15	that they have some idea what the RELAP uncertainty
16	is.
17	MR. SHACK: Yes. It is an implicit
18	assumption.
19	CHAIRMAN APOSTOLAKIS: And you know that.
20	MR. SHACK: Yeah.
21	DR. MOSLEH: These were looked at case by
22	case and examined in context, specifically what case
23	you're talking and what sources of uncertainty in
24	RELAP exist, whether those are covered or not. So
25	it's not a general statement or generic statement.

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	147
1	That was something that helped us again doing
2	analysis.
3	CHAIRMAN APOSTOLAKIS: Let me understand
4	this. How did you find out that the boundary
5	condition had such an impact? Somebody told you or
6	you found out?
7	DR. MOSLEH: No, we would run. We would
8	actually run the cases.
9	CHAIRMAN APOSTOLAKIS: So you filed
10	through simulations?
11	DR. MOSLEH: Absolutely. In order to zoom
12	in on important parameters, the numbers that we need
13	to run, we ran about 1,000 RELAP cases to kind of get
14	a feel for it.
15	CHAIRMAN APOSTOLAKIS: But one could
16	conceivably have a formal sensitivity analysis to
17	guide you.
18	DR. MOSLEH: Yes.
19	CHAIRMAN APOSTOLAKIS: This is important
20	by the way, Mark, to the regulatory guide that you
21	guys are thinking of developing now in sensitivity and
22	uncertainty.
23	MR. CUNNINGHAM: Certainly.
24	CHAIRMAN APOSTOLAKIS: It would be nice to
25	have a method that guides you to do the sensitivity

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

148 1 analyses that will uncover cases like that rather than 2 relying on the expertise of the analyst who bury I think that is one of the most important 3 things. 4 things. 5 DR. MOSLEH: I think I agree in the sense that the way we have to kind of develop our own 6 7 procedure because how many and which particles we change and then modify so we develop kind of an 8 internal set of guidelines to help us minimize the 9 10 number of runs we have to make until we get the 11 insights that we need. 12 CHAIRMAN APOSTOLAKIS: Very good. 13 14 DR. MOSLEH: Some of those were summarized 15 and shared with ACRS before in the PTS presentation

propagation from the PRA side all the way to the input 20 to the PFM fracture mechanics code input. 21 Model uncertainty, of course, sequence 22 modeling and grouping and mapping those thermal 23 hydraulic runs is a source of uncertainty. The way we 24 treated them sometimes by recognizing that we needed 25 to add more details or further rebin things to address

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

but also some of them are here. Here is a quick list

of uncertainty sources that we looked at and tried to

This is the entire process of uncertainty

(202) 234-4433

address.

16

17

18

19

	149
1	things properly. In some cases they were not treated
2	because they were judged to be small.
3	MR. SHACK: You mean, you did the
4	rebinning basically to reduce your uncertainty, right?
5	If you left the bins the original way you would have
6	just been left with huge uncertainty bands.
7	DR. MOSLEH: To reduce the uncertainties
8	like binning is uncertainty management in a way. Some
9	of it was dictated not by a desire to reduce or manage
10	uncertainty but just basically input/output
11	requirement from the parts of the analysis, from the
12	PRA side all the way to PFM.
13	For instance, in the PFM we have to
14	produce 30 sets of uncertainty curves, 30 times 3, 90
15	inputs to the code. We have to kind of compress
16	things into fewer bins defined by that requirement.
17	So one is how you structure the model in
18	terms of its interface with the rest of the model.
19	The other aspect of uncertainty we tried to capture
20	obviously was use of the TH code itself, internal
21	model uncertainties, and input model uncertainties.
22	Then the caliber of parameter uncertainty
23	CHAIRMAN APOSTOLAKIS: Aren't the input
24	parameter input uncertainties parameter
25	uncertainties?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	DR. MOSLEH: By input deck preparation is
2	the structure aspect of it. You know, nodalization,
3	how many nodes do you use.
4	CHAIRMAN APOSTOLAKIS: Oh. Did you find
5	the parameter uncertainty was not important?
6	DR. MOSLEH: I can't say that because
7	actually we have aleatory uncertainties. We also call
8	them parameters of the model such as temperature
9	variations or state of components, degradation and all
10	that. We really didn't do the separation.
11	CHAIRMAN APOSTOLAKIS: In PRAs there's a
12	growing belief that the so-called parameter insurance
13	which is failure rates and initiating figures. I
14	really found that useful because the results of the
15	PRA are not affected.
16	MR. ROSEN: Just in the PRAs but, of
17	course, this was bigger. We had talked about physical
18	phenomena and parameter uncertainties can be very
19	large.
20	CHAIRMAN APOSTOLAKIS: But even in the
21	PRAs when we say parameter uncertainty, we really mean
22	initiating event frequency and failure rate.
23	MR. SHACK: We end up treating everything
24	as a parameter uncertainty.
25	CHAIRMAN APOSTOLAKIS: Eventually

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	everything is a parameter uncertainty.
2	MR. SHACK: In the context that you're
3	meaning parameters.
4	CHAIRMAN APOSTOLAKIS: Yes. So we have to
5	be careful.
б	MR. ROSEN: You used a lot of crackgos in
7	your stuff and it can never be small.
8	CHAIRMAN APOSTOLAKIS: Well, you can
9	always model the acceptance rate for potential
10	parameters. Then those parameters are important.
11	Okay. Great. Let's keep going.
12	DR. MOSLEH: Certainly I believe
13	CHAIRMAN APOSTOLAKIS: So your message
14	here is there isn't one thing that can be called model
15	uncertainty. Depending on the problem there are lots
16	of things
17	DR. MOSLEH: It's very context dependent.
18	There are certain principles that you can share that
19	draw from these things and then share and develop as
20	kind of a procedural method. In application it's very
21	context dependent in terms of even, you know,
22	obviously the types of tools that you use, the
23	attention you pay to one aspect versus another.
24	In the fire case the focus was on, for
25	instance, the relevance of the data to the application

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	152
1	so there's a lot of detailed statistical modeling. In
2	this case a lot of decisions is about the quality, the
3	interface, the logic model.
4	CHAIRMAN APOSTOLAKIS: If we want to
5	sensitize people in general without referring to
6	specific context, to sensitize people to the issue of
7	model uncertainty as opposed to parameter uncertainty,
8	first of all, we have to make sure we understand what
9	parameter uncertainty means because, as we just said,
10	there are certain instances where that's important.
11	I guess what people tend to ignore is, for
12	example, the possibility that you may use more than
13	one model to model the same thing. The possibility
14	that certain things that you are doing like the nodal
15	skin themselves introduce uncertainty so we will have
16	to sensitize them to that.
17	I don't know, there are things that you
18	mentioned like formal inputs and so on, things that
19	are not obvious, in other words, but I doubt there is
20	a generic approach to these things. I mean, there is
21	a philosophical approach but
22	DR. MOSLEH: I think I'm sorry?
23	CHAIRMAN APOSTOLAKIS: Mathematical
24	approach?
25	DR. MOSLEH: No, not mathematical. That's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	why I mentioned the fact that the statistical
2	procedure is insufficient in terms of the full
3	spectrum of issues that you need to deal with in model
4	uncertainty.
5	But in the other areas as well, I think
6	there are common characteristics that you can kind of
7	abstract out of these various experiments and
8	exercises and applications that is quite promising.
9	For instance, I mentioned, I think let me see.
10	This is a case where we have to generate three curves
11	and the meaning of these curves.
12	There are three actual traces of thermal
13	hydraulic power which is pressure and temperature.
14	Each has an assigned probability that is the result of
15	our binning, reduction, and probability manipulation,
16	parameter, and propagation of uncertainty.
17	The reason that this particular
18	representation had to be the way it is is not only
19	because of the input requirements for another part of
20	the analysis required this type of thing, but also it
21	goes back to a fundamental question that if you have
22	a physical coat that generates results on behavior of
23	the physical system in time. You change the input
24	parameters or the model parameters and all that and
25	you get a spaghetti of results.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	CHAIRMAN APOSTOLAKIS: Explain what these
2	curves are.
3	DR. MOSLEH: Say that this one is the
4	downcomer temperature as a function of time and then
5	you have three curves that are, say, in this case this
6	one is the result of a RELAP run for a specific
7	combination of parameter values, input values. The
8	red one is also for another one and the green.
9	These were selected as representatives of
10	many, many combinations that you get out of varying
11	the parameters which on the left-hand side you see a
12	density function and when you vary 11 parameters, each
13	would require a thermal hydraulic RELAP run.
14	You get many, many results, of course,
15	1,000 combinations, and we have to select three out of
16	these to represent the whole spectrum. And for each
17	of these combinations we'll have probability out of
18	900 combinations you have the probability that add up
19	to one so you're talking about the density function.
20	You kind of collapse these into three
21	you go through kind of three possible combinations in
22	terms of expected average temperature here and there.
23	If I run a case that comes close to this area, that
24	covers this range of probability like about 30
25	percent. This is another 30 percent and another 30

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	percent.
2	All this range of output or thermal
3	hydraulic cases are now going to be represented by
4	just a single run carrying the probability of that
5	range. It's a characterization of the spaghetti up of
6	distributions, a continuum. At the end then you end
7	up with these three curves each of which has maybe 30
8	percent or 35 percent probability.
9	When you go to the PFM analysis, you take
10	the green curve and the probability of that green
11	curve is the probability of the initiating event that
12	led to that thermal hydraulic condition multiplied by
13	.35 which is the probability that
14	MR. ROSEN: The events that class will
15	have.
16	DR. MOSLEH: That class will have.
17	CHAIRMAN APOSTOLAKIS: So you have
18	significant uncertainty there. I mean, if you look at
19	5,000 seconds, you can go anywhere from 320 all the
20	way to 470 on the left. Right?
21	DR. MOSLEH: Yeah.
22	CHAIRMAN APOSTOLAKIS: By the way, you
23	said you would finish at 1:50. No, you have until
24	2:30 because you have the SAPHIRE discussion.
25	MR. CUNNINGHAM: That's correct. We can

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	shorten that depending on what you would like to hear
2	more of.
3	DR. MOSLEH: Tell me how much time I have.
4	Ten minutes?
5	CHAIRMAN APOSTOLAKIS: I would say so.
6	DR. MOSLEH: Okay.
7	CHAIRMAN APOSTOLAKIS: Then Mohammad will
8	need what?
9	DR. MODARRES: Ten or 15 minutes will do.
10	DR. MOSLEH: Maybe I go to the other
11	presentation that is kind of the general thermal
12	hydraulic uncertainty because there's a few things
13	that I want to mention there.
14	Initially in the SAD there is observations
15	from the PTS experiment or experience. Some of the
16	generic lessons are there. These are important
17	insights but we are working on those to see if we can
18	get more of these lessons learned.
19	Treatment of uncertainties in complex TH
20	codes. These are our objectives. We are currently
21	working on these so it's a computational approach for
22	propagation of uncertainty in the complex models and
23	codes, identification of various sources of
24	uncertainty, and methodology for characterizing and
25	quantifying the uncertainties and the impact of those

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	uncertainties.
2	Then hopefully at the end suggesting some
3	says of modifying the code that it will be a layer
4	over the typical TH code that would kind of guide it
5	to do uncertainty.
6	We looked at initially a number of
7	methods, what GRS is doing, University of Pisa is
8	doing, and a number of other known methods like at
9	CSAU in terms of assessment and characterization of
10	uncertainty. If you look at these methods, they look
11	at one aspect or the other put none of them in a
12	comprehensive way as in terms of our desired
13	objectives. We are addressing a number of dimensions.
14	For instance, one methodology focuses on
15	the propagation of uncertainty using multi-color maps.
16	Another approach tries to modify and adjust the final
17	results of codes based on experimental data, test
18	facility, and special effects to test the facility
19	data to adjust and modify.
20	But our objectives go beyond that. We
21	want to have kind of a comprehensive coverage. The
22	major steps of the methodology is evolving now and
23	involved a number of combining some of the best
24	features of various methods that they have seen and
25	then some of the techniques that we are introducing

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	158
1	under a broader umbrella.
2	You can see the steps, identification of
3	uncertainty, important phenomena models, something
4	that PIRT could initially obviously help there;
5	assessment of uncertainty, model and parameter,
6	propagation and application.
7	In each case I think we have pretty much
8	have a framework. In some cases we have decided and
9	settled and tested the methodology and we know that it
10	works.
11	CHAIRMAN APOSTOLAKIS: What is Wilks
12	method?
13	DR. MOSLEH: It's a statistical method of
14	kind of reducing the number of samples that you want
15	to run a complex code with. As you can imagine, you
16	have so many parameters and how many samples do you
17	need to ensure certain coverage.
18	CHAIRMAN APOSTOLAKIS: So why not use
19	latin pipes?
20	DR. MOSLEH: This, I am told by the
21	experts including our student, that this is by far
22	more efficient. It's really good if I mean, have
23	you tested that?
24	CHAIRMAN APOSTOLAKIS: I think Graham's
25	paper.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	159
1	DR. MOSLEH: Yes.
2	CHAIRMAN APOSTOLAKIS: What did you see?
3	DR. MOSLEH: It was exchanged within Dr.
4	Wallis and
5	CHAIRMAN APOSTOLAKIS: Right, but now
6	there is a new paper from Graham Wallis and William
7	Knot.
8	MR. SHACK: Which hasn't appeared yet.
9	CHAIRMAN APOSTOLAKIS: No. That's why I
10	was surprised.
11	DR. MOSLEH: Yeah.
12	MR. SHACK: The original exchange.
13	CHAIRMAN APOSTOLAKIS: Yeah, the original
14	exchange.
15	DR. MOSLEH: I view this purely and
16	strictly as kind of a statistical, numerical method.
17	We found it, we tested it. GRS uses in their code
18	uncertainty assessment and they are happy.
19	CHAIRMAN APOSTOLAKIS: Something is
20	replacing latin hypertism.
21	DR. MOSLEH: In this case, yeah. There is
22	a lot to be said obviously about the differences and
23	merits and all that but all I can say at this point
24	given the time is that it works based on the tests
25	that we have done which have been the smallest test

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	160
1	and the largest test, namely testing with RELAP.
2	Here is an overview of the types of things
3	that we are trying to adjust and how we adjust them.
4	If we end with this viewgraph I'm happy because I can
5	comment about a lot of the attributes and
6	characteristics of the methodology we are developing.
7	One is obviously we need to do
8	CHAIRMAN APOSTOLAKIS: Where do you start
9	in this figure, from the left?
10	DR. MOSLEH: Where do I start? I start
11	with the biggest box here in the background. That
12	kind of takes care of an obvious thing, that one needs
13	to do uncertainty propagation. How is the question.
14	The other thing is internally you need to invest model
15	uncertainties internal, structural model uncertainties
16	inside the code. That's this box.
17	Then you have certain types of evidence
18	information. That's in this box here. Analytical
19	solutions, field data, test data, and expert opinion.
20	That's kind of your base information. You see a
21	number of modifiers or processes or procedures. One
22	is that obviously there is a scaling that needs to be
23	done in some cases from test facility or modifications
24	and adjustments that should go into kind of an
25	assessment of the model uncertainty. That's the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	161
1	meaning of this box.
2	You have input to the power process which
3	is the user affects or nodalization as an example.
4	And you see a number of places where we say Baysesian
5	model uncertainty. Here is a Baysesian uncertainty on
6	input to the model so, if you remember, you have a
7	soft model of parameters.
8	You see a Bayesian updating using a
9	standard procedure. The Bayesian model uncertainty
10	trying to adjust the structural as well as parametric
11	aspects of submodels and the overall model refers to
12	the methodology that I presented in the first
13	presentation and the extensions of that.
14	There are a couple of places where we do
15	Bayesian updating with the evidence. One is here any
16	evidence that they have in terms of empirical
17	correlations or test data that would help us
18	understand the credibility, the nature and accuracy of
19	specific models within the code. That's one.
20	Another one is at the end if you have,
21	say, integrated test results and something that points
22	to the performance, the entire code, we do another
23	Bayesian updating of modifying the code results with
24	whatever evidence we have from test and experience so
25	that's another one.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

And there's another issue of code, the output representation which is very context dependent. A couple of points. One is when you're looking at propagation of uncertainty, for instance, inside the code, it is not a straightforward process of taking samples and running those through.

7 There are important points to consider such as if I have alternative models one and two, and 8 suppose I use a methodology that would enable me to 9 10 kind of look at the credibility of this model and this 11 model or even a compact assessment of those, one 12 question that one needs to address is that does it make sense to, for instance, mix these models in some 13 14 weighted average or procedure like that or any other 15 numerical mixing and then proceed.

In some cases yes and in some cases no because the mix may not be physically meaningful and the mix may not max with the rest of the procedure or process that you will encounter. Going from this point to this point maybe this model matches this model.

22 MR. ROSEN: Like a plant where you have 23 three feed water pumps in one cases and two in another 24 and the model is either two are running or three are 25 running and somebody wants to say two and a half are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

16

17

18

19

20

21

	163
1	running.
2	DR. MOSLEH: Yes.
3	MR. ROSEN: Well, you can't have that.
4	That doesn't sound reasonable.
5	DR. MOSLEH: In some cases it makes sense
6	and it some cases it doesn't make sense. The
7	procedure for propagation of uncertainty, you trace it
8	inside the code, would be different obviously. We
9	have a number of structural characteristics that we
10	have identified that we need to address in developing
11	the procedure for uncertainty propagation. That is
12	beyond just the assessment within individual blocks
13	and boxes.
14	Another feature is the dynamic nature of
15	such codes. You have in one time step you're invoking
16	submodel 2 and then you go to 4 but not 2. In another
17	time step you go from submodel 2 you go to 3 and 4
18	maybe. So as you exercise the model the structure of
19	the model changes and you're uncertainty tracking
20	overlay needs to track these things, needs to be
21	sensitive to these.
22	It's almost running risk scenarios or
23	probabilistic scenarios inside the code. In other
24	words, you need to do uncertainty as it relates to the
25	specific cases or path through the computational

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	164
1	process. I have examples of these. What I wanted to
2	say about this thing was that this is the result of
3	applying the sampling method using the PTS uncertainty
4	data involving 11 parameters.
5	All the color curves that you see are
6	actual PH runs based on Wilks sampling method so you
7	get 100 runs. That gives you a spectrum of variation.
8	Just for fun or just to see how well we perform in the
9	PTS case, we look at the PTS uncertainty bounds we
10	selected based on our own procedure and they nicely
11	fit.
12	Gives us a little bit more confidence
13	about the performance of the Wilks uncertainty
14	propagation and also a little bit of verification of
15	what we did in the previous one. The Wilks
16	methodology works in terms of generating the spaghetti
17	of distribution.
18	The question is actually what do you take
19	out of that spaghetti as a representative uncertainty
20	found in the lower box. The comment I made earlier
21	about the thermal hydraulic uncertainty procedures
22	that we have seen, some of them couple of them, the
23	prominent ones, make a mistake that you can actually
24	trace the upper bound of these curves just right over
25	the top of this spaghetti or right under using a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 certain counting procedure like, you know, the number 2 of curves that fall within or the percentile of the 3 statistical distribution at the specific time windows 4 and call those upper bound and lower bound. Obviously 5 these are not physical. The upper bound is not a physical representative. 6 7 CHAIRMAN APOSTOLAKIS: This is the same in the waste depositories where they calculate the dose 8 9 and they report the results with a 90 percentile 10 curve. These curves are not actual runs. They are 11 the 90 percentile of many, many curves underneath 12 which are the actual runs. 13 MR. ROSEN: And they end up with a human 14 receptor who eats so much that he would explode if he 15 ate that.

16DR. MOSLEH: That's the same thing.17Exactly.

18 CHAIRMAN APOSTOLAKIS: So it's a bunch
19 over 90 percentile but it's not one run.

20 MR. SHACK: But sometimes it's the right 21 way to do it. 22 DR. MOSLEH: And sometimes it's not. I

would say that in the cases we had, the TH runs we were dealing with in all that, to me, and obviously to everybody else also, they did not accept. That's why

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	we went through an elaborate process of selecting
2	three curve representative and it confused a lot of
3	people. But the point was this, that you can't just
4	go to upper bound and lower.
5	MR. SHACK: But, you know, just taking
6	this case, I mean, why wouldn't looking at the 90th
7	percentile if you wanted to look at the 90th
8	percentile of the temperatures and pressure that the
9	vessel would see, I mean, you're not using it to
10	really judge the thermal hydraulic model but you want
11	to know what's the whole range of temperatures and
12	pressures that the vessel would see.

DR. MOSLEH: If you just want to see at 13 any moment what would be the maximum pressure or 14 15 temperature that the vessel would see, yes. But connecting those points of design is not a physical 16 17 trace. Basically the system will not experience that. 18 CHAIRMAN APOSTOLAKIS: For communication 19 purposes it's good but if you want to use it as an 20 input --21 MR. SHACK: If you were looking for a 22 state dependent thing that wasn't history dependent, 23 then it would be reasonable.

> DR. MOSLEH: Exactly.

> > NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

MR. SHACK: But if it's history dependent

(202) 234-4433

24

25

	167
1	then
2	CHAIRMAN APOSTOLAKIS: Or just
3	communication.
4	DR. MOSLEH: Just communication. And I
5	think, unfortunately, misleading. It's really amazing
6	that people came with physics and hydraulics
7	background would just accept this even though it is
8	the type of thing that should get a kind of rapid
9	quick negative reaction from that perspective. These
10	are not physical places. I'm giving you a sample of
11	a number of issues that you're addressing.
12	CHAIRMAN APOSTOLAKIS: Okay. Great. Is
13	this work continuing now or is it over?
14	MR. CUNNINGHAM: It will continue.
15	CHAIRMAN APOSTOLAKIS: Are you done?
16	MR. CUNNINGHAM: Or a follow-up to it or
17	something.
18	CHAIRMAN APOSTOLAKIS: Thank you very
19	much. Professor Modarres.
20	MR. ROSEN: I would comment while
21	Professor Modarres is coming up that the presentation
22	that you skipped, the one on observations of treatment
23	of uncertainties and complex multi-disciplinary
24	technical assessments is very useful for common
25	understanding of why doing uncertainty analysis is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	168
1	important and also when to do uncertainty analysis and
2	who should do it and how it should be done. I think
3	it has some useful insights so thank you.
4	CHAIRMAN APOSTOLAKIS: Let me ask what
5	would it take for these methods to become usable
6	routinely by people other than Modarres and Mosleh?
7	DR. MOSLEH: Are you asking me?
8	CHAIRMAN APOSTOLAKIS: I mean, should the
9	agency always come to you? That would be nice for
10	you.
11	DR. MODARRES: Good afternoon. Let me
12	introduce myself. I'm Mohammad Modarres from
13	University of Maryland. I'm also a professor of
14	nuclear engineering and also reliability engineering.
15	The answer to Dr. Apostolakis' question is that
16	actually one of the objectives of this research is to
17	bring at the end the lessons that we learned into the
18	code development.
19	There is a task at the end to put some
20	procedure of the analysis that will be perhaps we are
21	thinking of a P process or kind of a thing before a
22	RELAP or trace which is being done now which then the
23	analyst would look at the aspects of the uncertainty
24	analysis that should be considered before actually
25	embarking on the calculation. We haven't started

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	169
1	thinking about it but ultimately the idea is to bring
2	it down to something that everyone can use it. That
3	was the original idea and still is.
4	CHAIRMAN APOSTOLAKIS: Okay. Go ahead.
5	DR. MODARRES: Okay. What I wanted to
6	talk about here is an aspect of the fracture mechanic
7	uncertainty analysis that we were involved some three
8	or four years ago we started and ended about two years
9	ago. I actually originally borrowed this from a
10	previous presentation made by Mark Kirk but this kind
11	of captures the totality of the aspects of what the
12	PTS analysis is involved that be used as fracture
13	mechanic uncertainty as part of it.
14	Basically the focus was on the
15	probabilistic fracture mechanics box which is the
16	Ali talked about the thermal hydraulic analysis
17	uncertainty aspects also here. That box was
18	traditionally analyzed prior to the PTS analysis as
19	primarily deterministic.
20	Essentially the stresses were calculated
21	at a given scenario and the strength was used using a
22	redesigned curve of deterministically and then if the
23	two crossed each other it was assumed that the vessel
24	will fail and if it doesn't, they don't fail.
25	Basically they will go through the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	variations and distribution of flaws and then test
2	this for every flaw there and then find out the
3	likelihood that the vessel would fail because of the
4	variability and the number of flaws.
5	We took that and we said, okay, what about
6	the uncertainties which are involved in actually the
7	models representing the strength of the vessel and
8	also the measurement of the stress which applies to
9	the vessel given a scenario occurs. The focus was
10	basically on the fracture mechanics here.
11	The first steps that we got involved, of
12	course, we were PRA analyst and tried to actually
13	understand the physical phenomena which was the
14	underlined physical phenomena which goes here. We
15	have to break down the elements here down to the
16	individual contributors to the uncertainty to
17	understand that.
18	First the stress, the box H on the top
19	left basically describes what we are trying to
20	calculate ultimately which is the toughness of the
21	vessel. You can think of it as the strength of the
22	vessel. Then that changes over the there are two
23	factors that are affecting this.
24	One is the temperature that is applied on
25	the vessel, and the second one is, of course, is the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	171
1	embrittlement which over the time changes this
2	characteristic. So we wanted to see how to calculate
3	that. Of course, this is the value that was
4	considered as a fixed number prior to us entering and
5	we wanted to bring this distribution into it.
6	We wanted to see what actually contributes
7	to this so we can represent it by distribution. By
8	going through this it was realized that actually there
9	are two kinds of uncertainties here. One is the
10	uncertainty associated with the basic variability into
11	the vessel to vessel variabilities and the material
12	variabilities that exist in the vessel which gives
13	rise to this distribution.
14	The second one is, of course, this
15	temperature shift, what is called a temperature shift
16	which is a product of the vessel being irradiated over
17	the time. In order for the NRC to take care of this
18	temperature shift, there was a measure called $\mathtt{RT}_{\tt NDT}$
19	which was calculated based on I'm sure Dr. Shack
20	knows far better than me how the history of this came
21	up.
22	Technically this RT_{NDT} came from
23	calculations of the current temperature and some other
24	irradiation here which was calculated from another
25	parameter, delta ${\rm T}_{\rm 30}$ which involved, again, a number

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	172
1	of other assumptions.
2	There were quite a bit of uncertainties
3	here was coming actually to the picture of how this
4	RT_{NDT} itself was calculated. There were uncertainties
5	as to the measurement of the X axis and there were
6	uncertainties to the value of the Y axis both here.
7	The question was how to characterize and compute this.
8	Of course, there is the lower box here is
9	a toughness uncertainty and that is that once a crack
10	starts to grow, it's possible to be arrested and then
11	this is the arrest toughness is how that can be
12	stopped from actually growing and going through the
13	vessel wall completely and then causing a failure of
14	the vessel.
15	So here if you're looking at actually by
16	going through the history of this, we found out
17	actually that if you're looking at it there were about
18	200 or so data points which are shown on the left box
19	here to calculate this $K_{\rm 1C}$ which is the strength
20	distribution. Then a model by assumption of viable
21	model was forced into it to see how actually a Weibull
22	model fits into it.
23	Originally this is the ASME curve which
24	NRC used. Someone at AME sat and basically drew a
25	language in the bottom of all of these to say this is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1	the most conservative line I can get. Therefore, it
2	encompasses everything. Of course, this doesn't
3	include all this variability you see in the data, as
4	you can see here.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

25

Of course, one process was to go through these data and either use this Weibull distribution which is a function of the temperature here, or use some other -- use this deterministic. Of course, our standing was that you should capture somehow this variability.

But by going to a more careful evaluation of this, we wanted to see what part of this is aleatory in nature and what part of it is epistemic in nature. When we went through the data here and looked at the data very carefully looking at this temperature, we found actually that this variability here comes because of a cleavage fracture in the steel.

This cleavage fracture comes because of a break basically on the weakest link of the carbides. In other words, it was very dependent on the carbide distribution itself. In fact, the weakest link and the distribution of carbide gave rise to the Weibull distribution.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

In fact, if you take this weakest link

(202) 234-4433

	174
1	model and try to find a weakest link with the sizes of
2	these carbides and combine the two together, you can
3	derive, in fact, a Weibull distribution. That is how
4	originally Weibull distribution came about to begin
5	with.
6	This was very well described by an
7	aleatory distribution because the carbides then the
8	size of the carbides distribute themselves in an
9	aleatory way and, therefore, the Weibull distribution
10	is actually an inherent physical characteristic
11	representing that kind of a distribution. That was
12	the first thing.
13	We said, okay, this must be treated and
14	must be treated as an aleatory representation in this
15	case of the $K_{\rm lc}.$ We went back and said, okay, one way
16	is to, of course, take the data and use the fitted
17	Weibull distribution that you have. The second one
18	was actually another method which is a common talk and
19	we learned about it.
20	The other thing that we had to deal with
21	was that indexing temperature which brought in we
22	have to understand what kind of uncertainty involves
23	in that indexing. The indexing, as I earlier noted,
24	comes about because of the embrittlement and because
25	of the temperature variation that comes in because of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	175
1	the cooling scenario of the reactor vessel it.
2	So this indexing temperature is also very
3	important to bring the heat-to-heat variability
4	between the vessels and also the embrittlement
5	aspects. But it causes actually a significant
6	uncertainty into the result that you would get
7	ultimately. We looked at this in three ways.
8	We said, "Okay, you can look at it and the
9	first graph represents a case that we said earlier a
10	Weibull distribution of ${\rm K}_{\rm lc}$ as it's shown for a given
11	temperature is basically an aleatory distribution.
12	Then the indexing could be precisely measured is one
13	way to looking at it.
14	In fact, this is what is done currently
15	with a method called Master Curve. This was actually
16	standardized and, therefore, this reference
17	temperature can be measured exactly for a given vessel
18	and, therefore, there would be no variability here
19	given that you know exactly the embrittlement in the
20	vessel.
21	Therefore, this would be the case that you
22	have only an aleatory distribution. Or you have
23	uncertainty about this indexing temperature and,
24	therefore, you would have a distribution here but that
25	distribution is epistemic in nature because you can't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

really determine if there is a real temperature of indexing.

Finally, originally Oak Ridge came with some kind of the mixing of the two so we tried to actually separate and that was a third way of analyzing. This is the Master Curve that I was talking about. This is actually the trend and NRC had some reservations at the time to use it because of the newness and there were some issues to be addressed at that time. It actually is the cleanest and more physically based model that could be used and it would lead into, if I go to the previous graph, it would really represent this situation.

The second way was to use basically an empirical model of the K_{1c} . That is, to use the data, fit a Weibull distribution to the data, and then come up with an indexing temperature which is appropriate which is systemic in nature and that's what we came up with.

Because of the fact that actually NRC had a reservation on the use of the Master Curve originally because of a number of factors involved we came up with a procedure here, an empirical procedure, for Oak Ridge to use and, therefore, to calculate the RT_{NDT} and bring in only the epistemic aspects of this

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

	177
1	calculation.
2	Note that these data, in order to
3	calculate these data, these particular data points to
4	plot them, you have to use this $\mathtt{RT}_{\tt NDT}$ to actually come
5	up with the Weibull distribution originally. To
6	separate them we have to go through this procedure.
7	In other words, you have to go through
8	this procedure to actually come up with the
9	distribution itself by going through and finding how
10	much bias this has with the original model of the
11	if I go actually to my backup here.
12	If you go through the data here, the $\mathtt{RT}_{\tt NDT}$
13	and ${\rm T_0}$ which is exact temperature has a bias here. It
14	has a consistent bias. We came up with a methodology
15	to sample from this distribution so that you can find
16	the corresponding $\mathtt{RT}_{_{\rm NDT}}$ and then correct the data for
17	that.
18	Once you correct the data, then what you
19	would be left with is just the aleatory distribution
20	and then you can really plot the empirical
21	distribution here and using this adjustment.
22	So the idea was here to go and represent
23	the if I go is to this case. This was ultimately
24	what we set out to be used at the code which Oak Ridge
25	is developing, favor code, and this is the model that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	178
1	they are now using. Basically the $\mathrm{RT}_{_{\mathrm{NDT}}}$ is calculated
2	and is an epistemic distribution and that procedure
3	was developed so that the sampling is done properly.
4	That is, for instance, a sample of $RT_{_{NDT}}$
5	was taken and this whole area of distribution was
6	actually propagated for the calculation of the
7	probability of the vessel fracture all the way
8	through. Consistent with this procedure was developed
9	that ultimately then Oak Ridge used for that. So the
10	message here is that I think going back to your
11	question earlier, Dr. Apostolakis, the 10_{-6} there are,
12	indeed 10^{-2} and so on. It just depends on the
13	temperature.
14	CHAIRMAN APOSTOLAKIS: That was done in
15	jest.
16	DR. MODARRES: Okay.
17	CHAIRMAN APOSTOLAKIS: From my colleague
18	on my left.
19	DR. MODARRES: Okay. But there are some
20	of that. There were a number of other uncertainties.
21	For instance, one issue was the treatment of multiple
22	flaws in a vessel. Originally we proposed the use of
23	this model that the probability of each flaw failing
24	due to a given trace or a given scenario is
25	probability is given by this, then the total vessel

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

failure probability would be calculated from that.

Favor used that and later the industry had reservations about this because they couldn't understand why probability comes like that. In other words, there was a difficulty understanding what is the marginal contribution of each flaw to the total probability of the whole vessel.

Then we had to go through, for instance, an exercise to show that, indeed, this is exactly the same as saying that because the question was that there is only one bad flaw which is the worse flaw and then that's the flaw that actually ultimately causes the vessel to fail so why not only calculating for that one flaw this probability and that's the one.

Then we showed from the fact that if you go through and calculating the minimum that if you calculate the time that each of these flaws would ultimately go to failure if this scenario will continue that the minimum of that time is really the one you are interested because that is the first flaw that ultimately will break.

This would yield exactly the same answer. We have to go through mathematical proof that this actually comes exactly the same as the previous model. Ultimately we settled on a simpler approach which is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
180 1 this approach. These were kinds of things that we had 2 also go through the process of coming up in the analysis of uncertainties. 3 4 Again, the experience here is that 5 bringing probability into the physical analysis is kind of you come to these kinds of issues that are on 6 7 the surface quite obvious for us but from the people who are only mechanistic analysis is not too obvious. 8 We have to go through some learning curves here of how 9 10 to communicate with each other in a way because these 11 two models are exactly the same, in fact. 12 Why isn't that a product SHACK: MR. 13 rather than a sum? 14 DR. MODARRES: Sorry. This is a mistake 15 This is last minute. here. This Sorry. Sorry. 16 should be product. You're right. 17 CHAIRMAN APOSTOLAKIS: Well, they're all 18 Greek letters. 19 DR. MODARRES: They are all Greek letters. 20 This should be a product. This is last minute that we 21 put together. That's it? 22 CHAIRMAN APOSTOLAKIS: 23 DR. MODARRES: Yeah. 24 CHAIRMAN APOSTOLAKIS: Okav. 25 MR. SHACK: You missed some of this,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	181
1	George, but this was a very interesting case where it
2	was very important to track between the epistemic and
3	the aleatory. It made a real difference in the way
4	that you did the calculation.
5	CHAIRMAN APOSTOLAKIS: Yeah, sure.
6	DR. MODARRES: You could find the answers
7	by several of these factors. I wouldn't say order of
8	magnitude but several factors different if you are
9	taking samples differently. This made a big
10	difference.
11	CHAIRMAN APOSTOLAKIS: Very good.
12	MR. ROSEN: You know, I pointed out when
13	Ali was still here that this presentation that he
14	skipped on treatment of uncertainties and complex
15	multi-disciplinary technical assessments was very
16	valuable. It's only six slides. It seems like the
17	most important one and the easiest one to grasp to the
18	staff.
19	Certain things like the fact that
20	uncertainty analysis is not an isolated task that
21	could be done by uncertainty specialists. It's
22	integrated into the analysis. It's something that the
23	analysts need to understand and do as they develop the
24	models and use as part of what they are doing. There
25	is such a thing as uncertainty management when you are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	182
1	using models.
2	You can use models that create uncertainty
3	and, therefore, cast ultimate doubt on your answers or
4	you can use models that are less uncertain and
5	contribute to better acceptance of your models. And
6	that technical and organizational coordination and
7	communication are essential during the process of
8	analysis to reduce uncertainty.
9	Those are just a couple I read off the
10	first slide. I think this is a particularly useful
11	presentation and might be useful to us in discussing
12	uncertainty in the future. I wish he had actually
13	spent a little time with this.
14	CHAIRMAN APOSTOLAKIS: Maybe I gave you
15	the wrong impression, Mark, when we spoke on the phone
16	but this is really something that should be discussed
17	in a separate meeting on the subject of uncertainty.
18	MR. CUNNINGHAM: Certainly.
19	CHAIRMAN APOSTOLAKIS: Today really we're
20	trying to figure out what the problem is, where it's
21	going. But it was good you guys gave us these
22	presentations because I don't think we've had I
23	mean, we've had pieces in the past but from the
24	perspective of uncertainty we haven't had. I hope you
25	are going to go out and present these in conferences.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	183
1	DR. MODARRES: Yeah, we have
2	CHAIRMAN APOSTOLAKIS: The problem is in
3	order to appreciate the subtle points there is so much
4	else you have to learn that the local people are not
5	willing to learn. I mean, how much would the average
6	attendee be willing to learn about PTS and all that in
7	order to reach the point where he would appreciate
8	calling something aleatory or epistemic. It's really
9	a major problem.
10	MR. ROSEN: You might disconnect from PTS
11	and just talk about in general.
12	CHAIRMAN APOSTOLAKIS: But can you do it,
13	though, in general without the context of PTS?
14	MR. ROSEN: Take a look at this point. It
15	says here, "Initially we adopted the philosophy that
16	uncertainty analysis can be performed after the best
17	estimate analysis is produced." This is the standard
18	practice. When you get someone to do uncertainty,
19	they do a best estimate and then they think about
20	uncertainty and the answer.
21	The insight here is that this practice can
22	easily resolve not only inadequate uncertainty
23	analysis but also an incorrect best estimate. In
24	other words, you have to imbed the uncertainty
25	analysis in what you do as you develop your best

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	184
1	estimate, not later.
2	MR. SHACK: It took somebody's ingenuity
3	to figure out how to come up with that uncertainty in
4	the RT_{NDT} the way that they did so they can break that
5	thing out. I'm not sure who the clever guy was that
6	came up with the scheme but it was a good idea and it
7	sort of made the whole thing possible because
8	otherwise you were left with an intractable kind of a
9	problem.
10	CHAIRMAN APOSTOLAKIS: I suspect part of
11	the reluctance on the part of some of the industry
12	groups to do uncertainty analysis is precisely because
13	they have not integrated it into analysis and they
14	don't appreciate the value of uncertainty analysis.
15	We have seen many times people say that you don't need
16	to do it.
17	MR. ROSEN: Well, I think you pointed out
18	in the past, Dr. Apostolakis, that's because people
19	have equated uncertainty analysis in general with
20	parameter uncertainties. They struggle through a
21	parameter of uncertainty analysis and come out with 9
22	percent uncertainty and they say, "Compared to what I
23	know I have never claimed it was better than a factor
24	of 2 or maybe 5 away from the real answer. Here is 9
25	percent and you're beating me up about 9 percent so

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	185
1	this is irrelevant."
2	Of course, that wasn't the point. The
3	point wasn't just to do parameter uncertainty. It was
4	to do uncertainty which includes model uncertainty in
5	the way you're treating the data and all these other
6	things, not just the parameter.
7	CHAIRMAN APOSTOLAKIS: Very good. Very
8	good. Now, given that we are rapidly running out of
9	time, we will thank you. Thank you, Mohammad.
10	Who is next, Mark?
11	MR. CUNNINGHAM: Dan O'Neal from the staff
12	is next.
13	CHAIRMAN APOSTOLAKIS: Okay. How much
14	time do you need? Are you coming?
15	MR. O'NEAL: I'm on the way.
16	MR. CUNNINGHAM: Dan will need no more
17	than 27 minutes.
18	CHAIRMAN APOSTOLAKIS: For this?
19	MR. CUNNINGHAM: Yes. And we'll just
20	CHAIRMAN APOSTOLAKIS: How about SAPHIRE?
21	MR. CUNNINGHAM: That's in this.
22	CHAIRMAN APOSTOLAKIS: Oh, that's in
23	there?
24	MR. CUNNINGHAM: Yes. Dan is covering two
25	subjects, SAPHIRE, low power and shutdown.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	186
1	CHAIRMAN APOSTOLAKIS: Oh. Peer review.
2	Didn't we ask for it two years ago?
3	MR. CUNNINGHAM: Yes.
4	MR. O'NEAL: Good afternoon. I'm Dan
5	O'Neal. I'm the man for SAPHIRE. I would like to
6	discuss the peer review that we did.
7	CHAIRMAN APOSTOLAKIS: We're developing a
8	pattern here, you know. A pattern. You propose
9	something, the staff says no, and two years later it's
10	done.
11	MR. ROSEN: So we could save a lot of time
12	by not saying no up front.
13	CHAIRMAN APOSTOLAKIS: Go ahead.
14	MR. O'NEAL: We earlier this year did a
15	peer review for SAPHIRE.
16	CHAIRMAN APOSTOLAKIS: Do we have a
17	handout of this?
18	MR. O'NEAL: It's over on the chair over
19	there.
20	CHAIRMAN APOSTOLAKIS: On the chair.
21	These?
22	MR. ROSEN: As long as it's not six to a
23	page.
24	CHAIRMAN APOSTOLAKIS: SAPHIRE 7. If I go
25	now to the website this is what I download?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	MR. O'NEAL: You can download both version
2	6 and version 7. Actually, version 7 is the current
3	least model. As I'll talk about, we also have in the
4	concept stage version 8.
5	What we did earlier this year was form a
6	peer review of the SAPHIRE verification and validation
7	process. I just wanted to say very quickly SAPHIRE
8	itself is the code which helps develop and run the
9	probabilistic safety assessment models. What we did
10	was we actually did the TV&V for the code.
11	TV&V is testing, verification, and
12	validation. It's the process basically which ensures
13	that the underlying code is performing correctly to
14	its requirements. There's a pretty detailed
15	verification validation process set up at the
16	laboratory where SAPHIRE is maintained and developed.
17	MR. ROSEN: Which is?
18	MR. O'NEAL: Which is the Idaho National
19	Environmental Laboratory.
20	MR. ROSEN: I've heard of it.
21	MR. O'NEAL: What I would like to do today
22	is to discuss what were the objectives of the review
23	and a little
24	CHAIRMAN APOSTOLAKIS: Who were the
25	reviewers? Can I ask who the reviewers were?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	188
1	MR. O'NEAL: Yes. We put together an
2	internal team of risk analysts and a TV&V expert. It
3	was basically an internal team review.
4	CHAIRMAN APOSTOLAKIS: By internal you
5	mean internal to what?
6	MR. O'NEAL: NRC team review of SAPHIRE.
7	CHAIRMAN APOSTOLAKIS: Did you get anybody
8	from other national laboratories?
9	MR. O'NEAL: No. Actually the team was
10	just NRC personnel. There are other users of SAPHIRE
11	but they weren't involved in the review of this.
12	CHAIRMAN APOSTOLAKIS: Okay.
13	MR. O'NEAL: And so the objective
14	basically, you know, we're going to take a look and
15	see how does the cold how does the verification
16	validation meet what we expect it to do for the NRC.
17	That's basically how we are gearing this review
18	towards, to determine what type of improvements might
19	be needed, if any. I'll talk a little bit about all
20	those objectives.
21	I would also like to give a brief discussion of what
22	is the TV&V currently. Finally, I'll talk about our
23	insights and recommendations.
24	We took a look to see if any improvements
25	were actually needed based upon whether or not we felt

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	189
1	it might be whether or not it might be applicable
2	to staff applications. For example, if the current
3	TV&V process if there were any specific or general
4	recommendations that we might have developed based
5	upon our review, that we would put together a proposed
6	plan which I can talk about a little bit later, too.
7	In addition, we felt it might be useful to
8	consider the possibility of taking a look at what we
9	viewed, what we saw from the results of our review in
10	determining if there was a need to have a compliance
11	with a formal software standard for verification and
12	validation. Also we tried to cover a broad area,
13	whether or not the types of reviews that were being
14	done for SAPHIRE code was sufficient or if it needed
15	to be improved.
16	Currently there's the automated testing
17	verification and validation process. It's a
18	beneficial process since it's very quick. It relies
19	upon basically it takes a look at a change or a new
20	feature and it runs the tests for that change or new
21	feature. There's a large data base of test suites
22	that can be run. The automated process is a useful
23	feature but it also has some boundaries which we
24	considered in our review.
25	The bases for the current process is

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

documented in that NUREG. It considers the IEEE standard for software verification of validation, as well as the NRC's software procedure guidance, software quality assurance procedure guidance, in determining the current TV&V. Those two documents or verification of validation were considered in determining for the current TV&V what type of actions might actually improve the process. This document, of course, as you see, is

for the year 2000. It looked at -- it has the bases for what has occurred prior to 2000. Since this publication we have provided additional -- we have provided additional, I guess, structure to the design and testing process by establishing a procedure for testing, for evaluating a change and documenting it.

It looks at the change to ensure that it meets the expected goal. It also looks at the interactions of SAPHIREs features that might be affected by the change. Also trying to look at the -make the change in the most useful way. For example, if you want to make a specific change because of a specific request, make that change in the most general way that would be most useful. Of course, we have documentation and we want to update the test suite. Was all this satisfactory for the current

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

(202) 234-4433

190

NRC applications? This is the approach that we looked at that we used to evaluate the current testing, the verification of validation process. It involved looking at the processes that are in place at the laboratory, looking at the changes that were made over the time period as the subversions of the SAPHIRE code were changed to account for various errors or new features or new requirements. We took a look at ---MR. SHACK: Who developed the test suite?

MR. O'NEAL: The test suite is developed by the Idaho National Laboratory. That was one thing we considered here, whether or not the test suite, for example, has an adequate -- is it complete enough. Are the test acceptance criteria adequate for what we expect for staff applications. The TV&V process has to be maintained consistent and synchronized with the applications that the staff uses SAPHIRE for. That was another aspect to be considered.

19 In particular we had two supporting 20 activities. One was to see how the current TV&V 21 process matched up with the IEEE standard for software 22 verification validation. There's various life cycle 23 processes that a software project goes through so we 24 took a look to see if what we're doing now matches up 25 with the formal standard.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

We also made a database for the number of changes that were made and we analyzed the database. For example, we looked at whether or not the change in the change log for the SAPHIRE code was related to a vital feature of the SAPHIRE code or a vital feature of something which would affect the PRA results.

We would also take a look at whether or not the change was repetitive, for example. Whether or not it was related to a risk measure, importance measure, uncertainty analyses, and whether or not it was significant. We had a pretty large database of which we could analyze the changes and, in fact, there were about 500 changes that we looked at. Those were over version 6 and version 7.

We wanted to determine of the verification validation process was okay or if we needed to make some improvements, specific or general, and whether or not there was enough -- if there were insights that would support or suggest that compliance with a more formal standard, a more formal approach than what is currently being done is warranted.

Of course, we also wanted to ensure that the SAPHIRE V&V and the underlying code for the PSA models are receiving the types of reviews that they should be receiving. Our general insights --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

193 1 CHAIRMAN APOSTOLAKIS: That's where you 2 It seems to me you are reviewing the review lose me. 3 process. I don't see anything here that has to do 4 with SAPHIRE. Are you talking about the process? You 5 found it to be formal? The process this or the 6 process that? Where are your findings regarding 7 Is the code usable? Is it useful? SAPHIRE itself? 8 Does it have problems? 9 MR. O'NEAL: The SAPHIRE code, as I 10 mentioned, is subjected to the process. When I say 11 the process, it means it's subjected to a series of 12 tests which test the vital features of the code. Does 13 it calculate risk measures? 14 CHAIRMAN APOSTOLAKIS: So what are you 15 findings? The third bullet seems to touch upon those. The other bullets refer to the process itself. 16 That 17 may be useful but it doesn't tell me about SAPHIRE. 18 That's right. As I pointed MR. O'NEAL:

19 out, we did an assessment of the performance of the 20 code by an analysis of the change log, for example. 21 And we also looked at what are those findings telling 22 us. 23 CHAIRMAN APOSTOLAKIS: So what are they 24 telling us? What are they telling us about the code? 25 MR. O'NEAL: Okay.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	194
1	CHAIRMAN APOSTOLAKIS: You say a number of
2	changes in the change logs they viewed were
3	significant. "Code error that affects the correct
4	result for risk measures." What does that mean? That
5	the results of SAPHIRE was produced but not right or
б	what?
7	MR. O'NEAL: What it means is in the
8	change log which documents the changes over the
9	versions 6 and 7, it means that when the change was
10	made, it was made for a reason. We evaluated whether
11	or not the change could affect the correct result for
12	these types of considerations.
13	If it does, what it means is that it puts
14	a lot of emphasis on the user to understand that there
15	was an error in the code and to detect it himself.
16	The TV&V process is the process which is set up to
17	detect the errors in the code.
18	CHAIRMAN APOSTOLAKIS: Fine. So you did
19	find an error then. That's what you're saying.
20	MR. ROSEN: Significant errors.
21	CHAIRMAN APOSTOLAKIS: Did you find
22	significant errors?
23	MR. O'NEAL: Yes. Well, this is what I
24	meant by significant was that when we looked at the
25	changes, did the change result in an error. I mean,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	195
1	was it related to an error in the code which could
2	affect the correct numerical results but it does not
3	alert you if you are a model developer.
4	CHAIRMAN APOSTOLAKIS: Oh, so you didn't
5	get the error fixed. You just identified it.
6	MR. O'NEAL: These were fixed. Once they
7	are identified, of course, they are fixed.
8	CHAIRMAN APOSTOLAKIS: So there is no
9	reason to alert the user because the user doesn't
10	know.
11	MR. O'NEAL: It becomes important if it
12	bypasses the TV&V process and the user, for example,
13	is using a model with the underlying code that still
14	has the error in it.
15	MR. ROSEN: Do you alert past users who
16	may have used it for importance to 6 or 7 or whatever
17	and you later found an error in the code? Do you have
18	a method to alert the users as to what was found and
19	what the importance might be?
20	MR. O'NEAL: Well, we do have a website
21	which has the change logs on it so anytime that there
22	is an error or a change made to the log because of
23	something that was found it's posted but that is a
24	very recent feature.
25	CHAIRMAN APOSTOLAKIS: NASA, for example,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	196
1	is using this to do a major PRA. Are they using the
2	version that has the error? Shouldn't you let them
3	know? I don't think that they are going back to the
4	website every week to check whether there were errors
5	found. The code has wide use.
6	MR. O'NEAL: There's going to be errors in
7	almost every PRA computer code. There has to be a
8	process to alert anybody who needs to know that.
9	MR. ROSEN: There's a user's group I'm
10	sure.
11	MR. O'NEAL: There is a SAPHIRE's users
12	group.
13	MR. ROSEN: They can alert and they talk
14	to each other.
15	MR. O'NEAL: The NRC has meetings for both
16	the SAPHIRE and SPAR model users group so there are
17	mechanisms to relay these things.
18	CHAIRMAN APOSTOLAKIS: I hope that at some
19	point there would be no major errors.
20	MR. O'NEAL: That's what we were looking
21	at when we looked at the database. Are there errors
22	that we might have are we seeing anything in the
23	database which could have bypassed TV&V process. That
24	was one of the objectives to see if we were
25	comfortable with the number of changes that might

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	197
1	represent this type of condition.
2	CHAIRMAN APOSTOLAKIS: So the bullet
3	before last is kind of ominous. "The number of
4	changes representing both non-significant and
5	significant changes." What does that mean? You mean
6	errors. Somewhere there should be errors.
7	MR. O'NEAL: There are errors that are
8	changes in the change log corrected. Once they're
9	corrected, they are updated in a new subversion so
10	that's why there's the second bullet. It shows that
11	every time
12	MR. SHACK: This is indicating these
13	errors were found by users rather than by the TV&V $% \left({{{\left({{{\left({{{\left({{{\left({{{}}} \right)}}} \right)}_{{{\left({{}} \right)}}}}} \right)}_{{{\left({{{\left({{} \right)}}} \right)}}}}} \right)}} \right)$
14	process.
15	MR. O'NEAL: Well, actually, I think it
16	was a mixed bag. The documentation was not very clear
17	on who found it, whether it was a TV&V, whether it was
18	users. But I am aware that there have been users that
19	have found significant change errors in the code and
20	those get fed back to us and we provide it to the
21	laboratory. The laboratory corrects it and puts up a
22	new subversion. What we also wanted to see by our
23	review were things getting better. As you released a
24	new subversion are you improving the reliability?
25	CHAIRMAN APOSTOLAKIS: There is one last

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	198
1	question. Are these changes controlled? One of the
2	complaints I heard from people outside is that
3	somebody picks up the phone, calls and says, "Hey, I
4	found this error." The guy on the phone goes and
5	fixes it and that's it. There is no formal mechanism
6	evidently for actually evaluating the error or fixing
7	it and announcing to the world. Has that been fixed
8	now?
9	MR. O'NEAL: There is a formal process for
10	making the changes and I discussed that earlier.
11	CHAIRMAN APOSTOLAKIS: This guy you talk
12	to him and he goes and changes the code. That's too
13	sloppy.
14	MR. O'NEAL: Well, there's many, many
15	users of SAPHIRE and the person who is using it may
16	come from a national laboratory, may be an NRC user or
17	somebody else. The mechanism is
18	CHAIRMAN APOSTOLAKIS: He can change his
19	own version but the center one shouldn't change that
20	way. Anyway, we are running out of time so I guess
21	we're going to have another opportunity to talk about
22	it sometime. Do we need to give some time to J.S.?
23	MR. CUNNINGHAM: We have two options at
24	this point in the remaining time. We can talk about
25	low power and shutdown, we could talk about fire risk.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	199
1	MR. ROSEN: Yes. Let's get fire up here
2	and then low power and shutdown right after that.
3	CHAIRMAN APOSTOLAKIS: It's only one
4	slide.
5	MR. HYSLOP: My name is J. S. Hyslop. I
6	have one slide that I imagine was put in back for the
7	presentation. I'm in the PRA branch of the Office of
8	Research and I'm the project manager for the Fire Risk
9	Research Program.
10	I have a general remark. We have a plan
11	for the Fire Risk Research Program which is being
12	updated for 2004 to 2006. We're in that process. I
13	think you'll see from my slide that the program is
14	continuing to provide critical support to regulatory
15	activities for nuclear power plants.
16	MR. ROSEN: Is that plan a NUREG or
17	something like that?
18	MR. HYSLOP: At this time it's not
19	publicly available. We've received some internal
20	comments and we're updating it. I would have to talk
21	to my management to find out what's been done in the
22	past.
23	MR. ROSEN: Typically it's an internal
24	document, a memorandum from somebody to somebody not
25	published as a NUREG.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	200
1	MR. HYSLOP: I'll go ahead and start
2	because you've got the slide.
3	MR. ROSEN: Go ahead.
4	MR. HYSLOP: There's about eight
5	activities on the slide for the Fire Risk Research
6	Program. The first is the fire protection SDP
7	revision. The fire protection SDP is to evaluate the
8	risk significance of fire protection inspection
9	findings.
10	Research is playing a large role. We
11	developed a time based framework. We are leading a
12	task group to resolve issues on frequency and
13	database, providing support in other areas like the
14	fire scenario group and circuit analysis.
15	We are also writing the revision with
16	inputs from task groups. I guess you guys if you're
17	not familiar with this revision process there are many
18	task groups have been developed to address technical
19	issues consisting of NOR, research, industry, and EPRI
20	playing a role also.
21	MR. ROSEN: That's on the SDP?
22	MR. HYSLOP: That's on the fire protection
23	SDP revision alone. The next topic is circuit
24	analysis. About a month ago in front of the fire
25	protection subcommittee I present research activities

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	201
1	and circuit analysis. Basically from the history of
2	research we supplemented the Omega Point Test to
3	identify the probability of spurious operations and
4	supported the expert elicitation for the
5	interpretation of that data.
6	More recently we supported public
7	meetings. We helped to identify important circuit
8	analysis features for planned resumption of associated
9	circuit inspections. We just published a NUREG which
10	I'm sure you're on the distribution list for, NUREG
11	CR-6834 entitled Circuit Analysis, Failure Mode, and
12	Likelihood Analysis.
13	We're supporting NOR and development of a
14	NUREG particularly for associated circuits. We've
15	recently accepted a user's need from NOR. We will
16	determine if there are any additional circuit features
17	beyond those identified in that meeting that should be
18	added when the associated circuit inspections begin.
19	The third bullet, we are providing review
20	guidance for NOR specialist to support changes which
21	would occur during the risk informed performance based
22	rulemaking which endorses 805. In particular we're
23	providing guidance to enable people to evaluate fire
24	models.

To do that we're performing a V&V on a set

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

of fire models from simple to sophisticated fire models running from empirical zone to CFD. We will be using an ASTM standard 135597 which is specifically developed for fire model V&V. We'll also be providing guidance to help reviewers evaluate the worthiness of inputs to fire models, in particular heat release rates.

8 Heat release rates have been one of the 9 more interesting areas because you need to make sure 10 you covered it all. You need to make sure you cover 11 those low-probability potentially high-consequence 12 fires. Of course, lastly we're going to be providing 13 review guidance for FRA methods tools and data.

The next bullet, the ANS full power fire standard. That standard will eventually provide a bases for changes under 805 and Research is providing two writing members to the standard committee.

MR. ROSEN: Do you know if they are addressing fire in the low-power shutdown model?

20 MR. HYSLOP: No, they're not. The 21 standard is not. However, later in my talk I will 22 talk to you about a little something we're going to be 23 doing.

24 MR. ROSEN: I'm worried about fire, 25 especially during shutdown because of the number of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

14

15

16

17

18

19

	203
1	people and activities increases so much over
2	operation.
3	MR. HYSLOP: Right. This is a full-power
4	standard.
5	MR. ROSEN: You need to do more for the
6	low-power standard.
7	CHAIRMAN APOSTOLAKIS: The database
8	mostly.
9	MR. ROSEN: Right. I think he knows that
10	and I'm reinforcing the point.
11	MR. HYSLOP: I'll talk a little bit more
12	about that later in my presentation. The next topic
13	is the NRC/EPRI fire risk requantification studies.
14	These studies are being performed under a joint
15	memorandum of understanding between NRC and EPRI. The
16	goal there is to provide state of the art guidance for
17	the conduct of FRA.
18	In that program there is debate between
19	EPRI and NRC specialists and that debate is based upon
20	our existing research programs. The results will have
21	broad application to regulatory activities and issues.
22	It's impacting the SCP revision.
23	It's going to be providing a support for
24	technical bases on the manual actions rulemaking.
25	It's going to be assisting the ANS fire risk standard.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	204
1	And it will assist in review guidance, as I said, for
2	the 805 rulemaking. Also it will provide guidance for
3	licensees who are developing applications.
4	MR. ROSEN: The fire risk requantification
5	studies debate between you and this EPRI? Is that the
6	word you used, debate?
7	MR. HYSLOP: Yes. Deliberation and
8	debate. Yes, because there are two parties.
9	Obviously we have research programs and we are
10	debating with the goal of developing consensus. We've
11	been very successful in that endeavor so far.
12	CHAIRMAN APOSTOLAKIS: Do you disagree in
13	some areas?
14	MR. HYSLOP: At this point we have come to
15	resolution on all areas.
16	CHAIRMAN APOSTOLAKIS: Very good.
17	MR. HYSLOP: Now, we've gone further in
18	some areas than others. The HRA in particular. We
19	haven't gotten as far in that area as some of the
20	others and naturally it's a harder area. The research
21	programs aren't as far developed as you might be for
22	circuit analysis where we put several years in fire
23	induced circuits.
24	Now regarding your comment on low-power
25	and shutdown, net week we're going to have a meeting

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	205
1	with EPRI and a licensee about looking at doing a low
2	power and shutdown requantification study. This
3	meeting is the first part of a couple of meetings to
4	evaluate the feasibility of doing that.
5	We are hopeful. We've had good
6	experiences in the low power. We've got a range of
7	players who can sit around the table and make
8	decisions about where we need to go and what the
9	challenges are. It's a feasibility study and we
10	haven't agreed to do it yet.
11	MR. ROSEN: Okay. Good. You're working
12	on it.
13	MR. HYSLOP: Working on it. Now, the next
14	bullet is the FAR model benchmarking and validation.
15	My days leading this activity and we've performed some
16	analytical exercises on cable tray fires and fires in
17	turbo halls. This has been a part of a fairly large
18	international collaboration called the International
19	Benchmark Studies.
20	We completed a fire test at NIST and we
21	are currently analyzing the data on that test. We
22	have additional test planned. The tests at NIST which
23	are planned are to be determined. However, we are
24	planning test with the French at the DIVA facility and
25	those particularly tests are for multi-compartment

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	206
1	effects.
2	The next to the last bullet is a planned
3	activity. This is Hemyc and MT fire barrier testing.
4	This has been tested before. However, these formal
5	tests have come into question so NOR has developed a
6	test plan which identifies configurations to be
7	tested, includes public comment.
8	Research is going to perform that test
9	plan. We are also considering developing a model to
10	extrapolate the results of the test beyond the test
11	configurations. We are going to assess if any
12	additional testing is appropriate.
13	Last comment or bullet is international
14	activities. The international activities besides the
15	fire modeling support circuit analysis and fire event
16	data. The circuit analysis there's a group called
17	FIDEC under the Cooper Working Group. FIDEC stands
18	for the Fire Induced Damage to Electrical cables and
19	circuits and they are performing some tests. The
20	Germans will perform some tests in November and
21	December on that.
22	The last activity, fire event data, that's
23	being done in the auspices of the OECD. They are
24	developing an international fire events database and
25	we are participating in it's my understanding from

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	207
1	talking to the people running that that we are
2	supplying LER data.
3	That's it. I hope I haven't gone too fast
4	but I was aware that we were trying to get through
5	this quickly.
6	MR. ROSEN: Well, I'm sorry to have to ask
7	you to come here because you know I'm the Fire
8	Protection Subcommittee Chairman and have heard most
9	of this before but I think the reliability of the PRA
10	subcommittee players who were here and needed to hear
11	some of this. At least it's on the record and they
12	did hear it. Thanks very much, J.S.
13	MR. HYSLOP: You're welcome.
14	MR. CUNNINGHAM: One last topic would be
15	low power and shutdown.
16	MR. ROSEN: Right.
17	MR. CUNNINGHAM: Dan, if you want to go
18	ahead and do that.
19	As Dan is getting up, I'll remind the
20	Committee members that this is a topic where we have
21	been somewhat constrained in what we can do in the
22	area of low power and shutdown risk analysis by some
23	Commission decisions on budget and that sort of thing.
24	You don't see as robust a program in low
25	power and shutdown risk as you do, for example, as in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	208
1	fire risk analysis. Dan will kind of talk about most
2	of the work that we're doing is supporting the
3	development of standards for low power and shutdown
4	PRAs.
5	MR. O'NEAL: I'll quickly talk about the
6	other activities that we've been doing. I think you
7	heard earlier about the SPAR models. There's a number
8	of other activities going on. First and foremost, we
9	are actively supporting development of low power
10	shutdown standard which is being written by the
11	American Nuclear Society.
12	We're on the writing committee so we are
13	actively involved in writing those standards. The
14	standard itself is projected to be completed around
15	December 2004. Just recently work started again on it
16	back in the early spring of this year so there's been
17	a little bit of delay.
18	MR. SHACK: When is a draft going to be
19	available?
20	MR. O'NEAL: That's usually I would
21	project around summertime next year. It's usually
22	available about six months before.
23	The supporting work that we're doing for
24	the ANS low power shutdown standard is a revision to
25	our NUREG/CR-6595 which provides a simplified method

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	209
1	for evaluating larger release frequencies. We've
2	added a chapter specific to shutdown conditions, how
3	to estimate larger release frequency for low power and
4	shutdown conditions. That's in our draft NUREG which
5	is actually out for public comment right now. The
6	public comment period ends the end of October. In
7	addition to low power shutdown standards work
8	MR. ROSEN: Do you have these review
9	graphs for us to take home and think about?
10	MR. O'NEAL: Yes, they are back on the
11	chairs over there.
12	MR. SNODDERLY: In the SAPHIRE packet?
13	MR. O'NEAL: It's separate. We're also
14	taking a look at expanding the scope for the fire
15	requantification project from full power to low power
16	shutdown. We are going to be doing a feasibility
17	study for that which is actually underway right now so
18	there's not much right now to talk about but maybe
19	later.
20	In addition, we are supporting the worker
21	fatigue rule effort by looking at low power shutdown
22	events, reviewing the LERs to see what type of
23	insights we may gain and provide that to the staff
24	that's working on the rulemaking.
25	Another important topic is our activities

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	210
1	in the international community for trying to learn
2	about the low power shutdown risk. We actively
3	participate in the international meetings for a couple
4	of the international low power shutdown groups. One
5	is called the Cooperative PRA Working Group for low
6	power shutdown. The other one is CSNI, or the
7	Committee on the Safety of Nuclear Installation.
8	Both of these organizations have something
9	in common in terms of wanting to improve the
10	regulatory decision-making process by sharing the
11	information on low power shutdown PRAs, the different
12	approaches that have been taken, the different
13	insights, different types of data and methods that are
14	available. It's a learning process and we are
15	actively participating in those.
16	A little bit more about what we're doing
17	for COOPRA group. The United States had the lead for
18	writing a topical report on initiating events. That
19	was based upon responses to a questionnaire from the
20	various member countries taking a look at what can we
21	learn from initiating events in terms of the
22	uniqueness of the low power shutdown initiating
23	events, the types of, I would say, data that's not
24	there and the types of data that might have to be
25	obtained to improve the insights.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	211
1	MR. ROSEN: Well, there's a lot of data
2	there. Right? For instance, RHR flow interruptions
3	during shutdown.
4	MR. O'NEAL: That was one of the things.
5	One of the objectives was to see. For example, what
6	is based upon operational experience and what is not.
7	Those types of initiating event questions have been
8	asked in that questionnaire to help gain some
9	insights. What is the completeness, you know. Do we
10	have enough data to look at the initiating event
11	frequency. Do we have enough data.
12	MR. ROSEN: Let me see if maybe the
13	regulatory guys. If you're in shutdown mode and
14	you're on RHR and you have a flow interruption that
15	last long enough to actually get some heat up, is not
16	that an event that is reportable, LER reportable?
17	MR. CUNNINGHAM: I believe the answer is
18	yes it is.
19	MR. ROSEN: So you have data. You have
20	some data, at least.
21	MR. O'NEAL: Yes.
22	MR. ROSEN: The presumption always is that
23	reportable events are reported.
24	MR. O'NEAL: Right, but this is for the
25	COOPRA group itself so it's not only the United States

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	212
1	but other countries.
2	MR. ROSEN: Well, we will eventually
3	include the foreign data but just the domestic
4	database so that you have some view of ability to at
5	least attempt to calculate the reliability of residual
6	heat removal. Given that, you also have the ability
7	to study the events that happened and fortunately none
8	of them has resulted in really serious problems.
9	But if you have an initiating event
10	frequency, you can then understand that there are
11	periods when you are eight to 10 minutes away from
12	boiling, a maximum reduced inventory situation and PWR
13	at mid LOOP for a hot early mid LOOP.
14	Then you can make some estimates of how
15	likely it would have been to get into a really
16	significant bind. It's only a matter of
17	probabilities. The point is there have been these
18	interrupts. They just haven't happened at the worse
19	possible time yet.
20	MR. O'NEAL: Yes. That data is out there
21	and we have incorporated it into the models that we
22	are developing. I think there are also issues about
23	human induced initiating events so that's another
24	MR. ROSEN: Well, loss of RHR could be
25	human induced. I don't care how it's induced.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

There's lots of different ways but the point is the first output of something like this might be some people are feeling about the global risk of loss of RHR in terms of frequency consequences. We know something about frequency more than you seem to imply but I think when you study it, you'll see that it's there.

8 MR. CUNNINGHAM: There's a document that 9 was completed a year or two ago by this same COOPRA 10 group that got into what are the perspectives globally 11 about the risk associated with low power and shutdown. 12 That report got to just what you're saying, it can be 13 significant and it's this type of scenario and that 14 sort of thing so there is an initial report.

It led to two or three reports being developed one of which was this. Given that we see that general pattern, what are the things as technical people we could work on to improve the quality of them and getting an initiating event frequencies was a key piece that people thought needed to be standardized, if you will.

22 MR. ROSEN: There are some in this agency 23 who think that the risk of low power and shutdown is 24 negligible and I beg to differ. I think some data 25 analysis and evaluation might be helpful. There is an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

15

16

17

18

19

20

21

	214
1	answer. It either is or it isn't or it is under
2	certain circumstances perhaps. I think it would be a
3	useful contribution to put some data rather than just
4	intuition on the table.
5	MR. O'NEAL: I think that's what the
6	second activity where we are developing a database for
7	initiating events might help out with since we're
8	going to maintain a database and keep it updated with
9	initiating events frequencies for a particular plan
10	operational status.
11	MR. ROSEN: Also it's going to lead you
12	right into the shutdown risk SDP.
13	MR. O'NEAL: Yes. And I think the
14	initiating events for DSDP have already taken into
15	account the updating of RHR.
16	MR. ROSEN: I don't know if it's already
17	happened but sooner or later someone will have an
18	event during shutdown under the ROP and then there
19	will be a big debate about whether it was white or red
20	or yellow or what and it would be helpful to have a
21	better database.
22	MR. O'NEAL: We are also developing the
23	models for low power shutdown. Office of Research is
24	developing the low power shutdown models. Updating
25	the frequencies in those models is being done. There

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

215
is some updating going on for those models.
The other international activity that
we've been participating in the CSNI low power
shutdown working group. The work here is broader than
what we've been doing for COOPRA. It covers the major
elements for a low power shutdown PSA anywhere from a
cooling initiating event to definitions of plant
operational states to the consequence to how low power
shutdown PSA is being used, and identifying areas of
research.
A major product for this group is to
produce a technical report based upon the results of
a questionnaire. What can we learn from what other
countries are doing with their low power shutdown
studies. What type of methods and data are out there
to help us.
For example, if you see the objectives
there to improve risk tradeoff decision making between
full power operation and low power shutdown operation.
Once we identify what are the significant areas that
have to be addressed, how will those areas be

addressed. The report that we're putting together is a summary of the responses and what we've learned from those responses.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

It takes a look at what types of methods

(202) 234-4433

(202) 234-4433

and data are being used and what else do we have to learn. What are the areas of interest for further research. We expect to learn a lot from this effort. An example of something that might be useful or further useful to look into is, for example, HRA during low power shutdown.

7 HRA would benefit for simulator type of data which is a noted limit for low power shutdown 8 9 studies is a lack of that type of data where you might 10 have simulator data for full power types of scenarios. 11 There's some information on what other countries have 12 done in that area so that is one example. We are 13 continuing to work on this report and expect to be 14 able to learn a lot and share information.

MR. ROSEN: When do you think this report will be done? Do they have a schedule?

17 MR. O'NEAL: Well, let's see. We're going 18 to -- we just recently had a meeting over in Paris and 19 it was decided at that meeting to allow further 20 information to be presented for completion of the 21 report so it's not a really definite time right now 22 but at least we are going to be updating our report 23 later on. Those countries who want to update their 24 input can do it and they will provide information to 25 us by the end of the year.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

15

16

	217
1	MR. ROSEN: The end of this year?
2	MR. O'NEAL: Yes. And the report itself
3	is actually I haven't heard a completion date for
4	that report but we will have another meeting discuss
5	it. The various member countries will look at it and
6	have another chance to discuss it. There is a final
7	draft. That's going to take place some time after we
8	get some updated responses to the questionnaire.
9	The format of the report is actually going
10	to be combined with what we are doing for the COOPRA
11	effort so we are going to take the work for COOPRA
12	which is more than the initiating report which I
13	presented. We are going to take what COOPRA is doing
14	as well as what CSNI is doing and combine it to one
15	report and have a couple of appendices. I don't have
16	a time scale for that yet.
17	MR. ROSEN: Any guess? This is important
18	work and it sounds to me it's drifting without someone
19	saying when we're going to get to the finish line.
20	MR. CUNNINGHAM: The answer is probably
21	within six to nine months.
22	MR. ROSEN: You think next year sometime?
23	MR. CUNNINGHAM: Yes.
24	MR. ROSEN: Okay. This would be fairly
25	useful. This thing you introduced there with your

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	218
1	bullet No. 1, the differences between methods used and
2	tradeoffs is something we call cycle risk
3	optimization. That is, you can do you have to do
4	something to maintain a component of importance. The
5	question is when you do. Do you do it online which
6	may be possible under certain sets of tech specs or do
7	you wait until shutdown?
8	It may turn out for equipment that's of
9	particular use during shutdown like electrical power
10	equipment. It may be less risk in terms of overall
11	cycle risk optimization to do it during operating
12	periods rather than during shutdown and clearly vice
13	versa. The important thing to a risk analyst is not
14	when you do but what is the overall cycle risk from
15	breaker to breaker and breaker to breaker.
16	When does the strategy that reduces
17	overall cycle risk. In other words, the interval of
18	risk over time. That is the important parameter, not
19	we're using risk during operation and then shutting
20	down and having a whole lot more risk during shutdown
21	and the overall risk is higher than you would have
22	been if you did it during shutdown. Cycle risk
23	optimization if an important point.
24	A lot of people are doing it implicitly,
25	I think, and getting the wrong answer. They are doing

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	219
1	it the way we always used to. A lot of people are
2	doing it while they are shutdown when really they are
3	probably better off doing it when they are running for
4	equipment that's important for risk control during
5	shutdown. I also think there is some of the reverse.
6	If once we could have a shutdown risk
7	calculation method that is, as you suggest here, that
8	would allow meaningful risk comparisons or tradeoffs
9	among these operational conditions we would be in much
10	better shape. I think this is a worthwhile effort and
11	I think you can do whatever you can to try to move it
12	along.
13	MR. O'NEAL: Okay.
14	MR. ROSEN: If there are no further
15	comments from my colleagues? I doubt there will be
16	any. Or from members of the staff? I'm not as sure
17	there wouldn't be any. Members of the public?
18	Members of ACRS staff? Okay. We'll stand adjourned.
19	(Whereupon, at 2:59 p.m. the meeting was
20	adjourned.)
21	
22	
23	
24	
25	